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Abstract: The application of drones has recently revolutionised the mapping of wetlands due to
their high spatial resolution and the flexibility in capturing images. In this study, the drone imagery
was used to map key vegetation communities in an Irish wetland, Clara Bog, for the spring season.
The mapping, carried out through image segmentation or semantic segmentation, was performed
using machine learning (ML) and deep learning (DL) algorithms. With the aim of identifying the
most appropriate, cost-efficient, and accurate segmentation method, multiple ML classifiers and DL
models were compared. Random forest (RF) was identified as the best pixel-based ML classifier,
which provided good accuracy (≈85%) when used in conjunction graph cut algorithm for image
segmentation. Amongst the DL networks, a convolutional neural network (CNN) architecture in a
transfer learning framework was utilised. A combination of ResNet50 and SegNet architecture gave
the best semantic segmentation results (≈90%). The high accuracy of DL networks was accompanied
with significantly larger labelled training dataset, computation time and hardware requirements
compared to ML classifiers with slightly lower accuracy. For specific applications such as wetland
mapping where networks are required to be trained for each different site, topography, season,
and other atmospheric conditions, ML classifiers proved to be a more pragmatic choice.
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1. Introduction

The use of drones for different types of vegetation classification has increased many folds over
the last decade. This is due to the technological development of affordable and lightweight drones.
With drones, a very high and flexible spatial resolution can be achieved, which is not possible with
satellite imagery due to their fixed orbits. Satellites are both open-source and commercial. Some of the
most popular open-source satellites include the Sentinel and Landsat series. These satellites provide
global information but lack high spatial resolution with the best resolution possible of 10 m using
Sentinel-2 (S2). The S2 imagery has been widely used for classifications; for example, a study carried
out by [1] used S2 imagery for temporal mapping of wetland vegetation communities. However,
one conclusion from the study was that accuracy decreases for smaller wetlands. In many cases in
Ireland, at least, the area of wetlands can be relatively small, whereby satellite-based classification is
not sensitive enough and can produce large errors. One of the significant problems is pixel-mixing;
when the size of the pixel is 10 m, for example, each pixel can have a combination of species present in
it. This affects the overall reflectance value of the pixel, and hence, a good boundary or extent of the
species cannot be achieved. There are several ways to reduce the error in satellite images, but most of
them require extensive hyperspectral bands. However, another method to get detailed monitoring of
small areas is to use unmanned aerial vehicles (UAVs), more commonly known as drones.
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Most drones typically carry optical cameras (RGB) and occasionally can support a thermal
sensor, but some drones can also support more expensive hyperspectral cameras. The presence of a
thermal/hyperspectral sensor allows more details to be gathered and improves spectral resolution.
However, the dilemma about spectral versus spatial remains unanswered. Missions like Airborne
Visible InfraRed Imaging Spectrometer (AVIRS) and hyperspectral satellite Hyperion provides high
spectral resolution. A study [2] has used AVIRIS hyperspectral data with 224 bands and 20 m spatial
resolution to detect invasive plant species (Colubrina asiatica (Brongniart, Adolphe Théodore) in Florida.
Another study [3] used Hyperion (30 m) hyperspectral data to detect Phragmites australis (Steudel,
Ernst Gottlieb) in coastal wetlands and states that, due to low spatial resolution, the analysis was
affected by pixel mixing. Therefore, apart from high spectral resolution, a proper spatial resolution
is also required for monitoring vegetation communities closely. Drone images have much higher
spatial resolution when compared to satellite images. Drones have been explicitly used for species
detection [4–7]. A study by [8] states many advantages of using a drone over satellite imagery
for identification of land cover communities such as water, land Avicennia alba (Blume, Carl (Karl)
Ludwig), Nypa fruticans (Verh. Batav. Genootsch. Kunst.), Rhizophora apiculata (Blume, Carl (Karl)
Ludwig), and Casuarina equisetifolia (Linnaeus, Carl). Drone imagery has also been applied for
specific applications such as analysing vegetation under shallow water, tracking waterbirds, and their
habitats [9,10]. A study by [11] concluded that a thermal (infrared) sensor on its own performs
comparable to an RGB sensor, but a multispectral sensor (with multiple spectral bands and indices) is
required for the best analysis of nitrogen on rice fields. Multiple spectral sensors, however, although
useful, are costly [12]. A study by [13] supports the hypothesis that proper spatial resolution with an
RGB sensor is sufficient for the analysis of wetland delineation, classification, and health assessment.
Therefore, taking all the points into consideration, as an alternative to an expensive camera, an RGB
camera was used in this study.

For the analysis of drone data, many techniques are available. The state-of-the-art techniques in
drone image analysis consist of both machine learning (ML) and deep learning (DL). A study by [14]
demonstrates the application of ML techniques to classify drone images into roads, vineyards, asphalt,
and roofs. The study uses ensemble decision trees with an object-oriented approach. The study [15]
has used object-based multi-resolution segmentation (eCognition software) of UAV imagery for
the segmentation of the agricultural field. Other than object-based, there are multiple pixel-based
studies, such as [16,17] use support vector machine (SVM) classifier for agricultural mapping and reef
monitoring using drone imagery. The study [18] applies multiple ML algorithms including random
forest (RF), SVM, and gradient boosting decision tree (GBDT) to classify trees, grasses, bare gravel/sand
bed, and water surface. The study achieved a high accuracy of up to 98% using RF classifier on UAV
images. ML algorithms have also been used for vegetation segmentation. A study by [19] has used
simple linear iterative clustering (SLIC) for mangrove segmentation. Another study by [1] has used
graph cut for the segmentation of vegetation communities in wetlands. Hence, the segmentation of
drone images can help in the identification of subtle changes in vegetation communities. Apart from ML,
advanced deep learning techniques are also now being widely applied for drone image segmentation.
A recent state-of-the-art review [20] shows the surge of applying DL in the field of RS. It also gives
details about various convolutional neural network (CNN) models and suggests that ≈20% of all
studies since 2012, uses DL with UAV imagery. The study [21] has used DL to segment concrete-cracks
in drone images. The segmentation using a CNN is known as semantic segmentation. It has been
applied for various applications like urban land classification [22,23], forest cover classification [24],
and wetland type classification [25,26]. A study by [27] uses ResNet50 and UNet for classification of
forest tree-species, and [28] has used transfer learning to get the best semantic segmentation of the
aerial images AeroScapes dataset. Both [27,28] suggest that the usage of transfer learning enhances
the analysis. A study by [29] has utilised both ML (linear regression) and DL (neural network) for
predicting water and chlorophyll content in citrus leaves. The study suggested that both ML and
DL give comparable results for predictions using UAV images. From the literature, it is apparent
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that both ML and DL can be applied for drone image segmentation. However, it is not clear which
technique, the traditional state-of-the-art machine learning or the advanced deep learning is better for
the identification of the communities. Therefore, in this study, we applied both ML and DL techniques
for vegetation classification of different vegetation communities on a raised bog wetland. Our study
also demonstrates the pros and cons of both methods. It also gives a clear insight into both the
techniques and their applicability for future studies on vegetation identification.

2. Study Area and Materials

The area of study is one of the largest intact raised bogs present in Ireland, covering approximately
460 ha area located in the midlands called Clara bog. The two sides of the bog are divided by a road:
East Clara is a restored bog (after years of drainage and peat cutting), whereas, the West Clara remains
a natural active raised bog. This study concentrates on a small part of the bog located in West Clara bog
(as shown in Figure 1). The different vegetation species have been grouped into different communities
on the basis of similar habitats, which are termed ‘ecotopes’ [30].
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Figure 1. Study area: (a) map of Ireland (with the highlighted area: Clara Bog). (b) West of Clara Bog,
County Offaly (with the highlighted area covered by drone). (c) Area covered by DJI Inspire 1™ drone.

The major ecotopes present in Clara bog are Central (C), Subcentral (SC), Submarginal (SM),
Marginal (M), and Active flush (or flush) (AF). Other ecotopes like Inactive flush (IAF), Facebank (FB)
are also present in this bog but have not been considered in this study due to their low ecological
impact. Out of all these ecotopes, the main focus is on the conservation of the active peat-forming
areas [1,30,31], which are considered to be C, SC, and AF ecotopes. These areas have high sphagnum
moss coverage, with hummocks, hollows, lawns, and many pools. The SM ecotope that appears
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at the boundaries of the SC ecotope can appear to be almost homogenous, which makes it hard to
distinguish between them. The SM and M ecotopes are located on drier areas with vegetation reflective
of such conditions.

For capturing high-resolution images, a DJI Inspire 1™ drone was used. The camera used with the
drone was Zenmuse X3. It is an optical camera with 100–1600 ISO range (for photo) and 94◦ field of
view (FOV). The lens is anti-distortion and autofocus (20mm of 35mm format equivalent). The aspect
ratio, while clicking the images, was kept at 4:3. The images were captured on 21st April 2019 at
around noon time. The highest temperature on the day was recorded at 19 ◦C. The height of the flight
was ≈100m, and the spatial resolution of the images captured was 1.8 cm. The drone mission was
pre-loaded using Google maps in Pix4DCapture application to capture ≈8 ha of the area using an
iOS-12 device. The images were captured individually with 70% frontal and 80% sideways overlap at
an average speed of 3 m/s. Figure 1c provides the drone imagery of the study area. For georeferencing,
the drone imagery had geo-tags (lat-long locations) present in it. For better orientation, imagery was
overlayed on high-resolution DigitalGlobe World Imagery (spatial resolution = 30cm) available as a
base map in ArcMap v.10.6.1 [32,33]. Using ‘georeferencing’ toolbox present in [32], 3–4 ground control
points (GCPs) were identified for every image, and projection was rectified to Geographic Coordinate
System—World Geodetic System 84 (GCS WGS 84). In this study, C, SC, SM, M, and AF ecotopes were
all captured using high-resolution drone imagery (Figure 2).
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Figure 2. Ecotopes in Clara bog. Drone images, April 2019.

The SM and SC ecotopes are highly homogenous and appear to be mixed throughout the bog [1].
These communities were therefore merged for the rest of the study. In total, around ≈75 images
of dimension 3000 × 4000 were captured. Out of these images, 15 images were discarded due to
differences in light intensity, motion blur, and camera tilt. The usable 60 images were divided into 70%
training and 30% testing randomly, which is around 40 images for training and 20 images for testing.
In order to have a correct idea of mapping accuracy, all the images were labelled for the four vegetation
communities (M, SMSC, C, AF). For ML only a part of the labelled training data was required, whereas
for DL fully labelled images were used. This is discussed further in Sections 3 and 4. For the creation
of a training dataset, it is essential for all the images to have a similar intensity range. Depending on
the lighting situation when the picture was taken, the colour properties may be changed, even though
the textural properties remain unchanged. In a temperate climate like Ireland, this change in sunlight
while capturing drone images is unavoidable. Therefore, going forward in future studies, the usage of
colour correction techniques for drone mages is recommended such that all the captured images can
be used.

3. Segmentation Using Machine Learning

The segmentation of the images using machine learning techniques utilises combinations of
intensity, colour, texture, and motion attributes to come up with hierarchical segments [34]. The drone
images used for this study have intensity and colour information. Although textural information is not
present in the original image, textural features were subsequently calculated using the parameters
mentioned in Table 1, [35]. This was done by converting the RGB image into a grayscale image.
The textural information presented in Table 1 was added as features along with the RGB layers.
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The entire computation of machine learning techniques and the steps described below was performed
using MATLAB v.2019b using image processing toolbox [36].

Table 1. Textural properties calculated using drone imagery.

Property Description

Contrast Intensity difference between pixels compared to its neighbour for the whole image [37].
Correlation Correlation of a pixel and its neighbour for the whole image [38].

Energy Sum of squared elements in gray level co-occurrence matrix (GLCM) [39].
Homogeneity Closeness of the distribution of pixels in the GLCM to its diagonal [40].

Mean Mean of the area across the window
Variance Variance of the area across the window

Entropy (e)
Statistical measure of randomness

e = −
∑ (

h× log2 h
)
; where h contains the normalised histogram counts

Range Range of the area across the window [41].

Skewness (S)
Asymmetry of the data over the mean value [42].

S = E(p − µ)3/σ3, where µ is the mean of the pixel p, σ is the standard deviation of p,
and E represents the expected value.

Kurtosis (K) Distribution to be prone to outliers [42]; K = E(p − µ)4/σ4

The segmentation technique used in this study, called graph cut, is based on max-flow min-cut [43].
This is done using posterior probabilities associated with every pixel for every class. In order to
calculate the posterior probabilities, an initial classification of the drone images was carried out. Based
on the texture and colour intensity, a total of 13 bands are used for further classification of the drone
images. The type and choice of classifier used are discussed in the following subsection.

3.1. Choice of the ML Classifier

For efficient classification, the choice of the classifier is the most crucial decision that has to be made.
Multiple studies have applied hyperspace based SVM [44,45] for image classification. Other studies,
like [46], have used decision trees. Studies [47,48] suggest that there is an advantage of using ensemble
classifiers over other state-of-the-art classifiers. The most commonly used ensemble classifier consists
of a tree model. The tree models are easy to understand and could be used for both classification and
regression. There is no need for variable selection (since it is automatic) or variable transformation.
They are robust to outliers and missing data, and particularly useful for large datasets.

In this study, in order to provide proper comparative analyses, the drone images captured on 21st
April 2019, were classified using multiple classifiers. The training dataset (≈12k pixels from 40 images)
was the input for all the classifiers. The classifiers were tested on model accuracy, misclassification cost
(i.e., the total number of incorrectly identified pixels per 10,000 pixels), and training time (time taken
by the classifier for training). The model accuracy for each ML model was calculated using 5-fold
cross-validation for the entire 70% training dataset. This accuracy indicates the capability of the model
to label the pixels correctly. The results (Table 2) describes all the classifiers and the corresponding
accuracy metric. All the calculations were performed using MATLAB v.2019b [36].

The preliminary comparison was made using six classifiers, namely, decision trees [49],
naïve Bayes [50], discriminant analysis [51], SVM [52], k-nearest neighbour (KNN) [53], and random
forest (RF) [54]. Based on the misclassification rate, model accuracy, and training time (see Table 2),
RF was found to be best classifier. Random forest or bagging is a general-purpose procedure for
reducing the variance of a predictive model. When applied on trees, the number of trees (t) is
bootstrapped, each having a variance σ2. In RF each tree can split on only a random subset of
the samples (hence, the name). RF requires an attribute (sample) selection and a pruning method.
Information gain ratio criterion [55] and Gini Index [56] are the most common attributes selection
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methodology. For this study, the Gini index criterion was used to decide the attributes. The Gini index
(G) is given in Equation (1). Based on the value of G, the attribute was decided automatically.

G =
∑

n

N∑
i = 1

(pi × (1− pi))n (1)

where pi is the proportion of the pixel (i = 1 to N) belonging to a particular class n, i.e., it is the prior
probability. A minimum of 10% of the entire ground truth image should be given as training and rest
could be used for testing [1]. The samples were divided into 100 random subsets (with repetition),
and for each tree, and the attributes (splitting criteria: which of the RGB bands) were decided using
Equation (1). The final class selection for every pixel was made using majority voting. The workflow
of the RF classifier is given in Figure 3.

Table 2. Comparison of ML classification techniques.

Name Parameter Model Accuracy Misclassification Cost Training Time (s)

Decision trees Max. no. of splits = 20; split
criterion = Gini’s diversity index 87.4 736 7.3

Discriminant
analysis Kernel = quadratic 89.4 618 8.6

Naïve Bayes Kernel = Gaussian 78.3 1271 19.5
Support vector

machine
Kernel = radial basis function

(rbf) = 0.25 91.9 472 112.5

K nearest
neighbour

No. of neighbours = 2;
distance = Euclidean 91.0 528 378.8

Random forest
No. of trees (t) = 100 (1000

samples with repetition); total no.
of splits = 5853

92.9 454 59.2
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3.2. Segmentation

Once the drone images were classified, they were segmented using the maximum-a-posterior
(energy minimisation) technique. The technique uses contextual (area) information to form proper
segments from pixels. The pixels, therefore, are no longer treated as a single entity but part of a
more significant segment. It can be considered as a post-classification smoothing process based
on spatial similarities. The formation of segments was done using a max-flow min-cut algorithm,
commonly known as graph cut. This algorithm uses data cost and smoothness costs [57]. The graph



Remote Sens. 2020, 12, 2602 7 of 26

cut segmentation was performed in MATLAB v.2019b [40] using MATLAB wrapper mex file function
that enables the user to call C/C++ files [58]. The steps for the segmentation include calculation of the
data cost, smoothness cost, and energy using posterior probability from the pixel-based classification
map. Based on the maximum probability of the pixels, the segments were formed, and the pixels
were joined.

The data cost (Dp) is based on individual labels of pixels and their likelihood function. The data
cost Dp measures the cost of assigning the class n to the pixel p for a given set of features UN in the
vectorised image having N pixels. In image processing Dp can be typically expressed as [59], given by
Equation (2).

Dp =
∣∣∣∣∣∣Up(n) – I(p)

∣∣∣∣∣∣2 (2)

where, I(p) was the observed reflectance of the pixel p.
The smoothness cost (Vp,q) on the other hand, was used to promote groups. It was assumed that

the neighbouring pixels should belong to the same class, and hence, this cost was given based on the
likelihood of pixels p, q belonging to same class n. np , nq are labels of pixels p, q respectively. It was
defined using described in Equation (3).

Vp, q
(
np , nq

)
= c× exp (−∆(p, q)/σ) × T

(
np , nq

)
(3)

where ∆(p, q) =
∣∣∣I(p) − I(q)

∣∣∣ denotes how different the reflectance values of p and q are, c > 0 is a
smoothness factor, standard deviation σ > 0 is used to control the contribution of ∆(p, q) to the penalty,
and T = 1 if np , nq and 0 otherwise.

As described in [1], the steps followed for drone images were the same as for the satellite image
segmentation. The main difference comes in the choice of the smoothness factor. Since a drone image
was much more detailed for forming distinct segments compared to a satellite image, a high smoothness
factor was required. After an iterative parametrisation optimisation exercise, a smoothness factor
(c) of c > 5 was chosen for the drone images. This can be compared to the optimum value of c < 1
when processing satellite images [1]. Therefore, it was seen that for a high resolution (1.8 cm), a higher
value of c was required, whereas, when working with the 10 m spatial resolution from satellite images,
a small value of c suffices.

The pioneering work done by [59] explains energy (E) minimisation can be interpreted directly as
posterior maximising. Using probability functions from previous steps, we get the energy function as
described in Equation (4).

E (UN, n) =
∑
p∈N

Dp +
∑

p,q∈N

Vp, q (4)

Therefore, E(UN, n), i.e., energy for the image vector with total N pixels (UN) for all n classes is
minimised, leading to the formation of smooth segments. The pixels with least E are joined together to
form the segments depending on their initial labels as obtained from the pixel-based RF classification.
The results of the segmentation are further discussed in Section 5.1.

4. Segmentation Using Deep Learning

4.1. Parameters in Convolutional Neural Network

Convolution neural networks (CNNs or Covnets) have caused a step-change in pattern recognition
progress. Here each neuron is connected to a local region of the input only, making the network faster
and less prone to overfitting for a large dataset. Therefore, CNNs, when compared to traditional NNs,
can have fewer parameters. In addition, the same parameters are used in more than one place on
CNN, making the model both statistically and computationally efficient. The initial layers of the CNN
identify lines, corners, edges, textures, and then the deeper the network goes, the more precisely it can
learn from the features, as shown in Figure 4, which gives the architecture of CNN. The different layers
used in CNN are described in detail in the following subsections.
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Figure 4. The general architecture of convolutional neural network (CNN).

4.1.1. Convolutional Layer

Convolution in CNN is the mathematical operation that combines signals a and b [a ∗ b], i.e.,
filtering input a with kernel b. It is a process to overlay ‘b’ on ‘a’, multiply the numbers and sum the
products and move. In CNN the convolutional layer is used instead of only fully connected layers.
For visualising, convolution may look like a sliding window operation, but it is implemented as matrix
multiplication. The input is divided into arrays as well as the kernels and rearranged into columns.

4.1.2. Pooling Layer

The pooling layer downsamples the input by locally summarising the data in it. The two types of
pooling are shown in Figure 5.

1. Max Pooling: where the local maxima of the filtered region are carried forward.
2. Average pooling: where the local average of the filtered region is carried forward.

Of the two methods, max-pooling was used for this study, as it is a more efficient pooling
technique [60]. A feature existing in the input layer is fed forward regardless of its initial position
(as the local maxima will still make it to the next layer). The advantages of pooling include decreasing
the size of the activation layer that is fed forward to the next layer and increasing the receptive field of
the subsequent units.
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4.1.3. Kernel Size

Kernels or the filters are used in order to down-sample the layers in CNN. It is preferable to use
smaller kernels stacked on top of one another than using a large kernel [61]. Using smaller kernels
decreases the number of parameters and also increases the nonlinearity (see Section 4.1.6). For example,
a stack of two 3 × 3 kernels and one 5 × 5 kernel will have the same receptive field. However, 3 × 3 will



Remote Sens. 2020, 12, 2602 9 of 26

have fewer parameters (as the same kernel is used twice) and more nonlinearity. Therefore, in this
study, the kernel of size 3 × 3 was used.

4.1.4. Stride

Stride defines by how much the kernel will move in the convolution layer. The stride can be used
to increase the receptive field. Example, stride = 2. Using stride > 1 provides a down-sampling effect
and can be used as an alternative to the pooling layer.

4.1.5. Padding

Padding is required to maintain the spatial resolution of the input image. Padding can be of two
types, valid and same. In valid padding, the spatial dimension of the output shrinks by one pixel less
than the kernel spatial dimension. Whereas, in same padding, the input is surrounded with zeros such
that the spatial dimension of output is the same as the input layer. Therefore, the same padding was
used in this study in order to maintain the same dimension between input and output.

4.1.6. Activation Function

The activation function ( f (x)) defines the output for a given input. It also imparts nonlinearity to
the input.

Why do we need nonlinearity?
Combining linear functions yields a linear function; however, in order to compute more in-depth

features, nonlinearity is required. With just linear functions, the model is no more expressive than
a logistic regression model without any hidden layer. Hence, without any nonlinearity, the entire
network behaves as a single linear function.

The study [62] describes the types of activation functions. Some of the most commonly used and
well-known activation functions are identity (when linear relation is required), binary step (nonlinear,
good for binary classification), sigmoid (nonlinear function, ranging from 0 to 1), tangent hyperbolic
(tanH) (same as sigmoid, but ranges from −1 to +1), rectified linear unit (ReLu) (nonlinear function,
removes all the –ve part of the input). Sigmoid, tanH, and ReLu also has other variants, see [63].
Other studies like [64,65] compare the various activation functions. A study by [66] presents a
comparison between 11 activation functions and suggests ReLu to be the best. Additionally, the ReLu
function is much more computationally effective, and therefore, for this study, the ReLu activation
function was used. Equation (5) describes the ReLu function.

f (x) = 0 ; x < 0
f (x) = x ; x ≥ 0

(5)

4.1.7. Softmax Classifier

Softmax Classifier is an activation function, typically used as the top layer (after a fully connected
layer). It imparts probabilities of each input belonging to each output when there are more than two
outputs. For the n number of classes, the Softmax activation (σ) can be defined by Equation (6).

σ(x) j =
ex j∑n

k = 1 exk
; j = 1, . . . , n (6)

4.1.8. Batch Normalisation

It is apparent that each layer is dependent on its previous layer; therefore, even the smallest error
in one layer can be magnified in further layers, causing much more significant errors in the final output.
To avoid this, a batch normalisation layer is used. This layer normalises the hidden nodes before they
are fed into an activation function.
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4.1.9. Additional Parameters in CNN

An essential parameter in CNN is optimisation. Training a network can be considered to
be an optimisation problem where the goal is to minimise the loss function. There are various
optimisation algorithms that can be used to minimise the loss function, such as online learning [67],
batch learning [68], and stochastic gradient descent (SGD) [69]. As described in [70] for faster and
efficient processing, a subset of the data is taken one at a time, and therefore a stochastic gradient
descent was used for optimisation in this study. The subset of data is called a mini-batch, and the
number of samples in a mini-batch is called batch size.

Another important parameter in CNN is regularisation. Regularisation of the model can be carried
out to make the model simple but effective. This reduces overfitting and adds additional information.
This ensures that augmenting the input will not change the quality of the output. Regularisation can
be done by adding a weight penalty term to the loss function (Equation (7)).

Loss = Loss + weight penalty (w) (7)

L2 or ridge regularisation leads to the formation of small weights [71]. Additionally,
L2 regularisation never causes a degradation in performance, even with the addition of kernels [72].
Therefore, L2 regularisation was used in CNNs for this study. For a given input x and its corresponding
output x̂ the regularisation function is given in Equation (8).

Loss =
∑

i

(xi − x̂i)
2 + α

∑
i

wi
2 (8)

A third, important parameter for CNN architecture is the learning rate (LR). The LR is defined as
the rate at which the weights are updated during the training of the network. The study [73] suggests
to start with a bigger learning rate and gradually decrease the gradient when getting closer to the local
minima of the loss function. Since adaptive momentum estimation (ADAM) is fast and requires low
memory for computation [74], it was selected as the optimisation parameter for the network used in
this study. ADAM is a method that learns the LR on a parameter basis and is a combination of both
adaptive gradient (AdaGrad) and root mean square (RMSProp).

4.1.10. Popular CNN Models

CNN models are formed using the combinations of parameters mentioned in the above subsections.
The combinations of layers and the type of parameters used are often application-based and applied to
solve a bigger problem. In this study, VGG16 [75] and ResNet50 [76] were applied based on the work
done by [77,78], the models with their salient features are briefly discussed as follows.

VGGNet

• Stands for Visual Geometry Group
• Consists of 13 convolutional layers with three fully connected layers, hence the name VGG16.
• Each convolutional layer has kernel size = 3 with stride = 1 and padding = same.
• Each max-pooling layer has kernel = 2 and stride =2.

ResNet50

• Stands for Residual Network.
• A deep network, having 50 layers.
• It popularised batch normalisation.
• It uses skip connection to add information on output from a previous layer to the next layer.
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4.2. CNN for Semantic Segmentation

Semantic segmentation is a process of assigning a label to each pixel in an image such that pixels
with the same label are connected via some visual or semantic property [79]. In order to carry out
semantic segmentation, the spatial information needs to be retained. Hence no fully connected layers
are used, which is why they are called fully convolutional networks.

4.2.1. Moving from a Fully Connected to a Fully Convolution Network

This is where all fully connected layers are converted into 1 × 1 convolutional layers. In the case
of labelling, the output is a 1D vector giving probabilities of the input belonging to n classes. In the
case of segmentation, an output layer is a group of 2D probability-maps of each pixel belonging to
each class. These are known as score maps. The score maps are coarse as throughout the network;
the information (image) has been down-sampled to absorb minute details. Therefore, to make the
output compatible with the input in size, up-sampling is required.

Up-sampling can be done using either bilinear interpolation or cubic interpolation (or similar
techniques). One way of up-sampling is via skip-connections or shortcut connections.
In skip-connection, the feature maps obtained as the output from the max-pooling layers are up-sampled
using bilinear interpolation and added to the output score maps. The method works well but requires
some amount of learning to up-sample the score maps and feature maps to match it to the size of
the input image. In order to minimise the amount of learning, another method encoder-decoder is
widely used. Here, the layers which down-sample the input are the part of the encoder and the layers
which up-sample are part of the decoder. Three key fully connected models, SegNet [80], UNet [81],
and Pyramid Scene Parsing Network (PSPNet) [82] are used in this study. A brief description of the
models is given in the following subsections.

4.2.2. SegNet Model

SegNet works with encoder-decoder architecture, followed by a pixel-wise classification layer for
multiple classes. Encoders extract the most relevant features from the given input. The decoder uses
the information from encoder to up-sample the output (Figure 6).
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The up-sampling technique used by the decoder is known as max-unpooling. Max-unpooling
eliminates the need for learning to up-sample (as was required in skip-connections) as shown in Figure 7.
Based on the location of the maximum value, the max-pooled values are placed. The remainder of the
matrix is loaded with zeros. Convolution is done using any CNN models (as discussed in Section 4.1)
using this layer.
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4.2.3. UNet Model

UNet network carries out the transpose convolution (encoder-decoder) and also uses skip
connections (Figure 8).
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At every layer in the decoder side, the network finds a corresponding feature map (of the same
size) from the encoder and adds (1 × 1 convolution) to the score map. This way, the size of the feature
map is always in sync. Due to its architecture and depth, UNet is most widely used in biomedical
image analysis.

4.2.4. PSPNet Model

PSPNet stands for Pyramid Scene Parsing Network. This network incorporates the scene and
global features for scene parsing and semantic segmentation as shown in Figure 9.

The pyramid pooling module in PSPNet fuses the features in four scales: coarse (1 × 1), 2 × 2,
3 × 3, and 6 × 6. The up-sampling done is a bilinear interpolation, and all the features are concatenated
as the final pyramid pooling global feature [82]. The spatial pyramid pooling technique eliminates the
need for using the input image of a specific size, which is used in SPPNet [83].
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4.3. Methodology for the Comparison between CNN Models for the Case Study on Raised Bog Drone Images

Using the drone images captured on 21st April 2019, semantic segmentation using various
CNN architectures was applied to identify and label the ecotopes present on Clara Bog. The entire
computation was performed in python v3.7 [84] using GPU (NVIDIA Tesla K40C 12GB CUDA),
accessed remotely from trinity college high performing computer (TCHPC), and partly on google
virtual machine (Tesla K40C 12GB). The study uses the repository in [85].

4.3.1. Training Data Preparation

In order to smoothly run the semantic segmentation, the preparation of training data was done
as follows

1. Forty drone images were manually labelled using MATLAB-Image Labeler app [36].
2. The labels (in .mat format) were converted into JPG.
3. The images and labels were resized in order to use the GPU memory efficiently and to speed up the

process. For resizing, the images were shrunk in the order of 2n such that the classes were clearly
distinguishable. The resizing of the images was done using a bilinear interpolation technique.

4. The images were resized from 3000 × 4000 to 512 × 1024 (29
× 210) for further use. The size of

the image is kept rectangular in order to maintain the aspect ratio of the original drone imagery.
The ratio can be decided with respect to the application. For this study, to have a fair comparison
between ML and DL methods, the size of the imagery was not reduced to smaller patches.
Alternatively, patches of the same size (29

× 210) can be extracted with overlapping. For this
study, the small patches did not cover all the ecotopes. In a single patch, at maximum, only two
ecotope classes were covered. This is due to the large size of the raised bog in the application.
Therefore, to incorporate the maximum number of ecotope classes in a single image and to avoid
any information loss, resizing of the images was done (instead of extracting the patches).

5. After reshaping, the images were renamed such that the images and their corresponding labels
can be identified.

Steps (2–5) were repeated for all 40 images having all four ecotope classes mentioned in step 1.
The final training data consisted of 40 images (both RGB and labelled) of the size 29

× 210, which was
fed to the CNN models described in the next subsection. The testing was carried out on the rest of the
20 images.

4.3.2. Models Used for Semantic Segmentation

The models were created using a base network (tested on ImageNet) along with a segmentation
architecture. Since CNN takes a considerable amount of time to train, only the most frequently used
and tested models (in the literature) were compared. The optimisation algorithm used was SGD
Adam with initial LR = 0.05 and L2 regularisation. Initially, a high LR was used, as it is reduced
throughout the epochs by a factor of 10. The max number of epochs = 100, and images were shuffled
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at every epoch and a mini-batch size of 64. The loss between the labels given by the model and the
actual (training) label at every epoch was calculated using cross-entropy loss described in Equation (9).
The cross-entropy loss is commonly applied for classification applications, whereas loss like half mean
square error is more common for regression tasks. Therefore, a cross-entropy loss was used here.

cross entropy = −
1
N

N∑
i = 1

n∑
j = 1

(
x̂i log xi, j

)
+

(
1− x̂i, j

)
log

(
1− xi, j

)
(9)

where N is the total number of pixels, n is the total number of classes, x is the training label (input),
and x̂ is the output label as predicted by the models. Instead of training the network from scratch,
one of the most common techniques is to use a pre-trained network. The idea is to transfer the
information learned by the network and then fine-tune and train the classification layer of the model
for our specific task. In this manner, given that the weights are already pre-trained for a large dataset,
even with a small dataset, the performance is much more improved. Pre-trained weights also speed up
the convergence process (to reach local minima, i.e., to overall minimise the loss). It is also considered
better than random initialisation. For the four models listed below, ‘ImageNet’ dataset [86] was used to
initialise the weights. Other details are mentioned in detail in [85]. The architecture for these models is
shown in Figure 10.
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Figure 10. CNN Network architecture. (a) VGG16 + SegNet, (b) ResNet50 + SegNet, (c) VGG16 + UNet,
(d) ResNet50 + UNet.

1. VGG16 base model with SegNet architecture.
2. ResNet50 base model with SegNet.
3. VGG16 with UNet.
4. ResNet50 with UNet

Figure 10a,b represents the SegNet architecture with VGG16 and ResNet50 as the base model,
respectively. The left-hand side is the encoder, which has five blocks, and the layers are from the
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original VGG16 and ResNet models. The Max pooling operation is depicted by the red arrows.
This operation reduces the image dimensions by 2 × 2. The Unpooling is depicted by the green arrows
on the right-hand side of the figure(s). The operation ensures the size of the image was restored to the
original size, and the output image has the same spatial-dimension as the input image. Figure 10c,d
represents the UNet architecture with VGG16 and ResNet50 models, respectively. The network uses
the original layers from the VGG16, ResNet50, with the UNet architecture. A clear U-connection can
be seen in the figure. The skip connections were used, and upsampling was performed to restore
the image dimensions. A concatenated operation was applied to implement the skip connections
to combine them with the corresponding feature map (image). The unpooling, skip connections,
and upsampling functions were used to ensure that the size of the output image is the same as the
input image mentioned in Section 4.3.1.

For a specific task of semantic segmentation, dedicated segmentation based dataset was also
used for initialising the weights. For the PspNet, the pre-training was done using ADE20K data [87],
and Cityscapes dataset [88]. The ADE20K dataset has 21,200 images of various day to day scenes.
The Cityscapes data contains images taken from video frames (≈20,000 coarse images) from 50 cities
taken in spring, summer, and fall seasons. The models used are listed below, and the layers and
architecture are described in Figure 9.

5. PspNet trained on ADE 20K dataset.
6. PspNet trained on Cityscapes dataset.

5. Results

Figure 11 depicts the segmentation results from both ML and DL techniques for a drone image
(sized 512 × 1024) taken of Clara bog. The segmentation was carried out for four ecotope classes present
in the drone image captured in the spring season. The accuracy and results are further discussed in
this section.
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Figure 11. Segmentation results. (a) Drone image, (b) ground truth labelled image, (c) machine
learning (ML) (random forest (RF) + Graph cut) segmentation using RGB features, (d) ML (RF + Graph
cut) segmentation using RGB and textural features, (e) deep learning (DL) semantic segmentation
using SegNet and VGG 16 model, (f) DL semantic segmentation using SegNet and ResNet50 model,
(g) DL semantic segmentation using UNet with VGG16 model, (h) DL semantic segmentation using
UNet with ResNet50 model, (i) DL semantic segmentation using PSPNet (Cityscapes), (j) DL semantic
segmentation using PSPNet (ADE 20k).
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5.1. Machine Learning

As discussed in Section 3, the ML classifiers were tested for model accuracy (5-fold validation),
misclassification cost, and training time. Table 2 depicts the metric calculated over the entire 70%
training data (as discussed in Section 3).

RF was chosen to be the best performing classifier, and further segmentation using Graphcut
algorithm was performed using the results from RF. The segmentation is a post-classification area
based smoothing process. The final segmented image was checked against a fully manually labelled
image to give overall accuracy (OA). The OA is the ratio of true positives (TP) with a total number of
pixels (Equation (10)).

OA =
TP

TP + FP + FN + TN
(10)

where, TP = true positives, FP = false positives, FN = false negatives, and TN = true negatives. This was
done for visible bands (RGB) and RGB + textural features. For proper comparison between ML and
DL, the image was resampled from its original size (3000 × 4000) to a smaller scale (512 × 1024).
The resampling of the image was done using bilinear interpolation [89]. Table 3 depicts the accuracies
obtained by using a random forest classifier along with graph cut segmentation for both the sizes of
the image. Since, the image used in segmentation using DL techniques is also resized, for an accurate
comparison, the resized image (512 × 1024) was used in the further analysis.

Table 3. Segmentation accuracies using ML.

RGB
Features RGB + Textural Features

Original size (3000× 4000) 83.3 85.1
Resized (512× 1024) 82.9 84.8

As can be seen from Figure 11b,c, there is not much difference in the segmentation using RGB with
or without textural features. However, the textural features do add extra information and are known to
be highly useful when there is a terrain variation in the scene. However, in this application, where the
ecotopes under consideration are low-lying, homogenous communities, the addition of textural features
did not improve accuracy very significantly—the OA only increasing by approximately 2%.

5.2. Deep Learning

The semantic segmentation using CNNs was performed for 100 epochs. The LR was decreased by
a factor of 10 each time a model’s accuracy was saturated. The overall accuracy performed on testing
data (OA is also calculated for testing data) of all the models is shown in Figure 12.

There is a jump of an average ≈32% in OA from the first to last epoch, with the PspNet model and
ResNet50+SegNet showing the maximum increase in OA (≈30%, 25% respectively). The cross-entropy
loss decreased by an average of ≈28% for the CNN models under consideration. This decrease happens
by reducing the LR. Although accurate, a detailed analysis of per-class accuracy is required to make an
informed decision about the best CNN architecture for the segmentation for this particular application
in the identification of raised bog vegetation ecotopes. The per-class analysis is done to make sure there
is no overfitting. As seen from Figure 11i, a model can lead to overfitting, giving sufficient accuracy
but incorrect classification.
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Table 4 describes the confusion matrix for every community, and both ML and DL algorithms,
which is discussed further in Section 6. Other accuracy checking parameters like Precision, Recall,
and F1-score were also calculated for every community (ecotope) under consideration. Equations
(11)–(13) give the formula to calculate the above-stated accuracy parameters.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 Score = 2×
Precision×Recall
Precision + Recall

(13)
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Table 4. Confusion matrix per community per segmentation model (ML and DL).

RF (RGB) RF (RGB + TEXTURAL) SEGNET + VGG16 SEGNET + RESNET50

M SMSC C AF M SMSC C AF M SMSC C AF M SMSC C AF
M 58,405 1012 988 36,321 59,781 1598 1002 38,241 43,872 8854 2500 71,005 62,870 1631 835 16,360

SMSC 734 155,583 4979 2033 600 188,296 4608 587 7952 122,544 15,691 9514 3000 162,651 3005 2639
C 328 3862 77,939 44,321 256 4150 83,930 34,658 2831 18,529 77,369 73,108 967 4895 98,584 28,330

AF 38,010 3211 43,509 142,707 39,023 3079 32,584 112,589 65,896 21,251 64,211 99,833 18,470 14,110 10,358 148,383
Precision 0.59 0.94 0.61 0.62 0.59 0.96 0.68 0.66 0.35 0.79 0.45 0.40 0.77 0.95 0.74 0.78

Recall 0.60 0.95 0.61 0.63 0.60 0.95 0.69 0.66 0.36 0.72 0.48 0.39 0.74 0.89 0.87 0.76
F1 score 0.60 0.94 0.61 0.62 0.60 0.95 0.68 0.66 0.36 0.75 0.47 0.40 0.75 0.92 0.80 0.77

UNET + VGG16 UNET + RESENET50 PSPNET ADE20K PSPNET CITYSCAPES

M SMSC C AF M SMSC C AF M SMSC C AF M SMSC C AF
M 82,589 9510 3258 36,951 73,897 1008 258 3371 36,351 9822 631 5311 128,890 78,353 36,118 63,001

SMSC 10,254 146,933 9800 19,759 4096 152,363 3690 15,892 15,200 210,052 6323 28,200 73,570 107,781 2988 4820
C 4523 12,967 96,582 35,489 982 5183 90,258 28,105 987 7921 96,587 3715 38,562 5815 32,510 12,377

AF 32,563 19,638 34,822 83,417 5101 14,852 22,110 155,446 3074 21,520 5300 127,296 58,360 7826 13,524 57,450
Precision 0.62 0.79 0.65 0.49 0.94 0.87 0.72 0.79 0.70 0.81 0.88 0.81 0.42 0.57 0.36 0.42

Recall 0.64 0.78 0.65 0.47 0.88 0.88 0.78 0.77 0.65 0.84 0.89 0.77 0.43 0.54 0.38 0.42
F1 score 0.63 0.78 0.66 0.48 0.91 0.87 0.75 0.78 0.67 0.83 0.89 0.79 0.43 0.55 0.37 0.42
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6. Discussion

The study describes methods to map vegetation communities in a raised bog ‘Clara Bog’ located
in Ireland using drone images from DJI Inspire 1™ drone captured during the spring season. The size
of the images were 3000 × 4000, and 40 images were used as training. Furthermore, both ML,
DL algorithms were tested for the rest of the 20 images. The study shows that high-resolution
(1.8 cm) RGB images are adequate for mapping vegetation communities. However, a key challenge
associated with RGB images is the change in intensity due to sunlight conditions, particularly in a
temperate climate like Ireland, where sunlight levels are rarely constant for long. Therefore, in this
study, all the images with significantly different light conditions were removed. The use of a colour
correction technique could be a possible solution to this problem, which is a domain yet to be explored.
Similarly, the addition of textural properties does create the challenge of increasing the computations
(time and complexity). The segmentation is done using 13 features instead of three, thereby being
more computationally expensive.

Initially, a comparative analysis of the state-of-the-art classifiers was performed (Table 2). It was
seen that the RF ensemble classifier outperformed the other classifiers. The RF classifier uses
bootstrapping for forming multiple trees leading to reduced possibilities of overfitting of the data.
The SVM classifier with RBF kernel had similar accuracy and misclassification cost as RF, but with
twice the training time. Hence, RF was deemed to be the best choice for drone image classification with
model accuracy of 92%. As pixel-based segmentation often fails to take the contextual (area-based)
information into account; therefore, to form segments based on area, graph cut segmentation was
subsequently applied. Out of the 40 training images, only a part of labelled pixels (≈12k) was input to
the ML model. The entire processing time of ML segmentation was ≈30 min.

This was done for both RGB and RGB + textural images. The images were resampled to 29
× 210

for proper comparison with deep learning algorithms (discussed later). It has to be noted that the
aspect ratio of the imagery was maintained while resampling it. This was done mainly to keep the
textural properties intact. The authors of [37] explain that in order to capture textural properties, the
size of the image/sliding window should be carefully chosen. Therefore, a decrease in the size of the
image (or change in aspect ratio) can lead to a change in textural properties. Table 3 shows that the
resampling using bilinear interpolation did not make a big difference in the OA. The resampled image
with textural properties performs comparably to the original image. The OA with textural properties
is also comparable to OA with just RGB for this application with a low-lying homogenous area of
interest. Overall, the textural properties perform the best segmentation with both the original-sized
image and the rescaled image.

From Figure 11c,d, it can be seen that using textural properties, the ecotopes like SMSC and AF are
differentiated better (see Table 4). Likewise, from Table 4, it can be seen TP for the C ecotope increases
with the addition of textural properties but decreases for the AF ecotope. The decrease in misclassified
pixels (FP, FN) between SMSC and AF has led to an increase in precision and recall for the SMSC
ecotope. There is a definite increase in accuracy for the C and AF ecotopes by using textural features,
whereas, the SMSC and M ecotopes are identified with similar precision, recall, and f1 score values for
both the images.

The deep learning technique used for segmentation is semantic segmentation using CNN models.
In this study, six different models were tested for the semantic segmentation to identify the different
bog-ecotopes. The training data for the CNN models consisted of 40 images containing all the ecotopes
in different orientations and lighting (brightness). The size of the training data is a notable factor in
this study, as for many applications, 100s of images are more usually required for training such CNN
models. This study demonstrates the usage of minimum labelled training images for attaining the
segmentation, given that 40 images seemed to be sufficient for this application as the weights were
initialised using ImageNet dataset having 1000 different classes. This reduces the dependence on
the extensive training dataset and also is faster [90]. All these 40 images were resized to 29

× 210 for
efficiently performing semantic segmentation. For an application involving a prominent area such as
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this, the classes are also sparsely located. Therefore, cropping or extracting patches from the images
was leading to a reduction in classes (ecotopes) covered in an image. In order to make sure that the
model identifies all the ecotopes, the images were resized. Nevertheless, for an application where the
classes are located close enough (spatially), cropping/extracting patches can be a viable option.

The algorithms were run for 100 epochs, after which the accuracy was becoming saturated.
The computation time was ≈700 min per model for 100 epochs. It was decided not to increase the
number of epochs as it may lead to overfitting of the model [91]. The LR was decreased with epochs
when OA saturated. This decrease leads to faster convergence and an increase in accuracy. Without
decreasing the LR, if the same LR is continued, one may still get high accuracy, but it would require
a massive number of epochs; therefore, it is not recommended. There is an apparent increase in
accuracy using DL methods when compared to ML methods. At the end of the epochs, it is clear that
SegNet and UNet architecture with ResNet50 yield the best results for the semantic segmentation of
bog-ecotopes. In comparison, the VGG16 base model has led to the over-classification of ecotopes such
as M, AF. The VGG model has been shown to be effective when there is noise in the data but does not
perform well when the brightness of the images changed [92]. This explains the low accuracy of the
model, as the images had different lighting due to variable weather conditions. Figure 11e–j depicts
the DL segmentation results. It can be seen that the segmentation using SegNet and UNet is similar for
ecotopes like SMSC and C, but is different for AF and M ecotopes.

The study also demonstrates the use of transfer learning by using a segmentation specific
pre-trained PspNet model. This model was pre-trained using ADE20K and cityscapes image set instead
of widely applicable ImageNet. In our application, the usage of these segmentation datasets was not
successful as the weights were calculated for a specific task of segmenting areas of traffic, cars, houses,
pavements, etc. Additionally, due to the uniqueness of these communities, the weights transferred
from the pre-trained models were not accurate. In order to use transfer learning, the model selected
should be pre-trained using similar categories as the application.

For making the final decision of the best CNN architecture, the accuracy parameters for every
ecotope were considered. Table 4 shows that the SMSC ecotope is identified quite well using all the CNN
models, with the exception of the PspNet model pre-trained with cityscapes images. Using the base
model ResNet50, the ecologically important, peat-forming communities (the SMSC, and C ecotopes) are
better identified using SegNet than UNet. Using PspNet (ADE20K), the C ecotope was identified the
best, although the OA of the model is low. Therefore, taking into consideration the OA, precision, recall,
and f1-score of all the communities, SegNet architecture with the ResNet50 base model appears to be
the best choice for drone image segmentation in relation to identifying raised bog vegetation types.

The best OA recorded from ML was 85%, and from DL was 91%. However, the most appropriate
technique for this study was not decided just on the basis of OA. For applying the technique to new
applications, other parameters cannot be ignored. For example, a lot more training data was required
for using DL as compared to ML. Similarly, time and hardware also play a significant role in deciding
the best technique. Table 5 summarises the essential pros and cons of the two techniques.

It is clear that there are many pros and cons of both techniques, as described in this study. The main
idea behind using remote sensing techniques is to reduce the amount of manual fieldwork that is
required for monitoring the wetlands. This includes minimising the training data given as input to the
classifiers. Additionally, the idea is to automate the process in the simplest way possible, given that
the availability of high performing computers or GPUs cannot always be guaranteed, in order to
optimise the speed. Keeping in mind the above requisites, the ML technique is the clear choice for
our application. Whilst DL techniques can be used once there is enough labelled data created from
all the wetlands such that all the species are covered, in the case of a new wetland, which contains
new species to be mapped, a clear indication of the species (with full coverage) is required. Therefore,
DL is more advantageous to use for more global or applied applications, whereas for a more specific
application such as this where not enough training data is available, ML can produce accuracies almost
comparable to the DL.
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Table 5. Pros and cons of ML vs. DL for mapping ecotopes, Clara bog.

Pros Cons

MACHINE LEARNING ALGORITHMS

1. Very fast training (≈30 min per model)
2. Needs less training data (≈12k labelled pixels in

40 images)
3. No need of size alteration; accepts the input of any size.
4. No need for HPCs or GPUs; works well with CPU.
5. Provides good accuracy (OA = 85%)

1. Cannot be applied globally, i.e., does not work on
augmented data.

2. In order to re-use the same model, input has to be consistent
with original images or to be modified.

3. Can require parameterisation, manual handling.
4. Textural and additional features have to be input separately;

does not learn by itself.

DEEP LEARNING ALGORITHMS

1. Can be applied globally for multiple applications and
works well with augmented data.

2. Works well with low resolution imagery.
3. Learns textural features on its own, require no

additional inputs.
4. Provides good results (OA = 91%)

1. Slower training process (≈700 min per model).
2. Needs a considerable amount of training data or requires a

pre-trained model (≈48 × 106 labelled pixels in 40 images).
3. Requires alteration of images with respect to size for faster

computation and analysis.
4. It is recommended the use of GPUs with good RAM for

running CNN efficiently.

Finally, the drone images are very high resolution and can be captured at any given time. However,
although practical, drone image capturing does have certain limitations. The first limitation of using
drones is the length of the battery life. For example, on average, the drone (such as DJI Inspire
1) the battery will only last approximately 15 min and so to cover a large area, many batteries are
required. Therefore, in the future, in order to make the process cost-effective, drone images can be
used in conjunction with the freely available satellite images. Satellite images give excellent coverage
and proper temporal resolution meaning that the usage of drones and satellites together should
be advantageous.

7. Conclusions

This study aimed at providing mapping of vegetation in wetlands using image segmentation.
For this, ML and DL algorithms were compared by applying them to a set of drone images of Clara
Bog, a raised bog located in the middle of Ireland. The images were captured using DJI Inspire 1TM

drone (RGB sensor), with the open-source and freely available Pix4DCapture application. Using ML,
a total of six different state-of-the-art pixel-based classifiers were compared, out of which, the best ML
algorithm for the given dataset was shown to be the RF classifier (model accuracy = 92.9%). For ML
image segmentation, RF classifier was used with maximum a-posteriori graph cut segmentation. It was
seen that accuracy is improved by ≈2% after addition of textural features (OA = 85.1%) when compared
to the original RGB image (83.3%), and ecologically important communities such as central ecotope
were mapped better.

Apart from ML, the study also describes image segmentation or ‘semantic segmentation’ using
DL methods. A detailed account on the selection of variables for the DL segmentation was presented.
The study was done on a combination of six architectures and base models. For the given dataset,
the ResNet50 base model with both UNet (OA = 91.5%) and SegNet (OA = 89.9%) architecture performs
very well. ResNet50+SegNet model was deemed best, as it was able to identify complex vegetation
communities, such as SMSC ecotope better. All the models were run for 100 epochs, and it was seen
the accuracy saturated after ≈35 epochs. It was seen that for mapping ecotopes in a raised bog, transfer
of initial weights from wide-ranged ImageNet outperforms the segmentation-specific datasets like
ADE20K or Cityscapes.

Overall, the accuracy of the DL was ≈4% higher than the ML methods. Additionally, the DL
method does not require any colour correction or the addition of extra textural features. However,
DL requires a large amount of initial labelled training data (≈48× 106 pixels). On the other hand, the ML
algorithm requires much less training data (≈12,000 labelled pixels) and is much faster (≈30 times) when



Remote Sens. 2020, 12, 2602 22 of 26

compared to CNNs. Therefore, in retrospect, for such a specific application as the wetland mapping
application, it was considered that the ML approach is more suitable. This would be particularly
useful for any un-surveyed wetland, where the minimum amount of information of the vegetation
communities is required to produce accurate maps.
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6. Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J. Unmanned Aerial Vehicles for Alien Plant Species Detection
and Monitoring. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, 40, 83–90. [CrossRef]

7. Hill, D.; Tarasoff, C.; Whitworth, G.E.; Baron, J.; Bradshaw, J.; Church, J.S. Utility of unmanned aerial vehicles
for mapping invasive plant species: A case study on yellow flag iris (Iris pseudacorus L.). Int. J. Remote.
Sens. 2016, 38, 2083–2105. [CrossRef]

8. Ruwaimana, M.; Satyanarayana, B.; Otero, V.; Muslim, A.M.; Muhammad, A.M.; Ibrahim, S.; Raymaekers, D.;
Koedam, N.; Dahdouh-Guebas, F. The advantages of using drones over space-borne imagery in the mapping
of mangrove forests. PLoS ONE 2018, 13, e0200288. [CrossRef]

9. Chabot, D.; Dillon, C.; Shemrock, A.; Weissflog, N.; Sager, E.P.S. An Object-Based Image Analysis Workflow
for Monitoring Shallow-Water Aquatic Vegetation in Multispectral Drone Imagery. ISPRS Int. J. Geo Inf.
2018, 7, 294. [CrossRef]

10. Han, Y.-G.; Yoo, S.H.; Kwon, O. Possibility of applying unmanned aerial vehicle (UAV) and mapping software
for the monitoring of waterbirds and their habitats. J. Ecol. Environ. 2017, 41, 21. [CrossRef]

11. Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, Color-Infrared and
Multispectral Images Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation
in Rice. Remote. Sens. 2018, 10, 824. [CrossRef]

12. Govender, M.; Chetty, K.; Bulcock, H. A review of hyperspectral remote sensing and its application in
vegetation and water resource studies. Water SA 2009, 33. [CrossRef]

13. Boon, M.A.; Greenfield, R.; Tesfamichael, S. Wetland assessment using unmanned aerial vehicle (UAV)
photogrammetry. Remote. Sens. Spat. Inf. Sci. 2016, XLI-B1, 781–788.

14. Treboux, J.; Genoud, D. Improved Machine Learning Methodology for High Precision Agriculture.
In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018;
Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 1–6.

http://dx.doi.org/10.1016/j.jag.2020.102083
http://dx.doi.org/10.1672/18-20
http://dx.doi.org/10.1016/j.rse.2006.11.002
http://dx.doi.org/10.3390/rs9090913
http://dx.doi.org/10.1371/journal.pone.0188714
http://dx.doi.org/10.5194/isprsarchives-XL-1-W4-83-2015
http://dx.doi.org/10.1080/01431161.2016.1264030
http://dx.doi.org/10.1371/journal.pone.0200288
http://dx.doi.org/10.3390/ijgi7080294
http://dx.doi.org/10.1186/s41610-017-0040-5
http://dx.doi.org/10.3390/rs10060824
http://dx.doi.org/10.4314/wsa.v33i2.49049


Remote Sens. 2020, 12, 2602 23 of 26

15. Pap, M.; Király, S.; Moljak, S. Investigating the usability of UAV obtained multispectral imagery in tree
species segmentation. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2019, XLII-2/W18, 159–165.
[CrossRef]

16. Zuo, Z. Remote Sensing Image Extraction of Drones for Agricultural Applications. Rev. Fac. Agron.
Univ. Zulia 2019, 36, 1202–1212.

17. Parsons, M.; Bratanov, D.; Gaston, K.J.; Gonzalez, F. UAVs, hyperspectral remote sensing, and machine
learning revolutionising reef monitoring. Sensors 2018, 18, 2026. [CrossRef]

18. Miyamoto, H.; Momose, A.; Iwami, S. UAV image classification of a riverine landscape by using machine
learning techniques. EGU Gen. Assem. Conf. Abstr. 2018, 20, 5919.

19. Zimudzi, E.; Sanders, I.; Rollings, N.; Omlin, C. Segmenting mangrove ecosystems drone images using SLIC
superpixels. Geocarto Int. 2018, 34, 1648–1662. [CrossRef]

20. Höser, T.; Kuenzer, C. Object Detection and Image Segmentation with Deep Learning on Earth Observation
Data: A Review-Part I: Evolution and Recent Trends. Remote. Sens. 2020, 12, 1667. [CrossRef]

21. Lee, D.; Kim, J.; Lee, D.-W. Robust Concrete Crack Detection Using Deep Learning-Based Semantic
Segmentation. Int. J. Aeronaut. Space Sci. 2019, 20, 287–299. [CrossRef]

22. Zhang, C.; Wang, L.; Yang, R. Semantic segmentation of urban scenes using dense depth maps.
In Proceedings of the European Conference on Computer Vision, Crete, Greece, 5–10 September 2010;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 708–721.

23. Montoya-Zegarra, J.A.; Wegner, J.D.; Ladický, L.; Schindler, K. Semantic segmentation of aerial images in
urban areas with class-specific higher-order cliques. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci.
2015, 2, 127–133. [CrossRef]

24. Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet-Brunet, V. Semantic segmentation of forest stands of pure species
combining airborne lidar data and very high resolution multispectral imagery. ISPRS J. Photogramm. Remote.
Sens. 2017, 126, 129–145. [CrossRef]

25. Cui, B.; Zhang, Y.; Li, X.; Wu, J.; Lu, Y. WetlandNet: Semantic Segmentation for Remote Sensing Images of
Coastal Wetlands via Improved UNet with Deconvolution. In Proceedings of the International Conference
on Genetic and Evolutionary Computing, Qingdao, China, 1–3 November 2019; Springer: Singapore, 2019;
pp. 281–292.

26. Jiang, J.; Feng, X.; Liu, F.; Xu, Y.; Huang, H. Multi-Spectral RGB-NIR Image Classification Using
Double-Channel CNN. IEEE Access 2019, 7, 20607–20613. [CrossRef]

27. Kentsch, S.; Caceres, M.L.L.; Serrano, D.; Roure, F.; Donoso, Y.D. Computer Vision and Deep Learning
Techniques for the Analysis of Drone-Acquired Forest Images, a Transfer Learning Study. Remote Sens. 2020,
12, 1287. [CrossRef]

28. Nigam, I.; Huang, C.; Ramanan, D. Ensemble knowledge transfer for semantic segmentation. In Proceedings
of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA,
12–15 March 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018;
pp. 1499–1508.

29. Do, D.; Pham, F.; Raheja, A.; Bhandari, S. Machine learning techniques for the assessment of citrus plant
health using UAV-based digital images. In Proceedings of the Autonomous Air and Ground Sensing Systems
for Agricultural Optimization and Phenotyping III, Baltimore, MD, USA, 15–16 April 2019; International
Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 10664, p. 1066400.

30. Bhatnagar, S.; Ghosh, B.; Regan, S.; Naughton, O.; Johnston, P.; Gill, L. Monitoring environmental supporting
conditions of a raised bog using remote sensing techniques. Proc. Int. Assoc. Hydrol. Sci. 2018, 380, 9–15.
[CrossRef]

31. Bhatnagar, S.; Ghosh, B.; Regan, S.; Naughton, O.; Johnston, P.; Gill, L. Remote Sensing Based Ecotope
Mapping and Transfer of Knowledge in Raised Bogs. Geophys. Res. Abstr. 2019, 21, 1.

32. ESRI. ArcMap Desktop; (Version 10.6.1); Esri Inc.: Redlands, CA, USA, 2019.
33. ESRI “World Imagery” [High Resolution 30 cm Imagery]. Scale ~1:280 (0.03 m). Available online: http:

//www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (accessed on 25 November 2019).
34. Shi, J.; Malik, J. Normalised cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22,

888–905.
35. Feng, Q.; Liu, J.; Gong, J. UAV remote sensing for urban vegetation mapping using random forest and texture

analysis. Remote Sens. 2015, 7, 1074–1094. [CrossRef]

http://dx.doi.org/10.5194/isprs-archives-XLII-2-W18-159-2019
http://dx.doi.org/10.3390/s18072026
http://dx.doi.org/10.1080/10106049.2018.1497093
http://dx.doi.org/10.3390/rs12101667
http://dx.doi.org/10.1007/s42405-018-0120-5
http://dx.doi.org/10.5194/isprsannals-II-3-W4-127-2015
http://dx.doi.org/10.1016/j.isprsjprs.2017.02.011
http://dx.doi.org/10.1109/ACCESS.2019.2896128
http://dx.doi.org/10.3390/rs12081287
http://dx.doi.org/10.5194/piahs-380-9-2018
http://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
http://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
http://dx.doi.org/10.3390/rs70101074


Remote Sens. 2020, 12, 2602 24 of 26

36. MATLAB; Version R2019b; The MathWorks Inc.: Natick, MA, USA, 2019.
37. Tavares, J.; Jorge, R.N. Computational Vision and Medical Image Processing V. In Proceedings of the 5th

Eccomas Thematic Conference on Computational Vision and Medical Image Processing, VipIMAGE 2015,
Tenerife, Spain, 19–21 October 2015; CRC Press: Boca Raton, FL, USA, 2015.

38. Schwenker, F.; Abbas, H.M.; El Gayar, N.; Trentin, E. Artificial Neural Networks in Pattern Recognition.
In Proceedings of the 7th IAPR TC3 Workshop, ANNPR 2016, Ulm, Germany, 28–30 September 2016; Springer:
New York, NY, USA, 2018.

39. Chai, H.Y.; Wee, L.K.; Swee, T.T.; Hussain, S. Gray-level co-occurrence matrix bone fracture detection. WSEAS
Trans. Syst. 2011, 10, 7–16. [CrossRef]

40. Salem, Y.B.; Nasri, S. Texture classification of woven fabric based on a GLCM method and using multiclass
support vector machine. In Proceedings of the 2009 6th International Multi-Conference on Systems, Signals
and Devices, Jerba, Tunisia, 23–26 March 2009; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA, 2009; pp. 1–8.

41. Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon entropy measure with
statistical tests for image randomness. Inf. Sci. 2013, 222, 323–342. [CrossRef]

42. Mardia, K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970, 57, 519–530.
[CrossRef]

43. Stoer, M.; Wagner, F. A simple min-cut algorithm. J. ACM 1997, 44, 585–591. [CrossRef]
44. Ishida, T.; Kurihara, J.; Viray, F.A.; Namuco, S.B.; Paringit, E.C.; Perez, G.J.; Marciano, J.J.J. A novel approach

for vegetation classification using UAV-based hyperspectral imaging. Comput. Electron. Agric. 2018, 144,
80–85. [CrossRef]

45. Braun, A.C.; Weidner, U.; Hinz, S. Support vector machines for vegetation classification–A revision.
Photogramm. Fernerkund. Geoinf. 2010, 2010, 273–281. [CrossRef]

46. Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of subdecimeter resolution unmanned
aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [CrossRef]

47. Özlem, A. Mapping land use with using Rotation Forest algorithm from UAV images. Eur. J. Remote Sens.
2017, 50, 269–279. [CrossRef]

48. Meng, X.; Shang, N.; Zhang, X.; Li, C.; Zhao, K.; Qiu, X.; Weeks, E. Photogrammetric UAV Mapping of Terrain
under Dense Coastal Vegetation: An Object-Oriented Classification Ensemble Algorithm for Classification
and Terrain Correction. Remote Sens. 2017, 9, 1187. [CrossRef]

49. Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens.
Environ. 1997, 61, 399–409. [CrossRef]

50. Cheng, J.; Greiner, R. Comparing Bayesian network classifiers. In Proceedings of the Fifteenth conference
on Uncertainty in artificial intelligence, Stockholm, Sweden, 30 July–1 August 1999; Morgan Kaufmann
Publishers Inc.: Burlington, MA, USA, 1999; pp. 101–108.

51. Balakrishnama, S.; Ganapathiraju, A. Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process.
1998, 18, 1–8.

52. Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [CrossRef]
53. Laaksonen, J.; Oja, E. Classification with learning k-nearest neighbors. In Proceedings of the International

Conference on Neural Networks (ICNN’96), Washington, DC, USA, 3–6 June 1996; Institute of Electrical and
Electronics Engineers (IEEE): Piscataway, NJ, USA, 1996; Volume 3, pp. 1480–1483.

54. Liaw, A.; Wiener, M. Classification and regression by randomForest. News 2020, 2, 18–22.
55. Ross, Q.J. C4. 5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993.
56. Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton,

FL, USA, 1984.
57. Boykov, Y.; Kolmogorov, V. An experimental comparison of min-cut/max-flow algorithms for energy

minimisation in vision. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1124–1137. [CrossRef] [PubMed]
58. MATLAB Wrapper for Graph Cut. Shai Bagon. Available online: https://github.com/shaibagon/GCMex

(accessed on 12 December 2019).
59. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimisation via graph cuts. IEEE Trans. Pattern

Anal. Mach. Intell. 2001, 23, 1222–1239. [CrossRef]

http://dx.doi.org/10.3844/ajassp.2011.26.32
http://dx.doi.org/10.1016/j.ins.2012.07.049
http://dx.doi.org/10.1093/biomet/57.3.519
http://dx.doi.org/10.1145/263867.263872
http://dx.doi.org/10.1016/j.compag.2017.11.027
http://dx.doi.org/10.1127/1432-8364/2010/0055
http://dx.doi.org/10.1109/TGRS.2008.2009355
http://dx.doi.org/10.1080/22797254.2017.1319252
http://dx.doi.org/10.3390/rs9111187
http://dx.doi.org/10.1016/S0034-4257(97)00049-7
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1109/TPAMI.2004.60
http://www.ncbi.nlm.nih.gov/pubmed/15742889
https://github.com/shaibagon/GCMex
http://dx.doi.org/10.1109/34.969114


Remote Sens. 2020, 12, 2602 25 of 26

60. Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J.; Fricout, G. Steel defect classification with max-pooling
convolutional neural networks. In Proceedings of the 2012 International Joint Conference on Neural
Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; Institute of Electrical and Electronics Engineers
(IEEE): Piscataway, NJ, USA, 2012; pp. 1–6.

61. Li, Q.; Cai, W.; Wang, X.; Zhou, Y.; Feng, D.D.; Chen, M. Medical image classification with convolutional
neural network. In Proceedings of the 2014 13th International Conference on Control Automation Robotics &
Vision (ICARCV), Singapore, 10–12 December 2014; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA, 2014; pp. 844–848.

62. Sharma, S. Activation functions in neural networks. Towards Data Sci. 2017, 6, 310–316.
63. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice

and research for deep learning. arXiv 2018, arXiv:1811.03378.
64. Özkan, C.; Erbek, F.S. The comparison of activation functions for multispectral Landsat TM image classification.

Photogramm. Eng. Remote Sens. 2003, 69, 1225–1234. [CrossRef]
65. Karlik, B.; Olgac, A.V. Performance analysis of various activation functions in generalised MLP architectures

of neural networks. Int. J. Artif. Intell. Expert Syst. 2011, 1, 111–122.
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