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We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

- T. S. Eliot, Four Quartets
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by Gary White

Internet of Things (IoT) applications can be built from a number of heterogeneous

services provided by a range of devices, which are potentially resource constrained

and/or mobile. These device characteristics can lead to the services deployed on them

becoming unreliable as the device may lose power or move out of range. As these

services and applications continue to be more widespread, a key research challenge is

how to make them more reliable. The reliability of an application is influenced by the

time to detection (TTD) of a failure and the time to recovery (TTR) of services in

the application after the failure. TTD and TTR are affected by the accuracy of the

prediction and by the time it takes to receive the prediction. This thesis focuses on

reducing TTD by improving the prediction accuracy and reducing TTR by reducing

the time it takes to receive the prediction.

Accurate short-term forecasts allow dynamic systems to adapt their behaviour when

degradation is detected e.g., transportation forecasting supports alternative routing

of traffic before gridlock and wind power forecasting enables the use of dispatchable

energy such as hydroelectric power to reduce the difference between power consumption

and power generation in the network. This rationale can be applied to service-oriented

computing when creating and managing service applications, where such applications

are composed of available collaborating services. The faster a problem with a service

can be detected, the faster a suitable replacement service can be chosen. Previous

approaches that have focused on QoS forecasting have used traditional time series

methods, but these are not suitable as QoS does not exhibit traditional time series

patterns (i.e., sudden peaks caused by network congestion or a device switching to a

power saving mode). More modern recurrent neural network-based approaches such

as GRUs and LSTMs have been proposed but the long training time means they take

longer to incorporate recent QoS values. This can lead to a reduction in forecasting
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accuracy in dynamic IoT environments. This thesis proposes a noisy-echo state network

approach that has been designed to be deployed at the edge of the network. The

reduced training time allows the model to incorporate recent QoS values on devices at

the edge. The results show increased forecasting accuracy compared to current state

of the art approaches when tested on a combined dataset of IoT and web services,

reducing TTD.

Once a problem has been detected with one of the services in a composition, the ap-

plication needs to be recovered by using a functionally equivalent service with high

QoS. Given that candidate services may not be currently executing, predictions based

on a time series of current QoS values are not appropriate. Recommending possible

replacement services requires a technique that avails of similar users’ recent experience

of those services, which is the most up-to-date information available about the services’

QoS. In service-oriented architectures, collaborative filtering is a key technique for ser-

vice recommendation based on QoS prediction. Matrix factorisation has emerged as

one of the main approaches for collaborative filtering as it can handle sparse matrices

(as users invoke only a small subset of the large amount of possible services) and pro-

duces good prediction accuracy. However, this process is resource-intensive requiring

computational resources not available at the edge of the network. User information

must be submitted to a central server or cloud, which can lead to a number of issues

related to user privacy and extra network delay when updating the model with new

QoS information. As QoS varies over time, it is essential to update the QoS prediction

model to ensure that it is using the most recent values to maintain prediction accuracy.

The request time, from submitting a user’s information to receiving the QoS metrics for

candidate services, is also important, as the time to choose replacement services is lim-

ited during a dynamic service adaptation. This thesis proposes a stacked autoencoder

with dropout on a deep edge architecture, which reduces the training and request time,

compared to traditional matrix factorisation algorithms, while maintaining predictive

accuracy. To evaluate the accuracy of the algorithms, the actual and predicted QoS

values are compared using standard error metrics such as MRE and RMSE. In addi-

tion, the predictions are used by a service composition engine to evaluate the impact

the predictions have on the response time and throughput of service compositions. The

results show a reduction in the time it takes to receive the prediction, reducing TTR.

The combination of improvements to both TTD and TTR allow for increased reli-

ability and more strict levels of QoS. The thesis also highlights how this increased

level of quality can lead to new IoT applications such as augmented reality in IoT and

quantified-self frameworks for improving personal productivity.
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Chapter 1

Introduction

The emergence of a new generation of cheaper and smaller wireless devices with a

number of communication protocols has led to the formation of the IoT [1]. The

number of these devices is predicted to grow at an exponential rate, with the latest

forecasts predicting that there will be around 28 billion connected devices by 2021

[2]. The huge number of devices in the IoT will lead to a wide variety of services

that can provide information from a number of sources that traditionally were not

connected, such as, surveillance cameras, environment monitoring sensors, smart bins

and actuators [3]. This leads to applications in many different domains, such as home

automation, industrial automation, medical aids, traffic management and many others

[4].

1.1 Service-oriented Architecture

Service-oriented architecture (SOA) is a style of software design in which applications

make use of services available over a network [5]. SOA is a loosely coupled arrangement

of service providers and service consumers, which means at design time consumers can

use any services that fulfil their needs [6]. Although the concepts of SOA were estab-

lished before web services they made services much more accessible [7]. This is because

web services are built on top of well-known and platform independent protocols. These

protocols include HTTP, XML, UDDI, WSDL, and SOAP [8]. These protocols fulfil

a key requirements of a SOA, that services be dynamically discoverable and invok-

able [8]. SOA requires that a service have a platform-independent interface contract,

this requirement is fulfilled by XML. SOA stresses interoperability, this requirement

1
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is fulfilled by HTTP. To manage the complexity of service discovery and composition

several middlewares were proposed [9–11].

With an increase in the use of IoT devices, services were not just available from tra-

ditional web services, but also from a number of previously unconnected devices [12].

Figure 1.1 shows a small scale scenario, with services provided from different service

types including web services (WS), residing on resource rich devices, wireless sensor

networks (WSN), which may be resource-constrained and controlled by a software de-

fined network, and autonomous service providers (ASP), who are independent mobile

users in the environment with intermittent availability. The services provided by de-

vices in the environment are registered in the gateways and can be used in a number

of applications in a variety of different domains [13]. Applications can be created by

combining multiple services from different service types. For example, an application

might perform some analysis and flood prediction using a water level service avail-

able from an autonomous service provider and a machine learning and storage service

available as a web service.

To compose and manage the services provided by these devices an IoT middleware is

commonly used [14]. To create and manage IoT applications, this thesis uses com-

ponents from the SURF middleware: a Request Handler (RH), Service Registration

Engine (SRE), Service Discovery Engine (SDE), quality of service (QoS) Monitor and

Service Composition & Execution Engine (SCEE) [15]. The RH establishes a re-

quest/response communication channel with the user and forwards the request to the

other middleware components. The SRE registers the available services in the envi-

ronment. The SDE identifies the functional requirements of the services, which can be

used to satisfy the request and sends this list of candidate services to the QoS Mon-

itor. The QoS monitor makes predictions for the non-functional QoS factors such as

response time, throughput and availability of the candidate services that can be used

to satisfy the request from the SDE. The SCEE then chooses the services with the best

QoS that can satisfy the request and executes them. The QoS monitor collects time

series data from currently executing services to train a QoS model that can forecast

if one of the services is about to degrade in quality. If a service starts to degrade in

quality an alert is sent to the SCEE to choose a suitable replacement service.

Service applications can be used in a range of domains that have different QoS re-

quirements based on the sensitivity and criticality of the application. Application QoS

can typically be categorised as best effort (no QoS), differentiated services (soft QoS)

and guaranteed services (hard QoS) [16]. In the hard QoS case, there are strict hard

real-time QoS guarantees. This is appropriate for safety critical applications such as
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Figure 1.1: Small Scale Scenario

remote surgery in a hospital or collision avoidance in a self-driving car system. Soft

QoS does not require hard real-time guarantees but needs to be able to reconfigure

and replace services that fail. This could be a routing application that uses air quality,

flooding and pedestrian traffic predictions, to provide the best route through the city

or an augmented reality application using local weather to provide a more immersive

experience. If one of the services is about to fail, the application should be recomposed

using suitable replacement services. The final case is best effort, where there are no

guarantees when a service fails. This thesis is focused on improving the reliability

of soft QoS applications. The notion of reliability in this thesis is the uptime of the

IoT application, which we aim to improve by reducing the time it takes to detect an

error in one of the services and the time that it takes to choose a suitable replacement

service. The QoS parameters that are focused on in the thesis are response time and

throughput, but the QoS prediction algorithms can be applied to any quantitative QoS
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Urban Application Data Type Traffic Rate Tolerable Delay Number of IoT Devices Criticalicty

Waste Management [19] Historical Data >= 100 MB per day > 30 mins >= 1000-1million per city Low
Structural Health [19] Historical Data >= 10 MB per day > 30 mins >= 10-1000 per building Medium
Air Quality Monitoring [19] Historical Data >= 10 MB per day > 5 mins >= 1000-1million per city Medium
Noise Monitoring [19] Historical Data >= 100 MB per day > 5 mins >= 1000-1million per city Medium
Wearable IoT Stream Data <= 1 GB per device > 5 mins >= 1-10 per person Medium
Traffic Congestion [19] Historical Data >= 100 MB per day > 5 mins >= 1000-1million per city Low
Smart Parking [19] Event Data >= 10 MB per day > 1 min >= 1000-1million per city Low
Smart Home [19] Stream/ Massive Data >= 10 MB per house per day 1 s - 10 mins >= 10 - 100 per house Medium
Smart Energy [20] Stream/ Massive Data >= 100 GB per day 10 ms - 10mins >= 1 million per grid Medium
Remote Surgery [21] Stream/ Massive Data >= 50 MB per second <= 100 ms >= 1-10 per surgery High
Augmented Reality [22] Stream/ Massive Data >= 100 MB per second <= 10 ms > 200,000 globally Low
Autonomous Vehicles [22] Stream/ Massive Data >= 100 GB per vehicle per day <= 10 ms >= 50-200 per vehicle High

Table 1.1: Urban Intelligence Applications

factor.

1.2 Challenges

There are a number of challenges associated with being able to provide soft QoS in

an IoT environment. These challenges come from extensive reading of the state of the

art, experience with proof of concept implementations and discussions with experts

at conferences such as PerCom. This is not a complete list of the challenges in an

IoT environment, but the challenges that we felt were most important and the ones

that we address in this thesis. There are other challenges in IoT, such as privacy and

security that are important but are not the focus of this thesis so are not included in

the related challenges:

C.1 Dynamic Environment. IoT devices that act as service providers and gate-

ways can be mobile, especially for urban intelligence applications in smart cities, such as

traffic congestion, augmented reality and autonomous vehicles [17]. This dynamic envi-

ronment adds challenges not found in traditional web services such as service provider

devices moving out of range of a gateway, services changing QoS level more frequently

and devices changing power modes [18]. The added dynamicity requires the QoS model

to incorporate changes in the network much more frequently.

C.2 Reduced Tolerable Delay. Tolerable delay is the maximum acceptable la-

tency for an application between a user requesting a service and getting a response

back. Table 1.1 shows a number of urban intelligence applications and their tolera-

ble delay requirements. These requirements have increased over the years with recent

applications such as augmented reality and autonomous vehicles requiring tolerable

delays of less than or equal to ten milliseconds [22]. This is much more strict than pre-

vious generation urban applications, such as waste management or structural health
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Characteristics IoT Edge Cloud

Deployment Distributed Distributed Centralised
Components Physical Devices Edge nodes Virtual
Big Data Source Process Process
Computational Very Limited Limited Unlimited
Storage Very Limited Limited Unlimited
Response Time NA Low High
QoS NA High Medium
Energy Low Low High

Table 1.2: Computing Layer Characteristics

that have tolerable delays of over thirty minutes [19]. These traditional applications

can be updated and reconfigured in the cloud. However, more recent applications have

reduced tolerable delay that it not manageable in the cloud due to the time taken to

reach the cloud from IoT devices and should be managed at the edge one hop away

from data generation.

C.3 Increased Traffic Rate. Table 1.1 shows the traffic rate for urban intelligence

applications [19–22]. There is a dramatic increase in the traffic rate of modern appli-

cations such as autonomous vehicles (>= 100 GB per vehicle per day) and augmented

reality (>= 100 MB per second) [22] compared to traditional applications such as

structural health (>= 10 MB per day) and air quality monitoring (>= 10 MB per

day) [19]. The cumulative data rate for even a small fraction of users in a modest-size

city would saturate its metropolitan area network: 12,000 users transmitting 1080p

video would require a link of 100 gigabits per second; a million users would require

a link of 8.5 terabits per second, which is infeasible with current infrastructure [23].

This means we cannot rely on all data and QoS metrics being reported to the cloud

and must do some processing on the data at the edge to reduce traffic rate.

C.4 Critical Applications. Table 1.1 also shows the level of criticality of the appli-

cations, which indicates the threat to users if an application fails. Applications such as

autonomous vehicles and remote surgery have high criticality, which indicates a serious

threat to human life if the application fails. Applications such as smart homes and

smart energy have medium criticality, which indicates a threat of injury to users if the

application fails. The QoS predictions for currently executing services and candidate

services must therefore be accurate to avoid not forecasting that a service is about to

fail or choosing a replacement service with low QoS that could cause the application

to fail.
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C.5 Limited Resources. Computing at the edge introduces challenges on the com-

putational power available [24]. Table 1.2 highlights the main differences between IoT,

Edge and Cloud computing. In the cloud, there are unlimited computational resources

that can easily be scaled up [25]. At the edge of the network, which we define as being

one hop away from data generation, these resources are limited and on the actual IoT

devices these resources are very limited [26]. This means that QoS algorithms de-

signed to be deployed and updated at the edge of the network need to be less resource

intensive to not overload the limited resources.

1.3 Existing Solutions

Approaches for QoS prediction can be broken into two main categories: those that

focus on forecasting future QoS values for currently executing services and those that

make QoS predictions for candidate services at design time and during a runtime

service re-composition. This section presents an overview of the existing solutions for

both approaches and highlights the current research gaps. The research questions to

be answered in the thesis are then proposed based on this analysis.

1.3.1 Currently Executing Services

A recent study conducted a detailed empirical analysis of time series forecasting for dy-

namic QoS factors of web services [27], though they do not take into account a number

of more recent neural network-based approaches. Time series forecasting techniques

can be categorised into two groups: classical methods based on statistical/mathemat-

ical concepts and modern heuristic methods based on artificial intelligence algorithms

[28]. The former includes exponential smoothing models, regression models, ARIMA

models, threshold models and GARCH models [29]. The latter includes artificial neu-

ral networks, which is extended to include recurrent neural network (RNN) and long

short-term memory (LSTM)-based approaches.

Classical QoS forecasting methods have included traditional AR-based methods/vari-

ations, such as SETAR, ARIMA and GARCH models as well as baseline approaches

such as linear moving average [30] and persistence models. Two time series methods

ARIMA and GARCH have been combined to produce more accurate QoS forecasting

results than traditional ARIMA but require extra processing time [31]. Two common

time series methods ARIMA and SETARMA were also considered, but the method

used depends on the linearity of the predicted QoS time series training data [32].
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The incoming time series is tested to detect whether it is linear, in which case the

ARIMA method is used otherwise the SETARMA method is adopted. The traditional

ARMA model has also been used without the integrated (I) component used in ARIMA

[33, 34]. Traditional time series approaches such as ARIMA are not resource intensive

and can be deployed and updated at the edge of the network, which makes them suit-

able for C.1, C.2, C.3 and C.5. However, these models are not designed for sudden

peaks caused by network congestion or devices changing power mode. This can lead

to increased forecasting errors, which makes them unsuitable to be used for medium

critical applications in C.4.

Approaches based on traditional AI algorithms have focused on artificial neural net-

works (ANNs) but they have not been compared against any established method [35–

37]. RNNs have developed in recent years as the most used neural network for time

series forecasting as they can utilise past data through feedback paths. Recent ex-

periments using the LSTM architecture developed from RNNs have shown promising

results in other domains such as event forecasting [38], acoustic modelling [39] and

sequence tagging [40]. Initial attempts to use deep learning for long-term service com-

position have used generated synthetic data and have been deployed at the cloud layer

[41]. These approaches can create more complex models than traditional time series

methods and have shown improved forecasting accuracy on synthetic data [41]. How-

ever, they have a long training time and are resource intensive, which is why they are

typically deployed in the cloud, making them unsuitable for the challenge of reduced

tolerable delay, C.2 and the traffic sent to the cloud, C.3. The large training time is

also unsuitable for dynamic environments such as IoT as it takes longer to incorpo-

rate recent changes in the environment, which can lead to increased forecasting error

making them unsuitable for C.4.

1.3.2 Candidate Services

When an anomaly or a degradation in QoS for a particular service is detected by the

QoS monitor, a service composition and execution engine changes this service for a

functionally equivalent candidate service that can provide an acceptable level of QoS.

To switch to an appropriate service, the middleware should have some knowledge of

the QoS values of the service. However, if the service has not been invoked before

then the middleware will have no QoS values for that service, so will not know if

it is a suitable replacement. The service provider can list QoS values in the service

description, but these values are not suitable as the user side QoS depends on the

time and location of invocation, which cannot be known at the provider side [42]. The
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QoS values in service descriptions are often not maintained as it would mean that the

service description would need to be constantly updated [27]. One solution is to use

a collaborative filtering approach, where QoS values reported from similar users and

services are used to make predictions of the missing QoS value for the service [42].

There are two main collaborative filtering methods, which can typically be classified as

either memory or model-based. Memory-based approaches store the training data in

memory and in the prediction phase, similar users are identified based on the current

user. There are a number of approaches that use this technique, including user-based

approaches [43], item-based approaches [44] and their combination [45]. Memory-

based approaches are resource intensive as they calculate the similarity between all the

individual users and services, which makes them unsuitable for C.5. This requires the

algorithms to be deployed in the cloud, which increases the delay during a dynamic

service composition making them unsuitable for C.2 and the traffic sent to the cloud,

making them unsuitable for C.3.

Model-based approaches to collaborative filtering, which employ a machine learning

technique to train a predefined model from a training dataset, have become increas-

ingly popular. Latent factor models create a low-dimensional factor model, on the

premise that there are only a small number of factors influencing the QoS [46]. Matrix

factorisation has emerged as one of the most-used approaches for latent factor models

[47], [48]. There has been work on extending matrix factorisation-based collaborative

filtering by taking into account alternative sources of information such as time [49]

or combining content-based features [50]. There are also approaches that take into

account additional factors such as the location of the users in the environment [51],

[48]. Other approaches have focused on handling users who are contributing false val-

ues using reputation-based matrix factorisation [52]. Initial experiments using deep

learning model-based approaches such as Restricted Boltzmann Machines have also

been conducted [53]. One limitation of model based approaches is if a new user or

service is added to the set, the model has to be updated and trained again [54]. This

can be very computationally expensive in a dynamic environment where users and ser-

vices are mobile, C.5. This requires the algorithms to be deployed in the cloud, which

increases the delay during a dynamic service composition and the traffic sent to the

cloud, making them unsuitable for C.2 and C.3.

1.3.3 Research Gaps and Observations

Existing solutions for QoS prediction have explored both currently executing and can-

didate services. For currently executing services traditional time series approaches have
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been used. These models have short training times so can be deployed and updated at

the edge of the network. However, they are not designed to capture the sudden changes

and peaks caused by network congestion or devices changing power mode. This can

lead to increased forecasting errors. More modern LSTM-based approaches can cre-

ate more complex models that can capture these sudden changes in the environment.

However, these approaches have a long training time and are resource intensive, which

is why they are deployed in the cloud, making them unsuitable for the challenge of

reduced tolerable delay. The large training time is also unsuitable for dynamic environ-

ments such as IoT as it takes longer to incorporate recent changes in the environment,

which can lead to increased forecasting error.

For candidate services, memory-based approaches are resource intensive as they require

the calculation of similarity between all individual users and services. This requires

the algorithms to be deployed in the cloud, which increases the delay during a dynamic

service composition and the traffic sent to the cloud. Model-based approaches such

as matrix factorisation are also resource intensive as they require the generation of

latent features to construct the model. These approaches are not suited for dynamic

environments as they have to be updated if a new user or service comes in to the

environment.

The existing solutions for currently executing and candidate approaches have focused

on deploying and training algorithms in the cloud due to the resource intensiveness

of the algorithms. There is a research gap to to provide the tolerable delay required

by modern urban intelligence applications in Table 1.1 at the edge of the network.

Deploying these algorithms at the edge rather than in a cloud environment also reduces

the time taken to receive QoS predictions as well as the traffic sent to the cloud [55].

This can lead to less failures especially during dynamic service re-composition, where

suitable replacement services must be chosen quickly before the application fails [56].

To provide the tolerable delay demands in modern urban applications there is a require-

ment for the development of new, accurate QoS prediction algorithms that provide:

1) Accurate QoS forecasting of currently executing services at the edge. This allows a

service composition and execution engine to know when a service is about to fail with

reduced delay, increasing the time to find a suitable replacement service.

2) Accurate QoS prediction of replacement services at the edge. This allows any services

that do fail to be quickly replaced at the edge of the network during a dynamic service

adaptation.
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1.3.4 Research Questions

This thesis explores the question of how to enable reliable IoT applications in a modern

dynamic pervasive computing environment. This question can be decomposed into the

time to detect (TTD) an error in one of the currently executing services and the time

to recovery (TTR) of the application after one of the services has failed by choosing a

suitable replacement service:

RQ.1 To what extent can the accuracy of forecasting to support TTD be improved,

by using a lightweight model at the edge to incorporate recent changes in QoS?

RQ.2 To what extent can the time to receive predictions of TTR be reduced, by up-

dating a model at the edge of the network, while maintaining QoS prediction accuracy?

1.4 Thesis Approach

The reliability of service applications can be affected by TTD, TTR and the time to

failure (TTF) of the service providers. At the middleware level there is control over

TTD and TTR. However, TTF is influenced by the service providers and the amount

of resources that they make available for reliable execution of their services [57]. This

thesis focuses on reducing TTD and TTR to enable the use of IoT services in modern

applications with low tolerable delay.

Assumptions The following assumptions are made about the IoT environment and

the QoS prediction algorithms:

A.1 The operating environment for QoS prediction is dynamic with QoS factors chang-

ing due to congestion in the network or the movement of mobile gateways and services.

This means that the QoS models must update regularly to incorporate new changes in

the network.

A.2 Algorithms must be deployed and updated on edge devices. This is required to

manage the strict tolerable delay demands of <= 10 ms of modern applications such

as augmented reality [22].

A.3 The functional requirements of the services are handled by a service composition

and execution engine, which uses a goal-driven approach to create a service dependency

graph with multiple possible candidate services [58]. The TTR algorithm is used to

make QoS predictions for the initial composition and the TTD algorithm is used to
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monitor and forecast any errors in the currently executing services. If one of the

services begins to degrade in quality, it is detected by the TTD algorithm, which sends

an alert to the service composition and execution engine to select a replacement service

using the QoS factors provided by the TTR algorithm.

Hypothesis This thesis investigates how to increase the reliability of IoT service

applications by first decomposing reliability into its constituent parts of TTD, TTR

and TTF. The main body of the thesis then focuses on improving the reliability by

reducing the TTD and TTR components of reliability. The hypothesis is that the

development of algorithms at the edge of the network with reduced training time will

be able to update more frequently to capture the dynamic QoS in an IoT environment.

A ’deep edge’ architecture is also introduced to allow for faster training of neural

networks at the edge of the network. The deep edge architecture is a combination of

deep neural networks and edge networks deployed one hop away from data generation.

The ability to make accurate QoS predictions at the edge will reduce both TTD and

TTR, leading to an improvement in the reliability of service applications.

Objectives Existing proposals for QoS prediction have focused on deploying algo-

rithms in the cloud. This work’s high level research objective is to investigate QoS

prediction mechanisms that can address the limitation of these systems as follows:

O.1 The forecasting accuracy in TTD is important as making an incorrect prediction

that a service is about to fail when it is not causes a lot of additional processing to

find a replacement service. Predicting that a service is not about to fail when it will is

also damaging, causing the application to fail without a suitable replacement service.

This work aims to improve the forecasting accuracy of TTD to ensure that the service

is only replaced when it is about to fail or degrade in quality.

O.2 Quick recovery and replacement of services during a dynamic service adaptation

increases the chance of a service being replaced before a user notices a drop in quality.

This work aims to reduce the request time of TTR by deploying an accurate QoS pre-

diction algorithm for candidate services at the edge of the network, while maintaining

prediction accuracy.

O.3 With increased demands in tolerable delay there is a need for smart algorithms

and analysis at the edge of the network one hop away from data generation. Deep

learning algorithms have won numerous competitions in pattern recognition and ma-

chine learning [59], but are resource intensive making them difficult to deploy at the

edge. This work aims to develop a suitable ’deep edge’ architecture for deploying and
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updating deep learning algorithms at the edge that can be used to reduce TTD and

TTR.

1.5 Thesis Contribution

This thesis presents a method to improve the reliability of IoT applications at the

edge by focusing on reducing the Time To Detect an error and the Time to Recover

from that error (TTDR). The first part of TTDR forecasts when currently executing

services may be about to degrade in quality or fail using time series information about

currently executing services available at the gateway. The second part of this approach

focuses on making accurate predictions for replacement services at the edge using

previous execution information available at the gateway. A deep edge architecture is

implemented to allow for the deployment and training of deep learning models one hop

away from data generation. This architecture uses embedded GPUs (Jetson Tx2) as

gateways to register the services.

This thesis describes an in-depth study into the area of reliability in IoT applications

and makes the following contributions to knowledge:

Noisy-echo state networks (RQ.1) Existing TTD approaches such as RNNs have

long training times caused by having to train all connected internal weights includ-

ing input-to-RNN, RNN-internal and RNN-to-output weights. This thesis proposes

a noisy-echo state network architecture approach that has been designed to reduce

training time, while allowing the model to incorporate recent QoS values on devices

at the edge. This is a specific reservoir architecture where only the RNN-to-output

weights of the network are trained, which greatly reduces the training time. This al-

lows the model to quickly retrain on an edge device, enabling it to incorporate any

recent changes in the service quality. Our results show increased forecasting accuracy

compared to state of the art approaches when tested on IoT and web services datasets.

This reduces TTD, increasing the overall reliability of the application.

IoTPredict (RQ.2) Existing TTR matrix factorisation-based approaches have used

Pearson’s Correlation Coefficient to calculate the most similar users and services. The

IoTPredict approach proposes a novel neighbourhood-based prediction approach for

the IoT, which uses an alternative similarity computation mechanism. The accuracy

of the algorithms is evaluated by comparing the actual and predicted QoS values using

standard error metrics such as MRE and RMSE, which IoTPredict shows improved
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accuracy. In addition, an alternative evaluation technique using the predictions as part

of a service composition and measuring the impact that the predictions have on the

response time and throughput of the final composition is also used.

Stacked autoencoder (RQ.2) Existing TTR approaches have focused on improv-

ing the QoS prediction accuracy by deploying resource intensive algorithms in the

cloud. This thesis focuses on reducing the training time for candidate service QoS

predictions, which allows us to analyse the QoS for users in a highly dynamic envi-

ronment such as IoT. A stacked autoencoder approach is designed to be executed on

edge devices to reduce the time to receive predictions, while maintaining high predic-

tive accuracy. The stacked autoencoder approach is evaluated in the same manner as

IoTPredict. The results show a reduction in the request time of TTR, increasing the

overall reliability of the application.

1.6 Thesis Scope

QoS factors such as response time and throughput are end to end, which means that

every layer of the IoT architecture has an impact on the final values. Delays at the

device level, network level and middleware level are cumulative and increase the final

delay for the user. A large amount of work has been conducted at the network level

in IoT [60]. This thesis focuses on providing QoS support at the middleware level of

the IoT architecture. This involves making forecasts for when a service may be about

to fail and making QoS predictions for services at design time and during a runtime

dynamic adaptation.

This thesis focuses on provided soft QoS, which does not require hard real-time guaran-

tees but needs to reconfigure and replace services that fail. There are approaches that

focus on providing hard QoS with real-time guarantees for domains such as nuclear

power [61] and avionics [62]. These approaches introduce a large amount of overhead

with additional redundancy needed to provide this level of quality [63]. These ap-

proaches can also only work in limited environments where devices are connected by

wired networks [64]. This is not suitable for a typical IoT environment where devices

and gateways may be mobile.

One way to increase the reliability of IoT service applications would be to stop the

services that they use failing as much. This is difficult in a dynamic and mobile en-

vironment, but increasing the time to failure of services would reduce the number of

times that the application would need to forecast a failure and therefore the amount
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of times the middleware would need predictions for replacement services during a dy-

namic service adaptation. Approaches have tried to increase this value by resource

provisioning [57] and optimising service placement [65]. This work focuses on fore-

casting and replacing these services rather than improving the time to failure of the

individual services.

There are many different architectures for managing IoT services with a growing num-

ber of approaches using the cloud [66]. With the decreasing tolerable delay as shown

in Table 1.1 for modern applications such as augmented reality and autonomous vehi-

cles it is necessary to have the algorithms deployed close to the service at the edge of

the network. This work focuses on algorithms that can be trained at the edge of the

network to allow for accurate QoS predictions and the required tolerable delay.

1.7 Thesis Structure

The rest of the chapters are structured as follows:

2. State of the Art analyses current state of the art approaches for QoS prediction.

It presents a systematic mapping across the layers of the network to show the end to

end nature of QoS metrics. A detailed analysis of current QoS prediction approaches at

the middleware layer is then presented where research gaps are identified, in particular

focusing on predicting QoS in currently executing and candidate services.

3. Design describes the design objectives and required features of this thesis according

to the challenges identified in this chapter. The overall structure of the approach to

increase the reliability of IoT applications by reducing TTD and TTR through the use

of noisy-echo state networks and stacked autoencoders is then described in detail.

4. Implementation details the implementation of the algorithms to reduce TTD and

TTR and the middleware components they are designed to be used with. The deep

edge architecture used to deploy the algorithms one hop away from data generation to

reduce the prediction delay is also described.

5. Evaluation compares how accurate the prediction algorithms are to current state of

the art approaches. The chapter first describes the experimental setup and metrics used

to evaluate the prediction accuracy and then presents the results of the experimental

evaluation.
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6. Conclusion summarises the thesis and demonstrates some of the applications that

are now capable of executing correctly with accurate QoS predictions and low tolerable

delay. Future work that can build on top of the thesis is also highlighted.

1.8 Chapter Summary

This chapter introduces the context of this research, together with the limitation of

existing works, the thesis approach and the thesis contributions. Creating reliable

applications with low tolerable delay is a necessary problem with the development of

recent applications such as augmented reality. Existing proposals for reliable service

applications have focused on web services and algorithms deployed in the cloud, which

are unable to manage the strict tolerable delay demands needed for these modern

applications. This thesis proposes TTDR, a combination of improvements in the time

to detect an error and the time to recovery from that error on a deep edge architecture

to improve the overall reliability of IoT applications.





Chapter 2

State of the Art

QoS is a complex term that contains a number of individual factors such as response

time, throughput and availability [67]. QoS factors such as response time are end-

to-end and a delay in any layer from the device to the user receiving the response is

cumulative. Section 2.1 presents the results of a systematic mapping giving a high-level

overview of state of the art approaches that have been conducted across different layers

of the IoT architecture. From this initial mapping, the following sections focus on the

middleware layer where research gaps were identified. Section 2.2 gives an overview of

reliability describing the trade-offs between approaches such as state-based and user-

centric reliability. The remaining sections focus on the specific methods to improve

reliability. Section 2.3 focuses on approaches to forecast currently executing services

and Section 2.4 focuses on approaches for QoS prediction of candidate services.

2.1 Mapping QoS in IoT

To make QoS predictions of services for users, QoS factors need to be monitored and

reported [68]. There are a number of quality factors that can be monitored in IoT

services. Figure 2.1 shows the ISO/IEC software quality model for software products.

This gives a detailed description of the quality categories and factors that can be

monitored in a typical software product. These quality factors are useful as they allow

users to specify desired behaviour such as increased availability or better response time

during a service composition. However, a number of quality factors such as response

time are cross layer as a delay in any layer will affect the final response time. In this

section, we present a structured literature review using the systematic mapping process

[69, 70]. This structured literature review allows us to map QoS approaches across the

17
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Figure 2.1: ISO/IEC 25010 Proposal of Quality Model for Software Products

layers of the IoT architecture to identify areas that previous approaches have focused

on and point out areas that need more attention [71].

2.1.1 Search Design

A combination of search strategies were used including web searches in academic

databases and a snowballing process [72], where references from the papers selected by

full text reading are included in the search and suitable papers are added to the final se-

lection. The papers are first selected from the largest academic databases in Computer

Science [73, 74], using the search syntax in Table 2.1, which shows the results for each

of the individual searches. The search syntax is constructed using a combination of

PICO (Population, Intervention, Comparison and Outcome) and keywords from high

quality papers. As identified in other systematic mappings the PICO method is not

always fully applicable [70]. In our case, we retrieve keywords from the population and

intervention research questions. Population refers to the specific application area that

we are interested in, which is this case is an IoT environment. The intervention of this

search refers to a procedure, software methodology or tool that has been used in the

context of this study, which in this case is Quality of Service or QoS or Monitoring.

After retrieving papers from the initial search procedure the standard systematic map-

ping process is applied to filter out irrelevant candidates, which can be seen in Figure

2.2. The first stage was to remove duplicate papers in the search results from the aca-

demic databases, this was automatically handled by the reference manager, Mendeley.

The next stage was the selection of papers by title, this was used to quickly remove

articles whose scope was unrelated to QoS in IoT. Papers were then selected by ab-

stract, removing papers that did not present a quality approach as a contribution.
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Database Search Syntax Results

IEEE
(QoS OR .QT.Quality of Service.QT. OR .QT.Monitoring.QT.) 1,611
AND (.QT.Internet of Things.QT. OR IoT)

Science Direct
((((qos or ”quality of service” or ”monitoring”)) WN KY) 71
AND (((IoT or ”Internet of Things” )) WN KY))

SCOPUS
TITLE-ABS-KEY((qos or ”quality of service” or ”monitoring”) 1,067
and ( IoT or ”Internet of Things”))

WOS
(TS=(( qos OR ”quality of service” OR ”monitoring” ) 383
AND ( iot OR ”Internet of Things”)) )

Engineering Village
((((qos or ”quality of service” or ”monitoring”)) WN KY) 2,395
AND (((IoT or ”Internet of Things” )) WN KY))

Table 2.1: Searches in Databases

Figure 2.2: Selection of the Mapping Articles

The full papers of the remaining results are then read and the papers that present a

quality approach and the definition of the quality factors are selected to be used in the

mapping. The final stage is to add additional references from the selected papers into

a final list of accepted papers through the snowballing process [72]. Figure 2.2 shows

the results at each stage of this process, with 162 papers being selected from an initial

selection of 5527.

2.1.2 Summary of Findings in Systematic Mapping

Figure 2.3 shows the distribution in approaches through the layers of the IoT architec-

ture. The focus area is used to structure the topic in the layers of the IoT architecture.

The research approaches are classified using an established classification approach to

extract the contribution and research facets of the approaches that were used in the

mapping [75]. The left side of the figure shows the contribution of each article (Tool,

Method, Process, Model, Metric). The right side of the figure shows the research

facet of each article and identifies the research method used (Evaluation, Validation,

Solution Proposal, Philosophical, Experience Report, Opinion) [75]. The results are

interesting for both facets and it can be identified that there has been a focus on the

middle communication layers of the architecture from the physical layer to the network

layer.
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Looking specifically at the contribution facets in Figure 2.3 it can be seen that process

contributions, which present architectural contributions have been the most popular.

However, at specific layers such as the network layer approaches have been much more

diverse, with contributions of models, tools and metrics. The contribution of models

and metrics are useful as they allow comparison between different approaches, such

as different MAC approaches [76, 77]. There have been fewer tools built as many of

the proposals are initial solution proposals, however there are some exceptions with an

approach providing a toolset for managing QoS in IoT cloud systems [78].

The research facets in Figure 2.3 show that many of the approaches have been solution

proposals, which have used initial validations rather than evaluations in a realistic

environment [75]. The most popular method of validation is by simulation either

through the use of an established simulation environment such as NS2 [79, 80] or

by creating a simulation using a program such as Matlab with given parameters [81,

82]. Other research facets such as philosophical, opinion or experience papers can

provide an alternative perspective on current research approaches, how the field is

structured or practical experience from a real implementation. This can be just as

valuable as a solution proposal, but there has been a lack of these research facets

through the layers of the IoT architecture. The systematic mapping gives a high level

overview of a number of approaches used to provide QoS throughout the layers of the

IoT architecture and the contribution and research facets used. Having identified a

research gap at the middleware level, a more detailed analysis of state of the art QoS

approaches focusing on a specific QoS factor is conducted. Reliability was the most

mentioned quality factor in the systematic mapping [71] and is identified as one of the

most important characteristics of an IoT system [83], so a more detailed analysis of

approaches providing this factor is conducted at the middleware level.

2.2 Reliability

Reliability refers to the proper working of the system based on its specification [84].

Reliability must be implemented in software and hardware throughout all the IoT layers

as a delay or failure in any layer can cause a delay or loss of data for the application

[85]. Section 2.1 shows how many QoS approaches have focused on the communication

layers of the IoT network with a lack of focus on some layers such as deployment and

middleware. This section takes a closer look at reliability in the middleware level.

Reliability is the likelihood that a system will remain operational for the duration of

the task and is a means of representing fault tolerance [86]. Research in enterprise

applications refer to fault tolerant approaches, which are included in the analysis in
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Figure 2.3: QoS Mapping of Layers of the IoT Architecture

Section 2.2.1 [87–89]. State-based approaches described in Section 2.2.2 build up a

markov chain of the possible failure patterns, while user-centric approaches described

in Section 2.2.3 focus on monitoring the actual QoS from services and reacting to

changes.

2.2.1 Fault Tolerant Approaches

Fault tolerance mechanisms are an important component of fault life-cycle techniques,

which have an important role in the reliability of enterprise SOA [90]. These mech-

anisms deal with situations where failures or faults occur during live execution in

an enterprise application and provides the ability to keep the system performing its

function correctly. Enterprise SOA can have strict requirements about the level of

reliability needed, for example the Amazon Compute service level agreement has a

monthly uptime percentage of greater than 99.0% [91]. To handle these faults in a

timely manner, a fault tolerant system can use either spatial or temporal redundancy,

including replication of hardware (with additional components), software (with spe-

cial programs), and time (with the diversification of operations) [87]. With significant

advancement in the field of distributed computing, the amount of dynamic enterprise

distributed applications have been substantially increased because of flexible architec-

tures [92]. Replication in terms of data can be an effective technique especially when

the data consists of multimedia objects [93]. Enterprise SOA can provide high levels of

reliability by adding additional resources and replication, which may not be available

for users in an IoT environment.
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Software fault tolerance is widely employed for building both reliable stand alone sys-

tems as well as distributed systems [88]. The major software fault tolerance techniques

include recovery block [94], N-Version Programming (NVP) [95] N-Self checking pro-

gramming [89] and distributed recovery block [96]. In the area of service-oriented

computing, the cost of developing redundant services is greatly reduced, since func-

tionally equivalent services can be employed for building diversity-based fault-tolerant

service-oriented systems [57, 97, 98]. These services can be easily deployed on mul-

tiple devices. These redundant services can be switched to in a dynamic fashion at

runtime [99]. A rigorous development process can be used to build a reliable con-

nector, which is a critical component used to insert detection actions (e.g., runtime

assertions) and recovery mechanisms (based on various replications strategies) [100].

Within the connector, lots of fault tolerance strategies can be implemented (e.g., active

or passive replication strategies). Passive strategies have been discussed in FT-SOAP

[100], FT-CORBA [101], and in Region-KNN [102]. Active strategies have been in-

vestigated in FT-Web [103], Thema [11], WSReplication [104], and Perpetual [105].

These connector-based strategies have been deployed using web services with built-in

replication mechanisms to perform error recovery, these replication mechanisms are

not available in typical IoT services.

Another subset of fault tolerant approaches are those that aim to provide hard QoS

with real-time guarantees for high critical domains such as nuclear power [61] and

avionics [62]. These approaches introduce a large amount of overhead with additional

redundancy to provide this level of quality [63, 106]. Fault diagnosis systems based on

control theory are widely applied to guarantee the safety of nuclear powerplants, but

these methods require highly detailed analysis of the reliability of each component that

will be used in the system [107]. These approaches are also designed to work in limited

static environments where devices are connected by wired networks [64]. This is not

suitable for a typical IoT environment where devices and gateways may be mobile and

connected using wireless networks.

2.2.2 State-based Approaches

A Markov chain process is a discrete random process that undergoes transition from

one state to another in a chainlike manner, where every state depends on the current

state and not on the entire system [108]. In state-based reliability approaches, the

probabilistic control flow and reliability states are mapped to a state space model

that can undergo transition from one state space to another [109]. Various methods

have used a Markov chain process to analyse or predict the reliability of service-based
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applications by computing the time frame for each job in execution [110]. It is used to

determine whether the selected task has successfully completed its job in the specified

time frame or not. State-based approaches have also been used for estimating the

reliability of heterogeneous architectures consisting of batch-sequential/pipeline, call-

and-return and fault tolerance styles [111]. Reliability of the overall application is

dependent on the reliability of the individual services as a delay or failure in any of

services affects the final result of the application.

To manage errors such as time-out failures, blocking failures, network failures, etc.,

which can occur during service invocations, a hierarchical model can be used [112].

This hierarchical model suggests tackling various errors in different layers using the

Markov state principle to map layers into different physical states. Markov models,

queuing theory, graph theory, and Bayesian analysis have been used to predict reliabil-

ity performance by dealing with blocking, time-out, matchmaking, network, program

and resource failure in hierarchical manner [113–115]. Errors arising in different layers

can be predicted by specifying certain predefined criteria such as, in case of the request

layer, if the number of requests are larger than the length of request queue, this will

lead to overflow [116]. Systems with time constraints are critical because they have

to complete their assigned task or job within the defined time frame. Calculating the

time frame for each job in execution, network time and processing time of the job are

key indicators, which can be used.

These models have been used to develop fault tolerant computing systems by detect-

ing faults and failures in resources before their implementation and recovery to allow

execution to continue without being crashed [117]. There are limitations to using this

approach in a dynamic IoT environment as they have problems dealing with large

scale, heterogeneous and dynamic environments as this leads to a huge increase in the

possible number of states. As large scale, heterogeneous and dynamic environments

are key characteristics of IoT they would be unsuitable for these applications [118].

2.2.3 User-Centric Approaches

Systems behaviour can change under different circumstances and various factors that

are outside the control of service providers such as unpredictable network speed and

variable communication links can affect the reliability performance of even the same

set of services [119]. There are a lot of variations produced in predicting performance

reliability under state-based and architecture-level prediction approaches. There are

some other measurements that can be made in this regard, which can be termed as
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user-centric [42]. User-centric approaches can be characterized as multi-stage problem-

solving processes where the system is conceived in terms of user behaviour. As the

reliability of any system has a direct impact on the system usage, these models predict

reliability considering all measures for both types of stake holders i.e., service users

and vendors [120]. User-centric reliability is a data-driven approach that uses the QoS

metrics that a user receives by interacting with system [121].

The WS-DREAM model is a user-centric approach based on collaborative assessment

mechanism to assess reliability of SOA-based applications by providing a real time test

environment for testing the service reliability of various users in different geographical

dispersed locations [42]. Here, all users can share their results making it easier to as-

sess recent QoS values in a distributed environment. This type of approach is normally

termed as Black Box Testing, where users are concerned with the end result only [122].

Users are incentivised to report these values as they will be able to receive QoS predic-

tions for services that they have not invoked using the similarity between themselves

and other users. The more they use the system the more accurate the predictions that

will be generated as there will be more data points to calculate similarity with other

users and services.

2.2.4 Summary

We summarize the advantages and limitations of the reliability approaches in Table

2.2. To cope with the dynamic changes in an IoT environment we propose using a user-

centric approach as it allows sharing of QoS information from other similar users in the

environment, rather than trying to construct a state-based approach to model failure

in resources. IoT is a dynamic environment, with mobile devices and gateways. It is

difficult to model how users and gateways will move in the environment and the impact

this will have on the quality of service. It is also not possible to use the fault tolerant

approaches in enterprise SOA as IoT relies on the services provided through service

providers and users cannot demand them to add additional redundancy or replication.

Having identified a research gap at the middleware level and completed a more detailed

analysis of reliability, we propose a user-centric approach at the middleware layer to

improve reliability. Section 2.3 provides a detailed analysis of user-centric approaches

for currently executing services and Section 2.4 analyses the user-centric approaches

for candidate services QoS prediction.
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Approach Advantage Limitation

Fault tolerant approaches
Very high reliability Increased overhead

Additional redundancy
Strict requirements

State-based approaches
High reliability with given states Number of states can grow exponentially

Difficult to predict state transitions

User-centric approaches
Provide high reliability Require a large amount of user data
Robust to sudden changes

Table 2.2: Reliability Summary

2.3 Executing Services

For currently executing services, the task is to identify when a service is about to fail

or degrade in quality. The basic step of predicting future QoS values can be thought

of as a time series problem, where the next value in the series must be predicted [123].

The goal is to forecast the next value in the time series to identify that a service may

be about to fail or degrade and send an alert there is a need to switch to an alternative

candidate service [124].

2.3.1 Benchmark Methods

The persistence (naive) method is the simplest forecasting method in time series re-

search and is used as a baseline model [125]. The model uses the last observed time

series value yi as its forecast yi+1 of the next value in the predicted time series.

yi+1 = yi (2.1)

The average model is a simple extension of the persistence model that takes into

account the most recent n values.

yi+1 =
1

n

i∑
x=i−n

yx (2.2)

Both these models are very simple requiring no training time, which makes them

suitable to be deployed on limited resources (C.5) and to quickly incorporate recent

changes in the network (C.1). However, the models are not capable of capturing

complexity in the time series and produce poor forecasting accuracy, not suitable for

critical applications (C.4) [126].
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2.3.2 ARIMA Methods

AutoRegressive Integrated Moving Average (ARIMA) models were originally proposed

by Box and Jenkins [127] to model time series data and forecast their future values.

They have been used for a wide range of time series forecasting applications, such as

socio-economic forecasting [128], car flow forecasting [129] and water quality prediction

[130]. ARIMA models for forecasting consist of three components: Auto-Regressive

(AR), Integrated (I) and Moving Average (MA). These parts can be used together

or independently to perform time series forecasting. For each component, there is a

number (p for AR, d for I and q for MA) that must be determined for an ARIMA model

to make forecasts. Suitable values are determined by analysing the past training data

to determine if integration (I) is needed to make the time series stationary (mean and

variance do not change over time). Once the time series has been made stationary the

AR and MA lags can be calculated by constructing an Autocorrelation and Partial

Autocorrelation plot and choosing a suitable number of lags. This process can be

automated by performing a grid search over component values on a sample of the

training dataset, which is how the p, d and q values are chosen in Chapter 5.

If no integration is required the time series yt is said to be modelled by an ARMA

model of orders p and q, denoted by ARMA(p,q), if it satisfies:

φp(B)yt = θq(B)εt (2.3)

where, εt is a sequence of independent normal errors with zero mean and variance σ2.

The backshift operator B is defined as Bxt = xt−1. The autoregressive polynomial is

φp(B) = (1−φ1B−φ1B
2−···−φpBp) with order p and θq(B) = (1+θ1B+θ1B

2 + · · ·+
θqB

q) is the moving average polynomial with order q. The autoregressive and moving

average coefficients are φ = (φ1, φ2, . . . , φp)
T and θ = (θ1, θ2, . . . , θp)

T respectively.

The equation 2.3 can be simplified and written:

yi+1 =

p∑
i=0

θiyt−1 +

p∑
i=0

θiεt−1 + εt (2.4)

where, yi+1 is the next step in the time series, p are the past stationary observations,

εt is the current error and εt−i for i = 1, . . . , q are the past errors. If d differences

have been used to transform the original non-stationary time series zt into the station-

ary one yt, then zt is said to be generated by an Autoregressive Integrated Moving

Average (ARIMA) model of orders p, d, and q and denoted by ARIMA(p,d,q). The
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main assumptions of ARIMA models are serial dependency, normality, stationary and

invertibility. Investigating whether the given time series data satisfies these assump-

tions is a crucial task, as unsatisfied assumptions lead to incorrect ARIMA models

that in turn will provide incorrect forecasts. These assumptions are validated using

the training data when creating the model.

ARIMA methods are lightweight, which makes them suitable to be deployed on lim-

ited resources (C.5) and to quickly incorporate recent changes in the network (C.1).

However, these models have been used in traditional time series forecasting tasks and

may not capture the sudden dynamics QoS in IoT cause by mobile devices, which can

lead to decreased forecasting accuracy (C.4).

2.3.3 Holt-Winters

Holt-Winters is an exponential smoothing technique that uses data in an exponen-

tial window function [125]. It has been used in a wide variety of forecasting appli-

cations, such as air passenger forecasting [131], electrical demand forecasting [132]

and sales forecasting [133]. Similar to the average method, the forecasting result is

a weighted summation of past time series observations. However, in contrast to the

average method, where the weights are identical for all observations or the persistence

approach that only uses the last observation, Holt-Winters weights exponentially de-

cay as the observations get older. Thus, more recent observations have larger weights

and contribute more to the forecast result. The Holt-Winter method has two varia-

tions: the additive model and the multiplicative model, each of which forecasts time

series with different properties. The additive method is preferred when the seasonal

variations are roughly constant through the series as is the case for QoS data. The

Holt-Winters seasonal method comprises the forecast equation and three smoothing

equations - one for the level lt, one for the trend bt, and one for the seasonal compo-

nent st, with corresponding smoothing parameters α, β∗ and γ. m is used to denote

the frequency of the seasonality, i.e., the number of seasons in a year.

yi+1 = lt + bt + st−1 (2.5)

lt = α(yt − st−m) + (1− α)(lt−1 + bt−1) (2.6)

bt = β∗(lt − lt−1) + (1− β∗)bt−1 (2.7)

st = γ(yt − lt−1 − bt−1) + (1− γ)st−m (2.8)
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The level equation shows a weighted average between the seasonally adjusted observa-

tion (yt−st−m) and the non-seasonal forecast lt−1 +bt−1 for time t. The trend equation

is identical to Holt’s linear method. The seasonal equation shows a weighted average

between the current seasonal index, (yt − lt−1 − bt−1), and the seasonal index of the

same season (i.e., m time periods ago).

Holt-Winters models are lightweight, which makes them suitable to be deployed on

limited resources (C.5) and to quickly incorporate recent changes in the network (C.1).

However, they have large testing time, which can increase the tolerable delay (C.2).

They also have quite simply model complexity, which may not be able to capture the

dynamics of the environment leading to decreased forecasting accuracy (C.4).

2.3.4 Gated Recurrent Units (GRU)

Artificial Neural Networks, especially recent developments in deep learning [134], have

had a large impact on a number of different research areas from diagnosing cancer [135]

to speech recognition [136]. They have also been shown to be useful for time series

forecasting from a wide variety of domains [137], [138], [139], [140]. These approaches

can approximate any function regardless of its linearity but can require a large amount

of training data.

Gated recurrent units (GRU) have developed from recurrent neural networks (RNNs),

which have been previously applied to various sequence learning tasks such as natural

language processing, gas market models and speech signal modelling [141–143]. Despite

their early success, the difficulty of training RNNs led to proposals to improve their

basic architecture [144]. GRU and LSTM networks are the most successful variants of

the traditional RNN architecture. GRUs have developed from the basic architecture of

RNNs by modifying the functional form to make each recurrent unit adaptively capture

dependencies on different time scales [145]. The GRU has gated units that modulate

the flow of information inside the unit. This process is illustrated graphically in Figure

2.4a.

The activation hjt of the GRU at time t is a linear interpolation between the previous

activation hjt−1 and the candidate activation hj̃t :

hjt = (1− zjt )hjt−1 + zjhj̃t : (2.9)

where an update gate zjt decides how much the unit updates its activation, or content.

The update gate is computed by:
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Figure 2.4: Illustration of (a) GRU (b) LSTM (a) r and z are the reset and update
gates, and h and h̃ are the activation and the candidate activation. (b) i, f and o are
the input, forget and output gates, respectively. c and c̃ denote the memory cell and

the new memory cell content.

zjt = σ(Wzxt + Uzht−1)j (2.10)

The GRU, does not have any mechanism to control the degree to which its state

is exposed, but exposes the whole state each time. The candidate activation hj̃t is

computed similarly to that of the traditional recurrent unit [146]:

hj̃t = tanh(Wxt + U(rt � ht− 1))j (2.11)

where rt is a set of reset gates and � is an element-wise multiplication. When off (rjt

close to 0), the reset gate effectively makes the unit act as if it is reading the first

symbol of an input sequence, allowing it to forget the previously computed state. The

reset gate rjt is computed similarly to the update gate:

rjt = σ(Wrxt + Urht−1)j (2.12)

This process is illustrated graphically in Figure 2.4a.

GRUs are able to create complex models that can capture the dynamics of QoS in

IoT and produce accurate forecasts (C.4), however they can also be resource intensive

to train, which can be a challenge on devices at the edge (C.5). This can also lead

to delays in incorporating recent changes in dynamic environments (C.1), which can

decrease forecasting accuracy (C.4).
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2.3.5 Long Short-term Memory (LSTM)

Long short-term memory networks (LSTMs) have also developed from recurrent neural

networks (RNNs) with improvements on the initial architecture. They have been used

in a wide variety of applications such as precipitation nowcasting [147], solar power

forecasting [148, 149] and wind forecasting [150]. The initial RNN architecture was

improved on by storing and retrieving information over a long period of time with

explicit gating mechanisms and a built-in error carousel [143, 151]. This addressed

the difficulties of training RNNs, in which the backpropagation dynamics caused the

gradients in an RNN to either vanish or explode. Unlike the traditional RNN, which

simply computes a weighted sum of the input and applies a nonlinear function, each jth

LSTM unit maintains a memory cjt at time t. The output hjt , which is the activation

of the LSTM unit is then:

hjt = ojt tanh(cjt ) (2.13)

where ojt is an output gate that modulates the amount of memory content exposure.

The output gate is computed by:

ojt = σ(Woxt + Uoht−1 + Voct)
j (2.14)

where σ is a logistic sigmoid function, W is the current weight matrix, U is the update

matrix and Vo is a diagonal matrix. This procedure of taking a linear sum between the

existing state and the newly computed state is similar to the GRU unit, though LSTMs

can control the degree to which its state is exposed. The memory cell cjt is updated by

partially forgetting the existing memory and adding a new memory content cj̃t :

cjt = f jt c
j
t−1 + ijtc

j̃
t−1 (2.15)

The introduction of gates allow the LSTM unit to decide whether to keep the existing

memory or to overwrite it. This improves on the traditional recurrent unit, which over-

writes its content at each time-step. Intuitively, if the LSTM unit detects an important

feature from an input sequence at an early stage, it easily carries this information (the

existence of the feature) over a long distance, hence, capturing potential long-distance

dependencies. This process is illustrated graphically in Figure 2.4b.
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Extensions to the basic LSTM model have been proposed such as adding an encoder/de-

coder network before the LSTM layer [152]. The LSTM encoder learns a fixed length

vector representation of the input time series and the LSTM decoder uses this repre-

sentation to reconstruct the time-series using the current hidden state and the value

predicted at the previous time-step. Other approaches have added an attention layer

to the LSTM [153]. This attention layer is used to select relevant hidden states across

all time steps. Stacked LSTM approaches using multiple LSTM layers have also been

proposed to allow the hidden state of each network to operate at a different time-scale

[154].

LSTMs are able to create complex models that can capture the dynamics of QoS in

IoT and produce accurate forecasts (C.4), however they can also be resource intensive

to train, which can be a challenge on devices at the edge (C.5). This can also lead

to delays in incorporating recent changes in dynamic environments (C.1), which can

decrease forecasting accuracy (C.4).

2.3.6 Summary

We summarize the advantages and limitations of the reliability approaches in Table

2.3. With current state of the art approaches there is a trade-off between the model

complexity and the time to train the model. There were a number of challenges

discussed in Chapter 1: C.1 Dynamic Environment, C.2 Reduced Tolerable Delay, C.3

Increased Traffic Delay, C.4 Critical Applications and C.5 Limited Resources. There

are very lightweight models such as persistence and average that have no training time

allowing them to handle C.1, C.2, C.3 and C.5 but the complexity of both models are

very simple and it is not possible to capture the dynamics in the environment, which

leads to a reduction in forecasting accuracy for C.4. Other approaches such as GRU

and LSTM can generate much more complex models, but take longer to train and are

deployed in the cloud. To manage the challenge of reduced tolerable delay for modern

applications, C.2, there is a need to update our models on an edge device. There is also

a need to react to the dynamic changes in QoS values by updating a model complex

enough to capture the changes in the dynamic environment. This would ensure that

the model is able to make accurate QoS predictions to avoid a failure to forecast a

service that is about to degrade or fail, C.4, as when this happens the application will

degrade in quality or fail.
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Approach Advantage Limitation

Benchmark Methods
No training time Poor forecasting accuracy
Simple to implement and understand

ARIMA
Small training time, used in a May not capture the sudden dynamics
large number of time series datasets of QoS in IoT

Holt-Winters
Small training time Simple model that may not capture
Easily explainable the sudden dynamics of QoS in IoT

GRU
Can create complex models with Large training time leads to delays
large number of parameters in incorporating recent changes at the edge

LSTM
Can create complex models with Large training time leads to delays
large number of parameters in incorporating recent changes at the edge

Table 2.3: Executing Services Summary
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Figure 2.5: Sample QoS Data

2.4 Candidate Services

When an anomaly or degradation in QoS for a particular service is detected, the

service composition and execution engine should change to a functionally equivalent

candidate service, which can provide an acceptable level of QoS. To switch to an

appropriate service the system must have some knowledge of the QoS value of the

service. However, if the user has not invoked the service before, then they will have no

QoS values for that service, so will not know if it is a suitable replacement. The service

provider can list QoS values in the service description, but these values are not suitable

as the user-side QoS depends on the time and location of invocation, which cannot be

known at the provider side. This means that users invoking the same services can

have different values for QoS factors such response time and throughput. Figure 2.5

shows the distribution in response time and throughput for three services across three

hundred and thirty nine users and is taken from the WS-DREAM dataset used in our

experiments [42]. The users are in different locations and the QoS factors are measured

at the user-side to show the impact of invoking a service at a different time and location.

The QoS values are often not maintained in service registries as it would mean that
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Figure 2.6: Correlation Between Users and Services

the service descriptions would need to be constantly updated. A collaborative filtering

approach can be used, where QoS values reported from similar users and services are

used to make predictions of the missing QoS value for the service. Figure 2.6 shows

the correlation between two users and services on invoked throughput values from the

WS-DREAM dataset [42]. This correlation can be exploited to identify similar users

and services in the environment and predict missing QoS values for users, who have

not invoked the service.

There are two main collaborative filtering methods, which can typically be classified

as either memory or model-based. Memory-based approaches store the training data

in memory and in the prediction phase similar users are sorted based on the current

user. Model-based approaches create a model of the user invocation matrix to avoid

having to store all the training data in memory. Section 2.4.1 presents an analysis

of memory-based approaches and Section 2.4.2 presents an analysis of current model-

based approaches.

2.4.1 Memory-based Approaches

Approaches such as collaborative filtering have been used in other domains such as

commercial recommender systems [46], [45], [155]. Memory-based approaches store

the training data in memory and in the prediction phase similar users are sorted based

on the current user. There are a number of approaches that use neighbourhood-based

collaborative filtering including user-based approaches [43], item-based approaches [44]

and their combination [45]. Sorting based on the current user or service can be resource

intensive (C.5) when there are a large number of users and service in the system. Vector

similarity (VS) [43] and Pearson correlation coefficient (PCC) [46] are often used as

similarity computation methods.
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2.4.1.1 User-based algorithms

User-based algorithms find similar users to the current user requesting the service

composition to predict the QoS of candidate services. Initial user-based approaches

used PCC to calculate the similarity between users [156]. The most similar users based

on QoS values were then weighted using a similarity metric to make predictions for the

missing QoS values. User-based algorithms can have problems when there are many

services and few ratings. User profiles can also change quickly if the user is mobile and

in a dynamic environment (C.1) causing the entire system model to be recomputed.

This is resource intensive (C.5) and can lead to less accurate predictions (C.4) if the

latest dynamic changes are not updated in the model before predictions are needed.

2.4.1.2 Item-based algorithms

Item-based algorithms can resolve some of the user-based algorithm problems in sys-

tems that have more users than items. With more users than items, each item tends

to have more ratings than each user, so an item’s average rating usually does not

change quickly. In item-based algorithms, the similarities between different items are

calculated and then the user rating to an item will be predicted by rating the values of

similar items. In commercial systems, item-based collaborative filtering has also been

used [44]. A method for predicting QoS values using the similarity between services

and their combination with the geographical location of the service provider has also

been developed [157]. Item-based algorithms resolve some of the problems of user-

based approach when there are more users than items in the system, however it is still

a memory-based approach that requires all service invocations to be stored in memory.

This is resource intensive, especially when there is a large number of services as would

be expected in an IoT environment (C.5). This environment is also dynamic (C.1),

which can lead to sudden changes in service characteristics by devices moving to a

different location that can result in decreased prediction accuracy (C.4).

2.4.1.3 Hybrid-based algorithms

In this method, both the similarities between the service and the similarities between

users are computed. Then, a hybrid algorithm uses both these similarities to predict

QoS values. These algorithms have achieved better results than the individual user or

item-based approaches [45]. Other approaches have extended these initial approaches

to include user reputation. Trust-aware qos prediction (TAP) presents a personalised
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QoS prediction approach that first clusters the users and calculates their reputation,

based on the clustering information of a beta reputation system [158]. Then a set of

trustworthy similar users is identified according to the calculated user reputation and

similarity. Finally, the set of similar services is identified by clustering the services

and making predictions for active users by combining the QoS data of the trustworthy

similar users and services.

Overall, memory-based algorithms have a high perceptual capability i.e., the user can

understand how the QoS value was predicted and their implementation is relatively

easy. However these approaches can have some problems. One of the problems is

data sparsity. Due to the large number of services, users will have invoked only a

very small proportion of the overall services. This causes users to have few shared

services and thus reduces the accuracy of a neighbour’s similarity, reducing the overall

prediction accuracy (C.4). Another problem with memory-based approaches is the

cold-start problem, when a new user or service is introduced to the system. There

are no neighbours as the user has not invoked any services yet or the service has not

been invoked by any user. Therefore, it is not possible to predict QoS values (C.4).

Finally, scalability is one of the major limiting factors for memory-based approaches.

If the number of services and users is high, as would be expected for urban applications

with millions of services and users then the cost of calculating the similarity between

individual users and services will be very high (C.5). This can cause problems especially

in a dynamic environment (C.1) such as IoT, where users and services can be mobile

leading to sudden changes in QoS.

2.4.2 Model-based Approaches

Model-based approaches were developed to avoid some of the limitations of memory-

based methods such as scalability and data sparsity. In these approaches, the user-

service invocation dataset is used to train a model to predict unknown QoS values.

Latent factor models create a low-dimensional factor model, on the premise that there

are only a small number of factors influencing the QoS [46]. Matrix factorisation (MF)

is a model-based approach used for QoS prediction that has been shown to produce

accurate results (C.4) in QoS prediction and recommender systems [47], [48]. The

first step in the algorithm is to factorise the sparse user-service matrix and then use

V TH to approximate the original matrix, where the low-dimensional matrix V denotes

the user latent feature space and the low-dimensional matrix H represents the service

latent feature space, using the latent factor model [159]. The rows in the two matrices

represent different features with each column in V representing a user and each column
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inH denoting a service. The model assumes that the original matrix can be represented

by a small number of latent features (around 20-30) such as the network load, location

of invocation and provider resources. In a dynamic environment such as IoT (C.1),

the model may need to be retrained frequently to update changes in users and services

QoS, which can be resource intensive (C.5).

2.4.2.1 Latent Features-based Approaches

The main advantage of latent features-based approaches is that they can somewhat

solve the problem of data sparsity and scalability [159]. Various methods have been

proposed in this research area, in which the MF method is used to predict QoS values.

Nonnegative matrix factorization (NMF) differs from other matrix factorization meth-

ods in that it enforces the constraint that the latent factors must be nonnegative [160].

These constraints lead to a parts-based representation because they allow only addi-

tive, not subtractive, combinations. This non-negativity makes the resulting matrices

easier to inspect. Extended matrix factorisation (EMF) is a MF-based approach that

takes into account two additional regularisation terms in the MF equation to involve

closer neighbours who are more similar in the prediction. One of the regularisation

terms is the neighbours’ information of the user’s side and the other regularisation term

is a modified Pearson Correlation Coefficient algorithm to find the similarity between

services, which can improve accuracy [161]. Other approaches such as Probabilistic

matrix factorization (PMF) have used a probabilistic-based matrix factorisation ap-

proach, which scales linearly with the number of observations and can handle sparse

and imbalanced data. Neighbourhood Integrated Matrix Factorization (NIMF) is a

method to provide improvement in predicting QoS values by combining MF for global

information and neighbourhoods for local information [162]. In NIMF, the similarity

between users is calculated using PCC and the top-k most similar users are identified,

then MF is used for prediction.

Other approaches have developed methods based on Singular Value Decomposition

(SVD) to overcome the cold-start problem by adding service provider information and

the country where the service was provided [163]. In hierarchical matrix factorisation

(HMF), the geographic information of users and services is combined with the MF

method and provides a hierarchical approach to predict QoS values [164]. The local

neighbourhood matrix factorization (LoNMF) method combines domain knowledge

with the MF method and has thus been able to improve the MF method with a

two-step neighbourhood selection mechanism [165]. LoNMF uses the geographical

information of users and services to create a local user-service matrix. Integrating MF
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with the network map (NAMF), provides a network-aware method [166]. NAMF first

processes the network map to measure the distance of the users on the network. Then

the neighbours calculate the similarity between each user in terms of their distance in

the network and add the similarity weight between them as a regularisation term to

the base MF model.

Reputation-based matrix factorisation (RBF) is a personalised prediction method for

QoS values that integrates matrix factorisation with user reputation-aware methods

[52]. There has also been approaches based on the combination of model and memory-

based methods [167]. There are context-aware methods based on MF, where content

information from users, services or their interactions is combined with the MF method

[168]. Initial experiments using deep learning model-based approaches such as Re-

stricted Boltzmann Machines have also been conducted [53].

Model-based approaches have advantages in that they can handle the data sparsity and

cold start problems better than memory-based methods. However, the most important

advantage is in scalability, as these approaches can be used for the large number of

users and services that are expected in an urban city environment. However, in spite

of these advantages, these methods have some problems. If a new user or service comes

into the environment and is added to the set, the model has to be created and trained

again [54]. The cost of training these models is high as it is a resource-intensive process

to generate the latent features they use (C.5). This makes them unsuitable for dynamic

environments where users and services are mobile and move out of range of gateways

or switch to a power saving mode (C.1). These methods also have multiple parameters

that must be properly set as their values have a significant effect on the prediction

accuracy (C.4).

2.4.3 Summary

We summarize the advantages and limitations of the reliability approaches in Table

2.4. This section has explored the current state of the art methods to predict QoS

for candidate services. Memory-based algorithms have a high perceptual capability,

but they have a number of problems with data sparsity, cold-starts and scalability.

Scalability is one of the major limiting factors of memory-based algorithms as there is

expected to be millions of services and users in an urban environment, which would

make the cost of calculating the neighbours of services very high (C.5). This means

the data and analysis needed for this approach would have to be conducted in the

cloud, which would increase the traffic rate (C.3.) Model-based approaches have been

designed to solve some of the challenges of memory-based approaches and have shown
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Approach Advantage Limitation

Memory-based
High perceptual capability Problems with data sparsity, cold-starts

and scalability

Model-based
Can better handle data sparsity and Large training time required to
cold start problem generate latent features

Table 2.4: Candidate Services Summary

improvements in being able to handle the data sparsity and cold-start problems. These

methods can also handle a large number of users and services as the latent features

means there is only a small number of values to find the similarity between. However,

these models have a large training time to generate these latent features and must

be retrained if a new user or service is introduced to the system. This makes them

unsuitable for a dynamic IoT environment where users and services are mobile and

move out of range or change to a power saving battery mode (C.1). Therefore, there

is a need for a lightweight model-based approach that can reduce the training time to

allow a model to be updated quickly to include dynamic changes, while also maintaining

the prediction accuracy.

2.5 Chapter Summary

This chapter has looked at current state of the art approaches to provide QoS through

the layers of the IoT architecture. The analysis was then focused at the middleware

level where a research gap was identified to provide user-centric reliability. Current

user-centric approaches that focused on increasing the reliability of IoT applications

by making predictions for currently executing and candidate services were identified.

Figure 2.7 shows the kiviat diagram for forecasting QoS in currently executing services

and Figure 2.8 shows the kiviat diagram for predicting QoS for candidate services.

The kiviat digram in Figure 2.7 and Figure 2.8 map to the challenges in Chapter 1.

To handle a dynamic environment (C.1) and limited resources (C.5), the approaches

should have a small training time to incorporate recent changes in the network and

not overload the devices. To manage the reduced tolerable delay (C.2) and increased

traffic rate (C.3) the model should also be able to be deployed at the edge or on the IoT

devices. The physical proximity of an edge device one hop away from data generation

reduces the latency to a level acceptable for modern application such as augmented

reality. The edge device also reduces the amount of traffic that needs to be reported

to the cloud over the core network. The model should also have a low testing time
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Figure 2.7: Kiviat Diagram of QoS Prediction for Currently Executing Approaches

to allow for reduced tolerable delay (C.2) and not offload any of the training process

until the prediction is needed. To manage the accuracy requirements of medium and

high critical applications (C.4) the model should be complex enough to capture the

dynamics of the environment and make predictions that a very close to the actual

values with low standard error metrics (MRE, RMSE).

Figure 2.7 shows that approaches for predicting QoS of currently executing services

have covered different portions of the requirements. Benchmark models such as persis-

tence and average can be deployed on an IoT device as they have no training time, but

the model is very limited and does not capture the dynamics in the environment. Ap-

proaches such as ARIMA and Holt-Winters add more complexity to the model, which

adds to the training and testing time, which can cause some problems for C.1. How-

ever, these models can still be deployed at the edge making them suitable for C.2, C.3,

and C.5. These approaches allow for additional model complexity that can increase

the prediction accuracy compared to the baseline models, which is needed for C.4. The

LSTM approach has large training time that allows for additional model complexity,

but the long training time can decrease prediction accuracy in dynamic environments,

which causes some problems for C.4.



2 - State of the Art 40

NMF

PMF

Model Complexity
Complex

Simple
Basic

Training Time

Cloud
Edge
On Device

Small
Medium
Large

Deployment

Testing Time

Medium
Large

Small

Figure 2.8: Kiviat Diagram of QoS Prediction for Candidate Service Approaches

Figure 2.8 shows that current candidate QoS prediction approaches are quite sim-

ilar and have been deployed in the cloud with large training times to find similar

replacement services. Current approaches including PMF and NMF are designed to be

deployed in the cloud, which leads to increased tolerable delay, C.2 and increased traf-

fic rate to the cloud, C.3. Some approaches such as PMF have reduced training time

slightly by using probabilistic methods, but these methods still need to generate the

latent features, which is resource intensive, C.5. The hypothesis is that a lightweight

algorithm can be deployed at the edge of the network to reduce the time it takes to

receive the predictions, while maintaining the prediction accuracy for dynamic service

providers. The combination of improvements to predicting both currently executing

and candidate services would improve the overall reliability of IoT applications.



Chapter 3

Design

The review of the state of the art, presented in the previous chapter, has identified

a number of challenges in current QoS prediction approaches. Open issues include

that they focus on being deployed in the cloud with unlimited resources, which makes

them unsuitable to be used at the edge of the network. This leads to increased delay

when making predictions, which is likely to be greater than the tolerable delay required

by modern applications, such as augmented reality. This chapter introduces TTDR,

the combination of algorithms proposed to reduce both TTD and TTR. Section 3.1

gives an overview of reliable service applications in IoT, how they can be modelled

and the individual TTD and TTR parameters that were focused on in this thesis.

Section 3.2 describes the design objectives and the features required in the approach

to manage the challenges described in Section 1.2. Section 3.3 describes the system

environment used to specify the scope of the contributions. Section 3.4 highlights the

design decisions that were made to ensure the contributions have the required features.

Section 3.5 describes the design of the noisy echo-state network to reduce TTD and

Section 3.6 shows the design of the initial IoTPredict algorithm and the follow-on

stacked autoencoder approach to reduce TTR.

3.1 Reliable Service Applications

Providing reliable service applications in IoT is difficult due to a number of challenges

such as the devices being resource constrained and possibly mobile [169]. Service

applications can be used in a range of domains that have different QoS requirements

based on the sensitivity and criticality of the application [170]. Application QoS can

typically be categorised as best effort (no QoS), differentiated services (soft QoS) and

41
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guaranteed services (hard QoS). In the hard QoS case, there are strict hard real-time

QoS guarantees. This is appropriate for safety critical applications such as remote

surgery or collision avoidance in a self-driving car system. Soft QoS does not require

hard real-time guarantees but needs to be able to reconfigure and replace services that

fail. An example is a routing application that uses air quality, flooding and pedestrian

traffic predictions, to provide the best route through the city. If one of the services is

about to fail, the application should be recomposed using suitable replacement services.

The final case is best effort, where there are no guarantees when a service fails.

As this thesis focuses on attaining soft QoS guarantees, it is assumed that there will be

some downtime and the goal is to try to reduce the amount of downtime. For example,

if there is a 28 day budget and a user wants 99.9% availability then there can be 40

min downtime, 99.99% = 4 min, 99.999% = 24 s. The level of availability needed will

depend on the criticality of the application, but the goal is the same: to reduce the

amount of downtime. An error budget can be used to identify the individual factors

that influence how much error the system will have [171, 172]. Error budgets have

traditionally been used in mechanical engineering tasks, including all the factors that

can contribute to the final error in a workpiece, i.e., the machine, process, auxiliary

equipment and the interactions between them [173]. They have also been used in other

design tasks such as LiDAR accuracy [174] and soil mapping [175]. In this thesis,

reliability is quantified by a cost to time budget, which is the impact that a failure will

have on the total time budget, taking into account the time to detect the error and

the time to recover from the error as well as other parameters. The goal is to reduce

the cost for individual users, as this increases the reliability of the overall system. This

enables subsequent efforts to be directed at specific reliability factors such as the time

to detect an error, rather than a general approach focused on improving reliability

in IoT systems. The cost to time budget is based on descriptions from a production

service system environment [176] and is calculated as follows:

ε =
(TTD + TTR)× impact%

TTF
(3.1)

where ε is the cost to the time budget, TTD is the time to detection, TTR is the time

to recovery, impact% is the percentage of users that are effected by the failure and TTF

is the time to failure of the provider services. From a middleware perspective, TTF

cannot be controlled as it is up to the providers who enable the services to improve

it. Increasing TTF would reduce the cost to the time budget as the application would

have to recover from service degradation less often, increasing the overall reliability.

There have been suggestions for approaches to increase TTF through fault tolerance
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approaches such as resource provisioning to provide extra resources to services when

needed [57], increased maintenance scheduling [177] and the use of docker containers

on devices to enable reliable distribution of services on devices [178]. The impact

percentage is beyond the control of the prediction algorithms as they do not influence

the number of users invoking the specific services, so a constant value is assumed.

However, this parameter could be explored in future work with the composition and

execution engine by distributing users across services that meet their QoS requirements

rather than selecting the service with the best QoS value, as this could overload the best

service leading to a drop in QoS. The service composition and execution engine could

randomly choose from the top-k ranked services that fulfil the users QoS requirements

to avoid this problem.

This thesis focuses on TTD and TTR. The impact of both of these parameters can be

seen in Figure 3.1. TTD is the time from a service failure until an alert is generated so

that the middleware knows that there is a failure. Once the alert has been generated,

TTR is the time to find a replacement service and recompose the application to a

working state. TTD focuses on detecting errors as soon as possible, to reduce the cost

to the time budget. Short-term forecasting of QoS values for the next time step in

the series allows for fast adaptation and the reduction of TTD. After analysing state

of the art approaches in the previous chapter, challenges such as long training times

for some models and lack of model complexity for others made it difficult for them

to be deployed at the edge of the network and maintain a high prediction accuracy.

In this thesis, a model based on echo state networks is proposed that is designed to

be deployed at the edge of the network. Instead of training all the hidden nodes of

the network, only the hidden to output nodes are trained, which greatly reduces the

training time needed, allowing this model to be trained at the edge of the network.

This has a number of benefits in response time and availability as well as reducing

TTD, which increases the overall reliability of the application. The noisy-echo state

network design is discussed in detail in Section 3.5.2
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TTR focuses on recovering from service degradation by making accurate QoS pre-

dictions for suitable replacement services. To decrease the value of this parameter, an

initial matrix factorisation-based approach is proposed, called IoTPredict, that reduces

prediction error for replacement IoT services using an alternative similarity computa-

tion method designed for IoT services [179]. One of the limitations of this approach is

that it uses matrix factorisation latent features, which are resource intensive to train.

This means that the model has to be trained in the cloud, so user data must be re-

ported to a centralised location. In this thesis, a stacked autoencoder model is also

proposed that can be deployed on a deep edge architecture. The deep edge architecture

uses embedded GPUs at the edge of the network to reduce the training time for more

complex models. The stacked autoencoder approach is designed to be deployed on

this architecture at the edge of the network. The stacked autoencoder model reduces

the time to receive predictions, while maintaining prediction accuracy, which reduces

TTR, increasing the overall reliability of the application. Both the IoTPredict and

Autoencoder design are discussed in detail in Section 3.6.

3.2 Design Objectives and Required Features

This section outlines the design objectives and required features to manage the chal-

lenges described in Section 1.2. These design objectives and required features influence

the decisions made in Section 3.4 when designing the TTD and TTR algorithms.

F.1 Fast Training Time. IoT device and gateways can be mobile especially in

urban intelligence applications in smart cities (C.1). A QoS prediction approach for

currently executing or candidate services should incorporate the most recent changes in

the dynamic environment and any failures due to the wireless communication protocol.

To incorporate recent QoS changes in the model before the next prediction is needed,

the algorithm must have a fast training time. Based on the analysis of the IoT dataset

collected we found 30s was a suitable monitoring frequency to capture the dynamics in

an IoT environment, this is not a precise number, but provides an indication of the time

frame that we consider to be fast [180]. This greatly reduced the standard deviation

compared to the established web service dataset [181] making it more suitable modern

IoT applications, such as augmented reality [182].

F.2 Low Tolerable Delay. Table 1.1 shows a number of urban intelligence applica-

tions and the increased demands on tolerable delay for recent applications (C.2). To be
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able to achieve the tolerable delay required by applications such as augmented reality

that can use IoT services, it is necessary to deploy these QoS prediction algorithms

close to the data generation and users to reduce latency. The algorithm that is used

to generate the QoS predictions should also have a small test time to generate the

predictions to ensure that this does not become a bottleneck.

F.3 Reduced Cloud Traffic Rate. Table 1.1 also shows the traffic rate for urban

intelligence applications (C.3). The large amount of data generated by these applica-

tions can cause congestion on the network and increase energy usage. Sending large

amounts of user data to the cloud is also a privacy risk as this can be valuable infor-

mation for attackers. Therefore, a required feature is to manage these QoS values and

predictions closer to the data generation, which reduces the amount of user information

transported over the core network.

F.4 Prediction Accuracy. As the prediction algorithms are design to be used with

applications that have medium criticality there is a need to maintain good prediction

accuracy (C.4). This is important as if the forecasting algorithm fails to forecast that

the service is about to degrade in quality or uses a replacement service that has low QoS,

then this will cause the application to fail. Therefore, maintaining accurate prediction

accuracy is an important feature to ensure that the reliability of the application is

achieved.

F.5 Deep Edges. Computing at the edge introduces challenges on the computa-

tional power available for deploying and training models (C.5). However, more recent

embedded GPUs haven been created that can be deployed at the edge of the network

with low power requirements. An IoT architecture should use these more modern de-

vices available at the edge to increase the complexity of models that can be used one

hop away from data generation.

3.3 System Environment

This thesis focuses on supporting reliable service-based IoT applications. We define an

application as being reliable by reducing the cost to time budget defined in Equation

3.1. This thesis focuses on decreasing the TTD and TTR parameters. The services

that are provided to users in the environment can come from a range of heterogeneous

devices, with different memory, CPU and battery life. Services can be provided from
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different service types including web services (WS), residing on resource rich devices

in data centres that have access to large amounts of memory, CPU and battery life.

Wireless sensor network (WSN) are typically deployed at the edge of the network us-

ing less powerful devices with limited battery life in a distributed architecture [183].

The final service type considered in our system environment is autonomous service

providers (ASP), who are independent mobile users in the environment with intermit-

tent availability [184]. They can provide services using their mobile phones but may

suddenly fail due to a user’s phone reaching low battery. Applications can be created

by composing multiple services from different service types using a service composi-

tion engine [185]. For example, an application might perform some analysis and flood

prediction using a water level service available from an autonomous service provider

and a machine learning and storage service available as a web service.

Recent urban intelligence applications such as augmented reality have increased the

demands on QoS factors such as tolerable delay. This means that applications com-

posed for augmented reality should have high levels of QoS with low response time

(≤ 10ms). The application should also be able to adapt to changes in QoS, as service

providers can be mobile so some of the services may degrade in quality. As the appli-

cations have low tolerable delay this process should happen quickly to avoid the user

noticing a problem with the application. To achieve the required response time for

adaptive services the middleware and prediction engine are deployed at the edge of the

network on the gateways. The prediction algorithms should also have high accuracy

to avoid choosing a replacement service with low QoS or failing to forecast that one of

the services in the application is about to degrade, which could cause the application

to fail.

Traditional IoT gateways such as Raspberry Pis and Intel Galileos do not have GPUs,

making it difficult to train more complex models at the edge of the network. Embedded

GPU devices such as the Jetson Tx2, have increased the training resources available

for gateways at the edge of the network and make it possible to deploy and train

more complex models at the edge. These devices have less resources than traditional

desktop GPUs with a small form factor and reduced power consumption making them

easy to deploy at the edge of the network. The design proposed in this thesis focuses

on deploying smart prediction models on these embedded GPUs at the edge to provide

an increased level of QoS.
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Figure 3.2: Mapping of the Challenges (Section 1.2), Required Features (Section
3.2), Design Decisions (Section 3.4) and TTDR Contributions (Section 3.5 and Section

3.6).

3.4 Design Decisions

Reliability can be improved in a number of different ways as discussed in Section 2.2.

This thesis focuses on reducing the TTD and TTR parameters in the cost to time

budget defined in Equation 3.1. The following section outlines the decisions made to

address the design objectives and required features in Section 3.2.

3.4.1 Fast Training Time

Fast training times are needed to incorporate the dynamic changes in the IoT environ-

ment, as some service providers and users can be mobile. A fast training time allows

a model to update any new QoS data about the services before making a prediction

for a new user. This can also increase the prediction accuracy as the model is updated

with the latest changes in the network.

Design Decision 1: Training Only Hidden-Output Connections Training

only the hidden-output connections in the noisy-echo state approach is used to achieve

fast training times for the TTD approach. The hypothesis is that if the model is able to

train faster it can capture the dynamic changes in the environment faster than other

forecasting approaches such as LSTM and GRU. These models have large training
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time making it difficult for them to incorporate recent changes in the environment.

The LSTM models can produce more accurate models in environments in less dynamic

environments, when there is not as much of a change between the training and testing

datasets.

Design Decision 2: Smaller Symmetric Autoencoder A four layer symmetric

architecture with a reduced number of nodes in each layer is used to lower the training

time for TTR. Gradients of complex functions such as autoencoders have a tendency to

vanish or explode as an error is propagated through the layers. RMSprop optimisation

was used to deal with this problem by using a moving average of the squared gradients

to normalise the gradient itself. This has the effect of balancing the step size, which

decreases the step for large gradients to avoid exploding and increases the step for a

small gradient to avoid vanishing. This allows the model to achieve improved accuracy

faster than a simple gradient descent approach.

3.4.2 Low Tolerable Delay & Reduced Cloud Traffic

Low tolerable delay is necessary to manage modern applications such as augmented

reality. One of the simplest ways to reduce this compared to traditional cloud-based

applications is to move the analysis and predictions closer to the edge of the network

one hop away from data generation. This reduces the communication time and cloud

traffic rate as user QoS does not have to be sent to the cloud but only to the local

gateway.

Design Decision 3: Updating Models on Edge Nodes To manage the tol-

erable delay required by modern applications such as augmented reality, the models

are designed to be updated on edge nodes. This adds additional constraints to the

model that are not taken into account when training traditional deep learning models

in the cloud. There is a limitation on the computational resources available at the

edge and the time available to train the model to cope with dynamic changes in the

network. The models are designed to try and maximise the prediction accuracy taking

into account these factors.

3.4.3 Prediction Accuracy

The prediction accuracy of the models is very important as failing to predict that

a service is about to fail or replacing a service with a low QoS value can cause the
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application to fail. Also, falsely predicting a service is about to fail when it actually will

not causes a lot of additional processing in the middleware. Therefore, it is important

to maintain the prediction accuracy of the model, while deploying and updating it at

the edge.

Design Decision 4: User-Centric Reliability To support the prediction accuracy

in a dynamic IoT environment a user-centric reliability approach is taken. Other

approaches such as state-based reliability were also experimented with, but there was

difficulty in modelling the dynamic environment. User-centric reliability focuses on the

users in the environment sharing their QoS values to receive better QoS predictions

for the candidate services that they can invoke. As the model training takes place at

the edge, there is increased privacy for users compared to having to share their data

in the cloud.

Design Decision 5: Regularisation to Prevent Overfitting One of the prob-

lems with training on local data at the edge is that it can lead to overfitting. For

the TTD approach, a small amount of noise is added to increase the robustness of the

model. This also helps the stability of the echo state model, to avoid getting stuck in a

local minimum or maximum, which improves the reliability of training. For the TTR

approach, dropout is added to the model so that some of the neurons are randomly

ignored or dropped out. This has the effect of considering each layer to have a different

number of nodes and connectivity to the prior layer. This means that each update to

a layer during training is performed with a different configuration of the layer, which

increases the robustness for testing.

3.4.4 Deep Edges

This thesis focuses on deploying and updating models at the edge of the network to

manage the reduced tolerable delay demands. To manage the accuracy of the models

as well as deploying them at the edge of the network, this thesis coins the term ’deep

edges’ [55]. This is a combination of the benefits of deep neural networks and edge

networks. To achieve these deep edges, new devices capable of training these models

at the edge of the network were needed [182].

Design Decision 6: Embedded GPUs at the Edge Traditional IoT gateways

such as Raspberry Pis and Intel Galileos have low power CPUs such as Quad Core
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1.2GHz Broadcom BCM2837 64bit. These devices do not have access to GPUs, which

are used to speed up the training of more complex models, such as deep neural networks.

Training using a CPU imposes strict limitations on the complexity and accuracy that

can be generated. This thesis makes use of new embedded GPUs that can be deployed

at the edge of the network, such as the Nvidia Jetson Tx2. This device has the same

form factor as traditional IoT gateways, but can be used to speed up the training of

deep neural networks at the edge. This allows for a greater range of models that can

be deployed at the edge of the network.

3.5 TTD

This section describes the design for reducing TTD to improve the overall reliability of

service applications. An explicit problem definition is given in Section 3.5.1 to describe

the exact problem that is being solved. The design of the noisy-echo state network

approach to reduce TTD is described in Section 3.5.2.

3.5.1 Problem Definition

A time series is a series of data points such as QoS values indexed in time order. Time

series forecasting uses a model trained on previous values to predict future values. In

this thesis, a QoS time series is defined as:

Y0...t = y0, y1, . . . , yt−1, yt (3.2)

where Y0...t denotes a set of values of a QoS time series during the period 0 . . . t and yi

represents the value of the time series at time i. For example, the response time series

during the period 0 . . . t, RT0...t is shown:

RT0...t = rt0, rt1, . . . , rtt−1, rtt (3.3)

where rti represents the response time of the service at time i. In this problem, curr

denotes the present and 0 < curr < t splits the time series Y0...t into two smaller time

series: the training data time series Y0...curr and the testing data time series Ycurr+1...t

as follows:
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rt0, rt1, . . . , rtcurr−1, rtcurr︸ ︷︷ ︸
Training data time series

, rtcurr+1, rtcurr+2, . . . , rtt−1, rtt︸ ︷︷ ︸
Testing data time series

(3.4)

The assumption is that, at time curr, the observations of the training data time series

are known and available, while the observations of the testing data time series are

unknown and need to be predicted. In this defined problem, the training data time

series is used in predictor generation as defined below and the testing data time series

is used in performance measurement accuracy.

Each evaluated time-series forecasting approach goes through two phases: (1) predictor

generation and (2) forecast production. In the predictor generation phase, which uses

the training data time series, each time series approach must fit a predictor. It must

learn from the training data time series. Then, in the forecast production phase, the

predictor incrementally produces QoS forecasts.

Predictor generation can be simply expressed as:

Predictor ← TA(Y0...curr) (3.5)

where Predictor denotes a time-series predictor generated by a time-series approach

TA and the training data time series Y0...curr is the approaches input. TA represents

a time-series approach that can generate a time-series predictor.

Forecast production is performed after a predictor is obtained. The forecasts will be

incrementally produced by the predictor as the time series extends as follows:

fcurr+1 ← Predictor(Y0...curr)

fcurr+2 ← Predictor(Y0...curr+1)

...

ft ← Predictor(Y0...t+1)

(3.6)

where fcurr+1 denotes a forecast of the time series at time (curr + 1) and Predictor

(Y0...t−1) means a previously fitted time series predictor with the time series Y0...t−1

as input. The forecasting is always one step ahead, at time curr the predictor can

forecast the value one time step ahead curr + 1. As the value of curr increases with
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Figure 3.3: (a) Traditional gradient descent-based RNN training adapts all con-
nection weights (red) including input-to-RNN, RNN-internal and RNN-to-output
weights. (b) In reservoir computing, only the RNN-to-output weights are adapted.

time moving forward the entire forecast can be gradually obtained. The model can

then be updated by using the latest time series value as part of the training data.

3.5.2 Echo State Networks

Echo state networks (ESNs) belong to a special type of recurrent neural network that

is characterised by having a very fast learning procedure, compared to traditional

RNN-based approaches. This is one of the required features for our TTD approach.

The basic idea of ESNs is similar to Liquid State Machines [186]. They both belong

to the class of dynamic systems implemented according to the reservoir computing

framework [187]. The main idea of reservoir computing is to (i) drive a randomly

initialised, large, fixed recurrent neural network with the input signal, which induces

in each neuron within this reservoir a nonlinear response signal, and (ii) use a linear

combination of all of these response signals to generate the desired output. To maintain

the high modelling capacity of ordinary recurrent neural networks, a large (e.g., 100

hidden neurons) RNN is used as a dynamic reservoir in the hidden layer of the ESN,

which can be activated by suitably presented input and/or feedback of output. The

complex structure of the dynamic reservoir allows for ESNs to have a high capability

for modelling complex dynamic systems. The difference between a traditional RNN

architecture and the ESN architecture is shown in Figure 3.3. The reason for the large

difference in training times can be seen in Figure 3.3a as the RNN approach has to

train the input-to-RNN, RNN-internal and RNN-to-output weights, while in Figure

3.3b the ESN approach trains only the RNN-to-output weights. The large difference

in training time allows the model to incorporate recent QoS values in a dynamic edge

environment much faster than traditional RNN approaches.



3 - Design 53

ESNs have been used in a variety of different applications such as classifying time-

independent tasks [188], intrusion detection [189], adaptive control [190] and harmonic

distortion measurements [191]. ESNs have also been used in a range of recognition tasks

including speech and handwriting recognition. Initial approaches focused specifically

on the recognition of Japanese vowels [192] and digits [193, 194]. Further attempts

focused on continuous speech recognition with a large committee of predictive classifiers

using ESNs [195]. Handwriting recognition is similar with many techniques being

applied to both [196]. ESNs have also found bio-medical applications such as real-time

detection of epileptic seizures with low latency and high accuracy [197]. This enables

treatments for epilepsy that are based on closing-the-loop: rapidly detecting the seizure

and actively counteracting it using medication or brain stimulation.

3.5.2.1 Basic Model

ESNs can be applied to supervised machine learning tasks: for a given training input

signal u(n) ∈ IRNu , a desired output signal ytarget(n) ∈ IRNy is known. In this case

n = 1, . . . , T is the discrete time and T is the number of data points in the training

dataset, which can consist of multiple sequences of varying length. The general task

is to learn a model with output y(n) ∈ IRNy , where y(n) matches ytarget(n) reducing

the error measure E(y, ytarget) and generalising well to unseen data. The root mean

squared error (RMSE) is used as the error measure:

E(y, ytarget) =

√√√√ 1

T

T∑
n=1

(yi(n)− ytargeti (n))2 (3.7)

The time series forecasting problem can be re-framed as a supervised learning problem,

to make it suitable to be used by an ESN. This is done by using previous time steps

as input variables and the next time step as the output variable. The following simple

example shows exactly how the original time series data can be restructured to be a

supervised learning problem, by using a sliding window.

time, measure X, y

1, 100 ?, 100

2, 110 100, 110

3, 108 -> 110, 108

4, 115 108, 115

115, ?
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The ESN can then be used to make predictions for this supervised problem. ESNs

use an RNN with leaky-integrated discrete-time continuous value units. The update

equations are [198]:

x̃(n) = tanh(W in[1;u(n)] +Wx(n− 1)) (3.8)

x(n) = (1− α)x(n− 1) + αx̃(n) (3.9)

where x(n) ∈ IRNx is a vector of reservoir neuron activations and x̃(n) ∈ IRNx is its

update, all at time step n, tanh(·) is applied element-wise, [· , · ] stands for a vertical

vector (or matrix) concatenation, W in ∈ IRNx×(1+Nu) and W ∈ IRNx×Nx are the input

and recurrent weight matrices respectively, and α ∈ (0, 1] is the leaking rate. Multiple

wrappers can be used besides tanh such as sigmoid and relu, which are evaluated in

Section 3.5.2.3. The linear readout layer is defined as [187]:

y(n) = W out[1;u(n);x(n)] (3.10)

where y(n) ∈ IRNy is network output, W out ∈ IRNy×(1+Nu+Nx) the output weight

matrix and [· , · ] again stands for a vertical vector (or matrix) concatenation. An

additional non-linearity can be applied to y(n) in Equation 3.10 as well as feedback

connections W fb from y(n− 1) to x̃(n) in Equation 3.8. A visual representation of the

ESN is given in the schematic in Figure 3.4.

3.5.2.2 Producing a Reservoir

The reservoir is the central component of the model and acts (i) as a nonlinear ex-

pansion and (ii) as a memory of input u(n). The nonlinear expansion is similar to

kernal methods in machine learning. The reservoir is (i) a nonlinear high-dimensional

expansion x(n) of the input signal u(n). At the same time, (ii) the reservoir serves as

a memory, providing temporal context. This is a crucial reason for using RNNs in the

first place. Both aspects combined should provide a rich and relevant enough signal

space in x(n), such that the desired ytarget(n) can be obtained by a linear combina-

tion from it. However, there are some tradeoffs between (i) and (ii) when setting the

parameters of the reservoir [199].
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The reservoir is defined by the tuple (W in,W, α). The input and recurrent connection

matrices W in and W are sparse with nonzero elements that follow a specific distri-

bution such as symmetric uniform, discrete bi-valued or normal distribution centered

around zero. The effect of more modern initialising techniques such as sparse and

orthogonal reservoir matrices (SORM) [200] and Yilda [201] compared to a traditional

naive approach where weights are assigned a uniform randomised variable between -0.5

and 0.5 as well as other hyperparameters are evaluated in Section 3.5.2.3.

The leaking rate α of the nodes in Equation 3.9 is a highly important parameter for time

series forecasting as it controls the speed of the reservoir update dynamics discretised

in time. The reservoir update dynamics can be described in continuous time as an

ordinary differential equation (ODE)[187]:

ẋ = −x+ tanh(W in[1;u] +Wx) (3.11)

Making an Euler’s discretisation of this ODE in time, taking

4x
4t

=
x(n+ 1)− x(n)

4t
≈ ẋ (3.12)

gives the discrete time equations 3.8 and 3.9 with α taking the place of the sampling

interval 4t. Therefore, α can be regarded as the time interval in the continuous world
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between two consecutive time steps in the discrete realisation. The effect of setting

α is comparable to that of re-sampling u(n) and ytarget(n) when the signals are slow

[202, 203]. Setting a small α, that induces show dynamics of x(n), can dramatically

increase the duration of short-term memory in ESN [204].

3.5.2.3 Noisy-Echo State Networks

One of the problems encountered with the basic ESN model is the lack of stability

in the reservoir. This is where the echo-state property is lost and the system enters

into an oscillatory behaviour [205]. This can lead to a number of problems during

training as the network may fail to converge, leaving no way to make forecasts. It can

also cause problems during the exploitation phase as perturbed data can influence the

output forecasts, increasing the error. One of the contributions that we make to the

basic echo state network approach in this thesis is to add some small amount of noise

during sampling to recover from these perturbed signals [206]. Equation 3.8 can be

updated to include this additional parameter:

x̃(n) = tanh(W in[1;u(n)] +Wx(n− 1) + v(n)) (3.13)

where v(n) is a small uniform white noise term (typically 0.0001 to 0.01). This al-

lows the use of the same kind of input during training as will be encountered during

exploitation, but makes the training a bit more varied than is expected in the exploita-

tion phase, which increases robustness. The noise makes the network states wobble

around different weights, which can lead to reduction in errors. Previous approaches

for generating extremely high precision mathematical functions have found a stability

precision tradeoff. Larger noise resulted in more stable models that converged to the

desired attractor from a larger subspace of starting states, while having a less precise

prediction [207]. QoS data is less deterministic, with the additional noise both making

the model more stable. The basic rule that was followed was to use the same kind of

input during training as would be encountered during exploitation, but to make the

training input a bit more varied than expected in the exploitation phase.

To make accurate predictions for the IoT and web services there are a number of

parameters that need to be set. Here, the experiments run to set those values are

illustrated. The experimental setup for the dataset and metrics used to evaluate these

hyperparameters is described in Section 5.2.1.7.
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Figure 3.5: Demonstration of QoS Prediction in IoT

3.6 TTR

TTR should be reduced to improve the overall reliability of service applications. Sec-

tion 3.6.1 defines exact problem that is being solved. The design of the initial IoT-

Predict approach is then described in Section 3.6.2 and the final stacked autoencoder

approach designed to reduce TTR further is described in Section 3.6.3.

3.6.1 Problem Definition

To provide QoS values on m IoT services for n users, a middleware needs to invoke at

least n×m services. This is very difficult in an IoT environment where there are a large

number of services and users. Without this QoS information, a service composition and

execution engine cannot select the optimal components based on their QoS and must

make a choice based on whatever QoS information is available. This leads to choosing

potentially non-optimal services, which can cause service degradation at runtime and

execution errors.

The QoS value of IoT service s observed by user u can be predicted by exploring the

QoS experiences from a user similar to u. A user is similar to u if they share simi-

lar characteristics, which can be extracted from their QoS experiences with different

services. By sharing local QoS experience among users, the QoS value of a range of

IoT services including ASPs, web services and WSNs can be predicted, even if the

user u has never invoked the service s before. This can be modelled as a bipartite

graph as illustrated in Figure 3.5a, G = (U ∪ S,E), such that each edge in E con-

nects a vertex in U to S. Let U = {u1, u2, ..., u4} be the set of component users,

S = {ASP1, ASP2, ...,WSN2} denote the set of IoT services and E (solid lines) rep-

resent the set of invocations between U and S. Given a pair (i, j), ui ∈ U and cj ∈ S,

edge eij corresponds to the QoS value of that invocation. Given the set E, the task is

to predict the weight of potential invocations (broken lines).
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Figure 3.6: Middleware Architecture

Many different components are needed to create service based applications as shown in

the architecture in Figure 3.6. The service composition and execution engine (SCEE)

is responsible for the composition and execution of services discovered by the service

discovery engine (SDE) as discussed in Section 1.1. The QoS monitor is responsible for

monitoring the QoS values from the different services, which are stored in the service

registry. Figure 3.7 illustrates a list of available services in the environment identified

to satisfy a user request, which was received from the request handler. The SCEE

creates a list of service flows based on the concrete service providers received from

the SDE. The flows are then merged based on the service description. If two or more

services in the flow have the same input, the SCEE creates a guidepost to enable the

invocation of one of these services based on QoS requirements [208]. As some of the

QoS values can be missing from the registries, the goal of the collaborative framework

is to make predictions for the missing values.

An execution guidepost G = {Rid, D} is a split-choice control element of the compo-

sition process and maintains a set of execution directions D for a composition request

Rid [208]. These execution directions will be referred to as branches. Each element in

the set D is defined dj = {id, w, q} where j ≤ |D|. The set w represents the services

in the branch and id represents the identifier of the branch. The value q reflects the

branch’s aggregated QoS values [209], which can be calculated according to predefined

formulas [210]. The branch that maximises/minimises an objective function will be

selected by the guidepost during execution. This objective function can contain a



3 - Design 59

WS1
Branch 1 

Branch 2 

WS1WS2

WSN1

ASP2
Req Guidepost 0.34

Res

0.34

0.34

ASP3

Branch 3 

ASP1

0.23

Branch QoS
WS2 + WS1 = 0.68s1

2
3

WSN1 + WS1 = ?
ASP1 + ASP3 = ?

(a) Service Flow without QoS Prediction

WS1
Branch 1 

Branch 2 

WS1WS2

WSN1

ASP2
Req Guidepost 0.34

0.22 Res

0.34

0.34

ASP3

Branch 3 

ASP1

0.23 1.2

Branch QoS
WS2 + WS1 = 0.68s1

2
3

WSN1 + WS1 = 0.56s
ASP1 + ASP3 = 1.43s

(b) Service Flow with QoS Prediction

Figure 3.7: Service Composition Flows

number of different non-functional QoS factors that can be specified by the user in the

service request.

Consider the response time for each branch. The formula in Equation 3.14 calculates

the response time by aggregating the response time value of each component service in

a sequential flow [210]. In this formula, rti is the response time of service i. However,

it is possible that this value could not be calculated because of a missing QoS value

from an individual service candidate in the flow, or the value being out-of-date.

Response T ime (RT ) =
n∑
i=1

rti (3.14)

To address this problem, the QoS monitor uses QoS predictions for missing QoS values

across each branch stored in the guidepost. Figure 3.7 shows the flows created by

the SCEE for User 4 (U4) in Figure 3.5. The response time values recorded during

the service discovery phase were 0.34s for service provider WS2, 0.34s for WS1 and

0.23s for ASP1. The response time values for WSN1 and ASP3 were not recorded. In

Figure 3.7a, when the execution reaches Guidepost G, only Branch 1 can aggregate

the response time, which is not optimal. If the composition selects the branch with the

lowest reported response time, it will select Branch 3, which is also not optimal. Only

when the predicted values for the missing service QoS are used does the composition

choose the optimal Branch 2, which can be seen in Figure 3.7b.

The result of matrix factorisation is visualised for the flows generated in Figure 3.7,

in Figure 3.5b, where each table entry shows an observed weight in Figure 3.5a. The

task can be framed as a matrix completion problem, where the goal is to fill in the

remaining values to have a fully completed matrix as shown in Figure 3.5c. In the

remainder of this section, the overall framework used to generate the predicted values

at a higher level based on a specific example is presented.
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One of the problems that emerges given the large number of services in the IoT is that

there are a number of functionally similar services for users to choose, which reduces

the possibility of having commonly invoked services. In the small-scale example in

Figure 3.5b, with half the values reported there are few services common to users.

For example, U1 has only one service in common with U2 and U3 and two services in

common with U4. The values come from the public dataset released by Zheng et al.

[42], which consists of a matrix of the response time and throughput of 339 users for

5,825 web services. As this dataset is for web services, the HetHetNets traffic model

is used to add heterogeneous IoT traffic data to the existing dataset [211], which is

described in more detail in Section 5.3.1.1. The original dataset only has the user

service matrix as features, which makes it difficult to calculate the similarity between

users with few commonly invoked services.

The first step in the IoTPredict algorithm, discussed in more detail in Section 3.6.2.1,

is to factorise the sparse user-service matrix and then use V TH to approximate the

original matrix, where the low-dimensional matrix V denotes the user latent feature

space and the low-dimensional matrix H represents the service latent feature space,

using the latent factor model [159]. The additional features in the latent feature space

represents the underlying structure in the data, computed from the original dataset

using matrix factorisation. As these matrices are dense, they allow for similarity com-

putation between all the users and services in the matrix, which solves the original

problem of having sparse matrices. The stacked autoencoder algorithm uses a differ-

ent approach based on artificial neural networks and RMSprop optimisation. The first

part of the neural network called the encoder compresses the original data into a set

of latent features. The second part of the network called the decoder uses this latent

representation to reconstruct the original data, tuning the weights to reduce the error

in the network.

Once there is access to the low dimensional dense matrices, the similarity between dif-

ferent users and services can be computed using their latent features (Section 3.6.2.2).

Traditional approaches for QoS prediction have used Pearsons Correlation Coefficient

(PCC), to calculate the similarity between users and services. However after con-

ducting some experiments on the IoT data, it was found that there were a number

of assumptions PCC makes that are not satisfied, such as having no outliers and the

variables being approximately normally distributed. This work proposes an alternative

non-parametric similarity computation mechanism that does not make these assump-

tions called Kendall’s Tau [212].



3 - Design 61

Services

Users X l ≈

l

Users

Services

W V H

Sparse

Figure 3.8: Illustration of Factorising Original Matrix Into Two Low-Rank Matrices

Once the similarity between users and services has been computed, predictions can

then be made for the missing values by using the top-k largest Tau values for the users

and services (Section 3.6.2.3). The predictions for the users and services are weighted

based on how similar they are and using an equal weighting of user and service-based

prediction.

3.6.2 IoTPredict

IoTPredict is the first iteration of this work to improve the accuracy of TTR for

IoT services [179]. It uses a latent features-based approach to compare the similarity

between users to make predictions for the missing values.

3.6.2.1 Latent Features Learning

Matrix factorisation is employed to learn the latent features of the users and services,

by fitting a model to the user-service matrix from the original dataset. The matrix with

the raw QoS values is factorised into two low-rank matrices V and H, as seen in Figure

3.8. The QoS usage experience of a user is typically determined by a small number of

factors, such as the network load, location of invocation and provider resources. The

latent feature model ensures an accurate and low-dimensional representation of the

original matrix. Latent feature are hidden features that cannot be directly observed,

an example would be text document analysis where words extracted from the document

are features. When the raw data of words is factorised you can find topics with similar

semantic meaning such as sail-boat, schooner and steamer factorising into a topic such

as ship or boat.

Let Ω be the set of all pairs {i, j} and Λ be the set of all known pairs (i, j) in Ω.

Consider the matrix W ∈ Rm×n consisting of m users and n services. Let V ∈ Rl×m

and H ∈ Rl×n be the latent user and service feature matrices. Each column in V
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represents the l-dimensional user-specified latent feature vector of a user and each

column in H represents the l-dimensional service-specific latent feature of a service.

An approximating matrix W̃ = V TH is employed to learn the user-service relationship

W [160]:

wij ≈ w̃ij =
l∑

k=1

vkihki (3.15)

To learn matrices V and H from the obtained QoS values in the original matrix W ,

a cost function is constructed to evaluate the accuracy of the approximation. The

standard Euclidean distance between the two matrices is used as the cost function.

F (W, W̃ ) = ‖W − W̃ ‖2F =
∑
ij

(wij − w̃ij)2 (3.16)

where ‖ · ‖2F denotes the Frobenius norm.

The optimisation problem can then be solved by using the optimisation objective

function in [160]:

min
V,H

f(V,H) =
∑

(i,j)∈Λ

[w̃ij − wijlogw̃ij ],

s.t. w̃ij =

l∑
k=1

vkihki,

V ≥ 0,

H ≥ 0.

(3.17)

The objective function in Equation 3.17 can then be minimised using incremental

gradient descent to find a local minimum, where one gradient descent step intends to

decrease the square of the prediction error of only one rating, that is w̃ij − wijlogw̃ij .
V and H are updated in the opposite direction of the gradient descent in each iteration

[213].

3.6.2.2 Similarity Computation

The similarities of the latent features for different users and services in matrix V and

H can be calculated using a correlation coefficient to measure the similarity. Pearson
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Correlation Coefficient (PCC) is widely used for correlation computation in collabora-

tive filtering [213], [46], [214]. The correlation between users ui and uj is defined by

performing PCC computation on their l-dimensional latent feature vectors Vi and Vj

with the following equation [46]:

S(ui, uj) =

∑l
k=1(vik − v̄i)(vjk − v̄j)√∑l

k=1(vik − v̄i)2

√∑l
k=1(vjk − v̄j)2

(3.18)

where vi = (vi1, vi2, . . . , vil) is the latent feature vector of user ui and vik is the weight

on the kth feature. v̄i is the average weight on the l-dimensional latent features for

user ui. The similarity between two users S(i, j) falls into the interval [-1, 1], where a

larger value indicates higher similarity.

PCC is also employed to compute the similarity between service si and service sj as

follows:

S(si, sj) =

∑l
k=1(hik − h̄i)(hjk − h̄j)√∑l

k=1(hik − h̄i)2

√∑l
k=1(hjk − h̄j)2

(3.19)

where hi = (hi1, hi2, . . . , hil) is the latent feature vector of service si and hik is the

weight on the kth feature. h̄i is the average weight on l-dimensional latent features for

service si.

PCC makes a number of assumptions that must be taken into consideration [215]. The

variables being correlated must be approximately normally distributed. However, as

can be seen in Figure 3.9, which shows the histogram of latent feature values for the

users and services after conducting matrix factorisation, it is clear that the distribution

is not normal. PCC also assumes that outliers are kept to a minimum or removed

entirely. Figure 3.10 is a scatter plot that shows the correlation between two users and

services. The figure shows that in the latent features there can be a number of outliers,

which effects PCC as it assumes a linear relationship.

As it is difficult to justify removing the latent outliers, an alternative approach is used,

in particular, a non-parametric correlation coefficient, Kendall’s Tau, which is much less

sensitive to outliers [212]. Kendall’s Tau measures the degree of monotonic relationship

between variables, and calculates the dependence between ranked variables, which

makes it feasible for non-normally distributed data. The similarity between two users

ui and uj is defined by performing Kendall’s Tau on their l-dimensional latent feature
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Figure 3.9: Latent Feature Histogram

vectors Vi and Vj . Let (x1, y1), (x2, y2), . . . , (xn, yn) be a set of observations from Vi

and Vj . Any pair of observations from Vi and Vj are said to be concordant if the ranks

for both elements agree i.e., if both xi < xj and yi < yj , or if both xi > xj and yi > yj .

They are said to be discordant, if xi > xj and yi < yj , or xi > xj and yi < yj . If

xi = xj , or yi = yj , the pair is a tie [212].

τ =
c− d
c+ d

(3.20)

where,

c = the number of concordant pairs,

d = the number of discordant pairs.

If ties are present among the two ranked variables, the following equation shall be used

instead:

τ =
c− d√

n(n− 1)/2− T
√
n(n− 1)/2− U

(3.21)

T =
∑
t

t(t− 1)/2 (3.22)

U =
∑
u

u(u− 1)/2 (3.23)
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Figure 3.10: Latent Feature Correlation

where,

t = number of observations of variable x that are tied,

u = number of observations of variable y that are tied.

The same formula can also be used to compute the similarity between the services

through the use of concordant and discordant pairs.

3.6.2.3 Missing QoS Value Prediction

The similarity values can then be used to identify similar neighbours to the current

user by ordering the values. Kendall’s Tau falls into the interval [-1, 1], where a

positive value denotes similarity and a negative value denotes dissimilarity. QoS usage

experience from dissimilar users negatively effects the prediction accuracy, so users

with a negative Tau value are excluded from the similarity set. Only the QoS usage

experience of users with the top-k largest Tau values are used to predict the QoS of

the user, as these are the most similar. The top-k similar users for user ui are defined

as Ψi:

Ψi = {uk|S(ui, uk) > 0, ranki(k) ≤ K, k 6= i} (3.24)

where ranki(k) is the ranking position of user uk based on user ui and K denotes the

size of set Ψi. The top-k IoT services for service sj can be denoted Φj by:

Φj = {sk|S(sj , sk) > 0, ranki(k) ≤ K, k 6= j} (3.25)
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where rankj(k) is the ranking position of service sk based on service si and K denotes

the size of set Ψj . To predict missing values for wij in the user service matrix, user-

based approaches use the values from the top-k similar users as follows:

wij = w̄i +
∑
k∈Ψi

S(ui, uk)∑
a∈Ψi

S(ui, ua)
(wkj − w̄k) (3.26)

where w̄i and w̄k are the average observed QoS values of different services by users

ui and uk respectively. For service-based approaches, entry values of top-k similar

services are employed for predicting the missing entry wij in a similar way:

wij = w̄j +
∑
k∈Φj

S(ij , ik)∑
a∈Φj

S(ij , ia)
(wik − w̄k) (3.27)

where w̄j and w̄k are the average observed QoS values of different services si and sk

by different users respectively. The predicted values using Eq. 3.26 and Eq. 3.27 are

combined for a more precise prediction in the following equation:

w∗ij = λ× wuij + (1− λ)× wsij (3.28)

where wuij denotes the predicted value by user-based approach and wsij denotes the

predicted value by the service-based approach. The parameter λ controls how much

the hybrid prediction relies on user-based or service-based approach. The proposed

algorithm is summarised in Algorithm 1. The input W is the user-service matrix, l

is the number of latent features and λ controls how much the hybrid prediction relies

on user-based or service-based approach. The output of the algorithm is W ∗, the

completed matrix.

3.6.3 Autoencoder

An autoencoder is a type of artificial neural network, which can be used to learn effi-

cient data encodings and latent features [216]. An autoencoder learns to compress data

from the input layer to the hidden layer and decode the hidden layer into something

that closely matches the original data, as can be seen in Figure 3.11. The encoder re-

ceives input data and transforms it into a new representation called a latent variable.

The decoder receives this latent variable and tries to reconstruct the original input

minimising the reconstruction error between the input and the output [217]. As the

hidden layers contain fewer neurons than the input, the autoencoder engages in dimen-

sionality reduction through Non Linear Principle Component Analysis (NLPCA) [218].
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Algorithm 1 IoTPredict Algorithm

Input: W, l, λ
Output: W ∗

1: Learn V and H by applying latent feature learning on W
2: for all(ui, uj) ∈ U × U do
3: calculate the similarity S(ui, uj) by Eq. 3.20
4: end for
5: for all(si, sj) ∈ S × S do
6: calculate the similarity S(si, sj) by Eq. 3.20
7: end for
8: for all(i, j) ∈ Λ do
9: construct similar set Ψi by Eq. 3.24

10: construct similar set φi by Eq. 3.25
11: end for
12: for all(i, j) ∈ Ω− Λ do
13: calculate wuij by Eq. 3.26
14: calculate wsij by Eq. 3.27
15: w∗ij = λ× wuij + (1− λ)× wsij by Eq. 3.28
16: end for

Input OutputHidden

Encode-> Decode-> 

 ×

 ×

 ×

Figure 3.11: Autoencoder Architecture with Dropout

The main idea behind the latent variables extraction is that some knowledge relative

to user preferences is hidden in raw data and dimensionality reduction techniques can

exploit this [219]. Hence, extracting the data needed to explain the outcomes of the

ratings matrix into users and items representations. The latent features also help to

deal with the sparsity problem in IoT environments.

A classical autoencoder is typically implemented as a one hidden-layer neural network

that takes a vector x ∈ RD as input and maps it to a hidden representation z ∈ RK

through a mapping function [216]:

z = h(x) = σ(W Tx+ b), (3.29)
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where W is a D×K weight matrix and b ∈ K is an offset vector. The resulting latent

representation is then mapped back to a reconstructed vector x̂ ∈ RD through

x̂ = σ(W
′
z + b

′
) (3.30)

The reverse mapping may optionally be constrained by tied weights, where W
′

= W .

The parameters of this model are trained to minimize the average reconstruction error

argmin
W,W ′ ,b,b′

1

n

n∑
i=1

`(xi, x̂i) (3.31)

where ` is a loss function such as the square loss or the cross entropy loss.

Autoencoders are learned automatically from data examples. This means that it is

easy to train specialized instances of the algorithm that will perform well on a specific

type of input and that it does not require any new engineering, only the appropriate

training data. This allows them to be used in a wide variety of domains such as

anomaly detection [220], sentiment analysis [221] and activity recognition [222]. This

is the case for user centric QoS approaches where the factors that effect the QoS such

as network congestion or device changing to a power saving mode are contained in

the latest QoS values. The model should be lightweight with a small training time to

incorporate those changes in the model as soon as possible.

3.6.3.1 Stacked Autoencoder

Traditional autoencoders can often just become identity networks and fail to learn the

relationships between data. Our contribution in this thesis is to tackle this problem us-

ing a stack of autoencoder layers combined with corrupting inputs pushing the network

to denoise the final inputs [223], [224]. The input can be corrupted using a number of

different approaches such as Guassian noise, Masking noise or Salt and Pepper noise

[225]. This modifies a traditional autoencoder loss function to emphasize the denoising

aspect of the network. It is based on two main hyperparameters α, β, which decide on

whether the network would focus on denoising the input α or reconstructing the input

β.

L2,α,β(x, x̃) = α(
∑
j∈J(x̃)

[nn(x̃j)− xj ]2) + β(
∑
j /∈J(x̃)

[nn(x̃j)− xj ]2) (3.32)
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Where nn(x)k is the kth output of the network, x̃ is the corrupted input x, J are the

indices of the corrupted element of x. Another regularisation technique that is often

used in deep neural networks is dropout [226]. It randomly drops out units from both

the hidden and visible layers. Figure 3.11 shows an example of a stacked autoencoder

after applying dropout. The neurons marked with x have been dropped and contain

no input or output connections. Each unit in the network is retrained with fixed

probability p, which is evaluated for the optimal values in Section 5.3.1.6. Hidden

layer activation before dropout is according to the following equation:

hk(x) = g(ak(x)) (3.33)

where layer k ranges from 1 to L, which is the label of the hidden layer. g is the acti-

vation function sigmoid that is used in our experiments. The equation after dropping

out units in hidden layers with probability p is:

hk(x) = g(ak(x))�mk (3.34)

With k = L+ 1, output layer is:

hL+1(x) = o(aL+1(x)) (3.35)

where o is also an activation function.

A stacked autoencoder with additional layers for greater expressive power is used in the

experiments. The use of stacked autoencoders captures a useful hierarchical grouping of

the input. An example from the use of autoencoders in vision problems is that the first

layer of a stacked autoencoder tends to learn first-order features in the raw input such

as the edges of an image. The second layer can then use these features to learn second-

order features such as what edges tend to occur together to form contours or corner

detectors, with additional layers using these second-order features [227]. One of the

best ways to obtain good parameters for a stacked autoencoder is to use greedy layer-

wise training [228]. The raw inputs are trained on the first layer to obtain parameters

and transform the raw input into a vector consisting of the activation of the hidden

units. The second layer is then trained on this vector and this process is repeated for

subsequent layers, using the output of each layer as input for the subsequent layer.

The weights learned during the training process are then used to make predictions for

users with missing QoS values.
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Designing an autoencoder architecture for the edge is an interesting problem as there

is a balance between the limitations of the devices that you are training on and the

ability to deliver accurate QoS predictions. The autoencoder approach is designed to

have a small number of neurons to reduce training and invocation time [229]. Multiple

different numbers of layers were tested to identify the impact that this had on the

composition accuracy and testing time of the stacked autoencoder. The use of dropout

on each layer while training was found to avoid overfitting while maintaining better

prediction accuracy compared to adding noise to the inputs.

The autoencoder is implemented with 4 fully connected layers. The encoding part of

the network has two layers of 20 and 10 neurons and the decoding part of the network

has two layers of 10 and 20 neurons. The sigmoid activation was used between the layers

of the network. The dropout value for each of the layers is evaluated in Section 5.3.1.6.

The root mean squared error is used as the loss function and RMSprop as the optimiser

with learning rate = 0.01 and weight decay = 0.5. Experiments were conducted using

Adam optimisation [230], but better results were found using RMSprop. The network

is trained for 20 epochs (passes through the entire training dataset). These parameters

were found after extensive experimentation with alternative hyperparameters.

3.7 Chapter Summary

Figure 3.12 shows the updated kiviat diagram from Figure 2.7 for the TTD approaches.

The TTD approaches are quite distinct. The Persistence approach can be deployed on

the IoT device, while having basic model complexity. On the other end of the scale,

approaches such as LSTM have complex models but have to be deployed in the cloud.

The noisy-echo state network approach that we develop increases the area covered in

the diagram by deploying a more complex model at the edge of the network. Whether

this approach can improve prediction accuracy compared to existing approaches while

maintaining a reduced training time is evaluated in Chapter 5.

Figure 3.13 shows the updated kiviat diagram from Figure 2.8 for the TTR approaches.

The existing TTR approaches have been quite similar in having a matrix factorisation-

based approach deployed in the cloud. This chapter proposed the IoTPredict approach

designed to improve prediction accuracy using an alternative similarity metric. This

was then expanded upon using a stacked autoencoder approach, designed to main-

tain prediction accuracy, while being deployed at the edge of the network reducing

the response time. The stacked autoencoder approach allows for additional model
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Figure 3.12: Kiviat Diagram of TTD Approaches Including the Noisy-Echo State
Design

complexity at the edge of the network, which was not possible with existing matrix

factorisation-based approaches.
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Chapter 4

Implementation

Chapter 3 describes the design of the components of TTDR, the design decisions and

required features that were taken into account when making those decisions. This

chapter details the implementation of TTDR. TTDR is designed to be implemented

in a QoS monitoring engine in the Service-centric network for URban-scale Feedback

systems (SURF) middleware [13, 58, 179, 231]. The SURF middleware offers the

necessary components for service discovery, QoS-aware service composition and opti-

misation, QoS monitoring and prediction and runtime service adaptation when one of

the services fails during execution.

Section 4.1 introduces the SURF middleware and Section 4.2 describes the main com-

ponents and the messages and information sent between the components. Section 4.3

introduces the data model that is used to manage the QoS parameters in the service

description. Section 4.4 shows the sequence of execution to compose a service-based

application and when the TTD and TTR algorithms are used by other components of

the middleware. Section 4.5 describes the deep edge architecture on which the TTDR

algorithms are deployed. Section 4.6 details the implementation and class diagrams of

the TTD algorithm and Section 4.7 describes the implementation and class diagrams

of the TTR algorithm. Section 4.8 provides a summary of the chapter.

4.1 SURF Middleware

The SURF middleware is a distributed service oriented middleware that can be de-

ployed in a network of IoT Gateways [58]. As illustrated in Figure 3.6 the main

components are the Service Discovery Engine (SDE), the QoS Monitor, which con-

tains the Monitoring and Prediction Engine, the SLA Manager and Negotiator, and

73
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the Service Composition and Execution Engine (SCEE). The QoS monitor is the focus

of this thesis and the component that we make a contribution to with the TTD and

TTR algorithms. There are two additional utility components to facilitate the main

middleware components: a Request Handler and a Service Registry. The QoS predic-

tion algorithms are designed to be used independent of the specific service composition

algorithm as long as it provides a list of candidate services. The other middleware

components outside of the QoS monitor are described to show how the QoS prediction

algorithms would interact with other components in a service oriented middleware.

They were not implement as part of this thesis, but were used to help evaluate the

accuracy of the QoS predictions.

The middleware is designed to be deployed on IoT gateways, specifically the deep edge

architecture described in Section 4.5, to allow the prediction algorithms to be trained

at the gateway on local data. The middleware can manage services from a number of

different providers (i.e., web services, WSN services, and mobile service providers) as

shown in Figure 3.6 and is deployed on the gateways in the deep edge architecture in

Figure 4.4. The remainder of this section briefly describes each component.

4.1.1 Request Handler

Service consumers such as citizens in a smart city or software developers creating ap-

plications, access the available services through requests. In this thesis, a request is

defined as r = < I,O,QoS >, consisting of the request inputs, outputs and QoS

requirements [208]. The Request Handler (RH) is a utility module that obtains the

users request and formalises it in a formation that can be used by the SDE to find the

service composition plans that can functionally satisfy the component request. The

non-functional QoS parameters are handled by the QoS Monitoring and Prediction

Engine to ensure that the user gets the level of quality specified [56]. The request han-

dler exposes an interface that receives requests, establishes a communication channel

between the application and user and sends requests to the other components in the

architecture.

4.1.2 Service Registry Engine

The Service Registry Engine (SRE) is a distributed component that can store the

description information of services. The component facilitates the service discovery

process [13]. Each service has a description Sdesc = < id, I,O,D > consisting of

a service identifier (id), inputs (I), outputs (O) and domains (D). The QoS levels
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cannot be stored in the service description as they are dynamic and depend on user

side factors such as network quality, which is why the QoS Monitoring and Prediction

Engine are needed to ensure the required level of QoS is achieved. When a new service

provider becomes available it can register its services in the gateway.

4.1.3 Service Discovery Engine

The Service Discovery Engine (SDE) is a distributed component used to perform the

discovery of service composition configurations that can satisfy users’ requests. This

component is notified of users’ request by the Request Handler component. When such

a notification is received, the SDE searches for services in the distributed registry. The

output of this search is a set of service composition configurations (or service plans) that

satisfy the request from the functional perspective (i.e., input and output matching).

Each service plan can have one or more services. In addition to the service components,

each service plan includes the data flow and control flow relations between these service

components [232]. The set of service plans are passed to the SCEE to choose the best

plan according to the non-functional requirements (i.e., QoS parameters) provided by

the QoS Monitor.

4.1.4 QoS Monitor

The QoS Monitor contains the Monitoring and Prediction engines that are used to

provide the QoS parameters required by users in their service requests. The QoS

Monitoring Engine captures the user-side QoS and stores the values in a distributed

registry. The communication links for invoking the services are diverse, which may

affect the personal QoS experience of users, so they are monitored using the monitoring

engine. The QoS prediction engine contains the TTD and TTR algorithms. The

TTD algorithm is used to forecast degradation of currently executing services. If one

of the services is forecast to fail or degrade in quality a service degradation alert is

sent to the SCEE and there is a need for a dynamic service reconfiguration. The

service reconfiguration then uses the TTR algorithm to provide QoS predictions for

the candidate replacement services. The services that satisfy the users QoS request are

then chosen and the application is recomposed. The TTR predictions are also used in

the initial service configuration to compose the application that will satisfy the users

QoS requirements.
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4.1.5 SLA Negotiator and SLA Manager

The SURF middleware contains two SLA components that deal with the SLA negotia-

tion and compliance process: SLA Negotiator and SLA Manager. The SLA Negotiator

analyses the agreement templates submitted by some service providers, selects the can-

didate service providers that have the potential to satisfy the requirements based on

QoS predictions from the prediction engine. It then negotiates on behalf of service

consumers to solve possible conflicts between service providers and consumers [233].

The SLA manager ensures compliance with the agreed terms at runtime, during the

service execution. This component subscribes to performance degradation notifications

from the QoS Monitoring Engine through a publish/subscribe broker. This triggers a

SLA negotiation in case the performance does not comply with guarentee terms and

service negotiation is available [231].

4.1.6 Service Composition and Execution Engine

The Service Composition and Execution Engine (SCEE) searches for the optimal ser-

vice composition configurations using the QoS information that the QoS Monitor and

QoS Prediction Engine provide. The SCEE is initialised using the set of service plans

provided by the SDE. This component merges all these plans into a service dependency

graph using an AND/OR graph structure [58]. In a dynamic environment, service com-

ponents may have intermittent availability, or, if the devices that provide these service

components are mobile, the service components may become permanently unavailable.

Because of the frequent changes, finding a QoS-optimal service composition configura-

tion (service plan) may be difficult. Also, a user may want to explore various trade-offs

between the QoS attributes. The SCEE addresses these requirements by distributing

the optimisation process over the available gateways [58]. Service component failures

caused by the intermittent availability of the nodes are managed by requesting candi-

date service QoS values from the QoS prediction engine to choose suitable replacement

services.

4.2 Component Diagram

Figure 4.1 shows the component diagram of the middleware and how the components

communicate with each other. Users can request services through a Service Request

and Service Providers can register services in the middleware through a Service Reg-

istration Request. The RH facilitates the interaction between the middleware and the
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Figure 4.1: Component Diagram

service providers and users. The RH includes a domain analyser that analyses a service

registration request or service request to identify its domain. The SRE receives the Ser-

vice Descriptions & Domains and follows a distribution model based on urban context

as well as their identified domains [13]. SRE relies on a P2P overlay network to dis-

tribute registered services and form a federated view of distributed services in each IoT

gateway. The SDE component discovers services registered in the middleware. It re-

ceives a service request and domains by the request handler and performs a distributed

search based on the urban context. This search aims to reduce the search space using

domain and city information to provide efficient discovery. It performs matchmaking

by applying backward planning to discover dependencies between services satisfying

functional requirements defined by the user as input/output parameters in the request

[208]. The discovered services are passed to the composition engine to be executed.

The SCEE is responsible for the execution of the composition plans generated by the

SDE. This component ensures a scalable and resilient service composition execution

by using a decentralised composition mechanism to perform the invocation of compo-

sition plans and a backtracking approach when the invocation fails [208]. It uses a loop

controller to maximise the global utility of the selected composition plan by adjusting
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the user preferences on the non-functional requirements. The QoS monitor contains

the Monitoring and Prediction Engine that is responsible for making predictions for

the QoS values. The predictions for the candidate services are generated using a col-

laborative filtering TTR approach with data from other users in the the environment

collected by the monitoring engine. The monitoring engine is also used to monitor cur-

rently executing services. This time series dataset is then used by the TTD algorithm

to forecast the QoS values for currently executing services. The TTD algorithm sends

an alert to the SCEE if a degradation in service quality is forecast. This alert allows

the SCEE to switch to an alternative candidate service using the predicted values from

the TTR algorithm before the user notices a change in the QoS. If there are no avail-

able services that are suitable to switch to then the SLA negotiator tries to negotiate

with service providers and sends the negotiated values to the service discovery engine.

4.3 Data Model

Figure 4.2 presents the data entities that are used to exchange messages between

the components and to store information about the QoS in the service descriptions.

Each entity has simple attributes with their respective types, they can be optional or

mandatory. Mandatory attributes are marked with a line (-) and optional are marked

with a star (*) in the diagram. Each entity can also have attributes, which type is

another entity, represented by relations between the entities. Whether the attributes

are compulsory or not is expressed through the relation cardinality. The entities are:

• ServiceDescription represents the description of a service.

• ServiceParameter represents the service functionality as input/output parame-

ters. One service description must have at least 1 input and 1 output.

• QoSParameter represents quality of service information. One service description

can have 0 or multiple QoS Parameters.

• Domain represents the service domain information. One service description can

have 0 or multiple domains.

• Location represents the location of a service. One service description can have 0

or 1 location.

• Type represents the service type. One service description must have 1 service

type.
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Figure 4.2: Data Model

• Provider represents the service provider information. One service description

must have 1 service provider.

• RequestDescription represents a user request in the middleware. One request

description must specify at least one input and one output as functional require-

ments. Additionally, it can have optional non-functional requirements such as

QoS parameters, domains, and location.

• Temporality represents the operation period of the service.

4.4 Sequence Diagram

Figure 4.3 shows the sequence diagram when a user requests a service from the middle-

ware. This diagram gives a detailed flow of when each processes happens and how the

individual QoS prediction algorithms feature in the overall service composition flow.

The steps to handle a user request are:
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Figure 4.3: Sequence Diagram

1. User sends a request message to the RH. This message includes a request descrip-

tion with the functional and non-functional requirements that the middleware

needs to satisfy.

2. The domain analyser checks the user’s service request description (RD) for do-

main information, if available it forwards the RD to the SDE. Otherwise, the

analyser applies topic modelling on the RD and identifies the topic or topics

of the service description. Finally, the domain analyser compares the extracted

topic or topics with the domain knowledge base and identifies the domain infor-

mation of the RD, and forwards it to the SDE.
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3. SDE receives discovery request from the RH. It extracts the domain information

and compares it with the gateway’s domains. If the gateway is relevant (i.e., the

surrounding places near the gateway offer city services that include the request

domains), SDE performs backward planning to discover services according to

input/output parameters. If the request is solved, after the backward planning,

the SDE sends the list of services (i.e., plans) to the Monitoring component. If

the request is partially or not solved, the SDE continues the distributed search,

forwarding the request to the top-k relevant gateways. If the gateway is not

relevant for the request, the SDE forwards the request to non-similar gateways

(i.e., gateways that have different domains than the not relevant gateway). The

request is forwarded until the limit of hops is reached.

4. The TTR algorithm in the Prediction Engine in the QoS monitor makes the

prediction for user side QoS parameters such as response time and throughput

of the candidate services. The predictions are then sent with the plans to the

SCEE.

5. The SCEE receives a list of composition plans from the Prediction Engine. Each

plan contains a set of services. Each service in a composition plan needs to be

invoked to solve the composition request. The servicePlansQoS (Plans + QoS,

RD) message is sent by the Prediction Engine to SCEE and represents the set

of service composition plans generated by the service discovery messages. This

message also includes the RD.

6. The SCEE enters the service composition execution loop, which performs the

execution of the service composition. Based on user preferences, and available

resources in the environment, the SCEE component selects a composition plan,

which maximises the satisfaction of user non-functional requirements. The exe-

cution is decentralised. This means that the execution (invocation) of a service

will be done in the gateway which registers this service.

7. The Monitoring Engine is used to monitor the current executing services. The

data from this monitoring is then used to train the TTD forecasting algorithm to

make predictions whether the services may be about to fail or degrade in quality.

8. If the TTD algorithm in the Prediction Engine sends a ServiceDegradationAlert()

then the SCEE looks for alternative configurations. The alternative plans are

then sent to the Prediction Engine and updated with the latest QoS values using

the TTR algorithm.
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9. The processReconfiguration() takes the list of alternative configurations and up-

dates the currently executing application to use the services with the new QoS.

10. The rediscovery request is performed when the invocation of a service failed

and there are no alternative composition plans. The SCEE sends a rediscovery

message, which has the RD and domains that need be covered by the request.

The SDE receives a rediscovery request from the SCEE. It performs the same

process as in step 3.

11. Response message represents the output generated by the SCEE. This message

is sent to the RH component.

12. Response message represents the result produced by the middleware components

to the user request.

4.5 Deep Edges

Figure 4.4 shows the deep edge architecture. This architecture uses a number of em-

bedded GPUs for gateways. The ability to train and update models one hop away from

data generation has a number of benefits and provides some solutions to the challenges

outlined in Section 1.2. The devices that are used are Jetson Tx2’s that have access

to a 256-core NVIDIA PascalTM GPU, Dual-Core NVIDIA Denver 2 64-Bit CPU and

8GB 128-bit LPDDR4 Memory, while only consuming 7.5W of power. These embed-

ded GPUs allow for much more additional processing and reduced training time at the

edge of the network compared to traditional IoT gateway devices such as Raspberry

Pi’s and Intel Galileo’s shown in the small scale scenario in Figure 1.1, which fulfills

Objective 3. These devices have limited memory and no GPU so do not allow for the

training of more complex prediction models that can be used to create more accurate

service compositions. This improves the limited resources that were available for train-

ing deep learning models in traditional IoT architectures at the edge of the network

(C.5).

The Deep Edge architecture has been used in this thesis to improve the training re-

sources available for prediction algorithms used in the QoS Monitor. As the algorithm

is deployed at the edge, predictions must be made for both IoT services in the sur-

rounding environment and web services available online, to compose a wide variety of

service-based applications. For example, we can create an application that does some

processing and storage of data from IoT sensors. The data is available on the IoT

devices and the processing and storage of the data is available from a cloud service
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Figure 4.4: Deep Edge Architecture

provider. The TTDR algorithms on the edge act as a link between these two planes

and can make predictions for the QoS of both service types. This allows a middleware

to compose a reliable application using the benefits of cloud, edge and IoT devices.

The architecture can also be used to perform additional processing for more complex

service composition and service registry models. For example, a deep reinforcement

learning algorithm can be used to optimize the service execution compared to the

lower-powered ant colony-based approach [234]. The SRE can also use more recent

deep learning-based approaches for domain classification [235].

One of the simplest ways to reduce the tolerable delay and jitter (C.2) to the level

needed in modern Urban Intelligence applications, such as augmented reality is to

reduce the distance of the communication. When the predictions are located one hop

away at the edge, the response time and failure rate of the communication process are

reduced, making it easier to provide the tolerable delay required by this challenge. The



4 - Implementation 84

increased accuracy from these deep learning models one hop away from data generation

will have a large impact for future applications. For example, autoencoders and deep

convolutional networks can be used to provide face recognition in CCTV cameras for

emergency response [236]. This reduced latency and jitter with the combination of

increased object detection accuracy from deep learning algorithms has the potential to

make it possible for applications such as augmented reality to work effectively as part

of a modern smart city.

Another benefit to training and updating these models at the edge of the network is the

reduced amount of traffic sent to the cloud (C.3). This is helpful to avoid congestion

on the network as all users are not reporting their data to the cloud. This also helps to

improve the privacy of users, which is important with the introduction of the General

Data Protection Regulation (GDPR) on the 25th May 2018 as part of the EU Data

Protection Directive [237]. Users have become much more interested in what data

is being collected about them, how that data is stored and who will have access to

their data. There is increasing reluctance to release raw sensor data to an IoT cloud

hub, and users and organisations want finer-grain control over the release of that data

[238]. Users should be able to delete any data, which they deem to be sensitive and

providers should use denatured data with faces in images being blurred and sensor

readings being coarsely aggregated or omitted at certain times of day or night [239].

Current IoT architectures for urban reasoning, in which data is transmitted directly

from sensors to a cloud hub makes such fine grained control impossible. On the other

hand, an edge device can run trusted software modules called privacy mediators that

execute on the device and perform denaturing and privacy-policy enforcement on the

sensor streams [240]. Edge computing can provide a foundation for scalable and secure

privacy that aligns with natural boundaries of trust, while still allowing for urban

reasoning on the denatured data.

As applications become more dependent on the cloud, they increase their vulnerability

to cloud outages. The assumption that there is always good end-to-end network quality

and few network or cloud failures is not always applicable. This can happen in countries

with a weak network infrastructure or a cyber-attack being carried out on the cloud

provider such as denial of service [241]. It can also happen through human error

from the cloud provider such as the outage of the Amazon S3 web service due to a

typo [242], which can have catastrophic effects. Edge computing has the potential

to alleviate cloud outages and provide a fallback service that can temporarily mask

cloud inaccessibility. During a failure, the edge device could serve as a proxy for the

cloud and perform critical services [239]. This allows urban reasoning applications to

function in a smart city and to provide services even when there is a cloud outage.
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Figure 4.5: TTD Class Diagram

When the failure is repaired, actions committed to the edge device can be propagated

to the cloud for reconciliation.

4.6 TTD Implementation

The TTD algorithms and evaluation code is implemented in Python 3.6. This language

is chosen as it has excellent libraries and frameworks for machine learning and data

analysis. Python is also available on multiple platforms, which makes it easy to write

code on a desktop computer and deploy the same code to an edge device using Pipenv

to manage the dependencies from all the modules.

A BasicESN class is used to implement the basic functions of creating an echo state

network such as setting the spectral radius, leaking rate, feedback scaling and prop-

agation. From this base class we derive the PredictESN class that implements the

noisy-echo state network approach. This class includes methods to generate the dy-

namic reservoir. The class also includes a fit function that is used to fit the training

data to the ESN. The predict function is used to predict the output signal using the

signals generated in the dynamic reservoir.

A number of utility classes are implemented to mange the experimental evaluation and

the loading and preprocessing of data. The loader class contains a number of func-

tions to load and parse data from the IoT and web service datasets. As the datasets

from IoT and web services are in different formats, a separate parser is required to

load the data correctly. The timeseries class contains a number of functions that are

used to preprocess the time series into the format needed for the experiments, such as

differencing the time series and transforming the timeseries to a supervised learning
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Figure 4.6: TTR Class Diagram

problem. The utils class contains functions for managing the timing and logging infor-

mation. The evaluator class is used to evaluate the accuracy of the algorithms on the

time series and calculate the specific error metrics.

4.7 TTR Implementation

The TTR algorithms and evaluation code is also implemented in Python 3.6. This

language is chosen as it has access to deep learning libraries such as torch [243] that can

be used to implement neural architectures such as the autoencoder approach. It also

allows for the reuse of some the previous utility modules from the TTD implementation

to manage the logging, elapsed time and loading configurations.

The stacked autoencoder approach is implemented using the pytorch library. This

module provides a number of utility functions to allow for training on GPU cuda

cores. Forward and backward hooks are executed during the forward and backward

pass to identify the value of the gradients when debugging. The stacked autoencoder

class inherits from this base class and creates the architecture of the network in the

forward and backward pass. The activation and dropout are also specified and passed

to the forward and backward pass. The IoTPredict algorithm has a base NMF function

that is used to generate the latent features that are used in the model. There are also

some additional functions to calculate the mean of the service and users matrix.
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A number of additional utility classes are implemented to allow for the evaluation of

the algorithms. The dataloader class provides functions to load the matrix of values

and also preprocess the values based on a list of parameters. The utils class is used

to log information and set the configuration and elapsed time. The evaluator class is

then used to calculate the accuracy of the algorithms using the error metrics. It also

provides the function to remove entries from the initial full matrix to a specific density,

which allows for the evaluation of the algorithms at different matrix densities.

4.8 Chapter Summary

This chapter outlined the implementation details of the TTDR algorithms and also

how these algorithms can be used in combination with other service components as

part of a distributed middleware. The chapter begins by describing the components of

the SURF IoT middleware and the messages and commands that are passed between

the components. It also presents the key requirements that are needed from other

components in the middleware and the functionality required in the monitoring and

prediction engine in the component diagram. The sequence diagram gives the flow of a

service execution, illustrating when the TTD and TTR algorithms are executed. The

data model that is used to specify the QoS parameters in the service description with

other key parameters such as the provider, location and domain is also described.

The specific implementation details about the deployment of the algorithms on a deep

edge architecture are then outlined. This gives additional processing power at the edge

of the network that can be used to train the algorithms. The implementation details

and class diagram of the TTD and TTR algorithms and the utility classes and functions

used to evaluate them are also then described. This shows the overall structure of the

implementation for both approaches.





Chapter 5

Evaluation

Previous chapters have introduced the challenges in current approaches as well as the

features and design decisions that have been taken to address these challenges. In this

chapter, the impact that the design decisions have on addressing those challenges is

evaluated. The evaluation approach is designed to answer the research questions posed

in Chapter 1, which focus on the prediction accuracy and the training and testing time

of the individual algorithms for TTD and TTR.

The chapter is structured as follows: Section 5.1 introduces the evaluation approach

of the TTD and TTR models for dynamic IoT environments. Section 5.2 describes

the experimental setup, datasets, metrics, statistical tests and results for the TTD

approaches and Section 5.3 describes the experimental setup and results for the TTR

approaches. Section 5.4 presents a summary of the chapter.

5.1 Evaluation Approach

The evaluation approach is broken into two main parts. Section 5.2 evaluates the TTD

approaches and Section 5.3 evaluates the TTR approaches. This section describes the

evaluation approach taken for both reliability factors.

5.1.1 TTD Evaluation Approach

A forecasting accuracy study is proposed on edge devices to evaluate RQ.1, to what

extent can the accuracy of forecasting to support TTD be improved, by using a

lightweight model at the edge to incorporate recent changes in QoS. This study uses

89
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the datasets collected from dynamic IoT and web services to evaluate the forecasting

accuracy of the prediction models for the next time step in the series. Additional

users in the system are generated using Apache JMeter. This simulates the sudden

changes in the demand for services that would be experienced with mobile users in the

environment and is captured in the collected dataset. The algorithms are trained on

an edge device, a Jetson Tx2 to test the training time of the algorithms at the edge of

the network and evaluate how this would impact the prediction accuracy.

5.1.2 TTR Evaluation Approach

A collaborative filtering accuracy study is proposed using devices designed to be de-

ployed at the edge of the network to evaluate RQ.2 to what extent can the time to

receive predictions of TTR be reduced, by updating a model at the edge of the network,

while maintaining QoS prediction accuracy. A QoS dataset that contains multiple user

invocations of the same services from different locations is used to evaluate the ac-

curacy of the prediction approaches at different matrix densities using standard error

metrics. The predictions are also used as part of a service composition to evaluate the

impact they would have in a real scenario. When the predictions are used as part of a

service composition the ranking of the services is more important than the prediction

accuracy as the service composition engine will only choose the top service from the

list of candidate services that can fulfil the task. For example, consider a set of services

1, 2 and 3 with a response time of 5ms, 6ms and 7ms respectively. It is more important

to rank the services in the correct order i.e., service 1 has the best QoS, then service

2 and 3, than having lower standard prediction error for each of the services but mis-

takenly predicting that service 3 has better QoS than service 1. RQ.2 is focused on

the algorithm being deployed at the edge of the network so there is a focus on training

time. To evaluate the training time for each of the approaches they are deployed on the

Jetson Tx2. This allows us to evaluate how long the models will take to incorporate

new information in the model.

5.2 TTD

This section presents the experimental setup and results of the TTD approaches.
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Device Configuration

Linux Workstation

Model: Dell Optiplex 755
OS: Ubuntu Linux 14.04 LTS
CPU: 2 GHz
RAM: 4 GB

Raspberry Pi

Model: Raspberry Pi 3 B
OS: Raspbian Jessie Release 8.0
CPU: 1.2 GHz
RAM: 1 GB

Arduino
Model: Arduino WeMos D1R2
Microcontroller: ESP8266EX

Table 5.1: Hardware Configurations of the Devices Used to Collect IoT Data

5.2.1 Experimental Setup

5.2.1.1 IoT Services Description

Table 5.1 shows the hardware configuration of the devices that are used to collect IoT

data from services using real sensors. The elements in the Device column represent

the type of the devices. These names will be used in the description of the rest of

the experimental setup without referring to the specific model. The elements in the

Configuration column represent a detailed hardware description of each device. The

setup included a Raspberry Pi 3 Model B [244], two Arduino WeMos D1R2 [245]

devices, a Linux Workstation and a Cisco router model Linksys EA6400 [246]. The

Linux Workstation is used to simulate a number of virtual users using Apache JMeter

version 3.3 [247]. For the services, 10 virtual users are allocated to invoke the service.

This invocation was initiated according to a Poisson Timer with λ = 100 ms and a

delay offset of 300 ms.

In addition to the devices presented in Table 5.1, the following sensors are used to col-

lect real physical data: a HC-SR501 Infrared Motion Sensor, a MQ-2 Smoke/LPG/CO

Gas Sensor, a BMP180 Barometer Pressure/Temperature/Altitude Sensor, a DHT11

FR4 Temperature/Humidity Sensor Module and a Keyes KY-018 Photo resistor Mod-

ule. These sensors are connected to the Arduino devices using the I/O pins, and their

data offered as RESTful services. Figure 5.1 shows the layout of the devices used

to collect the data. The details about the connection of the sensors to the Arduino

boards are omitted to avoid overloading the figure and are represented by S1, S2, S3

and S4. Instructions of how these sensors can be connected to an Arduino board can

be provided through a number of documented resources (e.g., Arduino [248]).
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Figure 5.1: IoT Services Dataset Collection Setup

All devices used in the experiments are connected through a router. Two different types

of connections are used: the Raspberry Pi and Arduinos are connected wirelessly to

the router, while the Linux Workstation uses a wired connection. The ESP8266 Wi-Fi

library [249] is used to establish a wireless connection between the Arduinos and the

router, and the standard Wi-Fi driver is used for the Raspberry Pi device. For the

services, we allocate 10 virtual users to invoke the service using JMeter to increase the

workload. The device, which acts as the user, is four hops away from the services and

is invoked every 30 seconds for 1 month. The web service dataset described in Section

5.2.1.2 is invoked every hour, allowing for a comparison on the impact that monitoring

frequency can have on prediction accuracy. In a dynamic environment, such as IoT,

services may need to be monitored more frequently to capture changes in the network.

For our experimentation the time series is not pruned for outliers, i.e., values above

Q3+1.5*IQR, where Q3 is the third quartile and IQR is the interquartile range. This

is to evaluate the robustness of the forecasting approaches to outliers. The dataset is

publicly available1.

1https://www.scss.tcd.ie/~whiteg5/data/sensor data.zip

https://www.scss.tcd.ie/~whiteg5/data/sensor_data.zip
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5.2.1.2 Web Services Description

QoS time series data from web services is included to allow for the comparison of fore-

casting accuracy between heterogeneous services. An established web services dataset

is used [181], which consists of monitored QoS data collected by invoking 10 real ser-

vices every hour for four months [181]. The dataset contains (i) whether the service

was available or not, (ii) the SOAP output message, (iii) the observed response time,

(iv) the throughput, as the size of the SOAP message divided by the response time and

(v) whether or not the service generated an exception. The experiments focus on the

forecasting of the response time, measured in milliseconds. The dataset also provides

a comparison of the impact of monitoring frequency as the IoT services are reported

every 30 seconds, while the web services are reported every hour.

5.2.1.3 Metrics

Standard error metrics are used to evaluate the forecasting accuracy of the proposed

algorithms. Root Mean Square Error (RMSE) is used, which is defined as:

RMSE =

√
1

N

∑
i

(yi − y∗i )2 (5.1)

where yi is the QoS value of the service observed by the user at time i and y∗i denotes

the forecast QoS value of the service. RMSE gives large weight to extreme errors due

to the squaring term.

In traditional machine learning applications such as image classification, a model is

trained, tested and retrained if necessary until satisfactory results have been achieved

on the training data set and then the model is evaluated on a holdout test data set.

Once the model’s performance is satisfactory, it can be deployed to production. When

the model has been deployed to production it can classify data as it comes in. Even-

tually, after some period e.g., a few months, the model may be updated if a significant

amount of new training data comes in. In this case, model training is a one time

activity, or done at most in periodic intervals to maintain the model’s performance or

to take into account new information.

For time series forecasting, this is not the case. Instead, the models have to be re-

trained every time that a new generated forecast is needed. To understand why this is

necessary, consider the difference between a traditional machine learning task, such as

classifying images and a forecasting task. The visual characteristics of dogs are stable
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over time (unless looking at evolutionary time scales), so when a neural network is

trained to recognize pictures of dogs, the features that define dogs are going to remain

the same for the foreseeable future. Given enough data, the model trained this week

should be good enough to classify dogs five years from now. The distribution of dog

pictures is a stationary distribution, with constant mean and standard deviation over

time. For time series models, it is almost always the case that the distribution of the

development dataset and the production dataset do not follow the same distribution.

This is especially relevant in QoS data, which can change due to devices changing to

a power saving mode, additional users entering the environment and congestion on

the network. To deal with the changing statistical properties of the data, the models

require frequent retraining. From a practical point of view, this means that deploying

forecasting algorithms to production is very different to other machine learning models.

A static model cannot just be deployed and scored. Instead, it needs to be ensured

that training and model selection can be done on the fly, in production.

For some time series evaluations the model is fit using the training data and then

evaluated on the test data set. The way that this is done means the comparisons on

the test dataset use different horizons. If the model is tested on the last 30% of the data

set then the forecast errors will be for 1-step, 2-step, ..., 100-steps ahead. The forecast

variance usually increases with the forecast horizon, so if we are simply averaging the

absolute or squared errors from the test set, we are combining results with different

variances. The solution used in the experiments is to obtain 1-step ahead errors on

the test data. That is, we still use the training data to estimate any parameters, but

when we compute forecasts on the test data, we use all of the data preceding each

observation (both training and test data). Models with large training times such as

LSTMs, however, take longer to train these new values and so have to make larger step

ahead predictions than lightweight models such as persistence. This is realistic, as it

is how these models are used in production.

The production environment in this experimental setup is at the edge of the network,

so the training time is evaluated on a Nvidia Jetson Tx2, which is designed to allow

for machine learning models at the edge of the network [250]. For each of the models,

the training and prediction times are recorded on each of the datasets. The training

time is the average time taken to train the model on the training dataset and the

prediction time is the average time to generate a forecast given the test data. The

model is trained every time a new observation is recorded. The training and testing

are repeated twenty times to show the distribution of the time in seconds and the

average prediction accuracy is reported using the average RMSE.
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5.2.1.4 Statistical Tests

A number of statistical tests are used to provide a method for making quantitative

decisions about a sample of test results. They test the hypothesis that is made about

the significance of an observed sample. The Diebold-Mariano test is used to compare

the forecast accuracy of two forecast methods [251]. The forecasting errors between

the actual and the predicted values for each of the models are used. The two forecasts

have equal accuracy if and only if the loss differential between the actual and predicted

values for both forecasts have zero expectation for all t. The null hypothesis is that the

two methods have the same forecast accuracy. The alternative two sided hypothesis is

that method 1 and method 2 have different levels of accuracy.

So, the null hypothesis is tested:

H0 : E(dt) = 0∀t (5.2)

versus the alternative hypothesis:

H1 : E(dt) 6= 0 (5.3)

This allows us to establish the statistical significance of the forecasting accuracy, by

either accepting the null hypothesis that the two forecasts have the same accuracy or

the alternative hypothesis that the two forecasts have different levels of accuracy. If

the forecasts have different levels of accuracy, RMSE is used to evaluate which of the

approaches has increased forecasting accuracy.

As described in Chapter 2, ARMA time series forecasts requires the time series to be

stationary. If this is not the case, an ARIMA time series needs to be used instead. To

this aim, the Augmented Dickey-Fuller test (ADF) is used to check whether the time

series contains a trend. The ADF test is a type of statistical test called a unit root

test. The intuition behind a unit root test is that it determines how strongly a time

series is defined by a trend. The null hypothesis of the test is that the time series can

be represented by a unit root, that it is not stationary (i.e., has some time-dependent

structure). The alternate hypothesis (rejecting the null hypothesis) is that the time

series is stationary.

Null Hypothesis (H0): If failed to be rejected, it suggests the time series has a unit

root, meaning it is non-stationary. It has some time dependent structure. Alternate
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Statistic Observations Mean Variance Skewness Kurtosis ADF Statistic p-value

pressureAtSeaLevel 6427 2.806157784 69.77728 5.686691091 41.01123855 -6.125976 0
tempBMP 6988 2.59879016 68.88195224 5.677025464 37.76670894 -6.018004 0
photosensor 6431 2.730159852 65.94653497 5.373051804 34.6657354 -5.770347 0.000001
pressure 5861 2.481476517 64.99827012 5.840726778 39.68851762 -7.003324 0
altitude 5898 2.492071935 61.99539434 5.773681557 39.32910766 -5.929004 0
realAltitude 5843 2.536463565 60.58226421 5.5962328 37.86496146 -5.598761 0.000001
motion 7468 2.258958091 50.50359924 5.627948712 40.84757715 -7.18275 0
tempDHT 6875 2.171278322 49.31313415 5.550758081 39.04585037 -8.909403 0
gas 6824 1.960211294 46.18680955 5.991423795 44.91672038 -7.849511 0
humDHT 6810 1.984306654 43.58372856 5.937605453 45.38663963 -9.487795 0

Table 5.2: IoT Dataset Statistics

Hypothesis (H1): The null hypothesis is rejected; it suggests the time series does not

have a unit root, meaning it is stationary. It does not have time-dependent structure.

The result is interpreted using the p-value from the test. A p-value below a threshold

(such as 5% or 1%) suggests that the null hypothesis (stationary) can be rejected,

otherwise a p-value above the threshold suggests the null hypothesis (non-stationary)

has failed to be rejected. p-value > 0.05: Fail to reject the null hypothesis (H0), the

data has a unit root and is non-stationary. p-value ≤ 0.05: Reject the null hypothesis

(H0), the data does not have a unit root and is stationary. The ADF statistic, used

in the test, is a negative number. The more negative it is, the stronger the rejection

of the hypothesis that there is a unit root at some level of confidence. Table 5.2 and

5.3 show the summary statistics and the results of the ADF test on each dataset.

The null hypothesis that the time series are non-stationary can be rejected for each of

the datasets, as the p-value ≤ 0.05, therefore the datasets are stationary and can be

modelled using ARMA. If the time series were not stationary we could apply a data

transformation, such as differencing or detrending were we make an estimate for the

deterministic trend component and then remove the trend from the original data [252].

This would be a preprocess before training the algorithms on the data as approaches

such as ARMA require the time series to be stationary.

The summary statistics in Table 5.2 and 5.3 show the difference between the two

datasets. The IoT dataset in Table 5.2 has a more consistent number of observations

with a lower variance and skewness compared to the web service dataset in Table 5.3.

This could be due to the frequency with which the services are invoked with the IoT

services invoked every 30 seconds and the web services invoked every hour. A large

number of changes can happen in the network, at the device side and the user side,

which can effect the QoS of the individual services over 1 hour compared to 30 seconds.

This can lead to a large variance between the approaches, which is seen in Table 5.3.
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Statistic Observations Mean Variance Skewness Kurtosis ADF Statistic p-value

XMLDailyFacts1 2537 2117.56484 17830188.81 35.9073088 1554.139156 -33.313858 0
GetJoke1 2536 2768.735016 18618655.96 34.53991367 1475.876763 -46.093102 0
HyperlinkExtractor1 3082 5158.83939 176290910 32.60196063 1461.331138 -9.57377 0
FastWeather1 1544 5777.801813 963181837.3 18.6023973 355.22638 -6.986576 0
BLuiquidity1 6174 3348.459346 74765802.12 13.91627971 267.4534655 -7.911812 0
StockQuotes1 2943 3569.214747 69542150.93 10.04588825 141.2629578 -6.519845 0
Google1 2943 4179.506966 56681611.82 9.659332752 141.1674146 -5.79018 0
Amazon1 2943 7358.187563 59714572.65 8.881788334 152.3468532 -4.927402 0.000031
CurrencyConverter1 2535 12266.50256 1487559456 8.662690552 103.6593286 -8.18388 0
QuoteOfTheDay1 2942 4487.914004 29774588.88 5.644518854 34.49207629 -5.314479 0.000005

Table 5.3: Web Dataset Statistics

5.2.1.5 Baseline Approaches

All of the TTD algorithms discussed in the state of the art chapter are implemented

and evaluated against the proposed approach. This gives a comprehensive overview of

the current state of the art approaches using a number of different datasets. In total,

we evaluate 14 approaches on 20 datasets from IoT and web services.

The approaches implemented can be divided into a number of categories. The first

is the benchmark models, which are persistence and average methods that use the

previous value or the average of a number of previous values to make predictions

for the next value in the time series. These are the most simple methods with no

training time. The next models are traditional time series models such as ARIMA-

based models including AR, MA, ARMA and SARIMA. Exponential smoothing models

such as Holt-Winters are also included. These models have been used in traditional

time series forecasting tasks and have shown good accuracy performance.

The final category of models are deep learning models such as GRU and LSTM. A

number of approaches that apply some variant or additional layers to the LSTM model

are also included such as the LSTM with an Encoder Decoder layer, LSTM with an

Attention layer and a stacked LSTM approach that uses multiple LSTM layers stacked

on top of each other to allow for analysis at different time scales. These are more

modern methods that traditionally have not been used for time series forecasting.

Finally the noisy-echo state network approach outlined in this thesis is evaluated to

compare against the existing state of the art approaches.

5.2.1.6 Threats to Validity

Construct validity threats can be introduced by the stochastic nature of the algorithms

under evaluation, which may introduce bias in the used metrics. To mitigate these

threats, each of the experiments were repeated 20 times. Statistical tests were used
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to further validate the results and ensure that there was a statistically significant

difference in the accuracy of the approaches. There are also internal validity tests

that can arise from the hyperparameter setting used to initialise the noisy-echo state

approach as well as the comparison algorithms such as ARIMA, which require p (period

to lag), d (number of differencing operations to get time series stationary) and q

(number of lags of the error component, where the error component is not explained

by the trend or seasonality) parameters to be set. To set the parameters for the

baseline models a grid search method is used on a subset of the data to find the

best parameters. The best performing parameters were then used in the prediction

accuracy experiments. For the noisy-echo state network, the experiments performed

for individual hyperparameters were outlined in Section 3.5.2.3. These experiments

help to inform the design decision of how to set the individual hyperparameters, in

particular setting the leaking rate and the weight generation method in the noisy-echo

state network.

Threats to external validity are linked to the selected benchmark models, the QoS

dataset and the experimental setup environment. To mitigate these threats, a large

number of baseline approaches, which cover the main time series forecasting approaches

have been used in the experiments as described in Section 5.2.1.5. The datasets used

are a combination of an IoT dataset that we have collected ourselves using IoT devices

and sensors in our lab to create a realistic QoS dataset for IoT services, as described

in Section 5.2.1.1. An established web service dataset is also used to evaluate how the

approaches would forecast a different type of service, which are invoked at a different

interval as described in Section 5.2.1.2.

Interpretive validity is the extent to which the conclusions from the experiments are

reasonable given the data, which can also be influenced by researcher bias. The full

results of the experiments are reported for each of the prediction approaches on each

dataset, which is 280 results just for the prediction accuracy. Appropriate statistical

tests have also been used to evaluate the statistical significance of the alternative

forecasting approaches. This allows the reader to evaluate whether the conclusions

drawn from the experiments are reasonable, given these results.

5.2.1.7 Hyperparameters

In Section 3.5, we discussed multiple hyperparameters set for the noisy echo state net-

work model investigates in this paper. The hyperparameters are selected using a subset

of the data. The datasets are clustered into 3 groups using the variance, skewness and

kurtosis. One dataset from each of the clusters is used to select the hyperparameters,
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which provides a robust configuration. Here, we illustrate the experiments run to set

those values.

Leaking Rate One of the most important parameters when creating the echo state

reservoir, especially for data that changes over time, is the leaking rate. The leaking

rate can be regarded as the speed of the reservoir update dynamics, discretised in

time. The leaking rate α is effectively the resampling of u(n) and ytarget(n). The leaky

rate should be set to match the speed of the dynamic of u(n) and ytarget(n). Figure

5.2a shows the effect of the leaking rate on three of the IoT datasets. The results

follow a similar pattern with a reduction in error as the leaking rate is increased to 0.2.

After the initial decrease the error begins to raise again as the leaking rate approaches

1. Setting α to a smaller value such as 0.2 induces slow dynamics of x(n), this can

dramatically increase the duration of short-term memory in the ESN.

We also evaluate the leaking rate for a subset of the web services dataset. Figure 5.2b

shows the effect of the leaking rate on the web services. The BLuiquidity and Google

services follow a similar pattern to the IoT dataset, with an initial decrease in error

up until 0.2 when it starts to increase again. The Amazon dataset, in which the noisy

echo model did not perform well, shows increased error with a larger leaking rate. The

value is minimised when the leaking rate is low and increases as the leaking rate grows,

with a slight decrease at 0.4. It still follows the general principle of the other results

of having a smaller value of α to increase the duration of short-term memory in ESN,

so we set the leaking rate to be 0.2 for the final model.
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Figure 5.2: Impact of Leaking Rate

Reservoir Size The reservoir size is the number of units in the network. Generally,

with a larger reservoir, one can learn more complex dynamics, or learn a given dynamics

with greater accuracy. However, if the reservoir becomes too large, it can lead to
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overfitting, with irrelevant statistical fluctuations in the training data learned by the

model. This can most clearly be seen in the Amazon dataset, in Figure 5.3b, as the

reservoir size becomes greater than 50. The other datasets in this figure show a less

dramatic reduction in error up to a reservoir size of 100, at which point the error begins

to increase or stay the same. The results for the IoT dataset in Figure 5.3a show a

less dramatic change. There is a slight reduction in error up to a reservoir size of 100

after which, the error begins to increase gradually. Using these results we choose a

reservoir size of 100 to allow our model to learn complex dynamics without overfitting

to include irrelevant fluctuations in the training data as QoS data can be noisy.
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Figure 5.3: Impact of Reservoir Size

Activation Function A number of activation functions are available for echo state

networks. Previous approaches have traditionally used Tanh activation. We performed

some experimentation on the effect of alternative activation functions such as Sigmoid

and Relu to evaluate their impact on the final accuracy of the model. Figure 5.4a

shows the impact of the activation function on a subset of the IoT dataset. We show

the average and standard deviation of 10 runs of the experiment on each dataset. The

results for the IoT dataset show that the Sigmoid and Tanh perform quite similarly,

with Tanh performing better in more of the datasets overall. Relu shows good perfor-

mance for the pressure dataset but can increase the error in other datasets that are

more skewed.

Figure 5.4b shows the results for the web services data. It follows a similar pattern to

the IoT data with Tanh showing improvement compared to the other two approaches.

Relu can show improved results in datasets such as BLuiquidity1 but is also prone to

outliers as in the StockQuotes1 dataset, which has a larger variance. Based on these

results, we choose Tanh to be the activation function that we use in our final model.
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Figure 5.4: Impact of Activation Functions

Weight Generation When the reservoir is created, the weights of the neurons are

set to an initial weight. There have been a number of alternative approaches to initialise

these weights, from a basic naive approach where the weights are assigned a randomised

value between -0.5 and 0.5. The SORM technique has been designed to reduce the

amount of randomness [200]. This method creates a weight matrix with predefined

singular spectrum that can guarantee stability (echo state property) and minimise

the impact of noise on the training process. We also evaluate a sparse random sign

approach [201]. We plot the mean and standard deviation of the results in Figure 5.5a

and 5.5b.

Figure 5.5a shows the impact of the weight generation method on the IoT dataset. We

can see that for the IoT dataset the weight generation method had a small impact on

the final results with the Yildiz method showing improvement in the gas dataset and

the naive method showing improvement in the realAltitude dataset. Figure 5.5b shows

the impact of the weight generation method on the web services dataset. In this case,

there is more variation in the final results especially with the SORM method that has

a lot of variation and returns poor results for the Amazon1 and StockQuotes1 dataset.

From the two other approaches, the naive method returns the most reliable results,

showing increased performance compared to Yildiz in the Amazon1 and FastWeather1

dataset. Based on the results from these experiments, we use the naive method in our

final experiments as it provided the most consistently good performance.

5.2.2 Results

This section presents the results of the TTD evaluation. Section 5.2.2.1 evaluates the

prediction accuracy of the approaches, Section 5.2.2.2 evaluates the training time of

the approaches and Section 5.2.2.3 evaluates the prediction time of the approaches.
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Figure 5.5: Impact of Weight Generation

5.2.2.1 Prediction Accuracy

Table 5.4 shows the RMSE error between the actual and predicted values of the IoT

dataset. The 14 algorithms tested on 10 different IoT datasets provide a comprehen-

sive overview of the current state of the art. The results are also evaluated using the

Diebold-Mariano (DM) Test. The null hypothesis is that each time series has equal

predictive accuracy and the alternative hypothesis is that the models have different

levels of accuracy. The significance level for statistical significance is 0.05 and the

significance level for high statistical significance is 0.01. In Table 5.4 and Table 5.5,

P < 0.05 = ∗ and P < 0.01 = ∗∗ compared to the proposed noisy-echo state net-

work approach. The most accurate forecasting model for each dataset is in bold font.

The results in Table 5.4 show that the noisy-echo model produces the most accurate

QoS forecasts for 90% of the IoT data and the forecasts have statistically significant

different levels of accuracy. The Holt Winters algorithm produces better results for

the TempDHT dataset. Further analysis of this dataset shows that it has a smallest

combined variance, skewness and kurtosis. This makes the dataset highly suitable for

an exponential smoothing method as new values will not vary much from the previous.

The prediction accuracy can be affected by increased training times as the model may

not have incorporated the most recent values before making a prediction. The increased

training time of the LSTM approaches shown in Table 5.6 causes the model to have

to make predictions for new values based on the old model, while the old model is

being updated with new data points. This can cause an increase in errors if there

is sudden congestion or changes in the network. Forecasting approaches with short

training times such as Holt-Winters and the echo-state based approaches can quickly

incorporate these values into the model before the next time series data is reported
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Method motion gas tempDHT humDHT tempBMP photosensor pressureAtSeaLevel realAltitude pressure altitude

Persistence 7.810238** 5.890278** 7.411874** 6.103446** 8.108597** 7.488159** 7.019569** 4.30112** 4.683283** 3.149722**
Average 6.354379** 4.826091** 6.288365** 4.867702** 6.745602** 5.839891** 5.563181** 3.290822** 3.717615** 3.244886**
AR 5.924289** 4.486149** 5.887825** 4.774765** 6.316112** 5.836597** 5.394121** 3.273735** 3.44607** 3.18818**
ARMA 5.823097** 4.561525** 5.6930385** 4.884718** 6.383319** 5.992053** 5.612935** 3.733769** 3.827525** 3.695597**
Holt Winters 5.479644** 4.315179** 5.498252** 4.549918** 5.858203** 5.367755** 4.952462** 3.066059** 3.326135** 3.090484**
ARIMA 5.957925** 4.69692** 5.988508** 4.962601** 6.468264** 6.152145** 5.764984** 4.094006** 4.233293** 4.076958**
SARIMA 5.633425** 4.45195** 5.736247** 4.724357** 6.064921** 5.595941** 5.209394** 3.156171** 3.417940** 3.183883**
GRU 7.577633** 5.370888** 7.411886** 6.103448** 7.512873** 7.488179** 9.939786** 4.301400** 4.683184** 3.157885**
LSTM 7.207294** 5.565407** 7.322619** 5.487462** 8.013495** 6.759292** 8.413381** 4.125590** 4.050942** 3.125581**
LSTM Encoder Decoder 7.457435** 5.459793** 7.393157** 5.894806** 7.537269** 7.086604** 8.464745** 4.301197** 4.683329** 3.107436**
LSTM Attention 7.689534** 5.706162** 7.411874** 6.103446** 12.398120** 7.488155** 7.685253** 4.290354** 4.683286** 3.274812**
LSTM Stacked 7.577633** 5.370888** 7.411886** 6.103448** 7.512873** 7.488179** 9.939786** 4.301400** 4.683184** 3.157885**
ECHO 5.469087** 4.265062** 5.539449* 4.469455** 5.846969** 5.344445** 4.949313* 3.055276* 3.317153** 3.087040**
Noisy ECHO 5.451934 4.251361 5.5386996 4.459078 5.844422 5.319939 4.949122 3.052062 3.16274 3.079277

Table 5.4: IoT Forecasting RMSE

Method Amazon1 BLuiquidity1 CurrencyConverter1 FastWeather1 GetJoke1 Google1 HyperlinkExtractor1 QuoteOfTheDay1 StockQuotes1 XMLDailyFacts1

Persistence 10975.65** 7132.73** 47234.75** 3755.30** 3193.56** 5226.96** 4677.66** 3188.34** 10512.41** 10207.65**
Average 8840.14** 7552.72** 39614.98** 3072.11** 3369.60** 5205.82** 4033.95** 3170.86** 9784.41** 8552.70**
AR 8714.60** 6839.55** 34644.79** 3474.57** 3119.32** 5259.74** 4067.34** 3719.43** 9178.95** 7507.64**
ARMA 8104.12** 6862.14** 34659.43** 4046.78** None 5201.29** 3876.76** 3324.05** 8992.52** 7483.07**
Holt Winters 8620.56** 6965.58** 34988.72** 3755.30** 3122.08** 4948.82** 3884.82** 2992.80** 9745.93** 7555.26**
ARIMA 8103.98** 6862.14** 34659.43** 4046.78** 3121.97** 5201.29** 3876.76** 3325.52** 8992.52** 7483.26**
SARIMA 8891.03** 6948.66** 34051.60** 5670.82** None 5287.16** 3850.15** 3833.11** 9153.89** 7498.65**
GRU 10983.43** 7137.13** 46273.83** 3925.01** 3472.33** 5237.84** 4944.61** 3216.84** 10512.79** 10217.17**
LSTM 10969.00** 7143.52** 47134.05** 3906.66** 3156.37** 5229.79** 4837.26** 3215.65** 10512.54** 10009.93**
LSTM Encoder Decoder 10982.53** 7118.12** 41431.63** 4049.74** 3194.55** 5233.42** 4855.98** 3216.36** 10493.08** 10141.25**
LSTM Attention 10983.78** 7136.57** 57918.30** 3807.50** 3227.77** 5231.94** 4770.09** 3188.35** 10512.54** 10233.90**
LSTM Stacked 10132.56** 7132.75** 39211.29** 3755.35** 5447.82** 5470.33** 4677.74** 3027.74** 10512.41** 10009.94**
ECHO 9574.92* 6346.36** 33721.18** 3187.58** 3038.93** 4741.28** 3848.73* 2800.81** 8667.31** 9297.17*
Noisy ECHO 9576.48 6340.22 32631.25 3163.25 3023.48 4720.73 3847.45 2791.08 8504.15 9291.16

Table 5.5: Web Forecasting RMSE

as their training time is less than 30 seconds. This leads to these methods having

increased prediction accuracy.

Table 5.5 shows the RMSE error between the actual and predicted values for the

web services dataset. Again, the most accurate forecasting method for each dataset

is bolded and the statistical significance is shown using stars. The results show the

improved forecasting accuracy using the noisy-echo forecasting approach for 80% of

the test datasets. The two datasets that get better predictions from traditional time

series-based approaches ARMA and ARIMA are Amazon1 and XMLFacts1. Further

analysis of these datasets show that they have a small combined variance and skewness.

This makes them suitable for traditional autoregressive approaches such as ARMA and

ARIMA.

One of the problems with the autoregressive approaches (AR, ARMA, ARIMA, SARIMA)

in this experiment was that they sometime fail to converge as in the case of GetJoke1.

GetJoke1 has a large skewness and kurtosis values that causes the ARMA and ARIMA

model not to converge. One of the limitations of these approaches is that, if the dataset

is skewed then the model may not converge, meaning that no forecasts can be produced.

The large training time of the LSTM-based approaches shown in Table 5.7 leads to

an increase in prediction errors compared to other models that can be retrained more

frequently at the edge.
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Method motion gas tempDHT humDHT tempBMP photosensor seaLevel realAltitude pressure altitude

Persistence - - - - - - - - - -
Average - - - - - - - - - -
AR 0.19661 0.173055 0.17612 0.179871 0.180327 0.15533 0.156224 0.13247 0.131492 0.131594
ARMA 4.738197 3.997468 3.930942 4.146136 3.906832 3.626856 3.531937 3.07438 3.187256 3.156328
Holt Winters 4.831115 4.541888 4.28464 4.479004 4.884842 4.786444 3.951013 3.64523 4.90282 4.438811
ARIMA 4.195067 3.869153 3.833079 3.694446 3.727166 3.406544 3.215134 2.840352 2.928405 2.85305
SARIMA 149.0606 143.3560 134.8984 134.3577 154.9273 159.4404 169.4713 131.4500 136.7973 115.5670
GRU 8957.631 8355.466 8024.337 8024.337 8896.441 8297.486 8357.352 7473.455 7645.846 7199.695
LSTM 311835.7 288716.2 317709.1 276973.1 303094.9 283282.0 290341.6 260300.4 266914.9 254378.9
LSTM Encoder Decoder 376839.2 349387.7 339228.0 337518.8 367999.6 342267.5 351155.1 315377.7 323044.1 305964.1
LSTM Attention 371951.3 339359.2 371538.0 328683.8 367999.6 338429.2 350553.3 309731.4 319886.0 304479.4
LSTM Stacked 773839.2 716150.9 769460.6 695167.2 747827.1 693634.5 707128.2 636118.9 647677.8 625030.7
ECHO 12.9389 11.9702 12.4487 12.7227 12.7227 11.3671 11.3033 13.1534 10.6236 13.2142
Noisy ECHO 12.8825 11.9980 12.5956 12.6658 12.7275 11.2330 11.4149 13.1377 10.7337 13.3578

Table 5.6: IoT Training Time (seconds)

5.2.2.2 Training Time

Table 5.6 shows the training times for each of the models used in the IoT service

experiments. There is a large variation in training time from models that have no

training time to models that require hours to train. The average and persistence

models require no training as they make forecasts using either the last value or the

average of the three previous values. Therefore, only the storage of these values and

some analysis during testing is required to make the predictions. The next range of

training times are those that can update their models in less than thirty seconds to

accommodate recent QoS values from dynamic services. This quick update time ensures

that the model can respond to sudden changes in the service such as network overload

or a device switching to a power saving mode. These are the traditional autoregressive,

exponential smoothing forecasts such as Holt Winters and ECHO-based approaches.

One surprise with the experimental results is the time required for the SARIMA model,

compared to the other traditional autoregressive models such as ARMA and ARIMA,

but this can be explained by the additional seasonal modelling used to try to increase

the prediction accuracy. As it can take over a minute to train, this can lead to missing

some data points when making forecasts. The final range of models are those that

require large training times greater than a couple of hours. These are the traditional

RNN-based approaches such as GRU and LSTM, which makes them unsuitable for

short term forecasts at the edge as they take a long time to incorporate recent changes

in the network or device failures.

Table 5.7 shows the training times for each of the models used in the web service

experiments. The training times follow a similar pattern to the IoT dataset with the

same models grouped into a range of no training times, short training times of a less

than thirty seconds, larger training times of a couple of minutes and the longest taking

over a couple of hours. The training times are slightly shorter than the IoT dataset
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Method Amazon1 BLuiquidity1 CurrencyConv1 FastWeather1 GetJoke1 Google1 LinkExtractor1 Quote1 StockQuotes1 XMLFacts1

Persistence - - - - - - - - - -
Average - - - - - - - - - -
AR 0.052694 0.150727 0.043863 0.022758 0.04403 0.053106 0.055179 0.052349 0.052991 0.043407
ARMA 0.882086 2.873928 0.85237 0.52214 0.800686 1.058162 1.248833 0.994781 1.079717 1.482804
Holt Winters 2.21504 3.466027 2.509222 1.120705 3.988224 1.853427 2.954879 1.765269 1.72112 1.711918
ARIMA 0.989633 2.851033 1.437518 0.913856 1.414293 1.650149 1.564868 1.010735 1.628183 1.104375
SARIMA 50.29268 53.13638 19.02887 25.06535 75.93919 73.95002 25.60217 58.61540 77.70087 44.50840
GRU 1168.388 2514.126 949.316 649.932 991.655 1046.114 1187.169 1184.678 1101.000 1031.767
LSTM 1435.565 3022.565 1212.179 796.496 1221.661 1373.269 1467.770 1425.833 1385.752 1248.279
LSTM Encoder Decoder 1611.996 3461.631 1331.263 822.663 1381.123 1483.571 1645.584 1640.092 1517.033 1434.624
LSTM Attention 1701.353 3570.491 1412.371 918.521 1459.617 1627.364 1727.061 1687.721 1653.125 1484.987
LSTM Stacked 3520.223 7491.751 2950.277 1963.969 2998.524 3355.695 3588.372 3532.353 3384.077 3082.312
ECHO 7.41785 13.14107 7.64465 5.93231 7.87751 7.45632 7.93177 7.48932 7.47702 7.09368
Noisy ECHO 7.625165 13.305066 7.66095 5.883748 8.056742 7.449957 8.033465 7.644891 7.612619 7.10852

Table 5.7: Web Training Time (seconds)
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Figure 5.6: Average Training Time

because it is a slightly smaller dataset, but with the RNN-based approaches still taking

a couple of hours.

Figure 5.6 presents an overview figure of the training time for all the datasets. It shows

the mean and standard deviation of the training times for all the IoT datasets in Figure

5.6a and Web datasets in Figure 5.6b. The figure is plotted using a logarithmic y-axis to

allow for the methods to be more easily compared against each other. The persistence

and average methods are not included in this figure as they do not require any training

time.

In Figure 5.6a, one of the first observations that can be made is that the standard

deviation in the training time is small. As the IoT datasets are of a similar size, there

is not much variation between the datasets, which allows for comparison between the

individual approaches. The range of training times can be seen clearly with each step

on the y axis indicating a 10 times greater training time. The next level of training

times are for the traditional time series forecasting techniques, such as AR, ARIMA,

Holt and the echo state-based approaches. The SARIMA approach then has an increase

in training time, but the RNN-based approaches such as GRU and LSTM have a very

large training time orders of magnitude greater than the traditional time series-based
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Method motion gas tempDHT humDHT tempBMP photosensor seaLevel realAltitude pressure altitude

Persistence 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
Average 0.000044 0.000044 0.000044 0.000044 0.000045 0.000044 0.000044 0.000044 0.000044 0.000044
AR 0.000791 0.000731 0.00074 0.000733 0.000742 0.00067 0.000663 0.000595 0.000598 0.000596
ARMA 0.006415 0.005869 0.003015 0.00596 0.005989 0.005604 0.00559 0.005158 0.005181 0.005207
Holt Winters 0.967671 0.864094 0.928017 0.853228 0.94472 0.86443 0.865268 0.782894 0.788073 0.777138
ARIMA 0.006702 0.006234 0.006262 0.006242 0.006363 0.005933 0.00592 0.005519 0.00551 0.005559
SARIMA 0.559103 0.508898 0.513655 0.536163 0.523918 0.480207 0.480434 0.44074 0.437828 0.436803
GRU 0.005012 0.005157 0.004865 0.004865 0.005417 0.005817 0.006038 0.005789 0.00612 0.005286
LSTM 0.007849 0.008263 0.009753 0.00726 0.008833 0.00922 0.009403 0.009478 0.009769 0.008616
LSTM Encoder Decoder 0.011234 0.011509 0.010367 0.010517 0.012382 0.012655 0.013247 0.013353 0.013663 0.012055
LSTM Attention 0.005699 0.00625 0.007968 0.005355 0.007187 0.007261 0.007619 0.007686 0.007648 0.006757
LSTM Stacked 0.018237 0.019023 0.022927 0.017121 0.020248 0.020735 0.021877 0.021502 0.022599 0.019761
ECHO 0.001041 0.001051 0.001034 0.001021 0.00101 0.001019 0.00105 0.001033 0.001036 0.001001
Noisy ECHO 0.000999 0.000996 0.000991 0.001 0.000989 0.000984 0.000987 0.000993 0.001002 0.000987

Table 5.8: IoT Prediction Time (seconds)

approaches. This means it takes longer for them to incorporate new QoS values into

the model.

Figure 5.6b shows the training time for the QoS forecasting approaches on the web

services dataset, the standard deviation is slightly increased due to the variety in sizes

of the web services dataset. The same level of difference in the training times can

be seen in 5.6b as in Figure 5.6a, with the approaches falling into the same groups of

traditional time series and echo state-based approaches and the RNN-based approaches

taking longer.

5.2.2.3 Prediction Time

The prediction time is the time taken for a model to make a forecast, given test

data. Compared to the training time, the prediction time to generate the forecasts

is quite small, usually under a second. Table 5.8 and 5.9 show the prediction times

for both the IoT and web services dataset. For most of the approaches, the time to

generate forecasts is very small < 0.005s. However, SARIMA, with values around

0.5s and Holt Winters, with values around 0.8s, are orders of magnitude larger. The

baseline approaches with no training time - persistence and average, also have very low

prediction times as they both require only a simple lookup of previous data and some

basic analysis. For making short-term predictions, the prediction time is important as

if it takes too long, it can increase the tolerable delay to greater than what is required

by the application. Modern applications such as augmented reality have a low tolerable

delay of 10ms or 0.01s. These experiments were designed to identify any trade-offs in

models that may leave additional processing until after the model has been trained.

The SARIMA and Holt Winters methods have much larger testing times compared to

the existing approaches that could cause some problems for generating predictions for

these applications.
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Method Amazon1 BLuiquidity1 CurrencyConv1 FastWeather1 GetJoke1 Google1 LinkExtractor1 Quote1 StockQuotes1 XMLFacts1

Persistence 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001
Average 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005
AR 0.000351 0.000641 0.000323 0.000256 0.000323 0.000352 0.000362 0.00035 0.000351 0.000321
ARMA 0.001384 0.005402 0.001332 0.001186 0.001332 0.00141 0.003185 0.001381 0.003074 0.002787
Holt Winters 0.39066 0.825778 0.343205 0.201683 0.34329 0.397382 0.416639 0.396691 0.396949 0.346397
ARIMA 0.001701 0.002381 0.003102 0.002407 0.003129 0.003405 0.003515 0.001688 0.003404 0.003123
SARIMA 0.222839 0.461416 0.192956 0.120416 0.193494 0.223178 0.234576 0.221257 0.223097 0.192215
GRU 0.006131 0.006629 0.00551 0.006559 0.006034 0.004448 0.005752 0.006544 0.005051 0.006618
LSTM 0.009456 0.008883 0.009244 0.009059 0.009305 0.009868 0.00941 0.008715 0.009427 0.008954
LSTM Encoder Decoder 0.0131 0.013872 0.012224 0.00607 0.012881 0.010941 0.012516 0.013331 0.011361 0.01404
LSTM Attention 0.008775 0.009184 0.008407 0.009185 0.008684 0.007967 0.008768 0.008975 0.00841 0.008972
LSTM Stacked 0.024779 0.02517 0.024003 0.02541 0.024269 0.023171 0.023736 0.024771 0.023565 0.025053
ECHO 0.001036 0.000999 0.001039 0.001004 0.001026 0.001027 0.001041 0.001037 0.001028 0.000993
Noisy ECHO 0.000997 0.000996 0.000992 0.000984 0.001002 0.000989 0.001004 0.000997 0.00099 0.00101

Table 5.9: Web Prediction Time (seconds)

Figure 5.7 presents an overview figure of the testing time for all the datasets. It shows

the mean and standard deviation of the testing times for all the IoT datasets in Figure

5.7a and Web datasets in Figure 5.7b. The figure is plotted using a logarithmic y-

axis to allow for the methods to be more easily compared against each other. The

persistence and average methods are included in this figure, although as can be seen

in Figure 5.7 they both have small testing times.

From Figure 5.7, the majority of the testing times for the traditional time series ap-

proaches and even the more modern RNN-based approaches are quite similar and small

enough to be used in a QoS forecasting algorithm at the edge of the network. There

are two exceptions that can be seen in Figure 5.7a, which are the Holt-Winters and

the SARIMA approaches. These approaches are orders of magnitude greater than the

others but the testing time is still under one second. This may cause problems for more

high frequency applications but would be acceptable for most IoT applications with

soft QoS forecasting guarantees. The Holt Winters approach had the best forecasting

accuracy on the tempDHT dataset in Table 5.4 and a small training time but there is

a tradoff in the prediction generation time.

Figure 5.7b shows the testing time for the web service approaches. The results follow

the same pattern as Figure 5.7a with the Holt-Winters and SARIMA approaches being

the two outliers with large testing times. The other traditional time series and echo

state-based approaches are suitable to be used for applications such as augmented

reality as they can be deployed at the edge of the network and have a low testing

time. However, of the approaches with reduced training and testing time the approach

that was able to generate the most accurate forecasts was the noisy-echo state network

model.

RQ.1 proposed in Chapter 1 asked the question, to what extent can the accuracy of

forecasting to support TTD be improved, by using a lightweight model at the edge to

incorporate recent changes in QoS? The results of the experimental evaluation have

shown that the noisy-echo state network has increased the forecasting accuracy for
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Figure 5.7: Average Testing Time

the 9/10 (90%) of the IoT datasets and 8/10 (80%) of the web service datasets for

an overall improvement in 17/20 (85%) of the combined datasets. The training time

of the model has been evaluated on an edge device and is small enough to allow for

the incorporation of recent changes in QoS. The testing time of the noisy-echo state

network is also evaluated to ensure some of the training procedure is not left until

predictions are generated and it has been shown to be small enough to be used in

a dynamic environment. Therefore, the answer to RQ.1 is that a lightweight noisy-

echo state network deployed at the edge to incorporate recent changes in QoS can be

used to improve the accuracy of forecasting to support TTD in 85% of cases, on a

combination of IoT and web service datasets. The 15% of cases where the noisy-echo

state network approach was found to not be as effective were in the datasets with low

variance, skewness and kurtosis. In these datasets traditional time series approaches

such as Holt-Winters and ARMA were found to be more accurate.

5.3 TTR

This section presents the experimental setup and results of the TTR approaches.

5.3.1 Experimental Setup

5.3.1.1 Dataset

To test both the IoTPredict and the Stacked Autoencoder approach, an established

dataset is used to control for any differences in QoS that can be caused by invoking

services at different times. The dataset released by Zheng et al. [42] is used, which
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Statistics Response Time Throughput

Number of Observations 1,974,675 1,974,675
Number of Invocations 1,873,838 1,831,253
Number of Users 339 339
Number of Services 5,825 5,825
Min 0.002s 0.004kbps
Max 27.285s 1000kbps
Mean 2.9s 47.56kbps
Variance 5.886s 12276kbps
Skewness 2.61s 4.96kbps
Kurtosis 11.03s 28.58kbps

Table 5.10: Descriptive Statistics of TTR Dataset

consists of a matrix of the response time and throughput of 339 users from 30 coun-

tries for 5,825 real-world web services from 73 counties. The users are a number of

distributed computers from PlanetLab and are not co-located with the services. Re-

sponse time is the time duration between a user sending a request and receiving a

response, while throughput denotes the data transmission rate (e.g. kbps) of a user

invoking a service. The reason for the use of a dataset instead of a testbed is to allow

more users and services to be evaluated, as there are no reported testbeds that have

access to 339 users and 5825 services. The time varying nature of QoS can also lead

to the algorithms being evaluated using different values in testbeds making it harder

to evaluate the impact of the algorithm.

As this dataset is for web services, which are usually deployed in the cloud, they

have better response time than might be expected from low power devices. To make

the data applicable for the experimentation, the HetHetNets traffic model is used to

add heterogeneous traffic data to the existing dataset [211]. This provides a realistic

and manageable traffic model that can be applied in many contexts such as Wi-Fi,

ad-hoc and sensor networks. The parameter is set to λ = 2, for modelling network

traffic in sensor networks and the IoT [211]. Table 5.10 shows the descriptive statistics

of the dataset, which shows the difference in scale of the datasets with the response

time ranging from 0.002s to 27.285s and the throughput ranging from 0.004kbps to

1000kbps. The two datasets are skewed, which can be seen from the skewness and

kurtosis results.

As there is full access to the dataset, a percentage of the values can be removed to

be used as the training set. The algorithms are then evaluated by making predictions

for the missing values in the dataset. This allows us to evaluate how the algorithms

perform for different matrix densities from 5-35% in our experiments using standard

error metrics, which are introduced in the following section.
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5.3.1.2 Metrics

A combination of metrics are used to evaluate the prediction accuracy of the proposed

algorithms, in particular, standard error metrics such as the Mean Relative Error

(MRE) and Root Mean Square Error (RMSE). MRE is defined as:

MRE =
1

N

∑
i,j

|wi,j(t)− w∗i,j(t)|
wij(t)

(5.4)

RMSE is defined as:

RMSE =

√
1

N

∑
i,j

(wi,j − w∗i,j)2 (5.5)

where wi,j is the QoS value of service cj observed by user, ui, w
∗
i,j denotes the predicted

QoS value of the service cj by user ui. N is the number of predicted QoS values, which

normalises the prediction accuracy across the matrix densities. RMSE gives large

weight to extreme errors due to the squaring term.

One of the problems with standard error metrics is that it can be difficult to know

how the difference in accuracy of the predictions will perform as part of a realistic

IoT application [56, 253]. For example, if there are 100 candidate services and the

algorithm makes an accurate prediction for the top 90 but makes bad predictions for

the last 10 the overall prediction accuracy will be influenced by the last 10 services

even though is it unlikely that they would be used in the composition. The ranking

of the top services is more important as they are the most likely to be invoked. To

evaluate this, the predictions are used as part of a service composition process to

compose an application. A number of composition paths are generated with services

available in the environment identified to satisfy a user request by the request handler.

The service composition engine creates a list of service flows based on the concrete

services received from the service discovery engine. The flows are then merged based

on the service description. If two or more services in the flow have the same input, the

composition engine creates a guidepost to enable the invocation of the services based

on QoS.

In this thesis, the QoS metrics of response time and throughput are considered for

each branch. The response time is calculated by the mean response time values of

each service in the branch and the throughput is the minimum throughput of the set

of selected candidate services [210], as shown in Equation 5.6. In this formula, rti is
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the response time of service i. The throughput value is calculated using the formula

in Equation 5.7, which selects the lowest throughput min(thi) offered by the services

in a sequential flow [210]. These formulae require the response time and throughput

values of each service component in the flow to calculate the aggregate values. It is

possible that these values can not be calculated if the required QoS data is missing or

is out-of-date. The predictive composition process uses the predicted values generated

through collaborative filtering to choose the optimal flow. 10 composition branches

with 10 services in each are created. Once the branch has been chosen using the

predicted values the actual values based on the original data are reported. This allows

for comparison between the two prediction approaches and the optimal composition

that could have been chosen.

Response T ime (RT ) =
n∑
i=1

rti (5.6)

Throughput (T ) = min(thi) (5.7)

To evaluate the suitability of deploying the algorithm at the edge of the network,

the training time on an edge device is evaluated, in this case a Jetson Tx2, which

has increased performance compared to traditional IoT devices, such as raspberry pis

fulfilling Objective 3. This time constrains how often the algorithm can be updated

with new values, which has an impact on the accuracy when used on time varying values

such as QoS. The time taken to train the algorithms is measured at different matrix

densities. The experiment is repeated 20 times showing the average and standard

deviation of the predictions in the results section.

The request time of the algorithms is also evaluated showing how quickly a distributed

middleware could receive QoS predictions for users in the environment. In this mea-

surement, each algorithm is deployed in the environment needed to train it and the

network delay is included in the response. For the request time, 5000 requests are

made to the services running on each of the devices and the distribution of data is

shown using a box plot. This gives a realistic request time and shows the impact of

being able to deploy an algorithm on an edge node vs. deploying the algorithm in the

cloud. The network test is conducted in Trinity College Dublin and each of the devices

are connected using a Wi-Fi-based network.
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5.3.1.3 Statistical Tests

To compare the statistical significance of the difference in results such as the training

time, an independent samples t-test is used [254]. This test compares the means of

two independent samples on a given variable. To conduct an independent samples

t-test, one categorical or nominal independent variable and one continuous or interval

scaled dependent variable is needed. A dependent variable is a variable on which the

scores may differ, or depend on the value of the independent variable. An independent

variable is the variable that may cause, or simply be used to predict, the value of the

dependent variable. The independent variable in a t-test is simply a variable with two

categories (e.g., men and women, university students and university professors, etc.).

In this type of t-test, the goal is to know whether the average scores on the dependent

variable differ according to which group one belongs (i.e., the level of the independent

variable). For example, a researcher may want to know if the average height of people

(height is the dependent, continuous variable) depends on whether the person is a man

or a woman (gender of the person is the independent, categorical variable).

Regarding the specific case of independent samples t-test, the question to be answered

is whether the difference between the two sample means is large compared to the

difference that would be expected by just selecting two different samples. Phrased

another way, is to know whether the observed difference between the two sample means

is large relative to the standard error of the difference between the means. This can be

used to evaluate if the training times of different algorithms are statistically significant.

The general formula for this question is as follows:

t =
observed difference between sample means

standard error of the difference between the means
(5.8)

or

t =
X̄1 − X̄2

sx̄1−x̄2
(5.9)

where:

X̄1 is the mean for sample 1

X̄2 is the mean for sample 2

sx̄1−x̄2 is the standard error of the difference between the means
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Once the test statistic has been calculated it can be used in the formula for calculating

the t value. This can be used with the degrees of freedom by adding the two sample

sizes together and subtracting 2. So the formula is df = n1 + n2 – 2. The test

statistic can then be used to see if the results are significant. The test has a number

of assumptions about the data such as independent observations and the assumption

of normality, which are verified before the test is used. The assumption of normality

is tested using the Shapiro–Wilk test.

Other than testing the presence of a significant difference among the different methods,

it is of practical interest to estimate the magnitude of such a difference. Cohen’s d effect

size, is used to indicate the magnitude of a main factor treatment on the dependent

variables [255] (the effect size is considered small for 0.2 ≤ d < 0.5, medium for

0.5 ≤ d < 0.8 and large for d ≥ 0.8). For independent samples, it is defined as the

difference between the means, divided by the pooled standard deviation of both groups:

Cohen′s d = (M2 −M1)/SDpooled (5.10)

where:

SDpooled =
√

(SD2
1 + SD2

2)/2 (5.11)

5.3.1.4 Baseline Approaches

The experiments for TTR consider different kinds of approaches. In particular, matrix

factorisation-based approaches: NMF, PMF, IoTPredict and a deep learning approach

called stacked autoencoder. NMF is a standard non-negative matrix factorisation

approach that decomposes the original dataset into non-negative latent features that

are used to find similar users and services. PMF provides a probabilistic approach

using Gaussian assumptions on the known data and the factor matrices. IoTPredict

uses latent features with an alternative nonparametric similarity comparison method

called Kendall’s tau to incorporate the similarities. This method uses a hybrid model-

based approach calculating the similarity for both the users and services. Finally, the

stacked autoencoder approach is proposed to evaluate how deep learning methods can

be used for a collaborative filtering task.
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5.3.1.5 Threats to Validity

Construct validity threats can be introduced by the stochastic nature of the algorithms

under evaluation, which may introduce bias in the metrics used. To mitigate these

threats, each of the experiments were repeated 20 times. Statistical tests were used

to further validate the results and ensure that there was a statistically significant

difference in the accuracy of the approaches. There are also internal validity tests

that can arise from the hyperparameter setting used to initialise the IoTPredict and

Stacked Autoencoder approaches. The design decisions in choosing the parameters for

the model are described in Section 3.6. The best-performing parameters were used in

the prediction accuracy experiments.

Threats to external validity are linked to the selected benchmark models, the QoS

dataset and the experimental setup environment. To mitigate these threats, a number

of baseline approaches covering different matrix factorisation methods are used. The

dataset used is large, with 339 users and 5825 services. This gives a comprehensive

evaluation of the prediction accuracy of the approaches.

Interpretive validity is the extent to which the conclusions from the experiments are

reasonable given the data, which can also be influenced by researcher bias. The full

results of the experiments are reported for each of the prediction approaches on the

dataset and appropriate statistical tests are used. This allows the reader to evaluate

whether the conclusions drawn from the experiments are reasonable given the results.

5.3.1.6 Hyperparameters

Both TTR algorithms have a number of hyperparameters that need to be set to ensure

an accurate model is created. In this section we conduct experiments to evaluate the

effect of different hyperparameters on model accuracy for both approaches. We first

evaluate the impact of hyperparameters on the IoTPredict algorithm:

Dimensionality is the number of latent features used by the algorithm. In this

section we investigate the impact this parameter has on the prediction error. Figure

5.8a and 5.8b show the impact of the latent features for 10% density on the response

time dataset. The error is minimised using 10 latent features and as more latent

features are added the error increases, indicating an overfitting problem.

Figure 5.8c and 5.8d show the impact of the latent features for 90% density. In this

case, the MAE and RMSE are minimised with around 20-30 latent features. The
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Figure 5.8: Impact of Dimensionality on Response Time at 10% and 90% density
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Figure 5.9: Impact of Top-K on Response Time and Throughput

results in Chapter 5 are conducted with 20 latent features, which reduces error for

more dense matrices as shown by these results. The results also show that the number

of latent features can be tuned to improve performance if the matrix density is already

known, to avoid the under/overfitting problem. In this section, we focus on providing

a detailed description of our own model parameters rather than a comparison against

existing approaches, which is conducted in Chapter 5.

Top-K is the number of similar users selected to make the predictions for the indi-

vidual user, which can impact the prediction accuracy of the approaches. Figure 5.9

shows how the error changes for the 10% and 90% matrix densities as the top-k users

are increased from 2-50, with the dimensionality set to 20 latent features. Figure 5.9a

and 5.9b show the impact of the number of top-k users chosen on the response time

dataset. In this case, we see that the the error drops considerably as K increases from

2 to 10 in both the MAE and RMSE. As K continues to increase, the error either

remains constant or increases slightly. This can be seen when the matrix density is

both at 10% and 90%.

In the throughput dataset, the response is slightly different. The 10% matrix density

remains almost constant even as the number of top-k users changes. The results for

the 90% matrix density are interesting and show that the error increases with the

number of top-k users. The increased error is caused by using values from an increased

number of users that are not similar, which decreases the prediction accuracy. Figure

5.9 also shows the problem when trying to optimise the algorithm for one QoS factor,
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Figure 5.10: Impact of Dropout

throughput, as it can make the algorithm less accurate for other QoS factors such as

response time.

The stacked autoencoder approach also has hyperparamters, such as the dropout value:

Dropout The dropout parameter is evaluated for the optimal values in Figure 5.10.

Figure 5.10 shows the experimentation with different dropout values. Figure 5.10a

achieves the most consistent results with dropout = 0.2. For dropout = 0.4 there are

some outliers for matrix density of 15% and 20%. This shows the large impact that

dropout can have on the final accuracy of the model. Figure 5.10b shows the impact of

dropout for the throughput dataset. This figure also shows the most consistent results

using dropout = 0.2, across the different matrix densities. The large dropout = 0.8 in

this case leads to the loss of information in the training an has the lowest prediction

accuracy. A dropout value = 0.2 is chosen for the final experiments.

5.3.2 Results

This section presents the results of the TTR evaluation. Section 5.3.2.1 evaluates

the training time of the TTR approaches to evaluate whether they are suitable to

be deployed on an edge device. Section 5.3.2.2 evaluates the request time of the

approaches, which is the time is takes to receive the predictions of TTR including the

network delay. The following sections focus on the prediction accuracy, with 5.3.2.3

describing the use of standard error metrics to evaluate the prediction accuracy and

Section 5.3.2.4 describing the sending of predictions to a composition engine to evaluate

the impact that the predictions have on a final service composition.
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Figure 5.11: Training Time of Algorithms

5.3.2.1 Training Time

Looking at Figure 5.11a, there is a large difference between the training times of the

four algorithms, with the three matrix factorisation approaches taking much longer

and increasing in time as the matrix density increases. The average training time for

the NMF algorithm is over 300s, PMF is over 100s, IoTPredict is over 60s and the

autoencoder approach takes 15s. There is a trade-off between PMF and IoTPredict,

with PMF introducing less overhead for matrices with densities between 5-25% and

IoTPredict introducing less overhead for matrices between 25-35% density. There is a

relative speed-up of 20 and 4 times using the autoencoder approach relative to the NMF

and IoTPredict matrix factorisation approaches. The results are highly statistically

significant with a p-value < 0.01 and an effect size of 11.5 between the autoencoder

and PMF approach at 5%. The results are also statistically significant at 35% with a

p-value < 0.01 between the mean training times of the autoencoder and the next best

training time for IoTPredict with an effect size of 4.886, which is large.

The results are similar for the throughput training time as seen in Figure 5.11b, with

a large difference between the four approaches. At 5% matrix density, the autoencoder

takes 15s, PMF takes 55s, IoTPredict takes 57s, and NMF takes 283s. As the matrix

density increases the matrix factorisation approaches increase the time to train the

model, while the autoencoder approach stays almost the same. At 35% matrix density

the autoencoder takes 18s, IoTPredict takes 88s, PMF takes 150s and NMF takes

381s. In this case, the speed-up using the autoencoder approach is 4.8 times and 21

times compared to the IoTPredict and NMF approaches. The results are statistically

significant with a p-value < 0.01 and an effect size of 33.88 at 5% and 8.93 at 35%.

The dramatic reduction in training time for the autoencoder approach allows it to be

deployed and trained on devices at the edge of the network one hop away from users.
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Figure 5.12: Request Time

This allows the model to constantly update with new values reported by users in the

environment. This keeps the predictions accurate as QoS attributes can vary with time

so it is important to update the model with recent QoS values.

5.3.2.2 Request Time

The request time is the total end-to-end time between requesting QoS predictions from

the prediction algorithm to returning a response including network delay. This is an

important factor when using a collaborative filtering approach for time varying values

especially in dynamic service re-compositions as the composition engine needs quick

access to QoS values for candidate services. The validation time of IoTPredict, NMF

and PMF are the same as the matrix has been completed during training so only a

constant time lookup is needed to find the QoS value of the service. The IoTPredict

algorithm is deployed in the cloud as the larger training time is not suitable for edge

devices. A number of cloud instances in different countries are used, to show how the

cloud location can impact request time. The autoencoder approach is deployed on the

Jetson Tx2 at the edge, where it is trained.

Figure 5.12 shows a boxplot with the median request time in orange and the average

request time in green. The IoTPredict algorithm is implemented in three data centres

and is invoked by a request from a node in Trinity College Dublin. This explains

some of the variation between the data centre locations with the IoTPredict approach

having reduced request time in Dublin compared to the other locations, with an average
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response time of 24.1ms. This is a good response time for a cloud-based approach,

though it may be a special case as the Amazon Dublin data centre is located very

close to Trinity College, which would not typically be the case for most cloud-based

services. To evaluate this, two other geographically-close data centre locations in Paris

and Frankfurt are tested. The average response time was 40.2ms in Paris and 36.2ms

in Frankfurt.

The advantage of being able to deploy the stacked autoencoder at the edge can clearly

be seen, with the average response time reduced to 5.40ms. This improvement in re-

sponse time is especially important for dynamic service recomposition, where one of

the services is forecast to fail and a new candidate service needs to be chosen. The re-

duction in this time will allow for a greater number of applications to recompose before

the user notices a failure. Given the current distribution of data centres worldwide,

the results would typically be worse for cities in South America and Asia where there

may be greater distance to the nearest data centre and worse network links.

5.3.2.3 Standard Error Accuracy

Figure 5.13 shows the MRE and RMSE between the actual and predicted values for

the evaluated algorithms. Figure 5.13a and 5.13b show the standard error metrics for

the response time dataset. Figure 5.13a shows the MRE between the approaches, NMF

reduces the prediction error for matrix density < 15%. For matrix densities greater

than this, the IoTPredict algorithm produces the best results. The RMSE results in

Figure 5.13b show a slight improvement for the IoTPredict approach across all the

matrix densities with a sizeable difference between the matrix factorisation approaches

and the stacked autoencoder approach.

For the throughput dataset in Figure 5.13c, the IoTPredict algorithms produces the

best MRE results across all the matrix densities. Figure 5.13d show the RMSE for

the throughput dataset and the difference in accuracy of the matrix factorisation and

stacked autoencoder approach, with the NMF and PMF algorithms producing the most

accurate results. However, it is difficult to evaluate how the standard error accuracy

will have an impact in an actual service composition. When the service composition

and execution engine is selecting a suitable service composition, it will choose from the

top few candidate services. As discussed in more detail in Section 5.3.1.2, it is more

important that the best available service be chosen for the service composition rather

than having low standard error metrics for all the available services. The prediction

algorithm could make bad predictions for the services with very low QoS, which would

influence the overall accuracy of the algorithm even though these services are unlikely
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Figure 5.13: Impact of Matrix Density on Response Time and Throughput

to be invoked. This is why the composition accuracy is also evaluated when using these

individual prediction approaches.

5.3.2.4 Composition Accuracy

The predictions are passed to the service composition engine to evaluate the impact

of prediction accuracy on the final service composition. Then, a greedy-based service

composition algorithm is used to choose one of the 10 paths based on the predictions

and show the average result for all the users in the dataset. The experiment is repeated

20 times and the average values are shown. As the QoS values are taken from a dataset,

they do not vary with time and allow the algorithms to be evaluated with the same

user values.

Figure 5.14a shows the impact of the predictions for the response time of the final

composition. For low matrix densities, which would be expected in an IoT environment

the results are similar with less than one second separating the final compositions at

5% matrix density. Comparing the average forecast prediction at 5% density the t

statistic is 0.29 with a p-value of 0.77, which cannot reject the null hypothesis that

there is a different between the means. At 35% density the t statistic is -1.29 and the

p-value is 0.2, which again cannot reject the null hypothesis that there is a difference

between the means. As the matrix density increases, a reduction in response time can

be seen by using the PMF algorithm, however this is not statistically significant.

The results for the throughput of the composition path follow a similar pattern in

Figure 5.14b with the composition engine able to generate very similar compositions

based on each of the prediction algorithms for low matrix densities. For larger matrix

densities greater than 15% a slight improvement in using the NMF approach can be

seen. The autoencoder approach has slightly reduced throughput at 5% compared to

the next best matrix factorisation-based approach, however with a p-value of 0.944 it

is not statistically significant. At 35% the the autoencoder also slows slightly reduced

throughput but with a p-value of 0.924 it is not statistically significant.



5 - Evaluation 121

5% 10% 15% 20% 25% 30% 35%

Matrix Density

0

10

20

30

40

50

60

C
om

p
os

it
io

n
R

es
p

on
se

T
im

e

IoTPredict

NMF

PMF

Autoencoder

Optimal

(a) Response Time of Service Composition

5% 10% 15% 20% 25% 30% 35%

Matrix Density

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
om

p
os

it
io

n
T

h
ro

u
gh

p
u

t

IoTPredict

NMF

PMF

Autoencoder

Optimal

(b) Throughput of Service Composition

Figure 5.14: QoS Attributes of Service Composition

The overall results for the service composition have shown that the prediction accuracy

using standard error metrics such as MRE and RMSE may not have as direct an impact

on the composition accuracy as thought in the state of the art. The reason for this is

that standard error metrics can give large error value for services with poor QoS. For

example, a service that has a response time of 15s but the model predicts a response

time of 7s will incur a large error using standard metrics, but is still unlikely to be

used in the final composition if an alternative candidate service has a response time of

10ms. This is seen in the difference between the prediction and composition accuracy

experiments.

RQ.2 proposed in Chapter 1 asked the question, to what extent can the time to receive

predictions of TTR be reduced, by updating a model at the edge of the network, while

maintaining QoS prediction accuracy? The results of the experimental evaluation has

shown that the stacked autoencoder approach has reduced the training time compared

to the matrix factorisation-based approaches. The reduced training time allows the au-

toencoder to be trained and updated at the edge of the network, dramatically reducing

the request time from 24.1ms for the approaches deployed in the cloud environment to

5.40ms. The reduction in training time allows the autoencoder approach to manage

the 10ms tolerable delay required by modern IoT applications, such as augmented real-

ity described in Table 1.1. The composition accuracy results have shown that there is

no statistical difference in QoS between the compositions generated using predictions

from the matrix factorisation-based approaches and the stacked autoencoder approach.

Therefore, the answer to RQ.2 is that the time to receive predictions of TTR can be

dramatically reduced by 4.46 times using a stacked autoencoder approach at the edge

of the network, while maintaining QoS prediction accuracy for service compositions.
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5.4 Chapter Summary

This chapter has presented the evaluation of the TTD and TTR approaches that have

been proposed in this thesis. Section 5.2 was designed to evaluate RQ.1, which asks

to what extent can the accuracy of forecasting to support TTD be improved, by using

a lightweight model at the edge to incorporate recent changes in QoS? The results

of the experimental evaluation have shown that the noisy-echo state network can be

deployed and trained on an edge node, while increased the forecasting accuracy for

the 9/10 (90%) of the IoT datasets and 8/10 (80%) of the web service datasets for

an overall improvement in 17/20 (85%) of the combined datasets. This has addressed

the limitations of existing approaches, such as LSTM and persistence models, that

were either too heavyweight to be trained at the edge and took too long to incorporate

recent changes in the model or were to simplistic to build a model that could capture the

complexities of the environment. Therefore, the answer to RQ.1 is that a lightweight

noisy-echo state network deployed at the edge to incorporate recent changes in QoS

can be used to improve the accuracy of forecasting to support TTD in 85% of cases,

on a combination of IoT and web service datasets. The 15% where the noisy-echo

state network approach was found to not be as effective were in the datasets with low

variance, skewness and kurtosis. In these datasets traditional time series approaches

such as Holt-Winters and ARMA were found to be more accurate.

Section 5.3 was designed to evaluate RQ.2, which asks to what extent can the time to

receive predictions of TTR be reduced, by updating a model at the edge of the network,

while maintaining QoS prediction accuracy? The experiments show how the training

time of the TTR algorithm can be reduced dramatically by using a stacked autoencoder

on a deep edge architecture. The reduced training time allows the stacked autoencoder

algorithm to be deployed on the edge reducing the request time to 5.40ms compared

to 24.1ms for the cloud-based approaches. The reduction in request time allows the

autoencoder approach to manage the 10ms tolerable delay required by modern IoT

applications, such as augmented reality described in Table 1.1. The prediction accuracy

of the IoTPredict approach was shown at low matrix densities using standard error

metrics, however when the TTR predictions were used as part of a service composition

no statistically significant difference in the QoS of the final compositions was observed.

Therefore, the answer to RQ.2 is that the time to receive predictions of TTR can

be dramatically reduced by 4.46 times using a stacked autoencoder approach, while

maintaining QoS prediction accuracy for service compositions.
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Urban Application Data Type Traffic Rate Tolerable Delay TTDR Delay Criticalicty Suitable

Waste Management [19] Historical Data >= 100 MB per day >30 mins 6.8 ms Low Yes
Structural Health [19] Historical Data >= 10 MB per day >30 mins 6.8 ms Medium Yes
Air Quality Monitoring [19] Historical Data >= 10 MB per day >30 mins 6.8 ms Medium Yes
Noise Monitoring [19] Historical Data >= 100 MB per day >30 mins 6.8 ms Medium Yes
Wearable IoT Stream Data <=1 GB per device >30 mins 6.8 ms Medium Yes
Traffic Congestion [19] Historical Data >= 100 MB per day >5 mins 6.8 ms Low Yes
Smart Parking [19] Event Data >= 10 MB per day >1 min 6.8 ms Low Yes
Smart Home [19] Stream/ Massive Data >= 10 MB per house per day 1 s - 10 mins 6.8 ms Medium Yes
Smart Energy [20] Stream/ Massive Data >= 100 GB per day 10 ms - 10mins 6.8 ms Medium Yes
Remote Surgery [21] Stream/ Massive Data >= 50 MB per second <= 100 ms 6.8 ms High No
Augmented Reality [22] Stream/ Massive Data >= 100 MB per second <= 10 ms 6.8 ms Low Yes
Autonomous Vehicles [22] Stream/ Massive Data >=100 GB per vechicle per day <= 10 ms 6.8 ms High No

Table 5.11: Urban Intelligence Applications TTDR Suitability

Table 5.11 shows the urban intelligence applications that were defined in Chapter 1.

The table is updated with a TTDR Delay column and a column indicating the suit-

ability of the TTDR approach. The deployment of both algorithms at the edge of the

network reduces the TTDR delay, which is 6.8ms. This makes it suitable to manage

the tolerable delay for each of the urban intelligence applications included modern

approaches, such as augmented reality. The applications that the TTDR approach is

not suitable for are the high criticality applications such as remote surgery and au-

tonomous vehicles, as the TTDR approach is focused on providing soft QoS guarantees

more suitable for medium and low criticality applications. These applications require a

more fault tolerance-based approach, with a large number of redundant services avail-

able exclusively to the user on resource rich devices [256]. For applications such as

autonomous vehicles a software stack is typically designed to use services available lo-

cally in the car for real time tasks such as collision detection, due to the high criticality

and real time requirements of these tasks [257]. The community will be able to make

use of the results of this evaluation by the QoS time series dataset that we publicallly

release to evaluate the TTD approaches. We hope that the success of deploying the

noisy-echo state network and the stacked autoencoder approach at the edge of the

network will encourage future research in this area.





Chapter 6

Conclusion

This thesis has investigated improving the reliability of IoT applications. This chapter

summaries the contributions, discusses the tradeoffs and outlines scope for future work.

Section 6.1 provides a summary of the main contributions of each chapter in the thesis.

Section 6.2 provides a discussion of the contributions and some of the limitations of

the proposed approaches. The section also discusses some use cases to show how the

prediction algorithms can be combined with other technologies such as lifelong learning

to create applications such as augmented reality with IoT services. Section 6.3 outlines

the scope for extending this work looking at how privacy preservation, malicious user

detection and transfer learning could be included. Section 6.4 provides a final remark

summarising the final chapter.

6.1 Thesis Summary

This thesis has been organised into six chapters. In this section we give a summary of

the main contributions in each of the previous chapters.

Chapter 1 - Introduction introduced the problem of reliability in IoT with a

description of the challenges of being able to provide reliability in a dynamic IoT

environment. The limitations of existing approaches were identified and research gaps

were explored, which lead to the two research questions. The overall approach of the

thesis was then discussed with the assumptions that had been made and the hypothesis

and objectives that were expected in the thesis. The thesis contributions were then

given as well as the scope of the area that the thesis focused on.

125
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Chapter 2 - State of the Art provided a comprehensive review of current state of

the art approaches across the layers of the IoT, starting with a systematic mapping.

This gave a high level overview of current state of the art approaches and identified

research gaps at specific layers of the IoT, such as the middleware layer. The system-

atic mapping also showed the specific contributions that were needed in this layer -

evaluated approaches using real data from devices. This influenced the experimental

approach to collect a new dataset from deployed devices. The chapter then focused

on specific reliability approaches that have been proposed in the state of the art and

the limitations of using the state-based and fault tolerant techniques used in enterprise

applications in IoT. The chapter then focuses on approaches that have been used to

make QoS predictions for currently executing and candidate services. A number of

approaches are described and organised into a taxonomy, such as model and memory-

based collaborative filtering approaches. Finally, a Kiviat diagram illustrates the main

differences between current state of the art approaches.

Chapter 3 - Design describes the main components of reliable service applications

and how they can be modelled using a cost to time budget. This budget identifies the

main components that affect the time budget, which are TTD, TTR and TTF. The

design objectives and required features, system model and design decisions that were

used in the design phase are introduced. The problem statement and design of the

noisy-echo state network approach to reduce TTD are described. The noisy-echo state

network approach focuses on increasing the forecasting accuracy of TTD approaches,

while maintaining a reduced training time to allow it to be deployed on edge devices

such as the Jetson Tx2. The following section then introduces the TTR problem

statement as well as the initial IoTPredict approach, which used a latent features-

based approach to try to improve the prediction accuracy for candidate services. A

description of the stacked autoencoder approach follows, which focuses on reducing the

training time of the TTR approach to allow it to be deployed on an edge device, while

maintaining accurate QoS predictions. This allows for reduced request time during

service adaptation, allowing the composition engine to change to the best ranked service

based on QoS from the prediction engine before the user notices a failure.

Chapter 4 - Implementation provides the implementation details of the individual

approaches. The chapter also introduces the other middleware components with which

the QoS prediction algorithms are designed to be used, such as the service registra-

tion engine and the service composition engine. A component diagram illustrates the

messages and data that are passed between the components to create reliable service
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applications. A sequence diagram shows the exact sequence of messages between the

components showing when the QoS predictions are needed by the other components.

The deep edge architecture that was used to deploy the QoS prediction algorithms

at the edge of the network is then introduced, which allows for increased processing

power at the edge of the network allowing more powerful models to be designed and

used. Finally the implementation of the TTD and TTR approaches are given with

class diagrams to show how the main classes interact with each other, how the predic-

tion approaches were evaluated and the utility functions that were used to load and

pre-process data.

Chapter 5 - Evaluation presents the evaluation of the proposed TTD and TTR

approaches. The experimental setup to evaluate the TTD approaches is introduced,

which includes the collection of a new IoT dataset as well as an established web services

dataset. The results are then shown for the prediction accuracy, training time and

request time to answer RQ.1: to what extent can the accuracy of forecasting to support

TTD be improved, by using a lightweight model at the edge to incorporate recent

changes in QoS? The results for the prediction accuracy have shown that for 9/10

(90%) of the IoT datasets and 8/10 (80%) of the web service datasets for an overall

improvement in 17/20 (85%) of the combined datasets, by using the noisy-echo state

based approach.

The evaluation of the TTR approaches first introduces the experimental setup that

was used to evaluate the algorithms including the dataset that was used. The results

are then presented to answer RQ.2: to what extent can the time to receive predictions

of TTR be reduced, by updating a model at the edge of the network, while maintaining

QoS prediction accuracy? The training time and request time of the approaches are

then evaluated showing that the stacked autoencoder approach can reduce the training

time needed. This allows the model to be deployed at the edge of the network, which

greatly reduced the time to receive predictions. The prediction accuracy shows that

matrix factorisation-based approaches such as IoTPredict were able to reduce the pre-

diction error, however when these predictions are used as part of a service composition

there is no statistically significant difference between the final service composition QoS

metrics. This shows how it is possible to reduce the time to receive predictions of TTR

by updating a model at the edge of the network, while maintaining QoS prediction

accuracy for the service composition.
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6.2 Discussion

TTDR, the combination of improvement to TTD and TTR has been evaluated using

real IoT and web service QoS data, with the results compared to the existing baselines.

The TTD approach has shown improved forecasting accuracy compared to other cur-

rent state of the art approaches, while maintaining a small training time, allowing it

to be deployed at the edge of the network. The TTR approach has shown a reduction

in the training time allowing it to be deployed at the edge of the network, reducing

the request time, while maintaining prediction accuracy for the final service composi-

tion. The reduced request time improves the reliability of IoT applications especially

during a dynamic service adaptation when there is a small amount of time to find a

suitable replacement candidate service. In this section, the contributions to the body

of knowledge are outlined, followed by an introduction to potential use cases.

6.2.1 Thesis Contribution

This thesis has made three contributions to the body of knowledge. The first is the

improved accuracy of the TTD forecasts using a noisy-echo state network approach.

The increased forecasting accuracy allows the middleware to react more quickly to

dynamic changes in the environment and perform a proactive service adaptation to

select suitable replacement services before there has been an actual failure. The small

training and testing time allow the algorithm to be deployed on an edge device. The

limitations of the work are discussed in Section 6.2.1.1.

The second and third contribution focuses on the reduction of the TTR once an error

has been detected by the TTD approach. The second contribution is IoTPredict, which

was able to improve the prediction accuracy for QoS values. An important component

of the TTD approach is the request time needed to receive the predictions, especially

during a dynamic service composition where there is a limited amount of time to replace

the failing service with a candidate service that can fulfil the users QoS requirements.

The third contribution of this thesis was a stacked autoencoder approach that can be

used to reduce the training time to allow the autoencoder approach to be deployed

on an edge device. This reduces the request time, allowing the candidate service

to be chosen more quickly. A comparison with current state of the art approaches

for composition accuracy showed that there was no statistically significant difference

between the composition accuracy of the proposed approach and current state of the

art prediction algorithms. Therefore, we have shown how the proposed approach can

be deployed at the edge of the network, while maintaining accurate QoS predictions.
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This has a number of other benefits in terms of user privacy and the reduced traffic

rate of data being sent to the cloud. The limitations of the work are discussed in

Section 6.2.1.2.

6.2.1.1 Time to Detection Limitations

The evaluation shows that the noisy-echo state network approach increases the fore-

casting accuracy of the time to detection while maintaining a short training time,

addressing RQ.1 in Section 1.3.4. However, these results rely on users accepting the

monitoring component as part of the middleware to build up the collection of QoS

time series values. Some users may have privacy and security concerns over releasing

QoS information to a middlware but this information is needed to provide accurate

QoS forecasts to users. Additional privacy preserving learning techniques are planned

to allow the models to train on local QoS data while only updating the changes in

gradient in the updated model, which can be encrypted and sent to the local gateway,

discussed in more detail in Section 6.3.1. This federated learning approach may be able

to provide QoS forecasts with improved privacy but may reduce the forecast accuracy

so needs to be evaluated in future work.

The noisy-echo state approach has reduced the prediction error compared to other

forecasting approaches, however there is still some prediction error, which can lead

to a service not being forecast that it will fail. This is why our approach is not

recommended for safety-critical hard real-time applications such as autonomous vehicle

collision detection, as any failure could be have serious threat to human life. The

TTD approach is designed to be used for soft QoS guarantees in applications such

as augmented reality, which need reduced latency, but are not safety critical. The

forecasting approach may also introduce some additional overhead if there is a forecast

that a service will fail, when it actually will continue to operate within the agreed

limits. This can cause the middleware to perform a dynamic service composition to

recompose the application with a suitable replacement service, when it is not needed.

This problem can be improved by further improving the forecasting accuracy of the

noisy-echo state network approach.

6.2.1.2 Time to Recovery Limitations

The evaluation shows that the stacked autoencoder approach reduces the request time

during adaptive service applications by allowing the model to be deployed at the edge

of the network. This approach also relies on users reporting the QoS values to the
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middleware, which raises the same privacy and security concerns as users may not be

comfortable releasing this information. The TTR approach will investigate distributed

learning approaches such as federated learning to avoid this problem.

The TTR approach is designed to provide soft QoS guarantees where we accept that

there will be some downtime. For safety critical applications such as collision detection

for autonomous vehicles an alternative fault tolerant approach with large amounts of

additional redundancy would be needed. The TTDR approach is designed for non-

safety critical applications such as augmented reality that have a strict tolerable delay

to create an immersive environment, but can handle some service downtime without a

threat to human life.

6.2.2 Use Cases

Increased reliability and QoS allow a number of modern applications to take advantage

of services available in the environment that previously would have been too unreliable

or not as responsive to adaptation to meet the QoS demands of the application. Section

6.2.2.1 discusses ideas on the use of TTDR in augmented reality applications and

Section 6.2.2.2 discusses ideas in quantified-self applications.

6.2.2.1 Augmented Reality

Augmented reality applications have a reduced tolerable delay as seen in Table 1.1,

requiring the forecasting accuracy of the TTD approach and the reduced request time

of the TTR approach to find a suitable replacement service, when integrating IoT

services. To work effectively in the real world, these applications require a number

of innovations from different fields to tackle the real-time technical challenges such

as lifelong learning for context and situation awareness, on-the-fly QoS-aware service

orchestration for dynamic environments and an edge architecture to distribute these

intelligent functions [258]. The prediction algorithms proposed in this thesis have been

proposed as part of a Context-Aware Edge intelligence for Service orchestration in

Augmented Reality applications, named as CAESAR. This is a collaborative research

plan with the University of Helsinki and the University of St Andrews. This plan is

for further research to be conducted on improved QoS at the edge and to pursue some

of the future work that is highlighted in Section 6.3.

Figure 6.1 is a smart city application that is described in a ‘blue sky’ paper on the

possible applications of combining AR and reliable IoT services [259]. The application
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is for smart tourism, which would be applicable to a range of scenarios e.g., museums,

historical sites, points of interest in a city and smart campuses. The AR application

uses services available from smart beacons in the surrounding location to display ad-

ditional information about the point of interest. For example, a statue could provide

additional information about when the statue was created, who created the statue and

the meaning behind it. For statues of people such as previous Provosts in a campus,

AR can make the statue come to life and digitally move around, while presenting this

additional information about their history and creation. The TTR QoS prediction al-

gorithm is used to make accurate QoS predictions for these services, which can be seen

in the green writing beside the service for additional information about the statues.

This means that the services have suitable response time and can be used as part of

the application. The AR application can also make use of web services provided by the

middleware to make recommendations of places to visit next with ratings and queue

length times from IoT services. Figure 6.1 shows an example of an application that

could be developed with the combination of lifelong context and situational awareness,

QoS aware service composition and an edge architecture to distribute these intelligent

functions.

6.2.2.2 Quantified-Self

An increase in the availability and reduction in cost of wearable devices has allowed

people to self-track multiple streams of data. Activity trackers such as the Fitbit

Charge 3, Samsung Gear Fit2 Pro and Apple Watch Series 4 are now used by a large

number of consumers. More recent devices have explored additional activities that

users may want to track, such as connected inhalers, smart insulin pens and asthma

monitors. These novel streams of data can be integrated and mined to gain insights

that enable preventive actions in managing chronic conditions such as diabetis and

asthma (e.g., ADAMM Asthma Monitor can detect the symptoms of an asthma attack

before its onset) [260, 261].

The rise in popularity of these devices has led to the development of communities of

quantified self and lifelogging [262]. This is a movement to incorporate technology

into data collection on aspects of a person’s daily life, with the goal of improved

physical, cognitive and/or emotional health. A lot of work has been done on the

physical output, especially with the emergence of P4 medicine: predictive, preventive,

personalised and participatory [263]. The TTD and TTR algorithms can be used to

improve existing applications reliability to ensure that the user has as much information

available as possible from tracking sensors and services available in the surrounding
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area. Applications will also be able to integrate services in the environment such

as weather and pollution information, which may have an impact on their physical

activity. Initial experiments with quantified-self data to increase productivity has

shown some missing data due to a service not being available or failing [264]. This

initial work can be extended with the TTDR approach to increase reliability of services

that track data about users. This will allow for more detailed quantitative information

and rules to be generated for the user.

6.3 Future Work

There is considerable scope for extending this work. Future research directions are:

6.3.1 Privacy Preservation

With the introduction of GDPR, users have become much more careful about the data

that is collected about them, how that data is stored and who will have access to

that data. One way to train a model without the user ever releasing any personal

information is through federated learning [265]. In this training method, a master

model is deployed in the cloud and is updated from the embedded GPUs located

throughout the city. The updates can be merged into the master model immediately

in an encrypted fashion so that no individual update is stored online and no training

data is exchanged. This would allow the training of accurate models, while respecting

the privacy of users and conforming to GDPR. There are other alternative decen-

tralised learning approaches that could be used such as decentralised deep learning

[266], communication-efficient learning [267] and distributed optimisation [268].

6.3.2 Malicious User Detection

The current stacked autoencoder approach assumes that users are reporting accurate

QoS values and there are no malicious users in the environment. However, some

companies or individual users may report false QoS values about competing services

so that users would be unlikely to use those services in the final composition. One

approach to avoid this, is to perform some preprocessing on the dataset to cluster

users based on the values they report. A user’s reputation can then be updated if they

are submitting QoS values that are significantly different to what other users in similar

locations are experiencing. This reputation would then be taken into consideration
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Figure 6.2: Transfer Learning Categories

when making the QoS predictions and users with low reputation would not have much

effect on the final composition.

6.3.3 Transfer Learning

An alternative way to speed up the training of models at the edge of the network is

to use transfer learning. With the recent success of deep learning, a number of pre-

trained models are now available to users who may not have the data or computational

capability to train them. The computational capability at the edge of the network is

limited compared to the capability in the cloud. Machine learning libraries such as

Tensorflow have set up hubs to allow for the easy sharing of pre-trained models1. This

allows easy access to large models that can take a very long time to train.

Figure 6.2 shows the different categories of transfer learning based on the relationship

between the source and target distributions. The most simple case is regular learning

where the source and target have the same distributions and are required to perform

the same tasks. When the source and target have the same distribution or are in

the same domain but the tasks that they are required to perform are different this is

called inductive transfer learning. This category can further be broken down depending

upon whether the source domains contain labelled data or not: if a lot of labelled data

in the source domain are available then it is multi-task learning and if there is no

labelled data from the source domain then it is self-taught learning [269]. When the

source and target distribution are not the same but the tasks are similar it is called

transductive transfer learning. In this situation, no labelled data in the target domain

are available while a lot of data in the source domains are available. The final category

1https://www.tensorflow.org/hub
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is unsupervised transfer learning where there is a difference in both the source and

target distribution and tasks. This category focuses on solving unsupervised tasks in

the target domain such as clustering [270] and dimensionality reduction [271], with

no labeled data available in the source and target domains in training. The specific

approaches that are planned to be focused on are feature extraction, fine-tuning and

data augmentation.

Deep learning models are layered architectures that learn different features at different

layers. These layers are finally connected to a last layer, which is usually fully con-

nected, in the case of classification, to get the final output. This layered architecture

allows us to utilise pre-trained networks without a final layer as a fixed feature-extractor

for other tasks. A model can be used as a feature extractor where we freeze (fix weights

and don’t train) all the blocks of layers and flattening layer before the final fully con-

nected layer. We update only the fully connected classifier block at the end of the

model. This allows the new model to transform the data from a new domain task into

a large dimension vector based on hidden states, thus enabling us to extract features

from a new domain task using the source domain. In fine tuning, only the weights of

the last few layers of the neural architecture are updated. This is slightly more resource

intensive than the feature extraction approach, but can produce more accurate results.

As deep neural networks are layered with the initial layers capturing the most basic

features such as edges and the later layers capture more specific details about the task,

we can freeze some of the first blocks and update the later ones. Data augmentation

generates artificial data based on existing observation to improve model accuracy, gen-

eralisation and control overfitting [272]. These transfer learning techniques allow for a

range of possibilities for training accurate models quickly at the edge of the network

without user data being exposed to the cloud.

6.4 Final Remark

This thesis investigated how to improve the reliability of IoT applications in dynamic

environments. A cost to time budget was created that models the parameters that

can effect reliability in a dynamic IoT environment. Two of the parameters, TTD

and TTR, were reduced to allow for the creation of more reliable applications. The

discussion in Section 6.2 presented some of the limitations of the current TTD and

TTR approaches. As they are both user-based reliability approaches they rely on users

submitting their QoS values to the middleware. The approaches have improved both

the forecasting and prediction accuracy, but they are still not suitable for hard real-time

QoS applications such as autonomous vehicle collision detection. These applications
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are safety critical and would require a fault tolerant-based approach, with a number of

redundant services available locally on the vehicle. There are a number of implications

from this thesis, with a suitable dataset for evaluating TTD newly proposed algorithms

will be able to compare themselves against state of the art approaches. The algorithms

that we have proposed at the edge have shown reduced response time while being able

to maintain prediction accuracy, which will lead to further algorithms being designed

to be deployed at the edge of the network.

The original challenges defined at the start of the thesis were a dynamic environ-

ment, reduced tolerable delay, increased traffic rate, critical applications and limited

resources. The contributions have been designed from the ground up to meet these

challenges. Both the noisy-echo state network TTD approach and stacked autoencoder

TTR approach are able to handle the dynamic environment by having a short training

time. They are both able to be deployed at the edge of the network, which reduces

the tolerable delay and traffic that has to be sent to the cloud. Both of the approaches

can handle medium criticality applications, but are still not suitable for highly critical

applications, such as autonomous vehicles and remote surgery, which require addi-

tional redundant services. The deep edge network has increased the limited resources

available at the edge of the network by using embedded GPUs to train the algorithms.

The use cases presented in Section 6.2.2 show the applications that could potentially

be created by combining the improvements in reliable IoT services with other technolo-

gies. The first use case on augmented reality shows how the improvements in reliability

could be combined with lifelong learning for context and an edge architecture to dis-

tribute intelligent functions. This could transform the way that people interact with

services in a smart city environment. The second use case shows how TTDR could

be used in quantified-self applications to give users more detailed information about

the activities that they do during the day e.g., physical activities such as running or

what applications they are using on their laptop. The combination of this information

with services available in the environment providing local information about air tem-

perature, noise and pollution allows for detailed analysis of how these factors effect

performance. Association rules mining can be used as in the productivity approach to

define rules for the best sleep and activity level that a user should do to achieve the

highest level of productivity [264]. Section 6.3 outlines the future work that is planned

to extend the current approaches proposed in this thesis through the use of privacy

protection, malicious user detection and transfer learning.
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