
uDiscovery: An Urban-Centric Model for
Service Discovery in Smart Cities

Christian Humberto Cabrera Jojoa

A thesis submitted in fulfillment of the requirements for

the degree of Doctor of Philosophy (Computer Science)

in the

School of Computer Science & Statistics

Trinity College Dublin, The University of Dublin

June 2020

http://www.scss.tcd.ie
http://www.tcd.ie

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or any

other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or allow

the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College

Library conditions of use and acknowledgement.

Christian Humberto Cabrera Jojoa

June 2020

i

Abstract

Cities offer services to their citizens to improve their overall quality of life (e.g., education, or

health care services) and these services are frequently supported by digital information (e.g.,

library opening hours or hospital status) on the Internet. IoT devices have potential to further

enhance city services as they can provide additional digital information from direct interaction

with local urban spaces. These devices enable the collection of city and citizens’ context,

which may be useful to infer citizens’ needs. For example, a citizen at a bus stop is more

likely to need information about transportation city services. Service-oriented architectures

(SOAs) are commonly-used to manage the services provided by IoT devices and include

processes to register, discover, compose, execute, and monitor services. This thesis focuses

on the discovery process, which is challenging for IoT services because they are fundamentally

different from web services in the traditional Internet. In particular, the expected number of

services is much greater, which will impact discovery efficiency, and they work in dynamic

environments where distributed and adaptive architectures are more appropriate.

Existing research on IoT and service-oriented computing (SOC) improves discovery efficiency

by reducing search spaces, which is achieved by organising services into different groupings.

Different approaches organise services according to different service attributes, such as lo-

cation, or domain, which are captured in structures like overlays or hierarchies. However,

approaches that organise services based on their attributes still create large search spaces

where there are a large number of services, which is the case in smart cities. Moreover,

the supporting structures do not provide enough information to drive the discovery process.

For example, in a location-based approach, a request r1 might not get a response because

service s1, which is relevant to r1, is in a different geographic area. In addition, overlays or

hierarchical structures are static, but cities are dynamic and require continuous adaptation

of their information systems. There are adaptive service discovery approaches that react

to changes in service properties or the network topology, but they do not consider changes

in the real-world environments with which services interact. Finally, current approaches to

iii

service composition are limited when constituent services need to be discovered from large

IoT environments. Conversation-based approaches to service composition have good discov-

ery accuracy but require high human intervention to define composition plans in advance.

Interface-based approaches avoid human intervention but use expensive processes that affect

discovery latency and accuracy.

This thesis introduces uDiscovery, a distributed urban-centric model to support adaptive ser-

vice discovery, designed to be efficient and adaptable in smart city environments. uDiscovery

organises service descriptions based on urban-context. Gateways in a city environment recog-

nise their surrounding places and create search spaces only relevant for these places. This

urban context also drives service discovery by forwarding requests to gateways where they

are most likely to be solved. uDiscovery adapts the service organisation as the city evolves.

Each gateway recognises different city events as they occur and reacts to them by moving

services from other gateways. This self-adaptive organisation puts the right service at the

right place at the right time, in preparation for discovery. uDiscovery also includes a planner

that searches for services that constitute compositions. The planner uses consumers’ feedback

to drive a progressive search that improves both discovery latency and accuracy.

uDiscovery has been evaluated using a city simulation and an IoT test bed. Evaluation

metrics include the discovery success rate, discovery accuracy, discovery response time, and

the network overhead under varying number of services, and different mobility scenarios.

Results present both the strengths and limitations of the proposed service discovery model.

In general, uDiscovery outperforms baselines as it solves more requests with good accuracy

and latency, at the cost of higher network overhead.

iv

Acknowledgements

This thesis was made possible thanks to the support of many people. First, I would like

to thank my supervisor, Professor Siobhán Clarke, for her guidance and for all the valuable

advice in the research process. I would like to thank my colleagues Fan Li, Andrei Palade

and Gary White. Thank you for all your help over these past years and the learning that we

shared in the SURF project. Many thanks to all DSG members for their help and support.

Thanks to CIT people for their useful advice. I am grateful for the financial support from

Science Foundation Ireland, which has offered me the opportunity to study a Ph.D. in Dublin.

I would like to acknowledge the Trinity Centre for High-Performance Computing (TCHPC)

department funded by eINIS, for providing me with computational resources to run the

experiments for this thesis.

Thanks a lot to all my family and friends. In particular, I would like to thank with my heart

to my grandma Ligia, my mom Adela, my dad Humberto, and my siblings Catalina, Carolina

and Camilo for all their support and love. I would like to thank my beloved Viviana for all

the encouragement and support that I receive from her everyday. Last but not least, I would

like to thank the responsible for the universe for everything.

Christian Humberto Cabrera Jojoa

University of Dublin, Trinity College

June 2020

v

List of Publications

Christian Cabrera, Andrei Palade, Gary White, and Siobhán Clarke. ”An Urban-driven Ser-

vice Request Management Model”. In the International Conference on Pervasive Computing

and Communications (PerCom 2020). IEEE, 2020.

Christian Cabrera, and Siobhán Clarke. ”A Self-Adaptive Service Discovery Model for Smart

Cities”. IEEE Transactions on Service Computing, (TSC 2019).

Christian Cabrera, Gary White, Andrei Palade, and Siobhán Clarke. ”Services in IoT: A

Service Planning Model Based on Consumer Feedback”. In the International Conference on

Service-Oriented Computing (ICSOC 2018). Springer, 2018.

Christian Cabrera, Andrei Palade, Gary White, and Siobhán Clarke. ”The Right Service

at the Right Place: A Service Model for Smart Cities”. In the International Conference on

Pervasive Computing and Communications (PerCom 2018). IEEE, 2018.

Andrei Palade, Christian Cabrera, Fan Li, Gary White, M. A. Razzaque, and Siobhán Clarke.

”Middleware for Internet of Things: An Evaluation in a Small Scale IoT Environment.”

Journal of Reliable Intelligent Environments. Springer, 2018.

Christian Cabrera, Andrei Palade, and Siobhán Clarke. ”An Evaluation of Service Discovery

Protocols in the Internet of Things”. In the Symposium of Applied Computing (SAC 2017).

ACM, 2017.

Christian Cabrera, Fan Li, Vivek Nallur, Andrei Palade, M.A. Razzaque, Gary White, and

Siobhán Clarke. ”Implementing Heterogeneous, Autonomous, and Resilient Services in IoT:

An Experience Report”. In the International Symposium on A World of Wireless, Mobile

and Multimedia Networks (WoWMoM 2017). IEEE, 2017.

Contents

Declaration i

Abstract ii

Acknowledgements iv

List of Publications v

List of Figures x

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 Challenges . 2

1.2 Existing Solutions . 3

1.2.1 Service Organisation in IoT Environments 4

1.2.2 Service Planning in IoT Environments 5

1.2.3 Observations and Research Gap . 5

1.2.4 Research Questions and Hypothesis 6

1.3 Thesis Approach . 7

1.4 Thesis Contribution . 9

1.5 Thesis Scope . 11

1.6 Thesis Structure . 12

2 State of the Art 14

2.1 Services Organisation . 14

2.1.1 Device-based Organisation . 15

2.1.2 Overlay-based Organisation . 18

ix

2.1.3 Assessment . 18

2.2 Request Management . 19

2.2.1 Social-based Forwarding . 20

2.2.2 Bio-inspired Forwarding . 21

2.2.3 Assessment . 22

2.3 Service Matchmaking . 23

2.3.1 Non-Composition Support . 23

2.3.2 Composition Support . 25

2.3.3 Assessment . 28

2.4 Dynamic Environments Management . 29

2.4.1 Device-based Adaptation . 29

2.4.2 Network-based Adaptation . 30

2.4.3 Usage-based Adaptation . 31

2.4.4 Assessment . 32

2.5 Summary . 32

3 Design 35

3.1 Design Objectives and Required Features . 35

3.2 System Model . 36

3.3 Design Decisions . 38

3.3.1 Services Organisation . 38

3.3.2 Requests Management . 40

3.3.3 Service Planning . 41

3.4 uDiscovery . 43

3.4.1 Urban-based Service Discovery Model 44

3.4.2 Self-adaptive Service Discovery Model 58

3.4.3 Service Planning based on Consumers’ Feedback 68

3.5 Design Summary . 77

4 Implementation 79

4.1 uDiscovery Architecture . 79

4.1.1 uDiscovery Data Model . 82

4.1.2 uDiscovery Class Diagram . 86

4.2 Urban-based Service Management . 89

4.2.1 Initialisation Management . 89

x

4.2.2 Service Organisation . 90

4.2.3 Requests Resolution . 91

4.3 Self-adaptive Service Management . 93

4.3.1 Unforeseen Events Adaptation . 93

4.3.2 Scheduled Events Adaptation . 94

4.3.3 Periodic Events Adaptation . 94

4.4 Implementation Summary . 95

5 Evaluation 98

5.1 Evaluation Approach . 98

5.1.1 Simulation-based Evaluation on Service Discovery Efficiency 99

5.1.2 Prototype-based Evaluation . 102

5.1.3 Data Set Definition . 102

5.1.4 Statistical Analysis . 103

5.2 Simulation-based Evaluation on Service Discovery Efficiency 105

5.2.1 Experimental Set-up . 105

5.2.2 Baseline Approaches . 106

5.2.3 General Service Discovery Efficiency Study 106

5.2.4 Unforeseen Events Study . 119

5.2.5 Scheduled Events Study . 126

5.2.6 Periodic Events Study . 133

5.3 Prototype-based Evaluation . 143

5.3.1 Experimental Set-up . 144

5.3.2 Baseline Approaches . 144

5.3.3 Prototype-based Study . 145

5.4 Evaluation Summary . 151

6 Conclusion 153

6.1 Thesis Summary . 153

6.2 Discussion . 155

6.2.1 Thesis Contributions . 155

6.2.2 Urban-context Dependency . 157

6.2.3 Periodic Events Management . 157

6.2.4 Network Efficiency . 158

6.2.5 Interface-based Planning . 158

xi

6.2.6 Concurrent Consumers’ Requests . 159

6.3 Future Work . 159

A Algorithms’ Parameters 162

A.1 Location-based Approach Parameters . 163

A.2 Domain-based Approach Parameters . 170

A.3 uDiscovery Parameters . 177

A.4 Heuristic Planner Parameters . 184

Bibliography 189

xii

List of Figures

1.1 Smart City Environment. 8

1.2 uDiscovery - High Level Architecture. 9

2.1 Structure of the State of the Art Review. 15

2.2 State of the art review diagram. 33

3.1 uDiscovery - Data Formats. 37

3.2 uDiscovery - Design Decisions Map. 42

3.3 uDiscovery - High Level Architecture. 43

3.4 uDiscovery - Urban-based Service Manager Architecture. 44

3.5 uDiscovery - Service Discovery Knowledge Model. 45

3.6 uDiscovery - Request Manager Processes. 54

3.7 uDiscovery - Self-adaptive Service Manager Architecture. 58

3.8 uDiscovery - Self-Adaptive Manager Processes. 62

3.9 uDiscovery - City States Model. 66

3.10 uDiscovery - Service Planner Architecture. 69

3.11 uDiscovery - Services Plans. 70

3.12 uDiscovery - Service Planner Processes. 72

3.13 uDiscovery′s features compared to closest approaches. 76

4.1 uDiscovery - Detailed Architecture. 80

4.2 uDiscovery - Urban based Service Manager Data Model. 83

4.3 uDiscovery - Self-Adaptive Service Manager Data Model. 84

4.4 uDiscovery - Heuristic Service Planner Data Model. 85

4.5 uDiscovery - Classes Diagram. 87

4.6 uDiscovery - Initialisation Sequence Diagram. 90

4.7 uDiscovery - Registration Sequence Diagram. 91

xiii

4.8 uDiscovery - Discovery Sequence Diagram. 92

4.9 uDiscovery - Unforeseen Events Management Sequence Diagram. 94

4.10 uDiscovery - Scheduled Events Management Sequence Diagram. 95

4.11 uDiscovery - Periodic Events Management Sequence Diagram. 96

5.1 Data Formats. 103

5.2 Utility Function: General service discovery efficiency with variable number of

services and different mobility scenarios. 109

5.3 Service Discovery Metrics - General service discovery efficiency with variable

number of services and different mobility scenarios. 110

5.4 Utility Function: General service discovery efficiency with variable number of

gateways and different mobility scenarios. 113

5.5 Service Discovery Metrics - General service discovery efficiency with variable

number of gateways and different mobility scenarios. 114

5.6 Statistical Test on General Service Discovery Efficiency with Variable Number

of Services: Multiple Comparison of Ranked Means. 117

5.7 Utility Function: Unforeseen Events Study. 121

5.8 Service Discovery Metrics - Unforeseen Events Study. 122

5.9 Statistical Test Unforeseen Events Study: Multiple Comparison of Ranked

Means. 125

5.10 Utility Function - Scheduled Events Study. 129

5.11 Service Discovery Metrics - Scheduled Events Study. 130

5.12 Statistical Test Scheduled Events Study: Multiple Comparison of Ranked Means.132

5.13 Utility Function: Periodic Events Study with Different Neural Network Con-

figurations. 137

5.14 Utility Function - Periodic Events Study with different approaches. 138

5.15 Service Discovery Metrics - Periodic Events Study with different approaches. 139

5.16 Statistical Test Periodic Events Study: Multiple Comparison of Ranked Means.142

5.17 IoT Test bed. 143

5.18 Prototype-based Study Results. 146

5.19 Statistical Test Prototype-based Study: Multiple Comparison of Ranked Means.149

A.1 Location-based Approach: Rate of solved requests heat maps with 100 gateways.164

A.2 Location-based Approach: Comparison of solved requests with 100 gateways. 165

A.3 Location-based Approach: Rate of solved requests heat maps with 300 gateways.166

xiv

A.4 Location-based Approach: Comparison of solved requests with 300 gateways. 167

A.5 Location-based Approach: Rate of solved requests heat maps with 500 gateways.168

A.6 Location-based Approach: Comparison of solved requests with 500 gateways. 169

A.7 Domain-based Approach: Rate of solved requests heat maps with 100 gateways.171

A.8 Domain-based Approach: Comparison of solved requests with 100 gateways. . 172

A.9 Domain-based Approach: Rate of solved requests heat maps with 300 gateways.173

A.10 Domain-based Approach: Comparison of solved requests with 300 gateways. . 174

A.11 Domain-based Approach: Rate of solved requests heat maps with 500 gateways.175

A.12 Domain-based Approach: Comparison of solved requests with 500 gateways. . 176

A.13 uDiscovery Approach: Rate of solved requests heat maps with 100 gateways. 178

A.14 uDiscovery Approach: Comparison of solved requests with 100 gateways. . . . 179

A.15 uDiscovery Approach: Rate of solved requests heat maps with 300 gateways. 180

A.16 uDiscovery Approach: Comparison of solved requests with 300 gateways. . . . 181

A.17 uDiscovery Approach: Rate of solved requests heat maps with 500 gateways. 182

A.18 uDiscovery Approach: Comparison of solved requests with 500 gateways. . . . 183

A.19 uDiscovery Planner: Results Experiment Scenarios. 186

A.20 uDiscovery Planner: Comparison of Scenarios Ranked Means. 187

xv

List of Tables

3.1 Urban-based Service Discovery Model Parameters. 44

3.2 Ontology Relations R. 47

3.3 Ontology Axioms A. 48

3.4 Self-adaptive Service Discovery Model Parameters. 59

3.5 Heuristic Service Planner Parameters. 70

5.1 Mapping of Research Questions to Evaluation Studies. 100

5.2 Requests Data Set Size. 104

5.3 Experiments Parameters for General Service Discovery Efficiency Study. . . . 107

5.4 Experiments Parameters for Unforeseen Events Study. 119

5.5 Experiments Parameters for the Scheduled Events Study. 127

5.6 Experiments Parameters to Evaluate uDiscovery. 134

5.7 Experiments Parameters for Approaches’ Periodic Events Management. . . . 135

5.8 Experiments Design Composition Support Study. 144

A.1 Experiments Parameters Location-based Approach 163

A.2 Experiments Parameters Domain-based Approach. 170

A.3 Experiments Parameters uDiscovery Approach. 177

A.4 Experiments Parameters uDiscovery Planner. 184

xvii

List of Abbreviations

6LowPAN IPv6 over Low-Power Wireless Personal Area Networks

AAL Ambient Assisted Living

ACO Ant Colony Optimisation

APFs Artificial Potential Fields

ASPs Autonomous Service Providers

BPMN Business Process Model and Notation

CCN Content Centric Networking

CoAP Constrained Application Protocol

DHT Distributed Hash Table

DL4J Deep Learning for Java

DNS Domain Name Server

DOI Digital Object Identifier

DQN Deep Q-Network

HTTP HyperText Transfer Protocol

I/O Input/Output

ICN Information-centric Network

ICO Internet Connected Object

IoT Internet of Things

JSON JavaScript Object Notation

MANETs Mobile Ad-hoc Networks

MDP Markov Decission Process

MQTT Message Queuing Telemetry Transport

NDN Named Data Networking

OSGi Open Service Gateway Initiative

OSM Open Street Map

OWL Web Ontology Language

P2P Peer to Peer

PHT Prefix Hash Table

QA Question Answer

QoS Quality of Service

REST Representational state transfer

RL Reinforcement Learning

SOA Service Oriented Architecture

SOC Service Oriented Computing

UDDI Universal Description, Discovery, and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

WSDL Web Services Description Language

WSNs Wireless Sensor Networks

XML Extensible Markup Language

xx

Chapter 1

Introduction

Smart cities are urban spaces, which offer advanced and innovative services to improve cities’

sustainability and citizens’ quality of life [Piro et al., 2014, Borgia, 2014]. The Internet of

Things (IoT) has the potential to integrate a large number of IoT devices with urban spaces to

realise the smart city vision. Such IoT devices can sense data and perform actions to support

city services (e.g., a multi-modal transport service), and citizens’ daily activities (e.g., a

visit to a tourist place) [Al-Fuqaha et al., 2015]. The interaction between IoT devices and

the physical world creates cyber-physical systems, which have enormous potential in different

domains such as mobility, tourism, energy, safety, environment, and health care [Petrolo et al.,

2016b]. Cities must manage the large number of IoT devices to realise the potential and offer

efficient, highly available, reliable, and secure applications. Service oriented architectures

(SOAs) are commonly used to manage IoT devices by abstracting devices’ capabilities as

IoT services [Teixeira et al., 2011]. Services are self-contained pieces of software that offer a

functionality with a specified output (e.g., a service that reports the wind speed in the city

centre). SOAs include processes to register, discover, compose, execute, and monitor services,

enabling the development of flexible applications [Papazoglou and Georgakopoulos, 2003].

Service discovery is a key process in SOAs that locates relevant services for a given request,

based on a description of their functional and non-functional requirements [Klusch, 2014].

Service discovery is also a fundamental requirement in IoT platforms because such platforms

must locate devices and their capabilities before using them [Datta et al., 2015].

Service discovery has been widely explored in the web services domain. However, service

discovery in smart cities presents different challenges. The IoT encapsulates millions of de-

vices that communicate and enable new forms of interaction among things and people [Cirani

et al., 2018]. This large scale generates enormous search spaces where efficient discovery is

1

Chapter 1. Introduction

difficult. In addition, cities are continuously changing, which affects the interaction between

different entities (e.g., an unforeseen closed street that affects pedestrians’ mobility) [Tran

et al., 2017]. The discovery process must maintain good performance over time, but it is

challenging because cities are continuously changing, and a large number of IoT devices are

deployed in large geographic areas. Citizens’ requests are also likely to be complex and may

require the combination of different services (i.e., service composition) [Lemos et al., 2016]. It

is difficult to efficiently discover services that constitute a composition in large environments

because there are likely to be multiple possible services combinations. In addition, the accu-

rate discovery of such services combinations requires a considerable input from consumers,

which is not feasible in large-scale IoT scenarios [Wang and Chow, 2016].

1.1 Challenges

IoT environments have significant challenges for service discovery [Fathy et al., 2018, Pattar

et al., 2018, Tran et al., 2017]. In particular, service discovery in smart cities faces:

Challenge 1: A large number of services

The IoT connects millions of devices, which augurs well for the future of smart cities.

However, cities must manage the large number of services that encapsulate these de-

vices’ capabilities [Fathy et al., 2018]. In particular, a discovery process will need to

efficiently search for services in large environments [Pattar et al., 2018].

Challenge 2: Dynamic environments

Cities evolve over time because of the interactions between different entities (e.g., cit-

izens, city places, etc.). Information systems that support a city must adapt to its

evolution. Service management, including service discovery, must be adaptive to sat-

isfy cities and consumers’ changing needs [Fathy et al., 2018, Tran et al., 2017].

Challenge 3: Complex consumer requirements

Service consumers might have complex requirements that require service composition

(i.e., a combination of existing services). It is difficult to discover the most appropriate

set of services to constitute such compositions because of the potentially large number

of available services [Pattar et al., 2018].

Challenge 4: Limited consumer input

Consumers can provide rich request descriptions as input to the discovery process in

Chapter 1. Introduction

traditional environments. This input might help to improve the search accuracy by

driving a more informed process. However, consumers are not likely to provide rich

inputs in IoT as they will have limited knowledge about all available services in large

environments [Wang and Chow, 2016]. Service discovery in IoT must be efficient with

limited input from consumers.

1.2 Existing Solutions

Approaches to service discovery in IoT have proposed semantic methods to offer accurate

discovery. Logic techniques are used to describe and match services [Perera et al., 2014b,

Zhao et al., 2015, Quevedo et al., 2016]. Although these solutions offer good accuracy,

latency is negatively impacted because ontologies must be queried to compare services and

requests. Non-logic approaches [Cassar et al., 2014] offer better latency, but accuracy is

affected because syntactic matching can introduce false positives. There is a trade-off between

search accuracy and latency that needs to be balanced to offer an efficient service discovery.

IoT environments also require methods to discover services that constitute compositions.

Service planning mechanisms have been proposed to discover services as constituents of a

service composition [Georgievski and Aiello, 2017]. However, current planning approaches

either need high input from consumers to offer accurate search, or have performance issues

when automating the process. Strategies to address the identified trade-off and current service

planning approaches are discussed below.

1.2.1 Service Organisation in IoT Environments

Previous research has tried to balance the trade-off between search accuracy and perfor-

mance by reducing the size of search spaces through sensible organisation of services [He

et al., 2013, Fredj et al., 2014, Dasgupta et al., 2014a, Wang et al., 2015]. Such organisations

create overlays or hierarchies, which are centred on service attributes such as service loca-

tion [Andreini et al., 2011, Fredj et al., 2013, Wang et al., 2015, Lunardi et al., 2015], service

type [Paganelli and Parlanti, 2012, Ebrahimi et al., 2017, Lee and Lee, 2018], or service do-

mains [Dasgupta et al., 2014a, Bharti et al., 2018, Sivrikaya et al., 2019]. Requests are solved

according to these structures, which are smaller search spaces than the whole set. These

approaches are designed for smaller scenarios where scalability issues are not as significant as

in a city. For example, a city can have a large number of services that belong to the weather

domain, which means that large search spaces are still generated if services are organised by

domain. Moreover, approaches based on service attributes do not provide enough informa-

Chapter 1. Introduction

tion to drive the discovery process. For instance, in a location-based approach, a request r1

might not get a response because service s1, which is relevant to r1, is in a different geo-

graphic area. Finally, these approaches assume static environments that do not change. They

produce an organisation of services’ information that gets outdated, which then impacts dis-

covery accuracy and performance. For example, an unforeseen flooding event might increase

the demand for emergency services in a given city area. But, static architectures might not

have information about emergency services in the flooded area. The complexity of searching

for services in large environments lies in the strategies to organise services in distributed

structures [Tran et al., 2017]. Approaches that organise services based on service attributes

are limited and do not exploit the contextual information offered by cities. Solutions that use

the city and citizens’ information can offer more efficient service discovery [Zhou et al., 2016].

The discovery of services should also respond to a city’s evolution, adapting the organisation

of services information around the city [Tran et al., 2017]. In particular, the use of the spatial

and temporal data of the city is a promising direction [Pattar et al., 2018].

Self-adaptive approaches have been proposed to handle dynamic IoT scenarios. Self-adaptation

has been triggered by changes in the ”thing” properties (e.g., battery level) [Albalas et al.,

2017, Guerrero-Contreras et al., 2017] or network topology [Ebrahimi et al., 2017, Yuan et al.,

2018]. These approaches do not consider the changes of the environments with which IoT ser-

vices interact (e.g., cities). Self-adaptive discovery mechanisms are needed to support smart

cities. These mechanisms should create IoT networks of devices that collaborate with each

other to exchange data and services [Fathy et al., 2018].

1.2.2 Service Planning in IoT Environments

A composition process transforms consumer requests into the execution of a set of ser-

vices [Lemos et al., 2016]. A service plan defines the services to be executed but the discovery

of constituent services is challenging in IoT because of the large number of possible services

in the environment [Cabrera et al., 2017]. Current planning approaches in IoT can be clas-

sified as conversation-based, or interface-based [Urbieta et al., 2017]. Service conversations

use process models [Thiagarajan et al., 2002] to represent service plans, which are manually

defined by consumers [Klein and Bernstein, 2004]. Such manual definition is not feasible in

IoT because consumers cannot know about all available services. Interface-based approaches

automate the creation of service plans, but incorrect services can appear, affecting search

accuracy [Urbieta et al., 2017]. For example, a service s1 that provides readings about wind

speed and a service s2 that consumes data of buses speeds are likely to match because the

Chapter 1. Introduction

output type of s1 is equivalent to the input type of s2 (i.e., both are speeds). Search latency is

also impacted by large search spaces and exhaustive exploration of all possible services com-

binations. Novel planning mechanisms for IoT should include historical data in progressive

searches, with sensible ranking methods [Pattar et al., 2018].

1.2.3 Observations and Research Gap

There are two observations that drive this research. First, traditional approaches organise

services according to their attributes in static structures. These structures do not provide

enough information to support efficient service discovery and they can easily get outdated

in dynamic IoT environments. Second, current service planning approaches are not suitable

for smart cities because large environments affect their performance, and they require high

input from consumers or have search accuracy issues. The efficient discovery of IoT services

in smart cities remains an open challenge. Service discovery models for the IoT in large and

dense geographic areas such as cities, should provide:

1. Smart organisation of services. Services should be organised in distributed architectures

closer to the edge to provide wide coverage [Tran et al., 2017]. Such architectures should

exploit city context to manage and adapt such massive IoT architectures [Zhou et al.,

2016, Pattar et al., 2018, Fathy et al., 2018].

2. Efficient Service Planning. Service planning processes should minimise consumers’

input and still provide good search accuracy. Service planning should include historical

data in progressive searches [Pattar et al., 2018].

1.2.4 Research Questions and Hypothesis

Considering the large scale of IoT services in smart cities, the dynamic nature of cities, and

the likely complex consumers’ requests, this thesis explores the question of to what extent

can the use of city and citizens’ context support an efficient service discovery in dynamic and

large smart city environments.

This thesis proposes two complementary hypotheses to respond to this question:

H.1 Urban context improves service discovery efficiency when it drives an adaptive and

distributed organisation of services in large geographic environments.

H.2 Service planning based on consumers’ feedback improves both search accuracy and

latency.

Chapter 1. Introduction

These hypotheses lead to more specific research questions as follows:

RQ.1 To what extent can the use of urban context to organise services’ information

improve service discovery efficiency in the presence of a large number of services in

smart cities environments?

RQ.2 To what extent can the use of urban context to adapt the services’ organisa-

tion maintain or improve service discovery efficiency over time in dynamic smart cities

environments?

RQ.3 To what extent can the use of consumers’ feedback to search for services improve

service discovery efficiency, and minimise human input when responding to complex

consumer’s requirements?

1.3 Thesis Approach

The following objectives are proposed based on the hypotheses and the state of the art

analysis:

O.1 The organisation of services reduces search spaces at discovery time. Previous

approaches use service attributes to group services but they do not exploit cities or

citizens’ information. This work aims to identify and formalise the contextual data

that SOAs can use to support efficient service discovery in smart cities.

O.2 The inclusion of city and citizens’ information requires architectures with capabil-

ities to capture, process, and exploit this data to manage services based on this new

context. This work’s goal is to design a service model that uses the identified context

to organise services information and drive an efficient discovery.

O.3 Citizens might have requests that require service composition. The discovery

process must search for services that constitute such compositions. The large number

of services in IoT environments negatively impacts the accuracy and latency of current

approaches. This work aims to design a search model to support service composition

in IoT environments based on a progressive search.

Assumptions

1. Cities are entities that offer services to citizens (e.g., transport services). These services

are offered in different places and can be supported by software services that deliver

useful information (e.g., bus station schedule).

Chapter 1. Introduction

Figure 1.1: Smart City Environment.
MGW: Mobile Gateway, SGw: Static Gateway

2. Citizens are mobile through the city and can request software services to support their

activities (e.g., a citizen may want to know which is the best transport mode to go

home from the city centre).

3. Software services must be discovered and composed to meet user requests and integrate

different providers. A network of IoT gateways covers the city and manages services

and requests in a distributed fashion (Figure 1.1).

4. Gateways can be static or mobile. Static gateways (e.g., a dedicated device installed in

a city point) have Ethernet and WiFi interfaces to communicate with other gateways,

service providers, and service consumers. Mobile gateways (e.g., a device installed in a

bus) have a WiFi interface to communicate with other gateways, service providers, and

service consumers. Each gateway stores services descriptions in a local registry, and

has access to information about its surrounding city places.

5. Services can be registered from different providers (i.e., web services, WSN services,

and autonomous services1) and their descriptions are defined as sdesc = 〈id, I, O,D〉,

consisting of a service identifier, inputs’ types, outputs’ types, and domains. For exam-

1We consider Autonomous Service Providers (ASPs) as providers that can decide when to act as providers
(e.g., a smart phone configured by a user to offer noise level information about the environment, in a given
time period), and that are likely to be mobile.

Chapter 1. Introduction

ple, a service that calculates a tourist path belongs to the tourist domain, consumes a

string of tourist interests and produces a tourist path in XML format.

6. Each gateway can receive requests from consumers and search for services in the local

registry to solve them. A consumer request is defined as r = 〈I,O,D〉, consisting of

request inputs’ types, outputs’ types and domains. For example, a request for a tourist

path calculator should include the tourist domain, string as input type and XML as

output type.

1.4 Thesis Contribution

uDiscovery

Urbanbased
Service
Manager

Selfadaptive
Service
Manager

Local
Repository

Heuristic
Service Planner

Request

Register Services &
Store Feedback Search for

Services

Update Repository

Consumers

Providers

Service
Request

Service
Description

Response
Feedback

Urban
Context

Advertise Services
Forward Requests

Move Services
City

Figure 1.2: uDiscovery - High Level Architecture.

This thesis proposes uDiscovery, a distributed urban-centric model to support efficient ser-

vice discovery in smart cities. uDiscovery enables gateways in the city to recognise their

surrounding places and formalise their information as urban context. uDiscovery drives an

adaptive discovery process by forwarding requests to search spaces where they are most likely

to be solved. Figure 1.2 introduces the architecture of uDiscovery, which is composed by

four main components. The service manager receives service descriptions from providers and

either stores services information in the local registry or advertises it to other IoT gateways

based on the urban context captured from a city. This component also receives requests from

consumers. It tries to solve requests using a service planner that searches for services in the

local repository based on consumers’ feedback. If requests are solved locally, uDiscovery

returns the response to consumers and waits for their feedback, which is stored in the local

registry. Otherwise, uDiscovery forwards requests to other IoT gateways in the network.

The self-adaptive service manager updates the local repository by moving services between

IoT gateways according to city events.

This research contributes to the body of knowledge as follows:

Chapter 1. Introduction

• Urban-based service discovery model

Existing work in service discovery does not exploit information offered by cities to man-

age services and drive the discovery process. They organise services based on simple

services attributes such as location or domain, which might not provide enough infor-

mation to support efficient service discovery in large IoT environments. uDiscovery

uses urban information to support service discovery in smart cities. It puts informa-

tion about the right service in the right place, in preparation for discovery. Service

information is distributed according to urban places and their meaning in the city (i.e.,

urban context). The idea is that citizens’ requests are influenced by where they are.

For example, it is more likely that people near to a college ask for educational services.

Then, gateways on or near to the college should store services for educational services.

This model also allows smart replication of services information to improve its avail-

ability. For example, two colleges in different locations of the same city could share

educational services information. The urban context is managed in a knowledge model

that includes smart city concepts and is used to build semantic overlays of gateways at

registration, and discovery time. This knowledge model is independent of the service

discovery domain and can be used to solve different smart city issues.

• Support for self-adaptive service discovery

Existing research organises services in structures that do not respond to changes in the

environment where they work. Environment changes negatively impact discovery effi-

ciency because they cause outdated structures that no longer have the required services

information. uDiscovery responds to the city’s evolution, adapting the distribution of

services around the city according to city events. uDiscovery proposes a novel self-

adaptive discovery model for smart cities that offers the right service in the right place,

at the right time. Service information distribution evolves according to city events

which may be unforeseen (e.g., flash flooding), foreseen (e.g., a cultural event), or peri-

odic (e.g., city peak hours). uDiscovery formalises the temporal dimension of the city

in the knowledge model and proposes mechanisms to identify and react to city events

by exchanging services between IoT gateways.

• Service planning based on consumers’ feedback

Current approaches that search for services and support service composition in IoT

either need high level of consumer’s input or reduced knowledge implies the discovery

process is likely to take longer in large IoT environments. Such environments require

Chapter 1. Introduction

efficient planning methods with minimal input from consumers because consumers can

not know about all available services. uDiscovery proposes a heuristic service plan-

ner that uses consumer feedback to improve search efficiency, minimising the level of

consumers’ input. Consumer feedback (i.e., historical data from previous searches) de-

termines if a discovered plan was correct or incorrect and is used to improve search

accuracy. The latency of the process is reduced using two strategies. First, the model

explores only the most promising plans (i.e., search space reduction). Second, the model

avoids wasting time on the less promising plans (i.e., progressive search).

1.5 Thesis Scope

uDiscovery uses urban context (i.e., city places, and city events information) to support adap-

tive service discovery. IoT environments that do not have the required urban context are out

of the scope of this research. For example, indoor IoT scenarios such as smart buildings [Wang

et al., 2015, Bovet and Hennebert, 2014] or ambient computing environments [Mokhtar et al.,

2010, Görgü et al., 2017], and smaller networks of sensors (i.e., WSNs) [Butt et al., 2013, Per-

era et al., 2014b, Fredj et al., 2014]. However, uDiscovery′s service planner can be used in

domains other than smart cities to discovers services, which constitute compositions.

uDiscovery manages service which are described following a specific format. In particu-

lar, the management of heterogeneous services is outside the scope of this thesis. There

are two alternatives that could enable uDiscovery to manage heterogeneous services: the

development of modular mechanisms that support different data formats [Kovacevic et al.,

2010, Görgü et al., 2017], and the semantic enrichment of services descriptions using machine

learning techniques [Cassar et al., 2014].

uDiscovery searches for services following a goal-driven approach, which generates service

plans that specify the set of services to be executed and its order. The actual execu-

tion and provision of these services are outside the scope of this research. Different ap-

proaches [Georgievski and Aiello, 2017, Palade et al., 2018] can support the execution and

provision of service plans that uDiscovery creates. Alternative approaches to compose ser-

vices [Boubiche et al., 2018] such as clustering or aggregation are also outside the scope as

uDiscovery follows the goal-driven approach.

uDiscovery selects services from a functional perspective and does not take into account non-

functional requirements (i.e., QoS attributes). These QoS attributes might also be variable

and require special management, which is outside the scope of this work. Current research

Chapter 1. Introduction

on QoS management and prediction [White et al., 2017] could enable uDiscovery to manage

QoS information in IoT environments.

uDiscovery creates an open environment where different providers and consumers can expose

sensible data. Security and privacy concerns with regard to these open environments [Kozlov

et al., 2012] are out of the scope of this thesis. Different security mechanisms[Ammar et al.,

2018] can be used to protect providers and consumers data. Moreover, novel policies from

authorities are also needed to regulate such IoT environments.

1.6 Thesis Structure

The remainder of this thesis is organised as follows:

State of the art Chapter 2 analyses how state of the art service discovery approaches address

the challenges of large-scale of services in dynamic environments. In particular, this chapter

analyses a) how large number of services are managed, b) how this management responds

to dynamic environments, c) the efficiency of the discovery process, and d) how consumers’

requests are addressed when they require service composition.

Design Chapter 3 describes the design objectives, system model, and design decisions of

this thesis according to the service discovery challenges outlined in Chapter 1. It explains

how urban-context is extracted and managed. Then, the chapter presents how a network

of gateways is initialised, maintained, and used to drive both the organisation of services

and the discovery process. It also shows how the organisation adapts to the city simulated

environment. Finally, the chapter provides details with regard to the planner that discovers

service plans to support service compositions.

Implementation Chapter 4 describes the implementation of uDiscovery according to the

design outlined in Chapter 3. It presents the structure, behaviour, and interactions of

uDiscovery′s components.

Evaluation Chapter 5 evaluates how well uDiscovery achieves its objective of efficient service

discovery in smart cities. It first describes the experimental set-up of the evaluation. The

second part of the chapter presents and analyses of the results showing that uDiscovery is a

suitable alternative for service discovery in smart cities.

Conclusion Chapter 6 concludes this thesis. It discusses uDiscovery′s contributions and

limitations, and highlights areas for future work.

Chapter 2

State of the Art

This chapter reviews current research that explores service discovery in large and dynamic

environments. Existing surveys analyse service discovery in web services [Klusch et al.,

2015, Lemos et al., 2016], and IoT domains [Zhou et al., 2016, Bröring et al., 2016, Georgievski

and Aiello, 2017, Tran et al., 2017, Pattar et al., 2018, Fathy et al., 2018]. This chapter ex-

tends these surveys by analysing to what extent existent work meets efficient service discovery

in large and dynamic environments such as a smart city. This review follows the structure

described in the Figure 2.1, which is based on the challenges identified in Section 1.1. This

chapter reviews how large numbers of services are managed by analysing approaches’ archi-

tectures and data management strategies. It then assesses how the works address consumers’

requests and how they support service composition. Finally, this chapter reviews how ap-

proaches respond to dynamic environments.

Services
Organisation

Request
Management

Service
Matchmaking

Dynamic
Environments
Management

Devicebased

Overlaybased

Socialbased

Bioinspired

NonComposition
Support

Composition
Support

Devicebased

Networkbased

SERVICE DISCOVERY PROCESS

Usagebased

Figure 2.1: Structure of the State of the Art Review.

13

Chapter 2. State of the Art

2.1 Services Organisation

How approaches manage services information has an important influence on the service dis-

covery efficiency. Sensible organisation of service descriptions has the potential to enable

efficient discovery by creating reduced and relevant search spaces, under a determined cri-

teria [Zhou et al., 2016]. First approaches in web service discovery used centralised and

decentralised directories (e.g., UDDI) to store and search services using WSDL or REST

descriptions [Walsh, 2002, Klusch, 2014]. IoT environments challenges these web service

discovery by creating large and dynamic environments, where the organisation of services

plays a key role to offer efficient service discovery. Current research has proposed to organise

service descriptions based on devices’ attributes, or network overlays. Services with similar

values for a given attribute in the service description are grouped, when services are organised

based on devices’ attributes (e.g., spatial attributes) [Fathy et al., 2018]. Approaches based

on overlays create P2P networks based on distributed hash tables (DHTs). A DHT maps the

search space to a numeric range and then allocates directories to parts of that range [Bröring

et al., 2016]. Fully distributed architectures can organise services by creating communities

according to nodes social properties (e.g., nodes’ interactions) [Atzori et al., 2011]. These

social-based approaches are analysed later in Section 2.2, as the data dissemination and for-

warding are the key concerns in such approaches. There are approaches that organise services

in adaptive structures that react to changes in devices’ properties or network topology. These

approaches are analysed in Section 2.4.

2.1.1 Device-based Organisation

Fredj et al. [Fredj et al., 2013, Fredj et al., 2014] propose a model to cluster and aggregate

services according to the device’s location. This approach relies on a hierarchical network

of gateways that represent different smart spaces in indoor environments and host semantic

service descriptions. Gateways are connected in a tree topology, where the lowest level rep-

resents spaces containing physical connected devices (e.g., a room). Upper-levels represent

spaces that include lower-levels (e.g., floors or buildings). This hierarchy is used to create

routing tables that determine requests’ forwarding at discovery time. Consumers send re-

quests that are solved by gateways at the lowest hierarchy level. COBASEN is a context

based search engine for industrial IoT [Lunardi et al., 2015]. COBASEN organises devices

according to their properties (i.e., location, type, purpose, status, and measurement units)

using an inverted index to improve search response time. COBASEN searches for services in

Chapter 2. State of the Art

a centralised repository using key words. Consumers filter, configure, and define aggregations

between IoT resources after they are discovered. SMARTSPACE [Dasgupta et al., 2014b] is a

distributed multi-agent middleware. This middleware is distributed into a system of federated

registries where a service discovery algorithm searches for services. This algorithm creates

clusters of services that have similar functional features by comparing their signatures (i.e.,

input and outputs parameters). SMARTSPACE encodes each cluster in a hierarchical struc-

ture that agents use to forward requests through registries and reduce search spaces. Wang

et al. [Wang et al., 2015] propose a geospatial index for sensor discovery. Sensors deployed

on buildings are grouped using binding boxes and R-tree indexes. GeoNames and indoor

location ontologies are used to semantically describe sensors. Consumers send queries, which

include consumers’ requirements and spatial information. This spatial information is used to

select gateways that contain information about sensors that meet consumers’ queries. Then,

queries are forwarded to the selected gateways, which perform a semantic search and send the

response to consumers. Jo et al. [Jo et al., 2015] propose to distribute services information in

a hierarchical structure managed through bloom filters to support mobile IoT environments.

Bloom filters reduce the configuration cost and the number of exchanged messages to update

information about mobile services. A hierarchy for each capability in the environment is built

that starts from high level tasks in upper levels to resources capabilities in low levels. Bloom

filters encode each level in the hierarchy in a bit array that is used to discover services.

Fathy et al. [Fathy et al., 2017] present a spatial indexing approach to manage data in

the IoT. This model organises IoT resources in a distributed architecture by encoding their

location on geohashes that group resources that are geographically close. Geohashes are

one-dimensional representations of two-dimensional spatial coordinates, which create a hier-

archical structure that divides the geographic areas recursively into bounding boxes until the

required resolution is achieved. Adjacent locations share a similar prefix in their geohashes,

which simplifies searching by spatial attributes. Hoseinitabatabaei et al. [Hoseinitabatabaei

et al., 2018] propose an indexing approach for IoT lookup. Each IoT source attribute (e.g.,

sensor type or sensor location) has a mathematical representation that is easy to maintain

and provides enough information for the search process. Indices support exact queries by

type (e.g., get temperature) and location (i.e., coordinates). The search process retrieves the

list of gateways that manage sensors of the required type in the specified location. Lee and

Lee [Lee and Lee, 2018] propose a model to cluster IoT services. This model groups similar

services based on their attributes. Four criteria are applied to classify services: the sensor

properties criterion (i.e., power, transmission, and operation), the data management crite-

Chapter 2. State of the Art

rion (i.e., pre-processing, data store, transmission and trust), the data processing criterion

(i.e., parallel, analysis models, and manipulation models) and the execution criterion (i.e.,

post-processing). This model has a graphic interface where users specify the values for each

criteria to classify services. Bharti et al. [Bharti et al., 2018] propose a resource discovery

model that groups contextual information into clusters to support efficient search. This model

organises services based on resources metadata that includes object identification, availability

and computation capability. It applies different similarity measures coefficients (i.e., Cosine

similarity, Dice similarity, Euclidean similarity, and Jaccard similarity) to create disjoint sets

of similar objects. The approach analyses requests to extract input parameters, match them,

and determine the list of similar clusters where to search. The Internet of Smart City Ob-

jects (ISCO) project [Sivrikaya et al., 2019] proposes a framework to connect smart objects

from different domains through an open and extensible platform. This platform includes

a distributed service directory that organises services in an information-centric networking

(ICN) overlay. Each directory contains smart city objects which are semantically described

by city domains, devices’ types, and non-functional attributes such as location. This semantic

model aims to reduce the amount of returned objects for discovery and planning operations,

by grouping objects according to their attributes. This overlay is used at registration and

discovery time to replicate service descriptions, solve requests.

2.1.2 Overlay-based Organisation

Paganelli et al. [Paganelli and Parlanti, 2012] present a DHT-based approach for service dis-

covery. This approach distributes services according to their functionality using a prefix hash

tree (PHT). This structure relies on the DHT lookup operation to insert and retrieve service

descriptions. This approach handles multiattribute and range queries, which are solved by

exact matching. Chord4S [He et al., 2013] is a P2P approach that supports QoS-aware service

discovery. Chord4S distributes services’ information according to their functionality. Similar

services are stored in different successor nodes in the chord ring. Queries for a given service

are forwarded to the relevant set of successors nodes. Services that meet QoS requirements

are selected once they are retrieved from the ring.

Nguyen et al. [Nguyen et al., 2017] propose a discovery model based on Chord to manage

heterogeneous IoT resources. This model manages heterogeneous services by creating a struc-

ture composed of multiple Chord rings. Each ring represents an IoT context that organises

services’ descriptions. Each node in the ring represents a gateway that manages a group of

sensors. Lookup operations are used to locate devices in a ring. Multiple rings can share

Chapter 2. State of the Art

nodes to enable search between rings. Tanganelli et al. [Tanganelli et al., 2017] propose a

service lookup approach based on a DHT that supports multiattribute and range queries.

It organises services in independent DHT clusters where each cluster represents one specific

attribute. This approach forwards queries to the respective cluster according to the search

attribute. Each node performs exact matching to solve queries.

2.1.3 Assessment

Approaches that organise services based on their attributes (e.g., location, or domain) create

reduced search spaces in small IoT environments such as smart buildings. However, these

search spaces can be still large in IoT environments. For example, a city can have a large

number of services that belong to the weather domain, or provide the same functionality.

Moreover, approaches based on service attributes do not provide enough information to drive

the discovery process. For instance, in a location-based approach, a request r1 might not

get a response because a service s1, which is relevant to r1, is in a different geographic area.

IoT environments such as a smart city provide rich contextual information that might be

used to support more efficient service management. Service discovery architectures should

exploit city and citizens’ spatial and temporal information to manage massive and dynamic

IoT environments [Zhou et al., 2016, Pattar et al., 2018, Fathy et al., 2018]. The inclusion of

such context has potential to enable more informed architectures, where digital entities can

make better decisions to create relevant search spaces and drive the discovery process.

Approaches based on overlays rely on distributed hash tables properties to provide highly scal-

able and dynamic architectures. They organise services in DHT nodes according to different

service attributes and propose multiple rings to describe services from different perspectives.

Service discovery is based on the look-up function provided by DHT implementations such

as Chord [Stoica et al., 2003] or Kademlia [Maymounkov and Mazieres, 2002]. This look-up

function is limited to exact string matching where consumers know in advance the name of the

key [Nguyen et al., 2017] to retrieve information. This look-up mechanism does not suit IoT

environments where consumers only know their needs, but ignore the services that can satisfy

them because consumers must specify the desired key. For example, look-up mechanism can-

not support goal-oriented scenarios where consumers specify what they expect (i.e., needed

data as outputs), and what they have (i.e., available data as inputs). Moreover, searches by

exact matching can affect accuracy, by introducing false positives in search outputs.

Chapter 2. State of the Art

2.2 Request Management

Service discovery architectures should exploit the organisation of services to offer efficient

discovery. It is impractical to scan all the service descriptions of all service repositories

in a distributed environment [Zhou et al., 2016]. Consumers’ requests must be forwarded

to search spaces where they are most likely to be solved. WSNs and MANETs domains

have been widely studied with regard to data dissemination. Broadcast, multicast, flood-

ing, and gossiping-based approaches have been proposed for small networks of sensors or

devices [Chakraborty et al., 2006, Nedos et al., 2009, Chen and Clarke, 2014]. However, the

scale of IoT environments require strategies that cover wide geographic areas, and minimise

the resources usage (e.g., network bandwidth and devices’ battery) [Zikria et al., 2018]. Cur-

rent research on IoT service discovery has enriched WSNs and MANETs mechanisms, by

creating architectures that manage consumers’ requests based on social structures or bio-

inspired methods. Approaches based on social structures use the social relationships between

IoT devices to forward discovery messages to communities where they can be solved [Atzori

et al., 2011]. Bio-inspired approaches take ideas from nature to drive the requests’ resolu-

tion. They take advantage of the inherent self-managed and optimised behaviour of different

natural systems to address IoT challenges [Hamidouche et al., 2018].

2.2.1 Social-based Forwarding

Loser et al. [Loser et al., 2007] introduce a routing algorithm that considers each node in the

network as a person in a social network. Each peer has information about other peers in the

network according to previous interactions. This information is used to forward queries to

relevant peers when they cannot be solved locally. Girolami et al. [Girolami et al., 2015b]

propose CORDIAL, an algorithm for service discovery in mobile social networks. CORDIAL

creates a distributed social network of smart phones according to human periodic movements

and interests. CORDIAL forwards requests and advertises services in communities that are

identified based on these movements and interests. It relies in the assumption that nodes

with similar interests tend to meet more frequently than nodes with non-overlapping interests.

TSSD is a model for service discovery in mobile networks that exploits the temporal-spatial

correlation between nodes [Li et al., 2017]. This model creates communities based on the

contact time and the frequency of contacts between nodes. These communities evolve over

time to reflect nodes interests. TSSD forwards requests in these communities with an epidemic

routing that spreads queries in intermittent mobile networks.

Chapter 2. State of the Art

Hussein et al. [Hussein et al., 2017] propose an approach for dynamic service discovery in the

social internet of things. This approach creates a temporal-social structure that combines

users, objects and services. A reasoning mechanism uses this structure to discover services

that can meet users goals.Li et al. [Li et al., 2017] present a decentralised semantic-based

service discovery framework that uses social links between IoT entities to forward services or

recommendations. This model propagates recommendations based on a ”usefulness score”

that represents the reputation of the recommendation and the advertiser (i.e., trust), the

closeness of the recommendation with the target node (i.e., interest similarity), the reliability

of the recommendation (i.e., QoS), and the freshness of the recommendation. Corbellini et

al. [Corbellini et al., 2017] propose to mine web service repositories to support service dis-

covery. This approach creates clusters that group services according to users’ interests. This

model calculates similarity between services using neighbour-based metrics, which assume

that two nodes are more likely to link if they share neighbours. This structure is used to

forward requests to the more relevant web servers. Xia et al. [Xia et al., 2019] propose a

social and semantic service discovery mechanism that mimics human-like social behaviour.

This approach implements an adaptive strategy that forwards requests to a selected subset of

devices. This subset is selected according to a correlation degree that reflects how relevant is

a device to a given query. The correlation degree calculates the semantic similarity between

services and requests based on an ontology tree.

2.2.2 Bio-inspired Forwarding

Ebrahimi [Ebrahimi et al., 2015] present an approach that clusters sensors’ information using

an ant-based algorithm. This approach creates a semantic overlay based on sensors’ type.

Ants walk through this semantic structure and create clusters based on sensors’ context (i.e.,

QoS attributes). This approach extracts required attributes from consumers’ queries and

forwards them to the most relevant clusters according to users’ priorities. Rapti et al. [Rapti

et al., 2016] propose a decentralised service discovery approach based on artificial potential

fields (APFs). Each service provider has an APF, and its strength depends on the percentage

of requests that the provider solved in the past. Each provider applies attraction or repulsion

forces to consumers’ requests according to the APF to mimic electrically charged particles.

These forces drive requests to the most promising providers.

Wanigasekara et al. [Wanigasekara et al., 2016] introduce a discovery approach based on

usage patterns to support service composition. Service discovery is modelled as a contextual

bandit problem. Services are the set of bandits, the reward is based on the service usage

Chapter 2. State of the Art

(i.e., positive reward if the user selects the service), and the expected pay off represents how

many times the service was successful when selected. The approach maximises the expected

pay-off by recommending relevant IoT resources based on crowd-sensed information. Yuan

et al. [Yuan et al., 2018] propose a self-organised social network with a swarm-based service

discovery. They build an immutable social overlay according to the interaction of the nodes

in the network (i.e., friendship). A score is calculated for the associations between nodes,

which is updated through the swarm mechanism according to historical searches, to reflect

changes in the network. The swarm mechanism provides an adaptive request forwarding that

uses the scores to discover the shortest paths to a desired service.

2.2.3 Assessment

Service discovery based on social networks create architectures that suit mobile IoT envi-

ronments because they take advantage of interactions between devices. These architectures

mimic human social features to create communities based on devices interests, reputation, and

mobility patterns. These approaches use this information to advertise services and forward

requests in dynamic peer to peer networks by using flooding-based strategies. These strate-

gies reflect temporal and spatial dimensions from human behaviour, but fail to capture more

complex social relationships that are still difficult to identify, manage, and measure [Girolami

et al., 2015a]. It impacts the dissemination efficiency because flooding-based strategies with

limited knowledge are likely to fail when delivering messages in dynamic networks, where

sources and targets might never have a direct link between them. Requests need more in-

formed and efficient diffusion strategies to be forwarded to relevant devices in short time.

More information about the environment (e.g., city context) provide knowledge to make bet-

ter decisions when forwarding requests. Efficient mechanisms must exploit such knowledge

even in environments when it is limited.

Bio-inspired approaches address IoT complexity by taking inspiration from natural systems

that also work in complex environments [Hamidouche et al., 2018]. The bio-inspired strate-

gies to propagate information in distributed networks are promising mechanisms to explore

with regard to request forwarding in the service discovery problem. These approaches can

propagate information to desired destinations in an effective fashion even when nodes have a

limited knowledge about other network participants. Such approaches should be integrated

with the contextual information from IoT environments to create mechanisms that can make

well informed decisions. This thesis uses a bio-inspired method together with the city context

to drive the discovery process and forward requests, where they are most likely to be solved.

Chapter 2. State of the Art

The proposed approach takes advantage from the properties that enable efficient propaga-

tion of information in large and dynamic networks, and provides more knowledge to these

properties by adding city context.

2.3 Service Matchmaking

Service discovery latency and accuracy depends on the matchmaking mechanism. This mech-

anism is responsible for comparing requests with services’ descriptions to select the set of

services that satisfy consumers’ needs [Klusch, 2014]. Service matchmaking mechanisms can

be classified according to their ability to discover services that constitute composition of

services (i.e., no-composition support or composition support). Matchmaking mechanisms

do not support service composition when they search for services by a given attribute (e.g.,

sensor type). These mechanisms use either non-logic (i.e., syntactic) or logic (i.e., semantic)

methods to select atomic services. Service matchmaking mechanisms support composition

when they discover the services that constitute the composition [D’Mello et al., 2011]. These

mechanisms can be classified as non-automated or automated [Urbieta et al., 2017]. Non-

automated approaches need high human input to define composition plans at a high level of

abstraction (i.e., service conversations). Automated approaches discover chains of services

that meet user requests without human intervention [Klusch et al., 2016].

2.3.1 Non-Composition Support

Non-logic based approaches

Mobile Digcovery [Jara et al., 2014] is a distributed discovery platform that interacts with het-

erogeneous services using different technologies such as IPv6, 6LowPAN, EPCGlogal, Digital

Object Identifier (DOI), and Legacy Devices. Mobile Digcovery uses the elasticsearch search

engine to offer scalable search and includes contextual information in queries (e.g., service co-

ordinates, service type). The search engine uses a string-based matching to compare services’

descriptions with queries. Cassar et al. [Cassar et al., 2014] propose a matchmaking method

based on machine-learning techniques. Probabilistic Latent Semantic Analysis and Latent

Dirichlet Allocation are used to extract latent factors from semantic service descriptions and

search for services in a latent factor space. This space contains heterogeneous service de-

scriptions represented as a probability distribution over latent factors. Simurgh [Khodadadi

et al., 2015] is a framework for service discovery in the IoT. JSON documents are used to

describe services. These documents include information about location, service signature,

Chapter 2. State of the Art

and domains. Simurgh implements keyword comparison between consumers’ requests and

service attributes to search for services.

Petrolo et al. [Petrolo et al., 2016a] propose a mechanism to discover Internet Connected Ob-

jects (ICOs) in the Cloud of things. Each ICO is described by position, observed phenomena,

and type. The discovery uses this description to match consumers’ requests by perform-

ing syntactic comparisons. Stolikj et al. [Stolikj et al., 2016] propose a discovery protocol

for resource constrained environments that store information about sleeping nodes in more

powerful nodes, which makes their services available when they are off-line. Context tags

describe services with additional information. This approach uses syntactic matchmaking

between consumers’ requests and the contextual data to find the relevant services. Han and

Crespi [Han and Crespi, 2017] propose a model for service provisioning of smart objects in

6LowPAN platforms. This model integrates these platforms with the traditional internet by

using CoAP severs that provide resource descriptions, which can be accessed through HTTP

requests. Service discovery is also based on CoAP and compares contextual information such

as sensor type, and coordinates.

Logic-based approaches

CASSARAM is a context aware search model that selects IoT sensors [Perera et al., 2014b].

CASSARAM uses an ontology to describe sensors’ properties such as location, accuracy, reli-

ability, and battery life. Consumers’ requests include functional and non-functional require-

ments that are matched with services’ descriptions using the ontology model. CASSARAM

ranks selected sensors using similarity metrics between queries and sensors data. CADDOT is

a service model that integrates ’things’ with cloud-based IoT solutions [Perera et al., 2014a].

CADDOT describes sensors using an ontology, which includes the sensor’s capabilities and

communication technologies. CADDOT uses this information to discover and configure het-

erogeneous services. Zhao et al. [Zhao et al., 2015] propose a multidimensional model to

describe IoT sensors. Each dimension uses an ontology that represents a perspective from

where resources are described (e.g., measurement principle ontology, location ontology, and

domain ontology). A semantic matchmaker uses these ontologies to calculate resource simi-

larity from each dimension. Users aggregate results from each dimension according to their

preferences, to select relevant resources.

Quevedo et al. [Quevedo et al., 2016] propose a mechanism to support flexible service discovery

based on Named Data Networking (NDN) and Content Centric Networking (CCN). NDN and

CCN propose a communication model driven by consumers’ information. Consumers send

Chapter 2. State of the Art

interests (i.e., requests) which includes semantic descriptions of desired services. A service

broker forwards interests to a matchmaker that estimates the semantic measurement between

interests terms and available service descriptions. This semantic matchmaker also includes

matching based on syntactic methods (i.e., cosine similarity and Jaccard index). Rubio et

al. [Rubio et al., 2016] propose an approach to discover subsystems in smart cities (e.g., smart

homes or smart buildings). Subsystems and services are described using ontologies that allow

the expression of context, profile, and process information. Subsystems and services can be

discovered using the ontologies and SPARQL queries.

2.3.2 Composition Support

Non-automated approaches

Lee et al. [Lee et al., 2007] propose a smart space middleware to handle service composition

in small dynamic environments. This middleware offers an interface where users can specify

composition plans according to services available in the environment, and a plumber service

keeps the composition optimal at execution time, utilizing OSGi’s support. Tzortzis and

Spyrou et al. [Tzortzis and Spyrou, 2016] propose a semi-automatic approach for semantic

IoT service composition. The user starts specifying a service request with the expected

outputs. The approach shows the list of available services according to the search parameters

(i.e., expected outputs) and the user selects the best option. The process is repeated until

the composite service meets the input parameters. Ciortea [Ciortea et al., 2016] model

things as agents to support decentralised, responsive and flexible composition of service mash

ups. Agents offer capabilities and interact between them to pursue a given goal. Relations

between the agents, as well as the set of goals and sub goals to achieve are manually defined

by users as pre-compiled plans. Huber et al. [Huber et al., 2016] present a framework to

discover composed services using PROtEUS. This approach extends the PROtEUS process

meta-model to express models for dynamic composition in Ambient Assisted Living (AAL)

environments. Consumers specify a service conversation using this metamodel and SPARQL

queries to get the set of services that realise the conversation. Baek et al. [Baek and Ko,

2017] present an approach to discover composed services in the user’s vicinity to provide

good user experience and a stable communication between services. Functional requirements

are provided by users as a task that defines the services to compose. Available services are

selected according to the input and output relations defined in the task.

Deng et al. [Deng et al., 2017] propose an architecture to optimise mobile composite services,

when consumers and providers are dynamic. Consumers specify the composed plan as a set of

Chapter 2. State of the Art

tasks and relations (i.e., a service conversation). This plan is used to select services to achieve

compositions with the shortest response time. Baker et al. [Baker et al., 2017] propose a

service composition algorithm for cloud-based applications, to minimise energy consumption.

Cloud-providers must define service conversations for each offered service, using the BPMN

language. Consumers specify the desired functionalities (i.e., input and output parameters),

which are matched with the service conversations to find the relevant one, with the minimal

energy consumption. Urbieta et al. [Urbieta et al., 2017] present a context-aware service

composition model for smart cities based on wEASEL [Urbieta et al., 2015]. wEASEL is an

abstract model to represent services and users tasks as conversations. Consumers use this

language to define conversations and the composition model searches for the available services

that realise each conversation task. Semantic methods are used to match services and tasks

by their input and output parameters. Zhao et al. [Zhao et al., 2017b] introduce a service

composition approach based on user preferences. Consumers must define the set of tasks to

be composed as a service conversation. The approach selects the appropriate service for a

given task in the conversation based on previous learning about user preferences. These user

preferences are not defined by users, but extracted from past service selection history.

Automated approaches

Zisman et al. [Zisman et al., 2013] propose a model to support web service composition at

run time. This approach searches for services that replace services in the composition that

are no longer available or fail to satisfy consumer requirements. It proposes two modes to

discover services at run time. The pull mode searches for services when a replacement is

needed. The push mode proactively identifies candidate services that can replace a service

in a given composition. Service matchmaking compares QoS attributes of services by using

non-logic methods in both modes. Rodriguez-Mier et al. [Rodriguez-Mier et al., 2016] propose

a web service discovery and composition framework based on input and output parameters.

This approach generates a graph-based composition, which contains the set of services that

are semantically relevant for a given request. It also includes an algorithm that selects the

composition, which minimises the number of services. A composition graph is created by

exploring semantic relations between the parameters (i.e., inputs and outputs) of available

services. Liu et al. [Liu et al., 2016] propose an agent-based approach to discover services in

smart cities. Management Agents (MA) maintains a list of available Services Agents (SA).

When a MA receives a request, it executes a local service discovery process, searching for SAs

that can meet the request in the services’ list. This search is based on non-logic approaches

that calculate the similarity between the query, and services. If the MA does not have SAs to

Chapter 2. State of the Art

solve the request, the MA forwards the query to neighbours according to an estimation matrix

that represents the historical availability of SAs, and MAs. CASCOM is a Context-Aware

Sensor Configuration Model to simplify IoT middlewares’ configuration [Perera and Vasilakos,

2016]. This platform includes a sensor selection process according to user requirements and

contextual information. Users’ requirements are gathered using a Question-Answer (QA)

model. The selection uses an input and output string-based matchmaking to compose services

from individual sensors. Selected services are ranked according to contextual information (i.e.,

sensor location, and battery life).

Chen et al. [Chen et al., 2016] present GoCoMo, a goal-driven service composition approach

for pervasive computing. This approach supports an adaptive service composition and ex-

ecution based on a distributed overlay. Service discovery is based on a backward planning

algorithm where each node in the overlay performs a semantic matchmaking based on service

parameters that are defined in the consumer request. Zhao et al. [Zhao et al., 2017a] introduce

an energy-aware service composition mechanism for WSNs. Sensor nodes are represented as

WSN services, which are grouped into service classes according to their functionalities. These

service classes are chained using a forward planning algorithm to fulfil user goals (i.e., input

and output parameters). The resulting composition plan is used to search individual WSN

services according to energy, spatial, and temporal constraints.

2.3.3 Assessment

Service matchmaking is the core process of discovery approaches, as it is responsible for the

actual search by comparing consumers’ requests with services’ information in the reposito-

ries. Non-logic based approaches have a low latency because they compare strings using

syntactic methods. However, these methods can introduce false positives and impact search

accuracy [Cassar et al., 2014]. Logic-based approaches offer a good accuracy because search

processes have more information (i.e., semantic models) to select relevant services. However,

these methods have a high latency as the comparison of services is complex because of the

inclusion of these semantic models. There is a trade-off between non-logic and logic match-

making methods which needs to be balanced in IoT environments where service discovery

must provide accurate responses in short time.

IoT environments also demand the creation of added-value services, from existing services [Lemos

et al., 2016]. Approaches that support service composition without automation increase

search accuracy, at the cost of requiring that queries and services are modelled in a formal

way. A consumer request must include a composition plan in advance, and tasks in the

Chapter 2. State of the Art

plan are compared against available services to select the relevant set [Klein and Bernstein,

2004, Mokhtar et al., 2007]. These approaches are time-consuming, error-prone, and require

high human intervention [Zhao et al., 2017b]. It is not feasible to assume that users will know

about all the available services and all their possible combinations in large-scale environments

such as that expected for the IoT. Automatic approaches avoid human intervention. How-

ever, search precision can be affected negatively by the retrieval of incorrect services because

the information used to perform the matchmaking is minimal [Urbieta et al., 2017]. Incorrect

services can be easily introduced in services plans causing false positives in the search. For

example, a service s1 that provides readings about wind speed and a service s2 that consumes

data relating to bus speeds are likely to match because the output type of s1 is equivalent to

the input type of s2 (i.e., both are speeds). Current matchmakers cannot distinguish between

two services that can appear to be related because of their I/O parameters, but belong to

unrelated domains. Both non-automated and automated approaches have performance prob-

lems in terms of response time as they perform complex processes in full search spaces and

look for all the possible paths even when they are incorrect [Chen et al., 2016, Urbieta et al.,

2017]. Novel composition mechanisms for IoT should include historical data in progressive

searches, with sensible ranking methods [Pattar et al., 2018]. Knowledge about previous

searches, and sensible rankings have the potential to drive more efficient search processes, by

limiting the services exploration to the most promising sets.

2.4 Dynamic Environments Management

Service discovery architectures in the IoT work in dynamic environments that are changing

all the time because of the interaction between different entities. There are service discov-

ery approaches that respond to these changes and adapt their behaviour accordingly [Tran

et al., 2017]. They can be classified as device-based, network-based, or usage based ap-

proaches. Device-based approaches respond to changes in devices’ attributes (e.g., battery

level). Network-based approaches respond to changes in the network properties. Usage-based

approaches respond to changes in the users’ demand.

2.4.1 Device-based Adaptation

Guerrero-Contreras et al. [Guerrero-Contreras et al., 2017] propose an architecture to support

availability of services deployed in mobile and dynamic environments. It adapts the avail-

ability of services in mobile clouds environments according to the energy level of each node.

Replicas of nodes are created when a given node is not reachable or does not have enough

Chapter 2. State of the Art

power, and nodes are hibernated when their services are not used. Albalas et al. [Albalas

et al., 2017] propose a protocol based on CoAP to update resource directories according to

battery consumption. Each sensor sends updating messages to the directories periodically.

The period between messages is adaptable as time passes and the level of battery decreases,

following the Fibonacci series. This approach is focused on battery consumption optimization

rather than on sensor search efficiency.

Wu et al. [Wu et al., 2015] propose an adaptive multilevel index for service discovery in

disaster zones. This solution stores services in a centralised repository using different index

levels to improve search latency. These indices organise services by functionality computing

the equivalence between their input and output parameters. The index structures are adapted

according to the number of services in the repository (i.e., fewer services, fewer indices).

Sikri [Sikri, 2019] proposes a self-managed web service framework to discover services in

enterprise set-ups. This framework updates QoS attributes related to redundant services

according to QoS measurements from services and consumers. This framework selects services

with minimal cost based on QoS constraints specified by consumers.

2.4.2 Network-based Adaptation

Trendy [Butt et al., 2013] is a discovery protocol that groups services according to their

location. It has a Directory Agent (DA), which maintains the registry and receives user

requests. Group Leaders communicate with the DA to register and update information

about services. The DA has a timer that determines how often the status of services must be

updated. This timer adapts according to service demand. This adaptation process reflects

requests’ behaviour, to improve network efficiency. Cirani et al. [Cirani et al., 2014] propose

a self-configuring architecture to provide automated service discovery. This architecture

is based on a DHT structure that covers large geographical areas. Services are organised

according to their location and the DHT structure adapts when a gateway joins or leaves

the network. Each gateway uses CoAP-SD and DNS-SD to discover services locally. CoAP

automates the registration of services through advertisements.

del Val et al. [del Val et al., 2014] propose an agent-based self-organised approach to man-

age and discover atomic services. Each agent in the system offers a service and can trigger

adaptation processes under two circumstances. First, an agent can change the network topol-

ogy (i.e., relations with other agents) according to the request’s resolution and forwarding.

Second, an agent can change the population of agents by cloning itself when there are many

requests for its services. Ebrahimi et al. [Ebrahimi et al., 2017] propose a context-aware model

Chapter 2. State of the Art

that clusters sensors into semantic overlays. It groups sensors according to their domain and

QoS attributes, using an ant-based algorithm. Ants calculate the similarity between two

services and the probability of belonging to the same cluster. Clusters are adapted when

the network topology changes. New sensors are assigned to the most similar cluster and the

clustering process is triggered when a given number of sensors disappear. Yuan et al. [Yuan

et al., 2018] propose a self-organised social network with swarm-based service discovery. They

build an immutable social overlay, according to the interaction of the nodes in the network

(i.e., friendship). This approach calculates a score for the associations between nodes, which

is updated through the swarm mechanism according to historical searches. Changes in the

network, when nodes appear and disappear, are reflected.

2.4.3 Usage-based Adaptation

Kumar and Satyanarayana [Kumar and Satyanarayana, 2016] propose a self-adaptive service

discovery model for web services. It is based on a semantic classification that uses web logs to

categorise services according to usage patterns. Web logs are analysed off-line in a learning

phase, and the identified patterns are used to annotate services. The approach uses these

semantic annotations to compute the relevance of web services for user queries. This relevance

changes according to historical usage of services. Athanasopoulos [Athanasopoulos, 2017]

proposes a web service organisation schema based on service functionalities. This schema

adapts over time according to the pragmatics data (i.e., historical usage of services). Services

are organised into hierarchical groups based on their descriptions (i.e., providers’ perspective).

This structure adapts according to the historical usage (i.e., consumers’ perspective) which

is used to calculate the similarity between services.

2.4.4 Assessment

Self-adaptation in current approaches is triggered by changes in service properties, the net-

work topology or services’ usage. They do not consider external changes to the context

where approaches work. Changes in IoT environments influence consumers’ needs and there-

fore must be considered when adapting service discovery architectures. For example, an

accident in a city street might cause an unexpected increment in requests for emergency

services. Service oriented architectures must be prepared to respond to such requests in an

efficient fashion. Service-oriented adaptive models based on web services usage need previ-

ous training (i.e., off-line learning) to identify and exploit usage patterns. However, off-line

mechanisms do not suit IoT environments, because, unlike web services, IoT environments

Chapter 2. State of the Art

are highly dynamic and require on-line adaptation to respond to city changes in short time.

Moreover, web service adaptive models work in centralised architectures which represent an

unique point of failure and scalability issues in IoT.

The adaptation of service information should respond to citizen needs and a city’s evolution

in a smart city [Zhou et al., 2016]. A new self-adaptive service model that formalises and

responds to the dynamic nature of the city and their citizens should be developed. This model

should create a large-scale and distributed IoT network where different entities can work and

collaborate with each other to share and exchange services [Fathy et al., 2018].

2.5 Summary

This chapter analysed current research in service discovery from the perspective of large and

dynamic smart city environments. The most related research with regard to services organ-

isation includes approaches based on devices’ attributes [Wang et al., 2015, Sivrikaya et al.,

2019], and DHT overlays that group services according to their domains and functionali-

ties [Paganelli and Parlanti, 2012]. The most related work regarding to request forwarding

is the proposed by Yuan et al. [Yuan et al., 2018], which combines social networks and bio-

inspired methods to disseminate requests information. The most related research with regard

to service matchmaking includes an interface-based [Chen et al., 2016] and a conversation-

based [Urbieta et al., 2017] algorithm. Finally, the most related adaptive approach is the

proposed by Wu et al. [Wu et al., 2015], which adapts service organisation according to the

number of services in disasters zones.

Figure 2.2 presents to what extent most relevant approaches satisfy a set of criteria defined

from the thesis challenges (Section 1.1). The figure shows that approaches that manage

services in large smart city environments [Paganelli and Parlanti, 2012, Wang et al., 2015,

Sivrikaya et al., 2019] organise these services based on device attributes and do not exploit

the context offered by smart cities. They create structures that adapt according to devices’

properties but do not respond to cities’ evolution, which might affect discovery efficiency

because of outdated architectures in dynamic IoT environments. They implement semantic

matchmaking to discover composed services in the best case [Sivrikaya et al., 2019]. These

semantic processes might present search latency issues because the search spaces created by

these device-based structures can still be large. For example, a smart city can still have

a large number of services that belongs to a given domain or provide certain functionality.

Yuan et al. [Yuan et al., 2018] use social-based and bio-inspired strategies to propagate

Chapter 2. State of the Art

Environment

Size

Large

Medium

Small

Service

Organisation

Environment-based

DHT-based

Device-based

None

Request

Management

Environment-based

Bio-inspired

Social-based

None

Search

Mechanism

Progressive

Semantic

Syntactic

Composition

Support

Automatic

Manual

None

Adaptation

Environment-based

Network-based

Device-based

None

ISCO

[Sivrikaya et al., 2019]

Prefix Hash Tree (DHT-based)

[Paganelli and Parlanti, 2012]

Social-based & Bio-Inspired

[Yuan et al., 2018]

Conversation-based

[Urbieta et al., 2017]

Adaptive multi-level index

[Wu et al., 2015]

GoCoMo

[Chen et al., 2016]

Geospatial Indexing

[Wang et al., 2015]

Figure 2.2: State of the art review diagram.

requests in fully distributed networks that form communities. This approach discovers atomic

services in environments of medium size and adapts the social structure according to network

changes. The inclusion of environment context has the potential to enhance this type of

solutions by adding knowledge that enable the management of larger scenarios because of the

creation of more relevant search spaces, and more informed decisions with regard to request

management.

Solutions that support service composition [Chen et al., 2016, Urbieta et al., 2017] work

in small size environments where organisation of services and request management are not

key requirements. These approaches respond to changes in services or the network but do

not consider changes in the IoT environment. The service search either requires high input

from consumers [Urbieta et al., 2017] or expensive planning algorithms [Chen et al., 2016].

Wu et al. [Wu et al., 2015] organise services in an adaptive structure according to services’

properties. It works in a centralised infrastructure that does not need to propagate requests

but represents a unique point of failure. This approach discovers composed services using

Chapter 2. State of the Art

semantic methods, which might have latency issues in larger environments because of the

number of services.

In summary, open gaps within current service discovery research are:

1. Approaches do not consider contextual information to organise services information or

propagate requests. This context has the potential to create more informed service

oriented architectures to drive efficient service discovery.

2. The service search either requires high human intervention or might present performance

issues with regard to latency and accuracy in large environments. The exploration of

progressive search mechanisms can mitigate these limitations.

3. Adaptation mechanisms respond to devices or network changes, or human behaviour

which is difficult to capture and manage. They do not consider changes in the IoT

environments where they work, causing outdated architectures.

Chapter 3

Design

The literature review in Chapter 2 identified a number of limitations in current service discov-

ery for large and dynamic IoT environments (e.g, smart cities). Research gaps with current

service discovery approaches are that i) existing research organises services information in

structures that do not provide enough information to support efficient discovery in large en-

vironments; ii) such structures do not respond to changes in the environment where they

work, which negatively impacts discovery performance over time; and iii) current planning

methods either need rich input from consumers, which is not feasible in large environments,

or work with reduced knowledge which impacts search accuracy and latency.

This chapter introduces uDiscovery, a service discovery model for smart cities based on urban

context. First, this chapter presents the design objectives of uDiscovery, from which a list of

requirements is presented. This chapter then introduces the system model and main concepts

of uDiscovery. It continues with a description of the adaptive discovery and planning models

that support uDiscovery. Finally, this chapter discusses uDiscovery′s contributions.

3.1 Design Objectives and Required Features

Chapter 1 introduces the research questions that this thesis addresses. Chapter 2 analyses

current service discovery approaches and identifies these limitations. Next design objectives

are defined according to these research questions and the state of the art analysis. This thesis

aims: to design and build an efficient and adaptive service discovery model for smart cities,

and to design and build an efficient search mechanism that respond to complex requests (i.e.,

service composition support), with minimal input from consumers. This work aims to build

a service model that meets these objectives by supporting the following features:

33

Chapter 3. Design

(a) Service Description (b) Request Description

Figure 3.1: uDiscovery - Data Formats.

Feature 1 : Context-based service management

Smart cities are IoT environments with large number of IoT services (Challenge 1).

An efficient service discovery model for smart cities must organise services in reduced

search spaces and forward requests where they are most likely to be solved, based on

cities’ information (i.e., urban context) (RQ.1).

Feature 2 : Self-adaptive service management

Cities are dynamic environments that evolve all the time because of the interactions

between different entities (Challenge 2). A service discovery model for smart cities

must adapt to the organisation of services according to city changes to maintain an

efficient discovery over time(RQ.2).

Feature 3 : Composition Support

Citizens might request for composed services (Challenge 3). A service discovery model

must support service composition in smart cities by searching for services that constitute

such compositions with high accuracy and low latency (RQ.3)..

Feature 4 : Minimal Consumer Input

High level of consumers’ input is not feasible in smart cities because citizens can not

know about all available services in the environment (Challenge 4). A service discovery

model for smart cities must minimise input from consumers and still offer accurate and

fast search outputs (RQ.3).

Chapter 3. Design

3.2 System Model

This work considers cities as entities that offer services to citizens (e.g., transport services).

These services are offered in different places and can be supported by software services that

deliver useful information (e.g., bus station schedule). Citizens are mobile and can request

software services to support their activities. For example, a citizen may want to know which

is the best transport mode to use to get home from the city centre. This thesis focuses

on the discovery of software services that citizens request and relies on a network of IoT

gateways that covers the city. Service providers register their service descriptions in the

network of gateways. A service description is defined as sdesc = 〈id, url, I, O,D〉, consisting

of a service identifier, url endpoint, inputs, outputs, and domains. For example, Figure 3.1a

shows the description of a service that retrieves information about surrounding historical

places according to the user’s location. This service has an input which corresponds to

the user location and is semantically annotated by the concept userLocation (i.e., type

field). The service output is the information about a historical place which is semantically

annotated by the concept historicP laceInfo. This service belongs to two domains named

TouristicP lace and History, which are also semantically annotated by the concepts in the

type fields. All semantic annotations that describe inputs, outputs, and domains are defined

in a set of ontologies that the Section 4.1.1 introduces (Chapter 4). Service consumers (e.g.,

service-based applications, service composition engines, etc.) can send requests that trigger

the service discovery process. These requests are defined as r = 〈I,O,D〉, consisting of

request inputs’ types, outputs’ types and domains. For example, a request for a service

that provides information about surrounding historical places according to the user location

(Figure 3.1b). This request specifies inputs, outputs, and domains which are semantically

annotated as in the service description. These consumers can also send feedback about the

discovery process as a boolean mark, which reflects that a discovered service was successful

or not for them.

This thesis also considers cities as dynamic environments where different entities (e.g., citizen,

city places, city services, city events, etc.) interact. These interactions affect the IT systems

that support the city, such as the service discovery model. For example, a flash flood in a

city area might cause consumers to ask for services that are not registered in the surrounding

gateways. Three types of city events are identified, as follows:

• Unforeseen Events: These are unexpected events that happen in a city (e.g., a natural

disaster, or an impromptu protest).

Chapter 3. Design

• Scheduled Events: These are events that are known by city authorities (e.g., a concert

in a stadium). Authorities know when and where the event happens.

• Periodic Events: These are events that follow a pattern in the city because of the

behaviour of its entities (e.g., citizens going to work every day).

3.3 Design Decisions

uDiscovery encompasses a set of decisions that enable the identified features to address the

service discovery issues in smart cities with regard to the large number of services, dynamic

environments, complex requests, and limited consumers’ inputs. This section introduces these

decisions from the perspectives of services organisation, requests management, and service

planning. Services are organised in relevant search spaces, where requests are forwarded to

improve the global discovery efficiency. And, local search efficiency is improved by applying

a more informed and progressive planning.

3.3.1 Services Organisation

Previous approaches organise software services by their attributes in structures which might

not be efficient in smart cities. They might fail to reduce search spaces and do not provide

enough information to drive efficient discovery, as discussed in section 2.1. The next decisions

are made to more appropriately organise services in smart cities.

Design Decision 1: City places as urban context

Places are spaces in a city that offer city services from a given domain. For instance, a

hospital in a city provides services from the health care domain, or a college provides

services from the education domain. Citizens interact in these places and use the offered

city services. They also might request software services to get useful information about

city services (e.g., a hospital opening hours). uDiscovery uses city places information

as urban context because this information can be used to infer consumers’ needs. For

example, a consumer in a hospital is more likely to require services from the health

domain. This decision supports Feature 1.

Design Decision 2: Gateways store services information according to sur-

rounding places

uDiscovery organises software services according to city places to put the right service

in the right place. IoT gateways are deployed in city places and receive requests from

Chapter 3. Design

consumers in these places. Gateways store services information according to their sur-

rounding places, as such places influence consumers’ requests. For instance, gateways

deployed close to a hospital should store services from the health care domain because

consumers in the hospital are more likely to require health care related services. This

decision supports Feature 1.

Design Decision 3: City events trigger services organisation adaptation

The initial services organisation based on urban context is likely to become outdated

because of city events. For example, a flash flood in a city area might cause consumers

to ask for services that are not registered in the surrounding gateways. This would

affect the discovery performance, and cause smart cities to fail in their attempt to

satisfy citizens’ needs. uDiscovery enables each IoT gateway to recognise city events

by measuring the performance of the discovery process over time. If the performance

decays, it means that the gateway does not have the required information. uDiscovery

creates an IoT network that moves services between gateways to respond to city events.

This decision supports Feature 2.

3.3.2 Requests Management

Section 2.2 discussed previous approaches to forwarding requests to where they are most

likely to be solved. Multicast, flooding, and gossiping-based approaches from WSNs and

MANETs do not cover wide geographic areas such as a city, and cause high overhead, network

bandwidth and devices battery depletion [Zikria et al., 2018]. Social-based approaches rely on

devices proximity and uses interest, social metrics, or flooding-based strategies to disseminate

information. These strategies reflect temporal and spatial dimensions from human behaviour,

but fail to capture more complex social relationships that are still difficult to identify, manage,

and measure. It impacts the dissemination efficiency because data is moved and replicated

in environments where content providers and consumers might never have a link between

them [Girolami et al., 2015a]. Bio-inspired approaches are a good alternative for information

dissemination in large networks. These approaches are based on natural systems that work

in complex environments and can propagate information in environments where nodes have

a limited knowledge about other participants[Hamidouche et al., 2018].

Design Decision 4: Gateways forward requests according to other gateways

surrounding places

Gateways forward consumer’s requests according to other gateways surrounding places.

Chapter 3. Design

For example, it is more likely that gateways deployed in hospitals have services to

solve requests related to the health domain, then requests related to the health domain

should be forwarded to these gateway. uDiscovery enables each IoT gateway to forward

requests to other gateways, based on their surrounding places. For instance, if a gateway

receives a request related to the health care domain, and the gateway does not have

information to solve such request. The gateway forwards the request to other gateways

with a hospital close by. This decision supports Feature 1.

Design Decision 5: Bio-inspired urban based request forwarding

uDiscovery uses urban context to organise and replicate services. It also uses this

knowledge to forward requests to gateways where they are most likely to be solved.

Each gateway knows about places that surround other gateways in the network, but this

knowledge is partial (i.e., a gateway does not know about all gateways in the network).

A bio-inspired method supports the optimal propagation of information in environments

with partial knowledge. uDiscovery uses an ant colony forwarding mechanism that

sets pheromones information when the network of gateways is configured, and services

are organised to define which are the most promising gateways for a given domain.

This mechanism updates pheromones information at discovery time depending on the

discovery success of a selected gateway. This decision supports Feature 1.

3.3.3 Service Planning

Previous approaches that support service composition either use service conversations or

interface-based search to match requests and services. Conversations-based approaches re-

quire a high level of input and interface-based approaches have performance issues because

of the lack of information and large number of services (Section 2.3). uDiscovery is based

on the following decisions to address these issues.

Design Decision 6: Goal-driven service planning

Smart city environments expose a large number of services that need to be combined to

address complex consumers’ requests. These combinations exploit the actual potential

of IoT environments by creating on-demand applications from existing services. High in-

put from consumers is not feasible in such large environments because consumers might

have a limited knowledge about available IoT services. uDiscovery uses a goal-driven

approach to support service composition with minimal consumer’s input. Consumers

express their needs as desired outputs and available inputs which are compared against

Chapter 3. Design

Required
Features

uDiscovery
Design Decisions

uDiscovery
Contributions

1. Context based
service management

2. Selfadaptive
management

3. Service
composition support

4. Minimal human
input

1. City places as
urban context

2. Gateways store
services information
according to
surrounding places

3. City events trigger
services information
adaptation

4. Gateways forward
requests according to
other gateways'
surrounding places

5. Bioinspired
urbanbased request
forwarding

6. Goaldriven
service planning

7. Progressive search
based on consumers'
feedback

Urbanbased service
discovery model
(Section 3.4.1)

Selfadaptive service
discovery model
(Section 3.4.2)

Service Planning
Based on
Consumers'
Feedback (Section
3.4.3)

Figure 3.2: uDiscovery - Design Decisions Map.

the available services to create a service plan that satisfy such needs. This decision

supports Feature 3 and Feature 4.

Design Decision 7: Progressive search based on consumers’ feedback

Goal-driven planning is an interface-based approach that has accuracy issues because of

limited knowledge about consumers’ needs (i.e., only inputs and outputs information),

and latency problems because it explores all the possible combinations of services that

match. uDiscovery expands the goal-driven model to use consumers’ feedback. Such

feedback (i.e., historical data from previous searches) determines if a discovered plan

Chapter 3. Design

uDiscovery

Urbanbased
Service
Manager

Selfadaptive
Service
Manager

Local
Repository

Heuristic
Service Planner

Request

Register Services &
Store Feedback Search for

Services

Update Repository

Consumers

Providers

Service
Request

Service
Description

Response
Feedback

Urban
Context

Advertise Services
Forward Requests

Move Services
City

Figure 3.3: uDiscovery - High Level Architecture.

was correct or incorrect and is used to improve search accuracy. uDiscovery addresses

latency issues through two strategies: first, the use of consumers’ feedback avoids the

exploration of incorrect combinations of services. Second, uDiscovery explores the

plans according to how well each plan meets the request’s requirements. uDiscovery

explores the most promising plans (i.e., search space reduction), and avoids wasting time

on the less promising plans (i.e., progressive search). This decision supports Feature 3.

Figure 3.2 shows how uDiscovery design decisions map to the required features. uDiscovery

makes three contributions based on these decisions. Decision 1, 2, 3, 4, and 5 support

an urban-based service discovery model for smart cities that organises services information

and solve consumers’ requests based on city places. Decision 4 supports a self-adaptive

management model that updates the organisation of services according to the city events.

Decision 6 and 7 support a service planning model based on consumers’ feedback that supports

service composition by applying a progressive search. The remainder of this chapter details

uDiscovery contributions and how they work.

3.4 uDiscovery

uDiscovery is an urban-centric model for service discovery in smart cities (Figure 3.3).

uDiscovery is deployed on each gateway and is composed of four components. The urban-

based service manager receives service descriptions from providers and decides to store them

in the local repository or to advertise them to other gateways based on urban context. This

component receives requests and tries to solve them using a heuristic service planner that

searches for services in the local repository based on consumers’ feedback. If requests are

solved, uDiscovery returns the response to consumers and waits for their feedback, which

is in turn stored in the local repository. Otherwise, uDiscovery forwards requests to other

Chapter 3. Design

Consumers

Providers

Local
Repository

Urbanbased Service Manager

Service
Organisation
Manager

Request
Manager

Initialisation
Manager

Heuristic
Service Planner

uDiscovery

Request

Response &
Feedback

Registration
Message

Request
Message

Registration
Messages

Initialisation
Messages

Services Descriptions

Services &
Feedback

Urban
Context

Request Messages &
Propagation Messages

City

Urban
Context

Figure 3.4: uDiscovery - Urban-based Service Manager Architecture.

gateways in the network. The self-adaptive service manager updates the local repository by

moving services between gateways according to city events. The following sections explain

how these components interact to achieve an adaptive and efficient discovery.

3.4.1 Urban-based Service Discovery Model

uDiscovery organises services using a urban-based service manager (Figure 3.4). This com-

ponent has three sub-components. The initialisation manager sends and receives initiali-

sation messages with gateways information to create links between them based on urban

context (Section 3.4.1.2). The service organisation manager receives registration messages

from providers and gateways, stores services in the repository and advertises services to

relevant gateways to put the right service in the right place in preparation for discovery (Sec-

tion 3.4.1.3). The request manager receives discovery messages from consumers, tries to solve

them using the heuristic planner (Section 3.4.3), or forwards requests to relevant gateways

based on the ant colony forwarding mechanism (Section 3.4.1.4).

Parameter Description

x
An integer that defines the distance in metres
to recognise surrounding places.

Hops limit
An integer that defines the limit of hops for
messages in the network of gateways

Table 3.1: Urban-based Service Discovery Model Parameters.

Chapter 3. Design

has

supports

has

lives in

has

has

has

requests

happens at

schedules

starts at

ends at

requires

Figure 3.5: uDiscovery - Service Discovery Knowledge Model.

Table 3.1 shows the parameters of the urban-based service discovery model. This model

uses an integer x as the distance between the gateway and the places which are considered

surrounding places (e.g., a place surrounds a gateway if it is in a radius of 100m from the

gateway). The hops limit defines the maximum number of hops allowed for each message in

the network of gateways to avoid overhead. Chapter 5 experiments with different values for

these parameters and reports uDiscovery′s performance results.

3.4.1.1 Urban Context Management

The urban-based service manager handles services information in the network gateways based

on the urban context. Each gateway captures the information of its surrounding places and

decides how to store, and replicate services information, and forward consumers’ requests.

uDiscovery needs to formalise the urban context in a model that can be usable for each

gateway in the network, and represents the different city concepts that interact in the service

discovery process. uDiscovery creates a knowledge model that defines city concepts and their

relations in the service discovery domain (Figure 3.5).

Definition 1. The knowledge model is an ontology O(V,A), where V is the vocabulary and

A the set of axioms. The vocabulary V (T,R) defines the following concepts:

• City: place where the different concepts of uDiscovery interact (e.g., Dublin).

• Citizen: person who is in a city and can use its services.

• Place: places in the city, where citizens perform their daily activities (e.g., bus station,

museum, stadium).

Chapter 3. Design

• City Service: an urban service offered to the citizens by the city or a place (e.g.,

transport, health service, etc.).

• Software Service: piece of software that encapsulates IoT devices capabilities and

provides useful information to citizens (e.g., number of available bikes in a station,

location of nearby hospitals).

• Gateway: digital entity that manages software services.

• Domain: different smart city domains such as health, education, mobility.

• Event: a thing that happens in the city.

• City Authority: different entities or institutions that govern the city.

• Time: the temporal dimension of a city.

The vocabulary V also defines a number of relations R between concepts (Table 3.2), and

the ontology O defines a set of axioms A to infer city concepts relations (Table 3.3).

3.4.1.2 Initialisation Manager

The urban based service manager handles services using the previous knowledge model in a

network of IoT gateways. This network needs to be initialised and configured based on the

knowledge model to create links between gateways, which drive the exchange of messages

in the following stages of service organisation and discovery. The initialisation manager

configures the network based on the formalised urban context to organise and discover services

in a distributed fashion. It initialises the network by exchanging gateways information. This

section introduces the main elements of this process, with the algorithms to manage these

elements.

Definition 2. A gateway is defined as gw = 〈gwid, gwloc, SP,D,GR,GWS,P,C〉, where

gwid is a unique identifier for a gateway, and gwloc is the gateway location. The set SP

represents the city places that surround the gateway gw. The set D represents the gateway’s

domains, which are defined based on the surrounding places SP using the axiom A3. The set

GR represents the relevance of the gateway for each domain in D. The set GWS represents

the list of other gateways in the network that the gateway gw knows. P represents the

pheromones values for the links between gw and the gateways in GWS. uDiscovery uses

these pheromones to find the best route between gateways based on the urban context. Each

gateway initialises, increases, or decreases pheromones values according to its interactions

with other gateways in the gateways initialisation, service organisation, and service discovery

Chapter 3. Design

Table 3.2: Ontology Relations R.

has (City, Citizen)
has (City, P lace)

The relation between a city and its
citizens and places.

lives (Citizen,City)
The relation between a citizen who
lives in a city.

isIn (Citizen, P lace)
The relation between a citizen who
is in a place.

offers (City, CityService)
offers (Place, CityService)

The relation between a city or a place
and the city services that they offer.

uses (Citizen,CityService)
The relation between a citizen who
uses a city service.

supports (SoftwareService, CityService)

The relation between a software
service that supports a city service
(e.g., the software service that
provides information about nearby
hospitals supports the health city
service).

hasDomain (Place,Domain)
hasDomain (CityService,Domain)
hasDomain (SoftwareService,Domain)

The relation between places, city
services, software services and their
domains.

isDeployed (Gateway, P lace)
The relation between a gateway
and the place where it is deployed.

isManagedBy (SoftwareService,Gateway)
The relation between a software
service and the gateway that
manages it.

requestsSoftwareService (Citizen,Gateway)
The relation between a citizen who
requests a software service to a
gateway.

happensAt (Event, P lace)
The relation between an event that
happens at a place.

requires (Event, CityService)
The relation between an event that
requires a city service.

startsAt (Event, T ime)
The relation between an event that
starts at a given time.

endsAt (Event, T ime)
The relation between an event that
ends at a given time.

schedules (CityAuthority, Event)
The relation between a city authority
that schedules a known event.

Table 3.3: Ontology Axioms A.

A1 : offers (x, y)←
hasDomain(x, z), hasDomain(y, z)

States that if a Place x has the same domains of
a CityService y, then x offers y.

A2 : supports (x, y)←
hasDomain(x, z), hasDomain(y, z)

States that if a SoftwareService x has the same
domains of a CityService y, then x supports y.

A3 : hasDomain (x, z)←
isDeployed(x, y), hasDomain(y, z)

States that if a Gateway x is deployed in the
Place y and y has the domain z, then
x has the domain z.

Chapter 3. Design

Algorithm 1 Initialisation Manager - Gateway Initialisation.

1: function Initialisation(x) . where x - distance to recognise places
2: cityP laces← osmAPI()
3: for each place ∈ cityP laces do
4: if distanceBetween(gwloc, place) <= x then
5: SP.add(place)

6: cityServices← getCityServices(SP)
7: D ← getDomains(cityServices)
8: GR← calculateRelevance(D)
9: sendMessage(GwAdvmsg(∗, gw), 1)

processes. The set C represents the cost for sending a message from gw to each gateway

in the set GWS, and reflects the distance between gateways. P and C are initialised with

each gateway and rule the service discovery in next stages. The request manager uses both

pheromones and costs values as inputs for the ant colony forwarding mechanism to select the

gateways where to forward requests.

Definition 3. A city place is defined by cp = 〈cpid, cploc, CS,D〉, where cpid is the place

unique identifier, and cploc its location. CS represents the city services offered by the place

following the axiom A1 (See Table 3.3). The set D represents the place’s domains.

Definition 4. Pheromones (P) represent how relevant is a gateway in the set GWS to solve

a request for a given domain from the perspective of gw. Each gateway stores pheromones

for each domain as τ(d)gwi,gwj which represents the pheromone for a link between gwi and

gwj for the domain d.

Definition 5. Costs (C) represent how far is each gateway in the set GWS from gw. This

cost is defined by Lgwi,gwj as the distance between gwi and gwj .

Definition 6. A gateway advertisement is defined by GwAdvmsg = 〈idrec, gw, h〉, where

idrec is the identifier of the receiver gateway, gw is the information of the sender gateway,

and h is the number of hops of the message to avoid network overhead.

uDiscovery uses previous definitions to initialise the network of gateways according to the

following steps:

Step 1: Algorithm 1 shows the process that managers perform to initialise the network.

Each gateway identifies its surrounding places in a given distance x, using its location and

city places data from Open Street Map (OSM)1 APIs (Line 2 to 4). Then, it defines the

city services that surrounding places offer using axiom A1, and their domains using axiom

1OSM - https://www.openstreetmap.org/

https://www.openstreetmap.org/

Chapter 3. Design

A3 (Line 5 and 6). Each gateway calculates its relevance for D (See Definition 2.) following

equation 3.1 (Line 7).

rel(gw, d) =
ncs

ds
(3.1)

where ncs is the number of city services of domain d that are offered by the surrounding

places of gw, and ds is the total number of domains of all city services offered by theses

places. Finally, each gateway broadcasts its information to other gateways in the network by

sending gateway advertisement messages (Line 8).

Step 2: When an initialisation manager in gateway gwi receives a gateway advertisement

message from another gateway gwj (Algorithm 2), the manager stores the data of gwj inGWS

(See Definition 2.) (Lines 5 and 6). It updates the pheromones information P by creating an

entry for each domain of gwj with its respective relevance score (Lines 7 and 8). The manager

initialises pheromones values on each gateway based on the urban context represented by the

relevance score. These pheromones values enable uDiscovery to integrate the urban context

of each gateway and the ant colony forwarding mechanism that the request manager uses

in the discovery process. The manager also updates the communication cost C by creating

an entry for gwj with the respective distance (Line 9). Finally, the manager advertises the

information about the gateway gwj to other gateways in GWS, if the message hops is less

than the limit of hops. These destinations are selected according to how interesting is gwj

to each gateway in GWS (Lines 10 to 14).

Definition 7. The interest of a gateway gwi in the information of gwj follows eq 3.2.

interest(gwi, D) =
n∑
x=1

rel(gwi, dx) (3.2)

where dx belongs to D, which is the list of domains of the surrounding places of the gateway

gwj . This equation reflects that a gateway gwi is interested in gwj , if gwi is relevant for

one or more domains from D. Destinations are ranked according to this interest, to spread

gateways’ information to the most similar gateways in the city according to the domains

of their surrounding places. Finally, the manager responds to gateway gwj by sending an

initialisation message with the information of gwi (Line 15).

Each manager maintains the network according to the gateway type (i.e., static or mobile).

Static gateways perform a periodic operation to confirm which gateways in the list GWS are

Chapter 3. Design

Algorithm 2 Initialisation Manager - Network Initialisation.

1: function Message Arrives(msg)
2: if msg is GwAdvmsg then
3: gwj ← msg.gw
4: hops← msg.h
5: if gwj not in GW then
6: GW.add(gwj)
7: for each d ∈ gwj .D do
8: τ(d)gwi,gwj ← rel(gwj , d)

9: Lgwi,gwj ← distance(gwi, gwj)
10: hops← hops+ 1
11: if hops <= hopsLimit then
12: destinations← getDestinationsByInterest(gwj .D)
13: for each gw ∈ destinations do
14: sendMessage(GwAdvmsg(gwid, gwj , hops))

15: sendMessage(GwAdvmsg(msg.sender, gwi, hops))

alive. A static gateway gwi sends a confirmation message to gwj with a time-out t. If gwj

does not reply within the time-out period, gwi removes gwj from GWS. If, after this process,

the size of GWS is zero, gwi repeats the Algorithm 1. For mobile gateways, the maintenance

depends on their movement. When a mobile gateway gwi moves a distance of x meters, it

removes gateways in GWS which are out of range by calculating their new distance. If, after

this process, the GWS is empty, gwi repeats the Algorithm 1 with a new list of surrounding

places according to its new position. Each manager updates its pheromones’ information in

a periodic way following the equation 3.3.

τ(d)gwi,gwj = (1− ρ)τ(d)gwi,gwj (3.3)

where ρ is the pheromones evaporation factor. This evaporation enables the inclusion of

gateways that might suddenly appear in the network. ρ = 0.1 in this work based on a

previous study on the ant colony optimisation (ACO) algorithm for solving the travelling

salesman problem [Cheong et al., 2017]. The travelling salesman problem is similar to the

discovery problem in this thesis. Each gateway wants to find the shortest path to solve

requests through a set of gateways, as the salesman wants to find the shortest path to travel

through a set of cities.

3.4.1.3 Service Organisation Manager

The service manager organises services descriptions when it receives registration messages

from providers or other gateways in the network. Each gateway stores the service description

Chapter 3. Design

Algorithm 3 Service Organisation Manager.

1: function Message Arrives(msg)
2: if msg is Regmsg then
3: sdesc ← msg.sdesc
4: hops← msg.h
5: if sdesc not in localRepository then
6: SD ← sdesc.D
7: if shareDomains(D,SD) then
8: localRepository.insert(sdesc)
9: sendMessage(RegResmsg(msg.sender, gwi, sdesc))

10: hops← hops+ 1
11: if hops <= hopsLimit then
12: destinations← getDestinationsByInterest(sdesc.D)
13: for each gw ∈ destinations do
14: sendMessage(Regmsg(gwid, sdesc, hops))

15: if msg is RegResmsg then
16: gwj ← msg.sender
17: sdesc ← msg.sdesc
18: for each d ∈ sdesc.D do
19: τ(d)gwi,gwj ← τ(d)gwi,gwj + ρ

in its local repository, if the gateway is relevant following equation 3.1. The manager responds

the registration message, and advertises the description to other relevant gateways in the

network using the same equation. This equation reflects how relevant is a gateway to store

a description according to the service domains and the gateway surrounding places. This

process enables uDiscovery to organise services in the network of gateways based on urban

context. The manager uses the following definitions and processes to organise services:

Definition 7. A registration message is defined as Regmsg = 〈idrec, sdesc, h〉, where idrec is

the identifier of the receiver gateway, sdesc is the service description to be registered, and h

is the message limit of hops.

Definition 8. Once a gateway gwi receives a registration message from a provider p, or a

service advertisement message from a gateway gwj , to register a service description sdesc,

gwi notifies p or gwj about the registration success, if gwi registers sdesc. Gateways use

this response to reinforce their links to other gateways for a given domain. For example, gwj

increases the pheromones values of gwi for the domains of sdesc, if gwi registered the sdesc that

gwj advertised. This response message message is defined as RegResmsg = 〈idrec, gw, sdesc〉,

where idrec is the receiver identifier, gw is the gateway that registered the service, and sdesc

is the service description that was registered.

Algorithm 3 shows the process that the service managers perform when they receive registra-

Chapter 3. Design

tion (Lines 2 to 14) and registration response messages (Lines 15 to 19). When a gateway gwi

receives a registration message, the service manager first validates if the received description

sdesc already exists in its repository. The manager stores sdesc and sends a registration re-

sponse to the sender message, if the service is not in the local repository and shares domains

with gwi (Lines 5 to 9). The service manager advertises sdesc by sending the registration

message to other gateways in the network. Destination gateways are selected according to

their potential interest in the service following equation 3.2, where D is the list of domains of

the service. These potential interests enable each gateway to advertise services descriptions

to relevant gateways based on their surrounding places (i.e., urban context) to put the right

service in the right place. gwi advertises services if the number of hops of the registration

message is less than the hops limit to avoid network overhead (Lines 10 to 14).

The manager updates the pheromones’ values in gwi when a registration response message

arrives. It increases the pheromones value by adding ρ (i.e., 0.1) for each domain in the

sdesc that was previously registered by gwj . This increment reinforces the links between gwi

and gwj for the service domains (Lines 15 to 19). These links are used later by the request

manager to forward requests where they are most likely to be discovered.

3.4.1.4 Request Manager

The request manager drives a distributed discovery process based on the network of gate-

ways and the services organisation that uDiscovery builds. This manager aims to improve

the discovery efficiency by searching for services in, and forwarding requests to the most rel-

evant search spaces that the service organisation creates. This manager is also responsible

for sending responses back to consumers and receiving, and propagating their feedback. It

propagates responses and feedbacks because a discovery process might involve more than

one gateway, when the request is not solved by the gateway that receives the request from

the consumer. Each included gateway is added to a list of participants that enable such

propagation.

Figure 3.6 shows the different processes that the request manager follows when it receives

different messages from consumers or other gateways in the network. The service discovery

process starts when the requestmanager receives a request from consumers. The manager

tries to solve the request using the heuristic service planner, which searches for services in

the local repository based on consumers’ feedback (Section 3.4.3). If the planner solves the

request, the request manager sends the response to the consumer. Otherwise, it uses the

pheromones and costs information in the ant colony mechanism to forward the request to

Chapter 3. Design

ResFeedmsg
arrives

Reqmsg
arrives

ReqResmsg
arrives

FeedPropmsg
arrives

Start

Search	for
services	to	solve

request

Start

Send	response
message	to
consumer

Start

Update	feedback
information	in
the	local	registry

Start

Update	feedback
information	in
the	local	registry

Send	feedback	
to	previous
participant	

Update
pheromones'

values

Send	feedback	
to	previous
participant	

End

End

Message
received?

No

Send	response
to	previous
participant	

End

Send	response
message	to
consumer

Request
solved?

Yes

No

Get	destinations
by	pheromones

Forward	request
to	Destinations

destinations

End

Message
received?

No

Send	response
to	previous
participant	

REQUEST	MESSAGE	ARRIVES REQUEST	RESPONSE
MESSAGE	ARRIVES

RESPONSE	FEEDBACK
	MESSAGE	ARRIVES

FEEDBACK
PROPAGATION

	MESSAGE	ARRIVES

Figure 3.6: uDiscovery - Request Manager Processes.

the most promising set of gateways according to its partial knowledge of the network, which

is built when the network is configured and the services organised. If the consumer does not

receive the response, the manager sends the response message to the previous participant in

the distributed discovery process. When a gateway receives a response message, the manager

tries to send the response to the consumer. If the consumer does not receive the response,

it sends the response to the previous participant. If a consumer gets a response, it might

send its feedback about the retrieved services. The manager stores the feedback in the

local registry using the heuristic planner (Section 3.4.3) and propagates this feedback to

previous participants. When a gateway receives feedback information from other gateway, it

updates the feedback information in the local registry, and the pheromones values to reinforce

gateways links according to the success or failure of the discovery process. The request

manager uses the following definitions and algorithms to realise previous processes.

Definition 9. A request message is defined as Reqmsg = 〈idrec, c, r, PGWS,PSOL, h〉,

Chapter 3. Design

where idrec is the identifier of the receiver gateway, r is the service request, and c the request

consumer. The set PGWS represents the previous gateways that the request has visited, the

set PSOL represents the partial solutions that previous gateways have discovered, and h is

the hops limit for the message, to avoid network overhead.

Definition 10. A request response message is used to send the response to consumers and

is defined as ReqResmsg = 〈idrec, c, r, SOL,GWS〉, where idrec is the receiver identifier, c the

consumer, r consumer’ request (Section 3.2), SOL is the list of plans that solve the request

r, and GWS are the gateways that participate in the discovery process.

Definition 11. A response feedback message is used by consumers to send feedback about

responses. This message is defined as ResFeedmsg = 〈idrec, r, FSOL,GWS〉, where idrec is

the receiver identifier, r is the consumer request (Section 3.2), FSOL are the solutions with

their respective feedback, and GWS are the gateways that participated to solve r. Each

plan feedback is a Boolean mark that defines if the plan was correct or incorrect from the

consumer’s perspective. For example, a consumer might mark a plan with 1 if its execution

was successful. The heuristic service planner uses this mark to perform a search that avoids

the exploration of incorrect plans (Section 3.4.3).

Definition 12. Different gateways can participate in the discovery process. But only the one

that sent the response to the consumer receives its feedback. This information is prop-

agated to all participants. Gateways use a feedback propagation message to send

consumers’ feedback to other participants. This message is defined by FeedPropmsg =

〈idrec, r, FSOL,PGWS〉, where idrec is the receiver identifier, r is the solved request, FSOL

are the solutions for r with their feedback, and PGWS are the participant gateways.

Algorithm 4 shows the detailed processes that the request manager performs when it receives

request messages (Lines 7 to 22), request response messages (Lines 23 to 28), request feedback

messages (Lines 29 to 35), and feedback propagation messages (Lines 36 to 44). The request

manager in a gateway gwi searches for services in its repository to solve a request by using the

planner (Section 3.4.3) (Line 8). If the request is solved, the manager sends the response to

the consumer. If the consumer does not receive the response, the manager sends the response

to other participant in the discovery process (Lines 10 to 15). If the request is not solved, the

manager forwards the request and the partial solutions to other gateways in the network. It

selects the most promising destinations using the pheromones and cost information as inputs

for the ant colony forwarding mechanism. Requests are forwarded if the message hops is less

than the hops limit to avoid overhead (Lines 16 to 22).

Chapter 3. Design

Algorithm 4 Request Manager.

1: function Message Arrives(msg)
2: r ← msg.r
3: c← msg.c
4: PGWS ← msg.PGWS
5: PSOL← msg.PSOL
6: hops← msg.h
7: if msg is Reqmsg then
8: SOL← heuristicP lanning(r, PSOL)
9: PGWS.add(gwi)

10: if solved then
11: sendMessage(DiscResmsg(cid, c, r, SOL, PGWS))
12: if ¬received then
13: PGWS.remove(gwi)
14: gw ← getPreviousGateway(PGWS)
15: sendMessage(DiscResmsg(gwid, c, r, SOL, PGWS))

16: else
17: PSOL.add(SOL)
18: hops← hops+ 1
19: if hops <= hopsLimit then
20: destinations← getDestinationsByPheromones(r.D)
21: for each gw ∈ destinations do
22: sendMessage(Discmsg(gwid, c, r, PGWS,PSOL, hops))

23: if msg is ReqResmsg then
24: sendMessage(DiscResmsg(cid, c, r, SOL, PGWS))
25: if ¬received then
26: PGWS.remove(gwi)
27: gw ← getPreviousGateway(PGWS)
28: sendMessage(DiscResmsg(gwid, c, r, SOL, PGWS))

29: if msg is ResFeedmsg then
30: r ← msg.r
31: FSOL← msg.SOL
32: localRepository.updateFeedback(r, FSOL)
33: PGWS.remove(gwi)
34: gw ← getPreviousGateway(PGWS)
35: sendMessage(DiscPropmsg(gwid, r, FSOL,PGWS))

36: if msg is FeedPropmsg then
37: gwj ← msg.sender
38: FSOL← msg.SOL
39: localRepository.updateFeedback(r, FSOL)
40: for each d ∈ r.D do
41: τ(d)gwi,gwj ← τ(d)gwi,gwj + f

42: PGWS.remove(gwi)
43: gw ← getPreviousGateway(PGWS)
44: sendMessage(DiscPropmsg(gwid, r, FSOL,PGWS))

Chapter 3. Design

Definition 13. The potential of a gateway gwj to solve a request r forwarded from a gateway

gwi is defined by equation 3.4.

potential(gwj , D) =
n∑
x=1

τ(dx)gwi,gwj

αηgwi,gwj
β∑m

y=1 τ(dx)gwi,gwy

αηgwi,gwy
β

(3.4)

where τ(dx)gwi,gwj is the pheromone value for the link from gwi to gwj for the domain dx

that belongs to the list of domains of the request D with size n. α controls the influence of

τ(dx)gwi,gwj and is greater or equal to 0. ηgwi,gwj is the cost of sending a message from gwi

to gwj (i.e., the distance) and is defined as ηgwi,gwj =
1

Lgwi,gwj

. β controls the influence of

ηgwi,gwj and is greater or equal to 1. α = 1 and β = 2 in this work based on the previous

study on the ACO algorithm for solving the travelling salesman problem [Cheong et al., 2017],

and to prioritise closer gateways which might imply less hops and latency in the discovery

process. m is the number of gateways that are relevant for the dx according to the pheromones

values in gwi. The ant colony forwarding mechanism uses the potential of each gateway to

rank destinations and selects the most promising ones based on the urban context, which is

reflected by the pheromones values. Gateways forward requests where they are most likely to

be solved using this mechanism in a distributed environment where each node has a limited

knowledge about the rest of the network.

If the manager receives a response message, it sends the response to the consumer (Line 24).

If the consumer does not receive the response because there is no link between gwi and c, the

manager sends the response to the previous gateway that participate in the discovery process

(Lines 25 to 28). If gwi receives a feedback message from a consumer, it updates the feedback

for the discovered plans in the repository (Lines 29 to 32). The request manager propagates

this feedback to the previous participant (Lines 33 to 35). Once gwi receives a message

DiscPropmsg from another gateway gwj , the manager updates the feedback information for

the discovered plans in the local repository (Lines 36 to 39). The manager also updates the

pheromone information for the link between gwi and gwj for each request domains by adding

the feedback f (Line 41). Finally, the manager propagates the feedback information to other

participants of the discovery process (Lines 42 to 44).

3.4.2 Self-adaptive Service Discovery Model

uDiscovery adapts the organisation of services according to the city events to maintain an

efficient service discovery over time. uDiscovery creates an IoT network of gateways, which

exchange services information based on the city changes to put the right service in the right

Chapter 3. Design

Local
Repository

Selfadaptive Service Manager

Periodic Events
Manager

Scheduled
Events Manager

Unforeseen
Events Manager

uDiscovery

Adaptation
Messages

Adaptation
Messages

Adaptation
Messages

City

Urban
Context

Events Data &
Services
Updates

Sensors
Data

Services
Updates

City
State

Services
Updates

Figure 3.7: uDiscovery - Self-adaptive Service Manager Architecture.

place, at the right time. uDiscovery deploys a self-adaptive service manager on each IoT

gateway, which is detailed in the Figure 3.7. There are three sub-components that adapt the

service information in the local repository according to the city events. These components

identify city events and move services information in the network by sending adaptation

messages to other gateways. The unforeseen events manager identifies unforeseen events

and moves services accordingly. The scheduled events manager queries pre-defined events in

the repository and updates the services. Finally, the periodic events manager updates the

services information based on city patterns.

Table 3.4 shows the parameters of the self-adaptive model. This model uses a threshold T to

validate if the utility of the discovery process is acceptable, or adaptive actions are needed

to improve its value. Hidden nodes defines the number of nodes in the neural network that

uDiscovery uses to manage periodic events. The learning rate is used by the periodic events

manager to learn from city behaviour. Chapter 5 experiments with different values for these

parameters and reports uDiscovery′s performance results.

The self-adaptive service manager follows the principles defined by Lalanda et. al for auto-

nomic systems [Lalanda et al., 2013].

Definition 14. The self-adaptive manager defines as a policy the improvement of the service

discovery efficiency in smart cities over time. The discovery efficiency is defined as a set of

goals that uDiscovery pursues. uDiscovery aims to increase the number of solved requests,

provide the right results (i.e., search precision), reduce discovery latency, reduce network

Chapter 3. Design

Parameter Description

T
A double that defines the threshold for the
utility value in the adaptive process for
unforeseen events

Hidden Nodes
An integer that defines the number of hidden
nodes in the neural network used to manage
periodic events

Learning Rate
A doulble that defines the learning rate of the
algorithm that is used to manage periodic
events

Table 3.4: Self-adaptive Service Discovery Model Parameters.

overhead, and reduce resource usage.

The manager has sensors that monitor how uDiscovery meets these goals. These sensors

collect data about the number of requests that the system receives rrt, and the number of

requests that the system solves srt. They measure the search precision spsri , response time

rtsri , and numbers of hops nhsri of each solved request, and the percentage of used storage

in the gateway pust. as follows:

Definition 14. The manager defines a set of metrics to aggregate the sensed data. The rate of

solved requests rsrt is the relation between solved requests and received requests at a given

time t (eq 3.5).

rsrt =
srt
rrt

(3.5)

The average precision aspt aggregates the precision of the solved requests up to a given time

t. It follows equation 3.6.

aspt =

∑srt
i=1 spsri
srt

(3.6)

The average response time artt aggregates the latency of the solved requests until a given

time t. It follows equation 3.7.

artt =

∑srt
i=1 rtsri
srt

(3.7)

The average number of hops anht aggregates the number of hops of the solved requests. It

follows equation 3.8.

Chapter 3. Design

anht =

∑srt
i=1 nhsri
srt

(3.8)

The system needs to evaluate changes to latency over time. Equation 3.9 formalises the

variation to latency from a time t− 1 to a time t.

v(artt) =
artt − artt−1

arttn
(3.9)

Definition 15. The manager combines these metric to define a system utility function

(eq. 3.10). Coefficients show the priority of each goal in this thesis, and how they affect overall

performance of uDiscovery. The rate of solved requests is most important as it reflects how

many requests a gateway solves from the total of received requests. The rest of metrics can be

applied, if and only if a request was solved before. The larger the rate of solved requests, the

better. The average precision is next, as the consumer expects correct services in response to

a request. uDiscovery assumes that accurate responses are more desirable, because incorrect

responses cannot be used by consumers even if they take less time or network usage to be

discovered. The larger the precision, the better. The average response time is third as it is

desirable to retrieve services with low latency, but uDiscovery assumes that consumers are

more interested in getting a correct answer even if it takes longer time. The lower the response

time, the better. The average number of hops is fourth following the same assumption. It is

important to minimise the number of visited gateways to solve a request from the network

perspective (i.e., minimise network overhead). However, uDiscovery assumes that consumers

are more concerned about getting a correct response in a short time rather than the number

of visited gateways. Nonetheless, the lower the number of hops, the better as it means less

network overhead. The percentage of used storage is less important than the other variables

as uDiscovery assumes that it should be invisible to consumers and the storage capacity can

be easily improved in an IoT gateway (e.g., upgrading the gateway’s SD card).

Maximise : u(sd)t = 5rsrt + 4aspt − 3v(artt)− 2anht − pust (3.10)

Figure 3.8 illustrates the processes that the adaptive manager follows to respond to un-

foreseen, scheduled, and periodic city events. The manager identifies unforeseen events by

evaluating the utility value of the discovery process. The adaptive manager asks for services

to other gateways based on the pheromones’ information, if the utility value is less than

Chapter 3. Design

Start

Get	scheduled
city	evens

SCHEDULED	EVENTS	MANAGER

Define	required
domains

Not	Services
Available	and	Event

starts	soon?

Send	adaptive
message	to
destinations

Get	destinations
by	pheromones

Store	received
services	

descriptions

Yes

End

No

Start

Calculate	utility
value	at	time	t

Define	required
domains

ut	<=	T
Yes

No

Send	adaptive
message	to
destinations

UNFORESEEN	EVENTS	MANAGER

Get	destinations
by	pheromones

Store	received
services	

descriptions

T	=	ut

End

Start

Time	period
starts?

Get	observation
from	initial	MDP

Get	observation
from	initial	MDPYes

No

Calculate	utility
reward	and	get
current	state

Store	experience
and	replay
memory

Get	action	to
perform

Move
services?

Remove
services?

Remove	received
services	

descriptions
Send	adaptive
message	to
destinations

Get	destinations
by	pheromones

Store	received
services	

descriptions
End

PERIODIC	EVENTS	MANAGER

No

No

Yes

Figure 3.8: uDiscovery - Self-Adaptive Manager Processes.

the threshold T . Otherwise, the manager updates the threshold with the utility value to

improve the discovery performance in a continuous fashion. The manaager checks scheduled

events in the local repository and asks for services when the event is about to start, using

the pheromones’ information to determine which gateways are most likely to have services

information related to the events domains.

The adaptive manager models the management of periodic events as a reinforcement learn-

Chapter 3. Design

Algorithm 5 Unforeseen Events Manager.

1: function utilityMonitoring(t) . where t is the current time
2: ut ← calculateUtility(t)
3: if ut <= T then
4: RD ← defineRequiredDomains()
5: destinations← getDestinationsByPheromones(RD)
6: for each gw ∈ destinations do
7: sendMessage(Adpmsg(gwid, RD, 1))

8: localRepository.insert(receivedServices)
9: else

10: T ← ut

ing problem, where the manager knows the environment states and possible actions. But it

does not know the model of the environment (i.e., transitions between states, and rewards

for each transition). Then, the manager must learn this model from its interaction with

the environment. Model-free reinforcement learning algorithms are designed to handle such

kind of complex environments. The adaptive manager uses a Deep Q-Network (DQN) algo-

rithm [Mnih et al., 2015], which is a model-free reinforcement learning model that combines

Deep Neural Networks and Q-Learning to learn about city’s periodic events. The manager

gets the action to perform under given circumstances from the DQN-algorithm, which deter-

mines if services must be moved between gateways or removed from the local repository. The

manager provides the environment information to the DQN-based algorithm based on the

utility function defined before (Equation 3.10). The DQN algorithm uses Deep Neural Net-

works to estimate the Q-values that the Q-Learning algorithm uses based on the environment

information. The number of hidden nodes, and the learning rate are defined as parameters

for this model in the Table 3.4 because they influence the performance of the neural networks

to extract and learn features from the environment. Chapter 5 presents the effect of these

parameters in the management of periodic events.

The rest of this section explains in details how the manager adapts the service organisation

to respond to each type of city event.

3.4.2.1 Unforeseen Events Manager

The unforeseen events manager handles unforeseen events using the utility function (eq. 3.10).

Algorithm 5 shows the reactive process that gateways perform in detail. Each gateway

calculates the utility function at a given time t (Line 2). If the utility is lower than, or

equal to, a threshold T , the gateway assumes that an event is happening. The gateway

deduces which service domains are required by the city event based on unsolved requests that

Chapter 3. Design

Algorithm 6 Scheduled Events Manager.

1: function scheduledEventsMonitoring(t) . where t is the current time
2: E ← getScheduledEvent()
3: RD ← requiredDomains(E)
4: if ¬gatewayHasServices(domains) then
5: if event.startsSoon() then
6: destinations← getDestinationsByPheromones(RD)
7: for each gw ∈ destinations do
8: sendMessage(Adpmsg(gwid, RD, 1))

9: localRepository.insert(receivedServices)
10: while eventIsHappening() do
11: keep services

12: removeServices()
13: else
14: do nothing

15: else
16: do nothing

negatively impacted the utility function (Line 4). The gateway sends an adaptive message

asking for services from these domains to other gateways in the network, and stores responses.

Gateways are selected according to the pheromones’ information in the gwi for the required

domains following the equation 3.4, where D is the set of required domains (Lines 5 to 7). It

guarantees that gwi asks for services from the most promising known gateways according to

the urban context represented in the pheromones’ values. gwi stores, in the local repository,

the services that destinations send as a response to the services’ request (Line 8). If the

utility is greater than the threshold T , the gateway updates the threshold with the current

utility value. This guarantees a continuous improvement of the system (Line 10).

Definition 16. An adaptive message is defined as Adpmsg = 〈idrec, RD, h〉, where idrec is

the identifier of the receiver gateway, RD is the set of domains of the required services, and

h is the message hops.

When a gateway gwj receives an adaptive message, gwj searches services that belong to the

required domains in its local repository and sends them as response. If the gateway does

not find services and the message hops is less than the hops limit, it forwards the adaptive

message to relevant gateways in the network, which are selected according the pheromones’

information in gwj .

3.4.2.2 Scheduled Events Manager

The scheduled events manager handles foreseen events based on the knowledge model (Fig-

ure 3.5). This model defines the concepts city event, time (i.e., temporal dimension), and city

Chapter 3. Design

authority. Events happen at a city place and require city services. They have start and end

times and can be scheduled by authorities. Times are represented in days, hours, minutes

and seconds. A city authority schedules city events in the system by specifying the place

where it happens and the start and end times. Algorithm 6 presents how scheduled events

are managed in detail. A gateway gwi retrieves information about scheduled events in its

surroundings, and determines which service domains are required by these events (Lines 2

and 3). If gwi does not manage services for any of the required domains, it evaluates whether

the start time of the event is soon (Lines 4 and 5). gwi sends requests for services from the

required domains to other gateways before the event starts. Gateways are selected according

to the pheromones’ information in gwi for the required domains following the equation 3.4,

where D is the set of required domains. gwi stores the received services and keeps them until

the event ends (Lines 6 and 12).

3.4.2.3 Periodic Events Manager

Periodic events follow a pattern in the city because of the interaction of its entities. Such

interactions are repetitive as entities have a similar behaviour at a similar time (e.g., traffic

congestion at peak hours). The periodic events manager should move services according to

these events because they might have an impact in the consumers’ services requests. For

example, citizens might ask for transportation related services at peak hours. The periodic

events manager tries to learn these patterns from the citizens’ requests to proactively re-

organise services. The periodic manager defines a Markov Decision Process to learn from

citizens’ requests. The manager knows knows the environment states S and possible actions

A to perform, but it does not know the model of the environment. Such model is composed

by the conditional distribution P (s′|s, a) of next states given a current state and an action,

and the reward function of transitioning from an state s to s′, P (s′|s, s′). The manager

must learn the environment model from experience (i.e., moving services, observing utility

value, and generalising experiences). Current research in reinforcement learning has pro-

posed model-free approaches to learn from complex environments when models are unknown.

uDiscovery uses the DQN algorithm [Mnih et al., 2015], which combines Deep Neural Net-

works and Q-Learning to learn about city’s complex behaviour. The periodic manager aims

to find successful adaptive policies that proactively move services and improve the discovery

efficiency in smart city environments. To this end, the periodic manager starts by defin-

ing the city states, which are composed of a time and the service organisation status, and

the possible actions, which enable the exchange of services between gateways. The manager

Chapter 3. Design

S0: Updated

Organisation

at a Time t

S1: Outdated

Organisation

By Defect at

a Time t

S2: Outdated

Organisation

By Excess at

a Time t

City event

starts

A1:Move

services

City event

finishes

A2: Remove

services

A0: Do

Nothing

Figure 3.9: uDiscovery - City States Model.

knows the time according to the knowledge model (Figure 3.5) and defines time periods, city

states, and possible actions as follows:

Definition 17. A time period starts at hour 0 and ends at hour n, after which another

period starts. For instance, a day period starts at hour 0 and ends at hour 24.

Definition 18. uDiscovery defines three city states and three actions to capture a service

organisation status 3.9. S0 represents the state when the service organisation is up to date

at time t. S1 represents an outdated service organisation by defect (i.e., missing services) at

a given time t after an event starts. S3 represents an outdated service organisation by excess

(i.e., there are too many services) at a time t after an event ends. The manager performs

three actions, depending on the city state. The manager does nothing if the system is in state

S0 (i.e., A0); the manager sends adaptive messages to other gateways if the system is in state

S1 (i.e., A1); and the manager removes services if the system is in state S2 (i.e., A2).

The periodic events manager links the time periods to the states to create its view of the

city. For example, the manager can determine that the service organisation is updated at a

given hour in a time period. The manager does not know the reward values on transitioning

between states. But, it knows the impact of performing an action in the utility function.

Equation 3.11 formalises this impact and enables the manager to observe and store the

impact of an action in the service organisation at a given state. This equation defines that if

the utility function increases from one time ti to another time tj , the reward will be positive.

Otherwise, the reward will be negative.

rt = u(sd)t − u(sd)t−1 (3.11)

Chapter 3. Design

Algorithm 7 Periodic Events Manager.

Require:
DQN dqn
Action action
Observation obs

1: function periodicEventsMonitoring(t) . where t is the current city time
2: if t.period.hour = 0 then
3: obs← dqn.initMDP ().lastObs()
4: else
5: ut ← calculateUtility(t)
6: ut−1 ← calculateUtility(t− 1)
7: rt ← ut − ut−1
8: st ← getCityState(rt, t)
9: obs← dqn.storeAndReplay(obs, action, rt, st)

10: action← dqn.getActionToPerform(obs)
11: if action = A0 then
12: do nothing

13: if action = A1 then
14: RD ← defineRequiredDomains()
15: destinations← getDestinationsByPheromones(RD)
16: for each gw ∈ destinations do
17: sendMessage(Adpmsg(gwid, RD, 1))

18: localRepository.insert(receivedServices)

19: if action = A2 then
20: localRepository.remove(receivedServices)

Algorithm 7 shows how the periodic manager tries to learn from periodic events based on

the DQN algorithm. This algorithm requires a DQN object that implements the algorithm

defined by Mnih et al. [Mnih et al., 2015], a variable action that stores the last action of the

manager and a variable to store the last observation of the system about the city. The DQN

object uses a Markov Decision Process (MDP) model, which includes the city states space, to

define the status of the service organisation at a given hour in a time period, and the set of

possible actions to make in a given state. The size of the states space is equal to the number

of hours of the time period (e.g., 24) multiplied by the number of possible actions (i.e., 3).

Initial states represent the status of the service organisation when a time period starts (e.g.,

updated organisation at hour 0). Final states represent the status of the service organisation

when a time period ends (e.g. outdated organisation by excess at hour 24).

The periodic manager executes Algorithm 7 and starts by checking the time. If the time

period is about to start (i.e., at hour 0), the manager gets a city observation from the city

MDP , which represents the initial city state (i.e., the service organisation status at hour 0)

(Lines 2 and 3). Otherwise, the manager calculates the system reward at the current hour

and determines the new city state (Lines 5 to 8). If the reward is positive, the organisation

Chapter 3. Design

Local
Repository

Heuristic Service Planner

Service Planner

Feedback
Manager

Service
Matchmaker

uDiscovery

Urbanbased
Service
Manager

Consumers

Response &
Feedback

Request
Message

Feedback
Data

Request

Feedback
Data

Feedback
Data

Services
Data

Services
Comparison

Figure 3.10: uDiscovery - Service Planner Architecture.

of services is updated. Otherwise, the organisation of services is ”outdated by defect” (i.e.,

there are services missing) when the rate of solved requests, search precision, response time

or number of hops metrics are negatively affected. Or, it is ”outdated by excess” (i.e., when

there are too many services) when the percentage of used storage has increased. The manager

gets a new observation from the DQN algorithm according to the last observation, the last

action, the current reward and the current state (Lines 8 and 9). Finally, the manager

retrieves the action to perform and acts according to the new observation (Lines 10 to 17).

uDiscovery splits the DQN algorithm into two functions to integrate the city’s information

(i.e., city state, and service discovery reward). The first function (line 10) defines the action to

perform given a system observation by following the ε−greedy policy that DQN implements.

The second function is invoked (line 9) after at least one action has been performed by the

manager. This function stores a transition in the manager’s replay memory (i.e., DQN tuple

that stores systems transitions), performs experience replay to learn from previous transitions

(i.e., DQN’s experience learning model), and returns the next observation.

3.4.3 Service Planning based on Consumers’ Feedback

uDiscovery searches for services in gateways local repositories using a heuristic service plan-

ner based on consumers’ feedback. Local service search can also impact discovery efficiency

because of the exploration of all services combinations, and the inclusion of incorrect ser-

vices as discussed in Chapter 2. The heuristic service planner aims to improve local search

efficiency by implementing a progressive search with minimal consumer’s input. Such search

reduces search spaces in sequential steps, uses consumers’ feedback, to avoid the exploration

Chapter 3. Design

Parameter Description

Feedback
Threshold

A double between 0 and 1 that defines
the threshold to validate a discovered
edge in a service plan

Functional
Threshold

A double between 0 and 1 that defines
the threshold to explore a service plan
according to how well it addresses
functional requirements

K-value
An integer that defines the top-K
candidates to rank and explore

Table 3.5: Heuristic Service Planner Parameters.

of incorrect services, and ranks plans according to their functional properties to explore the

most promising ones. uDiscovery defines consumer’s feedback as a Boolean mark that in-

dicates the success (i.e., the mark is 1) or failure (i.e., the mark is 0) of a discovered plan

at execution time. uDiscovery uses a Boolean value because it is the minimal input that

can be expected from consumers. This mark can be provided by service-oriented compo-

nents or applications that execute the discovered plan and can determine if the execution

was successful or fails [Palade et al., 2018]. Figure 3.10 shows the detailed architecture of the

planner. It is composed by three sub-components. The service planner receives requests from

the urban-based service manager and creates service plans by using the service matchmaker.

This matchmaker matches requests against services in the local registry based on semantic

and syntactic methods. The planner validates these comparisons using the feedback manager

that manages feedback information. It stores feedback data that the urban-based service man-

ager receives from consumers in the local repository. The heuristic planner creates service

plans based on consumers’ feedback to satisfy consumer’s needs.

Table 3.5 shows the parameters of the planner. This model uses a feedback threshold to

validate discovered service relations against consumers’ feedback, and a functional threshold

to determine if a plan meets functional requirements The planner also uses a K-value to limit

the number of explored plan candidates in the planning process. Chapter 5 experiments with

different values for these parameters and reports uDiscovery′s performance results.

The heuristic service planner follows next definitions and processes:

Definition 19. A service plan is a directed graph G(v, e), where vertices v are services and

edges e are the input/output relations between them (e.g., the output of the service S2 in

the 3.11c is an input of the service S1).

Figure 3.11 shows services plans at different stages in the planning process. Figure 3.11a

Chapter 3. Design

initial

Req
Inputs

Req
Outputs

final

(a) Initial Plan.

initial

Req
Inputs

Req
Outputs S1

S2

S3

Rel
S2 S1

Rel
S3 S1

S2 inputs

S3 inputs
final

(b) Partial Plan.

initial

Req
Inputs

Req
Outputs S1

S2

S3

Rel
S2 S1

Rel
S3 S1

S4

Rel
S4 S3

Rel
S4 S3

final

(c) Finished Plan.

Figure 3.11: uDiscovery - Services Plans.

presents the initial stage where the plan has two vertices (i.e., initial and final) that represent

the request inputs and outputs. Figure 3.11b shows an intermediate state where the plan is

partial because not all the required I/O are satisfied. Figure 3.11c presents the final plan

where the graph is completed and all I/O are satisfied.

The feedback manager receives feedback from consumers, and updates the local repository

where the data of discovered plans is stored. There are two data structures that store this

historical information:

• Plans: This stores past discovered plans as graphs that include vertices (i.e., services

in a plan), and edges (i.e., relations between two services in a plan).

• Relationships: This stores each relation between two services (i.e., an edge between

two vertices) discovered by the matchmaker in past plans. Each relation includes the

source parameter type, the source service domain, the target parameter type, the target

service domain, the number of past plans that have included this relation, and the

number of successful plans that have included this relation. This counter of successful

plans is updated when a consumer sends a feedback of 1 (i.e., the discovered plan was

successful) related to a plan that includes the relation. If the plan that includes the

relation failed (i.e., the feedback value is 0), the feedback manager only updates the

counter of plans that have included the relation.

The services and requests parameters are semantically annotated as shown in the Figure 3.1

in the Section 3.2. The service matchmaker uses these annotations to reduce the search

space and identify relations between services to build service plans. Each identified relation

is validated against the consumer feedback in the local repository where the feedback manager

Chapter 3. Design

stores the knowledge about past discovered plans. This knowledge represents relationships

between domains that are extracted from consumers’ feedback thanks to the inclusion of

source and target domains in each stored relationship. This avoids the inclusion of services

that have input/output relationships but belong to non-related domains. For example, service

s1 has body temperature as output and belongs to the health domain, service s2 has room

temperature as input and belongs to the buildings domain. They have an input/output

relationship as s1 produces, and s2 consumes temperature measurements, but it is incorrect

and will receive a negative feedback when it appears in a plan. It is important to note

that uDiscovery builds knowledge about relationships between domains automatically from

historical searches, it does not require previous definitions from human experts.

Figure 3.12 shows the discovery process where the service planner searches for plans to meet

consumers’ request. This process starts when a gateway gwi receives a discovery message

from consumers or other gateways (Algorithm 4), and the request manager calls the heuristic

planner and passes the following input parameters:

• Request r: This is the requirement defined by the consumer and includes the inputs

and outputs of the service that the consumer needs.

• Previous Solutions PSOL: This is a set of plans that partially solve the request and

was discovered previously. It is a list of partial graphs 3.11b, if the message comes from

other gateway, or an empty list if the message comes from the consumer.

The heuristic service planner performs a planning process based on these inputs as fol-

lows:

Step 1: Initial Plans and Search Space Definition

The planner receives the request and previous plans and initialises the plans that are going

to be manipulated in next steps. If the list of previous plans is empty (i.e., the message comes

from the consumer), the planner creates a new graph with two vertices: initial and final. The

outputs of the initial vertex are the inputs in the request and the inputs of the final vertex

are its outputs (Figure 3.11a). The final vertex is an unsolved vertex as there are no vertices

in the graph that provide their inputs. If the list of previous plans is not empty, these partial

plans are used as initial graphs (Figure 3.11b). The goal is to build a complete graph where

the initial and final vertices are linked through a chain of solved vertices meeting consumer

requirements(Figure 3.11c).

The planner defines the search space for each initial plan. This search space is a set of

Chapter 3. Design

No

Start

Define initial plans for
consumer request

Define candidates'
plans that solve the
consumer request

STEP 1: INITIAL PLANS AND
SEARCH SPACE DEFINITION

Validate discovered
relations against

consumers' feedback

Rank candidates' plans
by the functional
matching index

Compare services in
search space with

initial plans

Define search space
based on request

outputs

STEP 2: CANDIDATES' PLANS
DISCOVERY STEP 3: RESPONSE DEFINITION AND FEEDBACK MANAGEMENT

Compare candidates'
plans with request

inputs

Validate discovered
relations against

consumers' feedback

Define resulting plans
after comparison and

validation

Rank resulting plans by
the functional matching

index

Plans solve the
consumer request?

Publish response and
wait for feedback

Are there services
to explore?

Feedback
arrives?

Recursive search in
local registry.

(Restarts at step 1)

Forward request to
other gateways in the

network

Store or update
feedback in local

registry

End

End

No

Yes

No

Yes

Yes

No

Figure 3.12: uDiscovery - Service Planner Processes.

services where their outputs match unsolved vertices in the plan. The planner queries the

repository to get these services according to their I/O. This query reduces the search space

and improves the search efficiency as the planner does less iterations in next steps (i.e.,

coarse-to-fine progressive search) [Pattar et al., 2018]..

Step 2: Candidates’ Plans Discovery

The planner tries to complete the initial plans using the services in the search space. It

uses the service matchmaker to discover I/O relations (i.e., edges in the graph) between

the outputs of each service and the inputs of each unsolved vertex in each initial plan. The

Chapter 3. Design

matchmaker includes semantic and syntactic methods to compare two service parameters,

based on previous works [Urbieta et al., 2015]. The matchmaker gives a score to the discov-

ered edges that is used to rank and select the candidate plans (i.e., plans that can solve the

request) in the next steps. The matching methods compare two service parameters using the

semantic annotations. Each parameter P has a type that corresponds to a concept in an on-

tology O and each method checks the relation between them according to the ontology.

Definition 20. uDiscovery uses the matching methods already defined in the literature to

discover relations between services inputs and outputs [Klusch et al., 2016]. uDiscovery

extends these methods by giving a score to each identified service relation according to the

strength of the matching method, as follows:

• equivalent(P1, P2): The type of P1 is conceptually equivalent to the type of P2 in O.

This method gives a score of 4 to the relation between P1 and P2, as this semantic

method is the strongest because it only match parameters that are semantically equal

(i.e., it has less chance to introduce false positives).

• plugin(P1, P2): The type of P1 is a sub-concept of the type of P2 in O. This method

gives a score of 3 to the relation between P1 and P2, as this semantic method is stronger

than subsume and the syntactic similarity method, but weaker than equivalent.

• subsume(P1, P2): The type of P1 is a super concept of the type P2 in O. This method

gives a score of 2 to the relation between P1 and P2, as this semantic method is stronger

than the syntactic similarity method.

• similarity(P1, P2): This method calculates the syntactic similarity between P1 and P2

using cosine similarity (Eq 3.12) as this produces most accurate results according to

previous work [Urbieta et al., 2017]. This method gives a score of 1 to the relation

between P1 and P2, as this is the weakest method because is more likely to introduce

false positives.

cos(P1, P2) =
Pv1 · Pv2

||Pv1|| · ||Pv2||
(3.12)

where Pv1 and Pv2 are vectors with the words that describe P1 and P2.

The matchmaker discovers relations between services in the search space and the unsolved

vertices in each plan. The planner validates each discovered relation against the consumers’

feedback in the local repository using the feedback manager. This validation avoids the in-

Chapter 3. Design

clusion of unexpected services in the plans. It means that a discovered relation is ignored if

the plans that included it before were incorrect. The planner uses the historical data from

previous searches to compute an historic success index (HSI) for each discovered relation

(i.e. an edge in a plan). The planner compares this index against a feedback threshold to

determine if the discovered relation is valid. The historic success index is calculated using

equation 3.13.

HSI(e) =
successfulP lans

totalP lans
(3.13)

where successfulP lans is the number of correct plans that have included the edge e and

totalP lans is the number of plans that have included the edge e. The planner uses this

index to determine whether a discovered relation is valid (i.e., the edge should be included or

not in the plan). If HSI >= feedbackThreshold, the discovered relation is valid, otherwise

it is ignored. The planner creates a candidate plan (i.e., a plan that potentially solves

the request) for each combination of valid discovered relations for an initial plan. Previous

planning approaches create and explore candidates for all combinations, which increases

their latency. The number of candidates can be large even with this constraint. The service

planner selects the top k candidates based on the scores defined in the matching process. Each

candidate has a functional matching index (FMI) that defines how well the candidate meets

the request’s functional requirements. This index is computed according to eq. 3.14.

FMI(G(v, e)) =

∑n
i=1 xi
4n

(3.14)

where n is the number of edges in graph G (i.e., the graph that represents the candidate plan),

and xi is the score for a particular edge according to the matching method that discovers it.

4n is the maximum value that the plan can receive, which means that all edges in the graph

were discovered by the strongest matching method (i.e., equivalent(P1, P2)). The candidate

is added to the list of candidates if the length of the list is less than or equal to K and

FMI >= functionalThreshold.

Step 3: Response Definition and Feedback Management

The planner has a list of the top candidate plans that can solve the request at this point.

It decides which of these plans effectively solve the request. The matchmaker compares the

outputs of the initial vertex (i.e., inputs of the request) with the inputs of the non-solved

Chapter 3. Design

Environment

Size

Large

Medium

Small

Service

Organisation

Environment-based

DHT-based

Device-based

None

Request

Management

Environment-based

Bio-inspired

Social-based

None

Search

Mechanism

Progressive

Semantic

Syntactic

Composition

Support

Automatic

Manual

None

Adaptation

Environment-based

Network-based

Device-based

None

ISCO

[Sivrikaya et al., 2019]

Prefix Hash Tree (DHT-based)

[Paganelli and Parlanti, 2012]

Social-based & Bio-Inspired

[Yuan et al., 2018]

Conversation-based

[Urbieta et al., 2017]

Adaptive multi-level index

[Wu et al., 2015]

GoCoMo

[Chen et al., 2016]

uDiscovery
Geospatial Indexing

[Wang et al., 2015]

Figure 3.13: uDiscovery′s features compared to closest approaches.

vertices for each candidate using the previous matching methods (i.e., equivalent, plugin,

subsume, and similarity). The serviceplanner validates the discovered relations calculating

the HSI and comparing it with the feedbackThreshold as defined in the previous step. If

the request is not solved after this comparison and there are services in the repository to

explore, it starts the process again in a recursive fashion. The matchmaker returns the list

of plans to the gateway gwi which continues the discovery process according to Algorithm 4.

The feedback manager stores the discovered plans in the local repository. Then, it subscribes

to a feedback message from the consumer, which can send its feedback as a boolean mark

according to the success or failure of the discovered service at execution time. The consumer

publishes feedback sending the plan identifier and the Boolean mark. The feedback manager

stores this feedback in the structures defined before.

Chapter 3. Design

3.5 Design Summary

This chapter introduces uDiscovery and the design of its contributions to address open issues

in the discovery of services in smart cities. uDiscovery is an urban-based model that improves

discovery efficiency in large scale and dynamic city environments.

uDiscovery formalises this urban context in a knowledge model that includes the city con-

cepts that interact in the service discovery domain. uDiscovery configures a network of IoT

gateways that manage services in the city based on this knowledge model. It annotates gate-

ways with their surrounding city places information. Each gateway decides how to organise

services in the network according to these annotations to put the services information in the

right place. uDiscovery solves consumers’ requests in the network of gateways by forwarding

them where they are most likely to be discovered. It uses a bio-inspired method on top of the

urban based service organisation to propagate the information in an environment where each

gateway has a partial knowledge about other gateways in the network. uDiscovery adapts

the service organisation according to three types of events (i.e., unforeseen events, scheduled

events, and periodic events). uDiscovery senses the impact of these events in the discovery

metrics, and the city state to move services between gateways and keep a good discovery

efficiency over time.

uDiscovery searches for services in local repositories using a heuristic planner based on

consumers’ feedback. uDiscovery improves search efficiency and minimises human input.

Consumer feedback (i.e., historical data from previous searches) is used to improve search

accuracy. uDiscovery improves search latency by avoiding the exploration of incorrect com-

binations of services. Second, the model explores the plans according to how well each plan

meets the request’s requirements.

uDiscovery enables a self-adaptive service discovery model based on the environment context.

uDiscovery puts the right service in the right place at the right time in preparation for

discovery, and also forwards requests where they are most likely to be solved. uDiscovery

offers an automatic planning that supports service composition and improves search efficiency

minimising consumers’ input. Figure 3.13 compares uDiscovery features with the closest

approaches from the literature. uDiscovery contributions close the gap of current approaches

with regard to an adaptive service discovery based on the environment context in large

environments. The remaining of this thesis describes the implementation, evaluation and

limitation of uDiscovery.

Chapter 4

Implementation

Chapter 3 describes the design of uDiscovery and the decisions to address the service dis-

covery challenges in smart cities. This chapter details the implementation of uDiscovery.

Section 4.1 introduces the architecture, data models and structural models that support

uDiscovery. Section 4.2 details initialisation, registration, and discovery processes. Sec-

tion 4.3 details the adaptive processes. Finally, Section 4.4 summarises this chapter.

4.1 uDiscovery Architecture

Figure 4.1 illustrates the architecture of uDiscovery, which is composed by four main sub-

components as follows:

Urban-based Service Manager

This component manages city, gateways, services, and requests information to initialise and

maintain the network of IoT gateways that discovers services based on urban-context accord-

ing to Section 3.4.1. This manager is composed of three components as follows:

• Initialisation Manager: This component uses urban context from the local reposi-

tory to initialise and maintain the network of gateways according to Section 3.4.1.2. It

recognises surrounding places and defines the gateway relevance. It exchanges informa-

tion with other gateways in the network through gateway advertisement messages to

create links that support the discovery of services based on urban context.

• Service Organisation Manager: This component receives service registration mes-

sages from providers or other gateways in the network. It stores and advertises the

services information to other gateways based on urban context based on Section 3.4.1.3.

73

Chapter 4. Implementation

Feedback
Manager

Service
Planner

Service
Matchmaker

Unforeseen
Events Manager

Periodic
Events Manager

Scheduled
Events Manager

Initialisation
Manager

Service
Organisation
Manager

Request
Manager

Local
Repository

uDiscovery
Urbanbased

Service Manager

Heuristic
Service Planner

Selfadaptive
Service Manager

City
State &
Services
Updates

Feedback
Data

Scheduled Events &
Services Updates

Feedback
Data

Services
Comparison

Request &
Feedback
Data

Sensors Data &
Services Updates

I/O Semantic
Data

Urban
context

Gateways Data &
Urban context

Services Data &
Urban context

Providers Consumers City

Internet

uDiscoveryj

Registration
Messages

Request
Messages

Response &
Feedback

Urban
Context

Advertisements
Messages

Figure 4.1: uDiscovery - Detailed Architecture.

• Request Manager: This component receives requests from consumers or other gate-

ways. It tries to solve these requests by using the heuristic service planner component

(Section 3.4.1.4). This component either sends a response or advertise the request to

other gateways, once a request is processed by the planner and an output is generated

(i.e., requests is solved, partially solved, or not solved). It also receives and propagates

feedback information to other gateways in the network.

Self-adaptive Service Manager

This component is responsible for the adaptive processes (Section 3.4.2). It exchanges mes-

Chapter 4. Implementation

sages with other gateways in the network to move services information. This component

recognises and responds to city events based on next components:

• Unforeseen Events Manager: This component responds to unforeseen events in the

city (Section 3.4.2.1). It gets information from sensors and acts accordingly to update

the local repository and improve the system performance.

• Scheduled Events Manager: This component recognises scheduled events and acts

accordingly to move services where they are likely to be needed according to Sec-

tion 3.4.2.2.

• Periodic Events Manager: This component identifies city states and moves ser-

vices between gateways based on historical learning from city behaviour according to

Section 3.4.2.3.

Heuristic Service Planner

This component searches for services in the local repository. It implements a heuristic goal-

driven planning process (Section 3.4.3) on top of three components as follows:

• Service Planner: This component implements the progressive service planning based

on consumers’ feedback. It builds graphs of services by using the service matchmaker

and the feedback manager to compare service and requests parameters.

• Service Matchmaker: This component implements semantic and syntactic methods

to compare services and requests parameters. It uses the semantic annotations from

the local repository to match this information.

• Feedback Manager: This component retrieves and updates consumers’ feedback in

the local repository. It receives requests from the service planner and feedback infor-

mation from the request manager.

Local Repository

The local repository is composed of a non-relational database and a set of ontologies, which

are detailed in the next section. Each gateway has a local repository where data is queried,

stored, updated, and removed to support different uDiscovery processes

4.1.1 uDiscovery Data Model

uDiscovery works with of a data model formulated as JSON documents. The local repository

database stores documents about services, urban context, system metrics, city events, dis-

Chapter 4. Implementation

Service Description
id: String
name: String
url: String
state: Boolean

Parameter
name: String
type: URI
desc: String

Domain
name: String
type: URI

Provider
name: String
type: String

Service Request
id: String

Place
name: String
type: URI

CityService
name: String
type: URI

Gateway
id: String

Location
latitude: Double
longitude: Double

Mark
domain: URI
mark: Double

inputs

inputs

outputs

outputs

+ 1

1

+ 1

1

+

1 +

domains domains

1
1

+ +

1

1

provider

domains

domains

surroundingPlaces offeredCityServices

domains

location
marks

+

+

+

1

1
1 * *

1

1

+

Figure 4.2: uDiscovery - Urban based Service Manager Data Model.

covered plans and consumers’ feedback. Ontologies in OWL format store the urban context

(Section 3.2), describe services and requests, and support semantic matching.

Figure 4.2 shows the data entities that interact in the uDiscovery′s service organisation and

discovery processes (Sections 3.4.1). They are described as follows:

• Service Description: This entity represents descriptions that uDiscovery registers,

organises, and discovers. Each description has a service id, name, URL (i.e., service

endpoint), and state (i.e., active or inactive). This entity includes the provider infor-

mation, inputs and outputs parameters, and a list of service domains.

• Provider: This entity represents providers that register services in uDiscovery. Each

provider includes a service name and type (e.g., WSNs, Web Server).

• Parameter: This entity represents service or request parameters. A parameter has a

name, a type which corresponds to a concept in the knowledge model (i.e., URI), and

a description field that gives extra information about the parameter.

Chapter 4. Implementation

• Domain: This entity represents city domains (e.g., educational domain). Each domain

has a name and a type which corresponds to a concept in the knowledge model (i.e.,

URI).

• Service Request: This entity represents requests from consumers that uDiscovery

solves. Each request has an identifier, one or more input parameters, one or more

output parameters, and a set of domains.

• Gateway: This entity represents gateways information which uDiscovery exchanges

to initialise and maintain the network of gateways. A gateway has an identifier, a list

of surrounding places, a list of domains, and marks that define the relevance of the

gateway for each domain.

• Place: This entity represents a city place which is the main context attribute that

uDiscovery uses. A place has a name, an URI that corresponds to a concept in the

city knowledge model, a list of offered city services, and a location.

• Mark: This entity represents the relevance of a gateway for a given domain. Each

mark has a domain defined by an URI, and a numeric mark.

• City Service: This entity represents a service which cities or places offer to their citi-

zens (e.g., health care service). Each city service has a name, an URI that corresponds

to a concept in the knowledge model and a list of domains.

• Location: This entity represents a location in the city (i.e., coordinates).

Figure 4.3 illustrates the structures and entities that support the adaptation processes (Sec-

tion, 3.4.2). They are described as follows:

• Sensors: This structure stores the service discovery metrics that the adaptive manager

uses to evaluate uDiscovery performance. It stores the number of solved requests, the

accumulated search precision, the accumulated response time, the accumulated number

of hops, and a measure of the storage used during the discovery processes.

• Aggregators: This entity represents the aggregated data of the discovery performance

(i.e., sensors measurements). An aggregator has the rate of solved requests, average

search precision, average response time, average number of hops, and percentage of

used storage at a given time.

• Utilities: This structure stores the history of uDiscovery utilities. A utility has a

value at a given time.

Chapter 4. Implementation

Sensors
solvedRequests: int
searchPrecision: Double
responseTime: Long
numberOfHops: int
usedStorage: Long

Aggregators
rateSolvedRequests: Double
averageSearchPrecision: Double
averageResponseTime: Double
averageNumberOfHops: Double
percentageUsedStorage: Double

Utilities
utilityValue: Double

PastRequest
id: String
domains: [] Domain
state: Boolean

CityEvent
id: String
place: Place
requiredCityServices: [] CityService
happening: Boolean
happened: Boolean

Time
day: int
hour: int
minutes: int
totalTime: Long

startsAt

finishesAt

1 1

1

1

time

1

1

timetime

1

1

1

1

Figure 4.3: uDiscovery - Self-Adaptive Service Manager Data Model.

• City Event: This entity represents an event in the city. It has an id, a place where it

occurs, a list of required city services, two attributes that indicate whether the event is

happening or has happened, and a start and finish times.

• Past Requests: This entity represents a past request and is used by the adaptive

manager to define the required domains (i.e., the domains of the unsolved requests).

Each request has an identifier, a list of domains, and a state that indicates whether the

requests was solved.

• Time: This entity represents the time in the city. Each time entity has day, hour,

minutes and a total time which is the system time in milliseconds.

Figure 4.4 illustrates the entities that the heuristic planner uses (Section 3.4.3). They are

described as follows:

• Graph: This entity represents a service plan discovered by the planner. Each graph

(Figure 3.11) has a set of input and output parameters, a set of domains and a mark

that reflects its functional matching index. A graph is composed of two or more vertices

and zero or more edges.

Chapter 4. Implementation

Graph
inputs: [] Parameter
outputs: [] Parameter
domains: [] Domain
mark: Double

Edge
discovered: int
success: int
nonSuccess: int
degree: int

Vertex
inputs: [] Parameter
outputs: [] Parameter
domains: [] Domain
service: ServiceDescription

Link
matchedInput: Parameter
matchedOutput: Parameter

1

1

1

1

1 1

1

1

2 ... +

*

vertices

edges
source

target

link

Figure 4.4: uDiscovery - Heuristic Service Planner Data Model.

• Vertex: This entity represents a vertex in a graph. Each vertex has a set of inputs

and outputs, a set of domains and a service description.

• Edge: This entity represents an edge between two vertices in the graph. Each edge

has a source and target vertex, a link, and stores feedback information as the number

of times that the edge has been discovered before, the number of times that the edge

has been part of a successful discovery process, the number of times that the edge has

been part of an unsuccessful discovery process, and the degree of the matching defined

by the matchmaker.

• Link: This entity represents the parameters that link two vertices in an edge. Each

link has an input and output parameters that matched.

uDiscovery′s knowledge model (Figure 3.5) is populated using information from previous

works as follows: subclasses for the concept Place were extracted from OpenStreetMap

(OSM)1 that define physical features of a city (e.g., College, Road, Dentist). City services

are defined based on the ontology KM4City2 [Nesi et al., 2016] as subclasses of the concept

CityService in the uDiscovery′s knowledge model (e.g., accommodation service, cultural

service). The classes and individuals for the concept Domain were defined according to

literature, which defines IoT and smart city domains [Al-Fuqaha et al., 2015]. The knowledge

1OSM Features - http://wiki.openstreetmap.org/wiki/Map_Features
2KM4City Ontology - http://www.km4city.org/

http://wiki.openstreetmap.org/wiki/Map_Features
http://www.km4city.org/

Chapter 4. Implementation

uDiscovery

 gatewayData: Gateway
 gateways: [] Gateway
 pheromones: <Domain,<Gateway,Double>>
 costs: <Gateway, Double>

+ uDiscovery()
+ listener()
+ sendMessage()

Manager

+ getDestinationsInterests(): [] Gateway
+ getDestinationsPheromones(): [] Gateway
+ updatePheromones()
+ updateCosts()

AdaptiveManager

+ calculateUtility(): Double
+ defineRequiredDomains(): [] Domain
+ getServices(): [] Service
+ insert([] Service)
+ remove([] Service)

ServicePlanner

+ solveRequest():[] Graph
 createPlans(): [] Graph
 updatePlans(): [] Graph
 rankPlans(): [] Graph

ServiceMatchmaker

+ compare() : Edge
 semanticMatch(): Boolean
 syntacticMatch(): Boolean

FeedbackManager

+ savePlan()
+ getFeedback(): Double
+ updateFeedback()

ServiceManager

+ shareDomains(): Boolean
+ registerService()

UnforeseenEventManager

ScheduledEventManager

+ getScheduledEvents(): [] CityEvent

PeriodicEventManager

+ calculateReward(): Double

DQN

+ initMDP(): Obs
+ storeAndReplay(): Obs
+ getActionToPerform(): Action

CityMDP

+ getState()
+ lastObservation()

InitialisationManager

+ recognisePlaces(): [] Place
+ getCityServices(): [] CityService
+ getDomains(): [] Domain
+ calculateRelevance(): <Domain,Double>
+ addGateway()

RequestManager

+ getPreviousGateway(): Gateway
+ solveRequest(): [] JSONObject
+ updateFeedback()

Figure 4.5: uDiscovery - Classes Diagram.

model has 9 super classes which group 40 individual to describe different domains in a city.

Services and requests parameters are described using the ontologies defined by the OWLS-TC

V4 dataset3

4.1.2 uDiscovery Class Diagram

Figure 4.5 illustrates the class diagram of the implementation. It is composed of the following

classes:

3OWLS-TC V4 Dataset - http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/

Chapter 4. Implementation

• uDiscovery: This class is the communication interface of each gateway in the net-

work. It stores data about the local gateway, other gateways in the network, and the

links with these gateways (i.e., pheromones and costs). This class listens for messages

from providers, consumers and other gateways, and sends messages to other entities in

the network according to uDiscovery managers. It redirects gateways advertisements

to the initialisation manager, registration messages to the service manager, discovery

messages, to the request manager, and adaptation messages to the adaptive manager.

• Manager: This is an abstract class that groups uDiscovery managers. Each manager

can get gateways destinations by interest or pheromones, and update pheromones and

costs.

• Initialisation Manager: This class is responsible for the network initialisation and

maintenance processes (Section 3.4.1.2). It has methods to recognise surrounding

places, define city services and domains, calculate the gateway relevance for a domain,

and add gateways to the list of known gateways. This manager sends advertisements

messages with gateways information through the uDiscovery class.

• Service Manager: This class is responsible for the organisation of services (Sec-

tion 3.4.1.3). It has methods to define shared domains between two lists of domains,

and register services in the local repository. This manager sends advertisements mes-

sages with services information through the uDiscovery class.

• Request Manager: This class is responsible for the resolution of requests (Sec-

tion 3.4.1.4). It uses the service planner to solve requests and has methods to get

a gateway that has participated in the resolution of a request, to determine if a re-

quest was solved, and to update the feedback. This request manager sends responses

to consumers, or requests to other gateways through the uDiscovery class.

• Adaptive Manager: This is an abstract class that groups the managers responsible for

adaptation processes (Section 3.4.2). Each adaptive manager has methods to calculate

the utility value, define required domains, get services from local repository, register

services in the repository and remove services. Adaptive managers receive and send

adaptation messages through the uDiscovery class.

• Unforeseen Event Manager: This class responds to unforeseen events (Section 3.4.2.1).

It calculates the utility, defines required domains, sends and receives messages, and up-

dates the local repository accordingly.

Chapter 4. Implementation

• Scheduled Event Manager: This class responds to scheduled events (Section 3.4.2.2).

It has a method to periodically pull scheduled events and act accordingly.

• Periodic Event Manager: This class responds to periodic events (Section 3.4.2.3).

It has a method to calculate system rewards. It uses the DQN class to get city states

information and actions to perform according to historical learning from city behaviour.

• DQN: This class implements the DQN algorithm, which is used from the Deep Learning

from Java (DL4J)4 library. It has a method to initialise the city MDP when a city period

is starting.The DQN algorithm is splited in two methods to integrate discovery rewards

and city status. One method stores experiences and performs replay to learn from them,

and the another one returns the action to be performed according to a city observation.

• City MDP: This class represents the city Markov decision process. It has methods to

get current city state, and last city observation.

• Service Planner: This class implements the heuristic planning algorithm (Section 3.4.3).

It has methods to solve requests and create, update and rank service plans. It uses the

service matchmaker to compare services and requests parameters, and the feedback

manager to validate these comparisons’ outputs.

• Service Matchmaker: This class implements the methods to compare parameters.

It has methods to perform semantic and syntactic comparisons.

• Feedback Manager: This class manages consumers’ feedback. It implements methods

to save discovered plans, retrieve feedback and update feedback in the defined data

model.

4.2 Urban-based Service Management

This section presents the interaction between uDiscovery components, data entities, and

classes to initialise the network of gateways, organise services and solve requests in the

uDiscovery implementation

4.2.1 Initialisation Management

Figure 4.6 illustrates the behaviour that uDiscovery follows to initialise the network of gate-

ways (Section 3.4.1.2). The initialisation manager first retrieves urban context from the

4DL4J - https://deeplearning4j.org/

https://deeplearning4j.org/

Chapter 4. Implementation

:uDiscoveryi :InitialisationManageri

recognisePlaces()

getCityServices()

getDomains()

calculateRelevance()

retrieveUrbanContext()

addGateway(gwj)

updatePheromones(gwj)

sendMessage(*,gwi)

getDestinationsInterests(gwj)

sendMessage(gwn,gwi)

LRi

updateCosts(gwj)

:uDiscoveryj

initiateGateway()

GwAdvMessage(gwi)

:InitialisationManagerj

sendMessage(gwi,gwj)
GwAdvMessage(gwj)

loop n

[destinations]

Figure 4.6: uDiscovery - Initialisation Sequence Diagram.

repository to define the surrounding places, the offered city services, and the gateway do-

mains. Then, it calculates the relevance of the gateway for each domain, and advertises

the gateway information to other gateways in the network through the uDiscovery inter-

face.

The uDiscovery interface asks the initialisation manager to add a gateway, once it receives a

gateway advertisement message. The initialisation manager stores the gateway information

and update the pheromones and cost values. Then, it defines relevant destinations (i.e., other

gateways in the network) for the gateway information. It sends a gateway advertisement

message to each candidate through the uDiscovery interface.

4.2.2 Service Organisation

Figure 4.7 illustrates the behaviour when a registration message arrives to uDiscovery (Sec-

tion 3.4.1.3). The interface asks the service manger to register the service description. The

service manager determines whether the service should be stored in the local repository by

checking if the service and the gateway share domains. If they do, the service manager in-

serts the service in the local repository, and replies with a success message to the registration

message sender through the uDiscovery interface.

Chapter 4. Implementation

:uDiscoveryi :ServiceManageri

alt Provider

Regmsg(id,sd)
registerService(sd)

getDestinations
Interests()

sendMessage(gwn, sd)

LRi

insert(sd)
sendMessage("success")

RegResmsg(gwi,sd)

updatePheromones(gwj,sd)

[sharedDomains(gwi,sd)]

:uDiscoveryj :ServiceManagerj

Regmsg(gwi,sd)

LRj

alt

registerService(sd)

insert(sd)
sendMessage("success")

[sharedDomains(gwi,sd)]

getDestinations
Interests()

[destinations]

loop n

[destinations]
loop n

sendMessage(gwn, sd)

update
Pheromones(gwj)

RegResmsg(gwi,sd)

Provider

Figure 4.7: uDiscovery - Registration Sequence Diagram.

The interface asks the service manager to update the pheromones values when it receives a

registration response message.

4.2.3 Requests Resolution

Figure 4.8 illustrates the behaviour when a discovery message arrives (Section 3.4.1.4). The

interface asks the request manager to solve the received request. The request manager calls

the service planner, which creates the initial plans for the request and retrieves the relevant

search spaces from the local repository. The planner iterates over this search space and

uses the matchmaker to compare available services with the current plans. The matchmaker

applies the semantic and syntactic methods to find edges and vertices for the plan. The

planner validates the comparisons’ outputs with the feedback information by calling the

feedback manager. Then, the planner updates the list of plans according to this validation,

and compares the updated plans with the inputs to define if the request is solved. This

comparison also uses the syntactic and semantic methods from the matchmaker. The planner

ranks the plans according to the functional matching index and returns the list to the request

manager, once the search finishes. The request manager receives the plans and checks if the

request was solved. If it was, the request manager sends the response through the uDiscovery

Chapter 4. Implementation

:u
D
is
co
ve
ry
i

:R
eq
ue
st
M
an
ag
er
i

C
on
su
m
er

D
is
c m
sg
(id
,r,
pg
w
s,p
so
l)

so
lv
eR
eq
ue
st
(r,
pg
w
s,p
so
l)

LR
i

se
nd
M
es
sa
ge
("
su
cc
es
s"
)

:S
er
vi
ce
Pl
an
ne
r i

:S
er
vi
ce
M
at
ch
m
ak
er
i

:F
ee
db
ac
kM

an
ag
er
i

so
lv
eR
eq
ue
st
(r,
pg
w
s,p
so
l)

re
tr
ie
ve
Se
rv
ic
es
(o
ut
pu
ts
)

co
m
pa
re
(p
la
ns
,se
rv
ic
e)

cr
ea
te
Pl
an
s(
r)

se
m
an
tic
M
at
ch
(p
la
ns
,se
rv
ic
e)

sy
nt
ac
tic
M
at
ch
(p
la
ns
,se
rv
ic
e)

ed
ge

ge
tF
ee
db
ac
k(
ed
ge
)

up
da
te
Pl
an
s(
ed
ge
)

co
m
pa
re
(p
la
ns
,in
pu
ts
)

se
m
an
tic
M
at
ch
(p
la
ns
,se
rv
ic
e)

sy
nt
ac
tic
M
at
ch
(p
la
ns
,se
rv
ic
e)

ed
ge

ge
tF
ee
db
ac
k(
ed
ge
)

ra
nk
Pl
an
s(
pl
an
s)

pl
an
s

se
nd
M
es
sa
ge
(r
es
po
ns
e)

[s
ol
ve
d]

[n
ot
So
lv
ed
]

ge
tD
es
tin
at
io
ns
Ph
er
om
on
es
()

se
nd
M
es
sa
ge
(g
w
n,
pl
an
s)

:u
D
is
co
ve
ry
j

D
is
c m
sg
(id
,r,
pg
w
s,p
so
l)

C
on
su
m
er

Re
s m
sg
(id
,r,
pg
w
s,p
so
l)

lo
op
	n

[s
er
vi
ce
s]

[d
es
tin
at
io
ns
]

lo
op
	n

al
t

Fe
ed
m
sg
(id
,r,
pg
w
s,f
so
l)

st
or
eF
ee
db
ac
k(
r,p
gw
s,p
so
l)

sa
ve
Fe
ed
ba
ck
(r,
pg
w
s,p
so
l)

re
tr
ie
ve
Fe
ed
ba
ck
(e
dg
e)

Figure 4.8: uDiscovery - Discovery Sequence Diagram.

Chapter 4. Implementation

:uDiscoveryi
:UnforeseenEvent

Manageri LRi

Adpmsg(id,domains)

getRequiredDomains()

calculateUtility()

retrieveAggregatedMetrics()

sendMessage(gwn,domains)

getDestinationsPheromones()

getServices(domains)

sendMessage(services)

sendMessage(gwn,domains)

:uDiscoveryj LRj

alt [u<T]

loop n
[destinations]

:UnforeseenEvent
Managerj

retrieveServices(domains)

[services]

[notServices]

getDestinations
Pheromones()

[destinations]

Adpmsg(id,services)

loop n

alt

storeServices(services)

insert(services)

Figure 4.9: uDiscovery - Unforeseen Events Management Sequence Diagram.

interface. Otherwise, the manager gets the list of gateways where the request is most likely to

be solved using the pheromones information. The manager sends a request message to each

candidate through the interface. Consumers can submit their feedback for the discovered

services as a boolean mark through the uDiscovery interface. This information is stored in

the local repository by the feedback manager to be used in future discovery processes by the

service planner.

4.3 Self-adaptive Service Management

This section presents the interaction between uDiscovery components, data entities, and

classes to adapt the organisation of services according to city events.

4.3.1 Unforeseen Events Adaptation

Figure 4.9 presents the behaviour of uDiscovery in the presence of unforeseen events based

on the Section 3.4.2.1. The unforeseen event manager monitors the metrics in the local

repository and computes the utility function. If the utility value is lower than the threshold

Chapter 4. Implementation

:uDiscoveryi
:ScheduledEvents

Manageri LRi

getRequiredDomains()

retrieveEvents()

sendMessage(gwn,domains)

getDestinations
Pheromones()

[event]

loop n [destinations]

:uDiscoveryj
:ScheduledEvents

Managerj LRj

Adpmsg(id,domains)

getServices(domains)

retrieveServices(domains)

sendMessage(services)

sendMessage(gwn,domains)

[services]

[notServices]

getDestinations
Pheromones()

[destinations]

Adpmsg(id,services)

loop nstoreServices(services)

insert(services)

alt

alt [eventFinished]

alt

remove(services)

Figure 4.10: uDiscovery - Scheduled Events Management Sequence Diagram.

T , the manager defines the required domains, and the gateways that are most likely to have

the required service information based on the pheromones information. The manager sends

an adaptive message asking for services through the uDiscovery interface.

The interface asks for services from the unforeseen event manager, when it gets an adap-

tive message asking for services from a set of domains. The manager retrieves relevant

services from the local repository relating to these domains and responds to the adaptive

message through the uDiscovery interface, if services are found. Otherwise, it forwards the

adaptive message to the most promising gateways according to the pheromones information.

uDiscovery stores services in the local registry, once an adaptive message with services arrives

from other gateways in the network.

4.3.2 Scheduled Events Adaptation

Figure 4.10 illustrates the behaviour of uDiscovery when the city has scheduled events.

The scheduled events manager monitors the scheduled events (Section 3.4.2.2). If there are

events starting soon, the manager defines the required domains according to these events,

and sends adaptive messages to the most promising gateways in the network according to the

pheromones information. The system follows the same sequence as described in the Figure 4.9

once an message asking for services arrives.

Chapter 4. Implementation

Figure 4.10 also shows the manager’s behaviour when services arrive as a response to an

adaptive message. The uDiscovery interface asks the manager to register the services.

4.3.3 Periodic Events Adaptation

Figure 4.11 presents the behaviour of uDiscovery to recognise city patterns and proactively

update the organisation of services according to Section 3.4.2.3. The periodic events manager

determines the time period and initialises the city MDP, if the period is starting. Otherwise,

the manager calculates the current system reward, retrieves the city state, stores the new

experience, and learns from historical experiences. Then, the manager gets the action to

perform with the current city observation. If the action is to ask for services (i.e., A1), the

manager defines the required domains and the most promising gateways to ask for services

according to the pheromones information. The manager sends a request for services to each

destination through the uDiscovery interface. The manager removes services from the local

repository, if the action to perform is A2. uDiscovery stores services in the local registry,

once an adaptive message with services arrives from other gateways as in previous adaptive

processes.

4.4 Implementation Summary

This chapter presents the implementation details of uDiscovery. It starts describing the

system architecture where three main components are highlighted. The urban based service

manager that initialises the network of gateways, organises service descriptions and receives

consumers’ requests. The self-adaptive service manager adapts the service organisation ac-

cording to city events. The heuristic service planner performs the service search in the local

repository. These components rely on a data model that represents different system entities,

and their attributes. A class diagram describes how uDiscovery components interact and

uses the data to offer its main functionalities. This interaction is then detailed by sequence di-

agrams that show the behaviour that the system follows to provide functionalities to initialise

gateways, register services, solve requests, and adapt to city events.

Chapter 4. Implementation

:u
D
is
co
ve
ry
i

:P
er
io
di
cE
ve
nt
s

M
an
ag
er
i

LR
i

:D
Q
N
i

in
itM

D
P(
)

ob
s

[p
er
io
dS
ta
rte
d]

ca
lc
ul
at
eR
ew
ar
d(
)

ge
tS
ta
te
()

st
or
eA
nd
Re
pl
ay
()

ge
tA
ct
io
nT
oP
er
fo
rm
(o
bs
)

ge
tR
eq
ui
re
dD
om
ai
ns
()

ge
tD
es
tin
at
io
ns
Ph
er
om
on
es
()

:u
D
is
co
ve
ry
j

:P
er
io
di
cE
ve
nt
s

M
an
ag
er
j

LR
j

[p
er
io
dS
ta
rti
ng
]

ob
s

[a
ct
io
n
=
A
2]

[a
ct
io
n
=
A
1

re
m
ov
e(
se
rv
ic
es
)

al
t

se
nd
M
es
sa
ge
(g
w
n,
do
m
ai
ns
)

lo
op
 n

[d
es
tin
at
io
ns
]

Ad
p m
sg
(id
,d
om
ai
ns
)

ge
tS
er
vi
ce
s(
do
m
ai
ns
)

re
tr
ie
ve
Se
rv
ic
es
(d
om
ai
ns
)

se
nd
M
es
sa
ge
(s
er
vi
ce
s)

se
nd
M
es
sa
ge
(g
w
n,
do
m
ai
ns
)

[s
er
vi
ce
s]

[n
ot
Se
rv
ic
es
]

ge
tD
es
tin
at
io
ns

Ph
er
om
on
es
()

[d
es
tin
at
io
ns
]

Ad
p m
sg
(id
,se
rv
ic
es
)

lo
op
 n

st
or
eS
er
vi
ce
s(
se
rv
ic
es
)

in
se
rt
(s
er
vi
ce
s)

al
t

al
t

Figure 4.11: uDiscovery - Periodic Events Management Sequence Diagram.

Chapter 5

Evaluation

Previous chapters introduced uDiscovery design and implementation details. This chapter

evaluates to what extent uDiscovery improves the efficiency of service discovery in large and

dynamic smart city environments. This chapter is organised as follows: Section 5.1 maps

evaluation objectives to the research questions, introduces the studies that achieve these ob-

jectives, and defines the data used in these studies. Section 5.1.4 presents the statistical tests

carried on the results to define parameters values and determine to what extent differences

in the results are statistically significant. Section 5.2 presents the simulation studies that

achieve evaluation objectives 1 and 2, and Section 5.3 presents the study that achieves the

objective 3. Finally, Section 5.4 summarises this chapter.

5.1 Evaluation Approach

This chapter presents the evaluation of uDiscovery′s performance, which measures to what

extent can the use of urban context to organise services’ information improve service discovery

efficiency in the presence of a large number of services in smart cities environments (RQ. 1),

to what extent can the use of urban context to adapt the services’ organisation maintain or

improve service discovery efficiency over time in dynamic smart cities environments (RQ. 2),

and to what extent can the use of consumers’ feedback to search for services improve service

discovery efficiency, and minimise human input when responding to complex consumer’s

requirements (RQ. 3). This evaluation performed two types of studies to address the research

questions (Table 5.1). These studies are:

91

Chapter 5. Evaluation

5.1.1 Simulation-based Evaluation on Service Discovery Efficiency

Simulation studies rely on the simplification of real-world scenarios by manipulating a set of

environment variables to assess an algorithm’s performance in different scenarios or under

different system configurations [Wohlin et al., 2012]. This evaluation measures uDiscovery′s

performance through four simulation studies, as follows:

1. General Service Discovery Efficiency Study: This study evaluates to what

extent uDiscovery improves the service discovery efficiency in the presence of a large

number of services in smart cities environments, by organising services’ information

using urban context (RQ 1). This study simulates a city where a variable number of

gateways manages a variable number of services and receives requests from a simulated

consumer that moves through the city, without the presence of any event. The network

can be static (i.e., all gateways are fixed), semi-mobile (i.e., half of the gateways are

static and half mobile), or fully-mobile (i.e., all gateways are mobile).

2. Unforeseen Events Study: This study evaluates to what extent uDiscovery

improves or maintains the service discovery efficiency over time, in the presence of un-

foreseen events, by adapting the services’ organisation based on urban context (RQ 2).

This study simulates a city environment where an unforeseen event happens in the city

and influences consumer’s requests. uDiscovery is evaluated under a variable number

of services in different mobility scenarios (i.e., static network, semi-mobile network, and

fully-mobile network).

3. Scheduled Events Study: This study evaluates to what extent uDiscovery im-

proves or maintains the service discovery efficiency over time, in the presence of sched-

uled events (RQ 2). This study simulates a city environment where scheduled events

are predefined and influence consumer’s requests. uDiscovery is evaluated under a vari-

able number of services in different mobility scenarios (i.e., static network, semi-mobile

network, and fully-mobile network).

Chapter 5. Evaluation

T
ab

le
5
.1

:
M

ap
p

in
g

of
R

es
ea

rc
h

Q
u
es

ti
on

s
to

E
va

lu
at

io
n

S
tu

d
ie

s.

R
es

ea
rc

h
Q

u
es

ti
o
n

P
ro

p
os

ed
S

tu
d

y
P

er
fo

rm
a
n

ce
M

et
ri

cs
C

h
a
p

te
r

S
ec

ti
o
n

R
Q

1
:

T
o

w
h

a
t

ex
te

n
t

ca
n

th
e

u
se

of
u

rb
a
n

co
n
te

x
t

to
or

ga
n

is
e

se
rv

ic
es

’
in

fo
rm

at
io

n
im

p
ro

ve
se

rv
ic

e
d

is
co

ve
ry

effi
ci

en
cy

in
th

e
p

re
se

n
ce

of
a

la
rg

e
n
u

m
b

er
o
f

se
rv

ic
es

in
sm

ar
t

ci
ti

es
en

v
ir

on
m

en
ts

?

1.
G

en
er

al
S

er
v
ic

e
D

is
co

ve
ry

E
ffi

ci
en

cy
S

tu
d

y

a)
S

er
v
ic

e
D

is
co

ve
ry

U
ti

li
ty

b
)

R
a
te

o
f

S
o
lv

ed
R

eq
u

es
ts

c)
S

ea
rc

h
P

re
ci

si
o
n

d
)

R
es

p
o
n

se
T

im
e

e)
N

u
m

b
er

o
f

H
o
p

s
f)

E
x
ch

a
n

g
ed

M
es

sa
g
es

S
ec

ti
o
n

5
.2

R
Q

2
:

T
o

w
h

a
t

ex
te

n
t

ca
n

th
e

u
se

of
u

rb
a
n

co
n
te

x
t

to
ad

ap
t

th
e

se
rv

ic
es

’
o
rg

a
n

is
at

io
n

m
ai

n
ta

in
or

im
p

ro
ve

se
rv

ic
e

d
is

co
ve

ry
effi

ci
en

cy
ov

er
ti

m
e

in
d

y
n

am
ic

sm
a
rt

ci
ti

es
en

v
ir

on
m

en
ts

?

2.
U

n
fo

re
se

en
E

ve
n
ts

S
tu

d
y

3.
S

ch
ed

u
le

d
E

ve
n
ts

S
tu

d
y

4.
P

er
io

d
ic

E
ve

n
ts

S
tu

d
y

a)
S

er
v
ic

e
D

is
co

ve
ry

U
ti

li
ty

b
)

R
a
te

o
f

S
o
lv

ed
R

eq
u

es
ts

c)
S

ea
rc

h
P

re
ci

si
o
n

d
)

R
es

p
o
n

se
T

im
e

e)
N

u
m

b
er

o
f

H
o
p

s
f)

E
x
ch

a
n

g
ed

M
es

sa
g
es

S
ec

ti
o
n

5
.2

R
Q

3
:

T
o

w
h

a
t

ex
te

n
t

ca
n

th
e

u
se

of
co

n
su

m
er

s’
fe

ed
b

ac
k

to
se

a
rc

h
fo

r
se

rv
ic

es
im

p
ro

v
e

th
e

se
rv

ic
e

d
is

co
ve

ry
effi

ci
en

cy
,

an
d

m
in

im
is

e
h
u

m
an

in
p

u
t

w
h

en
re

sp
on

d
in

g
to

co
m

p
le

x
co

n
su

m
er

’s
re

q
u

ir
em

en
ts

?

5.
P

ro
to

ty
p

e
S

tu
d

y
a)

S
ea

rc
h

P
re

ci
si

o
n

b
)

R
es

p
o
n

se
T

im
e

c)
H

u
m

a
n

in
p

u
t

S
ec

ti
o
n

5
.3

Chapter 5. Evaluation

4. Periodic Events Support Study: This study evaluates to what extent uDiscovery

improves or maintains the service discovery efficiency over time, in the presence of peri-

odic events (RQ 2). This study simulates a city environment where periodic events are

happening and influence consumer’s requests. It evaluates uDiscovery under a vari-

able number of services in different mobility scenarios (i.e., static network, semi-mobile

network, and fully-mobile network).

Evaluation Metrics

The simulation studies use the following metrics to evaluate uDiscovery′s performance:

• Service Discovery Utility: This metric measures the utility value of the discovery

process over time according to the eq 3.10 in Section 3.4.2 of Chapter 3.

• Rate of Solved Requests: This metric measures the relation between the number of

solved requests and the number of received requests. It reflects the success rate of the

discovery approach and varies from 0 to 1, where higher is better.

• Search Precision: This metric represents the accuracy of the discovery approach and

varies from 0 to 1, the higher the better. It measures the proportion of relevant services

returned for a given request and follows the eq 5.1 [Manning et al., 2010].

P =
tP

tP + fP
(5.1)

where, tP is the number of retrieved services that are relevant for the request, and fP

is the number of retrieved services that are not relevant.

• Response Time: This measures the time that the approach takes to solve a request

from when the consumer sends the request message to when the response is delivered

back. Lower is better.

• Number of Hops: This metric measures the number of hops that the discovery

approach needs to solve a request in the distributed network of gateways. This metric,

together with the exchanged messages, represents the network usage in a simulation,

and lower is better.

• Exchanged Messages: This metric measures the number of messages that are ex-

changed between the network of gateways, representing network usage in the simula-

tions, where lower is better.

Chapter 5. Evaluation

5.1.2 Prototype-based Evaluation

The IoT test bed prototype measures to what extent uDiscovery improves service discovery

efficiency, and minimises human input when responding to complex consumer’s requirements

(RQ 3). The IoT test bed is composed of a set of Raspberry Pi boards, where each board

acts as an IoT gateway that manages services, receives requests from a consumer board, and

forwards requests to other gateways. Gateways solve requests using the planning algorithm

introduced in Section 3.4.3.

Evaluation Metrics

• Search Precision: This is the accuracy of the discovery approach and varies from 0

to 1, as in the simulation studies. It is also defined by equation 5.1.

• Response Time: This measures the time that the approach takes to solve a request

from when the consumer board sends the request message to when the response is

delivered.

• Human Input: This is the amount of information that consumers must provide to

trigger a discovery process, measured in number of bytes that consumers must input as

request and feedback information.

5.1.3 Data Set Definition

A data set of IoT services descriptions, requests and responses is defined for this work because

of the absence of an existing data set in the literature, which represents current and future

IoT services offered by cities. This data set has 136 atomic services based on IoT services

examples and domains proposed by IoT literature [Al-Fuqaha et al., 2015], and 946 services

which are translated from the OWLS-TC V4. These services are used to define mock up

services that are used to create environments with a large number of services. Figure 5.1a

shows a service description example. This service provides information about historical city

places based on user’s location. Simulation and prototype studies use this data set in each

experiment.

Request and responses were created following the approach proposed by Uribieta et al [Urbieta

et al., 2017], which generates requests and responses by running the service discovery process

off-line. A planning algorithm [Chen et al., 2016] is executed off-line over the 136 IoT services

to discover service plans and identify I/O relations between services (e.g., the output of the

service s1 is the input of the service s2). A request is created for each plan that the algorithm

Chapter 5. Evaluation

(a) Service Description. (b) Request Description.

Figure 5.1: Data Formats.

discovers, if all services in the plan share at least one domain. Request inputs are the inputs of

the first service in the plan, and request outputs are the outputs of the last service in the plan.

Atomic services are managed as plans of one service. Figure 5.1b shows a request example.

This request asks for a service that provide information about historical places, and receives a

location as input. The data set also stores responses for each valid request to measure search

accuracy. A service response in an experiment is compared with the predefined responses to

determine its relevance. Table 5.2 summarises the number of requests and responses in the

data set according to the length of the services plans, which can include from 1 to 5 services.

The data set has a total of 363 service requests with 376 relevant responses.

Table 5.2: Requests Data Set Size.

Length of
Service Plans

Number of
Requests

Relevant
Plans

1 136 136

2 87 91

3 61 62

4 49 53

5 30 34

TOTAL 363 376

5.1.4 Statistical Analysis

This evaluation applies a Kruskal-Wallis test together with a multiple comparison of ranked

means on the evaluation results [McKight and Najab, 2010]. This is a non-parametric test

that assesses the differences between three or more independently-sampled groups on a single,

non-normally distributed continuous variable. The null hypothesis specifies that these groups

are subsets of the same population (i.e., H0 : (a, b, c, ..., n) ⊆ p). This test combines the

groups into a single group and ranks the variable of interest. These scores, along with the

Chapter 5. Evaluation

group sizes, are used to calculate the H statistic (eq 5.2)

H = N − 1(
gnn(ti − Ti)2

gsnn(tj − Ti)2
) (5.2)

where, nn is the sample size of the corresponding group, g is the sum of the group n, snn is

the sum of the corresponding group n, ti is the average observed rank sums for the group, tj

is the observed rank for an observation for the corresponding group, and Ti is the observed

total average rank sums.

This test has three assumptions: the interest variable should be continuous, the independent

variable should consist of two or more categorical independent groups, and the observations

are independent. The test is used to define the impact of the models’ parameters in their per-

formance, and to determine if the differences between evaluated approaches are statistically

significant. MATLAB is used to calculate the ρ− value based on the eq 5.2, which must be

under 0.01 (i.e., confidence level of 99%) to reject the null hypothesis. The test is applied on

the utility values for the simulation studies, and on the response time, search precision, and

input size on the prototype-based study.

5.2 Simulation-based Evaluation on Service Discovery Effi-

ciency

This section presents the simulation studies that evaluate uDiscovery′s efficiency against

baseline approaches in different simulated city environments. It describes the experimental

set-up, introduces the evaluated approaches, and discusses the results.

5.2.1 Experimental Set-up

Simonstrator is used to simulate smart city environments [Richerzhagen et al., 2015]. This is

a P2P Java-based simulator for mobile and large applications. The experiments were run on

the Kelvin system, a high performance compute cluster hosted and managed at the Trinity

Centre for High Performance Computing (TCHPC). Each node in the cluster has a Linux

OS, 12 2.66GHz Intel processors, and 24GB of RAM1.

A network of gateways that cover Dublin city centre is simulated (i.e., 2Km2 approx.), with

static, semi-mobile, and fully-mobile scenarios to determine how mobility affects approaches

performance. All gateways are fixed in the static scenario, 50% of gateways are static and

1Kelvin Details - https://www.tchpc.tcd.ie/resources/clusters/kelvin

https://www.tchpc.tcd.ie/resources/clusters/kelvin

Chapter 5. Evaluation

50% are mobile in the semi-mobile scenario. All gateways are mobile in the fully-mobile

scenario. Static gateways are distributed in a grid topology and mobile gateways follow a

social movement pattern provided by Simonstrator, with a speed that varies from 2.7m/s (i.e.,

10Km/h approx) to 13.8m/s (i.e., 50Km/h approx). The number of services varies from 20

thousand to 100 thousand, increased by 20 thousand in each experiment. A service provider

per gateway is simulated to register services. Each provider selects a random description

from the services data set (Section 5.1.3), and sends a registration message with the selected

description. Simulated providers repeat this process up to the number of registered services

in the network reach the desired number.

5.2.2 Baseline Approaches

The simulation studies compare four approaches, two baselines and two uDiscovery′s ver-

sions, which use the algorithm defined in the Section 3.4.3 to search for services.

• Location− based Approach : This baseline groups and forwards requests according to

services’ coordinates. It was implemented following the ideas proposed by Wang et

al. [Wang et al., 2015], and Fredj et al. [Fredj et al., 2014].

• Domain − based Approach : This baseline groups and forwards requests according to

services’ domains. It was implemented following the ideas proposed by Paganelli et

al. [Paganelli and Parlanti, 2012]

• uDiscovery1: This version of uDiscovery groups services and forwards requests ac-

cording to the model defined in the Section 3.4.1. But, it does not have the adaptive

properties defined in the Section 3.4.2. This variation is used to determine the effect of

the adaptive model in uDiscovery performance.

• uDiscovery2: This approach is the full version of uDiscovery. It includes the grouping

of services and requests forwarding based on urban context (Section 3.4.1), and the

self-adaptive mechanisms described in Section 3.4.2.

Each approach has parameters that influence their performance. A statistical test determines

which are the best set of parameters for each approach in the Appendix A. The distance to

register services is 100m and the limit of hops is 5 for the location-based approach, the

number of domains is 5 and the limit of hops is 3 for the domain-based, and the distance to

recognise places is 100m and the limit of hops is 5 for uDiscovery′s versions. This section

compares these approaches under these parameters.

Chapter 5. Evaluation

Table 5.3: Experiments Parameters for General Service Discovery Efficiency Study.

Length of time for
service discovery

8 hours

of consumer
requests

100

of services 20,000; 40,000; 60,000; 80,000; 100,000

of gateways 100; 300; 500

Mobility scenarios Static; semi-mobile; fully-mobile

Scenarios
1. Services X Mobility
2. Gateways X Mobility

Replication 10 rounds each experiment

Hops limit
(See Appendix A)

- 5 for location-based and uDiscovery
- 3 for domain-based

Distance
(See Appendix A)

- 100 for location-based and uDiscovery

Number of Domains
(See Appendix A)

- 5 for domain-based

5.2.3 General Service Discovery Efficiency Study

Table 5.3 presents the parameters of the experiments that evaluate and compare the general

service discovery efficiency of each approach (i.e., without events in the environment). Each

experiment simulates a consumer that performs 100 sequential service requests to a gateway

in the network to evaluate the performance with different types of requests. The simulated

consumer selects random requests from the data set (Section 5.1.3) according to its location

to simulate the influence of city places in consumer’s interests. The consumer needs around

8 simulated hours to perform all requests. The experiment’s parameters are the number of

services, number of gateways, and mobility scenarios. There are two experimental scenarios

that combines parameters to illustrate their influence in the discovery efficiency. The first

experimental scenario illustrates a variable number of services, in different mobility scenar-

ios, with 500 gateways. The second experimental scenario illustrates a variable number of

gateways, in different mobility scenarios, with 100 thousand services. Experiments are repli-

cated 10 times for each experiment. The particular parameters for each approach are selected

according to the Appendix A

5.2.3.1 General Service Discovery Efficiency Study Results

Scenario 1: varying number of services with mobility scenarios

Figure 5.2 shows the utility curve for the experimental scenario 1. uDiscovery2 has a better

utility than baselines, which is between 2.48, in the worst case, and 2.93, in the best case at

Chapter 5. Evaluation

hour 8. uDiscovery1 is the second best with utility values between 1.26 and 2.36 at hour 8.

The utility value varies between 0.9 and 2.25 in the location-based approach, and between

1.02 and 1.9 in the domain-based approach at hour 8. uDiscovery2 outperforms the baselines

in all cases. It starts with a similar performance to uDiscovery1 because it uses the same

information to initially group services. However, its utility is improved over time because

the self-adaptive model moves services according to Algorithm 5, continuously updating the

utility threshold. This threshold is updated when there are no events in the city because even

when requests are solved using the semantic overlay, other metrics such as response time or

number of hops can be improved by moving services locally. This improvement is more visible

when the number of services is low (Figures 5.2a, 5.2b and 5.2c) and gateways are semi or

fully-mobile because both number of services and mobility affects the discovery performance

of the initial distribution of services. A low number of services implies that it is less likely

that a service is registered where it is requested. Mobility implies intermittent gateways

which affects discovery because registries are not always available. The number of services

and mobility affect all the baselines’ performance, but uDiscovery2 ends with the best utility

value in all cases. The semantic overlay provides enough information to ask for services from

the right gateways, despite number of services. The maintenance of such an overlay includes

updating each gateway’s local routing table, which allows mobile gateways to be considered

as services carriers, taking advantage of their movement through the city.

As described in Section 3.4.2, the utility function encapsulates the rate of solved requests,

search precision, discovery response time, and number of hops. Figure 5.3 shows these metrics

for the experimental scenario 1. Each graph shows the median value from the 10 rounds of

each experiment with their quartiles 1 and 3. Figure 5.3a shows the rate of solved requests.

uDiscovery2 maintain a rate of solved requests close to 1 (i.e., it solves almost every received

request) despite the number of services and the mobility scenario. uDiscovery1 has a close

performance to uDiscovery2 in the static environment, which shows the advantage of using

urban-context to drive service discovery. But its rate of solved requests decays to a minimum

value of 0.69 with 20 thousand services in the fully-mobile scenario. uDiscovery2 addresses

the mobility negative impact with the properties of the self-adaptive approach (Section 3.4.2).

The location-based approach has an acceptable performance in the static scenario, and varies

from 0.8, with 20 thousand services, to 0.96 with 100 thousand services. However, the

location-based approach is affected by gateways’ mobility. The rate of solved requests varies

from around 0.5, with 20 thousand services, to 0.8 with 100 thousand services for both

semi-mobile and fully-mobile environments. The domain-based approach presents the worst

Chapter 5. Evaluation

0 1 2 3 4 5 6 7 8
Time (hours)

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(a) 20,000 Services

0 1 2 3 4 5 6 7 8
Time (hours)

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(b) 40,000 Services

0 1 2 3 4 5 6 7 8
Time (hours)

1.6

1.8

2

2.2

2.4

2.6

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(c) 60,000 Services

0 1 2 3 4 5 6 7 8
Time (hours)

1.6

1.8

2

2.2

2.4

2.6

2.8

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(d) 80,000 Services

0 1 2 3 4 5 6 7 8
Time (hours)

1.5

2

2.5

3

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(e) 100,000 Services

Figure 5.2: Utility Function: General service discovery efficiency with variable number of
services and different mobility scenarios.

Chapter 5. Evaluation

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(a) Solved Requests

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(b) Search Precision

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g(
t)

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(c) Response Time

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(d) Number of Hops

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Static Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Semi-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Fully-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

(e) Exchanged Messages

Figure 5.3: Service Discovery Metrics - General service discovery efficiency with variable
number of services and different mobility scenarios.

Chapter 5. Evaluation

performance as it is highly affected by mobility scenarios. It has a similar performance to the

location-based approach in the static environment where the rate varies from 0.69, with 20

thousand services, to 0.88 with 100 thousand, reaching a maximum of 0.91 with 80 thousand

services. However, this rate decays to values around 0.2 in mobile scenarios.

Figure 5.3b illustrates the median search precision of each approach. The location and

domain-based approaches have better precision than uDiscovery1 and uDiscovery2. The

high precision in the location-based approach (i.e., from 0.88 to 0.96), and in the domain-

based approach (i.e., from 0.86 to 0.97) contrasts with their lower rate of solved requests, and

is mainly because, with a lower number of solved requests, there is less chance of discovering

non relevant services. This trade-off also explains why uDiscovery1 and uDiscovery2 have

lower precision. A higher rate of solved requests affects the search precision because it is

more likely to retrieve non relevant services when the rate is higher. uDiscovery1′s precision

varies from 0.84 to 0.92, uDiscovery2′s precision varies from 0.82 to 0.89.

Figure 5.3c illustrates the median simulated response time for each approach. The sim-

ulated response time is in a logarithmic scale to ease the graph visualisation, and does not

represent or approximate times from the real world. However, it still allows the comparison

of the approaches’ latency in the simulation. Section 5.3 presents a more realistic evaluation

of the search latency on real devices. uDiscovery2 has the lowest simulated response time in

all the scenarios. This low latency is achieved even while it solves more requests than all the

baselines, thanks to the semantic overlay and the movement of services between gateways,

which puts the right service at the right place at the right time. uDiscovery2 has an advan-

tage over uDiscovery1, although both use the same semantic overlay, because the movement

of services allows more requests to be solved locally, which takes less time. The location and

domain-based approaches have the highest latency because they do not always have services

in place and need to forward requests to other gateways in the network. This is related to

the average number of hops in Figure 5.3d, when the location or domain based approaches

have the highest latency, they also need more hops to solve requests. Figure 5.3d presents

the median number of hops to solve a request. uDiscovery2 outperforms the baselines

because when services are moved, most of the requests are solved locally (i.e., the median

number of hops varies from 0.1, in the best case, to 0.7, in the worst). For all approaches, the

number of hops is higher when there are low numbers of services in the environment (e.g., 20

thousand services), and the number of hops decreases when the number of services increases.

This is because a larger number of services implies more replication, and more requests can

be solved locally. The location, domain, and uDiscovery1 approaches have a higher number

Chapter 5. Evaluation

of hops. However, uDiscovery1, as uDiscovery2, solves more requests, which indicates that

request forwarding based on city context is more effective.

Figure 5.3e presents the median number of messages in the network in a logarithmic

scale. It shows the median configuration messages, discovery messages, and adaptive mes-

sages for each approach. The number of registered services does not have a considerable

impact in the number of exchanged messages, but the mobility scenarios does. The results

for uDiscovery2 illustrate the cost of good performance in previous metrics, which is more

configuration, discovery and adaptation messages. uDiscovery2 exchanges around 13,000

messages in the static scenario, 22,000 in the semi-mobile environment, and 25,000 in the

fully-mobile. uDiscovery1 exchanges around 15,000 messages in the static scenario, 24,000

in the semi-mobile, and 26,000 in the fully-mobile scenario. uDiscovery2 needs less messages

than uDiscovery1 in some of the cases because uDiscovery2 solves requests locally once

services are moved from other gateways, and uDiscovery1 needs to forwards messages per

each request when this cannot be solved locally. The location and domain-based approaches

need less messages, although they offer a poor service discovery efficiency from the rate of

solved requests perspective. The location-based approach exchanges around 1,000 messages

in the static scenario, 7,000 messages in the semi-mobile scenario, and 15,000 messages in

the fully-mobile. The domain-based approach exchanges around 5,000 messages in the static

scenario, and 6,000 messages in the semi-mobile and the fully mobile scenario. The propor-

tion of configuration messages is smaller in the static scenario because there are not mobile

gateways to be maintained, and each gateway has more information about other gateways

in the network where to forward discovery messages. The proportion of configuration mes-

sages increases in the semi-mobile and fully-mobile scenarios because of the maintenance of

mobile gateways. The proportion of discovery messages decreases because gateways have less

knowledge about the dynamic networks.

Scenario 2: varying number of gateways with mobility scenarios

Figure 5.4 presents the utility with variable number of gateways in different mobility scenarios

with 100 thousand services. It shows that uDiscovery2 has the best utility in all scenarios

with exception of the fully-mobile environment with 100 gateways, where uDiscovery1 has a

similar behaviour and even has a higher utility value than uDiscovery2 at hour 8 (i.e., 2.69

for uDiscovery1, and 2.64 for uDiscovery2). The utility curve is similar between approaches

(i.e., location-based, uDiscovery1, and uDiscovery2) with lower number of gateways (i.e.,

100, and 300) because the number of services in each gateway is bigger, so each approach

Chapter 5. Evaluation

0 1 2 3 4 5 6 7 8
Time (hours)

1.5

2

2.5

3

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(a) 100 Gateways

0 1 2 3 4 5 6 7 8
Time (hours)

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(b) 300 Gateways

0 1 2 3 4 5 6 7 8
Time (hours)

1.5

2

2.5

3

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

0

0.5

1

1.5

2

2.5

3

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(c) 500 Gateways

Figure 5.4: Utility Function: General service discovery efficiency with variable number of
gateways and different mobility scenarios.

is likely to solve more requests. The rate of solved requests in Figure 5.5a supports the

similarity between results from uDiscovery1 and uDiscovery2. They have a similar rate of

solved requests with 100 and 300 gateways. This figure also explains why uDiscovery2 has

a better utility curve with 500 gateways, as uDiscovery2 solves more requests than all the

baselines. Figure 5.5d explains the similarity between the utility curves from uDiscovery2

and the location-based approach as both uses fewer number of hops to discover services with

100 gateways. This figure also shows that uDiscovery2 has a clear advantage in all static

scenarios, because of the difference in the number of hops. There is a considerable difference

between the number of hops for uDiscovery2 (i.e., close to 0), and the number of hops for

uDiscovery1 and the domain-based approach in the static scenario. This difference is reduced

in the semi-mobile and fully-mobile scenarios, which also explains why the utility curves are

similar in these scenarios with 100 and 300 gateways. The domain-based approach has the

worst utility curve in all cases. It solves less requests, and needs more time and hops.

Figure 5.5 shows the utility function’s constituent service discovery metrics for each approach

Chapter 5. Evaluation

100 300 500
Number of Gateways

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Static Environment

Location Domain uDiscovery-1 uDiscovery-2

100 300 500
Number of Gateways

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

100 300 500
Number of Gateways

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(a) Solved Requests

100 300 500
Number of Gateways

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

100 300 500
Number of Gateways

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

100 300 500
Number of Gateways

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(b) Search Precision

100 300 500
Number of Gateways

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

100 300 500
Number of Gateways

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

100 300 500
Number of Gateways

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(c) Response Time

100 300 500
Number of Gateways

0

0.5

1

1.5

N
um

be
r

of
 H

op
s

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

100 300 500
Number of Gateways

0

0.5

1

1.5

N
um

be
r

of
 H

op
s

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

100 300 500
Number of Gateways

0

0.5

1

1.5

N
um

be
r

of
 H

op
s

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(d) Number of Hops

100 300 500
Number of Gateways

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Static Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

100 300 500
Number of Gateways

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Semi-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

100 300 500
Number of Gateways

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Fully-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

(e) Exchanged Messages

Figure 5.5: Service Discovery Metrics - General service discovery efficiency with variable
number of gateways and different mobility scenarios.

Chapter 5. Evaluation

in the experimental scenario 2. The rate of solved requests (Figure 5.5a) is not affected by

the number of gateways, but it is impacted by the mobility scenarios, similarly to the exper-

iments with variable number of services (Figure 5.3a). Search precision has also a similar

behaviour as in previous experiments. Approaches that solve fewer requests have a higher pre-

cision (i.e., location and domain-based approaches). uDiscovery1 and uDiscovery2 have an

acceptable precision (i.e., from 0.82 to 0.91) and a high rate of solved requests (i.e., above 0.8

for uDiscovery1, and above 0.94 for uDiscovery2) (Figure 5.5b). Both response time and

number of hops increase with the size of the network for the location and domain-based

approaches (Figures 5.5c and 5.5d). Gateways in these approaches have more information

about other gateways as to where to forward requests, when the size of the network increases.

Response time and hops keep constant for uDiscovery1 and uDiscovery2, despite the num-

ber of gateways because the ant colony forwarding mechanism limits the request forwarding

to a subset of relevant gateways in both uDiscovery versions (Section 3.4.1).

The number of exchanged messages increases according to the network size and the

mobility scenarios in each approach (Figure 5.5e). This increment is because mobile gateways

require more configuration messages for their maintenance, and the number of configuration

messages in the initialisation process increases with the number of gateways. The location-

based approach exchanges around 600 messages with 100 gateways in the static scenario, 2,200

in the semi-mobile, and 3,000 in the fully mobile. The same approach exchanges around 1,141

messages with 500 gateways in the static scenario, 6,000 in the semi-mobile, and 13,000 in the

fully-mobile. The domain-based approach has a similar behaviour. This approach exchanges

from around 1,800 messages, in the static scenario with 100 services, to 6,000 messages in

the fully-mobile. uDiscovery2 exchanges around 3,000, 8,000, and 13,000 messages with 100,

300, and 500 gateways respectively in the static scenario; around 9,000, 29,000, and 27,000

messages with 100, 300, and 500 gateways in the semi-mobile environment; and around 20,000,

30,329, and 27,000 messages with 100, 300, and 500 gateways in the fully-mobile environment.

uDiscovey1 has a similar performance as the exchanged messages varies from 5,000, with 100

gateways in the static scenario, to 22,000 with 500 gateways in the fully-mobile scenario. The

cost of a better performance in previous metrics for both versions of uDiscovery is a higher

number of exchanged messages, as previously in Figure 5.3e). Similarly, The proportion

of configuration messages increases when there are mobile gateways, and the proportion of

discovery messages decreases when gateways have less knowledge about the network.

Chapter 5. Evaluation

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:6.4881e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:4.2887e-05
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:2.4008e-06
 = 0.01

H
0
: Rejected

(a) 20,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:2.1458e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:1.466e-05
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:8.7044e-07
 = 0.01

H
0
: Rejected

(b) 40,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:1.3482e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:1.7698e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2
A

pp
ro

ac
he

s

Fully-mobile Environment
-value:4.6229e-07
 = 0.01

H
0
: Rejected

(c) 60,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:8.8095e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:2.3464e-05
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:4.6229e-07
 = 0.01

H
0
: Rejected

(d) 80,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:1.1526e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:5.7802e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:9.6816e-08
 = 0.01

H
0
: Rejected

(e) 100,000 Services

Figure 5.6: Statistical Test on General Service Discovery Efficiency with Variable Number of
Services: Multiple Comparison of Ranked Means.

Chapter 5. Evaluation

Statistical Analysis

A Kruskal-Wallis test was performed on the utility value at hour 8 in each experiment to.

This test determines if there are statistically significant differences between the approaches’

performance. The null hypothesis of this test specifies that samples of the utility value

from each approach are subsets from the same population (i.e., H0 : (a, b, c, ..., n) ⊆ p) with

confidence interval α = 0.01. Figure 5.6 presents the results from this test. Each sub-figure

shows the comparison of the ranked means, the ρ-value, and the decision (i.e., to reject or

not reject H0). The projected lines from each ranked mean shows whether two approaches

are statistically significantly different. Approach A and B are not different, if a projected line

from approach A intersect the ranked mean of approach B.

H0 is rejected in all cases because there are significant differences between approaches’ perfor-

mance. uDiscovery2 is statistically significantly different from location-based, and domain-

based approaches in all scenarios, with the exception of the semi-mobile environment with

100 thousand services. The ranked means have an overlap in this case, which made the

differences not significant. This is because the location-based approach has a rate of solved

request close to the uDiscovery2′s rate, with a lower latency. The efficiency of uDiscovery2

is statistically significantly better than the location-based and domain-based approaches in

the other 14 cases. uDiscovery2 is statistically significantly better than uDiscovery1 in 4

out of 15 cases. The means of uDiscovery1 and uDiscovery2 overlap in most of the cases.

Although they are not statistically different, the small overlaps can indicate that uDiscovery2

is more efficient than uDiscovery1.

Discussion

The experiments on the general service discovery efficiency evaluated uDiscovery in a city

simulated environment. Two versions are evaluated to observe the effect of adaptive prop-

erties in the discovery performance. uDiscovery1 organises services and forwards requests

based on urban context (Section 3.4.1). uDiscovery2 adds adaptive properties based on the

model in Section 3.4.2. Results show that both versions of uDiscovery can improve the

discovery efficiency compared with baselines. Both have better utilities values which reach a

maximum of 2.93 for uDiscovery2, and a maximum of 2.34 for uDiscovery1. These utility

values show that uDiscovery1 and uDiscovery2 solve more requests (i.e., rate of solved re-

quests close to 1) with high search precision (i.e., between 0.8 and 0.92) and lower latency.

uDiscovery2 needs less hops to discover services than uDiscovery1, but it exchanges more

messages for adaptation purposes. uDiscovery1 and uDiscovery2 have in overall better

Chapter 5. Evaluation

Table 5.4: Experiments Parameters for Unforeseen Events Study.

Length of time for
service discovery

8 hours

Event start time Hour 7

of consumer
requests

170

of services 20,000; 40,000; 60,000; 80,000; 100,000

of gateways 500

Mobility scenarios Static; semi-mobile; fully-mobile

Experiments Scenarios 1. Services X Mobility

Replication 10 rounds each experiment

Hops limit
(See Appendix A)

- 5 for location-based and uDiscovery
- 3 for domain-based

Distance
(See Appendix A)

- 100 for location-based and uDiscovery

Number of Domains
(See Appendix A)

- 5 for domain-based

performance with regard to the utility value, rate of solved requests, and search latency.

However, both versions of uDiscovery need to exchange more messages, which might be a

serious drawback in scenarios where the network congestion is prioritised against the other

metrics.

The number of gateways do not have an impact on the approaches’ performance with re-

gard to the rate of solved requests and the search precision. However, the discovery latency,

number of hops and exchanged messages increase with the network size. Following studies

consider the largest network size in the experiments (i.e., 500 gateways), to evaluate ap-

proaches’ performance under the most challenging conditions with regard to latency, number

of hops and exchanged messages. Results of this study address the question RQ 1 in the

Section 1.2.4. The inclusion of urban context improves service discovery efficiency in smart

cities scenarios.

5.2.4 Unforeseen Events Study

This study measures the discovery efficiency of each approach in the presence of an unforeseen

event, according to the metrics defined in Section 5.1.1. Table 5.4 presents the experiments

design that this study follows. Each experiment simulates 8 hours of services requests to have

enough time to simulate one unforeseen event and analyse the approaches’ performance with

and without the event. Each period has an unforeseen event that starts before hour 7 (i.e.,

after 400 minutes). The consumer requests around 170 services in each experiment, with

requests made according to its location before the event, and then requests made for services

Chapter 5. Evaluation

relating to domains not managed by the gateway, after the event starts. The period between

requests is shorter after the event starts and that is why the number of requests is greater

than the number of requests in the previous study (Section 5.2.3). This shorter period also

generates a small variability in the number of requests, which is handled by the experiments

replication. The experiments’ parameters are the number of services, and the mobility sce-

narios, which are combined in one experimental scenario to determine the influence of each

variable in the service discovery process. Each experiment is replicated 10 times. Particular

parameters of each approach are selected according to the Appendix A.

5.2.4.1 Unforeseen Events Study Results

Figure 5.7 illustrates the utility function for each approach in this study. uDiscovery2 has a

better utility in all scenarios as its value is between 2.43, in the worst case, and 2.88, in the

best case, at hour 8. uDiscovery1 is the second best with utility values between 1.17 and

2.24 at hour 8. The utility value is between 1.03 and 2.18 in the location-based approach,

and between 0.91 and 1.57 in the domain-based approach at hour 8. The behaviour of the

approaches is similar to the study on general efficiency (Section 5.2.3), until the event starts.

uDiscovery2′s utility value is initially improved, and then maintained, in all cases while the

baselines’ utility is negatively impacted after the event with no subsequent improvement, in

all cases. The improvement in the utility curve of uDiscovery2 is expected because once

uDiscovery2 moves the services related to the event, the requests are solved in a more

efficient way. The domain and urban-based approaches have the worst performance because

they either cannot solve the requests after the event starts, or they have to forward them

to other gateways, adding latency and network overhead. This is supported by Figure 5.8c

and 5.8d which show that the location and domain-based approaches need more time and

hops to solve requests than uDiscovery2. The utility curve of the location-based approach

is less affected by the event than the domain-based and uDiscovery1, because the gateway

could have services related to the unforeseen event by mere randomness. The difference

between uDiscovery2 and the rest of the approaches is bigger when the number of services

is lower (i.e., 20 and 40 thousand) and there are mobile gateways. The exchange of services

between gateways enables a higher rate of solved requests (Figure 5.8a), with lower latency

(Figure 5.8c), and less number of hops (Figure 5.8d) because requests are solved locally.

Figure 5.8 presents the service discovery metrics for each approach with a variable number

of services, in different mobility environments, and in the presence of an unforeseen event.

The rate of solved requests is similar for uDiscovery1 and uDiscovery2 in the static

Chapter 5. Evaluation

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(a) 20,000 Services

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(b) 40,000 Services

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(c) 60,000 Services

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(d) 80,000 Services

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(e) 100,000 Services

Figure 5.7: Utility Function: Unforeseen Events Study.

Chapter 5. Evaluation

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(a) Solved Requests

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(b) Search Precision

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(c) Response Time

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(d) Number of Hops

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Static Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Semi-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Fully-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

(e) Exchanged Messages

Figure 5.8: Service Discovery Metrics - Unforeseen Events Study.

Chapter 5. Evaluation

environment (i.e., close to 1). The rate of solved requests is also high for the location-based

approach in the static scenario. It varies from 0.9, with 20 thousand services, to around 1.0

with 100 thousand services. The domain-based approach has the lowest rate in the static

scenario. It varies from 0.6, with 20 thousand services, to 0.8 with 100 thousand. The

unforeseen event does not affect the rate of solved requests for uDiscovery1, with different

numbers of services, or the location-based approach, with a high number of services, because

they have knowledge about other gateways and solve the requests by forwarding them. They

need a higher number of hops, as Figure 5.8d illustrates. The rate of solved requests is affected

in all the approaches, with exception of uDiscovery2, because they have less information

about other gateways. uDiscovery2 is not affected by mobile gateways because this approach

moves services to the local registry. These services are accessible even when the gateway, from

where they were moved, is not available because of its mobility.

The location and domain-based approaches have the highest search precision scores (i.e.,

all of them equal or more than 0.95). This is because they solve less requests, and there

is less chance to retrieve non relevant services. uDiscovery2 has a better search precision

(i.e., greater or equal to 0.93) than in the previous study on general discovery efficiency

(Figure 5.3b). Once the event starts and services are moved, it is more likely that these

requests, which are similar (i.e., belong to the same domain), are solved with the right set

of services. The simulated response time is lower for uDiscovery2 in the semi-mobile and

fully-mobile scenarios because requests are solved locally, and other approaches take longer

time forwarding requests to other gateways with changing, and partial, network information

(Figure reffig:timeScenario1). The location and domain-based have higher latency because

gateways do not have enough service information in the local repository and need to forward

more requests. Figure 5.8d shows that uDiscovery2 always needs fewer hops than the other

approaches, because services are moved locally, specially when there are mobile gateways

where the number of hops is close to 0 (i.e., the approach solves the request, where it is

received).

Figure 5.8e shows the number of exchanged messages for each approach in the different

scenarios. The cost of a more efficient service discovery is a higher number of exchanged mes-

sages for uDiscovery1 and uDiscovery2, as in the previous study. Similarly, there are more

configuration messages in all approaches when there are mobile gateways, and less discovery

messages because limited knowledge about the dynamic network. The location and domain-

based approaches exchange less messages, although they discover less services in overall. The

location-based approach exchanges around 1,600 messages in the static scenario, 8,000 in

Chapter 5. Evaluation

the semi-mobile, and 15,000 in the fully-mobile. The domain-based approach exchanges a

similar number of messages for different cases (i.e., around 6,000), but the proportion of

configuration and discovery messages varies from static to semi and fully-mobile scenarios.

This low number of exchanged messages in the domain-based approach is because the limit

of hops is lower than in other approaches according to the Appendix A. uDiscovery1 ex-

changes around 17,000 messages in the static scenario, 20,000 in the semi-mobile, and 22,000

in the fully-mobile. uDiscovery2 exchanges around 14,000, 22,000, and 24,000 in the static,

semi-mobile and fully-mobile scenarios respectively. uDiscovery2 exchanges less messages

than uDiscovery1 in the static scenario because requests are solved locally, when services are

moved between gateways, and uDiscovery1′s gateways have more information about other

gateways as where to forward discovery messages.

Statistical Analysis

A Kruskal-Wallis test is performed on the utility value at hour 8 in each experiment. This

test is used to identify whether the performance of evaluated approaches is statistically sig-

nificantly different. The null hypothesis of this test specifies that samples of the utility value

of each approach are subsets from the same population (i.e., H0 : (a, b, c, ..., n) ⊆ p) with

confidence interval α = 0.01. The projected lines from each ranked mean shows whether two

approaches are statistically significantly different, as in previous study.

Figure 5.9 presents the results from this test. H0 is rejected in all the cases, which means that

there are statistically significant differences between approaches performance. uDiscovery2

is statistically different from the location and domain-based approaches in 13 out of 15 cases.

The location-based approach and uDiscovery2 are not significant different in the static sce-

narios with 80 and 100 thousand services, where there is a high availability of services and

gateways information. uDiscovery2′s performance is statistically significantly better than the

location and domain-based approaches in all the other scenarios. uDiscovery2 is statistically

significantly better than uDiscovery1 in 4 out of 15 cases. The difference is more notorious

when there are mobile gateways because services might not be available, and uDiscovery1

has less accurate information about other gateways in the network. Although they are not

statistically different, the overlaps are small and can still indicate that uDiscovery2 is more

efficient than uDiscovery1 in mobile scenarios.

Discussion

This study evaluated uDiscovery1 and uDiscovery2 in the presence of unforeseen events

in a simulated city environment. Results show that uDiscovery2 responds to the unfore-

Chapter 5. Evaluation

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:2.6857e-05
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:3.2839e-05
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:2.4015e-05
 = 0.01

H
0
: Rejected

(a) 20000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:1.1038e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:3.5667e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:3.3922e-07
 = 0.01

H
0
: Rejected

(b) 40000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:6.1082e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:1.8983e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2
A

pp
ro

ac
he

s

Fully-mobile Environment
-value:3.1016e-07
 = 0.01

H
0
: Rejected

(c) 60000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:0.00014665
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:1.7228e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:5.9035e-07
 = 0.01

H
0
: Rejected

(d) 80000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:1.8522e-05
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:3.1626e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:4.0258e-07
 = 0.01

H
0
: Rejected

(e) 100000 Services

Figure 5.9: Statistical Test Unforeseen Events Study: Multiple Comparison of Ranked Means.

Chapter 5. Evaluation

Table 5.5: Experiments Parameters for the Scheduled Events Study.

Length of time for
service discovery

10 hours

Events duration 1 hour

Events start time
First event: Hour 3
Second event: Hour 6
Third event: Hour 9

of consumer
requests

500

of services 20,000; 40,000; 60,000; 80,000; 100,000

of gateways 500

Mobility scenarios Static; semi-mobile; fully-mobile

Scenarios 1. Services X Mobility

Replication 10 rounds each experiment

Hops limit
(See Appendix A)

- 5 for location-based and uDiscovery
- 3 for domain-based

Distance
(See Appendix A)

- 100 for location-based and uDiscovery

Number of Domains
(See Appendix A)

- 5 for domain-based

seen event and keeps a more efficient service discovery than baselines. uDiscovery2 solves

more requests (i.e., rate of solved requests around 0.95 despite gateways mobility) with less

number of hops (i.e., close to 0 hops), and offers a high search precision (i.e., over 0.9) with

lower latency than baselines. uDiscovery1 also has a better performance than baselines,

but uDiscovery2 is better because of the adaptive properties (Section 3.4.2), which can be

observed in rate of solved requests of each approach when there are mobile gateways. Both

versions of uDiscovery improve service discovery efficiency at the cost of exchanging more

messages, which can be an issue in scenarios where network efficiency is more important than

other metrics. The location and domain-based approaches exchange around 15,000 and 6,000

messages in the worst case respectively. uDiscovery1 and uDiscovery2 exchange more than

20,000 under the same conditions. Results from this study address the questions RQ 1, and

RQ 2 in the Section 1.2.4. The inclusion of urban context improves the service discovery

efficiency in smart cities scenarios. It is complemented by adaptive properties that respond

to city changes and maintains more efficient service discovery over time.

5.2.5 Scheduled Events Study

This study measures the discovery efficiency of each approach according to the metrics defined

in the Section 5.1.1, in the presence of scheduled events. Table 5.5 presents the experiments

design that this study follows. Each experiment simulates 10 hours of requests to have enough

Chapter 5. Evaluation

time to simulate more than one scheduled event (i.e., 3 scheduled events). Each event lasts

1 hour: the first event starts at hour 3, the second at hour 6, and the third at hour 9. The

consumer performs around 500 requests to a gateway in each experiment to evaluate the

approaches performance with different type of requests between events, and when the event

is happening. These requests are made according to consumer’s location between events, and

requests made for services relating to domains not managed by the gateway when an event

is happening. The experiments’ parameters are the number of services, and the mobility

scenarios, which are combined to determine their influence the discovery performance. Each

experiment is replicated 10 times.

5.2.5.1 Scheduled Events Study Results

Figure 5.10 illustrates the utility function for each approach in the presence of scheduled

events. uDiscovery2 handles the scheduled events better than all the baselines. The adap-

tation increases the utility value because the gateway has the set of services ready to solve

the requests before the events start. The utility value has its highest increment after the first

event starts, which is expected because once the second and third events start the metrics

are already high and the effect of the adaptation is to keep them at that level. The utility

also increases between events because of the effect of Algorithm 5, which improves the utility

continuously by updating the threshold. The baselines are affected by the events, as their

utility value falls when an event starts. uDiscovery2 has the best utility values from 2.7, in

the worst case, to 3.04 in the best case, at hour 10. This value varies from 1.11 to 2.01 for

uDiscovery1. The location-based approach has an utility value that varies from 0.85 to 1.96,

and the domain-based has an utility that varies from 0.99 to 1.05, at hour 10. Similarly to the

unforeseen events study (Section 5.2.4.1), the domain-based and urban-based approaches are

more affected by the events because they do not have the services in place for discovery and

must forward requests to other gateways. Figure 5.11d shows that the location, domain-based

and uDiscovery1 approaches need more hops compared against uDiscovery2. The location-

based approach keeps a constant, but lower, utility value despite the events in some cases

because the gateway can have services related to events by mere randomness. uDiscovery2

has the best utility values despite gateways’ mobility because services are available locally,

as explained in the unforeseen events study (Section 5.2.4.1).

Figure 5.11 presents the detailed metrics for each approach in the presence of scheduled

events. uDiscovery2 has the best rate of solved requests (i.e., close to 1) despite the

number of services and the mobility scenarios (Figure 5.11a). uDiscovery1 has the second

Chapter 5. Evaluation

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(a) 20,000 Services

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(b) 40,000 Services

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(c) 60,000 Services

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(d) 80,000 Services

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 1 2 3 4 5 6 7 8 9 10
Time (hours)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

uDiscovery-1
uDiscovery-2

(e) 100,000 Services

Figure 5.10: Utility Function - Scheduled Events Study.

Chapter 5. Evaluation

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(a) Solved Requests

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(b) Search Precision

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5
Si

m
ul

at
io

n
R

es
po

ns
e

T
im

e
-

lo
g 10

(t
)

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(c) Response Time

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(d) Number of Hops

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Static Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Semi-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Fully-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

(e) Exchanged Messages

Figure 5.11: Service Discovery Metrics - Scheduled Events Study.

Chapter 5. Evaluation

best rate of solved requests. Its rate is close to 1.0 in the static scenario, but it is impacted by

mobile gateways in the semi and fully-mobile scenarios. The location-based approach reaches

a similar rate of solved requests in the static scenario with 100 thousand services. But, it

is also impacted in the mobility scenarios. The location-based and uDiscovery1 approaches

have a good rate of solved requests in static scenarios, but they need more time and hops to

discover services (Figures 5.11c and 5.11d). The domain-based approach has the lowest rate

of solved requests (i.e., under 0.5) in the different mobility scenarios with variable number

of services. Figure 5.11b shows the search precision for different approaches under different

circumstances. All approaches have a search precision above 0.9, but there is no approach

better than others in most of the cases. This is caused because of the request randomness and

the events that favour uDiscovery2 over others. However, uDiscovery1 and uDiscovery2

have a similar search precision to the location and domain-based approaches even when they

solve more requests.

uDiscovery2 has the lowest simulated search latency in most of the scenarios followed by

uDiscovery1, the location-based approach, and the domain-based approach (Figure 5.11c).

uDiscovery2 spends less time to discover services because it solves requests locally. Other

approaches spend more time because they forward requests to other gateways, according

to Figure 5.11d, which illustrates the median number of hops that each approach needs

to solve requests. The location-based approach needs more hops followed by uDisocvery1

and the domain-based approach, which need a similar number of hops. The median number

of hops for uDiscover2 is close to 0, which demonstrates that requests are solved locally.

Figure 5.11e presents the exchanged messages for each approach. uDiscovery2′s good per-

formance in previous metrics costs the highest number of exchanged messages, as in previous

studies. All approaches need more messages compared against previous studies because the

experiments of this study last longer. The location-based approach exchanges around 4,000,

15,000, and 24,000 messages in the static, semi-mobile and fully-mobile scenarios respectively.

The domain-based approach exchanges a similar number of messages in different scenarios,

which vary from 10,000 to 12,000. The domain-based approach is more efficient in terms of

network usage because the limits of hops is lower than in the other approaches according to

the Appendix A. uDiscovery1 also exchanges a similar number of messages in different sce-

narios (i.e., around 40,000). This is because in static scenarios gateways send more discovery

messages because they have more knowledge about the network, and in the mobile scenarios

the maintenance of mobile gateways require more configuration messages. uDiscovery2 re-

quires a higher number of messages than uDiscovery1 in the mobile scenarios (i.e., around

Chapter 5. Evaluation

45,000), because uDiscovery2 adds adaptation messages to the configuration, and discovery

messages. However, uDiscovery2 needs less messages in the static scenarios because gateways

solve requests locally, once services are moved. The proportion of configuration messages is

lower in the static environment for all approaches because there are not mobile gateways to

maintain, as in previous studies.

Statistical Analysis

A Kruskal-Wallis test was performed on the utility value of different approaches in this study.

This test is used to identify whether the performance of evaluated approaches is statistically

significantly different. The null hypothesis of this test specifies that samples of the utility

value of each approach are subsets from the same population (i.e., H0 : (a, b, c, ..., n) ⊆ p)

with confidence interval α = 0.01. The projected lines from each ranked mean shows whether

two approaches are statistically significantly different, as in previous studies.

Figure 5.12 presents the results from the test in this study. H0 is rejected in all the cases which

means that there are statistically significant differences between approaches’ performance.

uDiscovery2 is statistically different from the location and domain-based approaches in all

the cases. This means that uDiscovery2′s performance is statistically significantly better

than location and domain-based approaches in all the scenarios. uDiscovery2 is statistically

significantly better than uDiscovery1 in 5 out of 15 cases. Although uDiscovery1 and

uDiscovery2 are not significantly different, uDiscovery2 can be considered more efficient

than uDiscovery1 because of the small overlaps between their ranked means in all cases.

Adaptive properties complement the use of urban information to offer a more efficient service

discovery.

Discussion

This study evaluated uDiscovery in the presence of scheduled events in a simulated city

environment. Results show that uDiscovery responds to the scheduled events and improves

the discovery efficiency over time. uDiscovery1 and uDiscovery2 have a better performance

than baselines, but uDiscovery2 is better because of the adaptive properties (Section 3.4.2).

uDiscovery2 reaches a rate of solved requests close to 1, despite the mobility scenarios,

offers a search precision over 0.9 in all cases, has lower latency than all approaches, and

solves requests in the gateway that receives them (i.e., 0 hops). uDiscovery improves the

discovery efficiency at the cost of more messages exchanged in the network, which might be a

concern in discovery efficiency is measure from the network usage perspective. Both versions

of uDiscovery requires more than 40,000 messages in the worst case, the location-based

Chapter 5. Evaluation

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:3.223e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:6.1379e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:1.6712e-05
 = 0.01

H
0
: Rejected

(a) 20,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:2.3606e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2
A

pp
ro

ac
he

s

Semi-mobile Environment
-value:5.9035e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:1.7399e-06
 = 0.01

H
0
: Rejected

(b) 40,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:5.3639e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:5.2954e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:4.0401e-07
 = 0.01

H
0
: Rejected

(c) 60,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:3.7099e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:2.9094e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:2.9848e-07
 = 0.01

H
0
: Rejected

(d) 80,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:5.2174e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:6.5669e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:4.5717e-07
 = 0.01

H
0
: Rejected

(e) 100,000 Services

Figure 5.12: Statistical Test Scheduled Events Study: Multiple Comparison of Ranked Means.

Chapter 5. Evaluation

Table 5.6: Experiments Parameters to Evaluate uDiscovery.

Length of time for
service discovery

30 periods of 6 hours

Events duration 1 hour

Events start time
First event: Hour 2 each period
Second event: Hour 4 each period

of services 20,000; 40,000; 60,000; 80,000; 100,000

Learning rate 0,1; 0,01; 0,001

of hidden nodes 12; 24; 36

of gateways 500

Mobility scenarios Static; semi-mobile; fully-mobile

Scenarios 1. Services X Mobility X Learning Rate X Hidden Nodes

Replication 10 rounds each experiment

Hops limit
(See Appendix A)

5

Distance
(See Appendix A)

100m

requires 24,000, and the domain-based 12,000. Results from this study address the questions

RQ 1, and RQ 2 in Section 1.2.4. The inclusion of urban context improves the service

discovery efficiency in smart cities scenarios. It is complemented by adaptive properties that

respond to city changes and keeps more efficient service discovery over time.

5.2.6 Periodic Events Study

This study measures the discovery efficiency of each approach according to the metrics defined

in the Section 5.1.1 in the presence of periodic events. The study defines two experiments:

the first one to explore the behaviour of uDiscovery2 with different parameters in the model

that manages periodic events (Section 3.4.2), and the second one to compare the baselines

behaviour in the presence of periodic events.

Table 5.6 introduces the design of the first experiment which simulates 30 periods of 6 hours in

a city to evaluate if uDiscovery is able to manage periodic events by learning from requests

patterns. Each period has two simulated peak hours when a consumer requests services

relating to the same domain in each period. The first peak hour starts at hour 2 and ends

at hour 3 in each period. The second peak hour starts at hour 4 and ends at hour 5 in each

period. The consumer requests services randomly according to its location between peak

hours. The experiments parameters are the number of services, mobility scenarios, number

of hidden nodes in the neural network, and the learning rate of the model (i.e., α), which

are combined to determine the influence of each variable in the service discovery efficiency.

Each experiment is replicated 10 times. uDiscovery2 uses Algorithm 7 in Section 3.4.2

Chapter 5. Evaluation

Table 5.7: Experiments Parameters for Approaches’ Periodic Events Management.

Length of time for
service discovery

30 periods of 6 hours

Events duration 1 hour

Events start time
First event: Hour 2 each period
Second event: Hour 4 each period

of services 20,000; 40,000; 60,000; 80,000; 100,000

of gateways 500

Mobility scenarios Static; semi-mobile; fully-mobile

Scenarios 1. Services X Mobility

Replication 10 rounds each experiment

Hops limit
(See Appendix A)

- 5 for location-based and uDiscovery
- 3 for domain-based

Distance
(See Appendix A)

- 100 for location-based and uDiscovery

Number of Domains
(See Appendix A)

- 5 for domain-based

to monitor discovery performance and try to learn the city patterns from periodic events.

uDiscovery2 integrates the DL4J2 library with Simonstrator to use DL4J’s implementation

of the DQN algorithm. Additional uDiscovery′s parameters are selected according to the

Appendix A.

Table 5.7 illustrates the design of the second experiment, which compares the performance

of different approaches when managing periodic events. This simulates 30 periods of 6 hours

in the city as the previous experiment, to compare uDiscovery′s performance against other

approaches under the same conditions. The experiments’ parameters are the number of

services, and mobility scenarios, which are combined in to determine the influence of each

variable in the service discovery efficiency. Each experiment is replicated 10 times and sets

the number of hidden nodes and learning rage for uDiscovery2 according to the results in

the previous experiment. The rest of approaches’ parameters are selected according to the

Appendix A.

5.2.6.1 Periodic Events Study Results

Figure 5.13 shows uDiscovery2′s behaviour with different hidden nodes in the neural network,

and different learning rates in the different scenarios. As illustrated, the number of hidden

nodes and the learning rate do not have a considerable impact on the utility function. This

curve follows the same pattern for different configurations in all the cases. The static scenarios

show a decreasing trend in the utility value after 10 periods. The semi-mobile and fully-

2DL4J - https://deeplearning4j.org/

https://deeplearning4j.org/

Chapter 5. Evaluation

mobile scenarios show a constant value after 15 periods. The difference between static and

mobile scenarios is because the negative impact of the decreasing rate of solved requests

is more notable in static scenarios, where the approach starts with a better utility value.

Moreover, the system may ask for services from different gateways each time because gateways

may be mobile. However, there is fluctuation in the utility value over time in all cases,

and after a while the trend of the curve flattens and starts to be negative in some cases.

There is no continuous improvement in the utility value in any of the cases because the

algorithm does not make the same decision under the same conditions. A larger fluctuation

behaviour is expected as it represents the learning phase when uDiscovery2 makes different

decisions to evaluate rewards. Then, a constant improvement is expected as uDiscovery2

should make better decisions based on the historical rewards and continue learning from

the environment. The observed utility curves mean that uDiscovery2 does not have a good,

current knowledge of the environment, despite the neural network parameters. This limitation

is mainly caused by the complexity of the system that the self-adaptive algorithm tries to

learn (i.e., a city). Consumers do not request the same services at the same time of the day,

and such randomness cannot be fully-learned by the proposed approach. One alternative is

to remove such randomness and set a static sequence of requests which is repeated every

period. However, this alternative does not reflect the real world. Further research is needed

to explore reinforcement learning algorithms in a deeper way, or alternative approaches to

identify emergent behaviours in smart cities, which enable models to address such complex

environments.

Figure 5.14 compares how different approaches perform when there are periodic events. The

neural network in uDiscovery2 is configured with 12 nodes and α = 0.1. uDiscovery2 has

the best utility values, which vary from 1.93 to 2.48, followed by uDiscovery1 with an

utility value that varies from 1.09 to 2.16. The utility value of the location-based approach

varies from 0.4 to 1.58, and the domain-based utility value varies from 0.63 to 1.03. The

utility curve increases its value in the first periods for uDiscovery2, but after a while it is

maintained constant or decreases. uDisovery2 does not improve the efficiency over time,

although it has a better utility than all other approaches. Periodic events have significant

effect on the performance of the baselines. The location and domain-based approaches have

a decreasing trend for most cases. The urban-based approach has some scenarios where the

value decreases but it also manages to keep the utility constant in most cases. uDiscovery2

is still better than all the baselines, although it is not able to fully learn the city environment.

The advantage emerges because the self-adaptive approach uses the urban-context to drive

Chapter 5. Evaluation

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

(a) 20,000 Services

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

(b) 40,000 Services

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

(c) 60,000 Services

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

(d) 80,000 Services

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

N = 12; = 0.001
N = 12; = 0.01
N = 12; = 0.1
N = 24; = 0.001
N = 24; = 0.01

N = 24; = 0.1
N = 36; = 0.001
N = 36; = 0.01
N = 36; = 0.1

(e) 100,000 Services

Figure 5.13: Utility Function: Periodic Events Study with Different Neural Network Config-
urations.

Chapter 5. Evaluation

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

Urban
Self-adaptive

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

Urban
Self-adaptive

(a) 20,000 Services

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

Urban
Self-adaptive

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

Urban
Self-adaptive

(b) 40,000 Services

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

Urban
Self-adaptive

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

Urban
Self-adaptive

(c) 60,000 Services

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

Urban
Self-adaptive

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

Urban
Self-adaptive

(d) 80,000 Services

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Static Environment

Location
Domain

uDiscovery-1
uDiscovery-2

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Semi-mobile Environment

Location
Domain

Urban
Self-adaptive

0 5 10 15 20 25 30
Time (days)

-1

0

1

2

3

4

U
til

ity
 V

al
ue

Fully-mobile Environment

Location
Domain

Urban
Self-adaptive

(e) 100,000 Services

Figure 5.14: Utility Function - Periodic Events Study with different approaches.

Chapter 5. Evaluation

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

R
at

e
of

 S
ol

ve
d

R
eq

ue
st

s Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(a) Solved Requests

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0.8

0.85

0.9

0.95

1

Se
ar

ch
 p

re
ci

si
on

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(b) Search Precision

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

1

2

3

4

5

Si
m

ul
at

io
n

R
es

po
ns

e
T

im
e

-
lo

g 10
(t

)

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(c) Response Time

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Static Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Semi-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

20 40 60 80 100
Number of Services (thousands)

0

0.5

1

1.5

2

2.5

N
um

be
r

of
 H

op
s

Fully-mobile Environment

Location Domain uDiscovery-1 uDiscovery-2

(d) Number of Hops

20 40 60 80 100
Number of Services (thousands)

0

2

4

6

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Static Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

20 40 60 80 100
Number of Services (thousands)

0

2

4

6

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Semi-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

20 40 60 80 100
Number of Services (thousands)

0

2

4

6

E
xc

ha
ng

ed
 m

es
sa

ge
s

lo
g 10

(m
es

sa
ge

s)

Fully-mobile Environment

Cnf Dis Adp - Loc Cnf Dis Adp - Dom
Cnf Dis Adp - uDis1 Cnf Dis Adp - uDis2

(e) Exchanged Messages

Figure 5.15: Service Discovery Metrics - Periodic Events Study with different approaches.

Chapter 5. Evaluation

the discovery, and it manages to make the right decision some times (i.e., moving the right

services at the right time).

Figure 5.15 presents the service discovery metrics for different approaches when there are

periodic events. uDiscovery1 and uDiscovery2 have a similar rate of solved requests

in different mobility scenarios (Figure 5.15a). This rate is higher in the static environment

(i.e., close to 1) because gateways have more information to forward requests to the relevant

gateways. This rate is impacted in both uDiscovery1 and uDiscovery2 by mobile gateways,

because the information about other gateways is smaller and less accurate in these envi-

ronments (e.g., the rate varies from 0.7 to 0.8 in the fully-mobile environment). The rate

of solved requests of the location-based approach is under 0.7 in all cases, but it improves

in the presence of more services. The domain-based approach has the worst rate of solved

requests as in previous studies (i.e., under 0.4 in all cases). The search precision for differ-

ent approaches follows a similar behaviour as in the performance studies of unforeseen and

scheduled events. The location and domain-based approaches have an advantage in the static

environment, but none of the approaches can be considered better in semi-mobile and fully-

mobile scenarios. uDiscovery1 and uDiscovery2 offer a lower search precision in some cases,

but they still provide a higher rate of solved requests. The simulated response time (Fig-

ure 5.15c) and number of hops (Figure 5.15d) have an interesting outcome. uDiscovery1

and uDiscovery2 have a similar latency in all scenarios, though uDiscovery2 needs more

hops to discover services compared against previous studies. This means that uDiscovery2

solves less requests locally, the adaptation processes fail to move the required services, and

uDiscovery2 uses the urban context to forward requests to other gateways as uDiscovery1

does.

The median of exchanged messages follows the same pattern as in previous studies (Fig-

ure 5.15e). uDiscovery1 and uDiscovery2 exchange more messages than the location and

domain-based approach. This is the cost of a more efficient service discovery reflected in a

larger rate of solved requests. Location-based approach exchanges around 38,000 messages

in the static scenario, 120,000 in the semi-mobile, and more than 200,000 in the fully mobile.

The domain-based approach has the best efficiency in terms of network usage because of the

lower limit of hops, as in previous studies. This approach exchanges from around 77,000 mes-

sages in the static environment, to around 90,000 in the fully-mobile. uDiscovery1 exchanges

more than 300,000 messages in all the cases, and uDiscovery2 around 150,000 in the best

case and 250,000 in the worst. The advantage for uDiscovery2 is because some times the

adaptive manager makes the right decision and moves services to solve requests locally.

Chapter 5. Evaluation

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:3.1888e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:4.351e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:2.3557e-07
 = 0.01

H
0
: Rejected

(a) 20,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:2.4582e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2
A

pp
ro

ac
he

s

Semi-mobile Environment
-value:1.0715e-06
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:9.6764e-08
 = 0.01

H
0
: Rejected

(b) 40,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:1.0296e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:9.2354e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:6.3985e-08
 = 0.01

H
0
: Rejected

(c) 60,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:2.3707e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:6.1838e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:8.4947e-07
 = 0.01

H
0
: Rejected

(d) 80,000 Services

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Static Environment
-value:1.594e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Semi-mobile Environment
-value:1.4348e-07
 = 0.01

H
0
: Rejected

0 10 20 30 40
Ranked Means

Location

Domain

uDisc-1

uDisc-2

A
pp

ro
ac

he
s

Fully-mobile Environment
-value:1.2185e-06
 = 0.01

H
0
: Rejected

(e) 100,000 Services

Figure 5.16: Statistical Test Periodic Events Study: Multiple Comparison of Ranked Means.

Chapter 5. Evaluation

Statistical Analysis

A Kruskal-Wallis test was performed on the utility value of different approaches in this study.

This test is used to identify whether the performance of evaluated approaches is statistically

significantly different. The null hypothesis of this test specifies that samples of the utility

value of each approach are subsets from the same population (i.e., H0 : (a, b, c, ..., n) ⊆ p)

with confidence interval α = 0.01. The projected lines from each ranked mean shows whether

two approaches are statistically significantly different, as in previous studies.

Figure 5.16 presents the results from the test in this study. H0 is rejected in all the cases which

means that there are statistically significant differences between approaches performance.

uDiscovery2 is statistically different from the location and domain-based approaches in all

cases. uDiscovery1 is statistically different from the location and domain-based approaches

in 6 out of 15 cases. uDiscovery1 and uDiscovery2 have a more similar performance than in

previous studies, as their ranked means have bigger overlaps. This is because uDiscovery2

does not move services properly and uses urban context information to forward requests to

relevant gateways, making its behaviour similar to uDiscovery1′s.

Discussion

This study evaluated uDiscovery1 and uDiscovery2 in the presence of periodic events in a

simulated city environment. Results show that uDiscovery2 does not learn from the envi-

ronment, and cannot handle periodic events (i.e., the discovery efficiency does not improve

over time). It was expected at least a more random behaviour, which implies that the adap-

tive manager was learning, but results show a flatter curve after few periods instead. This

behaviour is observed in every experiment despite the number of hidden nodes and learn-

ing rates, which influence the DQN algorithm used by uDiscovery. This limitation can be

caused by the complexity of city environments where services are requested randomly, but

also because of the limitation of current learning techniques. Further research is needed to

explore RL algorithms in a deeper fashion, propose possible extensions, and experiment with

variable environment complexity to determine to what extent current learning methods can

handle cities scenarios.

However, uDiscovery2 still has better performance than the location and domain-based ap-

proaches (e.g., rate of solved requests close to 1). This is because uDiscovery2 uses urban

context to forward requests where they are most likely to be solved, and sometimes makes

the right decision to move services. uDiscovery1 and uDiscovery solve more requests than

baselines because of the use of urban context, but fail to manage periodic city events. The

Chapter 5. Evaluation

Service

Consumer

Gateway 1 Gateway 2 Gateway 3 Gateway 4

Feedback

Request

Discovery Messages Publish/Subscribe (MQTT)

Figure 5.17: IoT Test bed.

cost of uDiscovery performance is again the number of exchanged messages. The domain-

based approach uses the network in a more efficient way as it needs much less messages than

others approaches (i.e., around 100,000 in the worst case). However, it is not able to offer an

efficient discovery according to the other metrics (e.g., rate of solved requests). Results from

this study address the questions RQ 1, and RQ 2 in the Section 1.2.4.

5.3 Prototype-based Evaluation

This section presents the prototype-based study that evaluates to what extent uDiscovery

improves the service discovery efficiency, and minimises human input when responding to

complex consumer’s requirements (RQ 3). This section compares uDiscovery′s heuristic

planner against baseline approaches and discusses the results.

5.3.1 Experimental Set-up

A prototype of uDiscovery′s heuristic planner (Section 3.4.3), and baselines are implemented

for this evaluation. These prototypes are implemented in Python 3.5 and deployed in an IoT

testbed with 5 Raspberry Pi3 enabling the evaluation of uDiscovery in resource constraint

devices, which run Raspbian, have 1GB of RAM and an SD card with 16GB. Each board

sends messages to other boards using a MQTT broker through a WiFi MANET. One of the

boards is the consumer and sends requests and feedback to the other boards which act as

IoT gateways (Figure 5.17). Each board has a Mongo 2.4 database where it stores services,

requests data, and consumers’ feedback.

5.3.2 Baseline Approaches

The prototype-based study evaluates and compares three different approaches to search for

services and support service composition. The approaches are:

Chapter 5. Evaluation

Table 5.8: Experiments Design Composition Support Study.

Experiment The consumer requests a service.

Experiments’
Parameters

- Number of Services: 2, 4, 6, 8, and 10 thousand
- Plan Length: 1, 2, 3, 4, and 5

Parameters
Combinations

1. Services X Plan Length

Replication 100 requests in each experiment

• Classic Backward P lanning Approach : This baseline uses a backward planning al-

gorithm to discovery services that constitute service compositions and is based in the

discovery components of the work of Chen et al. [Chen et al., 2016].

• Conversation based Approach : This baseline uses service conversations to support

service composition and is based on the discovery components of the work of Uribieta

et al. [Urbieta et al., 2017].

• uDiscovery P lanner : This prototype implements the heuristic service planner pro-

posed in the Section 3.4.3 of this thesis. Specific parameters of this model were defined

by the study in Appendix A for this comparison. The feedbackThreshold is 1.0, the

functionalThreshold is 1.0, and the K-value is 5.

5.3.3 Prototype-based Study

This study measures the search efficiency of each approach (i.e., backward planning, conversation-

based, and uDiscovery planner) with variable number of services and plan length according

to the metrics defined in the Section 5.1.2. Table 5.8 presents the experiments design of this

study. The consumer requests a service in each experiment. The experiment’s parameters are

number of services, and plan length, which are combined to evaluate and compare approaches’

performance. Each experiment (i.e., a service request) is replicated 100 times.

5.3.3.1 Prototype-based Study Results

Figure 5.18 illustrates this study results. Each row in the figure corresponds to a different

number of services, and each column corresponds to a metric (i.e., search latency, precision,

and input size). Each sub-figure plots metric against the plan length variable.

Search latency measures the response time in milliseconds. Figures in the first column show

the median response time in logarithmic scale to facilitate their analysis. The backward

planning approach has the worst latency in all cases. The response time grows with the

plan length. The response time is 7 seconds for plan length 1, 14 seconds for length 2, 36

Chapter 5. Evaluation

1 2 3 4 5
Plan Length

0

2

4

6

R
es

po
ns

e
T

im
e

lo
g 10

(t
)

Search Latency

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

0.5

1

Se
ar

ch
 P

re
ci

si
on

Search Precision

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

1000

2000

3000

C
on

su
m

er
 I

np
ut

 (
B

yt
es

) Consumer Input Size

Backward Conversation uDiscovery

(a) 2,000 Services

1 2 3 4 5
Plan Length

0

2

4

6

R
es

po
ns

e
T

im
e

lo
g 10

(t
)

Search Latency

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

0.5

1

Se
ar

ch
 P

re
ci

si
on

Search Precision

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

1000

2000

3000

C
on

su
m

er
 I

np
ut

 (
B

yt
es

) Consumer Input Size

Backward Conversation uDiscovery

(b) 4,000 Services

1 2 3 4 5
Plan Length

0

2

4

6

R
es

po
ns

e
T

im
e

lo
g 10

(t
)

Search Latency

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

0.5

1

Se
ar

ch
 P

re
ci

si
on

Search Precision

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

1000

2000

3000

C
on

su
m

er
 I

np
ut

 (
B

yt
es

) Consumer Input Size

Backward Conversation uDiscovery

(c) 6,000 Services

1 2 3 4 5
Plan Length

0

2

4

6

R
es

po
ns

e
T

im
e

lo
g 10

(t
)

Search Latency

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

0.5

1

Se
ar

ch
 P

re
ci

si
on

Search Precision

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

1000

2000

3000

C
on

su
m

er
 I

np
ut

 (
B

yt
es

) Consumer Input Size

Backward Conversation uDiscovery

(d) 8,000 Services

1 2 3 4 5
Plan Length

0

2

4

6

R
es

po
ns

e
T

im
e

lo
g 10

(t
)

Search Latency

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

0.5

1

Se
ar

ch
 P

re
ci

si
on

Search Precision

Backward Conversation uDiscovery

1 2 3 4 5
Plan Length

0

1000

2000

3000

C
on

su
m

er
 I

np
ut

 (
B

yt
es

) Consumer Input Size

Backward Conversation uDiscovery

(e) 10,000 Services

Figure 5.18: Prototype-based Study Results.

Chapter 5. Evaluation

seconds for length 3, 2.14 minutes for length 4 and 4.61 minutes for plan length 5 when there

are 2,000 services. The number of services also affects the response time in the backward

planning approach. The response time is 40 seconds for length 1, 1.22 minutes for length

2, 2.72 minutes for length 3, 6.17 minutes for length 4, and 12 minutes for length 5 when

there are 10,000 services. This high latency is because the backward planning approach

performs and exhaustive search through all the services in the registry, exploring all the

possible combinations. The conversation-based approach has the next higher latency, which

is also affected by the plan length. The response time is 4.9 seconds for plan length 1, 6.5

seconds for length 2, 20 seconds for length 3, 23 seconds for length 4 and 28 seconds for

length 5 when there are 2,000 services. The number of services also impacts the latency

of the conversation-based approach because it matches all services in the repository. The

response time is 20 seconds for plan length 1, 27 seconds for length 2, 1.02 minutes for length

3, 1.49 minutes for length 4 and 1.85 minutes for length 5 and 10,000 services.

uDiscovery has the lowest response time because of the progressive search that limits the

number of explored services according to the functional ranking and the consumer’s feedback

(Section 3.4.3). Neither the plan length or the number of services have the same impact in

uDiscovery′s performance. The response time is 1.08 seconds for plan length 1, 1.51 seconds

for length 2, 1.48 seconds for length 3, 2.18 seconds with length 4, and 2.5 seconds for length

5 when there are 2,000 services. The response time is 1.12 seconds for plan length 1, 1.6

seconds for length 2, 1.55 seconds for length 3, 2.5 seconds for length 4 and 2.75 for length 5

when there are 6,000 services. And, the response time is 1.16 seconds for plan length 1, 1.59

seconds for length 2, 1.52 seconds for length 3, 2.55 seconds for length 4 and 2.95 seconds for

length 5 and 10,000 services.

The conversation-based approach offers the best precision in most of the cases. This precision

is different for each plan length because of the data set variability. Requests with plan length

3 and 4 get the lowest search precision (i.e., around 0.7 for length 3, and 0.6 for length 4).

The number of services does not affect the accuracy of the conversation-based approach. It

varies from 0.59 with 4,000 services and plan length 4 to 0.9668 with 6,000 services and plan

length 1. uDiscovery′s precision is close to the conversation-based approach in most of the

cases, and slightly superior in some of them. The difference between uDiscovery and the

conversation-based approach is smaller when there are more services in the repository because

uDiscovery explores more services and selects the most promising based on the functional

ranking and the feedback information (Section 3.4.3). The search precision is 0.9533 for plan

length 1, 0.5516 for plan length 2, 0.6729 for plan length 3, 0.581 for plan length 4, and 0.76

Chapter 5. Evaluation

for plan length 5 with 2,000 services. The precision is 0.9626 for plan length 1, 0.5956 for

plan length 2, 0.6102 for plan length 3, 0.532 for plan length 4, and 0.9103 for plan length

5 with 10,000 services. The backward planning approach has the worst precision because it

has limited information to drive the service search. Search precision varies from 0.3154 with

10,000 services and plan length 3 to 0.8095 with 10,000 services and plan length 1.

The backward planning approach needs less input from consumers than uDiscovery and the

conversation-based approach. It varies from 979 bytes to 1309 bytes regardless of the plan

length and the number of services in the registry. uDiscovery also keeps a constant number

of bytes (i.e., around 1500), as input from consumers, regardless of the plan length and the

number of services. The input size is larger in uDiscovery compared to the backward planning

approach because of the feedback provided by the consumer after the search process. The

conversation-based approach needs more input from consumers as the plan length increases.

The input size is lower than the size of backward planning and uDiscovery inputs when

the plan length is 1 (i.e., around 900 bytes). This size increases to around 1600 bytes for

plan length 2, 1900 bytes for plan length 3, 2433 for plan length 4, and 2894 for plan length

5. The number of services does not affect the input required by the conversation-based

approach.

Statistical Analysis

A Kruskal-Wallis test was performed on the different metrics with 10,000 services in the

distributed repository. This test is used to identify statistically significant differences in

approaches performance with regard the search efficiency with variable plan length. The

null hypothesis specifies that samples from results of each metric for each approach are

subsets from the same population (i.e., H0 : (a, b, c, ..., n) ⊆ p) with confidence interval

α = 0.01.

Figure 5.19 presents the results from the test in this study. Each row in the figure corresponds

to the plan length, and each column to each metric (i.e., search latency, search precision, and

consumer input size). H0 is rejected in all cases for the comparison of approaches latency,

which means that there are statistically significant differences between approaches perfor-

mance. uDiscovery2 is statistically different from the conversation-based and the backward

planning approaches in all cases as it always offers the lowest latency. The difference between

uDiscovery and the next approach in the rank (i.e., the conversation-based approaches)

increases with the plan length, thanks to the progressive search that limits the explored ser-

vices and combinations to the most promising ones. There are significant differences between

Chapter 5. Evaluation

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Latency Comparison
-value:2.6418e-05
 = 0.01

H
0
: Rejected

100 110 120 130 140 150
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Search Precision Comparison
-value:0.0094661
 = 0.01

H
0
: Rejected

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Consumer Input Comparison
-value:0.00040363
 = 0.01

H
0
: Rejected

(a) Plan Length 1

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Latency Comparison
-value:9.4318e-06
 = 0.01

H
0
: Rejected

60 80 100 120 140 160
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Search Precision Comparison
-value:7.5131e-07
 = 0.01

H
0
: Rejected

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Consumer Input Comparison

-value:0.0017721
 = 0.01

H
0
: Rejected

(b) Plan Length 2

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Latency Comparison
-value:1.0861e-05
 = 0.01

H
0
: Rejected

40 60 80 100 120
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Search Precision Comparison
-value:1.9525e-06
 = 0.01

H
0
: Rejected

0 10 20 30
Ranked Means

Back

Conv

uDisc
A

pp
ro

ac
he

s

Consumer Input Comparison

-value:6.9327e-05
 = 0.01

H
0
: Rejected

(c) Plan Length 3

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Latency Comparison
-value:2.6418e-05
 = 0.01

H
0
: Rejected

30 40 50 60 70 80
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Search Precision Comparison

-value:0.000217
 = 0.01

H
0
: Rejected

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Consumer Input Comparison

-value:8.0641e-05
 = 0.01

H
0
: Rejected

(d) Plan Length 4

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Latency Comparison
-value:2.3516e-05
 = 0.01

H
0
: Rejected

10 20 30 40 50 60 70
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Search Precision Comparison
-value:2.4689e-05
 = 0.01

H
0
: Rejected

0 10 20 30
Ranked Means

Back

Conv

uDisc

A
pp

ro
ac

he
s

Consumer Input Comparison

-value:9.2664e-06
 = 0.01

H
0
: Rejected

(e) Plan Length 5

Figure 5.19: Statistical Test Prototype-based Study: Multiple Comparison of Ranked Means.

Chapter 5. Evaluation

approaches with regard to the search precision in all cases (i.e., H0 is rejected). Such dif-

ferences are mainly because the search accuracy of the backward planning approach is too

low compared to uDiscovery and the conversation-based approach. uDiscovery′s search

precision is not statistically significantly different from the conversation-based approach in

any of the cases. This means that uDiscovery manages to offer similar search precision to

the conversation-based approach because of the inclusion of the consumer’s feedback and the

functional ranking.

H0 is also rejected in all cases for the comparison of approaches input size, which means that

there are statistically significant differences between approaches inputs size. uDiscovery2 and

the backward planning algorithm do not have differences in most of the cases, with exception

of the scenario for plan length 5. The conversation-based approach is statistically different

from uDiscovery because the size of requests in the conversation-based approach is less

than the size of requests in uDiscovery. This is because requests in the conversation-based

approach only specify one task (i.e., plan length 1). Then, uDiscovery is not statistically

significantly different from the conversation − based approach for plan length 2, because

their requests have a similar size. This is because requests in conversation-based specify

information about two tasks (i.e., plan length 2). uDiscovery is statistically significantly

different from the conversation-based approach when the plan length is greater or equal to 3

because the size of requests in uDiscovery is less than the size of requests in the conversation-

based approach. This is because requests in conversation-based specify more information

as the number of tasks increases. The ranked mean of the conversation-based approach

moves from the left to the right when the plan length increases, which illustrates the linear

relation between the input size and the plan length. The ranked means of the backward

planning approach and uDiscovery do not move, which illustrates that the required input

keeps constant regardless of the plan length, in both approaches. uDiscovery offers the

lowest search latency, with a similar search precision and less consumer’s input compared to

the conversation-based approach, according to this analysis.

Discussion

This study evaluated the uDiscovery service planner in an IoT test bed with variable number

of services and plan length. Results show that uDiscovery searches for services with the

lowest latency (i.e., close to 3 seconds for length plan 5 and 10,000 services), and equals,

or in some cases overcomes, the accuracy of the conversation-based approach by requiring

less input from consumers (i.e., around 1,000 bytes despite the plan length). uDiscovery

Chapter 5. Evaluation

improves the search efficiency based on a progressive search that limits the explored services

and combinations to the most promising ones using consumers’ feedback and the functional

ranking. These results address the question RQ 3 in the Section 1.2.4.

5.4 Evaluation Summary

This chapter presented uDiscovery′s evaluation, which includes a set of simulations and a

prototype-based study. The research questions and objectives drive the evaluation to measure

to what extent uDiscovery improves the efficiency of the discovery of services in smart city

environments.

Simulations studies evaluate uDiscovery′s performance in smart city simulated environments

with regard to the utility function defined in the Section 3.4.2, the rate of solved requests,

search precision, simulated response time, number of hops to discovery a service, and the

exchanged messages. uDiscovery is compared against two approaches: one that drives the

service discovery based on the services location, and another one that drives the service dis-

covery based on services domains. These studies address the questions RQ 1, and RQ 2 in

Section 1.2.4. Their results show that the inclusion of urban context improves the service

discovery efficiency in smart cities scenarios. It is complemented by adaptive properties that

respond to city changes and keeps more efficient service discovery over time. uDiscovery

solves more requests with high search precision, lower latency and less number of hops in

scenarios with variable number of services, and gateways. uDiscovery keeps a better perfor-

mance over time in the presence of unforeseen, scheduled, and periodic events. However, it

fails to learn from periodic events and proactively adapt services organisation because of the

environment complexity. Further research is needed to handle complex environments such as

smart cities where learning approaches need to consider a large number of features.

A prototype-based study evaluates the performance of uDiscovery on an actual IoT test

bed. It measures the search latency, precision, and input size of uDiscovery for requests

that require service composition support. This study compares uDiscovery heuristic plan-

ner against a backward planning, and a conversation-based approach. Results show that

uDiscovery offers the lowest latency, and equals the accuracy of the conversation-based ap-

proach by requiring less input from consumers. uDiscovery offers a more efficient service

search than the backward planning approach, but requires more information from consumers

in the form of feedback. This study addresses the question RQ 3 in the Section 1.2.4.

Chapter 6

Conclusion

This thesis investigated the service discovery process in large and dynamic smart city en-

vironments. It identified the limitations of current service discovery approaches, and pro-

posed uDiscovery, a distributed urban-centric model for service discovery in smart cities.

uDiscovery organises and searches for services based on urban-context, adapts such service

organisation to respond to city events, and drives a progressive search based on consumers’

feedback. This thesis evaluated uDiscovery using both simulated city environments, and an

IoT test bed under varying number of services, and different mobility scenarios. Results were

compared with existing service discovery approaches. This rest of this chapter summarises

this thesis contributions, limitations, and future work.

6.1 Thesis Summary

Introduction Chapter 1 described the research challenges that motivate this thesis with

regard to the service discovery in smart city environments. This chapter analysed existing

solutions, identified research gaps, and defined the research questions of this thesis. The

chapter identified that current service discovery approaches have performance issues discov-

ering services in large and dynamic IoT environments. Thereafter, this chapter proposed a

hypothesis to address these issues, which states that the inclusion of city and citizens’ context

can improve the discovery efficiency in smart cities. The chapter also presented the thesis

objectives, and the approach to investigate the proposed hypothesis. Finally, this chapter

outlined the contributions, and limitations of this thesis.

State of the Art Chapter 2 analysed how the state of the art in service discovery addresses

the challenges of large and dynamic smart city environments. This chapter studied how

141

Chapter 6. Conclusion

current solutions organise services’ information, manage consumers requests, perform service

planning, and handle dynamic environments. Three gaps are highlighted from this analysis.

Current approaches organise services according to their attributes in static structures. These

structures do not provide enough information to support efficient service discovery in large

environments. Current planning approaches either require high human input or might present

performance issues with regard to search latency and accuracy. And, current self-adaptive

approaches respond to devices or network changes, but they do not consider changes in the

IoT environments where they work, causing outdated architectures.

Design Chapter 3 defined the design objectives of this thesis based on the research ques-

tions, and hypothesis outlined in Chapters 1 and 2. This chapter also introduced the design

decisions of uDiscovery, and presented its detailed design. uDiscovery puts the right ser-

vice in the right place in preparation for discovery, and forwards consumers’ requests where

they are most likely to be solved using urban context. This context is extracted from city

places information, which defines the relevance of gateways to manage services and solve

requests. uDiscovery uses a bio-inspired method on top of the urban-based service organ-

isation to propagate the information in an environment where each gateway has a partial

knowledge about the network. uDiscovery adapts the service organisation by sensing the

impact of city events in the discovery performance, and moving services between gateways.

uDiscovery searches for services in local repositories using a heuristic planner based on con-

sumers’ feedback. This planner drives a progressive search that avoids the exploration of

incorrect combinations of services, and explores correct combinations according to how well

they meet requests’ functional requirements.

Implementation Chapter 4 presented the implementation details of uDiscovery. This

chapter described uDiscovery′s architecture where the urban-based service manager organ-

ises services information, and manages consumers’ requests. The self-adaptive service man-

ager responds to city events by reorganising services information. And, the heuristic service

planner performs a progressive search to support composition of services with minimal hu-

man input. The chapter illustrated the structure, behaviour, and interactions of uDiscovery

components to realise the design specified in Chapter 3.

Evaluation Chapter 5 evaluated to what extent uDiscovery improves the service discovery

efficiency in smart city environments according to the defined research questions (Chapter 1).

This evaluation included simulations studies and a prototype-based study. Simulations eval-

uated uDiscovery′s performance in smart city simulated environments, and the prototype

Chapter 6. Conclusion

evaluated uDiscovery′s performance in an actual IoT test bed. Results show that uDiscovery

improves service discovery efficiency in smart city environments compared with baselines, at

the cost of more exchanged messages. uDiscovery also improves search process efficiency

in the IoT test bed, reducing human input. Section 6.2 discusses these results to highlight

uDiscovery′s contributions and limitations.

6.2 Discussion

uDiscovery improves the service discovery efficiency in simulated smart city environments

compared with existing approaches. uDiscovery offers a better discovery efficiency at the cost

of more messages exchanged between gateways. This section outlines first the contributions

of this thesis and then discusses uDiscovery′s limitations.

6.2.1 Thesis Contributions

This thesis outlines three contributions to the body of knowledge. The first contribution

is the use of urban context to manage services and requests in smart cities. Previous ser-

vice discovery approaches manage services and requests according to services’ attributes in

structures that might fail to provide enough information to drive efficient service discovery in

smart cities. uDiscovery formalises city concepts in a knowledge model that drives a more

informed discovery of services. uDiscovery distributes service information to gateways that

are relevant according to their surrounding places based on the formalised knowledge model.

It puts information about the right service in the right place, and enables a smart replication

of services in preparation for discovery. uDiscovery also uses the urban context to manage

service requests, but this is not enough because gateways have partial knowledge about other

gateways in the network. uDiscovery solves this issue by using a bio-inspired method to

forward requests to the most relevant gateways. Section 5.2 reports how well uDiscovery

works with regard to this contribution in simulated smart city environments. The limitations

of this contributions are discussed in the Sections 6.2.2 and 6.2.4.

The second contribution is the adaptation of services’ organisation according to city events.

Previous research in service discovery for IoT proposes adaptive approaches that react to

changes in the ”thing” properties (e.g., battery level) or the network topology. These ap-

proaches do not consider the changes of the real-world environments with which IoT services

interact (e.g., a smart city). uDiscovery proposes a novel self-adaptive discovery model for

smart cities that offers the right service in the right place, at the right time. Service in-

Chapter 6. Conclusion

formation distribution evolves according to city events which may be unforeseen (e.g., flash

flooding), or foreseen (e.g., a cultural event). uDiscovery formalises the temporal dimen-

sion of the city in the knowledge model and proposes mechanisms to identify and react to

city events by exchanging services between IoT gateways. It creates an IoT network where

distributed gateways collaborate between each other to improve the discovery efficiency over

time. Section 5.2 reports how well uDiscovery works with regard to this contribution in

simulated smart city environments. The limitations of this contributions are discussed in the

Sections 6.2.3 and 6.2.4.

The third contribution is a progressive service search that discovers services that constitute

compositions. Previous service planning approaches are not suitable for smart cities because

large environments affect their performance, and they either require high level of inputs from

consumers, or have search accuracy issues. uDiscovery proposes a heuristic service planner

that uses consumer feedback to improve search efficiency, minimising human input. Consumer

feedback (i.e., historical data from previous searches) determines if a discovered plan was

correct or incorrect and is used to improve search accuracy. The latency of the process

is reduced using two strategies. First, the model explores only the most promising plans

(i.e., search space reduction). Second, the model avoids wasting time on the less promising

plans (i.e., progressive search). uDiscovery defines the structures to manage consumers’

information and the algorithms to include this knowledge in a progressive search. Section 5.3

reports how well this contribution works in a real IoT test bed. The limitations of this

contributions are discussed in the Section 6.2.5.

6.2.2 Urban-context Dependency

uDiscovery uses city places information as urban context because this information can

be used to infer consumers’ needs in a smart city (Section 3.3). uDiscovery depends on

this urban context to organise services and manage requests. Simulation studies evaluated

uDiscovery and show that the inclusion of urban context improves the service discovery ef-

ficiency compared against baseline approaches. Results from these studies address questions

RQ 1, and RQ 2 in Section 1.2.4. However, uDiscovery is not suitable for IoT environments

that do not provide the required urban information. For example, indoor IoT scenarios such

as smart buildings [Wang et al., 2015, Bovet and Hennebert, 2014] or ambient computing

environments [Mokhtar et al., 2010, Görgü et al., 2017], and smaller networks of sensors

(i.e., WSNs) [Butt et al., 2013, Perera et al., 2014b, Fredj et al., 2014]. Nonetheless, it is

important to note that the heuristic planning model can be used in domains different to

Chapter 6. Conclusion

smart cities. It is a general planner that creates services plans based on a semantic match-

making of services interfaces (i.e., inputs and outputs parameters). Moreover, the proposed

city knowledge model is independent from the service discovery domain, and can be used in

different service-oriented processes (e.g., service placement, or service execution) to support

smart city applications.

6.2.3 Periodic Events Management

The simulation studies show that the uDiscovery′s self-adaptive model improves service

discovery efficiency over time and responds to city unforeseen and scheduled events (Sec-

tion 5.2). Results from these studies address the question RQ 2 in Section 1.2.4. However,

results also show that uDiscovery cannot adapt services organisations in a proactive fashion.

The proposed method fails to identify city periodic events as it cannot identify patterns in

the consumer’s requests, and make the right decision accordingly. This limitation can be

caused by the complexity of city environments where services are requested randomly, but

also because of the limitation of current learning techniques. Further research is needed to

explore learning algorithms in a deeper fashion, propose possible extensions, and experiment

with variable environment complexity to determine to what extent current learning methods

can handle cities scenarios.

6.2.4 Network Efficiency

The simulation studies show that uDiscovery improves service discovery efficiency in terms

of rate of solved requests, simulated response time, and number of hops to discover services by

maintaining a high search accuracy (Section 5.2). uDiscovery achieves this performance as a

result of the urban-based structure of gateways that organises services (Section 3.4.1.3), the

bio-inspired mechanism that manages requests (Section 3.4.1.4), and the adaptation prop-

erties that respond to city events (Section 3.4.2). The simulation studies also show that

the cost of this performance is a higher number of exchanged messages between gateways in

the network. The number of configuration messages is higher because of the initialisation

and maintenance processes that spread gateways’ information in the network, and manage

gateways’ mobility. The number of discovery messages is also higher because each gateway

has more information about other gateways than in baselines, so each gateway has more

destinations to send messages. It is important to note that the adaptation processes have

the most significant impact in the network efficiency. uDiscovery sends much more messages

than others when implementing adaptive properties (Section 5.2).

Chapter 6. Conclusion

6.2.5 Interface-based Planning

uDiscovery depends on a goal-driven approach to discover services that constitutes compo-

sitions. This approach matches services inputs and outputs to combine services that meet

consumers’ requests, which are also described by inputs and outputs as functional require-

ments (i.e., interface-based). The prototype-based study evaluated the heuristic planner that

uDiscovery uses to search for services in local repositories (Section 3.4.3). This study shows

that uDiscovery improves the local search efficiency, despite the plan length, by driving a pro-

gressive search based on consumers’ feedback. Results from this study address the question

RQ 3 in Section 1.2.4. However, interface-based approaches implement semantic matching,

which relies on central ontologies that annotate inputs and outputs. Such ontologies and

annotations require human experts to define them. This constraint might be an issue in large

IoT environments where heterogeneous providers might not agree in one single service repre-

sentation, and language description. uDiscovery′s heuristic planner cannot discover services

that do not follow the service representation illustrated in Figure 3.1a.

6.2.6 Concurrent Consumers’ Requests

The simulation studies consider scalability from the perspective of large number of services.

uDiscovery improves the discovery efficiency in the presence of variable number of services

compared against baselines (Section 5.2). But, different scalability issues can be caused

because of concurrent consumers performing a large number of requests at the same time.

Simulation studies are limited to a single consumer that requests for services in a sequential

fashion. Although the period between requests varies when there are city events, these studies

do not show the impact of concurrent requests in uDiscovery. However, the distributed

nature of uDiscovery can enable the response to multiple requests by different gateways in

the network as an alternative to respond to concurrent consumers’ requests.

6.3 Future Work

This thesis shows that uDiscovery, a distributed urban-centric model for service discov-

ery, can improve the discovery efficiency compared with existing approaches in smart city

environments, thought with some limitations. Future research directions are:

1. Emergent Behaviour in Complex Systems: The evaluation illustrated that uDiscovery

fails to learn from city patterns to proactively adapt services organisation 5. This lim-

itation can be caused because of the complexity of city environments, where random

Chapter 6. Conclusion

behaviour can not be captured by the proposed method. Future work will focus on

exploring in a deeper way current reinforcement learning algorithms and experimenting

with possible adaptations, and alternatives to detect emergent behaviour in complex

systems [O’Toole et al., 2017]. A first step towards the proactive organisation of services

could be the experimentation with variable complexity to determine to what extent the

environment complexity can be handled by learning methods.

2. Physical Service Placement: uDiscovery uses urban context (i.e., city places, and

city events) to organise services descriptions in search spaces that evolve according to

city changes. The physical deployment of services based on the uDiscovery′ context

model is an interesting area that needs further research. It would improve the perfor-

mance of IoT-based smart city applications, by moving and deploying services on fog

nodes, which are closer to final users. However, new research challenges emerge with

regard to the migration of code between fog nodes, and the automatic deployment of

services from heterogeneous technologies. For example, the distributed maintenance of

services deployed on wide geographic areas, the transfer of large chunks of code to be

deployed, and the deployment of services in heterogeneous platforms.

3. Inclusion of Non-Functional Requirements: uDiscovery searches for services

based on a goal-driven approach. It generates service plans by matching inputs and

outputs, which specify consumer’s functional requirements. Consumers also have non-

functional requirements which are critical in IoT because services might have variable

and unpredictable QoS [White et al., 2017]. Further research is needed to include

these non-functional parameters in an efficient service search that also considers QoS

trade-off.

4. Proactive Service Discovery: uDiscovery discovers services in a reactive fashion

as it needs a consumer request to trigger the search process. Proactive suggestion of

services is needed in large IoT environments to realise the vision of future pervasive

cyber-physical systems [Wang and Chow, 2016]. Further research is needed to provide

proactive service discovery in smart cities [Wang and Chow, 2016]. Proactive discovery

stores and formalises users information to personalise service suggestions [Zhou et al.,

2016]. However, the large number of consumers represents a significant challenge for

current approaches.

5. Heterogeneous Services Management: uDiscovery registers services descriptions

which are annotated by specific ontologies, and follow a specific format. However, IoT

Chapter 6. Conclusion

service providers can be reluctant to follow a specific description format or even provide

a description. Further research is needed to manage heterogeneous IoT services in

uDiscovery. An alternative is the automatic enrichment of services descriptions [Cassar

et al., 2014, Liu et al., 2019] from the IoT services behaviour using machine learning

techniques.

6. Real Environment Implementation: This thesis evaluates uDiscovery in simulated

smart city environments with a data set which was created as part of this work. Future

work will focus on the deployment of uDiscovery in real smart city environments with

real services and descriptions. Further research is needed to create IoT environments

similar to the proposed in this thesis, and to create data sets of services descriptions

according to the services oriented computing future trends.

Appendix A

Algorithms’ Parameters

Each approach evaluated in the Section 5 has a set of particular parameters that influence

their performance. This appendix illustrates this influence and selects the best set of param-

eters for each approach. The parameters are as follows:

• Location-based Approach: This approach uses the distance between gateways and ser-

vices’ locations to decide whether to register a service, and the number of hops to limit

the sending of messages in the network and avoid overhead.

• Domain-based Approach: This approach uses the number of domains to decide the set

of services domains that each gateway is responsible for (i.e., the domains of services

to store), and the number of hops to limit the sending of messages in the network and

avoid overhead.

• uDiscovery: This approach uses the distance between gateways and city places’ loca-

tions to decide whether a place surrounds a gateway, and the number of hops to limit

the sending of messages in the network and avoid overhead.

• Heuristic Service Planner: Each approach in the simulation uses a planner to search for

services in local repositories. This planner uses the feedbackThreshold, functionalThreshold,

and K value parameters to drive progressive searches on the services repository.

A.1 Location-based Approach Parameters

Table A.1 describes the experiment design that is used to select the best set of parameters for

the location-based approach. Each experiment simulates 8 hours of services requests where

a simulated consumer performs 100 requests. The experiments’ parameters are the number

149

Appendix A. Algorithms’ Parameters

Table A.1: Experiments Parameters Location-based Approach

Length of time for
service discovery

8 hours

of consumer
requests

100

of services 20,000; 40,000; 60,000; 80,000; 100,000

of gateways 100; 300; 500

Mobility scenarios Static; semi-mobile; fully-mobile

Distance to register
services

50m; 75m; 100m

Hops limit 1; 3; 5

Scenarios Services X gateways X mobility X distance X hops

Replication 10 rounds each experiment

of services, the number of gateways, the mobility scenarios, the distance to register services,

and the hops limit. They are combined in an scenario that evaluates the influence of each

parameter. Each experiment is repeated 10 rounds.

Figures A.1, A.3, and A.5 show heat maps of the rate of solved requests for different com-

binations of parameter under different number of services, mobility scenarios, and gateways.

FigureA.1 shows the rate of solved request with 100 gateways. This rate varies from 0.36,

when distance equal to 75m and hops limit 3 with 20 thousand services, to 0.85, when distance

equal to 100m and hops 5 with 80 thousand services. The rate of solved requests increases

when the number of gateways increase and there are mobile gateways. Mobile gateways carry

services through a network where gateways are further from each other. Gateways are closer

when the network size increases (i.e., 300 and 500 gateways), and so the rate of solved re-

quests also increases. The maximum rate of solved requests is 0.87, with 300 gateways, and

0.96 with 500. Both cases when the distance is equal to 100m the hops limit 5 (Figures A.3e,

and A.5e). A Kruskal-Wallis test was performed on the rate of solved requests for each com-

bination to analyse parameters influence. Figures A.2, A.4, A.6 present a multi comparison

of ranked means that compares different combinations of the approach parameters (i.e., hops

limit, and distance to register a service). Figure A.2 shows the comparison with 100 gateways,

there are not significant differences in most of the cases but it changes when the network size

increases. Figure A.4 and A.4 illustrate the comparison when the number of gateways is 300

and 500. The combination of 5 hops and 100m get the highest mean in most of the cases.

The best set of parameters for the location-based approach are 5 hops and 100 m, and so

these were used in the baseline simulations for the evaluation in Chapter 5.

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.43

0.41

0.46

0.39

0.36

0.43

0.42

0.4

0.52

0.4

0.45

0.5

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.47

0.53

0.51

0.450.57

0.57 0.59

0.59

0.58
0.46

0.48

0.5

0.52

0.54

0.56

0.58

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.47

0.47

0.54

0.49

0.55

0.55

0.54

0.56

0.58
0.48

0.5

0.52

0.54

0.56

0.58

(a) 20000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.54

0.53

0.6

0.55

0.57

0.54

0.6

0.56

0.63

0.54

0.56

0.58

0.6

0.62

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.62

0.67

0.67

0.59

0.61

0.58

0.61

0.650.76
0.6

0.65

0.7

0.75

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.57

0.68

0.64

0.61

0.68

0.65

0.59

0.67

0.72 0.6

0.65

0.7

(b) 40000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.57

0.61

0.58

0.62

0.61

0.57

0.61

0.64

0.63

0.58

0.6

0.62

0.64

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.69

0.67

0.6

0.63 0.710.75

0.72

0.72

0.75

0.6

0.65

0.7

0.75

1 3 5
Number of Hops

50

75

100
D

is
ta

nc
e

to
 R

eg
is

te
r

Se
rv

ic
es

 (
m

) Fully-mobile Environment

0.66 0.6 0.68

0.710.76

0.78

0.74

0.77 0.76

0.6

0.65

0.7

0.75

(c) 60000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.66

0.68

0.64

0.67

0.66

0.66

0.680.69

0.7

0.64

0.65

0.66

0.67

0.68

0.69

0.7

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.7

0.71

0.77

0.73

0.77

0.77

0.76

0.760.82

0.7

0.72

0.74

0.76

0.78

0.8

0.82

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.68

0.74

0.74

0.72

0.72

0.79

0.79

0.76

0.85
0.7

0.75

0.8

0.85

(d) 80000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.62

0.64 0.61

0.67

0.66

0.71 0.72

0.71

0.7
0.62

0.64

0.66

0.68

0.7

0.72

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.68

0.74

0.75 0.77

0.79

0.81

0.82

0.79

0.79

0.68

0.7

0.72

0.74

0.76

0.78

0.8

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.65 0.7

0.74

0.67

0.79

0.81 0.8

0.82

0.81

0.65

0.7

0.75

0.8

(e) 100000 Services

Figure A.1: Location-based Approach: Rate of solved requests heat maps with 100 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.53954
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.065614
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.62184
 = 0.01

H
0
: Not Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.49299
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.060813
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.17187
 = 0.01

H
0
: Not Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.93665
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.24225
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.031817
 = 0.01

H
0
: Not Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.89318
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.17118
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.080317
 = 0.01

H
0
: Not Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.48001
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.15183
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.0099336
 = 0.01

H
0
: Rejected

(e) 100000 Services

Figure A.2: Location-based Approach: Comparison of solved requests with 100 gateways.

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.19

0.37

0.18

0.29

0.18

0.28

0.43 0.46 0.41
0.2

0.25

0.3

0.35

0.4

0.45

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.3

0.36

0.44

0.37 0.33

0.460.55

0.57 0.53

0.3

0.35

0.4

0.45

0.5

0.55

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.26

0.36

0.49

0.33

0.37

0.47

0.34

0.51

0.59
0.3

0.35

0.4

0.45

0.5

0.55

(a) 20000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.27

0.39

0.29

0.44

0.25

0.47

0.53 0.6 0.57

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.46

0.46

0.53

0.5

0.6

0.39

0.59

0.68 0.67

0.4

0.45

0.5

0.55

0.6

0.65

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.44

0.45

0.51

0.42

0.51

0.48

0.7

0.65

0.63
0.45

0.5

0.55

0.6

0.65

0.7

(b) 40000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.31

0.52

0.4

0.54

0.39

0.56

0.63 0.67 0.69
0.35

0.4

0.45

0.5

0.55

0.6

0.65

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.57

0.54

0.6

0.52

0.56

0.57

0.65

0.7 0.76 0.55

0.6

0.65

0.7

0.75

1 3 5
Number of Hops

50

75

100
D

is
ta

nc
e

to
 R

eg
is

te
r

Se
rv

ic
es

 (
m

) Fully-mobile Environment

0.51

0.55

0.49

0.55

0.62

0.5

0.61

0.69 0.66

0.5

0.55

0.6

0.65

(c) 60000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.39

0.56

0.41 0.4

0.54

0.63

0.63

0.67 0.67

0.4

0.45

0.5

0.55

0.6

0.65

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.57

0.65

0.64

0.59

0.66

0.59

0.72

0.79 0.77 0.6

0.65

0.7

0.75

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.56

0.61

0.66

0.59

0.64

0.7

0.57

0.73

0.82 0.6

0.65

0.7

0.75

0.8

(d) 80000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.47 0.47

0.53

0.4

0.64

0.63 0.7

0.63

0.69

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.69

0.61

0.66

0.64

0.7

0.63

0.730.78

0.74
0.65

0.7

0.75

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.54

0.67

0.73

0.62

0.69

0.63

0.7

0.84 0.87

0.55

0.6

0.65

0.7

0.75

0.8

0.85

(e) 100000 Services

Figure A.3: Location-based Approach: Rate of solved requests heat maps with 300 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.7629e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00010986
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00029917
 = 0.01

H
0
: Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.4114e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.7822e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00042219
 = 0.01

H
0
: Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:6.3576e-07
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:7.0263e-05
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.006782
 = 0.01

H
0
: Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:6.425e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.0001281
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00014976
 = 0.01

H
0
: Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00012952
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.038363
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:5.0535e-07
 = 0.01

H
0
: Rejected

(e) 100000 Services

Figure A.4: Location-based Approach: Comparison of solved requests with 300 gateways.

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.08

0.37

0.46

0.13

0.4

0.13

0.52

0.72 0.81 0.2

0.4

0.6

0.8

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.21

0.36

0.32

0.39

0.4

0.31

0.5

0.5

0.48 0.25

0.3

0.35

0.4

0.45

0.5

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.16

0.26

0.28

0.32

0.44

0.26

0.42

0.5 0.57
0.2

0.3

0.4

0.5

(a) 20000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.3

0.5

0.59

0.27

0.52

0.24

0.51

0.84 0.93
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.41

0.4

0.45

0.47 0.46

0.570.64

0.59 0.65

0.4

0.45

0.5

0.55

0.6

0.65

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.33

0.4

0.39

0.35

0.55

0.57

0.43

0.42

0.66
0.35

0.4

0.45

0.5

0.55

0.6

0.65

(b) 40000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.38

0.56

0.64

0.34

0.55

0.4

0.58

0.86 0.93
0.4

0.5

0.6

0.7

0.8

0.9

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.52

0.52

0.57

0.53

0.67

0.63

0.52

0.64

0.73 0.55

0.6

0.65

0.7

1 3 5
Number of Hops

50

75

100
D

is
ta

nc
e

to
 R

eg
is

te
r

Se
rv

ic
es

 (
m

) Fully-mobile Environment

0.47

0.55

0.52 0.37

0.57

0.59

0.63

0.66 0.65
0.4

0.45

0.5

0.55

0.6

0.65

(c) 60000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.35

0.54

0.73

0.36

0.66

0.45

0.59

0.88 0.96
0.4

0.5

0.6

0.7

0.8

0.9

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.51

0.55

0.61

0.55

0.65

0.67

0.78

0.72

0.71 0.55

0.6

0.65

0.7

0.75

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.38

0.47

0.5

0.5 0.54

0.66

0.74

0.67

0.76
0.4

0.5

0.6

0.7

(d) 80000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Static Environment

0.45

0.63

0.69

0.43

0.65

0.44

0.58

0.92 0.96 0.5

0.6

0.7

0.8

0.9

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Semi-mobile Environment

0.6

0.61

0.62

0.66

0.7

0.63

0.72

0.75 0.79

0.6

0.65

0.7

0.75

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
eg

is
te

r
Se

rv
ic

es
 (

m
) Fully-mobile Environment

0.56

0.6

0.63

0.55

0.64

0.59

0.68

0.81 0.76

0.55

0.6

0.65

0.7

0.75

0.8

(e) 100000 Services

Figure A.5: Location-based Approach: Rate of solved requests heat maps with 500 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.1697e-12
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:8.5722e-05
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.8645e-06
 = 0.01

H
0
: Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.4446e-11
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:7.1917e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:3.836e-06
 = 0.01

H
0
: Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:5.7426e-11
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.5051e-05
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00074883
 = 0.01

H
0
: Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:9.4207e-12
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:7.0209e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.5033e-06
 = 0.01

H
0
: Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.3613e-10
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00017426
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.9913e-05
 = 0.01

H
0
: Rejected

(e) 100000 Services

Figure A.6: Location-based Approach: Comparison of solved requests with 500 gateways.

Appendix A. Algorithms’ Parameters

Table A.2: Experiments Parameters Domain-based Approach.

Length of time for
service discovery

8 hours

of consumer
requests

100

of services 20,000; 40,000; 60,000; 80,000; 100,000

of gateways 100; 300; 500

Mobility scenarios Static; semi-mobile; fully-mobile

Number of Domains 1; 3; 5

Hops limit 1; 3; 5

Scenarios Services X gateways X mobility X domains X hops

Replication 10 rounds each experiment

A.2 Domain-based Approach Parameters

Table A.1 describes the experiment design that is used to select the best set of parameters for

the domain-based approach. Each experiment simulates 8 hours of services requests where

a simulated consumer performs 100 requests. The experiments’ parameters are the number

of services, the number of gateways, the mobility scenarios, the number of domains, and the

hops limit. They are combined in an scenario that evaluates the influence of each parameter.

Each experiment is repeated 10 rounds.

Figures A.7, A.9, and A.11 show the rate of solved requests of the domain-based approach for

different combinations of parameters under different numbers of services, mobility scenarios,

and network size. Figures show that the domain-based approach is negatively affected by

mobile gateways in all cases. The rate of solved requests varies from 0 (i.e., fully-mobile

environment) to 0.95 (i.e., static environment) with 100 gateways, from 0 to 0.86 with 300

gateways, and from 0 to 0.93 with 500 gateways. The domain-based approach has the highest

rates of solved requests when the number of hops is 3 or 5 and the number of domains is

5. A Kruskal-Wallis test is performed on the rate of solved requests for each combination to

confirm previous observations. Figures A.8, A.10, and A.12 present the multi comparison of

the ranked means. Despite the network size, the combination of 5 domains and 3 hops, and

the combination of 5 domains and 5 hops have a similar performance in most of the cases.

However, the combination of 5 domains and 3 hops implies less network overhead. The best

set of parameters for the domain-based approach are 5 domains, and 3 hops, and so these

were used in the baseline simulations for the evaluation in Chapter 5.

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.04

0.52

0.03 0

0.59

0.72

0.7

0.88 0.88

0

0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.03

0.23

0.34

0.01

0.38

0.04

0.36

0.53 0.45 0.1

0.2

0.3

0.4

0.5

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.02

0.04

0.15

0.01

0.05

0.14

0.07

0.07

0.21 0.05

0.1

0.15

0.2

(a) 20000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.04

0.53

0.02

0.61

0.05

0.64

0.78 0.9 0.95 0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.02

0.1

0.07

0.27

0.01

0.12

0.370.57 0.63 0.1

0.2

0.3

0.4

0.5

0.6

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.01

0.12

0.05

0.09

0

0.07

0.170.26 0.2

0

0.05

0.1

0.15

0.2

0.25

(b) 40000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.03

0.58

0.03 0.02

0.78

0.7

0.94

0.71

0.94 0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.03

0.38

0.37

0.02

0.37

0.01

0.270.51

0.67 0.1

0.2

0.3

0.4

0.5

0.6

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.03

0.14

0.01

0.11

0.13

0.01

0.10.18

0.2
0.05

0.1

0.15

0.2

(c) 60000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.03

0.51

0

0.56

0.02

0.66

0.83 0.95 0.95

0

0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.01

0.3

0.41

0.01

0.34

0.39

0.03

0.21

0.59 0.1

0.2

0.3

0.4

0.5

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.07

0.06

0.01

0.1

0

0.16

0.24 0.2 0.22

0

0.05

0.1

0.15

0.2

(d) 80000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.04

0.67

0.03

0.67

0.01

0.8 0.96

0.76

0.95 0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.01

0.24

0.03

0.29

0.02

0.22

0.36 0.44 0.46 0.1

0.2

0.3

0.4

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.05

0.12

0.02

0.05

0

0.14

0.140.25 0.23

0

0.05

0.1

0.15

0.2

0.25

(e) 100000 Services

Figure A.7: Domain-based Approach: Rate of solved requests heat maps with 100 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.3108e-12
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:3.6606e-08
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.7424e-06
 = 0.01

H
0
: Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:5.7981e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:4.6236e-08
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:5.6206e-09
 = 0.01

H
0
: Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:8.1085e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:4.2832e-08
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:5.4241e-07
 = 0.01

H
0
: Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.4499e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:8.5262e-09
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.504e-08
 = 0.01

H
0
: Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.4274e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:3.8353e-07
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:3.2135e-08
 = 0.01

H
0
: Rejected

(e) 100000 Services

Figure A.8: Domain-based Approach: Comparison of solved requests with 100 gateways.

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0 0.01 0.07

0.57

0.72

0.75

0.72

0.71

0.64

0

0.2

0.4

0.6

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.01

0.11

0.01

0.25

0.02

0.25

0.270.37 0.29
0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.01

0.08

0

0.08

0.12

0.02

0.04

0.18 0.17

0

0.05

0.1

0.15

(a) 20000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.09 0 0.02

0.63

0.68

0.8

0.76

0.79

0.8

0

0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.01

0.12

0.02

0.08

0.04

0.260.33 0.38

0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.02

0.07

0.18

0

0.14

0.19

0

0.04

0.27

0

0.05

0.1

0.15

0.2

0.25

(b) 40000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.03

0.61

0.02 0.08

0.73

0.83

0.82

0.81

0.8
0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.05

0.1

0.1

0.07

0.01

0.14

0.37 0.38 0.31
0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.01

0.15

0.18

0.01

0.08

0.02

0.06

0.25 0.29 0.05

0.1

0.15

0.2

0.25

(c) 60000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.02 0.01 0.02

0.64

0.75

0.82

0.84

0.86

0.84
0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0

0.12

0.02

0.26

0

0.250.39 0.47

0.43

0

0.1

0.2

0.3

0.4

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0

0.05

0.21

0.01

0.08

0.06

0.11

0.31 0.26

0

0.05

0.1

0.15

0.2

0.25

0.3

(d) 80000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0 0.01 0.04

0.74

0.74

0.81

0.83

0.86

0.84

0

0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.06 0.02

0.18

0.2

0.02

0.24

0.29

0.22

0.29
0.05

0.1

0.15

0.2

0.25

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0

0.07

0.01

0.05

0

0.1

0.19 0.23 0.21

0

0.05

0.1

0.15

0.2

(e) 100000 Services

Figure A.9: Domain-based Approach: Rate of solved requests heat maps with 300 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:9.9799e-12
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:4.4822e-07
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.0865e-09
 = 0.01

H
0
: Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:9.5834e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.5813e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:7.2986e-11
 = 0.01

H
0
: Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.1485e-12
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.3234e-07
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.7929e-10
 = 0.01

H
0
: Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.5274e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.098e-09
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:9.1835e-10
 = 0.01

H
0
: Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.9124e-12
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.1367e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:1.2231e-11
 = 0.01

H
0
: Rejected

(e) 100000 Services

Figure A.10: Domain-based Approach: Comparison of solved requests with 300 gateways.

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.03

0.56

0.07 0.04

0.72

0.76

0.77

0.79

0.74
0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.09 0.01 0.02

0.39

0.41

0.37

0.4

0.34

0.45 0.1

0.2

0.3

0.4

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0

0.05

0.08

0.01 0.01

0.10.15

0.17 0.14

0

0.05

0.1

0.15

(a) 20000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.1 0.01 0.03

0.74

0.72

0.87

0.84

0.89

0.86
0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.01

0.2

0.02

0.29

0.01

0.410.47 0.56

0.6

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.04

0.12

0

0.11

0.04

0.03

0.22 0.23 0.2

0

0.05

0.1

0.15

0.2

(b) 40000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.04 0.02 0.02

0.69

0.76

0.92

0.87

0.93

0.9 0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.03

0.42

0.53

0.02

0.47

0.03

0.460.89

0.84 0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.01

0.05

0.15

0.05

0.1

0.07

0.14

0.24 0.32 0.05

0.1

0.15

0.2

0.25

0.3

(c) 60000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.01 0.01 0.04

0.7

0.77

0.94

0.91

0.92

0.89 0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.02

0.27

0.36

0

0.41

0

0.48

0.57 0.75

0

0.2

0.4

0.6

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.02

0.12

0.01

0.11

0.04

0.06

0.24 0.21 0.26 0.05

0.1

0.15

0.2

0.25

(d) 80000 Services

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Static Environment

0.01 0.02 0.02

0.72

0.77

0.93

0.89

0.96

0.91 0.2

0.4

0.6

0.8

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Semi-mobile Environment

0.02

0.32

0.03 0.02

0.48

0.420.62

0.68

0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5
Number of Hops

1

3

5N
um

be
r

of
 D

om
ai

ns

Fully-mobile Environment

0.01

0.11

0

0.09

0.19

0.02

0.07

0.2 0.27

0

0.05

0.1

0.15

0.2

0.25

(e) 100000 Services

Figure A.11: Domain-based Approach: Rate of solved requests heat maps with 500 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:9.0678e-12
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:4.3658e-07
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:4.2833e-10
 = 0.01

H
0
: Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:3.3483e-12
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:4.4063e-09
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:8.7369e-08
 = 0.01

H
0
: Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:4.0816e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:6.032e-11
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.3756e-08
 = 0.01

H
0
: Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:6.8607e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:5.0995e-10
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:7.1823e-09
 = 0.01

H
0
: Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:3.1513e-13
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:3.4538e-09
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d1-h1
d1-h3
d1-h5
d3-h1
d3-h3
d3-h5
d5-h1
d5-h3
d5-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.2816e-10
 = 0.01

H
0
: Rejected

(e) 100000 Services

Figure A.12: Domain-based Approach: Comparison of solved requests with 500 gateways.

Appendix A. Algorithms’ Parameters

Table A.3: Experiments Parameters uDiscovery Approach.

Length of time for
service discovery

8 hours

of consumer
requests

100

of services 20,000; 40,000; 60,000; 80,000; 100,000

of gateways 100; 300; 500

Mobility scenarios Static; semi-mobile; fully-mobile

Distance to recognise
places

50m; 75m; 100m

Hops limit 1; 3; 5

Scenarios Services X gateways X mobility X distance X hops

Replication 10 rounds each experiment

A.3 uDiscovery Parameters

Table A.1 describes the experiment design that is used to select the best set of parameters for

the location-based approach. Each experiment simulates 8 hours of services requests where

a simulated consumer performs 100 requests. The experiments’ parameters are the number

of services, the number of gateways, the mobility scenarios, the distance to recognise close

places, and the hops limit. They are combined in an scenario that evaluates the influence of

each parameter. Each experiment is repeated 10 rounds.

Figures A.13, A.15, and A.17 shows the rate of solved requests for uDiscovery under differ-

ent numbers of services, mobility scenarios, and network size. Figure A.13 illustrates that

uDiscovery has a similar and high rate of solved requests with 100 gateways, for most of the

cases (i.e., it varies from 0.89 to 0.99). This behaviour is confirmed by the statistical tests in

the Figure A.14, where most of the means are not statistically significantly different. A similar

behaviour is observed when there are 300 gateways (Figure A.15). The rate of solved requests

varies from 0.86 to 0.99. The best rates are achieved when the number of hops and the dis-

tance are high, according to the Figure A.16). The combination of 5 hops and 100m achieves

the greatest ranked mean in 7 out of 15 cases, and the combination of 3 hops and 100m

in 4 cases. Figure A.17 illustrates the rate of solved requests when there are 500 gateways.

This rate varies from 0.83 to 0.99, and is greater in static scenarios. The figures show that

uDiscovery has higher rates of solved requests with 3 or 5 hops. The best distance to recog-

nise close places in static environments is 50, but it changes in semi-mobile and fully-mobile

environments when 75 and 100m offer higher rate of solved requests. The Kruskal-Wallis

(Figure A.18) shows that the combination of 5 hops and 100 m achieves the highest mean

in most of the mobile environments. These are the selected values for uDiscovery because

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.95

0.96

0.96

0.95

0.95

0.95

0.96

0.97 0.97

0.95

0.955

0.96

0.965

0.97

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.9

0.94

0.94

0.94

0.940.96

0.95

0.96

0.96

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.9 0.93

0.94

0.93

0.93

0.94

0.95

0.96 0.95

0.9

0.91

0.92

0.93

0.94

0.95

0.96

(a) 20000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.96

0.95

0.96

0.94

0.95

0.96

0.95

0.97 0.98

0.94

0.95

0.96

0.97

0.98

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.94

0.93

0.95

0.93

0.94

0.94

0.94

0.96

0.96

0.93

0.935

0.94

0.945

0.95

0.955

0.96

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.94

0.93

0.94

0.95

0.92

0.97

0.97

0.97

0.98

0.92

0.93

0.94

0.95

0.96

0.97

0.98

(b) 40000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.96

0.96

0.94 0.96

0.95

0.96

0.96

0.97

0.97

0.94

0.945

0.95

0.955

0.96

0.965

0.97

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.94

0.95

0.94

0.95

0.950.96 0.96

0.96

0.96

0.94

0.945

0.95

0.955

0.96

1 3 5
Number of Hops

50

75

100
D

is
ta

nc
e

to
 R

ec
og

ni
se

 P
la

ce
s

(m
) Fully-mobile Environment

0.92

0.94

0.93 0.94

0.960.98 0.98

0.97 0.97

0.92

0.93

0.94

0.95

0.96

0.97

0.98

(c) 60000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.96

0.95

0.96

0.96

0.96

0.96

0.95

0.97 0.97

0.95

0.955

0.96

0.965

0.97

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.93 0.96

0.94

0.96

0.95

0.97

0.97

0.98

0.97

0.93

0.94

0.95

0.96

0.97

0.98

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.95

0.95

0.94

0.95

0.96

0.960.97

0.97 0.97

0.94

0.945

0.95

0.955

0.96

0.965

0.97

(d) 80000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.94

0.96

0.96 0.96

0.97

0.97

0.98 0.97

0.98

0.94

0.95

0.96

0.97

0.98

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.93

0.94

0.93

0.96

0.96

0.96

0.97

0.97

0.96

0.93

0.94

0.95

0.96

0.97

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.95

0.96

0.93

0.96

0.96

0.89

0.99

0.98

0.97
0.9

0.92

0.94

0.96

0.98

(e) 100000 Services

Figure A.13: uDiscovery Approach: Rate of solved requests heat maps with 100 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.19098
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.05595
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.058882
 = 0.01

H
0
: Not Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.052328
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.56617
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.0068755
 = 0.01

H
0
: Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.80262
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.63533
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.061499
 = 0.01

H
0
: Not Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.72623
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.11486
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.56166
 = 0.01

H
0
: Not Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.24749
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.52541
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00036046
 = 0.01

H
0
: Rejected

(e) 100000 Services

Figure A.14: uDiscovery Approach: Comparison of solved requests with 100 gateways.

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.98

0.96

0.97

0.97

0.98

0.97

0.98

0.97

0.99

0.96

0.965

0.97

0.975

0.98

0.985

0.99

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.89

0.91

0.9

0.91

0.92

0.91

0.92

0.93

0.96 0.9

0.92

0.94

0.96

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.89

0.86

0.88 0.91

0.92

0.93

0.92

0.93

0.94

0.86

0.88

0.9

0.92

0.94

(a) 20000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.96

0.97

0.97

0.98

0.98

0.97

0.98

0.99 0.99

0.96

0.965

0.97

0.975

0.98

0.985

0.99

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.92

0.93

0.92

0.93

0.93

0.93

0.91

0.96

0.95

0.91

0.92

0.93

0.94

0.95

0.96

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.88

0.92

0.92

0.93

0.92 0.93

0.94

0.94

0.95

0.88

0.9

0.92

0.94

(b) 40000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.98

0.98

0.98

0.98 0.97

0.980.99

0.99 0.99

0.97

0.975

0.98

0.985

0.99

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.93

0.94

0.94

0.94 0.94

0.97

0.96

0.96

0.96

0.93

0.94

0.95

0.96

0.97

1 3 5
Number of Hops

50

75

100
D

is
ta

nc
e

to
 R

ec
og

ni
se

 P
la

ce
s

(m
) Fully-mobile Environment

0.93

0.91

0.94

0.91

0.94

0.89

0.93

0.95 0.97 0.9

0.92

0.94

0.96

(c) 60000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.99

0.98

0.982

0.984

0.986

0.988

0.99

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.94

0.94

0.94

0.95

0.96

0.96

0.95

0.950.97

0.94

0.945

0.95

0.955

0.96

0.965

0.97

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.91

0.95

0.93 0.92

0.95

0.96 0.97

0.96

0.96

0.91

0.92

0.93

0.94

0.95

0.96

0.97

(d) 80000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.98

0.98

0.97

0.98

0.980.99

0.99

0.99

0.99

0.97

0.975

0.98

0.985

0.99

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.91 0.95

0.95

0.95 0.94

0.97

0.96

0.96

0.96

0.91

0.92

0.93

0.94

0.95

0.96

0.97

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.94

0.95

0.95

0.95

0.93

0.96

0.92

0.93

0.98

0.92

0.93

0.94

0.95

0.96

0.97

0.98

(e) 100000 Services

Figure A.15: uDiscovery Approach: Rate of solved requests heat maps with 300 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.056746
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.022912
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:4.1594e-06
 = 0.01

H
0
: Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.3288
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.17013
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.11961
 = 0.01

H
0
: Not Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.083174
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.58494
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.01367
 = 0.01

H
0
: Not Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.94373
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.30571
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00073754
 = 0.01

H
0
: Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.079449
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.27345
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.13524
 = 0.01

H
0
: Not Rejected

(e) 100000 Services

Figure A.16: uDiscovery Approach: Comparison of solved requests with 300 gateways.

Appendix A. Algorithms’ Parameters

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.97

0.93

0.93

0.97

0.96

0.95

0.95

0.98 0.99

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.88

0.89

0.9

0.89

0.91

0.91

0.91

0.92

0.93

0.88

0.89

0.9

0.91

0.92

0.93

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.85

0.83

0.84

0.86 0.88

0.880.9

0.91 0.9 0.84

0.86

0.88

0.9

(a) 20000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.97

0.97

0.95

0.96

0.95

0.97

0.96

0.99 0.98

0.95

0.96

0.97

0.98

0.99

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.9

0.9

0.91

0.94

0.94

0.9

0.93

0.96 0.95

0.9

0.91

0.92

0.93

0.94

0.95

0.96

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.83

0.86

0.86

0.91

0.91

0.92

0.92

0.94

0.92

0.84

0.86

0.88

0.9

0.92

0.94

(b) 40000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.96

0.95

0.96

0.96

0.97

0.96

0.98 0.98 0.98

0.95

0.955

0.96

0.965

0.97

0.975

0.98

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.92 0.92

0.94 0.94

0.94

0.96

0.95 0.95

0.96

0.92

0.93

0.94

0.95

0.96

1 3 5
Number of Hops

50

75

100
D

is
ta

nc
e

to
 R

ec
og

ni
se

 P
la

ce
s

(m
) Fully-mobile Environment

0.87

0.89

0.9

0.92

0.9

0.93

0.93

0.94

0.93 0.88

0.9

0.92

0.94

(c) 60000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.96

0.95

0.97

0.94

0.95

0.96

0.99 0.99 0.99

0.94

0.95

0.96

0.97

0.98

0.99

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.93

0.93

0.94 0.95

0.95

0.96

0.96

0.97 0.97

0.93

0.94

0.95

0.96

0.97

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.89

0.89

0.91

0.91

0.92

0.9

0.920.95

0.94

0.89

0.9

0.91

0.92

0.93

0.94

0.95

(d) 80000 Services

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Static Environment

0.96

0.97

0.97

0.96

0.95

0.97

0.96

0.98 0.98

0.95

0.955

0.96

0.965

0.97

0.975

0.98

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Semi-mobile Environment

0.91

0.96

0.94

0.95

0.95

0.96

0.95

0.96

0.98 0.92

0.94

0.96

0.98

1 3 5
Number of Hops

50

75

100

D
is

ta
nc

e
to

 R
ec

og
ni

se
 P

la
ce

s
(m

) Fully-mobile Environment

0.89

0.92

0.92

0.94

0.94

0.93

0.94

0.95 0.96 0.9

0.92

0.94

0.96

(e) 100000 Services

Figure A.17: uDiscovery Approach: Rate of solved requests heat maps with 500 gateways.

Appendix A. Algorithms’ Parameters

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:2.3989e-06
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.56429
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.00022862
 = 0.01

H
0
: Rejected

(a) 20000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.012173
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.009716
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:3.3704e-05
 = 0.01

H
0
: Rejected

(b) 40000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.14824
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.11545
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.0098894
 = 0.01

H
0
: Rejected

(c) 60000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:7.4479e-08
 = 0.01

H
0
: Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.048894
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.022292
 = 0.01

H
0
: Not Rejected

(d) 80000 Services

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.030889
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.019862
 = 0.01

H
0
: Not Rejected

0 20 40 60 80 100
Ranked Means

d50-h1
d50-h3
d50-h5
d75-h1
d75-h3
d75-h5

d100-h1
d100-h3
d100-h5

Pa
ra

m
et

er
s

Solved Requests Comparison

-value:0.043359
 = 0.01

H
0
: Not Rejected

(e) 100000 Services

Figure A.18: uDiscovery Approach: Comparison of solved requests with 500 gateways.

Appendix A. Algorithms’ Parameters

Table A.4: Experiments Parameters uDiscovery Planner.

Experiment The consumer requests one service

Feedback Threshold
Values

0,0; 0,2; 0,4; 0,6; 0,8; 1,0

Functional Threshold
Values

0,0; 0,2; 0,4; 0,6; 0,8; 1,0

K-Values 5; 15; 25

Scenarios
1. Variable feedback threshold
2. Variable functional threshold
3. Variable K-value

Replication 100 requests each experiment

mobile environments are more realistic in IoT and smart cities scenarios. These parameters

were used in the simulations for the evaluation in Chapter 5.

A.4 Heuristic Planner Parameters

uDiscovery has additional parameters for the heuristic planner introduced in the Section 3.4.3.

These parameters are the feedbackThreshold that is used to validate a discovered link be-

tween services against the consumers’ feedback, the functionalThreshold that is used to

evaluate the relevance of a discovered plan with regard to the functional requirements, and

the K value that is used to select the top-k plans to be explored. Table A.4 presents the

design of the experiments performed on the IoT test bed (Section 5.3). The experiments’

parameters are the feedback threshold, the functional threshold, and the K value. These

parameters are combined in 3 scenarios. The first scenario has a variable feedback threshold,

the second scenario has a variable functional threshold, and the third scenario has a variable

K value. Each scenario is executed with 10000 services in the distributed repository, and

request of plan length 1.

Figure A.19 shows the results of each scenario with regard to the search latency and precision.

Each row corresponds to a scenario and each column corresponds to a metric. Figure A.19a

shows the impact of the feedbackThreshold. The feedback threshold does not have an im-

pact in the search latency as the uDiscovery keeps a constant response time regardless the

threshold variability. But, this threshold has impact on the search precision. The planner

reaches the highest search precision when the feedback threshold is equal to 1. Search pre-

cision is affected by lower threshold values and varies from 0.4, when the threshold is 0.0,

to 0.6, when the threshold is 0.8. The feedback threshold affects the uDiscovery′s search

precision because the planner validates services relations that have introduced non-relevant

plans, when the threshold is lower than 1.0.

Appendix A. Algorithms’ Parameters

0.0 0.2 0.4 0.6 0.8 1.0
Feedback Threshold

0

500

1000

1500

R
es

po
ns

e
T

im
e

(m
s)

Search Latency

0.0 0.2 0.4 0.6 0.8 1.0
Feedback Threshold

0

0.2

0.4

0.6

0.8

1

Se
ar

ch
 P

re
ci

si
on

Search Precision

(a) Scenario 1 - Variable Feedback Threshold

0.0 0.2 0.4 0.6 0.8 1.0
Feedback Threshold

0

500

1000

1500

R
es

po
ns

e
T

im
e

(m
s)

Search Latency

0.0 0.2 0.4 0.6 0.8 1.0
Functional Threshold

0

0.2

0.4

0.6

0.8

1

Se
ar

ch
 P

re
ci

si
on

Search Precision

(b) Scenario 2 - Variable Functional Threshold

5 15 25
K-value

0

1000

2000

3000

4000

5000

R
es

po
ns

e
T

im
e

(m
s)

Search Latency

5 15 25
K-value

0

0.2

0.4

0.6

0.8

1

Se
ar

ch
 P

re
ci

si
on

Search Precision

(c) Scenario 3 - K value Threshold

Figure A.19: uDiscovery Planner: Results Experiment Scenarios.

Appendix A. Algorithms’ Parameters

15 20 25 30 35 40 45
Ranked Means

0.0

0.2

0.4

0.6

0.8

1.0

Fe
ed

ba
ck

 T
hr

es
ho

ld

Search Latency Comparison
-value:0.99562
 = 0.01

H
0
: Not Rejected

150 200 250 300 350 400 450
Ranked Means

0.0

0.2

0.4

0.6

0.8

1.0

Fe
ed

ba
ck

 T
hr

es
ho

ld

Search Precision Comparison
-value:2.9575e-16
 = 0.01

H
0
: Rejected

(a) Scenario 1 - Comparison of Ranked Means for Feedback Threshold

10 15 20 25 30 35 40
Ranked Means

0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
na

l T
hr

es
ho

ld

Search Latency Comparison
-value:0.92366
 = 0.01

H
0
: Not Rejected

260 280 300 320 340 360
Ranked Means

0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
na

l T
hr

es
ho

ld
Search Precision Comparison

-value:0.1408
 = 0.01

H
0
: Not Rejected

(b) Scenario 2 - Comparison of Ranked Means for Functional Threshold

5 10 15 20
Ranked Means

5

15

25

K
-V

al
ue

Search Latency Comparison
-value:0.68201
 = 0.01

H
0
: Not Rejected

120 140 160 180 200
Ranked Means

5

15

25

K
-V

al
ue

Search Precision Comparison
-value:1.6191e-07
 = 0.01

H
0
: Rejected

(c) Scenario 3 - Comparison of Ranked Means for K value Threshold

Figure A.20: uDiscovery Planner: Comparison of Scenarios Ranked Means.

The functional threshold does not have a clear impact on the response time, but has a small

impact in the search precision (Figure A.19b). uDiscovery keeps a constant response time

regardless the threshold values as in the previous scenario. uDiscovery reaches the highest

precision when the functional threshold is 1.0. The planner has a better accuracy when the

threshold is 1.0 because it applies the more strict service matchmaking methods. Figure A.19c

shows the impact of the K-value on the planner performance. The K-value impacts the

response time because the planner explores less services when K is low. uDiscovery has

the lowest latency when K is equal to 5. This K value does not have a clear impact on

the search precision, uDiscovery is less likely to fail when K is low because it explores less

alternatives.

Figure A.20 shows the results of the statistical analysis of the scenarios results to confirm

previous observations. The feedbackThreshold does not have a significant influence in the

search latency, but it has significant and positive impact in the search precision when its

value is 1.0. The functionalThreshold does not have significant influence on any metric.

However, it improves the search precision when its value is also 1.0. The K value does not

have a significant impact in the search latency, although there were a clear difference in the

previous study. But, it has a significant and positive impact in the search precision when K

is equal to 5. The selected values are 1.0 for feedback and functional thresholds, and 5 for

the K value.

174

Bibliography

[Al-Fuqaha et al., 2015] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., and

Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols and

Applications. IEEE Communications Surveys & Tutorials, 17(4):1–1.

[Albalas et al., 2017] Albalas, F., Mardini, W., and Al-Soud, M. (2017). Aft: Adaptive

fibonacci-based tuning protocol for service and resource discovery in the internet of things.

In Fog and Mobile Edge Computing (FMEC), 2017 Second International Conference on,

pages 177–182. IEEE.

[Ammar et al., 2018] Ammar, M., Russello, G., and Crispo, B. (2018). Internet of things: A

survey on the security of iot frameworks. Journal of Information Security and Applications,

38:8–27.

[Andreini et al., 2011] Andreini, F., Crisciani, F., Cicconetti, C., and Mambrini, R. (2011).

A scalable architecture for geo-localized service access in smart cities. In 2011 Future

Network & Mobile Summit, pages 1–8. IEEE.

[Athanasopoulos, 2017] Athanasopoulos, D. (2017). Self-adaptive service organization for

pragmatics-aware service discovery. In Services Computing (SCC), 2017 IEEE Interna-

tional Conference on, pages 164–171. IEEE.

[Atzori et al., 2011] Atzori, L., Iera, A., and Morabito, G. (2011). Siot: Giving a social

structure to the internet of things. IEEE communications letters, 15(11):1193–1195.

[Baek and Ko, 2017] Baek, K.-D. and Ko, I.-Y. (2017). Spatially cohesive service discovery

and dynamic service handover for distributed iot environments. In International Conference

on Web Engineering, pages 60–78. Springer.

[Baker et al., 2017] Baker, T., Asim, M., Tawfik, H., Aldawsari, B., and Buyya, R. (2017).

An energy-aware service composition algorithm for multiple cloud-based iot applications.

Journal of Network and Computer Applications, pages 96–108.

175

[Bharti et al., 2018] Bharti, M., Kumar, R., and Saxena, S. (2018). Clustering-based re-

source discovery on internet-of-things. International Journal of Communication Systems,

31(5):e3501.

[Borgia, 2014] Borgia, E. (2014). The internet of things vision: Key features, applications

and open issues. Computer Communications, 54:1–31.

[Boubiche et al., 2018] Boubiche, S., Boubiche, D. E., Bilami, A., and Toral-Cruz, H. (2018).

Big data challenges and data aggregation strategies in wireless sensor networks. IEEE

Access, 6:20558–20571.

[Bovet and Hennebert, 2014] Bovet, G. and Hennebert, J. (2014). Distributed semantic dis-

covery for web-of-things enabled smart buildings. In 2014 6th International Conference on

New Technologies, Mobility and Security (NTMS), pages 1–5. IEEE.

[Bröring et al., 2016] Bröring, A., Datta, S. K., and Bonnet, C. (2016). A categorization of

discovery technologies for the internet of things. In Proceedings of the 6th International

Conference on the Internet of Things, pages 131–139. ACM.

[Butt et al., 2013] Butt, T. A., Phillips, I., Guan, L., and Oikonomou, G. (2013). Adaptive

and context-aware service discovery for the internet of things. In Internet of things, smart

spaces, and next generation networking, pages 36–47. Springer.

[Cabrera et al., 2017] Cabrera, C., Palade, A., and Clarke, S. (2017). An evaluation of service

discovery protocols in the internet of things. In Proceedings of the Symposium on Applied

Computing, pages 469–476. ACM.

[Cassar et al., 2014] Cassar, G., Barnaghi, P., and Moessner, K. (2014). Probabilistic match-

making methods for automated service discovery. IEEE Transactions on Services Com-

puting, 7(4):654–666.

[Chakraborty et al., 2006] Chakraborty, D., Joshi, A., Yesha, Y., and Finin, T. (2006). To-

ward distributed service discovery in pervasive computing environments. IEEE Transac-

tions on Mobile computing, 5(2):97–112.

[Chen et al., 2016] Chen, N., Cardozo, N., and Clarke, S. (2016). Goal-driven service com-

position in mobile and pervasive computing. IEEE Transactions on Services Computing.

[Chen and Clarke, 2014] Chen, N. and Clarke, S. (2014). A dynamic service composition

model for adaptive systems in mobile computing environments. In International Conference

on Service-Oriented Computing, pages 93–107. Springer.

176

[Cheong et al., 2017] Cheong, P. Y., Aggarwal, D., Hanne, T., and Dornberger, R. (2017).

Variation of ant colony optimization parameters for solving the travelling salesman prob-

lem. In 2017 IEEE 4th International Conference on Soft Computing & Machine Intelligence

(ISCMI), pages 60–65. IEEE.

[Ciortea et al., 2016] Ciortea, A., Boissier, O., Zimmermann, A., and Florea, A. M. (2016).

Responsive decentralized composition of service mashups for the internet of things. In

Proceedings of the 6th International Conference on the Internet of Things, pages 53–61.

ACM.

[Cirani et al., 2014] Cirani, S., Davoli, L., Ferrari, G., Léone, R., Medagliani, P., Picone, M.,

and Veltri, L. (2014). A scalable and self-configuring architecture for service discovery in

the internet of things. IEEE Internet of Things Journal, 1(5):508–521.

[Cirani et al., 2018] Cirani, S., Ferrari, G., Picone, M., and Veltri, L. (2018). Internet of

Things: Architectures, Protocols and Standards. John Wiley & Sons.

[Corbellini et al., 2017] Corbellini, A., Godoy, D., Mateos, C., Zunino, A., and Lizarralde, I.

(2017). Mining social web service repositories for social relationships to aid service discov-

ery. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories

(MSR), pages 75–79. IEEE.

[Dasgupta et al., 2014a] Dasgupta, S., Aroor, A., Shen, F., and Lee, Y. (2014a). Smartspace:

Multiagent based distributed platform for semantic service discovery. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 44(7):805–821.

[Dasgupta et al., 2014b] Dasgupta, S., Aroor, A., Shen, F., and Lee, Y. (2014b). Smartspace:

Multiagent based distributed platform for semantic service discovery. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 44(7):805–821.

[Datta et al., 2015] Datta, S. K., Da Costa, R. P. F., and Bonnet, C. (2015). Resource

discovery in Internet of Things: Current trends and future standardization aspects. In

2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pages 542–547. IEEE.

[del Val et al., 2014] del Val, E., Rebollo, M., and Botti, V. (2014). Combination of self-

organization mechanisms to enhance service discovery in open systems. Information Sci-

ences, 279:138–162.

[Deng et al., 2017] Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., and Zomaya, A. Y.

(2017). Mobility-aware service composition in mobile communities. IEEE Transactions on

177

Systems, Man, and Cybernetics: Systems, pages 555–568.

[D’Mello et al., 2011] D’Mello, D. A., Ananthanarayana, V., and Salian, S. (2011). A review

of dynamic web service composition techniques. In International Conference on Computer

Science and Information Technology, pages 85–97. Springer.

[Ebrahimi et al., 2015] Ebrahimi, M., Shafieibavani, E., Wong, R. K., and Chi, C.-H. (2015).

A new meta-heuristic approach for efficient search in the internet of things. In 2015 IEEE

International Conference on Services Computing, pages 264–270. IEEE.

[Ebrahimi et al., 2017] Ebrahimi, M., ShafieiBavani, E., Wong, R. K., Fong, S., and Fiaidhi,

J. (2017). An adaptive meta-heuristic search for the internet of things. Future Generation

Computer Systems, 76:486–494.

[Fathy et al., 2017] Fathy, Y., Barnaghi, P., and Tafazolli, R. (2017). Distributed spatial

indexing for the internet of things data management. In 2017 IFIP/IEEE Symposium on

Integrated Network and Service Management (IM), pages 1246–1251. IEEE.

[Fathy et al., 2018] Fathy, Y., Barnaghi, P., and Tafazolli, R. (2018). Large-scale indexing,

discovery, and ranking for the internet of things (iot). ACM Computing Surveys (CSUR),

51(2):29.

[Fredj et al., 2013] Fredj, S. B., Boussard, M., Kofman, D., and Noirie, L. (2013). A scalable

iot service search based on clustering and aggregation. In Green Computing and Com-

munications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE

International Conference on and IEEE Cyber, Physical and Social Computing, pages 403–

410. IEEE.

[Fredj et al., 2014] Fredj, S. B., Boussard, M., Kofman, D., and Noirie, L. (2014). Efficient

semantic-based iot service discovery mechanism for dynamic environments. In Personal,

Indoor, and Mobile Radio Communication (PIMRC), 2014 IEEE 25th Annual Interna-

tional Symposium on, pages 2088–2092. IEEE.

[Georgievski and Aiello, 2017] Georgievski, I. and Aiello, M. (2017). Automated planning

for ubiquitous computing. ACM Computing Surveys (CSUR), 49(4):63.

[Girolami et al., 2015a] Girolami, M., Chessa, S., and Caruso, A. (2015a). On service dis-

covery in mobile social networks: Survey and perspectives. Computer Networks, 88:51–71.

178

[Girolami et al., 2015b] Girolami, M., Chessa, S., and Ferro, E. (2015b). Discovery of ser-

vices in smart cities of mobile social users. In 2015 IEEE Symposium on Computers and

Communication (ISCC), pages 210–215. IEEE.

[Görgü et al., 2017] Görgü, L., Kroon, B., O’Grady, M. J., Yılmaz, Ö., and O’Hare, G. M.

(2017). Sensor discovery in ambient iot ecosystems. Journal of Ambient Intelligence and

Humanized Computing, pages 1–12.

[Guerrero-Contreras et al., 2017] Guerrero-Contreras, G., Garrido, J. L., Balderas-Diaz, S.,

and Rodŕıguez-Domı́nguez, C. (2017). A context-aware architecture supporting service

availability in mobile cloud computing. IEEE Transactions on Services Computing,

10(6):956–968.

[Hamidouche et al., 2018] Hamidouche, R., Aliouat, Z., and Gueroui, A. M. (2018). Bio-

inspired vs classical solutions to overcome the iot challenges. In 2018 3rd Cloudification of

the Internet of Things (CIoT), pages 1–7. IEEE.

[Han and Crespi, 2017] Han, S. N. and Crespi, N. (2017). Semantic service provisioning for

smart objects: Integrating iot applications into the web. Future Generation Computer

Systems.

[He et al., 2013] He, Q., Yan, J., Yang, Y., Kowalczyk, R., and Jin, H. (2013). A decentral-

ized service discovery approach on peer-to-peer networks. IEEE Transactions on Services

Computing, 6(1):64–75.

[Hoseinitabatabaei et al., 2018] Hoseinitabatabaei, S. A., Fathy, Y., Barnaghi, P., Wang, C.,

and Tafazolli, R. (2018). A novel indexing method for scalable iot source lookup. IEEE

Internet of Things Journal, 5(3):2037–2054.

[Huber et al., 2016] Huber, S., Seiger, R., Kuehnert, A., and Schlegel, T. (2016). Using

semantic queries to enable dynamic service invocation for processes in the internet of

things. In Semantic Computing (ICSC), 2016 IEEE Tenth International Conference on,

pages 214–221. IEEE.

[Hussein et al., 2017] Hussein, D., Han, S. N., Lee, G. M., Crespi, N., and Bertin, E. (2017).

Towards a dynamic discovery of smart services in the social internet of things. Computers

& Electrical Engineering, 58:429–443.

[Jara et al., 2014] Jara, A. J., Lopez, P., Fernandez, D., Castillo, J. F., Zamora, M. A., and

Skarmeta, A. F. (2014). Mobile digcovery: discovering and interacting with the world

179

through the internet of things. Personal and ubiquitous computing, 18(2):323–338.

[Jo et al., 2015] Jo, H.-J., Kwon, J.-H., and Ko, I.-Y. (2015). Distributed service discovery

in mobile iot environments using hierarchical bloom filters. In International Conference

on Web Engineering, pages 498–514. Springer.

[Khodadadi et al., 2015] Khodadadi, F., Dastjerdi, A. V., and Buyya, R. (2015). Simurgh:

A framework for effective discovery, programming, and integration of services exposed in

iot. In 2015 International Conference on Recent Advances in Internet of Things (RIoT),

pages 1–6. IEEE.

[Klein and Bernstein, 2004] Klein, M. and Bernstein, A. (2004). Toward high-precision ser-

vice retrieval. IEEE Internet Computing, pages 30–36.

[Klusch, 2014] Klusch, M. (2014). Service discovery. In Encyclopedia of Social Network

Analysis and Mining, pages 1707–1717. Springer.

[Klusch et al., 2015] Klusch, M., Kapahnke, P., Schulte, S., Lecue, F., and Bernstein, A.

(2015). Semantic web service search: a brief survey. KI-Künstliche Intelligenz, pages 1–9.

[Klusch et al., 2016] Klusch, M., Kapahnke, P., Schulte, S., Lecue, F., and Bernstein, A.

(2016). Semantic web service search: a brief survey. KI-Künstliche Intelligenz, 30(2):139–

147.

[Kovacevic et al., 2010] Kovacevic, A., Ansari, J., and Mahonen, P. (2010). Nanosd: A

flexible service discovery protocol for dynamic and heterogeneous wireless sensor networks.

In Mobile Ad-hoc and Sensor Networks (MSN), 2010 Sixth International Conference on,

pages 14–19. IEEE.

[Kozlov et al., 2012] Kozlov, D., Veijalainen, J., and Ali, Y. (2012). Security and privacy

threats in iot architectures. In Proceedings of the 7th International Conference on Body

Area Networks, pages 256–262. ICST (Institute for Computer Sciences, Social-Informatics

and

[Kumar and Satyanarayana, 2016] Kumar, V. V. and Satyanarayana, N. (2016). Self-

adaptive semantic classification using domain knowledge and web usage log for web service

discovery. International Journal of Applied Engineering Research, 11(6):4618–4622.

[Lalanda et al., 2013] Lalanda, P., McCann, J. A., and Diaconescu, A. (2013). Autonomic

computing principles design and implementation.

180

[Lee et al., 2007] Lee, C., Ko, S., Lee, S., Lee, W., and Helal, S. (2007). Context-aware service

composition for mobile network environments. Ubiquitous Intelligence and Computing,

pages 941–952.

[Lee and Lee, 2018] Lee, D. and Lee, H. (2018). Iot service classification and clustering for

integration of iot service platforms. The Journal of Supercomputing, 74(12):6859–6875.

[Lemos et al., 2016] Lemos, A. L., Daniel, F., and Benatallah, B. (2016). Web service com-

position: a survey of techniques and tools. ACM Computing Surveys (CSUR), 48(3):33.

[Li et al., 2017] Li, J., Bai, Y., Zaman, N., and Leung, V. C. (2017). A decentralized trust-

worthy context and qos-aware service discovery framework for the internet of things. IEEE

Access, 5:19154–19166.

[Li et al., 2017] Li, Z., Song, Y., and Bi, J. (2017). Tssd: Exploiting temporal-spatial cor-

relation for service discovery in mobile social networking. In GLOBECOM 2017 - 2017

IEEE Global Communications Conference, pages 1–7.

[Liu et al., 2016] Liu, M., Xu, Y., Hu, H., and Mohammed, A.-W. (2016). Semantic agent-

based service middleware and simulation for smart cities. Sensors, 16(12):2200.

[Liu et al., 2019] Liu, Y., Zhu, T., Jiang, Y., and Liu, X. (2019). Service matchmaking

for internet of things based on probabilistic topic model. Future Generation Computer

Systems, 94:272–281.

[Loser et al., 2007] Loser, A., Staab, S., and Tempich, C. (2007). Semantic social overlay

networks. IEEE Journal on selected areas in communications, 25(1):5–14.

[Lunardi et al., 2015] Lunardi, W. T., de Matos, E., Tiburski, R., Amaral, L. A., Marczak,

S., and Hessel, F. (2015). Context-based search engine for industrial iot: Discovery, search,

selection, and usage of devices. In Emerging Technologies & Factory Automation (ETFA),

2015 IEEE 20th Conference on, pages 1–8. IEEE.

[Manning et al., 2010] Manning, C., Raghavan, P., and Schütze, H. (2010). Introduction to

information retrieval. Natural Language Engineering, 16(1):100–103.

[Maymounkov and Mazieres, 2002] Maymounkov, P. and Mazieres, D. (2002). Kademlia: A

peer-to-peer information system based on the xor metric. In International Workshop on

Peer-to-Peer Systems, pages 53–65. Springer.

[McKight and Najab, 2010] McKight, P. E. and Najab, J. (2010). Kruskal-wallis test. The

corsini encyclopedia of psychology, pages 1–1.

181

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,

M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-

level control through deep reinforcement learning. Nature, 518(7540):529.

[Mokhtar et al., 2007] Mokhtar, S. B., Georgantas, N., and Issarny, V. (2007). Cocoa:

Conversation-based service composition in pervasive computing environments with qos

support. Journal of Systems and Software, 80(12):1941–1955.

[Mokhtar et al., 2010] Mokhtar, S. B., Raverdy, P.-G., Urbieta, A., and Cardoso, R. S.

(2010). Interoperable semantic and syntactic service discovery for ambient computing

environments. International Journal of Ambient Computing and Intelligence (IJACI),

2(4):13–32.

[Nedos et al., 2009] Nedos, A., Singh, K., Cunningham, R., and Clarke, S. (2009). Proba-

bilistic discovery of semantically diverse content in manets. IEEE Transactions on Mobile

Computing, 8(4):544–557.

[Nesi et al., 2016] Nesi, P., Badii, C., Bellini, P., Cenni, D., Martelli, G., and Paolucc, M.

(2016). Km4city smart city api: an integrated support for mobility services. In Smart

Computing (SMARTCOMP), 2016 IEEE International Conference on, pages 1–8. IEEE.

[Nguyen et al., 2017] Nguyen, B. M., Hoang, H.-N. Q., Hluchỳ, L., Vu, T. T., and Le, H.

(2017). Multiple peer chord rings approach for device discovery in iot environment. Procedia

Computer Science, 110:125–134.

[O’Toole et al., 2017] O’Toole, E., Nallur, V., and Clarke, S. (2017). Decentralised detection

of emergence in complex adaptive systems. ACM Trans. Auton. Adapt. Syst., 12(1):4:1–

4:31.

[Paganelli and Parlanti, 2012] Paganelli, F. and Parlanti, D. (2012). A dht-based discovery

service for the internet of things. Journal of Computer Networks and Communications,

2012.

[Palade et al., 2018] Palade, A., Cabrera, C., White, G., and Clarke, S. (2018). Stigmergic

service composition and adaptation in mobile environments. In International Conference

on Service-Oriented Computing, pages 618–633. Springer.

[Papazoglou and Georgakopoulos, 2003] Papazoglou, M. P. and Georgakopoulos, D. (2003).

Service-oriented computing. Communications of the ACM, 46(10):25–28.

182

[Pattar et al., 2018] Pattar, S., Buyya, R., Venugopal, K., Iyengar, S., and Patnaik, L.

(2018). Searching for the iot resources: Fundamentals, requirements, comprehensive re-

view, and future directions. IEEE Communications Surveys & Tutorials, 20(3):2101–2132.

[Perera et al., 2014a] Perera, C., Jayaraman, P. P., Zaslavsky, A., Christen, P., and Geor-

gakopoulos, D. (2014a). Context-aware dynamic discovery and configuration of ‘things’ in

smart environments. In Big Data and Internet of Things: A Roadmap for Smart Environ-

ments, pages 215–241. Springer.

[Perera and Vasilakos, 2016] Perera, C. and Vasilakos, A. V. (2016). A knowledge-based

resource discovery for internet of things. Knowledge-Based Systems, 109:122–136.

[Perera et al., 2014b] Perera, C., Zaslavsky, A., Liu, C. H., Compton, M., Christen, P., and

Georgakopoulos, D. (2014b). Sensor search techniques for sensing as a service architecture

for the internet of things. IEEE Sensors Journal, 14(2):406–420.

[Petrolo et al., 2016a] Petrolo, R., Bonifacio, S. G., Loscri, V., and Mitton, N. (2016a).

The discovery of relevant data-sources in a smart city environment. In Smart Comput-

ing (SMARTCOMP), 2016 IEEE International Conference on, pages 1–5. IEEE.

[Petrolo et al., 2016b] Petrolo, R., Loscri, V., and Mitton, N. (2016b). Cyber-physical objects

as key elements for a smart cyber-city. In Management of Cyber Physical Objects in the

Future Internet of Things, pages 31–49. Springer.

[Piro et al., 2014] Piro, G., Cianci, I., Grieco, L., Boggia, G., and Camarda, P. (2014). In-

formation centric services in Smart Cities. Journal of Systems and Software, 88:169–188.

[Quevedo et al., 2016] Quevedo, J., Antunes, M., Corujo, D., Gomes, D., and Aguiar, R. L.

(2016). On the application of contextual iot service discovery in information centric net-

works. Computer Communications, 89:117–127.

[Rapti et al., 2016] Rapti, E., Karageorgos, A., Houstis, C., and Houstis, E. (2016). Decen-

tralized service discovery and selection in internet of things applications based on artificial

potential fields. Service Oriented Computing and Applications, pages 1–12.

[Richerzhagen et al., 2015] Richerzhagen, B., Stingl, D., Rückert, J., and Steinmetz, R.

(2015). Simonstrator: Simulation and prototyping platform for distributed mobile ap-

plications. In Proceedings of the 8th International Conference on Simulation Tools and

Techniques, pages 99–108, ICST, Brussels, Belgium, Belgium.

183

[Rodriguez-Mier et al., 2016] Rodriguez-Mier, P., Pedrinaci, C., Lama, M., and Mucientes,

M. (2016). An integrated semantic web service discovery and composition framework.

IEEE transactions on services computing, pages 537–550.

[Rubio et al., 2016] Rubio, G., Mart́ınez, J. F., Gómez, D., and Li, X. (2016). Semantic

registration and discovery system of subsystems and services within an interoperable co-

ordination platform in smart cities. Sensors, 16(7):955.

[Sikri, 2019] Sikri, M. (2019). An adaptive and scalable framework for automated service

discovery. Service Oriented Computing and Applications, pages 1–13.

[Sivrikaya et al., 2019] Sivrikaya, F., Ben-Sassi, N., Dang, X.-T., Görür, O. C., and Kuster,

C. (2019). Internet of smart city objects: A distributed framework for service discovery

and composition. IEEE Access.

[Stoica et al., 2003] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F.,

Dabek, F., and Balakrishnan, H. (2003). Chord: a scalable peer-to-peer lookup protocol

for internet applications. IEEE/ACM Transactions on Networking (TON), 11(1):17–32.

[Stolikj et al., 2016] Stolikj, M., Lukkien, J. J., Cuijpers, P. J., and Buchina, N. (2016).

Nomadic service discovery in smart cities. In Smart Cities and Homes, pages 59–90.

Elsevier.

[Tanganelli et al., 2017] Tanganelli, G., Vallati, C., and Mingozzi, E. (2017). A fog-based

distributed look-up service for intelligent transportation systems. In A World of Wireless,

Mobile and Multimedia Networks (WoWMoM), 2017 IEEE 18th International Symposium

on, pages 1–6. IEEE.

[Teixeira et al., 2011] Teixeira, T., Hachem, S., Issarny, V., and Georgantas, N. (2011). Ser-

vice oriented middleware for the internet of things: A perspective. In Abramowicz, W.,

Llorente, I. M., Surridge, M., Zisman, A., and Vayssière, J., editors, Towards a Service-

Based Internet, pages 220–229, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Thiagarajan et al., 2002] Thiagarajan, R. K., Srivastava, A. K., Pujari, A. K., and Bulusu,

V. K. (2002). Bpml: A process modeling language for dynamic business models. In

Advanced Issues of E-Commerce and Web-Based Information Systems, 2002.(WECWIS

2002). Proceedings. Fourth IEEE International Workshop on, pages 222–224. IEEE.

[Tran et al., 2017] Tran, N. K., Sheng, Q. Z., Babar, M. A., and Yao, L. (2017). Searching

the web of things: State of the art, challenges, and solutions. ACM Computing Surveys

184

(CSUR), 50(4):55.

[Tzortzis and Spyrou, 2016] Tzortzis, G. and Spyrou, E. (2016). A semi-automatic approach

for semantic iot service composition. In Workshop on Artificial Intelligence and Internet

of Things in conjunction with SETN.

[Urbieta et al., 2017] Urbieta, A., González-Beltrán, A., Mokhtar, S. B., Hossain, M. A.,

and Capra, L. (2017). Adaptive and context-aware service composition for iot-based smart

cities. Future Generation Computer Systems.

[Urbieta et al., 2015] Urbieta, A., González-Beltrán, A., Mokhtar, S. B., Parra, J., Capra,

L., Hossain, M. A., Alelaiwi, A., and Vázquez, J. I. (2015). Hybrid service matchmaking

in ambient assisted living environments based on context-aware service modeling. Cluster

Computing, 18(3):1171–1188.

[Walsh, 2002] Walsh, A. E. (2002). Uddi, Soap, and WSDL: the web services specification

reference book. Prentice Hall Professional Technical Reference.

[Wang and Chow, 2016] Wang, E. and Chow, R. (2016). What can i do here? IoT service

discovery in smart cities. In 2016 IEEE International Conference on Pervasive Computing

and Communication Workshops (PerCom Workshops), pages 1–6. IEEE.

[Wang et al., 2015] Wang, W., De, S., Cassar, G., and Moessner, K. (2015). An experimental

study on geospatial indexing for sensor service discovery. Expert Systems with Applications,

42(7):3528–3538.

[Wanigasekara et al., 2016] Wanigasekara, N., Schmalfuss, J., Carlson, D., and Rosenblum,

D. S. (2016). A bandit approach for intelligent iot service composition across heterogeneous

smart spaces. In Proceedings of the 6th International Conference on the Internet of Things,

pages 121–129. ACM.

[White et al., 2017] White, G., Nallur, V., and Clarke, S. (2017). Quality of service ap-

proaches in iot: A systematic mapping. Journal of Systems and Software, 132:186–203.

[Wohlin et al., 2012] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and

Wesslén, A. (2012). Experimentation in software engineering. Springer Science & Business

Media.

[Wu et al., 2015] Wu, Y., Yan, C., Liu, L., Ding, Z., and Jiang, C. (2015). An adaptive mul-

tilevel indexing method for disaster service discovery. IEEE Transactions on Computers,

64(9):2447–2459.

185

[Xia et al., 2019] Xia, H., Hu, C.-q., Xiao, F., Cheng, X.-g., and Pan, Z.-k. (2019). An

efficient social-like semantic-aware service discovery mechanism for large-scale internet of

things. Computer Networks.

[Yuan et al., 2018] Yuan, B., Liu, L., and Antonopoulos, N. (2018). Efficient service discovery

in decentralized online social networks. Future Generation Computer Systems, 86:775–791.

[Zhao et al., 2017a] Zhao, D., Zhou, Z., Ning, K., Duan, Y., and Zhang, L.-J. (2017a). An

energy-aware service composition mechanism in service-oriented wireless sensor networks.

In Internet of Things (ICIOT), 2017 IEEE International Congress on, pages 89–96. IEEE.

[Zhao et al., 2015] Zhao, S., Zhang, Y., Yu, L., Cheng, B., Ji, Y., and Chen, J. (2015).

A multidimensional resource model for dynamic resource matching in internet of things.

Concurrency and Computation: Practice and Experience, 27(8):1819–1843.

[Zhao et al., 2017b] Zhao, Y., Wang, S., Zou, Y., Ng, J., and Ng, T. (2017b). Automatically

learning user preferences for personalized service composition. In Web Services (ICWS),

2017 IEEE International Conference on, pages 776–783. IEEE.

[Zhou et al., 2016] Zhou, Y., De, S., Wang, W., and Moessner, K. (2016). Search techniques

for the web of things: A taxonomy and survey. Sensors, 16(5):600.

[Zikria et al., 2018] Zikria, Y. B., Afzal, M. K., Ishmanov, F., Kim, S. W., and Yu, H. (2018).

A survey on routing protocols supported by the contiki internet of things operating system.

Future Generation Computer Systems, 82:200–219.

[Zisman et al., 2013] Zisman, A., Spanoudakis, G., Dooley, J., and Siveroni, I. (2013). Proac-

tive and reactive runtime service discovery: A framework and its evaluation. IEEE Trans-

actions on Software Engineering, 39(7):954–974.

186

	Declaration
	Abstract
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Challenges
	Existing Solutions
	Service Organisation in IoT Environments
	Service Planning in IoT Environments
	Observations and Research Gap
	Research Questions and Hypothesis

	Thesis Approach
	Thesis Contribution
	Thesis Scope
	Thesis Structure

	State of the Art
	Services Organisation
	Device-based Organisation
	Overlay-based Organisation
	Assessment

	Request Management
	Social-based Forwarding
	Bio-inspired Forwarding
	Assessment

	Service Matchmaking
	Non-Composition Support
	Composition Support
	Assessment

	Dynamic Environments Management
	Device-based Adaptation
	Network-based Adaptation
	Usage-based Adaptation
	Assessment

	Summary

	Design
	Design Objectives and Required Features
	System Model
	Design Decisions
	Services Organisation
	Requests Management
	Service Planning

	uDiscovery
	Urban-based Service Discovery Model
	Self-adaptive Service Discovery Model
	Service Planning based on Consumers' Feedback

	Design Summary

	Implementation
	uDiscovery Architecture
	uDiscovery Data Model
	uDiscovery Class Diagram

	Urban-based Service Management
	Initialisation Management
	Service Organisation
	Requests Resolution

	Self-adaptive Service Management
	Unforeseen Events Adaptation
	Scheduled Events Adaptation
	Periodic Events Adaptation

	Implementation Summary

	Evaluation
	Evaluation Approach
	Simulation-based Evaluation on Service Discovery Efficiency
	Prototype-based Evaluation
	Data Set Definition
	Statistical Analysis

	Simulation-based Evaluation on Service Discovery Efficiency
	Experimental Set-up
	Baseline Approaches
	General Service Discovery Efficiency Study
	Unforeseen Events Study
	Scheduled Events Study
	Periodic Events Study

	Prototype-based Evaluation
	Experimental Set-up
	Baseline Approaches
	Prototype-based Study

	Evaluation Summary

	Conclusion
	Thesis Summary
	Discussion
	Thesis Contributions
	Urban-context Dependency
	Periodic Events Management
	Network Efficiency
	Interface-based Planning
	Concurrent Consumers' Requests

	Future Work

	Algorithms' Parameters
	Location-based Approach Parameters
	Domain-based Approach Parameters
	uDiscovery Parameters
	Heuristic Planner Parameters

	Bibliography

