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There are many ways to spin a photon:
Half-quantization of a total optical
angular momentum

Kyle E. Ballantine,* John F. Donegan, Paul R. Eastham†
The angularmomentumof light plays an important role inmany areas, fromoptical trapping toquantum information.
In the usual three-dimensional setting, the angularmomentumquantumnumbers of the photon are integers, in units
of the Planck constant ħ. We show that, in reduced dimensions, photons can have a half-integer total angularmomentum.
We identify a new formof total angularmomentum, carried bybeams of light, comprising an unequalmixture of spin and
orbital contributions.Wedemonstrate the half-integer quantization of this total angularmomentumusing noisemeasure-
ments. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization.
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INTRODUCTION

Effects due to the angular momentum of light have been studied since
the first measurements of the torques exerted on wave plates (1). Versions
of these optomechanical effects now appear in experiments on optical
trapping and manipulation (2) and enable the remote detection of ro-
tation (3). Angular momentum effects are also emerging in the radio-
frequency domain, for applications in astronomy and communications
(4). Fundamental interest focuses on optical angular momentum in the
quantum regime (5). The angular momentum of single photons has
been measured (6), and entanglement (7) and Einstein, Podolsky and
Rosen correlations (8) have been studied. This unique degree of free-
dom provides a basis for quantum information applications, with
high-dimensional entanglement (9), quantum dense coding (10),
and efficient object identification (11) recently demonstrated.

Central to these developments is the quantization of the angular mo-
menta of the photon, which forms a discrete state space (12). The rele-
vant quantum numbers are the eigenvalues of the spin and orbital
angular momentum operators, Sz and Lz, in units of the reduced Planck
constant ħ. The spin quantum number describes the circular polarization
of light and takes values of ±1. The orbital quantum number appears in
twisted beams, with phase-winding factors eilq, where q is the azimuthal
angle, and takes integer values l (13). Thus, the quantum numbers for
the total angular momentum, Jz = Lz + Sz, are the integers.

However, a general feature of two-dimensional systems is that angular
momentum need not be quantized in the usual way. The orbital angular
momentum of an electron orbiting in two dimensions around a magnetic
flux need not be an integer, but can include an arbitrary fractional offset
(14). The same mechanism introduces a phase factor in the exchange of
particle-flux composites, implying that such particles have generalized or
fractional statistics (15) as well as fractional spin. These concepts have
played an important role in understanding the quantumHall effect, where
the low-lying quasiparticles have fractional statistics that are related to their
fractional charge (16).

Here we show, in analogy to the theory of fractional spin particles
(14), that an unexpected half-integer total angular momentum can arise
for light. To do this, we note that the form Jz = Lz + Sz for the total
angular momentum of light follows from the rotational symmetry of
Maxwell’s equations (17, 18). However, experiments involve beams of
light propagating in a particular direction; thus, this full rotational
symmetry is not present. The only potential symmetries, which determine
the form of the angular momentum operators according to Noether’s
theorem, are rotations of the two-dimensional cross section of the beam
around the propagation direction. We will show that this restricted
symmetry leads to a new form of total angular momentum, which has
a half-integer, that is, fermionic, spectrum. We will experimentally dem-
onstrate this quantization by showing that the noise in the total angular
momentum current corresponds to the fractional quantum ħ/2.
RESULTS

Forms of total angular momentum
We begin by establishing the possible forms of total angular momentum
operator for photons in a beam of light. We consider the case of a par-
axial beam, which is well approximated in experiments, and where the
separation of spin and orbital angular momenta is well established (19).
Such a beam is specified by a two-component complex vector field E
(Jones vector), whose components give the amplitudes of each polar-
ization across the beam. We take circularly polarized states as the basis
and use polar coordinates (r,q) across the beam. The angular momentum
operators are the generators of rotations that act on this field. In the par-
axial limit, they include the third Pauli matrix Sz = ħs3, which rotates the
polarization direction homogeneously across the beam, and the usual
orbital form Lz = −iħ(d/dq), which rotates the beam profile (image) but
leaves polarization unchanged (20). The eigenstates of Sz correspond to
uniform, circularly polarized beams, and those of Lz correspond to
uniformly polarized beams, such as Gauss-Laguerre beams, where
the amplitude varies as eilq.

For a general three-dimensional field, Sz and Lz are not valid as
independent angular momenta because they do not preserve the trans-
versality of the electromagnetic field (17, 21). They appear in the usual
combination Jz = Lz + Sz for the total angular momentum, which is
uniquely determined by the rotational invariance of Maxwell’s equations
in three space dimensions (18, 21). However, in a beam of light, both
polarization and image rotations, around the beam axis, keep the fields
transverse, such that both spin and orbital angular momenta are valid
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and independent (13, 22). Thus, we may consider the possibility of a total
angular momentum that is a general linear combination, Jz,g = Lz + gSz.

The operator Jz,g generates simultaneous rotations of the polariza-
tion and image, in general, through different angles. As discussed below,
it is related to measurements using devices that couple the spin and orbital
degrees of freedom and can be defined for arbitrary g. However, it cor-
responds to an angular momentum of the photon only if the field can be
expanded in terms of its eigenfunctions. Thus, we seek those eigenfunc-
tions, that is, the beams that are invariant, up to a phase factor, under the
associated rotation. The solutions of the eigenvalue equation

ðLþ gSÞE ¼ jgE ð1Þ

are of the form

E ¼ a1e
il1qeR þ a2e

il2qeL ð2Þ

where eR/L are right and left circularly polarized basis vectors, and the ir-
relevant radial dependence of the eigenmode is omitted. These modes are
superpositions of two states with definite spin and orbital angular momen-
ta. The quantum number, jg, of the conserved total angular momentum is
given by

g ¼ ðl2 � l1Þ=2
jg ¼ ðl2 þ l1Þ=2

Equation 1 holds for any values of l1 and l2. However, the field should
be unchanged by a complete rotation, implying that l1 and l2 must be in-
tegers. Beams with fractional l have been considered, but are not angular
momentum eigenstates because they contain discontinuities that destroy
rotational symmetry (23, 24). On demanding integer l, we find that g and
jg are either both integers or both half-integers. Thus, we find two families
of angular momentum operators. One family includes the existing forms
L, S, and L + S, among others, where we now drop the z subscript. These
have the expected bosonic spectrum with integer eigenvalues. The other
family, typified by L + S/2, however, has a fermionic spectrum, comprising
half-integer eigenvalues.

This half-integer total angular momentum is a quantized property of
the photon. To see this, we note that the quantum theory is constructed
by expanding the field in a complete set of transverse modes, with cir-
cularly polarized Laguerre-Gauss modes being the natural choice in the
context of optical angular momentum (25). The eigenfunctions of Jg,
however, lead to other representations. For each g, we find that there is
an associated second-quantized angular momentum operator, which is the
sum over modes of the number of photons in each, multiplied by the
eigenvalue

Ĵ g ¼ L̂ þ gŜ ¼ ∑ jgâ
†
lâl

The mechanism behind this unexpected spectrum is analogous to that
of an electron orbiting a fractional quantum of magnetic flux. For the elec-
tron, there is a fractional offset in the spectrum arising from the Aharonov-
Bohm phase accumulated over a complete orbit around the flux line (14).
For photons, a similar offset can be generated by choosing a non–
Ballantine, Donegan, Eastham Sci. Adv. 2016; 2 : e1501748 29 April 2016
uniformly polarized basis. The Berry phase (26) associated with the var-
iation of polarization around a closed orbit then provides a synthetic
gauge field, which shifts the angular momentum spectrum.

Measurement of generalized total angular momentum
These new forms of total angular momentum differ from the standard one,
but nonetheless have the physical properties we expect. The established
method for measuring an optical angular momentum, be it L, S, or J1 =
L + S, involves rotating the beams traversing a Mach-Zehnder inter-
ferometer (6). This measurement exploits the fact that eigenstates pick
up a phase factor eijf when rotated, where j is the quantum number of the
measured angular momentum and f is the rotation angle. We can gen-
eralize this technique to measure J1/2, as shown in Fig. 1, by choosing wave
plates and prisms, such that the image rotates by twice as much as the
polarization, that is, by implementing the rotation corresponding to J1/2.

We argue that the operator J1/2 is an angular momentum because it
is a generator of rotations and because it can be measured by inter-
ferometric techniques analogous to those previously used (6). It also
has the required mechanical effects, as we now show. As with spin and
orbital angular momenta, the torque exerted on an object depends on how
it couples to the field. A half–wave plate, for example, reverses the sign of
the spin quantum number s = ±1 but leaves orbital angular momentum
unchanged, and hence experiences a torque 2ħs per photon (1). The
inversion of orbital angular momentum, which is achieved by an ideal
polarization-preserving Dove prism, implies a torque 2ħl per photon (27).
For the total angular momentum Jg, the quantum number is reversed on
transmission through a polarization-preserving Dove prism followed by
two half–wave plates, one with a constant fast axis and the other with a
fast axis at an angle gq where the azimuthal angle is q [that is, a q plate
(28) with charge q = g]. We calculate that the torque exerted on such an
element by a beam with quantum number jg is 2ħjg per photon. Thus,
AB

Fig. 1. The generalized total angular momentum of light. (A) Experi-
mental arrangement to study the generalized total angular momentum of
light J1/2. Photons in a variable superposition of two angular momentum ei-
genstates | j=±1/2〉 can be generated from the Gaussian input beamusing a
linear polarizer (LP), a quarter–wave plate (QWP), and a biaxial crystal (BC).
The angular momentum currents can then be measured using an interfer-
ometer, introducing rotations in theoptical paths to sort the beamaccording
to angular momentum. Measuring J1/2 entails rotating the image and polar-
ization by different angles, in this case using two polarization-preserving
Dove prisms (DP1 and DP2) to rotate the image by 180° and two half–wave
plates (HWP1 and HWP2) to rotate the polarization by 90°. BS1 and BS2 are
beam splitters used to separate and recombine the optical paths; DP1 and
DP2 are at 90° to one another, and HWP1 and HWP2 are at 45°. The piezo
delay is tuned such that each eigenstate interferes constructively at one
output and destructively at the other. (B) Calculated intensity (grayscale)
and polarization (red arrows) for the | j = 1/2〉 component of the input beam.
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the change in the eigenvalue of Jg is related to a torque as it should be,
confirming on mechanical grounds that it represents a form of angular
momentum. Because j1/2 has a half-integer spectrum, the minimum
torque exerted when this quantum number reverses is ħ, whereas for
the standard quantum numbers l, s, and j, the corresponding value
is 2ħ.

We have used this interferometer to measure the angular momentum
J1/2 of photons in beams formed from two of its eigenstates, |j1/2 = ±1/2〉.
These beams are generated by the conical refraction (29) of the light from
a helium-neon laser. As shown in Fig. 1, the light is first elliptically po-
larized before passing through a biaxial crystal, leading to a superposition
of angular momentum eigenstates. The amplitudes in the superposition
are controlled by the angle of the QWP, qqwp, with the beam varying
from purely | j1/2 = 1/2〉 to purely | j1/2 = −1/2〉 as the QWP rotates by
90°. This beam then enters a Mach-Zehnder interferometer, where two
polarization-preserving Dove prisms at 90° and two half–wave plates at
45° rotate the beam to impart a relative phase of p between the components
| j1/2 = ±1/2〉. The path lengths are tuned such that each component
interferes constructively at one output port and destructively at the other,
and the signal is detected with a photodiode. The angular momentum
current is thus related to the rates of photon arrivals P1, P2 at the two
outputs and the corresponding photocurrents I1, I2 by

〈M̂1=2〉 ¼ ℏ

2
P1 � P2ð Þ ¼ ℏ

2e
I1 � I2ð Þ ð3Þ

[the quantum efficiency of the detector will be irrelevant for the
following because we have Poissonian intensity statistics (30), and so is
taken as one]. The average angular momentum per photon is obtained by
dividing by the total flux or photocurrent. The result is shown in Fig. 2A
and confirms that the average angular momentum per photon varies be-
tween +ħ/2 and −ħ/2.

Noise in angular momentum currents
To establish the quantization of angular momentum, we have studied
its fluctuations, in particular the noise in the angular momentum current.
Electrical current noise is known to reveal the discreteness of charge and
has been used particularly to demonstrate the fractional charge of quasi-
particles in quantum Hall states (31–33). This suggests that angular mo-
mentum current noise could, analogously, reveal the discreteness of
optical angular momentum.

To establish the possibilities of such diagnostics, we first calculate
the noise properties of the angular momentum currents. We consider mea-
surements involving a finite response time T, such that the operator for
the angular momentum current is M̂g Tð Þ ¼ 1

T ∫
tþT
t dt′ Ĵ g, and use wave

packet quantization to calculate the moments of M̂ g. For a single pho-
ton in an eigenstate of J1/2, we obtain 〈M̂1=2〉 ¼ ℏj1=2=T, as expected; we
also find that the variance of the current operatorM̂1=2,s21=2 ¼ 〈M̂

2
1=2〉�

〈M̂1=2〉
2, is zero. This is consistent with the assertion that each photon

carries an exact amount of this total angular momentum. In contrast,
for this state, we obtain a nonzero variance for the orbital and spin
current operators, M̂L and M̂S . Physically, a measurement of orbital
or spin angular momentum projects onto the components of the super-
position in Eq. 2, introducing quantum noise in these currents.

Alternatively, we can consider the angular momentum currents in
the semiclassical limit, that is, for the coherent states originating from
the laser in our experiment. In this limit, in general, quantization of
current carriers appears as shot noise (30), with power spectral density
Ballantine, Donegan, Eastham Sci. Adv. 2016; 2 : e1501748 29 April 2016
2qI, where q is the charge and I is the current. The discrete charge q
can thus be obtained from the Fano factor, that is, the ratio between
current noise and current. To elucidate this, we calculate the mean
and variance of the angular momentum currents for coherent states.
For a spatial mode that is an eigenstate of Jg, we find

〈M̂g〉 ¼ ℏ

T
jg

s2g ¼
ℏjg
T

〈M̂g〉

which is the expected result for shot noise with quantized charge
ħjg. To calculate the noise for a general beam, we note that any
beam is a superposition of Laguerre-Gauss modes with amplitudes
cl,s and write â = ∑l,scl,sâl,s. In this way, we find that the Fano factor
in a general coherent state is

Fg ¼
s2g

j〈M̂g〉j
¼ ℏ∑ðl þ gsÞ2 cl;s

�� ��2
T ∑ðl þ gsÞj jcl;sj2j≥

ℏ

2T
ð4Þ

Thus, the minimum noise of an angular momentum current in
the semiclassical limit corresponds to the quantum ħ/2 and is
achieved in measurements of J1/2 on beams that are eigenstates
thereof. This noise is solely the shot noise associated with the dis-
creteness of angular momentum. Note that for any angular momen-
tum operator, Eq. 4 implies that the minimum noise is achieved in the
corresponding eigenstate, specifically that with the lowest-magnitude
nonzero eigenvalue. This shot noise limit is, thus, minimized for
A

B

Fig. 2. Experimental results. (A) Average of the total angular momentum
J1/2 per photon, in beams comprising a variable superposition of its eigen-
states | j = 1/2〉 and | j = −1/2〉. The solid line is the predicted result, corrected
for themeasured visibility of the interferometer. (B) Measured fluctuations in
the angularmomentum current quantified by its Fano factor. At theminima,
the noise is predominantly shot noise reflecting the discreteness of angular
momentum. The corresponding charge goes below ħ and approaches the
expected value of ħ/2, showing that the quantized angular momentum of
the photon is a fraction of ħ. The solid lines show the predicted result in the
ideal case, with full visibility and no classical noise.
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operators with half-integer spectra. Moreover, we see that for beams
that are not eigenstates, the noise is larger, as a result of the uncertainty
in the angular momentum of each photon.

Experimental demonstration of half-quantization
To experimentally demonstrate the half-integer quantization, we have
measured the Fano factor F1/2 for the same input beams discussed
above. We amplify and digitize the photocurrent at one output of
our interferometer, and extract the noise power at 3 MHz. This allows
us to compute the noise power in the angular momentum current:
From Eq. 3, we find

s21=2 ¼
ℏ2

4
s2P1 þ s2P2

� �
¼ ℏ2

4e2
s2I1 þ s2I2

� �
ð5Þ

using the fact that our input beams are, to a good approximation,
coherent states, such that photodetections at each output are independent.
Wemeasure the photocurrent and noise at one port as a function of qqwp,
which allows us to deduce the corresponding quantities for the other port
by symmetry, because increasing qqwp by 90° is equivalent to exchanging
the two outputs. In practice, vibrations and drift of the interferometer
during the rotation of the QWP cause slight differences between these
quantities, which are accounted for in our error estimates.

The Fano factor, divided by 1/T = 2Df, where Df is the frequency res-
olution, is plotted in Fig. 2B, again as the beam varies between |j1/2 = 1/2〉
and |j1/2 = −1/2〉. The noise is minimized when the beam is in one of
these two eigenstates and is bounded from below by ħ/2. The Fano factor,
in units of ħ/T, clearly goes below one and approaches the limit of one-
half at each minima, as predicted by Eq. 4. This demonstrates that each
photon carries a total angular momentum J1/2 that is a fraction of ħ. Note
that the ideal theoretical value of ħ/2 is a lower bound on the result; con-
tributions from classical noise and limitations on the visibility of the in-
terferometer mean that this lower bound is not necessarily achieved.
F
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DISCUSSION

Here, we have considered beams close to the paraxial limit and have
shown how the independence of spin and orbital angular momenta
allows for a new definition of total angular momentum. However, it
has recently been shown that independent spin and orbital angular
momenta can be defined beyond this limit (19, 34, 35). This immediately
provides the nonparaxial generalization of the total angular momentum
component Jg, on replacing the paraxial forms for spin and orbital
angular momenta, assumed here, with the nonparaxial ones. The non-
paraxial spin and orbital angular momenta are independently conserved;
hence, this would be a conserved quantity as well. They are modified
forms of the rotation operators, specifically the transverse parts of those
that rotate the field vectors (spin) and image (orbital) around the speci-
fied axis. The corresponding total angular momentum Jg generates these
modified rotations simultaneously, in a fixed ratio g.

The new form of total angular momentum we have identified gives
an alternative representation of the state space in terms of beams with
nonuniform polarization, leading to a new understanding of the effects
of optical angular momentum. Its half-integer spectrum shows that for
light, as is already known for electronic systems, reduced dimension-
ality allows for new forms of quantization. The half-integer quantiza-
Ballantine, Donegan, Eastham Sci. Adv. 2016; 2 : e1501748 29 April 2016
tion, which we demonstrate through noise measurements, implies
fermionic exchange statistics, and an important extension of our work
will be to identify the measurable consequences of such photonic
fermionization.
MATERIALS AND METHODS

Theory of the interferometer
We show how the interferometer shown in Fig. 1 can be used to mea-
sure the quantum statistics of the angular momentum J1/2, as quanti-
fied by the moments of its current distribution. Operationally, it is a
Mach-Zehnder interferometer in which the beam is rotated by angle
f0 in one arm, whereas a phase shift d is introduced in the other. The
beam splitter formalism gives the field operators at the two output ports
to be
â1¼ i
2

eid þ U
� �

â

â2 ¼ 1
2 eid � U
� �

â

where â is the input field. We omit the operators for the second input
port, which act on the vacuum, because they would not contribute to
the expectation values of normal-ordered operators considered here.
The operator U acts on the spatial and spin coordinates to rotate the
field, and for the rotation generated by the angular momentum operator,
Jg is eif0Jg . In the eigenbasis of orbital and spin angular momenta, the
operators have indices l and s = ±1 acted on by the angular momentum
operators as Lzâl,s = lâl,s and Jgâl,s = (l + gs)âl,s.

We were concerned with the case where g = 1/2 and with the sub-
space where j = ±1/2. This subspace involves operators â0,1, â1,−1 with
j = 1/2 and â−1,1, â0,−1 with j = −1/2. Choosing d = p/2 and f0 = p
gives â1 = −âl,s, â2 = 0 for the first class and â1 = 0, â2 = iâl,s for the
second class, showing that the interferometer will sort the beam
according to the eigenvalue of J1/2. Because any linear combination
of fields with j = 1/2 will be transmitted to the first port and any com-
bination with j = −1/2 will be transmitted to the second port, we have

M̂ ¼ ∑
l;s
ðl þ s=2Þâ†l;sâl;s

¼ 1
2
â†0;1â0;1 þ

1
2
â†1;�1â1;�1 � 1

2
â†0;�1â0;�1 � 1

2
â†�1;1â�1;1

¼ 1
2

â†1â1 � â†2â2
� �

when the angular momentum current operator is restricted to the sub-
space in question. Because this combination of the output intensity op-
erators is the same as the angular momentum current operator,
restricted to a particular subspace, its mean and higher moments will
all be identical, provided the input beam is contained wholly in that
subspace. This result generalizes in the expected manner to higher-
dimensional subspaces, where the beam could be sorted using a cascade
of interferometers (6).

Details of the input beams
The structured beams analyzed by our interferometer were generated
by a combination of polarization optics (the LP and the QWP in
4 of 7
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Fig. 1) and a BC, with the BC acting as a partial spin angular momentum–
to–orbital angular momentum converter. The beam following the LP
was a linearly polarized Gaussian, which was then incident on the QWP,
with a fast axis at angle qqwp + p/4 to the polarization (the offset sim-
plifies the following results). This led to a variable superposition of right
and left circularly polarized Gaussian beams, with amplitudes

AR ¼ eiðqqwpþp=4Þ cosðqqwpÞ
AL ¼ e�iðqqwpþp=4Þ sinðqqwpÞ ð6Þ

These two circularly polarized components, with l = 0 and helicity
s = ±1, underwent conical refraction in the BC to become (29)

l; sj i ¼ j0; 1i→ 1ffiffiffi
2

p j1;�1ð i þ j0; 1〉Þ≡j j ¼ 1=2i

0;�1j i→ 1ffiffiffi
2

p j � 1; 1ð i þ j0;�1〉Þ≡j j ¼ �1=2i

that is, eigenstates of the mixed angular momentum J1/2 with eigen-
values ±1/2, as indicated. The polarization and intensity profile (29) of
one of these components, in the focal image plane of the BC, are shown
in Fig. 1B. The orbital angular momentum and polarization of a con-
ically refracted beam are well understood and have been measured pre-
viously (36). Thus, the generated beam was a superposition of |j = ± 1/2〉,
with amplitudes given by Eq. 6 as functions of the QWP angle.

Experimental details
As shown in Fig. 1, light from a helium-neon laser was passed through
a Glan-Thompson polarizer and a wavelength-specific QWP to create
a combination of circular polarizations. This combination was passed
through a BC and a lens pair (not shown) to create a collimated conical
beam, with the focal image plane at infinity, containing a superposition
of the modes | j = ±1/2〉. This input beam was then incident on a 50:50
nonpolarizing beam splitter that separated it into the two arms of a
Mach-Zehnder interferometer. Within this interferometer, the two images
were rotated relative to one another by 180° and the two polarization
directions were rotated by 90°. The image rotation was achieved using
a pair of Dove prisms, and the polarization rotation was achieved
using a pair of half–wave plates. For space reasons, the image rotation
was achieved with one prism in each arm of the interferometer. The
prisms were not of the conventional form, because that would lead to
an angle-dependent effect on the polarization, in addition to the de-
sired transformation of the image. We instead used the previously de-
scribed structure (6), which inverted the image and acted as a QWP.
In our case, these effective QWPs did not affect the operation of the
interferometer and did not need to be compensated for. The top arm
had a pair of mirrors, acting as a delay line, on a piezo translation
stage. This stage could be varied with a resolution ≈10 nm, leading
to a resolution in the path length of ≈20 nm. There was a similar
delay line element in the second arm, on a manual translation stage,
allowing for roughly equal path lengths (this was necessary as the beam
had some spatial evolution; the interferometer did not need to be at the
zero-order fringe).

The two paths recombined at a second beam splitter, and the beams
exited the interferometer from one of two output ports. The output of
one port was focused onto a photodiode, which was used to measure
both the intensity and its noise. The current from the photodiode was
Ballantine, Donegan, Eastham Sci. Adv. 2016; 2 : e1501748 29 April 2016
converted to a voltage using a low-noise transimpedance amplifier,
and this voltage was sampled with an oscilloscope. The voltages for
each port were, thus, related to the photocurrents by V1,2 = GI1,2, with
transimpedance G = 2.55 kilohm. Equations 3 and 5 allowed us to
extract the Fano factor for the angular momentum from the voltages
and their fluctuations

F1=2 ¼ ℏ

2eG

s2V1
þ s2V2

V1 � V2
¼ ℏ

2eG

s2V1
ðqÞ þ s2V1

ðq� p=2Þ
2V1 � V0

In the second equality, we used the fact that rotating the QWP by
p/2 is equivalent to exchanging the ports, allowing only one to be
measured, and also that V1 + V2 = V0 is constant.

Error analysis
The dominant contribution to the error bars in Fig. 2B was the in-
stability and vibration of the interferometer. Because the output of the
second port at a given time was calculated as the output of the first port
at a different time, these fluctuations meant that the sum of the voltages
V1 + V2 departed from the constant V0. We displayed this as an uncer-
tainty in the measured Fano factor obtained from the uncertainty in V0.
The error in the measured noise gave a smaller contribution, because
this was obtained as an average over 1000 periodograms, yielding a frac-
tional error of the order 1=

ffiffiffiffiffiffiffiffiffi
1000

p
≈ 3%:

For us to realize the shot noise limit for the angular momentum
current, we had to use shot noise limited light. This behavior, as well
as the calibration of G, was confirmed using the relation between the
measured voltage noise and voltage (37). The noise

s2 ¼ s20 þ aV þ bV2 þ r ð7Þ

comprises a background contribution, shot noise that depends lin-
early on the signal, classical noise that depends quadratically on the signal,
and a random error proportional to the true noise. The linear term has a
coefficient

a ¼ 2eDfG ð8Þ

Figure S1 shows the measured noise, along with a fit to Eq. 7 using
Eq. 8 with the nominal G = 2.55 kilohm. The agreement confirms this
value and, furthermore, that we were operating in the shot noise
limited regime. The SD of the residuals is 90 V2/A, consistent with
the relative error on the noise estimated above.

Calculations of the current statistics
The calculations of the angular momentum statistics reported in Results
concern the time-averaged current operator

M̂g tð Þ ¼ 1
T
∫
tþT

t dt′∑
s;l
ℏ l þ gsð Þâ†l;s t0ð Þâl;s t0ð Þ ð9Þ

where T is the response time of the detector. This is equal to the
angular momentum in each mode multiplied by the number current
of photons in that mode, summed over all modes and averaged over
the response time. A nonperfect efficiency is not included because it
5 of 7
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would merely add some excess shot noise (30). The time dependence
of the beam was encoded by using the wave packet states

âx;l;s ¼ ∫dt xðtÞâl;sðtÞ

which can also be combined into superpositions of modes

âx ¼ ∑
l;s
al;sâx;l;s

The function x(t) controls the time dependence of the photon number
current but does not affect the angular momentum per photon. The
states examined consist of single-photon states

1j i ¼ â†x j0i ð10Þ

and coherent states

cj i ¼ expðâ†x � âxÞj0i ð11Þ

The expectation value of the angular momentum current operator
and its higher powers can now be calculated. The operator in Eq. 9 or
its higher powers can be placed between the states given by Eqs. 10
and 11. The commutation relations (30)

½âl;sðtÞ; â†l′ ;s′ðt′Þ� ¼ dl;l′ds;s′dðt � t′Þ
½â†l;sðtÞ; â†l′;s′ðt′Þ� ¼ ½âl;sðtÞ; âl′;s′ðt′Þ� ¼ 0

were used to evaluate the angular momentum current expectation
value or variance in terms of the time-dependent classical current,
which is proportional to ∫dt|x(t)|2.

Torques due to a mixed angular momentum
InResults,we stated that the eigenvalue of Jgwas reversedby apolarization-
preserving Dove prism followed by two half–wave plates, one with a
constant fast axis and the other with a fast axis that makes an angle
gq to the x axis when the polar angle is q. To show this, we note that
the effect of the Dove prism on the field is to send the polar angle q→
−q, whereas the half–wave plates have a combined Jones matrix, in the
basis of circular polarizations

0 e�2igq

e2igq 0

� �
0 1
1 0

� �
¼ e�2igq 0

0 e2igq

� �

Thus, the effect on an eigenstate of the form given in Eq. 2 is

a1eil1q

a2eil2q

� �
→
DP a1e�il1q

a2e�il2q

� �
→

HWPs a1e�il2q

a2e�il1q

� �
≡ a1eil

′
1q

a2eil
′
2q

� �

where we have used g = (l2 − l1)/2. The resulting field has g′ ¼
ðl′2 � l ′1Þ=2 ¼ g, but the eigenvalue is reversed j′g ¼ ðl′2 þ l′1Þ=2 ¼ �jg.
For the case where the device was rotated as a whole by angle a, we
found the same output field, but with an additional phase factor e2ijga.
Ballantine, Donegan, Eastham Sci. Adv. 2016; 2 : e1501748 29 April 2016
The change in angular momentum of the beam implies a torque,
which we calculated following the argument previously given for the
orbital case (27). If the device was spinning with an angular velocityW,
then a = Wt and the phase factor e2ijga becomes a rotational Doppler
shift (27, 38) by the angular frequency 2jgW. This implies a change in
energy E of each photon crossing the device, exerting a torque t = dE/
dW = 2ħjg.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/4/e1501748/DC1
fig. S1. Calibration of the noise measurement.
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