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Adaptive Kriging with biased randomisation for 
reliability analysis of complex limit state functions 

  

 

Abstract: The present paper researches an innovative approach in 
the application of meta-modelling for reliability analysis. It consists 
in the usage of a priori  knowledge about the problem being 
analysed in order to improve the meta-modelling numerical 
efficiency, in the present case, when calculating the probability of 
failure. 

A kriging model is applied to surrogate the failure surface. Its 
implementation uses an iterative active learning procedure that 
progressively improves the accuracy of the surrogate prediction of 
failure. The uncertainty characteristics of the Kriging model are 
applied in order to establish a notion of improvement in the 
surrogate characterization of the failure surface. A biased 
randomisation is applied in order to improve the active learning 
algorithm. Biased randomisation consists in weighting the search 
function such that the algorithm prioritizes points in the Design of 
Experiments that are more important for the problem analysed. 
Such approach is of high interest for highly non-linear failure 
functions that may enclose multiple regions in the space of 
variables that contribute to failure. Since meta-modelling reduces 
the number of evaluations of the limit-state function, the approach 
is also of relevance for complex problems that are costly to 
evaluate.  

Two examples of application are presented to ilustrate the usage 
of biased randomisation in the active Kriging approaches. The 
results show that the number of evaluations of the limit-state 
function, and consequently the numerical effort demanded for 
analysis, can be reduced with the approach implemented. It is 
shown that simple a priori information about the limit-state function 
and problem analysed may be applied to improve the numerical 
efficiency of the reliability analysis with active learning techniques. 

1 Introduction 

The usage of Kriging models for reliability analysis has 

gained particular notoriety in recent years. Kriging models 

allow for an efficient estimation of the probability of failure 

for complex systems by approximating their performance 

function. These models are therefore applied as surrogates of 

the evaluation function that defines the failure threshold, the 

limit state function.  

The present work discusses the application of active Kriging 

(AK) models using biased randomisation. The idea of biased 

randomisation involves introducing a small modification in 

the constructive behaviour that provides a certain degree of 

randomness while maintaining the logic behind the heuristic 

[1]. It consists in using implicit random information to con-

duct the search of the design of experiments in heuristic prob-

lems. Its main application is to randomise the response of de-

terministic algorithms. Nonetheless, it is shown in the present 

work that it can be also used to prioritize the search of partic-

ular areas of the design of experiments accordingly to the 

user knowledge about the problem in-hand, improving the ef-

ficiency of established learning procedures that use AK.  

In order to present how the usage of this a priori knowledge 

through biased randomisation may be implemented to im-

prove the efficiency of established learning algorithms, the 

following paper is organised as follows: Section 2 gives a 

brief overview of the active Kriging procedures and method-

ology presented; Section 3 presents two examples of applica-

tion of the premises discussed; and Section 4 presents the 

main conclusions of the work developed.   

2 Kriging modelling in reliability and structural 
analysis 

2.1 Previous works 

The limit state function that defines the problem of reliability,  

𝑔(𝑥), evaluates the response of a structure or system to a set 

of 𝑥 input conditions, with these 𝑥 input conditions being 

stochastic or not. If these are stochastic, 𝑔(𝑥) is expected to 

be of challenging evaluation. In particular, if the cost of 

evaluating 𝑔(𝑥) is large, its probabilitic characterization may 

become cumbersome.  

Reliability analysis is fundamentally a problem of classifica-

tion that addresses this complexity, where for each 𝑥 =
[𝑥1, … 𝑥𝑛]   

𝐼𝐹(𝑥) =  {
 0,      𝑔(𝑥)  ≥   0

  
   1,      𝑔(𝑥) < 0 

 

is a binary classification that defines failure (𝐼𝐹 = 1) or non-

failure (𝐼𝐹 = 0) of 𝑔(𝑥).  
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The works that use Kriging pursuit to facilitate this classifi-

cation procedure by using it as a meta-model. Kriging mod-

els, in addition to reducing the cost of the reliability analysis 

by surrogating 𝑔(𝑥), have gained relevant interest in the field 

of reliability analysis due to their capability to perform as 

self-improving functions. Because the Kriging models have 

the capability to surrogate the limit-state function and at the 

same time enclose a measure of uncertainty in the approxi-

mation, they have been widely applied in active learning AK 

procedures.  

The AK models apply the surrogate combined with sampling 

methodologies. Being the more common the Monte Carlo 

Sampling (MCS).  

One of the pioneer works that combines AK with MCS for 

reliability analysis was presented in [2], where the idea of us-

ing the meta-model as a self-improving function is widely 

discussed and one of the most frequently applied active learn-

ing strategies introduced. It uses an Expected Feasibility 

Function (EFF) to select new iterations to improve the 

Kriging model.   

Other widely used learning function was introduced in [3], 

the U learning function, which directly relates to the proba-

bility of having misclassified points in the surrogate model 

approximation and allows for a measure of improvement and 

convergence of the meta-modelling approach. 

Since the establishment of these early works on reliability 

analysis, Kriging models have been extensively used in struc-

tural engineering problems [4] [5], and more specifically re-

liability problems [6] [7] [8] [9] [10].  

2.2 Reliability analysis with Kriging models  

It was mentioned that the motivation for using Kriging mod-

els for reliability analysis is to avoid the costly evaluation of 

𝑔(𝑥), by creating a surrogate such that 𝐺(𝑥) == 𝑔(𝑥), in 

other words, so that 𝐺(𝑥) provides a good approximation of 

𝑔(𝑥).  The Kriging model is defined by,  

𝐺(𝑥) = 𝑓(𝜷𝑝; 𝑥) +  𝑍(𝑥) 

where 𝑓(𝜷𝒑; 𝑥) is a deterministic function defined by a 

regression model with 𝑝 (𝑝 ∈ ℕ+) basis functions, and 𝑍(𝑥) 

a Gaussian stochastic process with zero mean. These models 

are defined using a likelihood search on a set of 𝜽 

hyperparameters. A set of support points is required to define 

𝐺(𝑥), and these are designated as the Design of Experiments 

(DoE). Every prediction of 𝐺(𝑥) at a generic 𝑥 point is 

defined by a mean value 𝜇(𝑥) and a standard deviation 𝜎(𝑥), 

which is a measure of uncertainty in the approximation.  A 

more extensive description of the Kriging models theory and 

their definition is found in [11].  

With 𝐺(𝑥) the evaluation of the failure probability, 𝑃𝑓, is 

possible at virtually no cost. If 𝐺(𝑥) predicts accurately 𝑔(𝑥), 

then an accurate description of 𝑃𝑓 is given by 

𝑃𝑓
∗ =

∑𝐼𝐹

𝑁𝑀𝐶𝑆

=
𝑛𝐺(𝑥)<0

𝑁𝑀𝐶𝑆

 

with 𝑁𝑀𝐶𝑆 being the sample size used to estimate 𝑃𝑓 . 

𝑛𝐺(𝑥)<0 is the number of surrogate sample points with 

negative performance function. As it is assumed that 𝑃𝑓
∗ is 

expected to approximate (after convergence) well 𝑃𝑓, no 

distinction will be made between the two.  

In order to define an active learning procedure a search 

function (𝑆(𝑥)) is required. It defines the new DoE points to 

improve the meta-modelling approximation. Multiple 

functions and algorithms have been presented before, e.g., [2] 

[3] [7]. The mentioned U and EFF functions are of particular 

interest in this context. These two have set the early 

benchmarks for the AK methods, and are still widely applied. 

In the present work, for the reference ilustrative examples, 

the U function will be considered. The U function has 

captivated relevant interest in the AK field due to its 

simplicity and efficiency. It is a 𝑆(𝑥) that evaluates the 

probability of having misclassified points using  

𝑆(𝑥) = 𝑈(𝑥) =
|𝜇(𝑥)|

𝜎(𝑥)
 

a ratio of the 𝜇(𝑥) and 𝜎(𝑥), which is related to the 

probability of misclassifying a point. The next point in the 

AK procedure is the one that minimizes 𝑈(𝑥).  

2.3 Biased randomisation  

The concept of biased randomisation involves the 

introduction of a bias in the search algorithm, or more 

specifically in the search function. The bias function 𝑏(𝑥) is 

applied jointly with 𝑆(𝑥) to originate 𝑆∗(𝑥) 

𝑆∗(𝑥) = 𝑆(𝑥)𝑏(𝑥) 

𝑆∗(𝑥) is the biased search function that encloses the 

additional consideration given by 𝑏(𝑥), and that will define 

new selections to enrich the DoE.  

    The bias may be related to a priori knowledge the user may 

have about the reliability problem, and hence, is denominated 

as such.  

    The application of a biased randomization is of interest to 

any problem of reliability where the application of 

probabilistic a priori knowledge may be used to reduce the 

effort of the reliability calculations. Nonetheless, its 

application may be extended to any other structural 

engineering problems. [9] applied a similar approach to the 
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problem of fatigue design by using a bias that relates to the 

frequency of the most damaging operational states.  

For instance, in the problem of reliability it may of interest to  

focus on the points that are expected to enclose more 

contribution to the probability of failure. Such accountace 

may be characterized by the density function of the input 

variables 𝑥 (𝑓(𝑥)).   

Two ilustrative examples for the application of biased 

randomisation are presented. For the two performance 

function studied the same correlation function, a Gaussian 

correlation function, and polynomial approximation, 

ordinary kriging, was applied.  

3 Examples of application 

3.1 A simple two dimensional non-linear example  

The first representative example used considers a non-linear 

performance function applied previously in [12].    

𝑔(𝑥) = 0.5 − (𝑥1 − 2)2 − 1.5(𝑥2 − 5)3 − 3        𝑥1, 𝑥2 ∈  ℝ 

A 𝑏(𝑥) function that relates to the joint probability density of 

the domain space 𝑥 considered, and weighted by the proba-

bility of misclassification, is applied in both the examples 

presented.  

𝑏(𝑥) = 1 − 𝑓(𝑥)𝜙(−𝑈(𝑥))    𝑥 ∈ ℝ   

While the normalised joint density function 𝑓(𝑥) (with 𝑓(𝑥) 

normalised using the mean value density) prioritizes the 

selection of new DoE points that have larger probability of 

occurring, the misclassification gurantees that the influence 

of 𝑏(𝑥) is not too significantly close to the origin.  The 

density function is related to the influence of the point for 

eventual errors in the estimation of the 𝑃𝑓. 𝜙 represents  the 

standard normal cumulative density function. To some extent 

the generation of the candidate samples considers in an im-

plicit way 𝑓(𝑥), however, it is not evaluated directly in the 

selection procedure. The misclassification probability is also 

implicit in U. An alternative to considering the misclassifica-

tion probability would be to consider only the relevant can-

didates, e.g., with probability of misclassification above a 

certain threshold. 𝜙(−𝑈) should be defined such that 𝑏(𝑥) 

varies between 0 and 1.  It is important to note in regard of 

𝑏(𝑥) definition that the search function is a problem of 

minimum.  

Two comparative DoEs generated by active learning for the 

example considered are presented in Figure 1.  

It is possible to infer that the biased randomised search prior-

itizes the selection of points that are close to the origin and 

close to the region of 𝑔(𝑥)  =  0. These are the points that are 

expected to contribute the most for an accurate 𝑃𝑓 prediction. 

 

Fig. 1 Performance function prediction using 20 iterations, for the cases of AK-MCS 
and with the introduction of 𝑏(𝑥).  

Notwithstanding the fact that 𝑏(𝑥) is contributing to priori-

tize relevant points in the DoE, the benefit of 𝑏(𝑥) is mar-

ginal in regard of the number of performance function eval-

uations and convergence, Table 1. The convergence to the 

reference 𝑃𝑓 is slightly improved for the biased function, 

nonetheless, the number of iterations required to establish an 

accurate surrogate in the present example is relatively low for 

both the cases, and, the effect of using 𝑏(𝑥) is not very pro-

nounced.  

It is important to highlight that the definition of 𝑏(𝑥) may be 

case dependent. In the present case considering an additional 

penalty, such as considered in [9], may help to further 

improve the iterating scheme efficiency. As the failure is 

mainly confined to a single region of 𝑥, the global 

exploration is not as important as local exploitation. Two 

points close in the DoE in the vicinity of 𝐺(𝑥) = 0 will have 

redudant information. Figure 1, shows that this happens 

frequently in the selection algorithm for both cases. As local 

exploitation is more relevant it may be of interest to increase 

the complexity of 𝑏(𝑥) considering a local penalty for the 

selection of points in the DoE that are close to an already 

existing  point in the DoE. The average results for the 

consideration of both AK-MCS, AK-MCS𝑏(𝑥) and 𝑏(𝑥) 

with a distance penalty are presented in Table 1. 
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Table 1 Average convergence to the probability after 10 iterations applied to the AK-
MCS, biased randomised AK-MCS (AK-MCS𝑏(𝑥)), and considering a Euclidean 
penalty function when starting from the same DoE for the example of a two-dimen-
sional non-linear function, and using 10 different initial DoE of 10 points.  

Method 𝑵̅𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 CoV (𝑵̅) 𝑷𝒇
̅̅̅̅   

MCS 107 - 2.86 × 10−5  

AK-MCS  10+10 0.106 2.91 × 10−5  

AK-MCS𝒃(𝒙)  10+10 0. 065 2.84 × 10−5  

AK-MCS
𝒃(𝒙)

𝒅(𝒙)
 10+10 0.042 2.87 × 10−5  

Further application of a penalty Euclidean function (𝑑(𝑥)) 

slightly improves the convergence in relation to AK-

MCS𝑏(𝑥), for the same number of iterations.  

The application of 𝑏(𝑥), as presented, contributed to improve 

the convergence of the AK approach for the same number of 

iterations. The improvement in computation in the present 

case was only marginal. The discussion presented was of in-

terest to highlight how the 𝑏(𝑥) definition may vary, even 

within the same problem, and how the discussion of it may 

lead to further improvement. Nevertheless, the direct benefit 

of using 𝑏(𝑥)  is more evident in the following example, the 

highly non-linear Rastrigin function.   

3.2 The modified Rastrigin function 

The modified Rastrigin function [13] has been widely studied 

in the literature as a reference case of complexity for the 

adaptive Kriging methodologies. Its function is given by  

𝑔(𝑥) = 10 −  ∑ (𝑥𝑖
2 − 5 cos(2𝜋𝑥𝑖))

𝑖=1,2

,         𝑥𝑖 ∈  ℝ 

which is characterized for being highly non-linear and 

challenging to characterize with meta-modelling techniques.  

This function is of particular interest due to its multiple 

failure regions in the space 𝑥. In its evaluation, if one of the 

failure regions near the origin of the density function is 

missed in the search and prediction, the estimated probability 

of failure is expected to enclose a significant error of 

estimation.  

Figure 2 presents the convergence of the active learning to 

the reference probability of failure calculated. In both cases 

the same initial DoE of 10 points is considered. 

Consideration of 𝑏(𝑥) contributes to improve the efficiency 

of the learning procedure. In both cases, 𝑏(𝑥) enables a faster 

convergence to the reference value of 𝑃𝑓 . 

 

Fig. 2 Examples of convergence to the probability of failure of the modified Rastrigin 
function introducing a bias in the U search function.  I and II are two distinct initial 
DoE that are used in the U computations for both the cases of AK-MCS and AK-
MCS𝑏(𝑥). The reference probability is evaluated using MCS with a sample size of 
106.  

Averaged results for the convergence of the AK with biased 

randomisation, when compared with original search that does 

not use bias, are presented in Table 2.  

Table 2 Average convergence to the probability of failure for the AK-MCS and biased 
randomised AK-MCS (AK-MCS𝑏(𝑥)) when starting from the same DoE for the ex-
ample of the modified Rastrigin function. 

Method 𝑵̅𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 CoV (𝑵̅) 𝑷𝒇
̅̅̅̅  (𝑪𝒐𝑽) 

MCS 106 - 7.34 × 10−2  

AK-MCS  10 + 383.2 0.060 7.34 × 10−2  

AK-
MCS𝒃(𝒙) 

10 + 324.0 0.046 7.33 × 10−2  

Results show that the introduction of a bias randomisation in 

𝑆(𝑥)  contributes to consistently improve the convergence of 

the reliability calculations. In average, an approximate 
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reduction of 60 iterations was achieved, which is of 

significance in the particular cases where the performance 

function may be costly to evaluate (e.g. dependence on finite-

element-models).  

Figure 3 presents the results for the DoE of the active learning 

procedure in the Rastrigin function after 250 new iterations 

were performed. The usage of 𝑏(𝑥) foments the selection of 

points close to the origin of the DoE that are of major 

importance to an accurate evaluation of 𝑃𝑓. This selection 

behaviour can be identified in the circular central regions. 

The AK-MCS, after 250 iterations, has not correctly 

characterized almost half of these regions, whereas the AK-

MCS with 𝑏(𝑥) already has characterized most of them.  

 
Fig. 3 Rastrigin function after 250 iterations, for the cases of AK-MCS and with the 

introduction of 𝑏(𝑥). Trimmed (red) lines represent 𝑔(𝑥), black lines 𝐺(𝑥) and the 
(x) markers the points in the DoE of the surrogate.   

 

Up to this points, no discussion was introduce in regard of 

the stopping criteria required to stop the active learning pro-

cedure. Most of the focus was directed to the discussion of 

biased randomisation in the AK implementation.   

 

In the example presented the convergence criterion 

considered in order to stop the iterating scheme used the 

weight of new iterations in the calculated of 𝑃𝑓, similar to 

what was introduced in [7]. This criteria was used to 

characterize the values of convergence in Table 2. To infer 

on further stability of the results a computational budget of 

450 points was also considered in Section 3.2. Figure 4 

presents an example of stopping criteria evaluations for the 

case of the Rastrigin function. It considers the amount of 

misclassified probability of failure left to address as a 

function of the current estimate of 𝐺(𝑥) at iteration 𝑖.  
 

 
Fig. 4 Active learning stopping criteria results for the cases of AK-MCS and with the 
introduction of 𝑏(𝑥). 𝜁 represents the threshold error in 𝑃𝑓, in the present case a 

value of 0.025 was applied as a reference.   

 

[3] proposed a stopping criteria that considers a limit of 

confidence for the classification of 𝐺(𝑥), which was shown 

before to be very conservative [14]. In the present case the 

interest was to converge the probability of failure within a 

specified range of error.  

4 Conclusions 

The present work discussed the usage of biased 

randomisation in the reliability assessment using active 

Kriging procedures. Biased randomisation enables the usage 

of a priori  knowledge about the problem in-hand in order to 

improve the performance of the active learning. In the present 

case the usage of biased randomisation enabled the 

prioritisation of points in the active learning procedure that 

are expected to contribute more to the accuracy of the 

reliability estimations. Such prioritisation is of relevance for 

the case of complex performance functions, for which the 

search algorithm should prioritize areas of the design of 

experiments that comprise large contributions to the 

characterization of the probability of failure.   

The active learning with biased randomization was 

researched for two limit-state functions. It was shown that the 

usage of a biased randomization improved the efficiency of 

analysing moderately and highly complex performance 

functions. 

One of the main challenges of using a biased randomisation 

is that for a full exploitation of the advantages of using a bias 

function its definition may be case-dependent. As a result, the 

bias implementation may be challenging. In the present case 

the usage of the joint distribution weighted by the 

misclassification improved the convergence of the learing 

algorithm. However, its influence was more pronounced in 

the second example presented, which may be an indicative 

that this function is more suited to it.   
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