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Abstract

In this thesis, optimal routing problems in wireless ad hoc networks are investigated. The
majority of existing routing algorithms follow a selfish strategy, where routing decisions
are based on individual communication flows. The performance of these algorithms
may suffer from the competition between multiple communication flows, also known as
the tragedy of the commons. This issue worsens in wireless ad hoc networks because
communications in these networks experiences more mutual interference between flows
in comparison to communication in wired networks.

Optimal routing approaches apply results of optimization theory such as the gra-
dient descent method or the Newtons method to network routing problems. These
approaches optimize the overall performance of all communications in a network with
respect to certain criteria; in this thesis, I chose the delay experienced by all flows as the
optimization criterion.

The limitations of existing optimal routing approaches are threefold. Firstly, they
model the routing problem as a link graph, where each vertex represents a router and
each link represents a connection between two routers. This link model suits wired
networks where the main factor influencing communication over a link is the existing
traffic over this link. However, in wireless communications, a transmission between two
neighbouring nodes is not only subject to existing traffic between these nodes but also
to interfering traffic in the vicinity. Secondly, existing optimization methods coordi-

nate routing decisions of all communication flows which has been realized in centralized

vil



algorithms. Distributed optimal approaches rely on significant amounts of transfers of
information to support these optimizations, which does not suit wireless networks, where
the bandwidth is limited. Finally, existing approaches assume the availability of all po-
tential paths in a network and focus on the data distribution over them. However, the
number of potential paths between a source and a destination node may be very large.
It may be practically infeasible to discover and to propagate the cost information of all
possible paths in this scenario.

In this thesis, I propose a function called the wireless medium cost that models the
latency incurred by wireless interference. It is proven that the routing problem in wireless
networks is indeed convex. Therefore, many strong results in optimization theory can be
applied to this problem. Using the wireless medium cost, I propose a fully distributed
optimal routing algorithm for wireless ad hoc networks. It is then demonstrated that the
result of this algorithm is significantly better than that of a selfish algorithm, in the sense
that the lower bound of the cost of selfish routing divided by the cost of optimal routing
is infinite. As the evaluations confirm, our proposed algorithm converges significantly
faster compared to existing distributed optimal approaches. These theoretical results
are then incorporated in the design of a novel route discovery method that discovers

loop-free necessary paths used by the optimal communications approach.
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Chapter 1

Introduction

1.1 Context

A wireless ad hoc network is an infrastructure-less network where preexisting centralised
control may not be present. Devices, termed as nodes, within transmission range of each
other are interconnected through wireless communication. Although it is possible to
organise a hierarchical topology where a number of clusters are organized, we focus our
study on a flat topology where each node acts as a router and relays data traffic for
other nodes.

Unicast routing is one of the fundamental tasks in the networking domain. It ad-
dresses the discovery and maintenance of forwarding paths between a source node and a
destination node. Some of the well established unicast routing approaches are as follows.
Shortest path routing protocols, such as AODV, OLSR, DSR, etc., aim to set up a path
with the least hop count between source and destination nodes. These protocols are
simple to implement but overlook the traffic dynamism of a network that may result in
hot spots of congested nodes. Many adaptive approaches have been proposed to avoid
highly congested paths. In this category, minimum latency routing protocols searches for

a path with least latency for a communication flow; Least transmission routing protocols



take the retransmission incurred by interference into account; Queue length-based met-
rics and number of interfering nodes have also been used as criteria of route discovery.
In order to provide robustness and reliability to data transmission, multipath routing
protocols establish multiple disjoint paths for a single communication flow. All these
approaches follow a selfish strategy in that each communication flow routes its data
traffic through single or a set of route(s) with the least cost under certain metrics, e.g.
hop counts, latency, etc. The performance of such a selfish approach may suffer from
the competition between different flows, also known as the "tragedy of the commons”.

An optimal routing approach is one that optimizes the behaviour of all communica-
tion flows in a network. It can be formulated as an application of optimization theory:
Given the traffic demand of all communications in a network, D, and a cost function of
the network, C(-), an optimal routing protocol discovers potential paths and a feasible
traffic distribution on the paths, F™* so that the overall cost of the network is minimized,
C(F*) = min. {C(F)|VF is feasible}. Under many objectives of practical interests, such
as latency experienced by network traffic, power consumed by all the nodes, etc., the cost
function C(-) can be modelled as or modified into an increasing convex function, where
strong results from optimization theory reside. According to the Karush-Kuhn-Tucker
(KKT) condition, under an optimal solution, F**, for any communication, the marginal
costs of all used paths are the same and are no greater than that of any unused paths.
This state is also known as the optimal Wardrop equilibrium.

One class of methods that is commonly used in existing optimal routing protocols
is the gradient-based method. The marginal or the first derivative cost of each path,
is used as the cost metric. Each communication iteratively increases the traffic on
paths with smaller marginal cost and decreases the traffic on the paths with larger
marginal cost until the optimal Wardrop equilibrium is reached. These methods are
simple to implement in comparison to other optimization approaches but suffer from
a slow convergence rate. A more mathematically advanced class of methods is the

second order Newton’s method [Boyd and Vandenberghe, 2004]. In addition to the first



derivatives, it uses the second derivatives, i.e. the Hessian matrix of the cost function,
to speed up the convergence to optimum.

The problem of finding an optimal solution in wireless ad hoc networks. although
lacking of research efforts, is of particular interests. As the physical processing power
of wireless devices increases, the future applications of wireless ad hoc networks may
see substantial demands of data traffic. The communication resources, however, are
scarce in ad hoc networks: In comparison to wired transmission, wireless transmission
experiences lower data rate and is error prone; Ad hoc devices may have limited power
supply. Therefore, ad hoc networks thirst for approaches that improve the performance
of communication. At the same time, an ad hoc network lacks central control. More
importantly, wireless signals transmit on an open medium. Neighbouring communication
flows will compete for medium access and interfere with each other’s transmission. In
such highly coupled systems, selfish approaches are likely to suffer more from anarchy.
It gives the space for an optimal routing solution to improve networking performance

from selfish approaches.

1.2 Problem Domain and Notations

In this section, we firstly define the goal and the problem domain of this thesis. Then,

we describe some of the basic notations in this thesis.

1.2.1 Objectives

Common cost metrics of network optimization include traffic delay, power consumption,
throughput, and etc. We choose the communication delay experienced by all the data
traffic in a network as the cost metric of our routing optimization. This choice of the cost
metric is motivated as follows: 1) The communication delay is an important criterion
to applications; 2) It is a good indicator of network congestions, which will leads to

deterioration of many other performance metric, such as data delivery ratio; 3) It is



sensitive to routing behaviours. Bad routing decisions will introduce large delays by
either creating long forwarding paths or causing congested nodes. Therefore, in this
thesis, we focus on challenges and approaches to minimize the cost of delay, although a

large portion of our solution can be transferred to optimize other forms of cost metrics.

1.2.2 Scope and Assumptions

A routing task solves the assignment of paths by which data traffic are forwarded. For
a single path routing algorithm, it involves the discovery of the best path based on
certain criteria. In an optimal routing algorithm, multiple paths may be utilized by a
communication flow, as long as the overall network cost is minimized. The scope of an
optimal routing algorithm is slightly wider than single-path routing algorithms. The

functionalities that our optimal routing algorithm covers are listed below:
1. the discovery of multiple potential paths
2. the decisions of a subset of paths to use
3. the data distribution on multiple paths

Throughout the thesis, we assume an arbitrarily splittable traffic unless stated otherwise.
In practice, this can be achieved by the fragmentation of data packets along forwarding
paths, although it will lead to large overhead. A more popular method is to approximate
it with weighted round robin at intermediate nodes.

We focus on scenarios where a network sees a large and persistent traffic demand so
that congestion exists. A practical example can be large file sharing between node pairs.

We assume a quasi-static network topology in the sense that we do not address
the mobility of nodes explicitly but aim to achieve a fast convergence of our routing
algorithm in order to react to topological change.

We further limit our attention to single communication channel for wireless transmis-

sion. Neighbouring transmissions share the medium in a time-division manner. That is,



a node can only correctly receive one communication signal at any time slot. We assume
a perfect transmission in the sense that if two nodes are within each other’s transmission
range, they can transmit data to each other. The cost incurred by contention of medium
access and by retransmission due to collision are modelled by a cost function.

Finally, we do not consider the battery life of wireless nodes and assume all nodes

have infinite battery life.

1.2.3 Notations

In this section, we present definitions and notations that are used throughout the thesis.
A network G = {V, L} is defined as a set of nodes V and a set of wireless links £. A
communication pair w = {s,d} includes a source node s, and destination node d. A path
p C L is a set of connected links. P denotes all paths in the network and P, denotes all
paths between a communication pair w.

We denote the traffic demand for communication w as 7,,. A flow f, denotes the
data that are transmitted over a path p e P,. Let F = {f,|p € P} denote the overall

flow pattern of a network. We call F a feasible solution to a routing task if for any w,

Tu= Z f jo )8
PEPw _
The data load f, of node a, is the summation of all flows that run through it:
fa=2_duly (1.1)

peEP

where 0 ifadp

Oap =

1 ifa€ep

We define N, as the set of neighbours of node a, and accordingly define N, as the

neighbouring traffic of node a:

Na=2f_z

€N,
Communication delay is the result of underlying transmission ability, interference

and workload over a medium. We define a latency function £(-) over one hop. It takes



the data load of the medium as input. We assume the latency function to be convex
increasing. We define the cost function over one node, C,, as the latency experienced

by all communications that run through the node.
Co= e(f_a = Na).fa
The cost of a network is given accordingly.

C(F)= > Ca
acV
Given a network and the traffic demand, the objective of our solution, namely the

network optimum, is to find a feasible F that minimizes the network cost.

minin__nize C(F) (1.2a)
Bh Y =T (1.2b)
PEPw
Fr0 (1.2¢)
g(F) <C (1.2d)

1.3 Challenges

Wireless ad hoc networks impose new challenges to the design of optimal routing pro-
tocols. In this section, we discuss some of the difficult issues for wireless optimization,

which we will address later through the rest of this thesis.

1.3.1 Wireless Cost Function

Optimal approaches use marginal cost - the derivative of latency in our case, to make
routing decisions. During the runtime of communications, the value of the derivatives
can not be measured but only inferred from the change of latency measurements. Such
an estimate suffers from low accuracy and deteriorates further if one wishes to use the

second derivatives to speed up the convergence. Therefore, unlike selfish approaches,



optimal approaches require an explicit cost function that models the curvature of latency
value with satisfying accuracy, of which both the first and the second derivatives can be
computed during algorithm runtime.

Due to the broadcast nature of radio signals, the wireless interference in ad hoc
networks differs from the link-based interference in wired networks. In the link-based
model, the latency experienced by data traffic from one node, say A, to another node,
say B, is only subject to the amount of traffic along the link AB. Combining all links
and nodes, a network can be represented by a weighted graph, for example one shown
in Fig.(1.1). With full or partial knowledge of the graph, a wired routing algorithm,
be it optimal or selfish on a given cost metric, makes routing decisions. On the other
hand, in ad hoc networks, the latency experienced by data traffic depends on traffic of
multiple links that contend for medium access. For example, in an ad hoc network with
the same topology shown in Fig.(1.1), the cost of traffic from A to B depends on the
outgoing and incoming traffic of nodes A, B and D, as well as the incoming traffic of
nodes C and E. Therefore, existing link-based cost model and weighted graph proposed
for wired networks do not suit wireless communication.

The analysis of the wireless interference for the design of a cost function is non-trivial.
Let us first examine this issue at the medium access control (MAC) layer. Different
interfering traffic may have different mechanisms of impacts on the cost of one traffic
link. In the example of Fig.(1.1), the link traffic fiis interfered by traffic fo through
joint queueing and shared medium access at node A, while it is interfered by traffic f3
through medium contention. In addition, the two types of interference may be coupled.
Traffic f3 impacts the performance of traffic fo through its interfering with the medium
access of traffic fi. Moving on to the network layer, we can see that different traffic
flows may interfere with each other at multiple occasions with different types of impact.
In fact, exclusive to the domain of ad hoc networking, a traffic flow interferes with itself
as adjacent intermediate nodes of a path contend for medium access. It complicates the

design of a cost function with regard to network traffic flow.



(a) A wired network (b) A wireless network

Fig. 1.1: View of Interference: Wired v.s. Wireless

In summary of this section, it is both necessary and challenging to derive a close-form
cost function for optimal ad hoc routing algorithms. It is also interesting to note that,
because of the complicated interference model, one shall not assume the convexity of the

networking problem without evidences.

1.3.2 Distributed Methods

Wireless ad hoc networks postulate a distributed type of routing algorithms, which is a
challenge for optimization approaches.

The distributed manner of a routing algorithm can be understood from two aspects.
From the computation aspect, routing decisions of each node, i.e. the distribution of
traffic to next hop nodes, should be made locally. For an optimal routing, this involves
decomposing an optimization task into multiple components, which are carried out at
different nodes. From the communication aspect, information exchanged between remote
components should be kept at a minimum. Considering that the rationale behind optimal
routing approaches is for different communication flows to behave in coordination rather
than being selfish, it is in general a challenge to design an optimal routing algorithm

with a high degree of decoupling between components.



1.3.3 Route Discovery

The issue of route discovery for optimal routing is essential but missing for ad hoc
networks. Because nodes may transmit data to all their neighbours, a populated ad hoc
network may have a high degree of connectivity. There may be an astronomical amount
of potential paths between a source node and a destination node. Existing optimal
routing approaches mainly assume the presence of all potential paths and compute the
data distribution on all the paths, although not all of the paths may be used. While this
is feasible in a backbone network as routers can be known a priori and remain static, it is
infeasible to discover and maintain a large amount of paths in ad hoc networks. Existing
multipath route discovery approaches aim to establish a small number of disjoint paths.
Although the criterion of disjointness shows evidences of robustness, the optimality of

discovered paths can not be guaranteed.

1.4 Proposed Solutions

1.4.1 Wireless Medium Cost

Our journey to an optimal routing algorithm starts with an investigation of cost of
latency in wireless ad hoc networks. We introduce a cost function, called wireless medium
cost, to replace the link cost in wired communication. It captures the latency incurred by
a network traffic flow upon traffic on the disc of its radio coverage. The key is to model
the delay at each node through a multi-class first come first serve (FCFS) queue with
general service. Each class of traffic represents packets addressed for a certain station
therefore experiences different service. The mean and second moment of the service time
- the medium access time plus the transmission time - of all classes are the input of the
queueing model. They can be calculated separately using results from polling systems or
analytical model for specific MAC protocols. Finally, we arrive at the wireless medium

cost by summing all queueing and service delay factored by their traffic flow. Because



the wireless medium cost models the impacts of a traffic flow, the marginal medium cost

of a path is the derivative of the network objective cost to the traffic along the path.
With cost function defined, we discuss the convexity of the wireless optimal routing

problem and demonstrate that the problem is in fact strictly convex if the medium access

time is convex with respect to data rate.

1.4.2 A Distributed Optimization Method

We propose an optimal routing approach using the wireless medium cost function to ad-
dress the problem (1.2). The core of the approach is a quota-based mechanism integrated
with the interior-point method.

The interior-point method is an extension to the classical Newton’s method in order
to address optimization problems with inequality constraints. It introduces an extra cost
for the violation of inequality constraints by adding a barrier function to the objective
cost function. The barrier function increases to infinity when approaching infeasible
regions of the inequality constraints. Thus it keeps Newton'’s direction to feasible regions.
It has been shown that the interior-point method retains the superlinear convergence rate
of Newton’s method. In the domain of optimal routing, the barrier function takes the
summation of competing traffic flow at each hop - upper bounded by the rate capacity
- as its input. One barrier per hop is added a path cost. Therefore, through the barrier
method, multiple communication flows are heavily coupled. It results in difficulties for
distributed implementation of the algorithm.

In order to address this issue, we develop a quota-based mechanism. Each node
calculates its local medium capacity residual, taking its neighbouring traffic into account.
Note that neighbouring nodes may have different views of capacity residual. According
to some rules that guarantees the feasibility, each node assigns a share of the medium
capacity residual, namely a quota, to each traffic flow that runs through it. The quota
of a path is the minimum one from all its intermediate nodes. The barrier function

takes the quota value of a path as its input. During the computation of Newton step,
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one barrier per path is added. The quota-based mechanism release the coupling among
communication flows. We demonstrate that it is more efficient compared to the standard
distributed implementation of interior-point method.

The quota-based mechanism distributes the optimization task into different commu-
nication flows. Next, we explore the substructure property of our routing approach and
reform it from source routing to destination routing. This reformation can be roughly
understood as distributing the optimization task of one communication flow into its
intermediate nodes.

To the best of our knowledge, existing Newton-based routing approaches can all be
classified as source routing: A source node gathers the cost information of all its paths to
each destination node and computes its routing decisions. This creates communication
overhead and imposes heavy computation loads on source nodes.

Similar to the well-studied single path destination routing, we decompose our routing
approach iteratively into subtasks of routing from intermediate nodes to destination
nodes. This procedure can be understood from two directions. In destination-to-source
direction, cost information and quota values of multiple paths merge at their intersection
node. We devise rules of the merge so that the resulting routing solution routes the
same amount of traffic to the intersection node as if paths are not merged. In source-
to-destination direction, given its receiving traffic, either from application layer or from
last hop nodes, each node calculates a traffic assignment to next hop nodes according to
their cost information and quota-value.

In summary, we propose a node-level distributed quota-based interior-point method

to address the problem (1.2).

1.4.3 Route Discovery

We investigate issues of on-demand multipath route discovery for optimal routing, al-
though many results can be translated to a proactive manner. In a route discovery pro-

cess, each source node floods a route request message before data transmission. Route
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tables are updated by route reply messages from destination nodes.

Our study in route discovery can be summarized by three parts. Firstly, we take
advantages of wireless transmission and establish some propositions exclusive in ad hoc
networks to prune the flooding of route request messages. Loops and paths that contain
other paths are removed during the forwarding of request messages. Secondly, we realise
that the update of routing tables for an optimal destination routing requires special
care. For a cost of latency, the merge of cost from multiple paths results in a smaller
cost than that of individual paths, which leads to loops in per-hop forwarding. We
develop a mechanism that separates the concepts between costs of next hops and orders
of intermediate nodes in a path. Finally, it turns out that a by-product information of
Newton’s method, the dual direction, can be used as a time-to-live (TTL) to filter out
‘unnecessary paths’ during route discovery. By ‘unnecessary paths’ we mean paths that
will be used in the optimal routing solution of our approach. This enables our routing
algorithm to start a small set of paths - even the shortest single path in hop counts
- and to expand quickly to the optimal set of paths after a few Newton steps in data

transmission.

1.4.4 Diagonal Hessian Approximation

The computation of Newton step involves the inverse of a Hessian matrix of the objective
function, which is known to be computationally expensive to carry out. The standard
approach is to introduce an iterative method, such as Jacobi method, Gauss-Seidel
method or preconditional conjugate gradient method, to compute each Newton step.
We argue that these nested iterations transform the computational complexity of the
problem to the communicational complexity of the problem, therefore do not suit ad hoc
networks.

Our optimal routing approach is established on a diagonal approximation of the Hes-
sian matrix. Such an approximation reduces largely the complexity of the optimization

at the price of a slower convergence rate. We demonstrate statistically that in most
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scenarios of our simulations, the convergence rate is still satisfying.

1.5 Structure of the Thesis

The thesis is organized as follows. In chapter 2 and 3, we review the state of the art results
in routing algorithm domain and in theoretical optimization domain respectively. By the
end of each chapter, we summarize open questions in that domain for the design of an
optimal routing algorithm. In chapter 4 we present our design of a wireless medium cost
that models wireless interference. In chapter 5, we give the design of an optimal routing
algorithm using the wireless medium cost to optimization wireless communication. In
chapter 6, we verify the fundamental arguments of our approach. In chapter 7, we

conclude the thesis and point the future direction.
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Part 1

State of the Art
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The motivations and the challenges of our proposed solution to the wireless optimal
routing task can not be fully revealed or justified without a scrutiny of our knowledge in
related domains. In this chapter, we review some of the state of the art that either are
closely related to our solution or presents tools that we leverage in the rest of the thesis.

Firstly, we review some of the classical routing algorithms. The term ‘classical’ here
refers to routing approaches that do not consider the theoretical optimization. Most of
these approaches follow a selfish strategy. However, they provide engineering insights
and solutions to issues in routing domain which also exist in optimal routing domain.

Secondly, we review existing optimal routing algorithms, which are close competitors
of our solutions. We start by giving an overview of the system model that the majority
of the optimization approaches follow. Then, we categorize optimal algorithms by their
mathematical methods. In each category, we present its mathematical background and
discuss routing algorithms using the method.

Finally, we review recent progress in the delay analysis of wireless communication.
It includes results from polling systems, MAC layer scheduling and modelling of 802.11

DCF. These results can be used in our development of a cost function in next chapter.
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Chapter 2

Classical Routing Approaches

The majority of existing routing algorithms do not optimize an objective function of
a network but rather they establish paths with the least given metric for each com-
munication. They focus on removing loops in paths, reducing the control overhead and
avoiding instability of forwarding paths. In this section, we review these classical routing

approaches whose results may be carried on to the design of optimal routing algorithms.

2.1 Link-State Routing

Routing algorithms, by the form of message exchange, are commonly classified into link-
state routing and distance-vector routing. The optimal routing algorithm we propose
can be classified as a distance-vector. In the following, for the sake of the completeness
of the review, we start briefly from the less related link-state routing before discussing
distance-vector routing in next subsection.

A link-state routing algorithm can be roughly characterized as ‘each node telling the
network about its neighbouring links information’. Through link sensing, each node dis-
covers its neighbours and the cost metric of the link to each neighbour, i.e. the link-state
information. Each node periodically floods the link-state information advertisement to

all nodes in a network. Receiving advertisements from all other nodes, each node can
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reconstruct a network map. The Dijkstra’s Shortest Path Algorithm (SPA) [Dijkstra,
1959] can be used locally to compute the shortest path to all destination nodes.

Open Shortest Path First (OSPF) [Moy, 1998] is a link-state routing protocol that
has been widely deployed in enterprise networks. Another link-state routing protocol,
namely Intermediate-System to Intermediate System (IS-IS) [Oran, 1990], is commonly
used in ISP networks. In ad hoc networks, Optimized Link-State Routing protocol
(OLSR) [Clausen and Jacquet, 2003] has gained a wide popularity. The flooding of the
link-state information can be expensive in overhead. A simple technique to reduce such a
flooding is for nodes to keep track of the link-state advertisements and to avoid sending
multiple copies of the same one. Some more advanced flooding reduction techniques
include area routing [Moy, 1998], fish-eye state routing [Pei et al., 2000], approximate
link-state routing [Levchenko et al., 2008] and multi-point relays (MPR) [Clausen and
Jacquet, 2003]. Other than the MPR technique that utilizes the broadcast nature of
wireless transmission, most of these techniques reduce the flooding overhead at a cost of
losing accuracy.

Despite these flooding reduction techniques, link-state routing can be still expensive
in control overhead for ad hoc networks. The core issue of link-state routing is that in
a flat, structureless network such as an ad hoc network, every node needs to maintain a
global knowledge of the network topology. It in general requires that each node period-
ically floods its link information. This means that at each node, paths are maintained
to all other nodes at all time, which are unnecessary. To the best of our knowledge,
only a handful of exceptions exist. Notable proposals include: Source-tree On-demand
Adaptive Routing (SOAR) [Roy and Garcia-Luna-Aceves, 2001] and On-demand LInk
Vector Routing (OLIVE) [Garcia-Luna-Aceves and Roy, 2005]. They allow a node to
discover part of the network topology to compute paths to a destination node on the
event of data arrivals. The trick is, instead of sharing state information of neighbouring
links, nodes share state information of all links in the path to a requested destination.

This mechanism resembles much similarities to on-demand distance-vector routing, be-
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cause it is the path information that are shared between neighbours. Further studies are
required to distinguish and compare these two types of routing algorithms.

In summary, the large amount of control overhead is not desirable in wireless &d hoc
networks where our interest lies. Therefore, we design our optimal routing algorithm in a
on-demand distance-vector form. However, we do not eliminate the possibility of & link-
state implementation of our optimal routing nor do we project the comparison between

the optimal distance-vector routing and the potential optimal link-state routing.

2.2 Distance-Vector Routing

A distance-vector routing algorithm can be roughly characterized as ‘each node ielling
its neighbours the shortest path it has to known destinations’. In contrary to link-state
routing, nodes do not try to construct the network map. But rather, each node maintains
a routing table with the least distance to each known destination and the next hop
neighbours through which it can reach each destination. Neighbouring nodes share their
routing information. In this way, best routes towards a destination node is gradually
built from its neighbours to remote nodes. This is method is called distributed Belman-
Ford algorithm [Bellman, 1957,L. R. Ford and Fulkerson, 1962]. Notable distance-vector
routing protocols include Routing Information Protocol (RIP) [Malkin, 1998, Irterior
Gateway Routing Protocol (IGRP) [IGR, 1991] and Enhanced Interior Gateway Routing
Protocol (EIGRP) [Albrightson et al., 1994] in wired networks.

One desirable feature of distance-vector routing in ad hoc networks is thas it is
straightforward to implement in an on-demand manner. A general approach is as fcllows.
On receiving a data packet addressed for an unknown destination, a node generates and
sends out a route request message (RREQ) to all its neighbours. If a neighbour node
has a route to the destination node, it generate a route reply message (RREP) with a
distance. Otherwise, it forwards the RREQ message further to its neighbours. I’ none

of the network nodes have stored routes to the destination, the RREQ message vill be
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forwarded and eventually reach the destination node. It send a RREP message back
through the forwarding path of its corresponding RREQ message. The RREP message
increases its distance at each hop. On receiving a RREP message, a node updates its
routing table with the next hop neighbour with the least distance to the destination.
Data messages are sent through the shortest path. Examples include Ad hoc On-demand
Distance-Vector routing (AODV) [Perkins et al., 2003] and dynamic MANET on-demand
(AODVv2) routing [Perkins et al., 2012]. In next section, we examine an infamous

problem of distance-vector routing and review solutions for this problem.

2.3 Loops and Count-to-Infinity Problem

The fact that nodes do not maintain a global knowledge of a network topology has a
downside. Distance-vector routing suffers a so-called count-to-infinity problem. The
problem arises from mutual deceptions of neighbouring nodes. When network topol-
ogy changes, loops may occur between neighbouring nodes. For example, as shown in
Fig.(2.1), node A and B can reach node E through C and D. When link CD breaks,
node C will falsely believe that through A and B it can reach node D. The three nodes
continuously point to each other for next hop. Hop counts at each node increase to
infinity. Loops are formed.

Existing methods to address the count-to-infinity problem can be classified into four
categories: limits on hop count, use of sequence number, diffusing computation, and

path finding. In the following, we briefly explain these methods.

2.3.1 Hop Count Limits

A simple approach to eliminate the count-to-infinity problem is to set a upper bound
on hop counts for each node. Once the limit is reached, a node treat the link as broken.
After a number of rounds, the loops are removed. This approach suffers from a slow

convergence rate. Some improvements have been developed on top of this method. For
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Fig. 2.1: Count-to-Infinity Example

example, RIP uses a split horizon with poison reverse technique [Malkin, 1998]. But

they do not fully eliminate the problem.

2.3.2 Destination Sequence Number

Sequence number has been used to indicate the freshness of information at the network
layer. Perkins and Bhagwat proposed to use sequence number to remove loops in their
Destination-Sequenced Distance Vector (DSDV) [Perkins and Bhagwat, 1994] routing
protocol. The use of sequence number has been adopted in AODV and AODVv2. The
idea is to attach an incremental sequence number with information originated from a
destination node. For the example in Fig.(2.1), let us assume the sequence number of
node D is 5, which is known for all nodes. Once link CD breaks, node C attaches an
increased sequence number 6 to a RREQ message. On receiving this message, node A
and B invalidate their route information as they are out of dated. Assuming node B
has a new separate route towards D, the RREQ message will be forwarded to node D
through that path. Node D replies a RREP message with an increased sequence 7, which

will update all routing information at node A, B and C.

2.3.3 Path-Finding

One angle to view the count-to-infinity problem is that nodes do not have topology
information. After link changes in a network, nodes need to recalculate routes. When a

node receives new information about a route to a destination node from its neighbour,
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it has no knowledge about whether or not it is already somewhere on the route from the
neighbour to the destination. Therefore, loops may occur. Following this rationale, an
intuitive solution is for nodes to learn about links of their known paths.

Path-finding algorithms are a type of distance-vector routing that help nodes to
learn topology information efficiently. In addition to distance information, messages
exchanged between neighbours also include predecessors on paths. A predecessor of a
path towards a destination node is the second last hop of the path. The predecessor
and the destination node of a path together constitute the last link of the path. From
paths information to all known destinations, a node can construct the topology of a
network and use it to prevent loops. For example, in the network shown in Fig.(2.1),
node A receives from node C path information towards node D and E and from node B
path information towards node C, D, and E. Node A can construct the topology of the
network. In case, link (C, D) breaks. Node A can rule out paths from both node C and
B, because it understands that the path through B include node C.

A path-finding algorithm shares some similarity with a link-state routing as in both
cases, network topologies are construct at each node. However, unlike link-state routing
where link-state information is flooded, in a path-finding algorithm remote links are
shared between neighbours together with path distances. Nodes choose next hops based
on their reported distance to a destination. Topology information is used only to detect
loops. It has been argued that path-finding algorithms outperformed proactive link-
state algorithms |Garcia-Luna-Aceves and Murthy, 1997, Vutukury and Garcia-Luna-
Aceves, 2000a]. Examples of path-finding algorithms includes Loop-free Path-finding
Algorithm (LPA) [Garcia-Luna-Aceves and Murthy, 1997] and an algorithm proposed
by Humblet [Humblet, 1991]

In the event of a topology change, temporal loops may occur in path-finding algo-

rithms before predecessor information of all intermediate nodes is updated.
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2.3.4 Feasibility Condition

Similar to the use of sequence number in DSDV and AODV, the feasibility condition
is a mechanism to detect and prevent potential loops at every instant. In order to
understand the rationale of the feasibility condition, we can make a simple observation
from the view of a data packet.

Imagine that we are going from a start point to a destination point. Regardless of
the routes we take, as long as each step results in a strictly decreasing distance towards
the destination, we can not travel in circles. Topology changes in a network may leave
false information at intermediate nodes. Following false road signs, we may violate the
distance descent requirement and end up in loops.

The feasibility condition introduces a new distance value called feasible distance
between two nodes ¢ and j, denoted by F D; A feasible distance is a copy of the
historical minimum value of its distance, Dj-, to destination j, since the last time it was
safely assigned. Denote the distance reported from neighbour n to ¢ towards destination
j as D;n, which is essentially a copy of D7 but is noted differently to indicate that
it is a view of node i. Denote the link distance between neighbours ¢ and n as [; ,,.
Denote the next hop node from node i to destination j, the successor, as s; It states
that [Garcia-Luna-Aceves and Murthy, 1997]:

"If at time t router i needs to update its current successor, it can choose as its new
successor s§- any router n € N; such that 1) D;n Sl = Min{D;.z + liz|lz € N;} and 2)
Di, < FD}”

The first condition indicates a selection of the shortest path. Because D;. >F D; =
Djn = D7, the second condition guarantees that the actual distance can only be de-
creasing at each hop. Using the historical minimum distance as a guard, the feasibility
condition is conservative. It has been proven to be a sufficient but not necessary condi-
tion for loop-freedom at every instant [Garcia-Luna-Aceves and Murthy, 1997].

If a node can not find a successor that meets the feasibility condition, it initializes a

query for routes to the destination node. Diffusing computations [Dijkstra and Scholten,
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1980] is a signalling scheme to avoid false terminations for distributed computation
among multihop nodes. Diffusing Update ALgorithm (DUAL) [Garcia-Lunes-Aceves,
1993] makes use of the diffusing computation technique to propagate route queries for
the feasibility conditions. EIGRP [Albrightson et al., 1994] is based on DUAL. The
Path-finding algorithm can be used in conjunction with the feasibility condition [Garcia-
Luna-Aceves and Murthy, 1997], which has been demonstrated to be more efficient than
DUAL. A more promising approach is to combine the use of sequence number and the

feasibility condition [Garcia-Luna-Aceves et al., 2003].

2.3.5 Summary

There is no silver bullet to address the count-to-infinity problem. Imposing a maximum
value on hop count means that packets have to bounce within a loop for the maximum
hops. Setting the limits too small will however restrict the length of paths. Split-
horizon and poison reverse technique can only remove loops between neighbours. Path-
finding algorithms make use of topology information to prevent loops. However, temporal
loops may still occur and it is challenging to implement in an on-demand manner. The
destination sequence number and the feasibility condition guarantee loop-freedom at
every instant. The use of the sequence number is conservative. Every time a path
breaks, a node requests for an increased sequence number of affected destinations, which
invalid alternative paths with current sequence number. Using historical low value of
distance, feasibility condition is also conservative and may lead to large amount of update
messages among multiple nodes. In the end, the most promising approach for a specific
context may be a combination of these techniques.

It should be noted that the term ‘distance’ we use in this subsection can be measured
by but not limited to hop count. There can be many other routing metrics. We will
review the use of different routing metrics in next subsection. The motivations and
results of approaches that prevent loops in single path routing have a large influence on

multipath routing and optimal routing, which we will discuss in subsection 2.1.5
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Method Loops Drawback
Hop count Temporal Long delay before detected
Split-horizon with poison reverse Yes Prevent only one hop loops
Sequence number No Too Sensitive
Path-finding Temporal | Need to maintain topology information
Feasibility condition No Sensitive

Table 2.1: Summary of Methods addressing the Count-to-Infinity Problems

2.4 Routing Metrics

In order to avoid potential confusion, we first distinguish routing objectives from routing
metrics. A routing objective is a performance metric that a routing algorithm aim to
optimize. In this thesis, we take delay of all traffic as our routing objective. On the
other hand, a routing metric is a type of measurement to describe a path. Throughout
this thesis, we interchangeably use the term ‘distance’, ‘length’ and ‘cost’ to denote the
measurement of a path based on which a routing algorithm makes route selections.

Routing metrics play an important role in the behaviour of routing algorithms. Var-
ious types of metrics have been proposed to date. We focus our attentions to the most
common type - additive metrics. Under an additive metric, the distance of a path is the
summation all links of the path. We refer further interests for different types of metrics
to corresponding results [Sobrinho, 2003, Baumann et al., 2006].

If hop count is used as the metric, the cost of every link is constantly one. Routing
algorithms based on hop count are invariant to traffic dynamics of a network. Some
routing protocols, such as OSPF and IS-IS, allow a customized metric. Network ad-
ministrators can specify cost of each link based on estimated traffic and link capacity.
In fact, this is an offline traffic engineering approach to apply optimal routing solution,
which we will study in section 3. However, once specified, link weight of these protocols

remains static during runtime.
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Traffic aware metrics allow routing protocols to adapt to traffic dynamics. End-to-
end delay is a traffic aware metric that measures the total delay of packets from source
to destination. Routing algorithms based on end-to-end delay can avoid congested nodes
and reduce the overall delay of a network. However, delay is a very sensitive metric. The
cost of a path may change drastically to each routing decision, which causes fluctuation
of routing solutions. The instability of routing algorithms based on a sensitive metric,
such as delay, has been well observed and studied [Bertsekas, 1982, Wang and Crowcroft,
1992]. Many heuristic algorithms that take probabilistic routing decisions based on
path cost have been developed. The System and Traffic dependent Adaptive Routing
Algorithm (STARA) [Gupta and Kumar, 1997], as well as its successors [Borkar and
Kumar, 2003, Raghunathan and Kumar, 2009], applies exponential moving averages
onto paths cost and routing decisions to avoid sudden fluctuations. Another heuristic
algorithm, Replex [Fischer et al., 2006], proposes a (a-/3)-exploration-replication policy
to stabilize routing solutions. These heuristic algorithms, although proposed to use delay
as routing metrics, can be used in optimal routing algorithms based on gradient.

Many traffic aware metrics that are less sensitive have been proposed. They help
to reduce the network delay without leading to instability. Expected transmission time
(ETT) [Draves et al., 2004] uses MAC layer transmission time along a path as routing
metric. Expected transmission count (ETX) [Couto et al., 2003] uses the number of
MAC layer transmission and retransmission as an indicator of link quality. Metric of
interference and channel switching (MIC) [Yang et al., 2005] considers intra- and inter-
flow interference. It is also possible to model the routing problem through reinforcement
learning approaches. Q-routing [Littman and Boyan, 1993] is a Q-learning algorithm.
SAMPLE [Dowling et al., 2005] combines collaborative reinforcement learning technique.
In these cases, the routing metrics is essentially the inverse of action rewards. Queueing
delay accounts for a large portion of communication delay, especially in a congested
scenario. Therefore, using queue length of forwarding nodes as routing metric can achieve

good performance in term of delay [Basu et al., 2003].
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2.4.1 Morality of Routing Algorithms

We refer to a routing algorithm to be selfish if each communication flow tries to optimize
its own performance. Now that we have a better understanding towards routing metrics,
we may define selfish routing from a different angle: A routing algorithm is selfish if its
routing metric is the same as it objective metric. For example, a routing algorithm using
end-to-end delay as routing metric is selfish for a delay minimization routing problem.

Indeed, describing a routing algorithm as selfish may be inaccurate, because routing
algorithms do not have “attitudes” - they simply try to make the best routing choices
based on a certain routing metric. Therefore, a fundamental question of the optimization
problem is “what is the routing metric that presents the benefits of an entire network
rather than individual communication, i.e. optimizes a given objective?”

A quick answer to this question is the marginal cost. A routing algorithm that uses
marginal delay as routing metric can optimize the delay objective. One of our proposals
is the derivation of a routing metric that captures the wireless marginal cost, which we

will present in Chapter 3.

2.5 Multipath Routing

Multipath routing is a type of routing algorithms that discovers and uses multiple paths
for each communication between a source and a destination pair. In comparison to
single path routing, it makes use of more network resources to achieve better fault-
tolerance, increased throughput, and reduced delay. We are interested in multipath
routing algorithms because an optimal routing solution that minimizes delay of a network
may use multiple paths. However, the majority of existing optimal routing algorithms do
not address route discovery and establishment but simply assume the availability of all
potential paths. In this subsection, we first describe functionalities of multipath routing.
Then, we review three major types of multipath routing approaches. We argue that these

approaches can not be applied to optimal routing algorithms for route discovery. Finally,
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we identify the core issues to be addressed in order to design a multipath route discovery
for optimal routing algorithms.

The task of multipath routing is more complex in comparison to single path routing.
Its functionality can be divided into four interconnected components: message exchange
mechanism, path filtering in route discovery, path selection after discovery, and load dis-
tribution. In the following, we will give an overview of these components to demonstrate
how multipath routing works.

1) Control message exchange: This mechanism addresses how topology or route
information is shared among network nodes in route discovery. Similar to its counterpart
in single path routing, control message exchange in multipath routing is carried out
primarily by either link state algorithms or distance vector algorithms.

Link state algorithms requires little modification to work in multipath cases. Network
topology information retrieved at each node is sufficient to compute multiple paths. One
example is the equal-cost multi-path (ECMP) routing, where multiple shortest paths
instead of one are computed. ECMP is supported by both OSPF and IS-IS with no
additional requirement on message exchanges.

Distance vector algorithms for multipath routing work with a modified distributed
Bellman-Ford algorithm. During the propagation of path information from destination
nodes to source nodes, intermediate nodes do not choose the single best distance but
forward multiple distances back to source nodes. The criterion of selecting those multiple
distances is explained in the next component. In the light of reducing communication
overhead, distance information of multiple paths may be fused into one value at inter-
mediate nodes. In this case, rules of the merge should be addressed.

In addition to link state routing and distance vector routing, link reversal algorithm
[Gafni and Bertsekas, 1981] presents an alternative message exchange methods.

2) Path filtering during route discovery: There may be a large amount of
potential paths between each source and destination pair, particularly in wireless ad hoc

networks. It is both expensive and unnecessary to discover all of them. There can be
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certain criteria used in the process of route discovery to filter out undesirable paths -
depending on the angle, some refer them as rules to update desirable paths. Some of
the notable criteria include loop-freedom, maximum length of paths, and disjoint paths.
Loop-freedom is a common path filtering rule. Techniques that we have reviewed in
section 2.3 can be extended to enforce this rule.

A popular design choice of filtering criterion is on the path disjointness. Following
this criterion, only disjoint paths are discovered, which experience little correlation.
Congestions and transmission failure of one path is less likely to affect its disjoint paths.

Path filtering can also be based on the distance - or the cost - of paths. For example,
an upper bound of path distance can be set so that long paths are left out. Although
such a filtering may seem simple, a bad upper bound choice may harm the performance
of routing algorithm. It requires sophisticated design to choose a proper bound on path
costs. In fact, our proposed solution includes a result in this regard.

We should point out that not all route discovery algorithms filter paths in route dis-
covery, although filtering is desirable. Examples include proactive link state algorithms
and certain source routing algorithm [Lee and Gerla, 2001].

The result of the route discovery process is a subset P~f of the set of all potential paths
P. The goal of the path filtering process can be summarized as to reduce the size of 75f
as much as possible while retaining the desired performance of the data transmission.

3) Path selection after route discovery: Path selection may follow the same
criteria as path filtering and is performed after the route discovery process. Path filter-
ing reduces the overhead incurred by route discovery as it eliminates bad paths early.
However, without a comparison between discovered paths, such a filtering may not be
sufficient to remove all redundant paths. Once the route discovery process is done, infor-
mation of paths in the set 75f are known to network nodes. With this knowledge, nodes
may select a subset P, for data transmission. In the case of distributed hop-by-hop
routing, path selection can happen at both sources and intermediate nodes, returning a

list of next hop to forward data to.
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Fig. 2.2: Path Filtering and Selection

4) Load distribution: The final task of multipath routing is the data transmis-
sion, i.e. the distribution of data over multiple selected paths. Load distribution can be
viewed as a function that takes costs of multiple paths as input. Such a function may
have different forms. Single path forwarding algorithms distributes all data traffic to the
single best paths - primary paths - while keep the rest of selected as backups in case
that a primary path fails. ECMP [Moy, 1998] distributes data traffic of a flow evenly to
multiple shortest paths. The Boltzmann distribution, also known as exponential penalty
approach, have seen applications in both learning-based routing [Dowling et al., 2005]
and traffic engineering-based routing [Xu et al., 2007]. A more advance approach is to
distribute data load so that costs of all selected paths are equal. Selfish Wardrop rout-
ing [Gupta and Kumar, 1997] and optimal routing Wardrop routing [Yang and Weber,
2011] equalize the delay and the marginal delay of used paths respectively. Adaptive
proportional routing [Nelakuditi and Zhang, 2002] splits data so that the blocking prob-
abilities of multiple paths are equal. Some recent results [Kvalbein et al., 2009] separate
load distribution metrics from the route discovery metrics, in order to avoid fluctuation
of routes but stable yet responsive traffic distribution. [Kandula et al., 2005] follows a
similar idea. In addition it applies a technique of congestion avoidance - XCP - on top

of the heuristic convergence algorithm. to prevent oscillations. It is worthy noting that
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the implementation of traffic splitting, although not our focus, is one active research

field [Vutukury and Garcia-Luna-Aceves, 2000b].

Because our goal of this thesis is the design of an optimal routing algorithm that
minimizes costs of network, we shall pay a special attention to the handle of path costs
during each of the four processes. The route discovery process, in addition to establishing
paths, should provide costs of paths. In the case of distributed hop-by-hop routing,
merging of costs from multiple next hops should be addressed. For path filtering and
selection processes, costs of paths can be used as a criterion. Even for criteria that
are not based on directly on costs, it is desirable that they discover and select low cost
paths. Finally, load distribution is dependent on and, if adaptive cost metrics are used,
has an impact on costs of paths. Indeed, the handle of path costs acts as a fundamental
connection among the four components of multipath routing.

If we view optimal routing as a type of multipath routing, the majority of optimal
routing algorithms focus on load distribution component. Therefore, we are less in-
terested in load distribution components in the domain of classical multipath routing
algorithms but rather the rest of processes. It remains a question whether existing mul-
tipath routing algorithms can provide the functionality of the first three components
that suits optimal routing. In the following, we will dive into existing multipath routing

algorithms to examine their handle of paths cost.

2.5.1 Disjoint Routing in Ad Hoc Networks

It has been argued that correlations between the performance of different paths should
be kept as small as possible. In this way, data transmission over multiple paths may be
more resilient and reach a better delay and throughput performance. Disjoint routing
methods provides multiple paths that do not intersect. Because of the high connectivity
caused by wireless transmission, disjoint routing has been a popular design option for

ad hoc networks.
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Two paths are node-disjoint if they do not share any intermediate node. Split Mul-
tipath Routing (SMR) [Lee and Gerla, 2001] is based on Dynamic Source Routing
(DSR) [Johnson et al., 2007] where a list of intermediate nodes of each path is kept
at its source node. Two paths, the shortest path and its maximal disjoint path, are
selected at each source node to carry data simultaneously. Based on AODV, AODV-
Multipath (AODVM) [Ye et al., 2003] applies node-disjointness criterion in path filtering
process. During route discovery, RREQ messages, including duplicate ones, are not fil-
tered. Destination nodes response all RREQ messages with a RREP message. But
rather, each intermediate node forwards only one RREP message through the shortest
path to the source node. In this way, each intermediate node has at most one uplink
towards the source node. After overhearing the RREP message, neighbours will not send
other RREP messages to this node. Therefore, each intermediate node has at most one
downlink towards the destination node. Node-disjointness is achieved.

The criterion of link-disjointness states that any two paths of one communication
do not have common links. Ad hoc On-demand Multipath Distance Vector routing
algorithm (AOMDYV) [Marina and Das, 2002] makes an observation on the equivalent
condition of link-disjointness: “every node on a path ensures that all paths to the desti-
nation from that node differ in their next and last hops”. In order to apply this condition,
they extend AODV to include both last hops and next hops in routing table for every
path. RREQ or RREP messages are discarded if they come from the same last hop.

Node- and link-disjointness are not sufficient to eliminate correlations between two
paths as neighbouring nodes or links may interfere with each other. In order to reduce
the coupling among different paths of a communication, a stronger criterion called zone-
disjointness has been proposed. AODVM with Path Diversity (AODVM/PD) [Mueller
and Ghosal, 2005] keeps a value called correlation factor at each hop of a path, which
is defined as the number of overheard RREP messages associated with the same route
discovery. In addition to AODVM’s filtering of node-joint paths, paths with a correlation

factor higher than a threshold are filtered out at each nodes. Complete zone-disjoint
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Fig. 2.3: Suboptimal Disjointness: P; and P, should be selected rather than Ps

paths where paths are out of each other’s transmission range do not exist in general, but
may be discovered with the help of directional antenna [Roy et al., 2003].

Other types of filtering and selection criteria can be applied in conjunction with
disjointness. For example, loop-freedom is addressed in all aforementioned disjoint ap-
proaches, commonly using the destination sequence number mechanism. Another no-
table approach, Disjoint Path Selection Protocol (DPSP) [Papadimitratos et al., 2002]
selects a set of link-disjoint paths only if statistics suggest they are reliable.

In disjoint routing methods, source nodes can get exact costs of discovered paths.
The cost merge of multiple paths at intermediate nodes need not be addressed as paths
do not intersect. Route disjointness is a strong condition. A large amount of potential
paths will be ruled out, therefore overhead is not a problem. However, in wireless ad
hoc networks, there may not exist multiple disjoint paths reducing the solution to a
single path routing. What prevents disjoint routing methods being used for optimal
routing algorithms is that the criterion of path disjointness does not result in optimal
set of paths. As shown in Fig. 2.3, any type of disjoint routing algorithm will select one
path from P; and P, and select path P3. However, if P3 is highly congested from other
communication flows and if the bottleneck of P; and P, is not at the intersection node
E, transmission over P; and P, simultaneously will result in better performance than
disjoint routing.

In fact, this suboptimal results have been already realised within the field of disjoint
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routing [Ye et al., 2003], where reliable nodes, such as node F in the example, are
identified to allow path intersections. However, the identification of the reliable nodes

lacks of theoretical discussion and justification.

2.5.2 Feasibility Condition-Based Methods

As we have established previously, if each node establishes a shortest distance towards a
destination node, an order of nodes can be formed. As long as data forwarding follows
a decreasing order of distances, loops will not happen. It means that at each hop,
not only the best next hop but all neighbour nodes with a shorter distance can be
selected without causing loops. In order to guarantee the correct order of nodes with
the presence of topology changes, an extended feasibility condition can be applied in
multipath routing.

Recall the notation in section 2.3.4, where D; is the distance from node ¢ to node
il D}n is the copy of D} kept at node ¢, and F D} is the feasible distance from ¢ to j.
Denote the set of next hops selected for destination j at each node 7 as SJ’ A feasibility
condition for multipath routing, termed as loop-free invariant (LFI) condition initially,
states [Vutukury and Garcia-Luna-Aceves, 1999):

“Any routing algorithm designed such that the following two equations are always
satisfied automatically provides loop-free paths at every instant, regardless of the type of
routing algorithm being used: 1) FD;- £ D;?i, k€ Ni; 2) SJ’: = {k|D;-,C < FD; Ak € N'}”

The first rule comes from the definition of feasible distance F' D;-, which is the his-
torical low value of D; The second part is an extension of the second single path
feasibility condition to the case of multiple next hops, which establishes the descending
order through feasible distances. Note that the first rule of the single path feasibility
condition is missing in the multipath counterpart. This because it is implied in the def-
inition of D; Another difference between the single path condition and the multipath
condition is that the former is proposed for distance vector routing while the latter suits

for all types of algorithms.
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Fig. 2.4: A Example of Multipath Routing based on the Feasibility Condition

Notable methods includes DASM [Zaumen and Luna-Aceves, 1998], which is based
on DUAL and uses diffusing computation to update topology changes; MPDA [Vutukury
and Garcia-Luna-Aceves, 1999] is a link state algorithm. MPATH [Vutukury and Garcia-
Luna-Aceves, 2000a] uses the second last hop information of the path-finding algorithm
to construct network topology and applies Dijkstra algorithm, which is slightly different
than the distance vector path-finding algorithm LPA. MDVA [Vutukury and Garcia-
Luna-Aceves, 2001] uses a distance vector algorithm and is shown to outperform the
previous methods.

These algorithms differ in their control message exchange mechanisms. Once a short-
est path is established for every node to a destination node, the same feasibility condition
is used to select next hops. We can illustrate this application through the behaviour of
intermediate node A in the communication between S and H, shown in Fig. 2.4. Node A
maintains a distance D;} and a feasible distance F’ D,"}. It compares F Dﬁ with reported
distances from all its neighbours. Assuming only Dg and D}"; are greater than or equal
to F Dfl, node B,C, E are selected as next hops. On receiving data from S, node A

distributes the traffic over B, C and E according to their distances.
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One advantage of multipath methods using the feasibility condition is that loop-
freedom is guaranteed at all time. The merge of paths at intermediate node prevents
large amount of information being propagated. For example, information about node
B, C and E are hidden beyond node A. Each node makes decisions on load distribution
over next hops locally - a desirable distributed manner.

However, path selection and load distribution at each intermediate node are based
on reported distances of all neighbours. Therefore, existing multipath methods are all
proactive algorithms, which introduces overhead.

More importantly, the merge of costs from multiple paths chooses the shortest dis-
tance, which may be inaccurate for certain cost metrics. We can demonstrate this
problem by assuming the metric in Fig. 2.4 is delay. We assign the distance through
node B as lp + Dg = 10. Similarly, let the distance through node C and E be 15 and
15. Node F' is not selected according to the feasibility condition. Choosing simply the
smallest value, i.e. reported value from node B, Dﬁ is set as 10. This value is accurate
only if traffic is not split after node A and is otherwise inaccurate.

Now, imagine three units of data arrive at node A. Expected delay is then 3*10=30
(unit size*unit delay). However, what actually happens at A is that the 3 units are
distributed and transmitted over three next hops simultaneously causing an overall delay
of 15 (unit size*unit delay), which is 5 (unit delay) on average. In fact, one can easily
observe that the actual merged cost of A is always less than the shorted distance if traffic
is split between A and H. This underestimated cost of node A results in a suboptimal

shift of load distribution at node S towards single path through node G.

2.5.3 Link Reversal Algorithm

For each destination node d, the link reversal algorithm [Gafni and Bertsekas, 1981]
builds a directed acyclic graph (DAG) rooted at the destination, i.e. a loop-less graph
where all links pointing to the direction of node d. The link reversal algorithm provides

multiple alternative paths without considering their costs.
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Gafni and Bertsekas considered a directed network without partition in the case of
one destination. Two types of algorithms have been proposed: the full link reversal
algorithm and the link partial reversal algorithms. Firstly, we describe the full link
reversal algorithm. Initially, there are misdirected links in the network. Other than the
destination, nodes without outgoing links are called sinks. At each round, sinks reverse
the direction of all their incoming links. It has been shown that after at most b* rounds,
where b is the initial number of misdirected links, no sinks exist in the network and all
links are properly directed to form the DAG [Busch et al., 2003].

In the partial link reversal algorithm, sinks do not reverse all but some of their
incoming links. It can be explained through a numbering scheme. A triple value A, :=
(a, Bu,u) called height is associated with each node u at all time. «, is essentially a
sequence number, which initially is 0 for every node. 3, is some integer number. h, is
lexicographically ordered!. Similar to what we have reviewed in section 2.3.4,

Each non-destination node u maintains a list of its neighbours v that have previously
reversed the link (u,v) to (v,u). At each round, each sink node u sets its height h, as

follows, which results in some of its coming links being reversed:
1. If the list includes all its neighbours, reverse all the incoming links.

2. Otherwise, set o, = minyen,{aw} + 1; For any neighbour v whose a,, equals the
newly assigned «y,, set 3, to be smaller than 3, for all such neighbours. Then

empty its list.

Through induction, it can shown that all neighbours in the list of u have the value
of minyen,{aw} + 1. That means, in the case the list is not full, sink nodes reverse
their incoming links that are not in their list. The most notable link reversal algorithm
is Temporally Ordered Routing Algorithm(TORA) [Park and Corson, 1997]. TORA

introduces an on-demand partial reversal algorithm with the ability to handle network

! two triples are lexicographically ordered h. > h, if and only if one of the following is true: 1)
@y > @y 2) Ol =iy a0d B> By 3) ety = @y and By = By and ui> v
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partitions. TORA uses a synchronized system time of each node as a. For each node u,
TORA set a, as the time of link failure based on a synchronized network system time.
[y is initialized with the shortest hop count from u to destination d.

Before any topology changes, the link reversal algorithm discovers all potential paths.
Although it is essentially a variation of distance value, the height triple is not used for
route discovery or load distribution, but rather to remove loops. Routing optimality is

not a concern for the link reversal algorithm.

2.5.4 Summary

Optimal routing can be viewed as one type of multipath routing. It differs with classical
multipath routing algorithms in that it focuses on the load distribution component using
marginal delay as cost metric. A question arises naturally:

Is there a multipath routing approach that provides the route discovery and the route
establishment functionalities to facilitate optimal routing algorithms?

The requirements for a multipath routing algorithm to work with an optimal routing
approach include three parts. Firstly, it should prevent redundant path information
from spreading in order to avoid excessive communicational and computational overhead.
This can be done by the path filtering and selection processes: the smaller set of paths
presented to the load distribution process, i.e. Py C 75f C P, the less overhead is
incurred by route discovery. In addition, merging information from different paths when
they meet alleviates overhead.

Secondly, the resulting path set of multipath route discovery and selection should
include the optimal path set. Given a network topology and traffic demands in the
network, there exists an optimal set of paths, denoted as P*, over which an optimal
routing solution distributes non-zero traffic. A naive approach of multipath routing that
meets this requirement is to flood RREQ messages and to discover all potential paths,
although this creates large overhead. In conjunction with the first requirement, the ideal

path filtering process should reduce the size of ’P~f as much as possible while containing
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(a) Ideal Case (b) Undesirable Case

Fig. 2.5: Path Filtering and Selection in Relation to Optimal Path Set

the optimal set; The ideal selection of the path set P, should coincide with the optimal
set. These set relations are demonstrated in Fig. 2.5(a). However, it is challenging to
design ideal criteria for filtering and selection processes. Under ill-considered criteria,
some paths from the set P* may not be discovered or selected. This undesirable result
can be formally written as P* ¢ P, C 75f, which is shown in Fig. 2.5(b).

Thirdly, the exact costs of paths should be provided to nodes who make load distri-
bution decisions. A cost of a path reported from one node, say A, to the decision-making
node, say S, is exact - or accurate - if and only if one of the following is true: 1) it is a
single path from node A to its destination node 2) if it consists of multiple paths merged
at certain intermediate node, the merge of paths does not affect the traffic assignment
from node S to node A.

A comparison of the three types of algorithms with respect to the three require-
ments is shown Fig. 2.6. Disjoint routing algorithms filter a large amount of paths thus
overhead is reduced. Because paths do not merge, exact costs of paths are available.
However, the criterion of route disjointness can not guarantee the optimal path set. Fea-
sibility condition-based methods filters only paths with risk of loops, thus the optimal
path set is likely to be provided. Costs of multiple paths are merged at intermediate

nodes, therefore large overhead is prevented from spreading. However, only a proac-
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Fig. 2.6: Evaluation of Multipath Routing: The three axes represent three requirements.

A solution that meets all three requirements is missing!

tive manner is supported in feasibility condition-based methods, which introduces extra
overheads. The link reversal routing algorithm discovers all loop-free paths regardless of
their costs. Optimal path set is provided at source nodes. Exact cost can potentially be
provided, but is not properly addressed. Because paths are weakly filtered with loop-
freedom criterion, there may be a large amount of potential paths presented at source
nodes, which creates large overhead.

In summary, existing multipath routing algorithms in the literature do not suit the

requirements of optimal routing.

2.5.5 Core Issues of Multipath Routing

In last subsection, we have summarised the missing bit of multipath routing to support
optimal routing. Now we can take one step further to examine core issues to be addressed

for potential solutions.
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Fig. 2.7: Conflict between exact merged costs and loop-freedom

1) Path filtering and selection criteria should be based on path costs. Op-
timal routing algorithms minimize the delay experienced by all traffic. Roughly speaking,
paths that are eliminated during route discovery should have a large cost and paths that
are in P* should have have a small cost. Therefore, criteria based on path costs could
meet both the first and the second requirements aforementioned. However, it remains
an open issue to choose a proper value of path costs as a criterion. Such a choice differs
among each communication of the same network. It depends on the traffic demand of
one flow as well as runtime network traffic, both may vary over time.

2) For certain cost metrics, such as marginal delay, it is a hard task to
merge costs of multiple paths. One natural solution is to find the function of delay
for merged paths and to apply differentiation. However, the exact form of the function
may not be possible and the function may not be differentiable. A new perspective is
needed to compute merged costs.

It turns out that even if exact merged costs can be computed, the value may be
smaller than individual costs, which conflicts with the criterion of loop-freedom. Con-
sider an example with Fig. 2.7, the merged cost of node A is 5 - smaller than both 8 and
9. Since the distance is no longer strictly decreasing to destination D, traffic from S may
travel back from node C' and B to node A. In the author’s opinion, this may contribute

to the choice of minimum value for merged costs in feasibility condition-based methods.
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Chapter 3

Optimal Routing Approaches

The review of existing multipath routing algorithms in the previous section provides us
the techniques as well as the challenges to discover multiple paths for optimal routing
algorithms. With all paths established, a routing decision of a node determines a load
distribution over multiple paths. Routing decisions of all nodes correspond to a traffic
pattern of the network. Under a certain traffic demand, an optimal routing algorithm
computes the set of routing decisions whose traflic pattern incurs the least overall cost
of the network. In this section, we review the state of the art approaches of optimal
routing.

In section 3.1, we give an overview of the mathematical background of optimal routing
algorithms. In section 3.2 we examine different formulations of the routing optimization
problem and their practical implications. In section 3.3 to 3.5, we discuss different types

of optimization algorithms in detail.

3.1 Routing as an Optimization Task

Optimal routing algorithms are better suited to a dense network with heavy traffic
demand. Interestingly, the first results of optimal routing can be found well before the

prevalence of computer networks. In the domain of transportation control, the study
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Fig. 3.1: Structure of Review on Optimal Approaches
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of road traffic assignment and management dates back to 1950s. Wardrop equilibrium,
which is essentially a Nash equilibrium of flows, has been proposed to model road traffic
[Wardrop, 1952]. It was later demonstrated that a Wardrop equilibrium under marginal
cost coincides with the system optimum [Beckmann et al., 1956]. These results can be
applied to the domain of telecommunications with only minor modifications.

Optimal routing approaches can be viewed as an application of the well-studied
(convex) optimization theory [Boyd and Vandenberghe, 2004]. We start with an overview
of the theoretical background before going to the details of different types of optimization

algorithms. The problem addressed by optimization theory can be formulated as follows:

minimize y(z) (3.1)
subject to g;(z) <0, i =1..m (3.2)
hlz) =0, i = 1...om (3.3)

where y, gi, h; : R™ — R. It states that the optimization problem is to find an z that
minimizes the objective function y(x), (3.1), among all z that meet the inequality con-
straints (3.2) and the equality constraints (3.3). This is the basic form of an optimization
problem. Applying to the optimal routing domain, the objective function can be either
an cost function to be minimized or a utility function to be maximized. The vector vari-
able z may have different representations in different algorithms, such as source rate,
link rate, and etc. The equality and inequality may have different forms and meanings
in different algorithms, depending on their focuses. While the nature of the optimization
problems remains the same, i.e. it can be summarized by the form of (3.1) - (3.3), these
different formulations of the problem may have significant differences in their practical
implications. We will discuss some of the common formulations in subsection 3.2.

For most cases in practise, such as optimal routing, the optimization problem can not
be solved analytically but requires an iterative approach. Denote the optimal solution

as y*. An iterative algorithm start with a given initial value (¥ in the domain of the
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objective function, denoted as z(*) € dom y. A series of {z(¥'} C dom y is computed
in the form of

z® = 207D 4 a5 Az(t=D

where Az(=1 is the search direction and «a is real value called step size. A solution z(*)
is feasible if it meets condition (3.3) and (3.2). An algorithm is convergent to optimum,

which we refer to as an optimal algorithm, if
y(z®) 5 y* ast - oo

The algorithm stops if 2(*) is feasible and that y(z®) is within a small neighbourhood of
the optimal value, i.e. |y(z®)—y*| < € for some small positive value e. We can translate
the mathematics to the scenario of an optimal routing algorithm: Routing decisions
at each iterative step of a network dictate a traffic pattern of the network. Based on
costs incurred, the algorithm computes changes in routing decisions and distributes data

traffic based on the new routing decisions. This completes one step of the convergence.

Algorithm 1 General Form of Iterative Optimization Methods

Starting with an initial value z(®) and ¢ = 0, repeat:

l.t:=t+1

]

. Compute the search direction Az®
3. Decide a step size o
4. Update solution z(tt1) = z(t) 4 Az®

unitl the stopping criterion is satisfied.

Many optimal routing algorithms have been proposed to compute the series of search
steps. We are interested in two features of an given optimal routing algorithm : the
convergence rate and the distributed manner.

3.1.1 Convergence Rate of Optimal Routing Algorithms

One important measurement of an optimal routing algorithm is the number of iterative

steps the algorithm takes from a starting point to an optimal solution. In the context
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of numerical analysis, the convergence rate of an iterative algorithm describes the speed
at which its solution series {z(Y} approaches the optimal solution. Formally speaking,

it is defined as
(t+1)y _ %
e 1im @) = v
t=oo |y(z®)) — y¥|

An optimal algorithm is said to converge linearly if x € (0,1). If x4 = 1, then the
convergence is superlinear; If u = 0, then the convergence is sublinear. The convergence
rate of an algorithm is a major factor of the number of steps required to converge.
Minor factors include the choice of the starting point and the stopping criterion €. The
convergence rate of an algorithm is primarily dependent on the orders' of underlying
methods: The first order (sub)gradient-based algorithms generally show a linear or a
sublinear convergence rate, while the second order Newton-based algorithms exhibit a
much faster superlinear convergence rate. However, this concept of convergence rate from
the domain of numerical analysis focuses on the computational aspect of an algorithm.
It may not tell the complete truth about an optimal routing algorithm.

The delay overhead incurred by multihop communications, particularly in wireless
ad hoc networks, can be excessive in comparison to the delay incurred by computation at
one node. Computation for one step takes O(n?) arithmetic calculations at most, most
complex step being the second-order Newton step. Consider an example where a source
node wishes to distribute traffic over 1000 paths, which is more than being realistic. The
time needed to compute one step with a CPU at a gigahertz (GHz) level of clock rate is
at the scale of milliseconds. On the other hand, multihop information exchange may be
invoked in order to evaluate the objective cost function y(z) at each step. According to
analytical results [Malone et al., 2007], the one-hop transmission delay for IEEE 802.11
(11Mbps) with non-saturated traffic load is at the scale of 10 milliseconds. Because the
one-hop transmission delay is only a fraction of the multihop end-to-end delay, steps that

involves multihop information exchange introduce large delay. It should not be treated

1The term “order” refers to the degree of Taylor approximation to the objective function. Bear with
this concept for now, which will come clear once we dive into the mathematical background of each type
of algorithms.
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equally with steps that computed locally. Therefore, in addition to the measurement of
convergence rate, we shall pay a special attention to the number of information exchanges

incurred by the solution series {z(®} of an optimal algorithm.

3.1.2 Distributed Manner of Optimal Routing Algorithms

The distributed manner of an optimal routing algorithm can be classified into flow-
distributed and node-distributed. A routing approach is flow-distributed if each com-
munication flow, identified by a source-destination pair, computes its own routing deci-
sions, as shown in Fig. 3.2(a). Unlike the case of classical (selfish) routing approaches,
flow-distributed implementation is not straightforward for optimal routing. From the
problem formulation, we note that different flows are coupled in two ways: 1) through
the objective function (3.1). For example, the behaviour of one flow may affect the delay
experienced by other flows; 2) through the inequality and equality constraints (3.2, 3.3).
For example, the behaviour of one flow may affect the available capacity for other flows.

A routing algorithm is node-distributed if routing decisions are made locally at each
intermediate node, as shown in Fig. 3.2(b). Optimal routing algorithms, especially the
second order algorithms, aim to optimize the network traffic as a whole. The main
challenge for node-distributed algorithms comes from the conflict between the global op-
timum and the limited view of each intermediate node. A simple approach to implement
a node-distributed algorithm is to duplicate global knowledge of the entire network.
However, this approach is undesirable as it creates large control overhead. The key
to both flow- and node-distributed manners is to decompose the network optimization
problem into subproblems that can be addressed separately at different nodes.

We organise our related work according to the orders of algorithms with a special
attention to their distributed manners. In subsection 3.3, we review existing first order
algorithms. In subsection3.4, we present existing second order Newton-based algorithms.
In subsection 3.5, we discuss a common technique that decomposes Newton-based algo-

rithms into distributed manner. After the decomposition, a part of the approach runs
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(a) Flow-Distributed: Each source makes routing decisions over its mul-

tiple paths, taking its impacts on other traffic flows into considerations

(b) Node-Distributed: Each intermediate node makes routing decisions over mul-
tiple next hops for arriving traffic. The routing decision of fs1 at node A should

cooperate with the routing of flow fs2, fs3, and fss at neighbours as well as the

traffic distribution at source S1 and S2

Fig. 3.2: Distributed Manners of Optimal Routing Algorithms
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first order algorithms and the other part of the approach runs second order algorithms.
With a slight abuse of terminology, this method can be seen as mixed orders.

It is interesting that one may find optimal approaches in the domain of congestion
control and flow control [Chiang et al., 2007] that share many similarities with optimal
routing algorithms. In this review, we will clarify their differences in subsection 3.2, but

otherwise treat their essential mathematical approaches as related works.

3.2 Variations of Network Optimization Formulations

We have formulated the optimal routing problem to be addressed as (1.2a). Now, let us
temporally detach the routing implication from the model and focus on its mathematical
presentation: The problem (1.2a) is a constrained convex optimization problem, which
follows the general model (3.1). A vast body of network optimization problems, includ-
ing congestion control, routing and link scheduling, can be seen as certain forms of the
general model. Algorithms that solves these problems are, to a certain extend, inter-
changeable. For this reason, our state of the art review will include notable algorithms
from different areas of network optimizations, such as congestion control. However, be-
fore our review of these algorithms, it is important to understand the differences and the
similarities between various forms of the optimization model. In this section, we discuss

different formulations of network optimization problems.

3.2.1 Modelling of Optimal Routing Problems

In the domain of optimal routing, we aim to find a traffic pattern F = {f,}, p € P of
the network that minimizes the overall cost, where P is the set of all potential paths of

all communication flows. In order to differentiate from the general form (3.1), we write
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the optimal routing problem as follows:

minimize C(F) (3.4)
subject to g;(F) <0, ¢ = 1...m (3.5)
hi(F) =0, i = L.cm (3.6)

A common choice of function g is RF — C, where C € R™*! is link capacity vector and
R € R™*"™ is the routing matrix indicating whether a link belongs to a path. R;; =1
is path j travels through link i, vice versa.

A common choice of function h is AF — T, where A € R“"*" indicates paths that
belong to the same communication. 7 € R“"*! is the traffic demand vector for each

communication.

3.2.2 Handle Variables and Constraints of Optimization Problems

It is sometimes sensible to translate the constraints from the form of equations to its
equivalent form of a set. Define the feasible domain of the problem (3.1) as the set of all
F € dom C that satify constraints (3.5) and (3.6), denoted as FD. The optimization

problem is then to minimize (3.4) over the set FD, written as:

minimize C(F)

subject to: F € FD

The common assumption for this type of notation is that FD is a closed set. Strictly
speaking, this does not always stand. However, in practice, this is a trivial assumption
that can always be guaranteed. For example, consider a cost function that represents
the queueing delay of a M/M/1 queue: C(f) = ﬁ, where Cap is the capacity of
the queue. The inequality constraint is that the flow f is non-negative. According to
the domain of cost function and the constraint, the feasible domain of the problem is
the interval [0, Cap), which is an open set. In practise, however, we can manipulate 7D

into [0, Cap — 0.000001]. Then we are able to apply the gradient projection method on
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this closed set. It can be demonstrated that the final solution of the gradient projection
method can be infinitely close to, if not the exact, the optimal solution - as we add more

zeros to the manipulation.

3.2.3 Utility Maximization v.s. Cost Minimization

A similar mathematical formulation of the optimal routing problem is the network utility

maximization (NUM) problem.

=5
maximize Z Ui(T) (3.7)

=1
subject to RT <C
T =0

where Uj(+) is concave function, for example a common choice is U;(7;) = log(T). Appar-
ently, this formulation shares many similarity with the cost minimization formulation.
Indeed, as we will see, many but not all of the algorithms for example [Zymnis et al.,
2007] that are used to address one formulation may be modified trivially to address the
other formulation.

Roughly speaking, a NUM problem aims to transmit as much data as possible within
the capacity constraints — the utility to be maximized is an increasing function with
regard to throughput. Since the utility function is concave, the maximization focuses
more on improving throughput of traffic flows that are experiencing less throughput.
Therefore, it also enforces a certain level of fairness.

As shown in the formulation, NUM problem usually implies single path communica-
tion, although some exception may be found with a slightly different formulation [Wang

et al., 2003].
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3.3 (Sub)Gradient-based Methods

In this section, we review a class of optimal routing algorithms that is based on first-
order optimization methods. These algorithms dates back to 1970s [Cantor and Gerla,
1974,Gallager, 1977]. A major drawback of the first-order class is their slow convergence.
However, both first-order optimization methods and routing algorithms based on them
play an important role of stepping stone for the second-order methods. In the following,
we firstly describe the mathematical background of first-order methods. Then, we discuss

their applications to optimal routing algorithms.

3.3.1 A Mathematical Background of First-Order Methods

In the following, we first describe the gradient descent method for unconstrained opti-
mization. Then, we explain why the gradient descent method is a first-order optimization
method. Finally, we illustrate a technique called gradient projection method to address

constraints in gradient descent algorithms.

3.3.1.1 Unconstrained Optimization

We start with the minimization of a convex continuous cost function C(-) : R* — R
without any constraints. We wish to find a series of traffic pattern {F®} that converges
to the optimal solution. One natural method is the gradient descent method.

The gradient of the function C(F), denoted as VC(F) = {ag}f s ag}f ) }T, is an

n X 1 column vector of partial derivatives of C(-). The direction of the vector VC(F)
points to the steepest increase of the function and the magnitude of VC(F) indicates
the rate of the steepest increases. Therefore at any iteration ¢, aiming to minimize the
cost function, a straightforward search direction is the steepest decrease, i.e. AF ® =
—VC(F®). The gradient of a function is a local property at each point. For example as
show in Fig. 3.3, gradients of of points along the direction of —VC(F;) change gradually.

Therefore, we need to set a step size, denoted as «, to go along the direction —VC(F)
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Fig. 3.3: A contour line demonstration of an optimization problem: Variables are two-
dimensional, F = {f1, fo}. The dashed contour line represents costs of the same value.

Fo and Fy are two points. Their gradients are V.JF, and V., respectively.

before compute again. The step size a can be assigned with a small constant value
in the interval 0 < a < 1. With special care, we can also assign a diminishing value
to a at each iteration. A more advanced approach is to compute o dynamically from
cost information at each iteration step t, which achieves a better convergence rate. The
computation of a dynamic a often requires an iterative method, such as the backtracking
line search method [Boyd and Vandenberghe, 2004], that evaluates the objective cost
function multiple times. It requires gathering global cost information, which as we have
argued in 3.1.1 is a less desirable iteration. Some efforts can be seen in the distributed
computation of the line search method [Zargham et al., 2012].

The iteration of gradient descent method can be summarized as follows:
FD = 70 4 o AF® = FO _ ovCo(FW) (3.8)

Now we explain why the gradient descent method is a first-order optimization method.

The gradient descent method belongs to a wider class of methods, called the steepest
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descent method. Consider the first-order Taylor approximation of the objective cost

function C(F#+1)) at the (¢ + 1)th iteration:
C(FHY) = C(FO 4+ aAFD) = C(FO) + aVC(FNTAFD (3.9)

The motivation for the steepest descent method is to find a search step AF® so that
the cost change per unit length of the search step is as negative as possible. That is
to minimize C(F*tD) — C(FW) ~ aVC(FW)TAF®. We normalize the search step
with a unit length, denoted as AF,nit = ﬁ. The operator ||-|| represents any norm

function, which returns a non-negative value representing the “length” of a vector. The

steepest descent method can be described as:

AFD. = argmin, {VC(FO)Tp | Ju| = 1}

unit
If the norm function uses the Euclidean norm, the normalized step A.ngit = - ﬂ%’
whose corresponding unnormalized search direction AF®) = —VC(F®). That is, the

gradient descent method is a steepest descent method under Euclidean norm. While the
Euclidean norm may be the most common choice, other norms can be used for certain
problems.

One premise of the gradient-based method is that the cost function is differentiable.
Indeed, a differentiable cost function is a widely adopted assumption by optimal routing
algorithms to the best of our knowledge. However, this premise may not always hold.
In certain cases, the problem we try to optimize may not be differentiable. We will for
example encounter a non-differentiable problem if we decompose the original problem
into a number of subproblems, which we will describe in subsection 3.5.1.3. In such a
case, a subgradient method is needed.

A vector p is a subgradient of the function C(-) at Fy if it meets:
C(F) > C(Fo) + uT'(F — Fp) for all F

For a convex differential function, the gradient of the function meets also the condition

above. That is, the subgradient is a generalization of the gradient. If exists, the subgra-
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dient may not be a unique value. The set of all subgradients, called the subdifferential
and denoted as 0C(Fy). The subgradient method works in a similar way as the gradient

method, but with a different update formula than equation (3.8)
FD = F® _qy, for any p € 0C(F®) (3.10)

Unlike the gradient method, the subgradient method is not a type of steepest descent
method. In fact, it is not a descent method in the sense that not every step results in
a cost reduction. However, it can be shown that with a sufficient small step size a, the

subgradient method is convergent.

3.3.1.2 Constrained Optimization

Now we consider the case where constraints are present in an optimization problem.
We have seen mainly three types of techniques that can be applied to the gradient
descent method. The first approach is the affine transformation to address equality
constraints. The second approach is the projection gradient method for general equality
and inequality constraints. The first two types of approaches can be used in conjunction
in practise. The third approach is the Frank-Wolfe method for to linear equality and
inequality constraints.

For an linear equality-constrained problem

minimize C(F)

subject to AF =b

the equality constraints can be eliminated by rewriting the feasible set {F|AF = b} =
{AZ + F|Z e R* "} | where A is a n x (n — ¢m) matrix whose column space is the
null space of matrix A and F is any solution of AF = b. According to the definitions of
column space and null space, A(AZ) = 0 for any Z € R"“". Because F is a feasible

solution, we have AF = b. That means, for any Z € R"™“" AZ + F automatically
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meets the equality constraints
A(AZ+ F)=A(AZ)+ AF =0+b=0b

Therefore, the linear equality-constrained constrained is equivalent to the following un-

constrained problem:

minimize C(Z) = C(AZ + F)

Finding the matrix A and one solution F to AF = b is in general not challenging.
In particular, the equality constraints in an optimal routing problem may be easily

addressed. For example, one common equality-constraint is
> fp=Ty for pe Py
P

Through affine transformation, we can transform the objective function as follows and

eliminate the constraints:

minimizey,. .f, C(f1,..., fn)

subject to Zf,- =T

i=1

J
k n—1
minimizes, .. fo_1 C(f1, - fae1) = C(f1, s fae1, T= D fi)
t=1l

which can be addressed by the gradient descent method. The components of the gradient

for the transformed problem are given as:
oc _oc _ oC
8f; 8fi 0Ofn

The second approach is the gradient projection method, which can be used to address

v=1..mn—1

both equality and inequality constraints, possibly nonlinear. Its rationale is to project
solutions of the unconstrained gradient descent method into the feasible domain of a

problem. More specifically, at each iteraton ¢, it computes the search direction AF®
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using the gradient descent method. However, the resulting solution may not be feasible,
ie. (F —aVC(FW®)) & FD. In this case, we can apply a projection function Prp

that finds the closet point in FD as the next step. That is,

FtHD) _ P}_D[]_—(t) _ aVC'(]-'("))] (8,11}

proj

Let us consider an example where the feasible domain is a one-dimension interval [0,1].
All solutions F) that are larger than 1 are projected to 1; All negative solutions are set as
0. In a more complex case, the projection function Prp may have different realizations.
A requirement for any realization is that the corrected step should reduce the current
cost. That is C(f,%”) < C(FW). However, as one may expect, the projection can be
crude, from which the convergence rate may suffer.

We can also integrate the first two methods to address a problem with both equality
and inequality constraints. We firstly eliminate linear equality constraints through affine
transformations and then apply the gradient projection method.

In summary, the gradient projection method computes firstly the unconstrained di-
rection, then it trims the solution to feasible. Another angle to tackle the issue is to
take the constraints into account when computing search directions. In the case where
both equality and inequality constraints are linear, a reduced gradient method, called
the Frank-Wolfe method, has been proposed [Frank and Wolfe, 1956]. The Frank-Wolfe
method applies the first-order Taylor approximation(3.9) to the original constrained op-

timization problem at each step:

minimize z1 vc(]:(t))T(]T-(tH) T ]_—(z))

subject to: F+) € FD

Solving this problem gives a candidate search direction F(*1). We can see that the only
difference compared to the original steepest descent method is the added constraints.
Because the constrained functions are linear, the set FD is a polyhedron. The objective

function is an affine function with respect to F(t+1)_ That means, the original problem
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reduces to a linear programming problem, which can be easily solved by algorithms such
as the simplex method [Dantzig, 1963]. The final search step of Frank-Wolfe method
is given as: F(H) = FO 4 o(F+D) — F(0) where a is computed with line search
methods. The advantage of the Frank-Wolfe method is that its search directions are

always feasible. However, in practise, the convergence can be very slow.

3.3.2 Notable Results

In this subsection, we present some of the notable results from existing first-order optimal
routing algorithms. We start from the optimal Wardrop equilibrium, which describes
the state of network optimum. Then, we describe some of the algorithms that adaptively
converge to the optimal Wardrop equilibrium. They can be viewed as a variation of the
standard gradient method. Finally, we present results in distributed implementation of
Wardrop equilibrium and the first-order method.

One of the early results is the Wardrop equilibrium [Wardrop, 1952], which is essen-
tially the Nash equilibrium for traffic networks. It can be viewed as the result of selfish
communications: Each communication increases the traffic over a path if the path shows
a lower cost than other paths; It reduces the traffic over a path if the path shows a
higher cost than other paths. Therefore, at a Wardrop equilibrium of a network, for
each communication flow, costs of all utilized paths are equal. The value is no larger
than those un-utilized paths. Following the selfish strategy, a Wardrop equilibrium is in
general suboptimal. It has been demonstrated that, instead of using costs, a Wardrop
equilibrium based on marginal costs is equivalent to the network optimum. In this the-
sis, we term that as the optimal Wardrop equilibrium. More specifically, the optimal

Wardrop equilibrium can be described as:

For each communication w, given its traffic demand Ty, all its available paths { Py}

can be numbered 1, ...Nyse,...Nqy S0 that:

9C(F) _8C(F) _ _9C(F) _,, . 9C(F)

OC(F)
= =.=—" _— < ... <
d0f1 dfa OfNuse T OfNyset1 ~

i 6fNall
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fi > 0, 2= 1, ~-'-,Nuse
fi = O-, 1= ]Vuse + 17 ----,Nall

Then the network solution is optimal, i.e. F = F*. The optimal Wardrop equilibrium
is the necessary and sufficient condition of network optimum. In order to reach such an
equilibrium, each communication flow needs only to increase traffic on paths with low
marginal cost, and to reduce traffic to no less than zero on paths with high marginal

cost. Formally speaking,

(t+1) (t) OC(F) _9C(F) i+

! =[f" — = = 1...N,

fl [fl a( 6f1, 8f* )] 1 a”’

where —ag}f) — min{——ag(ff:) | © = 1...Ngyu} is the least first derivative cost of all w’s

available paths. It can be easily seen that this is essentially the projected gradient
descent method with equality constraints eliminated by a affine transformation. a can be
determined in a heuristic manner to avoid oscillations of solutions. Different algorithms
may have a different choice on the heuristic factor [Fischer et al., 2006, Gupta and
Kumar, 1997, Borkar and Kumar, 2003, Raghunathan and Kumar, 2009]. Another type
of first-order method to address the constrained optimization, namely the Frank-Wolfe
algorithm, has also been used to converge the optimal Wardrop equilibrium [Dafermos
and Sparrow, 1969).

The (optimal) Wardrop equilibrium, in the field of telecommunication, describes a
network state with respect to each communication flow, i.e. between each S-D pair. Al-
gorithms based on the optimal Wardrop equilibrium are therefore flow-level distributed.
In their seminal paper [Cantor and Gerla, 1974], Cantor and Mario first established a
optimal equilibrium from telecommunication point of view. They have also devised algo-
rithms that adaptively converges to the optimum. Later, Gallager [Gallager, 1977] has
established a necessary condition and a sufficient condition for a network optimum with
respect to each intermediate node, that is, a node-level distributed optimal Wardrop

equilibrium. In the following, we will briefly describe the result.

59



Denote the traffic generated at node ¢ addressed for node j as 7;(j). Let ¢; x(j) be
the ratio of outgoing traffic of node 7 that is sent through node k addressed for node j.
Then, the necessary condition for the network optimum is

for each node i, and each destination node j # i, and link (i, k) € L,

OC(F) | =1, if dik(d) >0

9%ik(7) > i, if ¢ix(j)=0

(3.12)

where ; ; is some constant value - an equivalence to M, in the flow-level distributed
distributed Wardrop equilibrium. The sufficient condition for the network optimum is

for each node i, and each destination node j # i, and any link (i, k) € L,

oC(F) | =Gij» i dik(G) >0
Ci,k(fi,k) i 87-(( ; ’ *
WV > Gy i dip(i) =0

(3.13)

where C; i(fi x) is the cost over the link (¢, k) subjected to link traffic f; x and C w(fik) =

4Ciillik) g the first derivative cost of the link. Gi,j is some contant for each link. It is

dfi k
worth noting that in the sufficient equilibrium (3. 13), gg-(];; first derivative cost to the

traffic generated at node k - is used as opposed to 3 7 ((f) the first derivative cost to all

traffic sending out from k to j2. ng((J;g is essentially the merged first derivative cost of

all paths from node 7 to node j. It can be calculated hop by hop as

g%c}—) Z¢k1 Cklfkl) %%((JJ:))] (3.14)

which is a proportional average of marginal costs through all potential paths.
Adaptive algorithms can be applied to converge to the sufficient condition. That

is, each node i decreases traffic through a next hop k if C k(i k) + W% is large and

correspondingly increases the traffic through a next hop k if C k( fik) + gg {:; is small.

Segall and Sidi [Segall and Sidi, 1981] extend the basic adaptive algorithm to better

2This is because that fi(j) is the sum of traffic generated at node k, i.c. Di(j) and traffic that node

k relays for other nodes. The value %C}i};) includes both gg(f)) and first derivative cost of upstream

traffic beyond the control of node k

60



handle topological changes. The value of first-derivative costs C;'k( fik) of each link
(i,k) can be estimated by the perturbations technique [Cassandras et al., 1990, Guven
et al., 2004].

Route discovery and maintenance are not considered in general by existing optimal
routing algorithms. A common choice is to leave an open design space for potential
route discovery algorithms. At each node i, a set of neighbours, denoted as B;(j), are
blocked from forwarding i’'s traffic to destination 7. Optimal routing algorithms aim to
achieve the distributed optimal Wardrop equilibrium on the unblocked neighbours. This
method is also known as the blocking technique. In existing optimal routing algorithms,
the selection and maintenance of the blocking set B;(j) are preliminarily addressed. For
example, it can be based on the rule of strictly decreasing derivative costs along inter-
mediate nodes to a destination node [Gallager, 1977,Segall and Sidi, 1981], which affects
the convergence of the gradient descent method. Furthermore, they can not guarantee
loop-freedom in the presence of topology changes, which is left for multipath routing
algorithms to address. In theory any multipath algorithms that discover all potential
paths can be used in conjunction with a first-order optimal approach. However, as we
have discussed previously in section 2.5, in order to approach a network optimum under
practical considerations, it requires a multipath algorithm that is specially designed for
optimal routing.

One notable example is the feasibility-condition based multipath routing algorithm
MPDA [Vutukury and Garcia-Luna-Aceves, 1999]. The feasibility condition-based mul-
tipath routing algorithm can be used to discover and maintain multiple loop-free paths
at all time. In addition, the averaged merging of derivative costs(3.14) is approximated

with the minimum derivative cost of next-hops:

OC(F) . v 9C(F)
m = min; {Ck,l(fk,l) + W} (315)

As we have discussed, such a choice establishes an order of intermediate nodes and

eliminates loops. Another advantage of this approximation is a faster convergence than
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algorithms using averaged merging. Equation (3.14) implies that the first derivative
cost, and correspondingly the load distribution of upstream nodes are affected by the

load distribution choice of downstream nodes. For example, node i distributes traffic
over its neighbours based on C;_k( fik) + g%%—; Vk € N;, where g%((};; is depended on

k’s distribution ¢y ;(j), VI € Ni. The approximation (3.15) decouples this connection,
therefore sees a faster convergence than algorithms based on (3.14). However, because
costs are approximated, the final solution is suboptimal.

Gallager’s result has been proposed for wired network with link costs, i.e. C;r(fix)-
However, given an analytical cost model of wireless communication that meets the con-
dition of convex increasing, first-order methods can be used to optimize wireless routing.
For example, Xi and Yeh have derived a cost model based on the signal-to-interference-
plus-noise ration (SINR) and M/M/1 queueing model [Xi and Yeh, 2006]. A gradient
descent method is used with this cost model. The major challenge of first-order methods

in wireless domain lies in the design of cost models rather than routing algorithms.

3.4 Netwon-based Methods

In this subsection, we discuss routing algorithms that are based on Newton’s method.
Newton’s method is a second-order algorithm. It provides fast convergence compared
to first-order methods. Meanwhile, despite this merit, Newton’s method imposes great
challenges to the design of a distributed routing algorithm. We first present the mathe-

matical background of Newton’s method.

3.4.1 A Mathematical Background of Newton’s Methods

Similar to the pattern we describe the first-order gradient-based method, we will first
describe the rationale of Newton’s method in an unconstrained case. Then we will discuss

separately techniques to tackle equality constraints and inequality constraints.
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3.4.1.1 Unconstrained Optimization

Newton’s method is a second-order optimization approach in the sense that it uses the

second-order Taylor approximation of the cost function at each iteration. Namely,

C(FD) = o(F® + AFW)

1
~O(FV) + VO(FOTAFD + - AFO VPO (FN)AF (3.16)
9%2C(F) . 92C(F)
(6/1)? 0f10fn
where V2C(F) = : : is the matrix of second partial derivatives,
82C(F) | 9C(F)
dfndf1 (0fn)?

i.e. hessian matrix, of the cost function. In order to minimize the objective cost function,

we need to make the change of the cost as negative as possible, i,e. to minimize
C(FUD) = C(FW) = VO(FO)TAF® 4 IAFOTG20(FO)AF®
2

The right-hand side of the above equation is essentially a quadratic function with respect

to AF®) whose minimum value value occurs at
AFY = —viC(F)-lve(FY)
This gives the Newton direction. Therefore, at each iteration of Newton’s method
FD = FO 4 o AFE-D = F-1 _ o920(F®)-lvc(F®)

The step size a in Newton’s method can be decided in the same way as in the gradient
descent method: constant, predefined decreasing and dynamic computed. In addition,
during the convergence process, once F) is within a certain neighbourhood of the
optimal solution, more specifically if ||[VC(F®)||2 < n for certain positive 7, Newton
method takes @ = 1 and converges quardatically to the optimal solution. This stage is
called the quadratically convergent phase. The stopping criterion of Newton’s method is

based on a value called the Newton decrement A, which is defined at iteration ¢ from
32 = AFOTV2O(FO)AF® = —vO(FOTAFO
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It can be shown that A?/2 is an second-order approximation of F*) — F*. Newton’s
method stops if A\2/2 < € for a predefined small positive €

In addition to the fast convergence rate, another important feature of Newton’s
method is affine-invariant. That is, the minimization over F = AZ + b has the same

convergence as the minimization over Z
minimizerC(F) <= minimizez C(AZ +b)

This is an important property that enables us to manipulates the handle variables with-
out reducing convergence rate. As we have discussed previously, through a proper affine
transformation, linear equality constraints can be eliminated from a problem. In next
subsection, however, we present a different angle to tackle the equality constraints. The
technique is equivalent to an affine transformation but does not require us to find the

affine transformation matrix A and a solution F to AF = b.

3.4.1.2 Equality-Constrained Optimization

We shall gradually add constraints towards an optimal routing problem. In this scene,
we consider an optimization problem where only linear equality constraints are present,
that is

minimize y(x) (3.17)

subject to Az = b

where A : R™" gz ¢ R™ ! b € R, The necessary and sufficient optimality

condition of the problem (3.17) is that there exist a column vector v € R“™*! such that

T =
Vy(z)+ A 0 (3.18)

Az =)

Here we use the term y(z) instead of C(F) because we are not applying the optimality

condition to the original problem. Once again, we can approximate the objective cost
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function at each iteration t with a second-order Taylor expansion and try to minimize

the change of cost, subject to the equality constraints. We have

1
minimize , r¢y VC(F)TAF® + 5A}‘(")TVQC(]-'“))A.F(")

subject to A(FY + AF®) =p

which is the minimization of a quadratic function with respect to AF® | in the form of
(3.17). Differentiating the quadratic function in AF®) gives the gradient, i.e. Vy(z) in
(3.18), as V2C(FAF® 4 vC(F®). With trivial modification, the system (3.18) can
be transformed to

VIC(FW®) AT AF® VC(F®)

= — (3.19)
A 0 v 0

where v € R®*! is a dual variable introduced for em equality constraints. (3.19) is a
linear equation system with ecm+n variables and em+n equations. It is usually referred to
as the KKT system. At each iteration, the equality-constrained Newton’s method solves
the system (3.19), which gives the Newton direction AF® and an auxiliary variable v.
It follows the same stopping criterion as Newton’s method in the unconstrained case.
It is important to note that one premise of the system (3.19) is that the current
solution is already feasible, i.e. AF (t) = p. This assumption, however, may not always
hold in practise, due to an infeasible initial solution or a changing environment. Adding

the discrepancy between the current solution and the constraints to AF®) it follows

V2C(F®) AT AFH VC(F®)
= - (3.20)
A 0 v AF® _p

If the step size a = 1, then one step will correct the solution back to feasible domain. If
the step size o < 1, then it may take multiple iterations to draw the solution feasible.
In the domain of the optimization theory, system (3.20) is called Newton’s method with

infeasible start.

65



3.4.1.3 Inequality-Constrained Optimization

If both equality and inequality constraints are presents in an optimization problem, the
equality constraints can be addressed using the techniques described previously. In the
following, we describes techniques to address purely the inequality constraints in New-
ton’s method. Similar to approaches in first-order methods, the inequality constraints
can be addressed via two types of manners: 1) to project an unconstrained step to
feasible domain; 2) to compute a search direction while considering constraints.

The projection method that we have described in subsection 3.3.1 can be used in
conjunction with Newton’s method. Assuming Prpl-] is the projection function of the

feasible domain, the projected Newton’s method can be described as:

Fit = prp[FO — oV2C(FO)"1VCO(FW))

proj
In case only non-negative inequality constraints are presents in an optimization problem,
a notable result can be found to reduce the complexity of the projected Newton’s method
[Bertsekas, 1981]. For the following problem
minimize C'(F) (3.21)
subject to F = 0

where “>” is an element-wise comparison, Bertsekas proposes to identify the binding
constraints during iterations. A binding constraint of one element f; indicates that the
current solution has stepped on the boundary of a feasible domain, i.e. f; = 0 but still has
an urge to decrease, i.e. 9C(F)/0f; > 0. If a constraint is binding, we can simplify the
computation of Newton’s method to consider less in that dimension. More specifically,
define the set of indices of binding constraints Z+ = {i | ;) = 0& 6(;;?5;)) > 0}. D®
is a reduced inverse hessian, where off-diagonal elements are set as zero

D=0 WeTt i =14
The step of the projected Newton’s method is written as:

FO [F® — aDOGC(FO*

proj
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where [-|T is the projection to positive orthant. Because part of D® is reduced to
diagonal elements only instead of a full inverse of the hessian matrix, the computation
complexity of the projected Newton’s method is reduced. It has been demonstrated that
the projected Newton’s method retain the superlinear convergence rate of the classical
Newton’s method.

Through affine transformation, the result for non-negative constraints can be ex-
tended to optimization problems with box constraints, i.e.

minimize C(F)

subject to o < AF < apigh
Although the constraints are more complex, the main motivation remains the same:
identifying the binding constraints to reduce the computational complex at each iter-
ation. This type of methods is also known as the active set algorithms. Many recent

progress can be found in the domain of active set algorithms [Facchinei et al., 1998, Hager

and Zhang, 2006].

In contrary to the projected Newton’s method, another angle to tackle the inequal-
ity constraints is to bring the constraints into the computation of search directions in
Newton’s method. The barrier method introduces “punishments” on the overall costs in
order to prevent the violation of inequality constraints. Consider the following problem,

minimize C(F)
subject to  g;(F) <0 i=1..m

AF =b

A common choice is to add the logarithm barrier function ®(F) = —u Y log(—gi(F))
i=1..m
to the objective function. The inequality constraints can be removed from the problem.

minimize C(F) — uZlog(—gi(]:)) (3:22)
i=1

subject to AF =b
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The barrier function increases to infinity if g;(F) > 0. The scalar value p is a small
positive number that controls the “punishments”. Newton’s method is used to solve the
equality constrained problem. The “punishments” keep each Newton iteration within

the original feasible domain. At each iteration, the search direction is computed as

V2O(F®) + V2e(F®) AT AF® VO(F®) 4+ ve(F®)

A 0 v 0
(3.23)

where
 Vgi(FD)
(il NG\ )
VO = -2 L0

i=1

”)—uz s V) Ve FO)T —uz )

In case the inequality constraints are linear, the above hessian of the barrier function

reduces to its first term: V2®(F®)) = x 37" ng(]:(”)Vg,-(]:(t))T Because the

i= lg
added logarithm barrier function is non-zero and increasing within the feasible domain.
The solution computed from the barrier method is an approximation of the optimal
solution. As pu approaches to zero, the solution approaches to the optimum. The

interior-point method introduces an outer iteration that solves the problem (3.22) with

a diminishing w.

Algorithm 2 Algorithm of the interior-point method
Starting with an initial value (%, y = u(®) > 0,0 < v < 1 and € > 0 repeat:

1. Find the solution F* to the equality constrained problem (3.22)
using Newton’s method

2. Update the solution: F = F*

3. Update the control scalar: u = yu

unitl the stopping criterion is satisfied: mu < €

The stopping criterion myu can be shown as the optimality gap between the solu-

tion of Newton’s method and the optimal solution of the original constrained problem.
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The interior-point method involves an inner loop of the equality-constrained Newton's
method and an outer loop that decreases u to zero. Despite the nested iterations, the
interior-point method retain the superlinear convergence rate of Newton'’s method and is
often superior to the projected Newton’s method. A more advanced form of the interior-
point method is called the primal-dual interior-point method. We omit the deduction of

the method, but simply give its Newton'’s step as follows:

VZC(FD) + 2, aV2(FW)  Dg(FOYT AT [AF®
—diag(\) Dg(F®) —diag(g(F®)) 0 AX®)
A 0 0 Av®)
AC(FW) + Dg(FO)TA® + ATY®
= —diag(AM)g(F®) — (1/p)1 (3.24)
AF® — b

where Dg(F) = {Vg1(F), ..., Vgm(F)}T, 1 ={1,..,1}T. X € R™*1, v € R®*! are dual
variables introduced for m inequality-constraints and cm equality-constraints. At each
round, the n+ m + ¢m equations with n + m + ¢m variables can be solved for an update
AF® AXD and Av®. Replacing (3.22) with (3.24) We refer interested readers to other
books for detailed descriptions [Boyd and Vandenberghe, 2004].

3.4.1.4 Iterative Computation of Newton’s Direction

The Newton step at each iteration HAF = b can be large and very expensive to solve
analytically. A common approach to use numerical methods to iterative compute the
solution of the linear equation system. Some of the widely used iterative methods in-
clude: conjugate gradient (CG), preconditioned conjugate gradient (PCG) [Shewchuk,
1994] and matrix splitting techniques such as the Jacobi method. If the matrix H is
diagonally dominant and sparse, a recent developed iterative method called Gaussian
belief propagation [Shental et al., 2008] has been demonstrated to converge fast. In

addition to reduce the computation complexity, some of the method can be exploited for
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distributed implementation. For example the GaBP and certain form of matrix splitting
technique can be implemented in a distributed manner, which we will cover later. We

refer interested readers to [Boyd and Vandenberghe, 2004] for more details.

3.4.1.5 Diagonal Approximation of the Hessian Matrix

In Newton’s method, the inverse of the Hessian matrix V2C(F)~! is the primary source
of computation and coupling between each component. A practical simplification is to
approximate the Hessian V2C/(F) with its diagonal elements only, i.e. diag (V2C(F)).

To see this, consider a diagonal approximation to the unconstrained Newton step:

02(](.7:) e OC(F)
CIDE Af=- af1
8%2C(F) __ 9C(F)
(012)2 Afr=—5

In this way, the inverse operation is trivial. More importantly, components are separated
from each other: each variable f; can be computed by one equation. Compared to
iterative methods, such as the conjugate gradient method, a diagonal approximation of
the Hessian matrix can not guarantee the quadratic convergence rate of the classical
Newton’s method. However, it offers a great deal of practical simplicity. It exhibits a

superior convergence in comparison to the gradient descent method.

3.4.2 Notable Results

Newton’s method shows a great advantage over first-order methods in convergence rate.
Extensive studies can be found in applying Newton’s method to telecommunications,
which dates back to early 1980s. Nonetheless, it remain an ongoing study as many open
issues exist. In the following, we will present and discuss some of the most notable

optimal routing algorithms.
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3.4.2.1 Projected Newton’s Method

The projected Newton’s method [Bertsekas, 1981] can be used to address problems with
linear inequality constraints. In a later work [Bertsekas and Gafni, 1983|, Bertsekas and

Gafni models network routing as:

minimize C(F) (3.25)
subject to F > 0

Zf,,:’rw Yw e W

PEPw

where W is a set of communications and 7, is the traffic demand of a communication w.
The equality constraints are eliminated by an affine transformation. The non-negative
constraints are addressed by a projected Newton’s method. Off-diagonal elements of
the Hessian matrix, V2C(Z), at position (i,j), i # j are set to zero is if either path i
or j meet certain criterion. The criterion is as follows: th path is not in use but has
a positive first derivative cost. This off-diagonal elimination reduces part of the com-
putation load in solving Newton’s step. The remaining non-zero off-diagonal elements
couples the different communication in the computation of Newton’s step. Therefore, it
is a centralized algorithm. The conjugate gradient method is used to iteratively solve
each Newton’s step.

The approach exhibits a faster convergence in primary Newton step compared to
gradient-based routing algorithms. The major drawback of this approach is that it is
a centralized algorithm. The conjugate gradient method introduces multiple iterative
steps to each Newton step, which requires large scale communications. The capacity

constraints are absent, which leads to potential overflow of traffic at intermediate nodes.

3.4.2.2 Second-Order Extension to Gallager’s Algorithm

Recall that Gallager’s theorem [Gallager, 1977] establishes the sufficient and necessary

conditions for an optimal solution at each node, as opposed to the classical optimal
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Wardrop equilibrium for each communication flow. It essentially divides the network
optimization into a number of optimization at each node. We can formulate each sub-
problem as node ¢ minimizes network costs by adjusting its traffic distribution, f; x(j)
over each neighbour k to each destination j, namely
minimize 5 ;. @, C(FH) — C(F®)
keN;, jeEN

subject to f; (1) + Af; k(7 N >0, Vk,j

Based on the formulation of Gallager’s result [Gallager, 1977], Bertsekas et al. [Bertsekas
et al., 1984] applies second-order Taylor expansion to the objective function and translate

the subproblem at node i for a given destination j into

minimize, 4, ;) Vi jC(F FT A¢i(5)® + 7Y )t) Vi,C(F ®) g3 ()™
subject to ¢;(5)® + A¢i(5)® >0,

D A¢ik(i) =0, ¢ix =0,k € Bi(j)

keN;
where f; is the aggregated traffic at node i, ¢;(j) = {#ix(j)|k € N;}T is a column
vector of traffic ratio over each outgoing link of node i addressed for destination j.
Vi ;C(F) = {C ,c(fZ k) + g-(];;lk € N;}T is a column vector of first derivative costs
of paths from ¢ to j. Correspondingly, V2 C(]—' ) is the matrix of second derivatives.

Its diagonal elements are k( fik) + 66—671(;2 The authors replace Vﬁ GC(F (t)) with its
diagonal approximation dlag(V?’ iC (F®)). The Newton step for each node can be locally
computed as:

®
Ci oSN+ 25yt —wi (i)

ik (7)Y = max{0, ¢; x (j)® — =% i LD~} VkeN;
fi Cik f(t))+aa$'k€))7 (3.26)

Srgmi) $ik(H Y =1

The equality constraints are eliminated by introducing a dual variable w;(j). Non-
negative constraints are addressed by a projection method, i.e. max{0,...}. This equa-

tion system consists of |Aj| 4+ 1 variables, ¢;x(j)**? k = 1..|Nj| and w§t+1), and
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INi| + 1 equations. C; ,(F),C; (F) are link cost information. ?)%((jj; is path derivative
cost, given by equation (3.14). (3—3%(]%)2 is the second derivative cost of path k. It has
been demonstrated that the node-level distributed optimal routing algorithm remains
convergent [Bertsekas et al., 1984].

It is worthy noting that the node-level distributed manner comes from the division
of the network optimization problem into subproblems. In fact, this division resembles
a primal decomposition technique, which we will present in section 3.5. The diagonal
approximation of the Hessian matrix avoids the usage of %, Vk,l € N;, for
each node 7, which can be communicationally expensive to gather.

8°C(F)

TG = 2 deelkii)gasll: )Cop(far) B

(ab)el
where g, 4(k, 7) is the portion of traffic 7;(j) that travels through link (a,b). It involves

information exchange between node ¢ and all links connecting 7 and j. The information
required for second derivative costs can not be merged as equation (3.14) for first deriva-

tive cost. Therefore, a large amount of information needs to be exchanged. Avoiding the

92C(F)

use of TRGOT.G) in Newton'’s step is the major merits of the diagonal approximation.

In fact, if the diagonal elements of the Hessian, ?Z%Ef , are computed using the
general formula 3.27, large scale information exchanges are still required. Instead, the
authors proposes to lower bounds of (7(3%5)7’ which simplifies the computation but slows
down the convergence.

In summary, the major issue left open is the computation of the second derivative
path costs. Without a proper merge, it requires a large amount of information exchanges
to compute true second derivative costs.

Another issue of the algorithm is inherited from Gallager’s algorithm. Upstream
nodes are affected by the load distribution of downstream nodes. More specifically, the

Newton’s step for each node, as in equation (3.26), is dependent on its overall flow fi(t).

That means, the subproblem is not solved. Each node computes one step then the
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subproblem becomes a new one. It is easily seen that the convergence pattern is altered

from a classic Newton’s method.

3.4.2.3 Interior-Point Method in Network Optimization

Routing algorithms that we have discussed so far in this section apply certain projections
to Newton’s method. Compared to projection methods, the interior-point Newton’s
method shows a superior convergence in addressing inequality constraints and is suitable
for large scale optimization problems.

Zymnis et al. apply a specific interior point method, namely a primal-dual interior-
point method, to the network utility maximization problem(3.7) [Zymnis et al., 2007]. A
preconditioned conjugate gradient method (PCQG) is used to solve Newton step in a trun-
cated manner. A satisfying convergence rate is demonstrated via statistical evalutions -
for large networks with 2 x 10° links, the algorithm converges within 25 iterations.

This approach, however, should be seen as a proof-of-concept result for the iterior-
point method in networking: It operates in a centralized manner. In the following, we
will present algorithms that address the distributed issue of interior-point method. In
this subsection, we first discuss an approach called the matriz splitting technique. In

next subsection, we describe the Gaussian belief propagation method.
3.4.2.4 Matrix Splitting Technique

In this subsection, we describe two algorithms that apply matrix splitting technique to
achieve distributed optimization. Wei et al. develop a matrix splitting method that can
be used to decouple components of a linear equation system and apply this method to a
network utility maximization problem for a flow-level distributed algorithm [Wei et al.,
2010]. Jia et al. apply Wei’s matrix splitting method to a different formulation, which

gives a node-level distributed optimal routing algorithm.
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1) A matrix splitting method for distributed NUM algorithm
Wei et al. propose a distributed Newton method for network utility maximization.

=8
maximize » _ Ui(T;) (3.28)

=]
subject to RT <C

T>=0

With the help of auxiliary variables £ such that R7 + £ = C, the problem can be trans-
formed into non-negative constraints and equality constraints. Applying the interior-
point method, the problem becomes:

S S+L
minimize y(z) = — Z Ui(z;) — p Z log(z;)
i=1 t=il

subject to Az =C

where z = {T,£}, A = {R,I}. According to equation (3.19) and (3.23), this equality
constrained problem can be addressed by iterative steps:
Az® = —V2y(z®)"1(Vy(z®)) + ATH®) (3.29)
(AVZy(a®) AT = — AV2y(2®) 1y (z®) (3.30)
Since the utility function U;(7;), ¢ = 1...S is defined on each single-path communica-
tion, y(z) is separable with respect to each z;, i = 1...S+ L. Both V?y(z) and V?y(z)~!
are diagonal. The primal step (3.29) is separable therefore can be solved locally at each
source node and each link, given the value of the dual variable v®) . However, the dual
step (3.30) is not separable and can not be directly addressed in a distributed man-
ner. The major contribution of Wei's distributed Newton method is to apply a matrix
splitting technique to solve the dual step distributedly. For the purpose of convenience,
denote G = AV?y(z®)~1AT and b = —AV?y(z*))~1Vy(z®). The dual step (3.30) is
written as

Gvl =b
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where G is a L x L matrix, »® and b are both L x 1 vectors.
Matrix splitting is a type of iterative method to solve the above equation system. It

splits G = M + N and solves
Mi*+) = p — Npk) (3.31)

If a matrix splitting approach converges, as k — oo, the value of #* approaches v,
which is the solution of equation (3.30). In fact, the Jacobi method and the Gauss-
Seidel method can be classified as matrix splitting approaches.

Wei et al. propose to split G into three parts: 1) a diagonal matrix D with diagonal

element (D);; = (G);; 2) a residual matrix B = G — D; 3) a diagonal matrix B with

L

diagonal element B;; = j=1(B)i,; Therefore, we have

whereD + B is diagonal.

Wei’s algorithm is based on a preliminary attempt [Jadbabaie et al., 2009]. It has
been proved that as long as the matrix splitting approach converges to a certain neigh-
bourhood of the solution to dual step, i.e. v®) + ¢ for some small error €, then the
interior-point Newton’s method converges quadratically to a neighbourhood of the net-
work optimum. In a subsequent work [Wei et al., 2011], the convergence of the matrix
splitting technique is proven and analysed.

To illustrate how this approach works in detail, let us consider an example as shown
in Fig. 3.4. As shown in the model (3.28), the objective is to maximize Uy (71) + Uz(72).

The corresponding matrices R, A, z are:

T

10 I 0.1 0 O T2
R=10 1| A=|0 101 0] z=|n
11 I Y 1 ro

'3
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Fig. 3.4: Consider two single path communications 7" and 73,which are originated from

node S; and S respectively. Node D is their destination. Denote traffic over three links

as f1, fo and f3 respectively

where r1 = C; — T1, ro = Co — T3 and r3 = C3 — 71 — 75 are the auxiliary variables for

capacity residual at each link. The transformed objective function y(x) is

2 5
y(@) ==Y Ui(w) — p ) log(x:)

The components of this objective function include 2 sources and 3 links. Its gradient

and inverse of Hessian are as follows,

Vy(z) =

~Uy(z1) —
—Uy(w2) —
u
z3

—
T4

o
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For the purpose of convenience, we denote individual element in Vy(z) as g; and denote

diagonal element in V2y(z)~! as h;, where i is the index of elements. It should be noted

that g; and h; can be computed at each component with only local information.
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Accordingly, we have

G = AVAy(z)~t AT

hiy 0 0 0 O 1 01
1 0100 0 ha 0 0 O =
=40 L 6°1 B 0 0 h3 0 O 1 00
1.1 @@ 1 0 0 0 hg O 010
0 0 0 0 hs 0 01
hi + ho 0 hi
= 0 ho + hy4 ha
hy ha hy + ho
The splitting of G gives:
2h1 + h3 0 0 -hy O hy
M = 0 2ho + hy 0 N=1 0 -h ha
0 0 2hy + 2hg + hs hly  ha —hy — he

Based on these matrices, according to equation (3.31), the dual step »**1) can be

computed as:

D(k+1) L hql}z(lk)—fl.]l}:(;k)—hlgl—hgg;;
1 - 2h1+h3

Hk+1) _ hav® —hao{¥) —haga—haga (3.32)
2 - 2ho+hg

D(k+1) . (h1+h2)17§k)—h1'7§k)—h217§k)-hlgl—hzgz—hsgs
3 . 2h1+2ho+hs

The primal step Az(*tD can be computed given the final solution to the above

iterations v/(t),

ATy = Azy = — (g1 + h]l/(t) = hlll(t))
; ) (3.33)

AT; = Azy = —(haga + hat’l” + hor{?)
In summary, Wei’s algorithm includes three layers of iterations. The outer iteration

is the interior-point iteration, as shown in Algorithm 2. The middle iteration is the

78



equality-constrained Newton iteration. Each source node starts with an initial feasible
traffic 7'1(0) and 7;_(0). With traffic transmitted. at each round t, each source node can
calculate g;, h;. These values are forwarded to all links of its corresponding path. The
inner iteration is the matrix splitting method. Given g;, h; from source nodes, each link

iteratively updates the dual step Dz-(k). At each step of the inner iteration, each link share

(k)

its current ;" with all links that running the same flow. That is, information exchange

between link 1 and 3, between link 2 and 3. A new step is computed as stated in (3.32).

(k) ()

Once 17(7.) converges to v;/, current inner iteration stops. Links send this information

i
back to source nodes. The primal step at each source is computed as stated in (3.33).
As shown in the example, Wei’s algorithm is flow-level distributed. It uses interior-
point to address inequality constraints. The major contribution is the application of
a matrix-splitting technique to solve the Newton step. It has been proven to converge
superlinearly at the Newton iteration. However, although the matrix splitting technique
proposed can decouple an arbitrary matrix, Wei’s algorithm relies on the separable struc-
ture of the objective function. That is, it addresses a single path utility maximization
problem. The matrix splitting method introduces extra iterations for each Newton step.

More importantly, at each step of inner iteration, all links belong to the same flow need

to share their dual step #(%). It incurs frequent large scale information exchanges.

2) Applying Wei’s matrix splitting to a node-level distributed optimal
routing algorithm

Let us now investigate further on the major issue of Wei's algorithm. In Wei’s
algorithm, the coupling dual step (3.30) is introduced from the equality-constraints. In
the previous example, there are three equality-constraints: At each of the three links,
the traffic runs through the link plus the residual of the capacity equals the capacity of
the link. A dual variable is introduced for each constraint, v, and vs respectively.
That means, the three duals are coupled via the mutual flows through them. The matrix

splitting technique essentially replaces the coupling in computation, say between D§k+l)
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- (k+1)

and v, , with the copy of previous step, i.e. (®

and Dék) . as in the first equation of
(3.32). In this way, computation of the dual step can be executed locally at each link,
but all coupled links need to exchange their 7; at each iteration.

Following Wei’s result, Liu and Sherali develop a multipath routing algorithm that
maximizes utility function of each communication flow [Liu and Sherali, 2012]. Instead
of source flow 7;, they use link rate for each flow fﬁ’j) as handle variables. Equality-
constraints are introduced from flow reservation at each node: the sum of outgoing traffic
- to other nodes or to application layers - equals the sum of incoming traffic - from other
nodes or from application layers. Each dual variable v; is only coupled with neighbours
who it shares links with. As opposed to Wei’s algorithms, information exchanges happen
between neighbour nodes in the matrix splitting iterations. The major contribution is
applying the approach of Wei’s algorithm to the different formulated problem, which
gives node-level distributed routing algorithm.

However, this approach achieves its distributed manner by introducing more variables
and thus more equality-constraints. For instance, for the simple network shown in Fig.

3.4, a formulation using link rate for each flow, as suggested by Liu and Sherali can be

given as:

maximize Uj(T1) + Ua(72)
subject to fl =T1; fi="T
fi=15 =1
0= fi=< G
0< f2 <y

0< f3+f3<Cs

Applying the same affine transformation as Wei’s algorithm and using interior-point
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method to eliminate non-negative constraints, the problem can be translated into:

minimize —Uy(Ti) — Uz(73) — u(log(f}) + log(f3)
+log(f}) + log(f3) + log(r1) + log(r2) + log(rs)
subject to f} =Ti; f§ =T
=1 £ =55
fl+r=0
f3+ra=0Co

1+ f24+r=0Cs

It is a problem with 9 handle variables and 7 equality-constraints. Adding one dual vari-
able for each constraint, the linear equation system of Newton’s step is 7 x 7, compared
to flow-level distributed step with 3 x 3 system. It can be easily seen that, translating
the handle variable from flow rate to link rate for each flow, the size of the linear system
at Newton'’s step increases from the number of links |L| x |L| to

L1+ D> D ) x (1Z1+ D D Ipl)

wEW pEP,, WEW pEPy

where |p| is the length of a path p. Although it can be argued that the increased
computation overhead imposes little challenge to moderate devices, a larger equation
system incurs more iterations to the matrix splitting method at each Newton step. In
particular, for a wireless network where our interests lies, flows and links are coupled to
a great extend. It is unclear whether this distributed algorithm can gain any benefits
compared to Wei’s flow-level distributed algorithm. Unfortunately, their results lack of
statistical or analytical justification. Furthermore, their routing algorithm relies on the
separable structure of the objective function and can not be applied to cost minimization.
Also, a utility maximization routing may likely lead to excessively long paths and large

delays [Zymnis et al., 2007].
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Fig. 3.5: An example of constrain graph: the linear equation system to the left can be
translated to a constrain graph to the right. In the GaBP algorithm, Each node starts

with a parameter set {b;/G; i, G;;} and neighbours iteratively exchanges messages A; ;.

3.4.2.5 Gaussian Belief Propagations

In the following, we present the rationale and application of an iterative method, namely
the Gaussian belief propagation (GaBP) method, in a distributed network optimization
algorithm. Belief propagation (BP) is a message passing algorithm to conduct inference
on probabilistic graphical models. GaBP is a type of BP algorithm where the underlying
probability density function (PDF) the Gaussian function, that is, a normal distribution.

The GaBP algorithm can be used to distributedly solve a linear system Gz = b, on
the premise that G is symmetric [Shental et al., 2008]. The rationale of applying GaBP
algorithm is as follows: We can construct a joint normal distribution whose mean value
is the optimal solution of linear equation system, i.e. = G~'b. Such a construction

can be described by a function p(z):
p(z) = Z-le—xTGx/2+sz _ N(M,G_l)

where 1 = G~'b and Z is some factor matrix. In order to implement in a distributed
manner, we need to find separately the mean value of the marginal distribution for each
component, namely p(z;). This can be achieved with a BP algorithm, through inference
between components.

The operation of GaBP can be described with a graphical model, as shown in Fig. 3.5.
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Each component z; corresponds to a node in the graph, which represents a priori normal
distribution. The distribution is specified by an inherent parameter set {j;;, A il},
namely N (u;; = b;/Gi;, Aifil = 67-2 = G;,;), where p;; € R is the mean and A;; € R
is the inverse of the variance. The coupling relation between two components x; and
xj, which exists if G; ; = G;; # 0, corresponds to an undirected link connecting node
i and node j. The link represents an exponential function e~%i%:.i%  with an inherent
parameter G ;.

At each round k, each node constructs and shares messages with all its neighbours.

The message sent from node 7 to node j is a parameter set { pz(fcj), AE’;)} of a joint normal
(0)

distribution. Starting from AQ. = 0,u; ) = 0, the parameter set is updated from
m,i 'uz,]

inherent parameters of nodes and links, as well as previously received messages:

k+1 k
AI(] ) Al? =+ Z A‘ETL)I
meN;
m#j
k+1 [
lu’(!J ) e Gl] L'L:LLZ 1 + Z Agn)zﬂm z
meN;
m#j

Once the algorithm converges, the mean value of the marginal distribution for component
T; is given as:
= A+ D A Agapia + > Aub))

meN; mENz
m#j m#j

which is the value of z; in the solution z = G~1b.

It should be noted that, although the theory behind the GaBP is the probability
inference, the algorithm itself is a message-exchange algorithm that operates purely
with the parameters of nodes, links and messages. We are interested in its application
to distributed network optimization problem. For more details of the GaBP algorithm,
such as convergence condition, we refer to a recent study [Bickson, 2009].

Inspired by its fast convergence and distributed nature, Bickson et al. [Bickson et al.,
2009] apply the GaBP algorithm to the centralized primal-dual interior-point method-
based network optimization algorithm [Zymnis et al., 2007]. At each Newton’s step, the
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GaBP algorithm is used to solve (3.24) iteratively and distributedly. Each component
corresponds to a single path communication flow w. The inherent parameters b; ;/G; ;
and G il of each component can be retrieved locally.

Like the centralized NUM algorithm [Zymnis et al., 2007], the objective function in
the distributed NUM algorithm [Bickson et al., 2009] is separable utility function for each
communication flow. Because the Hessian matrix is only part of the matrix G and that
the GaBP algorithm decouples each components with regards G, the same distributed
algorithm can be applied to coupled objective function without modifications. G;; can
be get where a flow shared capacity with another flow.

The distributed NUM algorithm is flow-level distributed algorithm, as the GaBP
decouples components - different communication flow in this case. The authors suggest
broadcast of messages from one flow to all its coupled flows. One of its problems is that
two flows may be coupled with each other at different links. That means, one link in
the probabilistic graphical model, as shown in Fig. 3.5 may consist of multiple physical
locations. Broadcasting at all locations may lead to duplication and confusions. Either
by unicast or as suggested by broadcast, it is yet to be addressed how to share messages

in an actual networking algorithm.

3.4.3 Summary of Newton’s Method

Newton’s method is an iterative method to optimize convex problems. At each step, it
approximates the objective function with a second-order Taylor expansion. Compared
to first-order methods, Newton’s method exhibits a superior convergence rate. The
convergence of Newton’s method is affine-invariant. Linear equality constraints can be
eliminated by affine-transformation. Or equivalently, through the KKT system(3.19).
Inequality constraints can be addressed by projection method. Especially if the inequal-
ity constraints are linear, projection method is a simple yet satisfying approach. A more
advanced choice is the interior-point method. The basic interior-point method intro-

duces a barrier function for each inequality constraint. In order to keep solution within
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the feasible domain of a problem, barrier functions introduce extra penalty as a solution
approaches infeasible domain. Interior-point method shows a faster and “smoother”
convergence than projection method in dealing with inequality constraints.

We have reviewed some of the notable routing algorithms that uses Newton’s method.
NUM algorithms based on Newton’s method are also included in our review. The NUM
problem resembles the cost minimization routing problem in their mathematical models,
with primarily difference in the objective function. Many results of NUM algorithms can
be applied to the optimal routing problem with little modifications.

Both the projected Newton’s method and the interior-point method can be applied
to routing optimization problem. However, by its nature form, Newton’s method is
a centralized approach. The major challenge to the design of a distributed Newton’s
method lies in the computation of the Newton step, which is essentially a linear equation
system Gz = b, at each iteration. Some iterative methods have been proposed to address
this challenge. We have reviewed two of them that shows great promises. Wei et al.
develop a matrix splitting technique that is convergent for an arbitrary square matrix
G. They apply this technique to a flow-level distributed NUM algorithm. Another
iterative method that facilitates the distributed computation of a linear equation system
is the Gaussian belief propagation. Compared to many other iterative methods, the
GaBP algorithm has been shown with a promising convergence rate. Bickson et al.
has developed a flow-level distributed NUM algorithm based on the GaBP method.
Both algorithms lacks of practical considerations in the sense that they either incurs
large amount of communication overhead or ignored the message exchange mechanism
completely. However, it is important to extract the mathematical merits from the actual
algorithms: Both Wei’s matrix splitting technique and Bickon’s GaBP method decouple
the computation of each component z; using coupled value from the previous round.

We have also seen some node-level distributed routing algorithms. Bertsekas et al.
apply Newton’s method to Gallager’s model, which was initially proposed for distributed

optimal Wardrop equilibrium. Jiu and Sherali apply Wei’s matrix splitting technique
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to a multipath utility maximization problem with link rate of each communication flow
f(‘f’j)a,s handle variable. Both approaches face issues of slowed convergence compared to
their flow-level or centralized counterparts but lack of statistical or analytical evaluations.
It remains an open issue whether existing node-level optimization algorithms provide a

satisfying convergence. If not, how can we design a node-level optimal routing algorithm

that retains the convergence rate of a flow-level or centralized optimization algorithms.

3.5 Decomposition Methods

In previous section, we have described algorithms based on Newton’s method, which
enjoy a superlinear convergence rate. The major issue of Newton-based algorithms is that
the computation is centralized by nature. Although there are some promising iterative
approaches that facilitate a distributed Newton’'s method, these progresses are quite
recent and we have a small amount of network algorithms that apply these techniques.
On the other hand, a standard approach for distributed optimization algorithms is the
decomposition method.

There are primarily two types of decomposition methods: the primal decomposition
and the dual decomposition. Both types of methods divide an optimization problem into
a number of subproblems each of which can be solved separately and locally. The cou-
pling between different subproblems are represented by “interfaces” - primal variables in
primal decomposition and dual variables in in dual decomposition. During the compu-
tation of each subproblem, these interfaces treated as a constant. Once all subproblems
complete their computation, based on their results, a new set of values are given to the
interfacing primal or dual variables. Decomposition methods can be viewed as a mix
of a second-order optimization for each subproblem and a first-order optimization for
computing interfacing variables.

Compared to iterative methods in distributed Newton computation, decomposition

methods are in general simple to implement. In particular, the dual decomposition
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method have an economical interpretation: dual variables between subproblems can be
interpreted as prices for resources. Because both the optimal routing problem and the
utility maximization problem can be regarded as a type of resource allocation problems,
decomposition methods, especially the dual decomposition method, have attracted ex-
tensive research efforts in the domain of network optimizations.

In this section, we will first give an overview of the mathematical background of de-
composition methods. Then we review some of network optimization algorithms that are
based on decomposition techniques. Finally, we examine the relations between decom-
position methods and Newton’s method in order to understand the nature of distributed

optimizations.

3.5.1 A Mathematical Background

In the following, we firstly give a brief description on the Lagrange dual function of
a constrained optimization problem. With the concept of duality established, we dis-
cuss the decomposition techniques that have been used to decentralize optimal routing

algorithms.

3.5.1.1 Lagrange Dual and the KKT Condition

The Lagrangian L : R*"T™+t¢m 5 R of the constrained optimization problem (3.4) is
defined as :
L(F,\v)=C(F)+ > _ Xigi(F) + > _vihi(F)
i=1 i=1

where, A\, v are called the dual variables or Lagrange multiplier of the problem. A

Lagrange dual function of the problem (3.4) D : R™*¢™ — R:

D\v)= _inf L(FAv)=_inf (C(f) + ; higi(F) + ; v,-hi(F)> (3.34)
Because g;(F) <0, h;(F) =0 for any F € FD, for any A = 0 and any v, we have
D\v) = CUF)
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This means that the function D(A,v), given A = 0, is an lower bound of the optimal
cost. We are interested in whether the above inequality is tight, that is whether the two
sides can be equal. Denote \*,v* as the dual variables that maximize the low bound,

namely

D(N\*,v*) = maxD(\,v) (3.35)

It has been established that D(\*, v*) = C(F*) if the convex optimization problem(3.4)
is strictly feasible, i.e. there exists a feasible 7 € FD so that ¢;(F) < 0 for i = 1...m.
The value C(F*) — D(X\*,v) is refered to as the duality gap. That mean, as long as a

convex problem is strictly feasible, we can solve it by addressing the following problem:

maximizey , D(\, v) (3.36)

subject to A =0

In the context of optimization theory, the problem (3.36) is known as the dual problem,

correspondingly the problem (3.4) is called the primal problem.

3.5.1.2 Decomposition of Optimization Problems

Decomposition methods divide an optimization problem into a number of subproblems.
Each subproblem can be addressed separately. This enables a distributed implemen-
tation of optimization algorithms. A master problem sits on top of and optimizes the
coordination of all subproblems, as shown in Fig. 3.6. Firstly, with an intial setting,
all subproblems are computed. Their information, sometimes termed as the price, is
reported to the master problem. The master problem is computed with prices of all
subproblems, returning a new setting to each subproblem.

There are mainly two types of decomposition methods: A primal decomposition
method is based on the primal problem while a dual decomposition method is based
on the Lagrange dual problem. As we have previously mentioned, an optimization
problem can be coupled through both the objective function and the constraints, i.e. the

coupling variables and the coupling constraints. Because the dual variables, i.e. ), v are
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Fig. 3.6: A sketch of decomposition: The original problem is decomposed into a number

of subproblems. The coordination of all subproblems forms a master problem.

introduced from the equality and inequality constraints (3.34), the dual decomposition
is naturally suitable to decouple constraints while the primal decomposition is naturally
suitable to decouple the objective function. However, through transformation of the
problem, both decomposition methods can be used to address the two types of coupling.

Dual decomposition methods are comparatively more common in distributed optimal
routing algorithms. In the following, we will firstly describe the dual decomposition

technique and then the primal decomposition.

3.5.1.3 Dual Decomposition

In the following, we will describe the dual decomposition method. Firstly, we show how
a dual decomposition method addresses a problem with coupling constraints. Secondly,
we demonstrate that with the help of auxiliary variables, a dual decomposition method
can also solve problems with coupling objective functions. Finally, we give an overview
of the dual decomposition method.

Consider an optimization problem with a separable objective function and coupling
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constraints:

minimize Zn: Ci(f;) (3.37)

n
subject to ng(f,) 2Ci j=1.m
1=1
Zthl =T; j=1l.cm
LEFD;, i=1..n

where g; j : R — R, C; is the j* inequality constraints. h; ; : R — R, Tj is the j* equality
constraints® The set FD; is the separate feasible domain as a result of constraints on f;

only. According to the definition(3.34), the Lagrange dual function of the problem(3.37)

is
D(/\,I/) = }flef‘fp‘ (ZC (fz Z Zgz,] fz + < l/] < ) - 73))
( inf ) fl +Z)\ng,_7 fz ‘f‘ZV] ‘lJ (fi) )) Z’\jcj = ZVJ"E'
=il sz]'_D F=1 = j=1

The infimum of a function can be determined with a minimization of the function.
Therefore the Lagrange dual function can be divided into n minimization subproblems.
The maximization of the dual function is the master problem. More specifically, for each
component 7, the subproblem is:
m cm 5
minimize Ci(f;) + Y Xigii(fi) + D _ vihii(fi)
j=1 =

subject to  f; € FD"

Given the set of dual variables A = {)A;},v = {;}, each subproblem can be addressed

by Newton’s method locally and separately, returning a set of solutions F* = {f;}.

3We wish to emphasize that this form of constraints is a special case of the general constraints in (3.5)
and (3.6): o1, Gi.(f5) — Cj = g;(F) and S0, hij(fi) = T; = h;(F). That is, the constraint functions
are separable. It can be seen that the optimal routing problem fits this case. The general constraints
can be addressed by adding auxiliary variables.
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However, the separately computed solution set F* may not be feasible, in the sense that

either

Zg,;J(fi*) = C; forany j=1..m
i=1
or

Zﬁi,j(fi*) #T; for any j =1..cm
=i

Once solutions of all subproblems are computed and communicated to a central compo-
nent, the infeasibility shown above may be detected. In the case of an infeasible solution,
a naive projection method can be applied. Namely, we can cut off the infeasible part of

gi,; and ﬁi,j equally among all components, which gives the subproblem for each i:

minimize C;(f;)
> i1 Gig(f) - Cj
n

o) = hug(y) — =L Bul)

n

subject to  gi;(fi) < i3 (f;") — Jj=1l.m

=7

i=r1E e

fi € FD;

Solving this subproblem of each component gives an feasible solution set F*. Gathering

the information of the feasible solution F*, the master problem can be written as:
m cm
maximizey, D(A,v) = Z Aja; + Z vibj + ¢
j=1 j=1
subject to A >0

where a; = > 21, Gi(ff) — Cj, bj = i, h‘i(fi*) —T; and ¢ = Y1, Ci(ff). The master
problem is convex however may not be differentiable. It is often addressed with a first-
order subgradient method. Each step of the master problem gives an update of dual
variables. With the new value of dual variables, each subproblem is computed again.

The optimization stops when the master problem terminates.
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We can also address the coupling objectives using dual decomposition methods. Con-

sider a problem with a coupled objective function:

minimize Cy(fi, f) + Ca(fa. ) (3.38)
subject to f1 € FD;

f2 € FDs

where f. is the coupling variable. We can add auxiliary variables to the coupling objective
function, so that coupling is transformed from the objective function to the constraints.

The problem can be transformed into:

minimize C1(f1, f3) + Ca(f2, f4)
subject to f3 = f4

J1 e FBY

fo € FDy

This problem meets the form of (3.37) and can be addressed with the dual method as
we have described previously.

In summary, in a decomposition method, a set of initial dual variables are given
to each component. Each subproblem is computed locally, for example using Newton'’s
method. The solutions cf each subproblem are sent back to the master problem. One
step of the master problem is computed using the subgradient method to updates of the
dual variables. The updates are sent to subproblems for a new round of computation.
An interesting interpretation of the dual variables, which is often used in the domain
of resource allocation, is that they are the price of resources. Because such a price is
only a soft “punishment” in the sense that it will not increase to infinity if the solution
is infeasible, the solution during the iteration of dual decomposition methods may not
always be feasible. Often, a certain type of projection methods are used in conjunction

with dual decomposition methods, which slows down the convergence.
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3.5.1.4 Primal Decomposition

In the following, we briefly describe the primal decomposition technique. As the name
suggested, the primal decomposition is based on the primal problem. The idea is that
each component keeps coupling variables fixed while optimizing its part of the objective
function, which is a subproblem. A master problem optimizes over the coupling variables.
The primal decomposition suits naturally if a problem when fixing certain variables
divides into multiple subproblems. Consider again the optimization problem (3.38).
Instead of adding an auxiliary variable as in the dual decomposition method, we can fix
the coupling variable f.. The original problem can be decomposed into the following

subproblems, for ¢ = 1, 2:

minimizes, Cji(fi, fe)

subject to f; € FD;,

which can be addressed by Newton’'s method locally at each component. Given the

optimal solution to each subproblem f* and f, the master problem is given as:

minimizes, Ci(f7, fc) + Ca(f3, fc)

which can be addressed by either the gradient method - if the differentiable - or the
subgradient method - if not differentiable.
The primal decomposition technique can be used to address coupling constraints

with the assist of auxiliary variables. Consider a simple example as follows:

minimize C}(f1) + Ca(f2)
subject to f1 + fo <c

f1 € FD1, f2 € FD;

We can add an auxiliary variable to separate the the coupling constraints, so that the
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Fig. 3.7: A sketch of two-level hierarchical decomposition: Subproblems are decomposed

Subproblem

using either the primal decomposition or the dual decomposition

problem is broken into two subproblems, for i = 1, 2:

minimize C;(f;)

subject to f; < ¢, fi € FD;

The master problem is to find the best assignment of ¢y, ¢o, given ¢; + ¢o = ¢. It can be
shown that the subgradient of the master problem is essentially the summation of the

dual variables of each subproblems.

3.5.1.5 Hierarchical Decomposition

A hierarchical decomposition involves iterative decompositions to subproblems, as shown
in Fig. 3.7. It divides a problem into multiple levels of subproblems. The condition for
a convergent hierarchical decomposition is that the lower level subproblems need tc run
at a faster pace than higher level subproblems or master problems. This is an important
design factor. For example, we can divides a network optimization into subproblems of
each communication flows and divides the subproblem of each flow into subproblems of
link scheduling at each intermediate hop.

In a hierarchical decomposition, both the primal decomposition and the dual decom-

position can be used depending on the engineering requirements. The introduction of
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auxiliary variables increase the flexibility of decomposition techniques in network opti-

mizations. These are the mathematical tools that can be used.

3.5.2 Notable Results

In the previous subsection, we have discussed basic forms of decomposition methods. In
this subsection, we are going to reviewed the application of decomposition techniques
in the domain of network optimization. Extensive studies can be found in applying
decomposition methods

Based on the application of decomposition techniques, we can organize the literature
into two categories: vertical decompositions and horizontal decompositions. A vertical
decomposition is a decomposition applied to the communication stack. It addresses joint
optimization across multiple layers, including the MAC layer, the network layer or the
transport layer. On the other hand, a horizontal decomposition addresses decoupling of
computation between physically distant components, such as flows and nodes. That is,
a horizontal decomposition facilitates distributed manner of optimization and a vertical
decomposition enables cross-layer optimization.

Finally, it should be noted that our organization of the literature is not strictly a
classification of existing decomposition-based algorithms. Rather, such an organization
is based on the focus of each algorithm. It is possible that an algorithm includes both
vertical and horizontal decompositions. In fact, the existence of layered architectures is
to make communication functionalities local to physical locations that they cover, that
is, to achieve distributed operations. Therefore, a vertical decomposition algorithm is

likely to include certain horizontal decompositions.

3.5.2.1 Basic Dual Decomposition for Distributed NUM

Decomposition methods have been widely studied in the domain of network optimiza-
tion algorithms [Chiang et al., 2007] [Palomar and Chiang, 2006]. In the following, we

will describe a basic form of dual decomposition-based algorithm as well as some early
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investigations on the basic algorithm.

Because of its convenience to decouple constraints, dual decomposition is a common
approach to address NUM problems where objective functions are separable. The basic
form is rather straightforward. Consider the following problem,

s
maximize Z Uil T:)

i=1

subject to RT < C,

1 if flow ¢ runs through link j
where R is the single path routing matrix, namely R;; =

0 otherwise
7 is the traffic of flow i. C; is the link capacity of link j. Applying Lagrangian dual

function, the subproblem for communication 7 can be written as:
m
maximize 7; Ui(75) = > AR;iTi
j=1

This subproblem can be solved by locally at the source node of each communication flow
using, for example, Newton’s method. Given the optimal solution 7*, the master dual
problem is given as:
minimize Z Ui(T) + \XL(RT - ©)
i=1

subject to A > 0;

At each link j, where the inequality constraint comes from, the dual variable can be
updated by a projected subgradient method,
S
NV = - a6 = YR TN
i=1
Note that for link j, the value C;—>""" | R;;T;* is essentially the sum of capacity residual
of the link. The dual variables A can be interpreted as the unit price to each communica-

tion for using link resources, as it plays a negative effect on utilities of subproblems. The
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NUM algorithm achieves flow-distributed using the basic dual decomposition method,
which is indeed quite elegant: Start with an initial dual variable, each source node com-
putes locally its optimal data rate. Once a link receives traffic from all communications,
it updates its unit price using the subgradient method and sends the updated price to
all sources whose traffic runs through the link.

In their seminal paper [Kelly et al., 1998], Kelly et al. formulates a NUM problem
to achieve proportional fairness among different flows. More specifically, their consider
the NETWORK problem formulated as follows:

s
maximize Z w;log(T;)

1=1

subject to RT <C

They propose to use a subgradient method to address both the master problem and the
subproblems. Their main contribution is the demonstration of stability and convergence
of the distributed flow-level algorithm through a Lyapunov stability analysis.

Low and Lapsley have also investigated the basic dual decomposition technique in
NUM problems [Low and Lapsley, 1999]. In addition to the synchronous algorithm
stated above, they have proposed an asynchronous algorithm that allows different com-
munications update their prices at different time intervals, which may be caused by
communication delay and heterogeneous computing abilities of different nodes. Their
asynchronous algorithm uses a weighted moving average as an estimate for prices at
sources and for flow rates at links. They demonstrated that such an algorithm is con-

vergent.

3.5.2.2 Utility Maximization and Multipath Routing

The majority of NUM algorithms use single path for each communication flow. The

NUM problem with a multipath routing is non-trivial yet mathematically tractable. Its
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general formulation is as follows.
S
maximize Y U;(T;)

: pEP
Ipip i=1

subject to T; = Z foo Mi<Ti<M;, ieW
PEP;

RE=C,F =0

where R is the routing matrix and F = {f,|p € P} is the set of traffic of all paths,
m; and M; are boundaries on aggregated traffic of each communication. Compared to
the basic NUM problem, each communication consists of multiple paths. The separable
utility function takes aggregated traffic of each communication. Its handle variables are
traffic rate of each path. This problem is difficult to solve because it is no longer concave
with respect to path rates even if the utility function is strictly concave with respect to
aggregated traffic. Existing convex optimization methods can not be applied directly.

In order to address this non-convex problem, the objective function can be modified
with the help of auxiliary variables fp as follows:

S S
ma).cimizez Ui(T;) + Z Z %(fp = fp)2

fofp: PEP 554 i=1 peP;

where a,, is some constant assigned to each path. The constraints remain the same as the
original problem. It is easily verified that the modified problem has the same optimal
solution as the original problem. In addition, the modified problem is concave with
respect to f, and fp separately, although not jointly. A number of prozimal optimization
approaches have been used to address such a problem [Wang et al., 2003], [Lin and
Shroff, 2006, where the dual decomposition and the subgradient method are used to
solve f, and dual variables iteratively. Along the convergence, the auxiliary variables fp

are updated iteratively and asymptotically approaching to f,

= (t+1)

= (t
fp == updater(fp( ; (t))

Jp
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where updater(-) is some arithmetic function asymptotically approaching [y For exam-
ple, one possible updater is updater(_fp(o, f,gt)) = ﬁfp(t)+ 1-p) ,Et) for B €[0,1)

The convergence of such an approach have been analysed [Lin and Shroff, 2006].

3.5.2.3 Coupled Objective Functions

Although the majority of NUM algorithms consider a separable objective function, we
have seen several NUM algorithms that use the dual decomposition method to solve
coupled objective functions.

Tan et al. [Tan et al., 2006]consider a NUM problem where different flows are coupled

through the utility function, as well as through constraints as in the basic form.

S
max7i_mize Z Ui(Ti, AT }jen(sy)
4 i=1
S
subject to 7; € FD;, Vi; Zgi(]:) <C

i=1
where the second parameter of the utility function is a set of interfering flows of each
communication. Their approach to solve this problem is to introduce auxiliary variables

to translate the coupling from the objective function to constraints.

i ]

s
maxi71_nize Z Ui(Ti {Ti 5} jen i)
=1

S
subject to 7; € FD;, Vi, Zgi(]:) <C

i=1

where 7; ; is a local copy of coupling traffic 7; at flow i. The objective function is now
separable. The resulting problem can be addressed by the dual decomposition method.

He et al. [He et al., 2007] have proposed a modified objective function in order to
approximate the joint optimization of utility function at transport layer and cost function

at network layer.
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where Cj(-) is the cost over link . Although the utility function is separable, because the
presence of link cost function, the objective function of this problem is not separable.
Similar to the previous approach, He et al. introduce auxiliary variables to coupling
variables and then apply dual decomposition.

Although both of the reviewed algorithms are single path communication, their
present an alternative approach to existing iterative methods in addressing coupled ob-

jective function.

3.5.2.4 Node-Level Distributed Optimal Routing Algorithms

Decomposition methods can be used for node-level distributed algorithms. The authors
of a recent paper [Mosk-Aoyama et al., 2010] consider network optimization problem
with node rate as handle variables.
n
minimize ZCi( fi)
i=1

subject to AF =b; F >0

where f; is data rate of node i, A € R™*" b € R™*! AF = b indicates the flow
conservation condition for each link. Although not immediately applicable, this equality
constraint takes minor modifications to facilitate a multi-commodity routing algorithm.
The capacity constraint is not considered in this formulation. The objective cost function
is separable with respect to its handle variables. Therefore, this problem is coupled
through only equality constraints. To address this problem, firstly, Mosk-Aoyama et al.
apply the interior-point method to address the non-negative constraints. Then, they
use the dual decomposition method to the equality constraints, which decouples the

problem.

100



They have also discussed the case where coupled linear inequality constraints are
present, that is the equality constraints are replaced by AF < b. It enables the modelling
of link capacity, which is essential for optimal routing algorithms. Because the inequality
constraints are coupled now, barrier functions introduced on inequality constraints are
coupled. To address this, they introduce auxiliary variables Z, such that the inequality
AF < b is transformed to equality AF + Z = b and non-negativity Z > 0. The

transformed problem is written as:

minimize ZC )~ Zlog )= Zlog z)

=1

subject to AF + Z =0,

whose objective function is separable with respect to f; and z;. However, the dual
decomposition method can not be applied directly to such a problem: The subproblem
for any given z; is to minimize — plog(z;) + Aiz;, whose minimum value approaches and
reaches to negative infinity as \; approaches and reaches 0. In order to address this
issue, they add an extra term ¢(z;) to the term, where ¢(-) is any positive function that
increases faster than logarithm function, for example, a quadratic function. This remedy
term avoids unbounded subproblems, however introduces a bias to their solutions.

In addition, they propose to use a distributed gossip algorithm to share information,
such as primal and dual values, among different components.

In another node-level distributed algorithm [Purkayastha and Baras, 2008, the au-

thors consider a special cost function over each link (¢, j),
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where D; ;(-) indicates the queueing delay over link (¢,j) of a unit traffic. However,
the motivation and the application of such an integral cost is unjustified: It gives the
overall delay of all traffic in the case that they arrive at the same time. It can be easily

verified that the long term overall delay for a stable queue is f(i,j)Di,j ( f(i,j)). The main
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contribution of this algorithm is that the authors established an optimal equilibrium of
link traffic based on the dual prices.

In essence, both approaches achieve node-level distributed manner by using link flow
rates as handle variables. Indeed, this approach resembles the previously reviewed node-
level distributed Newton’s method [Liu and Sherali, 2012]. Similarly, using link flow rate
as handle variables results in a large amount of variables and equality-constraints. In
dual decomposition, each constraint introduces a dual variable, which is updated using
the slowly converging subgradient method. Therefore, node-level distributed algorithms

suffer from a slower convergence, compared to their flow-level counterparts.

3.5.3 Discussion of Decomposition Methods

In this subsection, we give an overview of decomposition methods as an approach for
optimal routing algorithms.

The advantages of decomposition methods include 1) It decouples components of an
optimization problem. If path flows are used as handle variables, flow-level distributed
manner is achieved. If link flows are used as handle variables, node-level distributed
manner of is achieved. 2) It has very good practical implications, i.e. prices of resources

Some of the main disadvantages of decomposition methods particularly for routing
problems are as followings. 1) It may not be always feasible. Therefore, projection
methods have to be used which affects the convergence. 2) Because subgradient method
is commonly used to update dual or primal variables, the resulting convergence may not
be strictly descent. 3) The dual decomposition is equivalent to the Newton’s method
with infeasible start(3.20). Instead, it uses subgradient method to address the coordi-
nation between different subproblems. Therefore, decomposition method can be seen as
a mixture of first-order methods and second-order methods. It has been demonstrated
that [Bickson et al., 2009, Wei et al., 2010] the GaBP and matrix splitting distributed
iterative Newton’s methods also enjoy a better convergence compared to decomposition

methods.
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3.6 Routing Optimization in Wireless Domain

Studies of optimization algorithms in wireless ad hoc networks begin to appear in recent
years. Several models of optimal routing [Toumpis, 2006] [Altman et al., 2008] and [Alt-
man et al., 2008] have been proposed. Their algorithms are based on optimal Wardrop
equilibrium to achieve optimal routing. They focus on massively dense ad hoc networks,
where nodes locate so close to each other that they become points in a continuum. Un-
der such an environment, they study how data traffic running over a physical region.
The main limitation of these approaches is that they do not consider neighbouring in-
terference and do not suggest individual nodal behaviour. Instead, they utilize existing
wireless throughput models and provide a macro view of traffic engineering. Therefore,
it is difficult to design a routing algorithm based on these proposals.

It is easily seen that the challenge for the design of wireless optimal routing algo-
rithms is to model the underlying wireless interference. A conflict graph [Jain et al.,
2003] and [Chen et al., 2006] is a two dimension map that indicates mutual interferences
of all links. With the help of conflict graph, wireless interference can be transformed
into graph problems. For example, it translates the wireless scheduling problem to max-
imal independent sets problem or maximum weighted matching problems. Nonetheless,
conflict graph itself does not model delay but merely describe the interference relations.

In his seminar paper, Bianchi [Bianchi, 2000] makes use of Markov chain to analyse
the queueing and medium access behaviour of DCF. Following this idea, a more recent
approach [Tickoo and Sikdar, 2008] tries to release the Poisson arrival assumption by
assuming a GI/GI/1 queueing model. However, this approach assumes saturated traffic
at each node, in that there are always data waiting in the queue after one successful
transmission. Under the Poisson arrival assumption, Malone et al. [Malone et al., 2007
have developed an advanced analysis of the medium access delay in a heterogeneous
non-saturated 802.11 DCF network.

Gupta and Shroff [Gupta and Shroff, 2011] realise the difficulty in wireless modelling.
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Instead, they propose a lower bound on delay modelling using the concept of a (K, X)-
bottleneck. A (K, X)-bottleneck is a subset X of a network where at most K links of it
can transmit at the same time. The mean delay of a network is lower bounded by the

sum of a set of mutual exclusive bottlenecks.

3.7 Miscellaneous Results

We list in the following a number of remotely related results, which can be seen as

supporting techniques for optimal routing approaches.

3.7.1 Estimates of Traffic Demands

[Zhang et al., 2005] address the issues of multiple traffic matrices, i.e. changing traffic
demands, by comprising solutions to facilitate multiple traffic demands as much as possi-
ble. [Dai et al., 2008] discuss the estimation traffic over a number of traffic matrices. [Xu
et al., 2011] translate the network optimization problem into an entropy maximization
problem, so that nodes need to distribute traffic at each hop based on an exponential

entropy value.

3.7.2 Asynchronous Algorithms

[Nedic and Ozdaglar, 2009] model an optimization problem as a control system. Their
results focus on demonstrating the convergence and stability of asynchronous update of

cost information and decision making.

3.8 Summary and Discussion

In this section, we firstly summarize the review of this chapter. Then, we discuss open
questions in the literature, which identifies the design space of an optimal routing algo-

rithms in wireless ad hoc networks.
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3.8.1 Summary of Optimal Approaches

We have reviewed in this chapter existing optimal routing algorithms and their math-
ematical backgrounds. Following the analysis of general multipath routing algorithm
in chapter 2, existing optimal routing algorithms focus on the data distribution task of
a multipath routing algorithm. They apply optimization theory to compute a traffic
distribution pattern that minimizes the overall cost. The optimal routing problem can
be viewed as a type of constrained convex optimization problem and optimal routing
algorithms are essentially applications of optimization methods. There are several math-
ematical methods across different optimal routing algorithms to address different issues.

In the following, we summarize optimal approaches as a whole.

3.8.1.1 Orders of Optimization Methods

Depending on the order of Taylor approximation to objective function at each iteration
step, there are two types of mathematical methods to solve an optimization problem:
the first-order gradient descent methods and the second-order Newton’s method. In
comparison, gradient descent methods are simple and distributed with respect to each
handle variable by nature. However, it suffers from a slow convergence rate. Early
attempts at routing optimization approaches are based on the steepest descent methods
but recent progresses have been focused on its second-order counterparts. On the other
hand, the Newton’s method enjoys a superlinear scale-invariant convergence but requires
global knowledge, i.e. the Hessian matrix. Recent results in Newton-based routing

algorithms have been focus on distributed computation of Newton step.

3.8.1.2 Approaches to Address Constraints

There are a number of techniques that can be used in optimization methods to ad-
dress constraints. A simplistic approach is the projection method, which can be used

in conjunction with both gradient descent method and Newton’s method. The projec-
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tion method may result in a crude change of search direction, thus affects largely the
convergence. For a linear constrained problem, Frank-Wolfe method translates the com-
putation of gradient descent step into a linear programming problem. It finds reduced
gradient descent steps that are feasible.

Because Newton’s method is scale-invariant, linear equality constraints can be elimi-
nated with affine transformation without affecting the convergence of Newton’s method.
A more advanced approach to address inequality constraints, compared to the projec-
tion method, is the interior-point method. It introduces a logarithm barrier function to
Newton’s method. The barrier function increases to infinity as a solution approaching
to infeasible domain thus keeps the solution within the feasible domain. The problem
for logarithm barrier function is that it addresses only strict inequalities. For example,
the capacity constraint for a link flow traffic f is a strict inequality, f < C, which can be
addressed by log(C — f); However, the non-negative condition for traffic f is not strict,
f > 0. By using log(f), it eliminates the possibility of f = 0, which is not desired.

Dual Decomposition methods can be viewed as an approach to solve equality and
inequality constraints. At each step of the outer iteration, they introduce a price for each
constraint - more specifically the dual variable - to all subproblems. It resembles the
barrier function in that the price pushes solutions of each subproblem within the feasible
domain. However, in contrary to the superlinear penalty in logarithm barrier function,
the penaity increases linearly at a slope of the dual variable as the solution approaching
the infeasible domain. It leads to a slower convergence in addressing constraints. In ad-
dition, a linearly increasing penalty does not reach infinity at infeasible point. Therefore,
dual decomposition methods do not guarantee strictly feasible step during convergence.

A projection method is usually used in conjunction to enforce feasibility.

3.8.1.3 Distributed Computation of Optimization Algorithms

An optimization problem can be coupled in two ways: through the objective function

and through the constraints. A distributed optimal routing algorithm requires a decou-
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pled computation of each handle variable, i.e. component, in an optimization problem.
Distributed computation is in general not challenging for first-order methods, because of
its simplicity. A common approach is based on the optimal Wardrop equilibrium which
identify the state for each communication flow at the network optimum. Many heuristic
algorithms have been proposed to converge to the optimal Wardrop equilibrium. Dis-
tributed computation of second-order methods are in general challenging. There are
several mathematical methods that decouple an optimization problem. They can be
classified into two categories.

A standard approach is to use decomposition techniques. Decomposition methods
have two basic forms: the primal decomposition and the dual decomposition. The
general idea is to divide an optimization problem into a number of subproblems. Rep-
resenting the coupling between subproblems, primal variables or dual variables are used
to coordinate different subproblems. The task of the coordination is called the master
problem, which is generally solved by a subgradient method. In network optimization
algorithms, decomposition methods can used recursively to create multiple level of sub-
problems. The advantage of decomposition methods is that they can easily be configured
to achieve different types of distributed computation. They have in general good engi-
neering implications. For example, in certain algorithms, sum of queue length along a
path can be used as a subgradient that update the master problem. The problem for
decomposition methods is their slow convergence. As we have seen, part of the opti-
mization - the master problem - is solved by a subgradient method, which is sublinear.
In particular, as the number of couplings between different components increases, the
convergence deteriorates quickly.

Another way to decouple the computation of an optimization problem is to use certain
types of iterative methods to solve Newton step in the form of Az = b. In the domain
of network optimization, we have seen iterative methods such Wei’s matrix splitting
technique and the GaBP method. Their rationales are different: Wei’s approach is an

implementation of the standard matrix splitting technique; GaBP is based on a message
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exchange algorithm, namely belief propagation, to compute the marginal mean of joint
Gaussian distribution. Nonetheless, their basic manners resemble each other: Each
component, say each communication flow, iteratively compute its estimate of the final
solution based on its local information and previously computed solutions of coupling
components. In comparison, Wei’s matrix splitting guarantees convergence while the
GaBP method requires certain convergence conditions, which is the same as the Jacobi
method. If convergent, the GaBP method exhibits a faster convergence rate compared
to existing matrix splitting approaches. It has been demonstrated statistically that these
distributed iterative methods converge faster than decomposition methods.

These are methods that can be used by optimal routing algorithms to decouple an
optimization problem. We have classified existing optimal algorithms into two levels of
distributed manners: flow-level distributed algorithms and node-level distributed algo-
rithms. The majority of optimal routing algorithms and NUM algorithms are flow-level
distributed. That is, handle variables of their optimization problem represent traffic
rate of a path used by a communication. Once the optimization problem is decoupled
using the aforementioned mathematical tools, each communication flow can compute its
traffic distribution over all its paths. There are several algorithms that are node-level
distributed. They use the link rate of each flow at each node as the handle variable.
Therefore, a decoupled optimization problem can be computed at each node distribu-
tively. In this way, however, the amount of variables and couplings equality-constraints
increases drastically compared to flow-level distributed optimization. It can create large
communication overhead and slows down the convergence of an optimal routing algo-

rithms.

3.8.2 Open Questions

1) What is a suitable distributed approach to address the coupling introduced by equality
and inequality constraints?

The first criterion for a suitable approach is that it can quickly coordinate between
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different components within coupling constraints. The logarithm barrier function in the
interior-point method introduces a superlinear penalty. However, it does not address
the coupling between different components in constraints. Dual decomposition methods
decouple constraints with respect to each component. However, their penalties are linear.
Combining both methods, an ideal approach is to separately introduce a fast increasing
penalty for an individual component.

The second criterion for a suitable approach is that it should guarantee feasibility at
all time. The nature of routing algorithms dictates that constraints must be met. For
example, the traffic of each link can never exceed its capacity. Projected methods satisfy
a strictly feasible condition however suffer from distortion of convergence pattern. The
logarithm barrier function guarantees only strict inequalities. It may require engineering
modifications to address non-strict inequalities. Dual decomposition methods do not

guarantee feasibility. We need to search for an approach that meets both criteria.

2) How can we address the coupling introduced by the objective function, namely the
distributed inverse of the Hessian coefficient matrix, without using iterative methods at
each Newton step?

As we have reviewed, there are some iterative approaches can be applied to dis-
tributively compute coupled Newton step, including the matrix splitting technique and
the GaBP method. But they introduce a number of iterations between each Newton
step, which can be expensive in ad hoc networks. The primal decomposition is another
natural choice to divide coupled objective functions. By introducing auxiliary variables,
one can also resort to the dual decomposition technique. However, in multipath routing
algorithms the number of couplings in objective function between different paths - either
of the same communication flow or of different communication flows - can be very large.
As we know, in such case, decomposition approaches tend to converge very slow. Our
question is, is there an alternative approach that suits the requirement of wireless ad hoc

networks?
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3) Is it possible to design a node-level distributed algorithm without increasing the
size of the optimization problem?

To the best of our knowledge, existing node-level distributed optimal routing algo-
rithms and NUM algorithms use the same mathematical approaches as their flow-level
counterparts. They achieve a node-level distributed manner by using link rates as handle
variables. This may lead to a much larger amount of handle variables and constraints.
Although a centralized Newton’s method is not affected by this transformation due to its
quadratic scale-free convergence, iterative methods to calculate Newton step or the sub-
gradient method in decomposition methods may be largely affected. A natural question
arises: Given that a routing optimization problem is decoupled into subproblems with
respect to all communication flows, can we design a node-level approach that retains the
convergence of flow-level convergence?

Let us now explore this question a bit further. Recall the process of distributed mul-
tipath routing algorithms we have described in chapter 2: Cost information propagates
from destination nodes to source nodes. Costs of multiple paths merge at intermediate
nodes they meet. A tree structure is indeed established: The root is the source node
and leaves are copies of the destination node. Each intermediate vertex corresponds to
an intersecting node of multiple paths. Once aggregated information reaches a source
node, data distribution is computed recursively from top level down to leaves. Each tree
is a flow-level distributed subproblem, while each intermediate vertex computes parts of
the problem rather than spouses a new decomposed subproblem. Their difference is as

follows:

e In this tree-based scenario, when the one-pass recursive computation from sources

to destinations completes, one exact step of the flow-level subproblem is reached.

e In a scenario where link rates are handle variables, components with respect to
each handle variable affect each other. Therefore, a one-pass recursive computation

from sources to destinations can not reduce costs as much as one Newton step of
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flow-level distributed optimal algorithm:

1. In an iterative Newton method, such as using GaBP and the matrix splitting
technique, multiple rounds of message exchanges are introduced to compute

the Newton step.

o

In decomposition methods, each node-level subproblems are coordinated by
a subgradient method. Therefore, the Newton step of a flow-level problem is

reduced to a subgradient step.

We expect the tree-based scenario to achieve a superior performance compared to existing
node-level distributed approaches. However, this scenario comes from our understanding
towards a distributed multipath routing algorithm. The question is how can we enable
it mathematically. The open question can be stated as:

Is 1t possible to design an optimal routing algorithm such that each intermediate node

merges the costs of multiple paths and computes parts of the flow-level subproblems?

In addition to these three open questions regarding to optimization methods, because
the majority of existing optimal routing approaches address the data distribution part
of the multipath routing problem, it remains a question to integrate an optimization
method with a multipath routing algorithm. Furthermore, network optimization ap-
proaches we have reviewed in this chapter assume a link-based cost function, which do
not suit the wireless communication. In next chapter, we will discuss results in applying

optimization approaches for wireless routing.
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Part 11

Proposed Solutions
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Chapter 4

Wireless Medium Cost Function

In this chapter, we will search for a cost function that models the delay cost incurred by
a data flow in wireless ad hoc networks, which can be used for an delay optimal routing

algorithm. In the beginning, we will justify the necessity of a wireless cost function.

4.1 Motivation

The goal of our optimal routing algorithm is to minimize the delay experienced by all
communication flows, i.e. to minimize C(F). Such an objective function is well defined
in wired networks using link cost, namely, C(F) = > ,c Ci(fi) = X_;c. ti( fi) fi, where
fi is the sum of all traffic running through the link i, i.e. f; = ZVpEP:iEp Jpo. In an
optimal routing algorithm, routing decisions of a communication flow are made based

on the first and the second derivative costs of available paths, which are defined as
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where [;( fi) and f;/( fi) is the first and second derivatives of delay for link 1.

However, the delay of a wireless communication link between two neighbours is not
only dependent on the traffic sending through the link but also on traffic in the vicinity
due to wireless interference. Therefore, the single parameter form of the latency function
;(f;) does not suit wireless ad hoc networks. Correspondingly, the first and second
derivative costs of paths must have different forms in wireless ad hoc networks, compared
to the forms in wired networks. The problem for the derivative costs based on link model
(4.1) is that they do not model the overall delay incurred by a flow to the network, which
is needed for a routing algorithm to make routing decisions.

The key to the design of a wireless cost model is to divert from the traditional link
model of network topologies and to view an ad hoc network as overlapping discs. Each of
the discs represents a wireless transmission medium centred by a node. Given a medium
access approach, a traffic flow sending by a node imposes delay to all flows within the
disc. Therefore, we wish to establish a cost function over a disc, as opposed to the
existing cost function over a link.

The service rate of a point-to-point link within a disc is determined by the wireless
MAC approach used. As we have seen in the previous chapter, a joint optimization in
wireless networks requires an optimal link scheduling at the MAC layer and a routing op-
timization at the network layer. Unfortunately, optimal link scheduling has been known
to be very difficult and lacks sufficient results. In addition, any form of approximated
optimal link scheduling requires a specialized MAC protocol. Instead, we focus on the
design of a cost model based on a given MAC layer approach. It can be based on existing
random access MAC layer approaches, such as the IEEE 802.11 protocol, as long as their
behaviour is analytically modelled. Using the analytical model of medium access delay
for each link, we derive the form of the cost function.

In this chapter, we organize the description of our design in a top-down structure
and gradually fill the details. Firstly, we investigate the origination of delay in wireless

transmission in section 4.2. Based on the observation, we propose a cost model in
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section 4.3, called the wireless medium cost function. We understand that the wireless
transmission is essentially a polling system and use a multi-class first-come-first-serve
(FCFS) queue to model existing contention-based MAC protocol. Such a queueing model
can be described by a M/G/1 queue. Therefore, with an analytical model of the service
time of a given MAC protocol, such as the 802.11 DCF, the wireless medium cost is
given. In appendix C, we present an example analytical model, where we use numerical
approaches to find the closed form of 802.11 DCF service time.

In order to be used in an optimal routing algorithm, a necessary condition for a cost
function is its convexity. In section 4.4, we discuss the convexity of the wireless medium
cost and demonstrate that the convexity of the underlying MAC protocol service time
is a sufficient condition. It is known that the 802.11 DCF exhibit a convex service time

before entering a saturated state.

4.2 Where Does Delay of Wireless Communication Come

From?

We anticipate that the rationale of optimization approaches in wired networks holds in
wireless ad hoc networks: Routing decisions should take into account their overall impact
on the network. The link cost information, including the first and second derivatives
of delay, can be either computed from some analytical model or measured using the
perturbation analysis. However, as we have discussed in the previous section, the point-
to-point cost is not sufficient to model wireless cost because neighbouring transmissions
may introduce costs to each other through interference. In this section, we will investigate
the origination of delay in wireless transmission. Firstly, we will discuss components of
communication delay from the view of a single flow. Then, we investigate how different

communication flows may interfere with each other and incur delay mutually.
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4.2.1 Components of Communication Delay

The overall delay experienced by all traffic in a network is the sum of delay experienced
by each unit data at each node. The delay experienced at each node in wireless ad hoc
networks includes two parts: the queueing delay and the service time. The queueing
delay is the duration between the arrival of a unit data at an outgoing queue and the
instant when it reaches the head of the queue. The service time is the time a unit data
spent at the head of the queue until it is successfully received at its destination station.
Therefore, the service time of a unit data includes: 1) the time it waits to access the
medium - the medium access delay; 2) the duration to transmit a unit data under a
given data rate - the transmission delay; 3) the time incurred by retransmission.

Due to the nature of ad hoc networks, we have neglected several components of
delay. In ad hoc networks with single transmission channel, at most one packet can be
successfully transmitted within the receiving range of any node. In contrast to wired
networks, data transmission rather than the processing power of intermediate nodes is
the bottleneck for the performance of end-to-end communications in ad hoc networks.
Throughout this thesis, we do not consider the processing delay at intermediate nodes nor
do we assume the existence of incoming queue at each node. Because the transmission
range of wireless devices is trivial compared the speed of signal propagation, we neglect
the propagation delay of data traffic.

In a network with substantial traffic demand, the queueing delay is the main contrib-
utor to the overall delay. Because nodes have finite queues, the long term data arrival
rate is strictly smaller than the long term service rate!. However, within a certain du-
ration, the data inter-arrival time may be shorter than the service time, which leads to
queueing of subsequent data. Therefore, queueing delay is determined by the statistical
distributions of inter-arrival time and the service time of data packets, including their

mean, variance and probability distribution function (PDF), etc.

Indeed, this is the capacity constraints enforced by routing algorithms
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A common assumption for data arrivals in networking is that they are determined by
a Poisson process. That is, the number of arrivals during any period is independent of
the number of arrivals before the period. Namely, the data arrival is memoryless. While
this assumption does not usually hold in real world, it is widely adopted in network

modelling and analysis sfor several reasons:

1. Modelling of the real world traffic pattern, especially in the wireless ad hoc net-

works, is challenging and lacks of satisfying results [Floyd and Paxson, 2001].

2. Poisson arrival is reasonable approximation to persistent traffic, such as the TCP

file transfer [Paxson and Floyd, 1995].

3. Poisson arrival eases the analysis of queueing model and of random access MAC

algorithms behaviours. Strong results have been established.

It should be noted that a Possion generation of traffic at source nodes may not result
in a Poisson arrival at intermediate nodes. We are aware of approaches that analyse the
behaviour of queueing networks with traffic enters the networks according to a Poisson
process, for example using parametric decomposition [Gross et al., 2008] or diffusing
approximation [Bisnik and Abouzeid, 2009]. However, their results are approximations
to the behaviours of wireless networks and lacks of quantifications on errors. Therefore,
for simplicity reasons, we assume a Poisson arrival at all intermediate nodes. Given the
Poisson arrival of data traffic, the long-term queueing delay is well analysed through a
M/M/1 queueing model if the service time is exponential distributed or through a M/G/1
model is the service time is general distributed. The actual service time is determined
by the traffic scenario and the MAC approach used.

In the next subsection, we discuss the impact on delay experienced by different traffic
flows through wireless interference, which is independent to the assumption of Poisson
traffic. In next the section, we will given the design of a wireless cost function, which is

based on the assumption.
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Fig. 4.1: A Demonstration of Wireless Interference

4.2.2 Wireless Interference

In the previous section, we have looked into a single flow at a single node and discussed
the components of communication delay and the assumption on the distribution of the
inter-arrival time of data traffic. In this subsection, we will discuss how different flows
in a wireless network may interfere with each other and thus introduce delay mutually.

Let us firstly consider an example scenario as shown in Fig. 4.1(a). In this scenario,
node A has two outgoing traffic flows to node B and C res.pectively and one incoming
flow. Node B and node C each has two incoming flows and one outgoing flow. At each

node, the outgoing traffic enters a FCFS queue waiting to access the medium, as shown
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in Fig. 4.1(b). We assume all flows are one-hop and study their interference within
the neighbourhood. We will extends this results to the interference between multi-hop
communication flows in the next section.

Due to the broadcast nature of wireless transmission, outgoing flows of the same node
share the same transmission medium. Therefore. even if they are addressed for different
neighbours, they can not transmit at the same time?. This is different compared to wired
network where a node can transmit through multiple links simultaneously. That means,
all the outgoing flows of a node join the same FCFS queue of its transmitter. Therefore,
outgoing flows of the same node interfere with each other in two ways: 1) They share
the transmitter resource of the node. 2) They mutually affect their queueing time. In
the literature, the interference among these flows are called primary interference. For
example, in Fig. 4.1, flow f; and f> are primary interference of each other. Furthermore,
we wish to emphasize that in a single FCFS queue, all flows have the same queueing time,
despite their differences in service time. Therefore, the difference in delay experienced
by fi and f; lies only in their medium access time.

In addition to the primary interference, the transmission of a data flow may also
interfere with the transmissions/receptions of other nodes in vicinity. This type of inter-
ference can be described by the protocol model used in the literature [Gupta and Kumar,
2000, Jain et al., 2003]. In such a model, the coverage of the wireless signal of a node
1 is divided into a transmission range R; and an interference range fﬁ-, where R; < I:?,L
in general. Without loss of generality, we assume the transmission range and the inter-
ference range are universal for all nodes in a network, i.e. R; = R and RL = R for all
node 7. When node 7 transmits to node j in its transmission range R, any other node k
within its interference range R can not successfully receive packets. And correspondingly,
any node [ whose interference range covers node j can not be transmitting. Extending

the previous terminology, we call such an interference the secondary interference. Note

2This is not true if directional antennas are used or if multiplex techniques are used in omnidirectional
antennas, such as the multiple-input and multiple-output (MIMO). However, since we are considering
the case of single channel communication, we rule out these possibilities
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Fig. 4.2: Indirect interference: Flow fg and f1p do not share a queue nor do they share

medium access. A change in either one will affect the delay experienced by the other.

that an equivalent presentation to the protocol model is the physical interference model,
where the secondary interference is described using the notation of signal-to-noise ratio
(SNR) [Jain et al., 2003].

In the example of Fig. 4.1, for simplicity reasons, we let R = R. In such a scenario,
when fj is transmitting, its secondary interference includes two parts: 1) Any node
within its interference range can not receive, i.e. flows f3, f5, fr have to wait; 2) Any
node whose interference range covers node B can not transmit, i.e. flow f; has to wait.

It should be noted that this setting of secondary interference is optimistic, in that it
only require the receiver to be free of interfering signals. In practise, the MAC approach
may require that both transmitters and receivers are free of interference. For example,
this is the case in IEEE 802.11 with the RTS/CTS mechanism. In such settings, flow fg
has to wait while flow f; is ongoing.

So far, we have discussed the interference between flows with direct competition,
either through a shared queue or through shared medium. We note that flows may
interfere with each other even if they do not have direct contact. We term this type of
interference as indirect interference.

Let us consider an example shown in Fig. 4.2. Flow fg and f¢ are mutual primary
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interference. Flow fg and fip are mutual secondary interference. Because flow fig
prolongs the service time of flow fg, it is easily seen that the queueing time of fg is
affected by the traffic of f19. Since fg and fg share a FCFS queue and have the same
queueing time, we conclude that the queue time of fg is affected by fio, despite that
they do not have direct contact. We call this type of indirect interference as the primary
indirect interference. 1t is associated with a secondary interference, e.g. between fg and
f10. Unlike direct interferences, it is not mutual but from one from to another, e.g. fig to
fo. Finally, it leads to the same amount of queueing delay as the secondary interference.

Recall that the queueing delay is determined by the statistical distribution of the
inter-arrival time and the service time of data traffic. Therefore, a data flow may interfere
with another flow by affecting the statistical distribution of its service time. We call this
type of interference the secondary indirect interference. In the example of Fig. 4.2, the
changes of flow fg may result in a different series of time instant that fg is at the head
of the shared queue. To see this, consider two extreme cases: 1) If the amount of traffic
for fg is zero. Then fg will request for medium access whenever its traffic arrives at the
queue. 2) If the amount of traffic for fy is extremely large - within the service capacity
though - then, the data units of fg is widely spread within the queue. Therefore, the
time instant that fg requests for medium access is widely spread. The time instant that
the medium is granted to fig is thus different compared to case 1).

In the following, we will investigate the impact of the four types of interference.
We set up the scenario shown in Fig. 4.2 via a simulator we have implemented3. In
this scenario, we vary the data rate of one of the three flows and keep the other two
flows constant rate. By doing so, we wish to demonstrate whether a certain type of

interference is trivial or significant rather than quantify the amount of impact.

3We will describe the implementation of the simulator in chapter 6. Essentially, it is a M/M/1
queueing network with user-specific medium access latency.
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Fig. 4.3: The impact of Different Interferences: Traffic arrival and service are deter-

mined by Poisson process. In each scenario, the expected inter-arrival time of one flow

varies from 200 to 50 time vnits, while the other two are kept as 100 time units expected

inter-arrival time. The expected service time for the medium is set as 25 time units

The result are illustrated in Fig. 4.3. As shown in Fig. 4.3(a), while flow fg is

increasing, fs and fg experience a similar delay, which is increasing drastically. This

demonstrates that the primary interference is a major source of cost incurred by traffic.

This observation is confirmed by results shown in Fig. 4.3(b) - while fg increases, delay of

both fg and fg grow in a similar way. Delay growth of fio in Fig. 4.3(a) and of fs in Fig.

4.3(c) are caused by the secondary interference. Apparently, the scale of impact differs in
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the two scenarios. Nonetheless, the secondary interference can not be ignored. As in Fig.
4.3(c), the cost growth experienced by fg shows that the primary indirect interference
is also non-trivial. Finally, the delay reduction of flow fip in Fig. 4.3(b) is due to the
secondary indirect interference. The reduction is hardly observable. According to this
example scenario, we choose to model the primary interference, the second interference
and the primary indirect interference. We omit the secondary indirect interference in
this thesis as it imposes trivial effect to the overall costs.

In summary, wireless interference presents a very different compared to wired net-
works. In this section, we have discussed the origination of delay in wireless communica-
tion. We demonstrated how a communication flow may interfere with the transmission
of other flows by classifying four types of interferences: 1) primary interference; 2) sec-
ondary interference; 3) primary indirect interference; 4) secondary indirect interference.
These interferences create couplings among multiple flows. In the next section, we give

the design of a cost function that reflects such couplings.

4.3 The Wireless Medium Cost Model

In this section, we give the design of a cost function that models the delay experienced
by all traffic flows in random access wireless ad hoc networks. Our goal is not to give an
exact analytical function for a specific MAC protocol. But rather, we wish to model the
interference between different flows so that the cost function can be used in an optimal
routing algorithm, given the medium access delay of wireless links. In subsection 4.3.1,
we will first give the queueing delay at each node with respect to all interfering flows.
Then, based on the queueing model, we derive the overall cost incurred by a flow at each
hop. In subsection 4.3.2, we will extend the function to model the cost of a path. The

notations used in this section are shown in Table 4.1.

123



Notation

Meaning

o

1) Traffic flow along the path p for some communication, i.e. p € P

2) Data rate of the traffic flow along the path p

fi([) 1) The link traffic flow, i.e. ¢ € £; 2) Data rate of the link i
F The set of link flow variables of a network.
C() The network cost function with respect to the set of link flows. It is a
linear transformation of the original cost function, i.e. C(F®) = C(F)
I The set of outgoing link flows from node a
fa The sum of flows of node a: f, = Zf,»(l)e}',, fi(l)
a The set of flows that interferes with the medium access of flow fi(l) at
node a, i.e. its secondary interferences
Za The set of flows that share medium access with any flow of node a:
To =V, sz Lai
M, | The sum of flows sharing the medium of fi(l): Mg = fi(l) +ij(‘l)eza.i f;l)
o The ordered pair of flow ¢ and the sum of flows sharing its medium M, ;,
ie. < fO Mg >
Ta The set of 7, ; of node a
ét(lsz() Analytical function for the mean medium access delay experienced by
fi(l) at node a.
545,21' (-) | Analytical function for the second moment of the medium access delay
experienced by flow fi(l)
L’((Iq)(-) Queueing delay at node a
./\/:52) The set of nodes within the distance R + R of node a

Table 4.1: Notations in Section 4.3
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Fig. 4.4: Multi-class FCFS Queue: Traffic flows addressed for different neighbours have
difference interferences hence experience different service time. The outgoing queue at

each node can be modelled as a multi-class FCFS queue.

4.3.1 Wireless Medium Cost at Each Hop

Based on the observation we made in the previous section, we ignore the secondary
indirect interference and consider the cost incurred by the primary interference, the
secondary interference and the primary indirect interference. Since we assume a Poisson
distributed inter-arrival time for all traffic, the mean data rate of a traffic flow is the only
dominating factor for the cost it incurs. In this subsection, we give the cost incurred to

the network as a function of data rates of flows sending out by a node.

4.3.1.1 Queueing Delay at Each Node

Firstly, we investigate the queueing delay. At each node, all outgoing traffic flows join
the same FCFS queue. Since secondary interference takes place at the interference range
of both the transmitter and the receiver. Flows that addressed for different neighbours
may be interfered by different set of flows. They may experience different medium access
delay. Therefore, the behaviour of traffic sending out by a node can be modelled as a
multi-class FCFS queue: Each outgoing flow ¢ at node a has an arrival rate, represented

by fi(l) - The superscript (1) is to distinguish from path flow and ¢ is indexed within all
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(s)

links of a network, i.e. ¢ € £. Flow ¢ also has a mean service time, denoted by £,

which is the medium access delay it experiences at the node. We assume for now that
the medium access delay is given by some analytical function of traffic flows sharing
the medium access. That is, the medium access delay is given as Efj?(Ma.i), where
Mg = fi(l) -+ Zf(-”eIa,i f;l) is the sum of all flows that share the medium with fi(l) at
node a. Similarly,]the second moment of the medium access delay is given by analytical
function Sgi)(Ma,i)

All flows in the FCFS queue experience the same queueing delay, denoted as qu) -
To derive the queueing delay, we can treat the multi-class FCFS queue as a M/G/1
model [Kulkarni and Glazebrook, 2002]. This is because if each class of traffic has
a independent memoryless Poisson arrival then the aggregated arrival of all flows is

memoryless Poisson as well. Based on the delay analysis of M/G/1 queue, we have the

following proposition:

Proposition 1. Given the mean and the second moment of medium access for each

flow, the queueing delay at each node is as follows:

LigOer, 57 (Mai) £

gt(lq) (L -
2(1 - Tz, bt Mai) £)

(4.2)

The deduction of equation(4.2) is straightforward. Nonetheless, to our knowledge,
the result is not explicitly stated in the literature. In appendix A, we will give a brief

demonstration of the proof of the proposition.

Remark. We have the following remarks on Proposition 1

1) The queueing delay (4.2) can be seen as a function of outgoing flows and their
secondarily interfering flows. Each outgoing flow corresponds to a set of secondarily
interfering flows. Let m,; =< fi(l) ,Mgi > denote the ordered pair of an outgoing
flow fi(l) € F, of node a and the sum of flows contending for medium access. Let

T = M| P f.(l) € Fa} be the set of all the ordered pairs. Then, the left-hand side

2
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of equation (4.2) is replaced by CE,Q)(ﬂ'a). This function give the impact on delay by each
interfering flow. We will use the function form of queueing delay in the following design
of medium cost.

2) We expect that the mean and the second moment of medium access delay - Kgsz) ()
and 8(527)() to be given by studies of the MAC layer approaches used in an ad hoc
network. We will show a case study based on an analytical model of the IEEE 802.11
protocol [Malone et al., 2007] in Appendix C.

3) For the sake of simplicity, we define (1(:1)() and 8(521)() as univariate functions.
That is, they take in the sum of flows accessing the medium M, ;. We acknowledge
that this may not always be case for analytical functions of MAC approaches. A more
general form for each of the analytical functions is to take interfering flows separately.
In this case, instead of the sum of flows, we let M, ; denotes the set of flows accessing

the medium, i.e. My ; =Z,; U {fi(l)} Equation(4.2) remains the same.

4.3.1.2 Costs Incurred by A Flow

The delay that flow fi(l) € JF, experiences at the node a, denoted as ¢, ;, is the sum of

queueing delay and medium access delay. The cost of flow fi(l) at node a is given as:

2 l
5 ren, S M)

%

S l 2

2(1- %, p0ez, £ (Mas) £
(4.3)

loi(ma) f = (€N (Ma)+00 (7)) £ = (€ Ma)+

a,

Indeed, this expression of cost is factored by the three major types of interference as we

have observed in Section 4.2.2:

1. Each f;l) such that f;l) € Fq and j # i is a primary interference with flow f-(l)'

1 ?
2. Each fr(l) € 1, is part of M, ; and is a secondary interference with flow fi(l);
3. Each fr(l) € Z,; such that f;l) € Fq and j # i is part of M, ; and is a primary

indirect interference of flow fz.(l)
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Conversely, flow fi(l) is a factor of costs of flows in the vicinity. In the following, We
define the wireless medium cost of node a as the overall cost in which its outgoing flows
play a factor. To ease the formal definition, let Na(z) denote the set of two-hop interfering
nodes of node a, namely NP = {b € N|distance between a and b is less than R + R}.
All nodes that are interfered by node a are in the set of J\/a(2), although not vice versa. To

distinguish the interfering nodes in the set of Na(2) , for any node b, let Z,, = U Iy5

i ey
denote the set of flows that share medium access with any flow of node b. Then node b
is interfered by node a if some flow in Z, belongs to node a, namely F, NZ, # 0.

Now, we are in the position to give a formal definition of the proposed wireless

medium cost:

Definition 1. The wireless medium cost of node a is a function of the set of its outgoing

traffic, defined as:

Wy () e B0 lag(mi) £V + > ¥ Gy

fi€Fa b:bEN,iz) T‘:fr(l)efb
FaTy,#0
1 )
=Om)fat+ Y MO+ Y (G2 + Y )M fP) (44a)
.fi(l)Efa b:bENém r:fr(l) eFy
FaNIp#0 FaNTp #0

The wireless medium cost give all potential costs that are affected by the traffic of
a node, through the three major types of interferences. In a network with substantial
traffic demand, the queueing delay is the dominating factor of cost, e.g. it may be one
or several orders of magnitude larger than the medium access delay. In such a case, the

wireless medium cost can be reduced to

CralFa) () fa+ Y. 42(m)Fo (4.4b)
bbeN D
FaNIp#0

Now, we deduce the derivatives of the wireless medium cost at each node a with
respect to an outgoing flow fi(l) € F, of node a. To do so, we start from several

observations with respect to the components of the derivative.
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oMy, _ d Mgy,
ar® ~ a0
either of the following statements holds: 1) fi(l) € Fe izt 55 2) f; [) ¢ Tt L @ 47 441

. : 0. T, d z,9
Conversely, the derivative ;\; ,)J = M"J =

Firstly, for any node x and any flow fi([), the derivative

1, if either of the following statements

holds: 1) fV e Funi=j;2) f ¢ 7 Af €L,
Secondly, let 7 ;(1) and 7, ;(2) denote the first and the second elements of the

ordered pair 7, ; *. The Jacobian of the queueing delay at node z with respect to g

(q) (q)
link is given as 6%‘;(’;’) {%[Wi 1(7(r1 , ‘g;z I)) }. It is easily known that if f](l) ¢ F,, then

AP (my) _ I (ra) _
Bra () Oma (2)

For f; € F;, we have:

06 () _ SN (Ma ) B+ (M ;) A

Ome (1) — ] 2B? (4 5)
9D (rg) _ 52 Mai) B+ Ma )5 4 '
O72,3(2) 282
where A =) S(Z)(M )f(l) and B=1-Y 248 HM )f - Amd 8(2),(-)
= r:f;l)e]:I e T = f(l‘ :r T, S Gy

and €f:;-’(-) are first derivatives of their corresponding functlons. According to the chain
rule of partial derivatives, the partial derivative of queueing delay at any node x with

respect to a flow i is as follows:

86 (m,) Z oL ('Tz)aﬂ'IJ Z (Begq)(ﬁx)af;l) ae(EQ)(M)aMLj)

a/0 0mes of® 0mz3(1) 9f® * 0mz;3(2) 950

i ifPer, if\Ver,
(4.6)

Finally, we give the partial derivative of the wireless medium cost at node a with

respect to outgoing flow fi(l) € Fa-

() £0 L
0CealF) _ 5~ Olla(m)f;7] | R WLU))J’] (4.72)

C 0]
of) iR Of; bhha ey, Off
]:anIb,r#m

472.7(1) and 7z ;(2) are indeed fjw € Fz and M. ; respectively. We create this notations in order
to avoid confusions between partial derivatives with respect to each elements separately and partial
derivatives with respect to link flows
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Combining equations(4.3), (4.5), (4.6) into (4.7a), a more detail version of the wireless
medium cost is as follows:
0Cg o(Fa)
o0

_ (7a) 7, 04 (ma)
T Omai(1) 7 B'ra.,( )

DD ( D+ 5] (Mu) 1) (4.7b)

bbGN(2) J f(l)
Ve, f(”eI

Fo+ 69 (ma) + € (Mai) fO + £5)(May)

If we omit the medium access delay and focus on only the queueing delay as suggested
by equation (4.4b), the wireless medium cost reduces to a neat form as follows:

W Marginal cost incurred by fi(l)
Marginal cost incurred by f;” at node a at a’s two-hop neighbours

A

90 a(Fa) ~r‘9££q>(“a)' 0" (o) (@) . 94" () 3
A Omai(1) T Bras (@) it 3 w—mh A0

This completes our investigation of wireless medium cost with respect to the outgoing
traffic of a node, which models the overall cost incurred by the flow at the node. It should
be noted that the sum of wireless medium costs of all nodes in a network is strictly larger
than the sum of costs in general, except for some extreme topology where the two sums
may equal. The point of the wireless medium cost is that it models the impact of nodes’

actions. More specifically, we have the following observation of the wireless medium cost:

0C(F)  0Cga
D l

of  of”

In next subsection, we extend the results of wireless medium cost to the path flows,

Vija:ie L, fYeF, (4.8)

which can then be used by optimal routing algorithms.

4.3.2 Wireless Medium Cost of a Path

Based on the wireless medium cost at each node of a network, we now define the wireless

medium cost of a path.

130



Definition 2. The wireless medium cost of path p € P,, C P is a function of the set of
its outgoing traffic, defined as the sum of the wireless medium cost at each hop:
Cep(fo) = CralFa) (4.9)
aEp
Accordingly, the derivative of the wireless medium cost of path p with respect to the

path flow f, is given as:

Ol =

WCuplly) _ g~ WwalF)0S7 g~ a4

o & Ok O
era i€Ly

where £, represents the set of links used by path p. The last equality above is established

based on the following observations: If i ¢ £, then %1)}:—) = 0. If we assume all paths

established by a routing algorithm are loop-free, then for i € £,, we have %(:7-) =l

Equation (4.10) states that the marginal medium cost of a path is the sum of marginal

medium cost at each hop. It is easily verified, according to equation (4.8) and (4.10),

the marginal medium cost of a path is the marginal cost of the network with respect to

the path flow, i.e.
Sl F)

T 0fy

Therefore, through the concept of the wireless medium cost, we established an equiv-

O (f3)

alence of equation (4.1a) for wireless ad hoc networks, namely (4.10)

So far, we have defined the wireless medium cost for each hop and each path. We have
also given their first derivatives. Let us assume for now that the wireless medium cost
is strictly convex, which we will discuss in Section (4.4). Under the convexity condition,
these results are sufficient for first-order routing algorithms to optimize wireless ad hoc
routing problems. However, in order to use second-order optimization methods, we need
to find the second derivative of the overall network cost with respect to each path flow,
which indeed can also be achieved through the use of the wireless medium cost.

For any path flow f, and f,, the second derivative cost of the network is given
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0’C(F) _ 8 9C(F)\ _ 0 0Ckp(fp)

afoh, - 9 ok 0fq( ofy )

E , 0 (9CkalFa) 0 ,0Cg(Fp)
: —m = 2 —0 4.11)
2 ( o) 0 ( o) (
aep,f{VeFa Lt beq.f eF " of
= JELg

The last two steps are partial differentiations of marginal medium costs at each hop -

9Cg a(Fa) 9Cg b(Fb)
namely 270 d 270
i g

- with respect to path flows f; and f,. We omit the cum-
bersome yet standard expansion of the differentiations. Nonetheless, it is worth noting
the difference in differentiations with respect to path flow compared to differentiations

with respect to link flow: As we have described previously, the value %/\74(’{—51 is either 0

or 1; The value "’(,)szl = Y iiet,,;, I Where Ip jp = {z'|fi(1) € Ly A fi(l) €L, ;U {f;l)}},

can be any non-negative integer.

In this section, we have analyzed the queueing model for wireless ad hoc networks.
Based on the queueing model, we propose a cost function, called the wireless medium
cost, that models the delay cost incurred by a traffic low to the overall network. We
start from wireless medium at each hop and extends the results to each path. Although
wireless medium costs of each path or each node do not sum to the overall cost of a
network, we have demonstrated that the first and the second derivatives of the wireless
medium costs give the derivatives of the network costs with respect to path flows. The
wireless medium cost is an analytical model of costs incurred due to wireless interferences.
It encapsulates the complexity of wireless interferences and MAC approaches into a

function that can be used by optimal routing algorithms.

4.4 Convexity of Wireless Routing Optimization Problems

We can design an optimal routing algorithm for wireless ad hoc networks based on the

first and the second derivatives of wireless medium costs. However, a prerequisite for
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existing convex optimization approaches to converge is the convexity of the objective
function.

Existing studies of optimal routing approaches have rarely shown the verification of
convexity for routing optimization problems. This is mainly because that the verification
of convexity in wired networks is trivial, assuming that the link delay is convex. More

specifically. the objective cost function in wired networks can be transformed as follows:

C(F) = CRTFO) = O(FO) = > t(s 1Y (4.12)
€L
where FU) is a linear transformation of path flows F and represents the set of link flows
in a network. C(-) = C(-)oR ™! is a composition function that gives network costs given
the set of link flows. Based on the affine-invariant property of convex functions, in order
to verify the convexity of C(F), one needs only to show the convexity of ¢;( fi(l)) fi(l),
which stands strictly if 4;( fi(l)) is convex.

However, the convexity can not be easily established in wireless ad hoc networks,
even if the medium delay function is convex. As we have demonstrated, the latency
function £(-) in wireless communications is subject to a set of mutually interfered link
flows, which complicates and invalidates the last step in equation (4.12). In this section,
we give an analysis of the convexity in wireless delay-based cost function.

Following the same rationale as equation (4.12), we transform the objective cost

function into link rate based cost function C (F®). For the purpose of convenience, we

divide the cost function into the summation of medium access delay and queueing delay
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and prove their convexity separately.

F)= £ (ma)fu+ Z £

aeN
a: f1 J:(l)
=Y DEOTED + Z N (FNT, i FY (4.13a)
aeEN
afefm
=ZC*'((IQ)(]}(I) Z C(@) }-(1) (4.13b)
aeEN €L
a:fieFW
=C(F®) (4.13c)

The second equality (4.13a) is because that M, i, 74, fo and fi(l) can all be seen as a
result of linear transformation of the link flow vector ﬁé,’) = F,UZ,. We use Z((JQ)() and
tz(lsz) (+) to represent the linearly transformed delay functions taking _7:'(5[) as arguments.
T, and T, ; are linear transformations such that fo= Ta]}él), fi(l) = Ta,i]}él) . Therefore,
as shown in the third equality (4.13b), the network cost can written as a summation
of functions of .7:"((11). Once more, ]-'a is a subset of the network link flows F®), which
means it can be linearly transformed from F(). as shown in the final equality (4.13c).
According to the affine-invariant property of convexity, in order to demonstrate the
convexity of C'(F), we need only to demonstrate the convexity of each (q)(f ) and
CENFW).

Firstly, we show that the queueing delay at each node is indeed convex under certain
condition:
Lemma 1. If the following condition stands - for each mnode a € N and each link
fi(l) € F, the medium access delay K((lsl) () and the second moment of medium access delay
Sﬁ)() are convez, then the queueing delay at each node E((lq)(wa) =9 (]:"(Sl)) is strictly

convex over vector .7:',51).

Proof. The main rationale is to demonstrate that the second partial derivative of queue-
ing delay with respect to fi(l) and f;l) € .7:'51) = Fq UZ, is strictly positive. For detailed

proof, see Appendix B.1 O
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Lemma 2. If the queueing delay E&“’(ﬁﬁ”) is (strictly) convez, then the queueing cost

at each node C'{(,(I)(f(sl)) = 9 (.7?(51))7}1]}(5‘[) is (strictly) convexr w.r.t. the link flow set

& (f}gl)) Similarly, if the medium access delay ij)(fé”) is (strictly) convez, then the
medium access delay cost C‘é?(fé’)) = [231)( -él))Ta.if:}gl) at each link is (strictly) convex.

Proof. The proof is based on the definition of convex functions. For detailed proof, see

Appendix B.2. O
With the results of Lemma 1 and 2, the convexity of the objective cost function in
wireless networks are straightforward. In summary, we have the following proposition,

Proposition 2. If the medium access delay él(lsg() and the second moment of medium

access delay are both convez, then the objective function C(F) is convez.

Proof. See Appendix B.3. O

With the convexity of wireless delay costs established, an immediate result is that,
we can use convex optimization approaches on the wireless medium cost function to

achieve network optimization. Formally speaking:
Corollary 1. There exists a network routing solution F* such that
C(F*) = min{C(F)|VF € dom C(-)}

Or equivalently,

There exists a solution F* that solves the wireless network optimization problem (1.2).

Using the KKT condition [Boyd and Vandenberghe, 2004], another derivative result
of the Proposition 2 is the optimal Wardrop equilibrium for wireless ad hoc networks

using the marginal wireless medium costs of each paths.

Corollary 2. For each communication w, given its traffic demand Ty, all its available

paths {Py} can be numbered 1,...Nyse, ...Nay so that:
Con(f1) = o = Co N (FNuse) = M < Co o1 (FVuse) < - < Ci iy (Fvan)
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fi =0, i= Nuse =il ---sNall
Then the network solution is optimal, i.e. F = F*.

Similar to the case of routing problems in wired networks, the optimal Wardrop
equilibrium is an necessary and sufficient condition for network optimality. Therefore, a
simplistic routing algorithm can given by balancing marginal costs at each source node.

This completes our verification of convexity for wireless optimal routing problems.
In the next section, we summarize the information needed to compute wireless medium
costs and describe the mechanism to retrieve the information [Roughgarden and Tardos,

2002].

4.5 Summary

In this chapter, we have given the definition of the wireless medium cost, which describes
the overall costs incurred of a traffic flow to its neighbours. Therefore, the derivatives of
wireless medium costs coincide with the derivatives of the network costs with respect to
a traffic flow. We have demonstrated that the wireless medium cost function is strictly
convex. In the following chapter, we devise an optimal routing algorithm using the

wireless medium costs.
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Chapter 5

Distributed Optimal Routing

In the previous chapter, we have described the design of the wireless medium cost and
verified the convexity of wireless costs. Using the first and the second derivatives of the
wireless medium cost, existing optimal routing approaches can function in wireless ad
hoc networks. However, their performance are likely to suffer. We have summarized in
chapter 2 and 3 a number of open questions for optimal routing in wireless networks,
regarding to route discovery, convergence rate and distributed manner. In this chapter,

we present an optimal routing algorithm that aims to address these issues.

5.1 Overview

In this section, we firstly reiterate the design objective of our wireless optimal routing
algorithm. Then, we describe the organization of this chapter.

Our formulation of the wireless optimal routing is given in system (1.2). To address
this problem, we base our approach on Newton’s method for its superior convergence
rate compared to first-order methods. We address the constraints using available tools
reviewed previously. We aim to design a node-level distributed optimal routing algo-
rithm. According to the discussion in section 3.8.2, we will use the path flow as handle

variables to avoid the creation of large amount of subproblems.
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Notation Meaning

{6 Medium access delay at saturation. It is the upper bound of [5;7) (+)

9 Quota assigned to flow f, at node a, which is the portion of available
capacity of node a. The value is set as infinity if f, does not use the
queue or the medium of node a, i.e. f, & F, UZ,

) The set of quota assigned by node a to all flows that use its queue or
medium access resources, namely, Q* = {Q5} 1 e r,uz,

Qp The aggregated quota assigned to flow f,, namely Q, = min{Qg|a € N'}

Q The set of quotas for all flows. @ = {Q,|f, € F} = {Qyplp € P}

k(a) The set of indices ¢ of capacity constraints g;(F) < 0, such that g;(F) rep-
resents either the queueing capacity constraints at node a or the medium
capacity constraints of outgoing links of node a

Table 5.1: Notations in Chapter 5

The rest of the chapter is organized as follows. In section 5.2, we discuss our design

that addresses the constraints and decomposes the couplings introduced by constraints

down to flow level. In section 5.3, we describe our approach to decouple the objective

functions. Next, we transform our algorithm from a flow-level distributed to a node-

level distributed algorithm. In section 5.4.1, we give the design of route discovery and

maintenance for optimal routing algorithms. The structure of our routing algorithm is

illustrated in Fig. 5.1

5.2 Quota-based Interior-Point Method

In this section, we address the constraints in wireless routing optimization problem. This

involves two parts: in subsection 5.2.1, we describe our choice on addressing constraints

in a centralized approach, that is to keep the converging sequence of solutions feasible at
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all time. On the other hand, constraints introduce couplings to different communication
flows. In subsection 5.2.2, we propose an approach called the quota-based mechanism

to decompose the couplings introduced by inequality constraints.

5.2.1 Addressing Constraints

The equality constraints can be tackled by equality-constrained Newton’s method, namely
solving the KKT system (3.19) at each Newton step. Computationally, equality con-
straints impose no difficulty to each step. This is known as the affine-invariant property
of Newton’s method. In the following, we focus on approaches that address the inequality
constraints.

As we have reviewed in chapter 3, available tools for inequality constraints include
the Frank-Wolfe method, the projection method, the interior-point method and decom-
position methods. Among these tools, the Frank-Wolfe method is applied to the first-
order gradient method; Decomposition methods can solve subproblems locally using
the second-order Newton’s method. However, the coupling constraints among different
subproblems are addressed using the subgradient method. Both methods suffer from
a slow convergence in addressing constraints. Furthermore, decomposition methods do
not guarantee strict feasibility. Therefore, we focus on the projection method and the
interior-point method.

The projection method guarantees strict feasibility and is simplistic to implement.
However its crude “cut-off” on solutions may lead to fluctuations of convergence. Interior-
point methods, including the basic logarithm barrier-based interior-point method and
the primal-dual interior-point method, enjoy a fast convergence compared to the rest of
the approaches. The problem for the primal-dual interior-point method is that it does
not guarantee feasibility of the converging sequence of solutions. The logarithm barrier
method is mostly satisfying except that it only applies to inequality on open sets.

The majority of existing routing approaches choose a single method to address all

inequality constraints uniformly. In the contrary, we investigate the constraints formu-
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lated in (1.2), namely the non-negative constraints and the capacity constraints, and

address them separately.

5.2.1.1 Non-negative Constraints

Traffic flow along a path can be either zero if not utilized or positive if utilized, but it
can not be negative, i.e. F > 0. This is equivalent to non-negative aggregated flows
along each link, i.e. F® > 0.

This constraint is not a strict inequality in that elements in F can be zero. By
default, the interior-point method, shown in (3.22) does not suit this case: The penalty
introduced by the logarithm barrier function, —ulog(F) is infinity at f, = 0 for any path
p. That means all paths have to have a positive traffic, i.e. being utilized. Nonetheless,
this issue can be handled by an engineering modification to the constraints: For a small
value € > 0, one can change the non-negative constraints F = 0 to F = —e. As the
coefficient p of the barrier function in approaches to 0, the penalty —ulog(F) at F = 0
diminishes. Therefore, paths can have zero traffic. However, it requires many outer
iterations of the interior-point for the coefficient p to approach 0. That means the
abandonment of “bad” paths is slow.

On the other hand, the projection method works on strict inequalities. In addition,
we argue that a projection on F > 0 is less likely to suffer from fluctuation. According to
Corollary 2, we know that at network optimum, for each communication flow, all paths
with higher marginal costs than the rest have zero traffic and vice versa. For the sake
of argument, let us consider an example where a path p is transmitting flow f, = 2. At
some step, Newton’s method determines a flow change A f,, = —5. Because traffic over all
paths sum to the traffic demand of a communication flow, projecting the flow change to
Af, = —2 will result in less traffic on other paths of the same source. Since the marginal
cost of a path decreases as its traffic decreases, roughly speaking, the projection leads
to a even higher difference in marginal costs between path p and the rest of currently

transmitting paths. Therefore, path f, should stay un-utilized unless its marginal cost
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reduces in the future. We choose the projection method on the non-negative constraints

F 20

5.2.1.2 Capacity Constraints

Now we consider the capacity constraints, i.e. g¢(F) < C, which differs in wireless
networks compared to wired networks. According to our analysis on wireless interference
in section 4.2, we classify the capacity constraints into two categories: 1) the medium
capacity constraints as a result of secondary interferences and 2) the queueing capacity
constraints as a result of primary interferences.

Firstly, we have the medium capacity:

> P <Cui; VaeNVie F, (5.1)
e,

where C,; is the capacity/maximum throughput at the medium of link ¢ at node a. It
states that the sum of traffic sharing the medium access is constrained by the medium
capacity. The medium capacity constraint corresponds to the link capacity in wired

networks.
Another type of capacity constraints is the queueing capacity constraints. Because
all outgoing flows share the same queue at a node, the aggregated arrival rate of all dows
can not overflow the queue. This can be formalized according to the queueing model

(4.2): The utilization of the queue at node a should be strictly less than one:

3 BIMa)fP <1; YaeN ’5.2)

Each link flow fi(l) can be transformed to a summation of path flows running through

the link:

=l (5.3)

p:pEP
i€p
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(5.1), (5.2) and (5.3) together form the capacity constraints g(F) < 0, where g(-) :
RIPI — RWIHILl We can somehow number each of the || 4 |£| constraints. Let g;(F)
be the 7" constraint.

The detail of g(F) depends on the choice of the medium access delay function f((lsl) (+)-
But unless [((:7) (+) is either a constant function or the inverse of fi(l), g(F) is likely to be
nonlinear, which may lead to complex computation. To simplify the problem, although
the rest of our approach does not mandate such a simplification, we can replace the
capacity constraints with a lower bound. Let /) be the medium access delay of the
underlying MAC approach at maximum throughput. Since the medium access delay
is an increasing function, we know that £(¥) is the upper bound of El(lsl)() Then, (5.2)
becomes a linear inequality:

S M9 <1; VaeN (5.4)
feFa
Combining (5.1), (5.3) and (5.4), the capacity constraints can be written in the linear
form g(F) = C — RF < 0, although RF # FU. This constraint is indeed a lower
bound on the actual capacity constraint. Routing solutions to problems under such a
constraints are conservative in congestion avoidance.

In both the original and the linear approximated cases, the capacity constraint is
not a strict inequality. We choose the interior-point method that introduces a logarithm
barrier function —pulog(—g(F)) = —p ZL/X{HEI log(—gi(F)) to the objective function in
order to keep the solution sequence of Newton’s method within the capacity constraints.

In summary, we choose a combination of the projection method and the interior-
point method for constrained optimization. In next subsection, we discuss our design

for distributed implementation of these methods.

5.2.2 Decoupling Constraints

In the previous subsection, we have discussed our choice on methods to tackle constraints.

Our goal in this subsection is to decouple the constraints with respect to each commu-
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nication flow. Firstly, let us examine the couplings of constraints. Then, we explain our
rationale to decompose the couplings. Finally, we describe our proposed solution, called
the quota-based mechanism.

The equality constraints are introduced from the traffic demand of each communica-
tion flow, as stated in our problem formulationl.2b: > f, = Tu,Vw € W. Therefore,
couplings exist between paths of the same communziizgon flow rather than between
different communication flows. More specifically, the equality-constrained Newton'’s
method solves the KKT system (3.19) at each step. In every row i of the KKT ma-
trix such that its corresponding path p; € P, belonging to the same communication w,
there exists one and only one dual variable v,,, which can be solved locally at each source
node. It is also easily known that the non-negative constraints F > 0 do not impose
couplings between different paths or different communications.

Indeed, the only couplings of constraints among different communications are origi-
nated from the capacity constraints: Path flows that share the medium access (5.1) or
share a queue (5.2) affect the capacity residual of each other. In fact, different com-
munication are more strongly coupled in wireless communication compared to that in
wired networks. 1) due to the shared queue at each node, the number of constraints are
larger than that in wired communication - |NV|+ |£| compared to |£|. 2) Each constraint
gi(+), Vi=1..|N]|+ |L]|, due to wireless interference, may involve more flows compared
to link capacity constraints in wired networks. In the following we describe the rationale
of a quota-based mechanism that decomposes the strongly coupled constraints.

As we have discussed in the previous subsection 5.2.1.2, we choose the interior-point
method for capacity constraints, which introduces a barrier function on each of the

|N| + |L£| constraints. The aggregated barrier function —log(—g(F)) transforms the
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capacity constraints to the overall network costs.

VI+IL|
minimize C(F) — p Z log(—gi(F)) (5.5)
i=1
subject to Z fo=Tw weWw
PEPw
F =D

Instead of decomposing the aggregated barrier function, which suffers from the complica-
tion of the barrier function, we can coordinate different flows sharing a queue or medium
access by assigning a portion of the available capacity, namely a quota, to each flow.
The assignment of quotas for each resource decouples different communication flows. It
can be carried out at each intermediate node locally without evaluating the complicated
barrier functions. Once the quotas of all queues and links are assigned for a path, only
the minimum quota needs to be guaranteed. At the source node of each path, a single
barrier function is applied locally to the least quota along the path.

We term such an approach the quota-based mechanism. Now, we give a formal

description.
mlrélfjrrllze C(F)—p Z log(Qp — fp) (5.6)
p:fp€EF
subject to Z fo=Tw wWeW
PEPw
F il

9:(Q) <0 Vi=1..|N|+]|L]

where @ = {Q,| p: f, € F}T! is the vector of quotas for all the path flows. It is worth
noting that changing the last part of inequalities to equalities, i.e. ¢;(Q) =0, Vi =
1...|N|+|L|, does not alter the solution to the problem. In the case where g;(-) is a linear

function, the equality constraints are preferred as Newton’s method is affine invariant;

10r equivalently, Q = {Q,| p : P}*. We take the flow F point of view because F is our handle
variable
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If g;(-) is nonlinear, the inequality constraints are preferred, as an interior-point method
can be applied again. Modified from the interior-point method, both cases of the quota-
based formulation can be shown to converges to the optimal solution to the original

routing optimization problem.

Proposition 3. As u — 0, the solution to problem 5.6, denoted by .7-:"* approaches to
the solution to problem 5.5 denoted by F*.

Therefore, the modified interior-point method (5.6) optimizes the original problem
(1.2). Compared to the basic interior-point method (5.5), the couplings of constraints
can be efficiently separated through a primal decomposition: The couplings between
different f, in the complicated g(F) are reduced to |P| amount of couplings between Q,
and f,. Through primal decomposition, each node computes locally its assignment of
quotas to different flows. For each flow, only the minimum quota across different nodes

is chosen. In this way, couplings between different Q,, are eliminated.

In the following, we give a mathematical description of the decomposition to the
quota-based formulation (5.6).

Let x(a) be a subset of indices among 1...|N| + |£]| that includes: 1) the index of
the queueing capacity constraint for node a and 2) the indices of the medium capacity
constraints for outgoing links of node a. Therefore, the set of quotas Q% = {Q%} 1, c7,uz,
2 computed by node a for each f, must meet constraints g;(Q) < 0,Vi € k(a). Indeed,
any QZ, € Q such that b # a must have a zero coefficient in g;(Q). Without loss of
generality, we can write the capacity constraint as g;(Q®) < 0. Given the current traffic

flows F®), the assignment of Q% at node a can be executed locally as a subproblem, as

2With a slight abuse of notation, we let f, € F, UZ, denote flow f, runs through node a or interferes
with outgoing flows of node a. Namely, f, € F, UZ, if and only if there exists fi(l) € Fa UZ, such that
1€ Ly
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shown here:
L t
minjmize — Z log(Q;—fI(,)) (5.7)
fpe.}-aUIn

subject to ¢;(Q%) <0 Vi€ k(a)

Solving this problem gives the Q% In addition, let QF = oo if f, does not occur
in any of node a’s constraints, i.e. f, ¢ Fq UZ,. The quota of each path flow, Q,
can be aggregated from the quotas assigned to f, by all nodes whose resources are
used by f,, namely, @, = min{Q5| Va € N'} = min{Qf| Va : f, € Fo UZL,}. To do
so, intermediate nodes of a path can gather quotas assigned to the path flow from all
its two-hop neighbours. Acknowledgement messages of the path flow propagate from
the destination to the source node and keep a field of quota information. Along the
propagation, this field is updated by the minimum quota assigned and gathered by all
intermediate nodes. Cost information of the path can be forwarded in conjunction with
the propagation of the quota information. When the aggregated quota Q,, and the first
and second derivatives of medium costs are gathered for all paths, the traffic flows can

be updated to F**1. This is essentially one Newton step to the following problem:

mini}gnize C(F)—p Z log(Qp — fp) (5.8)
p:fpEF
subject to Z fp=Tw weW
pE'Pw
F=0

Problem (5.7) and problem (5.8) are essentially the subproblem and the master problem
of the quota-based formulation (5.6), decomposed by a primal decomposition.

Our quota-based mechanism are related to both decomposition techniques and to
the interior-point method. In the next subsection, we will present a case study of our
approach. Then we discuss the similarity and differences of our approach compared to
existing distributed approaches, such as the distributed Newton’s method and existing

decomposition methods.
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I
I —> : Flow f,
1
i --->:Flowf,
@ @ = Flow f;
Fig. 5.2: An example scenario to illustrate the quota-based mechanism: Flow f; is

identified by a (s; — d;) pair, ¢ = 1,2, 3. Throughputs of a, b, ¢ are capacitated.

5.2.3 An Example

In order to illustrate the operations of the quota-based approach, let us now consider a
hypothetical network, shown in Fig. 5.2. In this network, we use the link model in wired
networks to simplifiy the scenario: Intermediate nodes a, b and ¢ each have a throughput
capacity, Cq,Cp and C.. Therefore the capacity constraint g;(F) < 0 is of a linear form:
For i = a,b and ¢, gi(F) = Y fp — Ci < 0. There are three single-path communication
flows. Since our focus in this section is to decouple constraints using the quota-based
approach, we assume a separable objective function for C(f1, fo, f3) = —Zp log(fp)-

The problem to be optimized is given as:

minimize — Z log(fp) (5.9)
I p=1.23

subject to fi+ fa <Co; fi+ f3 <G
fl < Cc

Note that the non-negative constraints are omitted in this formulation as the objective

function log(f,) already dictates the positive nature of flows. Transforming it to quota-
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based formulation, we have:

mlnnmze Z loglfp) — fi Z log(Qp — fp) (5.10)
pQp p=1,2,3 p=1,2.3
subject to Q14+ Q2 =Cy; Q1+ Q3=0C
Q1 =C

Since the inequality constraints are linear, we choose ¢;(Q) = 0 in the quota-based
formulation. Each Q,, is coupled with a flow variable f, in the objective function. A
primal decomposition can be applied: The subproblem is to compute the best Q given
a traffic flow step F(); With the solutions of all subproblems, the master problem can
compute the next Newton step F**1. For example, the subproblem at node a is

minimize — log(Qf — f{) — log(Q5 - £3") (5.11)

L AR

subject to Qf 4+ 93 =

Using equality constrained Newton’s method, this problem can solved locally at node
a, returning the value of Qf and Qf. Similarly node b and ¢ computes their quota

assignment. The quota of a path is aggregated from the assignment at all nodes.
Q1 = min{Qf, O}, Qf}; Q=0 =9}

When Q;, Q5 and Q3 arrives at source nodes of the three communications, the master
problem can be computed distributively at each source node. For p = 1,2, 3, the master

problem is as follows:

min}mize —log(fp) — nlog(Qp — fp) (5.12)
P
Let y(fp) be the objective function, ie. y(f,) = —log(fy) — nlog(Qp — fp). Using

Newton’s method, the update of f, is given as:

£ = f0) (fpt))
P p ”(fggt))
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Then a new round (t+1) of transmission and computation starts. Once the computation
of (5.12) terminates, p is updated as p = Bu where 5 > 1. As pu — 0, the solution
h=f

One interesting property of this particular formulation (5.9) is that the objective
cost function —log(f,) can be evaluated locally at the source node of f,. Therefore, an
alternative primal decomposition of problem (5.10) is to make the problem (5.12) the
subproblem and solve locally at each source node. Then the problem (5.11) becomes the

master problem. @, is updated one Newton step with each round of communication.

5.2.4 Summary and Discussion

So far in this section, we have presented our approach to address constraints in routing
optimization problems. Namely, we answer the first open question identified in section
3.8.2;

What is a suitable distributed approach to address the couplings introduced by equality

and inequality constraints?

We choose the equality-constrained Newton’s method for the traffic demand con-
straint of each communication and the projection method for non-negative constraints.
The capacity constraints g(F) < 0 have a different form in wireless networks compared
to wired networks, due to wireless interferences. We classify the capacity constraints into
the medium capacity constraints and the queueing capacity constraints. To address the
capacity constraints, we choose the barrier function-based interior-point method over
the projection method and the dual decomposition technique for its fast convergence.

The main focus of this secfion is to decouple the capacity constraints with respect
to each communication flows. To do so, we introduce the quota-based mechanism that
extends the centralized interior-point method. In brief, at each intermediate where
multiple flows are jointly constrained by a certain capacity, a quota is assigned to each

of the flow. Quotas of at all intermediates travel back to the source node of each path.
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In this way, the couplings are eliminated since each path flow is only constrained by
its quotas. An interior-point method can be used to find the next round of traffic.
The assignment of quotas at each intermediate is also an optimization problem, whose
objective function can be evaluated locally. The algorithm starts with any feasible
solution. Given a traffic flow at each round, the assignment of quotas can be solved
locally at each node by equality-constrained Newton’s method.

The quota-based approach can be vaguely classified as an indirect decomposition
method [Palomar and Chiang, 2006], which introduces auxiliary variables to assist de-
composition. However, compared to existing distributed approaches, such as decompo-
sition methods and distributed Newton’s method, it has three desirable features:

Firstly, the quota-based mechanism integrates the interior-point method with de-
composition techniques. The benefit is twofold: On one hand, it is capable of addressing
coupled nonlinear constraints. Namely, g;(F) < 0 can take the form as (5.2). In the
contrary, the dual decomposition method, although it is a natural approach to decouple
the constraints, relies on the separability of constraints. For example, a common form of
constraints addressed by dual decomposition is RF < 0. On the other hand, the loga-
rithm barrier function enjoys a quick adjustment to inequality constraints. If a solution
is approaching the boundaries, the penalties increase superlinearly therefore pushing the
solution within feasible domain. To the best of our knowledge, only one approach exists
in the domain of network optimization that combines the interior-point method with
decomposition techniques [Mosk-Aoyama et al., 2010]. However, their approach lacks
the following features of our approach.

Secondly, both the subproblems and the master problem in our formulation can be
addressed using the second-order Newton’s method. Recall that in general decomposition
methods, the coordination between different subproblems, i.e. the master problem, is
executed with the gradient method - if with luck the master problem is differentiable - or
with the subgradient method - if the master problem is not differentiable. The first-order

coordination of subproblems results in a slow convergence. Distributed Newton’s method
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uses iterative methods, including the matrix splitting technique and the GaBP method,
to distributively compute the linear system at each Newton'’s step. Although the outer
Newton'’s iteration retains the quadratic convergences, a large number of iterations may
be inserted at each step, which slows down the overall convergence. In comparison, our
approach is more efficient in addressing coupled constraints.

Thirdly, the quota-based approach aggregates quotas assigned by intermediate nodes
of a path into the quota of the path. The aggregation is essentially a reduction to the
set of constraints for a path flow. As a result, only the most binding capacity constraint
of a path flow is returned to the source node and used in the logarithm barrier function.
As we have seen previously, due to wireless interferences, different communication flows
are heavily coupled in ad hoc networks: 1) Two flows may interfere with each other
at multiple hops with different types of interferences; 2) A flow may be interfered by
a large amount of other flows. Both the standard decomposition approaches and the
distributed Newton’s methods suffer from a slow convergence rate in heavily coupled
problems. On the other hand, the quota-based approach addresses the optimization
problem with reduced couplings. Therefore, it is more suitable to ad hoc networks
compared to existing approaches.

The quota-based mechanism exhibits features that are more suitable for strongly
coupled ad hoc networks compared to existing distributed algorithms. It can be antic-
ipated these features result in a fast convergence of the quota-based approach. We will
confirm this in chapter 6.

In summary, we have described our design choice to address constraints and pro-
posed the quota-based mechanism to decouple capacity constraints with respect to each
communication flows. In section 3.8.2, we have summarized three open questions for
the design of optimal routing algorithms in ad hoc networks. The design in this section
essentially answers the first question. In the next section, we try to answer the rest two

open questions.
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5.3 Node-level Distributed Manner

In the previous section, we propose the quota-based mechanism to decouple constraints
in the optimal routing problem with respect to each communication flow. We note that
in general, the quota-based mechanism alone can not decouple an optimization problem,
unless the objective function of the optimization problem is separable. For example, if the
objective is the utility function, —>_ log(fp), the quota-based mechanism is sufficient to
facilitate a flow-level distributed algorithm. Another example is using link flows { fi(l) }
instead of path flows as handle variables . Then, the objective function in the optimal
routing problem becomes ;. » Ci(74,). This function is not mathematically separable
with respect to each link flow fi(l) , in the sense that 7, ; consists of not only fi(l) but also
neighbouring link flows f](l) € Fo UZ, ;. Nonetheless, coupled link flows are physically
close to each other. Therefore, the couplings introduced by the cost function can be
eliminated by exchanges of information locally. In this case, the quota-based mechanism
is sufficient to facilitate a node-level distributed routing algorithm.

However, both cases do not suit optimal routing problems in wireless ad hoc networks.
As we have discussed previously in section 3.2.3, the utility function does not model the
interference in between different flows; As we have discussed previously in section 3.8.2,
using link flows as handle variables increases the size of the problem. It slows down the
convergence of distributed algorithms and introduces more communication overheads.

Therefore, we focus the minimization of the non-separable cost function C(F) using
path flows as handle variables, F = {f,| p € P}. Firstly, in subsection 5.3.1, we
investigate the design choice to decouple the cost function in Newton’s method with
respect to each path flows. Together with the quota-based mechanism, it leads to a
flow-level distributed routing algorithm. Then, in subsection 5.3.2, we propose the tree-
based mechanism that translates the flow-level distributed algorithm into a node-level

distributed algorithm.

153



5.3.1 Diagonal Approximation of the Hessian

In this subsection, we propose to use the diagonal approximation of the Hessian matrix
in Newton method. In this way, the couplings between different communication flows can
be eliminated at each Newton step. In the following, we firstly describe the motivation
of this approach. Then we describe an integration of the diagonal approximation with
the quota-based mechanism. Finally, we discuss the advantages and disadvantages of

this approach.

5.3.1.1 Motivation

The couplings introduced by a non-separable objective function C(F) are embodied by

the computation of the Newton step. For example, in the unconstrained case, we have
V2C(F)AF = -VC(F)

Let [V2C(F)~!]; denote the i** row of the inverse of the Hessian matrix V2C(F). The
it" path flow is given by Af; = [V2C(F)~!;VC(F). In general, the inverse operation
requires a full knowledge of the Hessian matrix and a centralized computation. In order
to compute the inverse of the Hessian matrix distributively, a common approach is to use
iterative methods to solve the coupled linear equation system. However, these approaches
introduces a number of iterations at each Newton step, which introduces communication
overheads and does not suit wireless ad hoc networks. We have identified this challenge
as the second open question for the design of a distributed optimal routing algorithm,
as stated in section 3.8.2.

How can we address the coupling introduced by the objective function, namely the
distributed inverse of the Hessian coefficient matriz, without using iterative methods at
each Newton step?

We answer this question by using the diagonal approximation of the Hessian matrix
in the computation of each Newton step. Let diag(V2C(F)) represent the matrix whose

diagonal elements are the same as the Hessian V2C(F) and all off-diagonal elements are
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set to zero. The unconstrained Newton step using diagonal approximation is given as :

diag(V*C(F))AF = —VC(F)

2 =1
In this case, each component can be computed by Af; = %—) 83({) Now that

the couplings introduced by the objective function are eliminated, we can integrate
the diagonal approximation with the quota-based approach for a flow-level distributed

optimal routing algorithm.

5.3.1.2 Flow-level Distributed Algorithm

Combining the results we have so far, including the wireless medium cost, the quota-
based mechanism and the diagonal approximation of the Hessian matrix, we can describe
a flow-level distributed routing algorithm.

The algorithm starts with an initial traffic (90, Each source node iteratively adjusts
its traffic distribution over available paths. After the round ¢ transmission, each inter-
mediate node a gathers information of neighbouring traffic flows. Then, it calculates
the first and the second derivative medium costs, namely C;l’a( fp) and C’gc‘a( fp), of each
path flow f, running through it. It solves problem (5.7) using Newton’s method, which
gives the assignment of quotas for each path flow. A reply message from the destina-
tion node to the source node records the derivatives of medium cost and quotas at each
intermediate node. When the reply message arrives from path p, the source extracts
Clep(fo), Ciep(fy) and Qp.

For simplicity of notation, we can number the path flows of one communication w as

fiw---fnw. With the information extracted from the reply message at round ¢, the source
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of communication w computes its Newton step from the following equation systems:

(Gt P+ et ) AFO 41 = = (Gl (1) +

)
(Ql.u:_fl(.'l),-) Ql-“’_fl(.'z)u

(5.13)

(Clo s F0) + (Q_ET?)AJ‘TS‘) + v = = (Cl (i) +

\2?21 Afi(,il)) =ATuw/a

AT
Qn,w‘f}l.zu

where A7, = 0 if the traffic demand of communication w is consistent otherwise repre-
sents the change of traffic demand compared to the previous round. The next round of

traffic distribution is given as

fiaV = fa+abfl, i=1l.n (5.14)

w?

where « is the step size and can be either a constant positive 0 < o < 1 or determined
by certain line search algorithms.

The path flows computed by (5.13) and (5.14) may be negative. As we have discussed,
we choose the projection method to enforce the non-negative constraints. Projection
methods used in existing network optimization approaches are linear projections. In
this case, a linear projection sets the negative path flows as zero and equally distributes
the negative residual over positive paths, which is rather simplistic. A more sophisticated
approach is to distribute the residual over the remaining paths based on their path costs.

More specially, let » be the sum of path flows at round ¢ that becomes negative after
updated from (5.13) and (5.14). Namely,

r= S 9 where NegSet={il f < 0} (5.15)

i€ENegSet
Firstly, the source node sets path flows whose index belongs to NegSet un-utilized, i.e.
assigning zero traffic over previously negative flows. Secondly, it removes equations of
un-utilized paths in (5.13) and replace the last equation by Y7 | A fi(ﬁl)) = (ATy —nr)je

Then, system (5.13) and (5.14) are computed once again for a new traffic distribution.

156



Finally, it is possible that the new traffic distribution also contains negative flows. In
this case, the same procedure can be executed iteratively until no negative flows occurs.
It is easily known that this iteration always terminates, i.e. it is not possible that all
traffic flows are assigned negative traffic. It should be noted that due to the diagonal
approximation, the computational effort needed to solve system (5.13) is trivial.

This traffic distribution algorithm is essentially the master problem (5.8) at each
source node. We use Newton decrement as the criterion for the stopping criterion of the
problem. That is,

PFa) = =3 (Closlsi) + ) AL (5.16)

=1 1,Ww W

The inner Newton iteration to problem (5.8) terminates if A? is smaller than a certain
threshold. Then the interior-point method continues with a smaller . We give a formal

description in algorithm 3.
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Algorithm 3 Load Distribution Algorithm at Source Nodes

Starting with an initial value J_-1(D0) , 248 =, ginterior ~, () qdecrement o, 1), dind oy

repeat:
1. Send out traffic Fi) = {f(t) af7(1t1)u

lw?

2. Gather cost and quota information C’,;‘i’w( fi(_z),), é;.i.w( 1(3) and
Q;  for each path ¢

3 repeat:
3.1 Solve system (5.13) and update the solution with (5.14)

3.2 If there exists fi(tﬂ)

,w

< 0, then computes NegSet and r
according to (5.15)
3.3 Set fi(ﬂl) = 0 and remove corresponding equation in (5.13)
for every i € NegSet
3.4 Set ATy = ATy — r/a
until all path flow fi(ﬁjl) >0
4. Compute the Newton decrement A\?(F,,) according to (5.16)
5. Update the p = yu if A2(F,,) < edecrement

until the stopping criterion nu < € is met

5.3.1.3 Discussion

Indeed, the usage of diagonal Hessian matrix is a simplistic technique to avoid the ex-
pensive computation of Newton step. Certain routing algorithms [Bertsekas et al., 1984]
have also applied diagonal Hessian to facilitate distributed computation of Newton step.
Compared to Newton'’s method using the full Hessian matrix, the diagonal approximated
Newton’s method can not guarantee quadratic convergence in general. However, we ar-
gue that the diagonal approximation of the Hessian matrix is a suitable approach for
optimal routing in wireless ad hoc networks.

Firstly, it avoids the necessity of iterative methods to compute each Newton step.

At each Newton iteration, the computation can be carried out locally with one round
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of data-reply message exchange between the source node and the destination node. Sec-
ondly. it reduces the amount of information needed at each iteration. Since off-diagonal
elements of the Hessian matrix are omitted, each intermediate node gathers and prop-
agates less information compared to the full Hessian. The reduction overhead can be
significant in a network with non-sparse communication flows. Finally, although the di-
agonal approximated Hessian matrix can not a quadratic convergence, it exhibits a good
convergence rate in practise. In fact, we can view the diagonal Hessian as a precondi-
tioner to the gradient of network costs. Therefore, the approximate Newton’s method
using diagonal Hessian guarantees a linear convergence rate and avoids the “zig-zagging”
problem experienced by the gradient method. Without “zig-zagging”, the geometrically

reducing costs of linear converging algorithm is usually satisfying.

5.3.2 Node-Level Distributed Optimization based on Optimal Sub-

structure

So far, we have given the design of a flow-level distributed routing algorithm where
the source node of each communication makes load distribution decisions over available
paths. Indeed, the flow-level distributed routing algorithm can be seen as the multipath
version of source-routing, which is undesirable for ad hoc networks. In order to achieve
a node-level distributed algorithm, existing approaches have focused on the pure mathe-
matical side in the sense that they formulate the routing optimization problem with link
rates as handle variables. In this way, the same optimization methods can be applied to
node-level distributed algorithms as to the flow-level algorithms.

In addition to what described in the mathematical formulations, the routing problem
possesses an interesting property, namely the optimal substructure. With this property,
we can design a node-level distributed optimal algorithm. Firstly, we reiterate the defi-
nition of the optimal substructure property [Cormen et al., 2009]:

A problem exhibits optimal substructure if an optimal solution to the problem contains

within it optimal solutions to subproblems.
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The concept of the optimal substructure originated from the domain of dynamic
programming and greedy algorithms. It should be noted that the term “optimal” here
differs from that in the domain of convex optimization. In the case of multipath routing
optimization using iterative methods, we argue that the computation of each step F()
exhibits the optimal substructure in the sense that the solution to the system (5.13)
contains sub-solutions at each intermediate node.

Let us consider the example network shown in Fig. 5.3(a). At each round, the task
is to split the traffic demand over the three paths based on their cost information -
ng;,p(fp), C;;’p(f,,), Qp, p = 1,2,3. Physically, data traffic of flow f; and f, are separated
from f3 at source node S at first. Then f; and fy are split at node A. In a more
complex network, data traffic gradually separated as they approach the destination node.
Therefore, the traffic splitting problem consists of a sequence of subproblems, each of
which splits partially the traffic demand. Each subproblem is solved based on the solution
of its previous subproblems, i.e. it exhibits the optimal substructure.

Now we give the mathematical realization of the optimal substructure property. We
simplify the notation in system (5.13) as follows:

O AT ——
Qpw — fpw

and

~ 1 " K
G = (C&,p,w(f;g,t'z)u) + —(t)Z)
(Qp,w - p,w)

Then, in this example, the traffic distribution problem at step t is given as:
(

CLHARY Loy = -0

! C,OAFD 4y, = -G

~ 11 ~ 1 (5.17)
O, ALY vy =G0

AfE +AfD + A, = ATy/o
Gt
Let Afs and Afp be the solution of the subproblem at source node S. The sub-

problem of problem (5.17) at node S is
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(a) An Example Network: Three available paths, fi1, f2 and f3 for com-

munication between node S and D

) Pathlnfo(1) Afl

PathInfo(A) @: Af, {A)
™ Pathinfo(2) A,

Pathinfo(B) \ ------- Pathinfo(3) Af B e Af3

(b) Substructure of the Routing Problem: Dashed lines represent reverse paths for reply messages

to source nodes. PathInfo(p) = {C&,p, ‘;,T,, Op}

Fig. 5.3: A Demonstration of Optimal Substructure for Multipath Routing: At each
round of an iterative optimal routing method, the computation of routing decisions can
be seen as a traffic splitting problem. The optimal splitting at each round consists of an
optimal splitting between f4 and fp at node S and an optimal splitting between f; and
f2 at node A. The optimality of solutions to each subproblem depends on the proper

merging of cost information.
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COAFa + 14y = -CP
Cv;(t)AfB + vy = _égt) (5.18)
Afa+Afp=ATy/a

For the optimal substructure property to hold, the system (5.18) should give a solu-
tion Afqa = Afi + Afy and Afg = Afs. According to (5.17), we have

~ 1

C."(t) -V ~OW
w+ 2 w

Afa=Afi+Af=—L— Tt
Cl( ) 02( )
_(jl(t)c”vz(t) _ él (t)éQ(t) _ (él ON éz(t))’/w
= ~ 1 t ~ 11 t
Cl( )C2( )
, which simply transforms to
= (t) A (t) () At A A (@)
Sl WO R S P L R (5.19)

o Lo &0 L o

That means, if we let

~lt ~Ilt ~Ilt ~It -I/t -//t
i JGEE O aOEE  y  GEED
A i ~

FOLE® 0 A T EFW O

(5.20)

, then (5.19) becomes the first equation in system (5.18). Also let C’gf') = C’;(t) and

~ ~ 11

C;(t) = CS(t). Solving system (5.18) gives Afs = Afi + Afy and Afp = Afs.

® but not necessarily cost information of path

Since node S needs only C~’:4(t) and C~':4
f1 and fa, equation (5.20) can be seen as the specification of the merging of path f; and
f2 should merge at node A.

Receiving aggregated traffic from S, i.e. based on the solution of the first subproblem,

node A can compute the split of f; and fy as follows:

~ 11

E NS + 1y = -6
CLONS, + vy = —CLO (5.21)

Afi+Afi =Afa
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The traffic splitting problem terminates with fi, fo and f3 computed. This completes
the mathematical realization of the optimal substructure property. The procedure is
demonstrated in Fig. 5.3(b).

It should be noted that there is one difference in the information exchange between
node-level distributed manner and flow level distributed manner. If the algorithm uses
aggregated quota of a path, the merge of paths requires the path quota instead of the
node quota. Therefore, instead of gathering quota information on in reply messages from
destinations to sources. Intermediate nodes maintain their quota assignments during the
continuous transmission of one round of data. The quota-assignment for next round of
transmission can be piggybacked to destination nodes with data messages. C.',I,(t) and
C-',’,’ ® can be computed starting from source nodes and updated along reverse paths.

Generalizing the derivation of this example, we give the description of a node-level

distributed routing algorithm.

Zc«;lm H.C;Ill’j
C = 1 JFi
o Z I_I,C&pj
T (5.22)

Receiving the cost information of node A and node B, the source node S can now
calculate the changes of flow sending to the next-hop nodes as in (5.13)
Intermediate node A, on receiving the change of traffic flow, calculate the change of

sub-flows to its next-hop neighbours as in (5.23)

rC;;mAfl +w=-Cp,

CopyAf2 +w=—Cp,,

...... (5.28)
Cop Afm+w=—Cp,

YAfi=Afa

\ Pi
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The algorithm at intermediate nodes is given as follows:

Algorithm 4 Algorithm at Intermediate Nodes
On receiving data messages:

1. Compute the traffic distribution to the next hop neighbours according
to system (5.23). If no cost information is available, distribute traffic to all
next hop neighbours evenly.
2. During the continuous transmission of current round traffic, update its
quota assignment by solving problem (5.7)
On receiving reply message of one communication:
1. Merge the cost information according to (5.22)
2. Update local cost information to the merged cost information:
Oty = Clop+ i Gl = Chag +

3. Forward reply messages back to last hop nodes.

5.4 Route Discovery

In this section, we investigate the route discovery procedure for optimal routing algo-
rithms. Firstly, in subsection 5.4.1, we revisit the overview of the network layer commu-
nication task for optimal routing. Our node-level distributed quota-based interior-point
algorithm offers partly the functionalities of the overall task. We identify the primary
remaining issues, namely the discovery and establishment multiple loop-free paths, to
facilitate our optimal routing algorithm. In section 5.4.3 and 5.4.2, we describe our

approach to address these issues.

5.4.1 Overview

The overall communication task of data transmission between source nodes and des-

tination nodes using multiple paths can be divided into four components: the control
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message exchange, path filtering, path selection, and data distribution. Existing opti-
mal routing algorithms assume the availability of all potential paths and focus on the
computation of traffic assignment. Essentially they provide the path selection and data
distribution functionalities. Therefore, our objective is to design an approach that dis-
covers and establishes multiple loop-free paths for optimal routing algorithms. Raised
from the literature review in section 2.5.4 and 2.5.5, this approach should have the

following properties:

1. The ability to eliminate redundant path information, by path filtering and merging.
2. Discovery of optimal path set if potential paths are filtered.

3. Providing exact cost information, which is challenging if multiple paths are merged.

Indeed, our design objective have already been partly addressed by results described
so far. Our node-level distributed quota-based interior-point algorithm uses cost metric
C;é,p( Jols C:g;p( fp) and Q,, for each path p. Therefore, a natural control message exchange
mechanism is the distance-vector routing. Sources node floods route request (RREQ)
messages. Multiple - if not all - RREQ messages are replied once reach destination nodes.
Route reply (RREP) messages travel the reverse path of RREQ messages to source nodes.
Routes between sources and destinations are established. The on-demand manner suits
the scenario of dense ad hoc networks because the global network topologies are not
necessarily maintained at all nodes as link-state routing. In our node-level distributed
algorithm, The merging of cost information, as specified in (5.22), is exact in the sense
that it does not affect the resulting traffic assignment over each path compared to un-
merged costs. Finally, same as other optimal routing algorithms, path selection and data
distribution are determined by iterative convex optimization methods.

One outstanding issue yet to be addressed is the path filtering during route discovery.
A proper path filtering criterion eliminates redundant paths as much as possible. There-

fore, the communication and computation overheads are reduced compared to naive
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route discovery approaches. We will search for such a criterion in subsection 5.4.3.
Another issue is that although we have specified the exact merging of costs, it may
conflict with the establishment of loop-free paths. As we have discussed in chapter 2, in
order to prevent loops during data forwarding, the cost to a destination node has to be
strictly decreasing as the data approaching the destination node. Previously in section
2.5.5, we argued that this may not always be the case if costs are merged. In subsection

5.4.2, we will investigate this issue.

5.4.2 Loop-freedom of Multipath Routing

In this subsection, we discuss our approach to guarantee loop-freedom in multipath
communication. The problem can be divided into two aspects: 1) loop-freedom during
route discovery stage, i.e. in a static setting; 2) loop-freedom during route maintenance,

i.e. with the presence of topology changes.

5.4.2.1 Loop-Freedom of RREQ Floodings

Firstly, we consider the discovery of loop-free paths in a static setting. This is not
an issue for single-path distance-vector routing algorithms. Only one path is to be
discovered per communication. If an intermediate node receives multiple copies of a
RREQ message identified by the source and destination addresses, it forwards only the
first copy and discards all consecutive copies. Disjoint multipath routing is a similar
case. Each intermediate node - or link - transmits only one copy of a RREQ message
and discards the rest. Feasibility condition based multipath routing maintains a single
shortest path between each node and the destination node. Therefore its route discovery
procedure is essentially a proactive single path routing. However, the discovery of loop-
free paths is not obvious for our case. Since we do not assume the path disjointness,
multiple paths may intersect at one intermediate node. An intermediate node may have
to forward multiple copies of RREQ messages for one communication. The question is,

how can an intermediate node determine whether a received copy of RREQ messages is
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a result of loops during flooding or a loop-free intersecting path?

A straightforward solution to this problem is to record the list of nodes travelled by
a copy of RREQ message. On receiving the RREQ message, an intermediate node can
check whether its address is already in the list. A positive result indicates the RREQ
message has travelled a loop. Otherwise, the intermediate node rebroadcasts the RREQ
message. However, the list of intermediate nodes travelled by a message can take a
large amount of space in the header of the message, which introduces communication
overheads.

In order to alleviate the overheads, we can replace the list of addresses with a small
bloom filter in the header of RREQ messages. A bloom filter is a randomized data
structure to determine the membership of an element in a given set. It consists of k
hash functions that maps an element to a m-bit binary string. In our case, the IP
addresses of network nodes are the elements whose membership to be determined. The
usage of bloom filters involves two operations: add and query. All the m bits are initially
set to 0 in a bloom filter. When a RREQ message arrives at an intermediate node for
the first time, the intermediate performs the“add” operation: The IP address of the
node is fed to the k hash functions, each of which returns a m-bit string. Then a bit-
wise OR operation is taken over all the k strings and the original string in the bloom
filter. Finally, the node updates the string in the bloom filter with the result of the OR
operation. In order to check whether the arrival of a RREQ message is the first time, an
intermediate node performs the “query” operation to the bloom filter: The node feeds
its [P address to all the k& hash functions and performs OR over the k binary strings,
which returns an array of positions whose value is 1. If the value of these positions in
the string of bloom filter are all 1, then the result of the query is deemed as positive.
It indicates that the RREQ message has travelled through the node previously. The
node discards the RREQ message. Otherwise, the node performs an “add” operation
to insert its [P address to the bloom filter of the RREQ message and rebroadcast the

RREQ message to all its neighbours.
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Indeed, many previous approaches [Broder and Mitzenmacher, 2004, Tian and Cheng,
2012] have used bloom filters to eliminate loops of messages. False negative results are
not possible in bloom filters, which guarantees loop-freedom. On the other hand, false
positive results are possible in bloom filters. This is because all the corresponding bits
of one element in the bloom filter can be set by a group of other elements. This leads
to a false positive query to that element. A false positive result eliminates a loop-free
path falsely. However, the probability of false positive is controllable. In the following,
we briefly state the analysis.

Let n be the expected maximum length of a path. For a bloom filter with m-bit
string and k perfectly randomized hash functions 3, the probability of false positive,

denoted by p, is given as follows:

p=(1- (- 2)) ~ (- )

m

Since p can be seen as a function of k given the value of m and n, there exists a k* that

minimizes the false positive probability.

k= Tlog(2)

n
With the optimal k£ determined, we can write:

__nlog(p)
(log(2))?

Therefore,given the design objective of the probability of false positive and the expected

maximum path length, we can determine the number of bits in the bloom filter. For
example, if we allow a 0.1% of false positive and 20 hops of longest path, the bloom filter
will take up 288 bits in the header. That is on average 14.38 bits overhead introduced
by each hop, compared to the 32 bits of addresses for each RREQ message.

3Perfect randomization here implies that each bit is set independently with each other. In practise,
for example, MD5 is commonly used
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5.4.2.2 Loop-Freedom in a Dynamic Setting

The usage of bloom filters eliminates loops in the flooding of RREQ messages. If the
topology of a network is ideally static, paths established by RREQ messages will stay
loop-free. However, ad hoc networks may experience topology changes due to node
movement or joining and leaving a network. Although in our thesis we do not consider
highly dynamic environments, such as mobile ad hoc networks, we wish to cope with
infrequent topology changes, i.e. quasi-static networks.

With the presence of topology changes, established paths may break or change part of
their courses. As we have reviewed in chapter 2, existing routing approaches establish an
order of intermediate nodes, which decreases strictly towards a destination node. In this
way, an intermediate node can determine its next-hop nodes based on the order value of
its neighbours, which are not necessarily the next-hops established by RREQ messages.
For example, in shortest path routing, hop counts towards destination nodes are used
as the order value. In feasibility condition-based minimum delay routing [Vutukury
and Garcia-Luna-Aceves, 1999], each node reports the minimum delay cost towards a
destination to its upstream nodes. In this way, a strictly decreasing order of delay costs
towards a destination is established. However, this results in an inexact merging of cost
metrics of multiple paths.

The merging of cost metrics in our algorithm, as specified in (5.22), is exact. However,
it is easily seen that a merged first derivative cost is essentially a weighted average of
all its next-hop first derivative costs. Unless all next-hop first derivative costs are equal,
there is at least one next-hop cost larger than the merged first derivative cost. A merged
second derivative cost is always smaller than any of the next-hop second derivative costs.
In short, the exact merging of cost metrics in our algorithm does not retain the strictly
decreasing order among intermediate nodes towards destination nodes. It leads to loops
in data forwarding.

In order to address the dilemma between exact merging of cost metrics and strictly
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decreasing order, we differentiate the cost metric used by traffic distribution and the
distance towards a destination. In addition to the derivative costs {C(;c’p,Cé;p} and
quota information @, of a path, the RREP message also carries a hop count field that
increases at each hop. The merging of hop counts from multiple paths chooses the
smallest hop count value of each next-hop nodes. Therefore, a strictly decreasing order
is established. Based on hop count value of each neighbours, a node determines its
next-hop nodes, i.e. potential paths. Based on the cost metrics {C’é&,,p, Cé;’p, Q,}, anode
determines the data distribution over the selected nodes, using (5.23).

Finally, information of a path may become stale due to topology changes. Possible
methods to identify outdated information include sequence number and feasibility condi-
tion. For its simplicity, we choose the approach of sequence number. A sequence number
is associated with each communication. If a node detects link failure, it increases the
current sequence number it holds by one and starts a local repair, i.e. route request by
the node. The local repair procedure terminates when a node with a higher sequence

number responses to its requests.

5.4.3 A Path Filtering Criterion for Optimal Routing

In the previous subsection, we have addressed the loop-freedom problem in both route
discovery and data forwarding. Indeed, eliminating loops is a basic path filtering cri-
terion: Paths with loops should always be avoided. On the other hand, not all paths
without loops are necessary to discover and maintain. In this subsection, we investigate
the path filtering criterion for optimal routing algorithms.

In a network with a high connectivity, such as a dense ad hoc network, the number
of potential paths between two nodes can be astronomical. For example, even in a small
scale 5*5 grid topology as shown in Fig. 5.4, there are 8512 potential paths between
node 1 and node 25. On one hand, a dominating majority of the available paths will
not be selected by an optimal routing algorithm. On the other hand, it is practically

infeasible for an algorithm to discover all the potential paths. Therefore, a path filtering
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Fig. 5.4: A Demonstration of the Number of Potential Paths: In this 5x5 mesh network,

there are 8512 paths without loops between node 1 and node 25.

criterion that eliminates redundant paths in the route discovery stage is necessary.

We have anticipated that a proper path filtering criterion should be based on the
cost metric used by the optimal routing algorithm. This assertion now becomes obvious
since we have established the optimal Wardrop equilibrium. According to the optimal
Wardrop equilibrium, under an optimal routing decision, all the paths used by a com-
munication have the same marginal cost which is no less than those un-utilized paths.
That means, if the marginal cost of a path is too large compared to other paths, then it
will likely be discarded by optimal routing algorithm. We can therefore set a time-to-live
(TTL) field in the looded RREQ messages. Assuming the size of a RREQ message is ¢,
at each hop the RREQ message travels, a marginal medium cost Céw(e) is subtracted
from the TTL field. Once the TTL value of a RREQ message dries out, the message is
discarded as it indicates that the path travelled is too long in the derivative length. This
manner draws a connection between the on-demand route discovery in classical routing
algorithms, such as AODV, and optimization approaches.

The question is, what is the threshold of marginal costs in identifying redundant
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paths, i.e. How can a source node determines a proper TTL value? We answer this

question by giving the following proposition.

Proposition 4. For each communication w, the solution it computes at each round t
as A]—"g) and 1/1(;), from the diagonal approximated quota-based interior-point method
(5.13). Let quota is Q° denote the initial quota nmodes assigned to a communication.
Define an appended KKT system with a new path p, whose first and second derivative
lengths are C’él’ﬁ(f,;) and Cglyﬁ(f,;), as follows

(
(Cran) + (—#_m_)T)Afl(t) + v = —(Coonn () + T'J_W)

(C& naw(fn ©y + —HT2>Af(t) +ug = —(Céé,n,w(fr(xt,zu) + (5.24)

(@nu=1i)

ng,;;(f) -+ ——0“——7 Afl(-,t) +uf=— C&p( o
G2

Y2 AR L AP = AT, [a
\ b

Qn.w_ﬂgt,w )

Then, the necessary condition for A flgt) > 0 computed from the appended KKT sys-
tem (5.24) is

Chple) < —vP = QO“_ - (5.25)

Proof. See appendix D O

This proposition states that, if there is a path p that has not been taken into con-
sideration at current round of computation, for it to be utilized by the communication
w under the cost information of round ¢, condition (5.25) has to be met. Therefore, the
value — ( —5‘— computed at the source node of communication w can be used as a
threshold at round ¢. All paths whose derivative cost is larger than the threshold would
be certainly discarded by the diagonal approximated quota-based interior-point method.

Furthermore, although (5.25) is not a sufficient condition, it is indeed a strong filtering
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criterion - any path that meets condition (5.25) has a smaller marginal cost than at least
one path in existing path set. It is likely to filter out the majority of redundant paths.

Based on this proposition, we can design an iterative route discovery approach. It
starts with a “trial and error” manner to find the initial path set P0. At step ¢t = 0, where
u,(f) is not yet computed, the source node can assign a predefined value to the TTL field
of its RREQ messages and flood the messages. If it does not hear any RREP messages,
then it increases the TTL value and floods RREQ messages again. This procedure may
execute multiple times until either it receives RREP messages or it determines that the
destination is unreachable. Each RREP message received by the source node establishes
a path - possibly merged - towards the destination node. The initial path set PY for
communication w is established. The quota-based interior-point method computes the
data distribution ]—',g') and 1/3) over 'PS,, =115

During the convergence, the source node can periodically invoke a path maintenance
procedure. Assuming that the update period is t,p4ate, the path set of communication

1

w is updated by P,'b at each time slot ¢ = t,pdate * @, where ¢ = 1,2,.... More specifically,
after the computation of 1(; *1) and yﬁf) , instead of transmitting data traffic, the source
node floods a RREQ) message with the TTL field set as —uflf 5 @é‘_—e All RREP messages
that reach the source node establish the updated path set P¢. Finally, the source node
computes the data distribution .7-',5} ) over the updated path set and starts transmission.
In this way, the path set P! will converge to the optimal path set P as i — oo. In
practise, we observed rather quick convergence, i.e. much less rounds required compared
to the convergence of data distribution.

An apparent issue of this route update procedure is that it blocks the data transmis-
sion at round ¢. This is because proposition 4 gives the necessary condition of adopting
a new path at round ¢, given the result from computation of round ¢. The operation
of data transmission without the procedure of route update is shown in Fig. 5.5(a). In

comparison, the operation of data transmission is interrupted by the procedure of route

update, as shown in Fig. 5.5(b). That is, the operations of data transmission and route
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Fig. 5.5: Time Axis of Data Transmission and Route Update: Differences between

sequential update and parallel update

update are sequential. Ideally, we prefer a parallel manner of these operations. That is,
the data transmission of round ¢ does not wait for the update of path set. But rather,
the paths discovered from the results of round ¢ is used for the computation of round
t + Owait, where d,45¢ 1s the number of round needed for the route discovery to complete,
which usually is 1. This desirable operation is shown in Fig. 5.5(c).

The problem for this approach is that proposition 4 guarantees the optimality of paths
discovered only in the sequential manner but not in the parallel manner. In the following,
we demonstrate that a route update procedure parallel to the data transmission can also

guarantee the optimality of paths discovered.
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Firstly, we give a trivial observation on a threshold value that is independent to the

coefficient p of interior-point method.

Corollary 3. Another necessary condition, which is slight weaker, is as follows:

Now, we give the long-term path filtering criterion which assists the parallel route

update.

Corollary 4. A necessary condition for a path p to be in the optimal path set, i.e.

P € P* is that there exists a t and infinitely many t > t, such that

C‘,&:I;(f) < —pld

w

Corollary 4 states that if a path belongs to the optimal path set P, it will pass
the filtering threshold of infinitely many rounds. The union of all paths that pass the
filtering threshold u,(lf') of any round t constitutes a path set set 73f such that P* C 75f.
Therefore, the approach of updating path set with P at round ¢t > i * typdate will
iteratively converge to optimal path set. The optimality of the route update that is
parallel to data transmission is justified.

In summary, we have proposed an iterative route discovery and update approach
in this subsection. Instead of gathering information of all potential paths, which is
often infeasible, our approach gradually builds up the set of optimal paths along the
convergence of the optimal data distribution algorithm. We have established thresholds
for path filtering. Proposition 4 and its corollaries demonstrate that optimal paths will
not be eliminated from these thresholds. This is the desirable case of path filtering

criterion that we have raised in chapter 2, for example as shown in Fig. 2.5(a).
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5.5 Summary

In this chapter, we have presented the main design of this thesis. We propose a quota-
based mechanism that addresses capacity-constraints with the interior-point method.
We introduce auxiliary variables called quotas at each node. It represents the maxi-
mum traffic allowed of a path flow at a node. Each node optimizes the quota-assignment
locally using second-order Newton’s method. Quotas are forwarded to sources of commu-
nications, where a second-order interior-point step is computed. The operation of quota
to each flow resembles Resource Reservation Protocol - Traffic Engineering (RSVP-
TE) [Awduche et al., 2001] although the mathematical assignment of quotas is not
address in RSVP-TE.

We use the diagonal approximation of the Hessian matrix in Newton step method,
which separates the couplings in the objective function. In order to reach a node-
level distributed manner, we utilize the optimal substructure property of routes between
sources and destinations. Instead of breaking the network optimization problem into
subproblems at each node as in existing distributed approaches, the flow-level distributed
routing optimization can be carried out at each intermediate nodes recursively from
destinations to sources.

We have also described the design of route discovery for our optimal routing algo-
rithm. We presented a necessary condition for potential paths to be used by a commu-
nication, which can be used as a TTL value to filter out long or congested paths. We
have applied a bloom filter to avoid loops in RREQ flooding. We propose to separate
the order of nodes in a path from the cost metric of the paths. More specially, we use
hop counts to determine the order of intermediate nodes in a path, and use derivative

costs and quotas as metrics to compute traffic distribution.
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Chapter 6

Evaluation and Discussion

In chapter 4 and 5, we have described our design to an optimal routing approach for
wireless ad hoc networks, namely the quota-based interior-point routing algorithm us-
ing wireless medium cost (QBIP). In this chapter, we will present both analytical and
statistical evaluation on the performance of QBIP.

In section 6.1, we give an overview of the evaluation strategy.

6.1 Overview

In the following, we conclude the purposes of our evaluation, that is, the focal points to
be verified of the proposed approaches.

Firstly, although we have formulated the network optimum as min.C(F), it is yet
to be demonstrated whether and to what extend an optimal solution reduces costs in
wireless networks compared to existing selfish approaches. Or to put it in a different
perspective, how bad is selfish routing in wireless networks?

In section 6.2, we extend the analytical “price of anarchy” results in wired net-
works [Roughgarden and Tardos, 2002] to wireless networks. This extension identifies
the worst case performance for an ideal selfish routing compared to optimal solutions

— or equivalently the best case of cost reduction for optimal routing. We also perform
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statistical simulations to illustrate the average cost reduction of network optimum com-
pared to selfish routing decisions. We investigate the affects of different network factors
to the average cost reduction. Results in section 6.2 justify the necessity and applications
of wireless optimal routing approaches.

Secondly, we evaluate the performance of the proposed quota-based interior-point
(QBIP) method. As we has discussed in section 3.1, two aspects of interests of an optimal
routing algorithm are its convergence rate and the distributed manner. As summarized
in algorithm 3 and 4, it is easily seen that QBIP is a node-level distributed algorithm.
Therefore, the remaining question is how fast the node-level distributed QBIP converges.
In section 6.3, we compare QBIP against some of the existing optimal approaches, both
centralized and distributed.

The statistical evaluations in section 6.2 and section 6.3 are conducted in different

types of simulations:

1. For the comparison between optimal solutions and selfish solutions, we constructed
a conceptual network following the protocol model [Jain et al., 2003]. We imple-
ment two types of topologies: random and mesh. Routes are not presented in the
start of simulations. Route discovery procedure, discussed in section 5.4, is used

and provide potential paths for both optimal (QBIP) and selfish approaches.

2. In order to evaluate the convergence rate of QBIP against existing optimization
approaches, we skip the route discovery stage and focus on solving the mathe-
matically formulated routing problems (1.2). We have implemented several opti-
mization approaches, including an iterative Newton’s method via PCG, the dual

decomposition, etc. and studied their performances in MATLAB [MATLAB, 2012].

Finally, we summarize the pros and cons of QBIP in comparison with existing opti-

mization methods and identify the future work in section 6.4
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6.2 How Good Is Wireless Optimal Routing?

In this section, we evaluate the performance gain for optimal routing solutions compared
to ideal selfish routing solutions. An ideal selfish routing solution refers to the exact
compliance with the selfish Wardrop equilibrium. More specifically, a routing solution
is ideally selfish if for each communication w, given its traffic demand, all the paths it
utilized have the same delay which is less than or equal to those un-utilized but available
paths. We use the term “ideal” for such solutions for two reasons: 1) Given the traffic
demand, each unit of data is routed 2) Without considering algorithms used, routing
solutions at Wardrop equilibrium have been demonstrated to outperform other selfish
routing solutions [Raghunathan and Kumar, 2009], such as single-path minimum delay
routing or shortest path routing. The goal in this section is to demonstrate the necessity
of optimal routing wireless networks.

We start with an extension to analytical results in wired networks.
6.2.1 An Analytical Result

In this subsection, we investigate analytically the worst case performance of selfish so-
lutions in comparison to optimal solutions in wireless networks. That is, we establish
the upper bound for the value %&f—;’ﬁ, for any network topology and traffic demands
of all communications. For a given class of latency function £(-), this upper bound is
usually referred to as the“price of anarchy”. In his seminal articles [Roughgarden and
Tardos, 2002] and [Roughgarden, 2002], Roughgarden establishes some fundamental re-

sults for the anarchy value in wired networks. In the following, we summarize some of

the important related results:

1. The price of anarchy is independent of the network topology. To compute the price
of anarchy for a certain class of latency function, it suffices to compute the anarchy

value in a two-node, two-link network where one of the links has a constant latency
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function?!.

2. With a non-decreasing continuous latency function, the cost incurred by an ideal
selfish solution for given traffic demand is at most the cost incurred by an optimal
solution for twice of the traffic demand. i.e. the anarchy value is maw.%&—g. where

|73l = 2|7

3. The price of anarchy value can be given by sup,.g.ry>olAu + (1 — A)]~1, where

e (0,1)N{ANEAr) =€)}, u = Zc(('\rr)) € [0,1]. The anarchy value MAY be in-

finitely large for certain cost functions. For instance, for polynomial delay function

i=p i SR R . _(p+1) ¥/p+1
> i @ix', the price of anarchy is given by oD UptT—p"

These results are based on the assumption of link model in wired networks. In
particular, the result number 3 does not follow the same form in wireless networks. We
extend the analysis to wireless networks.

Consider a conceptual network as shown in Fig. 6.1, where there are two commu-
nications. The first communication has a traffic demand of r to route from node A to
node D. Suppose latency over path A-B-C-D is constant, i.e. ¢1(-) = ¢; and latency over
path A-E-F-D is given by £5(:). The second communication has a traffic demand f3 to
send from G to E, which interferes with the transmission from E to F.

Given r and f3, there exists increasing £2(-) such that fa(r + f3) = c. Since £5(-) is
increasing, £2(f3) < l2(r + f3) = ¢ = £1(0). The adaptive selfish approach will route all
traffic to link 2, resulting an overall cost: ¢-r + €3(r + f3) f3.

Because : ; s
Cyo(f) = bo(f + f3) + lo(f + f3) + £3(f + f3)f3 > bo(f + f3)
we have

Cla(r) > &(r + f3) = ¢ = Cyy (r) (6.1)

If we choose £3(f3)fs > ¢, then

'The rationale of using the constant latency function can be vaguely understood by the fact that a
constant function belong to any given class of latency function, for example by setting the coefficient
approximates to zero. See Roughgarden’s original paper for detailed analysis and discussions.
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Fig. 6.1: A Conceptual Scenario to Prove the Price of Anarchy: Suppose the capacity

at green links are arbitrarily large so that delay experienced is constant.

Cia(0) = 2(f3) + L3(f3) f3 > ¢ = Cgy (1) (6.2)

Combining (6.1) and (6.2), we know that an optimal solution routes all traffic through
link 1, resulting an overall cost: ¢ - r + ¢3(f3)fs. The anarchy value « is given as:

. (v + falfs terr
 G(fs)fsteor

Choosing carefully ¢, r and f3 that meet E;( f3)fs > ¢. For example, as the constant

value 7 — 0o, f3 is fixed, choose ¢ = r~1. It can be easily shown that the upper bound of
« is infinity for any function f3(-) that grows to infinity as its input grows, for example,

polynomial functions and queueing delay functions. In summary, we have

sup a = +00
r.c,fa

The price of anarchy describes the cost of selfish solutions using optimal solutions as

benchmark. An equivalent metric that evaluates the optimal solutions is the cost reduc-
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tion of optimal solutions compared to selfish solutions, which is defined as < fg'(ﬁ}s-" )If:f)(f )

100%. As the anarchy value approaches infinity, the cost reduction approaches 100%.
p

6.2.2 Implementation and Experiment Settings

Now that we have established analytically the best case cost reduction of optimal routing
solutions compared to selfish solutions, some natural questions arise: 1) What is the
average cost reduction of optimal routing solutions? 2) What are the factors that dictate
the average cost reduction? For example, although the network topology plays no role
in the upper bounds of the cost reduction, does it affect the average cost reduction over
a number of runs? We wish to investigate these questions via statistical evaluations.

We implement the experiments following the protocol model: Nodes are placed within
a conceptual disc. Each node has a transmission range of R, which for simplicity reason
is also the interference range. Two nodes can communicate with each other directly if
and only if their distance d < R. All communications within the interference range of
each other contribute their delay experienced.

The placement of nodes may follow either the mesh topology or the random topol-
ogy. In the mesh topology, the transmission/interference range of a node cover either 4
neighbours (orthogonal) or 8 neighbours (orthogonal and diagonal), as shown in 6.2. In
the random topology, N,g nodes are randomly placed in a disc with fixed area S. We
can set up a network with an expected node density ND, which is defined as the average

number of neighbours of each hop. The expected density can realised by setting the

S-ND

=N, Denote the number of communications in a network
n

transmission range R =
as Neomm, each of which is defined by a source and destination pair and has a traffic
demand of D,,.

In each run of simulations, a network, mesh or random, is generated with given
parameters. At first, a route discovery process is used to discover all the potential

paths for each communication. Then, an optimal routing algorithm and an ideal selfish

routing algorithm are used in the same scenario for comparison of their solutions. We
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Fig. 6.2: Two Types of Interference Ranges Used in Mesh Topology

do not evaluate their convergence rates. Each result is aggregated from a minimum of
20 samples.

We use the proposed QBIP algorithm to compute the optimal solutions. As we
will see in section 6.3, QBIP may not converge to the exact network optimum in certain
scenarios due to the usage of diagonal approximated Hessian matrix. Nonetheless, QBIP
is the only feasible routing algorithm in wireless ad hoc networks in the sense that it is
node-level distributed and the error is comparably small.

The ideal selfish routing solutions are computed with a heuristic load-balancing al-
gorithm: At each iteration, each source node reduces traffic load on paths with compar-
atively large delay and increases traffic load on paths with comparatively small delay.

Iterations stop only if for each communication, paths utilized have the same delay.

6.2.3 Factors of Cost Reduction - Mesh Topology

Our first set of experiments are conducted in a 5 x 5 mesh network, with two communica-

tions whose sources and destinations are randomly selected. We choose this small-scale
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networks for the purpose of fixing some parameters while evaluating the rest. All nodes
have the same latency function, which is polynomial and varies from degree 2 (quadratic
functions) to degree 5 (quintic functions) in different runs. All nodes also have the same
transmission /interference range, which may vary between 4 neighbours and 8 neighbours
in different runs. The results are shown in Fig. 6.3.

The first observation we can draw from the results is that the steepness of the latency
function plays a positive effect on the cost reduction. In wired networks, it has been
demonstrated that the steepness of the latency function affects the analytical low bounds
of cost reduction. In wireless networks, we have shown that the lower bound of cost
reduction is always 100% as long as the latency function meets certain criteria. Results
in Fig. 6.3 demonstrate that although they have the same reduction in best cases, a
“steeper” latency function enjoys a higher cost reduction of optimal solutions.

Comparing Fig. 6.3(b) and Fig. 6.3(a), it can be seen that the optimal solutions pro-
duced by QBIP reduces more costs from selfish solutions as the number of interferences
at each hop increase.

Last but not the least, the average cost reduction increases as the number of paths
used by selfish approaches increases. Depending on the topology and the traffic scenario
of a network, a communication may utilize various number of paths. Selfish approaches
are more likely to be inefficient as the number of paths used increases, which gives more
space for optimal approaches to optimize. Combining this observation with the fact that
there can be a large amount of potential paths for a communication, one may be curious
about the number of paths used by either ideal selfish routing or optimal routing. The
histogram of the number of paths used by either solution is summarized in Fig. 6.4.

As shown in Fig. 6.4(a), the majority of communications utilize 2 — 4 paths under the
4 neighbour interference range in the 5 x5 mesh network. At most, a communication uses
11 paths. This is interesting yet not surprising. Despite the large amount of potential
paths, any of them heavily interfere with each other, thus are not utilized. As the number

of interferences increases in a fixed size network, the number of paths used, both the

185



Cost Reduction

Cost Reduction

20% T

==Quadratic

18% T e=cubic R R B
16% +  =—Quartic T . = B A« T
14% -+ =Quintic
12% /
10% — :

D, B g 5

o / / D

4% = -

/ =
2% 1 L’%
0% T T L T I T = T T T T ]
it 2 3 4 5 6 7 8 9 10

Number of Paths Used by a Selfish Communication

(a) 4 Neighbour Interference Range

80% ==Quadratic

70% ==Cubic

60% ~=Quartic

SOk ===Quintic /,/
40% / /’

30% e
— /I

20% //_,_..—-/— e

10% - —

0% i3 T ¥ T T T
S 4 6 7
Number of Paths Used by a Selfish Communication

(b) 8 Neighbour Interference Range

Fig. 6.3: Cost Reductions of Different Polynomial Functions

186




55%
50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Frequency of Occurrence

55%
50%
45%

QCJ 40%
g 35%
8 30%
- 25%
§~ 20%
@ 15%
&

g 10%

L 59

0%

B 8 Neighbours
| i 4 Neighbours
T J _l
E = = = ==

1 2 3 4 5 6 7

8

9 1
Number of Paths Used by a Communication

(a) Number of Path Used by Ideal Selfish Routing

11

8 Neighbours
¥ 4 Neighbours

3 4 5 6 T
Number of Paths Used by a Communicati

(b) Number of Path Used by QBIP

7/
on

Fig. 6.4: Histogram of Number of Paths Used by Communications

187



Number of Paths Used by an Optimal Communication

1 2 3 A 5 6 7 8 9 10 11

Number of Paths Used by a Selfish Communication

Fig. 6.5: Correlation of Path Used by Optimal and Selfish Approaches

average and the maximum, reduces accordingly.

As shown in Fig. 6.4(b), the number of paths used by an optimal communication
lies largely between 2 — 3 paths under the 4 neighbour interference range and between
1 — 2 paths under 8 neighbour interference range. We have observed a maximum of 7
paths used by a communication. A comparison between Fig. 6.4(b) and Fig. 6.4(a)
may suggest that optimal routing solutions use on average less paths compared to their
ideally selfish counterparts. To better illustrate this observation, we plot the relation
between the two value in Fig. 6.5. It can be seen that, for communications whose selfish
solutions use single path, their optimal solutions may not always use single paths. For
multipath selfish routing solutions, their optimal counterparts are expected to use fewer
paths. In addition, the number of paths used by optimal solutions remains stable at 3 —
4 as the number of paths used by selfish approaches increases.

In summary of the first set of experiments, we have learnt the followings: 1) The
steepness of latency functions and the number of interferences of each hop impose a
positive effect to the cost reduction of optimal routing solutions. 2) The number of paths

used by optimal communications is usually less than that used by selfish communications.
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6.2.4 Factors of Cost Reduction - Random Topology

Our second set of experiments are conducted in randomly generated networks. The size
of each network varies between 3 — 3000 nodes, with expected node density between 1

20 neighbours per hop. The number of communications varies between 2 — 20. The
latency function used in these experiments is of a quadratic form, more specifically,
(f,Na) = (f + Na)* + (f + Na)

As shown in Fig. 6.6, the average cost reduction of optimal solutions remains roughly
stable as the number communication increases. It can be explained by the fact that
when a communication makes routing decisions, be it optimal or selfish, it does not
differentiate interfering traffic of different sources. Therefore, the number of interfering
communications does not affect the cost reduction of optimal solutions?.

Next, Fig. 6.7 demonstrates that the average length of paths used by a communi-
cation plays a negative factor to the cost reduction of optimal solutions. Our interpre-
tation of this result is that as the distance between a source node and a destination

node increases, it is more difficult for optimal routing to discover a path with no or little

interferences which can largely improve the performance.

2Tt should be noted that, if each communication holds a fixed amount of traffic demand, as the number
of communications increases in a network, the cost reduction is expected to change in practise. We will
study this effect in queueing networks in subsection 6.2.5. The usage of the quadratic latency function
allows the results to be immune to the network traffic demands.
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Path Lengths | Number of Paths Used | Degree | Node Density

p-value | 6.5445 e-23 9.2735 e-61 0 3.9124 e-204

Table 6.1: Statistical Significance of Experiments: p-value of one-way ANOVA test

over different factors
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Finally, we summarize results of all experiments in random settings and plot logarithm-
transformed histograms of cost reduction for different node densities, as shown in Fig.
6.8. As the node density grows, the average cost reduction of optimal solutions in-
creases. The maximum reduction that we have observed is around 2/3. This result
complies with the comparison between 4 neighbour interference range and 8 neighbour
interference range, at a larger scale.

In summary of the second set of experiments, we have demonstrated that the average
cost reduction is dependent on certain topological features, despite that its analytical
upper bound is independent of topologies. The statistical significance of these experi-
ments are illustrated in Table. 6.1. These experiments show that the higher node density
and/or the shorter paths used in a network, the larger cost reduction can be expected
from optimal solutions. The number of communication flows itself, however, does not

affect the cost reduction.

6.2.5 Cost and Capacity

By far, we have discussed experiments using polynomial latency functions under various
network settings in order to evaluate the contributing factors of cost reduction. In this
subsection, we focus on again the small scale 5 x 5 mesh network with two communica-
tion flows. This time, we aim to evaluate the routing performance with a more realistic
latency function at each hop, that is, the M/M/1 queueing delay. Queueing delay dif-
fers polynomial functions in that as the traffic of a hop approaches capacity, the delay
approaches infinity. Therefore, we can study more accurate capacity-related behaviours
of optimal and selfish solutions.

We set the transmission/interference range to cover 4 neighbours of a node. Each
hop is assigned a capacity value. At each run, two pair of sources and destinations are
randomly selected. Route discovery process is used to find all potential paths. Source
nodes compute a selfish solution with traffic demand set as 10% of link capacity, de-

noted by D). Once the iterative selfish algorithm converges and terminates, the traffic
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demand is increased by a small portion, denoted by AD. Each source node performs
a feasibility check to determine whether the capacity residual of the network can carry
the demand increase AD, given the current traffic pattern. A new selfish solution is
computed for traffic demand D+t = D) 4 AD, t = 0,1..., if the increase of demand
is feasible. Otherwise, the algorithm terminates. Then, starting over from D), source
nodes compute the optimal solution and gradually increase traffic demands following the
same manner until infeasible. This completes one run of our simulations.

We carried out 20 runs of random simulations. Each run produces one sequence of
traffic demand and its corresponding cost — {D®), C (el fis .} — for selfish solutions and one

sequence {D®), CV

optimal} for optimal solutions. Define Tie;fisn, and Typiimar as the number

of elements in sequences {D(*) C‘Eg fisn) for selfish solutions and in {D ®) Coptlmal} for
optimal solutions respectively. In order to aggregate data of different runs. We normalize

results of each run as follows:

1. Transform the absolute costs into relative costs with respect to the starting optimal
c©

c® o _
costs, Le. Cselflsh selfzsh/ optimal’ ophmal optzmal/ optimal® The reason we
choose C‘szimal as the benchmark is that it is the smallest cost of both series.

2. Transform sequences of traffic demands into relative traffic with respect to the

capacity of selfish solutions, i.e. D® = D) /DTsetsish),

The aggregated normalized results are illustrated in Fig. 6.9(a). As traffic of selfish
solutions approach their capacities, the delay experienced increases to infinity due to
congested queues at intermediate nodes. Optimal solutions enjoy a smaller cost com-
pared to selfish solutions of the same traffic, as expected. This cost reduction on average
increases to infinity large as the amount of traffic approaches to selfish capacity. It
should be noted that the graph does not include points at the exact capacity, as both
selfish and optimal solutions terminate when capacity is reached or exceeded. Instead,
points that a fraction of traffic less than capacity are plotted. Around 20% of optimal

solutions terminate at the same amount of traffic as selfish solutions. This explains the
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sudden rise of optimal costs (hump of the blue line) near 100% of selfish capacity.

It is interesting to observe that there are about 80% of optimal solutions exceed
the capacity of selfish solutions. The complementary cumulative distribution of capacity
achieved by optimal solutions is shown in Fig. 6.9(b). Among our 20 runs of simulations,
the maximum capacity achieved by optimal solution is more than 43% larger than that

of selfish solutions. This result is curious for two reasons:

1. Latency rather than throughput is the objective of our routing algorithm. Yet, it

improves the throughput capacity.

2. On the other hand, throughput maximization approaches and their general form
— utility maximization approaches — may introduce large latency as they tend to

transmit data over long paths.

This improvement of throughput is because in queueing networks, congestions is the
main source of cost incurred. Optimal approaches avoid congested bottlenecks, thus

improve maximum throughputs.

6.2.6 Summary

In this section, we have focused on the comparison between optimal solutions and selfish
solutions. We have demonstrated that in a queueing network, optimal solutions incur
less costs than selfish solutions of the same traffic and may improve network capacity.
We have observed that the steepness of latency functions, the number of paths used by
selfish solutions, node density, and in queueing networks, traffic demands impose positive
effects to the cost reduction of optimal solutions. On the other hand, the average lengths
of paths plays a negative effect to the cost reduction.

In the next section, we will investigate the convergence of the QBIP algorithm.
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6.3 Statistical Evaluation of Convergence

In the previous section, we have studied the comparison between optimal solutions and
selfish solutions. In this section, we study the convergence of the proposed QBIP algo-
rithm. The algorithm includes primarily two parts: 1) The quota-based mechanism that
addresses coupled constraints in routing problems. 2) The diagonal approximation of the
Hessian matrix, which decouples the objective function therefore facilitate the flow-level
and node-level distributed manner of the algorithm. All the experiments in this section
are conducted in MATLAB [MATLAB, 2012], due to their computation-heavy nature.
We truncate all plots of convergence to show the first 150 steps, even if an algorithm
has not yet terminated. The reasons are as follows: A) Even we have assumed persistent
traffic demands, 150 rounds is a sufficiently large number, especially given that each
round consists the transmission of multiple data packets; B) Unlike other domain where
only the terminated solution matters, an end-to-end communication is an ongoing task
starting from round 0. Therefore, the early stage of convergence, where cost reduction

at each step is drastic, should be the focus.

6.3.1 Quota-based Approach in Decoupling Constraints

In this subsection, we aim to evaluate the performance of the quota-based mechanism in
decoupling capacity constraints. The challenge is, we cannot evaluate solely the quota-
based mechanism in optimal routing problems because these problems have coupled
objective functions. If we use the diagonal approximation of the Hessian matrix to
decouple the objective functions, the performance is affected by such an approximation.

In order to tackle this issue, we evaluate the quota-based mechanism in NUM prob-
lems. Although NUM problems are not the focus of this thesis, by default their objective
functions are decoupled. We set random networks with 500 expected links, 100 single
path communications, and an expectation of 20 hops per paths.

In these random networks, we compare the quota-based mechanism against several
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Fig. 6.10: Convergence of Various Optimization Approaches for NUM Problems: Exact
Newton and iterative Newton via PCG are centralized approaches; while QBIP, Newton

via GaBP and dual decomposition method are flow-level distributed.

existing approaches. As shown in Fig .6.10, the fast converging algorithm is the cen-
tralized exact Newton’s method, which converges within less 20 steps. However, each
Newton step involves the computation of a linear equation system, which can be compu-
tationally challenging. Iterative Newton’s method can be used to address this problem.
We evaluate two types of methods to compute the linear system. In our experiment
networks, which are non-sparse, iterative Newton via PCG converges slightly faster as
it approaches to the optimal solution. However, this method is centralized. In contrary,
Newton via GaBP is a distributed approach, but converges slightly slower in dense net-
works. The dual decomposition method is a standard distributed technique. It converges
slower compared to the rest of the approaches as solutions approach the optimum. The
QBIP method converges within 40 steps. It exhibits a superior convergence rate com-
pared to both the iterative Newton methods and the dual decomposition method. This
result suggests that the quota-based mechanism alone is an efficient approach to address

coupled constraints.
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6.3.2 Implementation and Experiment Settings

In the previous subsection, we have demonstrated the efficiency of the quota-based mech-
anism. In the rest of this section, we will focus on the overall performance of the QBIP
algorithm in solving routing optimization problems, which is determined by both the
quota-based mechanism and the diagonal approximation to the Hessian matrix. We

reiterate the mathematical formulation of routing optimization problems as follows:
minimize C(F)
f
subject to RF < C

F=0
AF=T

where R € R™*" is the routing matrix, A € R?*" and 7 = {T1,..., T}’ are path-
communication matrix and column vector of traffic demand of all communications.
Without loss of generality, we choose a quadratic form for cost function because it is a
convex increasing function which requires little computational effort of the simulator.

We have implemented a dual decomposition method to address the routing problem.
The implementation follows the algorithm [Tan et al., 2006] that we have reviewed in
3.5.2.3, which introduces auxiliary variables to transform the couplings of the objective
function to constraints. We have implemented an iterative Newton method using PCG
solver included in MATLARB library.

Another iterative method, the GaBP [Bickson, 2009] requires the Hessian matrix to
be diagonally dominant, which does not stand in optimal routing problems in general.
Although a technique has been proposed to remove such a condition [Johnson et al.,
2009], it introduces extra iterations to guarantee the convergence of GaBP. In our sim-
ulations, we fail to observe superior results of fixed convergent GaBP compared to the
plain dual decomposition approach. Therefore, we will not include the results of fixed

convergent GaBP in the rest of this section.
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In the next subsection, we will set up a small scale example network to investigate
preliminarily the performance of the iterative Newton method, the dual decomposition
method and the QBIP algorithm, before moving to large scale random networks in

subsection 6.3.4

6.3.3 Preliminary Experiment in a Small Scale Network

We arbitrarily set up a scenario with 3 communications, each of which has two paths.

The routing matrix R is as follows.

T
111000000
0000O0O0T1O0 1
110000
011100000
R = A=|00110 0 (6.3)
001001000
000011
00000O0O0T1 1
010011000

Link capacity is randomly assigned for each link. Traffic demands of all communications
are so selected that they sum to 70%? of network capacity.

As shown in Fig. 6.11, the QBIP algorithm converges quickly to network optimum.
As a matter of fact, it converges to a small neighbourhood of the optimal solution faster
than the centralized iterative Newton’s method via PCG. Both approaches terminate
within 10 — 15 steps.

On the other hand, the dual decomposition method converges surprisingly slow. Our
explanation for this behaviour is the inefficiency of the dual decomposition method to
address coupled objective functions. For each link, wireless or wired, where n; amount
of path flows share interference, nl2 — n; amount of auxiliary variables and n;(n; — 1)
amount of dual variables are introduced. It creates a large number of variables and

more importantly, multiple copies of the same variables. In addition, the subgradient

3We observe that the percentage does not affect much of results unless it approaches 0% or 100%
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Fig. 6.11: Inefficiency of Dual Decomposition in Routing: Convergence comparison for

problem defined by matrices (6.3)

method used to update dual variables is in general slow. Since it is not a descent method,
the cost may increase during convergence, as shown in the graph.
Because the dual decomposition method does not exhibit a reasonable convergence

in small scale scenarios, we will not evaluate it in the following large scale experiments.

6.3.4 Large Scale Random Experiments

In the following, we focus on evaluations of the convergence of QBIP in addressing
routing optimization problems. We choose the centralized iterative Newton’s method
via PCG as the benchmark algorithm — the control. Routing matrix R and A are
generated randomly within the range specified in Table 6.2.

Fig. 6.12 shows the aggregated convergence of the QBIP and the iterative Newton

over various number of interfering communications. The node-level distributed QBIP
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Parameters Range

Number of Links 100 — 2500

Number of Communications 2 -50

Expected Paths per Communication 2= 50

Average Length per Path 2-20

Number of Interferences per Link 1-10

Table 6.2: Parameters in Random Experiments

algorithm exhibits a much faster convergence to a small neighbourhood of the optimal
solution compared to the centralized iterative Newton method. This result resembles
what observed in the small scale example scenario, Fig. 6.11. This is because each
Newton step in the QBIP can be computed analytically, whereas each Newton step is
computed by an iterative PCG method.

As the number of interfering communications increases, the convergence is slowed
down for both methods. That is, the number of communications is a negative factor for
convergence. Nonetheless, it can be seen that the effect of this negative factor grows
slowly. The difference between the convergence pattern of 20 and 50 communications is
much smaller than that of 2 and 5 communications. This is also true for both methods.

A similar effect can be observed for the expected number of paths per communication,
as shown in Fig. 6.13. As the number of paths per communication increases, the
convergence of both algorithms slow down.

Finally, the convergence over the number of interfering path flows at each hop is
shown in Fig. 6.14. This factor essentially describes the flow density over one hop,
which differs from the node density or the amount of traffic of the hop. The number of
interferences is a negative factor of convergence.

The usage of diagonal approximation decouples the objective function and facilitates

the node-level distributed manner of the QBIP algorithm. However, because of this
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approximation, the QBIP algorithm experiences a turning point within a certain neigh-
bourhood of the optimal solution. The convergence slows down quickly after the turning

point, although costs are still strictly decreasing at each step.

6.4 Summary

In this chapter, we have evaluate the basic performance of QBIP algorithm. We have
compared solutions of QBIP against that of ideal selfish algorithms. In a queueing
network, we have demonstrated that QBIP reduces the network costs as well as improving
the network capacity.

QBIP exhibits a much superior performance compared to other distributed algo-
rithms, such as the dual decomposition method and the GaBP based Newton method,
in both NUM problems and routing problems. Instead, we use centralised approach the
iterative Newton via PCG. Across all the scenarios of our simulations, we observed that
the QBIP converges faster than iterative Newton to a small neighbourhood of the opti-
mal solutions. Then convergence of QBIP drops to a small pace. The neighbourhood is
in general 0.1% - 1% but may vary in different settings.

We argue that the performance of QBIP is desirable compared to iterative Newton,
in addition to its node-level distributed manner. Although we have assume persistent
traffic, the traffic demand may vary overtime. Also, topologies of ad hoc networks
are subject to changes. A fast converging algorithm adapts these dynamism better.
In addition, for an iterative optimal routing algorithm, every round of traffic pattern
is registered in the performance of algorithm. For example, suppose the cost at each
round of algorithm A is {10, 3,2} and that of algorithm B is {10,8,1}. It is apparent
that algorithm A is preferable in routing domain, although in other domain B may be
preferable. Therefore, it is important for an optimal algorithm to reduce network costs
fast in the early stage.

The summary of different optimal algorithms are listed in table 6.3.
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Methods Pros Cons
1) Fast convergence to neighbour-
hood of optimum

QBIP 2) Node-level distributed manner | The neighbourhood is in general
with exact same convergence as | small but may increase in certain
flow-level distributed manner scenarios
3) Integrated with route discovery
1) Easy to implement 1) Can be very slow especially in op-

timal routing problems
Dual 2) Practical implication — dual vari- | 2) Not strictly descent due to the us-

Decomposition ables as price of resources

3) Naturally a flow-level distributed
algorithm; can achieve node-level
distributed manner by using link

rate as handle variables

age of subgradient method
3) Node-level distributed manner in-

troduces a large number of variables

Newton via

GaBP

1) If it converges, it converges fast,
especially if the network is sparse

2) Naturally a flow-level distributed
algorithm; can achieve node-level
distributed manner by using link

rate as handle variables

1) Node-level distributed manner in-
troduces a large number of variables
2) Requires diagonal dominant Hes-
sian in order to converge, which does
not stand in optimal routing prob-

lems but NUM problems

Iterative
Newton via

PO

It converges reasonably fast to net-
work optimum while avoids the com-

putation complexity of Newton

It is centralized thus can not be ap-
plied to distributed optimal routing

algorithms

Table 6.3: Pros and Cons of Optimization Approaches

205




102.5% 3000

102.0% | 2500

101.5% 2000

101.0% 1500

QBIP:
Mean Relative Cost at 50" Iteration

==Errors of QBIP 1000

~=|terations of PCG-Newton 500

PCG-based Iterative Newton
Number of Iterations used to Optimum

0 2 4 6 8 10 12

Number of Interferences per Wireless Link

Fig. 6.15: Effects of Increased Local Interferences: The correlation between the con-

vergence of QBIP and that of the iterative Newton’s method

206



Chapter 7

Conclusion

We conclude by reviewing the contributions of this thesis and by describing the future
work. In section 7.1, we summarize the research questions that we have identified through
the state of the art review. Each of the research questions are addressed by some of our
designed approaches. We briefly reiterate our approaches. In section 7.2, we describe

our future work following this thesis.

7.1 Summary and Contributions

The objective of this thesis is to investigate the optimal routing problem in wireless ad
hoc networks. We aim to connect the domain of wireless communication algorithms with
the optimization theory. In chapter 2, we have reviewed the state of the art results in the
domain of classical wireless routing algorithms, which focus mainly on the engineering
aspect of routing and can not reach or approach optimal solutions. In chapter 3, we
have described the background of optimization theory and reviewed some of the notable
optimal algorithms that can be applied to wireless routing domain. In section 3.6, we
summarized results in the domain of wireless modelling. To date, we have seen few
efforts that combine the developments of the three domains.

Through the state of the art review, we have concluded several open questions to be
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answered in each domain, in order to achieve wireless routing optimization. The main
contribution of this thesis is the solutions to these open questions. In the following, we

list the open questions of each domain, followed by our design to answer that question.

7.1.1 Open Questions and Solutions in Optimization Domain

In theoretical optimization domain, these questions are as follows:

1) How can we distributively address the coupled constraints in such way that it
coordinates different components quickly and guarantees strict feasibility?

We propose a quota-based mechanism that addresses capacity-constraints with the
interior-point method. We introduce auxiliary variables called quotas at each node. It
represents the maximum traffic allowed of a path flow at a node. Each node optimizes the
quota-assignment locally using second-order Newton’s method. Quotas are forwarded to
sources of communications, where a second-order interior-point step is computed. The
quota-based mechanism guarantees second-order update of solutions, while the standard
approach — the dual decomposition method — is bottlenecked by the first-order subgradi-
ent update of dual variables. Because logarithm barrier function is used, the quota-based
mechanism guarantees strict feasibility. The performance of the quota-based mechanism
is verified in NUM experiments where the objective functions are not coupled.

For non-negative constraints, we propose to use a projection method due to the fact
the network optimum is an equilibrium of derivative costs of each utilized path.

2) How can we address the coupling introduced by the objective function without
using iterative methods at each Newton step?

We use the diagonal approximation of the Hessian matrix in Newton step method.
In this way, the computation of each Newton step is distributed with respect to each
component and the computational effort required is trivial. Because no iterative methods
is need at each Newton step, the algorithm converges fast — similar to centralized exact
Newton’s method as we have observed in simulations — in the early stage of convergence.

The convergence slows down when the solution enters a neighbourhood of the optimal
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solution. Such a neighbourhood is varies in different scenarios, as we have demonstrated
in section 6.3.4, but is in general small.

Our argument for the usage of diagonal approximation is that , in wireless routing
domain, it is crucial to reduce costs quickly in the early stage of convergences. Also,
it is reasonable for an algorithm to terminate between 1% and 0.1% away from opti-
mum rather than between 1074% and 107%% away from optimum if the latter requires
significantly larger amount of communicational and computational overheads.

3) Is it possible to design a node-level distributed algorithm without increasing the
size of the optimization problem?

We tackle this problem from a different angle. From the communication and algo-
rithm point of view, paths between two nodes satisfy the optimal substructure property.
Therefore instead of breaking the network optimization problem into subproblems at
each node as in existing distributed approaches, the flow-level distributed routing opti-
mization can be carried out at each intermediate nodes recursively from destinations to
sources. Our approach uses path flows as handle variables. Each node perform part of
the flow-level optimization problem. The node-level distributed algorithm achieves the
same convergence compared to its flow-level distributed counterparts.

In the contrary, existing node-level distributed algorithms rely on using link flow as
handle variables and apply the same mathematical approaches as flow-level distributed
algorithms, such as dual decomposition or matrix splitting technique. This approach
increases the size of the optimization problem and slows down the convergence compared

to flow-level distributed algorithms.

7.1.2 Open Questions and Solutions in Routing Algorithm Domain

Existing optimal routing approaches assume the availability of all potential paths and
do no consider route discovery. However current developments route discovery can not
be used by optimal routing approaches. This is because each type of route discovery

imposes certain path filtering and selection criteria, which may not coincide with opti-
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mization methods. In addition, there may be a large amount of potential paths between
sources and destinations, which introduces more challenge to the design of route discov-
ery algorithm for optimal routing.

The proposition 4 and its two corollaries establish a path filtering criterion that
bridge the optimization approach to route discovery method. It suggests that the dual
variable computed as the by-product for each communication can be used as a TTL
value to determine whether a path should be filtered or established. In addition, we
use the bloom filter to remove loops in the flooding of RREQ messages. Finally, we
differentiate the concept of orders of hops in a path and the path length. Based on this
observation, we propose to use hop counts to establish orders of intermediate from sources
to destinations. In this way, loops can be removed using many existing techniques. At
the same, we use derivative costs of paths as their length to determine path filtering and

traffic distribution.

7.1.3 Connecting Wireless Domain — the Wireless Medium Cost

The majority of routing algorithms, both classical engineering approaches and optimal
approaches, follow the link-model of connected nodes. While it describes properly the
topology of wired networks, it can not model the interference between neighbouring
wireless transmission.

We classify the wireless interferences into three major categories: primary interfer-
ence, secondary interference and primary indirect interferences. We propose a wireless
medium cost that model the cost incurred due to different wireless interferences. The
wireless medium cost is an abstraction of the behaviour at MAC layer, it hides all the
complexity and is presented as a function. The derivatives of wireless medium cost coin-
cide with the derivative of wireless costs. We demonstrate the convexity of the wireless
medium cost function, which equivalently proves the convexity of wireless cost — a result
has not been investigated to the best of our knowledge. Our proposed QBIP algorithm

use wireless medium cost function as the objective function in wireless networks.
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7.2 Future Work

The future work of this thesis lies also in different domains. In the domain of algorithm
design, a more thorough study of the communication overhead of QBIP is desirable. The
effect of the bloom filter in reducing the communication overhead is yet to be evaluated.

In the domain of optimization theory, our next step is to fix the error neighbourhood
introduced by the diagonal Hessian. A reasonable approach is to apply some of the
matrix splitting technique to the QBIP algorithm, which may guarantee a better con-
vergence within the error neighbourhood. Another issue to be addressed is the timely
manner of the update. The algorithm at the moment operates in a synchronous manner.
Recent results, e.g. [Nedic and Ozdaglar, 2009], suggest potential approaches to translate
QBIP to an asynchronous algorithm.

Finally, in the domain of wireless modelling, we have assume that the latency func-
tion treat all transmissions homogeneously. That is M,; = Zj f;l) in El(lsl)(Mm) and
S (2)(./\/((”). A more accurate model would be treat M, ; as a vector instead of a scalar.

a,i

Results can be computed in a similar way as we demonstrated in appendix C.
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Appendix A

Wireless Queueing Delay with

Poisson Arrival

In the following, we give the derivation of the queueing delay of a wireless that has
multiple outgoing traffic flows to different neighbours. Each of these link flows may ex-
perience different interferences, which results in different medium access delay. Assuming

we know the mean £ and the second moment S2,, the proof is as follows.

a,i a,i’

Proof. The queueing delay of a M/G/1 queue is given as follows [Gross et al., 2008]:

7 o(2)
oa) — _faSa (A.1)
S 2 —p)
where f_a is the arrival rate of the queue; 852) is the second moment of the service time;
l
Wer, fi( ). The

fi
s l
ifiler, gf(lvg(M“‘i)fi( )

and p is the utilization of the queue. It is easily known that f, = 3
utilization is the sum of utilization for each class of traffic, p = 3
[Gross et al., 2008].

To find the second moment of the long-term service time, let us consider the problem
within a large time interval T > 0. We define the duration of #** medium access of flow
J as X3 j. Let N; denotes the number of medium accesses for flow j during the interval

T. According to the definition of the second moment of discrete random variables, we

212



have the second moment of service time over the duration T as:

N
Fosirer, TR X

Ni 2
t=1 X

Zi:fi([)e}‘a N; “N;
0 Zi:ff”efa &%

20 er, SailMai)Ni
) Ei:f}"efa N

SAT| =

a

Since we have assumed that the long-term arrival rate is less than the long-term service

rate, the long-term expected number of medium accesses is the expected arrivals 7' fi(l)

for flow . Taking T to infinity, we have:

Y 0oy SEMa)FOT T, 0 S2i(Mag)f
v:f; ' €Fa o i:f; ' €Fa

S = - =
Ei:f}')e}'a fi T fa,

Taking (A.2) into the delay of M/G/1 queue, we reach the queueing delay at each node:

2 l
24 Zi:f,»(”e}'a Si,z') (Ma,i)fi( )
a I z l
2(1 - T 0ez, i Mai) 1)
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Appendix B

Proof of Convexity

In the following, we prove that the optimal routing problem is strictly convex under the

condition that the medium access delay of the MAC approach used is convex.

B.1 Proof of Lemma 1

Proof. The purpose of this proof is to demonstrate that for any node a and any link flow
fi(l), f](l) € F,UZ, C FU the second derivatives of queueing delay at node a is strictly

positive, namely,
52 e((;?) ( Tq )

8y.61"

given the condition that the medium access delay and its second moment are convex.

Firstly, we describe the notation used in this proof. We follow the numerator-layout
notation in matrix calculus. In such a layout, each vector is column vector by default.
The partial derivative Qi, where y € R™*!, x € R™*! is a m x n matrix, which is usually
referred to as the Jacobian matrix. Without loss of generality, we let 7, ; € R**! denote
a two-dimensional vector, i.e. m,; = {fi(l), M,i}T. Let n, = |F,| denote the number of
outgoing link flows of node a. Each 7, consists of n, amount of 7, ;. According to our

formulation, naturally 7, is of a matrix form, that =, € R?*"e. However, a powerful tool
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- the chain rule of differentiation - does not apply to matrix-valued or matrix-argument
functions, for example é((lq)(-) in our case. In order to ease the proof, we construct 7, in
a vector fortis o, = {rl 1, il }F € RAaXL,

Secondly, in order to show that the second derivatives are strictly positive, we need
to decompose the second derivative into known terms. In order to do so, we rewrite

equation (4.6) into a vector form,

809 () 869 (1,) Oma

af® ora  gf®
L 88 me) | O e
—a{ﬂ‘zl, o 8fi(l)

(@) (- @ (.
2 ) Ry

OTa 1 Ol

87ra,1T aTra.na "

i
270 7 g0 } (B.1)

Taking one more derivatives to (B.1), the second derivative can be decomposed as follows:

02 (ma) B <aegq>(7ra))

oo or" % of”
_ {awa,lT ana,naT} 0 ( 0L (,) 0D (my) }T)
8fi(l) - afi(l) 8f;l) Oa,1 s OTan,
+{3€,(1q)(7ra) ae((;I)(ﬂ-a) <{37ra,lT 87r(1'rla }T)
Oma 1 Y Oftams af](l) 8fi(l)
. 87"(1..1- s : 0 87"(1., T aﬂ'a'naT i (>
Since W,\?’r = 1...n, is a constant, the value o0 ({ af,-“)l T } ) is always

zero. The above equation reduces to:

020 (ra)  Oman T 87ra,naT} ) (aﬂgq)(wa) aef,q)(wa)}T)
oraf" ofD " op of)
01T Bmen, T 0% (m)  029(r,)
90 o i 0n " 01 0ra,

T
0T 1 OMiani,

o (B.2)
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The second part is a column vector, which can be expanded further. For any r = 1...n4,

826 (r.) _ @ (88,(1[1)(7.'(1))

I - I
0fP0r., Omar\ 8fY
) a1 T Oman, T, O ( o (ry) 0L (m,) }T)
af(l) o af([) 87Ta,r aﬂ'al L aﬂ'a.n,z
J J
_ (O T Bam, v PO ) o B i) yr (B3)
af([) LRk 8f(l) 87‘—0,7‘87"11,1 g aﬁa,raﬂ'a,na g
J ]
()
Similarly, the second part is a column vector, for any s = 1...n,, % is a row vector

of four scalar value,

240 (ms) . 9 (ma) 82659 () 9240 () 8242 () y
OMarONas  \OMar(1)07as(1) Oayr(1)8Mas(2)’ OMar(2)0Mas(1)’ Omar(2)0Mas(2)
(B.4)

Combining (B.2), (B.3) and (B.4), we have the final decomposition of the second deriva-

tive:

T
Pl (m) & awa,T(ana,sTa%q)(na) )
0fPof0 ~ 2= 050 \ofP OmarOmas
_"Z“ (awa,r(l)awa,su) 8209 (1,) Omar(1) Omas(2) 0% (r,)
N of afW 0mar(D0mas(l) T 9D gD Omar(1)07as(2)
| O (2) O7mae(1) 926 (r,) Omar(2) Omas(2) 0209 (7o) )
0 ) By, (2)07g. 0) O 97 (2)07a (2
of)  8f)) 0Mar(2)0mas(l) 55" BfY 0Mar(2)0mas(2)

(B.5)

In equation (B.5), each of the eight coefficients, e.g. 87(;“};{1()1), is either 0 or 1. Our final

2 62851‘1) (mq)
> Oma,r(2)07a,s ()

non-negative. To see this, let us examine equation (4.5). We reiterate it as follows:

step of this proof is to demonstrate that for x = 1,2 y =1 is always

(2) (s) (2) (1)
ae‘(lq)("a) b Sa‘r(Ma,r)B‘i'ga‘?r(Ma,r) ZH:!,S”E]’,; Sav(Ma,v) fu
Bl 352

(@) (1) () (1) (2) (1)
al((,q)(ﬂ'a) B Sa,r (Ma,r)fr B+ea,r (Ma,r)fr Ev:fvl)e}'a Sa,v(Ma,v)fv
67"(1,7‘(2) - 2B2

where B=1-3" fOcr f,(lsz, (M) ,El) . Taking partial derivative %@7 over either sub-

2 y(q)
equation above gives one of the four cases of % . To simplify the process, we
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o0 (m4) .
Irar(l) &

50(a)
()ﬂa (77(1)
nd on

o rlD) into the following form

can unify

069 (r,) DB+E
Omar(z)  2B2

where D and E represents different terms for x =1 and x = 2. With a slight abuse of

notations, let D', B" and E’ denote the partial derivative of each component with regards

(a)
to 7, s(y) for either y=1 or y=2. Then a—m‘zég;a(:—:l@ has a unified form as follows:

02¢9(x,) _(D'B+ DB+ E')B*—2(DB + E)BB'
Omar(2)0mas(y) 2B4
_D'B>+ E'B— B'(DB?+2E)
253

(B.6)

In either one of the four cases, because 6((:1)() and S((lzl)() are positive convex increas-
ing functions, it is easily known that D,D’,B,E,E’ > 0 and B’ < 0. Therefore,

82(.'5;1)(71'(1) .
m Z 0 at all time.

In addition, it can be verified that for any fi(l), f;l) & j—'él) = F, UZ,, there exist

T Si=10 g and oy =1, 28suchithat

Oar(x) Omas(y) 0257 (1)

>0
8fi(l) afj(l) OTa,r(2)0ma,s(y)

Therefore, the queueing delay &9 (Mg) = g((f)(]:"él))is convex over the set of link flows F()

and is strictly convex over F, UZ, O

B.2 Proof of Lemma2

Proof. The purpose of this proof is to show that if the queueing delay and the medium
access delay is convex then the corresponding costs are strictly convex. According to
equation (4.13), both queueing costs and medium access costs can be write in the form
of Z(ﬁél))Tﬁél). In the following, we show that the convexity of Z(J:]El)) leads to the
convexity of C (]:'él)) — E(ﬁél) )Tﬁé’).
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To do so, we use a standard definition of convex function [Boyd and Vandenberghe,

2004]: A function g(-) is convex if for any z,y € dom g, z # y and any 6 € [0, 1],
g9(6z+ (1-0)y) < bg(z) + (1 - 6)g(y) (B.7)

The inequality is strict for strictly convex g(-)
Apply this property to the convex #(-) in C(F.") we have: For any z,y € dom £(-),
T#y
C(0z+ (1-8)y) = (6 + (1 — 0)y)T(6z + (1 — O)y)
<00(x)T(8z + (1 - O)y) + (1 — 8){(y)T (6 + (1 — O)y)
=6%0(z)Tz + (1 — 0)*(y)Ty + 0(1 — )é(x)Ty + 6(1 — 6)(y)Tx
Therefore,
C(0z+(1-8)y )+ (1-0)C(y))
<0%0(z)Tz + (1 - 0)%(y)Ty + 0(1 — 0)(x)Ty + (1 — ){(y)Tx
— 00(z)Tz — (1 - 0)(y)Ty
=0(1 — ){(z)T(y — x) + (1 — 0)¢(y)T (z — v)
=0(1 - 6)(&(=) - iy) )y — ) < 0

Note that the last step is because £(-) is monotonically increasing. Assigning €~() with
Zfl';’) and lz(zsl), T with T, and T, ;, we conclude that both the medium access delay cost

and the queueing delay cost are strictly convex. This completes our proof. O

B.3 Proof of Proposition 2

Proof. With Lemma 1 and 2 established, the proof of Proposition 2 is trivial. Since Fa 0
is a subset of U, multiplying a scalar coefficient 6 to F() results in all _7_-6(11) multiplied

by 6 in equation (4.13). Using the definition of convex function (B.7), the proposition
is established. O
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Appendix C

A Case Study for Wireless
Medium Access Delay

In the following, we briefly describe the search for a closed form medium access delay
function, namely fflsz(Maz) for contention-based 802.11 DCF.

Recall that, under the Poisson arrival assumption, Malone et al. [Malone et al., 2007
have developed an advanced analysis of the medium access delay in a heterogeneous non-
saturated 802.11 DCF network. Since our study also assume a Poisson arrival, we choose
Malone’s model to compute the medium access delay.

For an routing algorithm to compute the derivatives as well as second derivatives, a
closed form analytical model is needed. However, due to the complex nature of wireless
modelling, existing studies present results in a large non-linear equation system, which
describes the relations between different inputs, such as parameters, data loads, etc. In
order to extract a closed-form latency function, we vary the data traffic input in Malone’s
model from f = 0 — threshold and solve the non-linear system. For each value of the
input series {f(}, we compute a value of latency for the output series {€6.:(f @)}, We

then performs a non-linear regression on the series of discrete points. We discover that
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Fig. C.1: Closed Form Delay Function v.s. Malone’s Analytical Model

an exponential function fits the discrete points surprisingly well.
09 = bye?M 4 by

For example, the closed-form delay function of a wireless hop with three homogeneous
senders is shown in Fig. C.1.

Finally, we move on to vary the number of stations in a wireless hop and discovered
that the parameters computed from regression follow a nice linear relation.

In summary, for a 11Mbps 802.11 protocol, with 500 bytes data packet, the medium

access delay that we have computed is given as follows:
() (M) = (4.07705n + 36.1362)e% %M 1 23.2423n + 1225.9

where n is the number of stations contending for medium access of node a, link i.
Using the same approach, the second moment of medium access delay, S?, can be

calculated in a closed-form as well.
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Appendix D

Proof of the Path Filtering

Criterion

D.1 Proof of Proposition 4
Now we give the proof of proposition 4

Proof. Because f,; was not utilized in the previous round, Af,, > 0. Assume Af, =0
is computed from the appended KKT system.
Since H = diag(V?C)~!,according to the projected methods,

C,,. +vT
Afy, = ma:l:{——&—p,’v—,O}, we have:

Ch,
oy + 0t
— R (D.1)
therefore
Cyp, = —vF (D.2)

From the equality constraint, we know that

/
Cp, +v Cip, +v1
77 = —
C&Pi C&Pj

(1)
piE'Psd
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Combine with (D.1), we have

;. +vt
L SRR (D.3)

- & 5
plerpifi) Pi

Recall that the latency function £(-) is convex. It can be derived that Cg:m > 0. Solving
(D.3),

/

Cir: "
Z ?‘?’ﬂ H C&m

;o pi€PQ " pieh()
v < — o (D.4)
Z H &p;

neply
Note that the right side form of (D.4) is essentially #®, computed from the original

KKT system, so:

N = vy (D5)

Combine (D.2) and (D.5),
Cip, = v (D.6)
This completes our proof. O
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