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Abstract

In this thesis, optimal routing problems in wireless ad hoc networks are investigated. The 

majority of existing routing algorithms follow a selfish strategy, where routing decisions 

are based on individual communication flows. The performance of these algorithms 

may suffer from the competition between multiple communication flows, also known as 

the tragedy of the commons. This issue worsens in wireless ad hoc networks because 

communications in these networks experiences more mutual interference between flows 

in comparison to communication in wired networks.

Optimal routing approaches apply results of optimization theory such as the gra­

dient descent method or the Newtons method to network routing problems. These 

approaches optimize the overall performance of all communications in a network with 

respect to certain criteria; in this thesis, I chose the delay experienced by all flows as the 

optimization criterion.

The limitations of existing optimal routing approaches are threefold. Firstly, they 

model the routing problem as a link graph, where each vertex represents a router and 

each link represents a connection between two routers. This link model suits wired 

networks where the main factor influencing communication over a link is the existing 

traffic over this link. However, in wireless communications, a transmission between two 

neighbouring nodes is not only subject to existing traffic between these nodes but also 

to interfering traffic in the vicinity. Secondly, existing optimization methods coordi­

nate routing decisions of all communication flows which has been realized in centralized
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algorithms. Distributed optimal approaches rely on significant amounts of transfers of 

information to support these optimizations, which does not suit wireless networks, where 

the bandwidth is limited. Finally, existing approaches assume the availability of all po­

tential paths in a network and focus on the data distribution over them. However, the 

number of potential paths between a source and a destination node may be very large. 

It may be practically infeasible to discover and to propagate the cost information of all 

possible paths in this scenario.

In this thesis, I propose a function called the wureless medium cost that models the 

latency incurred by wireless interference. It is proven that the routing problem in wireless 

networks is indeed convex. Therefore, many strong results in optimization theory can be 

applied to this problem. Using the wireless medium cost, I propose a fully distributed 

optimal routing algorithm for wireless ad hoc networks. It is then demonstrated that the 

result of this algorithm is significantly better than that of a selfish algorithm, in the sense 

that the lower bound of the cost of selfish routing divided by the cost of optimal routing 

is infinite. As the evaluations confirm, our proposed algorithm converges significantly 

faster compared to existing distributed optimal approaches. These theoretical results 

are then incorporated in the design of a novel route discovery method that discovers 

loop-free necessary paths used by the optimal communications approach.
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Chapter 1

Introduction

1.1 Context

A wireless ad hoc network is an infrastructure-less network where preexisting centralised 

control may not be present. Devices, termed as nodes, within transmission range of each 

other are interconnected through wireless communication. Although it is possible to 

organise a hierarchical topology where a number of clusters are organized, we focus our 

study on a flat topology where each node acts as a router and relays data traffic for 

other nodes.

Unicast routing is one of the fundamental tasks in the networking domain. It ad­

dresses the discovery and maintenance of forwarding paths between a source node and a 

destination node. Some of the well established unicast routing approaches are as follows. 

Shortest path routing protocols, such as AODV, OLSR, DSR, etc., aim to set up a path 

with the least hop count between source and destination nodes. These protocols are 

simple to implement but overlook the traffic dynamism of a network that may result in 

hot spots of congested nodes. Many adaptive approaches have been proposed to avoid 

highly congested paths. In this category, minimum latency routing protocols searches for 

a path with least latency for a communication flow; Least transmission routing protocols



take the retransmission incurred by interference into account; Queue length-based met­

rics and number of interfering nodes have also been used as criteria of route discovery. 

In order to provide robustness and reliability to data transmission, multipath routing 

protocols establish multiple disjoint paths for a single communication flow. All these 

approaches follow a selfish strategy in that each communication flow routes its data 

traffic through single or a set of route(s) with the least cost under certain metrics, e.g. 

hop counts, latency, etc. The performance of such a selfish approach may suffer from 

the competition between different flows, also known as the ’’tragedy of the commons”.

An optimal routing approach is one that optimizes the behaviour of all communica­

tion flows in a network. It can be formulated as an application of optimization theory: 

Given the traffic demand of all communications in a network, D, and a cost function of 

the network, C(-), an optimal routing protocol discovers potential paths and a feasible 

traffic distribution on the paths, F* so that the overall cost of the network is minimized, 

C{F*) = min. {C(F)|VF is feasible}. Under many objectives of practical interests, such 

as latency experienced by network traffic, power consumed by all the nodes, etc., the cost 

function C(-) can be modelled as or modified into an increasing convex function, where 

strong results from optimization theory reside. According to the Karush-Kuhn-Tucker 

(KKT) condition, under an optimal solution, F*, for any communication, the marginal 

costs of all used paths are the same and are no greater than that of any unused paths. 

This state is also known as the optimal Wardrop equilibrium.

One class of methods that is commonly used in existing optimal routing protocols 

is the gradient-based method. The marginal or the first derivative cost of each path, 

is used as the cost metric. Each communication iteratively increases the traffic on 

paths with smaller marginal cost and decreases the traffic on the paths with larger 

marginal cost until the optimal Wardrop equilibrium is reached. These methods are 

simple to implement in comparison to other optimization approaches but suffer from 

a slow convergence rate. A more mathematically advanced class of methods is the 

second order Newton’s method [Boyd and Vandenberghe, 2004]. In addition to the first



derivatives, it uses the second derivatives, i.e. the Hessian matrix of the cost function, 

to speed up the convergence to optimum.

The problem of finding an optimal solution in wireless ad hoc networks, although 

lacking of research efforts, is of particular interests. As the physical processing power 

of wireless devices increases, the future applications of wireless ad hoc networks may 

see substantial demands of data traffic. The communication resources, however, are 

scarce in ad hoc networks; In comparison to wired transmission, wireless transmission 

experiences lower data rate and is error prone; Ad hoc devices may have limited power 

supply. Therefore, ad hoc networks thirst for approaches that improve the performance 

of communication. At the same time, an ad hoc network lacks central control. More 

importantly, wireless signals transmit on an open medium. Neighbouring communication 

flows will compete for medium access and interfere with each other’s transmission. In 

such highly coupled systems, selfish approaches are likely to suffer more from anarchy. 

It gives the space for an optimal routing solution to improve networking performance 

from selfish approaches.

1.2 Problem Domain and Notations

In this section, we firstly define the goal and the problem domain of this thesis. Then, 

we describe some of the basic notations in this thesis.

1.2.1 Objectives

Common cost metrics of network optimization include traffic delay, power consumption, 

throughput, and etc. We choose the communication delay experienced by all the data 

traffic in a network as the cost metric of our routing optimization. This choice of the cost 

metric is motivated as follows; 1) The communication delay is an important criterion 

to applications; 2) It is a good indicator of network congestions, which will leads to 

deterioration of many other performance metric, such as data delivery ratio; 3) It is



sensitive to routing behaviours. Bad routing decisions will introduce large delays by 

either creating long forwarding paths or causing congested nodes. Therefore, in this 

thesis, we focus on challenges and approaches to minimize the cost of delay, although a 

large portion of our solution can be transferred to optimize other forms of cost metrics.

1.2.2 Scope and Assumptions

A routing task solves the assignment of paths by which data traffic are forwarded. For 

a single path routing algorithm, it involves the discovery of the best path based on 

certain criteria. In an optimal routing algorithm, multiple paths may be utilized by a 

communication flow, as long as the overall network cost is minimized. The scope of an 

optimal routing algorithm is slightly wider than single-path routing algorithms. The 

functionalities that our optimal routing algorithm covers are listed below:

1. the discovery of multiple potential paths

2. the decisions of a subset of paths to use

3. the data distribution on multiple paths

Throughout the thesis, we assume an arbitrarily splittable traffic unless stated otherwise. 

In practice, this can be achieved by the fragmentation of data packets along forwarding 

paths, although it will lead to large overhead. A more popular method is to approximate 

it with weighted round robin at intermediate nodes.

We focus on scenarios where a network sees a large and persistent traffic demand so 

that congestion exists. A practical example can be large file sharing between node pairs.

We assume a quasi-static network topology in the sense that we do not address 

the mobility of nodes explicitly but aim to achieve a fast convergence of our routing 

algorithm in order to react to topological change.

We further limit our attention to single communication channel for wireless transmis­

sion. Neighbouring transmissions share the medium in a time-division manner. That is,



a node can only correctly receive one communication signal at any time slot. We assume 

a perfect transmission in the sense that if two nodes are within each other’s transmission 

range, they can transmit data to each other. The cost incurred by contention of medium 

access and by retransmission due to collision are modelled by a cost function.

Finally, we do not consider the battery life of wireless nodes and assume all nodes 

have infinite battery life.

1.2.3 Notations

In this section, we present definitions and notations that are used throughout the thesis. 

A network Q = {V, £} is defined as a set of nodes V and a set of wireless links £. A 

communication pair w = {s, d} includes a source node s, and destination node d. A path 

p C £ is a set of connected links. V denotes all paths in the network and Vu) denotes all 

paths between a communication pair w.

We denote the traffic demand for communication w as Tw A flow fp denotes the 

data that are transmitted over a path pEV-w- Let T = {fp\p ^ V} denote the overall 

flow pattern of a network. We call a feasible solution to a routing task if for any w,

Ty^Zfp-
pEPtu

The data load fa of node a, is the summation of all flows that run through it:

fa — 'y ^ ^apfp 

p€V

(1.1)

where
^ap —

0 if a ^ p

1 if a € p
We define Ma as the set of neighbours of node a, and accordingly define Na as the 

neighbouring traffic of node a:

N,g ~ y~! /x
xgA/I

Communication delay is the result of underlying transmission ability, interference 

and workload over a medium. We define a latency function £(■) over one hop. It takes



the data load of the medium as input. We assume the latency function to be convex 

increasing. We define the cost function over one node, Ca, as the latency experienced 

by all communications that run through the node.

Ca = i{fa + Na)fa

The cost of a network is given accordingly.

C{^) =ECa
a€V

Given a network and the traffic demand, the objective of our solution, namely the 

network optimum, is to find a feasible T that minimizes the network cost.

minimize C(J-) (1.2a)

s.t. ^ ^ fp — 'T-u) (1.2b)
p€Vn,

(1.2c)

g{JF) < C (1.2d)

1.3 Challenges

Wireless ad hoc networks impose new challenges to the design of optimal routing pro­

tocols. In this section, we discuss some of the difficult issues for wireless optimization, 

which we will address later through the rest of this thesis.

1.3.1 Wireless Cost Function

Optimal approaches use marginal cost - the derivative of latency in our case, to make 

routing decisions. During the runtime of communications, the value of the derivatives 

can not be measured but only inferred from the change of latency measurements. Such 

an estimate suffers from low accuracy and deteriorates further if one wishes to use the 

second derivatives to speed up the convergence. Therefore, unlike selfish approaches,

6



optimal approaches require an explicit cost function that models the curvature of latencj^ 

value with satisfying accuracy, of which both the first and the second derivatives can be 

computed during algorithm runtime.

Due to the broadcast nature of radio signals, the wireless interference in ad hoc 

networks differs from the link-based interference in wired networks. In the link-based 

model, the latency experienced by data traffic fi’om one node, say A, to another node, 

say B, is only subject to the amount of traffic along the link AB. Combining all links 

and nodes, a network can be represented by a weighted graph, for example one shown 

in Fig.(l.l). With full or partial knowledge of the graph, a wured routing algorithm, 

be it optimal or selfish on a given cost metric, makes routing decisions. On the other 

hand, in ad hoc networks, the latency experienced by data traffic depends on traffic of 

multiple links that contend for medium access. For example, in an ad hoc network with 

the same topology shown in Fig.(1.1), the cost of traffic from A to B depends on the 

outgoing and incoming traffic of nodes A, B and D, as well as the incoming traffic of 

nodes C and E. Therefore, existing link-based cost model and weighted graph proposed 

for wired networks do not suit wireless communication.

The analysis of the wireless interference for the design of a cost function is non-trivial. 

Let us first examine this issue at the medium access control (MAC) layer. Different 

interfering traffic may have different mechanisms of impacts on the cost of one traffic 

link. In the example of Fig.(1.1), the link traffic fi'is interfered by traffic /2 through 

joint queueing and shared medium access at node A, while it is interfered by traffic /s 

through medium contention. In addition, the two types of interference may be coupled. 

Traffic /a impacts the performance of traffic /a through its interfering with the medium 

access of traffic /i. Moving on to the network layer, we can see that different traffic 

flows may interfere with each other at multiple occasions with different types of impact. 

In fact, exclusive to the domain of ad hoc networking, a traffic flow interferes with itself 

as adjacent intermediate nodes of a path contend for medium access. It complicates the 

design of a cost function with regard to network traffic flow.



Fig. 1.1 : View of Interference: Wired v.s. Wireless

In summary of this section, it is both necessary and challenging to derive a close-form 

cost function for optimal ad hoc routing algorithms. It is also interesting to note that, 

because of the complicated interference model, one shall not assume the convexity of the 

networking problem without evidences.

1.3.2 Distributed Methods

Wireless ad hoc networks postulate a distributed type of routing algorithms, which is a 

challenge for optimization approaches.

The distributed manner of a routing algorithm can be understood from two aspects. 

From the computation aspect, routing decisions of each node, i.e. the distribution of 

traffic to next hop nodes, should be made locally. For an optimal routing, this involves 

decomposing an optimization task into multiple components, which are carried out at 

different nodes. From the communication aspect, information exchanged between remote 

components should be kept at a minimum. Considering that the rationale behind optimal 

routing approaches is for different communication flows to behave in coordination rather 

than being selfish, it is in general a challenge to design an optimal routing algorithm 

with a high degree of decoupling between components.
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1.3.3 Route Discovery

The issue of route discovery for optimal routing is essential but missing for ad hoc 

networks. Because nodes may transmit data to all their neighbours, a populated ad hoc 

network may have a high degree of connectivity. There may be an astronomical amount 

of potential paths between a source node and a destination node. Existing optimal 

routing approaches mainly assume the presence of all potential paths and compute the 

data distribution on all the paths, although not all of the paths may be used. While this 

is feasible in a backbone network as routers can be known a priori and remain static, it is 

infeasible to discover and maintain a large amount of paths in ad hoc networks. Existing 

multipath route discovery approaches aim to establish a small number of disjoint paths. 

Although the criterion of disjointness shows evidences of robustness, the optimality of 

discovered paths can not be guaranteed.

1.4 Proposed Solutions

1.4.1 Wireless Medium Cost

Our journey to an optimal routing algorithm starts with an investigation of cost of 

latency in wireless ad hoc networks. We introduce a cost function, called wireless medium 

cost, to replace the link cost in wired communication. It captures the latency incurred by 

a network traffic flow upon traffic on the disc of its radio coverage. The key is to model 

the delay at each node through a multi-class first come first serve (FCFS) queue with 

general service. Each class of traffic represents packets addressed for a certain station 

therefore experiences different service. The mean and second moment of the service time 

- the medium access time plus the transmission time - of all classes are the input of the 

queueing model. They can be calculated separately using results from polling systems or 

analytical model for specific MAC protocols. Finally, we arrive at the wireless medium 

cost by summing all queueing and service delay factored by their traffic flow. Because



the wireless medium cost models the impacts of a traffic flow, the marginal medium cost 

of a path is the derivative of the network objective cost to the traffic along the path.

With cost function defined, we discuss the convexity of the wireless optimal routing 

problem and demonstrate that the problem is in fact strictly convex if the medium access 

time is convex with respect to data rate.

1.4.2 A Distributed Optimization Method

We propose an optimal routing approach using the wireless medium cost function to ad­

dress the problem (1.2). The core of the approach is a quota-based mechanism integrated 

with the interior-point method.

The interior-point method is an extension to the classical Newton’s method in order 

to address optimization problems with inequality constraints. It introduces an extra cost 

for the violation of inequality constraints by adding a barrier function to the objective 

cost function. The barrier function increases to infinity wffien approaching infeasible 

regions of the inequality constraints. Thus it keeps Newton’s direction to feasible regions. 

It has been shown that the interior-point method retains the superlinear convergence rate 

of Newton’s method. In the domain of optimal routing, the barrier function takes the 

summation of competing traffic flow at each hop - upper bounded by the rate capacity 

- as its input. One barrier per hop is added a path cost. Therefore, through the barrier 

method, multiple communication flows are heavily coupled. It results in difficulties for 

distributed implementation of the algorithm.

In order to address this issue, we develop a quota-based mechanism. Each node 

calculates its local medium capacity residual, taking its neighbouring traffic into account. 

Note that neighbouring nodes may have different views of capacity residual. According 

to some rules that guarantees the feasibility, each node assigns a share of the medium 

capacity residual, namely a quota, to each traffic flow that runs through it. The quota 

of a path is the minimum one from all its intermediate nodes. The barrier function 

takes the quota value of a path as its input. During the computation of Newton step,
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one barrier per path is added. The quota-based mechanism release the coupling among 

communication flows. e demonstrate that it is more efficient compared to the standard 

distributed implementation of interior-point method.

The quota-based mechanism distributes the optimization task into different commu­

nication ffows. Next, we explore the substructure property of our routing approach and 

reform it from source routing to destination routing. This reformation can be roughly 

understood as distributing the optimization task of one communication flow into its 

intermediate nodes.

To the best of our knowledge, existing Newton-based routing approaches can all be 

classified as source routing: A source node gathers the cost information of all its paths to 

each destination node and computes its routing decisions. This creates communication 

overhead and imposes heavy computation loads on source nodes.

Similar to the well-studied single path destination routing, we decompose our routing 

approach iteratively into subtasks of routing from intermediate nodes to destination 

nodes. This procedure can be understood from two directions. In destination-to-source 

direction, cost information and quota values of multiple paths merge at their intersection 

node. We devise rules of the merge so that the resulting routing solution routes the 

same amount of traffic to the intersection node as if paths are not merged. In source- 

to-destination direction, given its receiving traffic, either from application layer or from 

last hop nodes, each node calculates a traffic assignment to next hop nodes according to 

their cost information and quota-value.

In summary, we propose a node-level distributed quota-based interior-point method 

to address the problem (1.2).

1.4.3 Route Discovery

We investigate issues of on-demand multipath route discovery for optimal routing, al­

though many results can be translated to a proactive manner. In a route discovery pro­

cess, each source node floods a route request message before data transmission. Route
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tables are updated by route reply messages from destination nodes.

Our study in route discovery can be summarized by three parts. Firstly, we take 

advantages of wireless transmission and establish some propositions exclusive in ad hoc 

networks to prune the flooding of route request messages. Loops and paths that contain 

other paths are removed during the forwarding of request messages. Secondly, we realise 

that the update of routing tables for an optimal destination routing requires special 

care. For a cost of latency, the merge of cost from multiple paths results in a smaller 

cost than that of individual paths, which leads to loops in per-hop forwarding. We 

develop a mechanism that separates the concepts between costs of next hops and orders 

of intermediate nodes in a path. Finally, it turns out that a by-product information of 

Newton’s method, the dual direction, can be used as a time-to-live (TTL) to filter out 

‘unnecessary paths’ during route discovery. By ‘unnecessary paths’ we mean paths that 

will be used in the optimal routing solution of our approach. This enables our routing 

algorithm to start a small set of paths - even the shortest single path in hop counts 

- and to expand quickly to the optimal set of paths after a few Newton steps in data 

transmission.

1.4.4 Diagonal Hessian Approximation

The computation of Newton step involves the inverse of a Hessian matrix of the objective 

function, which is known to be computationally expensive to carry out. The standard 

approach is to introduce an iterative method, such as Jacobi method, Gauss-Seidel 

method or preconditional conjugate gradient method, to compute each Newton step. 

We argue that these nested iterations transform the computational complexity of the 

problem to the communicational complexity of the problem, therefore do not suit ad hoc 

networks.

Our optimal routing approach is established on a diagonal approximation of the Hes­

sian matrix. Such an approximation reduces largely the complexity of the optimization 

at the price of a slower convergence rate. We demonstrate statistically that in most
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scenarios of our simulations, the convergence rate is still satisfying.

1.5 Structure of the Thesis

The thesis is organized as follows. In chapter 2 and 3, we review the state of the art results 

in routing algorithm domain and in theoretical optimization domain respectively. By the 

end of each chapter, we summarize open questions in that domain for the design of an 

optimal routing algorithm. In chapter 4 we present our design of a wireless medium cost 

that models wireless interference. In chapter 5, we give the design of an optimal routing 

algorithm using the wireless medium cost to optimization wireless communication. In 

chapter 6, we verify the fundamental arguments of our approach. In chapter 7, we 

conclude the thesis and point the future direction.
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Part I

State of the Art
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The motivations and the challenges of our proposed solution to the wireless optimal 

routing task can not be fully revealed or justified without a scrutiny of our knowledge in 

related domains. In this chapter, we review some of the state of the art that either are 

closely related to our solution or presents tools that we leverage in the rest of the thesis.

Firstly, we review some of the classical routing algorithms. The term ‘classical’ here 

refers to routing approaches that do not consider the theoretical optimization. Most of 

these approaches follow a selfish strategy. However, they provide engineering insights 

and solutions to issues in routing domain which also exist in optimal routing domain.

Secondly, we review existing optimal routing algorithms, which are close competitors 

of our solutions. We start by giving an overview of the system model that the majority 

of the optimization approaches follow. Then, we categorize optimal algorithms by their 

mathematical methods. In each category, we present its mathematical background and 

discuss routing algorithms using the method.

Finally, we review recent progress in the delay analysis of wireless communication. 

It includes results from polling systems, MAC layer scheduling and modelling of 802.11 

DCF. These results can be used in our development of a cost function in next chapter.
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Chapter 2

Classical Routing Approaches

The majority of existing routing algorithms do not optimize an objective function of 

a network but rather they establish paths with the least given metric for each com­

munication. They focus on removing loops in paths, reducing the control overhead and 

avoiding instability of forwarding paths. In this section, we review these classical routing 

approaches whose results may be carried on to the design of optimal routing algorithms.

2.1 Link-State Routing

Routing algorithms, by the form of message exchange, are commonly classified into link- 

state routing and distance-vector routing. The optimal routing algorithm we propose 

can be classified as a distance-vector. In the following, for the sake of the completeness 

of the review, we start briefly from the less related link-state routing before discussing 

distance-vector routing in next subsection.

A link-state routing algorithm can be roughly characterized as ‘each node telling the 

network about its neighbouring links information’. Through link sensing, each node dis­

covers its neighbours and the cost metric of the link to each neighbour, i.e. the link-state 

information. Each node periodically floods the link-state information advertisement to 

all nodes in a network. Receiving advertisements from all other nodes, each node can
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reconstruct a network map. The Dijkstra's Shortest Path Algorithm (SPA) [Dijkstra, 

1959] can be used locally to compute the shortest path to all destination nodes.

Open Shortest Path First (OSPF) [Moy, 1998] is a link-state routing protocol that 

has been widely deployed in enterprise networks. Another link-state routing protocol, 

namely Intermediate-System to Intermediate System (IS-IS) [Oran, 1990], is commonly 

used in ISP networks. In ad hoc networks. Optimized Link-State Routing protocol 

(OLSR) [Clausen and .Tacquet. 2003] has gained a wide popularity. The flooding of the 

link-state information can be expensive in overhead. A simple technique to reduce such a 

flooding is for nodes to keep track of the link-state advertisements and to avoid sending 

multiple copies of the same one. Some more advanced flooding reduction techniques 

include area routing [Moy, 1998], fish-eye state routing [Pei et ah, 2000], approximate 

link-state routing [Levchenko et ah, 2008] and multi-point relays (MPR) [Clausen and 

Jacquet, 2003]. Other than the MPR technique that utilizes the broadcast nature of 

wireless transmission, most of these techniques reduce the flooding overhead at a cost of 

losing accuracy.

Despite these flooding reduction techniques, link-state routing can be still expensive 

in control overhead for ad hoc networks. The core issue of link-state routing is that in 

a flat, structureless network such as an ad hoc network, every node needs to maintain a 

global knowledge of the network topology. It in general requires that each node period­

ically floods its link information. This means that at each node, paths are maintained 

to all other nodes at all time, which are unnecessary. To the best of our knowledge, 

only a handful of exceptions exist. Notable proposals include: SoTirce-tree On-demand 

Adaptive Routing (SOAR) [Roy and Garcia-Luna-Aceves, 2001] and On-demand Link 

Vector Routing (OLIVE) [Garcia-Luna-Aceves and Roy, 2005]. They allow a node to 

discover part of the network topology to compute paths to a destination node on the 

event of data arrivals. The trick is, instead of sharing state information of neighbouring 

links, nodes share state information of all links in the path to a requested destination. 

This mechanism resembles much similarities to on-demand distance-vector routing, be-
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cause it is the path information that are shared between neighbours. Further studies are 

required to distinguish and compare these two types of routing algorithms.

In summary, the large amount of control overhead is not desirable in wireless ad hoc 

networks where our interest lies. Therefore, we design our optimal routing algorithm in a 

on-demand distance-vector form. However, we do not eliminate the possibility of a link- 

state implementation of our optimal routing nor do we project the comparison between 

the optimal distance-vector routing and the potential optimal link-state routing.

2.2 Distance-Vector Routing

A distance-vector routing algorithm can be roughly characterized as ‘each node :elling 

its neighbours the shortest path it has to known destinations’. In contrary to link-state 

routing, nodes do not try to construct the network map. But rather, each node maintains 

a routing table with the least distance to each known destination and the next hop 

neighbours through which it can reach each destination. Neighbouring nodes share their 

routing information. In this way, best routes towards a destination node is gralually 

built from its neighbours to remote nodes. This is method is called distributed Belman- 

Ford algorithm [Bellman, 1957,L. R. Ford and Fulkerson, 1962]. Notable distance-zector 

routing protocols include Routing Information Protocol (RIP) [Malkin, 1998], Irterior 

Gateway Routing Protocol (IGRP) [IGR, 1991] and Enhanced Interior Gateway Routing 

Protocol (EIGRP) [Albrightson et ah, 1994] in wired networks.

One desirable feature of distance-vector routing in ad hoc networks is tha: it is 

straightforward to implement in an on-demand manner. A general approach is as fellows. 

On receiving a data packet addressed for an unknown destination, a node generates and 

sends out a route request message (RREQ) to all its neighbours. If a neighboui node 

has a route to the destination node, it generate a route reply message (RREP) vith a 

distance. Otherwise, it forwards the RREQ message further to its neighbours. I; none 

of the network nodes have stored routes to the destination, the RREQ message vill be
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forwarded and eventually reach the destination node. It send a RREP message back 

through the forwarding path of its corresponding RREQ message. The RREP message 

increases its distance at each hop. On receiving a RREP message, a node updates its 

routing table with the next hop neighbour with the least distance to the destination. 

Data messages are sent through the shortest path. Examples include Ad hoc On-demand 

Distance-Vector routing (AODV) [Perkins et ah, 2003] and dynamic MANET on-demand 

(AODVv2) routing [Perkins et ah, 2012]. In next section, we examine an infamous 

problem of distance-vector routing and review solutions for this problem.

2.3 Loops and Count-to-Infinity Problem

The fact that nodes do not maintain a global knowledge of a network topology has a 

downside. Distance-vector routing suffers a so-called count-to-infinity problem. The 

problem arises from mutual deceptions of neighbouring nodes. When network topol­

ogy changes, loops may occur between neighbouring nodes. For example, as shown in 

Fig.(2.1), node A and B can reach node E through C and D. When link CD breaks, 

node C will falsely believe that through A and B it can reach node D. The three nodes 

continuously point to each other for next hop. Hop counts at each node increase to 

infinity. Loops are formed.

Existing methods to address the count-to-infinity problem can be classified into four 

categories: limits on hop count, use of sequence number, diffusing computation, and 

path finding. In the following, we briefly explain these methods.

2.3.1 Hop Count Limits

A simple approach to eliminate the count-to-infinity problem is to set a upper bound 

on hop counts for each node. Once the limit is reached, a node treat the link as broken. 

After a number of rounds, the loops are removed. This approach suffers from a slow 

convergence rate. Some improvements have been developed on top of this method. For
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Fig. 2.1 : Count-tr;-Infinity Example

example, RIP uses a split horizon with poison reverse technique [Malkin, 1998]. But 

they do not fully eliminate the problem.

2.3.2 Destination Sequence Number

Sequence number has been used to indicate the freshness of information at the network 

layer. Perkins and Bhagwat proposed to use sequence number to remove loops in their 

Destination-Sequenced Distance Vector (DSDV) [Perkins and Bhagwat, 1994] routing 

protocol. The use of sequence number has been adopted in AODV and AODVv2. The 

idea is to attach an incremental sequence number with information originated from a 

destination node. For the example in Fig.(2.1), let us assume the sequence number of 

node D is 5, which is known for all nodes. Once link CD breaks, node C attaches an 

increased sequence number 6 to a RREQ message. On receiving this message, node A 

and B invalidate their route information as they are out of dated. Assuming node B 

has a new separate route towards D, the RREQ message will be forwarded to node D 

through that path. Node D replies a RREP message with an increased sequence 7, which 

will update all routing information at node A, B and C.

2.3.3 Path-Finding

One angle to view the count-to-infinity problem is that nodes do not have topology 

information. After link changes in a network, nodes need to recalculate routes. When a 

node receives new information about a route to a destination node from its neighbour,
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it has no knowledge about whether or not it is already somewdiere on the route from the 

neighbour to the destination. Therefore, loops may occur. Following this rationale, an 

intuitive solution is for nodes to learn about links of their known paths.

Path-finding algorithms are a type of distance-vector routing that help nodes to 

learn topology information efficiently. In addition to distance information, messages 

exchanged between neighbours also include predecessors on paths. A predecessor of a 

path towards a destination node is the second last hop of the path. The predecessor 

and the destination node of a path together constitute the last link of the path. From 

paths information to all known destinations, a node can construct the topology of a 

network and use it to prevent loops. For example, in the network shown in Fig.(2.1), 

node A receives from node C path information towards node D and E and from node B 

path information towards node C, D, and E. Node A can construct the topology of the 

network. In case, link (C, D) breaks. Node A can rule out paths from both node C and 

B, because it understands that the path through B include node C.

A path-finding algorithm shares some similarity with a link-state routing as in both 

cases, network topologies are construct at each node. However, unlike link-state routing 

where link-state information is flooded, in a path-finding algorithm remote links are 

shared between neighbours together with path distances. Nodes choose next hops based 

on their reported distance to a destination. Topology information is used only to detect 

loops. It has been argued that path-finding algorithms outperformed proactive link- 

state algorithms [Garcia-Luna-Aceves and Murthy, 1997, Vutukury and Garcia-Luna- 

Aceves, 2000a]. Examples of path-finding algorithms includes Loop-free Path-finding 

Algorithm (LPA) [Garcia-Luna-Aceves and Murthy, 1997] and an algorithm proposed 

by Humblet [Humblet, 1991]

In the event of a topology change, temporal loops may occur in path-finding algo­

rithms before predecessor information of all intermediate nodes is updated.
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2.3.4 Feasibility Condition

Similar to the use of sequence number in DSDV and AODV, the feasibility condition 

is a mechanism to detect and prevent potential loops at every instant. In order to 

understand the rationale of the feasibility condition, we can make a simple observation 

from the view of a data packet.

Imagine that we are going from a start point to a destination point. Regardless of 

the routes we take, as long as each step results in a strictly decreasing distance towards 

the destination, we can not travel in circles. Topology changes in a network may leave 

false information at intermediate nodes. Following false road signs, we may violate the 

distance descent requirement and end up in loops.

The feasibility condition introduces a new distance value called feasible distance 

between two nodes i and j, denoted by FD* . A feasible distance is a copy of the 

historical minimum value of its distance, to destination j, since the last time it was 

safely assigned. Denote the distance reported from neighbour n to i towards destination 

j as which is essentially a copy of Z?" but is noted differently to indicate that 

it is a view of node i. Denote the link distance between neighbours i and n as li^n- 

Denote the next hop node from node i to destination j, the successor, as s*-. It states 

that [Garcia-Luna-Aceves and Murthy, 1997]:

”If at time t router i needs to update its current successor, it can choose as its new 

successor st any routern G Ni such that 1) Dj^ + lin = Min{Dj,^ + lix\x G Ni} and 2) 

D)n<FDy’

The first condition indicates a selection of the shortest path. Because D* > FDj > 

Dy = DJ, the second condition guarantees that the actual distance can only be de­

creasing at each hop. Using the historical minimum distance as a guard, the feasibility 

condition is conservative. It has been proven to be a sufficient but not necessary condi­

tion for loop-freedom at every instant [Garcia-Luna-Aceves and Murthy, 1997].

If a node can not find a successor that meets the feasibility condition, it initializes a 

query for routes to the destination node. Diffusing computations [Dijkstra and Scholten,
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1980] is a signalling scheme to avoid false terminations for distributed computation 

among multihop nodes. Diffusing Update ALgorithm (DUAL) [Garcia-Lunes-Aceves, 

1993] makes use of the diffusing computation technique to propagate route queries for 

the feasibility conditions. EIGRP [Albrightson et ah, 1994] is based on DUAL. The 

Path-finding algorithm can be used in conjunction with the feasibility condition [Garcia- 

Luna-Aceves and Murthy, 1997], which has been demonstrated to be more efficient than 

DUAL. A more promising approach is to combine the use of sequence number and the 

feasibility condition [Garcia-Luna-Aceves et ah, 2003].

2.3.5 Summary

There is no silver bullet to address the count-to-infinity problem. Imposing a maximum 

value on hop count means that packets have to bounce within a loop for the maximum 

hops. Setting the limits too small will however restrict the length of paths. Split- 

horizon and poison reverse technique can only remove loops between neighbours. Path­

finding algorithms make use of topology information to prevent loops. However, temporal 

loops may still occur and it is challenging to implement in an on-demand manner. The 

destination sequence number and the feasibility condition guarantee loop-freedom at 

every instant. The use of the sequence number is conservative. Every time a path 

breaks, a node requests for an increased sequence number of affected destinations, which 

invalid alternative paths with current sequence number. Using historical low value of 

distance, feasibility condition is also conservative and may lead to large amount of update 

messages among multiple nodes. In the end, the most promising approach for a specific 

context may be a combination of these techniques.

It should be noted that the term ‘distance’ we use in this subsection can be measured 

by but not limited to hop count. There can be many other routing metrics. We will 

review the use of different routing metrics in next subsection. The motivations and 

results of approaches that prevent loops in single path routing have a large influence on 

multipath routing and optimal routing, which we will discuss in subsection 2.1.5

23



hlethod Loops Draw'back

Hop count Temporal Long delay before detected

Split-horizon with poison reverse Yes Prevent only one hop loops

Sequence number No Too Sensitive

Path-finding Temporal Need to maintain topology information

Feasibility condition No Sensitive

Table 2.1: Summary of Methods addressing the Count-to-Infinity Problems

2.4 Routing Metrics

In order to avoid potential confusion, we first distinguish routing objectives from routing 

metrics. A routing objective is a performance metric that a routing algorithm aim to 

optimize. In this thesis, we take delay of all traffic as our routing objective. On the 

other hand, a routing metric is a type of measurement to describe a path. Throughout 

this thesis, we interchangeably use the term ‘distance’, ‘length’ and ‘cost’ to denote the 

measurement of a path based on which a routing algorithm makes route selections.

Routing metrics play an important role in the behaviour of routing algorithms. Var­

ious types of metrics have been proposed to date. We focus our attentions to the most 

common type - additive metrics. Under an additive metric, the distance of a path is the 

summation all links of the path. We refer further interests for different types of metrics 

to corresponding results [Sobrinho, 2003,Baumann et ah, 2006].

If hop count is used as the metric, the cost of every link is constantly one. Routing 

algorithms based on hop cotmt are invariant to traffic dynamics of a network. Some 

routing protocols, such as OSPF and IS-IS, allow a customized metric. Network ad­

ministrators can specify cost of each link based on estimated traffic and link capacity. 

In fact, this is an offline traffic engineering approach to apply optimal routing solution, 

which we will study in section 3. However, once specified, link weight of these protocols 

remains static during runtime.
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Traffic aware metrics allow routing protocols to adapt to traffic dynamics. End-to- 

end delay is a traffic aware metric that measures the total delay of packets from source 

to destination. Routing algorithms based on end-to-end delay can avoid congested nodes 

and reduce the overall delay of a network. However, delay is a very sensitive metric. The 

cost of a path may change drastically to each routing decision, which causes fluctuation 

of routing solutions. The instability of routing algorithms based on a sensitive metric, 

such as delay, has been well observed and studied [Bertsekas, 1982, Wang and Crowcroft, 

1992]. Many heuristic algorithms that take probabilistic routing decisions based on 

path cost have been developed. The System and Traffic dependent Adaptive Routing 

Algorithm (STARA) [Gupta and Kumar, 1997], as well as its successors [Borkar and 

Kumar, 2003, Raghunathan and Kumar, 2009], applies exponential moving averages 

onto paths cost and routing decisions to avoid sudden fluctuations. Another heuristic 

algorithm, Replex [Fischer et ah, 2006], proposes a (Q-/3)-exploration-replication policy 

to stabilize routing solutions. These heuristic algorithms, although proposed to use delay 

as routing metrics, can be used in optimal routing algorithms based on gradient.

Many traffic aware metrics that are less sensitive have been proposed. They help 

to reduce the network delay without leading to instability. Expected transmission time 

(ETT) [Draves et ah, 2004] uses MAC layer transmission time along a path as routing 

metric. Expected transmission count (ETX) [Couto et ah, 2003] uses the number of 

MAC layer transmission and retransmission as an indicator of link quality. Metric of 

interference and channel switching (MIC) [Yang et ah, 2005] considers intra- and inter­

flow interference. It is also possible to model the routing problem through reinforcement 

learning approaches. Q-routing [Littman and Boyan, 1993] is a Q-learning algorithm. 

SAMPLE [Dowling et ah, 2005] combines collaborative reinforcement learning technique. 

In these cases, the routing metrics is essentially the inverse of action rewards. Queueing 

delay accounts for a large portion of communication delay, especially in a congested 

scenario. Therefore, using queue length of forwarding nodes as routing metric can achieve 

good performance in term of delay [Basu et ah, 2003].
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2.4.1 Morality of Routing Algorithms

We refer to a routing algorithm to be selfish if each communication flow tries to optimize 

its own performance. Now that we have a better understanding towards routing metrics, 

we may define selfish routing from a different angle: A routing algorithm is selfish ij its 

routing metric is the same as it objective metric. For example, a routing algorithm using 

end-to-end delay as routing metric is selfish for a delay minimization routing problem.

Indeed, describing a routing algorithm as selfish may be inaccurate, because routing 

algorithms do not have “attitudes” - they simply try to make the best routing choices 

based on a certain routing metric. Therefore, a fundamental question of the optimization 

problem is “what is the routing metric that presents the benefits of an entire network 

rather than individual communication, i.e. optimizes a given objective?”

A quick answer to this question is the marginal cost. A routing algorithm that uses 

marginal delay as routing metric can optimize the delay objective. One of our proposals 

is the derivation of a routing metric that captures the wireless marginal cost, which we 

will present in Chapter 3.

2.5 Multipath Routing

Multipath routing is a type of routing algorithms that discovers and uses multiple paths 

for each communication between a source and a destination pair. In comparison to 

single path routing, it makes use of more network resources to achieve better fault- 

tolerance, increased throughput, and reduced delay. We are interested in multipath 

routing algorithms because an optimal routing solution that minimizes delay of a network 

may use multiple paths. However, the majority of existing optimal routing algorithms do 

not address route discovery and establishment but simply assume the availability of all 

potential paths. In this subsection, we first describe functionalities of multipath routing. 

Then, we review three major types of multipath routing approaches. We argue that these 

approaches can not be applied to optimal routing algorithms for route discovery. Finally,
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we identify the core issues to be addressed in order to design a multipath route discovery 

for optimal routing algorithms.

The task of multipath routing is more complex in comparison to single path routing. 

Its functionality can be divided into four interconnected components; message exchange 

mechanism, path filtering in route discovery, path selection after discovery, and load dis­

tribution. In the following, we will give an overview of these components to demonstrate 

how multipath routing works.

1) Control message exchange: This mechanism addresses how topology or route 

information is shared among network nodes in route discovery. Similar to its counterpart 

in single path routing, control message exchange in multipath routing is carried out 

primarily by either link state algorithms or distance vector algorithms.

Link state algorithms requires little modification to work in multipath cases. Network 

topology information retrieved at each node is sufficient to compute multiple paths. One 

example is the equal-cost multi-path (ECMP) routing, where multiple shortest paths 

instead of one are computed. ECMP is supported by both OSPF and IS-IS with no 

additional requirement on message exchanges.

Distance vector algorithms for multipath routing work with a modified distributed 

Bellman-Ford algorithm. During the propagation of path information from destination 

nodes to source nodes, intermediate nodes do not choose the single best distance but 

forward multiple distances back to source nodes. The criterion of selecting those multiple 

distances is explained in the next component. In the light of reducing communication 

overhead, distance information of multiple paths may be fused into one value at inter­

mediate nodes. In this case, rules of the merge should be addressed.

In addition to link state routing and distance vector routing, link reversal algorithm 

[Gafni and Bertsekas, 1981] presents an alternative message exchange methods.

2) Path filtering during route discovery: There may be a large amount of 

potential paths between each source and destination pair, particularly in wireless ad hoc 

networks. It is both expensive and unnecessary to discover all of them. There can be
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certain criteria used in the process of route discovery to filter out undesirable paths - 

depending on the angle, some refer them as rules to update desirable paths. Some of 

the notable criteria include loop-freedom, maximum length of paths, and disjoint paths. 

Loop-freedom is a common path filtering rule. Techniques that we have reviewed in 

section 2.3 can be extended to enforce this rule.

A popular design choice of filtering criterion is on the path disjointness. Following 

this criterion, only disjoint paths are discovered, which experience little correlation. 

Congestions and transmission failure of one path is less likely to affect its disjoint paths.

Path filtering can also be based on the distance - or the cost - of paths. For example, 

an upper bound of path distance can be set so that long paths are left out. Although 

such a filtering may seem simple, a bad upper bound choice may harm the performance 

of routing algorithm. It requires sophisticated design to choose a proper bound on path 

costs. In fact, our proposed solution includes a result in this regard.

We should point out that not all route discovery algorithms filter paths in route dis­

covery, although filtering is desirable. Examples include proactive link state algorithms 

and certain source routing algorithm [Lee and Gerla, 2001].

The result of the route discovery process is a subset Vf of the set of all potential paths 

V. The goal of the path filtering process can be summarized as to reduce the size of Vf 

as much as possible while retaining the desired performance of the data transmission.

3) Path selection after route discovery: Path selection may follow the same 

criteria as path filtering and is performed after the route discovery process. Path filter­

ing reduces the overhead incurred by route discovery as it eliminates bad paths early. 

However, without a comparison between discovered paths, such a filtering may not be 

sufficient to remove all redundant paths. Once the route discovery process is done, infor­

mation of paths in the set Vf are known to network nodes. With this knowledge, nodes 

may select a subset Vg for data transmission. In the case of distributed hop-by-hop 

routing, path selection can happen at both sources and intermediate nodes, returning a 

list of next hop to forward data to.
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4) Load distribution: The final task of multipath routing is the data transmis­

sion, i.e. the distribiition of data over multiple selected paths. Load distribution can be 

viewed as a function that takes costs of multiple paths as input. Such a function may 

have different forms. Single path forwarding algorithms distributes all data traffic to the 

single best paths - primary paths - while keep the rest of selected as backups in case 

that a primary path fails. ECMP [Moy, 1998] distributes data traffic of a flow evenly to 

multiple shortest paths. The Boltzmann distribution, also known as exponential penalty 

approach, have seen applications in both learning-based routing [Dowling et ah, 2005] 

and traffic engineering-based routing [Xu et ah, 2007]. A more advance approach is to 

distribute data load so that costs of all selected paths are equal. Selfish Wardrop rout­

ing [Gupta and Kumar, 1997] and optimal routing Wardrop routing [Yang and Weber, 

2011] equalize the delay and the marginal delay of used paths respectively. Adaptive 

proportional routing [Nelakuditi and Zhang, 2002] splits data so that the blocking prob­

abilities of multiple paths are equal. Some recent results [Kvalbein et ah, 2009] separate 

load distribution metrics from the route discovery metrics, in order to avoid fluctuation 

of routes but stable yet responsive traffic distribution. [Kandula et ah, 2005] follows a 

similar idea. In addition it applies a technique of congestion avoidance - XCP - on top 

of the heuristic convergence algorithm, to prevent oscillations. It is worthy noting that
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the implementation of traffic splitting, although not our focus, is one active research 

field [Vutukury and Garcia-Luna-Aceves, 2000b].

Because our goal of this thesis is the design of an optimal routing algorithm that 

minimizes costs of network, we shall pay a special attention to the handle of path costs 

during each of the four processes. The route discovery process, in addition to establishing 

paths, should provide costs of paths. In the case of distributed hop-by-hop routing, 

merging of costs from multiple next hops should be addressed. For path filtering and 

selection processes, costs of paths can be used as a criterion. Even for criteria that 

are not based on directly on costs, it is desirable that they discover and select low cost 

paths. Finally, load distribution is dependent on and, if adaptive cost metrics are used, 

has an impact on costs of paths. Indeed, the handle of path costs acts as a fundamental 

connection among the four components of multipath routing.

If we view optimal routing as a type of multipath routing, the majority of optimal 

routing algorithms focus on load distribution component. Therefore, we are less in­

terested in load distribution components in the domain of classical multipath routing 

algorithms but rather the rest of processes. It remains a question whether existing mul­

tipath routing algorithms can provide the functionality of the first three components 

that suits optimal routing. In the following, we will dive into existing multipath routing 

algorithms to examine their handle of paths cost.

2.5.1 Disjoint Routing in Ad Hoc Netvi^orks

It has been argued that correlations between the performance of different paths should 

be kept as small as possible. In this way, data transmission over multiple paths may be 

more resilient and reach a better delay and throughput performance. Disjoint routing 

methods provides multiple paths that do not intersect. Because of the high connectivity 

caused by wireless transmission, disjoint routing has been a popular design option for 

ad hoc networks.
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Two paths are node-disjoint if they do not share any intermediate node. Split Mul­

tipath Routing (SMR) [Lee and Gerla, 2001] is based on Dynamic Source Routing 

(DSR) [Johnson et ah, 2007] where a list of intermediate nodes of each path is kept 

at its source node. Two paths, the shortest path and its maximal disjoint path, are 

selected at each source node to carry data simultaneously. Based on AODV, AODV- 

Multipath (AODVM) [Ye et ah, 2003] applies node-disjoint ness criterion in path filtering 

process. During route discovery, RREQ messages, including duplicate ones, are not fil­

tered. Destination nodes response all RREQ messages with a RREP message. But 

rather, each intermediate node forwards only one RREP message through the shortest 

path to the source node. In this way, each intermediate node has at most one uplink 

towards the source node. After overhearing the RREP message, neighbours will not send 

other RREP messages to this node. Therefore, each intermediate node has at most one 

downlink towards the destination node. Node-disjointness is achieved.

The criterion of link-disjointness states that any two paths of one communication 

do not have common links. Ad hoc On-demand Multipath Distance Vector routing 

algorithm (AOMDV) [Marina and Das, 2002] makes an observation on the equivalent 

condition of link-disjointness: “every node on a path ensures that all paths to the desti­

nation from that node differ in their next and last hops”. In order to apply this condition, 

they extend AODV to include both last hops and next hops in routing table for every 

path. RREQ or RREP messages are discarded if they come from the same last hop.

Node- and link-disjointness axe not sufficient to eliminate correlations between two 

paths as neighbouring nodes or links may interfere with each other. In order to reduce 

the coupling among different paths of a communication, a stronger criterion called zone- 

disjointness has been proposed. AODVM with Path Diversity (AODVM/PD) [Mueller 

and Ghosal, 2005] keeps a value called correlation factor at each hop of a path, which 

is defined as the number of overheard RREP messages associated with the same route 

discovery. In addition to AODVM’s filtering of node-joint paths, paths with a correlation 

factor higher than a threshold are filtered out at each nodes. Gomplete zone-disjoint
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Fig. 2.3: Suboptimal Disjointness: Pi and P2 should be selected rather than P3

paths where paths are out of each other’s transmission range do not exist in general, but 

may be discovered with the help of directional antenna [Roy et ah, 2003].

Other types of filtering and selection criteria can be applied in conjunction with 

disjointness. For example, loop-freedom is addressed in all aforementioned disjoint ap­

proaches, commonly using the destination sequence number mechanism. Another no­

table approach. Disjoint Path Selection Protocol (DPSP) [Papadimitratos et ah, 2002] 

selects a set of link-disjoint paths only if statistics suggest they are reliable.

In disjoint routing methods, source nodes can get exact costs of discovered paths. 

The cost merge of multiple paths at intermediate nodes need not be addressed as paths 

do not intersect. Route disjointness is a strong condition. A large amount of potential 

paths will be ruled out, therefore overhead is not a problem. However, in wireless ad 

hoc networks, there may not exist multiple disjoint paths reducing the solution to a 

single path routing. What prevents disjoint routing methods being used for optimal 

routing algorithms is that the criterion of path disjointness does not result in optimal 

set of paths. As shown in Fig. 2.3, any type of disjoint routing algorithm will select one 

path from Pi and P2 and select path P3. However, if P3 is highly congested from other 

communication flows and if the bottleneck of Pi and P2 is not at the intersection node 

E, transmission over Pi and P2 simultaneously will result in better performance than 

disjoint routing.

In fact, this suboptimal results have been already realised within the field of disjoint
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routing [Ye et al., 2003], where reliable nodes, such as node E in the example, are 

identified to allow path intersections. However, the identification of the reliable nodes 

lacks of theoretical discussion and justification.

2.5.2 Feasibility Condition-Based Methods

As we have established previously, if each node establishes a shortest distance towards a 

destination node, an order of nodes can be formed. As long as data forwarding follows 

a decreasing order of distances, loops will not happen. It means that at each hop, 

not only the best next hop but all neighbour nodes with a shorter distance can be 

selected without causing loops. In order to guarantee the correct order of nodes with 

the presence of topology changes, an extended feasibility condition can be applied in 

multipath routing.

Recall the notation in section 2.3.4, where Dj is the distance from node i to node 

j, Dj^ is the copy of I?" kept at node i, and FDj is the feasible distance from i to j. 

Denote the set of next hops selected for destination j at each node f as 5]. A feasibility 

condition for multipath routing, termed as loop-free invariant (LFI) condition initially, 

states [Vutukury and Garcia-Luna-Aceves, 1999]:

“Any routing algorithm designed such that the following two equations are always 

satisfied automatically provides loop-free paths at every instant, regardless of the type of 

routing algorithm being used: 1) FDj < k E. N\- 2) Sj = {fcjD'j. < FDjAk € A’*}”

The first rule comes from the definition of feasible distance FDj, which is the his­

torical low value of Dj. The second part is an extension of the second single path 

feasibility condition to the case of multiple next hops, which establishes the descending 

order through feasible distances. Note that the first rule of the single path feasibility 

condition is missing in the multipath counterpart. This because it is implied in the def­

inition of Dj. Another difference between the single path condition and the multipath 

condition is that the former is proposed for distance vector routing while the latter suits 

for all types of algorithms.
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Fig. 2.4: A Example of Multipath Routing based on the Feasibility Condition

Notable methods includes DASM [Zaumen and Luna-Aceves, 1998], which is based 

on DUAL and uses diffusing computation to update topology changes; MPDA [Vutukury 

and Garcia-Luna-Aceves, 1999] is a link state algorithm. MPATH [Vutukury and Garcia- 

Luna-Aceves, 2000a] uses the second last hop information of the path-finding algorithm 

to construct network topology and applies Dijkstra algorithm, which is slightly different 

than the distance vector path-finding algorithm LPA. MDVA [Vutukury and Garcia- 

Luna-Aceves, 2001] uses a distance vector algorithm and is shown to outperform the 

previous methods.

These algorithms differ in their control message exchange mechanisms. Once a short­

est path is established for every node to a destination node, the same feasibility condition 

is used to select next hops. We can illustrate this application through the behaviour of 

intermediate node A in the communication between 5 and H, shown in Fig. 2.4. Node A 

maintains a distance and a feasible distance . It compares FD'^ with reported 

distances from all its neighbours. Assuming only and are greater than or equal 

to FD‘̂ , node B,C,E are selected as next hops. On receiving data from 5, node A 

distributes the traffic over B, C and E according to their distances.

34



One advantage of multipath methods using the feasibility condition is that loop- 

freedom is guaranteed at all time. The merge of paths at intermediate node prevents 

large amount of information being propagated. For example, information about node 

B, C and E are hidden beyond node A. Each node makes decisions on load distribution 

over next hops locally - a desirable distributed manner.

However, path selection and load distribution at each intermediate node are based 

on reported distances of all neighbours. Therefore, existing multipath methods are all 

proactive algorithms, which introduces overhead.

More importantly, the merge of costs from multiple paths chooses the shortest dis­

tance, which may be inaccurate for certain cost metrics. We can demonstrate this 

problem by assuming the metric in Fig. 2.4 is delay. We assign the distance through 

node B as Ib + = 10. Similarly, let the distance through node C and E be 15 and

15. Node F is not selected according to the feasibility condition. Choosing simply the 

smallest value, i.e. reported value from node B, is set as 10. This value is accurate 

only if traffic is not split after node A and is otherwise inaccurate.

Now, imagine three units of data arrive at node A. Expected delay is then 3*10=30 

(unit size*unit delay). However, what actually happens at A is that the 3 units are 

distributed and transmitted over three next hops simultaneously causing an overall delay 

of 15 (unit size*unit delay), which is 5 (unit delay) on average. In fact, one can easily 

observe that the actual merged cost of A is always less than the shorted distance if traffic 

is split between A and H. This underestimated cost of node A results in a suboptimal 

shift of load distribution at node S towards single path through node G.

2.5.3 Link Reversal Algorithm

For each destination node d, the link reversal algorithm [Gafni and Bertsekas, 1981] 

builds a directed acyclic graph (DAG) rooted at the destination, i.e. a loop-less graph 

where all links pointing to the direction of node d. The link reversal algorithm provides 

multiple alternative paths without considering their costs.
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Gafni and Bertsekas considered a directed network without partition in the case of 

one destination. Two types of algorithms have been proposed: the full link reversal 

algorithm and the link partial reversal algorithms. Firstly, we describe the full link 

reversal algorithm. Initially, there are misdirected links in the network. Other than the 

destination, nodes without outgoing links are called sinks. At each round, sinks reverse 

the direction of all their incoming links. It has been shown that after at most rounds, 

where b is the initial number of misdirected links, no sinks exist in the network and all 

links are properly directed to form the DAG [Busch et ah, 2003].

In the partial link reversal algorithm, sinks do not reverse all but some of their 

incoming links. It can be explained through a numbering scheme. A triple value := 

(a„,/3„,u) called height is associated with each node u at all time, au is essentially a 

sequence number, which initially is 0 for every node. jSu is some integer number, is 

lexicographically orderedk Similar to what we have reviewed in section 2.3.4,

Each non-destination node u maintains a list of its neighbours v that have previously 

reversed the link {u,v) to {v,u). At each round, each sink node u sets its height hu as 

follows, which results in some of its coming links being reversed:

1. If the list includes all its neighbours, reverse all the incoming links.

2. Otherwise, set q;„ = + 1; For any neighbour v whose equals the

newly assigned au, set /3„ to be smaller than py foi all such neighbours. Then 

empty its list.

Through induction, it can shown that all neighbours in the list of u have the value 

of minw^N^{ayy} + 1. That means, in the case the list is not full, sink nodes reverse 

their incoming links that are not in their list. The most notable link reversal algorithm 

is Temporally Ordered Routing Algorithm(TORA) [Park and Gorson, 1997]. TORA 

introduces an on-demand partial reversal algorithm with the ability to handle network

^ two triples are lexicographically ordered hu > hy if and only if one of the following is true: 1) 
ciu > cev 2) au = Qi> and j3u > A 3) au = Q„ and Pu = Pv and u > v
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partitions. TORA uses a synchronized system time of each node as a. For each node u, 

TORA set as the time of link failure based on a synchronized network system time. 

Pu is initialized with the shortest hop count from u to destination d.

Before any topology changes, the link reversal algorithm discovers all potential paths. 

Although it is essentially a variation of distance value, the height triple is not used for 

route discovery or load distribution, but rather to remove loops. Routing optimality is 

not a concern for the link reversal algorithm.

2.5.4 Summary

Optimal routing can be viewed as one type of multipath routing. It differs with classical 

multipath routing algorithms in that it focuses on the load distribution component using 

marginal delay as cost metric. A question arises naturally:

Is there a multipath routing approach that provides the route discovery and the route 

establishment functionalities to facilitate optimal routing algorithms?

The requirements for a multipath routing algorithm to work with an optimal routing 

approach include three parts. Firstly, it should prevent redundant path information 

from spreading in order to avoid excessive communicational and computational overhead. 

This can be done by the path filtering and selection processes: the smaller set of paths 

presented to the load distribution process, i.e. Vs C Vf C V, the less overhead is 

incurred by route discovery. In addition, merging information from different paths when 

they meet alleviates overhead.

Secondly, the resulting path set of multipath route discovery and selection should 

include the optimal path set. Given a network topology and traffic demands in the 

network, there exists an optimal set of paths, denoted as V*, over which an optimal 

routing solution distributes non-zero traffic. A naive approach of multipath routing that 

meets this requirement is to flood RREQ messages and to discover all potential paths, 

although this creates large overhead. In conjunction with the first requirement, the ideal 

path filtering process should reduce the size oi Vf as much as possible while containing
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Fig. 2.5: Path Filtering and Selection in Relation to Optimal Path Set

the optimal set; The ideal selection of the path set Vs should coincide with the optimal 

set. These set relations are demonstrated in Fig. 2.5(a). However, it is challenging to 

design ideal criteria for filtering and selection processes. Under ill-considered criteria, 

some paths from the set V* may not be discovered or selected. This undesirable result 

can be formally written as P* ^ C P/, which is shown in Fig. 2.5(b).

Thirdly, the exact costs of paths should be provided to nodes who make load distri­

bution decisions. A cost of a path reported from one node, say A, to the decision-making 

node, say S, is exact - or accurate - if and only if one of the following is true: 1) it is a 

single path from node A to its destination node 2) if it consists of multiple paths merged 

at certain intermediate node, the merge of paths does not affect the traffic assignment 

from node S to node A.

A comparison of the three types of algorithms with respect to the three require­

ments is shown Fig. 2.6. Disjoint routing algorithms filter a large amount of paths thus 

overhead is reduced. Because paths do not merge, exact costs of paths are available. 

However, the criterion of route disjointness can not guarantee the optimal path set. Fea­

sibility condition-based methods filters only paths with risk of loops, thus the optimal 

path set is likely to be provided. Costs of multiple paths are merged at intermediate 

nodes, therefore large overhead is prevented from spreading. However, only a proac-
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Fig. 2.6: Evaluation of Multipath Routing: The three axes represent three requirements. 

A solntion that me(;ts all thrt^e requirements is missing!

tiv(? manner is supported in feasibility eondition-bastd methods, which introduces extra 

overheads. The link reversal routing algorithm disc:overs all loop-free paths regardless of 

their costs. Optimal path set is provided at source nodes. Exact cost can potentially be 

prtwided, but is not properly addressed. Because^ paths are weakly filtered with loop- 

fr('(‘dom criterion, there may be a large amount of potential paths presented at source 

nodes, which creates large overhead.

In summary, existing multipath routing algorithms in the literature do not suit the 

requirements of optimal routing.

2.5.5 Core Issues of Multipath Routing

In last subsection, we have summarised the missing bit of multipath routing to support 

optimal routing. Now we can take one step further to examine core issues to be addressed 

for potential solutions.
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Fig. 2.7 : Conflict between exact merged costs and loop-freedom

1) Path filtering and selection criteria should be based on path costs. Op­

timal routing algorithms minimize the delay experienc(!d by all traffic. Roughly speaking, 

paths that are eliminated during route discovery should have a large cost and paths that 

are in V* should have have a small cost. Therefore, criteria based on path costs could 

meet both the first and the second requirements aforeanemtionexl. However, it remains 

an open issue to choose; a pre)per value e)f path e'e)sts as a crite;rie)n. Sue h a e hoice differs 

ame)ng each c;ommunication of the same netwe)rk. It de'pends on the traffic demand of 

one flow as well as runtime network traffic, be)th may vary ewer time.

2) For certain cost metrics, such as marginal delay, it is a hard task to 

merge costs of multiple paths. One natural solution is to find the fune-tion of delay 

for merged paths anel to apply differentiatiejn. However, the exac:t form of the function 

may not be possible and the function may not be differentiable. A new perspective is 

needed to compute merged costs.

It turns out that even if exact merged costs can be computed, the value may be 

smaller than individual costs, which (X)nflicts with the criterion of loop-freedom. Con­

sider an example with Fig. 2.7, the merged cost of node A is 5 - smaller than both 8 and 

9. Since the distance is no longer strictly decreasing to destination D, traffic from S may 

travel back from node C and B to node A. In the author’s opinion, this may contribute 

to the choice of minimum value for merged costs in feasibility condition-based methods.
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Chapter 3

Optimal Routing Approaches

The review of existing multipath routing algorithms in the previous section provides us 

the techniques as well as the challenges to discover multiple paths for optimal routing 

algorithms. With all paths established, a routing decision of a node determines a load 

distribution over multiple paths. Routing decisions of all nodes correspond to a traffic 

pattern of the network. Under a certain traffic demand, an optimal routing algorithm 

computes the set of routing decisions whose traffic pattern incurs the least overall cost 

of the network. In this section, we review the state of the art approaches of optimal 

routing.

In section 3.1, we give an overview of the mathematical background of optimal routing 

algorithms. In section 3.2 we examine different formulations of the routing optimization 

problem and their practical implications. In section 3.3 to 3.5, we discuss different types 

of optimization algorithms in detail.

3.1 Routing as an Optimization Task

Optimal routing algorithms are better suited to a dense network with heavy traffic 

demand. Interestingly, the first results of optimal routing can be found well before the 

prevalence of computer networks. In the domain of transportation control, the study
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Fig. 3.1: Structure of Review on Optimal Approaches
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of road traffic assignment and management dates back to 1950s. Wardrop equilibrium, 

which is essentially a Nash equilibrium of flows, has been proposed to model road traffic 

[Wardrop, 1952]. It was later demonstrated that a Wardrop equilibrium under marginal 

cost coincides with the system optimum [Beckmann et ah, 1956]. These results can be 

applied to the domain of telecommunications with only minor modifications.

Optimal routing approaches can be viewed as an application of the well-studied 

(convex) optimization theory [Boyd and Vandenberghe, 2004]. We start with an overview 

of the theoretical background before going to the details of different types of optimization 

algorithms. The problem addressed by optimization theory can be formulated as follows:

minimize y{x)

subject to gi{x) < 0, f = l...m 

hi{x) = 0, z = l...cm

(3.1)

(3.2)

(3.3)

where y,gi,hi 1. It states that the optimization problem is to And an x that

minimizes the objective function y(x), (3.1), among all x that meet the inequality con­

straints (3.2) and the equality constraints (3.3). This is the basic form of an optimization 

problem. Applying to the optimal routing domain, the objective function can be either 

an cost function to be minimized or a utility function to be maximized. The vector vari­

able x may have different representations in different algorithms, such as source rate, 

link rate, and etc. The equality and inequality may have different forms and meanings 

in different algorithms, depending on their focuses. While the nature of the optimization 

problems remains the same, i.e. it can be summarized by the form of (3.1) - (3.3), these 

different formulations of the problem may have significant differences in their practical 

implications. We will discuss some of the common formulations in subsection 3.2.

For most cases in practise, such as optimal routing, the optimization problem can not 

be solved analytically but requires an iterative approach. Denote the optimal solution 

as y*. An iterative algorithm start with a given initial value x^^^ in the domain of the
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objective function, denoted as E dom y. A series of C dom y is computed

in the form of

+ a * Ax(‘-i)

where is the search direction and a is real value called step size. A solution x^^^

is feasible if it meets condition (3.3) and (3.2). An algorithm is convergent to optimum, 

which we refer to as an optimal algorithm, if

y(xW) -> y* as t —> cxD

The algorithm stops if x^*^ is feasible and that y(x^*)) is wuthin a small neighbourhood of 

the optimal value, i.e. |y(x(*)) —y*| < e for some small positive value e. We can translate 

the mathematics to the scenario of an optimal routing algorithm: Routing decisions 

at each iterative step of a network dictate a traffic pattern of the network. Based on 

costs incurred, the algorithm computes changes in routing decisions and distributes data 

traffic based on the new routing decisions. This completes one step of the convergence.

Algorithm 1 General Form of Iterative Optimization Methods 
Starting with an initial value x^°^ and t = 0, repeat:

1. t:=t+l

2. Compute the search direction Ax^*^

3. Decide a step size a

4. Update solution = x^*) + Ax^*) 

unitl the stopping criterion is satisfied.

Many optimal routing algorithms have been proposed to compute the series of search 

steps. We are interested in two features of an given optimal routing algorithm : the 

convergence rate and the distributed manner.

3.1.1 Convergence Rate of Optimal Routing Algorithms

One important measurement of an optimal routing algorithm is the number of iterative 

steps the algorithm takes from a starting point to an optimal solution. In the context
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of numerical analysis, the convergence rate of an iterative algorithm describes the speed 

at which its solution series approaches the optimal solution. Formally speaking,

it is defined as

/r = lim
|y(a;d+l))  y*

t->oo |y(xh)) — y*\

An optimal algorithm is said to converge linearly if /r G (0,1). If y = 1, then the 

convergence is superlinear; If ^ = 0, then the convergence is sublinear. The convergence 

rate of an algorithm is a major factor of the number of steps required to converge. 

Minor factors include the choice of the starting point and the stopping criterion e. The 

convergence rate of an algorithm is primarily dependent on the orders^ of underlying 

methods; The first order (sub)gradient-based algorithms generally show a linear or a 

sublinear convergence rate, while the second order Newton-based algorithms exhibit a 

much faster superlinear convergence rate. However, this concept of convergence rate from 

the domain of numerical analysis focuses on the computational aspect of an algorithm. 

It may not tell the complete truth about an optimal routing algorithm.

The delay overhead incurred by multihop communications, particularly in wireless 

ad hoc networks, can be excessive in comparison to the delay incurred by computation at 

one node. Computation for one step takes 0{n^) arithmetic calculations at most, most 

complex step being the second-order Newton step. Consider an example where a source 

node wishes to distribute traffic over 1000 paths, which is more than being realistic. The 

time needed to compute one step with a CPU at a gigahertz (GHz) level of clock rate is 

at the scale of milliseconds. On the other hand, multihop information exchange may be 

invoked in order to evaluate the objective cost function y{x) at each step. According to 

analytical results [Malone et ah, 2007], the one-hop transmission delay for IEEE 802.11 

(11Mbps) wdth non-saturated traffic load is at the scale of 10 milliseconds. Because the 

one-hop transmission delay is only a fraction of the multihop end-to-end delay, steps that 

involves multihop information exchange introduce large delay. It should not be treated
^The term “order” refers to the degree of Taylor approximation to the objective function. Boar with 

this concept for now, which will come cleax once we dive into the mathematical background of each type 
of algorithms.

46



equally with steps that computed locally. Therefore, in addition to the measurement of 

convergence rate, we shall pay a special attention to the number of information exchanges 

incurred by the solution series of an optimal algorithm.

3.1.2 Distributed Manner of Optimal Routing Algorithms

The distributed manner of an optimal routing algorithm can be classified into flow- 

distributed and node-distributed. A routing approach is flow-distributed if each com­

munication flow, identified by a source-destination pair, computes its own routing deci­

sions, as shown in Fig. 3.2(a). Unlike the case of classical (selfish) routing approaches, 

flow-distributed implementation is not straightforward for optimal routing. From the 

problem formulation, we note that different flows are coupled in two ways: 1) through 

the objective function (3.1). For example, the behaviour of one flow may affect the delay 

experienced by other flows; 2) through the inequality and equality constraints (3.2, 3.3). 

For example, the behaviour of one flow' may affect the available capacity for other flows.

A routing algorithm is node-distributed if routing decisions are made locally at each 

intermediate node, as shown in Fig. 3.2(b). Optimal routing algorithms, especially the 

second order algorithms, aim to optimize the network traffic as a w'hole. The main 

challenge for node-distributed algorithms comes from the conflict between the global op­

timum and the limited view of each intermediate node. A simple approach to implement 

a node-distributed algorithm is to duplicate global knowdedge of the entire network. 

However, this approach is undesirable as it creates large control overhead. The key 

to both flow'- and node-distributed manners is to decompose the network optimization 

problem into subproblems that can be addressed separately at different nodes.

We organise our related work according to the orders of algorithms with a special 

attention to their distributed manners. In subsection 3.3, we review existing first order 

algorithms. In subsection3.4, we present existing second order Newton-based algorithms. 

In subsection 3.5, we discuss a common technique that decomposes Newton-based algo­

rithms into distributed manner. After the decomposition, a part of the approach runs
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(a) Flow-Distributed: Each source makes routing decisions over its mul­
tiple paths, taking its impacts on other traffic flows into considerat ions

53

(b) Node-Distributed: Each intermediate node makes routing decisions over mul­

tiple next hops for arriving traffic. The routing decision of fs\ at node A should 

cooperate with the routing of flow fs2, fs3, and fs4 at neighbours as well as the 

traffic distribution at source SI and S2

Fig. 3.2: Distributed Manners of Optimal Routing Algorithms
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first order algorithms and the other part of the approach runs second order algorithms. 

With a slight abuse of terminologj^, this method can be seen as mixed orders.

It is interesting that one ma,y find optimal approaches in the domain of congestion 

control and flow control [Chiang et ah, 2007] that share many similarities with optimal 

routing algorithms. In this review, we will clarify their differences in subsection 3.2, but 

otherwise treat their essential mathematical approaches as related works.

3.2 Variations of Network Optimization Formulations

We have formulated the optimal routing problem to be addressed as (1.2a). Now, let us 

temporally detach the routing implication from the model and focus on its mathematical 

presentation: The problem (1.2a) is a constrained convex optimization problem, which 

follows the general model (3.1). A vast body of network optimization problems, includ­

ing congestion control, routing and link scheduling, can be seen as certain forms of the 

general model. Algorithms that solves these problems are, to a certain extend, inter­

changeable. For this reason, our state of the art review will include notable algorithms 

from different areas of network optimizations, such as congestion control. However, be­

fore our review of these algorithms, it is important to understand the differences and the 

similarities between various forms of the optimization model. In this section, we discuss 

different formulations of network optimization problems.

3.2.1 Modelling of Optimal Routing Problems

In the domain of optimal routing, we aim to find a traffic pattern 7^={/p}, pGPof 

the network that minimizes the overall cost, where V is the set of all potential paths of 

all communication flows. In order to differentiate from the general form (3.1), we write
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the optimal routing problem as follows:

minimize C{J-)

subject to <0, i = l...m

= 0, i = l...cm

(3.4)

(3.5)

(3.6)

A common choice of function g is TZF — C, where C e is link capacity vector and

TZ G is the routing matrix indicating whether a link belongs to a path. TZij = 1

is path j travels through link i, vice versa.

A common choice of function h is AT — T, where A G indicates paths that

belong to the same communication. T G is the traffic demand vector for each

communication.

3.2.2 Handle Variables and Constraints of Optimization Problems

It is sometimes sensible to translate the constraints from the form of equations to its 

equivalent form of a set. Define the feasible domain of the problem (3.1) as the set of all 

T G dom C that satify constraints (3.5) and (3.6), denoted as TV. The optimization 

problem is then to minimize (3.4) over the set TV, written as:

minimize C{T) 

subject to: T £ TV

The common assumption for this type of notation is that TV is a closed set. Strictly 

speaking, this does not always stand. However, in practice, this is a trivial assumption 

that can always be guaranteed. For example, consider a cost function that represents 

the queueing delay of a M/M/1 queue: C{f) = where Cap is the capacity of

the queue. The inequality constraint is that the flow / is non-negative. According to 

the domain of cost function and the constraint, the feasible domain of the problem is 

the interval [0, Cap), which is an open set. In practise, however, we can manipulate TV 

into [0, Cap — 0.000001]. Then we are able to apply the gradient projection method on
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this closed set. It can be demonstrated that the final solution of the gradient projection 

method can be infinitely close to, if not the exact, the optimal solution - as we add more 

zeros to the manipulation.

3.2.3 Utility Mciximization v.s. Cost Minimization

A similar mathematical formulation of the optimal routing problem is the network utility 

maximization (NUM) problem.

i=S

maximize Y.^i(Ti) (3.7)
i=l

subject to 'R.T < C

r0

where Ui{-) is concave function, for example a common choice is Ui{Ti) = log{T). Appar­

ently, this formulation shares many similarity with the cost minimization formulation. 

Indeed, as we will see, many but not all of the algorithms for example [Zymnis et ah, 

2007] that are used to address one formulation may be modified trivially to address the 

other formulation.

Roughly speaking, a NUM problem aims to transmit as much data as possible within 

the capacity constraints - the utility to be maximized is an increasing function with 

regard to throughput. Since the utility function is concave, the maximization focuses 

more on improving throughput of traffic flows that are experiencing less throughput. 

Therefore, it also enforces a certain level of fairness.

As shown in the formulation, NUM problem usually implies single path communica­

tion, although some exception may be found with a slightly different formulation [Vi^ang 

et ah, 2003].
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3.3 (Sub)Gradient-based Methods

In this section, we review a class of optimal routing algorithms that is based on first- 

order optimization methods. These algorithms dates back to 1970s [Cantor and Gerla, 

1974,Gallager, 1977]. A major drawback of the first-order class is their slow convergence. 

However, both first-order optimization methods and routing algorithms based on them 

play an important role of stepping stone for the second-order methods. In the following, 

we firstly describe the mathematical background of first-order methods. Then, we discuss 

their applications to optimal routing algorithms.

3.3.1 A Mathematical Background of First-Order Methods

In the following, we first describe the gradient descent method for unconstrained opti­

mization. Then, we explain why the gradient descent method is a first-order optimization 

method. Finally, we illustrate a technique called gradient projection method to address 

constraints in gradient descent algorithms.

3.3.1.1 Unconstrained Optimization

We start with the minimization of a convex continuous cost function C(-) : M" —^ R 

without any constraints. We wish to find a series of traffic pattern } that converges 

to the optimal solution. One natural method is the gradient descent method.

The gradient of the function C{F), denoted as VC(J^) = • • • , }^, is an

n X 1 column vector of partial derivatives of C'(-). The direction of the vector VC{T) 

points to the steepest increase of the function and the magnitude of VC(7^) indicates 

the rate of the steepest increases. Therefore at any iteration t, aiming to minimize the 

cost function, a straightforward search direction is the steepest decrease, i.e. =

—VC(7'^^)). The gradient of a function is a local property at each point. For example as 

show in Fig. 3.3, gradients of of points along the direction of —VC{J^b) change gradually. 

Therefore, we need to set a step size, denoted as a, to go along the direction —VC{J^)
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Fig. 3.3 ; A contour line demonstration of an optimization problem: Variables are two- 

dimensional, — {/i,/2}- The dashed contour line represents costs of the same value. 

Ta and J-y, are two points. Their gradients are VT'a and VTl, respectively.

before compute again. The step size a can be assigned with a small constant value 

in the interval 0 < a < 1. With special care, we can also assign a diminishing value 

to a at each iteration. A more advanced approach is to compute n dynamically from 

cost information at each iteration step t, which achieves a better convergence rate. The 

computation of a dynamic a often requires an iterative method, such as the backtracking 

line search method [Boyd and Vandenberghe, 2004], that evaluates the objective cost 

function multiple times. It requires gathering global cost information, which as we have 

argued in 3.1.1 is a less desirable iteration. Some efforts can be seen in the distributed 

computation of the line search method [Zargham et ah, 2012].

The iteration of gradient descent method can be summarized as follows:

jr(t-Hl) ^ jr{t) ^ jrit) _ aVC{T'(t)'i (3.8)

Now we explain why the gradient descent method is a first-order optimization method. 

The gradient descent method belongs to a wider class of methods, called the steepest
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descent method. Consider the first-order Taylor approximation of the objective cost 

function at the {t + l)th iteration:

C'(^(i+i)) = -t- ^ C(T'W) + aVC(T-(‘))^AT'W (3.9)

The motivation for the steepest descent method is to find a search step AT"^*^ so that 

the cost change per unit length of the search step is as negative as possible. That is 

to minimize ~ We normalize the search step

with a unit length, denoted as AJ-^nit = operator ||'|| represents any norm

function, which returns a non-negative value representing the “length” of a vector. The 

steepest descent method can be described as:

= argmin | ||u|| = 1}

r(i)If the norm function uses the Euclidean norm, the normalized step AJ^Wj — — 

whose corresponding unnormalized search direction AF^^^ — ~VC(JF^*^). That is, the 

gradient descent method is a steepest descent method under Euclidean norm. While the 

Euclidean norm may be the most common choice, other norms can be used for certain 

problems.

One premise of the gradient-based method is that the cost function is differentiable. 

Indeed, a differentiable cost function is a widely adopted assumption by optimal routing 

algorithms to the best of our knowledge. However, this premise may not always hold. 

In certain cases, the problem we try to optimize may not be differentiable. We will for 

example encounter a non-differentiable problem if we decompose the original problem 

into a number of subproblems, which we will describe in subsection 3.5.1.3. In such a 

case, a subgradient method is needed.

A vector ^ is a subgradient of the function C( ) at JFq if it meets:

C(/■) > C(J^o) + - Jb) for all

For a convex differential function, the gradient of the function meets also the condition 

above. That is, the subgradient is a generalization of the gradient. If exists, the subgra-
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dient may not be a unique value. The set of all subgradients, called the subdifferential 

and denoted as dC{J-Q). The subgradient method works in a similar way as the gradient 

method, but with a different update formula than equation (3.8)

jr(«+i) = jr(b _ for any € dC{T^^'>) (3.10)

Unlike the gradient method, the subgradient method is not a type of steepest descent 

method. In fact, it is not a descent method in the sense that not every step results in 

a cost reduction. However, it can be shown that with a sufficient small step size a, the 

subgradient method is convergent.

3.3.1.2 Constrained Optimization

Now we consider the case where constraints are present in an optimization problem. 

We have seen mainly three types of techniques that can be applied to the gradient 

descent method. The first approach is the affine transformation to address equality 

constraints. The second approach is the projection gradient method for general equality 

and inequality constraints. The first two types of approaches can be used in conjunction 

in practise. The third approach is the Frank-Wolfe method for to linear equality and 

inequality constraints.

For an linear equality-constrained problem

minimize C(J^) 

subject to AF = b

the equality constraints can be eliminated by rewriting the feasible set {F\AF = b} — 

{AZ -|- F\Z € , where A is a n x {n — cm) matrix whose column space is the

null space of matrix A and F is any solution of AF — b. According to the definitions of 

column space and null space, A{AZ) — 0 for any Z E Because .T is a feasible

solution, we have AF = b. That means, for any Z 6 AZ -f F automatically
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meets the equality constraints

A{Az + :F) = A{AZ) + Af = 0 + b = b

Therefore, the linear equality-constrained constrained is equivalent to the following un­

constrained problem:

minimize C{Z) = C{AZ + T)

Finding the matrix A and one solution J- to AJ^ = 6 is in general not challenging. 

In particular, the equality constraints in an optimal routing problem may be easily 

addressed. For example, one common equality-constraint is

'^fp — Tw ior peVw

Through affine transformation, we can transform the objective function as follows and 

eliminate the constraints:

minimize/i..,/„ ^(/i,...,/„)
n

subject to
8=1

n—1
minimize/i,.,.j„_i C{fu fn-i) = C(/i,...,/„_i, T - Y^fi)

8=1

which can be addressed by the gradient descent method. The components of the gradient 

for the transformed problem are given as:

dC _ dC dC 
dfi dfi dfn

i = l...n — 1

The second approach is the gradient projection method, which can be used to address 

both equality and inequality constraints, possibly nonlinear. Its rationale is to project 

solutions of the unconstrained gradient descent method into the feasible domain of a 

problem. More specifically, at each iteraton t, it computes the search direction
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using the gradient descent method. However, the resulting solution may not be feasible, 

i.e. (J-(') — aVC(J^^^^)) ^ TT>. In this case, we can apply a projection function Pj^d 

that finds the closet point in PP as the next step. That is,

(3.11)

Let us consider an example where the feasible domain is a one-dimension interval [0,1]. 

All solutions that are larger than 1 are projected to 1; All negative solutions are set as 

0. In a more complex case, the projection function may have different realizations. 

A requirement for any realization is that the corrected step should reduce the current 

cost. That is < C(pO)). However, as one may expect, the projection can be

crude, from which the convergence rate may suffer.

We can also integrate the first two methods to address a problem with both equality 

and inequality constraints. We firstly eliminate linear eciuality constraints through affine 

transformations and then apply the gradient projection method.

In summary, the gradient projection method computes firstly the unconstrained di­

rection, then it trims the solution to feasible. Another angle to tackle the issue is to 

take the constraints into account when computing search directions. In the case where 

both equality and inequality constraints are linear, a reduced gradient method, called 

the Frank-Wolfe method, has been proposed [Frank and Wolfe, 1956]. The Frank-Wolfe 

method applies the first-order Taylor approximation(3.9) to the original constrained op­

timization problem at each step:

minimize

subject to: € PV

Solving this problem gives a candidate search direction We can see that the only

difference compared to the original steepest descent method is the added constraints. 

Because the constrained functions are linear, the set PV is a polyhedron. The objective 

function is an affine function with respect to That means, the original problem
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reduces to a linear programming problem, which can be easily solved by algorithms such 

as the simplex method [Dantzig, 1963]. The final search step of Frank-Wolfe method 
is given as: jr(t+l) = jrit) Q.(jr(i+i) _ where a is computed with line search

methods. The advantage of the Frank-Wolfe method is that its search directions are 

always feasible. However, in practise, the convergence can be very slow.

3.3.2 Notable Results

In this subsection, we present some of the notable results from existing first-order optimal 

routing algorithms. We start from the optimal Wardrop equilibrium, which describes 

the state of network optimum. Then, we describe some of the algorithms that adaptively 

converge to the optimal Wardrop equilibrium. They can be viewed as a variation of the 

standard gradient method. Finally, we present results in distributed implementation of 

Wardrop equilibrium and the first-order method.

One of the early results is the Wardrop equilibrium [Wardrop, 1952], which is essen­

tially the Nash equilibrium for traffic networks. It can be viewed as the result of selfish 

communications; Each communication increases the traffic over a path if the path shows 

a lower cost than other paths; It reduces the traffic over a path if the path shows a 

higher cost than other paths. Therefore, at a Wardrop equilibrium of a network, for 

each communication flow, costs of all utilized paths are equal. The value is no larger 

than those un-utilized paths. Following the selfish strategy, a Wardrop equilibrium is in 

general suboptimal. It has been demonstrated that, instead of using costs, a Wardrop 

equilibrium based on marginal costs is equivalent to the network optimum. In this the­

sis, we term that as the optimal Wardrop equilibrium. More specifically, the optimal 

Wardrop equilibrium can be described as:

For each communication w, given its traffic demand Tw, all its available paths {Vw} 

can be numbered 1, ...Nuse, so that:

dfi df2 dfN^,, dfNu e + 1 dfN.
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/i^O, i — li”-; -^use 

fi — 0, i = Nuse “I" 1) •••: ^all

Then the network solution is optimal, i.e. T — T*. The optimal Wardrop equilibrium 

is the necessary and sufficient condition of network optimum. In order to reach such an 

equilibrium, each communication flow needs only to increase traffic on paths with low 

marginal cost, and to reduce traffic to no less than zero on paths with high marginal 

cost. Formally speaking,

(q aC(J-),4'*" = [/. Q )]+ i = l...Nall,

where = min{ 9Cm
dh

dfi df*

i = l...A^a(/} is the least first derivative cost of all re’s

available paths. It can be easily seen that this is essentially the projected gradient 

descent method with equality constraints eliminated by a affine transformation, a can be 

determined in a heuristic manner to avoid oscillations of .solutions. Different algorithms 

may have a different choice on the heuristic factor [Fischer et ah, 2006, Gupta and 

Kumar, 1997,Borkar and Kumar, 2003, Raghunathan and Kumar, 2009]. Another type 

of first-order method to address the constrained optimization, namely the Frank-Wolfe 

algorithm, has also been used to converge the optimal Wardrop equilibrium [Dafermos 

and Sparrow, 1969].

The (optimal) Wardrop equilibrium, in the field of telecommunication, describes a 

netw'ork state with respect to each communication flow, i.e. between each S-D pair. Al­

gorithms based on the optimal \Wrdrop equilibrium are therefore flow-level distributed. 

In their seminal paper [Cantor and Gerla, 1974], Cantor and Mario first established a 

optimal equilibrium from telecommunication point of view. They have also devised algo­

rithms that adaptively converges to the optimum. Later, Gallager [Gallager, 1977] has 

established a necessary condition and a sufficient condition for a network optimum with 

respect to each intermediate node, that is, a node-level distributed optimal Wardrop 

equilibrium. In the following, we will briefly describe the result.
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Denote the traffic generated at node i addressed for node j as Ti{j). Let be

the ratio of outgoing traffic of node i that is sent through node k addressed for node j. 

Then, the necessary condition for the network optimum is

for each node i, and each destination node j 7^ i, and link {i,k) G £,

dC{F) J=7i,j, if > 0
(3.12)

> 7ij, if (j)i,k{j) = 0

where is some constant value - an equivalence to in the flow-level distributed 

distributed Wardrop equilibrium. The sufficient condition for the network optimum is 

for each node i, and each destination node j 7^ i, and any link {i, k) G £,

, , dC{F) ]=Cij, if<^i,fc(j)>0
^i,k\Ji,k)~h piq-( A\ 1 (3.13)

where Ci^kUi,k) is the cost over the link (i, k) subjected to link traffic fi^k and C[f^{fi^k) = 
dCi kift.k) • derivative cost of the link. 0 i is some contant for each link. It is

worth noting that in the sufficient equilibrium (3.13), - first derivative cost to the

traffic generated at node A: - is used as opposed to the first derivative cost to all

traffic sending out from k to is essentially the merged first derivative cost of

all paths from node i to node j. It can be calculated hop by hop as

dC{F) _ ^ r , dC{T).
dTiij) (3.14)

which is a proportional average of marginal costs through all potential paths.

Adaptive algorithms can be applied to converge to the sufficient condition. That

is, each node i decreases traffic through a next hop k if C'-j,{fi^k) + ^Tku] 

correspondingly increases the traffic through a next hop k if C[^{fi^k) + i® small.

Segall and Sidi [Segall and Sidi, 1981] extend the basic adaptive algorithm to better

^This is because that fk{j) is the sum of traffic generated at node k, i.e. Dk{j) and traffic that node 
k relays for other nodes. The value includes both and first derivative cost of upstream
traffic beyond the control of node k
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handle topological changes. The value of first-derivative costs of each link

{i,k) can be estimated by the perturbations technique [Cassandras et ah, 1990,Guven 

et ah, 2004],

Route discovery and maintenance are not considered in general by existing optimal 

routing algorithms. A common choice is to leave an open design space for potential 

route discovery algorithms. At each node i, a set of neighbours, denoted as are

blocked from forwarding i's traffic to destination j. Optimal routing algorithms aim to 

achieve the distributed optimal Wardrop equilibrium on the unblocked neighbours. This 

method is also known as the blocking technique. In existing optimal routing algorithms, 

the selection and maintenance of the blocking set Bi{j) are preliminarily addressed. For 

example, it can be based on the rule of strictly decreasing derivative costs along inter­

mediate nodes to a destination node [Gallager, 1977,Segall and Sidi, 1981], which affects 

the convergence of the gradient descent method. Furthermore, they can not guarantee 

loop-freedom in the presence of topology changes, which is left for multipath routing 

algorithms to address. In theory any multipath algorithms that discover all potential 

paths can be used in conjunction with a first-order optimal approach. However, as we 

have discussed previously in section 2.5, in order to approach a network optimum under 

practical considerations, it requires a multipath algorithm that is specially designed for 

optimal routing.

One notable example is the feasibility-condition based multipath routing algorithm 

MPDA [Vutukury and Garcia-Luna-Aceves, 1999]. The feasibility condition-based mul­

tipath routing algorithm can be used to discover and maintain multiple loop-free paths 

at all time. In addition, the averaged merging of derivative costs(3.14) is approximated 

with the minimum derivative cost of next-hops:

dCiB)rj . , / , , dC{F)-.
dTk(j) ~ (3.15)

As we have discussed, such a choice establishes an order of intermediate nodes and 

eliminates loops. Another advantage of this approximation is a faster convergence than
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algorithms using averaged merging. Equation (3.14) implies that the first derivative 

cost, and correspondingly the load distribution of upstream nodes are affected by the 

load distribution choice of downstream nodes. For example, node i distributes traffic 

over its neighbours based on C[f.{fi^k) + ^ ''^here is depended on

k's distribution V/ G A4- The approximation (3.15) decouples this connection,

therefore sees a faster convergence than algorithms based on (3.14). However, because 

costs are approximated, the final solution is suboptimal.

Gallager’s result has been proposed for wired network with link costs, i.e. Ci,k{fi,k)- 

However, given an analytical cost model of wireless communication that meets the con­

dition of convex increasing, first-order methods can be used to optimize wireless routing. 

For example, Xi and Yeh have derived a cost model based on the signal-to-interference- 

plus-noise ration (SINK) and M/M/1 queueing model [Xi and Yeh, 2006]. A gradient 

descent method is used with this cost model. The major challenge of first-order methods 

in wireless domain lies in the design of cost models rather than routing algorithms.

3.4 Netwon-based Methods

In this subsection, we discuss routing algorithms that are based on Newton’s method. 

Newton’s method is a second-order algorithm. It provides fast convergence compared 

to first-order methods. Meanwhile, despite this merit, Newton’s method imposes great 

challenges to the design of a distributed routing algorithm. We first present the mathe­

matical background of Newton’s method.

3.4.1 A Mathematical Background of Newton’s Methods

Similar to the pattern we describe the first-order gradient-based method, we will first 

describe the rationale of Newton’s method in an unconstrained case. Then we will discuss 

separately techniques to tackle equality constraints and inequality constraints.
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3.4.1.1 Unconstrained Optimization

Newton’s method is a second-order optimization approach in the sense that it uses the 

second-order Taylor approximation of the cost function at each iteration. Namely,

-f (3.16)

(FciZ)
~FW

where V"C(J^) =
dfldfn

d^C(T)
\df„dfi

is the matrix of second partial derivatives,
d^C{T)
JdfF^/

i.e. hessian matrix, of the cost function. In order to minimize the objective cost function,

we need to make the change of the cost as negative as possible, i,e. to minimize 

C(jr(f.+i)) _ (7(jrW) = VC'(7’(‘))^A7'(‘) -1-

The right-hand side of the above equation is essentially a quadratic function with respect 

to AT’t*), whose minimum value value occurs at

AJ'W - -V2C(7'W)"^VC'(J’W)

This gives the Newton direction. Therefore, at each iteration of Newton’s method 

jrit+i) ^ jr(t) +

The step size a in Newton’s method can be decided in the same way as in the gradient 

descent method: constant, predefined decreasing and dynamic computed. In addition, 

during the convergence process, once is within a certain neighbourhood of the 

optimal solution, more specifically if ||VC(J^^‘^)||2 < ?? for certain positive t], Newton 

method takes a = 1 and converges quardatically to the optimal solution. This stage is 

called the quadratically convergent phase. The stopping criterion of Newton’s method is 

based on a value called the Newton decrement A, which is defined at iteration t from

A2 = A7'(‘)^v2C(J’(*^)Ajr(‘) = -VC(7'(‘))^Ajr(^)
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It can be shown that A^/2 is an second-order approximation of — T*■ Newton’s 

method stops if A^/2 < e for a predefined small positive e

In addition to the fast convergence rate, another important feature of Newton’s 

method is afhne-invariant. That is, the minimization over J- = AZ -|- b has the same 

convergence as the minimization over Z

minimizejrC {J-) minimize^ C{AZ + b)

This is an important property that enables us to manipulates the handle variables with­

out reducing convergence rate. As we have discussed previously, through a proper affine 

transformation, linear equality constraints can be eliminated from a problem. In next 

subsection, however, we present a different angle to tackle the equality constraints. The 

technique is equivalent to an affine transformation but does not require us to find the 

affine transformation matrix A and a solution to AZ = b.

3.4.1.2 Equality-Constrained Optimization

We shall gradually add constraints towards an optimal routing problem. In this scene, 

we consider an optimization problem where only linear equality constraints are present, 

that is
minimize y{x) (3-17)

subject to Ax = b

where A : x € b G The necessary and sufficient optimality

condition of the problem (3.17) is that there exist a column vector u G

Vy(x) + A^u = 0 

Ax = b

pcmx 1 such that

(3.18)

Here we use the term y{x) instead of C{Z) because we are not applying the optimality 

condition to the original problem. Once again, we can approximate the objective cost
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function at each iteration t with a second-order Taylor expansion and try to minimize 

the change of cost, subject to the equality constraints. We have

minimize^_^(t) ^

subject to -f = b

which is the minimization of a quadratic function with respect to in the form of

(3.17) . Differentiating the quadratic function in gives the gradient, i.e. Vy(x) in

(3.18) , as V^C(J^(*^)A/'^*^ + With trivial modification, the system (3.18) can

be transformed to

(3.19)A 0 j 0

where v G is a dual variable introduced for cm equality constraints. (3.19) is a

linear equation system with cm+n variables and cm+n equations. It is usually referred to 

as the KKT system. At each iteration, the equality-constrained Newton’s method solves 

the system (3.19), which gives the Newton direction AT^^'> and an auxiliary variable u. 

It follows the same stopping criterion as Newton’s method in the unconstrained case.

It is important to note that one premise of the system (3.19) is that the current 

solution is already feasible, i.e. = b. This assumption, however, may not always

hold in practise, due to an infeasible initial solution or a changing environment. Adding 

the discrepancy between the current solution and the constraints to AJ-^^\ it follows

V2C(7'(*)) \ \ _ / VC'(J'(‘))

A 0 J [ ly J y - b
(3.20)

If the step size a = 1, then one step will correct the solution back to feasible domain. If 

the step size q < 1, then it may take multiple iterations to draw the solution feasible. 

In the domain of the optimization theory, system (3.20) is called Newton’s method with 

infeasible start.
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3.4.1.3 Inequality-Constrained Optimization

If both equality and inequality constraints are presents in an optimization problem, the 

equality constraints can be addressed using the techniques described previously. In the 

following, we describes techniques to address purely the inequality constraints in New­

ton’s method. Similar to approaches in first-order methods, the inequality constraints 

can be addressed via two types of manners: 1) to project an unconstrained step to 

feasible domain; 2) to compute a search direction while considering constraints.

The projection method that we have described in subsection 3.3.1 can be used in 

conjunction with Newton’s method. Assuming Pjrx)[-] is the projection function of the 

feasible domain, the projected Newton’s method can be described as:

- qV2c(.F(‘))-1VC(.T('))]

In case only non-negative inequality constraints are presents in an optimization problem, 

a notable result can be found to reduce the complexity of the projected Newton’s method 

[Bertsekas, 1981]. For the following problem

minimize C{P) (3.21)

subject to 7^ ^ 0

where ‘V” is an element-wise comparison, Bertsekas proposes to identify the binding 

constraints during iterations. A binding constraint of one element fi indicates that the 

current solution has stepped on the boundary of a feasible domain, i.e. /, = 0 but still has 

an urge to decrease, i.e. dC{P)/dfi >0. If a constraint is binding, we can simplify the 

computation of Newton’s method to consider less in that dimension. More specifically, 

define the set of indices of binding constraints = {i | = 0 & > 0}-

is a reduced inverse hessian, where off-diagonal elements are set as zero

Z)g = 0 Vf €2+, j = l...n 

The step of the projected Newton’s method is written as:

Pit)
proj
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where is the projection to positive orthant. Because part of is reduced to 

diagonal elements only instead of a full inverse of the hessian matrix, the computation 

complexity of the projected Newton’s method is reduced. It has been demonstrated that 

the projected Newton’s method retain the superlinear convergence rate of the classical 

Newton’s method.

Through affine transformation, the result for non-negative constraints can be ex­

tended to optimization problems with box constraints, i.e.
minimize C{T)

subject to aiou, < A7 < a high

Although the constraints are more complex, the main motivation remains the same: 

identifying the binding constraints to reduce the computational complex at each iter­

ation. This type of methods is also known as the active set algorithms. Many recent 

progress can be found in the domain of active set algorithms [Facchinei et ah, 1998,Hager 

and Zhang, 2006].

In contrary to the projected Newton’s method, another angle to tackle the inequal­

ity constraints is to bring the constraints into the computation of search directions in 

Newton’s method. The barrier method introduces “punishments” on the overall costs in 

order to prevent the violation of inequality constraints. Consider the following problem,

minimize C{J-) 

subject to gi{J^) <0 i = l...m 

AJ = b

A common choice is to add the logarithm barrier function
z=l..m

to the objective function. The inequality constraints can be removed from the problem.

minimize C{J^) — g.'^^log{—gi{T)) (3.22)
i=l

subject to AJ^ = h
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The barrier function increases to infinity if gi{J^) > 0. The scalar value /t is a small 

positive number that controls the “punishments”. Newton’s method is used to solve the 

equality constrained problem. The “punishments” keep each Newton iteration within 

the original feasible domain. At each iteration, the search direction is computed as

V2C(J'W) + A'^ \ ( AT'W

A

I VC'(J'W) +

V 0
(3.23)

where

V^iJrW) ^ 9^im

In case the inequality constraints are linear, the above hessian of the barrier function 

reduces to its first term; = gYllLi Because the

added logarithm barrier function is non-zero and increasing within the feasible domain. 

The solution computed from the barrier method is an approximation of the optimal 

solution. As g approaches to zero, the solution approaches to the optimum. The 

interior-point method introduces an outer iteration that solves the problem (3.22) with 

a diminishing u.

Algorithm 2 Algorithm of the interior-point method
Starting with an initial value g = g^^^ > 0, 0 < 7 < 1 and e > 0 repeat:

1. Find the solution iF* to the equality constrained problem (3.22) 

using Newton’s method

2. Update the solution: F = F*

3. Update the control scalar: g = ^g 

unitl the stopping criterion is satisfied; mg < e

The stopping criterion mg can be shown as the optimality gap between the solu­

tion of Newton’s method and the optimal solution of the original constrained problem.
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The interior-point method involves an inner loop of the equality-constrained Newton’s 

method and an outer loop that decreases u to zero. Despite the nested iterations, the 

interior-point method retain the superlinear convergence rate of Newton’s method and is 

often superior to the projected Newton’s method. A more advanced form of the interior- 

point method is called the primal-dual interior-point method. We omit the deduction of 

the method, but simply give its Newton’s step as follows:

Vc(.FW) + E”iA.V25,(^W)

-diag(A)D5(7’(^)) -diag(5(J'(‘))) 0 aaw

V ^ 0 0 J ^Ai/W !

(AC(J'W) -b Dg(J'W)7’AW -f- 

-diag(AW)£?(7'W) - (l//i)l 

- b

where DgiJ^) - {Vgi(^),..., 1 1}^. A G imx 1 ,z/ G pcmx 1

(3.24)

are dual

variables introduced for rn inequality-constraints and cm equality-constraints. At each 

round, the n -t- 7n -b cm equations with n -b in -b cm variables can be solved for an update 

AA^*) and An^‘). Replacing (3.22) with (3.24) We refer interested readers to other 

books for detailed descriptions [Boyd and Vandenberghe, 2004].

3.4.1.4 Iterative Computation of Newton’s Direction

The Newton step at each iteration HAJ^ = b can be large and very expensive to solve 

analytically. A common approach to use numerical methods to iterative compute the 

solution of the linear equation system. Some of the widely used iterative methods in­

clude: conjugate gradient (CG), preconditioned conjugate gradient (PCG) [Shewchuk, 

1994] and matrix splitting techniques such as the Jacobi method. If the matrix H is 

diagonally dominant and sparse, a recent developed iterative method called Gaussian 

belief propagation [Shental et ah, 2008] has been demonstrated to converge fast. In 

addition to reduce the computation complexity, some of the method can be exploited for
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distributed implementation. For example the GaBP and certain form of matrix splitting 

technique can be implemented in a distributed manner, which we will cover later. We 

refer interested readers to [Boyd and Vandenberghe, 2004] for more details.

3.4.1.5 Diagonal Approximation of the Hessian Matrix

In Newton’s method, the inverse of the Hessian matrix is the primary source

of computation and coupling between each component. A practical simplification is to 

approximate the Hessian V^C'(J^) with its diagonal elements only, i.e. diag (V^C(J^)). 

To see this, consider a diagonal approximation to the unconstrained Newton step:

d^C{T)
IdW

5^A/2 dC{T)
dfn

In this way, the inverse operation is trivial. More importantly, components are separated 

from each other: each variable fi can be computed by one equation. Compared to 

iterative methods, such as the conjugate gradient method, a diagonal approximation of 

the Hessian matrix can not guarantee the quadratic convergence rate of the classical 

Newton’s method. However, it offers a great deal of practical simplicity. It exhibits a 

superior convergence in comparison to the gradient descent method.

3.4.2 Notable Results

Newton’s method shows a great advantage over first-order methods in convergence rate. 

Extensive studies can be found in applying Newton’s method to telecommunications, 

which dates back to early 1980s. Nonetheless, it remain an ongoing study as many open 

issues exist. In the following, we will present and discuss some of the most notable 

optimal routing algorithms.

70



3.4.2.1 Projected Newton’s Method

The projected Newton’s method [Bertsekas, 1981] can be used to address problems with 

linear inequality constraints. In a later work [Bertsekas and Gafni, 1983], Bertsekas and 

Gafni models network routing as:

minimize C{F) 

subject to 0

(3.25)

Y.fp = % WweW
p€V-w

where W is a set of communications and Tw is the traffic demand of a communication w. 

The equality constraints are eliminated by an affine transformation. The non-negative 

constraints are addressed by a projected Newton’s method. Off-diagonal elements of 

the Hessian matrix, V^C'(Z), at position (i,j), i j are set to zero is if either path i 

or j meet certain criterion. The criterion is as follows: th path is not in use but has 

a positive first derivative cost. This off-diagonal elimination reduces part of the com­

putation load in solving Newton’s step. The remaining non-zero off-diagonal elements 

couples the different communication in the computation of Newton’s step. Therefore, it 

is a centralized algorithm. The conjugate gradient method is used to iteratively solve 

each Newton’s step.

The approach exhibits a faster convergence in primary Newton step compared to 

gradient-based routing algorithms. The major drawback of this approach is that it is 

a centralized algorithm. The conjugate gradient method introduces multiple iterative 

steps to each Newton step, which requires large scale communications. The capacity 

constraints are absent, which leads to potential overflow of traffic at intermediate nodes.

3.4.2.2 Second-Order Extension to Gallager’s Algorithm

Recall that Gallager’s theorem [Gallager, 1977] establishes the sufficient and necessary 

conditions for an optimal solution at each node, as opposed to the classical optimal
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A\'axdrop equilibrium for each communication flow. It essentially divides the network 

optimization into a number of optimization at each node. We can formulate each sub­

problem as node i minimizes network costs by adjusting its traffic distribution, fi^kU) 

over each neighbour k to each destination j, namely

minimize^^^ fcO)'*).

subject to > 0, VA;, j

Based on the formulation of Gallager’s result [Gallager, 1977], Bertsekas et al. [Bertsekas 

et al., 1984] applies second-order Taylor expansion to the objective function and translate 

the subproblem at node i for a given destination j into

minimize

subject to -f > 0,

A4>i^k{j) = 0, (l)i,k = 0, V/c G Biij)
keMi

where fi is the aggregated traffic at node i, S A/i}^ is a column

vector of traffic ratio over each outgoing link of node i addressed for destination j. 
VijC{J-) = {C'ii^{fi^k) + dTkfj) ^ A/i}^ is a column vector of first derivative costs 

of paths from i to j. Correspondingly, is the matrix of second derivatives.

Its diagonal elements are C"i^{fi^k) + The authors replace with its

diagonal approximation diag(V^jG(A’^^^)). The Newton step for each node can be locally 

computed as:

= max{0,(^j,fe(j)W jm
Jt (dnurP' (3.26)

The equality constraints are eliminated by introducing a dual variable Wi{j). Non­

negative constraints are addressed by a projection method, i.e. max{0,...}. This equa­

tion system consists of |A/i| -I- 1 variables, 4>i.k{3)^^'^^'' k = l...|A/i| and and
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\Afi\ + 1 equations. C'-, C"are link cost information. is path derivative

cost, given by equation (3.14). second derivative cost of path k. It has

been demonstrated that the node-level distributed optimal routing algorithm remains 

convergent [Bertsekas et ah, 1984].

It is worthy noting that the node-level distributed manner comes from the division 

of the network optimization problem into subproblems. In fact, this division resembles 

a primal decomposition technique, which we will present in section 3.5. The diagonal

\/k,l G Mi, forapproximation of the Hessian matrix avoids the usage of

each node i, which can be communicationally expensive to gather.

dTk {j)dTi(j) ^ ^ j)Qa,bi^i
{a,b)€C

(3.27)

where Qa.bi^jj) portion of traffic Tk{j) that travels through link (a,b). It involves

information exchange between node i and all links connecting i and j. The information 

required for second derivative costs can not be merged as equation (3.14) for first deriva­

tive cost. Therefore, a large amount of information needs to be exchanged. Avoiding the 
use of QrkU)^i(3) Newton’s step is the major merits of the diagonal approximation.

In fact, if the diagonal elements of the Hessian, are computed using the

general formula 3.27, large scale information exchanges are still required. Instead, the 

authors proposes to lower bounds of i which simplifies the computation but slows

down the convergence.

In summary, the major issue left open is the computation of the second derivative 

path costs. Without a proper merge, it requires a large amount of information exchanges 

to compute true second derivative costs.

Another issue of the algorithm is inherited from Gallager’s algorithm. Upstream 

nodes are affected by the load distribution of downstream nodes. More specifically, the 

Newton’s step for each node, as in equation (3.26), is dependent on its overall flow 

That means, the subproblem is not solved. Each node computes one step then the
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subproblem becomes a new one. It is easily seen that the convergence pattern is altered 

from a classic Newton’s method.

3.4.2.3 Interior-Point Method in Network Optimization

Routing algorithms that we have discussed so far in this section apply certain projections 

to Newton’s method. Compared to projection methods, the interior-point Newton’s 

method shows a superior convergence in addressing inequality constraints and is suitable 

for large scale optimization problems.

Zymnis et al. apply a specific interior point method, namely a primal-dual interior- 

point method, to the network utility maximization problem(3.7) [Zymnis et ah, 2007]. A 

preconditioned conjugate gradient method (PCG) is used to solve Newton step in a trun­

cated manner. A satisfying convergence rate is demonstrated via statistical evalutions - 

for large networks with 2 x 10® links, the algorithm converges within 25 iterations.

This approach, however, should be seen as a proof-of-concept result for the iterior- 

point method in networking: It operates in a centralized manner. In the following, we 

will present algorithms that address the distributed issue of interior-point method. In 

this subsection, we first discuss an approach called the m.atrix splitting technique. In 

next subsection, we describe the Gaussian belief propagation method.

3.4.2.4 Matrix Splitting Technique

In this subsection, we describe two algorithms that apply matrix splitting technique to 

achieve distributed optimization. Wei et al. develop a matrix splitting method that can 

be used to decouple components of a linear equation system and apply this method to a 

network utility maximization problem for a flow-level distributed algorithm [Wei et ah, 

2010]. Jia et al. apply Wei’s matrix splitting method to a different formulation, which 

gives a node-level distributed optimal routing algorithm.
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1) A matrix splitting method for distributed NUM algorithm

Wei et al. propose a distributed Newton method for network utility maximization.

i=S
maximize (3.28)

?;=i

subject to TZT < C

With the help of auxiliary variables £ such that TZT + £ = C, the problem can be trans­

formed into non-negative constraints and equality constraints. Applying the interior- 

point method, the problem becomes:

S S+L
minimize y{x) = — Ui{xi) — fi ^ log{2

i=l

subject to Ax = C

i=l

where x = {T,£}, ^ = {TZ,I}. According to equation (3.19) and (3.23), this equality 

constrained problem can be addressed by iterative steps:

AxW = -V2y(xW)"^(Vy(xW) + A^i^W) (3.29)

(AV2y(xW)“iA^)izW = -AV2y(x(‘^)-^Vy(xW) (3.30)

Since the utility function Ui{T), i = 1...S is defined on each single-path communica­

tion, y(x) is separable with respect to each x,, i = I...S + L. Both V^y(x) and V^y(x)“^ 

are diagonal. The primal step (3.29) is separable therefore can be solved locally at each 

source node and each link, given the value of the dual variable However, the dual 

step (3.30) is not separable and can not be directly addressed in a distributed man­

ner. The major contribution of Wei’s distributed Newton method is to apply a matrix 

splitting technique to solve the dual step distributedly. For the purpose of convenience, 

denote G — AV^y(x^*))“^A^ and b = —AV^y(x(*^)“^Vy(x(*)). The dual step (3.30) is 

written as

Gv^ = b 
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where G is & L x L matrix, and b are both L x 1 vectors.

Matrix splitting is a type of iterative method to solve the above equation system. It 

splits G = M + N and solves

^ _ ;vrp(A:) (3 31)

If a matrix splitting approach converges, as —> oo, the value of approaches 

which is the solution of equation (3.30). In fact, the Jacobi method and the Gauss- 

Seidel method can be classified as matrix splitting approaches.

Wei et al. propose to split G into three parts: 1) a diagonal matrix D with diagonal 

element = (G)i^i\ 2) a residual matrix B = G — D; 3) a diagonal matrix B with

diagonal element Bi_i = Therefore, we have

G = {D + B) + {B - B)
M N

whereD + B is diagonal.

Wei’s algorithm is based on a preliminary attempt [Jadbabaie et ah, 2009]. It has 

been proved that as long as the matrix splitting approach converges to a certain neigh­

bourhood of the solution to dual step, i.e. ± e for some small error e, then the 

interior-point Newton’s method converges quadratically to a neighbourhood of the net­

work optimum. In a subsequent work [Wei et ah, 2011], the convergence of the matrix 

splitting technique is proven and analysed.

To illustrate how this approach works in detail, let us consider an example as shown 

in Fig. 3.4. As shown in the model (3.28), the objective is to maximize Ui{Ti) + 1/2(72). 

The corresponding matrices TZ, A, x are:

fTi\

%
X = n

r2

V^J

1 o' 1 0 1 0 o'

7^ = 0 1 A = 0 1 0 1 0
ij 1 0 0 1/
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Fig. 3. 4: Consider two single path communications T and Ti,which are originated from 

node S\ and S2 respectively. Node D is their destination. Denote traffic over three links 

as /i, /2 and /s respectively

where ri = Ci — Ti, r2 = C2 — T2 and — Ti — T2 are the auxiliary variables for

capacity residual at each link. The transformed objective function y{x) is

2 5
y{x) = - ^ Ui{xi) - log{xi)

i=l

The components of this objective function include 2 sources and 3 links. Its gradient 

and inverse of Hessian are as follows,

+ 0 0 0 o\

Vy{x) =
-U2ix2) ,,

Xl
_ JL

V

_iLX3
^ILX4
^JLX5

V'^y(x) ^ =

\

0

0

0

0

{—U2 {X2) + ^) ^0 0 0

0 ^00
X3

0 0-^0

0 0 0 iiy

For the purpose of convenience, we denote individual element in Vy(x) as Qi and denote 

diagonal element in as hi, where i is the index of elements. It should be noted

that gi and hi can be computed at each component with only local information.
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Accordingly, we have

G = AV^y{x)-KA^

/l 0 1 0 0^ 

0 10 10 

yl 1 0 0 ly

(hi 0 0

0 /l2 0

0 0 h3

0 0

\0 0

0

0

0

0 

0

0 ^4 0 

0 0 hs J

o\ (I 0 l\ 

0 1 1 

1 0 0 

0 1 0 

VO 0 1/

hi -)- h2 0 hi '
= 0 h2 + h 1 h2

hi /l2 hi -p /l2y

The splitting of G gives:

(2hi + h 3 0 0 ^-hi 0 hi ^

M = 0 2/12 -l- /14 0 N = 0 -/l2 h2
1 0

0 2hi -t- 2/12 -f h-s^ y hli h2 -hi - /i2y

Based on these matrices, according to equation (3.31), the dual step can be

computed as:

-higi-hsgs
2/li+/l3

-(fc+1) -h2i>['^^-h2g2-h.4g4
^2 — 2h2+h4

-(fc+1) _ (fcl+/l2)j>3*’^-fcli>)'‘^-fc2t^2*^^-fcigi-fc2.92-fc5g5

(3.32)

2/11+2/12+^5

The primal step can be computed given the final solution to the above

iterations

ATI = Axi = -(hi^i + hiu(^ + hiv^"’)
(3.33)

A72 = Ax2 = -(^252 + h2r'2*^ + h2l'3^)

In summary, Wei’s algorithm includes three layers of iterations. The outer iteration 

is the interior-point iteration, as shown in Algorithm 2. The middle iteration is the
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equality-constrained Newton iteration. Each source node starts with an initial feasible 
traffic 7^^°^ and 7^^°^ With traffic transmitted, at each round t, each source node can 

calculate gi,hi. These values are forwarded to all links of its corresponding path. The 

inner iteration is the matrix splitting method. Given gi, hi from source nodes, each link 

iteratively irpdates the dual step . At each step of the inrrer iteration, each link share
-(/c)its currerrt ' with all links that running the same flow. That is, information exchange 

between link 1 and 3, between link 2 and 3. A new step is computed as stated in (3.32). 

Once corrverges to current inner iteration stops. Links send this information 

back to source nodes. The primal step at each source is computed as stated in (3.33).

As shown in the example, Wei’s algorithm is flow-level distributed. It uses interior- 

point to address inequality constraints. The major contribution is the application of 

a matrix-splitting technique to solve the Newton step. It has been proven to converge 

superlinearly at the Newton iteration. However, although the matrix splitting technique 

proposed can decouple an arbitrary matrix, Wei’s algorithm relies on the separable struc­

ture of the objective function. That is, it addresses a single path utility maximization 

problem. The matrix splitting method introduces extra iterations for each Newton step. 

More importantly, at each step of inner iteration, all links belong to the same flow need 

to share their dual step It incurs frequent large scale information exchanges.

2) Applying Wei’s matrix splitting to a node-level distributed optimal 

routing algorithm

Let us now investigate further on the major issue of Wei’s algorithm. In Wei’s 

algorithm, the coupling dual step (3.30) is introduced from the equality-constraints. In 

the previous example, there are three equality-constraints: At each of the three links, 

the traffic runs through the link plus the residual of the capacity equals the capacity of 

the link. A dual variable is introduced for each constraint, ^1,^2 and 1/3 respectively. 

That means, the three duals are coupled via the mutual flows through them. The matrix

splitting technique essentially replaces the coupling in computation, say between i> (fc-t-i)
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and with the copy of previous step, i.e. and as in the first equation of

(3.32). In this way, computation of the dual step can be executed locally at each link, 

but all coupled links need to exchange their i>i at each iteration.

Following Wei’s result, Liu and Sherali develop a multipath routing algorithm that 

maximizes utility function of each communication flow [Liu and Sherali. 2012]. Instead 

of source flow 71, they use link rate for each flow as handle variables. Equality- 

constraints are introduced from flow reservation at each node: the sum of outgoing traffic 

- to other nodes or to application layers - equals the sum of incoming traffic - from other 

nodes or from application layers. Each dual variable r'j is only coupled with neighbours 

who it shares links with. As opposed to Wei’s algorithms, information exchanges happen 

between neighbour nodes in the matrix splitting iterations. The major contribution is 

applying the approach of Wei’s algorithm to the different formulated problem, which 

gives node-level distributed routing algorithm.

However, this approach achieves its distributed manner by introducing more variables 

and thus more equality-constraints. For instance, for the simple network shown in Fig. 

3.4, a formulation using link rate for each flow, as suggested by Liu and Sherali can be 

given as:

maximize 171(71) -I- U2{T2) 

subject to // = 71; /| = 71

/s = fl i fi — f2 

0<fl< Cl

0 < /I < C2 

0 < /I + /I < C3

Applying the same affine transformation as Wei’s algorithm and using interior-point
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method to eliminate non-negative constraints, the problem can be translated into:

minimize -f7i(Ti) - t/2(7i) - ^i{log{fl) -h logUh

+log{fl) + logifi) + ^og{ri) -I- log{r2) + logir^)^

subject to fl = Ti; /| = 7^

/a ~ fi'i fi — 

fl + ri=Ci

/I + ^2 — C2 
/a + /I + ’’s = C3

It is a problem with 9 handle variables and 7 equality-constraints. Adding one dual vari­

able for each constraint, the linear equation system of Newton’s step is 7 x 7, compared 

to flow-level distributed step with 3x3 system. It can be easily seen that, translating 

the handle variable from flow rate to link rate for each flow, the size of the linear system 

at Newton’s step increases from the number of links \L\ x \L\ to

(1^1 + 51 511^1) ^ (1^1 + 51 5Z H)
weWp€Pw weWp&Pw

where |p| is the length of a path p. Although it can be argued that the increased 

computation overhead imposes little challenge to moderate devices, a larger equation 

system incurs more iterations to the matrix splitting method at each Newton step. In 

particular, for a wireless network where our interests lies, flows and links are coupled to 

a great extend. It is unclear whether this distributed algorithm can gain any benefits 

compared to Wei’s flow-level distributed algorithm. Unfortunately, their results lack of 

statistical or analytical justification. Furthermore, their routing algorithm relies on the 

separable structure of the objective function and can not be applied to cost minimization. 

Also, a utility maximization routing may likely lead to excessively long paths and large 

delays [Zymnis et ah, 2007].
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G, ,A', + G| 2^', + G, 3X3 + G, 4X4 - /?,

Gj ,X, + Gt 2-^'2 + G2 3X3 + 0X4 = /72

^^3 I”^! ^^3 2*^2 ^^3 3*^3 ^ ^^3 4*^4 ”” ^3

G4 ,x, + Oxj + G43X3 + G44X4 =

Fig. 3.5 : An example of constrain graph; the linear equation system to the left can be 

translated to a constrain graph to the right. In the GaBP algorithm, Each node starts 

with a parameter set and neighbours iteratively exchanges messages Aij.

3.4.2.5 Gaussian Belief Propagations

In the following, we present the rationale and application of an iterative method, namely 

the Gaussian belief propagation (GaBP) method, in a distributed network optimization 

algorithm. Belief propagation (BP) is a message passing algorithm to conduct inference 

on probabilistic graphical models. GaBP is a type of BP algorithm where the underlying 

probability density function (PDF) the Gaussian function, that is, a normal distribution.

The GaBP algorithm can be used to distributedly solve a linear system Gx = b, on 

the premise that G is symmetric [Shental et ah, 2008]. The rationale of applying GaBP 

algorithm is as follows: We can construct a joint normal distribution whose mean value 

is the optimal solution of linear equation system, i.e. x = G~^b. Such a construction 

can be described by a function p{x):

p{x) = =M{p,G-^)

where p, = G~^b and Z is some factor matrix. In order to implement in a distributed 

manner, we need to find separately the mean value of the marginal distribution for each 

component, namely p{xi). This can be achieved with a BP algorithm, through inference 

between components.

The operation of GaBP can be described with a graphical model, as shown in Fig. 3.5.
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Each component Xi corresponds to a node in the graph, which represents a priori normal 

distribution. The distribution is specified by an inherent parameter set 

namely = bi/Gi^i, h.~l = Sf = where G M is the mean and G E

is the inverse of the variance. The coupling relation between two components Xi and 

Xj, which exists if Gij — Gj^i ^ 0, corresponds to an undirected link connecting node 

i and node j. The link represents an exponential function , with an inherent

parameter Gjj.

At each round fc, each node constructs and shares messages with all its neighbours. 

The message sent from node i to node j is a parameter set of a joint normal

distribution. Starting from = 0, the parameter set is updated from

inherent parameters of nodes and links, as well as previously received messages:

Af/" = -Gh(A.J + E aS)“‘(fc)
T7l€Ni
m^j

(fc+1) -G-'(A,,«,+ E aS'cS)
m^Ni

Once the algorithm converges, the mean value of the marginal distribution for component 

Xi is given as:

Mi
m€Ni
m^j

meNi
m^fij

which is the value of xt in the solution x = G~^b.

It should be noted that, although the theory behind the GaBP is the probability 

inference, the algorithm itself is a message-exchange algorithm that operates purely 

with the parameters of nodes, links and messages. We are interested in its application 

to distributed network optimization problem. For more details of the GaBP algorithm, 

such as convergence condition, we refer to a recent study [Bickson, 2009].

Inspired by its fast convergence and distributed nature, Bickson et al. [Bickson et ah, 

2009] apply the GaBP algorithm to the centralized primal-dual interior-point method- 

based network optimization algorithm [Zymnis et ah, 2007]. At each Newton’s step, the
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GaBP algorithm is used to solve (3.24) iteratively and distributedly. Each component 

corresponds to a single path communication flow w. The inherent parameters bi^^/Gi^i 

and of each component can be retrieved locally.

Like the centralized NUM algorithm [Zymnis et ah, 2007], the objective function in 

the distributed NUM algorithm [Bickson et ah, 2009] is separable utility function for each 

communication flow. Because the Hessian matrix is only part of the matrix G and that 

the GaBP algorithm decouples each components with regards G, the same distributed 

algorithm can be applied to coupled objective function without modifications. Gij can 

be get where a flow shared capacity with another flow.

The distributed NUM algorithm is flow-level distributed algorithm, as the GaBP 

decouples components - different communication flow in this case. The authors suggest 

broadcast of messages from one flow to all its coupled flows. One of its problems is that 

two flows may be coupled with each other at different links. That means, one link in 

the probabilistic graphical model, as shown in Fig. 3.5 may consist of multiple physical 

locations. Broadcasting at all locations may lead to duplication and confusions. Either 

by unicast or as suggested by broadcast, it is yet to be addressed how to share messages 

in an actual networking algorithm.

3.4.3 Summary of Newton’s Method

Newton’s method is an iterative method to optimize convex problems. At each step, it 

approximates the objective function with a second-order Taylor expansion. Gompared 

to first-order methods, Newton’s method exhibits a superior convergence rate. The 

convergence of Newton’s method is affine-invariant. Linear equality constraints can be 

eliminated by affine-transformation. Or equivalently, through the KKT system(3.19). 

Inequality constraints can be addressed by projection method. Especially if the inequal­

ity constraints are linear, projection method is a simple yet satisfying approach. A more 

advanced choice is the interior-point method. The basic interior-point method intro­

duces a barrier function for each inequality constraint. In order to keep solution within
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the feasible domain of a problem, barrier functions introduce extra penalty as a solution 

approaches infeasible domain. Interior-point method shows a faster and “smoother” 

convergence than projection method in dealing with inequality constraints.

We have reviewed some of the notable routing algorithms that uses Newton’s method. 

NUM algorithms based on Newton’s method are also included in our review. The NUM 

problem resembles the cost minimization routing problem in their mathematical models, 

with primarily difference in the objective function. Many results of NUM algorithms can 

be applied to the optimal routing problem with little modifications.

Both the projected Newton’s method and the interior-point method can be applied 

to routing optimization problem. However, by its nature form, Newton’s method is 

a centralized approach. The major challenge to the design of a distributed Newton’s 

method lies in the computation of the Newton step, which is essentially a linear equation 

system Gx = b, at each iteration. Some iterative methods have been proposed to address 

this challenge. We have reviewed two of them that shows great promises. Wei et al. 

develop a matrix splitting technique that is convergent for an arbitrary square matrix 

G. They apply this technique to a flow-level distributed NUM algorithm. Another 

iterative method that facilitates the distributed computation of a linear equation system 

is the Gaussian belief propagation. Compared to many other iterative methods, the 

GaBP algorithm has been shown with a promising convergence rate. Bickson et al. 

has developed a flow-level distributed NUM algorithm based on the GaBP method. 

Both algorithms lacks of practical considerations in the sense that they either incurs 

large amount of communication overhead or ignored the message exchange mechanism 

completely. However, it is important to extract the mathematical merits from the actual 

algorithms: Both Wei’s matrix splitting technique and Bickon’s GaBP method decouple 

the computation of each component x* using coupled value from the previous round.

We have also seen some node-level distributed routing algorithms. Bertsekas et al. 

apply Newton’s method to Gallager’s model, which was initially proposed for distributed 

optimal Wardrop equilibrium. Jiu and Sherali apply Wei’s matrix splitting technique
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to a multipath utility maximization problem with link rate of each communication flow

j'fSiS handle variable. Both approaches face issues of slowed convergence compared to 

their flow-level or centralized counterparts but lack of statistical or analytical evaluations. 

It remains an open issue whether existing node-level optimization algorithms provide a 

satisfying convergence. If not, how can we design a node-level optimal routing algorithm 

that retains the convergence rate of a flow-level or centralized optimization algorithms.

3.5 Decomposition Methods

In previous section, we have described algorithms based on Newton’s method, which 

enjoy a superlinear convergence rate. The major issue of Newton-based algorithms is that 

the computation is centralized by nature. Although there are some promising iterative 

approaches that facilitate a distributed Newton’s method, these progresses are quite 

recent and we have a small amount of network algorithms that apply these techniques. 

On the other hand, a standard approach for distributed optimization algorithms is the 

decomposition method.

There are primarily two types of decomposition methods: the primal decomposition 

and the dual decomposition. Both types of methods divide an optimization problem into 

a number of subproblems each of which can be solved separately and locally. The cou­

pling between different subproblems are represented by “interfaces” - primal valuables in 

primal decomposition and dual variables in in dual decomposition. During the compu­

tation of each subproblem, these interfaces treated as a constant. Once all subproblems 

complete their computation, based on their results, a new set of values are given to the 

interfacing primal or dual variables. Decomposition methods can be viewed as a mix 

of a second-order optimization for each subproblem and a first-order optimization for 

computing interfacing variables.

Compared to iterative methods in distributed Newton computation, decomposition 

methods are in general simple to implement. In particular, the dual decomposition
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method have an economical interpretation: dual variables between subproblems can be 

interpreted as prices for resources. Because both the optimal routing problem and the 

utility maximization problem can be regarded as a type of resource allocation problems, 

decomposition methods, especially the dual decomposition method, have attracted ex­

tensive research efforts in the domain of network optimizations.

In this section, we will first give an overview of the mathematical background of de­

composition methods. Then we review some of network optimization algorithms that are 

based on decomposition techniques. Finally, we examine the relations between decom­

position methods and Newton’s method in order to understand the nature of distributed 

optimizations.

3.5.1 A Mathematical Background

In the following, we firstly give a brief description on the Lagrange dual function of 

a constrained optimization problem. With the concept of duality established, we dis­

cuss the decomposition techniques that have been used to decentralize optimal routing 

algorithms.

3.5.1.1 Lagrange Dual and the KKT Condition

The Lagrangian L : of the constrained optimization problem (3.4) is

defined as
771 cm

L(7-, A, v) = C{:F) + ^ vM^)
i=l i=l

where. A, u are called the dual variables or Lagrange multiplier of the problem. A 

Lagrange dual function of the problem (3.4) V : ^ K;
m cm

V{X,u)= inf L{T,X,u)= inf (c{T) + TXMJ^) + TuMJ^)) (3-34)
.Fedom C .Fedom C \ ^ ^ /i=l 7=1

Because gi{J^) < 0, = 0 for any G J"D, for any A ^ 0 and any u, we have

V{X,iy) < C(.F*)
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This means that the function T>{X,u), given A ^ 0, is an lower bound of the optimal 

cost. We are interested in whether the above inequality is tight, that is whether the two 

sides can be equal. Denote as the dual variables that maximize the low bound,

namely

D(A*, I/*) = maxP(A, I/) (3.35)

It has been established that T>{X*, v*) = C{T*) if the convex optimization problem(3.4) 

is strictly feasible, i.e. there exists a feasible G TT> so that giiJF') < 0 for i = l...m. 

The value C{T*) — D(A*,i/) is refered to as the duality gap. That mean, as long as a 

convex problem is strictly feasible, we can solve it by addressing the following problem:

maximize;,^ ^ D(A, u) 

subject to A b 0

(3.36)

In the context of optimization theory, the problem (3.36) is known as the dual problem, 

correspondingly the problem (3.4) is called the primal problem.

3.5.1.2 Decomposition of Optimization Problems

Decomposition methods divide an optimization problem into a number of subproblems. 

Each subproblem can be addressed separately. This enables a distributed implemen­

tation of optimization algorithms. A master problem sits on top of and optimizes the 

coordination of all subproblems, as shown in Fig. 3.6. Firstly, with an intial setting, 

all subproblems are computed. Their information, sometimes termed as the price, is 

reported to the master problem. The master problem is computed with prices of all 

subproblems, returning a new setting to each subproblem.

There are mainly two types of decomposition methods: A primal decomposition 

method is based on the primal problem while a dual decomposition method is based 

on the Lagrange dual problem. As we have previously mentioned, an optiirization 

problem can be coupled through both the objective function and the constraints, i.e. the 

coupling variables and the coupling constraints. Because the dual variables, i.e. }, v are
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Fig. 3.6; A sketch of decomposition: The original problem is decomposed into a number 

of subproblems. The coordination of all subproblems forms a master problem.

introduced from the equality and inequality constraints (3.34), the dual decomposition 

is naturally suitable to decouple constraints while the primal decomposition is naturally 

suitaVjle to decouple the objective function. However, through transformation of the 

problem, both decomposition methods can be used to address the two types of coupling.

Dual decomposition methods are comparatively more common in distributed optimal 

routing algorithms. In the following, we will firstly describe the dual decomposition 

technique and then the primal decomposition.

3.5.1.3 Dual Decomposition

In the following, we will describe the dual decomposition method. Firstly, we show how 

a dual decomposition method addresses a problem with coupling constraints. Secondly, 

we demonstrate that with the help of auxiliary variables, a dual decomposition method 

can also solve problems with coupling objective functions. Finally, we give an overview 

of the dual decomposition method.

Consider an optimization problem with a separable objective function and coupling
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constraints:

minimize Ec^(/o
i=l

n

subject to '^gi,j{fi) ^ Cj j = 1...
i=l
n

— Tj j = I---

(3.37)

cm
i=l

fi e J'V, i - l...n

I, Tj is the equalitywhere gij : M —>■ M, Cj is the inequality constraints, hij : R 

constraints^ The set J-Vi is the separate feasible domain as a result of constraints on ft 

only. According to the definition(3.34), the Lagrange dual function of the problem(3.37)

IS

cm n
V{\v)= inf (Y^C^{h) + Y,\,[Y.gM)-Cj) + Y.^,{Y^hiMi)-T,))

1=1 j = l z=l j=l i=\
n m cm m cm

— ^ inf ^ {Ci{fi) + ^jgijifi) + ~ y ^ ~
i=i j=i j=i j=i j=i

The infimum of a function can be determined with a minimization of the function. 

Therefore the Lagrange dual function can be divided into n minimization subproblems. 

The maximization of the dual function is the master problem. More specifically, for each 

component i, the subproblem is:
m cm

minimize Ci{fi) + E
i=i i=i

subject to fi G F'D'‘

Given the set of dual variables A = {Aj},n = {vj}, each subproblem can be addressed 

by Newton’s method locally and separately, returning a set of solutions J^* = {/*}.

®We wish to emphasize that this form of constraints is a special case of the general constraints in (3.5) 
and (3.6): ElILi didifj) “G = gj{J^) and ~Tj = hj{T). That is, the constraint functions
are separable. It can be seen that the optimal routing problem fits this case. The general constraints 
can be addressed by adding auxiliary variables.
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However, the separately computed solution set !F* may not be feasible, in the sense that 

either
71

^ Cj for any j = l...m
i=l

or

Kjifi) 7^ Tj for any j = 1... cm
i=l

Once solutions of all subproblems are computed and communicated to a central compo­

nent, the infeasibility shown above may be detected. In the case of an infeasible solution, 

a naive projection method can be applied. Xamely, we can cut off the infeasible part of 

gij and hij equally among all components, which gives the subproblem for each i:

minimize Ci{fi) 

subject to 9ig{fi) < gijifi) -

hm = hAft)

fi e J'Vi

n

n

j = l...m

j = l...cm

Solving this subproblem of each component gives an feasible solution set J-*. Gathering 

the information of the feasible solution F*, the master problem can be written as:
m cm

maximizeA,,y ^^(A, v) = Xjaj -f Y^ ^
j=i j=i

subject to A ^ 0

where aj = kUt) “ Cj, bj = Y17=i “ T;’ and c = ^^^=1 Ci{f*). The master

problem is convex however may not be differentiable. It is often addressed with a first- 

order subgradient method. Each step of the master problem gives an update of dual 

variables. With the new value of dual variables, each subproblem is computed again. 

The optimization stops when the master problem terminates.
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We can also address the coupling objectives using dual decomposition methods. Con­

sider a problem with a coupled objective function:

minimize Ci(/i, /c) -t- C2(/2, /c) (3.38)

subject to /i E TV\

/2 e 7V2

where /c is the coupling variable. We can add auxiliary variables to the coupling objective 

function, so that coupling is transformed from the objective function to the constraints. 

The problem can be transformed into:

minimize fs) + C2{f2, h)

subject to /s = U 

h e TVx 

f2 e J^'D2

This problem meets the form of (3.37) and can be addressed with the dual method as 

we have described previously.

In summary, in a decomposition method, a set of initial dual variables are given 

to each component. Each subproblem is computed locally, for example using Newton’s 

method. The solutions of each subproblem* are sent back to the master problem. One 

step of the master problem is computed using the subgradient method to updates of the 

dual variables. The updates are sent to subproblems for a new round of computation. 

An interesting interpretation of the dual variables, which is often used in the domain 

of resource allocation, is that they are the price of resources. Because such a price is 

only a soft “punishment” in the sense that it will not increase to infinity if the solution 

is infeasible, the solution during the iteration of dual decomposition methods may not 

always be feasible. Often, a certain type of projection methods are used in conjunction 

with dual decomposition methods, which slows down the convergence.
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3.5.1.4 Primal Decomposition

In the following, we briefly describe the primal decomposition technicpie. As the name 

suggested, the primal decomposition is based on the primal problem. The idea is that 

each component keeps coupling variables fixed while optimizing its part of the objective 

function, which is a subproblem. A master problem optimizes over the coupling variables. 

The primal decomposition suits naturally if a problem when fixing certain variables 

divides into multiple subproblems. Consider again the optimization problem (3.38). 

Instead of adding an auxiliary variable as in the dual decomposition method, we can fix 

the coupling variable fc- The original problem can be decomposed into the following 

subproblems, for f = 1, 2:

minimize/; Qifijc) 

subject to fi G J-'Di,

which can be addressed by Newton’s method locally at each component. Given the 

optimal solution to each subproblem /* and /*, the master problem is given as:

minimize/^ Ci (/*, fc) + C2(/2, fc)

which can be addressed by either the gradient method - if the differentiable - or the 

subgradient method - if not differentiable.

The primal decomposition technique can be used to address coupling constraints 

with the assist of auxiliary variables. Consider a simple example as follows:

minimize Ci(/i) + C2{f2) 

subject to /i + /2 < c

fi € /2 G ^^'^2

We can add an auxiliary variable to separate the the coupling constraints, so that the
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Fig. 3.7: A sketch of two-level hierarchical decomposition: Subproblems are decomposed 

using either the primal decomposition or the dual decomposition

problem is broken into two subproblems, for f = 1, 2:

minimize Cj(/j) 

subject to fi <Ci, fie J^Vi

The master problem is to find the best assignment of ci, C2, given ci -|- C2 = c. It can be 

shown that the subgradient of the master problem is essentially the summation of the 

dual variables of each subproblems.

3.5.1.5 Hierarchical Decomposition

A hierarchical decomposition involves iterative decompositions to subproblems, as shown 

in Fig. 3.7. It divides a problem into multiple levels of subproblems. The condition for 

a convergent hierarchical decomposition is that the lower level subproblems need to run 

at a faster pace than higher level subproblems or master problems. This is an important 

design factor. For example, we can divides a network optimization into subproblens of 

each communication flows and divides the subproblem of each flow into subproblens of 

link scheduling at each intermediate hop.

In a hierarchical decomposition, both the primal decomposition and the dual decom­

position can be used depending on the engineering requirements. The introduction of
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auxiliary variables increase the flexibility of decomposition techniques in network opti­

mizations. These are the mathematical tools that can be used.

3.5.2 Notable Results

In the previous subsection, we have discussed basic forms of decomposition methods. In 

this subsection, we are going to reviewed the application of decomposition techniques 

in the domain of network optimization. Extensive studies can be found in applying 

decomposition methods

Based on the application of decomposition techniques, we can organize the literature 

into two categories: vertical decompositions and horizontal decompositions. A vertical 

decomposition is a decomposition applied to the communication stack. It addresses joint 

optimization across multiple layers, including the MAC layer, the network layer or the 

transport layer. On the other hand, a horizontal decomposition addresses decoupling of 

computation between physically distant components, such as flows and nodes. That is, 

a horizontal decomposition facilitates distributed manner of optimization and a vertical 

decomposition enables cross-layer optimization.

Finally, it should be noted that our organization of the literature is not strictly a 

classification of existing decomposition-based algorithms. R,ather, such an organization 

is based on the focus of each algorithm. It is possible that an algorithm includes both 

vertical and horizontal decompositions. In fact, the existence of layered architectures is 

to make communication functionalities local to physical locations that they cover, that 

is, to achieve distributed operations. Therefore, a vertical decomposition algorithm is 

likely to include certain horizontal decompositions.

3.5.2.1 Basic Dual Decomposition for Distributed NUM

Decomposition methods have been widely studied in the domain of network optimiza­

tion algorithms [Chiang et ah, 2007] [Palomar and Chiang, 2006]. In the following, we 

will describe a basic form of dual decomposition-based algorithm as well as some early
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investigations on the basic algorithm.

Because of its convenience to decouple constraints, dual decomposition is a common 

approach to address NUM problems where objective functions are separable. The basic 

form is rather straightforward. Consider the following problem,

s
maximize

i=l

subject to TZT < C,

1
1 if flow i runs through link j 

0 otherwise

71 is the traffic of flow i. Cj is the link capacity of link j. Applying Lagrangian dual 

function, the subproblem for communication i can be written as;
m

maximize ri Ui{Ti) - ^ XjTZj^iTi 
1=1

This subproblem can be solved by locally at the source node of each communication flow 

using, for example, Newton’s method. Given the optimal solution T*, the master dual 

problem is given as:

minimize Ui(T*) + {TZT — C)
i=l

subject to A 0;

At each link j, where the inequality constraint comes from, the dual variable can be 

updated by a projected subgradient method,

s

i=l

Note that for link j, the value Cj — i® essentially the sum of capacity residual

of the link. The dual variables A can be interpreted as the unit price to each communica­

tion for using link resources, as it plaj’s a negative effect on utilities of subproblems. The
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NUM algorithm achieves flow-distributed using the basic dual decomposition method, 

which is indeed quite elegant: Start with an initial dual variable, each source node com­

putes locally its optimal data rate. Once a link receives traffic from all communications, 

it updates its unit price using the subgradient method and sends the updated price to 

all sources whose traffic runs through the link.

In their seminal paper [Kelly et ah, 1998], Kelly et al. formulates a NUM problem 

to achieve proportional fairness among different flows. More specifically, their consider 

the NETWORK problem formulated as follows;

s
maximize Wilog{Ti)

?:=!

subject to TZT < C

They propose to use a subgradient method to address both the master problem and the 

subproblems. Their main contribution is the demonstration of stability and convergence 

of the distributed flow-level algorithm through a Lyapunov stability analysis.

Low and Lapsley have also investigated the basic dual decomposition technique in 

NUM problems [Low and Lapsley, 1999]. In addition to the synchronous algorithm 

stated above, they have proposed an asynchronous algorithm that allows different com­

munications update their prices at different time intervals, which may be caused by 

communication delay and heterogeneous computing abilities of different nodes. Their 

asynchronous algorithm uses a weighted moving average as an estimate for prices at 

sources and for flow rates at links. They demonstrated that such an algorithm is con­

vergent.

3.5.2.2 Utility Maximization and Multipath Routing

The majority of NUM algorithms use single path for each communication flow. The 

NUM problem with a multipath routing is non-trivial yet mathematically tractable. Its
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general formulation is as follows.

s
maximize UATi) fp--pev ^

1=1

subject to 7i = fp, rrii < Ti < Mi, f G W
p^'Pi

TZJ- < C,JF 0.

where TZ is the routing matrix and T = {fp\p G 'P} is the set of traffic of all paths, 

rrii and Mi are boundaries on aggregated traffic of each communication. Compared to 

the basic NUM problem, each communication consists of multiple paths. The separable 

utility function takes aggregated traffic of each communication. Its handle variables are 

traffic rate of each path. This problem is difficult to solve because it is no longer concave 

with respect to path rates even if the utility function is strictly concave with respect to 

aggregated traffic. Existing convex optimization methods can not be applied directly.

In order to address this non-convex problem, the objective function can be modified 

with the help of auxiliary variables fp as follows:

s s
maximize'^ Ui{Ti) + JZ
fpJp-p^'P i^i i=lp€Vi

where ap is some constant assigned to each path. The constraints remain the same as the 

original problem. It is easily verified that the modified problem has the same optimal 

solution as the original problem. In addition, the modified problem is concave with 

respect to fp and fp separately, although not jointly. A number of proximal optimization 

approaches have been used to address such a problem [Wang et ah, 2003], [Lin and 

Shroff, 2006], where the dual decomposition and the subgradient method are used to 

solve fp and dual variables iteratively. Along the convergence, the auxiliary variables fp 

are updated iteratively and asymptotically approaching to fp

= updater(/p^*\/W)
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where updater(-) is some arithmetic function asymptotically approaching /*. For exam­
ple, one possible updater is updater(/p/p*^) = /5/p^*V (1 — 0)fp^ for /? G [0,1)

The convergence of such an approach have been analysed [Lin and Shroff, 2006],

3.5.2.3 Coupled Objective Functions

Although the majority of NUM algorithms consider a separable objective function, we 

have seen several NUM algorithms that use the dual decomposition method to solve 

coupled objective functions.

Tan et al. [Tan et ah, 2006]consider a NUM problem where different flows ai'e coupled 

through the utility function, as well as through constraints as in the basic form.

s

maximize E Ui{7i, {7j'}jeA/'(t))
’ i=l

s

subject to 77 G Vz;
i=l

where the second parameter of the utility function is a set of interfering flows of each 

communication. Their approach to solve this problem is to introduce auxiliary variables 

to translate the coupling from the objective function to constraints.

s
maximize J]t/i(77,{77,j}

l=i
5

subject to 77 G J^Vi, Vz;
i=l

Vz,jGA7(z)

where 77,j is a local copy of coupling traffic Tj- at flow z. The objective function is now 

separable. The resulting problem can be addressed by the dual decomposition method.

He et al. [He et ah, 2007] have proposed a modified objective function in order to 

approximate the joint optimization of utility function at transport layer and cost function 

at network layer.
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maximize E Ur{%) -Y^c,{Y,n^T^)
i=l

subject to TIT < C

i=l

where C/(-) is the cost over link i. Although the utility function is separable, because the 

presence of link cost function, the objective function of this problem is not separable. 

Similar to the previous approach. He et al. introduce auxiliary variables to coupling 

variables and then apply dual decomposition.

Although both of the reviewed algorithms are single path communication, their 

present an alternative approach to existing iterative methods in addressing coupled ob­

jective function.

3.5.2.4 Node-Level Distributed Optimal Routing Algorithms

Decomposition methods can be used for node-level distributed algorithms. The authors 

of a recent paper [Mosk-Aoyama et ah, 2010] consider network optimization problem 

with node rate as handle variables.

minimize
i=\

subject to AT = 6; T" 0

where Ji is data rate of node i, A E G AT — b indicates the flow

conservation condition for each link. Although not immediately applicable, this equality 

constraint takes minor modifications to facilitate a multi-commodity routing algorithm. 

The capacity constraint is not considered in this formulation. The objective cost function 

is separable with respect to its handle variables. Therefore, this problem is coupled 

through only equality constraints. To address this problem, firstly, kiosk-Aoyama et al. 

apply the interior-point method to address the non-negative constraints. Then, they 

use the dual decomposition method to the equality constraints, which decouples the 

problem.
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They have also discussed the case where coupled linear inequality constraints are 

present, that is the equality constraints are replaced by AT < b. It enables the modelling 

of link capacity, which is essential for optimal routing algorithms. Because the inequality 

constraints are coupled now, barrier functions introduced on inequality constraints are 

coupled. To address this, they introduce auxiliary variables Z, such that the inequality 

AT < 6 is transformed to equality AT + Z = h and non-negativity Z > 0. The 

transformed problem is written as:
n n m

minimize
i=l i i

subject to AT + Z = h,

whose objective function is separable with respect to fi and Zi. However, the dual 

decomposition method can not be applied directly to such a problem: The subproblein 

for any given z, is to minimize — iilog{zi) + XiZi, whose minimum value approaches and 

reaches to negative infinity as A,; approaches and reaches 0. In order to address this 

issue, they add an extra term d>(2i) to the term, where (f>{-) is any positive function that 

increases faster than logarithm function, for example, a quadratic function. This remedy 

term avoids unbounded subproblems, however introduces a bias to their solutions.

In addition, they propose to use a distributed gossip algorithm to share information, 

such as primal and dual values, among different components.

In another node-level distributed algorithm [Purkayastha and Baras, 2008], the au­

thors consider a special cost fnnction over each link (i,j).

a (/(hff) = [ 
Jo

x[Dij{x)]dx

where Dij{-) indicates the queueing delay over link (i,j) of a unit traffic. However, 

the motivation and the application of such an integral cost is unjustified: It gives the 

overall delay of all traffic in the case that they arrive at the same time. It can be easily 

verified that the long term overall delay for a stable queue is f(i,j)Di,j{f(ij))- The main
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contribution of this algorithm is that the authors established an optimal equilibrium of 

link traffic based on the dual prices.

In essence, both approaches achieve node-level distributed manner by using link flow 

rates as handle variables. Indeed, this approach resembles the previously reviewed node­

level distributed Newton’s method [Liu and Sherali, 2012]. Similarly, using link flow rate 

as handle variables results in a large amount of variables and equality-constraints. In 

dual decomposition, each constraint introduces a dual variable, which is updated using 

the slowly converging subgradient method. Therefore, node-level distributed algorithms 

suffer from a slower convergence, compared to their flow-level counterparts.

3.5.3 Discussion of Decomposition Methods

In this subsection, we give an overview of decomposition methods as an approach for 

optimal routing algorithms.

The advantages of decomposition methods include 1) It decouples components of an 

optimization problem. If path flows are u.sed as handle variables, flow-level distributed 

manner is achieved. If link flows are used as handle variables, node-level distributed 

manner of is achieved. 2) It has very good practical implications, i.e. prices of resources

Some of the main disadvantages of decomposition methods particularly for routing 

problems are as followings. 1) It may not be always feasible. Therefore, projection 

methods have to be used which affects the convergence. 2) Because subgradient method 

is commonly used to update dual or primal variables, the resulting convergence may not 

be strictly descent. 3) The dual decomposition is equivalent to the Newton’s method 

with infeasible start(3.20). Instead, it uses subgradient method to address the coordi­

nation between different subproblems. Therefore, decomposition method can be seen as 

a mixture of first-order methods and second-order methods. It has been demonstrated 

that [Bickson et ah, 2009, Wei et ah, 2010] the GaBP and matrix splitting distributed 

iterative Newton’s methods also enjoy a better convergence compared to decomposition 

methods.
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3.6 Routing Optimization in Wireless Domain

Studies of optimization algorithms in wireless ad hoc networks begin to appear in recent 

years. Several models of optimal routing [Toumpis, 2006] [Altman et ah, 2008] and [Alt­

man et ah, 2008] have been proposed. Their algorithms are based on optimal Wardrop 

equilibrium to achieve optimal routing. They focus on massively dense ad hoc networks, 

where nodes locate so close to each other that they become points in a continuum. Un­

der such an environment, they study how data traffic running over a physical region. 

The main limitation of these approaches is that they do not consider neighbouring in­

terference and do not suggest individual nodal behaviour. Instead, they utilize existing 

wireless throughput models and provide a macro view of traffic engineering. Therefore, 

it is difficult to design a routing algorithm based on these proposals.

It is easily seen that the challenge for the design of wireless optimal routing algo­

rithms is to model the underlying wireless interference. A conflict graph [Jain et al., 

2003] and [Chen et ah, 2006] is a two dimension map that indicates mutual interferences 

of all links. \Mth the help of conflict graph, wireless interference can be transformed 

into graph problems. For example, it translates the wireless scheduling problem to max­

imal independent sets problem or maximum weighted matching problems. Nonetheless, 

conflict graph itself does not model delay but merely describe the interference relations.

In his seminar paper, Bianchi [Bianchi, 2000] makes use of Markov chain to analyse 

the queueing and medium access behaviour of DCF. Following this idea, a more recent 

approach [Tickoo and Sikdar, 2008] tries to release the Poisson arrival assumption by 

assuming a GI/GI/1 queueing model. However, this approach assumes saturated traffic 

at each node, in that there are always data waiting in the queue after one successful 

transmission. Under the Poisson arrival assumption, Malone et al. [Malone et ah, 2007] 

have developed an advanced analysis of the medium access delay in a heterogeneous 

non-saturated 802.11 DCF network.

Gupta and Shroff [Gupta and Shroff, 2011] realise the difficulty in wireless modelling.
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Instead, they propose a lower bound on delay modelling using the concept of a (K, X)- 

bottleneck. A (K, X)-bottleneck is a subset X of a network where at most K links of it 

can transmit at the same time. The mean delay of a network is lower bounded by the 

sum of a set of mutual exclusive bottlenecks.

3.7 Miscellaneous Results

We list in the following a number of remotely related results, which can be seen as 

supporting techniques for optimal routing approaches.

3.7.1 Estimates of Traffic Demands

[Zhang et ah, 2005] address the issues of multiple traffic matrices, i.e. changing traffic 

demands, by comprising solutions to facilitate multiple traffic demands as much as possi­

ble. [Dai et ah, 2008] discuss the estimation traffic over a number of traffic matrices. [Xu 

et ah, 2011] translate the network optimization problem into an entropy maximization 

problem, so that nodes need to distribute traffic at each hop based on an exponential 

entropy value.

3.7.2 Asynchronous Algorithms

[Ncdic and Ozdaglar, 2009] model an optimization problem as a control system.. Their 

results focus on demonstrating the convergence and stability of asynchronous update of 

cost information and decision making.

3.8 Summary and Discussion

In this section, we firstly summarize the review of this chapter. Then, we discuss open 

questions in the literature, which identifies the design space of an optimal routing algo­

rithms in wireless ad hoc networks.
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3.8.1 Summary of Optimal Approaches

We have reviewed in this chapter existing optimal routing algorithms and their math­

ematical backgrounds. Following the analysis of general multipath routing algorithm 

in chapter 2, existing optimal routing algorithms focus on the data distribution task of 

a multipath routing algorithm. They apply optimization theory to compute a traffic 

distribution pattern that minimizes the overall cost. The optimal routing problem can 

be viewed as a type of constrained convex optimization problem and optimal routing 

algorithms are essentially applications of optimization methods. There are several math­

ematical methods across different optimal routing algorithms to address different issues. 

In the following, we summarize optimal approaches as a whole.

3.8.1.1 Orders of Optimization Methods

Depending on the order of Taylor approximation to objective function at each iteration 

step, there are two types of mathematical methods to solve an optimization problem: 

the first-order gradient descent methods and the second-order Newton’s method. In 

comparison, gradient descent methods are simple and distributed with respect to each 

handle variable by nature. However, it suffers from a slow convergence rate. Early 

attempts at routing optimization approaches are based on the steepest descent methods 

but recent progresses have been focused on its second-order counterparts. On the other 

hand, the Newton’s method enjoys a superlinear scale-invariant convergence but requires 

global knowledge, i.e. the Hessian matrix. Recent results in Newton-based routing 

algorithms have been focus on distributed computation of Newton step.

3.8.1.2 Approaches to Address Constraints

There are a number of techniques that can be used in optimization methods to ad­

dress constraints. A simplistic approach is the projection method, which can be used 

in conjunction with both gradient descent method and Newton’s method. The projec-
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tion method may result in a crude change of search direction, thus affects largely the 

convergence. For a linear constrained problem, Frank-Wolfe method translates the com­

putation of gradient descent step into a linear programming problem. It finds reduced 

gradient descent steps that are feasible.

Because Newton’s method is scale-invariant, linear equality constraints can be elimi­

nated with affine transformation without affecting the convergence of Newton’s method. 

A more advanced approach to address inequality constraints, compared to the projec­

tion method, is the interior-point method. It introduces a logarithm barrier function to 

Newton’s method. The barrier function increases to infinity as a solution approaching 

to infeasible domain thus keeps the solution within the feasible domain. The problem 

for logarithm barrier function is that it addresses only strict inequalities. For example, 

the capacity constraint for a link flow traffic / is a strict inequality, / < C, which can be 

addressed by log{C — /); However, the non-negative condition for traffic / is not strict, 

/ > 0. By using log{f), it eliminates the possibility of / = 0, which is not desired.

Dual Decomposition methods can be viewed as an approach to solve equality and 

inequality constraints. At each step of the outer iteration, they introduce a price for each 

constraint - more specifically the dual variable - to all subproblems. It resembles the 

barrier function in that the price pushes solutions of each subproblem within the feasible 

domain. However, in contrary to the superlinear penalty in logarithm barrier function, 

the penalty increases linearly at a slope of the dual variable as the solution approaching 

the infeasible domain. It leads to a slower convergence in addressing constraints. In ad­

dition, a linearly increasing penalty does not reach infinity at infeasible point. Therefore, 

dual decomposition methods do not guarantee strictly feasible step during convergence. 

A projection method is usually used in conjunction to enforce feasibility.

3.8.1.3 Distributed Computation of Optimization Algorithms

An optimization problem can be coupled in two ways: through the objective function 

and through the constraints. A distributed optimal routing algorithm requires a decou-
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pled computation of each handle variable, i.e. component, in an optimization problem. 

Distributed computation is in general not challenging for first-order methods, because of 

its simplicity. A common approach is based on the optimal Wardrop equilibrium which 

identify the state for each communication flow at the network optimum. Many heuristic 

algorithms have been proposed to converge to the optimal Wardrop equilibrium. Dis­

tributed computation of second-order methods are in general challenging. There are 

several mathematical methods that decouple an optimization problem. They can be 

classified into two categories.

A standard approach is to use decomposition techniques. Decomposition methods 

have two basic forms: the primal decomposition and the dual decomposition. The 

general idea is to divide an optimization problem into a number of subproblems. Rep­

resenting the coupling between subproblems, primal variables or dual variables are used 

to coordinate different subproblems. The task of the coordination is called the master 

problem, which is generally solved by a subgradient method. In network optimization 

algorithms, decomposition methods can used recursively to create multiple level of sub­

problems. The advantage of decomposition methods is that they can easily be configured 

to achieve different types of distributed computation. They have in general good engi­

neering implications. For example, in certain algorithms, sum of queue length along a 

path can be used as a subgradient that update the master problem. The problem for 

decomposition methods is their slow convergence. As we have seen, part of the opti­

mization - the master problem - is solved by a subgradient method, which is sublinear. 

In particular, as the number of couplings between different components increases, the 

convergence deteriorates quickly.

Another way to decouple the computation of an optimization problem is to use certain 

types of iterative methods to solve Newton step in the form of Ax = b. In the domain 

of network optimization, we have seen iterative methods such Wei’s matrix splitting 

technique and the GaBP method. Their rationales are different: Wei’s approach is an 

implementation of the standard matrix splitting technique; GaBP is based on a message
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exchange algorithm, namely belief propagation, to compute the marginal mean of joint 

Gaussian distribution. Nonetheless, their basic manners resemble each other; Each 

component, say each communication flow, iteratively compute its estimate of the final 

solution based on its local information and previously computed solutions of coupling 

components. In comparison, Wei's matrix splitting guarantees convergence while the 

GaBP method requires certain convergence conditions, which is the same as the Jacobi 

method. If convergent, the GaBP method exhibits a faster convergence rate compared 

to existing matrix splitting approaches. It has been demonstrated statistically that these 

distributed iterative methods converge faster than decomposition methods.

These are methods that can be used by optimal routing algorithms to decouple an 

optimization problem. We have classified existing optimal algorithms into two levels of 

distributed manners: flow-level distributed algorithms and node-level distributed algo­

rithms. The majority of optimal routing algorithms and NUM algorithms are flow-level 

distributed. That is, handle variables of their optimization problem represent traffic 

rate of a path used by a communication. Once the optimization problem is decoupled 

using the aforementioned mathematical tools, each communication flow can compute its 

traffic distribution over all its paths. There are several algorithms that are node-level 

distributed. They use the link rate of each flow at each node as the handle variable. 

Therefore, a decoupled optimization problem can be computed at each node distribu- 

tively. In this way, however, the amount of variables and couplings equality-constraints 

increases drastically compared to flow-level distributed optimization. It can create large 

communication overhead and slows down the convergence of an optimal routing algo­

rithms.

3.8.2 Open Questions

1) What is a suitable distributed approach to address the coupling introduced by equality 

and inequality constraints?

The first criterion for a suitable approach is that it can quickly coordinate between
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different components within coupling constraints. The logarithm barrier function in the 

interior-point method introduces a superlinear penalty. However, it does not address 

the coupling between different components in constraints. Dual decomposition methods 

decouple constraints with respect to each component. However, their penalties are linear. 

Combining both methods, an ideal approach is to separately introduce a fast increasing 

penalty for an individual component.

The second criterion for a suitable approach is that it should guarantee feasibility at 

all time. The nature of routing algorithms dictates that constraints must be met. For 

example, the traffic of each link can never exceed its capacity. Projected methods satisfy 

a strictly feasible condition however suffer from distortion of convergence pattern. The 

logarithm barrier function guarantees only strict inequalities. It may require engineering 

modifications to address non-strict inequalities. Dual decomposition methods do not 

guarantee feasibility. We need to search for an approach that meets both criteria.

2) How can we address the coupling introduced by the objective function, namely the 

distributed inverse of the Hessian coefficient matrix, without using iterative methods at 

each Newton step?

As we have reviewed, there are some iterative approaches can be applied to dis- 

tributively compute coupled Newton step, including the matrix splitting technique and 

the GaBP method. But they introduce a number of iterations between each Newton 

step, which can be expensive in ad hoc networks. The primal decomposition is another 

natural choice to divide coupled objective functions. By introducing auxiliary variables, 

one can also resort to the dual decomposition technique. However, in multipath routing 

algorithms the number of couplings in objective function between different paths - either 

of the same communication flow or of different communication flows - can be very large. 

As we know, in such case, decomposition approaches tend to converge very slow. Our 

question is, is there an alternative approach that suits the requirement of wireless ad hoc 

networks?
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3) Is it possible to design a node-level distributed algorithm, without increasing the 

size of the optimization problem?

To the best of our knowledge, existing node-level distributed optimal routing algo­

rithms and NUM algorithms use the same mathematical approaches as their flow-level 

counterparts. They achieve a node-level distributed manner by using link rates as handle 

variables. This may lead to a much larger amount of handle variables and constraints. 

Although a centralized Newton’s method is not affected by this transformation due to its 

quadratic scale-free convergence, iterative methods to calculate Newton step or the sub­

gradient method in decomposition methods maj^ be largely affected. A natural question 

arises: Given that a routing optimization problem is decoupled into subproblems with 

respect to .all communication flows, can we design a node-level approach that retains the 

convergence of flow-level convergence?

Let us now explore this question a bit further. Recall the process of distributed mul­

tipath routing algorithms we have described in chapter 2: Cost information propagates 

from destination nodes to source nodes. Costs of multiple paths merge at intermediate 

nodes they meet. A tree structure is indeed established: The root is the source node 

and leaves are copies of the destination node. Each intermediate vertex corresponds to 

an intersecting node of multiple paths. Once aggregated information reaches a source 

node, data distribution is computed recursively from top level down to leaves. Each tree 

is a flow-level distributed subproblem, while each intermediate vertex computes parts of 

the problem rather than spouses a new decomposed subproblem. Their difference is as 

follows:

• In this tree-based scenario, when the one-pass recursive computation from sources 

to destinations completes, one exact step of the flow-level subproblem is reached.

• In a scenario where link rates are handle variables, components with respect to 

each handle variable affect each other. Therefore, a one-pass recursive computation 

from sources to destinations can not reduce costs as much as one Newton step of
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flow-level distributed optimal algorithm:

1. In an iterative Newton method, such as using GaBP and the matrix splitting 

technique, multiple rounds of message exchanges are introduced to compute 

the Newton step.

2. In decomposition methods, each node-level subproblems are coordinated by 

a subgradient method. Therefore, the Newton step of a flow-level problem is 

reduced to a subgradient step.

We expect the tree-based scenario to achieve a superior performance compared to existing 

node-level distributed approaches. However, this scenario comes from our understanding 

towards a distributed multipath routing algorithm. The question is how can we enable 

it mathematically. The open question can be stated as:

Is it possible to design an optimal routing algorithm such that each intermediate node 

merges the costs of multiple paths and computes parts of the flow-level subproblems?

In addition to these three open questions regarding to optimization methods, because 

the majority of existing optimal routing approaches address the data distribution part 

of the multipath routing problem, it remains a question to integrate an optimization 

method with a multipath routing algorithm. Furthermore, network optimization ap­

proaches we have reviewed in this chapter assume a link-based cost function, which do 

not suit the wireless communication. In next chapter, we will discuss results in applying 

optimization approaches for wireless routing.
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Part II

Proposed Solutions
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Chapter 4

Wireless Medium Cost Function

In this chapter, we will search for a cost function that models the delay cost incurred by 

a data flow in wireless ad hoc networks, which can be used for an delay optimal routing 

algorithm. In the beginning, we will justify the necessity of a wireless cost function.

4.1 Motivation

The goal of our optimal routing algorithm is to minimize the delay experienced by all 

communication flows, i.e. to minimize C{J-). Such an objective function is well defined 

in wired networks using link cost, namely, C(J') = ~ ’"'here

fi is the sum of all traffic running through the link i, i.e. fi = fp- In an

optimal routing algorithm, routing decisions of a communication flow are made based 

on the first and the second derivative costs of available paths, which are defined as 
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where and (/i) is the first and second derivatives of delay for link i.

However, the delay of a wireless communication link between two neighbours is not 

only dependent on the traffic sending through the link but also on traffic in the vicinity 

due to wireless interference. Therefore, the single parameter form of the latency function 

iiifi) does not suit wireless ad hoc networks. Correspondingly, the first and second 

derivative costs of paths must have different forms in wireless ad hoc networks, compared 

to the forms in wired networks. The problem for the derivative costs based on link model 

(4.1) is that they do not model the overall delay incurred by a flow to the network, which 

is needed for a routing algorithm to make routing decisions.

The key to the design of a wireless cost model is to divert from the traditional link 

model of network topologies and to \dew an ad hoc network as overlapping discs. Each of 

the discs represents a wireless transmission medium centred by a node. Given a medium 

access approach, a traffic flow sending by a node imposes delay to all flows within the 

disc. Therefore, we wish to establish a cost function over a disc, as opposed to the 

existing cost function over a link.

The service rate of a point-to-point link within a disc is determined by the wireless 

MAC approach used. As we have seen in the previous chapter, a joint optimization in 

wireless networks requires an optimal link scheduling at the MAC layer and a routing op­

timization at the network layer. Unfortunately, optimal link scheduling has been known 

to be very difficult and lacks sufficient results. In addition, any form of approximated 

optimal link scheduling requires a specialized MAC protocol. Instead, we focus on the 

design of a cost model based on a given MAC layer approach. It can be based on existing 

random access MAC layer approaches, such as the IEEE 802.11 protocol, as long as their 

behaviour is analytically modelled. Using the analytical model of medium access delay 

for each link, we derive the form of the cost function.

In this chapter, we organize the description of our design in a top-down structure 

and gradually fill the details. Firstly, we investigate the origination of delay in wireless 

transmission in section 4.2. Based on the observation, we propose a cost model in
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section 4.3, called the wireless medium cost function. We understand that the wireless 

transmission is essentially a polling system and use a multi-class first-come-first-serve 

(FCFS) queue to model existing contention-based MAC protocol. Such a queueing model 

can be described by a M/G/1 queue. Therefore, with an analytical model of the service 

time of a given MAC protocol, such as the 802.11 DCF, the wireless medium cost is 

given. In appendix C, we present an example analytical model, where we use numerical 

approaches to find the closed form of 802.11 DCF service time.

In order to be used in an optimal routing algorithm, a necessary condition for a cost 

function is its convexity. In section 4.4, we discuss the convexity of the wireless medium 

cost and demonstrate that the convexity of the underlying MAC protocol service time 

is a sufficient condition. It is known that the 802.11 DCF exhibit a convex service time 

before entering a saturated state.

4,2 Where Does Delay of Wireless Communication Come 

From?

We anticipate that the rationale of optimization approaches in wired networks holds in 

wireless ad hoc networks: Routing decisions should take into account their overall impact 

on the network. The link cost information, including the first and second derivatives 

of delay, can be either computed from some analytical model or measured using the 

perturbation analysis. However, as we have discussed in the previous section, the point- 

to-point cost is not sufficient to model wireless cost because neighbouring transmissions 

may introduce costs to each other through interference. In this section, we will investigate 

the origination of delay in wireless transmission. Firstly, we will discuss components of 

communication delay from the view of a single flow. Then, we investigate how different 

communication flows may interfere with each other and incur delay mutually.
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4.2.1 Components of Communication Delay

The overall delay experienced by all traffic in a network is the snm of delay experienced 

by each unit data at each node. The delay experienced at each node in wireless ad hoc 

networks includes two parts: the queueing delay and the service time. The queueing 

delay is the duration between the arrival of a unit data at an outgoing queue and the 

instant when it reaches the head of the queue. The service time is the time a unit data 

spent at the head of the queue until it is successfully received at its destination station. 

Therefore, the service time of a unit data includes: 1) the time it waits to access the 

medium - the medium access delay; 2) the duration to transmit a unit data under a 

given data rate - the transmission delay; 3) the time incurred by retransmission.

Due to the nature of ad hoc networks, we have neglected several components of 

delay. In ad hoc networks with single transmission channel, at most one packet can be 

successfully transmitted within the receiving range of any node. In contrast to wired 

networks, data transmission rather than the processing power of intermediate nodes is 

the bottleneck for the performance of end-to-end communications in ad hoc networks. 

Throughout this thesis, we do not consider the processing delay at intermediate nodes nor 

do we assume the existence of incoming queue at each node. Because the transmission 

range of wireless devices is trivial compared the speed of signal propagation, we neglect 

the propagation delay of data traffic.

In a network with substantial traffic demand, the queueing delay is the main contrib­

utor to the overall delay. Because nodes have finite queues, the long term data arrival 

rate is strictly smaller than the long term service rate^. However, within a certain du­

ration, the data inter-arrival time may be shorter than the service time, which leads to 

queueing of subsequent data. Therefore, queueing delay is determined by the statistical 

distributions of inter-arrival time and the service time of data packets, including their 

mean, variance and probability distribution function (PDF), etc.

^Indeed, this is the capacity constraints enforced by routing algorithms

116



A common assumption for data arrivals in networking is that they are determined by 

a Poisson process. That is, the number of arrivals during any period is independent of 

the number of arrivals before the period. Namely, the data arrival is memoryless. While 

this assumption does not usually hold in real world, it is widely adopted in network 

modelling and analysis sfor several reasons:

1. Modelling of the real world traffic pattern, especially in the wireless ad hoc net­

works, is challenging and lacks of satisfying results [Floyd and Paxson, 2001].

2. Poisson arrival is reasonable approximation to persistent traffic, such as the TCP 

file transfer [Paxson and Floyd, 1995].

3. Poisson arrival eases the analysis of queueing model and of random access MAC 

algorithms behaviours. Strong results have been established.

It should be noted that a Possion generation of traffic at source nodes may not result 

in a Poisson arrival at intermediate nodes. We are aware of approaches that analyse the 

behaviour of queueing networks with traffic enters the networks according to a Poisson 

process, for example using parametric decomposition [Gross et ah, 2008] or diffusing 

approximation [Bisnik and Abouzeid, 2009]. However, their results are approximations 

to the behaviours of wireless networks and lacks of quantifications on errors. Therefore, 

for simplicity reasons, we assume a Poisson arrival at all intermediate nodes. Given the 

Poisson arrival of data traffic, the long-term queueing delay is well analysed through a 

M/M/1 queueing model if the service time is exponential distributed or through a M/G/1 

model is the service time is general distributed. The actual service time is determined 

by the traffic scenario and the MAC approach used.

In the next subsection, we discuss the impact on delay experienced by different traffic 

flows through wireless interference, which is independent to the assumption of Poisson 

traffic. In next the section, we will given the design of a wireless cost function, which is 

based on the assumption.
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Medium A-C

(b) Shared Queue at Node A

Fig. 4.1 : A Demonstration of Wireless Interference 

4.2.2 Wireless Interference

In the previous section, we have looked into a single flow at a single node and discussed 

the components of communication delay and the assumption on the distribution of the 

inter-arrival time of data traffic. In this subsection, we will discuss how different flows 

in a wireless network may interfere with each other and thus introduce delay mutually.

Let us firstly consider an example scenario as shown in Fig. 4.1(a). In this scenario, 

node A has two outgoing traffic flows to node B and C respectively and one incoming 

flow. Node B and node C each has two incoming flows and one outgoing flow. At each 

node, the outgoing traffic enters a FCFS queue waiting to access the medium, as shown
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in Fig. 4.1(b). We assume all flows are one-hop and study their interference within 

the neighbourhood. We will extends this results to the interference between multi-hop 

communication flows in the next section.

Due to the broadcast nature of wireless transmission, outgoing flows of the same node 

share the same transmission medium. Therefore, even if they are addressed for different 

neighbours, they can not transmit at the same time^. This is different compared to wired 

network where a node can transmit through multiple links simultaneously. That means, 

all the outgoing flows of a node join the same FCFS queue of its transmitter. Therefore, 

outgoing flows of the same node interfere with each other in two ways: 1) They share 

the transmitter resource of the node. 2) They mutually affect their queueing time. In 

the literature, the interference among these flows are called primary interference. For 

example, in Fig. 4.1, flow /i and /2 are primary interference of each other. Furthermore, 

we wish to emphasize that in a single FCFS queue, all flows have the same queueing time, 

despite their differences in service time. Therefore, the difference in delay experienced 

by fi and /2 lies only in their medium access time.

In addition to the primary interference, the transmission of a data flow may also 

interfere with the transmissions/receptions of other nodes in vicinity. This type of inter­

ference can be described by the protocol model used in the literature [Gupta and Kumar, 

2000, Jain et ah, 2003]. In such a model, the coverage of the wireless signal of a node 

i is divided into a transmission range Ri and an interference range Ri, where Ri < Ri 

in general. Without loss of generality, we assume the transmission range and the inter­

ference range are universal for all nodes in a network, i.e. Ri = R and .^ = .R for all 

node i. When node i transmits to node j in its transmission range R, any other node k 

within its interference range R can not successfully receive packets. And correspondingly, 

any node I whose interference range covers node j can not be transmitting. Extending 

the previous terminology, we call such an interference the secondary interference. Note

^This is not true if directional antennas are used or if multiplex techniques are used in omnidirectional 
antennas, such as the multiple-input and multiple-output (MIMO). However, since we are considering 
the case of single channel communication, we rule out those possibilities
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Fig. 4.2; Indirect interference: Flow /g and /lo do not share a queue nor do they share 

medium access. A change in either one will affect the delay experienced by the other.

that an equivalent presentation to the protocol model is the physical interference model, 

where the secondary interference is described using the notation of signal-to-noise ratio 

(SNR) [Jain et al., 2003].

In the example of Fig. 4.1, for simplicity reasons, we let R = R. In such a scenario, 

when /i is transmitting, its secondary interference includes two parts: 1) Any node 

within its interference range can not receive, i.e. flows /s, /s, /r have to wait; 2) Any 

node whose interference range covers node B can not transmit, i.e. flow f\ has to wait.

It should be noted that this setting of secondary interference is optimistic, in that it 

only require the receiver to be free of interfering signals. In practise, the MAC approach 

may require that both transmitters and receivers are free of interference. For example, 

this is the case in IEEE 802.11 with the RTS/CTS mechanism. In such settings, flow /e 

has to wait while flow f\ is ongoing.

So far, we have discussed the interference between flows with direct competition, 

either through a shared queue or through shared medium. We note that flows may 

interfere with each other even if they do not have direct contact. We term this type of 

interference as indirect interference.

Let us consider an example shown in Fig. 4.2. Flow /§ and /g are mutual primary
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interference. Flow fg and /lo are rntitnal secondary int(?rference. Because flow /lo 

prolongs the service time of flow fg, it is easily seen that the queueing time of fg is 

affected by the traffic of /lo- Since fg and fg share a FCFS queue and have the same 

quevieing time, we conclude that the queue time of fg is affected by /lo, despite that 

they do not have direct contact. We call this type of indirect interference as the prirnaTy 

indirect interference. It is associated with a secondary interference, e.g. between fg and 

/lO- Unlike direcd interferences, it is not mutual but from one from to another, e.g. /lo to 

fg. Finally, it leads to the same amount of queueing delay as the secondary interference.

Recall that the queueing delay is determined by the statistical distribution of the 

inter-arrival time and the service time of data traffic. Therefore, a data flow may interfere 

with another flow by affecting the statistic'al distribution of its service time. We call this 

type of interference the .secondary in.direct interference. In the example of Fig. 4.2, the 

changes of flow fg may result in a different series of time instant that fg is at the head 

of the shanxl queue. To sco. this, consider two extreune cases: 1) If the amount of traffic 

for fg is z(!ro. Tluui fg will rt^quest for naxlium access whenever its traffic arrivi^s at the 

queue. 2) If the amount of traffic for fg is extremely large - within the service capacity 

though - then, the data units of fg is widely spread within the queue. Therefore, the 

time instant that fg requests for medium access is widely spread. The time instant that 

the nKidiurn is granted to fig is thus different compared to case 1).

In the following, we will investigate the impact of the four types of interference. 

We set up the scenario shown in Fig. 4.2 via a simulator we have implemented^. In 

this scenario, we vary the data rate of one of the thrcx? flows and keep the other two 

Hows constant rate. By doing so, we wish to demonstrate whether a certain type of 

interference is trivial or signiHcant rather than quantify the amount of impact.

®We will describe the implementation of the simulator in chapter 6. Essentially, it is a M/M/1 
queueing network with user-specific medium access latency.
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Fig. 4.3: The iinpac:t of Different Interferences: Traffic arrival and service are deter­

mined by Poisson process. In each scenario, the expected inter-arrival time of one flow 

varies from 200 to 50 time miits, while the other two are kept as 100 time units expected 

inter-arrival time. The expected service time for the medium is set as 25 time units

The result are illustrated in Fig. 4.3. As shown in Fig. 4.3(a), while flow /§ is 

increasing, /§ and fg experience a similar delay, which is increasing drastic:ally. This 

demonstrates that the primary interference is a major source of cost incurred by traffic. 

This observation is confirmed by results shown in Fig. 4.3(b) - while fg increases, delay of 

both fs and fg grow in a similar way. Delay growth of fig in Fig. 4.3(a) and of fs in Fig. 

4.3(c) are caused by the secondary interference. Apparently, the scale of impact differs in
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the two scenarios. Nonetheless, the secondary interference can not be ignored. As in Fig. 

4.3(c), the cost growth experienced by /g shows that the primary indirect interference 

is also non-trivial. Finally, the delay reduction of flow fw in Fig. 4.3(b) is due to the 

secondary indirect interference. The reduction is hardly observable. According to this 

example scenario, we choose to model the primary interference, the second interference 

and the primary indirect interference. We omit the secondary indirect interference in 

this thesis as it imposes trivial effect to the overall costs.

In summary, wireless interference presents a very different compared to wired net­

works. In this section, we have discussed the origination of delay in wireless communica­

tion. We demonstrated how a communication flow may interfere with the transmission 

of other flows by classifying four types of interferences: 1) primary interference; 2) sec­

ondary interference; 3) primary indirect interference; 4) secondary indirect interference. 

These interferences create couplings among multiple flows. In the next section, we give 

the design of a cost function that reflects such couplings.

4.3 The Wireless Medium Cost Model

In this section, we give the design of a cost function that models the delay experienced 

by all traffic flows in random access wireless ad hoc networks. Our goal is not to give an 

exact analytical function for a specific MAC protocol. But rather, we wish to model the 

interference between different flows so that the cost function can be used in an optimal 

routing algorithm, given the medium access delay of wireless links. In subsection 4.3.1, 

we will first give the queueing delay at each node with respect to all interfering flows. 

Then, based on the queueing model, we derive the overall cost incurred by a flow at each 

hop. In subsection 4.3.2, we will extend the function to model the cost of a path. The 

notations used in this section are shown in Table 4.1.
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Notation Meaning

fp 1) Traffic flow along the path p for some communication, i.e. p £ V

2) Data rate of the traffic flow along the path p
Al)J 1) The link traffic flow. i.e. f G £; 2) Data rate of the link i

The set of link flow variables of a network.

ci-) The network cost function with respect to the set of link flows. It is a

linear transformation of the original cost function, i.e. = C{J-)

The set of outgoing link flows from node a

fa The sum of flows of node a: fa = fP

Ia,i The set of flows that interferes with the medium access of flow at

node a, i.e. its secondary interferences

la The set of flows that share medium access with any flow of node a:

•^a,i The sum of flows sharing the medium of ff'^: M.a,i — ff^

'^a,i The ordered pair of flow i and the sum of flows sharing its medium A4a,i, 

i.e. < ff\Ma,i >

TTa The set of TTa,i of node a
<2(-) Analytical function for the mean medium access delay experienced by

at node a.

a,t V / Analytical function for the second moment of the medium access delay

experienced by flow

Queueing delay at node a

The set of nodes within the distance i? + .R of node a

Table 4.1: Notations in Section 4.3
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/„

Fig. 4.4 : Multi-class FCFS Queue: Traffic flows addressed for different neighbours have 

difference interferences hence experience different service time. The outgoing queue at 

each node can be modelled as a mnlti-class FCFS queue.

4.3.1 Wireless Medium Cost at Each Hop

Based on the observation we made in the previous section, we ignore the secondary 

indirect interference and consider the cost incurred by the primary interference, the 

secondary interference and the primary indirect interference. Since we assume a Poisson 

distributed inter-arrival time for all traffic, the mean data rate of a traffic flow is the only 

dominating factor for the cost it incurs. In this subsection, we give the cost incurred to 

the network as a function of data rates of flows sending out by a node.

4.3.1.1 Queueing Delay at Each Node

Firstly, we investigate the queueing delay. At each node, all outgoing traffic flows join 

the same FCFS queue. Since secondary interference takes place at the interference range 

of both the transmitter and the receiver. Flows that addressed for different neighbours 

may be interfered by different set of flows. They may experience different medium access 

delay. Therefore, the behaviour of traffic sending out by a node can be modelled as a 

multi-class FCFS queue: Each outgoing flow i at node a has an arrival rate, represented 

by - The superscript (/) is to distinguish from path flow and i is indexed within all
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(s)links of a network, i.e. i & C. Flow i also has a mean service time, denoted by 

which is the medium access delay it experiences at the node. \\^ assume for now that 

the medium access delay is given by some analytical function of traffic flows sharing 
the medium access. That is, the medium access delay is given as £^^j(A4a.i), where

is the sum of all flows that share the medium with atfi +
node a. Similarly, the second moment of the medium access delay is given by analytical 

function

All flows in the FCFS queue experience the same queueing delay, denoted as . 

To derive the queueing delay, we can treat the multi-class FCFS queue as a M/G/1 

model [Kulkarni and Glazebrook, 2002]. This is because if each class of traffic has 

a independent memoryless Poisson arrival then the aggregated arrival of all flows is 

memoryless Poisson as well. Based on the delay analysis of M/G/1 queue, we have the 

following proposition:

Proposition 1. Given the mean and the second moment of medium access for each 

flow, the queueing delay at each node is as follows:

= (4.2)

The deduction of equation(4.2) is straightforward. Nonetheless, to our knowledge, 

the result is not explicitly stated in the literature. In appendix A, we will give a brief 

demonstration of the proof of the proposition.

Remark. We have the following remarks on Proposition 1

1) The queueing delay (4.2) can be seen as a function of outgoing flows and their 

secondarily interfering flows. Each outgoing flow corresponds to a set of secondarily
a^i =< ff\Ma,i > denote the ordered pair of an outgoinginterfering flows. Let tt, 

flow ff'^ € JRa of node a and the sum of flows contending for medium access. Let 

TTa = {^a,i \ Vf : f-^^ G ^a} bo the set of all the ordered pairs. Then, the left-hand side
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of equation (4.2) is replaced by £l^\'TCa). This function give the impact on delay by each 

interfering flow. We will use the function form of queueing delay in the following design 

of medium cost.

2) We expect that the mean and the second moment of medium access delay - 
(2)and S^/(-) to be given by studies of the MAC layer approaches used in an ad hoc 

network. We will show a case study based on an analytical model of the IEEE 802.11 

protocol [Malone et ah, 2007] in Appendix C.

3) For the sake of simplicity, we define ^ univariate functions.

That is, they take in the sum of flows accessing the medium Ma,i- We acknowledge 

that this may not always be case for analytical functions of MAC approaches. A more 

general form for each of the analytical functions is to take interfering flows separately. 

In this case, instead of the sum of flows, we let Ada,* denotes the set of flows accessing 
the medium, i.e. M.a,i ~'^ad U {fP} Equation(4.2) remains the same.

4.3.1.2 Costs Incurred by A Flow

The delay that flow fP £ 7^a experiences at the node a, denoted as ia,i, is the sum of 

queueing delay and medium access delay. The cost of flow fP at node a is given as:

(4.3)

Indeed, this expression of cost is factored by the three major types of interference as we 

have observed in Section 4.2.2:

1. Each fP such that fP £ Ajj and j ^ i is a primary interference with flow fP;

2. Each fP £ la^i is part of A4a,i and is a secondary interference with flow /A'';

3. Each fP £ Xaj such that fP £ Ta and j ^ i is part of Maj and is a primary 

indirect interference of flow fP

(0.
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Conversely, flow is a factor of costs of flows in the vicinity. In the following, We 

define the wireless medium cost of node a as the overall cost in which its outgoing flows 

play a factor. To ease the formal definition, let denote the set of two-hop interfering 

nodes of node a, namely — {b E A^|distance between a and b is less than R + R}. 

All nodes that are interfered by node a are in the set of although not vice versa. To 

distinguish the interfering nodes in the set of for any node b, let = U. ,(i) Ibj
3'Jj

denote the set of flows that share medium access with any flow of node b. Then node b 

is interfered by node a if some flow in belongs to node a, namely 0-

Now. we are in the position to give a formal definition of the proposed wireless 

medium cost:

Definition 1. The wireless medium cost of node a is a function of the set of its outgoing 

traffic, defined as:

C^A^a)= Y. ^a,i(7r0/f + E krMfP
AinZ),,r7^0

(4.4a)
b-.beAfi'^^ v.fi'‘€j^b

The wireless medium cost give all potential costs that are affected by the traffic of 

a node, through the three major types of interferences. In a network wdth substantial 

traffic demand, the queueing delay is the dominating factor of cost, e.g. it may be one 

or several orders of magnitude larger than the medium access delay. In such a case, the 

wireless medium cost can be reduced to

(4.4b)

TaC(Ib^%

Now, we deduce the derivatives of the wireless medium cost at each node a with 

respect to an outgoing flow G J^a of node a. To do so, we start from several 

observations with respect to the components of the derivative.
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Firstly, for any node x and am' flow f-^\ the derivative

either of the following statements holds: 1) fP € f 7^ j; 2) ^ A /1‘^ ^ ^x,j-
3f,(i)

W)

d »A/t j. ^
(0 0, if
f(0

Conversely, the derivative d Mx
anw d/.(0

= 1, if either of the following statements

holds: 1) /f G Jx A f = j; 2) ^ T, A G 2x.,

Secondly, let 7rx,j(l) and 7rxj(2) denote the first and the second elements of the

ordered pair tTxj The Jacobian of the queueing delay at node x wuth respect to
9(i^h'^x) dei'’\vx]
dTTx,j(i) ’ dnx,j{2)

r 1 • • dei^\T7x)link IS given as It is easily known that if ^ then
d(^x\''^x) dCx''\nx) n 1? t r- T l,

= 5t~(2T = 0- ^

dej^H^x) __ sf]{Mx,,)B+t^\(Mx,j)A 
d-Kx,i{^) 2B^

(^x) {Mx,i l/f’ 3+4:^ J )/‘'^ A
a-nxj{2) ~ 2S2

(4.5)

where A = and 5 = 1- ^xl{Mx,r)fr'^- And, (•)

and (•) are first derivatives of their corresponding functions. According to the chain 

rule of partial derivatives, the partial derivative of queueing delay at any node x w'ith 

respect to a flow f is as follows:

dix\Trx)

dn{i) - E d£^x\T^x) dnxj _ / d£x'
^ V97rx-,(]

j.n/^eJ^x
dn.XJ dL(0

■(g)/_ \x) df.j . dd^^TTx) dMxJ

j-n/^eJ^x
j(I) <9/-^^^ dTTxj{2) qA

(4.6)

Finally, we give the partial derivative of the wireless medium cost at node a with 

respect to outgoing flow G Ta-

dC^AJ^a)
df (0

^ Q[4.,(7r,)/f] ^ ^

r-fjeTa b:beMa x:/('>€.Fb

d[£b,rAr)fi(0i

dn(0

'*7rij(l) and 7ra:,j(2) are indeed and Adi,j respectively. We create this notations in order
to avoid confusions between partial derivatives with respect to each elements separately and partial 
derivatives with respect to link flows

(4.7a)
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Combining equations(4.3), (4.5), (4.6) into (4.7a), a more detail version of the wireless 

medium cost is as follows: 

dCs,,aiJ^a}
9/f 

dei^^ TTa) j dli^^TTa) j 
Ja I

fa + + ^^(Ada,*)
dTTa,i{'^) 97ro,i(2)

(4.7b)+ E E (^A)4'>)

If we omit the medium access delay and focus on only the queueing delay as suggested 

by equation (4.4b), the wireless medium cost reduces to a neat form as follows:

Marginal cost incurred by 
at a’s two-hop neighbours

(0

Marginal cost incurred by /| at node a
---------------------------------------------------------------- s /--------------------------------- s

a7r„,,(l)‘-^“ + a7r,,-(2)^ ^

b-.beMr

dC^,a(J^a) dii^\7ra) ^ di^^TTg)
----------------------------  Cv ------------------------  r -1- ------------------------

This completes our investigation of wireless medium cost with respect to the outgoing

traffic of a node, which models the overall cost incurred by the flow at the node. It should

be noted that the sum of wireless medium costs of all nodes in a network is strictly larger

than the sum of costs in general, except for some extreme topology where the two sums

may equal. The point of the wireless medium cost is that it models the impact of nodes’

actions. More specifically, we have the following observation of the wireless medium cost:

w,- • ^ c f(0 ^ T- dC{J=') _ dCg,^a o\yt,a.ie£, fi e Ta, (4.8)

In next subsection, we extend the results of wireless medium cost to the path flows, 

which can then be used by optimal routing algorithms.

4.3.2 Wireless Medium Cost of a Path

Based on the wireless medium cost at each node of a network, we now define the wireless 

medium cost of a path.
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Definition 2. The wireless medium cost of path p G Vw QV is & function of the set of 

its outgoing traffic, defined as the sum of the wireless medium cost at each hop:

C^.p(/p) = 5;C&,a(i^a)
a£p

(4.9)

Accordingly, the derivative of the wireless medium cost of path p with respect to the 

path fiow fp is given as:

dC^Afp)
^fp ^ ^ 5/,a€p,/i 'eJ^a ’ 

ieCp

= E
a€p

dC^,a 
(1) (4.10)

where Cp represents the set of links used by path p. The last equality above is established
dfW

based on the following observations: If i ^ Cp, then — 9- H assume all paths 

established by a routing algorithm are loop-free, then for i G Cp, we have
(U

^p, vvc; iio,vc — 1.

Equation (4.10) states that the marginal medium cost of a path is the sum of marginal 

medium cost at each hop. It is easily verified, according to equation (4.8) and (4.10), 

the marginal medium cost of a path is the marginal cost of the network with respect to 

the path flow, i.e.

Cs.,pifp) =
dC{T)

dfp

Therefore, through the concept of the wireless medium cost, we established an equiv­

alence of equation (4.1a) for wireless ad hoc networks, namely (4.10)

So far, we have defined the wireless medium cost for each hop and each path. We have 

also given their first derivatives. Let us assume for now that the wireless medium cost 

is strictly convex, which we will discuss in Section (4.4). Under the convexity condition, 

these results me sufficient for first-order routing algorithms to optimize wireless ad hoc 

routing problems. However, in order to use second-order optimization methods, we need 

to find the second derivative of the overall network cost with respect to each path flow, 

which indeed can also be achieved through the use of the wireless medium cost.

For any path flow fp and fg, the second derivative cost of the network is given
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d'^C{F) d tdC{7)
dfpdfq

= E
pj!"'
ieCp

) = irid ,dC^Mp)

aepJi^'eJ'a

dfq^ dfp dfq
J_^dCs,AJ'a)
dfq

dfp
)

dLil) )= E
beqA/^eTb

JG-C,

d pdC^AJ^b) 
dfp df.(i)

) (4.11)

The last two steps are partial differentiations of marginal medium costs at each hop - 

namely and - with respect to path flows fq and fp. We omit the cum­

bersome yet standard expansion of the differentiations. Nonetheless, it is worth noting 

the difference in differentiations with respect to path flow' compared to differentiations 

with respect to link flow: As we have described previously, the value is either 0

or 1; The value e Cp A f\d e U {/j'^}},

can be any non-negative integer.

In this section, we have analyzed the queueing model for wireless ad hoc networks. 

Based on the queueing model, we propose a cost function, called the wireless medium 

cost, that models the delay cost incurred by a traffic flow to the overall network. We 

start from wireless medium at each hop and extends the results to each path. Although 

wireless medium costs of each path or each node do not sum to the overall cost of a 

network, we have demonstrated that the first and the second derivatives of the wireless 

medium costs give the derivatives of the network costs with respect to path flows. The 

wireless medium cost is an analytical model of costs incurred due to wireless interferences. 

It encapsulates the complexity of wireless interferences and MAC approaches into a 

function that can be used by optimal routing algorithms.

4.4 Convexity of Wireless Routing Optimization Problems

We can design an optimal routing algorithm for wireless ad hoc networks based on the 

first and the second derivatives of wireless medium costs. However, a prerequisite for
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existing convex optimization approaches to converge is the convexity of the objective 

function.

Existing studies of optimal routing approaches have rarely shown the verification of 

convexity for routing optimization problems. This is mainly because that the verification 

of convexity in wured networks is trivial, assuming that the link delay is convex. More 

specifically, the objective cost function in wired networks can be transformed as follows:

(l)yAl)C{J^) =
iec

(4.12)

w'here is a linear transformation of path flows J- and represents the set of link flows 

in a network. (?(•) = C{-)oTZ~^ is a composition function that gives network costs given 

the set of link flows. Based on the affine-invariant property of convex functions, in order 

to verify the convexity of C{!F), one needs only to show the convexity of 
which stands strictly if (■iiff'') is convex.

However, the convexity can not be easily established in wireless ad hoc networks, 

even if the medium delay function is convex. As we have demonstrated, the latency 

function l{-) in wireless communications is subject to a set of mutually interfered link 

flows, which complicates and invalidates the last step in equation (4.12). In this section, 

we give an analysis of the convexity in wireless delay-based cost function.

Following the same rationale as equation (4.12), we transform the objective cost 

function into link rate based cost function For the purpose of convenience, we

divide the cost function into the summation of medium access delay and queueing delay
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and prove their convexity separately.

fil)
aeN iec

aeAf iEC

^(s) I

aeAT iec
a:/i6.F(')

(4.13a)

(4.13b)

(4.13c)

The second equality (4.13a) is because that fa and can all be seen as a
result of linear transformation of the link flow vector J-a^ = J-a U I„. We use (■) and 

^ai(') represent the linearly transformed delay functions taking as arguments. 
Ta and Ta^i are linear transformations such that fa = Ta^a \ ff'^ = Ta^iPa'^■ Therefore, 

as shown in the third equality (4.13b), the network cost can written as a summation 
of functions of Once more, j-a'^ is a subset of the network link flows which

means it can be linearly transformed from as shown in the final equality (4.13c). 

According to the affine-invariant property of convexity, in order to demonstrate the 

convexity of C(J^), we need only to demonstrate the convexity of each and

Firstly, we show that the queueing delay at each node is indeed convex under certain 

condition;

Lemma 1. If the following condition stands - for each node a ^ N and each link 
ff'^ G J-a the medium access delay and the second moment of medium access delay

are convex, then the queueing delay at each node £^a\'^a) = is strictly

convex over vector Ta'^.

Proof. The main rationale is to demonstrate that the second partial derivative of queue­
ing delay with respect to f-’'^ and f^ G P'a'^ = Pa U la is strictly positive. For detailed 

proof, see Appendix B.l □

?(«)/
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Lemma 2. If the queueing delay t'a\Fa'*) is (strictly) convex, then the queueing cost 

at each node is (strictly) convex w.r.t. the link fl.ow set

Similarly, if the medium access delay l)^\{IFa^) is (strictly) convex, then ther(^) {x'(0

medium access delay cost = lal{J^a^)Ta,iTa^ at each link is (strictly) convex.
(i)

Proof. The proof is based on the definition of convex functions. For detailed proof, see 

Appendix B.2. □

With the results of Lemma 1 and 2, the convexity of the objective cost function in 

wireless networks are straightforw^ard. In summary, we have the following proposition.

Proposition 2. If the medium access delay second moment of medium

access delay are both convex, then the objective function C{F) is convex.

Proof. See Appendix B.3. □

With the convexity of wireless delay costs established, an immediate result is that, 

we can use convex optimization approaches on the wireless medium cost function to 

achieve network optimization. Formally speaking:

Corollary 1. There exists a network routing solution J-* such that

C{r) = min{C(7')|VJF e dom C(-)}

Or equivalently.

There exists a solution J-* that solves the wireless network optimization problem (1.2).

Using the KKT condition [Boyd and Vandenberghe, 2004], another derivative result 

of the Proposition 2 is the optimal Wardrop equilibrium for wireless ad hoc networks 

using the marginal wireless medium costs of each paths.

Corollary 2. For each communication w, given its traffic demand Tw, all its available 

paths {Vw} can be numbered 1, ...Nuse, ■■■Nall so that:

C'&:,l(/l) = ••• = = NI < + ^ ^ Nall)
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/j > 0, i — 1) •••■ Nuse

fi = 0, i = Nuse ■)“ 1) -^aZ;

Then the network solution is optimal, i.e. T = T*.

Similar to the case of routing problems in wired networks, the optimal Wardrop 

equilibrium is an necessary and sufficient condition for netw'ork optimality. Therefore, a 

simplistic routing algorithm can given by balancing marginal costs at each source node.

This completes our verification of convexity for wireless optimal routing problems. 

In the next section, we summarize the information needed to compute wireless medium 

costs and describe the mechanism to retrieve the information [Roughgarden and Tardos, 

2002].

4.5 Summary

In this chapter, we have given the definition of the wireless medium cost, which describes 

the overall costs incurred of a traffic flow to its neighbours. Therefore, the derivatives of 

wireless medium costs coincide with the derivatives of the network costs with respect to 

a traffic flow. We have demonstrated that the wireless medium cost function is strictly 

convex. In the following chapter, we devise an optimal routing algorithm using the 

wireless medium costs.
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Chapter 5

Distributed Optimal Routing

In the previous chapter, we have described the design of the wireless medium cost and 

verified the convexity of wireless costs. Using the first and the second derivatives of the 

wireless medium cost, existing optimal routing approaches can function in wireless ad 

hoc networks. However, their performance are likely to suffer. We have summarized in 

chapter 2 and 3 a number of open questions for optimal routing in wireless networks, 

regarding to route discovery, convergence rate and distributed manner. In this chapter, 

we present an optimal routing algorithm that aims to address these issues.

5.1 Overview

In this section, we firstly reiterate the design objective of our wireless optimal routing 

algorithm. Then, we describe the organization of this chapter.

Our formulation of the wireless optimal routing is given in system (1.2). To address 

this problem, we base our approach on Newton’s method for its superior convergence 

rate compared to first-order methods. We address the constraints using available tools 

reviewed previously. We aim to design a node-level distributed optimal routing algo­

rithm. According to the discussion in section 3.8.2, we will use the path flow as handle 

variables to avoid the creation of large amount of subproblems.
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Notation Meaning
l{s) Medium access delay at saturation. It is the upper bound of

Q°- Quota assigned to flow fp at node a, which is the portion of available

capacity of node a. The value is set as infinity if fp does not use the

queue or the medium of node a, i.e. fp ^ ■Fa'J Tq

The set of quota assigned by node a to all flows that use its queue or

medium access resources, namely, Q" = {Qp}fpeJ^aUia

Qp The aggregated quota assigned to flow fp, namely Qp = min{Q“|a € A/"}

Q The set of quotas for all flows. Q = {Qp\fp G {Qp\p G 'P}

K{a) The set of indices i of capacity constraints gi{P) < 0, such that gi{T) rep­

resents either the queueing capacity constraints at node a or the medium

capacity constraints of outgoing links of node a

Table 5.1: Notations in Chapter 5

The rest of the chapter is organized as follows. In section 5.2, we discuss our design 

that addresses the constraints and decomposes the couplings introduced by constraints 

down to flow level. In section 5.3, we describe our approach to decouple the objective 

functions. Next, we transform our algorithm from a flow-level distributed to a node­

level distributed algorithm. In section 5.4.1, we give the design of route discovery and 

maintenance for optimal routing algorithms. The structure of our routing algorithm is 

illustrated in Fig. 5.1

5.2 Quota-based Interior-Point Method

In this section, we address the constraints in wireless routing optimization problem. This 

involves two parts: in subsection 5.2.1, we describe our choice on addressing constraints 

in a centralized approach, that is to keep the converging sequence of solutions feasible at
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139



all time. On the other hand, constraints introduce couplings to different communication 

flows. In subsection 5.2.2, we propose an approach called the quota-based mechanism 

to decompose the couplings introduced by inequality constraints.

5.2.1 Addressing Constraints

The equality constraints can be tackled by equality-constrained Newton’s method, namely 

solving the KKT system (3.19) at each Newton step. Computationally, equality con­

straints impose no difficulty to each step. This is known as the affine-inv-ariant property 

of Newton’s method. In the following, we focus on approaches that address the inequality 

constraints.

As we have reviewed in chapter 3, available tools for inequality constraints include 

the Frank-Wolfe method, the projection method, the interior-point method and decom­

position methods. Among these tools, the Frank-Wolfe method is applied to the first- 

order gradient method; Decomposition methods can solve subproblems locally using 

the second-order Newton’s method. However, the coupling constraints among different 

subproblems are addressed using the subgradient method. Both methods suffer from 

a slow convergence in addressing constraints. Furthermore, decomposition methods do 

not guarantee strict feasibility. Therefore, we focus on the projection method and the 

interior-point method.

The projection method guarantees strict feasibility and is simplistic to implement. 

However its crude “cut-off” on solutions may lead to fluctuations of convergence. Interior- 

point methods, including the basic logarithm barrier-based interior-point method and 

the primal-dual interior-point method, enjoy a fast convergence compared to the rest of 

the approaches. The problem for the primal-dual interior-point method is that it does 

not guarantee feasibility of the converging sequence of solutions. The logarithm barrier 

method is mostly satisfying except that it only applies to inequality on open sets.

The majority of existing routing approaches choose a single method to address all 

inequality constraints uniformly. In the contrary, we investigate the constraints formu-
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lated in (1.2), namely the non-negative constraints and the capacity constraints, and 

address them separately.

5.2.1.1 Non-negative Constraints

Traffic flow along a path can be either zero if not utilized or positive if utilized, but it 

can not be negative, i.e. T" ^ 0. This is equivalent to non-negative aggregated flows 

along each link, i.e. b 0.

This constraint is not a strict inequality in that elements in T can be zero. By 

default, the interior-point method, shown in (3.22) does not suit this case: The penalty 

introduced by the logarithm barrier function, —iilog{J-) is infinity at /p = 0 for any path 

p. That means all paths have to have a positive traffic, i.e. being utilized. Nonetheless, 

this issue can be handled by an engineering modification to the constraints: For a small 

value e > 0, one can change the non-negative constraints J- Q to J- >- —e. As the 

coefficient /i of the barrier function in approaches to 0, the penalty —glog{F) at = 0 

diminishes. Therefore, paths can have zero traffic. However, it requires many outer 

iterations of the interior-point for the coefficient /i to approach 0. That means the 

abandonment of “bad” paths is slow.

On the other hand, the projection method works on strict inequalities. In addition, 

we argue that a projection on T" ^ 0 is less likely to suffer from fluctuation. According to 

Corollary 2, we know that at network optimum, for each communication flow, all paths 

with higher marginal costs than the rest have zero traffic and vice versa. For the sake 

of argument, let us consider an example where a path p is transmitting flow /p = 2. At 

some step, Newtcm's method determines a flow change A/p = —5. Because traffic over all 

paths sum to the traffic demand of a communication flow, projecting the flow change to 

A/p = —2 will result in less traffic on other paths of the same source. Since the marginal 

cost of a path decreases as its traffic decreases, roughly speaking, the projection leads 

to a even higher difference in marginal costs between path p and the rest of currently 

transmitting paths. Therefore, path fp should stay un-utilized unless its marginal cost
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reduces in the future. We choose the projection method on the non-negative constraints

0.

5.2.1.2 Capacity Constraints

Now we consider the capacity constraints, i.e. g{J^) < C, which differs in wireless 

networks compared to wired networks. According to our analysis on wireless interference 

in section 4.2, we classify the capacity constraints into two categories; 1) the medium 

capacity constraints as a result of secondary interferences and 2) the queueing capacity 

constraints as a result of primary interferences.

Firstly, we have the medium capacity:

(5.1)

where Ca,i is the capacity/maximum throughput at the medium of link i at node a. It 

states that the sum of traffic sharing the medium access is constrained by the medium 

capacity. The medium capacity constraint corresponds to the link capacity in wired 

networks.

Another type of capacity constraints is the queueing capacity constraints. Because 

all outgoing flows share the same queue at a node, the aggregated arrival rate of all flows 

can not overflow the queue. This can be formalized according to the queueing rr.odel 

(4.2): The utilization of the queue at node a should be strictly less than one:

E < 1;(0 ;5.2)

Each link flow can be transformed to a summation of path flows running through 

the link:

fP = E /p 5.3)
p:p€V

iep
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(5.1), (5.2) and (5.3) together form the capacity constraints g{J-) < 0, where g{-) :

can somehow number each of the lA/"! + |-C| constraints. Let gi{J^)

be the constraint.
The detail of g{T) depends on the choice of the medium access delay function ^a*](-)- 

But unless ^u\-(-) is either a constant function or the inverse of ff \ g{T) is likely to be 

nonlinear, which may lead to complex computation. To simplify the problem, although 

the rest of our approach does not mandate such a simplification, we can replace the 

capacity constraints with a lower bound. Let be the medium access delay of the 

underlying MAC approach at maximum throughput. Since the medium access delay 
is an increasing function, we know that is the upper bound of ^^*](')- Then, (5.2) 

becomes a linear inequality;

^ <1; Va e A/" (5.4)
fPeJ^a

Combining (5.1), (5.3) and (5.4), the capacity constraints can be written in the linear 

form g(J') = C — TZT < 0, although TZJ^ ^ This constraint is indeed a lower

bound on the actual capacity constraint. Routing solutions to problems under such a 

constraints are conservative in congestion avoidance.

In both the original and the linear approximated cases, the capacity constraint is 

not a strict inequality. We choose the interior-point method that introduces a logarithm 

barrier function —glog{—g{J^)) = — M log{—gi{T)) to the objective function in

order to keep the solution sequence of Newton’s method within the capacity constraints.

In summary, we choose a combination of the projection method and the interior- 

point method for constrained optimization. In next subsection, we discuss our design 

for distributed implementation of these methods.

5.2.2 Decoupling Constraints

In the previous subsection, we have discussed our choice on methods to tackle constraints. 

Our goal in this subsection is to decouple the constraints with respect to each commu-
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nication flow. Firstly, let us examine the couplings of constraints. Then, we explain our 

rationale to decompose the couplings. Finally, we describe our proposed solution, called 

the quota-based mechanism.

The equality constraints are introduced from the traffic demand of each communica­

tion flow, as stated in our problem formulationl.2b: ^ fp = Tw,'dw G W. Therefore,
p€'Pn,

couplings exist betw'een paths of the same communication flow rather than between 

diflterent communication flows. More specifically, the equality-constrained Newton's 

method solves the KKT system (3.19) at each step. In every row i of the KKT ma­

trix such that its corresponding path pi G Vw belonging to the same communication w, 

there exists one and only one dual variable , which can be solved locally at each source 

node. It is also easily known that the non-negative constraints h 0 do not impose 

couplings between different paths or different communications.

Indeed, the only couplings of constraints among different communications axe origi­

nated from the capacity constraints: Path flows that share the medium access (5.1) or 

share a queue (5.2) affect the capacity residual of each other. In fact, different com­

munication are more strongly coupled in wireless communication compared to that in 

wired networks. 1) due to the shared queue at each node, the number of constraints are 

larger than that in wired communication - lA/”! -|- \C\ compared to |£|. 2) Each constraint 

Vz = l...|j\/’| + |T|, due to wireless interference, may involve more flows compared 

to link capacity constiaints in wired netwoiks. In the following we describe the rationale 

of a quota-based mechanism that decomposes the strongly coupled constraints.

As we have discussed in the previous subsection 5.2.1.2, we choose the interior-point 

method for capacity constraints, which introduces a barrier function on each of the 

lA/”! + |>C| constraints. The aggregated barrier function -log{—g{F)) transforms the
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capacity constraints to the overall network costs.

lAH + l-CI
minimize C{T) — // E (5.5)

i=l

subject to fp^Tw w eW
P&'Pu,

0

Instead of decomposing the aggregated barrier function, which suffers from the complica­

tion of the barrier function, we can coordinate different flows sharing a queue or medium 

access by assigning a portion of the available capacity, namely a quota, to each flow. 

The assignment of quotas for each resource decouples different communication flows. It 

can be carried out at each intermediate node locally without evaluating the complicated 

barrier functions. Once the quotas of all queues and links are assigned for a path, only 

the minimum quota needs to be guaranteed. At the source node of each path, a single 

barrier function is applied locally to the least quota along the path.

We term such an approach the quota-based mechanism. Now, we give a formal 

description.

minimize C{J-) — g E log{Qp fp) (5-6)
p-UeJ^

subject to ^ fp = Tw w eW
P€Vw

0

gi{Q)<0 Vf-l...|A^| + |£|

where Q = {Qp\ p ■ fp & is the vector of quotas for all the path flows. It is worth

noting that changing the last part of inequalities to equalities, i.e. gi{Q) = 0, Mi = 

l...|A/’| + |-C|, does not alter the solution to the problem. In the case where gi{-) is a linear 

function, the equality constraints are preferred as Newton’s method is affine in^^ariant;

^Or equivalently, Q = {Qp\ p : V}^. We take the flow T point of view because F is our handle 
variable
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If gi{-) is nonlinear, the inequality constraints are preferred, as an interior-point method 

can be applied again. Modified from the interior-point method, both cases of the quota- 

based formulation can be shown to converges to the optimal solution to the original 

routing optimization problem.

Proposition 3. As g ^ 0, the solution to problem 5.6, denoted by T* approaches to 

the solution to problem 5.5 denoted by J-*.

Therefore, the modified interior-point method (5.6) optimizes the original problem 

(1.2). Compared to the basic interior-point method (5.5), the couplings of constraints 

can be efficiently separated through a primal decomposition: The couplings between 

different fp in the complicated g(iF) are reduced to jPj amount of couplings between Qp 

and fp. Through primal decomposition, each node computes locally its assignment of 

quotas to different flows. For each flow, only the minimum quota across different nodes 

is chosen. In this way, couplings between different Qp are eliminated.

In the following, we give a mathematical description of the decomposition to the 

quota-based formulation (5.6).

Let K(a) be a subset of indices among l...|A/’| -t- |£| that includes; 1) the index of 

the queueing capacity constraint for node a and 2) the indices of the medium capacity 

constraints for outgoing links of node a. Therefore, the set of quotas = {Qp}fpeJ^aUXa 

^ computed by node a for each fp must meet constraints gi{Q) < 0,Vz € /c(a). Indeed, 

any Q^, G Q such that b ^ a must have a zero coefficient in gi{Q). Without loss of 

generality, we can write the capacity constraint as 5j(Q“) < 0. Given the current traffic 

flows the assignment of Qf at node a can be executed locally as a subproblem, as

^With a slight abuse of notation, we let fp € Fa Ula denote flow fp runs through node a or interferes 
with outgoing flows of node a. Namely, fp G Fa U la if and only if there exists U In such that
i 6 Cp
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shown here:

minimize — E toaCSi-fH'')
qUXo

subject to gi{Q°) < 0 Vz £ K{a)

(5.7)

Solving this problem gives the Q“. In addition, let 2“ = c» if fp does not occur 

in any of node a’s constraints, i.e. fp ^ Ta^Jla- The quota of each path flow, Qp 

can be aggregated from the quotas assigned to fp by all nodes whose resources are 

used by fp, namely, Qp = min{Qp| Va € ^^} = min{Q“| Va : /p € Ula}- To do 

so, intermediate nodes of a path can gather quotas assigned to the path flow from all 

its two-hop neighbours. Acknowledgement messages of the path flow propagate from 

the destination to the source node and keep a field of quota information. Along the 

propagation, this field is updated by the minimum quota assigned and gathered by all 

intermediate nodes. Cost information of the path can be forwarded in conjunction with 

the propagation of the quota information. When the aggregated quota Qp and the first 

and second derivatives of medium costs are gathered for all paths, the traffic flows can 

be updated to This is essentially one Newton step to the following problem:

minimize C{T) — g, E log{Qp fp) (5.8)
p-fp€J^

subject to fp = Tw w eW
peVw

Problem (5.7) and problem (5.8) are essentially the subproblem and the master problem 

of the quota-based formulation (5.6), decomposed by a primal decomposition.

Our quota-based mechanism are related to both decomposition techniques and to 

the interior-point method. In the next subsection, we will present a case study of our 

approach. Then we discuss the similarity and differences of our approach compared to 

existing distributed approaches, such as the distributed Newton’s method and existing 

decomposition methods.
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Fig. 5.2: An example scenario to illustrate the quota-based mechanism: Flow /, is 

identified by a (sj — di) pair, i = 1,2,3. Throughputs of a, b, c are capacitated.

5.2.3 An Example

In order to illustrate the operations of the quota-based approach, let us now consider a 

hypothetical network, shown in Fig. 5.2. In this network, we use the link model in wired 

networks to simplifiy the scenario: Intermediate nodes a, b and c each have a throughput 

capacity, Ca,Cb and Cc- Therefore the capacity constraint < 0 is of a linear form:

For i — a, b and c, = Yh fp ~ <0- There are three single-path communication

flows. Since our focus in this section is to decouple constraints using the quota-based 

approach, we assume a separable objective function for C{fi, f2, fs) = — Yp^^dUp)- 

The problem to be optimized is given as:

minimize — L logifp)
P=1.2,3

subject to fi + f2 <Ca-, h + h < Cb 

fl < Cc

(5.9)

Note that the non-negative constraints are omitted in this formulation as the objective 

function log{fp) already dictates the positive nature of flows. Transforming it to quota-
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based formulation, we have:

minimize - ^ log{fp) - //, ^ log{Qp - fp) (5.10)
P=l,2.3 p=l,2,3

subject to Qi + Q2 = Ca] Qi + Q3 = Cfa 

Qi = Cci

Since the inequality constraints are linear, we choose gi{Q) = 0 in the quota-based 

formulation. Each Qp is coupled with a flow variable fp in the objective function. A 

primal decomposition can be applied: The subproblem is to compute the best Q given 

a traffic flow step With the solutions of all subproblems, the master problem can 

compute the next Newton step For example, the subproblem at node a is

~ ~ fi^) - logiQl - /2
M2

{th (5.11)

subject to Q{ + Q2 = Ca

Using equality constrained Newton’s method, this problem can solved locally at node 

a, returning the value of Q" and Similarly node b and c computes their quota 

assignment. The quota of a path is aggregated from the assignment at all nodes.

Qi = min{Q?,Q?,Q^}; Q2 = Q2; S3 - Q3

When Qi, Q2 and Q3 arrives at source nodes of the three communications, the master 

problem can be computed distributively at each source node. For p = 1,2,3, the master 

problem is as follows:

minimize - log{fp) - glog{Qp - fp) 
fp

_ f{t) 
Jp J p a

y"(/i*^)

(5.12)

Let y{fp) be the objective function, i.e. y{fp) = —log{fp) — ylog{Qp — fp). Using 

Newton’s method, the update of fp is given as:
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Then a new round (t+1) of transmission and computation starts. Once the computation 

of (5.12) terminates, /r is updated as = Pfi where ^ > 1. As /r —> 0, the solution 

fp fp-
One interesting property of this particular formulation (5.9) is that the objective 

cost function ~log{fp) can be evaluated locally at the source node of fp. Therefore, an 

alternative primal decomposition of problem (5.10) is to make the problem (5.12) the 

subproblem and solve locally at each source node. Then the problem (5.11) becomes the 

master problem. Qp is updated one Newton step with each round of communication.

5.2.4 Summary and Discussion

So far in this section, we have presented our approach to address constraints in routing 

optimization problems. Namely, we answer the first open question identified in section 

3.8.2;

What is a suitable distributed approach to address the couplings introduced by equality 

and inequality constraints?

We choose the equality-constrained Newton’s method for the traffic demand con­

straint of each communication and the projection method for non-negative constraints. 

The capacity constraints g{J-) < 0 have a different form in wireless networks compared 

to wired networks, due to wireless interferences. We classify the capacity constraints into 

the medium capacity constraints and the queueing capacity constraints. To address the 

capacity constraints, we choose the barrier function-based interior-point method over 

the projection method and the dual decomposition technique for its fast convergence.

The main focus of this section is to decouple the capacity constraints with respect 

to each communication flows. To do so, we introduce the quota-based mechanism that 

extends the centralized interior-point method. In brief, at each intermediate where 

multiple flows axe jointly constrained by a certain capacity, a quota is assigned to each 

of the flow. Quotas of at all intermediates travel back to the source node of each path.
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In this way, the couplings are eliminated since each path flow is only constrained by 

its quotas. An interior-point method can be used to find the next round of traffic. 

The assignment of quotas at each intermediate is also an optimization problem, whose 

objective function can be evaluated locally. The algorithm starts with any feasible 

solution. Given a traffic flow at each round, the assignment of quotas can be solved 

locally at each node by equality-constrained Newton's method.

The quota-based approach can be vaguely classified as an indirect decomposition 

method [Palomar and Chiang, 2006], which introduces auxiliary variables to assist de­

composition. However, compared to existing distributed approaches, such as decompo­

sition methods and distributed Newton’s method, it has three desirable features:

Firstly, the quota-based mechanism integrates the interior-point method with de­

composition techniques. The benefit is twofold: On one hand, it is capable of addressing 

coupled nonlinear constraints. Namely, gi{J-) < 0 can take the form as (5.2). In the 

contrary, the dual decomposition method, although it is a natural approach to decouple 

the constraints, relies on the separability of constraints. For example, a common form of 

constraints addressed by dual decomposition is TZF < 0. On the other hand, the loga­

rithm barrier function enjoys a quick adjustment to inequality constraints. If a solution 

is approaching the boundaries, the penalties increase superlinearly therefore pushing the 

solution within feasible domain. To the best of our knowledge, only one approach exists 

in the domain of network optimization that combines the interior-point method with 

decomposition techniques [Mosk-Aoyama et ah, 2010]. However, their approach lacks 

the following features of our approach.

Secondly, both the subproblems and the master problem in our formulation can be 

addressed using the second-order Newton’s method. Recall that in general decomposition 

methods, the coordination between different subproblems, i.e. the master problem, is 

executed with the gradient method - if with luck the master problem is differentiable - or 

with the subgradient method - if the master problem is not differentiable. The first-order 

coordination of subproblems results in a slow convergence. Distributed Newton’s method
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uses iterative methods, including the matrix splitting technique and the GaBP method, 

to distributively compute the linear system at each Newton's step. Although the outer 

Newton’s iteration retains the quadratic convergences, a large number of iterations may 

be inserted at each step, which slows down the overall convergence. In comparison, our 

approach is more efficient in addressing coupled constraints.

Thirdly, the quota-based approach aggregates quotas assigned by intermediate nodes 

of a path into the quota of the path. The aggregation is essentially a reduction to the 

set of constraints for a path flow. As a result, only the most binding capacity constraint 

of a path flow is returned to the source node and used in the logeirithm barrier function. 

As we have seen previously, due to wireless interferences, different communication flows 

are heavily coupled in ad hoc networks: 1) Two flows may interfere with each other 

at multiple hops with different types of interferences; 2) A flow may be interfered by 

a large amount of other flows. Both the standard decomposition approaches and the 

distributed Newton’s methods suffer from a slow convergence rate in heavily coupled 

problems. On the other hand, the quota-based approach addresses the optimization 

problem with reduced couplings. Therefore, it is more suitable to ad hoc networks 

compared to existing approaches.

The quota-based mechanism exhibits features that are more suitable for strongly 

coupled ad hoc networks compared to existing distributed algorithms. It can be antic­

ipated these features result in a fast convergence of the quota-based approach. We will 

confirm this in chapter 6.

In summary, we have described our design choice to address constraints and pro­

posed the quota-based mechanism to decouple capacity constraints with respect to each 

communication flows. In section 3.8.2, we have summarized three open questions for 

the design of optimal routing algorithms in ad hoc networks. The design in this section 

essentially answers the first question. In the next section, we try to answer the rest two 

open questions.
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5.3 Node-level Distributed Manner

In the previous section, we propose the quota-based mechanism to decouple constraints 

in the optimal routing problem with respect to each communication flow. We note that 

in general, the quota-based mechanism alone can not decouple an optimization problem, 

unless the objective function of the optimization problem is separable. For example, if the 

objective is the utility function, — log{fp). the quota-based mechanism is sufficient to 

facilitate a flow-level distributed algorithm. Another example is using link flows 

instead of path flows as handle variables . Then, the objective function in the optimal 

routing problem becomes YlieC This function is not mathematically separable

with respect to each link flow , in the sense that 7ra,i consists of not only but also 

neighbouring link flows G J-a Nonetheless, coupled link flows are physically

close to each other. Therefore, the couplings introduced by the cost function can be 

eliminated by exchanges of information locally. In this case, the quota-based mechanism 

is sufficient to facilitate a node-level distributed routing algorithm.

However, both cases do not suit optimal routing problems in wireless ad hoc networks. 

As we have discussed previously in section 3.2.3, the utility function does not model the 

interference in between different flows; As we have discussed previously in section 3.8.2, 

using link flows as handle variables increases the size of the problem. It slows down the 

convergence of distributed algorithms and introduces more communication overheads.

Therefore, we focus the minimization of the non-separable cost function C{J^) using 

path flows as handle variables, F = {fp\ p € V}. Firstly, in subsection 5.3.1, we 

investigate the design choice to decouple the cost function in Newton’s method with 

respect to each path flows. Together with the quota-based mechanism, it leads to a 

flow-level distributed routing algorithm. Then, in subsection 5.3.2, we propose the tree- 

based mechanism that translates the flow-level distributed algorithm into a node-level 

distributed algorithm.
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5.3.1 Diagonal Approximation of the Hessian

In this subsection, we propose to use the diagonal approximation of the Hessian matrix 

in Newton method. In this way, the couplings between different communication flows can 

be eliminated at each Newton step. In the following, we firstly describe the motivation 

of this approach. Then we describe an integration of the diagonal approximation with 

the quota-based mechanism. Finally, we discuss the advantages and disadvantages of 

this approach.

5.3.1.1 Motivation

The couplings introduced by a non-separable objective function C(J^) are embodied by 

the computation of the Newton step. For example, in the unconstrained case, we have

Let denote the row of the inverse of the Hessian matrix V^C'(J^). The

path flow is given by A/i = [V^C'(J^)“^]iVC(.F). In general, the inverse operation 

requires a full knowledge of the Hessian matrix and a centralized computation. In order 

to compute the inverse of the Hessian matrix distributively, a common approach is to use 

iterative methods to solve the coupled linear equation system. However, these approaches 

introduces a number of iterations at each Newton step, which introduces communication 

overheads and does not suit wireless ad hoc networks. We have identified this challenge 

as the second open question for the design of a distributed optimal routing algorithm, 

as stated in section 3.8.2.

How can we address the coupling introduced by the objective function, namely the 

distributed inverse of the Hessian coefficient matrix, without using iterative methods at 

each Newton step?

We answer this question by using the diagonal approximation of the Hessian matrix 

in the computation of each Newton step. Let diag(V‘̂C{iF)) represent the matrix whose 

diagonal elements are the same as the Hessian V^C{T) and all off-diagonal elements are
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set to zero. The unconstrained Newton step using diagonal approximation is given as :

diag{W^CiJ^))M^ = -VC(J^)

In this case, each component can be computed by A/j = Now that

the couplings introduced by the objective function are eliminated, we can integrate 

the diagonal approximation with the quota-based approach for a flow-level distributed 

optimal routing algorithm.

5.3.1.2 Flow-level Distributed Algorithm

Combining the results we have so far, including the wireless medium cost, the quota- 

based mechanism and the diagonal approximation of the Hessian matrix, we can describe 

a flow-level distributed routing algorithm.

The algorithm starts with an initial traffic Each source node iteratively adjusts 

its traffic distribution over available paths. After the round t transmission, each inter­

mediate node a gathers information of neighbouring traffic flows. Then, it calculates 

the first and the second derivative medium costs, namely ^(/p) and C'^ ^(/p), of each 

path flow fp running through it. It solves problem (5.7) using Newton’s method, which 

gives the assignment of quotas for each path flow. A reply message from the destina­

tion node to the source node records the derivatives of medium cost and quotas at each 

intermediate node. When the reply message arrives from path p, the source extracts 

<^&,p(/p)> <^&,p(/p) and Qp.

For simplicity of notation, we can number the path flows of one communication w as 

fi,w-fn,w With the information extracted from the reply message at round t, the source
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of communication w computes its Newton step from the following equation systems:

■it)

+ ^fn ^ (fnlii) + — ^ (t) )

\ Wn,tiJ — Jn,w '

(5.13)

(o VI 'si.n^w Jn,w J

l,EtiAJi™=AT„/a

where ATw = 0 if the traffic demand of communication w is consistent otherwise repre­

sents the change of traffic demand compared to the previous round. The next round of 

traffic distribution is given as

= fil + (5.14)

where a is the step size and can be either a constant positive 0 < a < 1 or determined 

by certain line search algorithms.

The path flows computed by (5.13) and (5.14) may be negative. As we have discussed, 

we choose the projection method to enforce the non-negative constraints. Projection 

methods used in existing network optimization approaches are linear projections. In 

this case, a linear projection sets the negative path flows as zero and equally distributes 

the negative residual over positive paths, which is rather simplistic. A more sophisticated 

approach is to distribute the residual over the remaining paths based on their path costs.

More specially, let r be the sum of path flow^s at round t that becomes negative after 

updated from (5.13) and (5.14). Namely,

= fi!w’ where N eg Set = {f| < 0}
i^NegSet

(5.15)

Firstly, the source node sets path flows whose index belongs to NegSet un-utilized, i.e. 

assigning zero traffic over previously negative flows. Secondly, it removes equations of 
un-utilized paths in (5.13) and replace the last equation by Af^^^ = {ATw — r)/a. 

Then, system (5.13) and (5.14) are computed once again for a new traffic distribution.
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Finally, it is possible that the new traffic distribution also contains negative flows. In 

this case, the same procedure can be executed iteratively until no negative flows occurs. 

It is easily known that this iteration always terminates, i.e. it is not possible that all 

traffic flows are assigned negative traffic. It should be noted that due to the diagonal 

approximation, the computational effort needed to solve system (5.13) is trivial.

This traffic distribution algorithm is essentially the master problem (5.8) at each 

source node. We use Newffon decrement as the criterion for the stopping criterion of the 

problem. That is,

At)
it)
i.w (5.16)

i=l Qi,w

The inner Newton iteration to problem (5.8) terminates if is smaller than a certain 

threshold. Then the interior-point method continues with a smaller We give a formal 

description in algorithm 3.
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Algorithm 3 Load Distribution Algorithm at Source Nodes
Starting with an initial value > 0, > 0, > q ^ ^ ^

repeat:
1. Send out traffic Tw'^ = {fi%^ •••i fnlu}

2. Gather cost and quota information 

Qi^w for each path i

3 repeat:

3.1 Solve system (5.13) and update the solution with (5.14)

3.2 If there exists < 0, then computes NegSet and r

according to (5.15)

3.3 Set = 0 and remove corresponding equation in (5.13)

for every i G NegSet

3.4 Set ATw = ATw — r/a

until all path flow > 0

4. Compute the Newton decrement according to (5.16)

5. Update the p = 7/x if

until the stopping criterion ng, < e is met

5.3.1.3 Discussion

Indeed, the usage of diagonal Hessian matrix is a simplistic technique to avoid the ex­

pensive computation of Newton step. Certain routing algorithms [Bertsekas et ah, 1984] 

have also applied diagonal Hessian to facilitate distributed computation of Newton step. 

Compared to Newton’s method using the full Hessian matrix, the diagonal approximated 

Newton’s method can not guarantee quadratic convergence in general. However, we ar­

gue that the diagonal approximation of the Hessian matrix is a suitable approach for 

optimal routing in wireless ad hoc networks.

Firstly, it avoids the necessity of iterative methods to compute each Newton step. 

At each Newton iteration, the computation can be carried out locally with one round
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of data-reply message exchange between the source node and the destination node. Sec­

ondly. it reduces the amount of information needed at each iteration. Since off-diagonal 

elements of the Hessian matrix are omitted, each intermediate node gathers and prop­

agates less information compared to the full Hessian. The reduction overhead can be 

significant in a network with non-sparse communication flows. Finally, although the di­

agonal approximated Hessian matrix can not a quadratic convergence, it exhibits a good 

convergence rate in practise. In fact, we can view the diagonal Hessian as a precondi­

tioner to the gradient of network costs. Therefore, the approximate Newton's method 

using diagonal Hessian guarantees a linear convergence rate and avoids the “zig-zagging” 

problem experienced by the gradient method. Without “zig-zagging”, the geometrically 

reducing costs of linear converging algorithm is usually satisfying.

5.3.2 Node-Level Distributed Optimization based on Optimal Sub­

structure

So far. we have given the design of a flow-level distributed routing algorithm where 

the source node of each communication makes load distribution decisions over available 

paths. Indeed, the flow-level distributed routing algorithm can be seen as the multipath 

version of source-routing, which is undesirable for ad hoc networks. In order to achieve 

a node-level distributed algorithm, existing approaches have focused on the pure mathe­

matical side in the sense that they formulate the routing optimization problem with link 

rates as handle variables. In this way, the same optimization methods can be applied to 

node-level distributed algorithms as to the flow-level algorithms.

In addition to what described in the mathematical formulations, the routing problem 

possesses an interesting property, namely the optimal substructure. With this property, 

we can design a node-level distributed optimal algorithm. Firstly, we reiterate the defi­

nition of the optimal substructure property [Cormen et al., 2009]:

A problem exhibits optimal substructure if an optimal solution to the problem contains 

within it optimal solutions to subproblems.
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The concept of the optimal substructure originated from the domain of dynamic 

programming and greedy algorithms. It should be noted that the term “optimal” here 

differs from that in the domain of convex optimization. In the case of multipath routing 

optimization using iterative methods, we argue that the computation of each step 

exhibits the optimal substructure in the sense that the solution to the system (5.13) 

contains sub-solutions at each intermediate node.

Let us consider the example network shown in Fig. 5.3(a). At each round, the task 

is to split the traffic demand over the three paths based on their cost information - 

p(/p)’ ^2; p(/p)> 2p, P = 1,2,3. Physically, data traffic of flow /i and /2 are separated 

from /s at source node S at first. Then fi and /2 are split at node A. In a more 

complex network, data traffic gradually separated as they approach the destination node. 

Therefore, the traffic splitting problem consists of a sequence of subproblems, each of 

which splits partially the traffic demand. Each subproblem is solved based on the solution 

of its previous subproblems, i.e. it exhibits the optimal substructure.

Now we give the mathematical realization of the optimal substructure property. We 

simplify the notation in system (5.13) as follows:

= (C'&,p,.(/W ) -F
Qp,ii /

Jp,w

and

a
{Qp,W fp,w)

(5.17)

Then, in this example, the traffic distribution problem at step t is given as:

=-c;«

Afi% + Af^% + Afi% = ATJa

Let Aand A/s be the solution of the subproblem at source node S. The sub­

problem of problem (5.17) at node S is
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/3
(a) An Example Network: Three available paths, /i,/2 and fs for com­

munication between node S and D

Pathinfoil)

A/;
a/2

PathInfo{\)

Pathlnfo(A)

PathInfo{B)
— PathInfo(3)

(b) Substructure of the Routing Problem: Dashed lines represent reverse paths for reply messages 

to source nodes. Pathinf o{p) = {C^ Qp}

Fig. 5.3 : A Demonstration of Optimal Substructure for Multipath Routing: At each 

round of an iterative optimal routing method, the computation of routing decisions can 

be seen as a traffic splitting problem. The optimal splitting at each round consists of an 

optimal splitting between Ja and fs at node S and an optimal splitting between /i and 

/2 at node A. The optimality of solutions to each subproblem depends on the proper 

merging of cost information.
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.'(t)

-c '(«) (5.18)

AJa + AJb = ATw/oi 

For the optimal substructure property to hold, the system (5.18) should give a solu­

tion AjA = ^/i + A/2 and A/s = A/3. According to (5.17), we have

AU =A/i + A/2 = cy +
- Z/

a '(t)

- cydy - (c'y+cyy
c'ycy

, which simply transforms to

/^"WW
'-^1 ^2 A r -L^2

-A] A + — —

+ a'W (5.19)

That means, if we let

C
(t) L-j L-2 *-^1 *-"2

+ d'it)
it) _ ^2

^ c;'«+ (5.20)

, then (5.19) becomes the first equation in system (5.18). Also let Cg — >^3'it) _ n'it)Co and
Cy = Cy. Solving system (5.18) gives AJa = Afi + A/2 and A/s = A/3.

Since node 5 needs only ^ and but not necessarily cost information of path 

fi and /2, equation (5.20) can be seen as the specification of the merging of path /i and 

/2 should merge at node A.

Receiving aggregated traffic from S, i.e. based on the solution of the first subproblem, 

node A can compute the split of fi and /2 as follows:

dyAf,+= -dy 
dyAf2+= -dy
A/i + A/i = A/a

(5.21)
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The traffic splitting problem terminates with /i,/2 and /a computed. This completes 

the mathematical realization of the optimal substructure property. The procedure is 

demonstrated in Fig. 5.3(b).

It should be noted that there is one difference in the information exchange between 

node-level distributed manner and flow level distributed manner. If the algorithm uses 

aggregated quota of a path, the merge of paths requires the path quota instead of the 

node quota. Therefore, instead of gathering quota information on in reply messages from 

destinations to sources. Intermediate nodes maintain their quota assignments during the 

continuous transmission of one round of data. The quota-assignment for next round of
''(t)transmission can be piggybacked to destination nodes with data messages. Cp^ ’ and

■'V
f (i\

Cr, ^ can be computed starting from source nodes and updated along reverse paths.

Generalizing the derivation of this example, we give the description of a node-level 

distributed routing algorithm.

2 n c"

n __ nc,
c]

i jjti

(5.22)
77—
&p,-

Receiving the cost information of node A and node B, the source node S can now 

calculate the changes of flow sending to the next-hop nodes as in (5.13)

Intermediate node A, on receiving the change of traffic flow, calculate the change of 

sub-flows to its next-hop neighbours as in (5.23)

C'&P A/i+u;

C'L,,M2 + w

-c\hpi

&P2

(5.23)

C^Afm + w = -C:’'^Pn

ZAf, = AfA
Pi

&Pn
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The algorithm at intermediate nodes is given as follows:

Algorithm 4 Algorithm at Intermediate Nodes
On receiving data messages:

1. Compute the traffic distribution to the next hop neighbours according 

to system (5.23). If no cost information is available, distribute traffic to all 

next hop neighbours evenly.

2. During the continuous transmission of current round traffic, update its 

quota assignment by solving problem (5.7)

On receiving reply message of one communication:

1. Merge the cost information according to (5.22)

2. Update local cost information to the merged cost information:

cl, = c'i^ + cl^-, c'^, = c'^, + c'^a
3. Forward reply messages back to last hop nodes.

5.4 Route Discovery

In this section, we investigate the route discovery procedure for optimal routing algo­

rithms. Firstly, in subsection 5.4.1, we revisit the overview of the network layer commu­

nication task for optimal routing. Our node-level distributed quota-based interior-point 

algorithm offers partly the functionalities of the overall task. We identify the primary 

remaining issues, namely the discovery and establishment multiple loop-free paths, to 

facilitate our optimal routing algorithm. In section 5.4.3 and 5.4.2, we describe our 

approach to address these issues.

5.4.1 Overview

The overall communication task of data transmission between source nodes and des­

tination nodes using multiple paths can be divided into four components: the control
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message exchange, path filtering, path selection, and data distribution. Existing opti­

mal routing algorithms assume the availability of all potential paths and focus on the 

computation of traffic assignment. Essentially they provide the path selection and data 

distribution functionalities. Therefore, our objective is to design an approach that dis­

covers and establishes multiple loop-free paths for optimal routing algorithms. Raised 

from the literature review in section 2.5.4 and 2.5.5, this approach should have the 

following properties:

1. The ability to eliminate redundant path information, by path filtering and merging.

2. Discovery of optimal path set if potential paths are filtered.

3. Providing exact cost information, which is challenging if multiple paths are merged.

Indeed, our design objective have already been partly addressed by results described 

so far. Our node-level distributed quota-based interior-point algorithm uses cost metric

p(/p)) ^'L pifp) 2p path p. Therefore, a natural control message exchange

mechanism is the distance-vector routing. Sources node floods route request (RREQ) 

messages. Multiple - if not all - RREQ messages are replied once reach destination nodes. 

Route reply (RREP) messages travel the reverse path of RREQ messages to source nodes. 

Routes between sources and destinations are established. The on-demand manner suits 

the scenario of dense ad hoc networks because the global network topologies are not 

necessarily maintained at all nodes as link-state routing. In our node-level distributed 

algorithm. The merging of cost information, as specified in (5.22), is exact in the sense 

that it does not affect the resulting traffic assignment over each path compared to un­

merged costs. Finally, same as other optimal routing algorithms, path selection and data 

distribution are determined by iterative convex optimization methods.

One outstanding issue yet to be addressed is the path filtering during route discovery. 

A proper path filtering criterion eliminates redundant paths as much as possible. There­

fore, the communication and computation overheads are reduced compared to naive
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route discovery approaches. We will search for such a criterion in subsection 5.4.3.

Another issue is that although we have specified the exact merging of costs, it may 

conflict with the establishment of loop-free paths. As we have discussed in chapter 2, in 

order to prevent loops during data forwarding, the cost to a destination node has to be 

strictly decreasing as the data approaching the destination node. Previously in section 

2.5.5, we argued that this may not always be the case if costs are merged. In subsection 

5.4.2, we will investigate this issue.

5.4.2 Loop-freedom of Multipath Routing

In this subsection, we discuss our approach to guarantee loop-freedom in multipath 

communication. The problem can be divided into two aspects: 1) loop-freedom during 

route discovery stage, i.e. in a static setting; 2) loop-freedom during route maintenance, 

i.e. with the presence of topology changes.

5.4.2.1 Loop-Freedom of RREQ Floodings

Firstly, we consider the discovery of loop-free paths in a static setting. This is not 

an issue for single-path distance-vector routing algorithms. Only one path is to be 

discovered per communication. If an intermediate node receives multiple copies of a 

RREQ message identified by the source and destination addresses, it forwards only the 

first copy and discards all consecutive copies. Disjoint multipath routing is a similar 

case. Each intermediate node - or link - transmits only one copy of a RREQ message 

and discards the rest. Feasibility condition based multipath routing maintains a single 

shortest path between each node and the destination node. Therefore its route discovery 

procedure is essentially a proactive single path routing. However, the discovery of loop- 

free paths is not obvious for our case. Since we do not assume the path disjointness, 

multiple paths may intersect at one intermediate node. An intermediate node may have 

to forward multiple copies of RREQ messages for one communication. The question is, 

how can an intermediate node determine whether a received copy of RREQ messages is
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a result of loops during flooding or a loop-free intersecting path?

A straightforward solution to this problem is to record the list of nodes travelled by 

a copy of RREQ message. On receiving the RREQ message, an intermediate node can 

check whether its address is already in the list. A positive result indicates the RREQ 

message has travelled a loop. Otherwise, the intermediate node rebroadcasts the RREQ 

message. However, the list of intermediate nodes travelled by a message can take a 

large amount of space in the header of the message, which introduces communication 

overheads.

In order to alleviate the overheads, we can replace the list of addresses with a small 

bloom filter in the header of RREQ messages. A bloom filter is a randomized data 

structure to determine the membership of an element in a given set. It consists of k 

hash functions that maps an element to a 7n-bit binary string. In our case, the IP 

addresses of network nodes are the elements whose membership to be determined. The 

usage of bloom filters involves two operations: add and query. All the m bits are initially 

set to 0 in a bloom filter. When a RREQ message arrives at an intermediate node for 

the first time, the intermediate performs the“add” operation: The IP address of the 

node is fed to the k hash functions, each of which returns a m-bit string. Then a bit­

wise OR operation is taken over all the k strings and the original string in the bloom 

filter. Finally, the node updates the string in the bloom filter with the result of the OR 

operation. In order to check whether the arrival of a RREQ message is the first time, an 

intermediate node performs the “query” operation to the bloom filter: The node feeds 

its IP address to all the k hash functions and performs OR over the k binary strings, 

which returns an array of positions whose value is 1. If the value of these positions in 

the string of bloom filter are all 1, then the result of the query is deemed as positive. 

It indicates that the RREQ message has travelled through the node previously. The 

node discards the RREQ message. Otherwise, the node performs an “add” operation 

to insert its IP address to the bloom filter of the RREQ message and rebroadcast the 

RREQ message to all its neighbours.

167



Indeed, many previous approaches [Broder and Mitzenmacher, 2004,Tian and Caeng, 

2012] have used bloom filters to eliminate loops of messages. False negative results are 

not po.ssible in bloom filters, which guarantees loop-freedom. On the other hand, false 

positive results are possible in bloom filters. This is because all the corresponding bits 

of one element in the bloom filter can be set by a group of other elements. This leads 

to a false positive query to that element. A false positive result eliminates a loop-free 

path falsely. However, the probability of false positive is controllable. In the following, 

we briefly state the analysis.

Let n be the expected maximum length of a path. For a bloom filter with 7n-bit 

string and k perfectly randomized hash functions the probability of false positive, 

denoted by p, is given as follows:

P
-!sn\k e m j

Since p can be seen as a function of k given the value of m and n, there exists a k* that 

minimizes the false positive probability.

k* = ^fop(2)

With the optimal k determined, we can write:

nlog{p)m = —-
{log{2)f

Therefore,given the design objective of the probability of false positive and the expected 

maximum path length, we can determine the number of bits in the bloom filter. For 

example, if we allow a 0.1% of false positive and 20 hops of longest path, the bloom filter 

will take up 288 bits in the header. That is on average 14.38 bits overhead introduced 

by each hop, compared to the 32 bits of addresses for each RREQ message.

^Perfect randomization here implies that each bit is set independently with each other. In practise, 
for example, MD5 is commonly used
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5.4.2.2 Loop-Freedom in a Dynamic Setting

The usage of bloom filters eliminates loops in the flooding of RREQ messages. If the 

topology of a network is ideally static, paths established by RREQ messages will stay 

loop-free. However, ad hoc networks may experience topology changes due to node 

movement or joining and leaving a network. Although in our thesis we do not consider 

highly dynamic environments, such as mobile ad hoc networks, we wish to cope with 

infrequent topology changes, i.e. quasi-static networks.

With the presence of topology changes, established paths may break or change part of 

their courses. As we have reviewed in chapter 2, existing routing approaches establish an 

order of intermediate nodes, which decreases strictly towards a destination node. In this 

way, an intermediate node can determine its next-hop nodes based on the order value of 

its neighbours, which are not necessarily the next-hops established by RREQ messages. 

For example, in shortest path routing, hop counts towards destination nodes are used 

as the order value. In feasibility condition-based minimum delay routing [Vutukury 

and Garcia-Luna-Aceves, 1999], each node reports the minimum delay cost towards a 

destination to its upstream nodes. In this way, a strictly decreasing order of delay costs 

towards a destination is established. However, this results in an inexact merging of cost 

metrics of multiple paths.

The merging of cost metrics in our algorithm, as specified in (5.22), is exact. However, 

it is easily seen that a merged first derivative cost is essentially a weighted average of 

all its next-hop first derivative costs. Unless all next-hop first derivative costs are equal, 

there is at least one next-hop cost larger than the merged first derivative cost. A merged 

second derivative cost is always smaller than any of the next-hop second derivative costs. 

In short, the exact merging of cost metrics in our algorithm does not retain the strictly 

decreasing order among intermediate nodes towards destination nodes. It leads to loops 

in data forwarding.

In order to address the dilemma between exact merging of cost metrics and strictly
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decreasing order, we differentiate the cost metric used by traffic distribution and the 

distance towards a destination. In addition to the derivative costs {C^pjC'^p} and 

quota information Qp of a path, the RREP message also carries a hop count field that 

increases at each hop. The merging of hop counts from multiple paths chooses the 

smallest hop count value of each next-hop nodes. Therefore, a strictly decreasing order 

is established. Based on hop count value of each neighbours, a node determines its 

next-hop nodes, i.e. potential paths. Based on the cost metrics Qp}, a node

determines the data distribution over the selected nodes, using (5.23).

Finally, information of a path may become stale due to topology changes. Possible 

methods to identify outdated information include sequence number and feasibility condi­

tion. For its simplicity, we choose the approach of sequence number. A sequence number 

is associated with each communication. If a node detects link failure, it increases the 

current sequence number it holds by one and starts a local repair, i.e. route request by 

the node. The local repair procedure terminates when a node with a higher sequence 

number responses to its requests.

5.4.3 A Path Filtering Criterion for Optimal Routing

In the previous subsection, we have addressed the loop-freedom problem in both route 

discovery and data forwarding. Indeed, eliminating loops is a basic path filtering cri­

terion: Paths with loops should always be avoided. On the other hand, not all paths 

without loops are necessary to discover and maintain. In this subsection, we investigate 

the path filtering criterion for optimal routing algorithms.

In a network with a high connectivity, such as a dense ad hoc network, the number 

of potential paths between two nodes can be astronomical. For example, even in a small 

scale 5*5 grid topology as shown in Fig. 5.4, there are 8512 potential paths between 

node 1 and node 25. On one hand, a dominating majority of the available paths will 

not be selected by an optimal routing algorithm. On the other hand, it is practically 

infeasible for an algorithm to discover all the potential paths. Therefore, a path filtering ■
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Fig. 5.4 : A Demonstration of the Number of Potential Paths: In this 5x5 mesh network, 

there are 8512 paths without loops between node 1 and node 25.

criterion that eliminates redundant paths in the route discovery stage is necessary.

We have anticipated that a proper path filtering criterion should be based on the 

cost metric used by the optimal routing algorithm. This assertion now becomes obvious 

since we have established the optimal Wardrop equilibrium. According to the optimal 

Wardrop equilibrium, under an optimal routing decision, all the paths used by a com­

munication have the same marginal cost which is no less than those un-utilized paths. 

That means, if the marginal cost of a path is too large compared to other paths, then it 

will likely be discarded by optimal routing algorithm. We can therefore set a time-to-live 

(TTL) field in the flooded RREQ messages. Assuming the size of a RR.EQ message is e, 

at each hop the RREQ message travels, a marginal medium cost C^a(e) is subtracted 

from the TTL field. Once the TTL value of a RREQ message dries out, the message is 

discarded as it indicates that the path travelled is too long in the derivative length. This 

manner draws a connection between the on-demand route discovery in classical routing 

algorithms, such as AODV, and optimization approaches.

The question is, what is the threshold of marginal costs in identifying redundant
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paths, i.e. How can a source node determines a proper TTL value? We answer this 

question by giving the following proposition.

Proposition 4. For each communication w, the solution it computes at each round t 
as AFw^ and nw\ from the diagonal approximated quota-based interior-point method 

(5.13). Let quota is denote the initial quota nodes assigned to a communication. 

Define an appended KKT system with a new path p, whose first and second derivative 

lengths are C'^-{fp) and C'^p{fp), as follows

+ r)A/l + Q ^ At) )

+ J- ^ (t) ^ (t) \ (5.24)
^ [Qn.w-fk.iv) ' ' idn.w-Jn.wy

(<^&,p(0 + + Q^)

pit)Er=i AC + a4‘^ = AT./a

Then, the necessary condition for A f^^ > 0 computed from the appended KKT sys­

tem (5.24) is

C'&p(e) < -Fit)_____ T_
Q°-

(5.25)

Proof. See appendix D □

This proposition states that, if there is a path p that has not been taken into con­

sideration at current round of computation, for it to be utilized by the communication 

w under the cost information of round t, condition (5.25) has to be met. Therefore, the 
value —Vw^ — computed at the source node of communication w can be used as a 

threshold at round t. All paths whose derivative cost is larger than the threshold would 

be certainly discarded by the diagonal approximated quota-based interior-point method. 

Furthermore, although (5.25) is not a sufficient condition, it is indeed a strong filtering
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criterion - any path that meets condition (5.25) has a smaller marginal cost than at least 

one path in existing path set. It is likely to filter out the majority of redundant paths.

Based on this proposition, we can design an iterative route discovery approach. It 

starts with a “trial and error” manner to find the initial path set V^. At step f = 0, where 

is not j'et computed, the source node can assign a predefined value to the TTL field 

of its RREQ messages aird flood the messages. If it does not hear any RREP messages, 

then it increases the TTL value and floods RREQ messages again. This procedure may 

execute multiple times until either it receives RREP messages or it determines that the 

destination is unreachable. Each RREP message received by the source node establishes 

a path - possibly merged - towards the destination node. The initial path set V% for 

communication w is established. The quota-based interior-point method computes the 

data distribution and over t = 0,1,....

During the convergence, the source node can periodically invoke a path maintenance 

procedure. Assuming that the update period is tupdate, tlie path set of communication 

w is updated by at each time slot t — tupdate * L where i = 1, 2,.... More specifically, 
after the computation of and Vw\ instead of transmitting data traffic, the source

node floods a RREQ message with the TTL field set as —u^'^ — Q/f_^ ■ All RREP messages 

that reach the source node establish the updated path set P^. Einally, the source node 

computes the data distribution over the updated path set and starts transmission. 

In this way, the path set P.^ will converge to the optimal path set as f —> oo. In 

practise, we observed rather quick convergence, i.e. much less rounds required compared 

to the convergence of data distribution.

An apparent issue of this route update procedure is that it blocks the data transmis­

sion at round t. This is because proposition 4 gives the necessary condition of adopting 

a new path at round t, given the result from computation of round t. The operation 

of data transmission without the procedure of route update is shown in Fig. 5.5(a). In 

comparison, the operation of data transmission is interrupted by the procedure of route 

update, as shown in Fig. 5.5(b). That is, the operations of data transmission and route

173



t-\ 1 1+] t = 1*1,update

(a) Data Transmission at Each Round (b) Sequential Operation of Data Transmission and

Route Update

(c) Parallel Operation of Data Transmission and Route Update

Fig. 5.5 : Time Axis of Data Transmission and Route Update: Differences between 

sequential update and parallel update

update are sequential. Ideally, we prefer a parallel manner of these operations. That is, 

the data transmission of round t does not wait for the update of path set. But rather, 

the paths discovered from the results of round t is used for the computation of round 

t + Swait, where Swait is the number of round needed for the route discovery to complete, 

which usually is 1. This desirable operation is shown in Fig. 5.5(c).

The problem for this approach is that proposition 4 guarantees the optimality of paths 

discovered only in the sequential manner but not in the parallel manner. In the following, 

we demonstrate that a route update procedure parallel to the data transmission can also 

guarantee the optimality of paths discovered.
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Firstly, we give a trivial observation on a threshold value that is independent to the 

coefficient /r of interior-point method.

Corollary 3. Another necessary condition, which is slight weaker, is as follows:

cLp(f) < /t)

Now, we give the long-term path filtering criterion which assists the parallel route 

update.

Corollary 4. A necessary condition for a path p to be in the optimal path set, i.e. 

p £ V* is that there exists a t and infinitely many t > t, such that

it)
W

Corollary 4 states that if a path belongs to the optimal path set V^, it will pass 

the filtering threshold of infinitely many rounds. The union of all paths that pass the 

filtering threshold of any round t constitutes a path set set Vf such that V* QVf. 

Therefore, the approach of updating path set with at round t > i * t^pdate will 

iteratively converge to optimal path set. The optimality of the route update that is 

parallel to data transmission is justified.

In summary, we have proposed an iterative route discovery and update approach 

in this subsection. Instead of gathering information of all potential paths, which is 

often infeasible, our approach gradually builds up the set of optimal paths along the 

convergence of the optimal data distribution algorithm. We have established thresholds 

for path filtering. Proposition 4 and its corollaries demonstrate that optimal paths will 

not be eliminated from these thresholds. This is the desirable case of path filtering 

criterion that we have raised in chapter 2, for example as shown in Fig. 2.5(a).
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5.5 Summary

In this chapter, we have presented the main design of this thesis. We propose a quota- 

based mechanism that addresses capacity-constraints with the interior-point method. 

We introduce auxiliary variables called quotas at each node. It represents the maxi­

mum traffic allowed of a path flow at a node. Each node optimizes the quota-assignment 

locally using second-order Newton’s method. Quotais are forw'arded to sources of commu­

nications, where a second-order interior-point step is computed. The operation of quota 

to each flow resembles Resource Reservation Protocol - Traffic Engineering (RSVP- 

TE) [Awduche et ah, 2001] although the mathematical assignment of quotas is not 

address in RSVP-TE.

We use the diagonal approximation of the Hessian matrix in Newton step method, 

which separates the couplings in the objective function. In order to reach a node­

level distributed manner, we utilize the optimal substructure property of routes between 

sources and destinations. Instead of breaking the network optimization problem into 

subproblems at each node as in existing distributed approaches, the flow-level distributed 

routing optimization can be carried out at each intermediate nodes recursively from 

destinations to sources.

We have also described the design of route discovery for our optimal routing algo­

rithm. We presented a necessary condition for potential paths to be used by a commu­

nication, which can be used as a TTL value to filter out long or congested paths. We 

have applied a bloom filter to avoid loops in RREQ flooding. We propose to separate 

the order of nodes in a path from the cost metric of the paths. More specially, we use 

hop counts to determine the order of intermediate nodes in a path, and use derivative 

costs and quotas as metrics to compute traffic distribution.
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Part III

Verifications of Proposed 

Solutions
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Chapter 6

Evaluation and Discussion

In chapter 4 and 5, we have described our design to an optimal routing approach for 

wireless ad hoc networks, namely the quota-based interior-point routing algorithm us­

ing wireless medium cost (QBIP). In this chapter, we will present both analytical and 

statistical evaluation on the performance of QBIP.

In section 6.1, we give an overview of the evaluation strategy.

6.1 Overview

In the following, we conclude the purposes of our evaluation, that is, the focal points to 

be verified of the proposed approaches.

Firstly, although we have formulated the network optimum as it is yet

to be demonstrated whether and to what extend an optimal solution reduces costs in 

wireless networks compared to existing selfish approaches. Or to put it in a different 

perspective, how bad is selfish routing in wireless networks?

In section 6.2, we extend the analytical “price of anarchy” results in wired net­

works [Roughgarden and Tardos, 2002] to wireless networks. This extension identifies 

the worst case performance for an ideal selfish routing compai'ed to optimal solutions 

- or equivalently the best case of cost reduction for optimal routing. We also perform
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statistical simulations to illustrate the average cost reduction of network optimum com­

pared to selfish routing decisions. We investigate the affects of different network factors 

to the average cost reduction. Results in section 6.2 justify the necessity and applications 

of wireless optimal routing approaches.

Secondly, we evaluate the performance of the proposed quota-based interior-point 

(QBIP) method. As we has discussed in section 3.1, two aspects of interests of an optimal 

routing algorithm are its convergence rate and the distributed manner. As summarized 

in algorithm 3 and 4, it is easily seen that QBIP is a node-level distributed algorithm. 

Therefore, the remaining question is how fast the node-level distributed QBIP converges. 

In section 6.3, we compare QBIP against some of the existing optimal approaches, both 

centralized and distributed.

The statistical evaluations in section 6.2 and section 6.3 are conducted in different 

types of simulations:

1. For the comparison between optimal solutions and selfish solutions, we constructed 

a conceptual network following the protocol model [Jain et ah, 2003]. We imple­

ment two types of topologies: random and mesh. Routes are not presented in the 

start of simulations. Route discovery procedure, discussed in section 5.4, is used 

and provide potential paths for both optimal (QBIP) and selfish approaches.

2. In order to evaluate the convergence rate of QBIP against existing optimization 

approaches, we skip the route discovery stage and focus on solving the mathe­

matically formulated routing problems (1.2). We have implemented several opti­

mization approaches, including an iterative Newton’s method via PCG, the dual 

decomposition, etc. and studied their performances in MATLAB [MATLAB, 2012].

Finally, we summarize the pros and cons of QBIP in comparison with existing opti­

mization methods and identify the future work in section 6.4
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6.2 How Good Is Wireless Optimal Routing?

In this section, we evaluate the performance gain for optimal routing solutions compared 

to ideal selfish routing solutions. An ideal selfish routing solution refers to the exact 

compliance with the selfish Wardrop equilibrinm. More specifically, a routing solution 

is ideally selfish if for each communication w, given its traffic demand, all the paths it 

utilized have the same delay which is less than or equal to those un-utilized but available 

paths. We use the term “ideal” for such solutions for two reasons: 1) Given the traffic 

demand, each unit of data is routed 2) Without considering algorithms used, routing 

solutions at Wardrop equilibrium have been demonstrated to outperform other selfish 

routing solutions [Raghunathan and Kumar, 2009], such as single-path minimum delay 

routing or shortest path routing. The goal in this section is to demonstrate the necessity 

of optimal routing wireless networks.

We start with an extension to analytical results in wired networks.

6.2.1 An Analytical Result

In this subsection, we investigate analytically the worst case performance of selfish so­

lutions in comparison to optimal solutions in wireless networks. That is, we establish 

the upper bound for the value , for any network topology and traffic demands

of all communications. For a given class of latency function £{■), this upper bound is 

usually referred to as the “price of anarchy”. In his seminal articles [Roughgarden and 

Tardos, 2002] and [Roughgarden, 2002], Roughgarden establishes some fundamental re­

sults for the anarchy value in wired networks. In the following, we summarize some of 

the important related results:

1. The price of anarchy is independent of the network topology. To compute the price 

of anarchy for a certain class of latency function, it suffices to compute the anarchy 

value in a two-node, two-link network where one of the links has a constant latency
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function^.

2. With a nori-decroasing continuous latency function, the cost incurred by an ideal 

selhsh solution for given traffic demand is at most the cost incurrt'd by an optimal 

solution for twice of the traffic demand, i.e. the ananliy value is where

\^\ = 2\r\

3. The price of anarchy value can be given by sup^>o:t(r)>o["^M + (1 “ where

A € (0,1) n {A|/(Ar) = ^(r)}, /r = G [0,1]. The anarchy value MAY be in­

finitely large for certain cost functions. For instance, for polynomial delay funcdion 

E-Z^aiX\ the price of anarchy is given by (p+i) ^p+l-p‘

These results are based on the assumption of link model in wired networks. In 

particular, the result number 3 does not follow the same form in wircdess networks. We 

extend the analysis to wireless networks.

Consider a conc('ptual network iis shown in Fig. b.l, where there are two commu­

nications. The first communication has a traffic demand of r to route from node A to 

node D. Suppose latemcy over path A-B-C-D is constant, i.e. £i(-) — c; and latency over 

path A-E-F-D is given by ^2(')- The second communication has a traffic demand /a to 

send from G to E, which interferes with the transmission from E to F.

Given r and /a, there exists increasing ^2(‘) such that £2(^ + /s) = c- Since ^2( ) is 

increasing, £2(13) < + /s) = c = ^i(O). The adaptive selfish approach will route all

traffic to link 2, resulting an overall cost: c • r -f £a(^ + /3)/3-

Because , , ,
CM = W + h) + W + /3) + 4(/ + h)f3 > h{f + /3)

we have
C's,2ir) > h{r -I- /a) = c = C'^x{r)

If we choose ^a(/3)/3 > c, then

(6.1)

'The rationale of using the constant latency function can be vaguely understood by the fact that a 
constant function belong to any given class of latency function, for example by setting the coefficient 
approximates to zero. See Roughgarden’s original paper for detailed analysis and discussions.
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IX') = C

Fig. 6.1: A Conceptual Scenario to Prove the Price of Anarchy: Suppose? the capacity 

at green links are arbitrarily large so that ch^lay exp(!rienc(;d is constant.

C'&2(0) = Wz) + 4(/3)/3 > c = C^,{r) (6.2)

Combining (6.1) and (6.2), we know that an optimal solution routes all traffic through

link 1, resulting an overall cost: c • r + The anarchy value a is given as:

^ (zjr + h)h + c - r 
h{h)h + c • r

Choosing careftdly c, r and /a that meet ^3(/3)/3 > c. For example, as the constant 

value r —> oo, /3 is fixed, choose c = It can be easily shown that the upper bound of 

a is infinity for any function f^{-) that grows to infinity as its input grows, for example, 

polynomial functions and queueing delay functions. In smmnary, we have

sup a = +00 
r,c,fa

The price of anarchy describes the cost of selfish solutions using optimal solutions as 

benchmark. An equivalent metric that evaluates the optimal solutions is the cost reduc-
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tioii of opt imal solutions comparted to selfish solutions, which is defined as ^ ^

100%. As the anarchy value approaches infinity, the cost rtiducdion approaches 100%.

6.2.2 Implementation and Experiment Settings

Now that we have established analytically the best case cost reduction of optimal routing 

solutions comparted to selfish solutions, some natural questions arise: 1) What is the 

average cost reduction of optimal routing solutions? 2) What are the factors that dictate 

the average cost reduction? For example, although the network topology plays no role 

in the upper bounds of the cost reduction, does it affect the average cost reduction over 

a number of runs? We wish to investigate these questions via statistical evaluations.

We implement the experiments following the protocol model: Nodes are placed within 

a conceptual disc. Each node has a transmission range of R, which for simplicity reason 

is also the interference range. Two nodes can communicate with each other directly if 

and only if their distance d < R. All communications within the interference range of 

each other contribute their delay experienced.

Tlie placement of nodes may follow either the mesh topology or the random topol­

ogy. In the mesh topology, the transmission/interference range of a node cover either 4 

neighbours (orthogonal) or 8 neighbours (orthogonal and diagonal), as shown in 6.2. In 

the random topology, Nnd nodes are randomly placed in a disc with fixed area S. We 

can set up a network with an expected node density ND, which is defined as the average 

number of neighbours of each hop. The expected dtmsity can realised by setting the 

transmission range R = Denote the number of communications in a network

as Ncommj each of which is defined by a source and destination pair and has a traffic 

demand of D^.

In each run of simulations, a network, mesh or random, is generated with given 

parameters. At first, a route discovery proc;ess is used to discover all the potential 

paths for each communication. Then, an optimal routing algorithm and an ideal selfish 

routing algorithm are used in the same scenario for comparison of their solutions. We
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Fig. 6.2 ; Two Typ(?s of Interference Ranges Used in Mesh Topology

do not evaluate their convergence raters. Each result is aggregatt'd from a ininirnnrn of 

20 samples.

We ns(' the proposc'd CJBIP algorithm to compute the optimal solutions. As we 

will see in section 6.3, QBIP may not converge to the exact network optirnnm in certain 

scenarios dne to the usage of diagonal approximated Hessian matrix. Nonetheless, CJBIP 

is the only feasible routing algorithm in wireless ad hoc networks in the sense that it is 

node-level distributed and the error is comparably small.

The ideal selfish routing solntions are computed with a heuristic load-balancing al­

gorithm: At each iteration, each source node rcxlnces traffic load on paths with compar­

atively large delay and increases traffic load on paths with comparatively small delay. 

Iterations stop only if for each commnnication, paths utilized have the same delay.

6.2.3 Factors of Cost Reduction - Mesh Topology

Our first set of experiments are conducted in a 5 x 5 mesh network, with two commnnica- 

tions whose sources and destinations are randomly selected. We choose this small-scale
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networks for the purpose of fixing sc^me parameters while evaluating the n;st. All nodes 

have the same latency fnnction, which is polynomial and varies from degrt^c* 2 (quadratic- 

functions) to dc^gree 5 (quintic functions) in differcmt runs. All nodes also have the same 

transmission/interference range, which may vary between 4 neighbours and 8 neighbours 

in different runs. The results are shown in Fig. 6.3.

The first observation we can draw from the results is that the steepness of the latency 

function plays a positive effect on the cost reduction. In wired networks, it has been 

demonstrated that the steepness of the latency function affects the analytic;al low bounds 

of cost rc^duction. In wireless networks, we have shown that the lower bound of cost 

reducdion is always 100% as long as the latcmcy function iiicxTs certain criteria. Rcisults 

in Fig. 6.3 demonstrate that although they have the same reduction in best cases, a 

“stcx^pc'r” latency function enjcrys a higher cost rc^duction of optimal solutions.

Comparing Fig. 6.3(b) and Fig. 6.3(a), it can be scxm that the optimal solutions pro­

duced by QBIP rc'duces more cx)sts from selfish scjlutions as the numbc'r of intc^rfcinuicc^s 

at (?ac-h hop incxease.

Last but not the least, the average cost rt^duction increases as the number of paths 

used by selfish approaches increases. Depending on the topology and the traffic scenario 

of a network, a communication may utilizer various number of paths. Selfish approaches 

are more likely to be inefficient as the number of paths used increases, which gives more 

space for optimal approaches to optimize;. Combining this obsexvation with the fact that 

there can be a large amount of potential paths for a comnnmication, one may be curious 

about the number of paths used by either ideal selfish routing or optimal routing. The 

histogram of the number of paths used by either solution is summarized in Fig. 6.4.

As shown in Fig. 6.4(a), the majority of communications utilize 2-4 paths under the 

4 neighbour interference range in the 5x5 mesh network. At most, a communication uses 

11 paths. This is interesting yet not surprising. Despite the large amount of potential 

paths, any of them heavily interfere with eadi other, thus are not utilized. As the number 

of interferences increases in a fixed size network, the number of paths used, both the
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(a) 4 Neighbour Interference Range

Number of Paths Used by a Selfish Communication 

(b) 8 Neighbour Interference Range

Fig. 6.3: Cost Reductions of Different Polynomial Functions
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Number of Paths Used by a Communication

(a) Number of Path Uswl Ijy Ideal Selfish Routing

3 4 5 6 7
Number of Paths Used by a Communication

(b) Number of Path Used by QBIP

Fig. 6.4: Histogram of Number of Paths Used by Communications
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Fig. 6.5: Correlation of Path Used by Optimal and Selfish Approaches

average and the maximum, reduces ac:cordingly.

As shown in Fig. 6.4(b), the number of paths used by an optimal communication 

lies largely between 2 3 paths under the 4 neighbour interference range and bf'tween

1-2 paths under 8 neighbour interferenc;e range. We have (observed a maximum of 7 

paths used by a communication. A comparLson between Fig. 6.4(b) and Fig. 6.4(a) 

may suggest that optimal routing solutions use on average less paths compared to their 

ideally selfish countc^rparts. To better illustrate this observation, we plot the relation 

between the two value in Fig. 6.5. It can be sfxui that, for cornmimications whose; selfish 

solutions use single path, their optimal solutions may not always use single paths. For 

multipath selfish routing solutions, their optimal counterparts are expected to use fewer 

paths. In addition, the number of paths used by optimal solutions remains stable at 3 - 

4 as the number of paths used by selfish approaches increases.

In summary of the first set of experiments, we have learnt the followings: 1) The 

steepness of latency functions and the number of interferences of each hop impose a 

positive effect to the cost reduction of optimal routing solutions. 2) The number of paths 

used by optimal communications is usually less than that used by selfish communications.
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6.2.4 Factors of Cost Reduction - Random Topology

Our second set of experiments are conducted in randomly generated networks. The size 

of ea<di network varies betwet^n 3 3000 nodes, with expected node density between 1

- 20 neighbours per hop. The numbi'r of communic:ations vari€« between 2 20. The

latency furudlon used in these expcu’inuuits is of a quadratic form, more specifically, 

^(f,JVa) = (f + Naf + (f + Na)
As shown in Fig. 6.6, the average cost nduction of optimal solutions remains roughly 

stable as the number commuuication increases. It can be cixplained by the fact that 

when a communication makes routing decisions, be it optimal or selfish, it does not 

differentiate interfering traffic of different sources. Therefore, the number of interfering 

communications does not affect the cost reduction of optimal solutions^.

Ne^xt, Fig. 6.7 demonstrates that the average length of paths used by a communi­

cation plays a negative factor to the cost reduction of optimal solutions. Our interpre­

tation of this result is that as the distance between a source node and a destination 

node increases, it is more difficult for optimal routing to disexwer a path with no or little 

interferences which can largely improve the performance.

^It should be noted that, if each communication holds a fixed amount of traffic demand, as the number 
of communications increases in a network, the cost reduction is expected to change in practise. We will 
study this effect in queueing networks in sub.section 6.2.5. The usage of the ejuadratic latency function 
allows the results to be immune to the network traffic demands.
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Path Lengths Number of Paths Used Degree Node Density

p-value 6.5445 e-23 9.2735 e-61 0 3.9124 e-204

Table 6.1: Statistical Significance of Experiments: p-vahie of one-way ANOVA test 

over different factors
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Finally, we summarize results of all experiments in random settings and plot logarithm- 

transformed histograms of cost reduction for different node densities, as shown in Fig. 

6.8. As the node density grows, the average cost reduction of optimal solutions in­

creases. The maximum reduction that we have observed is around 2/3. This result 

complies with the comparison between 4 neighbour interference range and 8 neighbour 

interference range, at a larger scale.

In summary of the second set of experiments, we have demonstrated that the average 

cost reduction is dependent on certain topological features, despite that its analjffical 

upper bound is independent of topologies. The statistical significance of these experi­

ments are illustrated in Table. 6.1. These experiments show that the higher node density 

and/or the shorter paths used in a network, the larger cost reduction can be expected 

from optimal solutions. The number of communication flows itself, however, does not 

affect the cost reduction.

6.2.5 Cost and Capacity

By far, we have discussed experiments using polynomial latency functions under various 

network settings in order to evaluate the contributing factors of cost reduction. In this 

subsection, we focus on again the small scale 5x5 mesh network with two communica­

tion flows. This time, we aim to evaluate the routing performance with a more realistic 

latency function at each hop, that is, the M/M/1 queueing delay. Queueing delay dif­

fers polynomial functions in that as the traffic of a hop approaches capacity, the delay 

approaches infinity. Therefore, we can study more accurate capacity-related behaviours 

of optimal and selfish solutions.

We set the transmission/interference range to cover 4 neighbours of a node. Each 

hop is assigned a capacity value. At each run, two pair of sources and destinations are 

randomly selected. Route discovery process is used to find all potential paths. Source 

nodes compute a selfish solution with traffic demand set as 10% of link capacity, de­

noted by Once the iterative selfish algorithm converges and terminates, the traffic
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demand is increased by a small portion, denoted by AP. Each source node performs 

a feasibility check to determine whether the capacity residual of the network can carry 

the demand increase AP, given the current traffic pattern. A new selfish solution is 

computed for traffic demand pd+^1 = p(d + AP, t = 0,1..., if the increase of demand 

is feasible. Otherwise, the algorithm terminates. Then, starting over from source 

nodes compute the optimal solution and gradually increase traffic demands following the 

same manner until infeasible. This completes one run of our simulations.

We carried out 20 runs of random simulations. Each run produces one sequence of 

traffic demand and its corresponding cost - - for selfish solutions and one

sequence C'optima/} optimal solutions. Define Tgeifish and Toptimal as the number 
of elements in sequences C'sei/is/i) selfish solutions and in tor

optimal solutions respectively. In order to aggregate data of different runs. We normalize 

results of each run as follows:

1. Transform the absolute costs into relative costs with respect to the starting optimal
costs i p /c'^

'> ‘ ■ ^selfish ^selfish' ^optimal^ ^optimal '^optimal/^optimal'
^(0) -.(0) The reason we

choose C (0)
optimal as the benchmark is that it is the smallest cost of both series.

2. Transform sequences of traffic demands into relative traffic with respect to the 

capacity of selfish solutions, i.e. P^*) = p(d/p(Pei/i.sh)_

The aggregated normalized results are illustrated in Fig. 6.9(a). As traffic of selfish 

solutions approach their capacities, the delay experienced increases to infinity due to 

congested queues at intermediate nodes. Optimal solutions enjoy a smaller cost com­

pared to selfish solutions of the same traffic, as expected. This cost reduction on average 

increases to infinity large as the amount of traffic approaches to selfish capacity. It 

should be noted that the graph does not include points at the exact capacity, as both 

selfish and optimal solutions terminate when capacity is reached or exceeded. Instead, 

points that a fraction of traffic less than capacity are plotted. Around 20% of optimal 

solutions terminate at the same amount of traffic as selfish solutions. This explains the
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(a) Costs of both optimal and selfish solutions are normalized by the 

starting cost of optimal solutions; Network traffic is normalized by the 

capm'ity of selfish solutions

Normalized Traffic

(b) Complementary Cumulative Distribution of Capacity Improvements

Fig. 6.9: Cost and Capacity: In M/M/1 queueing networks, QBIP reduces delay costs 

of all traffic while improving the throughput of a network
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sudden rise of optimal costs (hump of tlie blue line) near 100% of selfish c:apacity.

It is inter(;sting to observe that there are about 80% of optimal solutions exceed 

the capacity of selfish solutions. The complementary cumulative distribution of capacity 

achieved by optimal solutions is shown in Fig. 6.9(b). Among our 20 runs of simulations, 

the maximum capacity achieved by optimal solution is more than 43% larger than that 

of selfish solutions. This result is curious for two reasons:

1. Latency rather than throughput is the objective of our routing algorithm. Yet, it 

improves the throughput capacity.

2. On the other hand, throughput maximization approaches and their general form 

- utility maximization approaches - may introduce large latency as they tend to 

transmit data over long paths.

This improvement of thnjughput is because in queueing networks, cong(^stions is the 

main source of cost incurred. Optimal approaches avoid congt^stexi bottlenecks, thus 

improve maximum throughputs.

6.2.6 Summary

In this section, we have focused on the comparison between optimal solutions and selfish 

solutions. We have demonstrated that in a queueing network, optimal solutions incur 

less costs than selfish solutions of the same traffic and may improve network capacity. 

We have observed that the stef:pness of latency functions, the number of paths used by 

selfish solutions, node density, and in queueing networks, traffic demands impose positive 

('ffects to the c:ost reduction of optimal solutions. On the other hand, the average lengths 

of paths plays a negative effect to the cost reduction.

In the next section, we will investigate the convergence of the QBIP algorithm.
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6.3 Statistical Evaluation of Convergence

In the previous section, we have studied the comparison between optimal solntions and 

selfish solutions. In this section, we study the convergence of the proposed C^BIP algo­

rithm. The algorithm includes primarily two parts: 1) The quota-based mechanism that 

addresses coupled constraints in routing problems. 2) The diagonal approximation of the 

Hessian matrix, which decouples the objective function therefore facilitate the flow-level 

and node-level distributed manner of the algorithm. All the experiments in this section 

are conducted in MATLAB [MATLAB, 2012], due to their computation-heavy nature.

We truncate all plots of convergence to show the first 150 steps, even if an algorithm 

has not yet terminated. The reasons are as follows: A) Even we have assunu'd persistent 

traffic demands, 150 rounds is a sufficiently large nnrnber, especially given that each 

ronnd consists the transmission of multiple data packets; B) Unlike other domain where 

only the terminated solution matters, an end-to-end communication is an ongoing task 

starting from niund 0. Therefore, the early stage of convergence, where c(3st rc^duction 

at each step is drastic, should be the focus.

6.3.1 Quota-based Approach in Decoupling Constraints

In this subsection, we aim to evaluate the performance of the quota-based mechanism in 

dec.onpling capacity constraints. The diallenge is, we cannot evaluate solely the quota- 

based mechanism in optimal routing problems because these problems have c;oupled 

objective functions. If we use the diagonal approximation of the Hessian matrix to 

decouple the objective functions, the performance is affected by suc:h an approximation.

In order to tackle this issue, we evaluate the quota-based mechanism in NUM prob­

lems. Althongh NUM problems are not the focus of this thesis, by default their objective 

functions are decoupled. We set random networks with 500 (expected links, 100 single 

path communications, and an e'xpectation of 20 hops per paths.

In these random networks, we compare the quota-based mechanism against several
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Fig. 6.10; Corivergeiice of Various Optimization Approaches for NUM Problems; Exact 

Newton and iterative Newton via PCG are centralized approaduis; while QBIP, Newton 

via GaBP and dual dec;oniposition method are; flow-leved distributed.

existing approacht;s. As shown in Fig .6.10, the fast converging algorithm is the c:en- 

tralized exact Newton’s niedhod, which c;onv(erges within kiss 20 steps. Howevc;r, each 

Newton step inve^lves the computation e)f a lineiar exjuation systean, wtiieli can be e;e)nipu- 

tatie)nally e;hallenging. Iterative Newton’s method can be useed to address this preeblem. 

We evaluate two types e)f methods to e'ornpute the linear system. In our experiment 

networks, wliieli are ne)n-sparse, iterative Newton via PCG e'e)nverges slightly faster as 

it approaelies to the e)ptinial serhition. Hewewer, this medhod is centralized. In contiary, 

Newton via GaBP is a distributed approae;h, but e;onverges slightly slower in dense ned- 

works. The dual decompe)sition method is a standard distributed technique. It converges 

slower compared to the reest of the approaches as solutions approae;h the optimum. The 

CJBIP method convergers within 40 steps. It erxhibits a superrior convergence rate com­

pared to be)th the iterative Newton medhods and the dual decomposition method. This 

result suggests that the quota-based mechanism alone is an efficient approach to address 

coupled e’onstraints.
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6.3.2 Implementation and Experiment Settings

In the previous subsection, we have demonstrated the efficiency of the quota-based mech­

anism. In the rest of this section, we will focus on the overall performance of the QBIP 

algorithm in solving routing optimization problems, which is determined by both the 

quota-based mechanism and the diagonal approximation to the Hessian matrix. We 

reiterate the mathematical formulation of routing optimization problems as follows:

minmize C{J-) 

subject to TZJ^ < C 

ThO 

AJ^^T

where TZ G is the routing matrix, A G and T = {7i,...,7p}^ are path-

communication matrix and column vector of traffic demand of all communications. 

Without loss of generality, we choose a quadratic form for cost function because it is a 

convex increasing function which requires little computational effort of the simulator.

We have implemented a dual decomposition method to address the routing problem. 

The implementation follows the algorithm [Tan et ah, 2006] that we have reviewed in 

3.5.2.3, which introduces auxiliary variables to transform the couplings of the objective 

function to constraints. We have implemented an iterative Newton method using PCG 

solver included in MATLAB library.

Another iterative method, the GaBP [Bickson, 2009] requires the Hessian matrix to 

be diagonally dominant, which does not stand in optimal routing problems in general. 

Although a technique has been proposed to remove such a condition [Johnson et ah, 

2009], it introduces extra iterations to guarantee the convergence of GaBP. In our sim­

ulations, we fail to observe superior results of fixed convergent GaBP compared to the 

plain dual decomposition approach. Therefore, we will not include the results of fixed 

convergent GaBP in the rest of this section.
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In the next subsection, we will set up a small scale example network to investigate 

preliminarily the performance of the iterative Newton method, the dual decomposition 

method and the QBIP algorithm, before moving to large scale random networks in 

subsection 6.3.4

7^ = A =

1 0 0 0 o\ 

0 0 110 0 

yo 0 0 0 1 ly

(6.3)

6.3.3 Preliminary Experiment in a Small Scale Network

We arbitrarily set up a scenario with 3 communications, each of which has two paths. 

The routing matrix 7^ is as follows.

T
/l 1 1 0 0 0 0 0 o\

0 0 0 0 0 0 1 0 1

0 1 1 1 0 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 1 1

\o 1 0 0 1 1 0 0 oy

Link capacity is randomly assigned for each link. Traffic demands of all communications 

are so selected that they sum to 70%^ of network capacity.

As shown in Fig. 6.11, the QBIP algorithm converges quickly to network optimum. 

As a matter of fact, it converges to a small neighbourhood of the optimal solution faster 

than the centralized iterative Newton’s method via PCG. Both approaches terminate 

within 10 - 15 steps.

On the other hand, the dual decomposition method converges surprisingly slow. Our 

explanation for this behaviour is the inefficiency of the dual decomposition method to 

address coupled objective functions. For each link, wireless or wired, where n; amount 

of path flows share interference, — ni amount of auxiliary variables and ni{ni — 1) 

amount of dual variables are introduced. It creates a large number of variables and 

more importantly, multiple copies of the same variables. In addition, the subgradient

^We observe that the percentage does not affect much of results unless it approaches 0% or 100%
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109%

Rounds

Fig. 6.11: Inefficiency of Dual Decomposition in Routing: Convergence comparison for 

problem defined by matrices (6.3)

method us('d to updates dual variables is in general slow. Since it is not a descent method, 

the cost may increase during convergence, as shown in the graph.

Bec:ause the dual decomposition method does not exhibit a reasonable convergence 

in small scale scenarios, we will not evaluate it in the following large scale experiments.

6.3.4 Large Scale Random Experiments

In the following, we focus on evaluations of the convergence of QBIP in addressing 

routing optimization problems. We c:hoose the centralized iterative Newton’s method 

via PCG as the benchmark algorithm - the control. Routing matrix TZ and A are 

generated randomly within the range specified in Table 6.2.

Fig. 6.12 shows the aggregated convergence of the C^BIP and the iterative Newton 

over various number of interfering communications. The node-level distributed QBIP

199



Parameters Range

Number of Links 100 2500

Number of Communicatiems 2 - 50

Expected Paths per Communication 2 - 50

Average Length per Path 2 - 20

Number of Interferences per Link 1 - 10

Table 6.2: Parameters in Random Experiments

algorithm exhibits a nineh faster convergence to a small neighbourhood of the optimal 

solution compared to the centralized iterative Newton method. This result resembles 

what observed in the small scale example scenario, Fig. 6.11. This is because each 

Newton step in the C^BIP can b(' computed analytically, wherc^as each Newton step is 

c-ornpnted by an iterative PCG method.

As the nnmber of interhaing commnnications increases, the convergence is slowe^d 

down for both methods. That is, the immber of comimmications is a negative factor for 

convergence. Nonetheless, it can be seen that the effect of this negative factor grows 

slowly. The difference betwcxm the convergence pattern of 20 and 50 communications is 

innch smaller than that of 2 and 5 conmmnications. This is also true for both methods.

A similar (effect can be observeed for the expectced mnnber of paths per commnnication, 

as shown in Fig. 6.13. As the number of paths per commnnication increasces, the 

convergence of both algorithms slow down.

Finally, the convergence over the nnmber of interfering path flows at each hop is 

shown in Fig. 6.14. This factor essentially describes the flow density over one hop, 

which differs from the node density or the amonnt of traffic of the flop. The nnmber of 

interferences is a negative factor of convergence.

The usage of diagonal approximation decouples the objective function and facilitates 

the node-level distributed manner of the QBIP algorithm. However, because of this
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apprcjxiiiiat-iori, the (JBIP algorithm experiences a turning point within a certain neigh­

bourhood of the optimal solution. The convergence slows down quickly aftc'r the turning 

point, although costs are still strictly decreasing at each step.

6.4 Summary

In this chapter, we have evaluate the basic performance of QBIP algorithm. We have 

compared solutions of QBIP against that of ideal selfish algorithms. In a queueing 

network, we have demonstrated that QBIP reduces the network costs as well as improving 

the network capacity.

CJBIP exhibits a much superior performance compared to other distributed algo­

rithms, such as the dual decomposition nudhod and the GaBP basted Newton method, 

in both NUM problems and routing problems. Instc>ad, we use c:entralised approach the 

iterative? Nc?wton via PCG. Across all the sc(?narios of our simulations, we observed that 

the CJBIP convc!rg(?s faster than iterative Nc?wton to a small neighbourhood of the opti­

mal solutions. Then convc'rgc^nce of QBIP drops to a small pace. The neighbourhood is 

in genciial 0.1% - 1% but may vary in different scittings.

We argue that the performance of CJBIP is dcvsirable compared to iterative Newton, 

in addition to its node-leve?l distributerd manner. Although we have assume persistent 

traffic:, the traffic demand may vary overtime. Also, topologicrs of ad hoc networks 

are subject to changes. A fast converging algorithm adapts theese dynamism bettc^r. 

In addition, for an iterative optimal routing algorithm, every round of traffic pattern 

is registc?r(?d in the performanc:e of algorithm. For example, suppose the c:ost at each 

round of algorithm A is {10,3,2} and that of algorithm B is {10,8,1}. It is apparent 

that algorithm A is preferable in routing domain, although in other domain B may be 

preferable. Therefore, it is important for an optimal algorithm to reduce ruTwerrk costs 

fast in the early stage.

The summary of different optimal algorithms are listc^d in table 6.3.
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Fig. 6.12: Convergence of QBIP and An Iterative Newton Method: Over Expected 

Number of Interfering Cornmnnications in a Network
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14%

Fig. 6.13: Convergence of QBIP and An Iterative Newton Method: Over Expected 

Number of Paths Per Communication
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QBIP:
1 Interference 
4 Interferences 
8 Interferences 
10 Interferences

Iterative Newton: 
••••1 Interference 
'•••4 Interferences 
••••8 Interferences 
'••*10 Interferences

Fig. 6.14: Convergence of C^BIP and An Iterative Ne^wton Method: Over Expected 

Number of Interfering Flows at Each Wireless Hop

204



Methods Pros Cons

1) Fast convergence to neighbonr-

h(jod of optimum

QBIP 2) Node-level distributed manner The neighbourhood is in general

with exact same convergence as small but may increase in certain

flow-level distributed manner

3) Integrated with route discovery

scenarios

1) Easy to implement 1) Can be very slow especially in op­

timal routing problems

Dnal 2) Practical implication - dual vari- 2) Not strictly descent due to the us-

Decompositioi i ables as prices of resources age of subgradient method

3) Naturally a How-level distributcxl 3) Node-level distributed manntu in-

algorithm; can achieve node-level

distributed manner by using link

rat(! as handle variables

trodiK:es a large number of variables

1) If it conv(;rges, it converges fast, 1) Node-level distributed manner in-

especially if the network is sparse troduces a large number of variables

Newton via 2) Naturally a flow-level distributed 2) Rc^quires diagonal dominant Hes-

GaBP algorithm; can achieve node-level sian in order to converge, which does

distributed manner by using link not stand in optimal routing prob-

rate as handle variables lems but NUM problems

Iterative It converges reasonably fast to net- It is centralized thus can not be ap-

Newton via work optimum while avoids the com- plied to distributfd optimal routing

PCG putation complexity of Newton algorithms

Table 6.3: Pros and Cons of Optimization Approaches
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Chapter 7

Conclusion

We conclude by reviewing the contributions of this thesis and by describing the future 

work. In section 7.1, we summarize the research questions that we have identified through 

the state of the art review. Each of the research questions are addressed by some of our 

designed approaches. We briefly reiterate our approaches. In section 7.2, we describe 

our future work following this thesis.

7.1 Summary and Contributions

The objective of this thesis is to investigate the optimal routing problem in wireless ad 

hoc networks. We aim to connect the domain of wireless communication algorithms with 

the optimization theory. In chapter 2, we have reviewed the state of the art results in the 

domain of classical wireless routing algorithms, which focus mainly on the engineering 

aspect of routing and can not reach or approach optimal solutions. In chapter 3, we 

have described the background of optimization theory and reviewed some of the notable 

optimal algorithms that can be applied to wireless routing domain. In section 3.6, we 

summarized results in the domain of wireless modelling. To date, we have seen few 

efforts that combine the developments of the three domains.

Through the state of the art review, we have concluded several open questions to be
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answered in each domain, in order to achieve wireless routing optimization. The main 

contribution of this thesis is the solutions to these open questions. In the following, we 

list the open questions of each domain, followed by our design to answer that question.

7.1.1 Open Questions and Solutions in Optimization Domain

In theoretical optimization domain, these questions are as follows;

1) How can we distributively address the coupled constraints in such way that it 

coordinates different components quickly and guarantees strict feasibility?

We propose a quota-based mechanism that addresses capacity-constraints with the 

interior-point method. We introduce auxiliary variables called quotas at each node. It 

represents the maximum traffic allowed of a path flow at a node. Each node optimizes the 

quota-assignment locally using second-order Newton’s method. Quotas are forwarded to 

sources of communications, where a second-order interior-point step is computed. The 

quota-based mechanism guarantees second-order update of solutions, while the standard 

approach - the dual decomposition method - is bottlenecked by the flrst-order subgradi­

ent update of dual variables. Because logarithm barrier function is used, the quota-based 

mechanism guarantees strict feasibility. The performance of the quota-based mechanism 

is verified in NUM experiments where the objective functions are not coupled.

For non-negative constraints, we propose to use a projection method due to the fact 

the network optimum is an equilibrium of derivative costs of each utilized path.

2) How can we address the coupling introduced by the objective function without 

using iterative methods at each Newton step?

We use the diagonal approximation of the Hessian matrix in Newton step method. 

In this way, the computation of each Newton step is distributed with respect to each 

component and the computational effort required is trivial. Because no iterative methods 

is need at each Newton step, the algorithm converges fast - similar to centralized exact 

Newton’s method as we have observed in simulations - in the early stage of convergence. 

The convergence slows down when the solution enters a neighbourhood of the optimal
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solution. Such a neighbourhood is varies in different scenarios, as we have demonstrated 

in section 6.3.4, but is in general small.

Our argument for the usage of diagonal approximation is that , in wireless routing 

domain, it is crucial to reduce costs quickly in the early stage of convergences. Also, 

it is reasonable for an algorithm to terminate between 1% and 0.1% away from opti­

mum rather than between 10“'^% and 10~®% away from optimum if the latter requires 

significantly larger amount of communicational and computational overheads.

3) Is it possible to design a node-level distributed algorithm without increasing the 

size of the optimization problem?

We tackle this problem from a different angle. From the communication and algo­

rithm point of view, paths between two nodes satisfy the optimal substructure property. 

Therefore instead of breaking the network optimization problem into subproblems at 

each node as in existing distributed approaches, the flow-level distributed routing opti­

mization can be carried out at each intermediate nodes recursively from destinations to 

sources. Our approach uses path flows as handle variables. Each node perform part of 

the flow-level optimization problem. The node-level distributed algorithm achieves the 

same convergence compared to its flow-le'V'el distributed counterparts.

In the contrary, existing node-level distributed algorithms rely on using link flow as 

handle variables and apply the same mathematical approaches as flow-level distributed 

algorithms, such as dual decomposition or matrix splitting technique. This approach 

increases the size of the optimization problem and slows down the convergence compared 

to flow-level distributed algorithms.

7.1.2 Open Questions and Solutions in Routing Algorithm Domain

Existing optimal routing approaches assume the availability of all potential paths and 

do no consider route discovery. However current developments route discovery can not 

be used by optimal routing approaches. This is because each type of route discovery 

imposes certain path filtering and selection criteria, which may not coincide with opti-
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mization methods. In addition, there may be a large amount of potential paths between 

sources and destinations, which introduces more challenge to the design of route discov­

ery algorithm for optimal routing.

The proposition 4 and its two corollaries establish a path filtering criterion that 

bridge the optimization approach to route discovery method. It suggests that the dual 

variable computed as the by-product for each communication can be used as a TTL 

value to determine whether a path should be filtered or established. In addition, we 

use the bloom filter to remove loops in the flooding of RREQ messages. Finally, we 

differentiate the concept of orders of hops in a path and the path length. Based on this 

observation, we propose to use hop counts to establish orders of intermediate from sources 

to destinations. In this way, loops can be removed using many existing techniques. At 

the same, we use derivative costs of paths as their length to determine path filtering and 

traffic distribution.

7.1.3 Connecting Wireless Domain — the Wireless Medium Cost

The majority of routing algorithms, both classical engineering approaches and optimal 

approaches, follow the link-model of connected nodes. While it describes properly the 

topology of wired networks, it can not model the interference between neighbouring 

wireless transmission.

We classify the wireless interferences into three major categories: primary interfer­

ence, secondary interference and primary indirect interferences. We propose a wireless 

medium cost that model the cost incurred due to different wireless interferences. The 

wireless medium cost is an abstraction of the behaviour at MAC layer, it hides all the 

complexity and is presented as a function. The derivatives of wireless medium cost coin­

cide with the derivative of wireless costs. We demonstrate the convexity of the wireless 

medium cost function, which equivalently proves the convexity of wireless cost - a result 

has not been investigated to the best of our knowledge. Our proposed QBIP algorithm 

use wireless medium cost function as the objective function in wireless networks.
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7.2 Future Work

The future work of this thesis lies also in different domains. In the domain of algorithm 

design, a more thorough study of the communication overhead of QBIP is desirable. The 

effect of the bloom filter in reducing the communication overhead is yet to be evaluated.

In the domain of optimization theory, our next step is to fix the error neighbourhood 

introduced by the diagonal Hessian. A reasonable approach is to apply some of the 

matrix splitting technique to the QBIP algorithm, which may guarantee a better con­

vergence w'ithin the error neighbourhood. Another issue to be addressed is the timely 

manner of the update. The algorithm at the moment operates in a synchronous manner. 

Recent results, e.g. [Nedic and Ozdaglar, 2009], suggest potential approaches to translate 

QBIP to an asynchronous algorithm.

Finally, in the domain of wireless modelling, we have assume that the latency func­

tion treat all transmissions homogeneously. That is M.a,i = YLj ™ and

■ (Ma,i)- A more accurate model would be treat Afa,i aa a vector instead of a scalar. 

Results can be computed in a similar way as we demonstrated in appendix C.
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Appendix A

Wireless Queueing Delay with 

Poisson Arrival

In the following, we give the derivation of the queueing delay of a wireless that has 

multiple outgoing traffic flows to different neighbours. Each of these link flows may ex­

perience different interferences, which results in different medium access delay. Assuming 

we know the mean and the second moment the proof is as follows.

Proof. The queueing delay of a M/G/1 queue is given as follows [Gross et ah, 2008]:

faS^a(2)

(A.l)2(1 -p)
— ('2')

where /„ is the arrival rate of the queue; Sa is the second moment of the service time; 

and p is the utilization of the queue. It is easily known that fa — ^ The
Ji c*' Cl

utilization is the sum of utilization for each class of traffic, p = ,(o ^

[Gross et ah, 2008].

To find the second moment of the long-term service time, let us consider the problem 

within a large time interval T ^ 0. \^e define the duration of medium access of flow 

j as Xtj. Let Nj denotes the number of medium accesses for flow j during the interval 

T. According to the definition of the second moment of discrete random variables, we

(0
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have the second moment of service time over the duration T as:

5®[r]=

E,. Nj

"T » A'2
fV,;

Since we have assumed that the long-term arrival rate is less than the long-term service 

rate, the long-term expected number of medium accesses is the expected arrivals T 

for flow i. Taking T to infinity, we have:

v' fW'p fa
(A.2)

Taking (A.2) into the delay of M/G/1 queue, we reach the queueing delay at each node:

:(2)/Ay \Al)

=

□
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Appendix B

Proof of Convexity

In the following, we prove that the optimal routing problem is strictly convex under the 

condition that the medium access delay of the MAC approach used is convex.

B.l Proof of Lemma 1

Proof. The purpose of this proof is to demonstrate that for any node a and any link flow 

Ula C the second derivatives of queueing delay at node a is strictly 

positive, namely,

dff^dff
> 0

given the condition that the medium access delay and its second moment are convex.

Firstly, we describe the notation used in this proof. We follow the numerator-layout 

notation in matrix calculus. In such a layout, each vector is column vector by default.

The partial derivative ^, where y pmx 1 , X G pnxl :is a m X n matrix, which is usually

referred to as the Jacobian matrix. Without loss of generality, we let TTa,i G denote 

a two-dimensional vector, i.e. 'Ka,i = Let ria — |^a| denote the number of

outgoing link flows of node a. Each iXa consists of Ua amount of na,i. According to our 

formulation, naturally vTa is of a matrix form, that tTo G However, a powerful tool
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- the chain rule of differentiation - does not apply to matrix-valued or matrix-argument 

functions, for example in our case. In order to ease the proof, we construct tTo in

a vector form; ttq = {ttJj..... '^a,na}'^ ^

Secondly, in order to show that the second derivatives are strictly positive, we need 

to decompose the second derivative into known terms. In order to do so, we rewrite 

equation (4.6) into a vector form,

dia^TTa) d6^\'Ka) d^Ta

df.(0 dlla d ff'’

dfw

_ (TTa) (TTa) W dWa,! ^
jV^TTa,! dTTa, df,(0

ri-wOTTa.na jT
dfi(0

(B.l)

Taking one more deriv^atives to (B.l), the second derivative can be decomposed as follows:

d^a^Hna) d fdii^^TTa)- (' 
^y(0\ )

={
d-!Ta,l ^
df (0

dta’ilTa). 3

dff^ ' df.
Ml

d frd£^f{-Ka)
Stt,a,I

d-Ka,

/r^TTg,!
dT^a,na ‘ df^d QfW

Since ^TTg.,
dflm

,Vr = l...na is a constant, the value
df

/ f dna,i

zero. The above equation reduces to;

d^ia^TTa) _rd7Va,l'^ 

-1 . .{1) >
dna.

df^dfW dfl

■ dna,\ ^

dff^ 'df]

diT, ^

^TTa ,1

d£a\7ra).T

dTTa^na '

dl^a^ng ■, J'\
dff) ^ )

is alwaysdlTr “ ^
~df^

d d6^\'Ka) f)

Bf,(1) df

a,na .id¥^\7ra) d¥^\7ra)^T
J1- „ .(i)„ ’•••> „ .r/m /(0 df]'>dna,l dff^dTTa,

(B.2)
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The second part is a column vector, which can be expanded further. For any r = l...na,

df^dnaT dff'^

■dlTa.l^ dTTa.n ^ ^ ‘ ^ ^

df](0 ’•••’
df.(0

0 / a ta'{TT

STTa.l

df)
la.l

(0 Qfi^) ■’ ^ d'Ka,rd'!:a,\ ’ d7:a,rd7:a,na
}{■

d (,dtf‘'{TTa) dtf‘\T,a) 
d'^a,na

V

f)

.d-KnA^ d'Ka.na'^^ rd‘̂ ia\T^a) d'^ia^TVa)
(B.3)

Similarly, the second part is a column vector, for any s = l...na, is a row vector

of four scalar value,

dHi^\na) , d¥a^\7ra) d¥a^\n^) dH^f^na) dH^\Tra)
= { :}

d'na,rd-na,s 97ra,r(l)97ra,s(l)’ 97ra,r(l)i97ra,s(2) ’ d'KaA‘^)d'^a,s{¥ d'Ka,r{‘2)dT^a,s{‘̂ ) '
(B.4)

Combining (B.2), (B.3) and (B.4), we have the final decomposition of the second deriva­

tive;

d'^la\TTa) _ ^ dlTg^ ^ dlTg^s'^ d'^ta^TTg) \
dff^dff^ r^idff^ dT^a,Tdng^s ^

fd-Kg^rO-) dTVg^sjl) d‘̂ £a\'na) d-Kg^rjl) dng^s{‘2) d'^ig\'Kg)

T^l dfP dff^ 57ra,r(l)'97ra,s(l) Qf)d Qfj) d‘Kg^r(X)dna^s{‘2.)

57ra,r(2) 57ra,s(l) d'^i^a\-Ka) d-ng,r{2) d-Kg^si"^) d^ig^TTg)
df)d dTTa^r{2)dTrg^s{'i-) dff^ df^ dTrg^r{2)dTrg^s{‘2)df

) (B.5)

In equation (B.5), each of the eight coefficients, e.g. > i® either 0 or 1. Our final
dfi

step of this proof is to demonstrate that for x = 1, 2 y = 1, 2, ^ (x)d^'"\[y) always

non-negative. To see this, let us examine equation (4.5). We reiterate it as follows:

otg (TTg)   ____________________  n:/,\ 'eTg__________
STTa.rfl) 2B^
a/9). ^ S^cfl'{Mg,r)fPB+ei^,UMa,r)f^‘^Y: Jl) ^ S?,l{Ma,v)ff^
Otg (TTg) _ ________________________ v-f,)'eJ^a____________
S7ra,r(2) 2B^

«(-5) I d2)/ f{l)

where B = 1 — '^ M) ¥,v(-Mg v)fv^■ Taking partial derivative
Jv a ’

d

equation above gives one of the four cases of d‘^t^a\-Kg)
97ra,r(a:)97ra,s(j/)

dt^aAv) over either sub-

. To simplify the process, we
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can unify and into the following form

dea^TTa) DB + E
dTTa.r{x) 2B^

where D and E represents different terms for x =1 and x = 2. With a slight abuse of 

notations, let D', B' and E' denote the partial derivative of each component with regards

to ~a,s{y) for either y=l or y=2. Then has a unified form as follows:dTra,r{x)dTTa.s(y)

d^ii^^TTa) {D’B + DB' + E')B'^ - 2{DB + E)BB'
d-Ka.r{x)d'Ka,s{y) 25'^

D'B'^ + E'B - B'{DB^ + 2E)

c(2)/

(B.6)

In either one of the four cases, because and S^ -(-) are positive convex increas­

ing functions, it is easily known that D, D', B, E,E' > 0 and B' < 0. Therefore,
a ^ \ > 0 at all time.
aTXa,r(x)dna.s(y) —

In addition, it can be verified that for any ff\ U2ia, there exist

r, s = 1,..., ria and x, y = 1, 2, such that

d7Ta,r{x) d7ra,s{y)

df(1) QfW d7ra,r{x)d7ra,siy)
> 0

Therefore, the queueing delay da^TTa) = convex over the set of link fiows

and is strictly convex over Ea^Ia Tl

B.2 Proof of Lemma2

Proof. The purpose of this proof is to show that if the queueing delay and the medium 

access delay is convex then the corresponding costs are strictly convex. According to 

equation (4.13), both queueing costs and medium access costs can be write in the form 
of i{Ea'')TEa\ In the following, we show that the convexity of i{Ea"’) leads to the 

convexity of C{Ea^) = i{Ea^)TEa'' ■
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To do so, we use a standard definition of convex function [Boyd and Vandenberghe, 

2004]: A function g{-) is convex if for any x,y £ dom g, x ^ y and any 6 £ [0,1],

g{9x + (1 - d)y) < 9g{x) + (1 - 9)g{y) 

The inequality is strict for strictly convex g{-)

(B.7)

Apply this property to the convex £{■) in C{Pa^) we have: For any x,y £ dom £(•), 

xi^y

C{9x + (1 - 9)y) = i{9x + (1 - 9)y)T[9x + (1 - 9)y)

<9i{x)T[9x + (1 - 9)y) + (1 - 9)£{y)T{9x + (1 - 9)y)

=9H{x)Tx + (1 - 9)H{y)Ty + 9{l - 9)£{x)Ty + 9{1 - 9)£{y)Tx

Therefore,

C{9x + (1 - 9)y) - {9C{x) + (1 - 9)C{y))

<9^£(x)Tx + (1 - 9f£{y)Ty + 9{l - 9)£{x)Ty + 9{l - 9)£{y)Tx 

— 9£{x)Tx — (1 — 9)£{y)Ty 

=9{l - 9)£{x)T{y - x) + 9{l - 9)£{y)T[x - y)

=9{1 - 9) {£{x) - £{y)^ (y - x) < 0

Note that the last step is because £{■) is monotonically increasing. Assigning £{■) with 

and T with Ta and Ta^i, we conclude that both the medium access delay cost 

and the queueing delay cost are strictly convex. This completes our proof. □

B.3 Proof of Proposition 2

Proof. With Lemma 1 and 2 established, the proof of Proposition 2 is trivial. Since 

is a subset of , multiplying a scalar coefficient 9 to results in all multiplied 

by 9 in equation (4.13). Using the definition of convex function (B.7), the proposition 

is established. □
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Appendix C

A Case Study for Wireless 

Medium Access Delay

In the following, we briefly d(^seribe the sc'areh for a closed form medium access delay 

function, namely for contc'iition-based 802.11 DCF.

R('call that, under the Poisson arrival assumption, Malone et al. [Malone et ah, 2007] 

have developed an advanced analysis of the medium acctess delay in a heteerogeneous non- 

satnrated 802.11 DCF network. Since our study also assume a Poisson arrival, we choose 

Malone’s model to compute the medium access delay.

For an routing algorithm to compute the derivatives as well as second derivatives, a 

closed form analytical model is netded. However, due to the complex nature of wirtdess 

modelling, existing studies prt^sent results in a large non-linear equation system, which 

describes the relations b(‘tween different inputs, such as parameters, data loads, etc. In 

order to extract a closed-form latency function, we vary the data traffic input in Malone’s 

model from / = 0 —> threshold and solve the non-linear system. For each value of the 

input series we compute a value of latency for the output series We

then performs a non-linear regression on the series of discrete points. We discover that
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Delay(uS)

Fig. C.l: Closed Form Delay Fnrietiori v.s. Malone’s Analytical Model

an (exponential fnnction fits the discreete points surprisingly w<ell.

+ 63

F(jr (example, the closed-form delay function of a wir('l(ess hop with three homog('neons 

senders is shown in Fig. C.l.

Finally, we move on to vary the number of stations in a wineless hop and discovered 

that the parameters computed from regression follow a nice lirnear relation.

In summary, for a 11Mbps 802.11 proto(eol, with 500 byt(es data packet, the inedinm 

access delay that we have computed is given as follows:

= (4.07705n + 36.1362)e'0.008AI + 23.2423r? -h 1225.9

where n is the number of stations contending for medium access of node a, link i.

Using the same approach, the second moment of medinrn access delay, 5^, can be 

calculatcnl in a closed-form as well.

220



Appendix D

Proof of the Path Filtering 

Criterion

D.l Proof of Proposition 4

Now we give the proof of proposition 4

Proof. Because fp. was not utilized in the previous round, Afp. > 0. Assume A/p^ = 0 

is computed from the appended KKT system.

Since H = diag(V^C)~^,according to the projected methods,

A fp. = max{---- —, 0}, we have:

therefore

From the equality constraint, we know that

^// ^ (D.l)

(D.2)

ahpj
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Combine with (D.l), we have

E < 0 (D.3)

Recall that the latency function ^(•) is convex. It can be derived that C^p. > 0. Solving 

(D.3),

E 7^ n Cl
< -- E nc; (D.4)

Piev'^'}
&p.

Note that the right side form of (D.4) is essentially computed from the original 

KKT system, so:

i/+ < pW (D.5)

Combine (D.2) and (D.5),

This completes our proof.

(D.6)
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