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Summary

This thesis is a study of Lead II ECG signal synthesis. The principal problem of EGG 

signal synthesis is two fold, the first concerns the accuracy of the instrument used 

to deliver the synthesised signal and the second concerns the correlation between the 

synthesised signal and the characteristics of in vivo EGG. This research addresses both 

problems with the design of an accurate EGG signal generator and the characterisation 

of the timing of the EGG Lead II signal.

In EGG synthesis for test purposes, the ability to supply a modelled and synthe­

sised EGG as an output analogue signal is based firmly on the instrument used to 

generate the test signal itself. Significant limitations in terms of bit resolution, noise 

performance, temperature characteristics, amplitude level, timing variability and the 

overall suitability of the EGG signal generators found in the literature are highlighted. 

Therefore, attention has been given to overcoming these limitations and providing a 

modern EGG signal generator which provides fully defined and stringently tested levels 

of accuracy.

The EGG signal is typically analysed in the time domain and clinical diagnoses 

and treatments based on observations of the amplitude and duration of the constituent 

components within the EGG. Synthesised signals should reflect these characteristics as 

observed in vivo and hence modelling of such attributes are investigated. Inaccuracies 

in the characterisation of the timing variations of the EGG signal with respect to heart 

rate using the time-frequency based wavelet analysis technique carried out in the past 

are discussed. By careful review dynamic time warping is identified as a more suitable 

means of characterising the timing of the EGG signal. Improvements to the dynamic 

time warping algorithm, both in terms of pre-processing and classification of results, are 

made in order to asses the timing of the EGG signals more accurately. The suitability 

and accuracy of the improved algorithm are verified by extensive testing.

Using the improved algorithm seven equations which characterise the variation of



the ECG signal constituent components with respect to heart rate are derived from 

a database of exercise ECG recordings. The equations are compared to large scale 

clinical investigations of the same phenomena and are shown to reflect clinical metrics 

for the behaviour of the ECG with respect to heart rate. The hardware and timing 

model can be combined to provide a realistic, accurate and variable synthesised ECG 

signal.
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Chapter 1

Introduction

1.1 The Importance of the Electrocardiogram

The Electrocardiogram, or ECG, has been an integral part of cardiovascular medicine 

since its first successful recording by Einthoven in 1904 [1]. The observation of electrical 

activity on the surface of the body, resulting from the depolarisation and repolarisation 

of the heart muscles can be used to gain insight into the condition of a subjects heart. 

Despite the introduction of modern cardio-diagnostic tools such as angiography, the 

ECG is as prevalent and vital today as a front-line tool in coronary care as it has ever 

been.

With the ubiquitous spread of electronic instrumentation, increased awareness of 

the importance of cardiovascular health and the development of the portable Holter 

monitor, ECG recording machines can now be found in the CP’s surgery, sports clubs, 

ambulatory clinical measurements and even the home. Development of the modern 

ECG machine has made it easy to use, portable and relatively inexpensive. Initial 

diagnosis of cardiovascular illness is often made based on rudimentary amplitude and 

timing variations observed in the EGG recording. Since the usefulness of the ECG 

machine depends heavily on its accuracy in displaying the electrical activity on the 

surface of the body, the instrument’s ability to preserve the morphology of the ECG 

signal is of paramount importance.
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1.2 The ECG Lead II Signal

The ECG signal is recorded using up to ten electrodes and observation of up to twelve 

lead configurations or observation angles from which the electrical activity on the body 

can be observed. Each lead provides different insight into the functioning of the heart 

but the one most commonly used is the Lead II configTiration because it typically 

provides the cleanest and most readily observed recording. A typical ECG Lead II 

signal and its constituent waves are shown below in Figure 1.1.

P-Q Interval Q-T Interval

The P Wave: The contraction of the relatively small muscle mass of the atria 

results in the P-wave or first deflection from the isoelectric level. The electrical dis­

charge which started in the sinoatrial (SA) node spreads through the atrial muscle 

fibres towards the atrioventricular (AV) node.

The QRS Wave: After the excitation reaches the ventricles via the AV node and 

the left and right bundle branches the resulting contraction of the ventricles causes a 

large deflection known as the QRS complex. The QRS complex shown in Figure 1.1 

shows the R wave preceded by a Q wave and followed by a S wave although even in 

healthy ECG recordings it is possible that neither of these waves are visible in the 

recording.

The T Wave: After the contraction of the ventricles the return to the resting elec­

trical state or repolarisation of the ventricles results in the longest duration deflection
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known as the T-wave.

The T wave can be followed by a short duration very low amplitude wave known as 

a U wave. The genesis of this wave is speculated in the literature, often being attributed 

to repolarisation of the papillary muscles [2] of the heart (see Figure 2.1). However, it 

is known to be present and absent in normal healthy subjects [3] and is rarely given 

any diagnostic significance. As such is not considered further in this research.

The amplitude and duration of each of the three waves, the segments between waves 

(PQ and ST) and the associated division of the complete signal into intervals (PQ and 

QT) are used to draw conclusions regarding the state of the various muscles and fibres 

engaged in the heart beat process [2]. Any test signal used to calibrate an ECG record­

ing machine should provide fully controlled timing and amplitude characteristics based 

on those found during in in-vivo ECG recordings. A universal test signal or instrument 

that can provide widely varying characteristics would be invaluable but must be based 

on observation of real-life ECG recordings and indeed their classification by expert 

cardiologists. The duration of each component shall be defined more comprehensively 

in Chapter 8.

1.3 ECG Signal Synthesis

The testing, calibration and commissioning of ECG recording machines fundamentally 

relies on the delivery of a synthesised test signal that is accurate and has the ampli­

tude and timing characteristics typical of actual ECG signals. Test signals resulting 

from models which are synthesized only by a software package are not reliable as a 

representation of an in-vivo signal and are limited by the often synthetic nature of 

mathematically generated waveforms which are not derived from observed or mea­

sured signals. The advantages of having an actual ECG signal generator to provide 

test signals which are fully controllable in terms of output heart rate and resulting 

component durations, offset voltage and amplitude variation are many and shall be 

discussed throughout this thesis.

The modernisation of biomedical instrumentation and the field of medicine as a 

whole in recent decades has seen a radical merging of computer technology, information 

and medical science and the creation of a discipline known as Health Informatics. 

Health Informatics is concerned with the acquisition, storage and communication of 

information within the field of medicine. ECG recording technology has reflected this
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modernization but this has not been accompanied by an increase in the accuracy and 

reliability of ECG signal generators and calibration instruments. Examination of the 

ECG signal generators reported in the literature shows a lack of sophistication and 

accessibility required in the current era of biomedical instrumentation.

It is accepted that a fully operational ECG signal generator should be capable of 

providing QRS complex amplitudes of 100 iiV to 10 mV [4]. Many instruments re­

ported in the literature claim to offer a 16-bit digital-to-analogue reconstructed test 

signal with 100 jjV minimum output voltage. However, close examination of the liter­

ature and the components used in the designs shows that at 100 //C the instruments 

yield as little as 1-bit resolution [5]. Furthermore, the ECG signals are output directly 

using devices such as digital-to-analogue converters (DAC), the performance of which 

are not defined at these low voltage levels. At such low voltage levels effects such as 

voltage offset, temperature variations and semiconductor noise are also very significant 

but are not considered in the analysis of the instruments’ performance nor are any test 

results presented.

1.4 ECG Modelling

Modelling of the ECG signal has been the subject of research for a number of decades 

[6]-[7]. Like so many aspects of biomedical research, the approach taken to modelling 

the signal and any measurement of the degree of success of the model is dependent 

on the intended application of the model and objective of the research. There is 

no “universal” model for the behaviour of the heart muscles, the resulting electrical 

discharges or the different phenomena observed during ECG recording due to the high 

variability between individuals, nor is there ever likely to be one due to its very nature. 

Some models attempt to characterise the effects of various phenomena and the resulting 

“artefacts” introduced into the ECG recording because of them, while others attempt 

to characterise and model a healthy ECG signal. The attempts at modelling the ECG 

signal can be classified loosely into two forms.

Firstly, attempts have been made to model the effects of other phenomena such 

as respiratory sinus arrhythmia and the presence of Mayer waves on the ECG [8] by 

creating a three dimensional statespace to simulate the effects of these phenomena 

on the shape of the resulting ECG signal and the resulting effect on the associated 

heart rate, known as heart rate variability (HRV). However, these numerical models
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are more suited to analysis of the effects of these phenomena on the ECG rather 

than the characterisation of the ECG signal itself. Timing parameters of the actual 

constituent P, QRS and T waves are characterised only by manual observation of a 

normal ECG recording [9]. The author therefore believes these models to be less 

suitable to calibration and testing of ECG equipment.

Other approaches take well sampled EGG recordings classified as healthy and free 

from any significant artefact and model the timing of the constituent waves and inter­

vals with respect to heart rate [10]. The resulting characterisation provides a timing 

model typical of the variation of the constituent waves of a healthy ECG signal. One 

criticism of the time characterisations found in the literature is that the onset and ter­

mination of the P, QRS and T-waves are typically defined by association with fiducial 

points in a synthetic signal rather than the onset and terminations as defined in a clin­

ical setting by cardiologists [11]. The shapes of the constituent waves have also been 

modelled using known functions such as Gaussian pulses to characterise the slopes of 

the signal.

1.5 Aims of the Research Project

No model or hardware platform can claim to provide a test signal with universal char­

acterisation of the ECG signal. The fact that no two heart muscles are identical aside, 

there are essentially an infinite number of variables that can affect the recorded ECG 

signal as it appears on the surface of the body. These variables encompass biological ef­

fects such as random muscle noise, a non-linear non-stationary respiratory system and 

the impedance of the skin and its effect on the electrode contact, to name but a few. 

The heart itself and the variation within its cycle has been proven to be subject to the 

circadian cycle and even seasonal variation. However, for test purposes a model and 

test signal based closely on in-vivo healthy ECG recordings and their interpretation 

by expert cardiologists is desirable.

The purpose of this project is to provide firstly a hardware platform which fulfils all 

of the technical requirements necessary to guarantee an accurate, fully programmable 

synthesized ECG signal in a modern and accessible instrument. Rather than being 

merely a design exercise the final instrument shall use leading edge components in a 

novel arrangement to overcome the current technical limitations of ECG signal genera­

tor technology with the portability and interface-ability expected of modern biomedical
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instruments. A careful review process will identify the specific technical limitations of 

current ECG signal generator technology. The system will overcome each of these lim­

itations and the instrument’s performance will be tested exhaustively. Rather than an 

instrument suitable only for the test bench the system shall be portable and have the 

ability to be employed in multiple environments with consistent results.

With the hardware in place, an ECG model that has been derived from observation 

of the timing characteristics of in-vivo ECG recordings shall be developed. The timing 

characterisation shall be performed using the location of key fiducial points in reference 

signals as defined by expert cardiologists rather than a synthetic signal to identify the 

timing components of the constituent waves. The necessity for a new mathematical 

characterisation shall be demonstrated and the duration equations compared with the 

most comprehensive investigation to date and also put in the context of larger clinical 

studies of the component durations.



Chapter 2

The Human Heart and the 

Electrocardiogram

2.1 Introduction

In this chapter a brief introduction to the functionality of the heart and the process 

known as electrocardiography is presented. The human heart is one of the major organs 

within the body and it belongs to a system known as the cardiovascular system [12], 

The cardiovascular system is the first to form in a human embryo and hence the heart 

is the primary functional organ. This is necessary because a growing embryo requires 

a means of obtaining oxygen, nutrients and of disposal of wastes during embryonic 

development [12]. Clinically, the heart is regarded as one of the most important organs 

in the human body.

The excitation of the heart due to active bio-potentials within its tissues and fibres 

causes the heart to beat and cyclically pump oxygenated blood around the body. This 

electrical excitation produces an electric field which can be observed on the surface of 

the human body. Detection and recording of electric signals on the surface of the body 

was first performed successfully by Einthoven [1] in 1904 by connecting electrodes to 

the limbs. This process became known as electrocardiography or EGG measurement. 

Observation of the electrical signals allows the user to gain an insight into the state of 

the heart.

Due to its non-invasive nature the use of the EGG has been the subject of biomedical 

research since its inception and first successful recording by Einthoven. Using the 

EGG observations regarding the rhythmic pattern of the EGG signal and the shape
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and duration of the constituent waves as defined in Figure 1.1, cardiologists can form 

diagnoses regarding the underlying heart and cardiovascular system. The identification 

of normal and abnormal characteristics of the ECG is also discussed in this chapter.

2.2 The Heart and Cardiovascular System

The investigation of the heart and the associated cardiovascular system has been the 

focus of research for centuries. In approximately 1628 William Harvey discovered 

that blood flowed in only one direction through blood vessels and hence discovered 

that blood circulates around the body i.e. there exists a cardiovascular system [13]. 

Harvey’s discovery was based on anatomical dissection and deductive reasoning due 

to the absence of modern instruments such as the microscope. However, in the 17*^ 

century Marcello Malpighi observed the presence of capillaries and the link between 

arteries carrying blood away from the heart and veins carrying blood toward the heart 

[13]. The research and growth in understanding of the system has continued to this 

day and medical research has gained a detailed knowledge of how the cardiovascular 

system operates. A cross sectional view of the heart is shown in Figure 2.1.
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Figure 2.1: A cross section of the human heart [14]

The heart actually operates as two separate pumps [15] and hence there are two 

basic routes that carry blood throughout the body. The “right heart” (atrium, ventricle 

etc) pumps blood through the lungs, where carbon dioxide is released and oxygen is 

absorbed. From the lungs the oxygenated blood travels back to the heart and into
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the left atrium. This loop is called pulmonary circulation. Secondly, the “left heart” 

pumps the freshly oxygenated blood to all other organs, limbs and tissues of the body. 

Oxygen and nutrients are distributed via the blood to nourish the cells around the body 

whilst carbon dioxide and wastes are collected and carried to the lungs and kidneys to 

be excreted. This loop is known as the systemic circulation loop [13].

The continuous rhythmic pumping of the organ is caused by contractions of the mus­

cles within the heart which pump blood from chamber to chamber and then throughout 

the circulatory system. These cardiac rhythms are controlled by special mechanisms 

within in the heart that transmit action potentials or electrical pulses to excite the 

muscles within. For the purposes of this thesis it is the observation of these action 

potentials or electrical signals and their transmission within the heart that are of most 

importance.

2.3 Bioelectricity and its Conduction Within the 

Heart

The heart serves as a pump due to muscle contraction under electrical stimulus. When 

an electrical trigger signal is received by a muscle the heart will begin to contract. 

The process starts in the atria which undergo a ripple like contraction [16]. Following 

this the ventricles contract from the bottom of the muscle upwards. The ventricular 

contraction and relaxation are known as systole and diastole [ibid]. To understand the 

presence of electrical fields and potentials in the heart and surrounding tissues a brief 

introduction to bioelectricity is required.

2.3.1 Bioelectricity

Ionic potentials are present in some cells of the body due to differences in chemical 

content such as Sodium (Na"'"), Chloride (Cl“) and Potassium (K"'") ions. A cell wall 

is semi-permeable in that it will allow some ions to pass through its walls quite freely 

whilst inhibiting others. This may be dependent on the atomic size and charge of the 

ions in question. In humans, cell membranes are usually more permeable to Chloride 

and Potassium than Sodium. The result is that the number of positive ions inside the 

cell is less than the number outside the cell. The phenomenon which keeps the Sodium 

outside and Potassium inside is known as the Sodium-Potassium pump [ibid].
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The pumping out of the Sodium and in of the Potassium is not equal and the result 

is that the inside of the cell is less positive than the outside of the cell. Consequently 

the cell is said to be polarized and the difference between the charge inside and outside 

of the cell is known as a resting potential and is typically quoted as being between 70 

to 90 mV [ibid]. The polarisation conditions of a cell at rest are shown in Figure 2.2.

Scxlium

70'90 mV

Figure 2.2: Cell polarisation at rest with a resting potential of 70 to 90 mV

When a cell is stimulated by an electric charge, the cell membrane changes dramat­

ically such that the Sodium ions rush into the cell and the Potassium ions inside the 

cell rush outwards. The resulting movement of charge and change in the cell potential 

is called an action potential. The cell has been depolarised by the application of the 

electrical charge. Each type of cardiac cell found in the various parts of the heart e.g. 

the atria, ventricles etc has its own distinct action potential [ibid].

2.3.2 Electroconduction in the Heart

The heart can hence be thought of as a circuit which transmits pulses via fibres around 

the muscle to excite the muscle and pump blood around the pulmonary and systemic 

loops. To understand the conduction process the heart is often represented as a wiring 

diagram [17]. Figure 2.3 contains the main elements of the cardiovascular electrocon­

duction system.

The sinoatrial (SA) node provides the trigger electrical stimulus to start the heart 

beat. A small bundle of cells located in the upper right atrium the SA node emits a 

bioelectric pulse as discussed in Section 2.3.1. The SA node is essentially the pacemaker 

which controls the rhythm of the heart beat and is capable of self firing although it 

is also controlled by the body’s central nervous system to increase or decrease the
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Figure 2.3: The electroconduction system of the heart, modified from [18]

frequency of heart beat. When the SA node fires, the resulting electrical current spreads 

across the right and left atria causing them to contract. Blood is forced out of the atria 

and into the lower ventricles on both sides of the heart. The electrical signal moves 

quickly from the SA node towards the atrioventricular (AV) node in approximately 30 

to 50 ms [3].

To allow the ventricles to empty their contents before contracting due to the ap­

proaching action potential the AV node operates as a delay unit slowing the action 

potential by a further 110 ms before the pulse is passed on by the AV node. The pulse 

is then passed from the AV node and sent towards the ventricle via a branch of fibres 

known as the Bundle of His that subsequently spits into left and right bundle branches 

as seen in Figure 2.3.

Once the pulse reaches the left and right bundle branches it travels very quickly 

via the Purkinje fibres which excite the ventricle muscles of the heart from the bottom 

up. The pulse can reach the furthest fibres just 60 ms after leaving the AV node. The 

action potential now causes ventricular contraction which forces the blood from the 

ventricles out into the pulmonary and systemic loops. The contraction of such a large 

number of cells at the same time creates a significant electrical signal and a resulting 

electric field to be emitted. These electric signals can be detected using electrodes 

placed on the surface of the body i.e. on the subject’s chest or limbs. The detection 

of these signals is what is known today as the electrocardiogram or ECG signal. The 

different parts of the ECG waveform as shown in Figure 1.1 correspond to different
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stages in the cardiac cycle. The P wave indicates atrial contraction, ventricular systole 

occurs after the QRS complex and the re-polarisation of the ventricles after excitation 

is indicated by the T wave. The duration, shape and rhythm of these signals can hence 

provide an insight into the state of the heart and the cardiovascular system.

2.4 The Electrocardiogram

The accurate detection of the resulting electric signals the beating of the heart on the 

surface of the body is still the subject of countless research projects including [19, 20]. 

The heart can be treated as a potential source that spreads electrical currents through 

out the body. Recording of the waveforms produced by this potential source can be 

performed in a number of ways.

2.4.1 The Einthoven Triangle

The earliest record of a functional ECG recording was presented by Willem Einthoven 

circa 1904 [1]. Einthoven originally used four electrodes connected to the limbs of 

a subject for the recording process, although it was later found that the electrodes 

could be moved to locations on the thorax without loss of signal strength. Einthoven 

developed the Leads known as the Einthoven triangle as shown in Figure 2.4.

Figure 2.4: The Einthoven triangle and the augmented leads, modified from [20]
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The Leads shown by the arrows in Figure 2.4 represent different pairings of the 

electrodes and each offers a different view of the electrical activity in the heart. A 

cardiologist can view these different Leads and correlate anomalies in the recorded 

signal with observations in diseased subjects in the past. The Leads I, II and III are 

known as the bipolar limb leads and are connected to an ECG recorder’s differential 

amplifier as follows [3]:

• Lead I: LA is connected to the amplifier’s non-inverting input, while RA is con­

nected to the inverting input.

• L('ad II: LL electrode is connected to the amplifier’s non-inverting input and RA 

to the inverting input. LA and RL are shorted to each other. One can see from 

Figure 2.4 that the Lead II follows the direction of the initial SA node excitations 

through to the lower ventricles i.e. the primary cardiac electroconduction vector. 

For this reason the QRS complex and P waves are often larger in amplitude and 

easier to observe in Lead II than in other leads, making it the most suitable for 

single lead monitoring.

• Lead III: The LL is connected to the non-inverting amplifier input and LA the 

inverting input, while the other two electrodes are shorted together.

These three standard leads allow a view of the heart along the vectors shown in 

Figure 2.4. The three leads can also be used to examine the composite potential from 

all three standard leads to give three more leads known as the unipolar or augmented 

leads aVR, aVL and aVf. These leads are created by connecting one of the electrodes 

to the non-inverting input, e.g. RA for aVR and averaging the other two via a resistive 

network, LA and LL at the inverting input of the differential amplifier.

2.4.2 The 12-Lead ECG

The standard three Lead ECG can be extended to provide a total of six Leads using 

the augmented setup. However, another six leads known as the unipolar chest leads or 

“V” leads can also be used. In this arrangement the signals from RA, LA and LL are 

summed in a resistor network at the inverting input of the ECG recorder differential 

amplifier. Each of the V leads Vi-Vg can be connected to the non-inverting input of the 

differential amplifier to provide the additional six signals. The approximate placement
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of the ten electrodes required for a 12-Lead ECG recording is shown in Eigure 2.5. 

Other types of EGG recording include inter-digital, oesophageal and fetal EGG. Due 

to the practical difficulties of 12-lead ECG attempts have been made to synthesise 12- 

lead ECG based on the 3-lead set-up [21, 22], although 12-Lead ECG is still considered 

the ideal.

Posterior

Horizontal View

Figure 2.5: The unipolar chest lead placciiiciit, modified from [23]

2.5 Sources of Contamination of the ECG

The clarity of detected ECG signals is subject to a number of sources of contamination, 

some of which arc briefly discussed hero.

2.5.1 Power Line and Local Equipment Interference

The EGG signal is comparatively low in amplitude when put in the context of industrial, 

household and other medical equipment. Therefore, surrounding equipment can cause 

interference in the recording of potentials measured on the surface of the body. Another 

significant in band source of contamination is caused by the mains power supply [20, 

23 25]. Attempts have been made to remove this interference using in-band notch 

filters [26]. However, such filtering is not allowable under the constraints which govern 

diagnostic quality ECG recording [27, 28]. Removal of the mains supply is typically 

reliant on the common mode rejection ratio (CMRR) of the ECG amplifier.

2.5.2 Motion Artefacts

Motion artefacts are transient variations in the ECG baseline typically referred to 

as baseline wander [29]. They are typically caused by changes in the skin-electrode 

impedance associated with exercise movement and are a significant obstacle in the
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development of dry electrode recording. The removal of baseline wander is discussed 

in Chapter 6.

2.5.3 Electrode Contact Noise

Loss of good contact at the skin-electrode interface can cause a degradation of the 

resulting recorded signal. It is similar to baseline wander in appearance but if the 

contact is normally good the artefact should be minimal or short in duration.

2.5.4 Muscle Contraction Noise

As discussed in Section 2.3.2, the ECG is a detection of the summation of bioelectricity 

emitted by the cells during excitation. However, other muscles also contract during 

ECG recording and can generate large amplitudes during stress testing. Muscle con­

traction noise is usually higher in frequency than the ECG and can be removed by low 

pass filtering as shall be seen in Chapter 6.

2.5.5 The ECG Recording Machine

Like any other biomedical instrument the device has its own inherent sources of error 

such as component temperature coefficients and noise associated with semiconductor 

devices. If the instrument is not working correctly it could introduce noise and artefact 

into the signal that could be misconstrued by the user as diagnostically significant. 

Although not necessarily an artefact associated with ECG recording the necessity to 

guarantee the accuracy of the ECG machine itself is paramount. The issue is that the 

EGG machine cannot be tested by connecting it to a subject since the recorded signal 

is essentially unknown and hence noise or artefact introduced by the ECG machine 

itself is indistinguishable. Therefore, it is the elimination of any possible distortion of 

the signal by the ECG recorder that is the motivation for providing a clean, stable and 

controllable test signal.

2.6 Heart Rate Determination using the ECG

The characteristic most frequently measured during ECG is the subjects heart-rate. 

The heart-rate is typically expressed as the number of beats per minute. In theory it 

could be measured from the onset of the P wave in an ECG beat to the P wave onset
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of the following beat. In practice, however, the heart-rate is usually determined by 

measuring the time between successive R-peaks since the R-peak is the most readily 

identifiable component in an ECG recording. The equation for heart rate (HR) is given 

by:

HR =
60r.RR

(2.1)

where is the cardiac cycle time in seconds measured between successive R 

peaks as shown in Eigure 2.6.

Figure 2.6: The cardiac cycle time T/j/j is measured between successive R peaks

The variation of the RR interval, and subsequent heart rate variability (HRV) within 

a subjects ECG can provide information on how the autonomic nervous system acts 

on the cardiovascular system and to diagnose heart abnormalities [30].

2.7 Diagnosis via Abnormalities in the ECG

Observation of the timing and shape of the ECG signals in each of the leads can be 

used by a cardiologist to form a rapid diagnosis of a subject’s clinical status. There 

are a variety of abnormalities that can be correlated with illnesses using the ECG. To 

illustrate the importance of each constituent wave in the ECG when used as a clinical 

tool a number of examples of subject abnormalities detectable via ECG are described 

in this section:
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2.7.1 Ventricular Fibrillation

If the ventricles are not contracting correctly then blood is not being pumped to the 

pulmonary and systemic loops adequately. The ECG signal becomes completely dis­

organised and no QRS complex is decipherable in the resulting low amplitude signal 

[17]. Ventricular arrhythmia will cause the patient to loose consciousness rapidly and 

can prove fatal within just a few minutes if not corrected [3].

2.7.2 Atrial Fibrillation

In this type of fibrillation the atria quiver rather than contracting regularly. It is often 

caused by the presence of multiple pace making sites in the right atrium instead of 

a single cluster of cells which form a healthy SA node [3]. This is usually discovered 

by the absence of a clear P wave in the ECG recording. The QRS complex becomes 

irregular but is still present and hence it is less serious than ventricular fibrillation 

because the ventricles continue to beat.

2.7.3 Blockage of the AV node and Bundle Branches

A blockage in the left and right bundle branches can be observed by a widening in 

t he QRS complex i.e. increased duration [2]. If complete left and right bundle branch 

block occurs the action potential can not depolarise the ventricles and the heart will 

cease to pump adequately. Complete AV node blockage can have similar consequences 

and can be identified by a long QT interval duration.

2.7.4 Hypercalcemia and Myocardial Infarction

Hypercalcemia is an excess of calcium in the blood and can be a symptom of serious 

underlying conditions such as kidney failure, cancerous tumours and adrenal gland 

failure. It can be diagnosed via the ECG by observation of a shorter than normal QT 

interval. Myocardial infarction or heart attack is the interruption of blood supply to 

part of the heart. It can be caused by blockages in the arteries feeding the heart and 

if left untreated can lead to death. Myocardial infarction can often go unnoticed i.e. 

no chest pain but is detectable by an excessively long QT interval duration [2].
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2.8 Conclusion

The complexities of the human heart have been introduced in this chapter. The pump­

ing of the heart relies on the excitation of the muscles of the atria and ventricles by 

low amplitude electrical signals transmitted throughout the heart by fibres. The sum­

mation of these electrical signals emitted during the heart beat can be viewed on the 

surface of the body as the ECG signal.

The signals are low in amplitude and subject to many corruptive sources of contam­

ination and distortion. However, when recorded accurately it has been demonstrated 

that the signals can be used to diagnose a variety of clinical conditions not only di­

rectly associated with the cardiovascular system but also chemical imbalances within 

the body. Electrocardiography is rapidly applicable and non-invasive.
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Chapter 3

A Review of ECG Signal Generator 

Technology

The use of ECG recordings as a diagnostic tool relies heavily on the fidelity of the 

recorded signal. A number of signal generators have been previously presented in the 

literature. However, the platforms they have been developed on have become dated 

and more importantly their architectures do not provide the necessary accuracy. The 

shortcomings of previous instruments are reviewed here and issues regarding amplitude 

range, voltage offset correction and temperature stability are highlighted. The devices 

can be grouped into three types software based simulators, PC based signal generators 

and standalone microprocessor instruments.

The accuracy of an ECG signal generator cannot be determined by comparison to 

a single testing protocol [31] since no record of one has been reported in the literature 

[32]. As a result testing must be performed using due diligence and by analysis of the 

instrument in light of its intended application. It is demonstrated in this chapter how 

claims of accuracy are frequently made without the necessary testing to verify these 

claims. Hence, this review also contributes to the testing strategy used in Chapter 4.

3.1 Software Based ECG Signal Simulators

There have been a number of purely software based ECG signal simulators proposed 

in the literature some of which shall be discussed here. The obvious limitations of 

these designs are that they are merely software based and can only be used to test 

ECG signal processing algorithms. ECG computer based simulation has been a topic
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of research for decades and an awareness of the approaches taken to purely “soft” ECG 

simulation is useful.

3.1.1 Classical Software Simulations

The rapid introduction of the PC into research during the late 1980’s sparked an 

increase in ECG synthetic signal simulation for testing. The necessity for realistic 

looking ECG’s can be found in early simulation designs such as that of Shuqian et 

al. [33]. The necessity for simulated signals to reflect in-vivo ECG recordings was 

satished by using a set of parameters known as The Minnesota codes [34], to define 

simulated signal features such as amplitude and duration. The simulation was useful 

for generating up to 100 different types of ECG arrhythmia. However, how the signal 

features can vary with heart rate e.t.c. were not considered. The output signals are 

fixed to the code, or feature parameters as defined by fhe original Minnesota codes.

The author does state that the signals could be generated as actual analogue test 

signals using a digital to analogue D/A card with the PC. However, the assumption 

that the test signals can be delivered adequately in this fashion is at best idealistic 

as shall become apparent through out this and the following chapter. In an attempt 

to overcome the somewhat restricted nature of the output signal, a later design by 

Sadighi et al. [35] takes ten ECG recordings and allows the randomised selection of the 

waveforms to be output in sequence to reflect variation in the ECG signal. The heart 

rate of successive beats is also varied randomly to reflect the variability of the heart 

rate. Although crude in that the resulting ECG output is the result of a numerical, 

essentially random process, it does provide signals which at least vary, even if not in 

any way reflective of true ECG variations. Again, no details are provided for generating 

the signal as anything other than a teaching tool or software test signal.

3.1.2 Modern Software Simulation

Naturally the sophistication of EGG simulation packages has increased since the earliest 

found in the literature. A modern EGG simulation method proposed by Josko et al. [36] 

has been developed in the Matlab simulation environment. Implemented and tested in 

SIMULINK, Matlab’s simulation tool, the simulated signals are generated using pulse 

generators, the amplitude, period and phase of which can be altered to change the 

features of the resulting signal. After Altering and summing the constituent pulses
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together to form a complete EGG beat, noise and power-line interference can be added 

to the signal.

The method of adding noise and altering the heart rate and the constituent com­

ponent durations is somewhat adhoc in that no basis is provided for simulating the 

signal in a manner reflective of actual ECG recordings i.e. amplitude levels. The arte­

fact or noise is added to reflect real-life measurements but without being correlated 

to real-life situations in any fashion. The simulated signals could be useful for testing 

software processing algorithms, an example of which - a QRS peak detector, is given al­

though this could probably be performed using actual ECG signals, hence questioning 

the necessity of a synthetic signal in this application. The usefulness of the “Virtual 

Instrument” is claimed to be that it provides a complete testing platform for ECG 

acquisition (among other advantages). However, the resulting simulated test signals 

are not actual analogue signals. Its ability to test ECG acquisition machines i.e. ECG 

recording machines is therefore uncertain.

3.2 PC Based Hardware ECG Signal Generators

An alternative approach is to simulate the signal in software, be it on a PC or other 

processor, and output the signal via an analogue conditioning stage. In doing so, the 

ECG signal generator can be used to test the front end recording unit of EGG machines 

and if the test signal is properly defined before simulation it can also be used to test the 

back end signal processing algorithms such as peak detectors and automatic annotation 

algorithms also. As a result, the majority of ECG simulator or signal generators found 

in the literature include an actual output hardware stage to provide an analogue ECG 

signal. Eor the purposes of this review the designs shall be grouped into PC dependent 

designs and standalone designs which can operate independently of a PC. The PC 

based designs created over the last twenty years have varying degrees of complexity, 

and a cross section of different approaches to a PC based design are reviewed.

3.2.1 A PC-based Generator by Franchi et al.

A PC-based generator was devised by Pranchi et al. [37] in 1994. The system is 

composed of a PC which acts as the controller of a bank of DAC’s. The DAC’s are 

used to convert digitally stored ECG signals into output analogue signals. The analogue
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signals are then filtered and simulated artefact can be added to the signal using a bias 

function. The authors have proposed that DAC’s are not suitable for the direct output 

of signals in the required amplitude range and a PC controlled amplifier attenuation 

stage is used to attenuate the signals to the required output voltage range. This is an 

important observation and shall be discussed in more detail later.

Since this design uses stored actual ECG signals it is not suitable for what is known 

as “absolute accuracy” (i.e. exact measures of distortion) [37] testing or calibration 

because the generated signals contain recording noise and artefact from the original 

recording and hence when re-recorded by the ECG machine under test it is not possible 

to distinguish between noise from the original and that added in the second recording 

phase. However, the advantage of using actual ECG recordings which have known 

features, e.g. annotated fiducial points, is such that after re-recording the test signals 

can be inspected again to see if when re-annotated by an expert or automatic algorithm 

the resulting fiducial points are the same. If they are not, then an error has presumably 

been introduced during the re-recording phase.

There are a number of concerns regarding this design. Firstly the D/A and at­

tenuation stages of the architecture are not isolated from the PC. The result is that 

mains 50 to 60 Hz noise from the power supply of the signal is passed directly to the 

analogue conditioning circuit. Other PC related noise such as the switching noise of 

the central PC processor and peripheral circuitry could also spoil the output of the 

signal generator. The design does not specify what D/A converter or op-amps are used 

in the analogue stage of the design. No in depth analysis of resulting output noise 

and temperature characteristics are provided. The minimum output amplitude level 

is reported as being “in the order of mV” as opposed to the required 100 /ltV range 

proposed in Chapter 1. The accuracy of the signal generator is measured by the loca­

tion of the original recording fiducial points and those found after re-recording of the 

regenerated signals. The device is not intended as and therefore not suitable for ECG 

calibration since it contains an array of undefined or unanalysed sources of noise and 

interference.

3.2.2 PC and MCU Based Design by Mudrov et al.

Recognising the requirement of isolation of the analogue EGG output stage of a PC 

based design Mudrov et al. (2004) [38] have proposed a device which communicates



3.2. PC Based Hardware ECG Signal Generators 23

with the host PC by way of an infra-red transmitter and receiver. The design incorpo­

rates an 8-bit Microchip PC18F microcontroller (MCU) device that receives simulated 

ECG test signals from the PC via the optocoupler infra-red device. The MCU also 

manages user inputs such as selection of required output signal via a 15 button keypad. 

A flash memory chip is available to the MCU for storing input ECG signals received 

from the PC.

From a user point of view, the signal generator requires its own power converter 

to charge the on-board batteries and a PC with an available connection. Although 

the device has its own microprocessor and power supply on-board its interface with 

the user is limited to a 15 button keypad which makes operation quite cumbersome. 

The resulting output signal can be altered using the keypad in terms of sampling 

frequency although alteration of the actual morphology itself requires reconnection to 

the host PC. In order to operate the system in a test environment the user requires a 

PC, a monitor, associated peripheral devices, an RS232 cable to connect to the signal 

generator and a separate charger for the signal generator batteries.

Figure 3.1 is an excerpt from the schematic layout of the Mudrov et al. instrument 

[38]. The digitally stored ECG recordings are output via an Analog Devices AD5320 

12-bit DAC (U6). Similar to the design of Franchi et al. [37] the DAC outputs are at a 

higher output amplitude level than required and are then attenuated. After an amplifier 

buffer (U7A and U7B), a resistive network (R1-R4 and R6) is used to step the high 

voltage output which has a maximum reference value of 4.096 V to a differential voltage 

of ±5mV. The DAC output is unipolar and hence the ±5mV range is with respect to a 

pair of leads as opposed to a common reference or “ground”. In order for the resulting 

differential signal to correctly represent actual ECG constituent waves the input signal 

must have been biased positively in software before being passed to the analogue stage. 

As a result a common mode component is passed to the differential amplifier of the 

ECG recording machine under test and in this sense it is not a true differential signal. 

This common mode signal will have to be removed by the ECG recording machine’s 

differential amplifier. A good ECG recording machine should be able to do this but 

there are two issues with a test signal of this nature. Firstly, the suitability of a test 

signal should not rely on the performance of the equipment under test since this is in 

itself contradictory. Secondly, if one wishes to test the ECG recording instrument’s 

ability to remove common mode components from the input differential signal the 

common mode components should be added in a controlled fashion to the test signal
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i.o. have no common mode component to begin with and then specific levels added to 

the test signal for observation at the output of the ECG recorder.

Apart from the inherent common mode component of the signal, another concern 

regarding the design is that for the generation of the output signal a resistive network 

is used as opposed to a voltage source. This may cause signal distortion by a connected 

test device if the input impedance is not sufficiently high, or it may add to the electrode 

impedance and hence affect signal quality.

One can also see from the schematic that the output voltage must be altered using 

the variable resistor. Re, which has two limitations. Firstly, in order to scale the output 

signal Re must be either manually scaled or perhaps buttons on the keypad have been 

provided to do this, although no detail has been provided with regard to the nature 

and access of this variable resistance. The design also means that P and T waves must 

be fixed in amplitude pre-DAC, i.c. their amplitude is dictated as a factor of the 12-bit 

DAC input code. This limits the resolution of the P and T wave amplitudes. Consider 

a case where the required QRS complex amplitude is 10 mV and a P wave scaled to 

250 pV which is quite possible in a real life ECG signal. This means that the P wave 

now only has 4-bit precision as opposed to the 12-bit precision stated, as it only applies 

to the QRS complex. In theory, the accuracy of the output signal should be consistent 

for all components of the EGG signal and not just the QRS complex.

The noise and temperature coefficients of the components used in the design are 

not analysed nor is any figure for measured output noise provided.

Figure 3.1: Analogue stage design for the Mudrov et al. ECG signal generator

The device proposed by Mudrov et al. overcomes the isolation issues found in the 

Franchi et al. design. However, the device appears extremely cumbersome to use.
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given the requirement of a PC and connection cable to alter the output test signal 

and independent power supplies for both the PC and signal generator. The analogue 

output stage has an inherent common mode component, output impedance mismatch, 

lack of precision for the individual constituent ECG components and no performance 

measurements or analysis has been performed on the claimed ±5mV output amplitude 

range.

3.2.3 PC and MCU Design by Martinez et al.

A more modern but similar design to that of Mudrov and Franchi et al. the micropro­

cessor and PC based design proposed by Martinez et al. was published in 2007 [39]. 

This design is very similar in that it exploits the use of a Microchip PIC16C MCU to 

control the D/A stage of the signal generator but still requires overall control using a 

PC. The design suffers similar limitations to both of the previous designs discussed.

The output network for the Martinez et al. signal generator is shown in Figure 3.2. 

The MCU and analogue conditioning circuit is not isolated from the PC and hence 

suffers from mains generated interference and noise. The DAC arrangement is again 

unipolar so Q and S waves which are defined as deflections below the iso-clcctric cannot 

be generated as such since all signal components must be positive. The resulting output 

differential voltage hence contains a common mode component as discussed in Section 

3.2.2.
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Figure 3.2: Analogue stage design for the Martinez et al. ECG signal generator [39]

There are a number of issues concerning this layout. The resistive network used to 

attenuate the output is said to have been tuned deliberately, presumably to simulate a 

skin electrode impedance, to 5 kD. However, if the ECG machine under test is required 

to match another impedance or the skin electrodes of the ECG leads used with the
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recording machine are not 5 kfl, this will result in a mismatch. Both Martinez and 

Mudrov have been shown to provide two different fixed output impedances, while it 

would be more beneficial in practice to provide a matched very low output impedance 

i.e. as close to an ideal voltage source as possible to allow versatile connectivity.

Similar to the Murdov design, the output amplitude is varied using a resistor pot 

and hence the same scaling limitations of the P and T waves are found in this design. 

In fact Martinez et al. use only an 8-bit DAC so the resolution of the P and T waves 

after scaling using the DAC are more serious.

In terms of testing the accuracy of the signal generator, the authors state that the 

device has been tuned for test to provide an output voltage of 8 mV which is at the 

very upper end of the ranges required 100 to 10 mV amplitude required. The testing 

of the signal generator involves only a visual comparison between a real EGG signal 

with itself after regeneration by the signal generator. The accuracy of the device is not 

analysed to account for amplifier offset, temperature effects or DAC offset etc.

3.3 Standalone MCU Based Signal Generators

It has been seen in Section 3.2 that using a PC based signal generator has a number of 

limitations. Isolating the output signal from the PC requires the use of an additional 

processor such as an MCU to control the ECG analogue generation process. A number 

of authors have seen the redundancy of using a PC which still relies on a MCU to control 

the analogue interface and conversely an MCU which is configured in such a way as to 

require overall control by the PC. As a result, a larger number of signal generators found 

in the literature exist as standalone instruments where user interfacing, instrument 

control and signal generation is performed using a single isolated controller i.e. the PC 

is removed from the process.

Early implementations of these signal generators can be found in the literature from 

a number of decades ago. Gradually standalone devices have become more sophisti­

cated, although recent research has shown little improvement over previous designs. 

To gain an understanding of the progression in ECG signal generator design a number 

of devices dating from 1998 to 2008 are reviewed.
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3.3.1 Kontodimopoulos Prototype ECG Simulator

The prototype proposed by Kontodimopoulos et al. in 1998 [32] presents an eight 

output signal generator that allows for the addition of a pacing signal for simulating 

pace maker pulsing. The reported design of the signal generator is not very clear in 

that no complete circuit diagram, part numbers (other than the HCllFl 8-bit MCU) 

or specific details of the circuit layout can be found in the article only a block diagram 

as shown in Figure 3.3 is given. The user has 4 input buttons available and the output 

is displayed on a one LCD screen.

Figure 3.3: The Kontodimopoulos signal generator block diagram [32]

The design appears to be powered via an independent isolated battery supply al­

though the MCU requires a 5 V signal while the technical specification of the device 

states the use of only two 1.5 V rechargeable batteries. The signal generator is capable 

of supplying non-ECG like test signals such as sinusoids and triangular waves with am­

plitudes of 1 to 4 mV peaks in 1 mV increments. ECG signals are also provided, but 

only in the same 1 to 4 mV amplitude range, the heart rate of which can be selected in 

multiples of 0.4 to 2.8 times the original heart rate. It is not clear how the alteration 

in heart rate is accomplished or how the constituent waves arc varied to reflect this 

change in heart rate.

Also seen in Figure 3.3 is how the output signals from the DAC are attenuated by 

the divider block to achieve the 1 to 4 mV ECG output range. The only portion of 

a circuit diagram found in the article is of this divider block and is shown below in 

Figure 3.4.

Since there is no variable resistance in this schematic it can only be assumed that
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Figure 3.4: The output stage for the “ECG low output” [32]

the QRS amplitude is varied from 1 to 4 mV by altering the input code to the DAC. 

This results in a lower resolution for signals below 4 mV i.e. an input code of 00111111 

to the 8-bit DAC could be used to reduce the peak output by a factor of four. It is not 

stated how, if at all, P and T wave amplitudes in the test ECG signals can be scaled to 

a voltage other than their original recorded amplitude. However, if the P and T wave 

amplitudes do require scaling i.e. to alter the test signal this could only be provided 

by a further reduction in the input code to the DAC and an accompanying reduction 

in resolution. It is not made clear if the test signals are bipolar or uni-polar.

This design is described as having been tested by connecting the signal generator 

to a number of ECG recorders and an oscilloscope to enable the output signal to be 

viewed. However, no observation of these results or accuracy are reported. No analysis 

of the output circuitry is provided either. The accuracy and suitability of the signal 

generator depends on tested and verified accuracy which has not been established. The 

design is interesting, however, in that it provides an early example of a standalone ECG 

signal generator.

3,3.2 An Accurate Programmable Simulator by Burke Na- 

sor

It is clear from the design discussed above that early standalone signal generators re­

quired significant improvement and greater consideration of the control and user-ability 

of the instrument. This necessity is reflected in the instrument originally published in 

1998 and in revised form in 2001 by Burke & Nasor [4, 26].

A significant improvement on the other designs, it generates a Lead H signal having 

a profile that varies with heart rate in a manner which reflects the true in vivo variation. 

The user is provided with adjustment of heart rate, signal amplitude, QRS complex
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up-slope, and the relative amplitudes of the P-wave and T-wave. The heart rate can be 

set within the range 30 to 200 beats min“^ in steps of 1 beat inin“h The amplitude of 

the QRS complex can be verified from 0.1 to 20 mV in 0.1 mV steps, while its up-slope 

can be set between 10 and 50 ms with a 1 ms resolution. The amplitude of the P-wave 

can be varied from 5 to 40% and that of the T-wave from 10 to 80% of the amplitude 

of the QRS complex with a 1% resolution. The design also offers a bi-polar output 

signal which, as has been discussed, is ideal for an EGG test signal. The user interface 

is comprised of a LGD display and 16 button keypad.

The design offers a significant improvement over the others discussed thus far in 

that the output stage is provided using two operational amplifiers as opposed to a 

resistor network i.e. closer to an ideal voltage source as seen in Figure 3.5. The design 

is also more accurate in that a three stage DAG process is used to vary the reference 

voltage to three different DAC’s in order to provide full 8-bit resolution for all the 

constituent waves of the EGG and not just the QRS complex. The device is also fully 

isolated from mains using an independent battery source.

Figure 3.5: Segment of the Burke & Nasor signal generator output stage [4]

Although presenting a significant improvement over the Kontodimopoulos et al. 

design there are still a significant number of shortcomings associated with this design. 

Firstly, the output signals are not attenuated by any means after digital to analogue 

conversion so that the DAG must generate the signals in the required 0.1 to 10 mV 

amplitude range directly. The ability of a DAG to to do this at such a low output level 

is not defined nor reliable even in modern DACs i.e. thev are not suitable to be used
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in the sub-mV range. No test results for the output signal in the sub 1 inV range have 

been reported.

The choice of an OP27 output amplifier, which was the then state of the art pre­

cision op-amp allows an offset voltage drift in the order of 20 /rV over a temperature 

change of ±25°C. When put in the context of a 100 /iV QRS complex amplitude this is 

a significant offset voltage. Other issues such as output noise voltage of the amplifier, 

input bias current effects and offset voltages were also not considered or compensated 

for. The design offers some advantages not found in the others discussed thus far and 

also greater versatility in the user control of output heart rate and constituent com­

ponent amplitudes. However, one would expect subsequent designs to have improved 

upon the limitations highlighted here.

3.3.3 An ECG Signal Generator using an MCU and CPLD by 

Chang Chien et al.

A design published in 2006 and 2007 by Chang Chien et al. [5, 40], offers little per­

formance improvement over its predecessors and is quite similar to the Burke &: Nasor 

architecture. A complex programmable logic device (CPLD) replaces some of the pe­

ripheral components used in the instrument design (a port exapansion chip, tri-state 

reciever etc) reported by Burke & Nasor.

Some minor changes to the design have been applied to improve accuracy such as 

the use of the OPA2335 amplifier as the output component shown in Figure 3.6 which 

provides a lower temperature drift than the OP27 but still suffers from a 5 /xV offset 

per amplifier which is not compensated for. The design by Chang et al. removes the 

multi-stage DAC feature of the original Burke & Nasor design such that P and T waves 

can only be generated using lower input DAC codes and hence gives reduced resolution 

of these constituent waves. Consequently, the claimed amplitude rage of 0.1 to 10 mV 

is misleading in that 1 least significant bit is 0.1 mV i.e. for outputs of 0.1 mV only 

1-bit precision is available as opposed to 8-bits using the original Burke & Nasor design. 

The Chang arrangement is also uni-polar as can be seen from the lack of a negative 

power supply to the DAC IC3 in Figure 3.6.

The output stage provided by Chang et al. provides less precision in terms of 

bit resolution and polarity but with a marginal decrease in temperature drift due to 

the up grading of the available amplifier. However, the system has not been tested nor
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Figure 3.6: Segment of the Chang Chien signal generator output stage [4]

analysed in any more detail than the Burke &: Nasor design nor have any of the concerns 

regarding the low amplitude DAC output, voltage offset compensation, temperature 

drifts or bias current etc been addressed. The user interface is also identical in the 

form of an LCD display and 16 button keypad, which by 2007 could probably have 

been replaced with a cost effective more sophisticated alternative.

3.3.4 The Caner et al. ECG Simulator

The programmable ECG simulator proposed by Caner et al. et al. in 2008 [41] is based 

on the use of a Digital Signal Controller MCU device or DSPIC. The DSPIC30F is a 

modern 16-bit MCU which has been designed to function with essentially two different 

signal processing cores, one for standard MCU operations and another for enhanced 

signal processing applications. The DSPIC30F is the fastest operational MCU used in 

any of the designs discussed thus far. Its enhanced operation over other MCU’s is due 

to its ability to perform multiple operations using both cores at the same time, e.g. 

to fetch two data operands whilst multiplying two others concurrently. Its processing 

power allows the processing of over 30 Mega instructions per second (MIPS).

Despite this increased performance MCU, the design still requires all signal pro­

cessing such as output waveform synthesis to be performed on an external PC with 

the result passed to the MCU by an RS232 connection. The MCU operation can be 

controlled by the user using six switches as a keypad. Four of the switches can be used 

to vary the heart rate from 30 to 120 bpni in four steps. The remaining two switches
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start and stop the output signal. The schematic layout of the analogue stage of the 

design is extremely unclear but it appears to provide a bipolar output signal of ±5 

V. Amplitude noise can be added whilst synthesising the output signal on the PC. 

Presumably to isolate the signal from the mains supply, the RS232 cable is detached 

from the signal generator whilst being used.

The performance of the signal generator appears to have only been tested using 

output signals with a 5 V peak-to-peak amplitude. The only test results reported 

are three output waveforms with different levels of noise added to the signal with no 

testing of the device below these amplitude levels presented. Furthermore, no analysis 

of the component noise or stability has been carried out. The output heart rate range, 

amplitude level and the users ability to vary the output signal therefore appears limited. 

It would appear this design offers an instrument which is less sophisticated than its 

predecessors and its performance in generating actual ECG test signals in the heart 

rate and amplitude range is undefined.

3.4 Conclusions Regarding Hardware ECG Signal 

Generators

It has been seen that a number of software ECG simulators can be found in the liter­

ature. However, these devices are only suitable for testing ECG processing algorithms 

since no actual output EGG analogue signals exist. As a result their application is 

quite limited when put in the context of the entire ECG recording process i.e. from 

electrode to diagnosis. The majority of ECG signal simulators and generators therefore 

contain a hardware stage for ECG output.

A number of limitations of PC-based hardware designs have been highlighted. It 

has been seen that a signal generator composed of a D/A and op-amp PC cards is not 

appropriate. Shielding and isolating the analogue conditioning stage from the mains 

and operational noise found in a PC is nearly impossible. This has been reflected 

by more modern PC based designs which use a second independent controller off site 

to handle the signal generator analogue signal conditioning circuitry. However, in 

this case, two processors, i.e. the PC and the MCU, are required to implement the 

instrument.

Unipolar output signals must be biased positively pre-conversion to provide correct
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ECG signal morphology when differentially amplified. This introduces a common mode 

component into the signal which therefore relies on the EGG recording machine’s ability 

to remove this component. Although the EGG recorder should be able to do this, the 

fact remains that the test signal essentially contains an artefact which must be removed 

by the instrument the signal is intended to test. In addition, it was found that output 

impedances which are dictated by a resistor divider network can cause two problems, a 

slight mismatch on the output channels and finite output impedance. This could mean 

that the device may not be connected directly to skin electrodes should the user wish 

to test the entire EGG recorder accuracy, i.e. from electrode to output recording. It 

was also shown that many methods of altering the amplitude of the output signal are 

quite crude since they depend on the variation of a resistor pot. This means that the 

P and T wave amplitudes must be scaled pre-DAC in software, which and ha.s been 

shown to decrease their resulting resolution.

The PG based designs require the use of two processors to carry out the required 

operations. This is quite inefficient since an MCU device is capable of carrying out the 

entire signal generator operation if designed correctly. Therefore, a number of stand­

alone ECG signal generators produced between 1998 and 2008 have been reviewed. It 

has been found that instrument designs found in the literature have shown no genuine 

improvement in terms of sophistication, accuracy or user controllability since the Burke 

& Nasor design published in 1998. No single design has been found which can provide 

all of the following desirable characteristics of a test ECG signal generator:

(I) An interface which can rival the PC based designs in terms of sophisticated 

accessibility i.e. not depending on keypads and two line LCD screens.

(II) Verified performance with complete controllability of the output signal i.e. full 

heart-rate range and amplitude scaling of each constituent component.

(III) An appropriate output stage which provides a near ideal voltage source for con­

nection to any source impedance found in an ECG recorder.

(IV) A pure diffenmtial output signal without a common mode component.

(V) Analysis testing to calculate maximum output noise and temperature effects of 

the signal generator.
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(VI) Physical verification and testing of the amplitude and timing accuracy of the 

output waveforms.

The author is therefore convinced that a new ECG signal generator design is re­

quired. The device should be stand-alone, incorporating a modern user interface and 

providing connectivity to the wider biomedical world i.e. facilities to provide wireless 

connectivity for remote access and control. Most importantly, the new instrument 

must overcome the technical and performance limitations which were found repeatedly 

during review. Claims of increased accuracy must be supported by thorough analysis, 

testing and verification.
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Chapter 4

The Versatile Temperature Stable 

ECG Signal Generator

4.1 Introduction

The instrument presented in this chapter offers precision across the full amplitude 

range, with P and T waves measuring as little as 1 pV amplitude and adhering to spe- 

cihc timing parameters. The recreation of low voltage analogue signals is performed 

using a novel arrangement of low-noise state-of-the art operational amplifiers which are 

specified to operate with low output noise levels, very low offset voltage and zero tem­

perature drift to ensure optimum signal precision. In terms of accessibility the colour 

LCD graphical interface, independent battery source and possible internet connectivity 

make the device user friendly and allow the portable or even remote testing of ECG 

recording machines and assessment.

Rather than just a design exercise the research problems regarding ECG signal 

generation introduced in Ghapter 1 are systematically overcome. The instrument’s 

output noise voltage, timing accuracy and temperature stability is guaranteed both 

analytically and in the development of a full working prototype. Results are provided 

which demonstrate the increased accuracy of the device over those discussed in Ghapter 

3. Importantly, the final instrument design provides the basis for the subsequent EGG 

signal modelling and characterisation discussed in the rest of this thesis to be delivered 

as a real world analogue test signal. Without this hardware platform in place the 

accuracy of these EGG signal models are of little value in a practical test scenario. It 

can therefore be used as a basis to implement the models that shall be discussed in the
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rest of this thesis for a fully controllable test signal.

The material and results presented in this chapter are based on two peer reviewed 

publications by the author [42, 43].

4.2 The Hardware Architecture

A number of different technologies were considered during the initial stages of the de­

sign. As part of the selection criteria signal-to-quantization-noise-ratio (SQNR) and 

speed requirements were taken into consideration as discussed later. A USB interfaced 

approach allows the use of the PC as a user interface. However, such a design still 

requires electrically isolated peripheral circuitry to perform the actual generation of 

the low-voltage ECG signal as demonstrated by [38] and [39]. Field-programmable 

gate arrays offer a high speed alternative but they arc significantly more expensive in 

terms of hardware cost, development cost and power consumption than other commer­

cially available processors. Previous microcontroller (MCU) designs have been limited 

in terms of processor speed, bit resolution and their inability to provide a modern in­

terface. Investigation however, shows that recent progress with MCU technology has 

overcome these difficulties.

A number of possible microcontroller devices were compared to find the most suit­

able for this application. It has been decided that in order to have an adequate signal to 

quantisation noise ratio and the necessary interface a 16-bit microcontroller is required. 

Eight possible devices from manufacturers such as Zilog, Siemens, ST Microelectronics, 

Advanced Mirco Devices, Texas Instruments and Microchip were examined. They were 

compared in terms of clock speed, programmability, power consumption, input/output 

pins and available ROM. The PIC24F 16-bit MCU offers a state-of-the-art processor 

and class-leading performance. This device provides all of the power consumption and 

flexibility advantages traditionally associated with microcontrollers, whilst also offering 

the accessibility and functionality usually associated with faster processors. The device 

is available in a 100-pin TQFP package that contains 84 I/O pins, 128 kB of program 

memory, 8 kB of data memory and a port known as a Parallel Master Port (PMP). The 

PMP enables the PIC to be interfaced to LCD’s, USB devices and wireless networks. 

This allows the signal generator to retain the user networking and accessibility advan­

tages normally associated with PC-based designs but at the same time remain battery 

isolated, portable and inexpensive. The PIC24F has been programmed and developed
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using the G programming language and the Microchip Explorer 16 Development Kit. 

The block diagram shown in Figure 4.1 represents the high level structure of the signal 

generator.
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Figure 4.1: Block diagram of the ECG signal generator

4.3 The Graphical User Interface (GUI)

The software design for the signal generator provides the user with a graphical user 

interface (GUI) to input the required signal parameters and to observe the resulting 

timing parameters and a representation of the Lead II signal as it is refreshed across 

the LGD screen. The GUI interface is provided on a 320 x 240 pixel colour TFT LGD 

touch screen. The advantage of using the TRULY Ltd screen is that it is supported by 

the Microchip Graphics Solution software as shown in Figure 4.2. Microchip provide 

both the hardware and software interfaces necessary to develop a GUI interface on the 

PIG platform.

The lower layers represent the graphics library software that consists of a number 

of G-language libraries which provide the low level communications code for interfacing 

the PIG to the LGD and touch-screen. The actual source code which implements the 

operations of the signal generator and controls its peripheral circuitry uses the graphics 

library enabling the programmer to create objects (buttons, text boxes etc), draw 

shapes to represent these objects, control the pixels on the LGD screen and capture 

messages from the touch screen. The library also aids in the inclusion of animations 

and icons to be used in the generator’s operation.

Figure 4.3 illustrates the user path through the signal generator’s operation. Using
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Figure 4.2: GUI Software Architecture

the user inputs the algorithm controls the DAC stage of the signal generator to create a 

precisely timed and amplitude controlled Lead II signal from a previously synthesized 

ECG stored in the PIG memory.

4.4 Controlling the Timing of the ECG Signal

For the purposes of development the constituent component durations shall be con­

trolled using the duration equations proposed by Burke & Nasor [10], although these 

equations are to be replaced with more accurate ones at a later stage. The equations 

are presented and discussed in detail in Ghapter 5.

As discussed in Ghapter 2 clinical diagnosis of many cardiac conditions such as 

hypocalacemia [2] and second degree blockage conduction problems in the AV node 

[17] can be identified from ECG timing observations such as the decreased duration 

of the QT interval or a progressive lengthening of the PR interval, respectively. In 

this case the EGG recording equipment’s ability to preserve the signal morphology and 

timing characteristics of a healthy subject are paramount in the avoidance of clinical 

misdiagnosis.
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Figure 4.3: Software structure and operation

The ECG signal generator uses a combination of one 16-bit timer TMRl and one 

32-bit timer TMR4/5 (utilizing TMR4 and TMR5) to control the output sampling 

rates and overall heart rate timing. The timers have a minimum clock cycle of 62.5 ns. 

The code has been optimized so that the maximum output sample rate error is limited 

to half a timer clock cycle of 31.25 ns.

Above a heart rate of 163 bpm the P and T waves of successive cardiac cycles begin 

to merge according to the Nasor equations as demonstrated in Eigure 4.4. This merging 

point is monitored using TMR4/5 to determine where the cardiac cycle time has elapsed 

and the onset of the next P wave should begin to merge with the outgoing T wave. 

The output sampling rate for the remainder of the P wave after the termination of the 

outgoing T wave is adjusted to maintain minimum sampling error. The amplitude of 

the combined P and T waves during this merging process are calculated as the vector 

sum of the P and T wave samples, i.e. the square root of the sum of the squares of the 

amplitudes of the individual components.
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Figure 4.4: Controlling the timing of the synthesised signal

The timers are controlled by placing a “Delay” value in the timer control register 

(TCON) which must be an integer value. If the calculated delay value is not an integer 

it must be rounded up or down to create an integer and hence the maximum error is 

half a clock cycle [44]. The PQ and the ST segments are the most accurately timed 

as they are treated as a OV output and hence can be timed to within a half a clock 

cycle. The generator can guarantee the complete timing accuracy of a full Lead II 

ECG output to within ±0.3% and can hence be used to measure whether recording 

equipment distorts the timing of the individual components of the ECG or the R-R 

interval. The source code consists of 15 functions and initialization code totalling 2,500 

lines of C language. The source code also calls upon 16 C files from the graphics library.

4.5 The Hardware Design

4.5.1 Power Regulation and ‘Ground’ Isolation

Figure 4.5 is a schematic diagram of the signal generator. To isolate the device from 

mains earth the entire system is run on Li-ion batteries. The voltage regulators ensure 

that all power sources are low noise and temperature stable. Note that all analogue 

and digital ground (OV) lines are separate until they are terminated at the battery con­

nection. Both analogue and digital ground lines are also wired with highly conductive 

low-inductance bus bars to minimize resistivity and induced noise.
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Figure 4.5: Schematic diagram of the signal generator
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4.5.2 Digital-to-Analogue Conversion Architecture

Speed and noise calculations formed the basis of the selection criteria used to choose 

the specific devices employed in the design. It was determined that 14-bit resolution 

would guarantee a SQNR of 90 dB over the full QRS amplitude range. The DAC 

comparison process identified the DAC8822 multiplying dual current output 16-bit 

DAC (ICS) by Texas Instruments as the most appropriate DAC for this application. 

The DAC provides up to 16-bit resolution (15 data -I- 1 sign bit), parallel inputs and 

generates the required QRS ramp from input code 0000-1111 (16,384 steps) within 

the required minimum QRS upslope duration of 15 ms due to its 2 Mega samples per 

second (MSPS) conversion speed.

The DAC stage offers full 14-bit resolution to all components of the ECG signal 

within the voltage range. DAC A is used to step down the 2.048 V reference voltage 

supplied by the LM4140 precision reference voltage chip IC4 as shown in Figure 4.6. 

The reference is stepped down to the relative QRS, P and T wave amplitudes as dictated 

by the analogue conditioning circuit. DAC B receives its reference voltage from DAC 

A and is then used to process the 14-bit digital samples from the PIC and generate 

the analogue ECG signal which is subsequently attenuated to the appropriate voltage 

level in the following analogue conditioning section.

Figure 4.6: The dual stage DAC process
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4.5.3 Limitations of Low-Voltage DAC Output Capability

Iiispeclioii of DAC datasheets and application notes demonstrates that the performance 

of DAC’s in the sub mV range is not well defined and in general is application and 

environment specific. This, combined with testing and communication with industrial 

experts, verified that a multiplying DAC’s performance deteriorates as the reference 

input voltage reduces in amplitude. Tests on a number of DAC’s (DAC8822, AD5547 

and AD394) have shown that commercially available DAC’s are not capable of provid­

ing analogue signals at amplitudes lower than 10 mV accurately. The author believes 

that this is the main source of error in many of the other ECG signal generator designs, 

and significantly limits their usefulness.

To overcome this problem the ECG signal should be created using devices that 

have been specifically designed to operate in low voltage ranges and whose behavioural 

characteristics at these voltage levels are fully defined. In the two DAC stage process 

used in this design the ECG signal is created at 100 times the required amplitude to 

generate mV range QRS amplitude signals and 1000 times the required amplitude to 

generate pV amplitudes. The signal is then attenuated using a low-noise and low-offset 

novel analogue circuit layout to provide the required QRS output 100 pV to 10 mV 

range. This system greatly increases accuracy over other architectures. In doing so, 

characteristics such as output noise voltage, output offset voltage and the effects of 

temperature drift must be taken into consideration and estimated using fully defined 

device parameters.

4.5.4 Attenuation Stage and Op-amp Selection

The attenuation stage requires the use of an inverting amplifier to attenuate the output 

signals appropriately (IC8A). A simple resistive network would not provide a voltage 

source which the inclusion of IC8A does. Operational amplifiers arc also required to 

convert each of the DAG current output signals to voltage signals (IG5B and IC6B); to 

invert the reference voltage to allow the bipolar representation of ECG signals (IC5A 

and IC6A) and to generate the differential output signal (IC8B).

Since the op-amps are generating signals of less than 10 pV, i.e. the scaled P and T 

waves, it is imperative that the devices used provide the optimum compromise between 

low-noise performance and minimum offset effects. Modelling the output noise voltage 

of an operational amplifier configuration can be performed using the data provided by
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manufacturers [45, 46]. Note that the DAC and reference voltage output noise levels do 

not require significant noise modelling. Due to the architecture used here the output 

noise voltages of these devices, which are in the order of /iV’s, shall be attenuated by 

40-60 dB’s along with the output signals by the op-amps discussed previously. Hence 

the noise becomes negligible when compared to the 100/iV to lOmV output amplitude 

range, the amplifiers responsible for this attenuation however do require noise analysis.

Multiple noise models for the op-amps such as the one shown in Figure 4.7 were 

created and the resulting output noise voltage equations derived [47]. The resulting 

equations were applied to 16 different devices selected from commercially available 

low-noise op-amps. Equation (4.9) is an example of the output noise voltage equation 

derived for the op-amp arrangement around IC8B in Figure 4.7.

R5

Figure 4.7: Example of the op-amp noise model used

The noise sources shown in Figure 4.7 are specified in root-mean-square values. 

The average noise powers contributed by each of the noise sources are additive and 

therefore Superposition can be used to combine the normalised power (voltage squared) 

contributions of each of the sources to obtain the average normalised output noise power 

[48, 49].

A voltage based analysis can be used if all terms are squared. The effect of each 

noise source on the output can be found by considering each in turn and applying 

Superposition.

The equation for the estimated output noise V„o for the output amplifier IC8B:

V ^ = V^ na ^nov
Ra

Ra + Ra
(4.1)
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1/ 2 _ TA 2 / -^4 + ^5
^ nov — ^na Ra

(4.2)

V ^ = ___^^ nov — ^ na I -*■ < x-i

/?5
/?4

And effect of amplifier noise currents:

(4.3)

14,
R4 ofR^^^Ri''^

= InRs + Ra Rh + Ra
(4.4)

1/ — 7 ^ V^ noi (4.5)

And the effect of resistors noise:

V =V^ res * nores
Ra

/?5 + Ra
(4.6)

V =V^ nores ^ res
2 / /?5 + R4

Ra

V = V I 1 + —^ nores — ^ res \ ^ ' d it4

Hence the total equation for the output voltage noise V„o is

Vno = \ { 1 +

(4.7)

(4.8)

(4.9)

However, vahies for the voltage and current mean square noise V„a and i„ respec­

tively are not typically provided directly by manufacturers but can be calculated using 

values for voltage and current noise spectral density, V„do^ and indo^, using the following 

equations [48]:

T/ 2 _ T/ 2 
^ na — ^ ndo ifn — fi) + 2 X /f,j, X In ( — j + ^ ^ ^, e 2 f fn — II (4.10)

In = indo^ {fn - /l) + 2 X /„ X In + fj

For the AD8629 Amplifier:

(4.11)

• V„do^ = Voltage Noise Density of Op-Amp = 22 pV^^Hz.
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• indo^ = Current Noise Density of Op-Amp = 5fA-\/Hz.

• = The upper and lower limits of the frequency band in question 0.1 Hz to 

500 Hz

• fcuifci = are noise voltage and current corner frequencies

The voltage corner frequency given for the AD8629 = 0.1 Hz. No current corner 

frequency is given for the AD8629 but was estimated as 200 Hz. Multiple values for 

fc2 ranging from 0.1 Hz to 2k Hz have been used in analysis and it was found that the 

effects of the corner frecjuency on the hnal output noise value are so small as to be 

negligible. The value of Vres'^ is calculated using:

Vr,, = 4kTBR (4.12)

where k = Boltzmans Constant 1.38x10“^^, T = 300°K (approximately 27°C), B = 

499.9 Hz and R = Resistance.

The values calculated for the mean square voltage and current noises where 

= 243 X 10“^^V^ and i„^ = 10 x lO^'^'^A. The noise due to the resistors R4 and R5 

(both 1 kfl) was calculated as Vres^ = 4.14 x 10“^^V^. When these values are used in 

equation (4.9) this yields a total output noise voltage for IC8B of:

l4o = 0.99/rR (4.13)

The results obtained by using these output noise voltage models indicate that the 

Analog Devices AD8629 dual op-amp device provides the best balance between low 

voltage offset of 1 /rV, offset temperature drift of 0.002 pV/°C and very low output 

noise voltage performance.

IC7 is an analogue switch that is used to change the attenuation between 40 dB 

and 60 dB by altering the resistance in the feedback loop for IC8A. The capacitor 

C3 is present to low-pass filter the ECG signal and remove the quantization staircase 

resulting from the DAC process, which has a maximum output sampling frequency of 

750 kHz for the construction of the QRS complex. The first order filter has a cut-off 

frequency of 500 Hz ensuring the ECG signal spectrum is not curtailed or the signal 

profile distorted.
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4.5.5 Voltage Offset Correction

As described in a conference submission of the early stages of this design [42] the 

output voltage of the signal generator was subject to an accompanying voltage offset. 

This offset voltage is primarily due to the combined effects of the individual AD8629 

offset voltages and results in a total DC offset of 5 /xV on the output signal. In order 

to maximize the precision of the output signal it was necessary to remove this DC 

offset which exists as an offset on eac.h side of the differential output. The issue is 

further complicated in that the offset output from IC8A and IC8B are not equal as 

they are partially independent. A separate programmable voltage offset could be added 

to the test signal via the DAC in order to test an ECG recorder’s ability to remove 

the polarisation voltage generated by skin electrodes, but this was not included in this 

design.

The difficulty in removing a /xV DC offset lies in the possibility of undermining 

the zero temperature drift properties of the op-amps. A temperature drift on the 

offset correction circuitry could lead to an output offset voltage drift larger than the 

offset which it was intended to remove. Figure 4.8 is an example of a standard bipolar 

reference voltage diode and voltage divider network used for offset correction.

Figure 4.8: Standard Bipolar offset correction circuit

If the diodes have a temperature drift coefficient (3 so that /3AT is the fractional 

drift due to temperature of the diode voltage and both diodes have equal nominal 

voltages of V^ii and Vdi then:



4.5. The Hardware Design 48

+K = v^Di(i + /3Ar) (4.14)

-Vo = -Vd2{1 + P^T) (4.15)

Consider the case were the circuit has been tuned so that the output Vq// is 0 V. 

Now if both diode voltages drift positively with respect to ground by the same /3AT 

value the output voltage Vq// is given by;

1/,, = Coi ± ;5AT(Cpi) - Co2 ± /3AT(Vd2) (4.16)

where in this case Voi and Vd2 are the same and can hence be replaced by Von

K, ff — Von — Von ± 2PAT{VDn) = ±2/3AT{VDn) (4.17)

The design essentially passes whatever drift occurs on the diodes directly to the 

output of the circuit. Considering that even the most accurate of reference diodes 

such as the LT1004 used in this design has a temperature coefficient of ±20ppm/°C 

this could result in a drift of several hundred pV’s in the diode voltage and hence the 

output voltage with just a 5°C change in temperature. For an application where the 

offset correction required is just a few this is clearly unacceptable.

The offset correction circuit shown in Figure 4.5 is based around the diodes D1 

and D2 (1.2V) and provides a temperature stable bipolar output voltage that can vary 

between Vc+ and Vc-- The core difference here is that the voltage divider networks are 

ground referenced. This arrangement ensures that any change in the diode voltage due 

to temperature is attenuated by the voltage divider networks Rio,Rii and Ri2,Ri3 along 

with the diode voltage itself. The correction voltages are taken from the potentiometers 

PI and P2 which are much larger in value than Rio and R12 so that the latter dictate 

the temperature coefficients of the parallel combinations.

4.5.6 Temperature Stability of the Output VoutsA

The temperature effects of the DAC stage, the offset correction circuit, op-amp bias 

currents and offset voltages on the actual output of the signal generator need to be 

further assessed. To cover the widest scenario likely the system is analysed with a 

worst-case temperature variation of ±25°C to demonstrate its stability under extreme
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conditions. The model shown in Figure 4.9 identifies the possible temperature effects

on ^ outs A-

4.5.6.1 The DAC Stage

The DAC8822 provides full scale temperature tracking when connected to an external 

conversion op-amp circuit such as IC5B and IC6B via a feedback input on each of 

the DACs. This provides temperature stability at the output regardless of the tem­

perature characteristics of the external amplifier or the biasing resistors. In addition 

the inverting voltage reference amplifiers op-amps IC5A and IC6A are used to provide 

negative reference voltages to the DACs. The operational amplifiers themselves have 

extremely low offset drift (0.002ppm/°C typical or 0.02ppm/°C maximum) and the 

biasing resistors used for the unity gain inverting amplifier are internal on the DAC 

device so they should have similar stable temperature characteristics to the DAC itself. 

It will be shown by calculation that the effect of these amplifiers is negligible and hence 

temperature effects on the bipolar output of the signal generator should be essentially 

the same on a positive or negative output.

The DAC8822 is a multiplying DAC architecture and hence the offsets are modelled 

as a product of the output DAC offset voltage and temperature coefficients as indicated 

in the dotted box in Figure 4.9. In theory the reference voltage chip Vref (IC4) should 

not contribute to the output of DACA when the required output from the DACA is OV. 

Similarly DACB takes its reference from DACA so at OV DACA should not contribute 

to the output of DACB. In practice however the temperature coefficient of the reference 

voltage chip may have an impact on the output offset of DACA and also the DACB
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output may be affected by the temperature coefficients of both Vre/ and DACA. The 

output of DACB is the one connected to the analogue attenuation network and hence it 

is the offset voltage value at DACB which should dictate any unwanted output voltage 

offset value at Vdac- For the purposes of the temperature drift model we could say 

that if DACA is set to OV i.e. to calculate the output drift voltage then Vref and the 

offset of DACA Vo^i should be isolated from the final output Ydac at DACB. However 

this is ideal, in order to create the worst case scenario the temperature coefficients for 

Vref and the offset of DACA (Vq^i) shall be added to the the offset voltage for DACB 

which is Vo52- This can be seen in the resulting Equation (4.18). Given 7, S and a are 

the temperature coefficients of the reference voltage chip IC4, both of the DACs and 

the resistors respectively and AT is the drift from room temperature (25°C) the effect 

Vdac has on the output Vouts,A is derived as:

Frfac = Vos2{l ± 7AT ± SAT ± AST)
R2{l±aAT)
Ti(l±«AT)

To aid in simplifying this equation consider the binomial series expansions [50]:

(4.18)

1 n(n - 1) 9 n(n — l)(n — 2)
= 1 + nx + -A—^+ A------ -C-------

1 + X 2! 3!
(4.19)

1
1 — X

= l + x + x^ + x^ + x'*... (4.20)

and if we consider a case where x<Cl we can neglect the second and higher order 

terms completely to yield:

= 1 — X and ^— = 1 + X or r—— = 1 ± x (4,21)
1 + x 1 — X l±x

Applied to Equation (4.18) the resistor coefficients can be rewritten (note a 1 

as are all other temperature coefficients used in this chapter, see Section 4.5.6.5) as:

Vdac = 14,2(1 ± 7AT ± SAT ± AST)
/?2(1 i ciAT)(l i otAT) 

Ri
(4.22)

As in the case of equation (4.18) the second order temperature coefficients resulting 

from the simplification of equation (4.22) are negligible compared to the first order 

coefficients and are hence removed. This can be assumed throughout the derivation of 

the equations in the rest of this chapter. Equation (4.22) can hence be simplified to:
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Vnac = -yos2^{l ±1±2S± 2a)AT
til

(4.23)

4.5.6.2 The Op-amp Bias Currents

The input bias currents for the AD8629 also have an effect on the output voltage. 

These currents should flow to ground via the offset correction circuit. Rp_|_ and Rp_ 

can be considered to represent the resistance on either side of the potentiometer wiper. 

To create a worst case scenario these values should be considered to be half of the pot 

resistance hence maximizing the parallel resistance and the resulting offset voltage due 

to bias currents. As an example of deriving a multi-variable equation for estimating the 

effects of input bias current on the output of IC8A the derivation for 'Vbias+ is shown for 

illustrative purposes. Note that I(,± are the bias currents, A and n are the temperature 

coefficients of the potentiometer and bias currents respectively. The equation for Vf,ias+ 

the effect of the temperature drift due to the op-amp bias current on the positive input 

of the op-amp is;

ybias+ A+(l±pAT)

fflii(l±QAT)+flp+ (1±AAT)1 \Ri2il±aAT)+R^-(1±AAT)1 
Rii(l±oAT)+fi +(l±AAT)+ni2(l±aAr)+fi (1±AAT)

But Rp » Rii and R12 so the latter can be removed to give:

(4.24)

Vbias+ = A-H (1 ± P^T)
[/?p+(1 ± AAT)] [Rp- (ITAAT)] (4.25)ftp (1 ± AAT)

Rp+ and Rp_ have been defined for a worst case as half the pot resistance giving 

(again neglecting higher order terms);

Vbias+ = A+ (1 ± P^T)
^ (1 ± 2XAT) 
Rp{l±XAT) (4.26)

ybias+ = A+ (1 ± pAT) 

Applied to the amplifier:

= 4+ (1 ± pAT) ^ (1 ± 3XAT)
4

^ (1 ± 3AAT) 
4

/?1 -|- /?2 

Ri
(1 ± 2aAT)

(4.27)

(4.28)
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^bias+ b+

Rr R\ + R2 (1 ±3A±2a±/y)AT (4.29)4 y V Ri

The “1+” term can be removed as for equation (4.36) if only the drift due to 

temperature is required giving the final equation :

^^bias+ ~ R+

The equation for Vbias- is:

Rp ^ f Ri + R2

Ri
{±p ± 2aAT ± 3A) AT (4.30)

Vbias- = h-{R2){'^ i P ± a)AT (4.31)

4.5.6.3 The op-amp oflfset voltage V, offset

The AD8629 amplifier has an offset voltage which is modelled as a voltage source on 

the non-inverting iiqjut of the device. The cfhx't of this offset voltage on the othput is 

given by:

Voffset = yoff[ ]{l±2a± e)AT (4.32)

where e is the temperature coefficient of the offset voltage of the AD8629 op-amp.

4.5.6.4 The Offset Correction Output Voltage

The output of the offset correction circuit Vcori also suffers from temperature variation 

effects. It can be assumed that regardless of where the wiper on the potentiometer is 

placed the maximum output voltage is equal to iVd. Therefore, the effect of Vcori on 

the output is given by:

Vcori = Vd~(] (I ± 4a ±P)AT 
^10 \ ^1

(4.33)

Where ^ and Vo are the temperature coefficient and voltage (1.024V) of the LT1004 

diode respectively.

4.5.6.5 The Total Temperature Effect at the Output of IC8A

The offset correction circuit will be tuned to remove all the nominal DAC offsets, 

op-amp bias currents and voltage offsets from the output signal. It is only when the
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temperature drifts from this tuning temperature that an error on the output will ma­

terialize. In this event the “1” term within each equation can be removed so that only 

the drift due to the temperature change remains as shown in the derivation of Equation 

(4.30). The equations now represent the voltage drift from zero of each component. 

In the analysis conducted throughout this chajjter some offset contributions will be 

significantly larger in magnitude than others. Note how the result of of Equation 

(4.36) is significantly smaller than the other offset contributions. The value of AVbias+ 

could be ignored during calculation of the overall offset given that it is several orders 

of magnitude smaller than the other sources. However, for the sake of completeness 

the author has decided to include all contributions of noise and offset voltages in the 

analysis reported in this chapter.

Given Ri = lMf2, R2 = lOkD, Rp = IkD, R^ = ID, Rm = 51kD, 7 = 3ppm/°C, 

6 = 2ppni/°C, a = 50ppm/°C, V/5 = 1.204V , p = 500ppm/°C, A = 100ppm/°C, e = 

0.02ppm/'’C, jS = 20ppm/°C, Vo// = 1/rV, V052 = IniV, Ib-I- = Ib- = 30pA, and AT 

= 25°C.

The contribution of each individual effect to the output IC8A are:

^Vdac = - Vos2^{±l ± 2^ ± 2a)Ar = ± 26.75nV
•til

(4.34)

^Vb^as- = h-{R2){±P ± a)AT = ± 4.125nV (4.35)

AVbias+ = h+ ^ ^ ^ 0.169nV (4.36)

^^offset ^of f
R\ + i?2 A 

Ri ) {±2a±e)AT = ± 2.5nV (4.37)

AVoori = Vd^ ((±4o ± f3)AT = ± 129nV 
■iiio V -fii /

(4.38)

Therefore, the total voltage drift for IC8A is given as the sum of all contributions 

as follows:

AVou«/l — AVdac + ^^bias- + ^^bias+ + ^'^offset + AV),orl (4.39)
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A Vout^A = ± 162.571V" (4.40)

With a 25°C change in temperature the maximum output voltage drift is ±162.5 

nV. The largest contribution comes from the offset voltage correction circuit itself as 

±129 nV. However, the circuit is in place to correct an error of over 5 //V so this 

error is negligible by comparison. It is also apparent that because the required offset 

voltage correction is just 5 /xV the potential divider within the correction circuit has 

an attenuation 51 x 10^ which also greatly attenuates the drift of the voltage reference 

diode and potentiometer.

4.5.7 Temperature Stability on the output VoutSB

Voutsc is generated by inverting the output from VoutsA hence the drift voltage from 

'^outsA is passed to the inverting input of IC8B. The model for IC8B is essentially the 

same as for IC8A with the exception that Vdac is replaced by Vouts/i and the offset 

correction is now 'Vcor2- The equation for the effect of VoutsA on the output of VoutsB 

is hence given by:

^VoutsA = -AVout8A — {l±2a)AT= ± 162.9nl/
it4

(4.41)

Given previous component values and R4 = IK, R5 = IK, R12 = ID, R13 = 51KD 

the contribution of each effect to the output YoutsB is:

^Vbias- = h-{R5)i±P ± «)Ar = ± 0.4125nR (4.42)

(“) (±3A ± 2a ± p) AT = ± 0.675nl/ (4.43)

AVoffset = Voff ( ) (±2a ± e)AT = ± 5nV (4.44)

AV;or2 = ^ ^

The total voltage drift for 1C8B is:

(4.45)

^VoutSB AV),^^yi ± ± Avoids± fset ± ^^cor2 (4.46)
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AvoutB = ±427.7nV (4.47)

With a 25°C change in temperature the majcimum output voltage drift is ±427.7 

nV. The error on this output IC8B is larger than the IC8B output due to the fact 

that all sources of drift on the positive input of the op-amp are doubled due to the 

non-inverting gain and that the error from IC8A is passed on to IC8B. The worst 

case differential output drift error is the sum of the separate drifts giving ±590 nV 

or approximately 24 nV/°C. If the user of the signal generator required a P wave 

output voltage which was 1% of the minimum 100 /rV QRS complex available, then 

this error is approximately half that 1/rV amplitude. Also given that the calculated 

output noise voltage of the AD8629 amplifier is 0.99 /rV, the voltage offset drift should 

not be observable at the output. This provides a comprehensive analysis of the effects 

of offset and temperature drift for the authors instrument which has been lacking in 

the literature reporting previous designs.

4.6 Verification and Test Results

The primary measure of the usefulness of any signal generating instrument lies in its 

accuracy and precision. For an ECG signal generator this accuracy must be defined as 

a function of time, temperature and amplitude. The device must be tested at the full 

range of amplitudes, heart rates and operating temperature range. The expected am­

plitude performance of this design has been rigorously investigated from a theoretical 

point of view in the previous section. It is necessary to test and provide output wave­

forms and results for signals created at amplitudes and heart rates typical of those 

an ECG machine is required to handle in everyday use. A working prototype has 

been constructed by the author and is shown in Figure 4.10. The prototype has been 

constructed manually by the author by interfacing with the development kit for the 

PIC24F which is shown as the green printed circuit board (PCB) in Figure 4.10. The 

development kit houses the PIC itself and interfaces with the touch screen however the 

ribbon cable shown on the left of the figure shows the bus which is used to connect 

the MCU to the DAG and analogue conditioning stages which have been developed 

on breadboard. The device was developed incrementally on breadboard because the 

necessities of the design i.e. the multi-stage DAG architecture, the use of the ana­

logue switch, offset correction circuit etc could only be discovered during development
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and piecewise testing of the instrument. Ideally, now that the entire system has been 

designed and without the time restrictions associated with the authors research the 

device could be built on a single PCB.

Figure 4.10: Signal generator prototype

4.6.1 Verification of Individual Component Timing Accuracy

The calculated component durations using the duration equations of Burke &: Nasor 

are displayed on the LCD screen. The actual output timing accuracy of each of these 

components is shown in Table 4.1 for a heart rate of 85 bpm. A heart rate of 85 bpm 

was chosen for expressing the error as a percentage of Trr, since at this heart rate 

the largest possible timing error for the QRS complex is formed. At 85 bpm a QRS 

complex duration of 77.1 ms as dictated by Equation (5.11), is required to time the 

wave correctly. As a result of this, a delay value of 35.49 would require placement in 

the TCON register (as described in Section 4.4), however the delay figure must be an 

integer value. This means that when a rounded integer delay figure of 35 is placed 

in the TCON register of the PIC timer. Every output sample has a timing error of 

approximately half a clock cycle or 31.25 ns which is the maximum possible timing 

error per sample. The results in Table 4.1 have been measured using the cursors on 

the battery isolated digital scope. The QRS complex is always the most significant 

contributor to timing error because it has the largest number of samples.

The QRS duration is always created within ±1.5% of the required output QRS 

duration and ±0.336% of the overall ECG duration. By expressing the error of the 

output QRS duration as a percentage of the required QRS duration it can be used 

as a basis by the user to determine the accuracy of the recording apparatus under 

test to within these defined bounds. Figure 4.11 demonstrates how accurately the
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Table 4.1: Timing Accuracy of ECG Components

Component Number of 
Samples

Measured 
Error (s)

Error % of Total Trr 
Duration

((a! 85 bpm or Trr = 324ms)
P Wave 300 ±9.38|.is ±0.003%

PQ Segment 1 ±31.25ns ±0.00001%
QRS Complex 34768 ± 1.09ms ±0.336%
ST Segment 1 ±31.25ns ±0.00001%

T Wave 300 ±9.38^is ±0.003%

QRS duration is generated over the full heart rate range, compared with the values 

determined by the equations. The maximum error over the outlined range is ±1.09 ms 

or ±0.336% of Trr.

Note that the error in the timing of the QRS complex could be reduced by a 

reduction in the number of samples used to create it. For test purposes in this example 

the QRS was created by using all 14 bits for the ramp up and down of the QRS slopes, 

and another 2000 samples used to create the S wave of the QRS complex. In reality 

the number of samples used to create the up and down slopes of the test signal could 

be significantly less without an observable deterioration in signal quality.

4.6.2 Verification of the R-R Interval Duration

Figure 4.12 is an example of a recorded 60 bpm output signal. It is important to note 

that the output waveforms shown here were recorded via an amplification stage which 

re-amplified the output of the signal generator to ranges that an isolated oscilloscope 

can detect. This will have introduced additional noise to the output. The oscilloscope 

is also limited in that it samples waveforms at a maximum frequency depending on
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the set time per division and has limited resolution in the amplitude domain also i.e. 

the resolution of the screen on the oscilloscope in both the X and Y planes limits the 

clarity of the displayed waveforms. A more accurate oscilloscope is unavailable for test 

at this time.

Figure 4.12: R-R accuracy at 60 bpm with P and T waves scaled below 10% and 30% of the QRS 

amplitude, respectively

4.6.3 Amplitude Accuracy of the ECG Components

Figure 4.13 demonstrates the accuracy of the signal generator at a high heart rate 

of 185 bpm and an amplitude of 500 pV. Note how the P and T waves are merged 

together by generating the output amplitude as the root mean square of both P and T 

wave samples taken individually. This recorded signal was also measured and found to 

have preserved the R-R interval of 324 ms by maintaining the required sampling rate 

for both the P and T wave components despite the merging process.

Figure 4.14 is an example of the output of the signal generator at the intermediate 

heart rate of 120 bpm and amplitude of 100 /rV. The R-R interval was measured at 

500 ms.
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jVd/VvJ’I
Figure 4.13: Signal at 185 bpm with a 500 pV QRS amplitude with P and T waves scaled at 10% 

and 50% of the QRS respectively

Figure 4.14: Signal at 120 bpm with a 100 pV QRS amplitude with P and T waves scaled at 25% 

and 40% of the QRS respectively

4.6.4 Testing Temperature Stability

The prototype underwent temperature stability testing at temperatures of 0°C, 25°C 

and 50°C and at heart rates of 45 ,100 and 185 bpm for each temperature. Again 

additional amplifiers were required to enable viewing of the signal on the isolated 

oscilloscope.

Firstly, the offset was tuned to 0 V at 25°C and then the temperature varied using 

an oven. It was found that any drift from 0 V was in fact buried in the noise band of 

the output signal, as predicted by Equations (4.40) and (4.47) and consequently cannot 

be quantified. Secondly an output signal at each of the heart rate was generated to find
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any QRS complex amplitude variation due to temperature. There was no observable 

variation on the R peak amplitude of the signal. These results support those obtained 

from the theoretical analysis of the temperature variations.

4.7 Conclusion

The author believes that the limitations of modern ECG signal generator designs as 

discussed in Chapter 3 have been overcome by the design presented here.

In software terms the signal generator operating system provides a user interface 

with an easy-to-use industry standard colour GUI similar to those found in high-end 

commercial biomedical instruments. The signal generator output timing accuracy can 

be guaranteed to within half a processor clock cycle of ±32.5 ns per sample or a 

maximum error of approximately ±0.3% of the total ECG waveform duration. This 

allows the signal to be used to test recording equipment performance within well defined 

performance limits.

The hardware architecture uses a high bit resolution that provides for a SQNR of 

90 dB. This SQNR applies to the P wave, QRS complex and T wave components by 

virtue of the two stage DAC process. The use of operational amplifiers to control the 

attenuation of the EGG signal to the required low output levels maintains minimum 

output voltage noise (0.99 /rV). The design also includes an analogue switch that al­

lows the DAG to generate signals at a higher mV voltage range with the signal being 

attenuated subsequently to achieve lower jiY output signals. Total output offset volt­

age (previously 5 //V) is corrected using a thermally stable correction circuit and is 

guaranteed to be less than ±0.6 /iV.

The instrument’s timing accuracy, low noise output signal and temperature stability 

has been analyzed and tested. Recorded waveforms show the output signal at various 

amplitudes and heart rates. While the maximum offset differential voltage drift cal­

culated is just ±590 nV over ±25°G it is not observable on the battery isolated scope 

during test and is therefore approximated to be less than ±100 nV since any offset 

larger than this would begin to exceed the observable noise around 0 V on the scope. 

The author believes the analytical error is larger than observable during test because 

the analysis has been performed to find the worst case scenario. The output voltage 

and timing information of the waveform being supplied to the user allow the signal to 

be used to test hospital, Holter monitor and ambulatory ECG recording devices. The
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output signal is intentionally synthetic and therefore, it can also be used to test ECG 

analysis software which annotates the onset and termination of ECG components given 

that the location of these characteristics are known in the synthetic signal.

With the user interface and precision hardware platform presented here the signal 

g(;nerator could be exi)anded to provide multiple EGG leads and different ECG arrhyth­

mia conditions. A synthetic signal was used since a recorded ECG would inherently 

contain recording noise which would limit its usefulness as a test signal. The synthetic 

signal used could also be replaced by a modelled signal that reflects the profile of an 

actual EGG more closely over the heart range required. Such a signal would provide 

the noiseless accuracy of the synthetic signal but also the behavioural characteristics 

of a real ECG.

The instrument presented is not only low cost, accurate and portable but the choice 

of the PIC24E as a central processor means that the device could be readily interfaced to 

a PC or wireless network using the PMP and other C libraries similar to the Microchip 

Graphics Library used in this design which are available from Microchip on-line.
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Chapter 5

A Review of ECG Characterisation

and Modelling

5.1 An Overview

A review of ECG characterisation and modelling uncovers a wide range of approaches 

to the subject which have been driven by the intended application of the models. The 

characterisation and subsequent modelling of the ECG can be broadly grouped into 

three categories:

1. Clinical Definition and Characterisation: Fundamentally the ECG signal is a tool 

to be used by a cardiologists to perform a diagnosis. In this context any model 

for the shape or duration of the ECG components should serve to provide clinical 

dchnitions for normal and abnormal behaviour of the human ECG.

2. The Inverse ECG Model: In this case the intention is to model or compute the 

potential at the location of the heart from observation of the recordings on the 

surface of the body.

3. Empirically Derived Models: The actual output of ECG recordings are analysed 

and subsequent observations made regarding the ECG signal which are used to 

characterise and model the ECG signal itself with a view to replicating this signal 

in a controlled environment.

In this chapter each category of ECG modelling and characterisation shall be dis­

cussed in order to understand the strengths and weaknesses of the state of the art 

research in the field and to explore their degree of alignment with the author’s aims.
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5.2 Clinical Definition and Characterisation

The ECG has been the subject of an enormous amount of on-going research not only in 

the clinical domain, but also in the industrial and academic fields aimed at supporting 

and assisting the clinician. The purpose of this research in a clinical sense is to provide 

indices or metrics from which the normal or abnormal behaviour of a subject’s cardio­

vascular system can be assessed. The indices have been created from the observations 

by cardiovascular experts of vast numbers of ECG recordings, subject symptoms and 

invasive explorations in order to find a correlation between the shape and duration of 

the constituent components of an ECG and the subject’s cardiac state as discussed in 

Chapter 2. The ECG itself is only useful when used in conjunction with the accepted 

interpretations of the ECG behavioural characteristics.

The number of normal and abnormal variations found in the ECG and defined in 

the clinical literature are too numerous to mention. However, it is very important 

that any model which is to be used to test or calibrate a biomedical signal processing 

technique or instrument should reflect the clinical definitions of normal and abnormal 

behaviour of the ECG. One example of such a metric is the clinical definition of the 

QT interval duration. It is commonly accepted that a normal or healthy QT interval 

should vary inversely with heart rate [2] or directly with cardiac cycle time T/j/j as 

shown in Figure 5.1.
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Figure 5.1: The Goldenberg characterisation of the healthy QT interval duration [51].
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Figure 5.1 is the result of a study of 581 healthy subjects by a team of cardiologists 

in the University of Rochester Medical Center, New York and shows their definition of 

the normal QT interval duration and is illustrative of the clinically accepted definition 

of this interval [51]. Any mathematical model for the QT interval should yield results 

in keeping with this characterisation.

Not all of the ECG constituent components have such a strong correlation with 

heart rate as the QT interval. However, they do consistently alter with respect to 

heart rate. The QRS complex, for example, has been found to increase in duration at 

lower heart rates (higher T/j/j) in a number of studies [52 54].

The author believes that any model of the variation of the ECG should be placed 

in the context of large clinical studies such as the Goldenberg study and the wider 

world of cardiac metrics where possible. In doing so, one can ensure that the models 

created and used in the science and engineering fields of biomedical research which aim 

to assist the clinical experts reflect the same understanding and characteristics used 

by these experts. In Chapter 8 a number of other clinical characterisations and studies 

shall be used to verify the timing model proposed in this thesis.

5.3 The Inverse ECG Model

The second approach to ECG modelling involves attempting to create a model of the 

electrical activity at the location of the heart by observation of the activity on the 

surface of the body. This problem is commonly known as the Classical Inverse ECG 

Problem and is illustrated in Figure 5.2.

This more complex approach to modelling the ECG signal aims to model the source 

of the signal i.e. the cells and tissues within the heart muscles and hence replicate the 

resulting surface potential. Multiple approaches have involved modelling the cells as a 

three-dimensional cubic lattice [55], as a difference of two sigmoid functions [56] and 

as a series of wave-fronts emanating on the heart surface [57]. These types of complex 

mathematical models are still very much an ongoing area of research but the ability to 

model each cell or cluster of cells is limited and they are aimed more at understanding 

and capturing the internal activity of the heart than at directly characterising the ECG 

signal produced at the body surface.
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Figure 5.2: The Inverse ECG Problem

In terms of the objective of this study, i.e. the synthesis of an accurate ECG test 

signal, inverse modelling is not useful and consequently the rest of this review will focus 

on models aimed at characterising the “field” or ECG signal itself as recorded on the 

surface of the body.

5.4 Empirically Derived Models based on Actual 

Recordings

An alternative to inverse ECG modelling involves the observation of real ECG record­

ings, empirically matching or characterising their amplitude and timing characteristics 

and incorporating them into a model.

5.4.1 Gaussian Pulse Decomposition Models

Early researchers used mathematical basis functions [58], polynomials [59] and cosine 

waves [60] to synthesis the ECG signal. However more recently a number of more 

accurate and practical algorithms have been used to decompose the ECG signal into 

Gaussian pulses. The methods typically involve selecting a portion of the signal e.g. the 

P wave, and fitting a single Gaussian pulse to that portion of the signal. This pulse is 

then subtracted from the original ECG waveform and the process is repeated iteratively
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until the residual waveform is below a given error threshold [61]. Continuing research 

has extended this method to model the asymmetrical T wave using an asymmetric 

Gaussian function and increase the accuracy in capturing the elevation and depression 

of waves subject to baseline wander [62]. The process is illustrated in Figure 5.3.

ECG Lead II Recording Gaussian Pulse

Figure 5.3: The Gaussian Pulse Decomposition Method as Proposed by Suppappola et al. [61]

The algorithm has been verihed as accurately capturing the morphology of the 

signals under test. However the limitation or shortcoming of the Guassian models found 

in the literature is the lack of timing information included in the model. Details are 

given for modelling existing ECG recordings, but a method of generating the synthetic 

Gaussian pulses over the full range of cardiac cycle times in a way typical of in-vivo 

recordings is not described or incorporated into the model.

5.4.2 A Dynamical Model for Generating Synthetic Electro­

cardiogram Signals

A dynamical model proposed by McSharry et al. [8] involves the creation of a three- 

dimensional state space in which to generate synthetic waveforms. The quasi-periodicity 

of the ECG signal is reflected in the {x,y) planes and the amplitude variations in the 

{z) plane. Each beat duration or limit cycle is reflected by one revolution through the 

three dimensional state space as shown in Figure 5.4.
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Figure 5.4: The McSharry et al. three dimensional state space model [8]

The model allows for the addition of baseline wander and other phenomena such 

as Mayer waves, or heart rate variability into the signal as well as coupling it with 

blood pressure [63]. The model can also be used in conjunction with Gaussian pulses 

to mimic a given recorded ECG signal by varying three parameters - amplitude, width 

and phase for the pulse to achieve a best fit to the beat under analysis. Once the best 

fit has been achieved the constructed representation of the signal can be regarded as a 

filtered [9, 64] or compressed [65] version of the original.

This model is described by McSharry et al. as having been designed as a tool 

for assessing biomedical signal processing techniques. One limitation of the model is 

that it does not specify or define the timing of the onset and termination points of 

the constituent waves clearly with respect to heart rate. In fact, it has been reported 

[66] that when the model is calibrated to recreate the heart rate variability and other 

timing characteristics observed in a set of actual ECG signals, the resulting P, R and 

T wave locations are different than in the original ECG recording.

This type of model has been suggested primarily as an alternative to using reference 

databases of real ECG recordings to test signal processing techniques and their ability 

to detect and remove artefact from the ECG. The advantages and benefits of this 

dynamical model are clear when attempting to recreate ECG signals with controllable 

artefact included in the morphology. It can be trained or adjusted to mimic a specific 

set of artefactual conditions found in real ECG recordings. However, it is not aimed at 

allowing the design of hardware to generate ECG test signals since the durations of the 

components are defined by manual observation rather than by empirical or theoretical 

simulation.
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5.4.3 Data Flow Graph based ECG Signal Synthesis

An alternative model and one more closely correlated with generated ECG test signal is 

that of the Data Flow Graph (DEG) based model [67]. Essentially this model involves 

taking an actual ECG recording and segmenting it into a series of distinct time domain 

signals with each wave becoming a separate node in the system. The reconstruction 

of these segments can then be controlled by the output sampling rate to alter the 

duration of each component to simulate a change in heart rate and the timing of 

individual components. The DEG model has also been extended to allow interpolation 

of the original data points to limit any distortion of the signal when its time scale is 

altered with the sampling rate [68]. The limitation again found in this model is the lack 

of time characterisation that the output constituent components of the wave adhere to 

if the heart rate of the ECG signal is changed. In the literature cited here the durations 

are merely numerical estimates and cannot be varied automatically with heart rate.

5.4.4 ECG Synthesis Based on Morphing

ECG synthesis by morphing is based on having two parent ECG recordings and the 

creation of a third signal which has some of the characteristics of the parent ECG 

recordings but is in itself a different ECG waveform [69]. The two parent signals are 

manually segmented using the key feature points of the ECG as defined in Figure 1.1. 

Between these points a cubic spline interpolation is performed and the periods between 

features are oversampled so that both of the parent signals have the same number of 

points. Using the process known as “morphing” the two parent signals are weighted in 

terms of their contribution to a third new signal which is a combination of both parent 

signals.

If the two parent signals are designated ECGl and ECG2 then the position in time 

and the resulting amplitude of the synthesised signal ECGou( is given by Equation (5.1) 

for the time alignment during morphing and (5.2) for the resulting amplitude of the 

points in the new signal.

tn — t{n)ECG2 + X {t{n)ECG\ — t{n)ECG2) (5.1)

ECGoutit) = ex [ECGl) + {1 - e) x EC'G2Vn (5.2)
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where t(n) is the advancement in time for the new sample, t(n)ecpi and t{n)e,cg2 are 

the corresponding points in time of the parent signals and e is a user defined weighting 

factor.

The resulting ECG signal provides a realistic waveform which is within the am­

plitude and temporal constraints of the original ECG recordings as shown in Figure

5.5.

Figure 5.5: The results of ECG synthesis by morphing [69]

The original motivation for synthesis by morphing was concern regarding the un­

realistic output froni the dynamical model discussed in Section 5.4.2 where Nimunkar 

and Tompkins state “one needs to be very careful in order to generate realistic ECG’s 

using these techniques”. The author assumes that this “care” regards the arbitrary 

method used in designating the timing parameters of the synthetic ECG signal. The 

timing of the output samples in the waveform synthesised waveform by morphing are 

based on Equation (5.1) which is varied using the variable e. Although it is clear that 

there is a correlation between the resulting output component durations and the par­

ent signals there is no direct comparison with respect to cardiac cycle time during the 

morphing process since it is based on the arbitrary scaling variable used to weight the 

contribution of each parent signal to the output. Although useful for creating realistic 

looking signals the synthesised output is not actually based on any physiological phe­

nomena but simply an arbitrary combination of only two parent signals. Given that 

it requires two parent ECG signals in the first instance, its targeted applications are 

somewhat unclear to the author.
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5.4.5 Classical Component Duration Modelling of the ECG 

signal

In Chapter 2 it was illustrated how the core diagnostic value of the ECG recording lies 

in the observation of the durations of constituent component and in some cases their 

components variation with respect to heart rate. It has also been seen in Section 5.2 

that clinical studies of the ECG signal attempt to characterise healthy and unhealthy 

subjects by the creation of indices to measure normal and abnormal component du­

rations. Yet it can be observed thus far in this review that the models reported are 

focused mainly on synthesising the amplitude characteristics of the ECG signal or the 

effects other phenomena may have on the ECG signal. They do not include a basis 

for altering the duration of each constituent component in a manner consistent with 

in-vivo ECG recordings.

A number of studies have been conducted in an attempt to mathematically char­

acterise the variation of the ECG constituent components and in particular the QT- 

interval with respect to heart rate as seen below. The earliest research involved relating 

the QT interval duration to cardiac cycle time Thr using various functions (not to be 

confused with the correction formula as will be discussed in Chapter 8), note all K 

variables are constants {Int blow denotes interval):

Bazett’s Equation [6] :

’■QT-Int
— VTrR + Ai (5.3)

Fredricia’s Equation [26]

TQT-Int — Kf{\/ Tfiji)^

Shlamovitz and Simonson et al also proposed a linear relationship [70]:

(5.4)

T,QT—Int — Ksi{Trr) -I- Ks2 (5.5)

Ashman and Hull [71]:

Tqr-int — KAlog[\^{Tiiii -|- 0.07)] (5.6)

These classical equations, and in particular Bazett’s equation, have been used to 

characterise the QT interval duration and its relationship to heart rate [2] for decades, 

despite the well documented limitation of the equations at low heart rates [26, 72].
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5.4.6 Wavelet Based Analysis of the ECG Component Dura­

tions

In order to perform a more thorough investigation of the ECG components and their 

relationship with heart rate a more in-depth study was undertaken by M. Nasor [26]. 

Nasor found that the first order equations being used to characterise the variation 

of any ECG component with respect to Tnn could be replaced by a more accurate 

formula of the form shown in Equation (5.7). It was verified as being a more accurate 

representation of the time components using the same data as Bazett and Ashman & 

Hull:

Tcomp ATrr -H B\/Trr -f- C (5.7)

Using the new second order Equation (5.7) in vT^, Nasor decided to derive a 

complete timing model for each component of the ECG signal with respect to Trr. The 

purpose of the model was to enable the creation of a synthetic ECG test signal that 

could be generated across the full range of heart rate and have constituent components 

that varied with respect to heart rate in a fashion typical of normal healthy subjects 

[4]. In t heory, this time model could be used to increase the usefulness and validity of 

each of the models discussed in Sections 5.4.1 to 5.4.3 and allow them to provide more 

realistic ECG signals.

The method chosen by Nasor to segment the ECG signal for the purposes of char­

acterisation was based on the wavelet transform. Previous segmentation techniques 

based solely in the time domain had relied on thresholding, slope detectors and tem­

plate matching. The shortcoming of these methods is that they do not allow for the 

time-varying features of the ECG signal. Choosing the Mexican Hat wavelet, Nasor 

demonstrated how one can convolve the wavelet signal with an ECG database of record­

ings and delineate the signal into its constituent components based on this comparison. 

The Mexican Hat wavelet was chosen due to its similarities with the ECG component 

morphologies as seen in Figure 5.6.

The process involves decomposing the ECG signal into multiple wavelet transform 

bases with different frequency bandwidths. Within these time-frequency based signals 

the onset and termination points of the P, QRS and T waves can be found by ob­

serving the appearance of the components in different transform base bandwidths. By 

connecting the location of these points or modulus maxima across the multiple levels



5.4. Empirically Derived Models based on Actual Recordings 73

Time (s)

The Mexican Hat Wavelet
Figure 5.6: The Mexican Hat Wavelet used during Nasor’s study [10]

to create ridge vectors their final locations were found by convergence in a skeleton 

diagram of the modulus maxima. Using thresholding the P, QRS and T waves could 

be isolated based on the expected level or bandwidth they were estimated to appear 

within. An example of one such skeleton of modulus maxima from [10] is shown in 

Figure 5.7.
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Figure 5.7: The skeleton of the modulus maxima of one cardiac cycle [10]

Nasor deriv'ed a set of equations for each component as defined in Figure 1.1 of the 

ECG signal with respect to Tnn. It was suggested in subsequent publications by Burke
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k. Nasor that the equations could be accurately used over a range of cardiac cycle times 

of 0.3 to 2.0 seconds. The equations originally reported in [26] were revised and the 

final versions reported in the most recent publications [4, 10] are:

Tp-wave = 0-37\/Tpp — 0.22Trr — 0.06 (5.8)

Tp-QSeg = 0.33\/7fl/{ — 0.18T;ifl — 0.08 (5.9)

Tp-Qint = 0-Q9\/Trr — 0.39Trr — 0.14 (5.10)

Tqrs = 0‘25\/Trr — 0.16Trr — 0.02 (5.11)

Tg-Tint = l-21\/r/j/i — O.SSTrr — 0.31 (5.12)

Tp-Wave = 1-06-\/Thh — Q.^ITrr — 0.33 (5.13)

Ts-TSeg = “O.OO^/Tr^ -t- 0.13^^/^ -|- 0.04 (5.14)

5.4.6.1 Limitation of the Burke k. Nasor Equations

The results of the Burke & Nasor equations offer a significant benefit not found in the 

other models discussed in this review in that they provide a comprehensive modelling 

of each component duration within the healthy Lead II EGG signal with respect to 

heart rate. The application of the then state-of-the-art wavelet technique to EGG 

component duration calculation was a novel approach to the problem.

However, some limitations of the equations can be identihed by observation of the 

equation for the QT interval and QRS duration when plotted over the 30 to 200 bpm 

or T/e/j range of 0.3 to 2.0(s) as suggested in [4].

When one compares the plot in Figure 5.8 to the clinical definition and figure for the 

QT interval presented in Section 5.2 it is clear that the mathematical model suggested 

by Burke & Nasor in Equation (5.12) does not accurately characterise the variation 

of the QT interval with respect to heart rate at lower heart rates as shown by the 

approximated inconsistency region in Figure 5.8 i.e. >1.3 s or heart rates <46
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Figure 5.8: The QT interval duration according to Burke & Nasor’s Equation (5.12)

bpm. This limitation was also acknowledged in the original form of the equations 

[26]. The clinical definition states that the duration should increase continuously with 

respect to lower heart rates [2].

A plot of Equation (5.11) over the same range of T^r also shows an inconsistency 

when placed in the context of other studies of the QRS duration during exercise and 

rest as shown in Figure 5.9. The QRS duration as discussed in Section 5.2 should 

have an inverse relationship with heart rate i.e. the duration increases the lower the 

heart rate (higher the Trr). Equation (5.11) however results in the opposite trend with 

respect to Trr at lower extremes of heart rate the duration decreases.

Cardliic Cycl* Time - Trr (mi)

Figure 5.9: The QRS complex duration according to Burke & Nasor’s Equation (5.11)

Firstly, it is possible that the database used to create Equations (5.8)-(5.14) does 

not contain a large enough cohort of subjects to adequately assess the variation of the 

components with respect to heart rate. With this in mind, the manner in which the 

data were averaged before the equations were fit to the results of the wavelet analysis
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could also have had a profound effect on the end result particularly at the extremes 

of heart rate where less recordings would have been available i.e. < 50 bpm. To 

examine this possibility one could use the same dataset but a different technique for 

the detection of the onset and termination of each wave and the averaging method 

applied before attempting to characterise the results. It would then be possible to see 

if the errors observed in Figures 5.8 and 5.9 are reproduced by the results of the new 

study.

Another possibility may be that the wavelet based method for delineating the signal 

was not accurate enough for the application.

5.4.6.2 Synthetic Testing of the Wavelet Technique

Nasor argued that the onset and termination points of the constituent weaves could 

be accurately resolved by tracing the appearance of these points across the different 

frequency bands of the resulting wavelet basis functions which also retain the temporal 

information of the original signals. He also pointed out that the wavelet transform had 

previously been used to great effect in the removal of noise and detection of the P,R 

and T wave peaks since they have distinctive frequency features when compared with 

the rest of the ECG beat. To investigate the wavelet transforms ability to detect the 

onset and termination points of the constituent waves a synthetic signal with clearly 

defined and known onset and termination points was used. The synthetic signal is 

shown in Figure 5.10.

Using this test signal synthesised at different heart rates Xasor investigated the 

wavelet technique’s ability to find the onset and termination points of the P, QRS and 

T waves in the synthetic signal and found the maximum error to be just 3 ms for the
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measured T wave duration. This test signal offers an adequate insight into the wavelet 

techniques ability to resolve clearly defined points in an ECG signal. However, this test 

signal does not test the the wavelet techniques accuracy when trying to find less obvious 

alterations in the signal. The Mexican Hat wavelet and the synthetic signal should offer 

very good results when decomposed into wavelet transform bases functions since the 

user is attempting to match a synthetic wavelet with clearly defined properties to a 

synthetic signal with clearly defined properties. However, in actual ECG recordings 

the onset or termination points of the constituent waves are not so clear.

Figure 5.11 shows actual ECG signals taken from the Physionet QT Database of 

expertly annotated ECG signals [73] and shall be discussed in more depth in Chapter 

6. The Physionet database is an open source and available on-line, making it the most 

popular and comprehensive research database of physiological signals worldwide. It 

has been compiled by experts at the National Institute of Biomedical Imaging and 

Engineering, National Institute of Health, The National Institute of General Medical 

Sciences and M.I.T. PhysioNet is an actively updated archive.

(a) (b)

Figure 5.11: Actual ECG recordings as annotated by an expert cardiologist.

The purpose of the example signals in Figure 5.11 is to demonstrate that even very 

clean ECG recordings with stable baselines do not have clearly defined onset and ter­

mination points. As indicated by the red circles in Figure 5.11a the expert annotation 

does not appear at any identifiable characteristic deflection from the isoelectric line. 

In Figure 5.11b one can also see that sometimes there is no isoelectric zero or defi­

nite baseline between the ST segment and the T wave but rather a continuous slope 

from the end of the QRS complex. The cardiologist has used his expertise to annotate 

the signal when no definite deflections are clear. This is extremely common in real
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ECG recordings and is observable in many ECG recordings within the Physionet QT 

database. The performance of the wavelet technique is based on its ability to decom­

pose the signal into frequency bases, which is most accurate in the detection of peaks 

and high frequency noise as described by Nasor et al. However, its ability to find the 

onset and termination points in morphologies that have very subtle variations such as 

those shown in Figure 5.11 is questionable. It is most likely that a reference database of 

signals such as the Physionet QT database was not available at the time, so the use of 

a synthetic signal was the only method available to Nasor et al. It is possible that this 

may have led to the error observable in Equation (5.12), especially when one considers 

that the significant error occurs at low heart rate or high cardiac cycle time where the 

variations in the ECG morphology are more gradual due to the lower frequency of the 

heart beat.

5.5 Summary and Conclusions

5.5.1 Clinical Review:

The use of the ECG signal by cardiologists for diagnosis depends on their ability to dis­

cern the morphology and timing characteristics observed in a subject’s EGG recording 

with their a priori knowledge of normal and abnormal EGG signals. As such, the largest 

and most important characterisations of the ECG signal and its constituent compo­

nents are found in the clinical research. Any amplitude or timing model, particularly 

one claiming to characterise the normal variation of the EGG, should be comparable 

to the indices and metrics for normality as defined by clinicians.

5.5.2 The Inverse Problem:

Also discussed in this review is the inverse approach to characterising the EGG signal 

whereby the researcher is modelling the activity at the location of the heart by obser­

vation of the ECG signal on the surface of the body. The alternative approach finds 

its roots in more of a biological setting than an engineering one. Although not directly 

relevant to the objectives of this research project it is still important to be aware of in 

terms of the research field.
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5.5.3 Empirically Derived Models based on ECG Recordings:

The most common approach to the creation of synthetic ECG signal involves the mod­

elling of the ECG morphology and its time variations. A number of models where 

shown to enable the user to model the morphology of a given ECG recording using 

Gaussian pulses to include realistic controlled artefacts on the resulting output ECG 

signal. However, the models include no information for the creation of synthetic sig­

nals which morphologically vary with heart rate of in a fashion reflective of in-vivo 

recordings.

To address this limitation other models analyse the time variation of the EGG 

components, and in particular the QT interval with respect to heart rate. The most 

comprehensive study of the variation of the EGG components with respect to heart rate 

by Nasor et ai, presents a mathematical model for each component which is very useful. 

The results of the model present a significant contribution to the characterisation 

of each components duration with respect to heart rate. Unfortunately, when the 

equations for generating certain component durations are examined in the context of 

clinical observation of the component durations there are some inconsistencies between 

the two. At the time the research was conducted, the only method available to test 

the wavelet techniques ability to identify the fiducial points within the EGG may have 

been limited to synthetic signals. The researcher was also limited to a relatively small 

cohort of subjects which probably should have been considered when averaging the 

results before attempting to characterise them, particularly at extremes of heart rate 

where a smaller number of samples would have been available.

A reinvestigation of the component variation with respect to heart rate is required. 

The technique used to derive this new characterisation should be able to operate with 

the time variant nature of the ECG signal but not suffer from the same possible limi­

tations of the wavelet based technique. Its accuracy should be tested using real ECG 

recordings and the final results placed in the context of known clinical research regard­

ing the variation of the component durations with respect to heart rate. The principle 

idea of a complete time model as proposed by Nasor et al. is an extremely useful 

one in the context of this authors work. The author will hence attempt to re-derive 

the equations for the durations using a different technique, known as Dynamic Time 

Warping to segment the ECG signal, and examine the possible effects of alternative 

averaging of results before fitting equations to them.
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With the beginning of more advanced ECG modelling and simulation, in the late 

1980’s and early 1990’s research raised concern regardiirg the suitability of subsequent 

models when applied in a realistic test setting. The necessity for models derived em­

pirically to reflect medical knowledge gained both through quantitative and qualitative 

research was also highlighted [74]. The author believes that a model of the variation of 

the constituent ECG components such as that proposed by Nasor et al. is an invaluable 

tool because it is relatively easy to implement in hardware. It can also be combined 

with morphological based models such as those discussed in this review. The validity 

of the timing model however must be established in the context of larger clinical trials 

and definitions as expounded by cardiology experts.
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Chapter 6

The Dynamic Time Warping 

Algorithm

6.1 Introduction

In this chapter the use of the dynamic time warping algorithm is proposed to investigate 

the timing of the ECG components. Dynamic time warping fundamentally aligns two 

signals of differing frame length, typically one a known reference signal and the other 

a signal we wish to characterise, which shall be called a query signal for the purposes 

of this thesis. Dynamic time warping (DTW) is a method of pattern recognition used 

in many different applications, having originated from the area of speech recognition 

[75]. It is used in many applications including robotics [76], manufacturing [77], bio­

metric identification [78] and biomedical signal analysis [79]. The different variations 

of the algorithm can be sorted into three classes; value based (DTW), derivative based 

(DDTW), and feature based (FBDTW). One of the issues surrounding ECG pattern 

recognition is that the ECG itself is a non-stationary signal. As such, a direct compar­

ison between two different signals cannot be done directly using a Euclidean distance 

measurement between them. Linear time warping (LTW) is hence not applicable to 

ECG classification or comparison. DTW offers a solution to this issue in that it uses a 

set of specified parameters for non-linear time-normalisation to minimise the difference 

between the two ECG recordings. The choice of DTW method is very much applica­

tion and environment specific. For the purposes of this chapter the algorithms shall 

be discussed on the assumption that the objective is to identify the fiducial points for 

the P, QRS and T wave onset and termination in a Lead II signal since that is the
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intended application of the algorithm in this research.

In order to examine the accuracy of the DTW algorithm and its variations a large 

database of ECG signals is required. The database of test signals introduced in this 

chapter shall also form the database of reference signals used to characterise the ECG 

signals in Chapter 8. The selection, filtering and formatting of the reference signals 

before being used with DTW is also presented in this chapter. For each form of 

the algorithm the advantages and disadvantages are explored. In the course of this 

exploration, an in depth study of the effects of approximation of the ECG signal (as 

used in DDTW) is performed and an alternative method of measuring the accuracy 

of such approximations is presented. The chapter concludes with the selection of a 

type of dynamic time warping and proposals to refine and increase the accuracy of the 

algorithm are made. Note that all signal processing was performed using the Matlab 

software package.

6.2 Formatting Test Signals

Throughout this thesis various digital signal processing algorithms for ECG signal 

analysis shall be tested. In order to test these algorithms a database of reference 

signals is required. The largest and most frequently used database of biological signal 

archives is that of the MIT PhysioNet database available as an open source on-line 

[73]. The largest and most widely referenced database of ECG signals from this signal 

archive is the QT database. Within this database are included ECG recordings with 

normal sinus rhythm and various arrhythmia.

6.2.1 Formatting The QT Database Reference Signals

The QT database compiled by Laguna et al. [80] contains 105 fifteen minute excerpts 

of two-channel digitized ECG’s. The records were selected from a variety of other 

databases to represent a wide variety of QRS, ST segment and T wave morphologies. 

Each record in the database has between 30 and 100 representative beats which were 

manually annotated by cardiologists who identified the beginning and end of each P, 

QRS and T wave of each cardiac cycle in the recordings.

In the final results chapter, Ghapter 8, comparisons between these reference signals 

and those from a database of healthy exercise ECG signals shall be made in order to
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characterise the time variation of the constituent components of the ECG signal. A set 

of 719 ECG Lead II beats were selected by the author from the manually annotated 

beats described as normal Lead II ECG recordings, originally belonging to subsets of 

the Normal Sinus Rhythm and MIT-BIH-Arrhythmia databases as detailed in Table 

6.1. The original data from the QT database has a 250 Hz sampling frequency and 

hence a sampling period of 4 ms. Unfortunatel>", many of the annotated beats avail­

able in the database are fragmented across each selection, and some annotations are 

incomplete in that they do not possess manually annotated T-onsets. An algorithm 

was written to read each of the manual annotations and create 719 records each with 

a complete single cardiac cycle recording, and a full set of P, QRS and T wave onsets, 

peaks and terminations. Where manually assigned annotations were incomplete, auto­

matically generated annotations also available for each selection from the QT database 

were used to complete the records.

Table 6.1: The selection of reference signals from the QT database

MIT-BIH-Arrhythmia Normal Sinus Rhythm

Sel 103: 30 beats Sel 16265: 30 beats

Sel 114: 50 beats Sel 16272: 50 beats

Sel 116: 50 beats Sel 16273: 50 beats

Sel 117: 30 beats Sel 16420: 30 beats

Sel 123: 30 beats Sel 16483: 30 beats

Sel 213: 71 beats Sel 16539: 30 beats

Sel 223: 31 beats Sel 16773: 30 beats

Sel 230: 50 beats Sel 16786: 30 beats

Sel 231: 47 beats Sel 16795: 30 beats

Sel 233: 30 beats Sel 17453: 30 beats

The test data comes from 20 subjects, with each beat having been fully annotated 

by an expert cardiologist and confirmed as being a “Normal” ECG beat.

6.2,2 Filtering the ECG signals

The ECG recordings require filtering to remove some of the sources of contamination 

from them as discussed in Chapter 2. All filters have been designed and tested to ensure
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they satisfy the constraints of the most recent European standard for ECG recording 

[28] by Dozio [19].

6.2.2.1 The Low Pass Filter (LPF)

The signal was hrst low pass filtered to remove any unwanted high frequency interfer­

ence on the signal such as muscle contraction. The European standard [28] requires a 

3 dB cutoff frequency of greater than 100 Hz. A second order, analogue Bessel filter 

with a cut off frequency of 118 Hz was created in Matlab using the “Besself’ function 

and all signals have been filtered using the resulting transfer function and the “Isim” 

function in Matlab which constructs the filter in software. The Bessel filter was chosen 

as it offers a maximally flat group delay (maximally linear phase response) in the pass 

band. The frequency response and 3 dB point are shown in Figure 6.1.

Figure 6.1: Second order low pass filter frequency response

The result of filtering high frequency noise for a typical ECG signal is shown in 

Figure 6.2. Other filters such as smoothing or median filters could have been used to 

remove the remaining high frequency noise but they have not been applied to avoid 

adding any unquantifiable distortion to the signal.
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Figure 6.2: ECG signal before and after filtering with the LPF

6.2.2.2 The High Pass Filter (HPF)

The low frequency noise is filtered using a filter with symmetric time response to ensure 

no phase shift within the ECG signal. Low frequency shifts due to high pass filtering, 

can be significant because time displacements can occur due to phase non-linearity in 

the vicinity of the filter corner frequency. As a solution to the problem of phase shifts 

during high pass filtering Longini et al. [81] proposed that a signal may be filtered 

once through a high pass filter and then reversed and passed through the same high 

pass filter. The net phase displacement from the double filtering process is zero.

This process was again investigated by Dozio and it was proven that a second order 

Butterworth base filter with a corner frequency of 0.15 Hz satisfies the constraints of 

the standard [28] when used as a basis for the double filtering technique proposed by 

Longini [81]. The analogue filter was again simulated in Matlab using the “Butter” 

function to create the filter transfer function and “Isim” to filter each sequence using 

the filter. The freciuency response of the zero phase shift Butterworth Filter is shown 

in Figure 6.3

The filter removes the majority of low frequency artefact such as baseline wander 

below 0.15 Hz as seen in Figure 6.4.
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Figure 6.3: Tlie Butterworth high-pass base filter frequency response

Figure 6.4: ECG signal before and after filtering with the HPF

Additional in-band filters such as a notch filter were not used to filter the signal 

as they have been found to remove in-band noise at a cost of introducing amplitude 

and phase distortion into the clinically significant signal [82]. As a result of this, the 

standards for diagnostic ECG recording [28] provide no criteria for in-band filtering, 

and as discussed above the minimum low pass corner frequency is specified as 100 Hz.

6.2.3 Formatting The Reference Signals

In order to format the ECG signals to be used as test reference signals, individual 

beat records are required. The creation of these records includes finding the peaks 

in a given ECG recording and segmenting each beat individually. The author has
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designed a simple amplitude peak detector with a variable threshold which can be 

altered empirically to find all of the R peaks in a given ECG recording. When run the 

peak detector displays the detected peaks and allows the user to, change the threshold 

and add any peaks that are not found by the peak detector or remove false peaks. An 

example of the peak detectors output is shown in Figure 6.5

I'siug Amplitude Bused Peak Detector

Figure 6.5: Example of the peaks found using the amplitude based peak detector

A more automated or sophisticated peak detector is not required because each 

signal from the reference database and later each test signal from an exercise ECG 

database must be visually examined by the author to ensure poor quality signals that 

are a result of a bad skin-electrode contact are excluded from the analysis.

Once the peaks are detected, the heart rate for each beat can be determined as 

discussed in Chapter 2. Using the R-peak each recording can be segmented by win­

dowing around the R-peak to include the P and T waves of the beat. As a measure 

of the required window length the Burke & Nasor equations presented in Section 5.4.6 

can be used estimate the required window length around the complete ECG beat. The 

algorithm for windowing allows the user to alter the window size empirically during 

viewing of the signals to ensure the full ECG beat is included. The heart rate, expert 

annotation values and the windowed single ECG cycle sequence are saved for each of 

the reference beats. The process is illustrated in Figure 6.6. To detect and remove 

spurious heart cycles or ectopic beats, the median heart rate for each 10 beat sequence 

can be found, any heart rate found to lie outside three median absolute deviations of 

this median is removed from the database. The median and median absolute deviations 

are robust and well-established outlier removal criteria [83].
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Figure 6.6: The creation of reference record including individual beats and annotations

6.3 Value Based Dynamic Time Warping

Dynamic Time warping is a process whereby two signals are time aligned with one 

another through expansion or compression of sample points. By matching an un­

known ECG signal to a signal with known characteristics it is possible to identify 

similar characteristics in the unknown signal. The value based DTW algorithm used 

by the author is based on that described by Theodoridis & Koutroumbas [84] which 

has been successfully applied to ECG analysis in its “classical” form and combined 

with application-specific changes to the algorithm by a number of authors in recent 

years [78, 85 87]. Eor illustrative purposes the value based DTW algorithm shall be 

discussed in depth since the DDTW and FBDTW variations of the algorithm are based 

on the same principles. The algorithm has been implemented in Matlab based on the 

open-source DTW code created by Felty [88]. Note that the notation and terminology 

used to describe the DTW process varies in the literature and the author has used the 

notation which he feels provides the greatest clarity.
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Figure 6.7: The dynamic time warping of two arbitrary signals
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Consider the two input signals, the known signal Si of length n samples and unknown 

signal S2 of length m samples. From the input signals two matrices are created, Si an 

m X n matrix which contains the known signal repeated on each row and S2 an m x n 

matrix which contains the unknown signal repeated in each column as shown in Figure 

6.7a. A distance matrix D can now be calculated as a single dimension Euclidean 

distance also shown in Figure 6.7b:

D{a,b) = [Sl{a,b) - S2{a,b)f (6.1)

where 1 < a < m and 1 < b < n.

The next step calculates a cumulative distance or cost matrix C, which measures 

the minimum cost of matching each sample in the two signals to each other, it is 

based on Bellman’s Optimality Principle [89] which shall be discussed later. The cost 

function used in this case is a cumulative measure of the commonly used Euclidean 

distance measurement as calculated by Equation (6.1). The cost matrix in this sense is 

essentially a map showing the total resulting distance between the two test signals when 

the sample points in each are matched in all possible combinations. The cost matrix 

C is created by starting at location (1,1) of matrix D and calculating the cumulative 

distance of row one and column one of the matrix D and storing the results in the 

corresponding locations of the new cumulative distance matrix C (an m x n matrix 

also). The remaining cumulative values to be stored in the cost matrix are calculated 

by following the recursive equation below as shown in Eigure 6.7c:

C(a, b) = d{a, b) + min <

C{a,b-1)

C{a-l,b-l)

C{a-l,b)

(6.2)

where 1 <a < m and 1< b < a.

Note that when template matching a reference and query signal often the most 

suitable reference or template match is based on the one which yields a minimum cost 

during warping. It shall be shown later that this approach is used frequently in EGG 

template matching, although it does not consider a number of possible issues regarding 

the suitability of classifying the best template match. In matching reference and query 

signals “something more is needed” [84] which is discussed further throughout this and 

the next chapter.
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The final stage in the process involves starting at location C(m,n) of the cumulative 

distance matrix and moving to the smallest “cost” value stored in any one of the 

indicated adjoining locations. If all adjoining locations have the same value then the 

node diagonally adjacent, C(a-l,b-l) is chosen i.e. no repetition of points is required. 

One can traverse all the way back to location (1,1) of the matrix 0, recording the 

path ‘W’ used which results in the minimum accumulated difference. Now that the 

optimal path across the matrix C has been found which yields the best alignment of 

the query and reference signals they can be recreated by following the same path across 

the original signal matrices Si and S2 to create the two optimally time aligned signals 

SiW and S2W as shown in Figure 6.7d.

These two new signals are called the warped signals and are the same length as 

each other. The optimal path traced through the minimum cost of adjoining cells may 

dictate that certain samples of each signal be repeated (padding as in Figure 6.7) to 

optimally match a corresponding point in the other signal during the warping process. 

Figure 6.7 demonstrates the entire warping process for two arbitrary signals.

The DTW process and the warping path as described above is based on Bellman’s 

Optimality Principle [89] and is subject to a number of constraints [84, 90].

6.3.1 Bellman’s Optimality Principle and Dynamic 

Programming

Consider the optimal path between two points or nodes in the cost matrix C above, 

an initial node (nio,no) and a final node (m/,n/). The optimal path can be expressed 

as:

(mo, no) ^ imf,nf) (6.3)

If another intermediate node (m^jn^) is between (mo,no) and (m/,n/), then the 

optimal path from (mo,no) to (mj,n/) constrained to pass through the intermediate 

node (m(i,nd) is defined as:

(mo, no) ^ {mf,nf)
(md,nd)

(6.4)

Bellman’s principle [89] states that:
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(mo, no) ^ = (mo, no) {rnd,nd) © {md,nd)
{md,nd)

(6.5)

where © denotes the concatenation of paths. In other words the optimal path from 

the initial to final node is the concatenation of the optimal path from the initial node 

(mo,no) through the intermediate node (m(i,nd) and the optimal path from (mrf,nrf) to 

the final node (my,ny). The conclusion which can be formed from this, is that if one 

finds the optimal path from the initial node to an intermediate one, one need only 

search for the optimal path from this intermediate node to the final node in order to 

find the overall optimal path from initial to final node via the intermediate node. If 

this procedure is carried out for every node in the matrix the optimal path is found 

across the entire matrix as required. Algorithms based on this principle are known as 

dynamic programming algorithms, and it is the basis of dynamically solving Equation 

(6.2)as illustrated in Figure 6.7c which yields the optimum match between the two test 

signals.

6.3.2 End Point Constraints

In the example illustrated in Figure 6.7 an optimal path was found which matched 

the entire sequence of the two signals Si and S2 to each other by starting and location 

C(m,n) and working back to C(l,l). In the case of EGG matching, this is typically the 

case because it is known that in a given EGG beat sequence there should be a complete 

wave for both the query and reference signals. Therefore, it is appropriate to align the 

beginning and end of both the query and reference signal sequences. Although not 

appropriate in this application, an alternative to the complete path constraints can be 

created if the end point of the optimal path is not defined a priori and it is left to the 

optimisation algorithm to find it.

6.3.3 Local Constraints

A number of local constraints have been imposed on the process to ensure a logical 

matching of the two signals during the DTW process.
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6.3.3.1 Continuity

If a given step in the path Wfc = (a,b) then Wfc_i= (a’,b’) where a-a’<l and b-b'<l i.e. 

each step through the path must be to an adjacent cell as shown in Figure 6.7 and in 

a progression towards C(l,l)-

6.3.3.2 Monotonicity

Given Wfc = (a,b) then Wk-i =(a’,b’) where a-a’>0 and b-b’>0 i.e. the points in the 

resulting path are monotonically spaced in time.

6.3.3.3 Other Local Constraints

There are a series of alternative constraints that are used in other applications of DTW. 

For example in the local constraints proposed by Itakura for speech signal processing 

[7, 84], two successive horizontal transitions during the optimal path establishment 

shown in Figure 6.7c would not be allowed. Moreover, if using the Itakura constraints, a 

single point in the query vector could be skipped during a transition. These constraints 

are inappropriate in the application of DTW to ECG signals since firstly segments, e.g. 

the PQ segment, between waves may require significant expansion in time (horizontal 

or vertical transitions in the C matrix) to accurately align the P and QRS w'aves should 

the query and reference have different heart rates and hence frame lengths. Also points 

from the query and reference signals should not be skipped in the application of DTW 

to delineate the ECG signal, since these points could in fact be onset and termination 

points the user is attempting to establish in the query. Other constraints have been 

proposed by Sakoe & Chiba [75].

6.3.4 Global constraints

Global constraints can be added to the process such as windowing, which effectively 

removes the corners of the cost matrix and slope weighting, which biases the warping 

path towards the diagonal of the matrix. Itakura [7] proposed a global constraint that 

ensures the maximum expansion or compression of the query signal is by a factor of two 

compared to its original length. One purpose of these global constraints is to essentially 

remove what are known as “singularities”. A singularity occurs when one sample in 

one of the signals is warped to multiple samples in the other signal. An example of 

a singularity is shown in the warping of two ECG signals and their accumulated cost
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matrix C and path ‘W’ in Figure 6.8 and the resulting warping of the two signals in 

Figure 6.9. Two corresponding singularities evident in the cost matrix and the time 

domain representation of the two signals are identified in each figure.
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Figure 6.8: Finding the optimum path through the cost matrix for the alignment of the two signals 

with singularities shown
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Figure 6.9: The original and resulting warped signals in the time domain with singularities shown

6.3.5 Limitations of Value Based DTW

Singularities in the warped signals are a concern since they result in an unintuitive 

alignment of the two signals. Note how the termination of the P wave in Signal 1 and
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Signal 2 have not been aligned correctly. Introducing global constraints can reduce 

the occurrence of singularities by manipulating the warping path to create the warp 

with minimal padding. However, such manipulation means that the path solved for 

dynamically using an altered version of Equation (6.2) is now no longer the optimal 

path. The use of global constraints has been criticised for that reason [90] and the 

author does not feel they are suitable for this application.

A critical limitation of the value based DTW algorithm has been identified. In 

attempting to minimise the difference between the two signals in the amplitude do­

main the algorithm inserts padding or repeats a single value, to a point where the 

time features of the two signals are aligned in an inappropriate manner. The algorithm 

performs the optimal alignment of the two signals based on minimising the Euclidean 

distance between the signals but with no consideration of the position of each feature 

e.g. the P waves within the global signals. One method of reducing the occurrence of 

these singularities involves aligning some of the features of the two signals before warp­

ing. This involves removing the offset at the beginning of each signal and amplitude 

aligning their R peaks [90, 91]. With these two features aligned the DTW algorithm 

will tend to warp them to each other since they have the same amplitude values to 

begin with. Figures 6.10 and 6.11 show the result of warping the same two signals as 

before but having removed the initial offset of each signal and aligning the R peak of 

both signals before warping.

It is visibly clear from both Figures 6.10 and 6.11 that there has been a significant 

improvement in the accuracy of the warping than in Figures 6.8 and 6.9. The regions 

where singularities existed previously are highlighted and it can be seen that the sin­

gularities in both the P and T wave regions have been significantly reduced, although 

not eliminated altogether. One can see that the path ‘W’ is much closer to the ideal 

of a diagonal path from C(l,l) to C(m,n), which could only be achieved by warping a 

signal to itself. The pre-processing of the signal involves only the removal of the offsets 

of each signal and a linear scaling of each to align the R peak of each QRS complex. 

The signals were not distorted in any way but merely scaled and the DTW algorithm 

used to warp the signals is identical in both cases. Critically, no global constraints 

were used to interfere with the dynamic optimisation Equation (6.2). Although this 

pre-processing has increased the accuracy significantly in this example, its ability to 

do so in an ECG signal with more variable characteristics such as baseline wander may 

be limited and may require a more complex pre-processing technique. An alternative
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Figure 6.10: Finding the optimum path through the cost matrix for the alignment of the two signals 

after additional pre-processing

Oi'igiual signals Warped signals

Figure 6.11; The original and resulting warped signals in the time domain after pre-processing 

method of overcoming these limitations is DDTW.

6.4 Derivative Dynamic Time Warping

An alternative to value based DTW, derivative based DTW (DDTW) attempts to 

characterise regions or segments of the signals before attempting to warp them together. 

Derivative DTW uses the shape of the sequence of data rather than the absolute values
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of each data point to find the difference between the two signals. The derivative of 

each data point to data point line within the signal will give an indication of the shape 

of the wave between the two data points. The derivative is estimated in many different 

ways, one example of which is by Equation (6.6) as proposed by Keogh and Pazzani 

[90]:

Dx[q] =
{qi - Qi-i) + - 9,-i)/2]

(6.6)

where D^, is the average of the slope of the line through the current point and its 

left neighbour qj_i and the slope of the line through its left neighbour, the point in 

question and its right neighbour q^+i.

However, on a point by point basis the EGG signal will vary with noise or inter­

ference and the slope of a lino on either side of a single point offers little insight into 

the actual shape in a wider region of the signal and can hence fail to characterise sig­

nificant features in the signal [91]. To improve on this an approximation of the signal 

is usually performed. The result of this approximation is a series of splines approxi­

mating groups of points in the original signal, which are combined on a piecewise basis 

to recreate an approximated version of the original signal. By decomposing the EGG 

signals into splines or linear segments the slope of each segment of the original two 

signals can be used as a measure of difference between the shape of the two segments 

in each signal. So instead of a Euclidean distance measurement between two points 

as in Equation (6.1), the difference between eac:h segment of the two approximated 

waves is measured as a difference of the slopes or derivatives of these segments. This 

method of characterising the shape is favoured by many users of DDTW [92 94] over 

the point-by-point derivative given in Equation (G.6). The assumption made in each of 

these articles is that each fiducial point in the signal will lie “near to” the end of one 

of the approximation splines. In principle, the concept of characterising the shape of 

the signal and using this to warp the signals, as opposed to the value point by point 

based DTW method is very appealing. However, the author is concerned with two 

issues regarding DDTW.

Firstly, the accuracy of the process is highly dependent on the approximation al­

gorithm’s ability to remove the unwanted and insignificant variations in the original 

signal whilst maintaining the shape of the original signal itself. The approximation 

splines need to be large enough to characterise the shape of a given region but the
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longer the spline the larger the approximation error. Secondly, it is not necessarily safe 

to assume that a fiducial point will lie near to the end point of an approximation spline. 

An approximation or linearization technique will end an approximated segment where 

variations in the signal cause the difference between the approximation and the origi­

nal signal to exceed a dehned error threshold. The T wave shown in Figure 6.12 has 

been annotated by an expert cardiologist [73] and demonstrates how a fiducial point 

may not be near a significant variation in the signal and hence will not necessarily be 

located near to the beginning or end of a spline.

Figure 6.12: T wave onset annotation

The only way in which this T wave onset would be located close to the beginning 

or end of an approximation spline is if the error threshold is extremely small, resulting 

in a larger number of approximation splines and hence defeating the purpose of using 

derivative DTW in the first place. If the true T wave onset is not located near the end 

of a spline but is assumed to be as is the case in DDTW, then the reference signal has 

been distorted and the original T onset location and its associated annotation is no 

longer being used as a fiducial point.

With these concerns in mind the author decided to conduct a thorough investigation 

the effects of approximation on the ECG signal and in particular the fiducial points of 

the original reference signal.
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6.5 Measuring the Effect of Approximating ECG 

Signals for DDTW

The material and results discussed in this section are based on two peer reviewed 

publications by the author [95, 96].

6.5.1 An Introduction to ECG Compression-Approximation

The use of ECG compression and/or approximation is as prevalent today as it was dur­

ing the 1960s when research into ECG compression techniques began. ECG compres­

sion methods are classed into three distinct groups: direct data compression, transforms 

and parameter extraction. Direct data compression algorithms detect redundancies in 

the data by analysing the actual samples of the signal and discarding the redundant 

data. Numerous direct data compression techniques have been developed with increas­

ing complexity including the AZTEC algorithm [97, 98] the SAPA algorithms [99, 100] 

and piece-wise approximation algorithms [101, 102]. There is also a range of transfor­

mation and parameter extraction methods having varying levels of complexity utilizing 

Fourier, Wavelet and Principal Component Analysis techniques [103 108]. In general, 

direct methods are considered superior to transforms in terms of system simplicity 

and approximation error [105], although transform methods typically provide a higher 

compression ratio and are not as sensitive to original sampling frequency [109].

The objective of this investigation is to analyse the effects of data compression 

algorithms on the morphology of the original ECG signals and to determine if ap­

proximation of these signals for DDTW is advisable. Many comparative studies of 

approximation methods and algorithms use a percentage root-mean-square difference 

(PRD) between the original input signal and the reconstructed approximate version as 

a test of accuracy [100]. However, the PRD provides very limited insight into the ability 

of a compression algorithm to preserve diagnostically significant information contained 

within the recording [109, 110]. Indeed the final decision on the clinical acceptability of 

the approximation often depends on the reconstructed signals being visually inspected 

by a cardiologist [111].

The author proposes that the accuracy of a reconstructed approximation in terms of 

preservation of the original signal morphology and the location of its fiducial points (P 

wave onset and termination etc) can be better measured using a two pronged method.
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First of all the original and approximated signals are divided into ECG components 

and inter-beat isoelectric segments with partial PRDs calculated over the two groups 

separately. In theory, one would wish to maximize the PRD of inter-beat segments and 

minimise it over the actual ECG component durations and this test gives an insight 

into where the resulting compression is obtained. It was demonstrated in Section 6.3 

that when two signals which are similar to each other i.e. have the same offset voltage, 

R-peak amplitude etc., value based DTW can warp the two signals very accurately. 

Using DTW, an insight into the effects of approximation, particularly on the fiducial 

points of the original ECG signal can be gained. Note that in the case of comparing 

a signal with its approximated version the concerns of applying value-based DTW to 

the ECG signal which have been highlighted in Section 6.3.5 such as baseline wander, 

constituent component offsets etc. are not a concern. In this scenario the two signals 

under test are very similar and will have essentially the same offsets, amplitude levels 

etc. As such value-based DTW’, as presented thus far, is an appropriate algorithm for 

measuring ECG compression accuracy.

6.5.2 Direct Data Compression-Approximation of ECG 

Signals

For the purposes of this investigation, the accuracy of six direct data compression 

methods are compared, although dynamic time warping could also be applied to any 

reconstructed approximation from the range of transform compression methods. Three 

of the approximation algorithms examined arc novel in that they combine existing hxed 

error threshold algorithms with variable error threshold calculation techniques. The 

results demonstrate that DTW can be used to identify accuracy differences not only be­

tween completely different algorithms but also subtle variations of the same algorithm 

e.g. with fixed and variable error thresholds. Indeed, when selecting an approximation 

technique, the user must find a balance between compression ratio and accuracy, a pro­

cess that simple PRD calculation makes extremely difficult. Approximations yielding 

the same total PRD value from each algorithm will be tested and the results compared 

using partial PRDs and DTW to demonstrate the limitations of the PRD and the 

benefits of the new DTW approach.

The algorithms chosen for analysis include the piecewise linear approximation al­

gorithm (PLA) as proposed by Koski et al. [101] which has been applied pre-DTW
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in [92, 94] and other piecewise based modelling more recently in [102]. Secondly the 

scan along polygonal algorithm as outlined by Ishijima et al. [99] which continues to 

be used in modern ECG compression research [100] shall be examined. Three novel 

techniques based on a combination of the scan along polygonal algorithm and Furhts 

Amplitude Zone Time Epoc Coding [97] algorithm with variable threshold shall also 

be assessed.

6.5.2.1 The Piecewise Linear Approximation Algorithm (PLA)

The PLA algorithm presents a method of dividing the ECG into segments without the 

necessity of defining a large number of parameters to control the segmentation process 

[92, 101]. Segmentation methods such as this are used in pulse wave recognition, signal 

compression and pre-processing for pattern recognition applications as the fundamental 

principle is the same in each case [101].

The algorithm starts with the first sample S(n) in the signal to be approximated 

and windows to a higher sample number in the signal S(n+L) where L is the window 

length in terms of samples. It connects the two points with a line to form the new 

approximated segment of the signal and then calculates the error e as the Euclidean 

distance between the approximated line and each sample of the original signal sequence. 

If an original data point is inside the normals at either end of the approximation 

segment a modified Euclidean distance formula is used to calculate the distance from 

the spline. If however the original data point under test is outside the normals at 

the endpoints of the line the standard Euclidean distance formula is used. If the error 

exceeds a predefined threshold iyth) at any particular sample the segment is terminated 

at the intermediate point with the largest error distance and the process is repeated. If 

not, as in Figure 6.13, the algorithm would then extend the endpoint to S(n+2L) and 

the process is then repeated until all point to approximation distances are less than 

Wth- The window length L is fixed at a predefined number of samples but the resulting 

overall spline length is reduced dynamically to ensure the error criteria is satisfied.
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The overall result is that the approximated signal shall always be maintained within 

a predefined error threshold of the original signal. The sample number of the begin­

ning, end and length of the segment can be recorded and used to reconstruct the 

approximation of the signal.

6.5.2.2 Scan Along Polygonal Approximation (SAPA)

The SAPA technique is based on calculating the slope from one data point (the current 

vertex) to another the current end point of the spline ± the threshold error [99]. Initially 

the slopes from the vertex S(n) to the next point S(n-|-l)±V(/j are recorded as Ml and 

M2. As the end point of the spline is extended from one point to the next, the smallest 

slope value from the vertex to an endpoint plus Vth is saved as Ml and the largest slope 

value from the vertex to an endpoint minus Vth is saved as M2. Note that as the slopes 

from the vertex to the candidate endpoint ± the error threshold are calculated, they 

are only recorded if the slope from vertex to current candidate endpoint plus threshold 

is smaller than a previously saved value of Ml or if the slope from vertex to current 

endpoint minus the threshold is larger than the previous value of M2. At all times the 

following slope criteria must hold:

Ml > M2 (6.7)

If for any candidate end point of the spline the criteria defined in Equation (6.7) 

does not hold, as in Figure 6.14, the spline is terminated at the previous endpoint, 

S(n-l-l) in Figure 6.14 which will then act as the vertex of the next spline. The process 

is repeated on a sample by sample basis for the entire recording with the vertices and 

length of each spline recorded for reconstruction of the approximated signal.
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6.5.2.3 Scan Along Polygonal Approximation with Centre Line Criterion 

(SAPA-2)

An extension of the first scan along polygonal compression method SAPA, the SAPA-2 

algorithm is an EGG compression technique also presented by Ishijima et al. [99]. It is 

based on calculating a number of slopes from a selected vertex (start point of a segment 

S(n) in Figure 6.15.) to a candidate end point of the segment. The algorithm initially 

selects the next data point S(n-l-l) as the candidate endpoint and calculates a slope to 

points at a predefined threshold above and below the sample value. It then calculates 

a slope from the selected vertex to the candidate end point forming a centre line. The 

next point in the data, S(n-|-2) in Figure 6.15, is now selected as the new candidate end 

point and the slopes are again calculated. The smallest slope value from the vertex to 

the endpoint plus Yth is again saved as Ml and the largest slope value from the vertex 

to the endpoint minus Vth is saved as M2 as shown in Figure 6.15. As the endpoint is 

incremented and the segment length increases the following criteria must always apply:

MC < Ml and MC > M2 (6.8)

If they do not, the segment is terminated at the previous sample, S(n-(-l) in Figure 

6.15, forming the end of the current segment and the vertex for the next.
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6.5.2.4 Variable Error Threshold Approximation - The Amplitude Zone 

Time Epoc Algorithm (AZTEC)

The AZTEC algorithm [97, 98] is intended for real time ECG data compression and 

typically offers a less accurate representation of the ECG signal than the other algo­

rithms discussed above. It effectively uses a sample-and-hold process to linearise the 

ECG by holding a sample value until the approximation error exceeds the acceptable 

threshold error voltage. It generates a high-compression-ratio, low-accuracy, approxi­

mated signal as demonstrated in Figure 6.16.

Figure 6.16: The AZTEC Algorithm

Since the AZTEC algorithm typically provides a low accuracy approximation, it 

shall not be included in the analysis here. AZTEC does however provide a variable 

error threshold not found in the other processing techniques discussed thus far which 

shall be applied to more accurate methods. For approximation one would like to use 

a low error threshold for the ECG components themselves but a larger error threshold 

for the inter-beat segments in order to remove high frequency random spikes and noise 

which possess no clinically significant information, which is precisely what the AZTEC 

algorithm attempts to achieve. The AZTEC algorithm uses a statistical measurement 

known as the third moment along with the signal mean and standard deviation to vary
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the acceptable error threshold whilst the input signal is being processed. The error 

threshold is calculated recursively for a signal X with n samples as follows:

Mean Value : Xk =
{k-l)Xk-,+X,

(6.9)

Standard Deviation : Ok \k-l)ah., + {Xk-Xkr
k (6.10)

Third Moment: Mk=
{k-l)M\_,+{Xk-Xkf

1 1/3
(6.11)

CFk = C,{ak + Mk) (6.12)

Vkk = Vthk — l - C2{CFk - CFk-x)Vtkk-i (6.13)

where 1 < k < n, CF*. is the criterion function, Ci and C2 are pre-defined constants 

which can be selected to alter the variation of the error threshold as desired and Xthk 

is the resulting error threshold.

Although the AZTEC algorithm itself is intended for real-time, relatively low- 

accuracy applications its method of calculating a variable error threshold could be 

applied to more accurate algorithms that analyze the input signal on a sample by 

sample basis such as the SAPA algorithms.

6.5.2.5 Variable Threshold SAPA Algorithms (VTH-SAPA)

If the variable threshold calculation originating from the AZTEC algorithm is incorpo­

rated into the SAPA and SAPA-2 compression techniques it may increase the usefulness 

of the SAPA algorithms by taking advantage of a variable error threshold combining it 

with the better accuracy of the SAPA methods of compression. These new variations 

of the SAPA algorithms shall be known as VTH-SAPA and VTH-SAPA-2. Figure 

6.17 demonstrates how the threshold dynamically varies with the variation of the ECG 

input signal.
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Figure 6.17: Variable voltage error threshold (Ci = 1 and C2 = 4)

The constants Ci and C2 control the effect that CF^ has on the error threshold Vth 

but not the variation of CF^ itself i.e. its sensitivity to spikes in the signal. Although 

some variation of the voltage error threshold is visible in Figure 6.17 the author believes 

a more significant variation of the threshold due to the P and T wave is desirable since 

the goal is for the error threshold to be sensitive to significant variations in the signal 

i.e. the P, QRS and T waves. To achieve this, a new constant C3 is introduced to 

the third moment Equation (6.11) to accentuate the effect that the difference between 

the current sample Xx and the cumulative mean has on the third moment. Now a 

modified third moment is calculated as:

Modified Third Moment: Modk=
-| 1/3

(6.14)

and the criterion function uses the modified third moment:

CFk — C\{ak + Modk) (6.15)

With C3=0.02 the increased sensitivity of the variable threshold to the presence of 

the P, QRS and T waves is demonstrated in Figure 6.18.
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Figure 6.18: The modified variable error threshold

This final modified variable threshold calculation shall be applied to the SAPA-2 

algorithm, and shall be known as the MOD-VTH-SAPA-2 algorithm.

There are an enormous number of algorithms available to approximate the ECG 

signal and indeed more accurate methods may be available than the six chosen here. 

However, the variety of the algorithms and the fact that the AZTEC, PLA and SAPA 

algorithms are still being used in recent research into ECG signal approximation makes 

them convenient and adequate choices for this investigation [98, 100, 105, 112]. Having 

selected six algorithms to test the effects of approximation on the resulting ECG signal 

a measure of accuracy must now be discussed.

6.5.3 Measuring The Accuracy of ECG Compression

In some of the DDTW articles the effects of approximation with regard to the location 

of the fiducial points are simply stated as minimal [93] or as “the error introduced” by 

the approximation algorithm for each fiducial point [92]. It is not made clear how this 

error was measured nor how the acceptable error threshold (Vj/j) for the approximation 

algorithm were set accurately. The amount of approximation i.e. a compression ratio 

is not stated. The error due to approximation is stated for each fiducial point, and 

although it is not clear how this error has been measured, it is implied that this error 

is the difference between the annotated fiducial point and the end of the nearest spline 

to that point, since the assumption is that they are close to each other. Figure 6.19 

shows the P wave and QRS onset of a highly approximated EGG beat from the test
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database discussed.

Figure 6.19: P and QRS Complex of a signal and its approximation

The signal has been approximated using the SAPA algorithm and a large error 

threshold to show the limitations of assuming the error of approximation is the differ­

ence between the actual location of a fiducial point and the nearest spline end point. 

The difference between the QRS onset and the nearest spline endpoint in Eigure 6.19 

is just 4 samples or, at the recording sampling frequency, 16 ms. However, one can 

clearly see that the slope of the spline in this region is not at all representative of the 

shape of the QRS complex onset to the extent that the Q wave has been removed, and 

any subsequent matching of this approximated slope to a reference signal with a similar 

slope in this region, would be inaccurate. ECG compression algorithms are hence not 

typically tested for accuracy in such ways.

6.5.4 Percentage RMS Difference Calculation

The error introduced by compression of ECG data is frequently measured using the 

percentage root-mean-square difference (PRD) [113] . Even though it is acknowledged 

by many authors as not guaranteeing the preservation of clinical information [96, 109, 

111], it is still used as a measure of accuracy in most of the compression articles 

referenced here.
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PRD =

\
---------------X100%

Z=1

■ \2
(6.16)

Where X(i) and A(i) are corresponding samples of the original and approximated 

signals respectively.

6.5.5 Partial Percentage RMS Difference Calculation

In simplistic terms a compression algorithm should remove as much inter-beat noise 

as possible since it provides no clinically significant information whilst preserving the 

actual waves of the EGG as accurately as possible. A method of measuring this would 

be to calculate PRD values across the wave components of the EGG and then the 

inter-beat durations separately using annotations to divide the signals appropriately. 

The algorithm which minimises the PRD for the EGG components (P-onset to T- 

termination), whilst providing a higher PRD for inter-beat durations (T-termination 

to next P-onset) can therefore be regarded as the most accurate. Note that in the 

absence of a set of annotations the user can segment the signal by visual inspection. 

Although this does not guarantee that the beat and inter-beat durations are exactly as 

described it should still offer a good approximation for the segmentation of the signal 

under analysis.

The application of partial PRD calculation shall be demonstrated using two test 

signals chosen from the PhysioNet QT Database of fully annotated EGG recordings 

discussed in Section 6.2. The two signals were originally contained in the Normal Sinus 

Rhythm Database as detailed by [80]. It is intended to demonstrate how two approx­

imations can yield the same total PRD value but significantly different partial PRD 

results. Approximations using the PLA and each variation of the SAPA-2 algorithms 

are generated for several signals that yield the same total PRD value. Each origi­

nal signal and its corresponding approximation are then segregated into accumulated 

EGG beat and inter-beat durations. The waveforms shown in Figure 6.20 are created 

by connecting the signals at annotated points.
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Figure 6.20: Segmented signal for partial PRD calculation

Partial PRD’s are calculated between each beat component of the original and 

approximated signals and each inter-beat segment of the original and approximated 

signals separately. The data shown in Tables 6.2 and 6.3 demonstrate how approxima­

tions which yield the same total PRD value can in fact provide significantly different 

partial PRD results.

As can be seen from Tables 6.2 and 6.3, despite each algorithm producing the same 

total PRD, they actually preserve the ECG beats and compress outlying inter-beat 

noise to quite different extents. The partial PRD can be used to observe not only how 

different approximation methods i.e. the PLA and SAPA algorithms preserve the signal 

but also to make observations with regard to variations of the same approximation 

technique (SAPA-2 in this case).

Observe from Table 6.2 that for low total PRD values of 0.5 to 1.0% the SAPA- 

2 algorithm results in a lower component PRD and a higher inter-beat PRD value 

than the PLA algorithm as required. However as the total PRD increases beyond 1% 

the PLA algorithm results in lower component PRD values than any of the SAPA-2 

algorithms. The conclusion can be drawn that for the #16272 signal the algorithm 

chosen for approximation depends on the overall amount of compression required.

Partial PRDs can also identify the subtle performance changes introduced by adding 

the variable error threshold and its modified version to the SAPA-2 algorithm. From
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Table 6.2: Partial PRDs for Test Signal # 16272

Total

PRD

%

PLA

Beat

PRD

%

PLA

Inter-

Beat

PRD %

SAPA2

Beat

PRD

%

SAPA2

Inter­

beat

PRD %

VTH-
SAPA2

beat
PRD %

VTH-
SAPA2
Inter­
beat

PRD %

MOD-
VTH-

SAPA2
Beat

PRD%

MOD-
VTH-

SAPA2
Inter-beat

PRD%

0.5 0.3 4.6 0.14 5.1 0.18 5.6 0.16 5.7

1 0.7 10.5 0.47 13.6 0.47 13.5 0.49 13.1

5 3.5 55 4.28 40 4.19 40.4 4.21 40.1

7 4.39 83.4 6.3 45 6.42 45.7 6.22 44.3

10 6.25 98 9.3 58 9.23 58.6 9.38 53.8

Table 6.3: Partial PRDs for Test Signal # 16539

Total

PRD

%

PLA

Beat

PRD

%

PLA

Inter-

Beat

PRD %

SAPA2

Beat

PRD

%

SAPA2

Inter­

beat

PRD %

VTH-
SAPA2

beat
PRD %

VTH-
SAPA2
Inter­
beat

PRD %

MOD-
VTH-

SAPA2
Beat

PRD%

MOD-
VTH-

SAPA2
Inter-beat

PRD%

0.5 0.4 5.56 0.28 8.19 0.28 7.65 0.28 7.68

1 0.85 11.2 0.74 12.5 0.76 12.7 0.69 12.7

5 3.91 49.8 4.57 40.6 4.81 41.4 4.55 45.3

7 5.32 73.8 6.44 50.2 6.33 49.9 6.18 53.6

10 8.32 87.3 9.1 67.8 9.06 71.1 9.09 65.9

Table 6.3 for example, it can be seen that the VTH-SAPA-2 algorithm provides similar 

component PRD values and some higher inter-beat PRD values than its original SAPA- 

2 and the MOD-VTH-SAPA-2 forms for most of the total PRD percentages.

Using only the total PRD calculation each of the approximations detailed in Tables 

6.2 and 6.3 would have been regarded as providing the same level of accuracy. It is 

thus shown how using partial PRDs further insight into approximation can be gained. 

The issue remains, however, that a low partial or total PRD value means that both 

of the signals had similar amplitude profiles overall but that does not ensure that the 

area around the fiducial points has not been distorted by the approximation.

6.5.6 DTW to Establish the Effects of Approximation

In annotating an ECG signal, a cardiologist will annotate the onset and termination of 

each component based on the shape and profile of the signal as observed simultaneously 

in one or many of the ECG recording leads. In order to achieve a genuine measure of 

what effect each algorithm has on the fiducial points and the ECG morphology around 

the fiducial points; dynamic time warping can be applied. The dynamic time warping
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algorithm shall seek to match the two test signals and their approximations using 

the PLA, SAPA, SAPA-2 algorithms and variable error threshold algorithms VTII- 

SAPA, VTH-SAPA2 and MOD-VTH-SAPA2. After the two signals have been warped, 

the location of the fiducial points from the original signal should ideally match with 

the corresponding sample number in the approximated signal, provided no significant 

altering of the signal morphology has occurred. The warping algorithm by its very 

nature will match the fiducial point in the approximation and the points surrounding 

it optimally to a similar section within the original signal.

If the warping algorithm matches the approximated fiducial point to a different 

point in the original signal then the morphology has been altered by the approximation 

such that the locations of the fiducial points originally identified by the cardiologist 

have now been changed in the approximated signal.

All ten of the Normal Sinus Rhythm signals available in the QT database were 

used to test the dynamic time warping algorithm. Five approximations yielding the 

same total PRD value for each algorithm and test signal were created and warped 

to the original signal. The mean error between the location of the original fiducial 

point and the optimum match in the approximated signal was calculated and along 

with the standard deviations of cardiologist annotation are shown in Table 6.4. Also 

provided in Table 6.4(g) is an estimate of the average compression ratio provided by 

each algorithm for each total PRD value. These compression ratios are calculated as 

the original number of sample points divided by the number of sample points retained 

for reconstruction after approximation.

6.5.6.1 Distortion of Clinically Significant Fiducial Points

The results in Figure 6.4 demonstrate that the algorithms have different mean error 

figures with regard to each fiducial point despite all approximation methods yielding 

the same total PRD calculation. To quantify the possible consequences of this section 

(f) in Table 6.4 is a measure of the clinical standard deviation in the annotation of the 

same ECG recording by different cardiologists as reported by Jane et al. [114].

Using the PRD versus compression ratio decision method all algorithms would 

have been classed as having maintained the same level of accuracy for a total PRD 

of 3.5% with the PLA providing a higher average CR of 8.4, more than any of the 

other algorithms [see section (g)]. The PLA algorithm would hence be chosen as the
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Table 6.4: Mean ± standard deviation errors due to approximation

(a) P-Onset (b) P'Tcrmination
Total

PRD%
PLA
(ms)

S.\PA
(ms)

VTH-
SAPA
(ms)

SAPA'2
(ms)

VTH'
SAPA'2

(ms)

MOD'VTH 
'SAPA-2 

(ms)

1>LA
(ms)

SAFA
(ms)

VTH-
SAPA
(ms)

.SAF.A'2
(ms)

VTH-
SAPA'2

MOD-VTH 
SAPA-2 

(ms)

O.OI -O.ltO.6 •0.110.6 O.OlO.O 0.010.0 O.OlO.O 0.010.0 O.OlO.O O.OlO.O O.OlO.O O.OlO.O O.OlO.O O.OlO.O
0.5 0.2±3.8 -0.213.2 0.313.7 0.714.2 0.915.3 0.814.3 0.010.9 O.Otl.l -0.111.2 •0.110.9 0.010.4 -0.211.0
1.5 1.2116.3 1.1116.3 1.4116.8 2.119.7 3.0111.4 1.919.6 -0.313.5 -0.812.4 -1.012.6 -0.712.9 -0.713.0 -0.813.0
2.5 3.6117.4 11.8122.9 11.0124.8 3.0114.9 2.9114.9 1.1+14.2 -2.217.7 -3.115.8 •3.216.0 -1.214.0 -1.214.5 -1.414.6
3.5 2.2+18.0 19.6123.7 17.0125.1 4.8115.3 8.6115.8 7.0114.5 -4.0113.8 -4.817.8 -5.3110.4 -1.815.4 -1.615.3 -1.616.4

(c) OR-S'Onsct (d) ORS'Tcrmination
Total

PRD%
PIA
(ms)

SAPA
(ms)

VTH-
SAPA
(ms)

SAPA'2
(ms)

VTH-
SAPA-2

(ms)

MOD'VTH 
'SAPA-2 

(ms)

PIA
(ms)

SAPA
(ms)

VTH-
SAPA
(ms)

SAPA'2
(ms)

VTH-
SAPA-2

(ms)

MOD'VTH
-SAPA-2

(ms)

0.01 O.OlO.O O.OlO.O O.OlO.O O.OlO.O O.OlO.O 0.010.0 0.010.0 O.OlO.O O.OlO.O O.OlO.O O.OlO.O O.OlO.O
0.5 0.312.6 0.012.5 -0.212.8 0.010.4 0.010.4 O.OiO.4 O.OlO.O 0.010.4 0.010.4 O.OlO.O O.OlO.O 0.010.4
1.5 1.016.9 0.318.4 0.418.9 0.612.2 0.812.5 0.712.3 0.110.8 0.010.7 0.010.9 0.010.6 0.110.8 0.010.6
2.5 1.8113.4 2.0112.3 0.019.9 1.314.1 1.614.2 1.213.6 -0.513.7 -O.ltO.9 -0.110.6 -0.211.3 -0.211.3 -0.111.2
3.5 2.7116.3 -1.1110.3 -0.6110.8 1.315.4 2.417.2 2.015.8 -0.714.0 -0.211.9 -0.512.1 -0.411.8 •0.411.7 -0.611.7

(e) T-Termination
Total

PRD%
PLA
(ms)

SAPA
(ms)

VTH-
SAPA
(ms)

SAP.A-2
(ms)

VTH-
SAPA-2

(ms)

MOD-NTH
-SAPA-2

(ms)

0.01 0.010.4 0.010.4 0.010.4 O.OlO.O 0.010.0 O.OlO.O
0.5 O.Oll.l 0.010.9 0.111.0 -0.111.1 -0.211.4 O.Oll.O
1.5 -1.014.9 -1.714.1 -1.514.6 -1.012.6 -1.012.6 -1.112.8
2.5 -2.016.5 -4.417.0 -3.816.0 -3.214.8 -3.014.5 -2.613.9
3.5 -1.716.9 •4.317.4 -4.217.5 -5.017.5 -5.418.4 -5.417.8

(f) Standard IVviation in
Cardiologist .Annotations

P'onset (ms) 110.2
P'termination (ms) 112.7

ORS'onset (ms) 16.5
ORS'tcrmination(ms) 111.6

T'termination (ms) 130.6

^ ) Mean Compression Ratio (C.R.)
PRn% PIA

(ms)
SAPA
(ms)

VTH SAPA
(ms)

SAPA'2
(ms)

VTH-
SAPA-2

(ms)

MOD-VTH 
-SAPA-2 

(m.)

O.Oi 1.2 1.2 1.1 1.0 1.0 1.0
0.5 2.5 2.2 2.0 1.2 1.2 1.2
1.5 4.9 4.3 4.1 1.8 1.8 1.8
2.5 7.3 6.2 5.8 2.5 2.5 2.4
3.5 8.4 7.1 7.3 3.2 3.0 3.2

optimum algorithm as it yields a higher CR and the same PRD accuracy.

However, it can be observed that for a total PRD of 3.5% the SAPA-2 algorithm 

preserves the QRS-onset with a mean and standard deviation error of 1.3±5.4 ms from 

its original location while the PLA preserves it to within 2.7±16.3 ms. The acceptable 

standard deviation around the resulting mean location of a fiducial point as assigned 

by expert annotators in the location of a QRS-onset point in an ECG recording is ±6.5 

ms. The SAPA-2 algorithm preserves the location of the QRS-onset to a lower mean 

error than the PLA and also has a lower standard deviation than the cardiologists while 

the PLA algorithm does not. Due to its higher compression ratio the PLA algorithm 

has in fact altered the location of the fiducial point beyond the range that applies to 

its annotation by different cardiologists, altering the clinically significant information. 

The PRD measure fails to detect this, ft is also now possible to quantify the distortion 

introduced to the location of the fiducial points in a meaningful fashion. With a CR of 

3.2 for the SAPA-2 algorithm, which equates to an average spline length of just three 

samples the distortion introduced into the signal is becoming significant when placed 

in the context of measured deviations in expert annotations. Conclusions regarding 

the effects of approximation for DDTW on the fiducial points can now be made.
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6.5.7 Conclusions Regarding the DDTW Algorithm

The principle of approximating or compressing a signal involves reducing the number 

of data points either to decrease transmission loads or in the case of DDTW to create 

shape features of the signal under test, ffowever, any approximation results in an 

inherent introduction of distortion within the signal. Having conducted a review of 

all DDTW methods which approximate signals, concerns have been raised regarding 

the effects of approximation. As such, a study of several ECG signal compression 

algorithms has been conducted to attempt to establish the possible adverse effects of 

approximating an ECG signal for use in the DDTW algorithm.

In order to quantify the loss of accuracy resulting from approximation, accuracy 

metrics were reviewed. PRD calculation vs CR has been criticised as a metric for 

comparing compression algorithms although it is the most commonly used. Using 

the author’s suggested partial PRD calculation it has become clear that two methods 

of approximation which yield the same total PRD value do not preserve the signal 

morphologies with the same level of accuracy. As such a more complex method of 

measuring distortion was required. The advantages of using DTW as proposed by 

the author are clear when one observes the insight gained into the accuracy of each 

approximation algorithm in Table 6.4.

From this study the author has decided that an approximation which would yield 

large enough spline lengths to capture the shape of a given region in an ECG signal 

would introduce distortion levels that exceed the variation between experts in the 

annotation of the fiducial points i.e. beyond clinically acceptable variation levels shown 

in section (f) Table 6.4. Admittedly, more accurate approximation algorithms may be 

available than those used here, but a much better algorithm would be required in 

order to reduce the distortion significantly whilst maintaining spline length. Even 

with increased accuracy the fact remains that approximation adds uncertainty as to 

the location of the fiducial points. The value based DTW algorithm, as with any 

pattern recognition method, contains its own measure of error as discussed. However, 

when warping the original and approximated signals to each other this is limited by 

the fact that the approximated signal is a relatively accurate representation of the 

original signal so that they will have similar offsets, peak amplitudes etc and hence the 

measured distortion of fiducial points when the original and approximated signals are 

aligned is as a result of approximation. The correlation between increased CR, total
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PRD level and resulting fiducial error imply that the error is indicative of increased 

approximation i.e. CR and not a systematic error of DTW.

The author believes DDTW is more suited to cases where shape matching of ECG 

signals i.e. for comparing shape variations of subjects with known arrhythmia to other 

subjects for diagnosis as opposed to the location of fiducial points. In this case the 

more accurate characterisation of the overall shape features of each wave and segment 

of the ECG signal at a cost of fiducial point position is more acceptable than in the 

author’s application. More modern applications of DDTW for shape matching reflect 

this [115].

6.6 Feature Based Dynamic Time Warping

In other fields of digital signal processing such as speech analysis and synthesis fea­

tures of the recording under test are extracted to gain more useful knowledge of the 

signal. These features typically involve transformation into another domain, such as 

the frequency domain and measures of power content in spectral bands are then used 

to find the occurrence of different sounds etc within the speech signal. Frequency do­

main analysis is not usually applied to ECG signals since all constituent features of 

the components lie within the same narrow band of 0.5-150 Hz approximately. The 

features of interest to the cardiologist or engineer working with the ECG signal are 

present and clear in the time domain (fiducial points, segments offsets etc), and for 

this reason the ECG signal is presented in the time domain for inspection. In essence 

value based DTW and DDTW are also a type of feature based DTW algorithm in 

that they warp the amplitude features or shape features of the two signals under test. 

However, extraction of time domain features beyond first derivatives, spline slopes or 

sample values of the signal to increase the accuracy of DTW has become the focus of 

resent research which are named feature based DTW (FBDTW).

Eeature based DTW is an attempt to overcome the limitations of the value DTW 

and DDTW methods. During the comparison of samples in each of the two signals, 

feature based DTW takes into consideration both the local and global features of the 

two signals. In doing so, it increases consideration of not only the overall shapes of 

the signals but also the local trend around the samples. The main issue with the use 

of feature based DTW is that it is very specific to the application and the signals 

under test. As such, it must be adapted and retrained by the user to suit the changing
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conditions and is computationally expensive. The trade off in the use of FBDTW 

remains between accuracy and computational speed. Feature based DTW is not yet 

suited to applications where the user is performing a significant amount of analysis, e.g. 

evaluation of an ECG database, or requires near real time results [78] although research 

is under way into increasing the speed of the process as reported by Xie et al. [91]. 

No results regarding the increased accuracy of FBDTW over the other methods on a 

significant number of ECG recordings are available, although Xie et al. have compared 

a modified value based DTW, DDTW and FBDTW algorithms for ECG using a small 

set of test signals from control, microelectronics, fabrication and video surveillance 

sources. In the course of early results DDTW provided “much worse performance” 

than the improved value based DTW and FBDTW algorithms and was omitted from 

the majority of their comparisons.

For the purposes of this research project the application of DTW is required in 

establishing the onset and termination of the fiducial points in the analysis of the 

timing information found in a significant volume of ECG recordings. Given this, the 

fact that there are not a large number of FBDTW algorithms available and the one 

which was found has not been tested extensively the author considers FBDTW less 

appropriate than the other forms of DTW for this research project.

6.7 Summary of DTW Investigation

In this chapter three types of DTW algorithm have been reviewed. The first type of 

value-based DTW, was found in the largest number of references particularly in the 

area of ECG analysis. The errors associated with value based DTW were highlighted 

and are based around the fact that the optimum alignment between the two signals 

under test is based on a Euclidean distance measurement of each sample in the signals. 

Without incorporating the local trends and global position of samples within the ECG 

wave value based DTW can provide unintuitive alignment as shown in Figure 6.9. 

However, this error can be greatly reduced by aligning features of the two signals such 

as aligning the start of each beat and scaling the peaks of the R waves pre-DTW. In 

doing so the user reduces the Euclidean distance difference of these features between 

the two signals to zero and hence ensures they are properly aligned in the two warped 

signals. When pre-processed correctly as in Eigure 6.11, the unintuitive alignment of 

the P termination points was removed. The author believes that this pre-processing
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could be extended to a type of composite normalisation to ensure similarity of other 

features in the signal such as P and T wave onset regions and peaks. Any singularities 

remaining in the signal should then be due to morphological differences between the 

two signals.

DDTW is based on extracting the principal shapes of the waves under test using 

first derivatives of points or approximation splines to characterise the shape of regions. 

Although theoretically this is an intuitive improvement of DTW, concerns regarding 

the loss of signal integrity due to approximation are not addressed in the literature. To 

investigate the effects of approximation on the true location of the fiducial points in an 

ECG signal a number of accuracy measurements were undertaken. The standard PRD 

calculation is heavily criticised in the literature but continues to be the most commonly 

used metric. The inaccuracies of the PRD method were exposed by partial PRD 

calculation. To measure the effects of approximation on the fidelity of identifying the 

fiducial points after approximation value based DTW was applied. This novel approach 

to testing the accuracy of ECG compression highlighted that even at relatively low CR’s 

the standard deviation of the error between the original and approximated location 

of the fiducial point approached the bounds of acceptable deviation between expert 

annotations. DDTW is better suited to cases where the objective is to characterise the 

overall shape of components within the signal rather than for the location of specific 

points.

A little misleading in its name, since value and DDTW warp features of each signal 

also, FBDTW attempts to characterise each point with respect to the points around 

it and its position in the global or overall signal. The literature explains that the 

algorithm must be retrained to work adequately with different signals which increases 

time constraints of using the algorithm. This is a concern the creators of FBDTW for 

egg’s are currently trying to address. Suitability of this variation of the algorithm to 

ECG processing has not been found in a large number of cases in the literature. Given 

the intention to apply the algorithm to a large cohort of subjects and recordings in this 

research FBDTW is not considered appropriate.

Another note to be taken from review of the DTW literature is that the most 

appropriate match between the unknown query and reference signal for classification is 

typically found by choosing the one with the minimum cumulative difference between 

the two signals, be it a Euclidean distance difference or a difference in first derivative or 

slope, or a residual voltage measure after DTW has been applied. The author believes
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that the choice of the best match between a query and a number of reference signals 

could also be based on other features such as the amount of time warping required and 

perhaps features of the two signals known a priori such as the heart rate of the two 

signals. A classifier incorporating the residual difference after warping, amount of time 

alignment required and a priori knowledge of the signals could increase the accuracy 

of any DTW process be it value, derivative or feature based.

The author believes that value-based DTW can be used very accurately for the 

objective of this research if the signals are pre-processed correctly and a multiple feature 

based classifier is used to find the the best match possible between the query and 

reference signals. Improved methods of pre-processing the signals and classifying the 

results of DTW shall be explored in the next chapter.
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Chapter 7

Improved Pre-Processing and 

Classification for Value Based DTW

7.1 Introduction

In this chapter a method of pre-processing the query and reference signals known 

as “Composite Normalisation” is proposed to overcome the limitations of value based 

DTW. The benefits of composite normalisation are tested using the 719 reference beats 

available for test as discussed in Chapter 6. Using composite normalisation singularities 

and ensuing unintuitive errors are greatly reduced by minimising the Euclidean distance 

between distinct features of the two signals pre-DTW. Remaining differences between 

the two signals are hence mostly inherent morphological differences which exist between 

them.

Pre-processing composite normalisation increases the accuracy prior to DTW. How­

ever, the accuracy of DTW can also be increased by classifying the best match between 

a query and reference on the basis of multiple features of the two signals. A time do­

main based classifier which includes a measure of similarity between the signals based 

on heart rate, required time alignment during DTW and resulting residual amplitude 

difference between the two after DTW is presented. The benefit of using this multi- 

feature classifier over just a single difference measurement is examined by tests using 

the 719 reference signals. A method of further increasing the accuracy of finding the 

fiducial points for the QRS complex is also suggested.

The chapter concludes having combined the value based DTW algorithm with com­

posite normalisation and a multi-feature classifier to optimally find the location of the
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fiducial points in a query signal. This process shall bo used in Chapter 8 to investigate 

the time characteristics of the constituent ECG components in the Nasor exercise ECG 

signal database discussed in Chapter 5.

7.2 Composite Normalisation

Some of the theory and results in this section are included in an article published by 

the author in [116].

In most of the DTW articles discussed in Chapter 6 both the query and reference 

signals are amplitude normalised such that the R-peak of each signal have the same 

value. This method of standard normalisation which was illustrated in Chapter 6 is 

shown in Figure 7.1. For illustrative purposes the same two signals shall also be w'arped 

having undergone composite normalisation.

Reference Signal Query Signal

20 40 60 eo IX 120 140

TIME (SAMPLE/S')

Figure 7.1: Standard Normalisation

This is a linear amplitude normalisation given by Equation (7.1) and does not 

distort the morphology but merely increases the match between the two QRS complex 

amplitude profiles pre-DTW. For the single beat query and reference signals q(t) and 

r(t) in Equation (7.1) the amplitude normalisation is given by:
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QN ormalized{t^
max [r(t)]

Q{t) (7.1)max [(/(t)]
This standard normalisation will not however, serve to minimise the difference 

between the P and T waves of reference and query signals. So, even if the shape and 

profile of the two signals are similar, the R-peak normalisation process could infact 

change their amplitudes in such a way as to increase the Euclidean distance between 

them pre-DTW.

By the same token it can be argued that the normalisation process should normalise 

the P, QRS and T waves and warp the resulting query and references signals separately 

for each. The ECG signal can be segmented into regions approximately around each of 

its constituent components using a segmentation technique suggested by Olmos et al. 

[117], and the value of the extrema features of the P and T waves used to amplitude 

align the signals for composite normalisation. Note it cannot necessarily be assumed 

that the maximum value of the waves can be used for normalisation, as there are 

also signals with inverted components such as the T wave inversion shown in Figure 

7.2. Segmentation into windows is only required to find the extrema for composite 

normalisation. The signals are not segmented before DTW i.e. complete ECG cycles 

are still warped to each other at this stage as shown in Figures 7.1, 7.3 and 7.4.

Figure 7.2: Composite Normalisation feature extraction

Composite normalisation is accomplished using three different amplitude aligned 

query signals:

QPnormij^') f{PEx)
q{PEx) Qit) (7.2)
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QRnormify
T ( Rpk )

QiRpk) 9(0 (7.3)

QTnormi,^')
r{TEx)
q[Tex) 9(0 (7.4)

Figure 7.3 is an example of the same two signals as in Figure 7.1 but with the P 

waves of the query and references normalised together using Equation (7.2).

MO&Ha

TIME (SAMPLE#)

Figure 7.3: Warping of qpnorm with reference signal

It is clearly evident from Figure 7.3 that normalising the P waves has resulted in a 

better warping of the query and reference P waves. R-peak normalisation by Equation 

(7.1) is identical to standard normalisation so its resulting output is the same as in 

Figure 7.1.

Figure 7.4 shows the result of warping query and reference signals with normalised 

T waves using Equation (7.4). Again it is clear that normalising the T waves has 

improved the accuracy of the warping of these components.
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M
Q

5

TIME (SAMPLE/O

Figure 7.4: Warping of qTnorm with reference signal

This composite method of amplitude normalising the signals pre-DTW appears 

visually to increase the accuracy of the warping process.

7.3 Increased Accuracy due to Composite 

Normalisation

The benefit of the composite normalisation technique being applied pre-DTW shall be 

investigated by taking each of the reference beats and comparing them with the other 

beats available in the same recording from the reference database and then with all 

other signals in the database. The two test signals are normalised pre-DTW first using 

standard R-peak normalisation and then using the composite normalisation technique.

7.3.1 Warping using Similar Signals

In this case, the true fiducial points as annotated by the expert cardiologists are known 

for both the reference and query signals so the error between the true fiducial points 

and the fiducial points identified by the DTW' algorithm in the query signal can be 

measured. In order to observe the effects of the alternative pre-processing techniques 

we approach it in two steps. The mean and root-mean-square-error (RMSE) in the
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estimated location of each fiducial point resulting firstly, from comparisons with each 

signal in the same recording (see Table 7.1) and secondly, with every other beat in the 

reference database were calculated separately. This examines the proposed benefit of 

composite normalisation for constituent waves with similar and significantly different 

amplitudes. The signals from the arrhythmia and normal sinus rhythm databases are 

morphologically quite different and hence results are divided into P, QRS, T wave onset 

and termination points for each database. The results below are measured as mean 

± root-mean-square-error (RMSE) values. RMSE is used here because it is a measure 

of variance around the expertly annotated estimate of the fiducial point location as 

opposed to mean ± standard deviations, where standard deviation is a measure of 

variance around the mean error in the locating of the fiducial point as determined by 

the algorithm [83]. Standard deviation and RMSE are often used interchangeably since 

in an unbiased system they are the same.

Table 7.1: Results for Arrhythmia signals within the same recording

Fiducial Point Standard
Normalisation

Composite
Normalisation

P-Onset(ms) -4.35±44.8 2.00141.35
P-T ermination(ms) 2.37±51.7 -1.09142.63

QRS-Onset(ms) -16.55151.83 -16.55151.83
QRS-T ermination(ms) -16.21153.37 -16.21153.37

T-Onset(ms) 1.23167.80 5.13156.58
T -T ermination(ms) 0.53145.74 -1.61141.86

Table 7.2: Results for Normal Sinus Rhythm signals within the same recording

Fiducial Point Standard
Normalisation

Composite
Normalisation

P-Onset(ms) 7.01128.43 6.92127.74
P-Termination(ms) -3.33123.20 -3.57122.94

QRS-Onset(ms) 5.98123.72 5.98123.72
Q RS-T ermination(ms) -4.48122.18 -4.48122.18

T-Onset(ms) 4.04137.43 4.82137.21
T -Termination(ms) -6.50128.50 -6.18128.01

When analysing the data one must take into consideration that the sampling period 

of the signals is 4 ms. With this in mind the mean estimate errors shown in Tables 7.1 

and 7.2 have very little difference (less than one sample in each case) using either pre­

processing technique. One can however, see that the composite normalisation technique 

does yield a lower RMSE for each fiducial point, significantly so by >9 ms in the case
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of the arrhythmia P termination and T onsets which would indicate increased stability 

of the algorithm. The benefits of composite normalisation should become more clear 

when signals with significantly different P and T wave amplitudes are warped to each 

other.

7.3.2 Warping all Reference Signals

The results in Tables 7.3 and 7.4 are again divided into signals taken from the Ar­

rhythmia and Normal Sinus Rhythm databases to enable a more specific view of the 

effects of the pre-processing techniques.

Table 7.3: Results for warping to all Arrhythmia signals

Fiducial Point Standard
Normalisation

Composite
Normalisation

P-Onset(nis) -8.23±58.00 -2.25146.00
P-Termination(ms) 9.66±58.83 1.1.3153.50

QRS-Onset(ms) 26.17162.84 26.17162.84
QRS-T ermination(ms) -61.101118.54 -61.101118.54

T-Onset(ms) -19.651120.17 13.231108.20
T-Termination(nis) 10.45189.15 6.44175.32

Table 7.4: Results for warping to all Normal Sinus Rhythm signals

Fiducial Point Standard
Normalisation

Composite
Normalisation

P-Onset(ms) 13.44156.68 6.52141.68
P-Termination(ms) -18.45148.81 -16.92146.46

QRS-Onset(ms) 2.79141.46 2.79141.46
QRS-T ermination(ms) -16.34167.66 -16..34167.66

T-Onset(ms) 23.79195.80 10.79184.60
T-Termination(ms) 20.53183.35 5.21163.91

As predicted, the composite normalisation technique has produced mean error and 

RMSE values significantly lower than standard normalisation. It allows reference and 

query signals of similar morphology but significantly different amplitudes to be warped 

more accurately. This is achieved by aligning the common features within the two 

signals pre-DTW such as the initial offset at the beginning of each beat, the P, R 

and T peaks. The remaining error is primarily due to differences in the actual signal 

morphologies.
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7.3.3 Conclusions Regarding Composite Normalisation

The database of reference real ECG recordings with significant morphological variation 

has been used to test the composite normalisation method. Pre-processing the signal 

using standard and composite normalisation has been compared when warping signals 

of similar morphologies and signals with significantly different P and T wave ampli­

tudes. For signals of similar amplitude and morphology the mean estimate errors have 

less than one sample difference for any fiducial point using either method. There is a 

significantly lower RAISE for the composite normalisation method in the case of the P 

wave termination and T wave onset. The true benefit of the composite method of nor­

malisation becomes apparent when warping signals of different amplitude levels, where 

improved mean estimate and significantly lower root-mean-square errors are recorded 

for all fiducial points.

7.4 Classifying the Results of DTW

A peer reviewed paper published by the author [118] is based on the material and 

results discussed in this section.

The process of establishing which reference signal the query is most similar to is 

known as classification. There are a number of methods used to classify the most 

accurate match between the query and a reference signal. Many researchers [92, 93] 

use a multi-layered approach whereby, when warping the signals, the reference signal 

identified as the closest match is the one which provides the minimum slope differences 

between approximation splines during warping. Others [85] use the residual difference 

between the query and reference to perform the classification of the signals post-DTW. 

Although these methods of classification are popular, they have the limitation of being 

dependent on just one feature of the signals.

To overcome this limitation some users have combined other analysis techniques 

with DTW such as Fisher’s Linear Discriminant Analysis [78] to further increase the 

accuracy of the classification process. In this section it shall be shown how using a 

classifier that takes into account the signal heart rates, the amount of time alignment 

required around the fiducial points of the ECG signal during DTW and the resulting 

residual amplitude difference between the query and reference signals can aid in the 

classification process. The classification is not unduly complex, as all of the features
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used are based in the time domain and hence, is not computationally intensive.

7.4.1 The Classifier Features

The classifier consists of three time domain features with respect to the query and 

reference signals. Each must be combined with a weighting constant before being used 

in the classifier equation. The assumption before using the classifier is that the query 

has been warped to every signal in the reference database and the objective is to analyse 

each template match and select the most similar reference signal.

7.4.1.1 Heart Rate of the Query and Reference Signals

The first feature to be included is the relationship between the heart rate of the original 

signal and the reference signal. This can be considered as a global feature of both 

signals since the total frame length and duration of each component is correlated with 

the cardiac cycle time for the particular beat. The difference between the heart rate of 

the current query and reference is expressed as a fraction of the maximum heart rate 

difference between the current query signal and the reference with the least similar 

heart rate in test database. The heart rate variable X is given by:

Y ^ \Qhr - Rhr\
n\ax\QHR- RdHR\

Where Qhr and Rrr are the heart rates of the query and reference signals respec­

tively, and Q/r/e—Rd///j is the difference between the current cpiery beat heart rate and 

the reference signal with the least similar heart rate i.e. the maximum difference.

7.4.1.2 Time Alignment Required around the Fiducial Points

The second feature to be included in the classification criteria accounts for the alteration 

of the test signal’s time scale around the fiducial points, i.e. onset or termination of a 

constituent wave during time alignment. The duration of each constituent wave and 

hence the location of these points is diagnostically significant [2]. Identification of these 

points is the objective of applying DTW in this instance, hence, it is desirable that the 

query and reference signal are similar to each other in these regions before alignment.

Of course it is possible that the morphologies are similar but require compression 

or expansion to align them in time as is the purpose of the DTW algorithm. However, 

significant alignment or repeated singularities would imply that the morphologies of
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the two signals arc in fact very different, given that all waves are normalised pre-DTW 

using composite normalisation. The variable Y is calculated for each constituent wave 

of the current signals under comparison and is defined as the total padding inserted 

within ±6 samples of the onset and termination of the P, QRS and T waves of the 

current query and reference signal. The variable is expressed as a fraction of the 

maximum padding inserted during warping of the current query to the reference signal 

in the database which required the most time alignment around the fiducial points 

during DTW.

r = I (7 6)

Where Pq and P^ is the time scaling or number of samples inserted within ±6 sam­

ples of the onset and termination of the current query and reference signal respectively 

during DTW. Pa/o and Pa/t are the total padding required during time alignment 

between the current query and the reference signal from the database that required 

the maximum amount of time alignment around the fiducial points.

7.4.1.3 Residual Difference of Query and Reference after DTW

The purpose of this feature in the classifier is similar to the residual or difference mea­

surements used in [85, 92, 93]. The peaks of the query and reference signals should be 

amplitude normalised by composite normalisation pre-DTW. After dynamic time warp­

ing has been performed one can measure the remaining amplitude diflercnce between 

the query and reference signal components and take this as a measure of similarity be­

tween the two signals. In this case the root-mean-square difference (RMS-difference) is 

used to measure the amplitude difference between the time aligned query and reference 

signals. For each of the constituent waves of the signal i.e. the P, QRS and T waves of 

the heart beat under analysis a RMS-difference variable Z is calculated as:

Z =

1
E |fl(i) - (3(i)l'
i=k

t
i=k

X 100 (7.7)

where Q and R are the query and reference signals respectively, k is the onset sample 

number and n the termination sample number of the EGG constituent component being 

analysed. The RMS-difference provides a measure of the similarities of the two signals 

in amplitude terms after they have been time aligned.
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7.4.2 The Classifier Equation

The classifier uses a root of the sum of the squares of the features X,Y and Z to rank 

each of the results between the query and the signals in the reference database as shown 

in Equation (7.8):

Cn = ^C,{X) + C2iY) + C3{Z) (7.8)

Where C/j is the resulting classifier rank, X, Y and Z are the feature variables and 

Cl, C2 and C3 are the feature weights. The feature values X,Y and Z are fractions 

of independent measurements and hence will have very different scales. To scale the 

feature coefficients correctly the feature scalars or weights can be used to find a balanced 

combination of the coefficients [84]. A classifier rank is created for the P, QRS and T 

wave of each query to reference match. The match which yields the minimum ranking 

for a particular component is selected as the best match for that component. Before 

testing the classifier’s ability to discriminate between the good and poor query to 

reference matches the coefficients must first be weighted optimally.

7.4.3 Optimising the Scaling Coefficients

In order to find the most accurate combination of scalars to weight the contribution 

of each feature, the coefficients Ci, C2 and C3 shall be adjusted from 0 to 1 in 0.167 

increments. Starting with C3, C2 and finally Ci all combinations of the scaling weight 

coefficients can be tested. For each combination of scaling coefficients each one of the 

719 reference signals is warped to the other 718 samples in the annotated database. 

The best match is selected using the classifier with each set of weights. The error 

between the location of the expertly annotated fiducial points and the ones from the 

query to reference warp selected by the classifier is then recorded.

Figure 7.5 is a plot of the total root mean square error (RMSE) in the identification 

of the fiducial points in all of the 719 test signals for each combination of the scaling 

coefficients. It can be clearly seen that each feature has an effect on the accuracy of 

the classifier. Note how after the 49*^ combination, where Ci (X) is increased from 

0 to 0.167, there is a large reduction in the RMSE because the heart rate constraint 

has been introduced to the classifier. One can also see that at every 49*^ combination 

from here on the error spikes to a peak as C2 (Y), the measurement of padding around 

the fiducial point is removed when C2 returns to zero. The final constraint Z, the
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RMS-diffcrcnce or residual between the query and reference constituent P, QRS and T 

waves is reset to zero every combination as the coefficient C3 is returned to zero. By 

observation of the resulting RMSE in Figure 7.5, it was found that to achieve minimum 

RMSE (providing minimum error and maximum stability) a coefficient combination 

Ci=0.333, C2=0.833 and €3=1.0 should be used to scale or weight the contribution of 

each feature to the classifier. If the process was repeated with a larger database and a 

larger variety of morphologies at different heart rates one might expect the weights to 

vary accordingly.

7.4.4 Accuracy of the Improved DTW Process

The test signals originating from the Normal Sinus Rhythm and Arrhythmia Databases 

are again examined separately since they offer significantly differing morphologies. The 

value based DTW algorithm combined with composite normalisation and the classifier 

is tested for its ability to locate hducial points and resulting P, QRS and T wave 

durations. Note that 1.5% of the query/reference matches were deemed as obvious 

errors and removed before the subsequent analysis shown here.

The results in Table 7.5 are the mean and standard deviation of error between 

the annotated location of the fiducial points and those identified using DTW. Mean 

± standard deviation is used as a measure of accuracy here to allow comparison to 

previously published estimates of acceptable standard deviations found in expert an­

notations of the same fiducial points. These deviations are regarded as acceptable by
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different cardiologist assessors of the same points as reported by Jane et al. which 

serve as a bench mark for assessing the performance of the automatic algorithm [114].

Table 7.5 demonstrates that the mean errors resulting from the algorithm are low, 

particularly if one considers that with a sampling frequency of 250 Hz a mean error 

of 4 ms is just one sample. Comparing the standard deviations of error for the algo­

rithm with the deviation of expert cardiologist opinion one can see that the algorithm 

deviations are within ±12ms or ±3 samples. The algorithm deviations are higher for 

some of the fiducial points. This is because the expert deviations are those of experts 

viewing the same beats while in the case of the algorithm it is matching a different 

annotated reference beat. The component with the least accurate results when put in 

terms of acceptable deviation is the QRS complex and this shall be explored further in 

the next section.

Table 7.5: Mean and standard deviation of the DTW and classifier error compared with expected 

expert deviation

Fiducial Expert Normal-Sinus Arrhythmia (ms)
Point (ms) Rhythm (ms)

P-Onset ±10.2 -2.05±17.23 -0.64± 16.44
P-Termination ±12.7 2.48±13.30 5.23±17.47

QRS-Onset ±6.5 0.71±11.20 2.11±18.38
QRS-T ermination ±11.6 1.75±10.83 5.07±14.78

T-Onset N/A -11.39±29.0 12.1±31.71
T-T ermination ±30.6 6.76±14.87 6.03±27.62

To further investigate the accuracy of the DTW classifier process an investigation 

how well the duration of the P, QRS and T waves from each signal can be measured 

is required. In Figure 7.6 the duration of each component as annotated by the expert 

cardiologists for each wave has been averaged over 6 bpni intervals. Also shown is the 

mean ± one standard deviation of the durations for each heart rate interval to give 

an idea of the variation in how the expert annotated the different waves for the same 

heart rate interval. One would hope the results of the warping process would lie within 

the deviations that exist between expertly annotated durations to provide comparable 

accuracy to annotation by cardiologist experts.

The results in Figure 7.6 prove that the combination of composite nomralisation, 

value based DTW and the time domain classifier enable an accurate automatic mea­

surement of the duration of each constituent waveform for the signals in the database. 

Similar results for the Normal Sinus Rhythm test signals are shown in Figure 7.7. The
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Figure 7.7: Normal Sinus Rhythm constituent wave durations as detected by DTW

mean durations as measured for each 6 bpm interval using the DTW process lie less 

than one standard deviation from the mean duration as measured by the experts.

7.4.5 Conclusions Regarding the DTW Process

The author has suggested a classifier that uses a time domain based combination of 

features including heart rate, degree of warping required and an amplitude difference
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measurement. In doing so the DTW method is still used to warp and time align the 

two signal frames as accurately as possible, but the reference providing the best match 

is chosen using a number of features from the query and reference signal rather than 

just a single measurement.

The increased accuracy due to the addition of each feature in the classifier was 

demonstrated. The contribution of each feature to the classifier was optimized to 

achieve minimum error by weighting each feature’s contribution using scalar coeffi­

cients. The performance of the DTW process was verified by comparison with expert 

identification of diagnostically significant information from signals within the reference 

database. It was shown in Table 7.5 that the component least accurately measured by 

comparison to acceptable deviations is the QRS complex. Based on this an alternative 

method of warping the QRS complexes is required.

7.5 An Alternative Approach to Warping the QRS 

Complex

The author suspects that the error in the case of the QRS fiducial points is due to 

the short duration, low amplitude characteristics that can effect the QRS complex 

morphology. The low amplitude Q and S waves which precede and follow the R peak 

of the complex in some recordings could be misaligned quite easily since the Euclidean 

distance between a QRS complex with and without them may be very small. They 

are also very short in duration so the classifier may also fail to detect an unintuitive 

alignment in the QRS onset and termination regions after warping for the same reason. 

To increase the accuracy of the process an alternative approach to warping the QRS 

complex is required.

7.5.1 QRS Morphology Classification

As discussed in Chapter 1 the QRS complex of a healthy subject’s recording may or 

may not have Q or S waves which are minor deflections from the iso-electric baseline. 

Having viewed the ECG reference signals selected for this study and the recordings 

made by Nasor et al. it appears that in healthy subjects the QRS morphology remains 

consistent for the duration of a subjects recording. Classifying each QRS morphology 

shape pre-DTW and only warping similar shapes may increase the accuracy of the
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process i.e. if a query signal has an RS morphology only reference signals with an RS 

morphology should be warped to the signal. The QRS complexes shall also be warped 

separately from the rest of the wave. Since the Q and S waves are comparatively low 

amplitude waves, DTW may misalign them if it results in a lower Euclidean difference 

between the much larger R-peak up and down slopes of the query and reference signals. 

So isolating the QRS waves before warping should limit the effects of the other features 

on the warping of the QRS.

The author decided to group the QRS complex shapes into four classes:

1. Class 0: Where the R peak has no clearly defined Q or S waves before or after it 

respectively.

2. Class 1: Where the R peak is preceded by a Q wave but not followed by an S 

wave.

3. Class 2: Where the R peak is followed by an S wave but not preceded by a Q 

wave.

4. Class 3: Where a full QRS complex is present i.e. including Q and S aves.

Classifying the signals visually is quite simple but an algorithm has been developed 

to aid in determining the QRS complex class and also the approximate location of the 

Q onset and S termination. These approximate values are used to window around the 

QRS complex wave so that they can be warped separately from the rest of the query 

and reference signals. The algorithm written in Matlab to classify the QRS shape is 

commented and included in Appendix A. The algorithm approximates the signal using 

the SARA algorithm described in Chapter 6 to remove any spurious picks in the signal. 

The error threshold was fixed at 5 mV to accurately preserve the ECG morphology. 

The difference between each point and its adjacent one in the approximated signal 

is found to establish the trend of the data points i.e. up or down slopes. The QRS 

peak is found and an estimate for the beginning of the QRS up-slope and end of the 

down-slope locations are made based on the difference values found and the subsequent 

trends in the data. The thresholds for determining up and down slopes in the signal 

can be adjusted empirically by the user to ensure correct classification of the signals 

under test. Once the beginning of the QRS up-slope (or peak of the Q wave) has been 

determined the preceding 5 data points are searched for the maximum amplitude. The
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same is repeated to find the end of the QRS down-slope (peak of the S wave) and the 

maximum amplitude within the 5 samples immediately following it. If the amplitude 

difference between the R up and down slopes and the maximum values surrounding 

these points exceeds 30 mV a Q or S wave is considered to be present. Again by 

analysing the trends in the difference values between points the onset of the Q and end 

of the S waves can approximately be found. An example of a Class 3 input signal and 

its difference values are shown in Figure 7.8.

■3
3
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E

Figure 7.8: Example of QRS classification process

Shown in Figure 7.8 are the onset of the Q and termination R waves. Also shown 

is the beginning and end of the R wave up and down slopes, or extrema of the Q and 

S waves, as found by the algorithm.

The algorithm is limited in that it requires user intervention for significantly dif­

ferent morphologies. However, the author has tested the algorithm on the reference 

database and found that it can be used to classify accurately the four different QRS 

wave types and give approximate locations of the start and end of the QRS complex. 

When windowing around the QRS for DTW a tolerance of ±3 samples is also added 

to the approximate onset and termination points to ensure the entire QRS complex is 

included in the analysis. An example of the four different morphology classes and the 

approximate onset and end points for the QRS complexes as found by the algorithm 

are shown in Figure 7.9. The onset and termination points at this stage are only for 

windowing purposes. The actual location of these fiducial points will still be found 

more accurately subsequently using DTW.
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Figure 7.9: QRS classes and approximate onsets and terminations as found by the algorithm

Each query signal QRS morphology can now be classified and warped with reference 

signals of similar morphology.

7.5.2 A New QRS Warping Method

In an effort to increase accuracy the QRS complex is extracted from each query and 

reference ECG beat by windowing around the wave using the approximate points found 

during the morphological classification stage as shown in Figure 7.10 to allow it be 

examined separately.

Once the peak of the new QRS segment is determined, the up and down slopes can 

be split further into two different segments. The purpose of this is two-fold. Firstly 

the classifier can now be used to measure the accuracy of a query to reference warp 

for the up and down slopes separately. Secondly the offset at the beginning of the up 

slope and end of the down slope of the query and reference signals within the windows 

can be removed to ensure the onset and terminations points of each are aligned. The 

seperated up and down slopes of the same signals shown in Figure 7.10 are shown in 

Figure 7.11 before and after warping.

In theory the QRS complex should be warped more accurately now that the offsets 

have been removed and the up and down slope warps can be performed with the results
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Figure 7.11: Figure 7.11a shows the up-slopes of the QRS before and after DTW. Figure 7.11b the 

down-slopes before and after DTW
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classified separately. A point for the approximate beginning of the ST segment is now 

also known and could be used to remove offsets between the query and reference signal 

ST segments and T waves before composite normalisation and DTW is applied. This 

approach is not suitable for the P and T waves since it is not as easy to class the P 

and T waves into distinct groups nor find the approximate locations of the onset and 

termination of the waves.

7.5.3 Testing the Final Accuracy of the DTW Process

The DTW process as proposed by the author is now complete. In order to test the 

accuracy of the now complete DTW process a subset of signals from the reference 

database are examined. This subset of reference signals is also used in Chapter 8 in 

the characterisation of the constituent component durations. The purpose of this is 

to remove poor quality reference signals and reduce processing time. The reduction 

in the number of the reference signals should not reduce the accuracy of the process 

since the same variety of morphologies is present, only beats which are very similar to 

each other morphologically have been removed. Another benefit of using this subset 

of signals to test the algorithm is to establish how accurately the process can classify 

a larger database of query signals using a smaller set of reference signals. From the 

original 719 reference signals Table 7.6 shows the total number to be used as references 

for the remainder of this research:

Table 7.6: Selected Reference Signals

Component
Quantity of 

Reference Signals
P Wave 201

QRS Class 0 25
QRS Class 1 32
QRS Class 2 101
QRS Class 3 65

T Wave 140

So now instead of each query P wave being warped with 718 reference signals it is 

warped to 201 reference signals and the best match chosen, each Class 0 QRS query 

complex is warped to 25 reference signals etc. The accuracy of the entire process is still 

tested using each of the original 719 reference signals as queries, but comparing them 

with the smaller subset of reference signals as defined Table 7.6. The test results of
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the final complete process are shown for the Normal Sinns Rhythm, Arrhythmia and 

both sets of signals combined in Table 7.7.

Table 7.7: Final testing of the algorithm

Fiducial Expert Normal-Sinus Arrhythmia Combined
Point (ms) Rhythm (ms) (ms) (ms)

P-Onset ±10.2 2.21±12.21 3.08±15.85 2.68±14.01
P-T ermination ±12.7 4.01±13.55 1.91±16,58 3.05±15.21

QRS-Onset ±6.5 2.76±8.01 -0.18± 10.40 1.38±9.31
QRS-Termination ±11.6 3.17±8.48 -2,20±14.91 0.65±12,20

T-Onset N/A -13.09±24.02 -7.5±27.52 -10.48±25.78
T-T ermination ±30.6 0.48±15.48 -1.20±20.91 -0.34±18.28

When compared with Table 7.5 it can be seen that for all except the QRS termi­

nations point in the case of Arrythmia signals there has been a significant rt'duction 

in the standard deviation of error in determining the QRS fiducial points, while the 

mean error has remained at less than 4 ms (1 sample). Warping the QRS complex 

having first classified the morphology of the query signal and testing the QR and RS 

waves separately has reduced the error reported in Table 7.5. Note also that the P 

and T wave fiducial points have also been found with similar or better accuracy, using 

the smaller subset of references as defined in Table 7.6. In the case of the P wave, 

the overall reduction in the standard deviation of error is most likely to be due to the 

removal of poor quality signals from the reference database. In the case of the T wave 

fiducial points, the ability to approximate the location of the start of the ST segment 

allows the removal of offsets in this region in both the query and reference signals before 

composite normalisation, thus allowing a better alignment.

Importantly, the final figures for mean and standard deviation for all signals at­

tainable by the modified DTW process are also shown in Table 7.7. The accuracy of 

the algorithm cannot be compared adequately to other DTW algorithms since many 

of the articles found in the literature have not included results for the determination 

of fiducial points in the ECG using a database of reference signals [78, 85, 90, 91]. 

Other algorithms are tested, depending on the intended application of the algorithm, 

using different databases such as the The Common Standards for Electrocardiography 

(CSE) database [119], and alternative subsets of the Physionet QT database e.g. sud­

den death and supraventricular arrhythmia recordings [92, 93]. Therefore, figures such 

as mean and standard deviation errors cannot be compared directly.

The intended application of DTW in this project is to find the time characteristics
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of the constituent components of subjects having healthy ECG recordings and 719 test 

signals were chosen as they had been defined as showing normal sinus rhythm and 

are therefore the most appropriate. Finding the onset and termination or the fiducial 

points of the ECG components in a clinical setting may be assisted by automatic 

algorithms but the final analysis is performed by cardiologists. Therefore, the most 

suitable criteria to use to assess the accuracy of the algorithm is a comparison with 

expert deviations in annotations made by these experts as a benchmark. The figures 

shown throughout this Chapter for expert annotation of signals from the QT database 

have been provided by the creators of this database [80, 114] to provide that accuracy 

bench mark.

When compared with the standard deviation expected from multiple cardiologist 

annotations of the same signals it is clear the results of the DTW process are favourably 

comparable. In identifying all fiducial points the algorithm has either a lower standard 

deviation or a higher standard deviation of less than 4 ms greater than the expert 

deviations which in terms of the reference signal sampling rate (250 IIz) this is a 

difference of less than 1 sample. One must also consider that the expert deviations are 

differences in the annotation of the same beat, where as when testing the algorithm 

a different reference wave is used to annotate the query signal which will lead to an 

inherent deviation in the annotation of the fiducial points.

7.6 Conclusion

The concerns regarding the value-based DTW algorithm raised Chapter 6 have been 

addressed in this chapter. A composite method of normalising signals pre-DTW has 

been proposed and tested by the author. It has been shown to reduce the resulting 

errors associated with the use of value-based DTW, particularly when warping signals 

which have similar shape but different amplitudes.

Previously, the best match between a query and a reference signal has been found 

by choosing the one which results in the minimum difference between the two after 

warping. It was shown in Chapter 6 however, that often a dynamically optimised 

match can still result in unintuitive alignment of the signals. A time domain based 

classifier has been introduced by the author to measure the accuracy of a match between 

two signals after DTW. Rather than being based on a single feature e.g. a Euclidean 

difference, slope difference or residual amplitude the classifier is multi-featured. It has
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been shown that each feature contributes to the accuracy of the classifier and that 

when combined with DTW it accurately determines the component durations of the 

ECG recordings in the test database.

Having combined value-based DTW with composite normalisation and the new 

classifier the author was still concerned with the resulting error deviation for the QRS 

fiducial points and the fact that it was significantly larger than found in expert de­

viation. A new method of classifying the QRS morphologies prior to DTW, and seg­

menting the signal to remove offsets to ensure the best query to reference warp was 

suggested. The classification of the QRS pre-DTW also allowed the removal of offsets 

from the ST segment to aid in ST segment and T wave warping.

A final subset of the original 719 test signals were chosen to remove poor recording 

quality reference signals and reduce processing time. A subset of reference signals was 

then used to find the fiducial points in all 719 signals. The entire process as described 

in this chapter was found to provide low mean and standard deviation of error which 

are similar to those obtained when experts annotate the same signal. This suggests 

that the process is suitable for an investigation of the constituent components of the 

excercise ECG database compiled by Nasor et al.
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Chapter 8

Data Processing and Results

8.1 Introduction

In this chapter the ECG Lead II component durations are investigated. A database 

of ECG recordings that shall be used as the test data for the characterisation of these 

component durations is also described. Following the application of DTW and the 

extraction of each component from the ECG recordings, the component durations are 

calculated. Before attempting to characterise the variation of these components with 

respect to cardiac cycle time, it is important to pre-process the data by averaging the 

resulting component durations to ensure that the results reflect the characteristics of 

all subjects within the test database. Two different methods of averaging the data are 

investigated and the resulting effects on the final characterisation of the component 

durations using each method are compared. An appropriate method of pre-processing 

the data is decided upon and the variation of each EGG components duration with 

respect to cardiac cycle time is characterised using a second order equation. The 

resulting set of duration equations is compared to a similar study of these component 

durations and discussed in the context of larger clinical investigation.

8.2 The ECG Lead II Component Durations

As discussed in Chapter 1, the ECG signal is typically segmented into three distinct 

waves, two segments and two intervals, the duration and shape of which supply differ­

ent diagnostically significant information. For clarity the ECG lead II signal and its 

constituent components are shown again in Figure 8.1. The duration, T, of each one
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of these components are:

P-Q Interval Q-T Interval

1. The P Wave Duration - Tpvv'

2. The PQ Segment Duration - Tpq-Seg

3. The PQ Interval Duration - Tpq-int

4. The QRS Complex Duration - Tqrs

5. The T Wave Duration - T^w

6. The ST Segment Duration - Tsr-Seg

7. The QT Interval Duration - TqT-int

For each of the components an equation shall be established with respect to cardiac 

cycle time T^/j. The QT interval, as shall become apparent in this chapter, represents 

the most important of the seven ECG components due to its diagnostic significance. 

As such, it shall be used for illustration purposes throughout the chapter.

8.3 The Existing ECG Recording Test Database

Resting and exercise ECG’s were recorded for 31 male and 19 female subjects by M. 

Nasor [26] and a resident cardiologist at the Stress Test Unit of St. James’s Hospital,
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Dublin during the period of 1995-1996. This process required approval by an ethics 

committee in the hospital and a significant amount of time in the stress test unit in 

St. James’s Hospital. The recordings were verified as having been taken from healthy 

subjects, none having had any history of cardiovascular complications or showing any 

signs of pathological changes.

The recordings were made for 3 minute resting and 12 minute exercise intervals, 

although a number of older subjects could not complete the full 12 minute treadmill 

test. The recordings were made on a Marquette 12-Lead ECG recording machine 

which provided a Lead II signal that was fed through an anti-aliasing filter with a cut­

off frequency of 200 Hz. The data was then sampled using a 12-bit analogue-to-digital 

converter that had a sampling frequency of 1.64 kHz [26].

For the purposes of preserving confidence in the accuracy of the results obtained, a 

subset of 10 male and 11 female subjects aged 13-65 years were chosen from the original 

pool of ECG recordings for analysis by M. Nasor. The subjects, recordings were chosen 

because it was verified that they were free from artefact and significant distortion. The 

resulting data set consisted of recordings with heart rates ranging from 46-184 beats 

per minute (bpm). This database offers an appropriate basis for an investigation of 

the Lead 11 ECG signal and for the purposes of comparison the author has used the 

same database for the analysis reported in this thesis.

In Chapter 5 the existing mathematical relationships for the duration of the con­

stituent components of the ECG signal have been examined. It was decided that an

equation of the form Ha/Trr + BTrh + C would be fit to the resulting dvirations found 

in the analysis reported in this thesis in order characterise their variation with respect 

to T/j/j since it has been shown by Burke & Nasor to characterise the variation of the 

QT interval duration most accurately.

8.4 Pre-Processing the ECG Recordings for DTW

All recordings from the test ECG signal database have been filtered and segmented in 

the same manner as during the creation of the reference signal database, reported in 

Chapter 6. However, some additional pre-processing of the test database is required.

At higher heart rates successive ECG beats begin to merge together. The database 

of reference signals used for DTW contains no reference signals which display such 

phenomena. Indeed if the P and T waves of successive beats are merged together the
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determination of the onset and termination of these beats is at best estimated, since 

they are not visible in the recording, as shown in Figure 8.2. Given that there are 

no reference signals available for waves of this nature they cannot be classified using 

DTW and were therefore removed from the test recording database. After the removal 

of such beats from the database the remaining heart rates ranged from 46-160 bpm.

Figure 8.2: An ECG beat with a heart rate of 169 bpm sliowing the merging of the P and T waves.

The reference signals from the Physionet QT Database were recorded at a sampling 

frequency of 250 Hz. In order to allow an accurate comparison between the reference 

signals and the recordings in the database as described in Section 8.3 the test sig­

nals have been down-sampled to have a resulting sampling frequency of 273 Hz. The 

recordings in the database contain cases where there are low amplitude waves which are 

essentially within the recording noise level. This will result in an inaccurate designation 

of the onset and termination points of the waves such as those shown in Figure 8.3. It 

can be seen that no clearly distinguishable onset or termination point for the P-wave 

exists which yields a PQ interval duration in excess of 220 ms. To remove spurious 

errors from the DTW results, a PQ interval limit of 220 ms and a QT interval limit of 

560 ms has been applied to the results of DTW. These limits are based on the healthy 

PQ and QT interval durations as defined clinically [2] and also allow a tolerance of 20 

ms for each, results outside of these limits were disregarded. The tolerance allows for 

the fact that the interpretation of the specific onset and termination points of a wave, 

and therefore the duration of the component, differs between cardiologists as discussed 

in Ghapter 6. The added tolerance accounts for this. Unfortunately, no clearly defined
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limits for the other component durations exist in the literature as shall be discussed 

later.

Figure 8.3: Low amplitude P wave resulting in excessively long P wave classification and hence 

PQ-interval duration

8.5 Processing the Results of DTW before 

Equation Fitting

Following the signal pre-processing, DTW and subsequent delineation of each beat 

in the test database of EGG recordings the onset and termination of each wave as 

defined in Figure 8.1 can be determined. Before an equation is fit to the data it is 

typically averaged into distinct beat per minute intervals. Previously the duration 

of components from different beats have been averaged into 1 bpm [26] or even 10 

bpm [71] intervals before fitting a characterisation equation. Figure 8.4 is a plot of all 

QT interval durations for every individual beat from each subject, and illustrates why 

averaging is required.

There are 8755 QT interval durations from individual beats shown in Figure 8.4, 

and it is common procedure to average large data sets such as this to remove the 

effects of possible errors or outliers remaining within the data before attempting to 

characterise it. An investigation to establish what is the most appropriate method of 

averaging the data before attempting to fit an equation to characterise it is carried out.
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Figure 8.4: Authors QT interval durations of all beats without averaging

8.5.1 Methods of Averaging the Resulting Component 

Durations

There are two primary approaches to averaging the data. Previously all beats from all 

subjects have been placed into 1 bpm intervals and averaged. The problem with this 

method of averaging is that it assumes each subject contributes equally to each interval. 

If 1 of the 21 available subjects contributes a significantly higher number of beats to 

any given interval than the other subjects, then the mean value for the component 

duration within this heart rate interval is more reflective of this one subject than all 

of the subjects collectively. An alternative method of pre-processing is to average 

the component durations for each subject separately to 1 bpm intervals. After this 

they can be collated and the equation fit. Similarly, some 1 bpm intervals contain 

result contributions from more subjects than others so we would like to have one mean 

duration per interval rather than one mean duration per subject, per interval. Also 

to allow comparison to the other studies of the component durations one value per 

interval is necessary. To achieve this one can again average all subject means per 

interval. An analysis of the motivation for, and effects of, each type of averaging shall 

also be conducted.

8.5.2 Averaging all Beats into 1 bpm intervals

In the study previously carried out by M. Nasor [26] all beats from all subjects were 

collated and averaged into 1 beat per minute intervals. Unfortunately, this approach
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to pre-processing the data allows one subject to dominate any given cardiac cycle time 

interval within the data set. Figure 8.5 shows the result of averaging all beats into 

1-bpm intervals using the same method as Nasor on the DTW results of this study for 

the QT interval. The second order function proposed by Nasor is also fit, the fitting 

process and results shall be discussed in more depth in Section 8.6.

Figure 8.5: The result of averaging all beats into 1-bpm intervals

Note the apparent oscillatory nature of the data highlighted in Figure 8.5. Inves­

tigation of the data within the 0.8 < T < 10 range finds that two subjects have 

over 350 beats of the approximately 900 within this Trr interval whilst other subjects 

contribute a significantly lower number of beats to the same interval. Consequently two 

of the subjects dominate the resulting mean QT interval durations within this range, 

reducing the mean in an inconsistent fashion for the interval shown. Extrapolation over 

the entire range of Trr and the resulting mean durations for each component of the 

ECG will be more reflective of the subjects with the highest number of beats than all 

21 subjects equally. An alternative method of averaging will overcome this limitation.

8.5.3 Averaging Each Subject Before Collating the Results

If one wishes to argue that they are characterising the duration of the constituent 

components of the ECG Lead II with respect to cardiac cycle time for all 21 test 

subjects then each subject should contribute equally to the mean result for any Trr 

interval. Figure 8.6 shows the results of finding the mean QT interval duration for 

each subject separately, collating the results for each subject and fitting the second
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order equation. At the extremes of heart rate the number of samples available are 

significantly lower. For example the three samples shown at the lowest cardiac cycle 

times in Figures 8.4 and 8.5 are the result of just 1 beat each from one subject. Rather 

than use such a small number of samples to characterise the duration in these regions, 

each incstance of this shall be removed from the analysis.

Figure 8.6: The result of averaging each subject at 1 bpm intervals and then collating the results

Figure 8.7 shows the results of a two step averaging process. The first step involves 

treating each subject individually as shown in Figure 8.6. It is difficult to make a 

comparison with Figure 8.5 due to the number of subjects in each interval. To overcome 

this a mean can be calculated for all subject means at each 1 bpm interval as shown 

in Figure 8.7. Note that the effects of the two dominant subjects as highlighted in 

Figure 8.5 has been greatly reduced because each subject now only contributes one 

value to each 1 bpm interval. Now the duration characteristics of each subject’s ECG 

components are reflected evenly in the mean duration for any T/?/? interval .

Figure 8.7: The result of collating the mean QT interval duration at 1 bpm intervals and then 

averaging.
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Figure 8.8 shows how averaging all beat results of this study into 1 bpm intervals 

(like Nasor) or averaging in such a way as to allow each subject contribute one value to 

each 1 bpm interval (as proposed by author) has an effect on the final resulting fit and 

hence the characteristic equation for the QT interval. The maximum difference between 

the resulting QT duration is api^roximately 16 ms due to the effects of averaging.

Averaging subjects first and then into 1 bpm interv al 
Averaging all beats into 1 bpm intei-vals____________

Figure 8.8: Comparing the efTerls of alternative averaging on the final rharacterisation of the QT 

interval duration

One concern with this process is what the effect of taking a mean for each subject 

individually and then a “mean of means” for all subject means collectively may be. It

is possible that when fitting the proposed characteristic equation of the form A\/T^ + 

BTnn + C this two step averaging process may have a significant effect on the result. 

To investigate this Figure 8.9 shows the resulting equation fit when averaging only 

by subject and also the fit when finding the mean of all subject’s means per interval. 

The results are shown for each EGG component separately. It can be seen in Figure 

8.9 that finding the second mean of the two step averaging process has had very little 

effect on the resulting characteristic equation fit. The component showing the largest 

difference between each averaging method, the PQ segment, results in just a 5 ms 

difference in output duration at the point of greatest difference. To put this in context, 

at the sampling frequency used for the test data during DTW (273 Hz) this equates to 

approximately one output sample duration.
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Figure 8.9: The resulting plots with and without averaging each subject in each interval

In summary these findings suggest that taking the average of all beats for all sub­

jects in 1 bpm intervals as done by Nasor et al. does not correctly characterise the 

variation of the QT interval duration with respect to as it allows a small number 

of subjects to dominate if they happen to have significantly larger number of beats 

at a particular cardiac cycle time. To overcome this the mean of each subject’s QT 

interval duration can be found and the results collated. With multiple subjects per 1 

bpm interval it is still difficult to see trends in the data or compare the results with the 

overall averaging method demonstrated in Figure 8.5. It has been demonstrated that 

finding the mean of all of the individual subject’s component means at each 1 bpm 

interval allows a direct comparison and that averaging at each interval has very little 

effect on the resulting function fit.
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8.6 Mathematical Expressions for the ECG 

Components

One of the principal objectives of this research is to characterise the relationship be­

tween the duration of the constituent waves of a Lead II EGG signal recording with 

respect to cardiac cycle time or heart-rate. The data has been averaged as discussed 

in Section 8.5.2 and an equation of the form Ay/Tjm + BTna -t- C fit using the least- 

mean-squares error method available in Matlab. The statistical data for these plots 

are available in Appendix B.

The following figures show the best fit curve using the second order equation for each 

of the seven EGG components as defined in Section 8.2. Also included are measures of 

accuracy for each fit i.e. the coefficient of determination, r^ and mean squared error, 

MSE.

8.6.1 The P Wave Duration - Tpw

Figure 8.10: Data obtained for P wave duration with second order equation fitted

The equation fit for the P wave duration (s) in Eigure 8.10 is:

Tpw — 0.509\/Tr/j — 0.289r/jfl — 0.102 

with r2 = 0.359 ; MSE = 6.86 x 10"^

(8.1)
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8.6.2 The PQ Segment Duration - Tpq^seg

Figure 8.11: Data obtained for PQ segment duration with second order equation fitted 

The equation ht for the PQ Segment duration (s) in Eigure 8.11 is:

TpQ-scg = 0.390 — 0.197Trr — 0.146

with r^ = 0.637 ; MSE = 4.33 x lO'®

(8.2)

8.6.3 The PQ Interval Duration - Tpq^jnt

Figure 8.12: Data obtained for PQ interval duration with second order equation fitted
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The equation fit for the PQ interval duration (s) in Eigure 8.12 is:

TpQ-int = 0-899y/Tftji — 0.4862^^ — 0.248 (8.3)

with r2 = 0.647 ; MSE = 1.09 x 10'

8.6.4 The QRS Complex Duration - Tqrs

Figure 8.13: Data obtained for QRS complex duration with second order equation fitted

The equation fit for the QRS complex duration (s) in Figure 8.13 is:

Tqrs = 0.0213- 0.0069Tfl/j + 0.0765 (8.4)

with r^ = 0.146 ; MSE = 1.08 x 10'
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8.6.5 T wave Duration - TTW

Figure 8.14: Data obtained for T wave duration witii second order equation fitted

The equation fit for the T wave duration (s) in Figure 8.14 is:

Ttw = 0.818v^ - 0.340TKfi - 0.246 

with r^ = 0.949 ; MSE = 6.37 x 10^^

(8.5)

8.6.6 The ST Segment Duration - Tsr-Seg

Figure 8.15: Data obtained for ST segment duration with second order equation fitted
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The equation fit for the ST segment duration (s) in Figure 8.15 is;

TsT-Seg — 0.108\/Tr/{ + 0.053T|r/j — 0.043 

with r“ = 0.923 ; MSE = 6.35 x 10“^

8.6.7 The QT Interval Duration - TQT-int

(8.6)

Figure 8.16: Data obtained for QT interval duration with second order equation fitted 

The equation fit for the QT interval duration (s) in Figure 8.16 is:

TQT-int — 0.974— O.OIITr/j ~ 0.225 

with r^ = 0.982 ; MSE = 7.11 x 10“^

(8.7)

8.7 Analysis of the Mathematical Expressions for 

the ECG Components

The accuracy of the derived relationships for the ECG components cannot be estab­

lished by comparison with any given standard since no one standard or description 

of the normal durations for each component found in healthy subjects exists. We do, 

however, have the results of the most comprehensive investigation of these variations 

to date [10]. The suitability of some of the resulting equations can also be assessed in 

the context of large clinical studies of the components.
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8.7.1 Comparing the Component Equations to the Nasor Study

Investigation of the literature since the latest publication of the finding’s in 2004 [10]

shows no case of contradiction that the second order equation of the form Ay/Tfm + 

BTrr + C is the most appropriate for characterising the QT interval duration. It has 

hence been used in the analysis here.

The resulting coefficients and hence durations for each component reported in Sec­

tion 8.6 differ significantly than those reported by Burke & Nasor in Equations (5.8) - 

(5.14), for some of the components as shown in Eigure 8.17.
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Figure 8.17: A plot of the Burke & Nasor Vs Author equations
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As discussed in Chapter 5 the Burke & Nasor equations for both the QRS and QT 

interval durations do not agree with the results of larger studies. Note in Figure 8.17 

how the ST segment equation derived by Burke & Nasor is unusual in that it results 

in a convex shape for the best fit curve which is the opposite of the other components. 

It is possible there may have been a systematic error which caused an inconsistency 

in the ST segment results. By comparison, all of the components result in the same 

concave type function during the derivation of the duration equations in Section 8.6.

Table 8.1: Fit accuracy measurements

ECG Component Author Author MSE Nasor r^ Nasor MSE

P- Wave 0.359 6.86x10-^ 0.212 8.8 xl0“®

PQ-Seg 0.637 4.33x10“^ 0.607 2.5 xlO-®

PQ-Int 0.647 1.09x10-^ 0.645 6.3 xl0“®

QRS Complex 0.146 1.08 xlO-^ 0.231 4.1 xlO-®

T- Wave 0.949 6.37x10-® 0.859 2.0 xlO-'^

ST-Seg 0.923 6.35x10“® 0.649 2.0 xl0“^

QT-Interval 0.982 7.11x10“® 0.921 2.3 xlO-^

It would appear from Table 8.1 that the second order equation has resulted in very 

similar accuracy in terms of the fit of the second order equation (r^ and MSE) when 

comparing to the results of this study and those reported by Burke & Nasor. It is 

interesting, however, that the second order equation is better suited to characterising 

the QT interval (and the associated T and ST segment) results of this study than those 

of the wavelet based technique, given the second order equation was chosen based on 

its appropriateness in characterising the QT interval as discussed in Chapter 5. More 

significantly, the trend of the resulting equation for the QRS and QT interval with 

respect to heart rate, the two component equations derived by Burke & Nasor which 

are not in keeping with other studies of the components, are very different according 

to the authors equations. To actually measure the “correctness” of the newly derived 

equations as opposed to the existing ones the results of the mathematical expressions 

must be placed in a clinical context.
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8.7.2 Comparison of Results with Clinical Research

8.7.2.1 The P Wave, PQ Segment and PQ Interval

A significant amount of research has been conducted in an effort to create “P Wave 

Indices” or a metric that can be used to measure the normal and abnormal durations 

of the P wave [120]. P wave dispersion or the difference between the maximum and 

minimum P wave durations observed in the same subject over a short period of time 

can be significant. The dispersion or variation in the duration of the P wave has been 

reported to be influenced by various phenomena including the season during which 

the recording was performed [121] and circadian body rhythm observed in a 24-hour 

cycle [122], The mean P wave duration indices found in the literature are therefore 

varied and range from 96±11.0 ms [123] to over 120 ms [124]. The measurements and 

resulting P wave duration equation (8.1) reported in this study can therefore not be 

compared to any one metric but do not differ significantly from the results of the cited 

works.

The duration of the PQ segment is typically considered to have little clinical sig­

nificance [2] and therefore indices for normal durations have not been found in the 

literature.

Due to the issues surrounding P wave duration and the PQ segment’s lack of clin­

ically significant information, the PQ interval is the characteristic most frequently 

used to assess the physiological state of the right atrium, atrial muscle fibres, atrio­

ventricular node and the ‘Bundle of His’. It is commonly accepted that a normal PQ 

interval duration ranges from 120-200 ms [17]. Observation of Figure 8.12 shows that 

the data and the fitted equation (8.3) for the PQ interval reflect the normal duration 

characteristics for the interval. Note that the limit of the maximum PQ interval im­

posed on the data in Section 8.4 was intentionally relaxed at 220 ms (as opposed to 

200 ms which is the approximate maximum normal duration) in order to ensure that 

only significant and obvious errors were removed from the duration results. It can be 

seen in Figure 8.12 that the mean PQ interval duration never exceeds 200 ms which 

confirms that the majority of data remained within the clinically defined limits and 

significantly below the PQ interval limit.

Although its relationship to heart rate is not as clearly defined in the literature as 

the QT interval (it is not commonly considered to be as highly correlated), it is stated 

that shortening at higher heart rates i.e., stress testing > 80 bpm, can be expected
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when compared with a rest state i.e. 60-80 bpm [125]. It can be observed in Figure 

8.12 that the PQ interval duration as defined by equation (8.16) is shortest for higher 

heart rates of > 80bpm.

8.7.2.2 The QRS Complex

The QRS Complex, which is the most readily observed component of the ECG signal 

is typically at its tallest in Leads I and II and is one of the reasons why Lead II is 

most commonly used in clinical diagnosis. There is a very wide range of normality for 

the QRS complex in terms of shape and duration. Its duration is highly variable due 

to the fact that the QRS complex may not actually posses a Q wave preceding the R 

peak nor any significant S wave following it depending on the individual subjects QRS 

complex type. It is typically expected that a normal QRS complex duration will not 

exceed 120 ms [17].

The relationship between heart rate or Tfm and QRS duration has been the focus 

of other researchers, such as a study of 150 males by Blackburn and Simonson [53], 42 

subjects by Nakagawa et al. [54] and also in a comparison of healthy and unhealthy 

subjects by Ge et al. [52]. Each of these studies reports an inverse relationship with 

heart rate i.e. the lower the heart rate or higher the Trr the longer the QRS duration 

among healthy subjects. In Chapter 5 it was demonstrated how Equation (5.11) did 

not provide QRS durations which coincide with the findings of these other studies. 

Figure 8.18 is a plot of the Burke & Nasor Vs Authors equation for QRS duration.

‘ Bul'ke/Nflsoi' QRS Complex Equation 
' Author QRS Complex Equntiou

Figure 8.18: A plot of the Burke & Nasor Vs Author equation for QRS complex
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Observation of Figure 8.18 and the author’s derived equation (8.4) for lies

within the clinically defined bounds for QRS duration and its variation with respect 

to heart rate. The duration of the QRS complex increases with a decreased heart rate 

and does not exceed the expected duration of a healthy QRS complex waveform.

8.7.2.3 The T Wave, ST Segment and QT Interval

The QT interval duration which is essentially the sum of the QRS Complex, ST segment 

and T Wave duration is considered the ECC component of greatest diagnostic value. 

It is also the component which is most closely correlated with heart rate where the rule 

of thumb for the QT interval is “the faster the heart rate the shorter the QT interval” 

[2] (page 279). When used by a clinician the QT interval is typically corrected for heart 

rate using a correction equation, such as the most popular equation proposed by fl.C. 

Bazett [17]:
QT

QTc = (8.8)
\/Trr

It is widely accepted that the normal corrected QT interval duration ranges from 

350-440 ms [2, 17, 51] which equates to an uncorrected QT interval of approximately 

200-540 ms. Short QT intervals can indicate many illnesses such as Hypercalcaemia 

and Digitalis, while longer QT intervals can indicate acute myocardial infarction and 

cerebral injury.

One of the major limitations of the QT interval Equation (5.12) as proposed by 

M. Nasor is the apparent inconsistency of the equation when extrapolated outside the 

original 46-184 bpni range of data from which the equation was derived. Below a heart 

rate of 46 bpm or above a cardiac cycle time of 1.30 (s) the resulting QT interval 

duration begins to reduce as predicted by Equation (5.12). This is in contradiction to 

the clinical definition of the relationship that would suggest that Equation (5.12) does 

not characterise the QT interval duration adequately.

A valid comparison of the accuracy of the authors derived Equation (8.7) and the 

Burke k, Nasor Equation (5.12) for the QT interval duration with a larger clinical def­

inition can be performed using the study conducted by Coldenberg et al. [51] on 581 

healthy subjects as introduced in Chapter 5. The plot shown in Figure 8.19 is based 

upon the figure provided by Coldenberg for estimating normal QT interval durations. 

Also sketched onto the figure is the approximate output duration using both the au­

thors new equation (Shorten QT Interval Duration) and the Burke k Nasor equation
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(Nasor QT Interval Duration). Note that the data for the figure originally created 

by Goldenberg is unavailable so the results for the Shorten and Nasor equations are 

manually sketched to the figure. The figure clearly shows the contradictory behaviour 

of Equation (5.12) when extrapolated for cardiac cycles times of greater than 1.30 

seconds.

The figure also shows that Equation (8.7) provides a significantly better correlation 

with the study performed by Goldenberg over a much larger dataset. Equation (8.7) 

does slightly exceed the bounds of the “Normal” region at lower cardiac cycle times 

but the difference here is negligible when one considers the acceptable deviations in 

expert annotations as outlined in Chapter 6 and the fact that the equation has been 

derived on a dataset of 21 subjects as opposed to 581.

Shorten QT Interval Equation 

Nasor QT Interval Equation 

Goldenberg "Normal" QT Interval Durations

Figure 8.19: Comparing QT interval equations to the Goldengberg clinical Study

For further comparative purposes Figure 8.20 is a more accurate plot of the QT 

interval equation derived by Burke &: Nasor Vs the authors equation for QT interval. 

The contradictory behaviour of the QT interval equation as derived by Burke & Nasor 

has been removed and a more consistent variation with respect to cardiac cycle time or



8.7. Analysis of the Mathematical Expressions for the ECG Components 164

heart rate is observable using the authors equation. This figure also demonstrates the 

the difference between the two equations is due primarily to different duration results 

for the QT interval using DTW and those of the wavelet based method.

0.6 0.8 1 
Cni'diAC Cycle Time ~ Trr (s)

Author QT Results find Equation 
> Burke/yfisor QT Results and Equation

Figure 8.20: Burke & Nasor Vs Authors equation for QT interval duration

8.7.3 Conclusion

The resulting duration equations have been compared to those proposed by Burke k. 

Nasor. The same form of equation has been used to characterise the timing charac­

teristics of each ECG component with respect to heart rate in this study because it 

has been proven to represent QT interval duration more accurately than any other 

[10]. In terms of suitability of the function to adequately characterise the duration 

data i.e. r^ and MSE the equations proposed in this study provide a better fit than 

in Nasor’s study for the T wave, ST segment and QT interval, with similar results for 

the other components. This would imply that the measurements for the variation of 

each component’s duration with respect to cardiac cycle time and heart rate found in 

this study are better characterised by the newly derived equations than those derived 

from the wavelet based study.

For the P wave, PQ segment and PQ interval durations the results of clinical lit­

erature have been examined and although no specific indices exist for the estimation 

of normal P and PQ segment duration the derived equations appear to be within the 

expected range. The definition of a normal PQ interval duration range, is more clearly 

defined in the clinical setting and the derived second order equation (8.3) characterises
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this range appropriately.

The QRS complex equation (8.4) results in QRS durations which are within the 

clinically accepted bounds for normal QRS duration. The resulting QRS duration also 

varies with respect to Tfm in a fashion consistent with the findings of a number of 

larger epidemiological studies unlike the original equation derived by Burke & Nasor.

The duration of the QT interval is the single most diagnostically significant com­

ponent of the ECG lead II signal. Comparison of the QT interval equation derived 

by Burke & Nasor with the clinically accepted correlation between QT interval and 

T/jfl shows a significant error in the characterisation of the component. By contrast 

the newly derived equation shows a consistent relationship between heart rate and QT 

interval duration as defined by cardiology experts. The new equations should be used 

in conjunction with the signal generator to increase the accuracy and suitability of the 

instrument.
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Chapter 9

Conclusion

The objectives of the research reported in this thesis can be summarised as follows:

• To create a fully tested and accurate programmable ECG signal generator.

• To select and improve a suitable ECG analysis technique to delineate the signal.

• To characterise the variation of the ECG constituent components adequately.

During the course of this research and as reported in this thesis the author believes 

that each of these objectives has been met to an acceptable standard, and as such 

represents a genuine contribution to this field of research.

9.1 The ECG Signal Generator

It is the author’s belief that any ECG model to be used to generate a test signal is only 

as useful as the instrument which delivers it to the ECG machine. From the literature 

review of ECG signal generators over the last two decades the technical limitations 

and issues regarding the suitability of past and current instruments have been identi­

fied. The instrument presented by the author has addressed the technical limitations 

using an increased and consistent bit resolution and a novel architecture at the output 

stage of the device which attenuates the output signals after D/A conversion while 

also allowing complete variability of the constituent wave amplitudes. Moreover, not 

found previously in the literature, a comprehensive approach to rigorously testing the 

device has been taken. A comprehensive analytical model of voltage noise, offsets and 

temperature effects has been created and instrument performance verified by stringent 

electrical testing of the device. The result is a unit providing a true differential signal



9.2. Characterisation of the Constituent Waves 168

with complete variation of the heart rate range in 1 bpm intervals and independent vari­

ation of P, QRS and T wave amplitudes. Beyond the purely technical improvements to 

the instrument significant thought has been given to the user of such a device. Rather 

than being a cumbersome device that requires effort to alter the output signal the 

instrument is fully controllable using a colour touch screen which can also be used to 

view a representation of the output test signal.

9.2 Characterisation of the Constituent Waves

R has been discussed in this research that one of the core characteristics used to form a 

diagnosis based on the ECG signal is through observation of constituent wave profiles 

and durations. As such any model or test ECG signal must reflect the variation of 

these durations as per in vivo signals. Significant research has been conducted in 

both the clinical and scientific setting to establish measures of normal and abnormal 

metrics for constituent component durations. It was found upon review of the literature 

that previous characterisation of the constituent component durations used as part of 

a synthetic test signal do not correlate correctly with the hndings of larger clinical 

studies.

An alternative method of delineating the constituent components of the ECG sig­

nal via identihcation of the onset and termination points was sought. The author has 

shown that a suitable method was found in the Dynamic Time Warping (DTW) algo­

rithm. Significant investigation of the various forms of the DTW algorithm has been 

performed and the value-based DTW' algorithm chosen as the most suitable. The au­

thor has proposed and verified two improvements of the value-based approach to DTW 

by composite normalisation and using a multi-feature time domain based classifier to 

find the most accurate match between template reference signals and the query signal 

under investigation. The performance of the complete algorithm was verified in the 

most suitable fashion available, which is by comparison to standard deviations found 

within cardiologists annotation of ECG signals.

The complete process was used to establish the onset and termination points in a 

database of test signals previously used to characterise the component durations. In 

a comprehensive study of this same database previously by Burke & Nasor using a 

wavelet based method of characterisation the results have been shown to present some 

significant limitations when placed in the context of larger clinical studies. The author
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has created a new set of duration equations of the same form as those used by Burke & 

Nasor but using the results of characterisation of the database by the DTW algorithm. 

The new duration equations show a significantly better correlation to the established 

metrics for component durations found in clinical literature. The ECG signal is the 

most commonly used form of Cardio-diagnosis in the world. Therefore, the author 

believes that increased accuracy both in terms of synthesis and delivery of an ECG 

test signal as reported in this thesis represents a genuine contribution to society.

9.3 Future Work

The author believes the research reported here provides a significant contribution to the 

field of biomedical instrumentation, ECG signal processing and ECG signal synthesis. 

However, time limitation prevented the author from further exciting research which 

could increase the usefulness of the results presented here.

Firstly, the ECG signal generator could be extended to generate all 12 test leads 

as opposed to the single Lead II ECG signal. To fully benefit from the addition of 

these test signals, however, time characterisation of the waves as observed in the other 

leads would be required. The same procedure using DTW could be applied if a large 

enough cohort of 12 lead signals could be sourced. The choice of the PIC24F chip and 

its associated architecture also allows the device to be easily connected to a wireless 

network via the PMP which could further improve its usefulness.

The time characterisation presented by the author has been aimed at realistic syn­

thetic signal synthesis for test and calibration. If the cohort of adequate test signals 

available was larger than the one used, perhaps more clinically profound conclusions 

regarding component duration variation could be made. However, this kind of research 

would require a significant amount of time to be spent firstly in the acquisition of the 

signals and then in the analysis. The P wave duration for example is considered to have 

some clinical importance but at the same time no definitive metrics for its duration 

have been found in the literature, and definitions of normality and abnormality seem to 

vary significantly. The P wave amplitude and relatively short duration combined make 

it the component most susceptible to noise and its duration is thought to vary hourly 

and seasonally [121] within the same subject. The author has observed this variation 

and difficulty as reflected by the deviations found in the P wave duration reported in 

Appendix B. Calls have been made in the literature for a more comprehensive study
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of P wave duration and the author would like to see what effects this may have on the 

resulting time characterisation.

Finally, it was found during the review of ECG modelling that research has been 

conducted into morphological modelling of the ECG signal. A versatile and fully 

controllable morphological model of the signal amplitude combined with the author’s 

duration equations would be most useful. The core benefit of such a model is the ability 

to generate realistic ECG morphologies, without the noise associated with recording 

noise and artefacts. The spectral content of the synthetic signal is known precisely, 

hence after recording the test signal via the instrument under investigation, noise can 

be attributed to the recording instrument or environment. Ideally this allows the user 

to identify what stage in the recording process is distorting the signal and to investigate 

why. This type of analysis is not possible using rerecorded signals since they already 

contain a degree of unmeasurable distortion.

There are a number of existing models which use Gaussian pulses to mimic the 

shape of the P, QRS and T waves. Investigation of the models to date has left the 

author questioning whether or not the Gaussian pulse is the most suitable function to 

use or if another function may be better suited to certain components. The author 

suggests that other functions could be explored for each constituent wave such as the 

raised cosine for the P wave which would reflect the continuous shape at its onset 
and termination points, a set of hyperbolic functions e.g. ^[1 + tanh{t)] for the QRS 

complex or a function that can adequately reflect the asymmetrical shape of the T 

wave such as the exponential function shown in Figure 9.1.

Exponential Function /<>“

Figure 9.1: The asymmetric shape of this function is similar to that of a Lead II T wave
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This is to name but a few alternative functions, the author suspects there are 

many different functions worth investigating and would propose this as an objective for 

another PhD research project. The author also proposes that very subtle differences 

between the ECG signal under analysis and the trigonometric template commonly 

being used for characterisation could be overcome using DTW to provide a better fit. 

The effects of this DT\^" on the resulting model could be analysed in the frequency 

domain to see if it has a profound effect on the known spectra of the template function. 

If not then the resulting model may be most useful.

9.4 Reference Test Signals

The author has used one of the largest and most frequently referenced database of 

signals as templates for the DTW process i.e. the PhysioNet QT database of ECG 

signals. However, there are a number of issues surrounding this database. Firstly, the 

sampling frequency used for the signals is just 250 Hz which is now in contravention of 

the required sampling rate as defined in the standards for diagnostic ECG recording 

which should be at least 500 Hz [126]. The author believes that the accuracy of the 

DTW process has been limited by this low sampling rate, given that an error in the 

location of a fiducial point of 1 sample equates to a 4 ms error. The quality of some 

of the signals which were annotated and used in the database were also quite poor 

and hence some of the original 719 signals used for test were removed and not used 

as reference signals in the characterisation of the Burke & Nasor database. Some 

annotations of the signals are also incomplete in that they do not contain a T wave 

onset annotation. A complete, accurate, and properly sampled database of test signals 

would be hugely beneficial to the field of ECG signal processing and analysis. Although 

this would be a massive undertaking and would require significant resources to achieve 

the author believes it would be a worthwhile exercise and indeed is a little surprised 

that it has not already been undertaken or made available.
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Appendix A

QRS Classification Code

In this Appendix the Matlab code for the initial classification of the QRS complexes 

into their respective groups is provided. The code can be altered by the user empirically 

by changing the thresholds which determine the location of the up and down slopes of 

the QRS complex.
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classifying The QRS Morphology Mat Lab Code

[peak_val, peak_loc] = max(input_signal); %Find the peak in the beat 
window_back = peak_loc-l0;

%These variables can be changed empirically by the user if the 
%algorithm is not working correctly;

s_distance = 20;
%This is the maximum distance from the R peak one would expect 
%to find the %end of the QRS down slope or start of the S 
%wave.

s_term_distance = 35;
%Another variable that can be changed. It is a limit on how 
%far the end of an S wave can be from the R peak, some S waves 
%are longer than others.

%Remove any extra points that might be at the end of a signal 
%as a result of how they are stored in the signal arrays.

pt=l; 
flag=0;

while{{pt<length(input_signal)-2) &&
input_signal(pt)~=input_signal(pt+1) && 
input_signal(pt+1)~=input_signal{pt+2)) 
pt = pt+1;

end;

remove = input_signal(1:pt); 
clear input_signal; 
input_signal = remove;

if{window_back>20)

% An error check to make sure a full beat has been passed to 
%the algorithm the input signal is approximated using the SARA 
%approximation algorithm. This is intended to denoise the 
%signal as the purpose of this classification function is 
%to find trends in the data, 
ansapprox = sapa{input_signal,0.005); 
approximation = ansapprox{1,:);

%Find the difference between each adjacent sample in the 
%signal.
derivative{2:length(approximation)) = diff(approximation);

%These lines of code find max and min differences on the up 
%and down slope of the QRS complex.
[max_up_val,max_up_loc] = max{derivative(l:peak_loc)); 
[max_down_val,max_down_loc]
=min(derivative(peak_loc:peak_loc+40)); 
max_down_loc = peak_loc+max_down_loc-l;



175

%This loop finds a point at which the differences are reducing 
%i.e. near to the beginning of the QRS upslope. The "flag" 
%allows for glitches in the signal i.e. notches on the QRS 
%which are not actual inflection points. 
pt=max_up_loc; 
flag=0; 
counter=0;
while{(derivative(pt-1)>(0.2*mean(derivative(pt:max_up_loc))))

I Iflag==0)
pt = pt-1; 
if(derivative(pt-
1)<(0.2*mean(derivative(pt:max_up_loc)))) 

counter=counter+l; 
if (counter==l)

possible_end = pt;
end;

end;
if(counter==2) 

flag=l;
end;

end;

%The end_point_of_derivative represents a point at which the 
%differences changed due to an inflection in the signal. 
end_point_of_derivative = possible_end-l;

%We find the minimum amplitude value in this region and save 
%it as a "tail_loc" or possible Q wave trough.
[tail_val,tail_loc] =
min(input_signal(end_point_of_derivative-
2:end_point_of_derivative+2));
tail_loc = find(input_signal==tail_val);

%Find the maximum amplitude point in this region, if a Q wave 
%exists this will be the onset of it.
[max_val_front,max_val_front_loc] = 
max(input_signal(tail_loc- 5:tail_loc)); 
max_val_front_loc = max_val_front_loc+tail_loc-5-l; 
front_difference = input_signal(max_val_front_loc)- 
input_signal(tail_loc);

%The possible onset and minimum inflection point of a Q wave 
%have been found. Now the same must be found for any S wave 
%that may exist in the signal.

%max_down_loc is the minimum derivative on the QRS down slope.
pt=max_down_loc;
flag=0;
counter=0;
possible_end=0;
over_flow=0;

%This loop searches for a point where the difference between 
%two successive points may turn positive again i.e. as the S 
%wave returns to near iso-electric zero. The other constraints 
%on the loop are as follows:
%"flag": again allows for glitches in the signal i.e. notches 
%on the QRS which are not actual inflection points.
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%"over_flow": It is possible that there is no return to a 
%after the QRS down slope reaches its minimum point i.e. no S 
%wave. To account for this a limit of 10 samples (40ms if 
%fs=250 Hz) allowed to search for an S wave.

while(((derivative(pt)<0) II flag==0) && (over_flow<l0)) 
pt = pt+1;
if(derivative(pt)>0)

counter=counter+l;
if(counter==l || ((pt-possible_end)>2) )

possible_end = pt;
end;
end;

if(possible_end ~= 0)
over_flow = over_flow+l;

end;

if(counter==2) 
flag=l;

end;
end;

%A possible inflection point or end of the QRS downslope has 
%been found.

end_point_of_derivative = possible_end-l;
%Again the region is searched to find the actual minimum 
%amplitude i.e. trough of the S wave.
[baclt_tail_val, back_tail_loc] = 
min(input_signal(end_point_of_derivative- 
2:end_point_of_derivative+2));
bac)<._tail_loc = f ind (input_signal==back_tail_val) ;

%An error check to ensure the search of an S wave trough has 
%not found a point so far from the R peak that it is not 
%actually an S wave.
if((back_tail_loc-peak_loc)> s_distance)

[back_tail_val,back_tail_loc] = 
min(input_signal(peak_loc:peak_loc+12)); 
back_tail_loc = back_tail_loc + peak_loc -1;

end;

%With the minimum or trough of the S wave having been found
%the region is searched for the end of the S wave i.e. a
%return to near isoelectric zero.
pt= back_tail_loc + l;
stop_flag = 0;
counter=0;
candidate_point = pt; 
while(stop_flag==0)

if(derivative(pt+l)<(0.25*
mean(derivative(back_tail_loc+l:pt))))

if(pt>candidate_point+2) 
counter=0;

end;
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if{counter==0)
candidate_point=pt;

end;
counter=counter+l;

if(counter==2)
stop_flag=l;

end;
end;
pt=pt+l;

end;
pt= candidate_point;
back_peak_val = max(input_signal(pt-1:pt+1)); 
max_val_back_loc = find{input_signal==back_peak_val);

if((max_val_back_loc-peak_loc)>s_term_distance)
[max_val_back,max_val_back_loc] =
max(input_signal(back_tail_loc:back_tail_loc+5)); 
max_val_back_loc = back_tail_loc+max_val_back_loc-l;

end;
back_difference = input_signal(max_val_back_loc) - 
input_signal(back_tail_loc);

%If the difference between the trough and max value of the Q 
%and S waves is <0.03 volts (R peaks have been normalized to 
%1V before this process) then there is considered to be no Q 
%or S wave respectively, 
if(front_difference>0.03)

front_tail_flag = 1; %There is a Q wave.
else

front_tail_flag=0; %There is no Q wave.
end;

if(back_difference>0.03)
back_tail_flag = 1; %There is a S wave.

else
back_tail_flag=0; %There is no S wave.

end;

%Depending on the type of wave i.e. QRS , QR-no S e.t.c. a 
%class type is assigned. The location of the Q wave onset or S 
%wave termination is also saved as they can be used later to 
%window around the QRS complex.

if(front_tail_flag==l && back_tail_flag==0) 
%Class 1 has a QR but no significant S wave. 

class_type=l;
class_type(2,1) = max_val_front_loc; 
class_type(3,1) = back_tail_loc+3; 

%Increased by +3 samples to ensure all of QRS 
%windowed later.

is included if

elseif(front_tail_flag==0 && back_tail_flag==l) 
%Class 2:Q but no S wave found 
class_type=2;
class_type(2,1) = tail_loc-3; 
class_type(3,1) = max_val_back_loc;
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elsei
%Clas

else

end;

f(front_tail_flag==l && back_tail_flag==l) 
s 3; Full QRS 
class_type=3;
class_type(2,1) = max_val_front_loc; 
class_type(3,1) = max_val_back_loc;

class_tYpe=0;%No Q or S waves apparent. 
class_type{2,1) = tail_loc-3; 
class_type(3,1) = back_tail_loc+3;

else
%An error catcher if the beat 
%class type is -1

class_type=-l; 
class_type(2,1) = 0; 
class_type(3,1) = 0;

end;

is not a complete one i.e. no p wave
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Appendix B

Statistical Data for Component 

Results

In this appendix the data for the subject means which are averaged and plot in Figures 

8.10 to 8.16 are provided. The data shows the mean and standard deviation of each 

subjects mean sorted into 1-bpm intervals.
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Mean of all Subject Component Durations When Averaged into 1-bpm Intervals

Trr(s) HR(bpm) f PW (si ^Pqseg(s) fpQlnt(s) '''qbs(s| fTW(s] fsT-Sei!(sl TQT-lnt(sl

1.277 47 0.116 0.054 0.158 0.099 0.243 0.152 0.467
1.250 48 0.127 0.040 0.167 0.102 0.228 0.130 0.460
1.224 49 0.098 0.049 0.146 0.092 0.243 0.156 0.492
1.200 50 0.117 0.035 0.152 0.096 0.228 0.158 0.482
1.176 51 0.143 0.033 0.176 0.090 0.235 0.141 0.464
1.154 52 0.111 0.043 0.154 0.099 0.238 0.126 0.472
1.132 53 0.114 0.054 0.168 0.084 0.242 0.124 0.456
1.111 54 0.116 0.055 0.171 0.090 0.235 0.135 0.459
1.091 55 0.103 0.033 0.135 0.080 0.251 0.120 0.447
1.071 56 0.102 0.037 0.139 0.086 0.239 0.130 0.458
1.053 57 0.106 0.034 0.140 0.085 0.229 0.136 0.456
1.034 58 0.116 0.059 0.175 0.088 0.249 0.129 0.468
1.017 59 0.123 0.059 0.182 0.089 0.253 0.121 0.447
1.000 60 0.125 0.072 0.197 0.097 0.232 0.133 0.454
0.984 61 - - - - - - -

0.968 62 0.094 0.054 0.148 0.085 0.230 0.100 0.412
0.952 63 0.106 0.053 0.159 0.084 0.230 0.102 0.429
0.938 64 0.114 0.059 0.173 0.095 0.240 0.101 0.437
0.923 65 0.113 0.055 0.169 0.096 0.222 0.093 0.408
0.909 66 0.106 0.045 0.151 0.092 0.213 0.092 0.406
0.896 67 0.123 0.049 0.171 0.094 0.208 0.093 0.386
0.882 68 0.126 0.041 0.167 0.088 0.220 0.100 0.407
0.870 69 0.124 0.044 0.168 0.086 0.211 0.091 0.394
0.857 70 0.119 0.045 0.164 0.089 0.208 0.104 0.398
0.845 71 0.125 0.047 0.172 0.091 0.208 0.100 0.399
0.833 72 0.123 0.041 0.164 0.089 0.217 0.086 0.388
0.822 73 0.117 0.045 0.161 0.087 0.216 0.092 0.398
0.811 74 0.117 0.051 0.168 0.088 0.210 0.106 0.400
0.800 75 0.118 0.047 0.165 0.090 0.211 0.091 0.391
0.789 76 0.110 0.040 0.150 0.086 0.206 0.100 0.405
0.779 77 0.124 0.030 0.154 0.088 0.224 0.080 0.393
0.769 78 0.115 0.043 0.158 0.089 0.220 0.078 0.387
0.759 79 0.113 0.049 0.162 0.086 0.213 0.082 0.377
0.750 80 0.123 0.028 0.150 0.088 0.224 0.079 0.394
0.741 81 0.117 0.034 0.151 0.087 0.202 0.088 0.384
0.732 82 0.120 0.040 0.160 0.089 0.222 0.076 0.386
0.723 83 0.116 0.037 0.152 0.092 0.216 0.085 0.387
0.714 84 0.115 0.034 0.149 0.093 0.204 0.085 0.378
0.706 85 0.117 0.036 0.153 0.087 0.200 0.087 0.380
0.698 86 0.114 0.032 0.147 0.094 0.213 0.080 0.383
0.690 87 0.111 0.041 0.152 0.091 0.202 0.077 0.369
0.682 88 0.110 0.040 0.150 0.091 0.204 0.079 0.374
0.674 89 0.119 0.033 0.151 0.087 0.196 0.082 0.366
0.667 90 0.122 0.041 0.163 0.087 0.198 0.084 0.370
0.659 91 0.117 0.041 0.158 0.090 0.196 0.082 0.365
0.652 92 0.118 0.038 0.156 0.087 0.198 0.079 0.362
0.645 93 0.126 0.036 0.162 0.089 0.189 0.079 0.359
0.638 94 0.127 0.035 0.161 0.091 0.193 0.073 0.355
0.632 95 0.123 0.044 0.167 0.090 0.193 0.074 0.361
0.625 96 0.125 0.037 0.163 0.092 0.183 0.068 0.352
0.619 97 0.124 0.035 0.159 0.089 0.188 0.081 0.359
0.612 98 0.137 0.032 0.169 0.094 0.192 0.071 0.357
0.606 99 0.125 0.044 0.169 0.090 0.175 0.076 0.340
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Mean of all Subject Component Durations When Averaged into 1-bpm Intervals

Trr{s) HR(bpm) ^PW (s) 'fpq.seg(s) ^PQ-lnt(s) TqRSIs) TtwisI TST-Seg(s) ^QT-Intlsl
0.600 100 0.133 0.024 0.157 0.093 0.184 0.095 0.347
0.594 101 0.129 0.036 0.165 0.093 0.169 0.086 0.343
0.588 102 0.134 0.034 0.167 0.091 0.174 0.083 0.347
0.583 103 0.124 0.043 0.166 0.091 0.169 0.085 0.347
0.577 104 0.121 0.046 0.167 0.089 0.165 0.087 0.339
0.571 105 0.123 0.041 0.165 0.088 0.176 0.076 0.337
0.566 106 0.127 0.040 0.167 0.091 0.176 0.075 0.339
0.561 107 0.124 0.038 0.163 0.089 0.171 0.070 0.337
0.556 108 0.128 0.039 0.168 0.093 0.175 0.068 0.336
0.550 109 0.129 0.040 0.169 0.092 0.170 0.070 0.333
0.545 110 0.123 0.041 0.163 0.091 0.169 0.073 0.333
0.541 111 0.128 0.038 0.166 0.095 0.170 0.063 0.332
0.536 112 0.120 0.043 0.163 0.088 0.169 0.069 0.330
0.531 113 0.124 0.033 0.157 0.095 0.165 0.066 0.318
0.526 114 0.127 0.040 0.166 0.092 0.155 0.068 0.313
0.522 115 0.120 0.035 0.154 0.090 0.160 0.069 0.318
0.517 116 0.120 0.033 0.153 0.087 0.155 0.070 0.306
0.513 117 0.124 0.030 0.154 0.086 0.164 0.061 0.314
0.508 118 0.116 0.034 0.151 0.086 0.157 0.064 0.304
0.504 119 0.119 0.036 0.155 0.089 0.163 0.058 0.309
0.500 120 0.121 0.030 0.152 0.087 0.156 0.063 0.307
0.496 121 0.119 0.029 0.148 0.088 0.157 0.058 0.303
0.492 122 0.117 0.035 0.152 0.090 0.158 0.059 0.306
0.488 123 0.115 0.034 0.149 0.087 0.150 0.061 0.298
0.484 124 0.119 0.029 0.147 0.087 0.141 0.057 0.289
0.480 125 0.107 0.037 0.144 0.085 0.162 0.055 0.299
0.476 126 0.110 0.035 0.144 0.085 0.155 0.054 0.291
0.472 127 0.110 0.032 0.142 0.086 0.158 0.056 0.302
0.469 128 0.111 0.032 0.143 0.087 0.158 0.056 0.300
0.465 129 0.109 0.026 0.135 0.087 0.158 0.059 0.298
0.462 130 0.108 0.034 0.142 0.086 0.160 0.054 0.298
0.458 131 0.107 0.031 0.137 0.087 0.150 0.059 0.294
0.455 132 0.105 0.032 0.138 0.087 0.152 0.055 0.293
0.451 133 0.109 0.026 0.135 0.087 0.146 0.054 0.288
0.448 134 0.112 0.025 0.136 0.087 0.147 0.052 0.289
0.444 135 0.108 0.027 0.135 0.088 0.146 0.053 0.284
0.441 136 0.111 0.025 0.136 0.086 0.145 0.049 0.280
0.438 137 0.110 0.023 0.133 0.089 0.133 0.057 0.268
0.435 138 0.106 0.025 0.131 0.087 0.140 0.051 0.278
0.432 139 - - - - - - -
0.429 140 0.109 0.022 0.131 0.087 0.139 0.048 0.275
0.426 141 0.105 0.022 0.126 0.087 0.142 0.050 0.279
0.423 142 0.103 0.026 0.129 0.087 0.140 0.049 0.275
0.420 143 0.106 0.022 0.128 0.088 0.142 0.046 0.275
0.417 144 - - - - - - -
0.414 145 0.107 0.019 0.126 0.089 0.146 0.044 0.275
0.411 146 0.101 0.020 0.121 0.088 0.148 0.039 0.275
0.408 147 0.102 0.014 0.116 0.089 0.143 0.037 0.269
0.405 148 - - - - - - -
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Mean of all Subject Component Durations When Averaged into 1-bpm Intervals

Trr (s) HR(bpm) Tpw Is) TpQ-sejis) TpQ-lnt(s) ’’’qrsIs) TtwIsi TsT-Segls) ^QT-Intls)
0.403 149 0.113 0.012 0.124 0.084 0.143 0.040 0.266
0.400 150 0.103 0.015 0.117 0.087 0.140 0.037 0.267
0.397 151 0.101 0.015 0.117 0.089 0.141 0.037 0,268
0.395 152 - - - - - - -
0.392 153 0.091 0.020 0.111 0.086 0.148 0.038 0.271
0.390 154 0.096 0.015 0.111 0.087 0.147 0.035 0.267
0.387 155 - - - - - - -

0.385 156 0.091 0.025 0.115 0.084 0.142 0.033 0.260
0.382 157 0.097 0.016 0.112 0.085 0.124 0.048 0.249
0.380 158 - - - - - - -
0.377 159 0.091 0.024 0.115 0.085 0.134 0,033 0.254
0.375 160 0.090 0.022 0.112 0.084 0.116 0.047 0.253
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Standard Deviation of all Subject Component Durations When Averaged into 1-bpm Intervals

Trr(s) HR(bpm) "Tpw (s) TpQSei!(sl ^PQ-lnt(s) ^QRSls) ^TWIsl ^STSellsI ^QT-Intlsl

1.277 47 0.006 0.025 0.030 0.009 0.072 0.001 0.029
1.250 48 0.008 0.011 0.019 0.013 0.022 0.014 0.021
1.224 49 0.003 0.005 0.014 0.012 0.026 0.000 0.011
1.200 50 0.021 0.010 0.017 0.010 0.046 0.026 0.028
1.176 51 0.030 0.006 0.035 0.007 0.027 0.021 0.038
1.154 52 0.018 0.006 0.016 0.011 0.032 0.037 0.031
1.132 53 0.024 0.013 0.032 0.007 0.027 0.022 0.044
1.111 54 0.006 0.039 0.041 0.009 0.027 0.024 0.038
1.091 55 0.010 0.011 0.004 0.005 0.061 0.055 0.035
1.071 56 0.008 0.005 0.019 0.005 0.024 0.036 0.063
1.053 57 0.012 0.012 0.008 0.004 0.038 0.036 0.035
1.034 58 0.017 0.032 0.049 0.007 0.039 0.015 0.037
1.017 59 0.020 0.024 0.028 0.007 0.017 0.022 0.040
1.000 60 0.007 0.011 0.018 0.015 0.058 0.038 0.029
0.984 61 - - - - - - -

0.968 62 0.004 0.020 0.021 0.002 0.022 0.014 0.032
0.952 63 0.014 0.020 0.021 0.007 0.030 0.037 0.040
0.938 64 0.012 0.027 0.025 0.014 0.038 0.033 0.051
0.923 65 0.012 0.025 0.026 0.011 0.021 0.027 0.035
0.909 66 0.019 0.025 0.026 0.014 0.035 0.019 0.040
0.896 67 0.023 0.018 0.030 0.012 0.020 0.022 0.018
0.882 68 0.020 0.014 0.024 0.007 0.029 0.029 0.029
0.870 69 0.016 0.022 0.021 0.010 0.022 0.020 0.013
0.857 70 0.020 0.024 0.029 0.011 0.035 0.040 0.027
0.845 71 0.017 0.029 0.028 0.009 0.036 0.026 0.027
0.833 72 0.011 0.026 0.025 0.007 0.034 0.037 0.018
0.822 73 0.018 0.022 0.023 0.008 0.029 0.032 0.030
0.811 74 0.017 0.031 0.027 0.008 0.050 0.027 0.032
0.800 75 0.021 0.026 0.025 0.007 0.036 0.027 0.035
0.789 76 0.028 0.017 0.031 0.008 0.032 0.026 0.037
0.779 77 0.015 0.016 0.018 0.010 0.032 0.032 0.027
0.769 78 0.016 0.022 0.020 0.010 0.037 0.024 0.029
0.759 79 0.017 0.025 0.020 0.008 0.010 0.016 0.025
0.750 80 0.015 0.013 0.016 0.008 0.043 0.023 0.033
0.741 81 0.012 0.015 0.014 0.009 0.022 0.013 0.029
0.732 82 0.015 0.024 0.023 0.011 0.022 0.021 0.026
0.723 83 0.018 0.010 0.018 0.010 0.026 0.018 0.026
0.714 84 0.017 0.012 0.017 0.013 0.024 0.017 0.025
0.706 85 0.030 0.010 0.032 0.008 0.026 0.016 0.040
0.698 86 0.022 0.010 0.017 0.009 0.019 0.027 0.025
0.690 87 0.016 0.009 0.023 0.012 0.012 0.014 0.030
0.682 88 0.017 0.014 0.017 0.016 0.014 0.017 0.030
0.674 89 0.026 0.007 0.020 0.013 0.020 0.015 0.026
0.667 90 0.031 0.008 0.029 0.013 0.019 0.011 0.034
0.659 91 0.024 0.016 0.023 0.016 0.021 0.015 0.029
0.652 92 0.022 0.010 0.028 0.012 0.017 0.021 0.030
0.645 93 0.027 0.007 0.028 0.012 0.017 0.022 0.028
0.638 94 0.028 0.007 0.030 0.013 0.014 0.014 0.019
0.632 95 0.027 0.020 0.024 0.008 0.023 0.020 0.030
0.625 96 0.023 0.015 0.012 0.009 0.014 0.012 0.013
0.619 97 0.026 0.021 0.026 0.010 0.022 0.022 0.029
0.612 98 0.025 0.014 0.023 0.008 0.020 0.020 0.035
0.606 99 0.024 0.020 0.020 0.010 0.010 0.019 0.026
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standard Deviation of all Subject Component Durations When Averaged into 1-bpm Intervals

Trr(s) HR(bpm) Tpw Is) ''’pq-ses(s) TpQ-im(sl fQIISisl Ttwisi TsT-Seris) ^QT-Intlsl
0.600 100 0.039 0.013 0.008 0.009 0.012 0.059 0.011
0.594 101 0.020 0.014 0.021 0.009 0.019 0.038 0.026
0.588 102 0.022 0.017 0.023 0.007 0.025 0.038 0.018
0.583 103 0.017 0.022 0.020 0.007 0.019 0.036 0.020
0.577 104 0.026 0.019 0.025 0.012 0.019 0.038 0.024
0.571 105 0.026 0.016 0.024 0.011 0.017 0.030 0.022
0.566 106 0.029 0.016 0.027 0.013 0.019 0.034 0.021
0.561 107 0.024 0.016 0.028 0.011 0.016 0.017 0.021
0.556 108 0.023 0.017 0.019 0.010 0.009 0.015 0.007
0.550 109 0.024 0.021 0.023 0.009 0.008 0.021 0.008
0.545 110 0.023 0.015 0.018 0.008 0.004 0.015 0.008
0.541 111 0.025 0.017 0.020 0.005 0.010 0.008 0.012
0.536 112 0.030 0.008 0.019 0.013 0.008 0.011 0.007
0.531 113 0.030 0.012 0.021 0.007 0.011 0.008 0.012
0.526 114 0.025 0.002 0.015 0.004 0.011 0.006 0.015
0.522 115 0.020 0.009 0.013 0.005 0.013 0.004 0.012
0.517 116 0.018 0.009 0.008 0.008 0.010 0.007 0.020
0.513 117 0.020 0.011 0.012 0.007 0.020 0.013 0.027
0.508 118 0.013 0.008 0.010 0.008 0.015 0.011 0.023
0.504 119 0.016 0.011 0.012 0.009 0.016 0.012 0.020
0.500 120 0.020 0.007 0.011 0.008 0.016 0.006 0.019
0.496 121 0.017 0.010 0.011 0.010 0.020 0.008 0.022
0.492 122 0.015 0.005 0.013 0.008 0.018 0.008 0.018
0.488 123 0.016 0.007 0.008 0.009 0.019 0.008 0.022
0.484 124 0.009 0.000 0.008 0.011 0.011 0.003 0.011
0.480 125 0.010 0.017 0.011 0.008 0.017 0.006 0.024
0.476 126 0.006 0.017 0.014 0.008 0.018 0.005 0.011
0.472 127 0.008 0.012 0.011 0.007 0.010 0.012 0.018
0.469 128 0.011 0.012 0.013 0.007 0.012 0.009 0.018
0.465 129 0.012 0.013 0.006 0.007 0.012 0.010 0.018
0.462 130 0.011 0.015 0.011 0.007 0.008 0.012 0.016
0.458 131 0.009 0.012 0.012 0.005 0.010 0.008 0.016
0.455 132 0.007 0.008 0.011 0.006 0.013 0.009 0.016
0.451 133 0.013 0.008 0.009 0.006 0.009 0.011 0.020
0.448 134 0.016 0.007 0.008 0.005 0.009 0.011 0.018
0.444 135 0.010 0.007 0.007 0.007 0.018 0.009 0.017
0.441 136 0.009 0.005 0.003 0.006 0.008 0.013 0.016
0.438 137 0.017 0.006 0.007 0.010 0.018 0.009 0.004
0.435 138 0.011 0.007 0.004 0.006 0.011 0.010 0.012
0.432 139 - - - - - - -

0.429 140 0.012 0.008 0.006 0.008 0.006 0.014 0.014
0.426 141 0.009 0.007 0.009 0.007 0.009 0.010 0.009
0.423 142 0.008 0.009 0.008 0.009 0.009 0.010 0.011
0.420 143 0.013 0.006 0.004 0.009 0.010 0.012 0.010
0.417 144 - - - - - - -

0.414 145 0.010 0.008 0.002 0.011 0.015 0.015 0.009
0.411 146 0.010 0.009 0.003 0.007 0.016 0.004 0.008
0.408 147 0.008 0.005 0.003 0.011 0.005 0.007 0.004
0.405 148 - - - - - - -
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Standard Deviation of all Subject Component Durations When Averaged into 1-bpm Intervals

Trr(s) HR(bpm) Tpw(sl Tpq-seg(s) TpQ-lnt(s) Tqrs(s1 Ttw(s) TsT-Seg(s)
0.403 149 0.004 0.007 0.004 0.008 0.005 0.000 0.003
0.400 150 0.009 0.006 0.006 0.012 0.011 0.002 0.008
0.397 151 0.007 0.005 0.001 0.011 0.015 0.005 0.009
0.395 152 - - - - - - -

0.392 153 0.007 0.005 0.004 0.015 0.013 0.003 0.004
0.390 154 0.011 0.004 0.001 0.016 0.009 0.001 0.006
0.387 155 - - - - - - -

0.385 156 0.002 0.001 0.003 0.012 0.021 0.002 0.005
0.382 157 0.006 0.004 0.001 0.014 0.029 0.019 0.008
0.380 158 - - - - - - -
0.377 159 0.000 0.006 0.003 0.009 0.000 0.000 0.003
0.375 160 0.000 0.000 0.004 0.010 0.000 0.000 0.007
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