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Abstract

In this dissertation we present new results in the field of topologically twisted gauge theories
evaluated on compact four-manifolds without boundary. We focus on the Donaldson-Witten
theory, that is the N = 2 topologically twisted super Yang-Mills theory. We revisit and
study the contribution on the Coulomb branch of the path integral of the low energy effective
theory which is non-vanishing only for four-manifolds with b+2 ≤ 1. We establish new ways
to evaluate path integrals of this theory using mock modular forms. Furthermore we propose
a new regularization and renormalization of the path integral required for conservation of the
BRST symmetry of the topological theory. We conclude by generalizing these considerations
to the Donaldson-Witten theory in the presence of supersymmetric surface defects.
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Chapter 1

Introduction

1.1 Motivation for this thesis

In the edge of the twentieth century, physics went through a revolution where a bunch of
observed phenomena such as the photoelectric effect led to the discovery of two new theories.
These theories were to shape not only the physics of the previous and future centuries but
also they played a fundamental role to the enormous technological revolution that is still
ongoing. These two newly established theories were no other than the theory of relativity
and the theory of quantum mechanics. Both of them are two of the most successful theories
of twentieth century physics and probably of equal importance and weight to Darwin’s
theory of the evolution of species. The theory of relativity was proposed by Einstein in his
miraculous years between 1905 (special theory of relativity) and 1915 (general theory of
relativity). The theory itself describes physical phenomena involving macroscopic objects,
such as stars like our Sun, black holes, the precession of the perihelion of Mercury and also
forms the base of our modern cosmological understanding since it explains the expansion of
the universe among other phenomena. Relativity has been tested on our solar system and
even to cosmological scales to a very high precision confirming beyond doubt its relevance to
the universe. Quantum mechanics, on the other hand, is the theory that governs the physics of
microscopic objects, such as molecules, atoms and elementary particles like the electrons, the
neutrons and the protons. The validity of quantum mechanics is also beyond any doubt since
its experimental verification and technological applications are omnipresent. For example,
the spectrum of the hydrogen atom confirms that quantum mechanics indeed is absolutely
necessary for describing the microscopic world while the transistors that every modern
electronic device utilizes are a consequence of our understanding of quantum mechanics.
Nevertheless, despite the fact that relativity and quantum mechanics have been studied by
physicists for over a hundred years, to this day, they seem to be incompatible to each other.
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This is something very puzzling since we know that there exist situations and phenomena
that in order to be described both theories are needed, for example the physics near the
singularities of black holes, or the singularity of the Big Bang. Although the special theory
of relativity and quantum mechanics can be combined into the successful framework of
quantum field theory, that we will describe in more detail below, this is not the case with
the general theory of relativity. String theory was discovered in the seventies, originally as a
theory to explain the short range interactions of the quarks in the atomic nuclei. Nevertheless,
soon it was realized that string theory is a theory that can unify relativity and quantum
mechanics, i.e. a theory of quantum gravity. String theory is to this day the only consistent
theory of quantum gravity and the only promising theory to unify all fundamental forces
of the nature, described by quantum field theory and the theory of general relativity, into a
single mathematical framework.

In what follows, we will give a brief summary of the development of various fundamental
aspects of theoretical physics, starting from quantum field theory and going to string theory.
We call the attention of the reader on the very repeating pattern of the appearance of modern
mathematics while we discuss these topics.

As we will explain below, the main theory to be studied in this thesis is a supersymmetric
quantum field theory which has been shown to be of relevance within the context of string
theory and D-branes. The reason for this approach is that advancing toward the end of
the twentieth century, physicists and mathematicians managed to use the physical ideas
of relativity, quantum mechanics and eventually string theory not to solve some physical
problems but rather to solve various problems in modern mathematics. This was the first
time in scientific history where mathematics was not a tool physicists use in order to tackle
with their problems but instead physics provides the tools to solve mathematical problems
and this thesis appears to have such a flavor to some extent. More generally it is evident by
now that physics and mathematics are a dynamic duo, where one influences the other. This
notion will become clear in the main body of this thesis. It would not be dishonest to state
that the original motivation for this thesis came from this new point of view.

1.2 Quantum Field Theory

The study of the quantum mechanical theory of the electromagnetic fields and their interac-
tions (for example the interactions between photons and electrons) led to the unification of
quantum mechanics, special relativity and electrodynamics and eventually to the develop-
ment of quantum electrodynamics, or as it is better known QED. Using this mathematical
framework physicists started developing other similar theories that all together go under
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the umbrella name quantum field theory and have revolutionized physics by being the most
experimentally accurate scientific theory we have developed. Quantum field theory interprets
the particles we observe in the laboratories as excitations of fields that are omnipresent across
the universe. A way to heuristically view what a field is the following: think of the sea as the
field occupying the universe and the peaks of sea waves as the excitations of this field that
we interpret as particles. In some places there are no sea waves, in other places there are sea
waves propagating along one direction and in other places sea waves from different directions
scatter and create new sea waves. Particle physics, which is governed by quantum field theory,
can be interpreted as this sea picture. To return to QED, its success in explaining various
phenomena such as the photoelectric one, the Lamb shift, and even the anomalous magnetic
moment of the electron established the theory really quickly. Furthermore, a specific quantum
field theory called quantum chromodynamics, or QCD, turned out to be the correct theory
explaining the strong and weak nuclear interactions that are responsible for binding the
atomic nuclei together and the radioactive decays respectively. As the Standard Model of
particle physics was being developed it was realized that the electromagnetic and the weak
nuclear forces fit in one framework, a quantum field theory known as the electroweak theory.
What is very special about these quantum field theories we describe, is a characteristic feature
they have. This is the possession of a local symmetry called gauge symmetry and it will also
be apparent in the theories we will study later. For QCD the gauge symmetry is SU(3) while
for the electroweak theory it is SU(2)×U(1). When this symmetry is spontaneously broken
the resulting symmetry for QED is the familiar U(1).

Quantum field theory has been shown to be very successful and predicts numerous
phenomena to a very high degree of accuracy already from its early days. It was realized
though that the theory contained some mathematical inconsistencies that led to nonsensical
answers and these inconsistencies had to be cured. In QED for example when one would
try to compute some observable quantity (for example the cross section of some process)
a possible answer could be infinity. This problem was cured by absorbing these infinite
quantities into a finite number of parameters such as the coupling constants and the masses
of the theory. This procedure is called renormalization and in the next chapter we will
see how one can absorb infinite quantities and make integrals, that naively diverge, finite.
Most quantum field theories fit into a general classification that splits them into two classes.
Renormalizable and non-renormalizable. QED and QCD belong to the former class. The
theory we will study in this thesis belongs to the latter class. In the early days it was thought
that only the renormalizable theories made sense but our current understanding is that this
is not the case. A very important example of a non-renormalizable theory is the theory of
general relativity itself. The problem with non-renormalizable theories is that after specific



4 Introduction

energy scales they lose their predictive power and in some sense they do not describe the
physics that their lower energy counterparts did. This behavior is an indicator that some
new physics is needed above these energy scales and such problems led to string theory.
Theories like general relativity take the name effective field theories in the sense that they do
work pretty well in some range of energies but they are just dressed up low energy theories
of some mother theory. On the other hand the Standard Model which is based on QCD
and QED is a renormalizable theory. As a renormalizable theory it is expected to make
accurate predictions at arbitrary large energy scales. Nevertheless for the Standard Moedel
we also know that it should unify to a single theory at high enough energies. From this
viewpoint even a renormalizable theory such as the Standard Model can be considered also
as an effective field theory1. The notion of an effective field theory is very important since
this thesis studies such non-renormalizable effective field theories.

1.3 Supersymmetry

As we explained, the Standard Model (the union of QCD and QED) is regarded as an effective
field theory, a low energy approximation of some unified but unknown theory2. Eventually
all theories must be unified to a single mother theory or “theory of everything” and we
expect this to happen at energy scales of the order of anywhere between 1016 and 1018 GeV.
Such energy scales are very large, actually enormously large, compared to the electroweak
breaking scale which happens at 300 GeV and is one of the characteristic features of the
Standard Model. The huge ratio of these two scales, which is called the hierarchy problem,
is indeed extremely large and physicists believe that such a discrepancy requires justification.
The hierarchy problem is indeed a problem because unlike the quarks the leptons have masses
proportional to the electroweak symmetry breaking scale which itself is proportional to the
mass of the scalar fields responsible for such a symmetry breaking. The scalar fields though,
unlike the previously mentioned fields, are not protected by any gauge symmetry and it is
not understood why their masses are not of the order 1016 or 1018 GeV. This unexplained
phenomenon led to the development of supersymmetry.

Supersymmetry is a transformation property that fundamental particles are supposed to
have and which transforms bosons to fermions and fermions to bosons. Therefore super-
symmetry suggests that all fundamental particles have a supersymmetric partner with the
opposite parity. Supersymmetry is not experimentally confirmed by 2019 but there are good

1Note that this point of view of an effective field theory is not universally agreed upon but many researchers
take upon such an assumption.

2There exist various proposals for such theories, for example the SU(5) unified theory or the SO(10) unified
theory which predict many unobserved to this day particles.
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reasons to believe in its existence since it resolves various problems in quantum field theory
including the hierarchy problem. This resolution is done by considering the Standard Model
as a supersymmetric theory. The reason is very simple: if the scalar field (that is responsible
for the electroweak symmetry breaking) and its fermionic partner transform in some chiral
representation for an unknown gauge group G, then they both are required by supersymmetry
to have vanishing bare masses and in such a case all masses of the standard model will then
be related to the supersymmetry breaking scale.

Supersymmetry, furthermore, is an absolute requirement for the five standard string
theories. In order to construct Standard Model like theories from string theory, space-time
supersymmetry is a must, making supersymmetry tied to the problem of unifying quantum
field theory with general relativity. Furthermore, supersymmetry is mathematically consistent
and even mathematically interesting by itself.

1.4 String theory

As we explained earlier, string theory emerged in the 1960s as a proposal to decribe the
strongly interactive hadrons in QCD as vibrating modes of a string. Nevertheless, this theory
turned out to be very problematic for the following few reasons (which nowadays are seen as
assets of the theory):

• String theory, in its simplest form, requires 26 dimensions of space-time in order to be
consistent. Superstring theories require 10 dimensions of space-time (while the much
later discovered M-theory requires 11 dimensions).

• The theory contains a massive particle with spin s = 2 and such a particle is not
observed in hadronic physics.

• Strong interaction scattering amplitudes follow a power law fall off with respect to en-
ergy. Unlike, in string theory, the so-called Veneziano amplitudes fall off exponentially
fast.

The above come at odds with string theory being a theory for hadronic physics and QCD
was established as the only theory explaining the strong interactions. In the 1970s it was
suggested that the massless spin two particle that appears in the spectrum of string theory
could be the graviton, the quantum excitation of the gravitational field and this fact alone
implied that the tension of the hypothetical vibrating string is related to the characteristic
scale of gravity, the Planck scale which is of order 1019 GeV. Furthermore, it was realized
that as the theory flows to lower energies it behaves like Einstein’s general relativity. In the
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years to follow various string theory formulations were developed, including supersymmetry.
By the 1980s the physicists had established five superstring theories known as Type I, Type
IIA, Type IIB and SO(32) and E8 ×E8 heterotic string theories. Some of those theories
that were especially relevant for phenomenological models were subject to gravitational
anomalies. A remarkable breakthrough of Green and Schwarz, the anomaly cancellation,
established string theory as a viable scientific theory (although there were five of them3).

The five formulations of string theory are related to each other by the so-called duality
transformations. Types IIA and IIB are related by T -duality as do the two heterotic theories.
Supersting theories live on ten dimensional geometries and T -duality implies, in some cases
as the above, that the physics of a theory in one geometry is equivalent to the physics of
its T -dual theory in a different geometry. The simplest example is the one that relates IIA
string theory on a circle of radius r to IIB theory on a circle of radius l2

s /r, where ls is the
fundamental string length. Another type of duality is that of S-duality which relates the string
coupling constant gs to 1/gs. This type of duality is called weak-strong duality because it
implies that a strongly coupled theory is equivalent to its weakly coupled S-dual theory. This
is very important since if a theory is strongly coupled we do not have perturbative access to
it but we can rely to its S-dual theory. The simplest example is that of type I string theory
which is S-dual to the heterotic SO(32). Type IIB string theory is self-dual which means that
S-duality is a symmetry of this theory. T and S duality appear in quantum field theory as well
and they will also play fundamental role in this thesis. It is worth mentioning that type IIA
string theory is S-dual to M-theory.

Type IIA and IIB string theories have some other features, which are of great relevance to
quantum field theory. When these theories are studied non-pertubratively, it can be realized
that they contain other spatially extended objects except for strings. These objects are called
Dp branes where p denotes the number of spatial dimensions (D stands for Dirichlet which is
the nature of them as boundary conditions where fundamental strings are attached to) and they
have tension that is proportional to 1/gs. Effectively D-branes (we skip the dimensionality
for ease of notation) are hyper-surfaces embedded in the ambient ten dimensional space-time,
that (super)string theory requires, where strings can end. Furthermore, D-branes are sources
of p-form charge (RR charges). All of these objects except of the fundamental string (p = 1)
become infinitely heavy as the string coupling goes to 0, and therefore they do not appear in
perturbation theory. Type IIA theory has even valued branes while IIB has odd valued branes.
Since fundamental strings can end on D-branes, this implies that quantum field theories live
on the world-volume of the D-branes. For example, the Yang-Mills fields arise as the massless
modes of open strings attached to them. Because of the ability to construct Yang-Mills like

3Today we know there is at least on more string theory, the Type 0 one.
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theories using D-branes most phenomenological approaches to string theory with a view to
construct Standard Model like theories rely on D-branes4. For example, it is speculated that
the four-dimensions we interpret to live in are simply because we live on the world-volume
of D3-branes which are themselves embedded in a higher (ten dimensional) space-time.
The discovery of D-branes has given a new flavor to the physics of supersymmetric gauge
theories which could be now seen as quantum field theories with string theoretic origin.
In relation to the previous paragraph let us mention that S-duality has a gauge theoretic
origin. Although physicists knew for a long time the notion of electric-magnetic duality in
electrodynamics, Montonen and Olive showed this duality is preserved for gauge groups
other than U(1) while later Vafa and Witten presented strong evidence [84] that the N = 4
super Yang-Mills gauge theory, that can be completely constructed from type IIB string
reduction to four dimensions, exhibits S-duality or as it often referred to. Seiberg and Witten
generalized the latter to the N = 2 super Yang-Mills theory in four dimensions, the N = 2
super QCD. Returning to the context of string theory, with the aid of S-duality we can study
in depth type I, IIB and heterotic SO(32) string theories at strong coupling. This is not the
case for the remaining two string theories, type IIA and heterotic E8 ×E8 which at strong
coupling they need an extra, eleventh, dimension to be described and approach at this limit
the eleven dimensional M-theory. This extra dimension is of size gsls and geometrically is a
circle (the “M-theory circle”) for type IIA string theory and a line interval for the heterotic
one. When this dimension is large, that is when gsls ≫ 1 we are residing outside perturbative
string theory and new tools are needed to explain the corresponding physics. In 1995 it was
observed that type IIA string theory is related to M-theory by dimensional reduction to ten
dimensions. This can be understood in terms of an M2-brane which wraps the M-theory
circle. When the radius of this circle goes to zero the M2-brane becomes the string of type
IIA theory. At low energies M-theory can be approximated by an effective field theory, the
eleven dimensional N = 1 supergravity. Finally, M-theory itself contains extended objects
as well, M5-branes and M2-branes which we mentioned above. The theory that lives on the
world-volume of the former is the “mysterious” six dimensional (2,0) super conformal field
theory, the theory X as it is sometimes called. Using M5-branes and M2-branes various six
dimensional quantum field theories can be constructed just like the theory X . Although this
thesis does not study any M-theoretic constructions many of the constructions that appear do
have an M-theoretic origin and it would be of great interest to explore those aspects further.

4In the 1980s though, the heterotic theories were considered as better candidates for phenomenological
models.
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1.5 Supersymmetric gauge theories

The main body of this thesis studies a specific class of supersymmetric gauge theories many
aspects of which have a string theoretic or M-theoretic construction. Supersymmetric gauge
theories are interesting and useful for phenomenological reasons since they can be studied
analytically and for topological theories solved analytically. Their mathematical attributes
make them interesting for mathematical physicists and mathematicians as well though since
they have been providing new insights in topology and geometry for the past thirty years.

Non-supersymmetric gauge theories, like electromagnetism but with non-abelian gauge
group SU(2) have been used by mathematicians to prove various results in algebraic and
differential topology as we will explain in the next subsection. Some of these constructions
the mathematicians invented will be of importance and use in later chapters of this thesis. A
particular feature of any gauge theory, supersymmetric or not, is the set of classical minima
of their actions, the instantons (and anti-instantons). Instantons have a moduli space that
we will briefly describe later and for supersymmetric theories this moduli space can be
understood using D-branes. The instanton moduli space plays a crucial role in many of
these theories since the partition functions and correlation functions of many supersymmetric
gauge theories localize on it. When we flow the supersymmetric theories of interest in
this thesis to low energies the corresponding partition functions and correlation functions
localize to a different moduli space, the moduli space of vacua. This space is the set of
solutions of the vacuum equations (obtained from the scalar fields of the theory) modulo
gauge transformations. What is special about this moduli space is that it is completely
controlled by a single holomorphic function, the prepotential F , which itself is related to
instantons. For the theories of interest, which are studied on compact four-manifolds rather
than flat space-time, the partition function or specific correlation functions have a geometric
or rather topological interpretation since they hide indeed various topological data. This
understanding led to a remarkable set of achievements and not only enhanced the faith of the
usefulness of supersymmetric gauge theories, but also allowed physicists to enter into many
mathematical disciplines in the fields of topology and geometry.

Currently, there exist many mathematical research directions whose main tool is gauge
theory (and in some cases its connection to string theory and M-theory). This thesis will study
some new aspects of towards that direction. The context of this thesis is a supersymmetric
gauge theory that is topologically twisted (we will explain this below) and it is of interest
since many of its correlation functions can be computed exactly and they do provide some
topological invariants for the space the theory is studied on.
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1.6 Gauge theory and mathematics

In this section we will briefly describe the impact that gauge theories have had in analysis,
geometry and topology. Starting with the ideas of Simon Donaldson, there have been
numerous developments in pure mathematics which have, to varying degrees, grown out of
the ideas of gauge theories. These advancements are due to the realization that the gauge
fields of particle physics can be viewed as connections over principal bundles in differential
geometry, while matter fields are realized as sections of other kinds of vector bundles. This
realization has led mathematicians and physicists to work on new kinds of questions, often
shedding light on well-established problems. Less directly, various fundamental ideas and
techniques, and especially the need to work with the infinite-dimensional gauge groups, have
found a place in the general world-view of many mathematicians, influencing developments
in other fields. The work in the area that lies between geometry and mathematical physics
has been a prime example of the interaction between these fields which has been so fruitful
over the past thirty years.

For the purposes of this thesis it is important to mention that Donaldson’s work of
gauge theories on smooth compact and oriented four-manifolds gave a partial answer to
the classification problem of their smooth structures [17]. Donaldson, used gauge theory,
instantons to be more precise, to define polynomials that are different for every inequivalent
smooth structure one can equip a four-manifold with [15]. Nevertheless, skipping a lot of
details, the computation of those polynomial invariants, the Donaldson invariants, are in most
cases cumbersome5. A remarkable result came with the work of Witten [87] where he made
a connection between Donaldson’s theory and supersymmetric gauge theories. Witten was
able to rediscover Donaldson’s polynomial invariants using a N = 2 topologically twisted
supersymmetric gauge theory on a four-manifold. This theory, that took the name Donaldson-
Witten theory, was of particular importance since until that time the study supersymmetric
gauge theories on arbitrary four-manifolds was not very well developed because such a
task required to evaluate the theory on manifolds that admit a spin structure. With Witten’s
work the mathematical concept of Donaldson invariants and the problem of the smooth
classification of four-manifolds started getting a more physical shape since Witten showed
that the generating function of Donaldson invariants is equivalent to a specific correlation
function in Donaldson-Witten theory

Φ(p,xxx) = ZDW(p,xxx). (1.1)

5We strictly mean the computation of Donaldson invariants and not their relation with the computationally
more accesible Seiberg-Witten invariants that contain similar and in some cases equivalent information about
the four-manifold.
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The final breakthrough we need to mention in order to motivate this thesis is the fundamental
paper of Moore and Witten [67]. In this remarkable work the authors brought Donaldson
theory even closer to the interests of physicists since they studied the low energy effective
action of Donaldson-Witten theory and wrote the famous formula

ZIR
DW = Zu-plane +ZSW. (1.2)

Here, the left hand side denotes the path integral of the theory while the right hand side
denotes the split into two contributions: the so-called u-plane (the space of quantum vacua
in the Coulomb branch) and the Seiberg-Witten invariants contribution (coming from the
monopole equations). This equation lies at the core of this thesis and we will study it to some
detail in later chapters.

1.7 Contributions and structure of this thesis

This thesis contributes some new insights, results, and ideas regarding the u-plane integral
or, more generally the Coulomb branch integral (for gauge groups of arbitrary rank). This
thesis is consisted out of five chapters. Each one of the latter three ones are dedicated to
the publication of a standalone paper. The order or presentation of these chapters will be
different than the chronological order of publication of the papers that actually compose it.
Nevertheless, we will briefly explain how these papers came to appear chronologically.

The first paper we published [44], together with my supervisor Jan Manschot, corresponds
to Chapter 4. The contribution of this paper to the current literature is an alternative way
to compute the u-plane integral via the theory of mock modular forms [93, 94]. Briefly, in
this paper we find that by including to the path integral of the Donaldson-Witten theory a
specific Q-exact deformation (see section 2.3 for the definition of the Q differential) we are
able to re-express the integrand of the u-plane integral as a specific kind of mock modular
form called indefinite theta function. The computation of the u-plane integral then becomes a
very simple residue integral. In this paper we computed the Donaldson invariants for CP2

and also for Hirzebruch surfaces Fℓ. Our formulae are in agreement with the mathematics
literature since we find the correct Donaldson invariants something that ultimatelly convinced
us for the validity of our considerations.

The second paper [43] studied in detail the ramified Donaldson-Witten theory which
is the Donaldson-Witten theory on a closed four-manifold with embedded surfaces6 that
support supersymmetric surface operators. This study was based on the previous technique of

6These surfaces sometimes are referred to as surface defects.
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including a Q-exact deformation to the path integral of the theory and derives a very simple
formula for the computation of the ramified Donaldson invariants.

Such an inclusion of a Q-exact operator was assumed to be safe and standard in the
literature. Still, Greg Moore and Iurii Nidaiev, upon reading carefully our first paper, helped
us realise that this might not be quite as trivial. This led to the paper [45], together with Jan
Manschot, Greg Moore and Iurii Nidaiev, which studies carefully the insertion of Q-exact
operators to the path integral of the rank one Donaldson-Witten theory. By a careful analysis
we realized that the insertion is well justified after regularizing the u-plane integral using
techniques from the regularization of Petersson inner products of harmonic Maass forms [6].
This regularization technique is a new method for regularizing and renormalizing modular
integrals and is a generalization (in an appropriate sense) of the standard method that was
developed in [36].

All the necessary background will be described as required, in the appropriate order in
the main four chapters of this thesis and also in the adjoined appendices with the exceptions
of Seiberg-Witten and Donaldson-Witten theories which are required for all of the chapters
and therefore we have dedicated Chapter 2 just for them. Whenever we think it is necessary
we advise the reader to consult the literature by providing appropriate references.

Let us therefore summarize the structure of the present thesis which is composed by the
main four chapters

• Chapter 2 - Review of Seiberg-Witten and Donaldson-Witten theories,

• Chapter 3 - Publication [45] and relevant background,

• Chapter 4 - Publication [44] and relevant background,

• Chapter 5 - Publication [43] and relevant background,

and complemented by Appendix A on modular forms, indefinite theta functions, etc., and
Appendix B on surface operators.





Chapter 2

Seiberg-Witten theory and
Donaldson-Witten theory

In this chapter we will lay down the basic background needed in order to understand the main
contributions of this thesis. The technical tools required are the Seiberg-Witten technology of
supersymmetric gauge theories and the topologically twisted N = 2 theory, the Donaldson-
Witten theory. The goal is to use Seiberg-Witten theory and study the vacua of the Coulomb
branch in the low energy effective action of the Donaldson-Witten theory.

2.1 Seiberg-Witten theory

In this section we give a brief overview of the very well-known Seiberg-Witten theory
[74, 75]. A lot of this content is drawn from the excellent resources [48, 63, 64].

Seiberg-Witten theory is the low energy effective theory of the N = 2 SYM theory with
gauge group SU(2) or SO(3) on flat R4. The global bosonic symmetry group is SO(4)×
SU(2)R ∼= (SU(2)l ×SU(2)r)/Z2 ×SU(2)R ×U(1)R where the latter is an anomalous U(1)
symmetry. The Rotations around R4 are represented by K = SO(4)∼= SU(2)l ×SU(2)r/Z2

and the factor SU(2)R correspond to the R-symmetry. In terms of the corresponding Lie
algebras this bosonic symmetry reads su(2)l × su(2)r × su(2)R ×u(1)R. For simplicity we
focus on the pure gauge theory case with no additional matter representations so we will have
no Higgs branches in the moduli space of vacua. The field content of the theory is a single
N = 2 vector multiplet in the adjoint representation which is summarized in Table 2.1.

We want to study the vacua of the low energy effective theory. At this stage we will
assume a generic gauge group G with Lie algebra g. Seiberg-Witten theory has a Lagrangian
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Description Field Representation under K
gauge field A (2,2,1)

chiral spinor ψ (2,1,2)
anti-chiral spinor ψ̄ (1,2,2)

complex scalar (Higgs) φ (1,1,1)
auxiliary scalar D (1,1,3)0

Table 2.1 The field content of pure N = 2 SYM theory and the corresponding representations.

description1 with a potential term for the Higgs field and its classical vacua are given by
minimizing this term. The condition for the vacua reads

[φ , φ̄ ] = 0. (2.1)

The solution set V of the fields φ that satisfy the previous equation is a space with a natural
action of the gauge group G [63, 74]. The quotient gives the space of classical vacua of the
theory

Bclassical = V /G. (2.2)

Taking a closer look at Equation (2.1) we realize that it implies that φ is semi-simple and
as a result it can be conjugated to a maximal torus t⊗C. Physically this means that we can
perform a gauge transformation to the field φ and bring it to a diagonal form. When the
Higgs field is (i) semi-simple2 and (ii) regular3, the stabilizer is the normalizer of the Cartan
torus T , and the gauge group that remains unbroken is simply the maximal torus T with Lie
algebra t [63]. Therefore, the moduli space of classical vacua can be identified with

Bclassical =
t⊗C\∆

W
(2.3)

where W is the Weyl group and ∆ is a subset of semi simple non-regular elements.
Returning to the simplest case G = SU(2), the classical vacua are given by the solution

set of
Tr([φ , φ̄ ])2 = 0. (2.4)

1The specific Lagrangian is not of importance here so we do not include it but it can be easily read off from
[48] or [83].

2This refers to the context of Lie algebras.
3A n×n diagonizable matrix is regular if and only if there are n distinct eigenvalues.
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This term is minimized by normal matrices, therefore we can perform a gauge transformation
and bring the φ to the form

φ =

(
a 0
0 −a

)
(2.5)

uniquely up to a Weyl transformation which is just a Z2 automorphism given by the anti-podal
map a →−a. The classical vacua are pararemtrized by a single gauge invariant observable
(that will be of fundamental importance in this thesis), the famous u parameter defined as

uclassical = Tr(φ 2) = 2a2. (2.6)

This parameter can take any value in the complex plane - that we can simply refer to as
the u-plane - and determines a classical vacuum of the theory on R4. At a generic point
of the u-plane the gauge group SU(2) is broken down to its maximal torus U(1) and the
W± bosons which are normally associated with the off-diagonal generators, have a mass
proportional to |a|. Interestingly, there exists a specific value of u, the zero value, that these
bosons become massless and the stabilizer of φ jumps back to SU(2). This means that the
non-abelian symmetry is restored at u = 0. We conclude therefore that Bclassical, the classical
moduli space of vacua, is given by

Bclassical = C\{0}, (2.7)

that is the punctured complex plane, or by adding the point at infinity we identify

Bclassical = CP1\{0}. (2.8)

The classical moduli space is subject to quantum effects and the description of low energy
fluctuations around a chosen vacuum therefore gets corrections. Seiberg and Witten described
in their seminal paper [74] the nature of these corrections and showed that although they
do not change the topology of the moduli space they do change the singularity structure.
Furthermore they showed that there is not any symmetry restoration at special values of the
quantum moduli space unlike in the classical moduli space. In order to understand this point
we need to study the low energy effective theory in detail. Unfortunately it is quite hard to
integrate out massive degrees of freedom explicitly and as a result we have to understand
the structure of the low energy theory by symmetry considerations and holomorphicity . By
studying the most generic N = 2 supersymmetric action involving a single vector multiplet
Seiberg and Witten realized that the low energy U(1) theory is completely determined by a
single holomorphic function F (a) called the prepotential. Furthermore, by studying further
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the theory they were able derive the metric of the moduli space of vacua which reads

ds2 = Im(τ)dadā, (2.9)

where

τ(a) =
∂ 2F (a)

∂a2 (2.10)

is the holomorphic gauge coupling of the theory. Using perturbation theory and the holomor-
phicity of τ it is possible to obtain the effective coupling at one-loop level [74]

τ(a) =
2 ı̊
π

log
( a

Λ

)
. (2.11)

Here Λ is the dynamically generated scale of the low energy theory. Similarly we can find
the prepotential at one-loop level [74]. Due to the constraints of N = 2 supersymmetry
this one-loop expression is in fact an exact perturbative answer. Since we begin with a
non-abelian theory we expect instanton effects to give non-perturbative contributions to
τ(a) and F (a) in addition of breaking some classical symmetries. The prepotential F (a)
becomes

F (a) =
ı̊

2π
a2 log

( a
Λ

)
+

∞

∑
k=1

Fk

(
Λ

a

)4k

a2, (2.12)

where Fk are all non-zero constant coefficients (since in a supersymmetric theory all instanton
contributions come from zero modes). We see therefore that the problem of understanding
the low energy effective action of the theory amounts into computing Fk for all k. This is the
program of instanton counting4 [69, 70].

Let us discuss further the structure of the Seiberg-Witten theory. The supersymmetry
algebra of the theory contains a central charge function Z ∈ Hom(Γ,C) where Γ is the lattice
of electric and magnetic charges that, as we will explain shortly, is fibered over the quantum
moduli space of vacua,

Z(ne,nm) = nea+nmaD. (2.13)

Here, (ne,nm) ∈ Γ and aD is the dual of a defined as

aD =
∂F (a)

∂a
. (2.14)

Together, (a,aD) form a section of a flat line bundle, a local system actually, that undergoes
monodromies along the moduli space of vacua. This hints that the quantum moduli space

4The mathematical definition of instantons is reviewed in Chapter 4.
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might have some singularities that can affect the section (a,aD) upon following the path of a
closed loop around these singularities.

The problem at hand is to compute the holomorphic gauge coupling τ(a) for arbitrary
a,aD and u. In the quantum theory, the correct order parameter is the vacuum expectation
value

u(a) =
1

16π2 ⟨Tr(φ 2)⟩, (2.15)

which only classically equals (2.6). Mathematically, the order parameter u from (2.6) is the
generator of the SU(2)-equivariant cohomology of a point, H∗

SU(2)(pt.) = A(t/W ) where the
right hand side denotes the coordinate ring of t/W . As we explained, in the quantum version
of Equation (2.15) we have to take into consideration instanton effects. We can interpret u as
being an element in the fractional field of H∗

SU(2)(pt.) or in other words, we can interpret u
as a rational function on A(t/W ) that can be roughly defined as5 [68]

u :=
∑n≥1 qn ∫

Mn
µ(p)

∑n≥0
∫
Mn

111
, (2.16)

where q is a formal variable (for the moment), Mn is the moduli space of instantons,
p ∈ H0(M,Q) and µ is a map called slant product. These objects will not be needed until
chapter 4 so we will postpone their explicit definition and further discussion until then.

Furthermore, Seiberg and Witten showed that in the quantum theory the moduli space of
vacua is the whole of the u-plane, every point of it is part of a U(1) theory except for two
special points, u =±Λ2 where although the theory is still an abelian gauge theory, two new
massless hypermultiplets appear, a monopole and a dyon and the theory is described by a
U(1) abelian gauge theory coupled to those hypermultiplets. It is precisely these two singular
points that affect (a,aD). In the classical limit, Λ2 → 0 these points come close together and
we recover the classical moduli space of vacua Bclassical.

With these considerations on mind, Seiberg and Witten found that the exact solution of
the theory is given by a family of elliptic curves fibered over the u-plane6. These curves
Σu are called Seiberg-Witten curves and play a crucial role to this thesis. The curve that
describes our moduli space of vacua can be written as

y2 = 4x(x2 −ux+
Λ4

4
), x,y ∈ C. (2.17)

5 Note that, by a slight abuse of notation, the u that appears in Equation (2.16) is not the classical one, rather
it is the quantum corrected one.

6Elliptic curves appear for gauge theories of rank one. For higher rank gauge groups the corresponding
Seiberg-Witten solution is described by hyper-elliptic curves.
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Another presentation of this elliptic curve is its Weierstrass form which gives an isogenus
curve

ỹ2 = 4x̃3 −g2x̃−g3. (2.18)

To transform (2.17) to (2.18) we need to make the substitutions x = α−2x̃+ 1
3u and y = α−3ỹ.

The constants g2 and g3 are given in terms of Eisenstein series Ek(τ) as

g2 =
4π4

3
E4, (2.19)

g3 =
8π6

27
E6. (2.20)

See Equation (A.5) in Appendix A.1.2 for the definition of Eisenstein series. The parameter
α that is involved in the transformation can be expressed as

α =

√
2π

Λ
ϑ2ϑ3, (2.21)

where ϑ j(τ) are the classical Jacobi theta functions defined in Equation (A.10) in Appendix
A.1.4. The determinant of the curve is given by

∆(u) =
1

4096
(u2 −Λ

4), (2.22)

and the solution set of ∆(u) corresponds to points in the u-plane that the curve degenerates.
These are precisely the singular points ±Λ2 where the new hypermultiplet degrees of freedom
appear.

This family of elliptic curves, which topologically correspond to genus one tori and are
parametrized by u, comes equipped with a differential, the Seiberg-Witten differential λSW

which satisfies
dλSW

du
=

√
2

8π

dx
y
. (2.23)

By integrating this expression we easily find that (up to an exact differential) the Seiberg-
Witten differential reads

λSW =−
√

2
4π

dx
y
(2u−4x). (2.24)
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The Seiberg-Witten differential completely determines a and aD in terms of u by pairing it
with the homology cycles A,B ∈ H1(Σu) as follows

aD(u) =
∮

A
λSW, (2.25)

a(u) =
∮

B
λSW. (2.26)

This way the prepotential F (a) is implicitly determined through Equation (2.14). With the
aid of Equation (2.10) the holomorphic gauge coupling τ can then be found using

τ =
daD

da
. (2.27)

Using this relation we can also find the value of u as a function of τ [74]. These computations
involve studying elliptic integrals of the first kind and other technical details that we will skip
in this thesis.

Using (2.25) and (2.26) we can write the central charge of an arbitrary state of the theory
with charge γ ∈ Γ as

Z(γ) =
∮

γ

λSW. (2.28)

We see therefore that γ is interpreted as a cycle in H1(Σ,Z). To be precise we have to
substitute Σ with its closure Σ giving the identification

Γ ≃ H1(Σ,Z). (2.29)

In this way we have a natural interpretation of Equation (2.13) in terms of the homology of
Σu. Recall that the mass of a BPS state of charge γ ∈ Γ is determined by the absolute value
of the central charge

M(γ) = |Z(γ)|. (2.30)

The structure of the Coulomb branch is depicted in Figure 2.1. The weak coupling and the
string coupling regions are separated by a co-dimension one wall, a wall of marginal stability
W . This is defined by the condition

arga = argaD, (2.31)

or
a

aD
∈ R+. (2.32)
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Figure 2.1 The Coulomb branch of the theory or the u-plane. We recognize three singular
points around which monodromies have to be taken into account. The red region marks the
strongly coupled region of the u-plane.

Because of the following property of the central charges of two BPS states

|Z(γ1 + γ2)| ≥ |Z(γ1)|+ |Zγ2|, (2.33)

BPS states are allowed to combine or decay into other BPS states. This happens when the
arguments of the central charges of electric and magnetic states align. For the case of pure
N = 2 theory (as well as for N f = 2,3) the Coulomb branch splits into two regions. The
strong coupling regions are located at the projection of the singular fibers and this is how
one can understand the singular points of the elliptic curve Σ. Due to the non-local structure
of the electric-magnetic charge lattice Γ, there is no unique description of the charges of
the BPS states that they correspond to. We will see in the next paragraph how we deal with
monodromies around the singular locus of B. We would like to mention that in general there
is a formula on determining the BPS spectrum in either side of the wall, it is Kontsevich’s
and Soibelman’s wall-crossing formula [60] which connects the topic of BPS states with
the topic of motivic Hall algebras and Donaldson-Thomas invariants. Note though, that this
wall-crossing formula is different to the one we use in Chapters 4 and 5.

By now, one might have been convinced the low energy effective theory of the N = 2
SYM with gauge group SU(2) can be understood by a family of elliptic curves Σu controlled
by u and fibered over the u-plane and such that the curve degenerates at two points. Let us
set Λ = 1 such that the degeneration points are ±1. By adding the point at infinity which
corresponds to the semi-classical region of the theory, we see that topologically the moduli
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space of vacua that from now on we will call Coulomb branch is

B = CP1\{∞,±1}. (2.34)

This gives the information about the topology and the singularity structure of the Coulomb
branch. But a closer observation of this hyperbolic Riemann surface yields a direct relation to
modular SL2(Z) domains through Riemann’s uniformization theorem. Actually the Coulomb
branch is identified with

B ∼=H/Γ
0(4), (2.35)

where H is the Lobachevsky upper half-plane and Γ0(4) is a congruence subgroup of SL2(Z)
(that will be defined shortly) that appears because the elliptic curve our theory is described by
is a modular curve with respect to Γ0(4). Sometimes this group is called monodromy group.
A way to get intuition is to realize that the u-plane in the quantum theory has three punctures
that correspond to three singular points {∞,±1}. Let us study what happens say at u = ∞ by
taking a closed loop,

u → e2π ı̊u. (2.36)

This action forces a and aD to change. Since (a,aD) is a section of a flat bundle, such a loop
acts as a linear transformation on this section. For the point at infinity this is given locally by
a monodromy matrix [74]

M∞ =

(
−1 4
0 −1

)
.

Near the singular point u =+1 the corresponding monodromy matrix is given by [74]

M+1 =

(
1 0
−1 1

)
.

while near the singular point u =−1 the monodromy matrix can be found by requiring that
M+1M−1 = M∞. Thus near u =−1 we have

M−1 =

(
−1 4
−1 3

)
.

These matrices generate the congruence subgroup Γ0(4) of SL2(Z) which is defined as

Γ
0(4) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣ b = 0 mod 4

}
. (2.37)
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Let us discuss the structure of the Coulomb branch B as a modular domain. Had the
monodromy group been simply SL2(Z) the moduli space of the elliptic curve Σu would had
been simply the familiar key-hole shaped modular domain F∞ (not to be confused with the
prepotential) that we are familiar with from bosonic string theory and is defined as

F∞ =

{
τ ∈H | − 1

2
≤ Re(τ)≤ 1

2
, |τ| ≥ 1

}
. (2.38)

Our curve though has as monodromy group the congruence subgroup Γ0(4) which is of index
six. This means that it contains six images of F∞ in its modular domain. That is, SL2(Z) can
be written as

SL2(Z) =
6⋃

i=1

α
−1
i (Γ0(4)), (2.39)

where

α1 = 1,

α2 = T,

α3 = T 2,

α4 = T 3,

α5 = S,

α6 = T 2S.

(2.40)

Here T and S are the generators of SL2(Z) which act on τ as follows

T :τ → τ +1 (2.41)

S :τ →−1
τ
. (2.42)

Similarly, the T ′ = T 4 and S′ = ST−1S generators of Γ0(4) act on τ following

T ′ :τ 7→ τ +4 (2.43)

S′ :τ 7→ τ

τ +1
. (2.44)

Appendix A.1 contains more details on SL2(Z), its subgroup Γ0(4) and their generators. It
is easy to see then that the modular domain H/Γ0(4) which is isomorphic to the Coulomb
branch B, can be written as

H/Γ
0(4) = F∞ ∪TF∞ ∪T 2F∞ ∪T 3F∞ ∪SF∞ ∪T 2SF∞. (2.45)
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The first four domains give the region near the singularity, or rather cusp, τ → i∞ and
correspond to the semi-classical region of the u-plane, u → ∞. The region SF∞ surrounds
the cusp near τ = 0 which corresponds to the monopole singular point at u = +1 and the
region T 2SF surrounds the cusp near τ = 2 which corresponds to the dyon point at u =−1.
These regions are portrayed in Figure 2.2 below.

−1 − 1
2 0 1

2 1 3
2 2 5

2 3 7
2

F∞

SF∞

TF∞ T 2F∞

T 2SF∞

T 3F∞

Re(τ)

Im(τ)

Figure 2.2 Upper-half plane H with the area bounded by blue (F∞) a fundamental domain of
H/SL2(Z), and the shaded area a fundamental domain of H/Γ0(4).

All quantities that appear in Seiberg-Witten theory can be written as combinations of
standard modular forms. We close this section by mentioning some of them that will be
needed in the rest of this thesis.

u(τ) =
1
2

ϑ2(τ)
4 +ϑ3(τ)

4

(ϑ2(τ)ϑ3(τ))2 , (2.46)

a(τ) =
1
6

(
2E2(τ)+ϑ2(τ)

4 +ϑ3(τ)
4

ϑ2(τ)ϑ3(τ)

)
, (2.47)

da(τ)
du(τ)

=
1
2

ϑ2(τ)ϑ3(τ). (2.48)
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Remarks on Seiberg-Witten geometry and string theory

Seiberg-Witten geometry is sometimes referred to as rigid special geometry and it can
emerge from completely string theoretic constructions through the moduli space of Calabi-
Yau threefolds. Using the (Zamolodchikov) metric of the N = (2,2) superconformal field
theories in d = 2, it can be shown that the (Kähler) prepotential of the moduli space of Calabi-
Yau threefolds is related to the prepotential of the low energy effective theories of various
string compactifications [77]. Let us describe this point a little further. In the context of type
IIA string compactifications on a Calabi-Yau threefold X , the moduli of vector multiplets is
identified with the deformations of the Kähler moduli of X . On the other hand, the moduli
of the hypermultiplets is identified with deformation of the complex moduli of X . If we
now switch to the type IIB picture these roles are reversed. This is precisely the idea behind
mirror symmetry. Broadly speaking, the prepotential of X captures the classical geometry
that can potentially admit quantum corrections in the full string theory picture. Nevertheless,
there exist some non-renormalization theorems that ensure there is no quantum corrections to
the moduli space of complex structures of X in type IIB string theory and therefore the exact
coupling of vector multiplets can be computed by classical geometry. This fundamental idea
has resulted in striking results where the exact solutions of various quantum field theories
such as the superconformal field theory that corresponds to the quintinc threefold and its
mirror [9].

Seiberg-Witten theory in specific is an example of a rigid supersymmetric Yang-Mills
theory. Such theories are obtained by taking the α ′ → 0 limit of type II string theory on a
certain Calabi-Yau background. In order to have theories with the desired gauge groups the
Calabi-Yau background is usually a fibration of the compact K3 surface or the non-compact
ALE space, both of which are hyper-Kähler, over a base CP1. Then, at the rigid limit, the
Seiberg-Witten curves that we described previously can be roughly realized by looking close
at the locus the singular fibers [40].

2.2 CohFT and BRST symmetry

As we will explain below, in order to study supersymmetric field theories on arbitrary
compact four-manifolds we have to perform topological twisting. The resulting theories are
some times called cohomological field theories (CohFTs), for reasons that will become clear
later, and they have revolutionized the field of research in the interplay between algebraic
and differential geometry and quantum field theory and string theory, the so-called physical
mathematics. All kinds of different invariants of topological spaces are expressed nowadays
through the language of CohFTs:
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• Donaldson invariants [15] and Seiberg-Witten invariants [89] of smooth four-manifolds,
which are some of the protagonists of this thesis, appear through the Donaldson-Witten
theory. We will describe explicitly this connection in the present chapter.

• Gromov-Witten invariants of Calabi-Yau manifolds [88] are related to the topologi-
cal string A-model which is nothing more than a specific kind of topological twist for
the non-linear N = (2,2) sigma-model.

• Seiberg-Witten invariants of symplectic manifolds are related to a specific Gromov-
Witten invariant of the same symplectic manifolds [82] and the former were originally
understood by means of an abelian CohFT [89].

• Donaldson-Thomas invariants of Calabi-Yau manifolds [18] correspond to a six
dimensional version of Donaldson-Witten theory that is related to the topological string
B-model.

• Vafa-Witten invariants of four-manifolds are the subject of Vafa-Witten theory [84]
which is one of the three twists of the N = 4 SYM. Vafa-Witten invariants are currently
a topic of intense research [81].

• Geometric Langlands dualities appear in physics by studying a reduction to two
dimensions the Kapustin-Witten twisted N = 4 SYM theory (this is the second twist
of this theory out of the three available) [39]. In two dimensions this theory is related
to a family of topological A-models and B-models.

All of the above theories have a very common ingredient, that is (at least) one BRST-like
operator Q such that

Q2 = 0. (2.49)

Let us make a remark at this point. This operator is the differential of some cohomology
ring that appears in the theory we study. Some by now standard physical theories with their
associated cohomology theories are shown in Table 2.2.

When this theory is a sigma model or a theory without gauge symmetries then Equation
(2.49) is precise. If the theory we study involves some bundle with non-trivial gauge
endomorphisms then this relationship must be taken modulo gauge transformations, in other
words Q is to be the differential of some equivariant cohomology theory. The BRST operator
Q can give a plethora of information about the theory since it divides the (gauge invariant)
observables into three distinctive sets.

• Observables O for which {Q,O} ̸= 0.
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• Observables that are Q-exact, i.e., observables that can be written as Õ = {Q,O} and
such that {Q,Õ}= 0.

• Observables that are Q-closed, i.e., observables O such that {Q,O} = 0. Of course,
the Q-exact observables are tautologically Q-closed so we disregard them from this
subset.

Cohomology theory Physical theory
de Rham cohomology supersymmetric QM on closed M4
quantum de Rham cohomology A-model on R×S1

Dobeault cohomology B-model on R×S1

Khovanov homology of a knot K CS theory on M3
Lagrangian Floer symplectic homology A-model on R× I with boundary L1,2
Floer instanton homology 4d gauge theory on M4 with boundaries

Table 2.2 Various cohomology theories and some physical theories they are related to [31].
The first line of the table gives the Witten index. Quantum de Rham cohomology refers
to the deformation quantization of the exterior algebra of the usual de Rham cohomology.
Khovanov homology appears in the context of Chern-Simons theory which is a TQFT but not
a CohFT. Floer homologies are related to dimensional reductions of gauge theories defined
in four-dimensions. By Md we denote a manifold of dimension d.

The following chapter will study in detail various Q-exact operators so it is worthy to
discuss them to some extent but before that we would like to discuss several important
features that CohFTs have.

One of the most important examples of Q-exact operator in CohFTs is the variation of the
action functional S[X ] (assuming that the theory has a Lagrangian description) with respect
to the Riemannian metric g we equip the underlying manifold M with. For a suitable operator
W , we can express this variation as

δgS[X ] =
1
2

∫
M

√
g gmn{Q,Wmn}, (2.50)

where by X we denote collectively all the fields of the theory and where m,n are Euclidean
space indices. As explained in detail in [88], the path integral measure [DX ] and the action
functional S[X ] are both invariant under the global BRST symmetry generated by Q. Then,
the Ward-Takahashi identity for this symmetry suggests that the one-point function or the
vacuum expectation value of a Q-exact gauge invariant operator vanishes, that is

⟨{Q,O}⟩=
∫
[DX ] e−S[X ]{Q,O}= 0. (2.51)
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In other words, the Ward-Takahashi identity says that the insertion of such a Q-exact operator
into a correlation function make it vanish,

∑
i
⟨{Q,Oi}∏

i ̸= j
O j⟩= 0. (2.52)

In this thesis, and due to the nature of CohFTs, the distinction between Q-exact and Q-closed
observables is of crucial importance. The former decouple from the latter since for a Q-exact
operator that can be written as {Q,O ′} we have

⟨{Q,O ′}∏
j

O j⟩= 0, (2.53)

if
{Q,O j}= 0, ∀ j. (2.54)

The fact that Q-exact operators decouple from the Q-closed ones is very important and has
consequences for the nature of the topological observables of the theory. In a CohFT physical
observables of the theory can only be the ones that are Q-closed but not Q-exact. We can see
this by studying the variation with respect to the metric of the vacuum expectation value of
an operator O . This is given by

δg⟨O⟩=
∫
[DX ] e−S[X ](δgO −OδgL ), (2.55)

where L is the Lagrangian of the theory. The right hand side of this equation vanishes if O

is independent of the metric or if δgO is at least Q-exact.
Therefore, recalling Equation (2.50) as well as the previous paragraph, we arrive at the

well-known and fundamental statement that the Hilbert space H of a CohFT is identified
with a cohomology ring whose differential is Q, that is

H =
Ker Q
Im Q

. (2.56)

In the case of Donaldson-Witten theory the underlying cohomology theory is either the de
Rham cohomology or the Dolbeault cohomology (depending on the manifold under consid-
eration) and specific correlation functions of observables in this complex give a physical
construction of the famous Donaldson polynomial invariants [15, 17] whose definition will
be recalled in Chapter 4.
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2.3 Donaldson-Witten theory

Donaldson-Witten theory is the topologically twisted version of the N = 2 SYM. Let us
describe why the twist is needed. Any N = 2 theory in four dimensions contains two
supersymmetries that amount to a total of eight supercharges that are usually denoted as QαI

and Q̄J
α̇

. We want to be able to study supersymmetric theories on an arbitrary four-manifold
M. The problem is that an arbitrary M will break all of those supersymmetries, the reason
being that a generic M is not a spin-manifold. A manifold being spin or not determines
wether it admits a spinor bundle whose sections are spinors just like ordinary fermions in
flat space-time. Therefore, if we want to study the theory on curved compact manifolds we
have to restrict to the few ones that are spin four-manifolds (as Pestun did with S4 [71]) or
hyperKähler four-manifolds (such as the K3 surface). More physically, the supercharges
of N = 2 supersymmetry anti-commute to translations and a generic four-manifold breaks
translation symmetry. This seems very restrictive. Witten realized in his fundamental paper
[89] that after performing the topological twist the supersymmetric theory is well defined on
arbitrary M. The twisted theory is equivalent to the untwisted in flat space or on hyperKähler
manifolds but on an arbitrary four-manifold it is only a subsector of the full (untwisted)
theory.

We will now describe the twisting procedure. The global bosonic symmetry group of the
theory is

H = SU(2)l ×SU(2)r ×SU(2)R ×U(1)R, (2.57)

where K = SU(2)l × SU(2)r is the rotation group and SU(2)R ×U(1)R is the internal R-
symmetry group as we mentioned earlier. The flat space supersymmetry (spinorial) generators
QαI and Q̄J

α̇
transform as (2,1,2)−1 and (2,1,2)−1 respectively. Twisting amounts on re-

interpreting the rotation group by choosing an embedding

SU(2)l ×SU(2)R → diag(SU(2)l ×SU(2)R) = SU(2)′l. (2.58)

Under this redefinition the global symmetry group reads

H = SU(2)′l ×SU(2)r ×U(1)R. (2.59)

As a result of the twist the representations under which the fields transform are different and
Table 2.3 shows what these representations change to and what the twisted fields are.

Effectively, under the twisting procedure all fields become differential forms. To be more
precise, all twisted fields are sections of the deRham bundle, plus the gauge field which is a
connection one-form. The gauge field A ∈ Ω1(M,ad P) remains a connection over a principal
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Field before twist Rep. before twist Rep. after twist Field after twist
A (2,2,1)0 (2,2)0 A
ψ (2,1,2)−1 (2,2)1 ψ

ψ̄ (1,2,2)1 (1,1)−1 ⊕ (3,1)−1 η ,χ
φ (1,1,1)−2 (1,1)−2 φ

φ̄ (1,1,1)2 (1,1)2 φ̄

D (1,1,3)0 (3,1)0 D

Table 2.3 Field content of the theory and representations before and after twisting.

SU(2)-bundle P (better understood as the connection on the associated adjoint bundle ad P).
The scalar fields are sections of ad P⊗C and D is a section of Ω2

+(M,ad P). As for the
Grassmann valued (non-spinorial) fermions we have the following characterizations. The
scalar field η is a section of Ω0(M,ad P), the one-form fermion ψ is a section of Ω1(M,ad P)
and the self-dual two-form fermion χ is a section of Ω2

+(M,ad P). Notice that the previous
three fields are Grassmann valued. Furthermore, the supercharges QαI and Q̄J

α̇
transform just

as the fermions and in the twisted theory provide three operators one of which is the only
supersymmetry that survives. We are referring of course to the scalar BRST operator

Q= ε
α̇β̇ Qαβ . (2.60)

The other two operators we obtain from twisting the supersymmetries are a one-form K =

Kmdxm and a self-dual two-form L = Lmndxm ∧ dxn. The first operator, K, provides a
canonical solution to the descent equations

{Q,O(i+1)}= dO(i), (2.61)

that involve observables O(i) of form degree i, by setting O(i) = KiO(i). Integration of these
operators over i-cycles in the homology of M give topological observables since {Q,K}= d,
where d is the de Rham operator. The gauge invariant observables of the low energy abelian
theory, that we are interested in, turn out to be the following ones:

Ku =
1

4
√

2
du
da

ψ (2.62)

K2u =
1

32
d2u
da2 ψ ∧ψ −

√
2

4
du
da

(F+−D) (2.63)

K3u =
1

27
√

2
d3u
da3 ψ ∧ψ ∧ψ − 3

16
d2u
da2 ψ ∧ (F+−D)− 3

√
2 ı̊

8
(2dχ −∗dη). (2.64)
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Here, u is as in Equation (2.15),F = dA is the two-form curvature of the connection and by
F± we denote the self-dual and anti-self dual parts respectively (see Section 4.2 for more
details). Also, ∗ is the Hodge star operator which for an oriented smooth four-manifold M, is
a map that takes a p-form to a (4− p)-form,

∗ : Ω
p(X)→ Ω

4−p(X). (2.65)

with ∗2 = 1 for two-forms.
The last operator, L is a self-dual two-form that anti-commutes with the BRST operator

Q to give
{Q,L}=−(σ̄mn)

ABZ̄ABdxm ∧dxn, (2.66)

where m,n are SO(4) indices, A,B are SU(2)R indices, Z is the central charge and σmn is a
combination of the Pauli matrices that is explained in Appendix B. In the same appendix we
argue that for a Kähler surface S this commutator can be written as

{Q,L}=
√

2 ı̊ Z̄J, (2.67)

where J ∈ Ω1,1(S) is the Kähler form associated with the Kähler metric of S.
Of specific interest, in the context of Donaldson invariants, is the operator

I(xxx) =
1

4π2

∫
xxx

Tr
(

1
8

ψ ∧ψ − 1√
2

φF
)
, (2.68)

that arises from O(2) = K2u and where xxx ∈ H2(M,Q) of course. In the low energy effective
theory, and of relevance for Donaldson invariants, O(0) is given by the Seiberg-Witten
solution 2u (the multiplication by two is in order our results to agree with the mathematicians’
conventions) and the surface operator O(2) is identified with

Ĩ−(xxx) =
ı̊√
2π

∫
xxx

(
1

32
d2u
da2 ψ ∧ψ −

√
2

4
du
da

(F−+D)

)
, (2.69)

where F is field strength of the remaining U(1) gauge symmetry. To evaluate u-plane
integrals using modern techniques of indefinite theta functions [94], we will add to this
surface operator a Q-exact operator

Ĩ+(xxx) =− 1
4π

∫
xxx

{
Q,

dū
dā

χ

}
, (2.70)



2.3 Donaldson-Witten theory 31

which can be written as

Ĩ+(xxx) =− ı̊√
2π

∫
xxx

(
1
2

d2ū
dā2 η χ +

√
2

4
dū
dā

(F+−D)

)
. (2.71)

This term couples to the self-dual part F+ of F , whereas (2.69) involved only F−.
Finally note that the renormalization group flow to the low energy theory gives rise to a

contact term [52, 67], xxx2G(u), which is a consequence of the self-intersection of the cycle xxx
appearing in the surface operators. Since the surface operators Ĩ± are Q-closed, the coefficient
G of the contact term is necessarily holomorphic in u. It is conveniently expressed in terms
of (quasi)-modular forms

G(u) =
1

24

(
8u−E2

(
du
da

)2
)
, (2.72)

where E2 is the Eisenstein series of weight two defined by Equation (A.5) in Appendix A.1,
or as a derivative to ϑ4 [52]

G(u) =− 1
2π ı̊

(
du
da

)2

∂τ log(ϑ4). (2.73)

If we want to emphasize the dependence of G on τ , we will write sometimes G(τ) instead of
G(u).

The BRST operator Q acts on the effective IR fields of the theory as follows

{Q,A}= ψ, {Q,a}= 0 {Q, ā}=
√

2 ı̊η ,

{Q,D}= (dψ)+, {Q,η}= 0, {Q,ψ}= 4
√

2da, (2.74)

{Q,χ}= ı̊(F+−D).

Additionally, the BRST operator can be written as a derivative in the infinite dimensional
field space as follows

Q= ψ
∂

∂A
+(dψ)+

∂

∂D
+4

√
2da

∂

∂ψ
+
√

2iη
∂

∂ ā
+ ı̊(F+−D)

∂

∂ χ
. (2.75)

The abelian low energy Donaldson-Witten theory is completely determined by the Seiberg-
Witten solution from the previous section as it was understood in [67]. The Lagrangian of
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the theory reads

L =
ı̊

16π
(τ̄F+∧F++ τF−∧F−)+

y
8π

da∧∗dā− y
8π

D∧∗D

− τ

16π
ψ ∧∗dη +

τ̄

16π
η ∧d ∗ψ +

τ

8π
ψ ∧dχ − τ̄

8π
χ ∧dψ

+

√
2 ı̊

16π

dτ̄

dā
ηχ ∧ (F++D)−

√
2 ı̊

27π

dτ

da
ψ ∧ψ ∧ (F−+D)

+
ı̊

3π ·211
d2τ

da2 ψ ∧ψ ∧ψ ∧ψ −
√

2 ı̊
3 ·25π

{Q,χmnχ
nr

χ
m

r }√gd4x.

(2.76)

We would like to close this section be adding a remark about the UV description of the theory
that was studied in [88] and compare it with the IR description of Moore and Witten [67].
The partition function and correlation functions of the UV theory localize to the instanton
moduli space (see Chapter 4) due to standard supersymmetric localization arguments. Witten
showed that a specific correlation function reproduces physically the mathematically defined
generating function of Donaldson invariants. In the IR such a localization arguments is not
possible due to the fact that for each value of u there exists a different Lagrangian description
(since the holomorphic gauge coupling τ and (a,aD) vary as we move around the u-plane).
This is why Seiberg-Witten analysis for the low energy theory is so crucial and it shows that
the integrals over the Coulomb branch are modular integrals with respect to Γ0(4).

2.4 The u-plane integral

In this section we will introduce the u-plane integral. Simply put the u-plane integral is simply
the path integral of the low energy Donaldson-Witten theory. Let us give first the topological
data associated with the theory. We consider M to be a smooth, simply connected, closed
(that is compact and without boundary) four-manifold and let H∗(M) denote the cohomology
ring of M with real coefficients. We denote by bi(M) the dimension of the vector space
H i(M). Since the middle cohomology of M splits into a positive definite subspace H2,+(M)

and a negative definite subspace H2,−(M), we denote the dimensions of each subspace by
b+2 and b−2 . Its basic topological numbers are its

• Euler character χ = 2−2b1 +b2, and its

• signature σ = b+2 −b−2 .

This thesis is dedicated to four-manifolds with b+2 = 1 only. The reason is that the u-plane
integral vanishes for b+2 > 1 since it is not possible to soak up the fermionic zero modes
in the path integral and only the singular points contribute to the theory and provide the
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Seiberg-Witten invariants [67]. For b+2 = 0 the u-plane integral does contribute but the
theory is not just a tree level theory. Rather, the theory receives contributions from one-loop
determinants that may complicate the computations and we leave the study of this case for
future considerations.

2.4.1 Remarks on four-manifolds

In this subsection we will make some clarifications on what four-manifolds we can evaluate
Donaldson-Witten theory on. For a broader discussion on four-manifolds and their topology
see Chapter 4.

Let us begin by stressing again that the u-plane integral only contributes for manifolds
M with b+2 (M) = 1. To be more precise, manifolds with b+2 = 0 also allow the study of the
u-plane integral but for such manifolds the calculations are more involved due to the presence
of one-loop determinants. We will be focusing on simply connected four-manifolds with
b+2 (M) = 1 then (which by a theorem of Wu are always at least almost complex manifolds
since such four-manifolds always admit an almost complex structure, see [17]). Let us note
that these four-manifolds are somewhat special in the extraordinary world of four-manifolds
due to the wall-crossing phenomena that appear in their Donaldson invariants as observed by
Göttsche and Zagier [27]. Some “easy to work with” examples of manifolds with b+2 = 1
are Kähler surfaces of Kodaira dimension −∞, i.e. dim(H0(M,KM)) = 0, where we denote
by KM := c1(KM), the first Chern class of the canonical line bundle KM ∈ Pic(X) [29, 86].
It is also useful to recall that KM equals the second Stieffel-Whitney class w2(M) modulo
elements in H2(M,2Z).

These Kähler surfaces come in three families. Let M be a Kähler surface of such type.

1. If K2
M > 0 the surface M is rational or ruled,

2. if K2
M = 0 then the surface is a CP1 bundle over T2,

3. if K2
M < 0 then the surface is a CP1 bundle over a curve Cg of genus g greater than one.

For the first case, the rational and ruled surfaces, the Seiberg-Witten contributions vanish
exactly because they admit a Kähler metric of positive scalar curvature. Specific examples
of surfaces that have b+2 = 1 and positive scalar curvature are: the projective plane CP2, del
Pezzo surfaces (blow-ups of the projective plane up to nice points), Hirzebruch surfaces Fl

(they are defined as the projectivizations of the bundle OCP1 ⊕OCP1(−l)), see [86]. As a
matter of fact, it is a theorem that if a Kähler surface M admits a metric of positive scalar
curvature then it is rational or ruled [49]. We want to stress the importance of such surfaces
due to the fact that they allow us to probe the Coulomb branch of the theory (in both the
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usual version and ramified version to be discussed in Chapter 5) while most four-manifolds
will not allow for this. These four-manifolds, therefore, provide an excellent lab to study
quantitatively and qualitatively the low energy effective theories in their totality.

More generically, for any four-manifold the intersection form on the middle cohomology
provides a natural bilinear form B : H2(M,R)×H2(M,R) → R that pairs degree two co-
cycles,

B(kkk1,kkk2) =
∫

M
kkk1 ∧ kkk2, (2.77)

and whose restriction to H2(M,Z)×H2(M,Z) is an integral bilinear form with signature
(1,b2 −1). The bilinear form provides the quadratic form

Q(kkk) := B(kkk,kkk)≡ kkk2, (2.78)

which can be brought to a simple standard form [17, Section 1.1.3]. We denote the period
point by J, i.e., the harmonic two-form, satisfying

∗J = J ∈ H2(M,R), J2 = 1. (2.79)

with ∗ the Hodge star operation. Using the period point, we can decompose elements
kkk ∈ H2(M) to its self-dual and anti-self-dual components: kkk+ = B(kkk,J)J and kkk− = kkk− kkk+.
the anti-self-dual part of kkk. For later use, we mention that the canonical class is a characteristic
vector of H2(M,Z) and satisfies

K2
M = σ +8. (2.80)

Finally, we equip M with a principal U(1)-bundle and connection one-form A with curvature
F = dA and we choose a fixed ’t Hooft flux

Tr
(
[F ]

4π

)
= 2µµµ ∈ H2(M,Z), (2.81)

that corresponds to the first Chern class of the bundle. For more details see Chapter 4.

2.4.2 Definition of the u-plane integral

The u-plane integral or Coulomb branch integral ΦJ
µµµ [67] of Donaldson-Witten theory, with-

out any operator insertions, is defined as the usual path integral over the infinite dimensional
field space,

Φ
J
µµµ =

∫
[DaD āDADη Dψ Dχ DD]e−S ≡ ⟨1⟩. (2.82)
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The notation above suggests that the u-plane integral depends on two very important quanti-
ties:

• the period point J for reasons that become clear in Chapter 4,

• the conjugacy class µµµ ∈ Z2 that effectively conveys the information of the gauge group
(SU(2) or SO(3)) via the fluxes of the gauge field (see Equation (2.81)).

We will review in this section that the path integral is well-defined and reduces to a modular
integral over the domain H/Γ0(4). Furthermore, for the chosen class of four-manifolds, ΦJ

µµµ

reduces to a finite dimensional integral over the zero modes [67], while since we restrict
to simply connected four-manifolds there exist no ψ zero modes7. The path integral of the
effective theory on the Coulomb branch becomes then

Φ
J
µµµ = ∑

kkk∈H2(M,Z)

∫
da∧dā∧dη ∧dχ ∧dD A(u)χ(M)B(u)σ(M) e−

∫
M L0 , (2.83)

where the sum over the kkk magnetic fluxes is really a sum over all topological line bundles
(which are classified by their first Chern class). Also, by abuse of notation, a, ā, η , χ and D
denote their zero modes, (constant functions on M. The Lagrangian L0 is the Lagrangian L

(2.76) restricted to the zero modes including the ones of the gauge field. The functions A(u)
and B(u) are curvature couplings; they are holomorphic functions of u, given by [67, 90]

A(u) = α

(
du
da

) 1
2

,

B(u) = β (u2 −1)
1
8 ,

(2.84)

where α and β are numerical factors. In more general theories including matter, such as the
N f = 4 theory, they may depend on parameters such as masses and coupling constants.

We will first integrate over the auxiliary field and to do so we introduce the Lagrangian
L0,D, which consists of the terms in the zero-mode Lagrangian L0 involving D,

L0,D =− y
8π

D∧D+

√
2 ı̊

16π

dτ̄

dā
ηχ ∧D. (2.85)

7Due to the fact that π(X) = 0.
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After a Wick rotation D → ı̊D in the field space, the Gaussian integration over the D-zero
modes yields the following result

∫
dD e−

∫
M L0,D = 2π ı̊

√
2
y
. (2.86)

Since we have integrated out D we can proceed with the integration of the fermionic degrees
of freedom. The only remaining term involving fermion zero modes in L0 is

L0, f =

√
2 ı̊

16π

dτ̄

dā
ηχ ∧F+. (2.87)

Integrating over the η and χ zero modes we obtain the following contribution to the path
integral ∫

dη ∧dχ e−
∫

M L0, f =

√
2 ı̊
4

dτ̄

dā
B(kkk,J), (2.88)

where the vector kkk equals the U(1) flux [F ]/4π ∈ H2(M,Z)+µµµ .
The sum over these magnetic fluxes in Equation (2.83) takes the form of a Siegel-Narain

theta function [67] (which we can think of as a generalization of the classical Jacobi theta
functions)

Ψ
J
µµµ

[
Kp
]
(τ, τ̄) = ∑

kkk∈Λ+µµµ

Kp(kkk)(−1)B(kkk,KM) q−
kkk2−
2 q̄

kkk2
+
2 , (2.89)

where Λ is an integer lattice (for a complex surface S it can be viewed as the lattice of
connected components of the Picard group of S) that can be identified with H2(M,Z) and q
is a complex number defined as

q := e2π ı̊τ . (2.90)

Furthermore, the function Kp is called kernel of the Siegel-Narain theta function and for the
kernel of the partition function of the theory it reads

Kp(kkk) =− π√
y

B(kkk,J), (2.91)

which follows from multiplying (2.86) and (2.88), and dividing by the factor dτ̄

dā since this
provides the change of variables from the Coulomb branch parameter a to τ ∈ H/Γ0(4).
When we consider correlation functions in the next section, instead of just the partition
function, we will find different expressions for the kernel depending on the inserted fields. In
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order to be clear which u-plane integral we are interested in we set

Φ
J
µµµ = Φ

J
µµµ [Kp]. (2.92)

We can express the integrand of the partition function (2.83) more compactly, using
Matone’s formula [59]

du
dτ

= 4π ı̊(1−u2)

(
da
du

)2

, (2.93)

and the identities (2.46) and (2.48). This maps the Coulomb branch integral to the following
integral over the modular domain H/Γ0(4)

Φ
J
µµµ =

∫
H/Γ0(4)

dτ ∧dτ̄ ν̃(τ)Ψ
J
µµµ [Kp](τ, τ̄), (2.94)

with the measure factor defined as

ν̃(τ) := 8 ı̊(1−u2)
da
du

ϑ4(τ)
σ . (2.95)

The whose modular transformations of ν̃ for the two generators S′ and T ′ of the Γ0(4)
subgroup are

ν̃

(
τ

τ +1

)
= (τ +1)2−b2/2e−

π ı̊σ

4 ν̃(τ),

ν̃(τ +4) =−ν̃(τ).

(2.96)

The measure ν̃(τ) behaves near the weak coupling cusp τ → ı̊∞ as ν̃ ∼ q−
3
8 , and near the

monopole cusp, τM =−1/τ → ı̊∞ as ν̃ ∼ q
1+σ

8
M . Note that using the relation

ν̃(τ) = ν(τ)
da
dτ

, (2.97)

we can recast the integral in terms of the integration measure
∫
B da∧dā so that the depen-

dence on the Coulomb branch parameter is obvious. Furthermore, for theories of higher rank
the integral seems to be easier analyzed as an integral over the higher dimensional Coulomb
branch as we will explain in Chapter 4.

An important requirement for the partition function (2.94) is the modular invariance
of the integrand under Γ0(4) transformations. In other words, the partition function must
be invariant under this generalized electric-magnetic duality. We can easily determine the
modular transformations of ΨJ

µµµ [Kp] from those of ΨJ
µµµ [1] (listed in Appendix A.1.5). The
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effect of inserting the kernel Kp in ΨJ
µµµ [1] is to increase the weight by (1

2 ,
3
2) (the factor 1/

√
y

contributes (1
2 ,

1
2) and B(kkk,J) contributes (0,1) to the total weight). We then arrive at

Ψ
J
µµµ [Kp]

(
τ

τ +1
,

τ̄

τ̄ +1

)
= (τ +1)

b2
2 (τ̄ +1)2e

π ı̊
4 σ

Ψ
J
µµµ [Kp](τ,τ),

Ψ
J
µµµ [Kp](τ +4, τ̄ +4) = e2π ı̊B(µµµ,K)

Ψ
J
µµµ [Kp](τ, τ̄),

(2.98)

where we used the fact that K2
M = 8+σ . We see that the integrand of the partition function

(2.94) is invariant under the τ 7→ τ

τ+1 transformation. However, if B(µµµ,K) = 0 mod Z, the
τ 7→ τ +4 does multiply the integrand by −1, but one can show that ΨJ

µµµ [Kp] vanishes in this
case, such that there is no violation of the duality. We conclude therefore that the Coulomb
branch integral of Equation (2.94) is well-defined since the measure dτ ∧dτ̄ transforms as a
mixed modular form of weight (−2,−2) while the product ν̃ ΨJ

µµµ [Kp] is a mixed modular
form of weight (2,2) for the congruence subgroup Γ0(4).

In Chapters 3 and 4 we proceed with the evaluation of ΦJ
µµµ [Kp] for various Kp. In the next

section we will continue by considering correlation functions of BRST exact observables,
which need to satisfy the same requirements on modular invariance of the integrand as above.
We finish this chapter by summarizing in Table 2.4 the modular weights of the various
ingredients that appear in u-plane integral for future use.

Ingredient Mixed weight

dτ ∧dτ̄ (−2,−2)

y (−1,−1)

∂τ̄ f (k,2) if f has weight (k,0)

ν̃(τ) (2−b2/2,0)

ΨJ
µµµ [1]

1
2((b2 −1),1)

Table 2.4 Modular weights of functions relevant for the u-plane integral. Transformations are
in SL2(Z) for the first three rows, while in Γ0(4) for the last two rows.



Chapter 3

BRST symmetry and evaluation of
u-plane integrals

The present chapter of this thesis deals with a careful and thorough analysis of Equations
(2.51) and (2.55) which are of fundamental importance for CohFTs. In Donaldson-Witten
theory (and generalizations of it with matter representations and higher ranks gauge groups)
the operator Q can be written as a derivative in the field space, as we have seen in Equation
(2.75). As a result a vacuum expectation value such as ⟨{Q,O}⟩ can receive contributions
from boundaries or non-compact regions of the field space. This might cause trouble even
for the simplest gauge invariant observables such as polynomials in the fields of the theory.
In specific, the vacuum expectation values of some of these observables seems to diverge
precisely near the singularities of the Coulomb branch of the low energy Donaldson-Witten
theory. It is further known that for asymptotically conformal twisted theories such as the
N = 2 SYM with gauge group SU(2) and number of flavors N f = 4 as well as the Argyres-
Douglas (A1,A2) theory, boundary contributions lead to a, normally unexpected, continuous
metric dependence for some correlation functions.

This chapter will mainly focus on Q-exact observables on the Coulomb branch of the
Donaldson-Witten theory. We will identify which vacuum expectation values (or more
generic correlation functions) seem to diverge and instead of disregarding these observables
as “non-physical” we will introduce a new regularization and renormalization procedure
for modular integrals inspired by the work of mathematicians [6]. This regularization and
renormalization procedure will ensure the decoupling of the Q-exact observables from the
theory while being, at the same time, consistent with previous results [27, 52, 67].

Let us briefly explain the new regularization and renormalization procedure of Section
3.2 that will follow. To do that we have to describe the contribution of the Coulomb branch
to the path integral in some more detail. As we have already stressed, the contribution of
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the Coulomb branch is non-vanishing for four-manifolds with b+2 ≤ 1. This fact makes
such four-manifolds a powerful arena for the analysis of this phase of the theory. We will
concentrate on four-manifolds with b+2 = 1, for which the path integral reduces to an integral
over the Coulomb branch parameter u = 1

16π2

〈
Tr(φ 2)

〉
[52, 67] that we described in Section

2.1. Recall that φ is the Higgs field of the theory valued in the adjoint representation, and ⟨O⟩
denotes the vacuum expectation value (or one-point function) of a gauge invariant operator
O in a normalized vacuum state of the theory on R4. Recall that the order parameter u
determines the effective coupling constant τ ∈H. Changing variables from u to τ maps the
u-plane to six SL2(Z) images of the fundamental domain F∞ =H/SL2(Z) in the upper-half
plane as we explained around Equation (2.45). As a result, the path integral can generically
be written as a sum of integrals of the form

Lm,n,s =
∫
F∞

dτ ∧dτ̄ qmq̄ny−s, (3.1)

where τ = x+ ı̊ y is the effective holomorphic coupling of the theory as we explained in the
previous chapter. Such type of modular integrals have also appeared in (bosonic) string theory
in the context of one-loop amplitudes [14, 36, 50], and much earlier in the mathematics
literature as the Petersson product for cusp forms [72].

The integral (3.1) is finite for m+n > 0 and s ∈ R, and also for m+n = 0 with s > 1.
The integrand however diverges exponentially for y = Im(τ)→ ∞ if m+n < 0. For a large
class of such (m,n), namely when one of the two numbers is non-negative, the integral can
be evaluated using a, by now standard, prescription [5, 14, 36]. Simply put, this prescription
is to carry out first the integral over x = Re(τ) and then the integral over y, such that

Lm,n,s ∼ δm,n

∫
∞

dyy−se−4πyn, (3.2)

where we have just highlighted the potentially divergent part. The (m,n,s) encountered for
the famous Donaldson-Witten observables in the formulation of [67] are all such that this
regularization applies.

On the other hand, the condition that one element of the pair (m,n) is non-negative,
may appear artificial. Actually, as suggested above, we will present observables within
Donaldson-Witten theory which lead to integrals as (3.1) that have both m and n negative.
The integrand in (3.2) diverges in such cases, and the standard prescription does not cure
the infinity. The examples we present are in fact Q-exact, such that the divergence leads
to some tension with the expectation that vacuum expectation values of Q-exact operators
vanish in topological field theory as described in [88]. Nevertheless, instead of excluding
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these operators on the basis of their boundary behavior, we will demonstrate that they do
vanish once appropriately regularized and renormalized.

One observable we will study in this context (that will be of particular importance in
Chapter 4) is the Q-exact insertion we described in the previous chapter∫

xxx
{Q,Tr[φ̄ χ]}=

∫
xxx

dū
dā

F++ . . . , (3.3)

where φ̄ is the complex conjugate of the Higgs field φ , χ is the self-dual Grassmann valued
two-form field, F+ is the self-dual part of the curvature F of the gauge connection and xxx is a
two-cycle in the rational homology ring of M. The dots in (3.3) represent terms involving
fermions and the auxiliary field. This operator has appeared previously in the context of the
CohFT interpretation of Witten-like indices [65], and more recently for the evaluation of
Coulomb branch integrals using indefinite theta functions in [44] and also in [43].

This chapter therefore, based on [45], proposes a new renormalization prescription for
the u-plane integral1, which is based on the analytic continuation of the incomplete Gamma
function. This renormalization was recently developed by the authors of [6] in the context of
modular integrals. See also [8] and [20]. For all Q-exact operators which are regular in the
interior of the u-plane, that is away from the strong and weak coupling cusps, we show that
this prescription ensures the decoupling of Q-exact states from Q-closed states. It reduces
to the standard prescription described below equation (3.1) where applicable, while it also
could in principle be applied to evaluate correlation functions for non-Q-closed observables.
We hope that the new regularization makes the evaluation of new observables possible, and
that this will lead to further useful results concerning topologically twisted theories and
four-manifold topology.

3.1 BRST exact observables

In what follows we will present and manipulate a number of Q-exact operators that we will
bring into a suitable form that will facilitate the computation of their vacuum expectation
values using the regularization and renormalization procedure we described above.

1With “u-plane integral”, we refer to correlation functions on the Coulomb branch of rank one Donaldson-
Witten theory, while “Coulomb branch integral” is used for arbitrary rank. Nevertheless, in many occasions in
the literarure these terms are interchanged.
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3.1.1 An anti-holomorphic Q-exact observable

In this section we will analyze the u-plane integral with the insertion of a specific anti-
holomorphic Q-exact surface observable that will be of crucial importance in Chapter 4. Our
analysis will demonstrate that this is an observable whose vacuum expectation value appears
to diverge rather than vanish as suggested by the Ward-Takahashi identity and this observable
will motivate the new regularization in the next section.

The observable we are interested in is

I+(xxx) =− 1
4π

∫
xxx

{
Q,
{

L,Tr[φ̄ 2]
}}

=− 1
4π

∫
xxx

{
Q,Tr[φ̄ χ]

}
,

(3.4)

where xxx ∈ H2(M,Q) is a two-cycle, and L is the twisted supersymmetry generator discussed
in Section 2.3. The subscript + is to indicate that it involves a self-dual two-form field, and
is in a sense a self-dual counterpart of the holomorphic, anti-self dual Donaldson observable
I−(xxx) as it was explained in [44]. Using the action of the L operator, we can determine the
image of I+(xxx) in the IR theory, denoted by Ĩ+(xxx), in terms of the fields of the effective low
energy theory,

Ĩ+(xxx) =− 1
4π

∫
xxx

{
Q,

dū
dā

χ

}
=− ı̊√

2π

∫
xxx

(
1
2

d2ū
dā2 η χ +

√
2

4
dū
dā

(F+−D)

)
.

(3.5)

Note that in Equation (2.71) we quoted this result without using the L operator. Just as we
did with the partition function (2.94), we first integrate over the D zero mode using (2.86)
and we obtain

∫
dD

[∫
xxx

D
]

e−
∫

M L0,D = 2π ı̊

√
2
y

(√
2 ı̊

4y
dτ̄

dā

∫
xxx

ηχ

)
. (3.6)

Next, we will integrate over the fermionic zero modes, that is, we will consider the integral∫
dη ∧dχ ∧dD Ĩ+(xxx)e−

∫
M L0, f+L0,D (3.7)
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After some work, this integral evaluates to dτ̄

dā K+(kkk), with the kernel K+(kkk) given by

K+(kkk) :=
2B(xxx,J)√

y

(
−1

2
d2ū

dādτ̄
+

ı̊
8y

dū
dā

+
π ı̊
2

dū
dā

kkk2
+

)
. (3.8)

Once combined with the sum over the U(1) fluxes, Equation (3.5) can be written in a compact
form. One arrives at a total derivative with respect to τ̄ ,

Ψ
J
µµµ [K+](τ, τ̄) =−∂τ̄

(
B(xxx,J)√

y
dū
dā

Ψ
J
µµµ [1](τ, τ̄)

)
. (3.9)

This expression demonstrates that ΨJ
µµµ [K+] vanishes for B(µµµ,KM) = 1

2 mod Z, since ΨJ
µµµ [1]

vanishes in this case (it can be seen by explicitly summing the first few positive and negative
terms). If non-vanishing, ΨJ

µµµ [K+] has the required modular properties. This means that it
transforms with modular weight (b2

2 ,2), and changes by a sign under τ 7→ τ +4.
Since we obtained the Siegel-Narain theta function for the Q-exact operator Ĩ+ we can

proceed and compute the vacuum expectation value of Ĩ+. We arrive at the integral

⟨Ĩ+(xxx)⟩=−
∫
H/Γ0(4)

dτ ∧dτ̄ ∂τ̄

(
ν̃(τ)

B(xxx,J)√
y

dū
dā

Ψ
J
µµµ [1]

)
, (3.10)

for some kernel K . We can easily evaluate this integral using Stokes’ theorem (see Section
4.7). This reduces to arcs close to the three cusps of H/Γ0(4), τ → ı̊∞, 0 and 2. In the
Coulomb branch picture this is a contour integral that localizes at the singularities of B. But
something unexpected is to be discovered here. Since dū

dā diverges as q̄−
1
8 for τ → ı̊∞ and

ν̃(τ) diverges as q−
3
8 for the same limit, we find integrals Lm,n,s (3.1) with both m and n < 0

for the cusp at ı̊∞. The standard prescription to resolve this issue, mentioned above Equation
(3.2), therefore cannot cure this divergence if ΨJ

µµµ [K+]∼ q
1
4 for τ → ı̊∞. Nevertheless, we

will explain in Section 3.3 that the integral can be properly regularized and renormalized.
This will result in the expected ⟨Ĩ+(xxx)⟩= 0, in agreement with the global BRST symmetry
and the rules of CohFT.

3.1.2 General Q-exact observables

Motivated by the example Ĩ+(xxx), we would like to make an analysis of general Q-exact
observables in this subsection. We assume that these observables satisfy the constraints
of single-valuedness on the u-plane (eventually this translates to modular invariance under
Γ0(4)), and that these would be automatically satisfied if we derive them from Q-exact UV
operators. We will find that the integrands of the u-plane integrals for such observables
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always take the form of a total τ̄-derivative,
∫

dτ ∧dτ̄ ∂τ̄(modular form of weight two). This
fact makes their evaluation much easier as we will see in Section 3.3.

The Q-closed and exact observables admit a natural grading by their form degree. For the
restriction we have imposed on M we only have three generic cases therefore and we present
them below.

0-form operators

The most generic zero-form operator O0 can be written as

O0 =V0(a, ā)+V1(a, ā)η , (3.11)

where we require that Vj are real-analytic functions in the real and imaginary part of a on the
interior of the u-plane, in other words, the Vj do not have singularities away from the weak
and strong coupling cusps in the u-plane. In other words, Vj ∈ OCP1(U), with U =CP1\{S}
and S the finite dimensional set of singularities, in our case S = {±1,∞}. After acting with
Q on this expression using Equation (2.74), we find that the most general Q-exact zero-form
operator is

G0 = {Q,O}=
√

2 ı̊ ∂āV0(a, ā)η . (3.12)

The vacuum expectation value ⟨G0⟩ vanishes after integration over the fermionic modes,
since G0 is Grassmann odd and the action only contains Grassmann even terms. We thus
find that any zero-form operator satisfies the Ward identity (2.51). Moreover, any product
operator of the form

∏
j

O0, j, (3.13)

with O0, j being Q-exact zero-form operators is also of the form (3.11).
Let us next consider Q-closed zero-form observables. We deduce from (3.12) that for any

Q-closed observable the η0 term is necessarily holomorphic, thus

C0 =W0(a)+W1(a, ā)η , (3.14)

where Wj are again real-analytic functions on the interior of the u-plane. For single valuedness
of the u-plane integrand, W0 must be invariant under Γ0(4) transformations. For example the
famous point operator is u. Comparing (3.12) and (3.14), we deduce that there exists Q-closed
forms, linear in η , which are not Q-exact. They do however not contribute to correlation
functions since they are Grassmann odd. For the same reason, the Ward-Takahashi identity
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(2.53) is satisfied for 0-form observables. Specifically, for any 0-form observable O0 we have

⟨{Q,O0}∏
j

O0, j⟩= 0, (3.15)

if all O0, j are Q-closed 0-form observables.

2-form operators

We continue with Q-exact two-form operators G2 = {Q,O2}. We let O2 be the most generic
two-form operator, expressed as

O = ∑
X ∈{χ,F±,D,ψ∧ψ}

VX , j(a, ā)η
j X . (3.16)

where VX , j(a, ā) are again real-analytic functions without singularities away from the strong
and weak coupling singularities. Comparing with Equation (3.5), we find that for Ĩ+ the
function Vχ,0(a, ā) reads

Vχ,0(a, ā) =− 1
4π

dū
dā

, (3.17)

with all other VX , j equal to 0. Acting with Q on O we obtain the following expression for the
two-form operator

G2 =
√

2 ı̊ ∂āVχ,0η χ + ı̊ Vχ,0 (F+−D)

+ ∑
i=±

(√
2 ı̊ ∂āVFi,0η Fi +VFi,0 (dψ)i

)
+
√

2 ı̊ ∂āVD,0η D+VD,0 (dψ)+

+
√

2 ı̊ ∂āVψ∧ψ,0η ψ ∧ψ −8
√

2Vψ∧ψ,0 ψ ∧da

+ ∑
i=±

(
− ı̊Vχ,1η (Fi +−D)−VFi,1η (dψ)i

)
−VD,1η (dψ)+−4

√
2Vψ∧ψ,1η ψ ∧da.

(3.18)

In correlation functions we integrate G2 over a two-cycle xxx ∈ H2(M,Z). For simplicity
of notation, we set

G2(xxx)≡
∫

xxx
G2. (3.19)

To evaluate ⟨G2(xxx)⟩ for the class of four-manifolds relevant to this paper, we reduce to zero
modes and integrate over the η and χ zero modes. This ensures that all terms on the right
hand side of Equation (3.20) have a vanishing contribution to ⟨G2(xxx)⟩, except the two terms
with Vχ,0. We will proceed with only these two terms, which is similar to the analysis in
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Subsection 3.1.1. Integrating over the D zero modes gives∫
dDG2(xxx)e−

∫
M L0,D =

2π ı̊

√
2
y

[∫
xxx

(
√

2 ı̊ ∂āVχ,0 +

√
2

4y
dτ̄

dā
Vχ,0

)
ηχ +4π ı̊Vχ,0 B(kkk+,xxx)

]
.

(3.20)

Integrating subsequently over the η and χ zero modes gives the sum over fluxes ΨJ
µµµ [K2],

with kernel

K2 =− 4π√
y

B(xxx,J)
(

∂τ̄Vχ,0 −
ı̊

4y
Vχ,0 −π ı̊Vχ,0kkk2

+

)
, (3.21)

which can be simplified to

Ψ
J
µµµ [K2](τ, τ̄) = ∂τ̄

(
4πB(xxx,J)√

y
Vχ,0Ψ

J
µµµ [1](τ, τ̄)

)
. (3.22)

We can easily deduce the modular properties of Vχ,0 necessary for single-valuedness of the
integrand: Vχ,0 must have weight (0,−1), and transform with the same multiplier system2 as
dū/dā.

Our next aim is to consider correlation functions of a Q-exact operator with a Q-closed
operator. To this end, let us analyze the form of the most general Q-closed two-form operator
which can be written as

C2 = ∑
X

WX , jX η
j. (3.23)

Since we integrate over a closed two-cycle,
∫

xxx O , the right hand side of (3.20) can vanish up
to a total derivative. The relations this imposes on the functions W∗, j are easily read off from
(3.20). We obtain

Wψ∧ψ,0 =
1

8
√

2
∂aWF−,0, Wχ,1 =

√
2∂āWF+,0,

WF−,0 =WF+,0 +WD,0 = holomorphic, (3.24)

WD,1 +WF+,1 =WF−,1 =Wψ∧ψ,1 =Wχ,0 = 0.

2A multiplier system for a subgroup of SL2(R) can be thought of as an analogue of the group character,
albeit slightly more complicated. We will not need the full definition here but the interested reader can consult
standard references in modular forms.
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Therefore, we see that C2 can be expressed as

C2 =WF−,0 (F−+D)+
1

8
√

2
∂aWF−,0 ψ ∧ψ

+
√

2∂āWF+,0ηχ +WF+,0 (F+−D)

+WF+,1(a, ā)η (F+−D),

(3.25)

and the action of the BRST operator on C2 gives

{Q,C2}= d
(
WF−,0(a)ψ

)
. (3.26)

The first two terms in (3.25) are holomorphic and do match the terms in the standard
Donaldson surface observable as derived using the descent formalism, K2u [67]. Comparing
with Equation (2.17) in [67], we find that for the surface observable3

WF−,0(a) =− ı̊
4π

du
da

. (3.27)

The last three terms on the right hand side of (3.25) are Q-exact, and the first two are of form
which do not automatically vanish.

We consider next the correlation function for the product of a Q-exact and a Q-closed
operator, G2(xxx)C2(xxx′). As before, the path integral restricts to zero modes and Grassmann
even terms. Integration over the zero modes of D, η and χ gives∫

dη ∧dχ ∧dDG2(xxx)C2(xxx′)e−
∫

M L0,D+L0, f =

16π
2 dτ̄

dā
B(xxx,J)B(xxx′,J)B(kkk,J)

[(
∂τ̄

Vχ,0WF+,0√
y

)
− Vχ,0WF+,0√

y
π ı̊ kkk2

+

]
+16π

2 dτ̄

dā
WF− B(xxx,J)B(xxx′,kkk−)

[(
∂τ̄

Vχ,0√
y

)
− Vχ,0√

y
π ı̊ kkk2

+

]
,

(3.28)

where the first line is due to the product of the non-holomorphic Q-exact part of C2 with
G2, and the second line is the contribution of the product from the holomorphic part of C2

with G2. Note that the term in brackets on the second line is very similar to (3.21), since the
holomorphic part commutes with ∂τ̄ . Using (3.28), we may write the u-plane integrand for

3Note that we find a different sign for the ψ ∧ψ term compared to [44, 67].
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⟨G2(xxx)C2(xxx′)⟩ as4

B(xxx,J)B(xxx′,J)∂τ̄

(
ν̃ Vχ,0WF+,0 Ψ

J
µµµ [K

(2)
2 / ı̊]

)
+B(xxx,J)∂τ̄

(
ν̃ WF−,0Vχ,0 Ψ

J
µµµ [K−]

)
.

(3.29)

where the kernels read

K
(2)

2 =
16π2 ı̊√

y
B(kkk,J),

K− =
16π2
√

y
B(xxx′,kkk−).

(3.30)

We have thus demonstrated that the u-plane integral takes for this correlation function also
the form of a total derivative.

For an arbitrary product of Q-exact two-form operators,〈
ℓ

∏
j=1

G( j)
2 (xxx j)

〉
, (3.31)

we will prove in Subsection 3.1.2 that the integrand takes a similar form. Namely, the sum
over fluxes can written as

∂τ̄

((
ℓ

∏
j=1

B(xxx j,J)V ( j)

)
Ψ

J
µµµ [K

(ℓ)
2 ]

)
, (3.32)

where the kernel K
(ℓ)

2 can be expressed in terms of the Hermite polynomial Hℓ−1. See
Equation (3.50) for the precise expression. Using the results of Vignéras [85], one can show
that ΨJ

µµµ [K
(ℓ)

2 ] has the required modular properties. We have thus demonstrated that any
product of Q-exact two-form observables can be expressed as a total τ̄-derivative. The form
of the kernel ensures moreover that the integrand is well-defined, as long as the functions V (ℓ)

transform with the same weight and multiplier system as dū
dā under Γ0(4) transformations.

4-form operators

Since the four-manifolds we consider are simply connected there are no three-form operators.
We can therefore, jump to the most generic Q-exact four-form operators that we will treat
similarly to the most generic two-form operators from the previous section.

4We have divided by ı̊ in the first kernel of ΨJ
µµµ for consistency with Equation (3.50) at the end of this

subsection.
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If we leave aside terms which have an odd number of fermionic fields and terms involving
derivatives, the most generic four-form operator takes the form

G4 =
{
Q,Vχ,F+χ ∧F++Vχ,Dχ ∧D

}
=
√

2 ı̊∂āVχ,F+ ηχ ∧F++ ı̊ Vχ,F+ (F+−D)∧F+

+ ı̊Vχ,D(F+−D)∧D.

(3.33)

We aim to evaluate ⟨∫M G4⟩and to accomplish that we will use Equation (2.86), (3.6) and

∫
dD
[∫

M
D∧D

]
e−

∫
M L0,D =−8π2 ı̊

y

√
2
y
. (3.34)

Then we find

∫
dD

∫
M

G4 e−
∫

M L0,D = 2π ı̊

√
2
y

[√
2 ı̊∂āVχ,F+

∫
M

ηχ ∧F+

+ ı̊ Vχ,F+

∫
M
(F+−

√
2 ı̊

4y
dτ̄

dā
ηχ)∧F++ ı̊Vχ,D

∫
M
(F+∧

√
2 ı̊

4y
dτ̄

dā
ηχ)+

4π ı̊
y

Vχ,D

]
(3.35)

Integrating over the fermionic zero modes gives the kernel K4 for ΨJ
µµµ ,

K4(kkk) =
8
√

2π2B(kkk,J)√
y

(
∂τ̄Vχ,F+ −

ı̊
4y

Vχ,F+ −π ı̊Vχ,F+kkk2
+

)
. (3.36)

Also ΨJ
µµµ [K4] can be expressed as an anti-holomorphic derivative in accordance to the results

of the previous subsection

Ψ
J
µµµ [K4] = 4

√
2 ı̊∂τ̄

(
Vχ,F+Ψ

J
µµµ [Kp]

)
, (3.37)

with the kernel Kp as in Equation (2.91).

General Q-exact operator

We have already seen examples of classes of Q-exact operators with the property that
their u-plane integrand can be expressed as a total derivative with respect to τ̄ . We will
demonstrate here that this is not a mere coincidence but a generic feature of Q-exact operators
in Donaldson-Theory. To this end, we reduce to the zero mode sector from the beginning
and include the Q-exact part of the Lagrangian in the observable. Recall that the zero mode
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Lagrangian can be expressed as

L0 =
ı̊τ

8π
F ∧F +{Q,W} , (3.38)

with W =− ı̊ y
8π

χ (F++D). We can rewrite

{Q,O} e−L0 =
{
Q,Õ

}
q−kkk2/2, (3.39)

with Õ = O e−
∫

M{Q,W}. This will simplify the integrations over the fermion and auxiliary
field zero modes.

To this end, let us expand Õ in terms of η and χ , and integrate χ over a two-cycle
xxx ∈ H2(M,Q), such that the operator belongs to H0(M). The expansion then reads

Õ(xxx) = ∑
m=0,1

Õm,0 η
m + ∑

m=0,1
Õm,1 η

m
∫

xxx
χ, (3.40)

where Õm,n are functions of a, ā,
∫

xxx F and
∫

xxx D. With the aid of the supersymmetry algebra
of Equation (2.74) restricted to zero modes, we find{

Q,Õ(xxx)
}
=
√

2 ı̊∂āÕ0,0 η +
√

2 ı̊∂āÕ0,1 η

∫
xxx

χ − ı̊
∫

xxx
(F+−D) ∑

m=0,1
Õm,1 η

m. (3.41)

Only the term with Õ0,1 survives the integration over fermion zero modes,∫
dη dχ

{
Q,Õ(xxx)

}
=−

√
2 ı̊ B(xxx,J)∂āÕ0,1, (3.42)

where

Õ0,1 = O0,1 q−kkk2
−/2q̄kkk2

+/2 exp
(

y
8π

∫
M

D2
)
. (3.43)

We thus find that the u-plane integrand can be expressed as a total τ̄-derivative for any Q-exact
observable. Moreover, the only term of Õ which contributes to the integrand is linear in χ

and independent of η .
Finally, we will now consider a product ∏

ℓ
j=1 G2(xxx j) of form degree two Q-exact opera-

tors. We can express this product as {Q,O(ℓ)}, with

O(ℓ) =V (1)
∫

xxx1

χ ×
ℓ

∏
j=2

G( j)
2 (xxx j), (3.44)
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and
G( j)

2 =
√

2 ı̊ ∂āV ( j)
η χ + ı̊V ( j) (F+−D), j = 1, . . . , ℓ. (3.45)

The coefficient of the term η0 ∫
xxx1

χ , that is O
(ℓ)
0,1, is given by

O
(ℓ)
0,1 = ı̊ℓ−1 B(F+−D,J)ℓ−1V (1)

ℓ

∏
j=2

V ( j)B(xxx j,J). (3.46)

Integrating out the auxiliary field leads to expressions in terms of the Hermite polynomials
as suggested below Equation (3.32). Recall the following integral formula for the Hermite
polynomials,

Hℓ(s) =
2ℓ√

π

∫
∞

−∞

dt (s− it)ℓ e−t2
. (3.47)

The first few polynomials Hℓ read

H0(s) = 1,

H1(s) = 2s,

H2(s) = 4s2 −2.

(3.48)

Using the identity (3.47), we find

∫
dD O

(ℓ)
0,1 exp

(
y

8π

∫
M

D2
)
=

2
√

π

(
ı̊

√
2π

y

)ℓ

Hℓ−1(
√

2πyB(kkk,J))
ℓ

∏
j=1

V ( j)B(xxx j,J).

(3.49)

We now arrive at Equation (3.32) with kernel

K
(ℓ)

2 =−2 ı̊
√

2π

(
ı̊

√
2π

y

)ℓ

Hℓ−1(
√

2πyB(kkk,J)). (3.50)

3.1.3 A holomorphic self-dual operator

In the previous subsections we saw examples of a holomorphic operator combined with the
anti-self-dual part of the field strength, and an anti-holomorphic operator combined with the
self-dual part of the field strength. The low energy expressions of these operators illustrate
that they neatly satisfy the constraints of the duality group Γ0(4). In this section, we consider
a Q-exact operator which is holomorphic in a and involves the self-dual part of the field
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strength. We denote the UV operator by I⋄, and it reads explicitly

I⋄(xxx) =
∫

xxx
{Q,Tr(φ χ)}. (3.51)

What is curious about this operator is that the integrand is not a descendant of the descent
operators K or L. Therefore the low energy IR operator that it flows to, Ĩ⋄(xxx), does not follow
in a straight forward manner from the UV expression. The discussion in this subsection is
therefore of a more speculative nature.

We take the following ansatz for the IR observable

I⋄(xxx)
RG flow−−−−→ Ĩ⋄(xxx) =

∫
xxx

(
du
da

(F+−D)+g(τ)
du
da

(F++D)

)
, (3.52)

where g(τ) is an unknown function, which we aim to fix below using modular invariance.
From the UV definition, one would expect that g vanishes, but that would spoil the modular
invariance of the inegrand. We will require that g is a non-perturbative (instantonic) correction,
and vanishes exponentially fast in the weak-coupling limit τ → ı̊∞. Furthermore, we will
then demonstrate that g is uniquely determined by modularity.

The procedure is similar as is the previous sections. Integration over the fermion zero
modes after insertion of Ĩ⋄(xxx), leads to the kernel

K⋄(kkk) =
ı̊B(xxx,J)
2
√

2y
du
da

{(
4π kkk2

++
1
y

)
−g(τ)

(
4π kkk2

+− 1
y

)}
. (3.53)

Recall that the integrand has to be modular invariant under Γ0(4). To satisfy this requirement
and also the fact that g is non-perturbative, we set

g(τ) =
π

6
(
2E2(τ)−ϑ3(τ)

4 −ϑ4(τ)
4)=−16π q+O(q2), (3.54)

where E2 is the second Eisenstein series, and the ϑ j are the classical Jacobi theta series
(A.10). We set furthermore

ĝ(τ) =
π

6

(
2Ê2(τ)−ϑ3(τ)

4 −ϑ4(τ)
4
)
, (3.55)

with Ê2(τ) the non-holomorphic Eisenstein series Ê2(τ) = E2(τ)− 3
πy (a quasi-modular

form). We see that ĝ transforms as a weight two modular form of Γ0(4), and that for τ → ı̊∞,
the function ĝ(τ) behaves as −1

y +O(q). We can now express the Siegel-Narain theta
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function ΨJ
µµµ of this operator as a total derivative with respect to τ̄ in the following way

Ψ
J
µµµ [K⋄](τ, τ̄) =

ı̊
2

B(xxx,J)
du
da

d
dτ̄

(√
y ĝ(τ)Ψ

J
µµµ [1](τ, τ̄)

)
. (3.56)

where as before we have not included the term dτ̄

dā , which is the Jacobian for the change
of variable to τ̄ . One may verify that ΨJ

µµµ [K⋄] has the same transformation properties as
ΨJ

µµµ [K+].

3.1.4 Summary

Let us give a summary of the results of this section. We have found that vacuum expectation
values of Q-exact operators can be expressed as integrals whose integrands can be written as
a total τ̄-derivative after integration over the auxiliary field D and the fermionic zero modes.
The vacuum expectation value of a Q-exact operator takes therefore the form

⟨{Q,O}⟩=
∫
H/Γ0(4)

dτ ∧dτ̄ ∂τ̄

(
ν̃ WO Ψ

J
µµµ [KO ]

)
, (3.57)

for some non-holomorphic function WO and kernel KO , which both depend on O . Given the
total derivative, we can easily evaluate the integral using Stokes’ theorem, which reduces the
integral to three arcs around the cusps of H/Γ0(4).

For a more standard treatment, we map the integral over H/Γ0(4) to an integral over F∞,
using Equation (2.39), by mapping the six SL2(Z)/Γ0(4) images of F∞ in H/Γ0(4) back to
F∞. Equation (3.57) can then be expressed as

⟨{Q,O}⟩=
∫
F∞

dτ ∧dτ̄ ∂τ̄FO , (3.58)

where FO is the sum of the six transformations of ν̃(τ)WO ΨJ
µµµ [KO ] by the elements of

SL2(Z)/Γ0(4). It has a q-expansion of the form

FO = y−s
∑
m,n

c(m,n)qmq̄n, (3.59)

or a finite sum of such terms with different s. For the Q-exact operator Ĩ+(xxx), we have seen
that m and n can be both negative leading to a divergence for τ → ı̊∞. Moreover, it is possible
that m = n < 0, for which the standard renormalization does not apply. We introduce a new
regularization and renormalization prescription in the next section which also treats terms
with m = n < 0 and shows that (3.58) is convergent.
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3.2 Renormalization of modular integrals

The previous section discussed the importance of integrals of the form

I f =
∫
F∞

dτ ∧dτ̄ y−s f (τ, τ̄), (3.60)

for supersymmetric field theories, where f is a non-holomorphic modular form of weight
(2− s,2− s), and F∞ a fundamental domain for the modular group (see below for further
explanation). We will discuss in this section the evaluation and regularization of integrals of
this form, which has been developed in the mathematical literature in the context of inner
products for weakly holomorphic modular forms [6].5

3.2.1 Renormalization of integrals over F∞

We start by considering the integral over a single term qm q̄n in the Fourier expansion of f .6

To this end, consider the set T of triples (m,n,s), defined by

T = {m,n ∈ R,s ∈ Z/2 |m−n ∈ Z} , (3.61)

For (m,n,s) ∈ T , we consider the integral

Lm,n,s =
∫
F∞

dτ ∧dτ̄ y−s qmq̄n, (3.62)

where F∞ is the standard keyhole fundamental domain F∞ =H/SL2(Z) pictured in Figure
2.2. Since F∞ is non-compact and the integrand may diverge at the limit y → ∞, this
is an improper integral. It should be understood as the limiting value of integrals over
compact domains, which approach F∞. To this end, we introduce the compact domain FY

by restricting Im(τ)≤ Y for some Y ≥ 1.7 The boundaries of FY are given by the following

5A weakly holomorphic modular form f (τ) is a modular form which is holomorphic on the interior of H
but may diverge for τ → ı̊∞∪Q.

6We will justify in section 3.2.2 that the Fourier series and the integral can be exchanged.
7One may consider a more general upper bound with Y being a function of Re(τ) = x. This choice will not

affect the final result.
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arcs

1 : τ = 1
2 + ı̊ y, y ∈ [1

2

√
3,Y ],

2 : τ = x+ ı̊Y, x ∈ [−1
2 ,

1
2 ],

3 : τ =−1
2 + ı̊ y, y ∈ [1

2

√
3,Y ],

4 : τ = ı̊ eı̊ϕ , ϕ ∈ [−π

6 ,
π

6 ].

(3.63)

In the limit, limY→∞ FY we recover F∞. We then regularize Lm,n,s as

Lm,n,s(Y ) =
∫
FY

dτ ∧dτ̄ y−s qmq̄n, (3.64)

for (m,n,s) ∈ T , and define
Lm,n,s = lim

Y→∞
Lm,n,s(Y ), (3.65)

provided the limit exists. To study the dependence on Y , we split the compact domain FY

into F1 plus a rectangle [−1
2 ,

1
2 ]× [1,Y ] as shown below in Figure 3.1. The split of FY , gives

for Lm,n,s(Y ) the following expression

Lm,n,s(Y ) =
∫
F1

dτ ∧dτ̄ y−s qmq̄n −2 ı̊
∫ 1

2

− 1
2

∫ Y

1
dx∧dy y−s qmq̄n. (3.66)

The first term on the right hand side is finite and independent of Y . In the second term, we
integrate over x, which gives zero unless m = n,

−2 ı̊ δm,n

∫ Y

1
dy y−s e−4πmy. (3.67)

We thus find that limY→∞ Lm,n,s(Y ) converges, except for the cases

• m = n < 0, or

• if m = n = 0 with s ≤ 1.

Let us denote by this D set, in other words

D = {(m,n,s) ∈ T |m = n < 0}∪{(0,0,s) ∈ T |s ≤ 1} . (3.68)

The correlation functions discussed in Section 3.1 give rise to (m,n,s) ∈ D , suggesting
that Q-exact observables might diverge rather than vanish. To resolve the tension of this
apparent divergence with the structure of topologically twisted theories, we would like to
regularize and renormalize such integrals. The cases with m = n = 0 are renormalized in the
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− 1
2

1
2

Y

Re(τ)

Im(τ)

Figure 3.1 Splitting of FY into F1 (the blue region) and the rectangle RY (gray region).

standard way8 [5, 14, 36] as is the constant term of the integral for sufficiently large s, which
gives 0 for (3.67) if s = 1 and otherwise 2 ı̊/(s−1). The trouble is in treating the cases with
m = n < 0, and to achieve this we put forward in this section a regularized and renormalized
version Lr

m,n,s, of Lm,n,s for all (m,n,s) ∈ T .
Before introducing Lr

m,n,s, let us note that the limit of the sum

lim
Y→∞

[
Lm,n,s(Y )+2 ı̊ δm,n

∫ Y

1
dy y−s e−4πmy

]
= Lm,n,s(1) (3.69)

is finite. In the definition for Lr
m,n,s, we will subtract from the two terms in the brackets, an

appropriately regularized counter part of the second term. To this end, let us introduce the

8This was described in the beginning of Chapter 3.
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generalized exponential integral Eℓ(z). For Re(z)> 0, Eℓ(z) is defined by

Eℓ(z) =
∫

∞

1
e−ztt−ℓdt. (3.70)

Integral shifts of the parameter ℓ are related by partial integration

e−z = zEℓ(z)+ ℓEℓ+1(z). (3.71)

We can also express Eℓ(z) in terms of the incomplete Gamma function Γ(k,z) defined as

Γ(k,z) =
∫

∞

z
e−t tk−1dt = zkE1−k(z). (3.72)

With the analytic continuation of Γ(k,z), we can extend the domain of Eℓ(z) to the full
complex plane. We define

Eℓ(z) =



zℓ−1
∫

z

∞

e−t t−ℓ dt, for z ∈ C∗,

1
ℓ−1

, for z = 0, ℓ ̸= 1,

0, for z = 0, ℓ= 1,

(3.73)

where for non-integral ℓ, we fix the branch of t−ℓ by specifying that the argument of any
complex number ρ ∈ C∗ is in the domain (−π,π]. For s ∈ R+, we have

Im(Eℓ(−s)) =−π sℓ−1

Γ(ℓ)
. (3.74)

In terms of this function Eℓ(z), we can finally define Lr
m,n,s for all (m,n,s) ∈ T :

Lr
m,n,s =

∫
F1

dτ ∧dτ̄ y−s qmq̄n −2 ı̊ δm,n Es(4πm), (3.75)

which regularizes and renormalizes the ill-defined Lm,n,s from Equation (3.62) .
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3.2.2 Modular invariant integrands

We provide in this subsection the prescription to renormalize I f . Let us start with the integral
of a modular form over the fundamental domain,

I f =
∫
F∞

dτ ∧dτ̄ y−s f (τ, τ̄), (3.76)

where f (τ, τ̄) is a non-holomorphic modular form for SL2(Z) of weight (2− s,2− s), with
Fourier expansion

f (τ, τ̄) = ∑
m,n≫−∞

c(m,n)qmq̄n, (3.77)

where the c(m,n) are only non-zero if m−n ∈ Z by the requirement that f is a modular form.
We assume that f is in fact a function on H× H̄, which satisfies

f
(

aτ +b
cτ +d

,
aσ +b
cσ +d

)
= (cτ +d)2−s(cσ +d)2−s f (τ,σ), (3.78)

where for s ∈ Z+ 1
2 , we specify the branch of the square root by requiring that the argument

of cτ +d is in (−π,π]. For a single factor (cτ +d)2−s, consistency of the square root and
SL2(Z) requires a non-trivial multiplier system. For f (τ,σ), the multiplier systems for τ and
σ are complex conjugate and multiply to one on the right hand side of (3.78).

For the physical correlation functions of Section 3.1, we have to allow f with a finite
number of polar terms, i.e., there is an M ∈ Z such that c(m,n) = 0 if m < M or n < M, such
that the number of terms with m+n < 0 is finite. For sufficiently large m and n, where the
integral behaves well, double application of the well-known saddle point argument shows
that the coefficients c(m,n) are bounded by

c(m,n)< e
√

Km+
√

Kn, (3.79)

for some constant K > 0. The sum over m and n is therefore absolutely convergent for
Im(τ)< ∞.

Due to the terms with m+n ≤ 0, the integrand in (3.76) diverges for y → ∞, such that
the integral is ill-defined. If there are no terms with m = n < 0, the integral is defined using
the well-known regularization [5, 14, 36], but we have seen in Section 3.1 also terms with
m = n < 0 may appear in correlation functions on the Coulomb branch. To regularize these
integrals, we introduce a cut-off Y for Im(τ) as in Subsection 3.2.1, and define the integral
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I f (Y ) of f over this domain FY (3.63),

I f (Y ) =
∫
FY

dτ ∧dτ̄ y−s f (τ, τ̄). (3.80)

We regularize the divergence of I f (Y ) by subtracting terms involving the generalized
exponential function Es(z) defined in (3.73). More precisely, we replace I f by its regularized
and renormalized version I r

f , defined as

I r
f = lim

Y→∞

[
I f (Y )−2 ı̊ ∑

m≫−∞

c(m,m)Y 1−sEs(4πmY )

]
. (3.81)

Let us verify that the limit is well-defined. Since the domain FY is compact and the sum
over m and n is absolutely convergent on FY , we can exchange the double integral and the
sum. Thus, we have

I f (Y ) = ∑
m,n≫−∞

c(m,n)Lm,n,s(Y ), (3.82)

with Lm,n,s(Y ) as in (3.66). We substitute this expression in (3.81). Using

∫ Y

1
dyy−s e−4πmy = Es(4πm)−Y 1−sEs(4πmY ),

we arrive at
I r

f = ∑
m,n≫−∞

c(m,n)Lr
m,n,s , (3.83)

with Lr
m,n,s as in (3.75). This is finite since there are at most a finite number of terms with

m = n < 0, and the sum over the other m and n is absolutely convergent.

3.2.3 Evaluation using Stokes’ theorem

If we assume that the integrand can be expressed as a total derivative with respect to τ̄ , we
can evaluate the integral using Stokes’ theorem, and we will find that I r

f takes an elegant
form in this case. To this end, let us write y−s f (τ, τ̄) as

∂τ̄ ĥ(τ, τ̄) = y−s f (τ, τ̄), (3.84)

such that the integrand of (3.76) is in fact exact and equal to −d(dτ ĥ). Note that this does
not imply that dτ̄ ∂τ̄ ĥ is exact, since dĥ = dτ ∂τ ĥ+dτ̄ ∂τ̄ ĥ. For our application to modular
integrals, ĥ(τ, τ̄) transforms as a modular form of weight two. Equation (3.84) can be
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integrated using Eℓ(z). For s ̸= 1,9

ĥ(τ, τ̄) = h(τ)+2 ı̊ y1−s
∑

m,n≫−∞

c(m,n)qm−nEs(4πny), (3.85)

while for s = 1, the terms with n = 0 in the sum should be replaced by

−2 ı̊ log(y) ∑
m≫−∞

c(m,0)qm.

The c(m,n) in (3.85) are the Fourier coefficients of f (3.77), and h is a (weakly) holomorphic
function with Fourier expansion

h(τ) = ∑
m≫−∞

m∈Z

d(m)qm. (3.86)

Since there are no holomorphic modular forms of weight two for SL2(Z), the function h(τ)
is uniquely determined by the coefficients d(m) with m < 0. However, since the d(m), m < 0,
are not determined by the c(m,n), there the space of weakly holomorphic modular forms
of weight two gives an ambiguity in h(τ). Below Equation (3.90) we will discuss that the
integral I r

f is independent of this ambiguity.
Note that if f = f (τ̄) is a (weakly) anti-holomorphic, ĥ(τ, τ̄) is a Maass form annihilated

by the weight s hyperbolic Laplacian, and in this case almost satisfies the requirements for
a harmonic Maass form [7].10 Moreover, if f is anti-holomorphic, h(τ) is a mock modular
form with shadow f [93, 94] (also see Appendix A.2).

The modular properties of ĥ(τ, τ̄) imply interesting transformations for h(τ). Let us
consider this for the case that f depends on both τ and τ̄ , but is such that the c(m,n) in (3.85)
are only non-vanishing for n > 0 (or n ≥ 0 and s > 1). We can then express ĥ as

ĥ(τ, τ̄) = h(τ)+2s
∫ i∞

−τ̄

f (τ,−v)
(− ı̊(v+ τ))s dv, (3.87)

9We follow here the convention for Maass forms as in [8]. In other literature on Maass forms such as
[6], Eℓ(s) is sometimes replaced by the function sℓ−1Wℓ(−s/2) = Re(Eℓ(s)), (s ̸= 0). This has no effect for
s > 0, but terms with s < 0 lead to additional contributions involving Im(Eℓ(s)) in the final result for I r

f (3.90).
Reference [6, Definition 3.1] corrected for this in the definition of their inner-product.

10A harmonic Maass form of weight k is annihilated by the weight k hyperbolic Laplacian, whereas the
weight of ĥ(τ, τ̄) is 2 independently of s.
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Note that the two terms on the right hand side are separately invariant under τ → τ +1, while
the transformation of the integral under τ →−1/τ implies for h(τ),

h(−1/τ) = τ
2
(

h(τ)+2s
∫ ı̊∞

0

f (τ,−v)
(− ı̊(v+ τ))s dv

)
. (3.88)

Let us return now to the generic case with f (τ, τ̄) of the form (3.77) and evaluate I r
f .

The integral over FY can then be carried out using Stokes’ theorem, which reduces to a
contribution from the interval [−1

2 + ı̊Y, 1
2 + ı̊Y ]. We thus find that the integral over FY in

(3.81) equals for s ̸= 1,

d(0)+2 ı̊ lim
Y→∞

∑
m≫−∞

Y 1−s c(m,m)Es(4πmY ), (3.89)

using expression (3.85) for ĥ. For s= 1, we apply the renormalization by analytic continuation
in s mentioned below (3.68), which gives the same result.

The last step remaining is to combine (3.89) with the other term in equation (3.81), which
gives

I r
f = d(0). (3.90)

As a result the only contribution to the integral arises from the constant term of the Fourier
seried of h(τ). This obviously reduces to the regularization for I f if either m or n is non-
negative [36, 67]. We mentioned below equation (3.86), that there is an ambiguity in h due to
the possibility to add a weakly holomorphic modular form of weight two. Since the constant
terms of such modular forms vanish, the result (3.90) does not depend on this ambiguity.

To see that this statement is true, let C(τ) be a weakly holomorphic modular form of
weight two. Recall that the first cohomology of F∞ is trivial, H1(F∞) = 1, and the one-form
C(τ)dτ is necessarily exact. The period

∫ Y+1
Y C(τ)dτ therefore vanishes, which implies that

its constant term vanishes. Indeed, a basis of weakly holomorphic modular forms of weight
two is given by derivatives of powers of the modular invariant J-function, ∂τ

(
J(τ)ℓ

)
, ℓ ∈ N,

which have all vanishing constant terms.
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3.3 Evaluation of correlation functions of Q-exact observ-
ables

We return to the u-plane integrals for correlation functions of Q-exact observables ⟨{Q,O}⟩,
where {Q,O} may be a product of Q-exact and Q-closed operators as discussed in Section
3.1. As discussed in Subsection 3.1.2, the corresponding u-plane integrals take the form of a
total τ̄-derivative for Q-exact observables. This is the key property for their evaluation, and
we can therefore treat all such correlation function simultaneously as indicated in Section
3.1.4.

Using the regularization and renormalization scheme of Section 3.2, we will show that the
correlation functions of the form ⟨{Q,O}⟩ vanish, confirming the Ward-Takahashi identities
of the BRST symmetry. Recall from Subsection 3.1.4, that ⟨{Q,O}⟩ can be expressed as

⟨{Q,O}⟩=
∫
F∞

dτ ∧dτ̄ ∂τ̄FO , (3.91)

with
FO(τ, τ̄) = y−s

∑
m,n

c(m,n)qmq̄n, (3.92)

where only a finite number of c(m,n) ̸= 0 for m+n < 0. Let us first evaluate (3.91) using
Section 3.2.3. Since

∂τ̄FO =− ı̊ y−s
∑
m,n

c(m,n)(2π n+ 1
2 sy−1)qmq̄n, (3.93)

we can identify FO with ĥ1 + ĥ2 following (3.84). Here ĥ1 is of the form (3.85) and ĥ2 as
well, but with s replaced by s+1. FO is a (non-holomorphic) modular form of weight two,
and the discussion in Section 3.1 did not include a holomorphic function h1 +h2. Indeed,
since FO is a modular form of weight two, vanishing of h1+h2 is consistent with the modular
properties. The sum of constant terms d1(0)+d2(0) thus vanishes, which demonstrates that
⟨{Q,O}⟩ vanishes.

Alternatively, one may start from (3.81) with f = ∂τ̄FO , such that ⟨{Q,O}⟩ reads

⟨{Q,O}⟩= lim
Y→∞

[∫
FY

dτ ∧dτ̄ ∂τ̄FO

−2Y−s
∑

m≫−∞

c(m,m)(2π mY Es(4πmY )+
s
2

Es+1(4πmY ))

]
.

(3.94)
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To evaluate the integral over FY , we use Stokes’ theorem. Modular invariance of the
integrand implies that only the arc at Im(τ) =Y contributes. Using (3.71) for the second line,
we arrive again at the desired result

⟨{Q,O}⟩= ∑
m

c(m,m) lim
Y→∞

[
Y−s e−4πY m −Y−s e−4πY m]

= 0.
(3.95)

We have thus demonstrated that the correlation function of a generic Q-exact observable
vanishes with the current prescription.

Given that the vacuum expectation value of any Q-exact observable vanishes, power
series of Q-exact observables vanish as well. We have in particular

⟨(1− eα{Q,O})O ′⟩= 0, (3.96)

for arbitrary α ∈ C and assuming that O ′ is Q-closed. We can therefore safely add Q-exact
terms to the action. This will justify the inclusion of eĨ+(xxx) in the u-plane integrand in Chapter
4 (also in references [43, 44]). It was, in fact, precisely this question which motivated the
article that this chapter is based upon.

3.4 Discussion and Summary

We have revisited the evaluation of correlation functions on the Coulomb branch of Donaldson-
Witten theory. While vanishing of correlation functions of BRST-exact observables is impor-
tant for the topological nature of the theory, we have seen families of BRST-exact observables
whose correlation functions appear to diverge due to contributions from the boundary of
field space. The divergences become most manifest after a change of variables from u to the
complexified coupling constant τ ∈H/Γ0(4). Depending on the observable, the integrand
may contain terms qmq̄n with m,n both negative, which diverge for τ → ı̊∞.

We have demonstrated that such divergences can be cured using a new prescription to
regularize and renormalize the integrals over modular fundamental domains. This prescription
employs the analytic continuation of the incomplete Gamma function, and was recently
developed for for the definition of regularized inner products of weakly holomorphic modular
forms [6]. Strikingly, this results in a vanishing expectation value for the correlation functions
of BRST-exact observables in Donaldson-Witten theory, confirming its BRST symmetry.
With the new regularization we have demonstrated that all valid Q-exact observables decouple
from the Q-closed operators. A central aspect of our analysis was that Q-exact observables
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lead to a u-plane integrand which is a total derivative with respect to τ̄ . We will further
elaborate on this aspect in the next two chapters.

As we have restricted our analysis to Donaldson-Witten theory and four-manifolds
with b+2 = 1, there are immediate directions for future work. We plan to analyze in future
work the BRST symmetry of other twisted theories including those with matter and with
superconformal symmetry. We would like to extend our discussion also to four-manifolds
with b+2 = 0, where one-loop determinants contribute in addition to the zero modes.

Besides the Q-closed observables, the new prescription also renormalizes correlation
functions of observables outside the Q-cohomology, which are “unphysical” from the point
of view of the physical theory. An example is ⟨Tr(φ̄ 2)⟩R4 . We leave it for future work to see
whether such correlation functions may contain interesting information.

Another potential area of applications are (bosonic) string amplitudes where previous
regularizations were initially developed [14, 36]. In particular, it is a standard result that the
one-loop contribution A1−loop to the vacuum energy in the bosonic string is divergent due to
the presence of a tachyon. What is curious about the new regularization and renormalization
prescription presented above is that it gives a definite finite value for this amplitude. Recall
that

A1−loop = iI f , (3.97)

with f (τ, τ̄) = |η(τ)|−48. After performing the regularization and renormalization prescrip-
tion we find for A r

1−loop the following result

A r
1−loop =− ı̊

227π14

Γ(14)
+ ∑

m,n≥1
c(m,n)Re(Lr

m,n,14)

=− ı̊196620.04 . . .+64021.15 . . . ,

(3.98)

where we used Im(Eℓ)(−s) =−πsℓ−1

Γ(ℓ) for s > 0. Note here that the contribution of the tachyon
is the negative part of the amplitude. It is an open question what the physical consequences
of this result are, if any. We hope to return to this question in the future.



Chapter 4

Donaldson-Witten theory and indefinite
theta functions

The fundamental papers by Witten [88] and by Moore and Witten [67] provided an in-
credible amount of physical insight in the field of differential topology related to smooth
four-manifolds. The generating function of Donaldson invariants, that we referred to in
Subsection 1.6 and will analytically define briefly, could be viewed after these publications
as a correlation function of a specific operator of the UV and IR Donaldson-Witten theory
respectively.

In this chapter, continuing in the path of these fundamental papers, we will study in
detail how the inclusion of the Q-exact surface observable Ĩ+ that was introduced in Section
3.1.1 to the path integral of Donaldson-Witten theory affects the correlation function that
gives the Donaldson invariants. In Donaldson-Witten theory, if the metric of the compact
four-manifold M has positive scalar curvature, the partition function is completely determined
by the integral over the Coulomb branch parameter a, while more generally the Coulomb
branch integral captures the wall-crossing behavior of both Donaldson polynomials and
Seiberg-Witten invariants. This chapter will show that after the addition of this Q-exact
observable to the u-plane integrand, the integrand can be written as a total derivative to the
anti-holomorphic Coulomb branch coordinate ā using Zwegers’ indefinite theta functions.
In this way, we will reproduce Göttsche’s expressions for Donaldson invariants of rational
surfaces in terms of indefinite theta functions for any choice of Riemannian metric g.

We begin in the first few sections by recalling some standard facts about four-manifolds as
well as the geometric construction of Yang-Mills theories and then we continue by recalling
the definition of Donaldson invariants in Section 4.5 . Then we proceed to Section 4.6 where
we incorporate the Ĩ+ operator in the u-plane integral that corresponds to the generating
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function of Donaldson invariants. In Section 4.7 we evaluate the integral and in Section 4.8
we discuss generalizations to higher rank gauge groups.

This chapter is dedicated to the memory of Sir Michael Atiyah, who pioneered the field
of geometry and Yang-Mills theory, and happened to pass away during the writing of this
chapter. I was fortunate to meet him and speak to him once...

4.1 Some facts about four-manifolds

In this section we will briefly summarize some results known about four-manifolds in the
era before Donaldson. The reader who is familiar with the classical topological invariants of
four-manifolds or not interested in them can safely jump to the next section.

The integer homology and cohomology structure of closed, smooth, oriented four-
manifolds is as follows:

H0(M) = Z= Z · [pt.] H4(M)

H1(M) = π1(M)abel. H3(M)

H2(M) H2(M) = Hom(H2(M),Z)⊕H1(M)torsion

H3(M) H1(M) = Hom(π1(M),Z)

H4(M) = Z= Z · [M] H0(M) = Z= Z · [1]

For simply connected closed four-manifolds, π1 = 0, this looks much simpler. With the aid
of the Hurewicz theorem the corresponding homology and cohomology reads:

H0(M) = Z= Z · [pt.] H4(M) = Z

H1(M) = 0 H3(M) = 0

H2(M) = Zd H2(M) = Zd

H3(M) = 0 H1(M) = 0

H4(M) = Z= Z · [M] H0(M) = Z= Z · [1]

We see that the only relevant topological invariant is the dimension of the second homology
or cohomology group, b2. Cohomology groups are slightly more interesting, for our purposes,
compared to the homology groups because they encode some extra information. This is
because cohomology classes can be paired via the wedge product as we have seen in the
previous chapter. For simply connected four-manifolds this pairing is given by the bilinear
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form (2.77) which we also recall below, in Equation (4.12). Of course, if we use singular
cohomology with integer coefficients instead of differential forms over M, the bilinear form
yields an integer, and in that language, the wedge product is what is usually called the cup
product.

Using Poincaré duality, we can interpret the bilinear form in terms of homology instead
of cohomology. Then, an element of H2(M) can be viewed as a surface embedded in M,
and if x1 and x2 are two such surfaces, they will generically intersect in a finite set of points.
If these are counted with appropriate signs, the number of points in the intersection will
be the integer that corresponds exactly to the integer that is yielded by the bilinear form
which we can call in this case intersection form. We see therefore that there is a natural
way to associate a bilinear form on H2(M), or equivalently on H2(M), which is furthermore
symmetric, integer valued, and non-degenerate. By choosing some basis for H2(M), this
intersection form, B can be viewed as a symmetric unimodular matrix A ∈ Zb2×b2 .

The intersection form B is a topological invariant of the four-manifold M. To be more
precise, every simply connected compact four-dimensional manifold without boundary gives
rise to an integer valued unimodular matrix A as above. This is nice since matrices are very
convenient and easy to understand but the problem is that the intersection form requires
choosing a basis on H2(M). Changing this basis with an invertible integer-valued matrix S
results to A → ST AS, and both A and ST AS represent the same bilinear form but in different
bases.

The classification of symmetric integer valued unimodular bilinear forms, up to a change
of basis by such a matrix S, is a difficult subject in general. If we relax this requirement
slightly and allow any change of basis with respect to a real valued S, the classification of
these bilinear forms amounts to counting the number of positive eigenvalues and the number
of negative eigenvalues (since the determinant is ±1, there are no zero eigenvalues). Let b+2
be the number of positive eigenvalues and b−2 the number of negative eigenvalues. Since we
are only allowed integer change of bases, the problem is more difficult than this. We still
do have b+2 and b−2 , but several matrices may have the same values for b+2 and b−2 but not be
equivalent. Actually, the classification of definite symmetric bilinear forms (that means that
either b+2 = 0 or b−2 = 0) is not known at all, but it is known that the number of these forms,
of even moderate size, is quite large. Therefore we cannot hope to classify four-manifolds
with this technique.

On the other hand the classification of the indefinite case (neither b+2 = 0 or b−2 = 0)
is actually much better and we know the classification of these completely. Let us define
some important terminology at this point. An integral intersection form Q is called even
if Q(a) ≡ 0 mod 2. Otherwise it is called odd. For even quadratic forms it is possible to
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change the basis so that the matrix is diagonal with eigenvalues ±1 on the diagonal. This
basis can be chosen so that the matrix breaks up into 2×2 blocks and 8×8 blocks, where
the 2×2 blocks are the matrix

H =

(
0 1
1 0

)
and the 8×8 blocks are each the Cartan matrix for the exceptional Lie group E8

E8 =



2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1 −1
−1 2 −1

−1 2
−1 2


.

Note that the matrix E8 is definite, so there must be at least one H, else we would be
considering the definite case that we described previously.

Parity Indefinite Definite
Odd m⟨1⟩⊕n⟨−1⟩ ±1, E8 ⊕⟨1⟩, many unknown
Even mH ⊕nE8 nE8, SO(32), Leech lattice, many unknown

Table 4.1 Some facts about the classification of intersection forms for generic four-manifolds.

In table 4.2 we summarize some standard facts about some of the most studied four-
manifolds. Two of these four-manifolds, the Hirzebruch surfaces Fℓ and the projective plane
CP2 will be studied later in Sections 4.7.2 and 4.7.3 respectively. As for the rest, by CP2 we
denote the standard CP2 but with reverse orientation, and # denotes the connected sum.

Therefore we have seen a few examples that show a variety of intersection forms. A
natural question to ask is which intersection forms are possible? Does any intersection form
we can cook up belong to some four-manifold? Furthermore, not much was known about
whether it was possible for two manifolds to have the same intersection form (of course they
would have the same b2, and in particular, the same homology and cohomology).

In the 1980s two breakthroughs suddenly added remarkable clarity to the status of the
world of simply connected four-manifolds, and they happened at roughly the same time. On
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Four-manifold B b2 b+2 b−2
S4 0 0 0 0
F0 H 2 1 1
CP2 ⟨1⟩ 1 1 0
CP2 ⟨−1⟩ 1 0 1
K3 3H ⊕2E8 22 19 3
(CP2)#m #(CP2

)#n m⟨1⟩⊕n⟨−1⟩ m+n m n
K3#m #F#n

0 (3m+n)H ⊕2mE8 22m+2n 19m+n 3m+n

Table 4.2 Topological information for various four-manifolds.

the one hand Michael Freedman published work that was completely of topological nature
and on the other hand Simon Donaldson published differential geometric work that used
gauge theory, in particular instantons. These two breakthroughs were complementary in the
sense that they addressed two disjoint sides of the questions we posed previously. The work
of Freedman classified topological manifolds1 (where the coordinate charts need not patch
together smoothly while for smooth manifolds the coordinate charts patch together smoothly,
in other words C∞-differentiably) up to homeomorphism as opposed to Donaldson’s work
which gave insight to the classification of four-manifolds up to diffeomorphism. In other
words, Donaldson’s work looked at the problem of the smooth structures of four-manifolds.
As it turned out the topological and smooth classification are very different.

The work of Freedman, published in 1982, showed that for simply connected compact
four-manifolds without boundary, all intersection forms depicted in Table 4.3 are possible,
and with an additional Z2-valued invariant, the Kirby–Siebenmann invariant2, these data
completely determine the four-manifold up to homeomorphism. Therefore, the question
of classifying simply connected compact and without boundary topological four-manifolds
up to homeomorphism was finally solved3. The idea behind Freedman’s work is to show
that a more sophisticated version of the way classification for dimensions five and higher is
achieved actually works for dimension four as well but since this work did not involve any
physics, we will not discuss Friedman’s idea here but rather refer to the book [35].

On the other hand, Donaldson’s revolutionary work, that started with his seminal paper
[16], dealt with smooth four-manifolds using differential-geometric techniques (and soon

1For two topological manifolds to be homeomorphic, all that is necessary is the existence of a continuous
map from one to the other with a continuous inverse

2The Kirby-Siebenmann invariant is an element of H4(M,Z2) that conveys information about the piecewise
linear structure of the four-manifold M.

3Unfortunately this does not include the fact that intersection forms are not classified.
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after algebro-geometric techniques). This work did not result in as complete an answer, to
the smooth classification, as in the topological case, but what Donaldson discovered resulted
in a simplification along a completely different direction. Donaldson was able to show that
the intersection form must be either indefinite (in which case we know how to classify such
intersection forms) or plus or minus the identity. We realize therefore that the situation where
we did not know how to classify intersection forms, the case where it was definite, is the
situation where this classification is unnecessary, since smooth manifolds cannot have them
as intersection forms anyway4.

Parity Definite Indefinite
Odd m⟨1⟩⊕n⟨−1⟩ ±1
Even mH ⊕nE8 none

Table 4.3 Classification of intersection forms for simply connected closed four-manifolds.

Furthermore, using pure SU(2) Yang-Mills theory, Donaldson managed to find a sys-
tematic, albeit computationally difficult, way to classify smooth structures of compact and
without boundary smooth four-manifolds. An introduction to the mathematical aspects of this
theory can be found in [17]. In 1988 Witten [88] found a topological quantum field theory,
the Donaldson-Witten theory of course, and gave a physical formulation of Donaldson’s
smooth four-manifold invariants. Later, Moore and Witten studied the low energy dynam-
ics of the Donaldson-Witten theory, that we already analytically described in the previous
chapter. In Section 4.5 we will explain how this thesis further contributes not only to the low
energy dynamics of the Donaldson-Witten theory but also to the computational complexity
of Donaldson invariants. Below we will review Donaldson’s construction of his polynomial
invariants and see explicitly how gauge theory plays such an important role. Before that we
will briefly review the necessary background in Subsections 4.2, 4.3 and 4.4.

4.2 Bundles and connections over four-manifolds

Let us consider a principal G-bundle P → M over a smooth four-manifold M for a Lie group
G. To any such bundle we can associate a vector bundle E → X with structure group G. We
equip this bundle with a connection 5 A which is defined by the covariant derivative. Let

4With the exception of the identity and minus the identity.
5It is customary in the physics literature to define a connection through its local connection one-form A, that

is the gauge field. In the mathematical literature the connection is defined as the covariant derivative. Here we
will use these two related notions interchangeably unless a confusion arises.
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Ωp(M) =
∧p T X denote the space of p-forms over M. Locally A ∈ Ω1(X ,End(E)). The

corresponding curvature of the connection is FA ∈ Ω2(X ,End(E)). Under a local trivilization
of E, with coordinates {xi} on X , the connection can be written as

A = Amdxm. (4.1)

The curvature of the connection, defined as FA = dAA = dA+[A,A], can be written in the
same local patch as

FA = Fmndxm ∧dxn, (4.2)

where in both previous equations Einstein summation convention is implied. The matrix Fmn

reads
Fmn =

∂An

∂xn − ∂An

∂xm +[Am,An], (4.3)

with the commutator taken over the Lie algebra g.
Let us give a couple of remarks about the curvature of the connection. First of all, the

curvature FA satisfies the Bianchi identity

dAFA = 0, (4.4)

and this can be easily shown by the definition of the curvature. Furthermore, under a bundle
automorphism that maps A → u(A) the curvature transforms as

Fu(A) = uFAu−1. (4.5)

4.3 Geometry of Yang-Mills Theories

Let us denote by (•,•) the natural metric on Ωp(M). Then, for a,b ∈ Ωp(M), we have for
the wedge product,

a∧∗b = (a,b)dµ, (4.6)

where by dµ we denote the Riemannian volume element and by ∗ the Hodge star operator.
The space of two-forms Ω2(M) can be split as

Ω
2(M) = Ω

+(M)⊕Ω
−(M), (4.7)

where Ω+(M)⊂ Ω2(M) is the subspace of self-dual two-forms and Ω−(M)⊂ Ω2(M) is the
subspace of anti-self-dual two-forms, in other words, they are the ±1 eigenspaces of the



72 Donaldson-Witten theory and indefinite theta functions

Hodge star operator. Therefore, for a a ∈ Ω±(M) we have

a∧a =±|a|2dµ. (4.8)

To the exterior derivative d : Ωp → Ωp+1 we associate its adjoint operator d∗ : Ωp → Ωp−1.
Then, for a ∈ Ωp−1(M) and b ∈ Ωp(M) we have that

da∧b = a∧d∗b. (4.9)

For M as above, we can express the adjoint operator as d∗ =±∗d∗.
Let us assume that M is an oriented smooth and compact four-manifold. Then, the

Hodge theorem tells us that the de Rham cohomology of M can be represented by the space
of harmonic forms H (M). For each class a ∈ H2(M,R) there exists a unique harmonic
representative (that by abuse of notation we denote with the same letter) a ∈ H (M),

da = d∗a = 0. (4.10)

We see, therefore, that the Hodge star operator preserves the harmonic forms and as a result
the second cohomology group H2(M,R) can be decomposed as

H2(M,R) = H +(M)⊕H −(M). (4.11)

Here, we denote by H ±(M) the space of the self-dual and anti-self-dual harmonic two-forms.
To get a better understanding, recall that to every four-manifold we associate a bilinear form

B : H2(M,R)×H2(M,R)→ R (4.12)

that pairs two-cycles with two-cocycles on the de Rham cohomology. For two classes
aaa,bbb ∈ H2(M,R), we have

B(aaa,bbb) =
∫

M
aaa∧bbb, (4.13)

and B has signature (b+2 ,b
−
2 ). The quadratic form associated to M is a map

Q : H2(M,R)→ R, (4.14)
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and is defined through the bilinear form B (these objects were also defined in (2.77) and
(4.12) but we recall them here for convenience). For a class a ∈ H2(M,R) we have

Q(aaa) = B(aaa,aaa) =
∫

X
a∧a. (4.15)

We see therefore that H ± can be thought of as the maximal positive and negative definite
subspaces of the bilinear form B. Their dimensions are denoted as

b±2 (M) = dim(H ±(M)), (4.16)

with the second Betti number of M being b2(M) = b+2 (X)+b−2 (X). In this thesis we will
focus on smooth compact four-manifolds with b+2 = 1 for reasons that we explained in detail
in Subsection 2.4.1. It is important to note that the spaces H ± are orthogonal to each other
with respect to the bilinear form B. This means that for a ∈ H +(X) and b ∈ H −(X) we
have

a∧b = a∧∗b = 0. (4.17)

This decomposition of H ±(M) can be extended to the space of two-forms with values in
End(E) as

Ω
2(M,End(E)) = Ω

+(M,End(E))⊕Ω
−(M,End(E)). (4.18)

This will play a central role in this thesis since we will extensively use this decomposition in
order to write the class of the curvature FA as [FA]/4π = kkk with

kkk = kkk++ kkk−. (4.19)

Let us remark that if the spaces Ω±(M,End(E)) are of dimension greater than one we will
be using bold faced symbols.

Having set all this notation we are ready to define the notion of an ant-self dual connection
which physicists call instantons. Because of (4.18) the curvature of a connection A splits as

FA = F+
A +F−

A . (4.20)

Definition 4.3.1 A connection A whose curvature satisfies F+
A = 0 corresponds to an instan-

ton and is called anti-self-dual (ASD) connection. If the curvature satisfies F−
A = 0 it is

called anti-instanton or self-dual (SD) connection. Finally, if FA = 0 the connection is called
flat.
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In this section, we will study the equation F+
A = 0. For example, if M = R4 with local

coordinates {x1,x2,x3,x4}, an ASD connection satisfies

F12 +F34 = 0,

F14 +F23 = 0,

F13 +F42 = 0.

(4.21)

Locally these equations are valid on any smooth four-manifold.
We can now study instantons, in a more physical context by considering a classical

Yang-Mills theory. Let M be a compact smooth four-manifold. The geometric setting of
Yang-Mills theory contains a principal G-bundle P → M with associated vector bundle
E → X , as before. For simplicity let us restrict the structure group to G = SU(n). The Lie
algebra Lie(G) = su(n) consists of traceless skew-hermitian matrices

X† =−X , (4.22)

such that Tr(M2) = −|M|2. Then, for the curvature6 F of a connection A on E, using
Equation (4.20) we have

Tr(F ∧F) =−(|F+|2 −|F−|2)dµ, (4.23)

and

Tr(F ∧∗F) =−|F |2dµ. (4.24)

At this point let us recall that the second Chern class of such bundle E is defined as

c2(E) =− 1
8π2

∫
M

Tr(F ∧F), (4.25)

and it is a topological invariant of E and independent of the choice of connection A. Some-
times we write c2(E) = k and call it instanton number or instanton charge and it is a positive

6We will skip the subscript A for the curvature FA when it is clear to which connection it corresponds.
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integer7. The Yang-Mills functional is defined as

S[A] = ||F ||2

=
∫

M
|F |2dµ

=−
∫

M
Tr(F ∧∗F).

(4.26)

It is easy to see that if the connection A is ASD, then it corresponds to a true minimum of
S[A]. We say that instantons minimize the action. The Euler-Lagrange equation for S[A] is
given by

d∗
AF = 0, (4.27)

and together with the Bianchi identity (4.4) they give Maxwell’s equations. Instantons and
anti-instantons are trivially solutions of the Euler-Lagrange equation.

4.4 Moduli space of instantons

We can understand the functional S[A] as a function on the affine infinite dimensional space
of all connections that we denote by A . Due to the automorphisms Aut(E) of the bundle E
the action functional is invariant under gauge transformations, that is vertical automorphisms
u : E → E that are sections of Aut(E). Gauge transformations form an infinite-dimensional
Lie group G = Γ(Aut(E)) where the group structure is given by pointwise multiplication.
This group is called the group of gauge transformations. Two connections that differ by a
gauge transformation are called gauge equivalent. Therefore we see that there is a gauge
redudancy in the space of all connections A . We can consider the orbit space B (not to be
confused with the Coulomb branch from Chapter 3) which is defined as the quotient space

B = A
/

G , (4.28)

and a point [A] represents the set of gauge equivalent classes of a connection A ∈ A . The
orbit space B generically has nontrivial topology and just as A it also is infinite dimensional.
One can study it geometrically by equipping it with a structure of a Banach manifold though.
Since we are interested in ASD connections that live in A , or to be more precise in B, and
not just arbitrary connections we can consider the space

M (M,g) = {A ∈ B|F+ = 0}. (4.29)

7Equivalently, for anti-instantons or SD connections k is a negative integer.
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This is called the moduli space of instantons and for a generic Riemannian metric g on M it
can be given the structure of a smooth, finite dimensional manifold. When it is clear we will
denote M (M,g) simply as M . Let us remark the the smoothness condition on M is valid
as long as we consider irreducible connections on E. Although reducible connections have
to be disregarded because they produce singularities in the moduli space we will soon see
that this actually can be used to our advantage. For a good metric on M the dimension of M

is given by
dim(M ) = 4c2(E)−dim(G)(1−b1(M)+b−2 (M)). (4.30)

From now on we will assume that G = SU(2) or G = SO(3) since for higher rank structure
groups some of the following statements are not quite accurate. Let us give a few properties
of M that will be useful for later considerations.

• M is orientable. This can be seen by calculating its determinant line bundle
∧n T M,

where n is the top exterior power, as the determinant of the Atiyah-Singer index bundle
on M (see [63]) and making sure that it is a trivial bundle.

• M carries a universal instanton bundle E with a universal connection A. This is a
principal G-bundle on M×M :=M with the following properties: for every [A] ∈M ,
the restriction E|M×{[A]} is isomorphic to E and similarly the restriction of the universal
connection A|M×{[A]} lies in the equivalence class [A] ∈ M as a connection on E. The
universal instanton bundle will be used for the definition of Donaldson invariants.

• M is non-compact. In order to define integration over M we need to compactify it.
This is also quite important for the definition of Donaldson invariants.

The natural compactification of M is the Uhlenbeck compactification M . Intuitively, M is
compactified by including to it the ideal instantons that correspond to reducible connections.
Physically, ideal instantons are field configurations such that the square norm of the curvature
|F |2 is a Dirac delta function. This means that these configurations have spike-like energy
density at a specific point over M being flat anywhere else. The compactified moduli space
M has a natural stratification to topological sub-sectors and is defined as

M =
⋃

0≤m≤k

Mk−m ×Symm(M), (4.31)

where k = c2(E) and Symm(M) = M/Sm with Sm the permutation group of m points. This
space is highly singular but compact. As a matter of fact its boundary contains a component
isomorphic to M as can be easily seen from the definition.
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Moduli space of stable vector bundles

Although the theory of Donaldson invariants that will be explained later is defined through
the universal instanton bundle E and involves integrals over M , something special happens
if the underlying four-manifold is a projective surface over C.

Let S be such a surface with a very ample line bundle L over it and let g be the Hodge
metric on S which comes from the projective embedding defined by the sections of L . We
will discuss below that exists an identification between the space M (S,L ) of isomorphism
classes of L -slope stable rank-two holomorphic vector bundles E on X with c1(E ) = 0 and
the moduli space M (S,g) of ASD connections on a principal SU(2)-bundle P over S.

Recall that there exists a very deep connection between objects in differential geometry
and complex geometry, the Hitchin-Kobayahsi correspondence. To state the correspondence
we need the notion of µ-stability. A holomorphic vector bundle is called µ-stable if and only
if for every subbundle F ⊂ E we have

deg(F )

rnk(F )
<

deg(E )

rnk(E )
, (4.32)

where the degree of a bundle is defined as deg(E ) =
∫

S B(c1(E ),J) and rnk(E ) is the rank of
E . If we replace < with ≤ we have semi-stability instead of stability. For fixed c1(E), J is
sometimes called stability condition and represents c1(L ) .

The statement of the Hitching-Kobayashi correspondence is for a principal SU(2)-bundle
P over X the induced connection on the associated bunle E is ASD if and only if it the metric
on E is Hermitian-Einstein. On the other hand such a vector bundle is µ-stable if and only if
it is indecomposable and has a Hermitian-Einstein metric. Therefore the Hitchin-Kobayashi
correspondence implies that there exists a bijection between M (X ,g) and M (S,L ). The
Hitchin-Kobayashi correspondence applies for various types of complex manifolds. For
Kähler surfaces it is also reffered to as Donaldson-Uhlenbeck-Yau theorem.

Furthermore just as M (S,g) has a natural compactification M (S,g), so does M (S,L )

whose natural compactification is the Gieseker-Mayurama compactification M (S,L ) that
we will not explicitly describe but rather mention that there exists a one-to-one map between
M (S,L ) and the Uhlenbeck compactification [17]. Intuitively the Gieseker-Mayurama
compactification includes in the moduli space the so-called point-like instantons or non-
commutative instantons. These correspond to sheaves over S, so the compactification yields a
moduli space of sheaves which has better properties than the moduli space of vector bundles.
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4.5 Donaldson invariants

Donaldson invariants [15, 17] were defined by Donaldson as smooth structure invariants
of the underlying differentiable four-manifold. Let us restrict to gauge groups SU(2) and
SO(3) for simplicity (as they were originally defined) and the reader interested in higher
rank groups is advised to consult [58]. To define Donaldson invariants we need the notion
of Donaldson’s µ map which is defined through the universal instanton bundle E→M as
follows

µ : Hi(M)→ H4−i(M ), (4.33)

such that
µ(xxx) = c2(E)/xxx. (4.34)

Here, by / we denote the slant product which is defined as

/ : H p(M,Q)×Hq(M,Q)→ H p−q(M ,Q). (4.35)

Another way to understand the µ map is as follows. If we denote the projection of M to M
by p1 and to M by p2 respectively, we can write

µ(yyy) = p2∗[p∗1(yyy)∪ c2(E)], (4.36)

where p2∗ is the push forward in cohomology (integration along the fibers of p2), and the
argument of p∗1 is the Poincaré dual of yyy ∈ Hi(M,Q) that we denote by the same symbol.
We may now proceed to the definition Donaldson invariants as polynomials on H0(M,Q)⊕
H2(M,Q). For classes p ∈ H0(M,Q) and xxx ∈ H2(M,Q) the degree d Donaldson invariant
for a fixed c1(E) is defined as

D γ,J
t,m(p,xxx) :=

∫
Mγ

µ(xxx)m ∪µ(p)t , (4.37)

where the integration is non-vanishing only for d = 2m+ 4t, µ(p) ∈ H4(M ,Q), µ(xxx) ∈
H2(M ,Q) and Mk is the k-instanton moduli space. The information of Donaldson invariants
can be repackaged conveniently in a generating function,

Φ
J
µµµ(p,xxx) = ∑

k≥0
∑

m,t>0
2m+4t=d

D γ,J
t,m(p,xxx)
t!m!

α
t
β

m, (4.38)
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where α and β are formal variables. Although in principle Donaldson invariants do not
depend on the Riemannian metric g we equip the four-manifold M with, when b+2 = 1 a
piece-wise dependence on g is developed for the following reason. For b+2 > 1 two generic
metrics in the space of Riemannian metrics are path connected. On the other hand, for b+2 = 1
non-generic metrics form a codimension one subset in the space of Riemannian metrics, a
collection of walls, and two generic metrics might not be necessarily path connected. As a
consequence, Donaldson invariants for this case are only piece-wise constant with respect
to a given g. To be more precise, we have a chamber structure on the period domain, that
is the connected component C of the positive cone in the middle cohomology H2(M,R)
and Donaldson invariants will remain constant only when the period point J(g) (this is the
cohomology class of of the self-dual harmonic two-forms modulo scalar components and
very often denoted as ω(g)) stays within a chamber. But, one might ask what happens as
we “cross the wall". Then the differences of Donaldson invariants between the two sides
of the wall are given by the wall-crossing formula that we will also derive, from a physical
picture, shortly. Such a physical derivation of the wall-crossing formula was first presented in
[67], together with the correspondence between Donaldson invariants and Donaldson-Witten
theory from an IR point of view) and in this chapter we will present how some of these
computations are simplified, and in some sense generalized slightly, by considering the
Q-exact operator Ĩ+.

The rest of this chapter

Before we continue with the analysis of Ĩ+ in the low energy effective Donaldson-Witten
theory, we would like to make some further comments. The work of Göttsche [26] and
Göttsche and Zagier [27] connected Donaldson invariants to the subject of modular forms,
which is at first sight rather distant from the above. Göttsche and Zagier realized that
Donaldson invariants of rational surfaces, as determined earlier for example in [22, 46, 51],
could be written as a residue of a combination of modular forms and so-called indefinite
theta functions. The latter enjoy much scientific interest in recent years, in part due to
their connection to Ramanujan’s mock theta functions [93, 94]. An indefinite theta function
Θ : H → C is a holomorphic q-series defined as a sum over an indefinite lattice Λ with
signature (1,n− 1). The sum is convergent, since the sum is restricted to lattice points
with negative definite norm (for the convention taken in this paper). However, Θ does not
transform as a modular form under SL2(Z) transformations. The latter can however be cured
thanks to the seminal work of Zwegers’. In specific one may add a specific non-holomorphic
function R to Θ such that the sum Θ̂ = Θ+R transforms as a modular form. Interestingly, the
τ̄-derivative Ψ = ∂τ̄Θ̂, turns out to be a Siegel-Narain theta function associated to Λ, whose
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modular properties are more easily determined using the standard Poisson resummation
technique.

Let us now return to the physical u-plane integral to explain the main result of this
chapter. As we already saw in Chapter 3 the integral can be expressed as an integral over the
fundamental domain H/Γ0(4), where Γ0(4) ∈ SL2(Z) is the electric-magnetic duality group,
after a change of variables from u ∈B to the effective coupling constant τ ∈H. Subsequently
the technique of “lattice reduction” can be applied to evaluate the integral when b2(M)> 1
[52, 67]. This technique was originally developed in the context of one loop amplitudes in
string theory [14, 36] and also has major mathematical applications [5]. For the manifold
CP2, with b2(CP2) = 1, the integrand was realized as a total derivative to τ̄ using Zagier’s
modular completion of the class number generating function [91].

While the u-plane integral does explain the occurrence of modular forms via Seiberg-
Witten theory in the context of Donaldson invariants, and is verified for low instanton number
with the mathematical results of [26, 27], the final result of [67] has quite a different form
from [26, 27]. Later work by Griffin, Malmendier and Ono proved agreement for all instanton
numbers in [28, 53, 54] in specific cases of rational surfaces.

The present chapter, based on [44], demonstrates that the indefinite theta functions
of Göttsche can be derived more directly from the u-plane integral. To this end, we add
the Q-exact term Ĩ+ that we introduced in Equation (2.71) to the effective action of the
Donaldson-Witten theory used in [67], which does not modify the value of the integral
by the usual rules of topological field theory as proven in Chapter 3. Using techniques of
indefinite theta functions developed by Zwegers [94], we show that the modified integrand is
a total τ̄-derivative for an arbitrary four-manifold with b+2 = 1. The integrand of the u-plane
integral equals what is known as the “shadow” of the indefinite theta series (up to an overall
multiplicative function). As a result, the u-plane integral can be immediately evaluated for a
generic choice of metric, and reproduces precisely Göttsche’s results for complex algebraic
surfaces. The same technique can be applied when matter is included, and we hope similar
techniques can be developed for gauge groups with rank larger than one, theories of class
S [23, 25] or more general non-Lagrangian theories. We moreover expect that it may be
applied more widely as an alternative for “lattice reduction” to evaluate modular integrals.

More generically, it is quite interesting to note that the Coulomb branch integral provides
both the holomorphic and non-holomorphic terms of the indefinite theta function and this
is far from unique in Donaldson-Witten theory. In other cases where such mock modular
forms appear in physics, such as in Vafa-Witten theory [84], AdS3 gravity [57], black holes
[2, 13, 55], or the moonshine phenomenon [10], the holomorphic part has usually the clearest
physical interpretation, whereas the non-holomorphic term is typically less well understood.
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We are now ready to proceed to the next section which discusses the Q-exact surface
operator, and how it modifies the integrand of the u-plane integral (in analogy to our consid-
erations in Chapters 2 and 3).

4.6 The u-plane integral and the Q-exact operator

As we have already discussed in great detail, the u-plane integral is the path integral over
the Coulomb branch of topologically twisted N = 2 supersymmetric gauge theory with
gauge group SU(2) or SO(3). As we have further explained we restrict in the following
to four-manifolds with b+2 = 1. The corresponding lattices Λ for such four-manifolds are
completely classified as we just described, see Table 4.3.

4.6.1 The topologically twisted path integral

The path integral of the effective theory on the Coulomb branch is given by

Φ
J
µµµ(p,xxx) =

∫
[DX ]ν(τ)e−

∫
M L+2pu+Ĩ−(xxx)+Ĩ+(xxx)+xxx2G(u), (4.39)

where [DX ] stands for the path integral measure of the fields [DADaD āDηDψDχDD)]

and G(u) is the contact term from equation (2.72). As discussed in the previous section ΦJ
µµµ

depends discontinuously on the metric g, and may jump across walls of marginal stability.
The metric dependence of ΦJ

µµµ is only through the period point J = J(g) [46].
Our goal is evaluate the path integral (4.39). In [44] we did so by substituting for D the

solution to its equation of motion. This yields a missing numerical factor that we have to
take into account. The correct result has already been presented in Section 3.1.1. In order to
obtain this result we had to perform an integration over the fermionic zero modes. We woud
like to elaborate slightly on the point of how the fermion zero modes contribute here. To
understand the contribution to the u-plane integral from these fields it is useful to discuss their
scaling behavior under a Weyl transformation (overall rescaling) of the metric limt→∞ = t2g0

for a fixed metric g0.8 The scaling dimensions of the zero modes naturally equals their form
degree. These equal the scaling dimensions of the quantum fluctuations of the fields, except
for η , whose quantum fluctuation has dimension two instead of zero [67, Section 2.3]. Thus
we see that the terms of the Lagrangian involving η and χ have scaling dimension larger
than four, except when we replace η by its zero mode η0. Similarly, the term involving η in
the surface operator (2.71) has dimension two if we replace η by its zero mode. One can

8This is a one-parameter family of metrics and belongs to a single chamber in the positive cone.



82 Donaldson-Witten theory and indefinite theta functions

show that the corrections due to the quantum fluctuations of χ do not survive in the limit
t → ∞, assuming that b1(M) = 0 [67].

Next we can combine the result of Section 3.1.1 with the the insertion to the path integral
of the operator that will generate for us the Donaldson invariants. That is we want to compute
the vacuum expectation value 〈

e2pu+xxx2G(u)
〉

:= Φ
J
µµµ(p,xxx). (4.40)

We find therefore,

Φ
J
µµµ(p,xxx) =

∫
H/Γ0(4)

dτ ∧dτ̄ ν̃(τ)ΨJ
µµµ(τ,ρρρ)[K+]e2pu+xxx2G(u). (4.41)

Here K+ is the kernel (3.8), ν̃(τ) is the measure factor (2.97) and ΨJ
µµµ [K+] is given by

equation (3.9). Note that although we only denote its holomorphic arguments but it is a
non-holomorphic function that is defined as

Ψ
J
µµµ(τ, τ̄,ρρρ, ρ̄ρρ) = exp

(
−2πybbb2

+

)
∑

kkk∈Λ+µµµ

∂τ̄

(√
2yB(kkk+bbb,J)

)
(−1)B(kkk,KM) exp

(
−π ı̊ τ̄kkk2

+−π ı̊τkkk2
−−2π ı̊B(kkk+, ρ̄ρρ)−2π ı̊B(kkk−,ρρρ)

)
,

(4.42)

where we have defined
ρρρ =

xxx
2π

du
da

, (4.43)

and
bbb =

Im(ρρρ)

y
(4.44)

Note that in the equation above and for the rest of this chapter we will not explicitly show
the dependence of ΨJ

µµµ on its kernel K+. Also, we identify the lattice Λ with H2(M,Z) as
below equation (2.89).

4.6.2 Modular invariance of the integrand

For completeness, we discuss in this subsection invariance of the integrand under the Γ0(4)
duality group of Seiberg-Witten theory, which is an important consistency requirement for the
integrand. Since the integration dτ ∧dτ̄ transforms with weight (−2,−2), the integrand in
(4.41) must have modular weight (2,2). Let us start with the Siegel-Narain theta function ΨJ

µµµ

(4.42). A general form of such theta functions which suits our purposes is given in Appendix
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A, equation (A.13). To compare (4.41) with that equation, we set zzz = ρρρ and bbb = Im(ρρρ)/y,
with ρρρ as defined in (4.43).

We see that ρρρ appears in ΨJ
µµµ as an elliptic variable. Indeed, since da

du is a modular form of
weight one under Γ0(4), ρρρ transforms as an elliptic variable (can be thought of as a fugacity
factor). More precisely, one verifies using the properties of the Jacobi theta functions (A.11),
that ρρρ transforms under the two generators of Γ0(4) as

ρρρ(τ +4) =−ρρρ(τ),

ρρρ

(
τ

τ +1

)
=

ρρρ(τ)

τ +1
.

(4.45)

Note that this differs by a minus sign from the usual transformation of an elliptic variable
under τ → τ +4. Using these transformations, identifying K in (A.13) with the canonical
class KM and also the fact that kkk = lll +µµµ + KM

2 (we can perform the shift by KX
2 since KX is a

characteristic vector of the lattice Λ as follows from the Hirzebruch-Riemann-Roch theorem9)
we can find the modular transformations of ΨJ

µµµ(τ,ρρρ). The transformation properties of ΨJ
µµµ

under SL2(Z) and Γ0(4) are given in Appendix A.1.5.
With these transformations at hand, we can determine the action of Γ0(4) generators on

ΨJ
µµµ(τ,ρρρ). Recall that µµµ ∈ H2(M,Z/2) in the path integral. We then find for the generator

τ → τ +4 of Γ0(4)
Ψ

J
µµµ(τ,ρρρ)

∣∣
τ 7→τ+4

=−Ψ
J
µµµ(τ,ρρρ). (4.46)

The action of the second generator gives

Ψ
J
µµµ(τ,ρρρ)

∣∣
τ 7→ τ

τ+1
= (τ̄ +1)2(τ +1)

b2
2 exp

(
−π ı̊ρρρ2

τ +1
+

π ı̊
4

σ(M)

)
Ψ

J
µµµ(τ,ρρρ), (4.47)

where we used K2
M = 8+σ(M) for simply connected four-manifolds with b+2 = 1.

9A characteristic vector K ∈ Λ is defined as follows: for vvv ∈ Λ we have vvv2 = B(vvv,K) mod 2. It is a fact
that a characteristic vector always exists. The Hirzebruch-Riemann-Roch theorem, or Riemann-Roch theorem
for surfaces, states that for a complex surface X and for a line bundle L = O(D), where D is an effective divisor,
we have

χ(OX (D)) =
1
2

B(D,D−KX )+χ(OX ).

Since the Euler character of any line bundle is an integer, by taking their difference and multiplying by two we
get that B(D,D−KX ) ∈ 2Z.



84 Donaldson-Witten theory and indefinite theta functions

More generically the modular properties of ΨJ
µµµ [K ] depend on K . The modular trans-

formations under the SL2(Z) generators for ΨJ
µµµ [1] are

Ψ
J
µµµ+K/2[1](τ +1, τ̄ +1,zzz, z̄zz) = eπ ı̊(µµµ2−K2/4)

Ψµµµ+K/2[1](τ, τ̄,zzz+µµµ, z̄zz+µµµ),

Ψ
J
µµµ+K/2[1]

(
−1

τ
,−1

τ̄
,

zzz
τ
,

z̄zz
τ̄

)
= (− ı̊τ)

n−1
2 (ı̊ τ̄)

1
2 exp(−π ı̊ zzz2/τ +π ı̊K2/2)

× (−1)B(µµµ,K)
Ψ

J
K/2[1](τ, τ̄,zzz−µµµ, z̄zz−µµµ)

(4.48)

and the ones for arbitrary kernel K can easily be derived from those.
Next we discuss the contact term exxx2G(τ) with G(u) given in (2.72). Due to the special

transformations of the weight two Eisenstein series E2 given in (A.7), the contact term
transforms as follows

exxx2G(τ+4) = exxx2G(τ),

exxx2G( τ

τ+1) = exxx2G(τ)+ π ı̊
τ+1 ρρρ2

.
(4.49)

The remaining term in the integrand is the measure factor ν̃(τ). Using the identity


(

2 ı̊
π

du
dτ

)2

u2 −1


1
8

= ϑ4(τ), (4.50)

we can write ν̃(τ) as in (2.95) that we recall here for convenience

ν̃(τ) =−8 ı̊(u2 −1)
da
du

ϑ4(τ)
σ(M). (4.51)

If we express further u and da/du in terms of Jacobi theta functions and use the transforma-
tion properties (A.11) under Γ0(4), one finds Equations (2.96) that we also recall here for
convenience

ν̃(τ +4) =−ν̃(τ),

ν̃

(
τ

τ +1

)
= (τ +1)2− b2(M)

2 e−
π ı̊σ(M)

4 ν̃(τ).
(4.52)

Combining now (4.46), (4.47), (4.49) and (4.52), we conclude that the integrand of (4.41)
has indeed weight (2,2) under Γ0(4) as required.

In the next section we proceed with the evaluation of the integral and soon after we
provide explicit results for a few complex rational surfaces.



4.7 Evaluation of u-plane integrals 85

4.7 Evaluation of u-plane integrals

In this section we will discuss how to explicitly evaluate the u-plane integral of Equation
(4.41) that is the physical recast of the generating function of Donaldson invariants. We
show how modern techniques from analytic number theory aid towards the computation of
Donaldson invariants while physically they appear in the u-plane integral.

4.7.1 General strategy

Recall that in Section 3.1 we analyzed the vacuum expectation values of four operators in
Donaldson-Witten theory, which all lead to integrants of the form ν̃(τ)ΨJ

µµµ [K ](τ, τ̄), with
different kernels K (depending on the insertion at hand). Therefore the u-plane integral can
be written as (omitting for now the τ and ρρρ dependence)

Φ
J
µµµ [K ] =

∫
H/Γ0(4)

dτ ∧dτ̄ ν̃(τ)Ψ
J
µµµ [K ]. (4.53)

Note that here we have chosen to exclude the generators of Donaldon invariants, e2pu+xxx2G(u)

for the moment since they are necessarily holomorphic and will not affect what follows.
An efficient technique to evaluate these integrals is to express their integrand as a total

derivative with respect to τ̄ of a function Ĥ 10,

d
dτ̄

Ĥ J
µµµ [K ](τ, τ̄) = ν̃(τ)Ψ

J
µµµ [K ](τ, τ̄), (4.54)

and which by a simple change of variables is equivalent to an anti-holomorphic derivative
with respect to ū. In order to integrate over the u-plane, we remove three disks of radius
r ≪ 1 around each of the singularities {∞,−1,+1}, giving three boundaries that we denote
by ∂ jB for j = 1,2,3. See figure 4.1. Then, a simple application of Stokes’ theorem gives
then the following “localization formula"

Φ
J
µµµ [K ] = ∑

j

∮
∂ jB

du
(

dτ

du

)
Ĥ J

µµµ [K ]. (4.55)

The inverse map u−1 : B →H/Γ0(4), as discussed schematically around Equation (2.39),
maps each of the boundaries ∂ jB to arcs in H/Γ0(4) near the cusps {ı̊∞,0,2} as displayed
in figure 2.2. The equivalent picture in the Coulomb branch or the u-plane is displayed in
Figure 4.1 below.

10The reasons for this notation is that Ĥ is the non-holomorphic modular completion of some non-modular
but holomorphic indefinite theta function [94].
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• 1

�1 • • +1

u-plane

1

Figure 4.1 Boundaries of the u-plane after removing neighborhoods of the singularies
{∞,−1,+1}. The region enclosed by the dashed circle denotes the strong coupling region of
the u-plane.

In order modular invariance of the integrand to be ensured, the function Ĥ J
µµµ [K ] is

required to transform as modular form of weight (2,0) with trivial multiplier system, which
one may hope to determine explicitly using methods from analytic number theory, especially
the theory of mock modular forms as developed in [94] (see also [93] and [7, 13] for reviews).
Assuming the existence of such a suitable Ĥ J

µµµ [K ], it is quite straightforward to apply the
discussion of Section 3.2. To relate the integral over H/Γ0(4) to an integral over F∞, we
map the six different images of F∞ of H/Γ0(4) as displayed in Figure 2.2, back to F∞ using
SL2(Z)/Γ0(4) transformations of τ . After this inverse mapping procedure, we can use the
modular properties of the integrand in order to express each of the six integrands as a series
in q and q̄, after which the techniques of Section 3.2 can be applied. To this end, one can use
the relations (A.14) for ΨJ

µµµ , while the q-series for ν̃(τ) follow from the standard relations
for Jacobi theta function. Since the maps τ 7→ τ −n, n = 1,2,3 do not change the constant
part of the integrand, we find that ΦJ

µµµ [K ] evaluates to

Φ
J
µµµ [K ] = 4

[
Ĥ J

µµµ [K ](τ, τ̄)
]

q0
+
[
τ 7→ −1

τ

]
q0
+
[
τ 7→ 2τ−1

τ

]
q0
, (4.56)

where the subscript denotes that we only pick up the q0 coefficient of the q-series expansion
of Ĥ J

µµµ [K ] as a result of the residue integral (4.55). The factor of four that multiply the first
bracket is due to the fact that there are four copies of F∞ in H/Γ0(4). The last two brackets
are obtained using modular transformations of the integrand Ĥ [K ], under the S and a T 2S
transformation respectively.
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Let us make an important remark at this point. There exists the possibility to add to
Ĥ J

µµµ [K ] a holomorphic “integration constant” sK , which necessarily is a weight two modular
form for Γ0(4). This function will be mapped to a weight two modular form for SL2(Z)
by the inverse mapping. As discussed in Section 3.2.2, there are no holomorphic SL2(Z)
modular forms with weight two, and the weakly holomorphic ones have a vanishing constant
term (this can be seen by expanding E2). Therefore, we conclude that there is no ambiguity
due to the integration constant, just as with elementary integration.

On the other hand, the integration constant sK can modify the contribution from each
cusp, since a holomorphic modular form of weight two for Γ0(4) exists. It is explicitly given
by ϑ2(τ)

4 +ϑ3(τ)
4, and while it does indeed contribute with a factor of four at the cusp at

infinity, the contributions of the two cusps together add up to zero. We can make a natural
choice of the integration constant using the asymptotic behaviour of our theta functions; we
require that the exponential behavior of H J

µµµ for τ → ı̊∞ matches the behavior of ν̃ ΨJ
µµµ in

this limit. For example, a consequence of this is that the wall-crossing of the Seiberg-Witten
invariants is naturally cancelled by the wall-crossing at the strong-coupling cusps of the
u-plane integral.

In the remainder of this section, we determine such an Ĥ such that it allows us to
re-derive the Donaldson invariants for Hirzebruch surfaces Fℓ and the projective plane CP2,
as well as the wall-crossing formula for ΦJ

µµµ for an arbitrary simply connected four-manifold
M with b+2 = 1.

The main technique to express ΨJ
µµµ [K ](τ, τ̄) as a total anti-holomorphic derivative, is

therefore by making use of indefinite theta series Θ̂JJ′
µµµ [K̂ ] with kernel K̂ [94],

Θ̂
JJ′
µµµ [K̂ ] = ∑

kkk∈Λ+µµµ

K̂ (kkk)(−1)B(kkk,KM)q−kkk2/2w−B(kkk,ρρρ). (4.57)

where w = e2π ı̊. For the case of the BRST exact operator Ĩ+ that is of interest for this chapter,
the indefinite theta function can be explicitly written as

Θ̂
JJ′
µµµ (τ,ρρρ) = ∑

kkk∈Λ+µ

1
2

(
E(
√

2yB(kkk+bbb,J))− sgn(
√

2yB(kkk+ ,
¯
J′))
)

× (−1)B(kkk,KM)q−kkk2/2w−B(kkk,ρρρ),

(4.58)

with E(t) : R→ [−1,1] a reparametrization of the error function,

E(t) = 2
∫ t

0
e−πu2

du = Erf(
√

πt), (4.59)
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and J = J/
√

Q(J) is the normalization of J as before.
The kernel K̂ depends on J and J′ ∈ Λ and J′ is a null vector, this means that11 Q(J′) = 0.

Actually this is what allows us to derive a formula for the Donaldson invariants for any
suitable Riemannian metric g that we equip M with. Furthermore, the kernel satisfies

d
dτ̄

K̂ (kkk) = K (kkk)e−2πykkk2
+. (4.60)

See appendix A for more details on this function. The function Ĥµµµ [K ] in (4.54) and (4.55)
takes the form

Ĥ J
µµµ [K ] = ν̃(τ)Θ̂

JJ′
µµµ [K̂ ]. (4.61)

and it is straightforward to show that indeed Equation (4.54) is satisfied. If we include the
generators of the Donaldson invariants the function we seek reads

Ĥ J
µµµ [K ] = ν̃(τ)e2pu+xxx2G(τ)

Θ̂
JJ′
µµµ [K̂ ]. (4.62)

Finally, we close this subsection by briefly mentioning the wall-crossing formula which
was earlier derived from the u-plane integral in [67]. We include a more complete discussion
in Section 5.3.6 of Chapter 5. This formula gives the discontinuous change of ΦJ

µµµ under the
variation of a metric with period point J0 to one with period point J1 ∈ H2(M). It is clear
from the discussion above that the difference ∆Φ

J1J0
µµµ = Φ

J1
µµµ −Φ

J0
µµµ is given by

∆Φ
J1J0
µµµ (p,xxx) =

∫
H/Γ0(4)

dτ ∧dτ̄ ν̃(τ)
(

Ψ
J1
µµµ −Ψ

J0
µµµ

)
e2pu+xxx2G(τ). (4.63)

Therefore, the contribution from the cusp at ı̊∞ simply reads

∆Φ
J1J0
µµµ (p,xxx) = 4

[
ν̃(τ)Θ

J1J0
µµµ (τ,ρρρ)e2pu+xxx2G

]
q0
, (4.64)

while the contributions of other cusps are canceled by the wall-crossing of the Seiberg-Witten
invariants [67]. This nicely reproduces Göttsche’s wall-crossing formula [26, Theorem 3.3]
and the expression of Göttsche-Zagier in terms of an indefinite theta series a là Zwegers [27,
Corollary 4.3].

11Note that such a vector can always be found and since it does not have to represent a period point in the
positive cone the resulting expression only depends on the metric represented by J.
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4.7.2 Application to the Hirzebruch surfaces Fℓ

In this subsection, we specialize the four-manifold M to one of the Hirzebruch surfaces Fℓ. A
Hirzebruch surface is a fibration π : Fℓ →CCC with fiber fff ∼= CP1 over a base CCC ∼= CP1. The
base and the fiber form a basis for H2(Fℓ,Z), in terms of which the canonical class Kℓ is
expressed as Kℓ =−2CCC− (2+ ℓ) fff . The intersection matrix for (CCC, fff ) is

QFℓ =

(
−ℓ 1
1 0

)
. (4.65)

Note in particular that fff is an element of H2(Fℓ) with vanishing norm, fff 2 = 0. Two
Hirzebruch surfaces Fℓ1 and Fℓ2 are (real) diffeomorphic if ℓ1 = ℓ2 mod 2, while they are
complex diffeomorphic only for ℓ1 = ℓ2. For a complete description of Hirzebruch surfaces
we advise the reader to consult [86].

Our goal is to evaluate ΦJ
µµµ for Fℓ using (4.62). To do this we consider the indefinite theta

function (4.58) with the quadratic form (4.65) above. We set J′ = fff , which is fixed by the
fact that no stable bundles, in the sense of Equation 4.32, exist for metrics with this period
point. Indeed for J = fff , we get that Θ

J fff
µµµ vanishes. One may show that only the cusp at ∞

contributes to the integral for Fℓ, and we arrive thus for ΦJ
µµµ at the following expression

Φ
J
µµµ(p,xxx) = 32 ı̊

[
(u2 −1)

da
du

Θ
J fff
µµµ (τ,ρρρ)e2pu+xxx2G(τ)

]
q0
. (4.66)

We can simplify the expression for Θ
J fff
µµµ and express it as a (generalized) Appell sum. To

this end, we write kkk as kkk = mmm+n fff , with mmm such that

B(mmm+bbb,J)
B( fff ,J)

∈ [0,1). (4.67)

Then Θ
J fff
µµµ takes the form

Θ
J fff
µµµ = ∑

mmm∈Λ

B(mmm+bbb,J)/B( fff ,J)∈[0,1)

∑
n∈Z

(−1)B(mmm,Kℓ)q−
mmm2
2 e2π ı̊B(ρρρ,mmm)

× 1
2

(
sgn(B(mmm+bbb,J)+nB( fff ,J))− sgn(B(mmm+bbb, fff ))

)
× (−1)nB( fff ,Kℓ)q−nB( fff ,mmm)e−2π ı̊ nB(ρρρ, fff ).

(4.68)
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We can carry out the sum over n as a geometric series to find

Θ
J fff
µµµ (τ,ρρρ) = ∑

mmm∈Λ+µµµ

B(mmm+bbb,J)/B( fff ,J)∈[0,1)

(−1)B(mmm,Kℓ)q−mmm2/2e−2π ı̊B(ρρρ,mmm)

1−q−B( fff ,mmm)e−2π ı̊B(ρρρ, fff )
, (4.69)

where we used that B( fff ,Kℓ) =−2.
Of particular interest in the literature is the suitable polarization

Jε =
ε(CCC+ ℓ fff )+ fff√

ℓε2 + ε
, (4.70)

with ε sufficiently small such that no walls are crossed between fff and Jε for the rank two
vector bundles. If B(µµµ, fff ) ∈ Z+ 1

2 the condition on mmm has no solutions in agreement with
the fact there are no stable bundles for such metrics. If B(µµµ, fff ) ∈ Z we have the solutions
mmm = 0 and mmm = 1

2 f , due to strictly semi-stable bundles. We find therefore

Θ
Jε fff
0 (τ,ρρρ) =

1
1− e−2π ı̊B(ρρρ, fff )

,

Θ
Jε J′
fff (τ,ρρρ) =

−e−π ı̊B(ρρρ, fff )

1− e−2π ı̊B(ρρρ, fff )
=

i
2sin(πB(ρρρ, fff ))

.

(4.71)

Using the formula for the measure term (2.95) and letting xxx = xCCCC+ x f fff ∈ H2(Fℓ,R),
we arrive at the following non-vanishing generating function for Donaldson invariants for
this suitable polarization Jε ,

Φ
Jε

0 (p,xxx) =−16
[
(u2 −1)

da
du

e2pu+xxx2G(u) cot(1
2xC du/da)

]
q0
,

Φ
Jε

1
2 fff
(p,xxx) = 16

[
(u2 −1)

da
du

e2pu+xxx2G(u) 1
sin(1

2xC du/da)

]
q0

,

(4.72)

where we expressed Φ
Jε

0 in terms of cot(x) using the fact that only odd powers of x f contribute
to the expansion of the right hand side. This is in agreement with [27, Theorem 5.3] and [67,
Section 8.2].

4.7.3 Application to the projective plane CP2

As a second and final example for this chapter, we consider the complex projective plane
CP2 which will allow us to see another application of indefinite theta functions to the u-plane
integral. Since b2(CP2) = 1, in this case the period point of the metric is proportional to the
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hyperplane class H ∈ Pic(CP2). Since there is thus no chamber dependence, we omit it from
the notation. The sum over U(1) fluxes Ψµ is given by12

Ψµ(τ,ρ) =exp
(
−2πyb2)

∑
k∈Z+µ

∂τ̄

(√
2y(k+b)

)
× (−1)3k q̄

k2
2 e−2π ı̊ ρ̄k,

(4.73)

where we have used that the canonical class KP2 equals 3H.
Since the lattice H2(CP2,Z) is one-dimensional, we can not directly apply the indefinite

theta function to integrate over the Coulomb branch. However, we can extend the one-
dimensional lattice to a two-dimensional lattice by dividing and multiplying by the Jacobi
theta function ϑ4 defined in (A.10). We write therefore,

Ψµ =
ϑ4(τ)

ϑ4(τ)
Ψµ . (4.74)

Although this seems like a tautology, geometrically we can interpret these manipulations in
terms of the blow-up ĈP

2
of CP2. Note that the measure (4.51) differs by a factor ϑ

−1
4 for

CP2 and ĈP
2
. Including the summation over Z in θ4 in the lattice sum, Ψµ(τ,ρ) reads

Ψµ(τ,ρ) =
exp
(
−2πτ2b2)
θ4(τ)

× ∑
(k1,k2)∈Z2+(µ,0)

∂τ̄

(√
2τ2(k1 +b)

)
(−1)3k1+k2 q̄

k2
1
2 q

k2
2
2 e−2π ı̊ ρ̄k1.

(4.75)

Our earlier discussion shows that Ψµ(τ,ρ) can be expressed as an anti-holomorphic
derivative,

1
ϑ4(τ)

∂τ̄Θ̂
JJ′
µ (τ,ρ), (4.76)

where Θ̂JJ′
µµµ is the completion of the indefinite theta function ΘJJ′

µµµ whose associated lattice Λ is
the two-dimensional lattice with diagonal quadratic form diag(1,−1). The two-dimensional
parameters µµµ and ρρρ are given by (µ,0) and (ρ,0) respectively, whereas the two parameters
J,J′ ∈ Λ⊗R are given by J = (1,0) and J′ = (1,1) respectively.

The lattice sum in ΘJJ′
µµµ can be partially carried out using a geometric series, leading to

the expression

Θ
JJ′
µ (τ,ρ) = wµ(−1)2µ

∑
ℓ∈Z+µ

(−1)ℓq
1
2 ℓ

2+µℓ

1−wqℓ
, (4.77)

12We omit the boldface font here for k, b and ρ , since they are elements of one-dimensional spaces.



92 Donaldson-Witten theory and indefinite theta functions

with w = e2πiρ . This is, up to a prefactor, a specialization of the Appell sum [94]

A(u,v,τ) = eπ ı̊ u
∑
n∈Z

(−1)nqn(n+1)/2e2π ı̊ nv

1− e2π ı̊ uqn . (4.78)

Treating first the case µ = 1
2 , we arrive at the following expression for the generating function

Φ 1
2
(p,x)

Φ 1
2
(p,x) =−32 ı̊

[
(u2 −1)

da
du

e2pu+x2G(u)
Θ

JJ′

( 1
2 ,0)

(τ,ρ)

]
q0
, (4.79)

which gives for the first few terms

Φ 1
2
(0,x) = 1+

3
16

x4

4!
+

29
32

x8

8!
+

69525
4096

x12

12!
+O(x16). (4.80)

These terms are in agreement with [67] and [22, Theorem 4.4], while the full series matches
the expression of Göttsche [26, Theorem 3.5].

Next we consider the case µ = 0. The series Φ0(p,x) can be determined similarly using
multiplication and division by ϑ4. However, we notice from (4.77) that Θ̂0(τ,ρ) is then
divergent for small ρ , which is at odds with the Donaldson invariants being polynomials in
xxx. The resolution is that the holomorphic integration constant mentioned below (4.56) is
non-vanishing in this case. Using the blow-up formula, one finds that the constant equals

C(τ,ρ) =
ϑ4(τ,0)
ϑ4(τ,ρ)

∂ρ ln
(

ϑ1(τ,ρ)

ϑ4(τ,ρ)

)
, (4.81)

leading to the following expression for Φ0(p,x)

Φ0(p,x) =−32 ı̊
[
(u2 −1)

da
du

e2pu+x2G(u)
(

C(τ,ρ)+ e−π ı̊ρ A(ρ,−1
2τ,τ)

)]
q0
. (4.82)

We would like to relate this to the expression of [26, Theorem 3.5]. We recall the
periodicity property of the Appell function (4.78) from [94, Chapter 1],

A(u,v,τ)
ϑ1(v,τ)

− A(u+ z,v+ z,τ)
ϑ1(v+ z,τ)

=
η3 ϑ1(u+ v+ z,τ)ϑ1(z,τ)

ϑ1(u,τ)ϑ1(v,τ)ϑ1(u+ z,τ)ϑ1(v+ z,τ)
. (4.83)
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Letting v =−1
2τ and taking the limit z → 1

2τ , we find

C(τ,ρ)+ e−π ı̊ρ A(ρ,−1
2τ,τ) =

ϑ4(τ)

η(τ)3 ∑
k1∈Z

k2∈Z+ 1
2

(sgn(k1 +a)− sgn(k1 + k2 +a))

× k2 (−1)k1+k2e2π ı̊ρk1q−
k2
1
2 +

k2
2
2 .

(4.84)

Substitution of this expression in (4.82) reproduces the expression in [26, Theorem 3.5]. For
completeness, we list the first few terms in the expansion

Φ0(p,x) =−3
2

x+
x5

5!
+3

x9

9!
+54

x13

13!
+O(x17), (4.85)

which are in agreement with [22, Theorem 4.2]. We could also arrive at the right hand side
of (4.84) by multiplying and dividing in (4.75) by ϑ1(z,τ) instead of ϑ4(τ), and then taking
the limit z → 0 in ΘJJ′

0 (τ,ρ,z)/ϑ1(z,τ). A similar procedure was used in the context of
D3-instanton corrections [3, Section 4].

4.8 On the extension to gauge groups of arbitrary rank

Donaldson-Witten theory can be generalized to theories with a gauge group G with rank r > 1
[52, 58] using the corresponding Seiberg-Witten geometries [4, 19, 41, 78]. Mochiziku [62]
developed an algebraic-geometric framework to discuss higher rank Donaldson invariants but
this is beyond the scopes of this thesis. This section generalizes the Q-exact surface operator
(2.70) to theories with arbitrary rank gauge group G, and discusses the sum over U(1)r fluxes
of the Coulomb branch integrand for a four-manifold M with b1 = 0 and b+2 = 1. We keep
this section relatively short and refer the reader for the details to [58].

Let us consider the Coulomb branch of a N = 2 supersymmetric Yang-Mills theory
whose gauge group G has rank r. We denote the Cartan elements of the Lie algebra by HK ,
K = 1, . . . ,r. Then, the vacuum expectation value of the scalar component of the N = 1
chiral superfield can classicaly be brought to the form

φ =
r

∑
K=1

aKHK. (4.86)

The aK provide local special coordinates on the Coulomb branch moduli space. Alterna-
tively, one can consider the r Weyl invariant Casimirs uK , K = 1, . . . ,r, as coordinates on the
Coulomb branch. At a generic point on the Coulomb branch, the field content consists of
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r copies of the effective U(1) theory described in Section 2, which are distinguished by a
superscript: AK , ψK , . . . , for K = 1, . . . ,r. The effective coupling τKL = τKL(aM) is now an
r× r matrix. The effective Coulomb branch theory breaks down at the locus where gauge
bosons become massless, or more geometrically, the corresponding Seiberg-Witten curve
becomes singular.

Most aspects of the rank one Donaldson-Witten theory generalize to rank r without much
effort. For example after topological twisting, the action of the Q operator on the low energy
IR fields is given by

{Q,AK}= ψ
K, {Q,aK}= 0 {Q, āK}=

√
2 ı̊η

K,

{Q,DK}= (dψ)+, {Q,ηK}= 0, {Q,ψK}= 4
√

2daK, (4.87)

{Q,χK}= ı̊(F+−D)K.

The effective Lagrangian on the Coulomb branch is similarly a straightforward general-
ization of the rank one case [58].

There is a larger freedom for the construction of surface operators in the higher rank
theories. Starting from any invariant function U = U (aK) of the coordinates aK , one may
construct a suitable surface operator. The operator Ĩ− (2.69) generalized to general r takes
the form [58]

Ĩ−(xxx) =
ı̊√
2π

∫
xxx

(
1

32
√

2π
UKLψ

K ∧ψ
L −

√
2

4
UK(F−+D)K

)
, (4.88)

where the subscripts indicate differentiation to aK:

UK =
d U

daK , UKL =
d2 U

daKdaL . (4.89)

The generalization of the Q-exact surface operator Ĩ+ (2.71) is similarly given by

Ĩ+(xxx) =− 1
4π

∫
xxx
{Q,{L,Tr[φ̄K φ̄

K]}}

=− 1
4π

∫
xxx

{
Q,ŪK χ

K} , (4.90)
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where the trace is taken over the Lie algebra. Then, using the supersymmetry algebra (4.87)
this operator can be written as

Ĩ+(xxx) =− ı̊
2
√

2π

∫
xxx

(
ŪKLη

K
χ

L +
1√
2

ŪK(F+−D)K
)
. (4.91)

Our next aim is derive the sum over the U(1)r fluxes kkkK , the function ΨJ
r,µµµ , when both Ĩ+

and Ĩ− are inserted in the path integral. After integrating out the auxiliary fields DK , we find
that ΨJ

r,µµµ is given by

Ψ
J
r,µµµ(τKL,ρρρK) =

1√
detv

e−2πvKLbbbK
+bbbL

+ ∑
kkk∈Γ

(−1)B(kkkKWK ,KM)K (kkk,ρρρ,ω)

× exp
(
−π ı̊ τ̄KLB(kkkK

+,kkk
L
+)−π ı̊τKLB(kkkK

−,kkk
L
−)−2π ı̊B(kkkK

+, ρ̄ρρK)−2π ı̊B(kkkK
−,ρρρK)

) (4.92)

where vKL = Im(τKL), WK are the components of the Weyl vector of G, and we introduced

ρρρK =
xxx

2π
UK ∈ H2(M,C)

bbbK = vKLIm(ρρρL) ∈ H2(M,R),
(4.93)

in analogy to the rank one case. The kernel K in (4.92) is given by the integral over the
fermion zero modes

K (kkk,ρρρ,ω) =
∫ [ r

∏
K,L=1

dη
K
0 dχ

L
0

]
exp
(
−

√
2 ı̊
4

∫
M

F̄KLMη
K
0 χ

L
0 ∧ (kkk+−bbb+)M

− ı̊√
2

ρ̄ρρKLη
K
0 χ

L
0 +

1
64π

vKPF̄KLMF̄PQRη
L
0 χ

M
0 ∧η

Q
0 χ

R
0

)
,

(4.94)

where we have defined
FKLM =

dτKL

daM . (4.95)

Carrying out this integral for G = SU(3) (which is a gauge group of rank two), we arrive at

K (kkk,ρρρ,ω) = 1
8

(
F̄11KB(kkkK −bbbK,J)+2B(ρ̄ρρ11,J)

)(
F̄22LB(kkkL −bbbL,J)+2B(ρ̄ρρ22,J)

)
− 1

8

(
F̄12KB(kkkK −bbbK,J)+2B(ρ̄ρρ12,J)

)(
F̄12LB(kkkL −bbbL,J)+2B(ρ̄ρρ12,J)

)
+

1
32π

(F̄11KF̄22L − F̄12KF̄12L)vKL.
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We leave it for future work to express ΨJ
r,µµµ as a total derivative of āK (note that for simple

linear quiver gauge theories with gauge group ∏i SU(2)i, i = 1, . . . ,n this is trivial and
therefore not so interesting from a physical point of view).

4.9 Discussion and Summary

In this chapter we have discussed in detail the insertion of the Q-exact operator to the path
integral of Donaldson-Witten theory or equivalently to the generating function of Donaldson
invariants for a four-manifold M with b+2 = 1. We have shown that for gauge group SU(2)
and SO(3) the integrand may be expressed as a total τ̄-derivative of an indefinite theta
function precisely due to the insertion of the Q-exact surface operator Ĩ+ which couples to
the self-dual part of the field strength F . This allows to readily evaluate the integral, and to
express it as a sum of contributions over the cusps of the integration domain H/Γ0(4). In
this way, we reproduce the result of Göttsche, who expressed generating series of Donaldson
invariants in terms of a residue of an indefinite theta function. Furthermore, we discussed in
detail how to apply this in two examples: the Hirzebruch surfaces Fℓ and the projective plane
CP2. We concluded with the case of higher rank gauge groups which still require careful
study. There are other possible directions to consider in correlation to the previous discussion
such as theories with matter representations.



Chapter 5

Ramified Donaldson-Witten theory and
mock modular forms

In the final part of this thesis, we continue by investigating the ramified1 u-plane integral
based on [43] and inspired by the works of Tan [79, 80]. We study the low energy dynamics
of Donaldson-Witten theory in the presence of surface defects that support non-local super-
symmetric surface operators. These defects correspond to real codimension two surfaces2

embedded in a four-manifold M. In the presence of such defects it is possible to define the
so-called ramified Donaldson invariants associated to M [47]. A familiar (albeit slightly
different) example of one-dimensional defects (codimension three with respect to the dimen-
sion of M) are line operators like the electrically charged Wilson lines and the magnetically
charged ’t Hooft (disorder) operators. The study of such operators in supersymmetric quan-
tum field theories was initiated around ten years ago with the works [30, 33, 34] for N = 4
theories, [1, 30, 79, 80] for N = 2 theories, [42] in the context of Klebanov-Witten theory
and very interestingly [12] in the context of higher CohFTs and Donaldson-Thomas theory,
aspects of which we hope to return to in the future. A general and complete treatment of
surface operators (mainly for N = 2 theories) is found in [32] along with many references
within. The mathematical interest in these defects lies in the fact that in their presence it is
possible to define the ramified Donaldson invariants associated to M [47].

In this chapter we take a fresh look at the ramified u-plane integral by adding to the
Lagrangian of the ramified Donaldson-Witten theory the Q-exact surface operator Ĩ+ that
couples to the self-dual part of the curvature of the (in an appropriate sense extended) gauge
bundle, in the presence of surface defects. In accordance to Chapter 4, this Q-exact insertion

1This terminology is due to [34]
2In an algebraic setting they correspond to genus g smooth algebraic curves.
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allows us to write the ramified u-plane integral also as an integral of a total anti-holomorphic
derivative of an indefinite theta function à la Zwegers [94].

We will see in this chapter that just like in the case of ordinary Donaldson-Witten theory,
mock modular forms appear to play a similar role in the ramified theory generalizing the
former elegantly. In Section 5.1 we review the notion of ramified Donaldson invariants and
recall some of the definitions that appeared earlier for the ease of the reader. In Section 5.2
we recall how supersymmetric surface operators appear in N = 4 and mainly in N = 2
theories in four dimensions. In Section 5.3.1 we give a quick overview of the u-plane integral
as it appears in the usual Donaldson-Witten theory. In Section 5.3 we describe in some
detail how the u-plane is modified in the presence of the embedded surfaces, we include the
Q-exact deformation and show that the integral localizes at the cusp at infinity for specific
manifolds of Kodaira dimension −∞. In Section 5.4 we conclude with some remarks and
some discussion. In appendix B.2 we discuss how surface operators correspond to lifts of the
maximal torus to the Cartan subalgebra.

5.1 Ramified Donaldson invariants

In Chapter 4 we gave a brief review of the definition of the usual Donaldson invariants. In this
section we will briefly review the notion of ramified Donaldson invariants following closely
[47, 79]. Let M be a smooth, closed (compact without boundary) and simply connected
four-manifold equipped with a Riemannian metric. Let E be a G = SO(3) principal bundle
over X that can be lifted to a G = SU(2) principal bundle for w2(E ) = 0.

G E

M

As in Chapter 4 we denote by g= Lie(G) and by t= Lie(T) the Cartan subalgebra, where T
is the maximal torus of G. Let us recall that the middle integral cohomology is isomorphic
to a lattice Λ = Zb2 and splits into two orthogonal components Zb+2 ,0 ⊥ Z0,b−2 where we
have exactly b2 = b+2 +b−2 . The lattice comes equipped with a uni-modular quadratic form
Q : H2(M,R)→R and a bilinear form B : H2(M,R)×H2(M,R)→R (see definitions (2.77)
and (4.12) in Chapter 3). By restricting only to integral classes in H2(M,Z) both the quadratic
and bilinear forms are Z valued.

An embedded closed surface SSS ↪→ M is a genus g complex curve3 embedded into M.
Therefore by Q(SSS) we denote the self-intersection number of SSS and also by M̄ = M\SSS we

3The genus of this curve can be determined by the adjunction formula g(SSS) = 1+ 1
2 (SSS

2 +B(SSS,KM)).



5.1 Ramified Donaldson invariants 99

denote the complement of SSS. Near an open neighborhood of SSS we can split the vector bundle
to a sum of complex line bundles over M as E = L ⊕L −1. We denote the curvature of a
connection on L by FL . Let A ∈ Ω1(M̄,g) denote the local G-connection one-form which
becomes singular as it approaches SSS. Then locally this connection takes the form

A = ı̊αdθ + regular (5.1)

with α ∈ σ3R and σ3 = diag(1,−1) ∈ t. The angular coordinate comes from z = reı̊θ where
z is a holomorphic coordinate normal to SSS and the connection is singular exactly as z → 0.
Due to the coordinate singularity we just discussed there exists a non-trivial gauge-invariant
holonomy Holγ(A) = e−2πα of the connection contouring some small loop γ around SSS. Note
though that if Holγ(A) is trivial, such that γ is contractible, then the connection is an ordinary
connection on E defined over M. These embedded surfaces are of interest since they will
support supersymmetric surface operators.

Using the above we can define the so-called ramified Donaldson invariants for a four-
manifold M with the presence of an embedded complex curve SSS. The ramified Donaldson
invariants D̃ are defined very similarly to the ordinary ones, that is they are polynomials on
the homology of M̄ with rational coefficients

D̃ : Sym[H0(M̄,Q)⊕H2(M̄,Q)]→Q. (5.2)

Let Mγ̃ denote the moduli space of ramified G-instantons with instanton number k̃ =
∫

M̄ c2(E )

and γ̃ := γ(E ). Also recall that the Euler characteristic of M is χ = ∑i(−1)ibi, the signature
of M is σ = b+2 −b−2 while by l =−∫SSS c1(L ) we denote the magnetic flux number.

The dimension of the moduli space of ramified G-instantons, that for brevity we denote
by s, is [79]

s = 8k− 3
2
(χ +σ)+4l −2(g−1) (5.3)

where k =−∫M c2(E ) and we assume there are no reducible connections. Then, the corre-
sponding degree s ramified Donaldson invariant is defined as

D̃ γ,J
t,m(p,xxx) :=

∫
Mγ̃

µ̄(xxx)m ∪ µ̄(p)t , (5.4)

where J denotes a choice of polarization in H2(M,R), a period point. The ramified Donaldson
invariants are the numbers D̃t,m and are given, like in the case of ordinary Donaldson
invariants, through the intersection theory of Mγ̃ . In analogy to the ordinary case, there exists
a universal ramified instanton bundle and a ramified slant product that defines Donaldson’s
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map µ̄D such that
µ̄D : Hi(M̄,Q)→ H4−i(Mγ̃ ,Q). (5.5)

The generating function of ramified Donaldson invariants is given by summing over all vector
bundles E → M for a fixed µµµ and varying k̃:

Φ̃
J
µµµ(p,xxx) = ∑

k̃≥0
∑

m,t>0
2m+4t=s

D̃t,m(p,xxx)
t!m!

α
t
β

m, (5.6)

where α and β are formal variables as in the ordinary case. This generating function
corresponds physically to a specific correlation function of the ramified Donaldson-Witten
theory.

The ramified Donaldson invariants also develop a metric dependence and wall-crossing
phenomena: Φ̃J

µµµ(p,xxx) jumps discontinuously when crossing a wall of marginal stability in
the positive cone4 of X and in general we have Φ̃J

µµµ(p,xxx) ̸= Φ̃J′
µµµ (p,xxx) for two different period

points J,J′ ∈ H2(X ,R). Therefore, strictly speaking, these functions are not quite smooth
structure invariants but rather piecewise invariants. The difference of the ramified Donaldson
polynomials between two period points belonging to different chambers is given by the
wall-crossing formula that will be discussed in Section 5.3.

5.2 Review of surface operators in four dimensions

In this section we will briefly recall some well known facts about surface operators in
N = 2 supersymmetric Yang-Mills theories. Surface operators in topological field theories
first appeared in [33] where the authors consider the GL-twist of the N = 4 super Yang-
Mills theory, the Kapustin-Witten topological field theory [39]. In order to set the stage
and get some intuition about surface operators we begin by considering the non-compact
four-manifold C2 ∼= Ca ×Cb spanning x0,x1,x2,x3 and consider a co-dimension two defect
supported at Ca with coordinates x0 and x1 which is localized at x2 = x3 = 0.

The bosonic fields on Ca are the two components of the original gauge field spanning Ca,
that is A0,A1 and four of the six scalars of the N = 4 multiplet. There is a two dimensional
supersymmetric theory living on Ca. Along Cb it is required that the normal components
A2,A3 for the gauge field and φ2,φ3 for the scalars, have a suitable singular behavior as
they approach Ca. Supersymmetry then requires that A = A2dx2 +A3dx3, F = dA and

4See Subsection 5.3.6 for definition.
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Figure 5.1 A surface defect supported on Ca ⊂ C2.

φ = φ2dx2 +φ3dx3 satisfy Hitchin’s equations

F +φ ∧φ = 0,

dAφ = 0,

dA ∗φ = 0.

(5.7)

Next we want to set x2 + ı̊ x3 = z = reı̊θ and move to N = 2 supersymmetry where
we do not have all of the six scalar fields. Theories with N = 2 supersymmetry in four
dimensions admit half-BPS surface operators and the corresponding two-dimensional theory
on Ca preserves N = (2,2) supersymmetry [24]. The BPS equations for the (untwisted)
N = 2 theory are F = 0 and dAφ = 0, where φ is the adjoint valued Higgs field. Let us
consider the simple case where φ = 0. Then the BPS configurations correspond to irreducible
flat connections on X . Therefore any such surface operator is in a one-to-one correspondance
with an irreducible flat connection on the vector bundle E → M restricted on M̄ which is
singular along SSS or, in other words, a surface operator supported along SSS ↪→ M corresponds
to an irreducible flat connection on E → M̄. The flatness condition is obvious by taking
Hitchin’s equations and letting φ to be trivial. The curvature of the connection should be
vanishing on M̄ but not on SSS. Instead, we can consider an extended vector bundle E ′ → M
with connection one-form A such that the curvature two-form is given by F = F −2παδSSS

with α interpreted as the electric charge of the surface operator. This bundle extension was
first implemented in the context of the ramified geometric Langland’s program in [33] where
connection to parabolic Higgs bundles was described. The BPS condition5 gives the flatness

5Note that for the twisted theory the BPS equation is F+ = 0 [48, Chapter 5].
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condition
F = 0 (5.8)

or equivalently F = 2παδSSS. Since F is the two-form curvature we can split it in self-dual
F+ = 2παδ

+
SSS and anti-self-dual F− = 2παδ

−
SSS parts where δSSS denotes the Poincaré two-form

dual to the homology class SSS supported on. Let us make a clarification of the notation we use.
Note that SSS belongs to fundamental class of its own homology H2(SSS) while we denote by
δSSS the two-form Poincaré dual of the Dirac delta function supported on SSS. As explained in
detail in [33, 79, 80] in principle α ∈ T= t/Λcochar. where Λcochar. = Hom(U(1),T) is the
co-character lattice [33]. This is not quite the case though because we have extended the
bundle E to E ′ which amounts in lifting α to the Cartan subalgebra t and there are many
inequivalent such lifts yielding the same holonomy for A. Each possible lift corresponds to
a different surface operator therefore. We include some discussion on the lifts of surface
operators in Appendix B.2. Note that in this extended bundle E ′ we can include a theta-like
angle term with a contribution to the path integral as

eı̊η
∫

SSS F , (5.9)

where the exponent measures the magnetic flux of E ′ through SSS. Note that this integral
is proportional to the monopole number, with η ∈ t as well. In that sense the pair (α,η)

corresponds to electric and magnetic charges of a dyon-like surface operator that we can
interpret to be supported on SSS. Mathematically such type of extensions of vector bundles can
be described in the context of parabolic bundles [12, 61] which are very interesting objects
on their own with connections to the Riemann-Hilbert problems or the Painvelé equations
among others (for example see [37] for parabolic bundles over CP1). We hope to expand in
this context in a future work on ramified Vafa-Witten theory (that is the theory in the presence
of embedded divisors).

5.3 The ramified u-plane integral

5.3.1 Some facts about the u-plane integral

In this short subsection we recall some facts about the u-plane integral for the convenience of
the reader. Most of the contents of this subsection have been discussed in detail in Chapter 2.

We begin with the classical moduli space of vacua of N = 2 theories as well as their
quantum version which are discussed in 2.1. We recall here that for rank one gauge algebras
the coordinate ring of t/W is identified with the equivariant cohomology of a point H∗

G(pt)
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which has a single generator u := 1
16π2 Tr(φ 2) and the Coulomb branch B is a quantum lift of

the classical moduli space of vacua defined through the moduli space of instantons [67, 68].
The natural coordinate in B is u that can now be seen as an element of the field of fractions
of H∗

G(pt). We described earlier that in Donaldson-Witten theory the partition function ZDW,
receives contributions from two different terms:

ZDW = Zu +ZSW. (5.10)

The left hand side of the equality above corresponds precisely to the generating function of
Donaldson invariants. The right hand side is composed by Zu, the u-plane integral, that we
have already explained in detail, and ZSW given by

ZSW = ∑
s

Z(us), (5.11)

where we sum contributions to ZDW from all s ∈ B such that the discriminant of the Seiberg-
Witten curve is zero, i.e., the Seiberg-Witten contributions. That is, the union of s is a divisor
along which the elliptic fiber over B, which is the Seiberg-Witten curve (2.17), becomes
singular. Recall also that for four-manifolds with b+2 = 1 that admit a metric of positive
scalar curvature these contributions ZSW vanish [67] (see Section 2.4.1) but our result is
independent of this fact.

We will shortly see that in the presence of surface defects the u-plane integral will be
altered slightly, mainly due to the fact that we consider a different (extended) vector bundle
than the one considered in Chapters 3 and 4 (also in [44, 45, 67, 79]). A detailed derivation
of the ramified u-plane integral can be found in [79].

5.3.2 Analysis of the ramified u-plane integral

Naturally, the ramified u-plane integral is the path integral over the Coulomb branch B of the
Donaldson-Witten gauge theory in the presence of surface defects with gauge group SU(2)
or SO(3). Let us first, write down the Lagrangian of the low energy Donaldson-Witten theory
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in the presence of surface defects.

L =
ı̊

16π
(τ̄F+∧F++ τF−∧F−)+

y
8π

da∧∗dā− y
8π

D∧∗D

− τ

16π
ψ ∧∗dη +

τ̄

16π
η ∧d ∗ψ +

τ

8π
ψ ∧dχ − τ̄

8π
χ ∧dψ

+

√
2 ı̊

16π

dτ̄

dā
ηχ ∧ (F++D)−

√
2 ı̊

27π

dτ

da
ψ ∧ψ ∧ (F−+D)

+
ı̊ηm

4
F ∧δSSS +

ı̊
3π ·211

d2τ

da2 ψ ∧ψ ∧ψ ∧ψ −
√

2 ı̊
3 ·25π

{Q,χmnχ
nr

χ
m

r }√gd4x.

(5.12)

This Lagrangian is identical to the one of the usual Donaldson-Witten theory except
for the term that is proportional to ηm which appears6 due to the presence of the surface
defect and the fact that we consider the field strengths F for connections on the extended
vector bundle E . Just like in the ordinary Donaldson-Witten theory, the ramified one also
contains a BRST-like nilpotent scalar supercharge Q whose cohomology provides the physical
observables of the theory. The supersymmetric algebra in the presence of the surface defect
reads exactly as in (2.74) but with the substitutions

A → A ,

F → F ,
(5.13)

with A the connection of the low energy U(1) line bundle. The path integral of the theory is

ZrDW =
∫
[DX ] e−

∫
M L [ϕ],

where by X we collectively denote all the fields of the theory. Nevertheless, what we are really
interested in is the correlation function that reproduces physically the generating function of
the ramified Donaldson invariants. This comes in a straight forward manner by following the
analysis of Chapter 4. Therefore, we want include to our path integral the low energy surface
observable Ĩ−(xxx) from Equation (2.69) as well as the Q-exact surface deformation Ĩ+ from
Equation (2.71). In both operations we have to take into account substitutions (5.13). Due to
the presence of the surface defect SSS, the first operator gets an extra contribution. Therefore,

6There is a clash of notation here. In the Lagrangian by η we denote the Grassman valued zero-form of
the theory and by ηm we denote the “magnetic charge” of the surface defect that we denoted as η earlier. We
will eventually integrate out the zero-form η and thus we will be able to return to the previous notation for the
magnetic charge.
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overall it reads

Ĩ−(xxx,SSS) =
ı̊√
2π

∫
xxx

(
1

32
d2u
da2 ψ ∧ψ −

√
2

4
du
da

(F−+D)

)
+

ı̊
2

∫
SSS

α
du
da

δ
−
yyy . (5.14)

Here yyy ∈ H2(M) is an arbitrary cycle and δyyy corresponds to its Poincaré dual in H2(M). The
new contribution is Q-invariant, as the first summand in (5.14) whose terms arise from the
descent procedure. In the limit α → 0 we return to the theory without the surface operator.
Furthermore, just like in the ordinary theory, the ramified theory develops a contact term
operator dependence as well due to the UV to IR map

I2(xxx)I2(yyy)→ Ĩ−(xxx)Ĩ−(yyy)+ contact term. (5.15)

Except for the term xxx2G(u) we encountered in Equation (2.72) there exists also a term of the
form SSS2H(u) for a holomorphic function H ∈ OC. In principle we should also include a term
proportional to the intersection of xxx and SSS. But, such a term would vanish since the ramified
Donaldson invariants are defined for xxx ∈ H2(X̄) = H2(X\SSS) . Because xxx is homologous to
yyy we realize that as a result yyy∩ SSS = xxx∩ SSS = 0. Taking all the above into account, as well
as the fact we will be evaluating the theory on simply connected manifolds, π1(X) = 0, we
conclude that the correlation function we want to evaluate is [79, equation 5.8]

⟨e2pu− ı̊
4π

∫
xxx

du
da (F−+D)+xxx2G(u)+S̃SS2H(u)⟩, (5.16)

where S̃SS = π ı̊α

2 SSS. We already recognize two contact terms, unlike in [44, 52, 58, 67] where
there is only one, with the second one here being precisely due to the presence of the surface
defect as we described previously. The contact terms are given by

G(u) =
1

24

(
8u−E2(τ)

(
du
da

)2
)
, (5.17)

H(u) = up2(u), (5.18)

where the polynomial p2(u) = ∑n∈2Z≥1 anu−n ∈Q[u−1] is chosen such that it vanishes at the
classical limit, limu→∞ p2(u) = 0, and p2(−u) = p2(u). In [79] the author chooses to use the
simplest term, u−2 with a2 =

1
4 . We can leave this polynomial arbitrary for the purposes of

this paper. Note that none of the contact terms G(u) and H(u) have any singularities at the
SW points.
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In the presence of the surface operator SSS, it would seem natural though to add a second
term, the one corresponding to the anti-holomorphic part of the last term in Equation (5.14).
In order such an inclusion to not destroy the topological nature of the theory it has to be
Q-exact but such an operator cannot be constructed. As a result, our Q-exact “deformation”
operator is

Ĩ+(xxx,SSS) =− ı̊√
2π

∫
xxx

(
1
2

d2ū
dā2 ηχ +

√
2

4
dū
dā

(F+−D)

)
. (5.19)

All in all, we see that the analysis is identical to the one of the unramified u-plane integral,
the only differences being:

• that we have to consider the (extended) vector bundle E ′ instead of E by making a
choice of a lift of α from T to t (this point will become clear when we study the photon
path integral),

• the presence of the additional contact term H(u).

We are in position now to write down the precise form of the path integral together with
the insertions that give a physical formulation of the generating function of the ramified
Donaldson invariants. In analogy to Chapter 4 we switch notation and denote the Zu, the
u-plane integral, as ΦJ

µµµ . Then, the correlation function we are interested in can be written as

Φ
J
µµµ =

∫
[DX ] e−

∫
M L+O[X ], (5.20)

where

O[X ] = 2pu+ xxx2G(u)+ S̃SS2H(u)+ Ĩ−(xxx,SSS)+ Ĩ+(xxx,SSS). (5.21)

The way to proceed is identical to the one in 2.4.2. To this end, let us restrict to Kähler
surfaces and denote the Kähler form by J and by J we denote its normalization with respect
to the quadratic form. Also recall the variables

ρρρ =
xxx

2π

du
da

, (5.22)

which is a a modular form with weight (1,0) under Γ0(4) as well as

bbb =
Im(ρρρ)

y
. (5.23)
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The real change compared to the usual Donaldson-Witten theory amounts to the photon
path integral. The rest of the terms, modulo the new contact term, remain the same. Therefore
let us discuss the photon path integral of the ramified theory which gives a Siegel-Narain
theta function that reads

Ψ̃
J
µµµ(τ,ρρρ;α) = e−2πτ2bbb2

+ ∑
k̃kk∈Λ+µµµ

∂τ̄

(√
2τ2B(k̃kk+bbb,J)

)
(−1)B(k̃kk,KX )

× exp
(
−π ı̊ τ̄ k̃kk

2
+−π ı̊τ k̃kk

2
−−2π ı̊B(k̃kk+, ρ̄ρρ)−2πiB(k̃kk−,ρρρ)

)
× exp

(
−2π ı̊B(k̃kk,

η

2
δSSS)
)
,

(5.24)

Here k̃kk = [F ]/4π , the flux of the extended bundle. It is related to the flux of the usual gauge
bundle as

k̃kk = kkk− α

2
δSSS. (5.25)

In general, unless we want to stress the dependence of the t-lift (choice of α), we will omit it
from the functions it appears. It is straight forward to see the relation of the Siegel-Narain
function for the ramified theory to the unramified one from Equation (4.42). The two are
related simply as

lim
(α,η)→(0,0)

Ψ̃
J
µµµ(τ,ρρρ) = Ψ

J
µµµ(τ,ρρρ). (5.26)

Note that the η that appears in (5.24) is the “magnetic charge” associated to α (denoted as
ηm in the Lagrangian (5.12)) and not the Grassmann valued scalar field of course that has
been integrated out.

Taking a closer look at Ψ̃J
µµµ(τ,ρρρ) and requiring that it has the correct modular behavior

(the discussion of which we postpone for Subsection 5.3.4 ) in order the integrand of the
ramified u-plane integral to be modular invariant, forces α ∈ Z for SO(3) gauge bundles and
α ∈ 2Z for SU(2) gauge bundles. The last term in (5.24) is equal to one therefore and as a
result of requiring that it has the correct modular properties, we pick specific allowed surface
operators, that is pairs (α,η), shown in Figure 5.2 below.

5.3.3 The ramified u-plane integral

We can now write down the ramified u-plane integral Φ̃J
µµµ(p,xxx) for the theory in the presence

of surface defects.Taking into account the measure factor ν(τ), the point and contact term
operators associated to p,xxx,SSS and the Siegel-Narain theta function we discussed in the
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η

α

η

α

Figure 5.2 Electric and magnetic charges of the surface operator for gauge group SU(2) in
blue and SO(3) in red. Both lattices are integer.

previous subsection we have

Φ̃
J
µµµ(p,xxx) =

∫
B

da∧dā ν(τ)e2pu+xxx2G(u)+S̃SS2H(u)
Ψ̃

J
µµµ(τ,ρρρ). (5.27)

The integration domain of the integral above is the Coulomb branch B which is identified
with H/Γ0(4)∼= CP1\{±1,∞}. It is more natural to make a coordinate transformation for
the measure therefore and write it in terms of the complexified gauge coupling. Using the
standard by now change of variables (2.97)

ν̃(τ) =
da
dτ

ν(τ),

the ramified u-plane integral (5.27) takes the following convenient form of a modular integral

Φ̃
J
µµµ(p,xxx) =

∫
H/Γ0(4)

dτ ∧dτ̄ ν̃(τ)e2pu+xxx2G(u)+S̃SS2H(u)
Ψ̃

J
µµµ(τ,ρρρ). (5.28)

5.3.4 Modularity of the ramified u-plane integrand

In order the ramified u-plane integral (5.28) to make sense it has to be modular invariant
under Γ0(4). In (5.28) the measure dτ ∧dτ̄ has modular weight (−2,−2) under Γ0(4). As a
result we have to require that the integrand transforms as a modular form of weight (2,2) in
order to obtain a single-valued quantity. Earlier, we characterized ρρρ as an elliptic variable
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and this is due to the fact that under the congruent subgroup at hand du
da is a modular form of

weight one. In specific, under an S transformation τ 7→ τ

τ+1 we have

du
da

7→ 1
τ +1

du
da

, (5.29)

as we also explained in Chapter 4. Using the standard properties of Jacobi theta functions we
showed in [44] that ρρρ transforms under the two generators of Γ0(4) as (4.45)

ρρρ(τ +4) =−ρρρ(τ)

ρρρ

(
τ

τ +1

)
=

ρρρ(τ)

τ +1

The T transformation

In order to find the T transformation τ 7→ τ + 4 for Γ0(4) we will apply a τ 7→ τ + 1
transformation four times. We will also allow a generic shift µµµ 7→ µµµ + KX

2 . Therefore we
have

Ψ̃
J
µµµ+

KX
2
(τ +1,ρρρ) = eπ ı̊(µµµ2−K2

X
4 )

Ψ̃
J
µµµ+

KX
2
(τ,ρρρ +µµµ), (5.30)

and repeating four times yields

Ψ̃
J
µµµ+

KX
2
(τ +4,ρρρ) = e4π ı̊(µµµ2−K2

X
4 )

Ψ̃
J
µµµ+

KX
2
(τ,ρρρ +4µµµ). (5.31)

We can get rid of the shift KX
2 and also by noting that B(kkk,4µµµ) ∈ 2Z we finally obtain

Ψ̃
J
µµµ(τ +4,ρρρ) = e2π ı̊B(µµµ,KX )Ψ̃

J
µµµ(τ,ρρρ). (5.32)

Note here that we have not treated the transformation of ρρρ(τ) yet. Since KX is a characteristic
vector, we have that lll2 +B(l,KX) ∈ 2Z for any vector lll ∈ Λ. Therefore, the exponential we
see in Equation (5.32) can be written as

(−1)Q(2µµµ)+B(µµµ,KX )−3B(2µµµ,KX ) = e−6π ı̊B(µµµ,KX ), (5.33)

since Q(2µµµ) +B(µµµ,KX) ∈ 2Z. As a result we can write (5.32) taking into account the
transformation of ρρρ under Γ0(4) we obtain

Ψ̃
J
µµµ(τ +4,−ρρρ) =−Ψ̃

J
µµµ(τ,ρρρ). (5.34)
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The S transformation

Similarly, for the S transformation we can first perform a τ 7→ −1
τ

transformation and then
generalize. We have therefore

Ψ̃
J
µµµ+

KM
2

(
−1

τ
,
ρρρ

τ

)
=− ı̊(− ı̊τ)

n
2 (iτ̄)2e−

π ı̊ρρρ2
τ

+π ı̊
K2

X
2 (−1)B(µµµ,KX )Ψ̃

J
KX
2
(τ,ρρρ −µµµ), (5.35)

and similarly as for the T transformation, by repeating four times this procedure we obtain

Ψ̃
J
µµµ+

KX
2

(
τ

τ +1
,

ρρρ

τ +1

)
= (τ̄ +1)2(τ +1)

b2
2 e−

π ı̊ρρρ2
τ+1 +

π ı̊σ(X)
4 Ψ̃

J
µµµ(τ,ρρρ), (5.36)

where we use the fact that for simply connected four-manifolds we have K2
M = σ(X)+ 8.

Both the T and S transformations can be derived analogously to the transformations of
Appendix A.1.5

The rest of the terms

As for the rest of the terms, that is the contact terms as well as the measure factor the analysis
is identical to [44] without any modifications. The contact term transforms as

exxx2G(τ+4) = exxx2G(τ),

exxx2G( τ

τ+1 ) = exxx2G(τ)+ π ı̊
τ+1 ρρρ2

.
(5.37)

Note that the function H(u) is modular invariant and thus its transformations are trivial. As a
result we see that indeed the integrand has the desired (2,2) weight under Γ0(4). This is in
perfect agreement with the proof of Tan that the ramified u-plane integrand without the Q

insertion is indeed modular invariant. The fact that our integrand is modular invariant is no
surprise since the insertion of the supersymmetric surface operator supported on SSS does not
contribute to the modularity properties of the integrand.

5.3.5 The ramified u-plane integral as a total derivative

In [44, Section 4] and also in Section 4.7 we expressed the integrand of the u-plane integral
ΦJ

µµµ(p,xxx) of the Donaldson-Witten theory without surface operators in terms of the total τ̄

derivative of a non-holomorphic function Ĥ . This function is the modular completion of a
mock modular form H (τ) whose shadow is the Siegel-Narain theta function ΨJ

µµµ . As we
will see, these ideas can be applied for the ramified u-plane integral as well in a straight
forward manner .
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Recall the domain of integration H/Γ0(4) which is the union of six images of the
fundamental domain of SL2(Z). As we discussed in detail in Section 4.7 integrals over
H/Γ0(4) of modular invariant integrands of the form dτ ∧dτ̄ h(τ, τ̄) can be evaluated, in
special cases in a quite straight forward way. These cases involve integrands that can be
expressed as the total anti-holomorphic derivative to τ̄ of very specific function Ĥ with the
property (4.54)

d
dτ̄

Ĥ J
µµµ (τ,ρρρ) = f̃ (τ)Ψ̃

J
µµµ(τ,ρρρ), (5.38)

for some holomorphic multiplicative function f̃ (τ) (that as we will see is almost identical to
the one of the unramified theory). As in Chapter 4, in the case of the ramified theory Ĥ (τ, τ̄)

is also a modular form of (2,0) and it is the modular completion of some (holomorphic)
mock modular form of weight (b2/2,0). As we have already seen, integrals such as the
ramified u-plane integral (5.28) can be evaluated by relating them to integrals over F∞ and
as we will see they localize to the cusps of H/Γ0(4) [44, Appendix C]. To ease the notation
let us define

f̃ (τ) = ν̃(τ)e2pu+xxx2G(u)+S̃SS2H(u). (5.39)

Then, the ramified u-plane integral can be written as

Φ̃
J
µµµ(p,xxx) =

∫
H/Γ0(4)

dτ ∧dτ̄ f̃ (τ)Ψ̃J
µµµ(τ,ρρρ). (5.40)

Recall that for the theory with surface defects, the Siegel-Narain theta function is defined
with respect to the gauge bundle E ′ → X (it also contained an extra term that depends on SSS
but we showed this term to be equal to one due to the fact that α has to be an integer for k̃kk
to belong to the lattice). Using this fact we are now able to rewrite the integrand of (5.28)
replacing Ψ̃J

µµµ(τ,ρρρ) with the anti-holomorphic derivative of the indefinite theta function

Θ̂
JJ′
µµµ (τ,ρρρ) = ∑

kkk∈Λ+µ

1
2

(
E(
√

2yB(k̃kk+bbb,J))− sgn(
√

2yB(k̃kk+bbb,J′))
)

× (−1)B(k̃kk,KM)q−
k̃kk2
2 e−2π ı̊B(k̃kk,ρρρ).

(5.41)

Note that this function explicitly depends on the choice of lift of the connection to t via α .
As a result, the ramified u-plane integral (5.28) can be written as

Φ̃
J
µµµ(p,xxx,SSS) = ∑

i

∮
∂iB

du
(

dτ

du

)
Ĥ J(τ,ρρρ;α), (5.42)
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with i ∈ {0,2, ı̊∞} and where the function Ĥ we were seeking reads for the ramified theory
as follows (note that we stress the dependence on α),

Ĥ J(τ,ρρρ;α) = f̃ (τ;α)Θ̂
JJ′
µµµ (τ,ρρρ;α). (5.43)

Therefore the ramified u-plane integral can be evaluated by the following formula

Φ̃
J
µµµ(p,xxx,SSS) = 4

[
f̃ (τ;α)Θ̂ JJ′

µµµ (τ,ρρρ;α)
]

q0
+

[
τ →−1

τ

]
q0
+

[
τ → τ

τ +4

]
q0
. (5.44)

At the τ → ı̊∞ limit the error function becomes the sign function and as a result we can
substitute the non-holomorphic indefinite theta function Θ̂ JJ′

µµµ (τ,ρρρ) with the holomorphic
indefinite theta function Θ JJ′

µµµ (τ,ρρρ). See appendix A.3 and [44, Appendix B] for details. Note
that we have written these functions in italics in order to stress that they are (slightly) different
that the functions defined in [44] due to the extended gauge bundle and the dependence
on α and SSS. For four-manifolds which admit a metric of positive scalar curvature formula
(5.44) reduces to just the first summand which in turn completely determines the ramified
Donaldson invariants. For example, this is valid for specific examples of Kähler surfaces
of Kodaira dimension −∞ that (in addition) are simply connected. Such surfaces include
the Hirzebruch surfaces Fl , the projective plane CP2 and some blow-ups of it. Actually,
even for the computation of the usual Donaldson invariants for CP2 for which b2 = 1 and
the class of the period point is proportional to the hyperplane class H, as we saw in Section
4.7.3 one needs to use the blow up ĈP2 in order to apply the indefinite theta functions in
the evaluation of the u-plane integral and of course this is also true for the ramified theory
with the embedded surfaces. For four-manifolds that do not satisfy this criterion we should
also take into account the contributions ZSW from the Seiberg-Witten points of the Coulomb
branch B as we mentioned earlier and these contributions were derived in [79].

5.3.6 Wall-crossing formula

It will not come as a surprise that the ramified Donaldson invariants for four-manifolds
with b+2 = 1 are only piece-wise invariants [47, 79]. This means that they invariants jump
discontinuously as we move across walls that divide the space of self-dual two-forms into
various chambers. In each of those chambers Donaldson invariants are constant under smooth
variations of the metric. The wall-crossing formula was derived in the context of the u-plane
integral in [67]. Note that similar behaviour has recently been observed for the u-plane
integral of the AD3 theory [66]. Let us explain the wall-crossing formula slightly better in
order to complement the last paragraph of Section 4.7.1.
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The wall-crossing formula prescribes this discontinuous change of Φ̃J
µµµ under the variation

of a metric with period point J0 ∈H2(X ,R) to another metric with period point J1 ∈H2(X ,R).
If these two period points belong to the same chamber the result vanishes of course. Let
us recall that a wall is defined as follows. First we consider the “forward” positive cone
V+ := {J ∈ H2(X ,R)|Q(J)> 0}. Then, any ξ ∈ H2(X ,Z) such that Q(ξ )< 0 defines a wall
in V+ by

Wξ := {J ∈V+ | B(ξ ,J) = 0}. (5.45)

The complement of the walls in the positive cone are the chambers. Due to the presence of
the surface defect the walls are defined as follows for the theory with the defects

Wk̃kk;α := {J ∈V+ | B(k̃kk,J) = 0}, (5.46)

and when comparing to the unramified theory this tells us that the walls are shifted in
H2(X ,R) and this shifting explicitly depends on the choice of lift of the maximal torus
T to t via α . Using the same argumentation as in [44], but for the ramified theory, the
difference of the Coulomb branch between two neighboring chambers is given by a term
∆Φ̃

J1J0
µµµ = Φ̃

J1
µµµ − Φ̃

J0
µµµ which reads

∆Φ̃
J1J0
µµµ =

∫
H/Γ0(4)

dτ ∧dτ̄ f̃ (Ψ̃J1
µµµ − Ψ̃

J0
µµµ ), (5.47)

with the contribution from the cusp at i∞ giving the following result

∆Φ̃
J1J0
µµµ (p,xxx) = 4

[
ν̃(τ)e2pu+xxx2G(u)+S̃SS2H(u)

Θ̂
J1J0
µµµ (τ,ρρρ;α)

]
q0
. (5.48)

This can be seen as the difference of the ramified u-plane integral for two metrics corre-
sponding to J0 and J1. Note that here both J0 and J1 are period points in H2(X ,R) and as
a result the indefinite theta function Θ̂ contains an error function for both J0 and J1 (see
Equation A.24). It is trivial to show that this formula reduces to formula (4.11) of [44] in the
limit (α,η)→ 0. Finally note that in [79] it is also shown that the wall-crossing formula of
Zu = ΦJ

µµµ for the SW points +1 and −1 of the Coulomb branch B cancel the contribution
that can arise from the call-crossing of the ramified Seiberg-Witten invariants ZSW.
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5.4 Discussion and summary

In this chapter we have given a fresh look on the determination of the u-plane integral of the
Donaldson-Witten theory on a four-manifold M in the presence of a surface defect SSS inspired
by [44, 67, 79].

We considered the insertion of a Q-exact surface operator Ĩ+ to the path integral of the
low energy effective theory as in Chapter 4. This operator couples to the self-dual part of the
curvature F of the extended bundle E ′ → X . After some manipulations the ramified u-plane
integral localizes to the cusps of the Coulomb branch and as a result of our considerations,
the determination of the ramified u-plane integral simplifies drastically since there is no need
to use the cumbersome techniques of lattice reduction. The modularity of the integrand is
preserved, as expected, and computation of the ramified Donaldson invariants follows from
a very simple formula. We stress that this comes in parallel to what was found in Chapter
4 where we showed that the usual Donaldson invariants can be obtained by a very similar
simple formula as well and at the limit of vanishing volume for the embedded surface our
result reduces to the one of the usual Donaldson-Witten theory. Therefore Chapters 4 and 5
have shown that the relation between Donaldson-Witten theory and the theory of indefinite
theta functions and mock modular forms is much stronger and deeper than what it was
initially thought after the publication of the fundamental papers [26, 27]. More generally,
mock modular forms arise in increasing frequency in physical theories and appear to be of
importance in low dimensional topology.

Returning to the u-plane integral, we would like to mention that it should not be so
astonishing or surprising that a localization formula such as the one of Equation (5.42)
appears in this context. This is a very generic feature of topological gauge theories. Similar
integrals have often appeared in the literature for such theories.

An interesting direction to go forward would be to consider relating ramified u-plane
integrals and indefinite theta functions for theories with higher rank gauge groups where the
duality group lifts to Sp(2r,Z) where r denotes the dimension of the Coulomb branch B.
We already presented a (far from complete) discussion towards this direction, for the usual
Donaldson-Witten theory, at Section 4.8.

Another direction worth of investigating is to generalize the results of this paper for
four-manifolds that are not simply connected. Four-manifolds of the form R×Y (where Y is
a three-manifold), and R2 ×Σg (where Σg is a genus g Riemann surface) are of particular
interest since they could relate our result, and especially mock modular forms, to the instanton
Floer homology of Y and the quantum cohomology of the moduli space of flat connection
Mflat of Σg respectively. See [30] for a discussion of Donaldson-Witten theory and its
reductions to such four-manifolds and the connections to surface operators.



5.4 Discussion and summary 115

These tools, although computationaly strong, are not expected to yield some new in-
formation about four-manifolds, at least not directly for “conventional” operators and/or
“conventional” theories. The use of indefinite theta functions though, and mock modular
forms more generally, in the world of topological gauge theories, might be useful towards
finding new four-manifold invariants, for example by studying topological versions of su-
perconformal theories [66] and even topological class-S theories. It is of great curiosity
of ours to see if such tools can somehow be employed in the very much unexplored world
of (maybe topological) N = 3 theories and if such theories can provide any alternate roots
for four-manifold invariants. Nevertheless, simplifying the evaluation of such Coulomb
branch integrals, especially from the point of view of supersymmetric gauge theories, is quite
important regardless of the mathematical problem of finding new invariants.
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Appendix A

Modular forms and theta functions

A.1 Modular forms and theta functions

In this appendix we would like to collect some important notions from the theory of modular
forms for the convenience of the reader. For a comprehensive exposition the reader is reffered
to the plethora of available literature such as [38, 76, 92].

A.1.1 Modular groups

The modular group SL2(Z), is the group of integer matrices with unit determinant

SL2(Z) =

{(
a b
c d

)∣∣∣∣∣a,b,c,d ∈ Z; ad −bc = 1

}
. (A.1)

which acts naturally on the Lobachevsky or upper half-plane H= {τ ∈ C | Im(τ)> 0} via(
a b
c d

)
τ =

aτ +b
cτ +d

.

We introduce moreover the congruence subgroup Γ0(n) which is defined as

Γ
0(n) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣∣b = 0 mod n

}
. (A.2)
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We say that a holomorphic function f : H → C is a modular form of weight k for any
congruence subgroup Γ ⊂ SL2(Z) if for any γ ∈ Γ it satisfies

f (γτ) = (cτ +d)k f (τ), (A.3)

and it is holomorphic at the cusp at infinity τ → ı̊∞. In the following subsections we define
various kinds of modular forms. There also exist mixed modular forms that are functions
f : H× H̄ which transform as

f
(

aτ +b
cτ +d

,
aσ +b
cσ +d

)
= (cτ +d)k(cσ +d)l f (τ,σ). (A.4)

The space of mixed modular forms for a modular subgroup Γ is denoted as M(k,l)(Γ).

A.1.2 Eisenstein series

We let τ ∈H and define q = e2π ı̊τ . Then the Eisenstein series Ek : H→ C for even k ≥ 2 are
defined as the q-series

Ek(τ) = 1− 2k
Bk

∞

∑
n=1

σk−1(n)qn, (A.5)

with σk(n) = ∑d|n dk the divisor sum. For k ≥ 4, Ek is a modular form of SL2(Z) of weight k.
In other words, it transforms under SL2(Z) as

Ek

(
aτ +b
cτ +d

)
= (cτ +d)kEk(τ). (A.6)

On the other hand E2 is a quasi-modular form, which means that although it is a holomorphic
function in the upper-half plane, the SL2(Z) transformation of E2 includes a shift in addition
to the weight for any τ ∈H,

E2

(
aτ +b
cτ +d

)
= (cτ +d)2E2(τ)−

6 ı̊
π

c(cτ +d). (A.7)

Eisenstein series E4(τ) and E6(τ) are somewhat special since they generate the ring of
modular forms of SL2(Z). On the other hand the ring of quasi-modular forms is generated
by E2(τ),E4(τ) and E6(τ).



A.1 Modular forms and theta functions 125

A.1.3 Dedekind eta function

The Dedekind eta function η : H→ C is defined as

η(τ) = q
1

24

∞

∏
n=1

(1−qn)

= q
1

24 (q)∞.

(A.8)

It is a modular form of weight 1
2 under SL2(Z) with a non-trivial multiplier system. It

transforms under the generators of SL2(Z) as

η(−1/τ) =
√
− ı̊τ η(τ),

η(τ +1) = e
π ı̊
12 η(τ).

(A.9)

A.1.4 Jacobi theta functions

The classical Jacobi theta functions ϑ j : H×C→ C, j = 1, . . . ,4, are defined as

ϑ1(τ,v) = ı̊ ∑
r∈Z+ 1

2

(−1)r− 1
2 qr2/2e2π ı̊ rv,

ϑ2(τ,v) = ∑
r∈Z+ 1

2

qr2/2e2π ı̊ rv,

ϑ3(τ,v) = ∑
r∈Z

qr2/2e2π ı̊ rv,

ϑ4(τ,v) = ∑
r∈Z

(−1)rqr2/2e2π ı̊ rv.

(A.10)

We let ϑ j(τ,0) = ϑ j(τ) for j = 2,3,4. Their transformations under the generators of
Γ0(4) are

ϑ2(τ +4) =−ϑ2(τ), ϑ2

(
τ

τ +1

)
=
√

τ +1ϑ3(τ),

ϑ3(τ +4) = ϑ3(τ), ϑ3

(
τ

τ +1

)
=
√

τ +1ϑ2(τ),

ϑ4(τ +4) = ϑ4(τ), ϑ4

(
τ

τ +1

)
= e−

π ı̊
4
√

τ +1ϑ4(τ).

(A.11)
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A.1.5 Siegel-Narain theta functions

Siegel-Narain theta functions form a large class of theta functions for indefinite theta lattices
that only depend on the lattice data. The classical Jacobi theta functions of Section A.1.4
are special cases of Siegel-Narain theta functions. We restrict to indefinite theta lattices of
signature (1,n− 1), that is Lorentzian lattices, equipped with a bi-linear form B(kkk, lll) for
kkk, lll ∈ Λ and a quadratic form Q(kkk) = B(kkk,kkk) = kkk2 (compare also to Equations (4.14) and
(4.12)). Furthermore we denote by K the characteristic vector of the lattice Λ such that for any
vector kkk ∈ Λ we have Q(kkk)+B(kkk,K) ∈ 2Z. Then, given an element J ∈ Λ⊗R with positive
norm, Q(J)> 0, it is possible to decompose the space Λ⊗R to a positive definite subspace
Λ+ = span{J} as well as an orthogonal to it negative subspace Λ−. The normalization of J
is defined as J := J

Q(J) and we can use it to define projection of an arbitrary vector kkk to the
positive and negative definite subspaces of Λ as

kkk+ :=B(kkk,J)J,

kkk− :=kkk− kkk+.
(A.12)

With the definitions given above, the Siegel-Narain theta function that is of interest to the
present thesis and has appeared a few times in the main text is a map ΨJ

µµµ : H×C→ C. The
second argument of the map is an elliptic variable. For a J as the one discussed previously
and for a conjugacy class µµµ ∈ Λ⊗R the Siegel-Narain theta function reads

Ψ
J
µµµ [K ](τ, τ̄,zzz, z̄zz) = ∑

kkk∈Λ+µµµ

K (kkk)(−1)B(kkk,K)q−
kkk2−
2 q̄

kkk2
+
2

× e−2π ı̊B(kkk−,zzz)−2π ı̊B(kkk+,z̄zz),

(A.13)

where µµµ = Λ/2 and K : Λ → C is a summation kernel. The modular properties of ΨJ
µµµ [K ]

depend on the kernel K (as we have seen in Chapters 4 and 5). For the trivial kernel K = 1
the transformations under SL2(Z) transformations are

Ψ
J
µµµ+K/2[1](τ +1, τ̄ +1,zzz, z̄zz) = eπ ı̊(µµµ2−K2/4)

Ψµµµ+K/2[1](τ, τ̄,zzz+µµµ, z̄zz+µµµ),

Ψ
J
µµµ+K/2[1] (−1/τ,−1/τ̄,zzz/τ, z̄zz/τ̄) = (− ı̊τ)

n−1
2 (iτ̄)

1
2 exp(−π ı̊ zzz2/τ +π ı̊K2/2)

× (−1)B(µµµ,K)
Ψ

J
K/2[1](τ, τ̄,zzz−µµµ, z̄zz−µµµ).

(A.14)

For the case of the partition function in Chapter 3, we set the elliptic variables zzz, z̄zz to zero.
Using the above SL2(Z) transformations and Poisson resummation we can verify that ΨJ

µµµ [1]
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is a modular form for the congruence subgroup Γ0(4). The transformations under the
generators of this group read

Ψ
J
µµµ [1]

(
τ

τ +1
,

τ̄

τ̄ +1

)
= (τ +1)

n−1
2 (τ̄ +1)

1
2 exp

(
π ı̊
4 K2

)
Ψ

J
µµµ [1](τ, τ̄),

Ψ
J
µµµ [1](τ +4, τ̄ +4) = e2π ı̊B(µµµ,K)

Ψµµµ [1](τ, τ̄),
(A.15)

where we have set zzz = z̄zz = 0. Transformations for other kernels appearing in the main text
can be easily determined from these expressions.

A.2 Mock modular forms

In this subsection we will briefly introduce the notion of mock modular forms and for the
shake of simplicity and brevity we will restrict to the modular group SL2(Z). A beautiful
exposition can be found at [93].

A central element in the definition of a mock modular form is the notion of the shadow
map. This is a map whose argument is a non-holomorphic modular form h : H× H̄→ C of
mixed weight (ℓ,2− k+ ℓ). In other words, under the generators of SL2(Z), h transforms as
following

h
(

aτ +b
cτ +d

,
aσ̄ +b
cσ +d

)
= (cτ +d)ℓ(cσ +d)2−k+ℓh(τ,σ). (A.16)

Then the shadow map is defined as a map that send h to the non-holomorphic period integral
h∗ which can be written as

h∗(τ, τ̄) =−21−k ı̊
∫ ı̊∞

−τ̄

h(τ,−v)
(− ı̊(τ + v))k−ℓ

dv. (A.17)

What it crucial about this function is that it almost transforms as a modular form of weight k
(so it is holomorphic) under SL2(Z) but this transformation produces a shift by a holomorphic
period integral (which is the reason of the lack of full modularity)

h∗
(

aτ +b
cτ +d

,
aτ̄ +b
cσ +d

)
= (cτ +d)k

(
h∗(τ, τ̄)+21−k ı̊

∫ ı̊∞

d
c

h(τ,−v)
(− ı̊(τ + v))k−ℓ

dv
)
. (A.18)

Using the shadow maps of such functions we can define the completion and the shadow of a
mock modular form. Let f be some holomorphic q-series which itself also transforms almost
as a modular form. The sum

f̂ (τ, τ̄) = f (τ)+g∗(τ, τ̄), (A.19)
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is called the completion of f if and only if f̂ is a (non-holomorphic) modular form of weight
k for some k ∈ Z. Then, the function h∗ is called the shadow of f . As we have indirectly seen
in chapter 4 and 5, the non-holomorphic shadow h can be obtained by acting with yk−ℓ∂τ̄ on
f̂ ,

yk−ℓ
∂τ̄ f̂ (τ, τ̄) = g(τ, τ̄). (A.20)

Of course, most of q series do not have such modular completions because their modular
transformations do not necessarily get eliminated by the contribution of some h∗ transforma-
tion.

With the definitions above we define a mock modular form as a q-series f whose shadow
h ∈Mℓ⊗M2−k+ℓ necessarily factors in the form

h = h1h̄2. (A.21)

Here h1 is strictly a weight ℓ holomorphic modular for and h2 is a weight (2 − k + ℓ)

holomorphic modular form. Mock modular forms can be split to the two classes shown
below.

• Pure mock modular forms are mock modular forms with ℓ= 0 and h1 = constant.

• Mixed mock modular forms are mock modular forms with arbitrary ℓ and h1 ̸== h1(τ).

There is also the notion of depth of a mock modular form f which is an integer equal to the
number of period integrals involved in the transformation properties of f . For example a
depth zero mock modular form coincides with a usual modular form while a depth one mock
modular form fall into the discussion above. There exist higher depth mock modular forms
but we will not discuss them in this thesis as they do not play a role in the rank one theories.

Role of mock modular forms in physics

As we have explained earlier mock modular forms appear everywhere in theoretical physics.
Most prominently, mock modular forms started acquiring attention by the physics community
with the discovery of Mathieu moonshine [21]. In this reference that authors noticed that
a topological invariant of the K3 surface called the elliptic genus (which can be thought of
a generalization of the Witten index) admits a character decomposition of the thesupercon-
formal algebra of the N = (4,4) CFT defined on K3 with the property that the degeneracy
of the massive states of the theory coincides with simple combinations of irreducible repre-
sentations of the Mathieu group M24, the second largest of the sporadic finite groups. This
observation can be interpreted as a SCFT living on K3 whose symmetry group is M24. Then
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it was suggested by Cheng et. al. [11], in analogy to the McKay-Thompson series that the
elliptic genus actually is a mock modular form. After these observations the literature has
grown towards finding CFTs with other sporadic groups as symmetry groups.

Another example, is of course, the partition function of the N = 4 topologically twisted
SYM theory with G = SU(2) and SO(3), the Vafa-Witten theory on CP2. Although when
it was discovered the theory of mock modular forms was not known, by now we know the
nature of these partition functions which are given in terms of mock modular forms, their
modularity properties and even that higher rank Vafa-Witten theory gives rise to higher-depth
mock modular forms [56].

In this thesis we saw how mock modular forms appear in the context of Donaldson-Witten
theory (via the indefinite theta functions to be discussed analytically below). There are many
other instances that mock modular forms appear. All the above should convince us on the
deep role that mock modular forms have in theoretical physics and should encourage further
investigation.

A.3 Indefinite theta functions

Indefinite theta functions (sometimes also called indefinite theta series) are theta functions
associated to an indefinite lattice Λ. Such functions are special cases of mock modular forms,
as mentioned in the introduction, and they have been getting a lot of attention since Zwegers’
fundamental thesis [92] (for a very recent exposition see [7]). The relation of indefinite theta
functions to the usual theta series (like the classical Jacobi theta functions) is very similar to
the relation between mock modular forms and classical modular forms (see [56, Section 3.3]
for details). For our purposes we specialize to unimodular latices of signature (1,n−1). It is
clear that for such a lattice there will exist vectors that have negative definite norm and the
sum, which can be divergent in general, schematically will read as

∑
vvv∈Λ

q−πy Q(vvv)
2 . (A.22)

Therefore we need to somehow regularize the sum such that we get a convergent series. This
is done by summing only positive definite vectors with the ceveat that the series loses its
modularity properties. For the purposes of this paper, and for the quadratic form Q and
bilinear form B, as well as J,J′ ∈ Λ⊗R such that B(J,J′)> 0, J is the normalization of J,
τ ∈H, K a characteristic vector for Λ, zzz ∈ Λ⊗C, µµµ ∈ Λ⊗R and bbb = 1

y Im(zzz) ∈ Λ⊗R, the
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indefinite theta series is defined as

Θ
JJ′
µµµ (τ,zzz) := ∑

vvv∈Λ+µµµ

1
2

{
sgn(B(vvv+bbb,J))− sgn(B(vvv+bbb,J′))

}
× (−1)B(vvv,K)q−

Q(vvv)
2 e−2π ı̊B(vvv,zzz).

(A.23)

This sum is convergent but not modular therefore [94]. Still, modular properties can be
recovered by including modifying slightly the kernel sgn(B(vvv+ bbb,J))− sgn(B(vvv+ bbb,J′))
which amounts to adding to it some non-holomorphic terms. As it is explained in full detail
in [93, 94] there exists a modular completion Θ̂JJ′

µµµ of ΘJJ′
µµµ (τ,zzz). This amounts to substituting

the sign functions of (A.23) with rescaled error functions. The completion reads

Θ̂
JJ′
µµµ (τ,zzz) := ∑

vvv∈Λ+µµµ

1
2

{
E(B(vvv+bbb,J))−E(B(vvv+bbb,J′))

}
× (−1)B(vvv,K)q−

Q(vvv)
2 e−2π ı̊B(vvv,zzz),

(A.24)

where, as explained in Section 5.3.5 as well, the (rescaled) error function is the map E : R→
[−1,1] and it is defined as

E(u) = 2
∫ u

0
e−πt2

dt = Erf(
√

πu), (A.25)

and note that when y → ∞ the function E(u) from (A.24) reduces to the sign function of
(A.23), that is

lim
y→∞

E(
√

2yu) = sgn(u). (A.26)

Analytical continuation of E (in order to be complex valued) makes it convergent only for

−π

4
< Arg(u)<

π

4
.

The modular transformation properties of such indefinite theta functions under SL2(Z) are
explicitly derived in Zweger’s thesis [94, chapter 2] and also in [85] by Vignéras. The
generators T and S of SL2(Z) act on Θ̂JJ′

µµµ (τ,zzz) as

Θ̂
JJ′
µµµ+K

2
(τ +1,zzz) = eπ ı̊(µµµ2−K2

4 )
Θ̂

JJ′
µµµ+K

2
(τ,zzz+µµµ)

Θ̂
JJ′
µµµ+K

2

(
−1

τ
,

zzz
τ

)
= ı̊(− ı̊τ)

n
2 (−1)B(K,µµµ)e−

π ı̊ zzz2
τ

+ πiK2
2 Θ̂

JJ′
K
2
(τ,zzz−µµµ).

(A.27)
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As in [44] the object that we are quite interested in is the τ̄ derivative of the modular
completed indefinite theta function A.24. This derivative is exactly what we reffered to as the
shadow in the introductory section of this paper and its modular properties are much easier
to determine than those of A.24 (although the notion of the shadow is slightly different than
the one used in [94] since the indefinite theta functions that appear here are mixed mock
modular forms). In specific, we find that

∂τ̄Θ̂
JJ′
µµµ (τ,zzz) = Ψ

J
µµµ(τ,zzz)−Ψ

J′
µµµ (τ,zzz) (A.28)

where ΨJ
µµµ is the Siegel-Narain function associated with Λ and defined in Appendix A.1.

Figure A.1 The positive cone of X is defined for some (for illustrational purposes two-
dimensional lattice) lattice Λ which we identify with H2(X ,R) by the “light-cone” drawn via
vectors J and J′ such that the latter has zero norm, Q(J′) = 0. The vectors we sum over in the
indefinite theta function are the ones located in the “upper" yellow cone with negative norm.

If there exists a vector vvv0 ∈ Λ such that Q(vvv0) = 0 then the modular completion of
ΘJJ′

µµµ (τ,zzz) can be simplified because, for such type of lattices, we can choose vectors J (and
maybe also J′) such that they are identified with the vector vvv0. Then, as explained in [94], the
error function reduces to the sign function. Let us assume that there exists a vector J′ ∈ Λ

such that Q(J′) = 0. The series will be convergent by further requiring that B(vvv+bbb,J′) ̸= 0
(we obviously cannot normalize J′ now) for any vector vvv ∈ Λ+ µµµ + K

2 except if we also
have that the other term in the kernel vanishes, i.e., if B(vvv+bbb,J) = 0. The completion of
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ΘJJ′
µµµ (τ,zzz) reads in that case

Θ̂
JJ′
µµµ (τ,zzz) = ∑

vvv∈Λ+µµµ+K
2

1
2

{
E(B(vvv+bbb,J))− sgn(B(vvv+bbb,J′))

}
× (−1)B(vvv,K)q−

Q(vvv)
2 e−2π ı̊B(vvv,zzz),

(A.29)

the shadow of which exactly corresponds to a Siegel-Narain theta function, in specific we
have

∂τ̄Θ
JJ′
µµµ (τ,zzz) = Ψ

J
µµµ(τ,zzz). (A.30)

Finally, let us finish with a remark. It is important that J′ ∈ Λ since the modular complete
function Θ̂JJ′

µµµ would not give a convergent series. An example of such a divergence is
discussed in [3, Appendix B.3].



Appendix B

Twisted and surface operators

B.1 The self-dual twisted operator

We discuss in this appendix the twisted supersymmetry generators Q, K and L, and we give a
formula for {Q,L} for an arbitrary Kähler surface. Recall the global bosonic symmetry group
of our theory G = SU(2)−×SU(2)+×SU(2)R ×U(1)R. The first two factors correspond to
the global space(time) rotations while the latter two factors correspond to the R-symmetry.

The supersymmety generators QαA, Q̄ B
α̇

, written explicitly, have the following non-zero
anticommutator for a local patch given by coordinates xm such that m,n = 0, . . . ,3

{QαA, Q̄B
α̇}= 2δ

B
A (σm)αα̇ Pm,

{QαA,QβB}= 2
√

2εαβ ZAB,
(B.1)

with Z ∈ Hom(Γ,C) is the central charge, Γ is the lattice of electric and magnetic charges of
the theory, Pm ≡ ∂m is the generator of translations, and σm the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The α, α̇ = 1,2 are indices of SU(2)− and SU(2)+ respectively. We define furthermore

σmn =
1
4
(σmσ̄n −σnσ̄m), (B.2)

with σ̄m the complex conjugate of σm.
Topological twisting amounts to redefining the spins of the fields of the vector multiplet

and eventually allows to formulate a supersymmetric theory on a compact four-manifold. Our
supercharges transform in the (1,2,2)1 ⊕ (2,1,2)−1 representation under the global group G.
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Originally, the rotation group is K′ = SU(2)−×SU(2)+ in the untwisted theory. The twist
redefines the rotation group of the theory. There are two choices (related by conjugation)

• K′
1 = diag(SU(2)−×SU(2)(2)R)×SU(2)(2)+,

• K′
2 = diag(SU(2)(2)+×SU(2)(2)R)×SU(2)(2)−.

We choose K′
1. The supercharges transform then under K′

1 ×U(1)R as

(2,2)1 ⊕ (1,1)−1 ⊕ (3,1)−1,

The three terms combine naturally to the following operators [48, 70]

Q = ε
α̇β̇ Q̄

α̇β̇
,

Km =
i
4
(σ̄m)

α̇β Qβα̇ ,

Lmn = (σ̄mn)
α̇β̇ Q̄

α̇β̇
.

In terms of differential forms, we define K and L as

K = Km dxm ∈ Ω
1(M), (B.3)

L = Lmn dxm ∧dxn ∈ Ω
2(M). (B.4)

The (2,2)1 representation gives thus a 1-form K ∈ Ω1(M), the (3,1)−1 representation gives
a self-dual two-form L ∈ Ω2(M), while the (1,1)−1 representation gives Q ∈ Ω0(M).

To determine {Q,L}, let us first determine the six components {Q,Lmn}. Using the
algebra (B.1) and (B.1), we find for (m,n) = (0,2) and (1,3),

{Q,L02}= 2
√

2Z̄,

{Q,L13}=−2
√

2Z̄,

while for the other choices of (m,n), {Q,Lmn} = 0. As a result, the commutator {Q,L}
reads on R4 as

{Q,L}= 2
√

2 Z̄ (dx0 ∧dx2 −dx1 ∧dx3). (B.5)

In complex coordinates z1 = x0+ ix2, z2 = x1+ ix3, we can write this commutator as follows

{Q,L}=
√

2i Z̄ ∑
j=1,2

dz j ∧dz̄ j ∈ Ω
1,1(C2), (B.6)
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We extend to an arbitrary Kähler surface M with Kähler form J, by realizing that Ω1,1(M)

contains a one-dimensional subspace of self-dual forms. Since Equation (B.6) is a (1,1)-form
and self-dual, this suggests that

{Q,L}=
√

2i Z̄ J, (B.7)

were J ∈ Ω1,1(M,R) is the Kähler form which spans the one-dimensional space of (1,1)-
forms over M.

B.2 Surface operators, roots and characters

In this appendix we would like to present some well known facts about surface operators and
co-root lattices Λcort. that complements the discussion from Section 5.2.

Let us start with a remark. As we explained in Section 5.2 a surface operator is defined
by prescribing a singular behavior for the gauge field along some surface SSS. Nevertheless,
there is another way to understand surface operators as a two dimensional theory supported
on SSS whose flavor symmetry group is G, the gauge group of the four dimensional theory over
X . Coupling the two dimensional theory to the four-dimensional one amounts to gauging G.
For a concrete discussion see [32–34].

In this paper we have focused on the approach of singularities of the gauge field A and
our task is to understand what we mean by lifting the bundle with connection one-form A that
is T valued to t. Recall that to a semi-simple Lie group G we associate a root lattice Λrt. ⊂ g∨.
Similarly, for the Langlands dual group LG we associate a root lattice that is the co-root
lattice of G, Λcort. ⊂ g. For simplicity, assume that G is simply connected. Then the root
lattice is embedded in the so-called character lattice Λrt. ⊂ Λchar. which simply corresponds to
Hom(T,U(1)). Similarly, Λcort. ⊂ Λcochar. corresponds to Hom(T∨,U(1)) = Hom(U(1),T).
The co-character lattice fits in the following exact sequence

0 −→ Λcochar. −→ t−→ T−→ 0. (B.8)

Actually it is possible to show that Λcochar. = π1(T)∼= Zn where n is the dimension of the
Cartan subalgebra t. This can be understood as follows. For any Lie group G we can construct
its universal cover G̃ and consider the following exact sequence

0 −→ π1(G)−→ G̃ −→ G −→ 0. (B.9)
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In our case we can view the Cartan subalgebra t as the universal cover of the maximal torus
T as follows

0 → π1(T)
d−→ t

exp−−→ T−→ 0, (B.10)

or equivalently we can view this configuration as principal π1(T)-bundle over T. A fiber of
this bundle is exactly t as shown in the Figure B.1. Therefore we have a natural identification
of Λcochar. with π1(T).

T

t

Figure B.1 The red segment in t corresponds to t/π1(T). Each choice of segment corresponds
to a different element of the fundamental group of T. A lift from the base to t corresponds to
the choice of a surface operator with α prescibed by the choice of line segment.

Now let us present some connections of surface operators with Levi subgroups of G.
The surface operators we have discussed are the simplest ones and belong to the so-called
“full" surface operators where α ∈ T∼=U(1)n. The classification of surface operators has
been discussed in detail in [33] (see also [12]) but let us repeat the main idea here. This
classification consists of pairs (α,L) where α is the surface operators “electric charge" as in
the main part of this paper and L is a Levi subgroup of G. Let us consider G = SU(k) for
example. The Levi subgroups of SU(k) are all possible groups of the form

U(1)l−1 ×
l

∏
i=1

SU(ki). (B.11)
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The minimal Levi subgroup of SU(k) is its maximal torus Tk−1 as in the main text of this
paper, and the corresponding operator is a full surface operator. For L= SU(k−1)×U(1)
the corresponding surface operator is called “simple". Of course working with SU(2) and
SO(3) restricts a lot the possibilities for surface operators that we can have in our theories.

Finally let us mention that one can consider instead of G its complexification GC and
describe surface operators in terms of parabolic groups. This can be done for theories
with N ≥ 2 by combining the gauge field with the scalar field defining the complexified
connection A = A+ iφ . The surface operators can be described by the the flat connection
A over a GC-bundle that along the embedded surface SSS its structure group GC is reduced
to a parabolic subgroup P ⊂ GC [61]. This point is very useful for understanding surface
operators in the context of six-dimensional Donaldson-Thomas theory [12].
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