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Summary

The advantages of using anisotropic lattices, instead of the more usual isotropic 
lattices, in QCD simulations are well estabhshed. Anisotropic lattices can be used to 
increase signal resolution and allow computational overhead to  be kept to  a minimum 
while minimising finite volume effects. A fine tem poral discretisation can be used to 
suppress mass-dependent errors which has considerable advantages; particularly for 
heavy quark simulations. Finite tem perature field theory has a natural asymmetry 
which is ideally suited to an anisotropic lattice formulation.
This thesis starts with a general introduction to the field and continues with a brief 
overview of the techniques and improvements used in the course of the simulations 
conducted therein.
The use of an anisotropic lattice introduces two separate bare param eters into the 
quark and gluon actions. These parameters must be tuned so th a t the resulting 
physical measurements of the renormalised anisotropy are the same for both  the gauge 
and fermion fields. This tuning procedure is trivial for quenched QCD. The increase 
of available com putational power means th a t the introduction of dynamical fermions 
into simulations has become feasible. The introduction of these dynamical fermions 
complicates the tuning procedure considerably. A non-perturbative procedure for 
tuning these anisotropy param eters is presented and is shown to be successful.
Finite tem perature lattice QCD provides a tool for investigation into the nature of 
the transition from the hadronic phase a t low tem perature to  the quark-gluon plasma 
phase a t high tem perature. The equations of state of the quark-gluon plasma must 
be determined in order to  understand its underlying properties. One of the methods 
which can be used to determine the equations of state  requires the measurement 
of Karsch’s anisotropy coefficients. These coefficients have proven to  be notoriously 
difficult to calculate. A ttem pts have been made to calculate them  perturbatively. 
However the perturbative coefficients are known to lead to pathological results such 
as negative pressure and a non-vanishing pressure gap at the deconfining phase of 
SU{3)  gauge theory. Non-perturbative attem pts at their calculation have also been 
shown to be difficult. The gauge configurations used in the tuning procedure men­
tioned above are recycled along with a number of new simulations which allow for 
the investigation into the viability of an alternative m ethod for the com putation of 
the Karsch coefficients. Two approaches are attem pted and are found to give con­
sistent answers. The measured values are well behaved w ith reasonable associated 
statistical errors. It is concluded th a t this method holds considerable promise for the 
determ ination of the required coefficients.
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Chapter 1

Introduction

Since the 1970’s, most particle physicists have agreed th a t the elementary par­

ticles th a t make up m atter consist of a set of fermions which interact primarily 

through the exchange of vector bosons. These elementary fermions include the 

quarks, (rf))(s),(b)) the leptons, {e, All of these particles are

spin-^ fermions.

These fermions interact through three forces, the strong, weak and electromagnetic 

forces. The strong interaction is responsible for nuclear binding and the interactions 

of the constituents of nuclei. The weak interaction is responsible for radioactive 

beta  decay processes. The electromagnetic interaction is coupled minimally to all 

electrically charged quarks and leptons.

Each quark can come in one of three types, each denoted by a different “colour” . 

Colour is the “charge” associated with the strong interaction. Quarks also carry 

an electric charge. Leptons do not carry a colour charge and do not participate in 

the strong interaction. The neutrinos do not carry any electric charge and do not 

participate in electromagnetic interactions. All of the particles may interact via the 

weak interaction which is mediated by the exchange of spin-1 bosons. The photon 

mediates the electromagnetic interaction, the heavy W  and Z  bosons mediate the 

weak interaction and the strong interaction is mediated by 8 massless colour-charged 

gluons.

The Standard Model (SM) of particle physics has been successful in synthesising
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the strong, weak and electromagnetic forces, together into a single theory. Mathemat­

ically it can be described as a SU(3) x SU(2) x U(l) gauge theory. The fourth and final 

fundamental interaction, gravity, is omitted from the SM. However at the energies 

with which the standard model is concerned, its effects are very weak when com­

pared to the other three fundamental forces. Quantum Electrodynamics (QED) [1] 

mathematically predicts phenomena involving electrically charged particles interact­

ing by means of exchange of photons. It successfully describes the electromagnetic 

interaction part of the SM. QED has the structure of an Abelian gauge theory with 

the symmetry group being U (l) gauge group.

A complete theory of the weak interaction requires the simultaneous incorpora­

tion of the electromagnetic interaction. The so-called electroweak interaction [2] of 

Glashow, Weinberg and Salam succeeded in unifying the weak and electromagnetic 

interactions under a SU(2) x U(l) gauge group.

The part of the Standard Model that deals with the strong force is called Quantum 

Chromodynamics (QCD) [3]. It is formulated in terms of quarks and gluons which 

are accepted as the basic degrees of freedom that make up hadronic matter. QCD 

has approximate flavour symmetry since the strong interaction does not discriminate 

between the different quark flavours. However the symmetry is broken by the differing 

masses of the quarks which vary in the range 1.5 Mev for the “up” quark to 173 Gev 

for the “top” quark.

Low-lying hadron spectra are well described by the quark model. However, at­

tempts to produce single quarks in scattering experiments have proved fruitless. This 

can be understood as evidence that the force between two quarks is strong. Paradox­

ically, high-energy cross sections can be successfully described by the parion model 

[4] in which the quarks do not interact at all. The scattering amphtude of the QCD 

process

e+e“ qq, (1.1)

where q and q are a quark and antiquark pair, can be accurately predicted by trivial 

changes to the QED process



without inckiding any effects of the strong interaction of the produced quark and 

antiquark. This result is counter intuitive and shows that in the high energy limit, 

the effect of the strong interaction on the quark production process can be completely 

neglected. QCD successfully incorporates both kinds of behaviour via confinement [3] 

and asymptotic freedom [5, 6]. Asymptotic freedom means that the interaction be­

tween quarks reduces as the distance between them reduces (and hence energy in­

creases), and tends to zero as the distance between them reduces to zero. Conversely, 

as the force between quarks does not diminish with increasing distance, it would take 

an infinite amount of energy to separate two quarks an infinite distance apart. If an 

attem pt is made to separate a pair of quarks, then at some point, the energy required 

to produce a separation exceeds the pair production energy of a quark-antiquark pair 

and so it is more energetically favourable for a quark-antiquark pair to be produced. 

Quarks and gluons are only ever found inside colour-neutral hadrons. This aspect of 

the theory is verified within lattice QCD computations, but is not mathematicahy 

proven.

In the early 1970’s, ’t Hooft, Politzer, Gross and Wilczek [5, 6] discovered a class of 

asymptotically-free field theories in four dimensions. It was subsequently shown that 

these non-Abelian gauge theories are the only such theories [7]. Thus any attempt 

to construct an asymptotically free theory such as QCD must involve a non-Abelian 

gauge. QCD is a gauge theory of the SU(3) gauge group obtained by taking the 

colour charge to define a local symmetry

Tools for working with QCD include perturbation theory [3], 1 /N  expansion [8] 

and various effective theories [9]. The masses of the up and down quarks are ^  

A q c d  ~  200Mev, the QCD scale. Chiral flavour symmetry is a good approximation 

to QCD for these quarks and chiral perturbation theory (ChPT) [10] has had some 

success in the non-perturbative regime of the strong interaction [11]. Wilson Chiral 

Perturbation Theory (WChPT) [12, 13] is an adaption of ChPT for the lattice. The 

mass of the strange quark ~  lOOMev and the applicability of ChPT to the strange 

quark sector is under debate [14]. At the hadronic scale, the strong coupling constant, 

cts ~  1, and so it becomes impossible to utilise perturbation theory to make accurate
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predictions. Lattice QCD can be used to make non-perturbative QCD calculations. 

It can therefore be used as an important tool to test the effectiveness and accuracy 

of QCD and the standard model.
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Chapter 2 

QCD on the lattice

2.1 The QCD Lagrangian

As stated earlier in Chapter 1, QCD is a gauge theory of the SU(3) gauge group. A 

gauge theory is a theory tha t is based on the idea of gauge invariance [15]. This means 

that the theory is invariant under a gauge transformation. This invariance or gauge 

symmetry is a transformation that allows an independent symmetry transformation 

at every point in spacetime. Gauge symmetry is a fundamental principle that actually 

determines the form of the Lagrangian of the theory.

Considering an arbitrary continuous group of transformations which transform as

i){x) (2 .1)

with

V{x) = exp{ia‘̂ (x)t°'), (2.2)

where the traceless Hermitian matrices, t°‘, are the basic generators of the group. For 

SU{3)  are taken to be the equal to ^  where Xa are generalisations of the Pauli 

matrices and are known as Gell-Mann matrices. The generators of the group obey 

the usual Lie Algebra commutation relations [t°‘, jabc^c are

the “structure constants” of the group [16].

The difficulty in trying to construct a gauge invariant Lagrangian arises when try-
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ing to consider terms involving derivatives. The standard definition of the derivative 

of 0(a;) in the direction of a vector is

= Y\m-[^{x  + en) — (2.3)

However, this definition can cause a problem for the case of fields which transform 

under Eqs. 2.1 as the two fields '0(x +  en) and '0(rr) will transform differently. The 

solution is to define a “parallel transporter” which transforms as

U{y,x) V{y )U{y , x)V\x ) .  (2.4)

This quantity can be used to define a more sensible derivative which is called the 

gauge covariant derivative

=  lirn -  [tjj{x +  en) - U{ x- \ -  en, x)ijj{x)]. (2.5)

For infinitesimal separation,

U{x -\- m ,  x) = 1 + +  Ĉ (ê )> (2-6)

where g is an arbitrarily extracted constant, called the coupling. The coefficient of 

the displacement, the vector field is known as a connection. Eqs. 2.5 and 2.6 

lead to the usual form of the covariant derivative

= ig A l t \  (2,7)

The infinitesimal transformation law for is
H '

^  (2 .8 ) 

The gauge transformation of the covariant derivative has the same transformation
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law as the field -0,

D^^Pix) ^  V{x)D^i^{x).  (2.9)

The commutator of covariant derivatives also follows the same transformation law

[D^,D,]i;{x) -> V{x)[D^,D,]^{x).  (2.10)

The field tensor is defined by

[D„D,] = -igF^X,  (2 .11)

with

f ; .  =  -  d^Al + gS’̂ A^Al (2.12)

This quantity transforms as

(2.13)

or infinitesimally

(2.14)

The required Lagrangian must be a gauge invariant function of ip and its covariant 

derivatives and of and its covariant derivatives and must also be invariant under 

global phase transformations. If further symmetries such as T  (time-reversal) and 

P (parity) are required for the theory then the terms in the Lagrangian must not

violate these symmetries. The field strength is not itself a gauge-invariant quantity,

however it is trivial to form gauge invariant combinations of the field strengths. The 

simplest case is called the Yang-Mills Lagrangian

Cym  =  - jT V  (2.15)

which is a gauge invariant kinetic energy term for the fields Up to operators 

of dimension four, there are only two other possible terms which satisfy the criteria
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mentioned above. These two terms are the terms of the Dirac Lagrangian and adding 

these to the Yang-Mills pure gauge Lagrangian from Eq. 2.15 results in the QCD 

Lagrangian

^  =  + E  . (2-16)
a f

where the Dirac and colour indices of the quark fields have been suppressed.

2.2 QCD on the Lattice

Lattice QCD (LQCD) is QCD formulated on a discrete four-dimensional Euclidean 

space-time grid using tools analogous to those used in statistical mechanics. Compre­

hensive introductions to the subject can be found in references [17, 18, 19, 20]. The 

basic numerical strategy is to approximate integrals using Monte Carlo simulations. 

The discrete space-time lattice is useful in that it also acts as a non-perturbative 

regularisation scheme by acting as an ultraviolet cut off at ^ for a regular lattice. 

Renormalised physical quantities have a well behaved limit as the lattice spacing is 

taken to zero.

2.2.1 P ath  integral approach to  QCD

The path integral approach to quantum mechanics can be most easily rationalised 

as a gedanken experiment extension of the classic two slit experiment. Considering 

the classic setup of a particle source S  and a detector separated by a screen with two 

narrow holes Ai  and A 2 drilled into it. The pattern of arrivals at the detector at any 

point D  is an interference pattern which can be explained as

,4(Detected at D) =  ^ ^ ( ^ ( 5  Ai D).
i

If this screen is replaced by a screen with N  holes drilled in it rather than two, then 

the same equation holds. Now placing another intermediate screen B  with M  holes 

in between screen A  and the detector D one must find that the amplitude at D  is

8



given by

^(D etected at D) =  ^ ( ^ ( 5  —> Ai —> Bj  —> D).
i i

The logical extension of this is to place an infinite number of screens in between the

source and detector and then drill an infinite number of holes in each screen. Thus

the amplitude for a particle to appear at the detector must be a sum of all amplitudes

over all possible paths that the particle can take. In quantum mechanical notation we
/

would have that the propagation of a state {q where S[q] is the

action for real time. However this formalism is not suitable for numerical calculations

as the paths are weighted with an oscillating function. To get around this problem
/

a Wick rotation can be performed, t —>■ — i t . A s a result {q , t  \q,t) =
/

where is the Euclidean action. is equivalent to the classical statis­

tical mechanics partition function and thus there exists many equivalences between 

a Euclidean field theory and a classical statistical mechanics system.

2.2.2 D iscretisation

LQCD is an attem pt to numerically simulate QCD on a computer. Computers only 

have finite computing power and can only simulate a finite volume of space-time with 

a finite number of points in that space-time being sampled. The obvious structured 

way to implement this is to introduce a hypercubic grid in which points in the volume 

are sampled at regular intervals. The use of random lattices [21] has also been 

attem pted but is currently unsuitable for computing reahstic QCD properties.

Since space-time is discretised, so must the theory of QCD be discretised. The 

operators of the theory must be reformulated in terms of their lattice equivalents. A 

lattice version of a theory can only be accepted to be valid if the continuum theory 

is recovered as the lattice spacing goes to zero. Perhaps the simplest example of this 

is to consider the definition of a derivative of a simple one dimensional function f {x)  

by first principles. It is given by



On an n-dimensional lattice for a quantity U(x)  this simply becomes

d(7 (x) U(x + Ui) — U (x)
d X i  CLi

(2.18)

where Xi denotes the direction and aj is the lattice spacing in this direction. This 

example is what is known as a forward-difference approximation. An alternative 

strategy might be to use a central-difference approximation

df{^) f { x  + h ) ~  f { x - h )
—  =   . (2,19)

The forward-difference approximation has error 0{h)  whereas the central difference 

approximation has error 0{h?). In order to reduce error in any simulation it is 

therefore desirable to choose appropriate discretisation schemes and also to try to 

keep the “step-size” , h, as small as possible. On a lattice this corresponds to keeping 

the lattice spacing, a, as small as possible. Higher order derivatives can be found 

by recursively iterating one of the finite difference approximations. For example, 

iterating Eq. 2.19 leads to

y / ( x  4-4/i) -  4/(a; +  2/i)-h 6/(x) -  4/(rr -  2/i) + / ( x  -  4/i)
’

(2 .20 )

or by choosing a step-size of |  instead of h,

f { x  + 2 h ) - A f { x  + h) + 6 f { x ) - A f { x - h )  + f { x - 2 h )
- ^ ^  =  h m ,^ o --------------------------------------------  . (2.21)

Various improved discretisation schemes exist. For example, by expanding the terms 

f { x  + h) etc. in a Taylor series, it can be easily seen that

\  +  ^) -  / ( ^  -  h)] -  ^[fi  ̂+ 2/i) -  -  2 /i)] | =  ^  +  (2.22)

F in ite Volume Effects

As stated above, a computer may only simulate a finite number of space-time points. 

If the number of points being simulated is kept fixed but the spacing between ad-
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jacent points is reduced then the volume of space-time being simulated is reduced. 

As the volume becomes smaller, errors due to finite-volume effects become more pro­

nounced. Finite-volume effects have been studied extensively both analytically [22] 

and numerically [23]. Studies show that the shift between masses measured on a finite 

lattice and the infinite volume masses decrease exponentially to zero with increasing 

lattice size. Comparisons between full and quenched QCD simulations have shown 

that finite-size effects are smaller for the quenched case [24]. The difference between 

quenched and unquenched simulations will be explained in detail in Chapter 3.

Ideally one should have Q L where Q is the quantity that determines the rate 

of the exponential decay of a correlation function (i.e. the correlation length) and 

L is the linear length of the lattice. In order to obtain good measurements of any 

quantity it is also statistically important that the lattice spacing is much less than 

the correlation length so that the relatively fine mesh will sufficiently sample the 

quantity that is being modelled or measured. One must therefore have a L

in any simulation.

2.3 C ontinuum  Lim it

Due to the fact that any simulation is done on a finite lattice with finite lattice 

spacing it follows that in order to determine physical values from any simulations 

it is necessary to take the double limit a —> 0 and 1/ —> oo in order to reach the 

continuum limit values.

The algorithms used in lattice QCD simulations become progressively slower for 

decreasing quark mass values so simulations are performed at larger quark masses 

than the physical values of the up and down quarks. Therefore, predictions obtained 

for hadrons which contain up or down quarks may also require a further extrapolation 

down to small quark mass [25].

11



2.4 C on stru ction  o f A ction s

The Euclidean space equivalent of the QCD Lagrangian density of Eq. 2.16 is given

w^here a  =  1, . . . ,  8 is the gluon-colour index, /  is the flavour index and are the 

generators of SU{3). In order to successfully reproduce QCD on the lattice, one must 

design a lattice version of this quantity which reduces to the continuum Lagrangian 

in the limit a —> 0.

2.4.1 G luon action

The gluonic part of the continuum QCD action is given earlier in Eq. 2.15. The 

lattice version of this action will have a number of arbitrary input parameters. In 

order to recover the continuum action, these input parameters may have to be tuned. 

The number of input parameters will be affected by the choice and properties of 

the lattice action. QCD is invariant with respect to gauge transformations. With 

expUcit gauge invariance the quark-gluon, three-gluon and four-gluon couplings are 

equal and the bare gluon mass is equal to zero. If gauge invariance is broken then 

these couplings must be independently tuned and a gluon mass introduced in order 

to recover QCD. This procedure would be very expensive so it would be highly 

advantageous to preserve gauge invariance. It would be possible to formulate QCD 

directly in terms of the gauge fields however the resulting theory would only have 

approximate gauge invariance.

A gauge invariant lattice Lagrangian must be constructed from objects which 

themselves are gauge invariant.

The operator constructed from the parametrised path ordered integral running 

from s = 0 at x = y to s = l  Sit x  = z

by

^ (2-23)
/ /

(2.24)
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satisfies Eq. 2.4. V  denotes the path  ordering operation. The path  ordering is a 

necessary construct for a non-Abehan group. This quantity is known as a  Wilson 

line. Note also th a t U-p{z,y) = Up{y,z)  from this definition. One possible gauge 

invariant quantity is a Wilson line capped by a fermion and an anti-fermion i.e.

' ip{z)U'piz,y)^{y)  - >  ' i p { z )V \ z )V{z )Up{z , y )V^{y )V{y ) i j { y )  =  ip{z)Upiz,y) ip{y) ,

(2.25)

where the fermion field ip transform s as in Eq. 2.1. The only other gauge invariant 

quantity th a t can be constructed using y) is TrU-p{x, x) where U-p{x, x)  is taken 

about a  closed loop. Considering a path  taken about a small square of size a in the 

plane

U-p{x,x) = Up{x ,x  + afl)U-p{x + aj l ,x  + afi + aC')U-p{x + afi + aC',x + ai))U'p{x + a{>,x).

(2.26)

Substituting the discretised version of Eq. 2.24 into 2.26 and expanding up to order 

results in

U-p{x,x) = 1 +  iga^Fl^{x)t^ -  { F ^ ^ { x ) fY  +  (a®). (2.27)

This expression is not gauge invariant as the field strength tensor transforms as in 

Eq. 2.13 above and thus F^^{x)t^ is not gauge invariant. However, taking the trace 

of Up{x ,x)  is gauge invariant i.e.

TrU-p{x, x) —> Tr[/73(x, x). (2.28)

To transcribe the above derivations to  the lattice, one needs to simply consider 

a square in the ixu plane, as in Fig. 2-1. In this case, the path integral, Eq. 2.24 is 

taken along a straight line, say from the point a; to  a point a: +  a/i in the jx direction, 

i.e C/(x, X +  afi). For compactness, this can be w ritten as U^{x). U^{x) is also known 

as a link variable and can be thought of as “living” on the links connecting adjacent

13



X +  aji av

A f/„(x + ajl)

X +  afi

Figure 2-1: A diagram showing an elementary 1 x 1  plaquette or Wilson loop

lattice sites. The unit 1 x 1  plaquette can be written as

K u '  = u^i^)uu{x+ + (>)ui{x). (2.29)

Prom Eq. 2.27 above and using the identities from Sec. 2.1 it can be shown that the 

following combination, taken over the sum of plaquettes P,

1 -
X !X<v

+ 0(a").
(2.30)

^  0{a%
X

In the limit a —> 0 this becomes

2 N 4
(2.31)

which reduces to the continuum gluon action for /5 =  (W^^ ̂ )̂  corresponds to a

path integral taken around the same 1 x 1  unit square as , but in the opposite 

direction. Taking the combination +  (W^^^)^) ensures the hermiticity of the

action. As QCD is an SU{3) gauge theory, the gluonic part of the action can be

14



written by taking =  3 in the above equation.

Sole/] = P Y 1 T ,  [‘ -  . (2-32)
X  n < i >

using the fact that  ̂ =  Re[iy^^^]). This action is called the Wilson

Action. This action has discretisation error 0{a?‘). This example is constructed using 

only 1 x 1  Wilson loops. The use of small loops reduces computational costs and also 

reduces the size of discretisation errors. More accurate lattice gauge actions can be 

constructed by the addition of other types of loops as shown in Sec 2.6 below.

2.5 Quark A ctions

Prom Eq. 2.23 we can write the quark part of the QCD Lagrangian as

5- = E E
X  f

where is the the gauge covariant symmetrised difference operator [26]

V^ip{x) = +  A) -  u l (x  -  -  fi)] , (2.34)

The use of a symmetrised difference is needed in order to preserve the hermiticity 

of the theory. However this means that while the lattice spacing is a, the derivative 

involves twice the lattice spacing. This leads to the appearance of so-called “doublers^' 

into the theory. In other words the fermion propagator will have — 16 poles in the 

first Brillouin zone at (0, 0, 0 , ) , . . . ,  (tt, tt, 7r, tt) rather than the physically expected 

one. The theory must be modified in order to correct for this.

2.5.1 W ilso n  A ct io n

A lattice action need only reduce to the continuum action in the limit a ^  0. There­

fore additional irrelevant operators can be added to the action as long as the effect 

of those operators vanishes as the spacing goes to zero. This is called universality.
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Ref. [27] uncovered a “universality anomaly” , however this anomaly was shown to  be 

independent of the gauge field and hence physically inconsequential [28]. These addi­

tional operators can be used to reduce error in the model or to solve other problems 

such as the doubling problem mentioned in section 2.5 above. The Wilson Action [29] 

is obtained by introducing a second derivative term  to the naive action. The so-called 

“Wilson term ” is given by ar'0D'0 where

\  [^{x -[- A) +  i){x -  ft) -  2'4){x)]. (2.35)
%

ExpHcitly, the Wilson Action is w ritten as

‘S'lv =  ( tmV ;,-f  m / -  i/’/  (2.36)
X  f

The effect of this extra term  is th a t the extra fifteen species at p = n get a 

mass proportional to As the lattice spacing goes to zero, these doublers become 

infinitely heavy and decouple from the theory. As this added term  is essentially 

the mass term  for doublers, the chiral symmetry is violated even in the limit of 

vanishing bare quark mass. While Wilson fermions are computationally inexpensive, 

the approach to the continuum limit is slow. Observables are spoiled by the large 

0{a)  discretisation errors and quantitative extrapolations to the continuum limit 

must be performed from simulations done at small lattice spacings, typically less 

than 0.1 fm. This necessitates the use of very large four-dimensional lattices in order 

to provide reasonable physical simulation volumes

2.6 Im provem ents  

2.6.1 Sym anzik Im provem ent

In order to successfully simulate any process, one should have a situation where 

the lattice spacing is much smaller than  the physical scale in order to minimise 

discretisation errors. The physical scale should also be much smaller than  the box-size
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in order to reduce finite-volume effects. However, finite computational power places 

limits on the number of points which can be simulated, so a balance must be reached 

between discretisation and finite-volume effects. One possible strategy is to try to 

improve the model that is being simulated in order to reduce the discretisation effects. 

Symanzik introduced a systematic way of improving corrections to the continuum 

theory from finite lattice spacing by modifying lattice actions with added irrelevant 

terms. These irrelevant terms can be chosen to compensate for some of the systematic 

errors due to finite spacing. It is theoretically possible to eliminate errors to any order 

in a by the addition of suitable terms. These terms are higher dimension improvement 

terms which mimic the effects of the ultraviolet modes which are removed due to the 

lattice cut-off. In Ref. [30] the basic principles were outlined and applied to <p‘̂ theory 

and the procedure was also applied to the non-linear sigma model in Ref. [31]. A 

preliminary investigation for pure Yang-Mills theory in four dimensions was given 

in Ref. [32]. Ref. [33] looked at the addition of the most basic dimension six term 

i.e. the 2 x 1  rectangle, to the Wilson action and found that this was sufficient to 

remove errors of 0{a^).  This result was verified by [34] from calculation of the small-a 

expansion of the static potential in 1-loop order. Symanzik’s original approach was 

to remove the 0{a^)  artifacts from Green’s functions but this led to a problem as 

Green’s functions are not gauge invariant. A solution for this problem was given 

by Liischer and Weisz [35] who implemented on-shell improvement by removing 

O(a^) artifacts from spectral quantities only. On-shell improved refers to taking the 

“minimal” improvement condition which is that the error term is reduced to O(a^) 

for all low lying energy values.

2,6.2 T adpole im provem ent

Tadpole (or mean-field) improvement refers to the procedure in which gauge fields 

are re-scaled by a factor uq. As mentioned in Sec. 2.4.1, lattice perturbation theory 

is performed by expanding the link variable as

q 2 2
U^{x) = exp[iagA^{x)] 1 + iagA^{x)  — A ^ { x f  + . . . .  (2.37)
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The higher order terms in this expression represent higher order vertices that are 

purely lattice artifacts. At a first glance, it would seem that contributions from 

higher order terms in this expansion would decrease as a —> 0. However if the factors 

of gaA^ in +  . . .  are contracted with each other, the result is ultraviolet

divergences that exactly cancel out the additional powers of a meaning that the higher 

order terms are only suppressed by powers of and do not vanish in the limit a —> 0. 

The solution proposed by Lepage and Mackenzie [36] was to separate out the gauge 

field into ultraviolet and infrared (IR) parts and to rewrite Eq. 2.37 as

Uf,{x) -> Wo (1 +  iagA^{x) ) , (2.38)

where the mean field parameter, uq, is the averaged ultraviolet contribution, uq 

depends on the parameters of the theory and can be easily measured in a simulation. 

One common choice uses the plaquette expectation value:

{TrUp)^ '  . (2.39)

Other possible definitions include setting uq equal to the expectation value of the link 

operator in the Landau gauge are based on such things as the expectation value for 

long Wilson lines or the critical hopping parameter for Wilson quarks.

In order to incorporate tadpole-improvement into a simulation, one must simply 

make the substitution,

Ulix) =  (2.40)
Uo

wherever a link appears in a lattice operator. The factors Uq may alternatively be 

absorbed into couplings or masses. The new fields are much closer to their continuum 

values since this simple rescaling cancels out much of the tadpole effects. It was 

shown in Ref. [37] that tadpole-improved actions could give good results even on 

relatively coarse lattices. A comparison of a tadpole-improved action with a non­

tadpole-improved action can be seen in Ref. [38].
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O ther im p rovem ents for gauge actions

An alternative to the tree-level and one-loop improvements introduced by Symanzik 

(Sec. 2.6.1) is an approach based on the renormalisation group (RG) [39, 40]. Blocking 

transformations are used to transform the action. These transformations change the 

lattice cut off but leave the long range properties of the system intact. In the space 

of coupling constants, the blocking transformation makes a transition for a point 

S' to a new point S' . By repeating this transformation, trajectories are obtained 

through coupling space. These trajectories define what is known as the renormali­

sation group flow. There is a special trajectory which starts at the ultraviolet fixed 

point. This is denoted the renormalised trajectory. On this renormalised trajectory, 

the information corresponding to the continuum physics is preserved. This leads to 

the concept of the so-called “perfect action” [41]. If one can find a renormalised 

trajectory which corresponds to blocking transformation, it provides an action which 

gives accurate results corresponding to the continuum limit. However these actions 

do not parametrise well and are expensive to simulate. A comprehensive introduction 

to perfect actions can be found in Ref. [42]. The Iwasaki Action [43] defines a distance 

from an action to the renormalised trajectory and then uses perturbation theory to 

choose an action which is closest to that trajectory. The DBW2 (Double Blocked 

Wilson) action [44] estimates the renormalised trajectory using the Schwinger-Dyson 

method. These actions use 1 x 1  and 1 x 2  Wilson loops in their construction i.e. are 

of the form

S[t/| = P Y ,  + C iT tW li\x)]  , (2.41)
ll<u,x

and differ from each other by choice of the coefficient C \ .  The choices for the three 

actions mentioned above are

\  Symanzik

C l = -0.331 Iwasaki (2.42)

-1.409 DBW2

The universality of the Iwasaki and DBW2 actions were discussed in Ref. [45].
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Other formulations use 1x1 and 2 x 2  Wilson loops e.g Beinlich-Karsch-Laermann. 

This tree level improved action was shown to reduce finite cut-off effects in the ther­

modynamics of SU(N) gauge theories [46].

2.7 Improved Quark A ctions

It was shown above in Sec. 2.5.1 how to eliminate the problem of doublers by adding 

a dimension-five lattice-laplacian operator. Following on from the discussion of 

Symanzik improvement, it is possible to achieve 0{a) improvement by including 

all possible gauge invariant, local dimension-five operators which respect the symme­

tries of QCD. However, it turns out th a t the only dimension-five operator explicitly 

needed [47] to improve the Wilson action to 0(a) is the “clover” term,

Oi  =  -  i) a I p .  (2.43)

The addition of this term  to  the Wilson action given above results in the Sheikholeslami- 

Wohlert action [47]

Ssw = Sw -  (2.44)
X

where Sw is given above in Eq. 2.36. Csw is the clover coefficient which can be tuned 

to completely remove 0{a) artifacts.

Further improvement is given by the “D234” action [48]. This action also includes 

the clover term  from the Sheikholeslami-Wohlert action along with second, third and 

fourth order derivative terms. The tadpole-improved form is given by

mo +

-  Y  ( A f  +  i  E  a^F^) + A f  ) ,  (2.45)



where b = 1/6, r  =  2/3, c =  1/12,

-  -^(u^{x)^p{x +fi) 

-  U-n{x)i’{x -  

=  (̂uf,{x)i){x +

(2.46)

+  U^ {̂x)xp{x -  / / )  -  2ip{x)^, (2.47)

and U — U / u q , where (wo)’̂ is the tadpole-improved link variable. Classically the 

D234 action has 0{a^)  errors.

2.8 A nisotropic A ctions

The use of anisotropic lattices [49] offers further scope for improvements in design­

ing lattice actions. As mentioned above in Sec. 2.6.1, it is possible to reduce the 

systematic errors associated with any action to any given order, 0 (a"). If there are 

different temporal, at, and spatial, a^, spacings present then it may be beneficial to 

concentrate on improving the action to a higher order in in the case where > at- 

The signal to noise ratio of correlation functions decays exponentially. This will be 

further expanded upon in Sec. 2.10. With a finer temporal lattice spacing, there 

are more points to fit a signal to over a given distance, resulting in a more accurate 

fit. This is particularly important for particles with bad signal to noise ratios such 

as glueballs. Anisotropic lattices also alleviate potential problems due to unphysical 

branches in the quark dispersion relation. These unphysical branches or “ghosts” 

are generic to all actions improved beyond 0{a).  The energies of these ghosts are at 

the scale of the temporal cutoff. Therefore using a lattice with Oj < will push up 

the energy of the ghosts and decouple them. Independent derivatives with respect to 

temperature and volume are needed in order to fully determine thermodynamic quan­

tities. The easiest way to achieve this is to have independent spatial and temporal 

spacings. Due to Euclidean invariance, the fine lattice spacing can be considered as 

a spatial direction. This can be beneficial for studying large spatial momenta which
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are phenomenologically important for form factors for example.

The new coefficients of the action must be tuned to restore Euchdean invariance. 

The anisotropic actions used in the course of this study are given below.

2.8.1 A nisotropic gluon action

The isotropic Wilson action given above in Eq. 2.32 must be modified for the anisotropic 

case, tts ^  at- Defining the anisotropy ratio,

ep =  (2.48)

and the plaquette operator as

P,,{x) = (2.49)

then the action can be written as

Sg [U] =  p  . (2.50)

The new terms in Eq. 2.50 are discretisations of the magnetic and electric field 

strengths

(1 -  Pij{x)) =  h  j  d^xTvB"  ̂ +  C>(a^), (2.51)
X i j

and

(1 -  Pio{x)) =  A  /  +  0{a^) ,  (2.52)
X  i  ^

where i , j  are spatial indices.

The specific gauge action used in the course of this project is a two-plaquette

Symanzik-improved action [50] previously developed for high-precision glueball stud-
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ies and given by

(2.53)

where Qg and are spatial and tem poral plaquettes. and O f are 2 x 1  rect­

angles in the { i , j )  and ( i , t )  planes respectively. is constructed from two spatial

plaquettes separated by a single tem poral link. Ug and Ut are the mean spatial and

gluon sector. The action has leading discretisation errors of 0(ag,  a^, asa^).

2.8.2 Quark A ction

Following on from the isotropic actions mentioned above in Sec. 2.7, their anisotropic 

equivalents are given as

with = ^, Cfj, =  for the generic D234 anisotropic action.

The fermionic action used in the course of this study is a D234-type action which 

has been specifically designed for large anisotropies. The usual Wilson term  removes 

doublers in the tem poral direction whereas spatial doublers are removed by the addi­

tion of a Ham ber-W u [51] term. The action has been described in detail in Ref. [52] 

and has leading classical discretisation errors of 0{atmq) .  In terms of continuum

tem poral gauge link values respectively. The factor is the input anisotropy for the

for the Sheikholeslami-Wohlert action and

(1 +  ^raomc) +  (1 “

(2.55)
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operators, it can be written

Sq =  j  'ipip +  mQ)i> J  d‘̂ x'ip (Dl) ip +  sa  ̂J  d'̂ x xIj ^  D'l'ip, (2.56)
i

which highhghts the different treatm ent of temporal and spatial directions, r  is the 

usual Wilson coefficient which is applied in the tem poral direction only in this action 

and is set to unity. The analogous param eter in the spatial directions is s (=  | ) ,  

which parameterises a term  th a t is irrelevant in the continuum limit. In terms of 

lattice parameters this action can be w ritten as

Mi) =  ^  I  +  r +  ^  (70  -  r)Ut{x)ilj{x +  i) -  (7 ,, +  r)uj{x -  i)ip{x -
5 7

2 -  2 
( - 7 i -  4s)Ui{x)-i j j {x +  i ) -  (~7z +  4 s ) U j (x -  i)'ilj{x

1 1

( ( ^ 7 t  -  s ) Ui { x ) Ui { x  +  i)'iIj{x +  2i)  -  ( ^ 7 ,  +  s ) U ] { x  -  i ) U l { x  -  2i ) ip{x -  2z) j

(2.57)

Eq. 2.57 is obtained from Eq. 2.56 using finite difference schemes analogous to those 

discussed in Sec. 2 .2 .2 . As this action is intended to be used on lattices with > 

at, the improved lattice derivative, (see E.q. 2.22), is used to discretise the 'jiDi 

terms in order to  improve the action to 0{al) .  Unimproved central difference lattice 

derivatives are used for the remainder of the terms. The link variables U^{x) are 

included to preserve gauge invariance of the derivatives. The factors Us,Ut are the 

tadpole improvement coefficients in the spatial and tem poral directions respectively.

2.9 Num erical sim ulations of QCD

The QCD partition function has the form

Z = j  DUDi)Dipe-^, 
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where ifj and ij) are the fermionic and anti-fermionic fields respectively and U are the 

background gauge fields. The expected value of any measurement is given by

The QCD action can be split up into gluon and quark parts, S  =  Sg-\- Sq. The quark 

action will be of the form

where M  is the fermion matrix. The fermion fields -ip are Grassman variables and

The integral in Eq. 2.60 can be approximated by the usual method of Monte Carlo

Where P{xi)  is the probability that a given Xi will occur. This method can be very 

wasteful as often time is wasted exploring areas of phase space which have very low 

probability of occurring. A more economic way of estimating a quantity is to use the 

method of importance sampling. For the simple example given above, the method is 

modified in that the random Xi are no longer taken from a fiat distribution. Instead 

the procedure is modified so that random x  ̂ are taken from a probability distribution 

P{x).  Then the estimate to a straight average over f{x\).  To apply this technique 

to the numerical estimate for an integral, one can let h{x) be the probability density 

for the random variable X so that J  h{x)dx = 1. Then

DUDipD^jjOe (2.59)

because of this the Sq part of Eq. 2.58 can easily be integrated out analytical^ to 

give

Z  =  /  DUdet{M{U))e

integration. The Monte Carlo technique for estimating the expected value of /(x )  is 

simply to randomly choose N  variables xi and take

(2.61)
i=l
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In practice, to solve Eq. 2.59, a set of gauge configurations U are generated with a 

probability distribution given by

P ([/) =  det(M(C/))e-"». (2.63)

The quantity det(M ([/)) in Eq. 2.63 is a highly non-local term and as such is 

very expensive to compute when updating the gauge configurations. M  has dimension 

N T x N X x N Y x N Z x N S P I N x N C O L  (= 491520 for a 8  ̂x 80 lattice). N T  is the 

number of lattice sites in the temporal direction. N X ,  NY,  N Z  are the number of sites 

in their respective spatial directions. N S P I N  = the number of spins and N C O L  =  

the number of colours). For this reason the vast majority of LQCD simulations were, 

until recently, done in the so called quenched approximation. This involved setting 

the value of det(M ([/)) to be equal to a constant (usually unity). This removed 

the influence of quarks on the distribution of the gauge fields. Physically this is 

equivalent to neglecting the sea quarks which means that vacuum polarisation effects 

are omitted in the quenched approximation. Prom a formal viewpoint, quenched 

simulations correspond to introducing an equal mass “ghost” fermion for each light 

quark, so that disconnected loop contributions from the light quarks and the ghosts 

exactly cancel. Neglecting the determinant can also lead to the problem that wildly 

varying or exceptional configurations can be generated, particularly for small quark 

masses. These exceptional configurations are caused by unphysical poles of valence 

propagators which occur as eigenmodes of the Wilson-Dirac operator in a quenched 

simulation. These exceptional configurations can adversely affect the result of any 

measurement done on an ensemble unless steps are taken to remove these artifacts 

(53].

A comparison of quenched and unquenched simulations is given in Ref. [54] where 

unquenched calculations using staggered quarks were shown to agree with the exper­

imental values of a number of standard quantities within statistical and systematic 

errors of 3% or less.
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2.10 C orrelation Functions

The two point correlation function is given by

C{t,  p) =  5]] e-'P-’‘(Q|C>(x, 0 0 ^ (0 ,0)|f^), (2.64)

I.e.

C{ t , p )  =  |<SJ|0|«)pe-®»W , (2.65)
n

where Yin ^ complete set of energy-momentum eigenstates |n).

As t  increases, contam ination from the higher-order states dies off and only the 

ground state  contributes

C(t.p) ~  |(n|0|n„)|"e-'=»<»)‘. (2.66)
ZH/Q

So to extract the ground state energy, E q, we need only to look at the correlation 

function a t times large enough th a t the contribution from higher order states is 

negligible. For increasing distance in the t direction, the statistical noise becomes 

large relative to the signal being measured, thus rendering useless any attem pt to 

perform a fit through these points. This can be particularly true for simulations 

where techniques such as smearing (Sec. 2.13) are used which can increase statistical 

noise. A m ethod which is frequently employed to estimate ground state  energy levels 

is to use a so-called “effective mass plot” . This m ethod follows from the observations 

th a t, for a given momentum p,

Eo{p) = hm In ( - —  , ) =  hm cosh ( ----------— — ------------- ) , (2.67)
t^oo J t-oo \  2v4e--^o* J

or

E^{p) =  lim In (  )  =  lim cosh” ' ( C (t +  1, p) +  C (t -  1, p) \
t^oc \ C { t + l , p ) J  t-oo V 2C (t,p ) J  ̂ ^

To use either of the formulae in Eq. 2.68 the result is computed for each timeslice and
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the value of Eq is taken to be the value where a “plateau” is found in the resulting 

effective mass plot. A timeslice is simply a “slice” of time i.e. a particular value of t. 

An alternate strategy would be to directly fit the function

C{t) = (2.69)

to the correlation function. Using this method, the parameter Eq is extracted directly 

from the fit to the raw data. In this study, because of periodic boundary conditions 

the function that is fitted is

where T is the extent of the lattice in the temporal direction.

For the purpose of this study, all effective masses were measured directly from 

correlation functions. Effective mass plots were only used as a preliminary guide 

to appropriate fit ranges and as visual aids for comparing fitted values to the data. 

Where effective mass plots are presented, the plotted values are in terms of E{t), 

where E{t) is the value obtained at a particular value of t using either the log or 

inverse cosh method given in Eq. 2.67 above; i.e. not taking the limit t —* oo. 

Note however that Eq(j )) =  l i m t _ , o o A l l  fits were done using a ^^-minimisation 

algorithm which is detailed in Sec. 2.11.1 below.

2.10.1 Propagators

Prom standard field theory, the basic building block for fermionic quantities is the 

Feynman propagator which is given by the inverse of the Dirac operator

C{t) = -f (2.70)

(2.71)

A given element of this matrix (M  q is the amphtude for the propagation of a 

quark from site x  with spin i and colour a to site y with spin j  and colour b.
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The correlation function in Eq. 2.64 with two operators taking the general form

(2.72)

can be w ritten as

C'(p.^) = 5]l®~''’'''(o|^2(x,t)r®i/'i(x,i)'0i(o,o)r"''02(o, 0)1)0
X

=  _  ^  e-'P "(TV(5p-2(0; x, t - 0)r^)). (2.73)
X

The hermiticity property 57t(0;x, i) =  755ip(x,0)'^75, can be used to write this 

expression in terms of 5'y(x, t; 0) only. This in turn  means th a t propagators from the 

origin to all other points on the lattice are sufficient to calculate the meson correlation 

function. These are so-called point propagators. In practice, one needs to calculate 

just 12 columns of the m atrix M~^ given above. Each column corresponds to  a 

spin-colour degree of freedom.

A ll-to-all propagators

The only physical quantities th a t may be studied with point propagators are those 

which can be extracted from hadron two point functions or multi-point functions 

th a t can be reduced to connected two point functions. O ther quantities such as 

flavour singlet mesons, condensates and any phenomena which require quark loops 

necessitate propagators from all points in space to all other points in space. These 

are so-called all-to-all propagators.

Another im portant point is th a t the generation of gauge configurations is com­

putationally expensive. By considering only propagators from a single point to  all 

other points, one is discarding a large amount of valuable information which could 

be extracted from the simulation. The translational invariance of the QCD ground
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state means tha t one should be able to average over all points on the lattice i.e.

C{p. At) =  ^  (; x, i +  A i)r« (S F 2 (x, t  +  At; y, t)!’'') ) .
x,y,t

(2.74)

The factor of Li^T outside the summation is just the number of points on the lattice. 

However as mentioned previously in Section 2.9, the m atrix M  is generally a very 

large matrix. It is usually far too expensive to compute exactly for typical lattice 

sizes. A number of stochastic estimation techniques for the inversion of M  have been 

attem pted. See for example Ref. [55]. Another technique is the use of a truncated 

spectral decomposition [56] in which the lowest lying eigenvectors are determined. It 

is expected th a t the long-range physics of QCD will be contained in these eigenvectors 

and as such they will dominate the spectral representations of the mesonic correlator.

This study uses both point and all-to-all propagators. For the all-to-all propaga­

tors a general technique which combines the truncated spectral decomposition with 

a noisy stochastic estim ator is used. The stochastic estim ator utilises a sub-space 

thinning technique, dilution, to reduce noise. This dilution can be applied to any 

combination of the space, time, spin, or colour components of the noise vcctors used 

in the stochastic process. Ref. [57] contains a detailed description of the method.

2.11 Num erical techniques

In any numerical simulation there are two sources of error which are always present. 

There are statistical errors and systematic errors. For LQCD the systematic errors 

are due to errors in the model being used, finite difference errors (Sec. 2.2.2), fi­

nite volume errors (Sec. 2.2.2) and also errors due to the absence of certain modes 

which are not perm itted on the lattice due to the restriction in allowable momenta, 

Pn = The statistical errors are a result of the actual simulations. For example, 

performing a Monte Carlo estimate of an integral involves approximating the inte­

gral by a finite sum. As the number of samples being measured approaches infinity, 

the sum approaches the exact answer. For any finite set of da ta  however, there are
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statistical errors associated with the simulation. It is im portant th a t a measure of 

these errors is obtained for each simulation. For a given raw dataset it is possible 

to  simply average over all the values to get a mean value. However, the only pos­

sible measure of error would be to use a 68% confidence interval on the raw set. A 

simple way to  increase the statistics is to use the method of “bootstrapping” [58]. 

Bootstrapping involves creating artificial sets of da ta  from the original single set by 

re-sampling by random  choice with replacement. The method of “jackknifing” can 

also be used to estim ate the standard error on a sample. Like the bootstrap it esti­

mates the variability of a sample by measuring the variability between subsamples. 

The procedure for the jackknife method for a sample of N  measurements is to dis­

regard the measurement in a set and then compute rrij as the mean of the set of 

the N  — ] measurements, m  is the mean of the full set. Then the variance is given

In many experiments or simulations it is desirable to construct a model of how a 

system should behave. Once the model is decided upon, the available da ta  is fitted 

to the model and the fit param eters and “goodness-of-fit” can be determined. A

where i/i are the measurements of the experiment and ym is the expected value due 

to the model. N  is the number of measurements and CTj is the standard deviation. 

The index i denotes the different “points” a t which the experiment is measured.

If one assumes th a t each data  point yi has a normally distributed error around 

the model value ym then the probability of an individual measurement ŷ  occurring 

within an interval A y  around ym  is given by

by 0-,mean

2.11.1 fitting

standard m ethod of obtaining the best fit to  a model is to  minimise what is known 

as the chi-square or

(2.75)



Thus the probabihty of a particular set of measurements occurring is given by the 

product

The best fit to the data  occurs by maximising the probabihty th a t a set of da ta  can 

occur given a particular model. This is equivalent to minimising

(2,78)

This is equivalent again to  minimising Eq. 2.75 above.

All of the fits done in the course of this thesis were made using the M arquardt- 

Levenberg algorithm. This m ethod is a combination of two other methods, the 

inverse-Hessian (or Newton) method and the m ethod of steepest descent. The method 

of steepest descent suffers from the problem of slow convergence closc to the actual 

minimum. The inverse-Hessian method is liable to fail if the initial guess is far 

away from the final minimum. Thus the Marquardt-Levenberg algorithm switches 

smoothly between the two methods, utilising the method of steepest descent when 

far away from the minimum and then switching to the inverse-Hessian. The method 

is explained in detail in Ref. [58]. A brief summery is given below.

M ethod of steepest descent

The method of steepest descent is a very naive method of finding a local minimum. 

The idea is to start with a point acurrent as an approximation to the minimum of a 

function x^(^)- A new approximation is then given by moving from point acurrent to 

point a„ext in the direction of steepest descent i.e. — (acurrent)-

^next Current (^urrent)i (2 .79)

where // is a constant which sets how far down the gradient the step is taken. The 

choice of n  is very im portant, jj. needs to be small if the curvature of is rapidly 

varying. However a value of // which is too small means it can take too many iterations
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to converge to the local minimum. Methods such as the Davidon-Fletcher-Powell 

(DFP) [59] and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [60] methods incorporate 

techniques to find an optimal ^ for each step of the procedure.

In v erse  H e ss ia n  M e th o d

The function of M  unknown parameters Cj can be approximated to second order 

by a quadratic form

X^(a) ^ 7  — d - a  +  ^ a - D - a .  (2.80)

where di =  Dij =  and 7  is a scalar value. If the current value is close

to the minimum one then the minimising parameters are determined by

^ m in ~  C u rren t D  • [ ( ^ u r r e n t ) ]  • ( 2-81)

Using the notation that

1 1 
=  2 A

the above Eqs 2.79 and 2.81 can be written respectively as

5ai =  ixPu (2.83)

M

^ ^ a k i S a i = P k ,  (2.84)
/ = i

where Sa =  a„ext ~  ĉurrent- Marquardt’s insight was to modify Eq. 2.83 to take some 

account of the magnitude of the Hessian matrix by writing

\aii5ai =  Pi,
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and by defining

=  o ^ j k U  7  ̂ k ) .  ( 2 .86 )

The result of this is th a t Eqs. 2.84 and 2.85 can be combined as

M

' ^ a 'k iS a i  =  pk- (2.87)
1 = 1

The net result is th a t for a large value of A, Eq. 2.87 becomes identical to Eq. 2.85 

but for a very small value of A it becomes identical to Eq. 2.84. Thus by varying the 

value of A it is possible to switch continuously between the two methods. If the 

value of a new estimate of param eters is greater than  the for the old param eter 

then the value of A is increased, so th a t the algorithm tends more towards the method 

of steepest descent and the step is repeated. However if the new is less than the 

old x ^  then the new value is kept and the procedure is repeated, with the value of A 

reduced.

Sliding window fits

The use of sliding window fits is a technique which was used extensively during the

course of this project. In a sliding window fit, the measured effective mass from a

fit is plotted as a function of the lower bound of the fit range. As described above 

in Sec. 2.10 the ground state effective mass can be extracted from the correlation 

function for large times. For a small tem poral separation, the correlation function 

still has significant contributions from higher order states. However, too far out 

along the lattice, the signal can become too noisy to  accurately fit. To make a sliding 

window fit, a maximum timeslice t^ax  is chosen and the minimum timeslice, tmin is 

varied. The measured effective mass for each fit range is determined and the result is 

plotted with ^min along the horizontal axis and the extracted effective mass plotted 

along the vertical axis. W hat one is looking for from a fit such as this is stabihty in 

the determination of the effective mass over a number of values of ^min i-e. a plateau.
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Example sliding window plot
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0.16
O
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0

Figure 2-2: An example of a sliding window fit. This fit is taken from RUN 1 for 
momentum =  0. For further details see Sec 3. For this fit, tmax — 40 and the 
x-axis of the plot corresponds to the value for tmin- The y-axis corresponds to the 
measured value of UtEo obtained when fitting in the range [^min,40]. The x-axis is 
given in units of at

Such a fit should also be considered in conjunction with the respective x ^ / N d j  values 

to maximise the quality of any extracted results. An example of a sliding window fit 

is shown in Fig. 2-2. In practice for this study, tmax was set to  be at the midpoint of 

the lattice.

2.12 Generation of Configurations

All of the configurations used in the course of this project were generated using the 

hybrid Monte Carlo (HMC) method. The hybrid Monte Carlo m ethod is a combi­

nation of Monte Carlo techniques with molecular dynamics (MD) methods. Monte 

Carlo methods usually only involve local updates and have low acceptance rates for 

multiple attem pted updates at a single step. MD methods involve global updates 

but the scheme is prone to instabilities due to  the finite time-step. HMC allows for
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global updates but does not suffer from the instabilities of MD methods.

2.13 Sm earing

Smearing is a technique which is used to enhance the measurements made in a simu­

lation. In particular it can greatly reduce the ultraviolet divergences due to tadpole 

diagrams, (See Sec. 2.6.2). Smearing can be done on both quark and gluon fields. The 

two types of gauge smearing used in the course of this project are discussed below. 

Other approaches include the hypercubic “fat link” smearing transformation [61]. 

The effects of different smearing procedures on simulations using a range of different 

actions can be found in Ref. [62]

2.13.1 Gluon Smearing

Link smearing [63] refers to the procedure whereby a link is substituted by itself plus 

a weighted sum of neighbouring spatial plaquettes.

U, ^U,  + e
r j = + l , - \  jz j i i

where the RHS of Eq. 2.88 must be projected back onto the SU{3) group since 

the combination of links is not itself an element of SU{3). This procedure is then 

repeated n  times to obtain the final smeared link variables. The purpose of smearing 

is to try to eliminate or reduce unphysical short-distance fluctuations present on the 

lattice. Smearing leads to a stronger signal but introduces a strong distortion at short 

distances from the source.

The projection onto S U (3) is neither analytic nor unique and must be carefully de­

fined in order to preserve all symmetry properties of the link variables. The projection 

of a matrix V  into SU{3) is often taken to be the matrix U G SU{3) which maximises 

ReTr{UV^). Alternatively it can be defined hy U = \^(y^V)~^det(y~^y^)5.
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Stout Links

An analytic method of smearing the link variables was given in Ref. [64]. The resulting 

variables from this method are called “stout links” . The method consists of creating 

the Hermitian and traceless matrix Q^{x) defined by,

Qui^) = \  . (2-89)

where

Ptiu [Uu{x)U^,{x +  i')Ul{x ^-fi) + U l { x -  C')Ufj,{x -  i>)Uu{x -  0 + fi))

(2.90)

and p î, are the weighting parameters. The smearing procedure is then defined by

[/^"+i)(x) =  (2.91)

As Q^{x) is Hermitian and traceless, e  SU{N)  which means that ujT'^^\x)  G

SU{N)  and thus there is no need to project the final link variables back into SU{N).  

Ref. [64] showed that results from using “stout links” agreed with results using stan­

dard smearing procedures but that this method was more sensitive to the weighting 

parameters.

2.13.2 Quark Sm earing

Quark smearing is a procedure which essentially replaces point-like quark-sources on 

the lattice with a more realistic quark source with finite size. Smeared operators 

constructed from these more realistic sources increase the overlap with the lower 

energy states and as such are particularly useful in determining ground state energies. 

In order to do this, the short-wavelength, high-momentum modes are dampened 

out. A simple way of doing this is to apply a gauge-covariant scheme in which the 

smeared quark field at a given site is replaced by a Gaussian weighted average of the
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surrounding sites on the same time shoe [48]

(2.92)

For the lattice this expression is approximated by

(2.93)

where A is the three-dimensional gauge covariant laplacian

A'lp{x) =  iUn {x) ip {x  +  h)  - '4>{x ) )  . (2.94)
n=ibl,di2,ili3

as is the smearing radius and n<j denotes the number of times the smearing procedure 

is iterated.

2.14 O ther form ulations o f th e  quark action.

Although Wilson fermions were exclusively used in this thesis, a short synopsis of 

other fermion discretisations are given here also.

2.14.1 N o-go theorem

The “No-Go” theorem was first described by Nielsen and Ninomiya [65]. This theorem 

stated that given the three assumptions

• Locahty of interaction, i.e the Hamiltonian satisfies H{ x—y) ^  0 as \x—y\ —> oo

• Translational invariance on the lattice

• Hermiticity of the N  x N  matrix Hamiltonian H

then the appearance of equally many right-handed and left-handed species of Weyl 

particles with given quantum numbers in the continuum limit is an unavoidable 

consequence of a lattice theory. The conclusion of this theorem was that the weak 

interaction cannot be put on the lattice.
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A consequence of th a t theorem is th a t it is not possible, in strong interaction 

models to solve the species doubling problem of Dirac fermions on a lattice in a 

chirally invariant way. In the Weinberg-Salam electroweak model mass terms are due

to  spontaneously broken gauge symmetries of the weak interaction. A Dirac particle

can be thought of as a left-handed Weyl particle pairing up with a right-handed 

particle with a mass term  in the Hamiltonian in order to cause a transition between 

the two. K arsten and Smit [66] gave a weaker version of this theorem which showed 

th a t the absence of doublers with full chiral symmetry on the lattice was inconsistent 

with the Adler-Bell-Jackiw Anomaly and th a t the appearance of the doublers was to 

compensate for the strict chiral symmetry imposed by lattice regularisation.

The Nielsen Ninomiya theorem can be expressed in a form more suitable for lattice 

QCD [67, 68]. Considering the free field action,

Sp  =  ^  'ip{x)D'ip{x), (2.95)
X

where as usual, a is the lattice spacing and D  is the lattice Dirac operator. D  is 

assumed to be invariant under translations so th a t

De^P^u = D{p)e^P^u (2.96)

The theorem now states th a t the following properties cannot hold simultaneously.

• D{p) is an analytic periodic function of the momenta with period 27r/a.

•  For m om enta far below the cutoff 7r/a , D{p) = up to  term s of order ap^.

•  D{p) is invertible a t all non-zero momenta (mod 27r/a).

•  D  anti-commutes with 75.

Note th a t whereas Wilson and staggered fermions suppress doublers with explicit 

breaking of chiral symmetry, the use of a random lattice does so by spontaneous 

chiral symmetry breaking [69].
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2.14.2 Staggered Ferm ions

Kogut-Susskind or Staggered Fermions [70] were developed as an a ttem pt to over­

come the fermion doubling problem detailed above. The basic idea behind staggered 

fermions is to double the effective lattice spacing and reduce the Brillioun Zone by 

a factor of This is achieved in practice by distributing the fermionic degrees of 

freedom over the lattice. The naive continuum limit of any action used must reduce 

to the continuum action. In constructing a lattice action for staggered fermions it 

turns out th a t the spin and flavour indices must become mixed. Staggered fermions 

do however preserve a rem nant U (l) chiral symmetry. The extra species present 

due to doubling are reduced from 16 down to “4 tastes” for staggered fermions. In 

order to recover a theory with a single fermion, the usual procedure is to take the 

fourth root of the fermion determinant. This however leads to the problem th a t the 

resulting action is non-local. The issue of locality with staggered fermions is dis­

cussed in Ref. [71]. Non-local theories are unphysical and lack unitarity. The rooted 

action is not invalid as long as the non-local terms are irrelevant and scale away in 

the continuum limit. Ref. [72] showed th a t this was the case in the 2-dimensional 

Schwinger model and proved th a t the rooting procedure was justified for th a t case. 

Lattice QCD with unrooted staggered fermions does have the correct continuum limit 

(however with the four degenerate tastes mentioned above). Staggered fermions can 

be calculated much more rapidly than  Wilson fermions and as such, it is possible to 

simulate a t much lower bare quark mass values.

2.14.3 G insparg-W ilson R elation

For an action to be chiral, its Dirac operator D  must anti-commute with the chirality 

operator 7 5 .

( A 7 5 }  =  0. (2.97)

Ginsparg and Wilson introduced a modified lattice form of this relation called the
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Ginsparg-Wilson relation [73]

{D ,7 5 } =  2(L»75i?D), (2.98)

where i? is a local term with {i?, 7 5 } ^  0. A fermion obeying the Ginsparg-Wilson 

relation will have an exact chiral symmetry at finite lattice spacing. However, GW 

fermions may not exhibit the correct scaling behaviour. There are so-called “perfect 

actions” , (See Sec. 2.6.2), which show a scaling identical to the continuum at any 

lattice spacing but their construction is almost as difficult as solving the model an­

alytically. GW fermions cannot have the property of “ultra-locality” . GW fermion 

couplings will decay exponentially but they cannot drop to zero beyond a finite num­

ber of lattice spacings [74].

2.14.4 D om ain W all Fermions

Kaplan [75] showed that a lattice theory of massive interacting fermions in 2n 4 - 1 

dimensions could be used to simulate the behaviour of massless chiral fermions in 2n 

dimensions if the fermion mass had a step function shape in the extra dimension. The 

Nielsen Ninomiya theorem is satisfied in the 2n + 1 theory as a chiral fermion living 

on a certain domain wall has a corresponding chiral fermion of opposite chirality 

living on a domain wall of opposite orientation. Following on from the explanation 

for doublers for Wilson fermions, Sec. 2.5.1, there are massless modes in the 

continuum. The addition of a Wilson term removes all but one of the zero modes 

bound to the domain in the continuum limit with only a single positive chirality mode 

remaining. The currents of the 2n-\-l  dimensional lattice are exactly conserved but 

there is an anomalous current violation in the 2n dimensional effective theory due 

to charge flowing in from the extra dimension. However the addition of the extra 

dimension greatly increases the computational costs involved in using domain wall 

fermions.
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2.14.5 Overlap Ferm ions

Narayanan and Neuberger [76] showed th a t the effect of the massless chiral fermion 

can be represented as an overlap of two fermionic states. A simpler formula for the 

effective action was derived in [77], [78]. The overlap operator can be w ritten as

1 +  V
Do = (2.99)

with

V  =  ■ ■- =  7 5 sign(/f). (2.100)
V D \^D w

and D\\r is the Wilson lattice operator and H  is the Hamiltonian. This formulation 

does not contain an explicit fifth dimension, however the addition of the sign operator 

makes the simulation procedure difficult.

2.14.6 T w isted  M ass Ferm ions

Simulations in the quenched approximation can lead to so-called exceptional con­

figurations. These are due to large fluctuations which arise from the contribution 

of a small eigenvalue to the fermionic correlator which is not balanced due to the 

omission of the fermionic determ inant. Exceptional configurations are particularly 

problematic for simulations at smaller quark masses, particularly below the strange 

quark mass. A m ethod to prevent exceptional configurations is the use of twisted 

mass fermions. For this approach [79], a chirally twisted mass term  is added to the 

Dirac operator

Dtw = D-\-

where the Pauli m atrix acts in flavour space. This Dirac operator is protected 

from zero modes for any finite value of fj, as

detDtu) = det[D^D -I- ji^] > 0,

which protects against exceptional configurations.
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Chapter 3

N on-perturbative determ ination of 

action parameters

The use of an anisotropic lattice introduces new parameters into the actions, being 

introduced as the quark anisotropy parameter in the quark action, Eq. 2.56 and as 

the gluon anisotropy parameter into the gluon action, Eq. 2.53. At tree level, these 

anisotropy parameters are given by the ratio of the lattice spacing in the spatial 

direction to the lattice spacing in the temporal direction i.e. ^  for the quark

sector and similarly for ^g. In practice the bare input parameters are renormalised in 

a simulation and therefore the measured physical quantity will not be equal to the 

input parameters. As such, the input parameters must in general be tuned to give the 

desired target renormalised value. In the case of the anisotropy, the determination of 

the renormalised anisotropy from both the quark and gluon sector should correspond 

with the target anisotropy.

As discussed in Sec. 2.9 the technique of importance sampling applied to QCD 

simulations leads to background configurations being generated with probability dis­

tribution

P{U) = det{M{U))e-^^.  (3.1)

The fermion matrix M  contains all information relating to the quark sector. As 

mentioned in Sec. 2.9 the so called “quenched” approximation involves setting the 

value detM  equal to a constant. Thus, changing the value of has no effect on the
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generation of the gauge configurations within the quenched approximation. On the 

other hand, S g  contains aU the information from the gluon sector. Changing the input 

value affects the generation of configurations for both the quenched and dynamical 

(unquenched) cases. For the quenched case then it is a  simple m atter to first tune 

an input value ^ g  and generate the required configurations. The value of can then 

be independently tuned to restore Lorentz invariance after the configurations have 

been generated. In the unquenched or dynamical case however, de tM  is taken into 

account in the generation of the gauge configurations and changing will necessitate 

the regeneration of the configurations according to the new distribution. If ^ g  is 

tuned to the required renormalised value and then an a ttem pt is made to tune 

the gauge configurations must be regenerated to take into account the new The 

previous value for ^ g  is invalid for the new set of configurations and must be measured 

again. In order to solve this problem the two param eters ^ g  and must be tuned 

simultaneously.

3.1 Q uenched Case

The tuning procedure for the quenched case is described in detail in earlier work 

[52]. To summarise, a target renormalised anisotropy value of 6 was chosen, ^ g  

was first tuned to the required target anisotropy and was subsequently tuned. 

The main results of the paper were th a t the tuning of the input anisotropies was 

a straightforward procedure and th a t the mass dependence of the tuned value was 

small across a large range of masses varying from the mass of the strange quark to 

the charmed quark.

3.2 D ynam ical Case

The dynamical gauge configurations used in the course of this study were generated 

with two quark flavours. As mentioned above, in the case of a dynamical simulation, 

^ g  and ^ g  must be simultaneously tuned [80]. In order to do this, the dependence of 

the renormalised values on the input values for any simulation was taken to be linear
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as a first approximation. Writing

e , =  +  C,

e , =  D e ,+ s e ,+ f .

(3.2)

(3.3)

are the renormahsed values measured from the simulation. Three sets of 

input parameters are needed to solve these equations for A, B,C,  D, E, F.

Once these variables are known it is simply a m atter of solving the simultaneous 

equations

for and the tuned input anisotropies. is the target anisotropy.

3.3 M easuring o u tp u t an isotropies

The renormalised anisotropy measurements must be determined by a physical probe 

of the system after the simulation. Two different methods are presented here, one 

for the gluon sector and one for the quark sector. The purpose of this tuning is that 

one should be able to determine what input values and should be used so that 

both determinations coincide with the target anisotropy value.

The renormalised gluon anisotropy is determined by the method of “sideways 

potential” [49, 81]. The static source propagation is chosen to be along a coarse 

direction and interquark potentials are extracted from Wilson loops in both the fine 

and a coarse direction via the relations,

^^-C = AC,+BCg, 

e - F  =  DC, +

(3.4)

(3.5)

3.3.1 M easuring
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where Vs is the static interquark potential, Wss(p^-,z) and Wts(t^z) are Wilson loops 

with the subscripts s and t referring to spatial and temporal lattice directions respec­

tively. t is the fine direction and x, z are two coarse directions. The potential V (̂|x|) 

is then extracted from

lim Vs{x.,z) K^dxl), (3.8)
2—KX>

lim K(|t|). (3.9)
z —*oo

The static interquark potential should be the same over the same physical distance. 

In practice, for a target anisotropy of 6, the fine direction is blocked so that the

product of 6 links in the fine direction is taken to be equivalent to one link in a coarse

direction. and Vt should give the same result if the anisotropy is tuned correctly. 

For a given input anisotropy and target anisotropy the mismatch parameter 

Cg — be determined. V{x)  can be assumed to be approximated by

the Cornell potential V{x) = — f  +  ex.  If x  is in the regime where the potential is 

nearly linear, the mismatch parameter is approximately related to the actual gauge 

anisotropy, Cg ^  (g/^.

3.3.2 Measuring

The value of was measured from the pseudoscalar dispersion relation. On the

anisotropic lattice

B„(p)" =  £'„(Of+ ^ i n "  +  0(p-), (3.10)

with p = L is the length of the lattice. Eq{p ) is the ground state energy

for momentum p. Thus for low momenta can be determined from the inverse of 

the slope of the dispersion relation. Fig. 3-20 shows typical dispersion relations for



100

0 10 20 30 40 50 60 70 80
Tim e (t)

Figure 3-1: This plot shows a typical correlation function for the pseudoscalax with 
momentum = 0 on a 8̂  x 80 lattice. All-to-all propagators were used. The 
data were generated by averaging over correlation functions measured on a set of 
250 configurations. The error bars are given by a 68% confidence interval over the 
measured values. Note that the y-axis of this plot is shown on a log scale and the 
x-axis is presented in units of at-

the ensembles used in this study. The process first involves extracting the effective 

pseudoscalar mass from the decay of correlation functions; from Sec. 2.10, C{t) = 

Yl,n A typical correlation function can be seen at Fig. 3-1. For

reasons explained previously, the fit must be performed far enough across the lattice 

so that there is no contribution from the higher order states. However as can be 

seen from Fig. 3-1, the correlation function can become noisy further out along the 

lattice. In order to increase the statistics, the correlation function is “folded” before 

the analysis is performed. In other words, C{t) and C(T — t) are averaged. The 

resulting energies were used to determine the energy-momentum dispersion relations.
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Run 1 2 3 4 5 6 7

^9

1.51
6.0
8.0

1.528
7.5
7.0

1.514
7.5
8.0

1.544
8.72
6.65

1.522
8.83
7.44

1.514
7.52
8.06

1.508
7.43
8.42

Table 3.1: Input parameters for the five dynamical simulations performed in this 
tuning procedure. The bare quark mass is atnig = —0.057 for all runs.

3.4 Simulation Details

This study was carried out on 8  ̂ x 48 and 8  ̂ x 80 anisotropic lattices with a spatial 

lattice spacing ~  0.2fm and a target anisotropy ^ =  6. The bare sea quark mass 

was set to Ofm, =  —0.057 in all runs. This particular bare input parameter leads to 

quarks with mass of the order of the strange quark. A set of 250 gauge configurations, 

distributed across ten independent Markov chains, was generated for cach set of input 

parameters See Table 3.1. Valence quark propagators were generated with

the same mass as the sea quarks.

To determine the statistical uncertainties, 1000 bootstrapped sets of configura­

tions were taken and analysis was done on these bootstrapped sets. A common 

bootstrap ensemble was used for all measurements. This was necessary to ensure 

the consistency of the tuning procedure. Both point and all-to-all propagators [57] 

were used. The ground state energy Eq was determined for a range of momenta, 

n? e  {0,1, 2, 3,4, 5, 6, 9,12}, where ^  and equivalent momentum values were 

averaged over. The two-point correlator data were modelled with single exponentials 

and a ^^-minimisation was used to determine the best-fit ground state. These result­

ing values for Eo were used to generate an energy-momentum dispersion relation.

When more than three simulation points were available a plane was defined using 

a constrained-^^ fit.

All observables were estimated using the Monte Carlo method. An ensemble of 

250 gauge field configurations divided across 10 Markov chains was generated using 

the Hybrid Monte Carlo (HMC) algorithm [82].

Stout-link smearing [64] was used for the gauge fields in the fermion matrix. Two 

stoutening iterations were used, with a parameter p = 0.22. This was fixed for
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all simulations, and chosen to approximately maximise the expectation value of the 

spatial plaquette on the stout links.

3.4,1 Sim ulation tim es

8  ̂ X 48 la ttice s

The first 8  ̂x48 gauge configurations were generated for a glueball project on a cluster 

in Carnegie Mellon University and took approximately 6500 CPU hours to generate 

a set of 250 configurations. The point propagators were initially generated on single 

Pentium 4 workstations and took approximately two to three weeks to generate on 

a single machine. The point propagators were generated for 24 different momenta 

given in Table A. 1.1. 8  ̂x 48 lattices for Runs 3,4, 5 were generated using 10 separate 

Monte Carlo chains on the TCHPC “Moloch” cluster. Sec. A.l contains the technical 

specifications of this cluster. Approximately 4000 CPU hours were needed to generate 

250 configurations on this cluster.

8̂  X 80 la ttice s

The 8^ X 80 configurations were generated on the TCHPC “IITAC” cluster, see 

Sec. A .l for technical specifications. Approximately 6000 CPU hours were needed to 

generate 250 configurations on “IITAC”. It took a total of 240 CPU hours to generate 

the point propagators for 24 momenta for each set of configurations.Approximately 

4800 CPU hours were needed to construct correlation functions from all-to-all propa­

gators using time and colour dilution for 41 momenta on the 250 configurations using 

only the “IITAC” cluster (19 CPU hrs per config) and approximately 7000 CPU 

hours using only the “Moloch” cluster (28 CPU hrs per config). Using only time 

dilution took under approximately 1250 CPU hours to generate the required noise 

vectors using the faster IITAC cluster. It took approximately 2200 CPU hours using 

the Moloch cluster.
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3.5 R esults

The study was initially attempted using point propagators on lattices with 8 sites 

in each of the spatial directions and 48 sites in the temporal direction. Three initial 

sets of input parameters were chosen in the region in which it was believed that the 

tuned point would lie. These input parameters, numbered 1,2,and 3, are given in 

Table 3.1.

3.5.1 8̂  X 48 lattice

Some preliminary results using point propagators on 8̂  x 48 lattices were presented 

in Ref. [83].

9̂

The gluon anisotropy is determined from the static quark potential at a selected 

distance R  and time T. It is important to choose values of R  and T  where the 

potential is well determined and the value obtained for Cg = is stable with

respect to small variations in R  and T. The same values of R  and T  must then be 

used for all runs in order to have a consistent procedure.

Cg was measured for all of the lattices for different separations in the temporal 

and spatial directions. Figs. 3-2, 3-3 shows the values for asV"s(x, z) and agVt{t,z) 

measured for spatial separations R = 3,4 for Run 1. The error bars on these plots 

are generated using a 68% confidence interval over 1000 bootstrapped sets generated 

from the initial 250 background gauge configurations. The same bootstrapping order 

was maintained for computing Cg as for computing in order to preserve consistency. 

(T, R) = (2, 3) were chosen as the parameters used in the measurement of Cg for the 

final analysis.

Point propagators were measured with sources at four different timeslices and the 

resulting data were averaged. Equivalent momenta were also averaged over, for ex-
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Static interquark potential,Vt,R=4
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Figure 3-2: These plots show the measured static quark inter-potential for Run 1 on 
an 8  ̂ X 48 lattice. These plots are from Wilson loops measured in the {t, z) direction. 
The top plot is for a spatial separation R = 4 and the bottom plot is for separation 
R — 3. The horizontal axis shows the temporal spacing in blocked lattice units i.e. 
in units of 6at ~  a^.
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static interquark potential,Vg,R=4
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Figure 3-3: These plots show the measured static quark inter-potential for Run 1 
on an 8  ̂ x 48 lattice. These two plots are from Wilson loops measured in the (x, z) 
direction. The top plots is for a spatial separation R = 4 and the bottom plot is for 
separation R  = 3. Again the horizontal axis shows the spacing in lattice units a .̂
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ample {0,0,1}, {0,1,0}, {1,0,0}. The quark fields were not smeared for the initial 

measurements. The quark anisotropy was measured from the pseudoscalar dispersion 

as described in Sec. 3.3.2. Measurements of a(£'o were taken for Run 1 for momenta 

n? = 0,1, 2,3,4,5, 6,9,12. The resulting dispersion relation can be seen in Fig. 3-5. 

This procedure was repeated for Runs 2 and 3. The dispersion relations from Run 

2 and Run 3 can be seen in Fig. 3-6. However the data for Run 3 was extremely 

noisy and any attempts at a straight line fit resulted in large values. It was de­

cided to repeat the procedure using smeared quark fields in an attempt to reduce 

contamination from higher order states.

Sm eared vs Unsm eared

The smearing procedure is described above in Sec. 2.13.2. The quark fields were 

smeared with five iterations using a weighting of 0.1 in each spatial direction. The 

effect of the smearing procedure can be seen in Fig. 3-4 which compares an effective 

mass plot from unsmeared quark fields with one from smeared quark fields. Fig. 3-7 

also shows the difference in the form of a sliding window fit for momentum n? = 3. 

This plot also shows the effect of smearing on the resulting x^/Ndj  values. Some 

of the lower x^/Ndj  for the smeared data can be attributed to the extra noise in 

the correlation functions from the smeared fields. An attempt was made to fit over 

an increased number of timeslices by fitting the correlation function to a double 

exponential rather than a single exponential function, C{t) =  Ae~^°^ + H-
^g-£o(T-t) _|_ Q^-Ei{T-t) However it was found that the resulting fits were very 

sensitive to the choice of fit range and the number of timeslices that could be fitted 

over to give a reasonable value was not much greater than for the single exponential 

fit. For example, an attempt to fit momentum =  0 on Run 1 with a double 

exponential fit between timeslices [8,14] gave a value of atEo = 0.069 ±  0.006 with a 

X^/^d.f = 0.86 whereas a fit between timeslices [9,15] gave a value of atEo = 0.522 ±  

0.005 and a x^l^d.f = 0.44. These fits further out the lattice were not consistent 

with a visual inspection of the effective mass plot. When the fitted parameters were 

substituted back into the model for C{t), the result differed significantly from the
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Figure 3-4: These plots show the effects of smearing on effective mass plots. A fit 
was attempted on both smeared and raw data sets between timeslices 19 and 24. 
The results for the smeared data was 0.114 ±  0.001 with a large x^/Nd.f ~  12.For 
the unsmeared data the fit was 0.121 ±  0.001 with a x^/^d.f ~  3. Both these fits 
were attempted on 8̂  x 48 lattices for momentum = 0 and with input values 
corresponding to Run 1 in Table 3.1. The horizontal axis is given in units of at-
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Dispersion Relation. Run 1. Unsmeared
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Figure 3-5: This plot is an initial attem pt to measure for Run 1. The quark 
fields were unsmeared and momenta to n? = 12 were measured. A straight line fit 
was attem pted to all of the points. Note that this plot was only a preliminary plot 
and later fits were performed to only the first three momenta. The result from this 
particular fit was a value of ^ =  4.84 ±  0.06 with a x ^ /^d .f — 4.14.
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Dispersion Relation. Run 2. Unsmeared
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0.25

0.2

0.15o

0.05

2 4 6 8 10 120

Figure 3-6: Pseudoscalar dispersion relations for Runs 1 & 2. These plots show 
momenta up to 'n? =  12. The results from these fits were discarded due to the high 

values and new fits were made using smeared correlators.
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Figure 3-7: These plots show the effects of smearing on shding window fits and on 
the associated value for each effective mass fit. The top plot shows the effect of 
smearing on the sliding window fit obtained for an 8̂  x 48 lattices for momentum 
n? = 3 and with input values corresponding to Run 1 in Table 3.1. The bottom plot 
compares the corresponding values for each fit for the smeared and unsmeared
cases. The dotted is included to highlight x^/Nd.f- The horizontal axis is given in 
units of at-
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original da ta  out towards the centre of the lattice. It was found th a t choosing a fit 

range close to  the origin of the lattice, for example, choosing a range of [2, 8] gave 

atEa  =  0.111 ±0.005 with x ^ / ^ d . f  =  4.9/5 which agreed with the value for the single 

exponential fit. Due to the sensitivity of the fitted parameters to the fit range it was 

decided to continue using single exponential fits. The single and double exponential 

fits for Run 1 for =  0 are shown in Fig. 3-8.

Figs. 3-11 and 3-12 show four pseudoscalar dispersion relations resulting from 

analysis of the smeared quarkfields for Runs 1,2 and 3. The first three plots are 

preliminary plots in which fits were attem pted up to a momentum of — 12. The 

fits th a t were used to obtain the anisotropy were made only up to a momentum of 

=  3. A more accurate dispersion relation for momenta up to =  6 along with 

the effective mass plot for n? =  4 can be seen in Fig. 3-10. Measurements of 

used in the eventual tuning procedure were taken from more precise fits using ground 

state masses extracted from momenta =  {0 ,1 ,2 ,3}, for example the last plot in 

Fig. 3-12. The resulting values for are given in Table 3.4. The simulation closest 

to the “tuned point” corresponded to Run 2.

The measurements of and for the first three runs were then combined as 

explained in Sec. 3.2. The resulting scatterplot shown in Fig. 3-14(2) is extremely 

noisy. Another set of gauge configurations were generated with input param eters 

^g) corresponding to the central values obtained from the scatterplot. This point 

is denoted as Run 4 in Fig. 3-14(z) and in Table 3.1. Cg) were again measured over 

the bootstrapped samples for Run 4 and were found to be 6.47±0.05 and 0.985±0.005 

respectively. A c o n s t r a in e d - f i t  was made using values all four available runs (Runs 

1, 2 3 4). The resulting scatterplot is shown in Fig. 3-14(n). This gave simulation 

point for Run 5. The procedure was repeated again and the renormalised output 

values were found to be (^^, Cg) =  (5.80 ±  0.05, 0.995 ±  0.003). Another constrained- 

fit using all five simulations was made and again this can be seen in Fig. 3- 

This scatterplot was not vastly different from the scatterplot obtained using 

only the previous four runs. The spread of points has become somewhat smaller 

but was still significantly large. To get a measure of the spread of the intersection
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point, histogram s were obtained by projecting the points into the respective axes and 

binning the data, see Fig. 3-16. At this point it was decided th a t 48 timeslices were not 

sufficient to  allow contributions from higher order states to die off in the correlation 

functions so it was decided to go back and repeat the procedure for lattices with 80 

sites in the tem poral extent. A rough plot was later made using the unsmeared quark 

d a ta  and it is included here in Fig. 3-9 for the sake of comparison with the results 

from the smeared quarks da ta  e.g Fig. 3-14.

3.5.2 8̂  X 80 lattice

A simulation was performed on 8  ̂ x 80 lattices at point 5 in Table 3.1. Both point 

and all-to-all propagators, [57], were used for the initial run. All-to-all propagators 

were determ ined for a  to ta l of 41 momenta up to n ?  — 6, See Table A .1.1 for a list 

of these momenta. The propagators were first generated with 50 eigenvectors for 

Run 5 and then with no eigenvectors. It was determined th a t the extra com putation 

involved in the generation of the eigenvectors did not justify the very small change in 

the quality of the resulting signal. Subsequent runs did not utilise any eigenvectors. 

The noise vectors were first generated using only tim e dilution and then by using 

both  tim e and colour dilution. Fig. 3-17 shows the effect of the different dilutions for 

an individual correlator. Fig. 3-18 shows the effect of the different dilution levels on 

a resulting effective mass plot. It can be easily seen th a t addition of colour dilution 

significantly reduces the noise. Time and colour dilution with no eigenvectors was 

used for the remaining measurements.

An immediate improvement in the quality of the fit due to  the longer tem poral 

extent of the lattice was observed. Sliding window fits were used to determine the 

optim al fit ranges to  the correlator data. An example of such a plot is given in 

Fig. 3-19. The fit ranges chosen are given in Table 3.3. The ground state  energy 

was determ ined from fits over at least 15 timeslices and was stable with respect 

to  changes in tm in- The effect of the longer lattice is illustrated in Figure 3-20. It 

shows th a t the values of Ui E q extracted from the shorter lattice are overestimated due 

to contam ination from higher order states. The stability of the sliding window plots
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Figure 3-8: Effective mass plots for Run 1. Quark smearing has been used. For 
the single exponential fit a fit range of [19,23] was used and the resulting value 
atEo =  0.115 ±  0.001 was extracted with a X^/^d.f =  13/3 for the fit. For the double 
exponential fit, the fit range used was [2,8], atEo = O .llliO .005 with x^/^d.f  = 4.9/5. 
The horizontal axis is given in units of
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Initial Scatterplot - U nsm eared  quarks  
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Figure 3-9; This plot shows the resulting scatterplot from the first three runs. Each 
point on the graph represents an intersection point from the two unconstrained planar 
fits with the target anisotropy for a particular bootstrap.
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Figure 3-10: The left plot shows the effective mass for degenerate quark mass atiriq = 
—0.057 momentum n? — 4. The fit range is [14:20] with a x ^ / ^ d . f  = 0.81. The 
horizontal axis is given in units of at. The right plot is a pseudoscalar dispersion 
relation with a x^ / ^d . f  = 0.14. Both come from simulation param eters at point 1 on 
Fig. 3-14 using point propagators and smeared quark fields.
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Dispersion Relation. Run 1. Smeared
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Figure 3-11: These plots show initial attempts at plotting dispersion relations ob­
tained from the smeared quarks on Runs 1 and 2 on the 8̂  x 48 lattices. Note that the 
values of used in the generation of the scatterplots were taken from more precise 
fits using only momenta n? =  {0,1, 2, 3}.
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Dispersion Relation. Run 3. Smeared
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Figure 3-12: These plots show initial attempts at plotting dispersion relations ob­
tained from the smeared quarks on Run 3 on the 8̂  x 48 lattices. The bottom 
plot shows a fit for Run 3 using only the first 4 momenta. This fit gives a value of 

= 5.18 ±  0.08 with a x ^ / ^ d j  = 2.6. The plot on the top shows a fit on momenta 
up to n? = 12 and the value obtained is = 6.05 ±  0.03 but with a x^/^d.f  — 45.7.
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Dispersion Relation. Run 4. Smeared
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Figure 3-13: Dispersion relations for Runs 4 and 5. The measured value for is 
6.48 ±  0.05 with a x^/^d.f = 2.25 for Run 4 and 5.88 ±  0.10 with a x^/^d.f = 0.19 
for Run 5.
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Figure 3-14; This figure shows the first two steps in the progression of the tuning 
procedure, (i) shows the scatterplot for a fit to the first 3 sets of configurations, (ii) 
shows a fit for the first four points. Each point on a scatterplot shows an estimate 
of a tuned point from different bootstrapped samples.
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Figure 3-15: This figure shows the next stage in the progression of the tuning proce­
dure. Plot (iii) shows a fit for 5 sets, (iv) shows all 3 scatterplots together.
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Figure 3-16: Histogram of coordinates for 5-run scatterplot from Figure (3-15). The 
plot on the left is the x-coordinate, plot on the right is for the y-coordinate

however leads to the conclusion that the 8̂  x 80 lattices are sufficient to measure UtBo 

accurately. This plot also compares simulations using point and all-to-all propagators. 

The all-to-all propagators lead to improved precision in the fitted energies however 

at an increased computational cost. The central values are in agreement with the 

energies determined using point propagators but the statistical error is smaller. The 

renormalised anisotropies measured for Run 5 gave (Cg, =  (0.991(7), 6.95(8)). The 

same tuning procedure used on the 8̂  x 48 lattices was repeated for the longer lattices 

by simulating again at points 1 and 4 as together these spanned the largest area of 

the plane. Consistently good fits are found for all runs for the first four momenta 

considered {n? = 0,1,2 and 3). The renormalised quark anisotropy is therefore 

determined from fits to these momenta. Fig. 3-21 shows the resulting pseudoscalar 

dispersion relations for Runs at points 1 4 and 5. When combined with the values for 

Cg from these runs, the resulting scatterplot is shown in Fig. 3-22 by the plot marked 

R = 3 ,T  = 2.

3 .5.3

As a check on the stability of the tuning procedure, Cg was again measured using 

different values of R  and T  in the determination of the gluon anisotropy for the 

8^  X 80 lattices. Table 3.2 shows the resulting Cg for different R  and T. It can be seen 

that the values are generally quite consistent for each run. Looking more closely at
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Different levels of dilution for Run 5
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Figure 3-17: This plot shows the effect of different dilution on the correlation func­
tion measured on a single background configuration. These are pseudoscalar (pion) 
correlation functions for momentum =  0 from Run 5. See Table 3.1. Again the 
x-axis is given in units of

Time + color dilution ^
Time dilution only o
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Sliding window plot. n^=0. Run 5
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Figure 3-18: The top plot shows a fit to 173 configurations using noise generated with 
time dilution only. The bottom plot shows a fit using noise generated with time and 
colour dilution but on 250 configurations. In both plots, the left vertical axis denotes 
a t E o  and the right vertical axis gives the X ^ / ^ d . f  value for a fit back to a particular 
timeslice. t m a x  was set to 40 in both cases. The x-axis is presented in units of a t

X  values for the above plot
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/s{x)/Vt{t/^) at different (T,R)
Run (1,3) (1,4) (2,3) (2,4) (3,3) (3,4)
1 0.972(2) 0.959(3) 0.972(7) 0.965(13) 0.991(25) 1.13(8)
4 0.951(2) 0.941(4) 0.945(8) 0.926(18) 0.942(34) 0.89(9)
5 0.994(2) 0.990(3) 0.991(7) 0.998(13) 0.965(25) 1.01(7)
6 1.004(2) 0.997(3) 0.983(6) 0.994(12) 1.014(19) 1.04(6)
7 1.010(1) 1.005(2) 1.006(4) 1.003(5) 1.033(12) 1.038(22)

Table 3.2: The gluon anisotropy parameter Cg for different separations, R and times, 
T. The final results were determined from data at T = 2 and R = 3.

m̂in m̂ax
0 25 40
1 24 40
2 21 40
3 19 40

Table 3.3: Fit ranges.

the effective potential for each J? as a function of T, it can be seen that it has not 

yet reached a plateau at T = 1 , while the value for T = 3 is consistent within errors 

with that for T  = 2. (T, R) = (2, 3) were again chosen as the parameters, since this 

combination yields reasonably small statistical errors, while R  is large enough to be 

in the linear regime. Figs. 3-22 and 3-23 compare the effect of the different choices of 

R, T  on the resulting scatterplot for the unconstrained fit. The plot shows that the 

anisotropies are insensitive to a change in R  but that increasing the value of T  from 

2 to 3 leads to large statistical uncertainty, particularly in the gluon anisotropy.

The same fit ranges and smearing parameters were chosen for all simulation points 

in order to obtain a consistent determination of the dispersion relation. The final fit 

ranges are given in Table 3.3.

3.5.4 Simulation with tuned parameters

Applying the plane fit procedure of Sec. 3.2 to a subset of configurations of Runs 

1, 4 and 5 preliminary, tuned parameters = 8.061?,^° = 7.52^15 were obtained. 

This point is denoted as Run 6 on the relevant plots. 250 configurations were then 

generated with these parameters, and Cg and determined using the same values for
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Run 1, n^=l
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® ® ffi m _
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t . m i n

Figure 3-19: A typical m̂in plot, showing the energy for momentum =  1 on run 1, 
8̂  X 80 lattices from fits to time ranges tmax — 40 for various m̂in• A stable ground 
state energy determination, with a good is achieved for 22 < tmin < 30.

R, T  and fit ranges as in Sections 3.3.1 and 3.3.2. It was found that Cg = 0.98316) =

6 .2119). It was found that both quark and gluon anisotropies were within 3% of the 

target value of 6. Although the anisotropies were not equal within statistical errors, 

it was noted that there are still systematic uncertainties at the percent level, in 

particular for ^g, as shown in Table 3.2. For example, li R = 3, T  =  3 was chosen it 

was found that Cg = 1.01(2).

The plane fit procedure was repeated to include the new information from Run 

6. Figure 3-24 shows the resulting scatterplot determined on the 8̂  x 80 lattice from 

runs 1, 4, 5 and 6. A new scatterplot, Fig. 3-24 was obtained. The intersection points 

shifted in a direction to move Cg and even closer to the target anisotropy. The 

corresponding histograms are presented in Fig. 3-25. A final two input parameters 

of = 7.43 and = 8.42 were chosen, and this point is denoted as Run 7 in the 

relevant tables. The renormalised values mea;Sured at simulations at this point were 

Cg =  1.006(4) and = 5.68(4).
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0.08
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■ 8^x80 point
♦ 8^x80 all-to-all0.06
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2
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Figure 3-20: A comparison of the dispersion relations determined from an 8  ̂ x 48 
lattice and an 8  ̂ x 80 lattice. The solid lines are the best fits and the dotted lines are 
the 68% confidence levels. The figure also shows a comparison of all-to-all propagators 
and point propagators on the same (longer) lattice. The plot shows th a t the ground 
state energies have not reached a plateau on the shorter lattice. On the longer lattice 
the all-to-all and point d a ta  agree, while higher precision is achieved with all-to-all 
propagators. These measurements were done for the Run 5 parameters.

The information from the simulation at point 7 was combined with the other 

four point (1,4, 5,6) to  determine the scatterplot presented at the top of Fig. 3-26. 

The measurement obtained from this scatterplot gave a new set of input parameters 

—  (8-22laoi 7.64lo;o9). Two unconstrained fits were also attem pted using the 

nearest points in order to compare the resulting scatterplots. These are shown at the 

bottom  of Fig. 3-26 for (1, 6,7); and the top of Fig. 3-27 for (5,6, 7). It can be seen 

th a t the results from all three fits coincided with each other. All three scatterplots 

are plotted on top of each other for the bottom  plot of Fig. 3-27.

It was decided th a t the fitting procedure had resulted in input param eters th a t 

were sufficiently tuned and further simulation was not performed at the values ob­

tained from the new scatterplot.

In order to  get a rough idea of the physical scales of these lattices, the pion 

mass, the rho mass and the string tension were computed. For Run 6, the measured
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Figure 3-21: Dispersion relations from runs 1, 4 and 5 on 8  ̂ x 80 lattices using all- 
to-all propagators. The solid line is a fit to the four points and the dotted lines are 
the 68% confidence levels. The quahty of all three fits is very good with x ^ / N d . f .  — 
2 .0 /2 ,1 .9 /2 , 2.0/2 for runs 1,4 and 5 respectively.

values obtained were =  0.066(1) and atrUp =  0.120(5), which gives m,r/?^p =  

0.54, while a crude measurement of the string tension from the gives =  0.2fm. 

This crude measurement was performed by measuring the interquark potential for 

large separations and fitting it to the linear part of the Cornell Potential. More 

precise measurements of the lattice spacings were performed in the study of Karsch 

Coefficients in Chapter 4 and the m ethod will be discussed further in Section 4.2.

3.6 Conclusions

It was found th a t the original (8^ x 48) lattices used were too short in the time 

direction to allow a reliable determ ination of ground state energies, which were found 

to be systematically high, in particular for higher momenta. This led in tu rn  to 

systematically high values for The adoption of lattices w ith longer time extent 

was a crucial step in the procedure. As Table 3.3 shows, the optim al fit ranges were 

generally found to be beyond the range of the shorter lattice.
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Unconstrained fit. 8^ x 80 lattice,R=3,T=2 
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Figure 3-22: Tuned values of input parameters determined from the plane fit
procedure on the 8̂  x 80 lattice. The plots show the results for different values of T  
used to determine the gluon anisotropy when /? =  4. Each point corresponds to one 
bootstrap sample. A similar plot is shown for i? = 4 in Fig. 3-23.
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Unconstrained fit. 8 x 80 lattice,R=4,T=2
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Unconstrained fit. 8 x 80 lattice,R=4,T=3
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Figure 3-23: Tuned values of input parameters (^g,^g) determined from the plane fit 
procedure on the 8̂  x 80 lattice. The plots show the results for different values of 
T  used to determine the gluon anisotropy when R = 3. A similar plot is shown for 
R = 3in  Fig. 3-22.
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8̂  X 48 8̂  X 80
Run ^9 ^9

1 0.991(3) 4.98(6) 0.972(7) 5.54(6)
2 0.986(3) 6.27(4)
3 1.001(3) 5.18(6)
4 0.985(5) 6.47(5) 0.945(8) 7.08(5)
5 0.995(3) 5.80(5) 0.991(7) 6.95(8)
6 0.983(6) 6.2(1)
7 1.006(4) 5.78(4)

Table 3.4: Table of measured output anisotropies at each of the run points. The 
errors are statistical only.

The first attempted tuned point was found to lie marginally outside the triangle 

used for the plane fit procedure, so the end result was based on an extrapolation rather 

than an interpolation. This increases both the statistical and systematic uncertainties 

of the determination. To avoid this problem, it is important to choose a large enough 

triangle to start with, so that successive parameter determinations are always based 

on interpolations.

The tuned parameters (î °, were determined with a statistical uncertainty of 

1% and 3% respectively from the ensembles of 250 configurations. In addition, there 

are three main sources of systematic uncertainties:

1. The R  and T  values used in the determination of the sideways potential, and 

the fit ranges used in the determination of the pseudoscalar dispersion relation. 

Since the fit ranges are chosen to give stable ground state energies, it can safely 

be assumed that the latter is a small effect. The effect of varying R is also 

small, as shown in Figs. 3-22 and 3-23. There may be a systematic error arising 

from the choice of T, but this is obscured by the larger statistical uncertainties 

in the T = 3 data, particularly in the direction.

2. Lattice sizes. The pion dispersion relation is unlikely to be strongly affected 

by the finite lattice volume, but the static quark potential may contain finite 

volume errors which affect our results. Simulations at the tuned point on larger 

volumes, could be used to determine whether this is a significant issue.
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Constrained fit. 8^ x 80 lattice
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Figure 3-24: As in Fig 3-23. The figure shows the results from a plane fit using 
param eters from runs 1, 4, 5 and 6 . The point at the centre of the scatterplot, at 
('̂ 9 )^ 9 ) =  (8-42, 7.23), indicates the result of the best fit.

3. Nonlinearities in the dependence of ĝ) on ^°). The final fit to  five points 

shows no evidence of any significant nonlinearity. If this were found to be a 

serious issue in any future simulation, a two-step procedure may be adopted 

where a smaller triangle centred on the preliminary tuned point is used in the 

second step.

Some prehminary results using the param eters corresponding to point 6  in Fig. 3- 

24 were presented in Ref. [84, 85, 8 6 ]. Further results using the more accurately 

tuned Run 7 were presented in Ref. [87].
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Figure 3-25: Histograms for point 7
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Constrained fit, 5 points. 8 x 80 lattice

o cr

Unconstrained fit,points 1,6,7. 8 x 80 lattice
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Figure 3-26: The top figure shows the results from a plane fit using parameters from 
runs 1, 4, 5, 6 and 7. The other plot is an unconstrained fit to a sets of three points, 
namely (1,6,7). Two similar plots are shown in Fig. 3-27.
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Unconstrained fit,points 5,6,7. 8^ x 80 lattice 
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Figure 3-27; The top figure shows the results from an unconstrained plane fit using 
parameters from runs (5,6,7). The bottom plot last plot is a superposition of the 
top plot and the two plots from Fig. 3-26. The fact that the unconstrained fit using 
point 1 agrees with the unconstrained fit using point 5 gives an indication that the 
linear model approximation used is valid.
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Chapter 4

Finite Temperature QCD

One of the most challenging issues in particle physics is to study QCD in extreme 

conditions. Soon after the discovery of QCD, asymptotic freedom was used to argue 

that matter at high energy density will be weakly coupled [88]. Thus, under these 

conditions, hadronic m atter will deconfine into an amorphous soup of gluons and 

quarks. Under the Standard Model of Cosmology, all m atter in the universe existed 

in the form of this Quark Gluon Plasma (QGP) until ~  1/j.s after the big bang. It 

is also considered that this state may exist at the extreme conditions found inside 

the cores of dense neutron stars. Experiments at the Relativistic Heavy Ion Collider 

(RHIC) have been conducted and have been concluded by many theorists to have 

provided sufficient evidence as to the existence of the QGP [89, 90]. The ALICE 

experiment at CERN hopes to provide further probes into the properties of the QGP

[91].

Finite temperature studies have developed into a large subfield of Lattice QCD

[92]. One reason for this is that phase transitions can only be studied non-perturbatively. 

Another reason is that the non-perturbative nature of non-Abelian quantum field the­

ories means that the physics is non-perturbative beyond the length scales l / g ‘̂ {T), 

where g^{T) is the gauge coupling [93]. As such, lattice QCD remains the only tool 

by which one can hope to make reliable predictions from first principles.

Finite temperature field theory is defined by the Matsubara formalism for finite 

temperature statistical systems. The temporal coordinate is replaced by This
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coordinate is analogous to Euclidean time. The canonical partition function of such 

a system can be written as

(4.1)

where H  is the Hamiltonian and S'[0] =  dx4 f  d^xL{(j),d^(j)). This is formally

equivalent to  the path-integral representation of a Euclidean field theory. Following 

on from this, it can be seen th a t the tem perature will be defined by the temporal 

extent of the lattice, i.e.

traction of reliable information from numerical da ta  for correlators becomes increas­

ingly difficult with increasing tem perature. Noisy tem poral correlators are hampered

the inverse tem perature. This can lead to  difficulties in isolating the ground state 

contributions from the higher state  contributions The Maximum Entropy Method 

[94] has been utilised in extracting the spectral density from such noisy correlators.

finite action in the deconfined phase and as such a “wraparound” quark propaga­

tor may yield a finite expectation value. Due to  this contribution, the correlators 

of certain meson-like operators e.g. charmonia, my be drastically changed after the 

deconfinement transition [95]. There are two im portant factors when studying corre­

lators at finite tem perature: the granularity of the lattice in the tem poral direction 

and the physical extent of the lattice in the tem poral direction. It can be easily seen 

from Eq. 4.2 th a t reducing the lattice spacing at allows one to  simulate at higher 

tem peratures while keeping Nt fixed. Increasing the number of lattice points while 

keeping the lattice dimension fixed results in a substantial increase in computational 

cost. Anisotropic lattices allow one to decrease the lattice-spacing in the temporal 

direction only in order to reduce this cost.

(4 .2 )

where Nt is the number of timeslices and at is the tem poral lattice spacing. The ex-

further by the fact th a t the tem poral extent of the system is physically limited by

It should also be noted th a t a single coloured quark state  is allowed as a state with

In full QCD with two fiavours of dynamical quarks, thermodynamic quantities on
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coarse lattices have been found to show a large lattice spacing dependence [96, 97, 

98, 99]. Isotropic lattices were used in the quoted studies.

Anisotropic lattices provide an efficient calculation method for thermodynamic 

quantities.

4.1 Equations of state

The equations of state for the QGP must be determined in order to understand its 

underlying properties. Perturbation theory is not entirely suitable in the required 

regime due to the large strong gauge coupling. There are two separate approaches 

in lattice theory to solving these equations. One method requires the use of Karsch 

Coefficients [100, 102]. The measurement of these coefficients is the subject of this 

study. The second method is the integral method [101]. This method has a number 

of disadvantages in that scaling violations exist and it is also computationally expen­

sive. A number of different simulations are required for each quark mass for a given 

temperature.

The calculation of the energy density e and pressure p is of central importance 

to the investigation of the phase transition from hadronic m atter to the QGP. These 

observables are defined as derivatives of the partition function Z  with respect to 

temperature, T, and volume, V

frp. 1 dlnZ
=  - 7 7 da)

^  dlnZ  p{T) = T (4.3)

Following on from Eq. 4.3, the temperature and volume must be independent 

variables. This is achieved by keeping the temporal and spatial lattice spacings 

independent so that

V, = ( N .a . f ,  T = ^ .  (4.4)
Ntat

Using
d  _______________ , d  ^  a s  d

d ( ^ )  N t a t d ^  d V s  3 { N s a s ) ^  d us
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and

(4.6)

Eqs 4.3 can be re-written in the form

e(T) =
/  dS

axid

p{T) =
dS

3N^Ntalat \  da at

(4.7)

(4.8)

where, as usual, ( ) denotes the average over the ensemble. Using the transformation

A
da. at da.

1  A
at

Eq. 4.8 can be written as

(4.9)

p{T) =
/  dS

.

ZN^Ntalat \  

e(T) a s

OS
SN^Nta^at \  dag

dS
SmNtâ at \  das

(4.10)

Note that although the renormalised anisotropy measured from the pure gauge sector, 

^g, will coincide with the renormalised quark anisotropy, for any tuned run; in 

general they will not coincide. Therefore, for the remainder of this study =  

2 ( ^ 9  +  ^g) is taken as the renormalised anisotropy value. The gluonic and fermionic 

parts of the action may be studied separately, i.e. S =  Sg +  Sq. The relevant actions 

from Eqs. 2.57 and 2.53 are repeated here for convenience.

C [ 5 (1 + 0 ;)
^9 -  CO 

So 12u^ *
1 (R)

(4.11)
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and Sq =  ipMip with

Mxp I  (^moat +  r +  ip{x)

+  ~  [(7 0  -  r)Ut{x)ip{x +  i) -  ( 7 0  +  r )t //(x  -  i)'il){x -  i)
H 

1 1
CO fx, / . ^

2 ^ 2
( - 7 i -  4s)Ui{x)^p{x +  z ) ~  ( - 7 i +  4:s)Uj{x -  i)^p{x -  i)

— -  ( { ^ 1 1  -  s)Ui{x)Ui{x +  i)'ip{x +  2i) -  ( -^ 7 j +  s )Uj (x  -  i)C//(x -  2i)2p(x -  2i)
u ,  V 12 12

(4.12)

When the fermion fields in the partition function are integrated out exphcitly, an 

“effective” fermion action can be defined as

Sf =  In det[M], (4.13)

or

S f  =  Tr[lnM], (4.14)

The identity

leads to

9(Tr In M )
dx dx

(4.15)

(4.16)

and similarly for ds,
da.

Prom this point on the input mass is assumed to be the dimensionless quantity 

mo =  moat- Ut is fixed to unity. Working in terms of dimensionless lattice units the  

derivatives in Eqs 4.7 and 4.8 involve the quantities which can be
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w ritten as

d M  f  drriQ 
ip =

da

and

das (^q)^ da, 

1 1<
Us dUs

1 8 5  d e , \' ̂ {x)
E 2 -  2

( - 7 i -  As)Ui{x)'ip{x + i ) ~  ( -7 i +  4 s )[ //{x -  i)'tp{x -  i)

-  s)Ui{x)Ui{x + i)ip{x + 2i) -  ( ^ 7 i +  s)Uj{x -  i)Uj{x -  2i)'ip{x -  2i)

1 1 d u s  

d a s E 2 2
( - 7 i -  As)Ui{x)'ii){x +  0  -  ( - 7 i +  4 s )f //{x -  i)'tp{x -  i)

+  -
1

Uo V 12
(T^7i -  s)Ui{x)Ui{x +  i)'4){x +  2i) -  (-^7 i +  s)Ul{x -  i)U^i(x -  2i)il){x -  2i)

12

(4.17)

d M  ( drriQ
-xjj =

1 8 s

1 1 <  
(̂ 0 ) 2 Us d^+ E 2 ' ^ 2

(g7i -  4s)Ui{x)^l){x + l ) ~  ( -7 i +  4s)C//(x -  i)i}{x -  i)

— -  ( { ^ l i  -  s)Ui{x)Ui{x + l)'ip{x + 2i) -  ( - ^ 7 i +  s)Ul(x  -  i)Ul(x -  2i)i}{x -  2i) 
u .  \  i z  I z

1 1 d u s

^q “ s E (^7i -  As)Ui{x)'ip{x +  i) -  (^7i +  4 s ) t / /{x -  i ) ^ {x  -  I)

+  -
Us

( ( ^ 7 i  -  s)Ui{x)Ui{x +  +  2i) -  ( ^ 7 i +  s )[//(x  -  i)[ //(x  -  2i )̂ Ij{x -  2i)

(4.18)

Similarly for the gluonic part of the action,

dSq dCd̂+ d̂+
+  P

d u s  

-0

buj

3wf 1 2 txf

1 {R)

p i 20{l+u)^ _ ± _ q { R )  
Sul  ̂ 2ul ^

8
1 2 u l

a(R)

(4.19)
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The coefficients, must be measured in order

to determine the pressure and energy density of the system. These are the Karsch 

Coejficients.

4.2 D eterm ination  o f la ttice  spacings

The Karsch coefficients contain terms which are derivatives of input quantities with 

respect to the measured spatial lattice spacing. Therefore it is necessary to determine 

the lattice spacing for all of the simulations. Two different methods were used. In 

the following sections a description of both methods used are presented. A number 

of tables and figures are presented in this chapter to assist in the explanation of the 

steps involved. The remainder of the relevant tables and figures are presented in 

Appendix B.

4.2.1 Interquark potential

The static qq potential can in principle be determined by calculating the limit [17]

V{R) = -  lim
T —»oo

^ \n W (R ,  T) (4.21)

where W{R^ T)  is the expectation value of the Wilson loop with spatial and temporal 

extension R  and T  respectively. The relationship between Wilson loops and the



ground state potential V{R)  can be written as

W{R, T)  = C{R)e + “excited state contributions” , (4.22)

where C{R)  is the overlap with the “ground state” . The static potential can be

obtained from

where T is selected as the smallest time on which the excited states become negligible. 

Alternatively, a single exponential fit of the form

W{R,T)  = Ae~^\  (4.24)

can be made to the data across a number of timeslices order to extract the parameter

B  «  atV (x, t).

4.2 .2  C ornell P oten tia l

A first attempt was made to determine the lattice spacing via a fit to the static 

interquark potential. This phenomenologically QCD-motivated form of the potential 

consists of a term which is due to to the potential induced by one-gluon exchange 

between the quark and the anti-quark and a linear R  term which is the confinement 

part of the potential. This Cornell Potential [103] can be written as

a
V{R)  =  -  +  a r  +  K,. (4.25)

Lattice artifacts in the potential due to the difference of the one-gluon exchange on 

the lattice and in the continuum are corrected by subtracting a term proportional to

5V{R) =
1
R

1

R
(4.26)

Where denotes the lattice one gluon exchange extrapolated to infinite volume

[104, 105, 106]. Alternate proposals exist for potential models which incorporate
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asymptotic freedom and linear quark confinement such as the Richardson Potential 

[1071.

For the case of partially-quenched QCD, the interquark potential is “screened” 

by pair production. String breaking will occur when the potential energy needed 

to separate the quarks exceeds the energy needed for the production of a quark- 

antiquark pair. One would thus expect a flattening out of the measured potential for 

larger separation.

Using quenched data, one can obtain an upper bound for which string breaking 

should be observable [108]. A comparison of interquark potential for quenched vs 

unquenched QCD can be seen in [109]. No evidence for string breaking was seen in 

that study for a volume of V ~  (1.5/m)^. The first observation of string breaking in 

4-dimensional lattice QCD was observed in [113] from the energy level crossing [114], 

[115] measured the distance for the string breaking to occur to be a ~  1.25/m.

Thus, a fit of V{R) to Eq. 4.25 from a lattice simulation with dynamical fermions 

will be less accurate. Finite spacing effects will affect the measurement of V{R) for 

small values of R  and string breaking will affect measurements for large values of 

R. The choice of fit range will have a significant effect on the resulting measured 

fit parameters. For the purpose of the “rough” determination of the lattice spacing 

which was done for the Tuning Project (Chapter 3), a linear fit to potential was 

made for large R and the slope was identified with the string tension.

D eterm in in g  using th e  C ornell p oten tia l

It is possible to measure a value for from a fit of V{R) to the Cornell potential 

by determining agV{R) for a range of values of R and performing a fit to the re­

sulting values. The quantity atV{R) from equation 4.23 is simply multiplied by the 

anisotropy value ^g. The coefficient of the r  term in Eq. 4.25 is called the “string 

tension” and this is the term used to set the scale from the potential.The standard 

value is generally taken to be CTgtandard = (440MeV)^. The lattice version of Eq. 4.25 

is given by

asV{R) = + crR + asVo- (4-27)
R
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with a = a^a and R = The lattice spacing can then be determined from

0.44
(4.28)

and

lGeV =
1

(4.29)
0.197 X 10-15

Steps involved in m easuring Cornell potential

The first step in determining V{R)  consists of measuring the expectation value of 

Wilson loops in the R — t plane. V{R, T) was then extracted from a plot of W{R, t) 

against t as described in Eq. 4.24. Fig. 4-1 shows a log plot of W{R,t)  for i? =  3 

for Run 6. It also shows the corresponding “effective mass” plot for V{R,t).  Note 

again that the V{R, t) in practice is not determined from the effective mass plot but 

is fitted directly to W{R, t). From Eq. 4.22 it can be seen that atV{R) can be taken 

to be V{R,t)  in the large t limit. Sliding window fits were again employed in order 

to determine the optimum fit range. Fig. 4-2 shows an example of such a sliding 

window fit and the corresponding It can be seen from the plots in Fig. 4-1

that the signal becomes noisy out near the centre of the lattice. For this reason, a 

number of different values of tmax were tried. Fig. 4-3 shows sliding window fits for 

a fit to y  {R, t) for a range of different values of tmax for Run 7 with R = 4. Fig. 4-4 

shows the corresponding for the fits. This procedure is repeated for values of

R = 1 — 7. For the purpose of illustration, a set of shding window plots for Run 1 with 

tmax =  40 for values of i? =  1 — 6 are shown in Fig. 4-5. Table 4.2.2 shows the chosen 

values of ^min and m̂ax which were used for all of the Runs. The resulting values of 

V{R) were plotted against R; an example is shown in Fig. 4-6. Finally, these plots 

of V{R) are fitted against the Cornell potential V{R),  Eq. 4.25. All possible values 

of Rmin and Rmax ^re considered. The resulting fit parameters for Run 1 are given in 

Table 4.2 and the modelled data are also plotted in Fig. 4-6 for comparison with the 

measured data. Plots and tables for the other Runs are included in Appendix B.

Taking for example, Run 1, and assuming [1,5] to be an appropriate fit-range.
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R m̂in m̂ajc
1 15 35
2 15 30
3 12 25
4 10 25
5 9 20
6 10 20
7 10 15

Table 4.1: This table shows the fit ranges that are used for determining V{R)  from 
W{R,t).

the measured lattice string tension a = 0.16480(13). This corresponds to a lattice 

spacing of = 0.18176(16) fm.

The values for the potential obtained during these simulations did not vary sig­

nificantly over the bootstraps. The result of this was that the error bars used in 

the Cornell fit were extremely small and the variance of the fit parameters did not 

vary across the bootstraps. This led to the large values obtained in the fits and 

also to the small statistical errors quoted in the tables. It is also generally accepted 

that fitting the measured potential to the Cornell potential is not the most accurate 

method for determining the lattice spacing. It can also be seen again from Table 4.2 

that the measured value for a was not stable and depended largely on the values of 

Rmax and Rmin chosen. It was decided to use a more reliable method to set the lattice 

spacings.

4.2.3 Som m er Scale

An alternate way to determine the scale of a lattice simulation was introduced in [116]. 

This method involves using the force F{r) between static quarks at intermediate 

distances, r  to define a hadronic scale ro- The implicit equation used to do this is 

determined by

^ W l r = r ( c )  = C- (4.30)
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Expectation value for Wilson loop
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Figure 4-1: This figure shows the first two steps involved in measuring the interquark 
potential. This is from Run 6. The spatial lattice spacing is R  = 3. The top 
plot shows the expectation value of the Wilson loop W{x,  t) averaged over the 1000 
bootstrapped sets of 250 configurations. The bottom plot shows the value V{x, t )  
obtained by taking the log of the ratio of W{x,  t) on adjacent timeslices. Two more 
plots showing the next stage of the procedure are given in Fig. 4-2.
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Figure 4-2: This figure shows the next two steps involved in measuring the interquark 
potential. These plots are a continuation of the two plots presented in Fig. 4-1. The 
top plot is a sliding window plot, fitting W { x ,  t )  to a single exponential between t m in  

and tm a x  =  40. The bottom  plot shows the value for the for the corresponding
fit.
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Sliding window plot for R=4 RUN 7 Sliding window plot for R=4 RUN 7
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Figure 4-3: Plots comparing the effect of choosing a different value of Înax• Above 
are shown slid ing window fits for Run 7 for a range of different values of t m a x  =  

{40, 35, 30, 25, 25, 20,15}. The corresponding values are shown in  Fig. 4-4.
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Figure 4-4: These plots show the X^/-^d.f values for the fits in the corresponding plots 
in Fig. 4-3.
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Sliding window plot for R=1 RUN 1 Sliding window plot for R=2 RUN 1
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Figure 4-5: A comparison of interquark potential measurements for different spatial 
separations. These sliding window plots show the effective potential V(R,  t) extracted 
by fitting W( R,  t) to a single exponential. For each plot, the x-axis denotes the value 
of tmin used in the fit. Tmax is set to 40 for all of the plots. The plot R = 7 is not 
included. The spatial separation for each plot is included in the title of that plot.
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Figure 4-6: F its  to  the Cornell Potential for Run 1 for all values o f i?max and R m m -  

The resulting measured f it  parameters can be found in  Tab. 4.2. Note th a t Run 1 is 
chosen merely for illus tra tive  purposes. Run 7 was the fina l tuned run.
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Range A B C X ^ / d o f
[1:7] 0.15955 (0.00006) -0.39860 (0.00011) 0.83424 (0.00017) 8.80e-|-03
[2:7] 0.15285 (0.00024) -0.46687 (0.00014) 0.88178 (0.00044) 8.02e-|-03
[3:7] 0.12166 (0.00026) -1.02717 (0.00113) 1.15409 (0.00238) 4.07e-f03
[4:7] 0.05828 (0.00065) -2.62498 (0.00143) 1.80018 (0.00778) 3.29e-|'02
[5:7] 0.11736 (0.00143) -0.61256 (0.00524) 1.10321 (0.00286) 1.44e-15
[1:6] 0.16155 (0.00002) -0.39459 (0.00004) 0.82823 (0.00006) 5.42e+03
[2:6] 0.16031 (0.00027) -0.40674 (0.00094) 0.83679 (0.00075) 5.39e+03
[3:6] 0.13181 (0.00091) -0.88324 (0.01146) 1.07595 (0.00869) 3.50e+03
[4:6] 0.03229 (0.00002) -3.16467 (0.01175) 2.03898 (0.00769) 1.42e-10
[1:5] 0.16480 (0.00013) -0.38810 (0.00026) 0.81848 (0.00039) 8.20e+02
[2:5] 0.17521 (0.00012) -0.29204 (0.00017) 0.74963 (0.00045) 1.39e+01
[3:5] 0.17820 (0.00018) -0.24664 (0.00681) 0.72586 (0.00349) 8.60e-14
[1:4] 0.16170 (0.00006) -0.39430 (0.00011) 0.82779 (0.00017) 2.19e+02
[2:4] 0.13450 (0.00018) -0.59844 (0.00004) 0.98425 (0.00054) 2.83e-|-03
[1:3] 0.15687 (0.00000) -0.40395 (0.00001) 0.84227 (0.00001) 2.31e-13

Table 4.2: Fit parameters for the fit to the Cornell potential for RUN 1. The first 
column shows the relevant fit range. The central columns show the fit parameters 
from a fit to A x  + B / x  + C . The figures in brackets are statistical errors obtained 
using a 68% confidence interval over the set of 1000 bootstraps. The final column 
shows the per degree of freedom for the best fit. The relevent plots are those in 
Fig. 4-6.

99



The force F{R)  can be determined from the potential by the discretisation of the 

derivative of the potential with respect to distance in the standard way i.e.

= (4.31)

Forward, backward and central-difference approximations were measured. The central- 

difference approximation was taken as the most accurate estimation. The values for 

the forward and backward difference provide a measure of the systematic error in­

herent in the discretisation.

It can be determined from phenomenological potential models that Tq = r(1.65) 

for Eq. 4.30 above corresponds to a value of r  =  0.49 fm. Other values of r(c) have 

been proposed. For example, for the case of short distances, a value of ri =  r(0.65) 

was introduced by [117] and it was determined that using this value resulted in 

^  =  0.51. However, as seen in Fig. 4-7, using ro would be a more appropriate choice 

as it involved interpolation for each of the finite-difference schemes whereas ri would 

necessitate an extrapolation for the backward and central difference approximations.

The plots for the measurements of F{R)  for each of the runs are presented in 

Fig. 4-7. The resulting interpolations to r(c) give rise to determinations of the lattice 

spacings given in Table 4.3. The determination of the spacing by this method agrees 

with a previous measurement from [118]. That study used the preliminary tuned 

point corresponding to Run 6 and determined the lattice spacing to be ~  0.17 fm 

from the (IP-lS) splitting in charmonium. This corresponds to a value of 0.17(1) 

fm determined using the Sommer scale with a central difference approximation for 

F{R). The errors quoted are determined from the values obtained when using the 

forward and backward difference discretisations.

4.2.4 Karsch Coefficients

The Karsch coefficients presented above in Section 4.1 are simply the partial deriva­

tives of the action input parameters with respect to the renormalised anisotropy and 

spatial lattice spacing. Attempts have been made to calculate these coefficients per-
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Average Median Low High

Run 1
Forward 0.171891 0.172228 0.167275 0.176393

Backward 0.206549 0.206900 0.203044 0.210080
Central 0.184393 0.184468 0.181959 0.186834

Run 4
Forward 0.194474 0.194823 0.190801 0.198158

Backward 0.231735 0.231887 0.230410 0.233135
Central 0.208027 0.208045 0.205795 0.210268

Run 6
Forward 0.161442 0.161640 0.156932 0.166007

Backward 0.180817 0.181129 0.176449 0.185176
Central 0.168923 0.168953 0.166396 0.171529

Run 7
Forward 0.146766 0.147003 0.141161 0.152151

Backward 0.148068 0.148860 0.138544 0.157131
Central 0.147536 0.147560 0.144190 0.150779

Run 8
Forward 0.154058 0.154249 0.148937 0.159312

Backward 0.183588 0.184044 0.178833 0.188434
Central 0.165274 0.165320 0.162601 0.167797

Run 9
Forward 0.173983 0.174267 0.169978 0.178169

Backward 0.202687 0.202948 0.199851 0.205453
Central 0.185282 0.185376 0.183336 0.187115

Table 4.3: This table shows the measurements of the lattice spacing obtained using 
the Sommer parameter ro to set the scale. The value of force used in each interpo­
lation were determined by forward, backward and central differences from the static 
interquark potential. The measurements are obtained over a set of 1000 bootstrapped 
configurations. The high and low values in the above table are obtained using a 68% 
confidence interval.
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turbatively [110, 111]. The perturbative coefficients are known to lead to pathological 

results such as negative pressure and a non-vanishing pressure gap at the deconfining 

phase in SU{3) gauge theory [119]. Non-perturbative calculations have proved diffi­

cult [112]. A study by [122] attempted their measurement for the case of staggered 

fermions using a similar procedure to one of those used in this study. [119] attempted 

to compute them from a precise measurement of the finite temperature deconfining 

transition curve.

This study attempted a non-perturbative determination of the coefficients. Two 

approaches are employed in the measurement of these coefficients. In the first ap­

proach it is assumed that the action input parameters are linearly dependent on the 

measured output parameters. Identifying this assumption with a Taylor expansion 

shows that the fitted parameters for a linear fit are the required Karsch coefficients. In 

the second approach, the measured output parameters are taken to be linearly depen­

dent on the input parameters. A matrix is defined from the resulting fit parameters 

and this matrix is then inverted in order to determine the Karsch coefficients. The 

notation used in the following sections is repeated here for clarity.

N otation :

The input parameters which are varied between the different simulations are the 

gluon anisotropy the quark anisotropy the dimensionless bare quark mass mo 

and the spatial plaquette Ug. After each simulation a number of output parameters 

are measured. The output gluon anisotropy, ^g, is determined from the “sideways 

potential” (Sec. 3.3.1). The output quark anisotropy, ^q, is determined from the 

pseudoscalar dispersion relation as explained in (Sec. 3.3.2). The lattice spacing, a^, 

is determined using the Sommer Scale (Sec. 4.2.3. The pion and rho rest-masses, m.^
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Run <7 Us m o /?
1 6.0 8.0 0.32 -0.057 1.513
4 8.72 6.65 0.32 -0.057 1.544
5 8.83 7.44 0.32 -0.057 1.522
6 7.52 8.06 0.32 -0.057 1.514
7 7.43 8.42 0.32 -0.057 1.508
8 7.43 8.42 0.32 -0.05 1.514
9 7.43 8.42 0.31 -0.057 1.458

Table 4.4: This table shows the input param eters for the quark and gluon actions for 
each of the runs used in the determ ination of the Karsch coefficients.

and rUp, are also determined. A number of composite variables are defined as:

(4.32)

r  =  (4.33)

M =  ( ^ ) ' .  (4.34)

M is chosen rather than  ^  as it is expected to be linearly related to the quark mass 

[120).

S im u la tio n  D e ta ils

250 gauge configurations were generated for each Run. The input param eters for 

each Run are given in Table 4.4.

4.3 M ethod 1

The first attem pt considers the action input parameters, 'Us, mo}, as a linear

Taylor expansion of the renormalised measured parameters, a^, M}. This
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m ethod is analogous to  the one used in [121, 122], This leads to the equations

de° 86° 56°  de°

d u g  . , ,  d u g  . d u s  . ^ d u s   ̂ ^A«, =  _ A « - + - A a ,  +  ^ A r  +  55fAM, (4.37)

* , 4 - drun .  dm n   _____ drrin ^ ,

df O
The quantities ^  etc., which are the required Karsch Coefficients, can thus be 

obtained from a simple 5d hyper-planar fit

Z  — ciXi  +  C2 X2 +  C3 X3  +  C4 X4  +  C5 . (4.39)

Four equations are needed order to perform a fit such as Eq. 4.39 meaning th a t 

at least five separate runs are needed to fit to each of the Eqs. 4.35 - 4.38 above. 

W ith more than  five runs, a constrained fit can be performed. A minimisation 

is attem pted using the Levenberg-Marquardt procedure as described in Sec. 2.11.1. 

However, the standard  procedure cannot be followed exactly as the variance on each 

run is not known beforehand. In order to work around this, an iterative procedure 

is employed in which the initial values for the variances are determined randomly. 

The fitting procedure is followed as normal and the fit param eters are determined. 

The fitted param eters are then inserted back into the original equations and a new 

estimate for the variances are determined. This procedure is then repeated until 

the results for the fit param eters converge. The variance for each run determined 

from the “best fit” values and the resulting covariance m atrix is used for each of the 

individual 1000 bootstraps. A 6 8 % confidence interval is used over the bootstraps in 

order to determine the errors.
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4.4 M e th o d  2

Considering the measured renormahsed values as a Taylor expansion o f the input 

quantities rno leads to

II+<1 (4.40)

(4.41)

A r  =
A  . 0  ^  . 0  A  A

" ' d ^ g  ‘ d u s  ' d m o
(4.42)

A M  =
5M  ,  .  9M  ^ ,0 ^ aM  . 
5^“

(4.43)

These equations can be w ritten  in  the form  of a m a trix  equation

y =  B x , (4.44)

w ith

and

/  ^ 3 ^ di^ \
d °̂ dus dm o

da.. da.. da.. da..

B — dus dm o

9LL
9 °̂ d u . dm o

8M dU d U d M
\ d °̂ < dus dm o J

'  A « ;

Afl^
X  =

A r
■>

AM y \  Amo

(4.45)

(4.46)

The required Karsch coefficients can be determined from the inverse o f the above
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7 c 70+U.U4 

' ®-0.03 6 .0 4 iS :S ^ 0.148^ ;̂^^^ 0.067^^^^ U .iZ U _0  002
8 O -^^-0.05 6.05+S:S^ U .iO O _o 003 0.0891^1];^^ U. J-Z»_o 001
9 U.ZU_o 05 6.08iS;S n 1 QC;+0.U02

U.iO<J_oo02 0.0779+n^^4^ 0  1 1 Q+U.U02
u . i iy _ o o o 2

Table 4.5: This table shows the measured quantities which are used for the Karsch fit­
ting procedure. Each quoted value is determined from fitting to the non-bootstrapped 
data. The error bars are determined from a 68% confidence interval across 1000 boot­
straps.

matrix, i.e.

/ d(.° agg \
di+ das d i - aM

d(° a^g a$g
â + da. di- aM
du. du.. du.. du..
di+ das di- dM

V
dmp dmp dmp dmp

/di+ das a r dM

Unlike the previous method, the variances of each point in the phase space can be 

determined directly from the measured variables. No iterative procedure is needed.

4.5 Results

Run 7 was chosen to be the central run around which the other runs were expanded. 

This leads to 6 equations with 4 parameters for each of the fitted values. This allowed 

the use of constrained fits with two degrees of freedom.

N ote on P vs. Ug’.

As can be seen from the actions in Eqs. 4.12 and 4.11 and also from Table 4.4 there 

are five input parameters for each run. However two of these variables, Us and (3 are 

dependent on each other. Therefore it is appropriate to take one of them to be a fixed 

parameter and consider the other one to vary. It was decided to take Ug to be the
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varying parameter and to treat /? as a constant. For the sake of comparison, the fits 

were also attempted by using /3 as a varying parameter in order to see if this affected 

the fitted values for the other coefficients. In practice, the values for (5 were tuned 

during the initial gauge generation process in order to obtain a particular value of

Us -

The coefficients for the partial derivatives of the input (3 values with respect to 

the output values, are also determined for the sake of comparison.

4,5.1 R esu lts for m ethod  1

As discussed in the previous section, this method involves starting by guessing the 

initial variances assigned to each point. A fit is performed to each bootstrap. Two 

different approaches were used for the initial guess in the fitting procedure. The 

first approach consists of performing an unconstrained fit using the “best-fit” val­

ues. These values are the measurements obtained from the original unbootstrapped 

configurations. This initial guess is then used as the starting point for each of the 

individual bootstraps for the first iteration. For each subsequent iteration, the guess 

starts with the fitted values obtained from the previous iteration. In the second ap­

proach, the same initial guess from the best-fit is used for each iteration. After each 

iteration of the procedure the fitted parameters are inserted back into the original 

equation along with the input values and the variances are determined by using the 

jackknife method over the 1000 bootstrapped data sets. For example, considering 

Eq. 4.35, the measured parameters are {A^+, Aa^, A^~, AM}. After each iteration 

the values, { ^ + > determined. Then the “modelled” value is

determined from

d£°

and the variance of is taken to be the variance of However this procedure is 

somewhat circular and does not lead to a good independent estimate of the variance. 

If the first iteration leads to a very close fit to the measured values for this in
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turns leads to a very small estimate of the variance for the next iteration. This 

in turn affects the goodness of fit measure for that iteration and will also limit 

the inverse-Hessian part of the Marquardt-Levenberg algorithm. There is a danger 

that the algorithm can get stuck in a local minimum and will not move far from its 

previous position. Various tolerance levels for convergence were also examined. The 

tolerance level is defined as the maximum change in corresponding fitted values for 

the same bootstrapped sample between consecutive iterations. It was found that the 

results did not deviate substantially when changing the tolerance level from 0.001 

through to 0.0000001.

The resulting fits from this procedure were not stable. The iterative procedure 

immediately led to very small estimates for the variances which then approached zero 

with subsequent iterations. As a consequence of this, the initial random covariance 

matrix had a large influence in which direction the minimising algorithm progressed. 

Thus the final fits for an individual bootstrap data set changed with different initial 

variances. The average values over the entire bootstrapped set was relatively stable 

in that the majority of fitting attempts gave similar answers but the final values 

were far too large for the fit to be trusted in any case. It should also be noted that 

the second approach mentioned above, whereby the same initial guess is used for 

each iteration, failed to produce any meaningful results except for the case of very 

large tolerances ~  0.01. The reason for this is that as the iterations progress the 

variances reduce as described above. With a very small covariance matrix, the fitting 

procedure will fail to move from the initial guess. Table 4.6 illustrates the fitting 

procedure for Eq. 4.37. This table shows how the fitted values change between the first 

and final iteration of the iterative procedure and also between different random initial 

variances. The values for both the average value over each bootstrap and the value for 

one specific individual bootstrap sample (labelled bootstrap 1) are presented. It can 

be seen that the fitted parameters do not change significantly between the first and 

final iteration. This is due to the jackknife estimates of the variance quickly becoming 

very small and inhibiting the fitting procedure. Considering the two different initial 

covariance matrices, it can also be seen that although the average values do not vary

109



Initial covariance m atrix 1 Initial covariance m atrix 2
1®*̂ iteration Final value Final value

Average #  1 Average # 1 Average #  1
dUa -0.0338^1j:^^^« -0.0271 -0.0382^^:^^^^ -0.0300 U . U i  1 U_o.o084 -0.0150

d a . -0.2764+^:J^^^ -0.3695 -0.262lt^;{«^ -0.3736 n O79f̂ +0.U59U
U.Z/ZD_o 0537 -0.2453

-0.0368i[j:;j^^? -0.0309 1 0 b CO 00 1 
+ 

o 
c 

b 
b 

o 
o 

o>
 a

: 
o -0.0314 -0.0270^1j;;j^^^ -0.0253

du.,
au 0.0079l^;^^l« 0.0313 0.0089l|j:"f7^ 0.0379 0.0086^[j;[;^“ -0.0083

Table 4.6: This table illustrates the effects of starting with different initial covariance 
matrices in the iterative procedure. In this case the relevant equation is Eq.4.37. 
The first column shows the coefficient in question. The second shows the result of 
the fitting procedure after the first iteration. The figure quoted is the average value. 
The error bars are obtained from a 68% confidence interval over 1000 bootstraps. 
The third column shows the result for fitting a specific individual bootstrap  sample. 
The fourth column and fifth columns show the equivalent results after the iterative 
procedure is completed. The sixth and seventh columns show the same results after 
the iterative procedure is completed after starting with a different initial random 
covariance matrix. However the respective are 0.0002, ~  7000 and ~  10000
respectively. These values call the quality of all the fits into question. These
values can also be compared with those given in Table 4.7. In particular note th a t the 
individual bootstrap values for ^  changed signs between repeats of the procedure.

greatly between the two runs, the results for the individual bootstraps can change 

significantly. However, on examining the for all of these fits it can be seen th a t

they are either too large or too small for the fitted values to have any significance.

4.5.2 Results for m ethod 2

The fitting procedure for this m ethod is more straightforward than  the previous 

method. Each of the Eqs. 4.40-4.43 are fitted in order to obtain the param eters of 

the matrix in Eq. 4.45. This m atrix is then inverted and the Karsch Coefficients are 

determined from the inverse of this m atrix as shown in Eq. 4.47. In order to obtain 

a measure of the legitimacy of this inversion procedure fit and the choice of Us over 

P, it was repeated with Ug replaced by (3. The results for fitting Eqs. 4.40 - 4.43 are 

given below in equation Eq. 4.49
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dmo /
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The 'x^ / N aa for the “best fits” in the rows in Eq. 4.49 are 9.8, 4.8, 8.3 and 3.0 

respectively. The resulting matrix inversion leads to the values quoted in Tab. 4.7. 

The fitting procedure was repeated with Us replaced by (5 in the above equations. 

The resulting fits lead to the matrix

/  ^  ^  \
d^q 90 dmo
da., da., da., da.,

Q  _  9/3 dmo
d ^ -  d ( -  d e ~  d ( -
â o â o ap amo
a u  a u  a u  a uV d^q 90 dmo /

^  n  9 “̂  1 + 0 .0 2 0  
U . z , o i _ 0  020

— 0  1Qc;+0.038 
U . i y O _ o  034 - 4 . 9 8 l ° : « ^ 4 8 . 3 1 ^ : ^

\

— 0  0 1 0 ‘'‘ °  ° ° ^  U . U i U _ o  001 - 0 . 0 5 4 1 ° : ° “ - 0 . 6 9 0 l H ^ ? 2 . 7 0 1 ° : ^ '

- o . i 4 o « : “ 5S 0 . 4 5 8 l H ^ ^ 4 . 2 3 l ° : i - 4 7 . 4 1 ^ : °

^  - o . o 8 5 l S : S S ? - 0 . 3 0 4 1 ° : “ ' - 3 . 9 6 l ° : i 3 9 . 8 l | 6 ^
/

The x^/^d.f for the “best fits” fits in the rows in Eq. 4.50 are 6.5, 3.2, 6.7 and 6.6 

respectively. Again the inversion of this matrix gives the required Karsch coefficients.

The results for the Karsch coefficients from all three different fitting procedures 

are given together in Table 4.7.
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Method 1 Method 2
Us /5
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Table 4.7: This table shows the result of the attempts to fit the Karsch Coefficients. 
The numbers quoted in the first column are the average results obtained over 1000 
bootstraps using the iterative procedure described above. The second and third 
columns show the results obtained by inverting the parameter matrix. The second 
column considers Ws, mo} as input variables compared to /3, m-o} for
the third column. All quoted errors are obtained using a 68% confidence interval



Run aq° Amo A'Ug A/3
A4 1.29 -1.77 0.000 0.00 0.036
A8 0.00 0.00 0.007 0.00 0.006
A9 0.00 0.00 0.000 -0.01 -0.050
A1 -1.43 -0.42 0.000 0.00 0.005
A5 1.40 -0.98 0.000 0.00 0.014
A6 0.09 -0.36 0.000 0.00 0.006

Table 4.8: This table shows the input values used for each of the Karsch fits. Run 7 
is taken to be the central run around which the other runs are expanded. (A(^°)a4 =  
(^q)Run 4 — ('̂ g)Run 7 etc. The first four rows of the table are used in order to find an 
initial guess via an unconstrained fit.

4 .5 .3  D iscu ss io n  o f  R esu lts

Some of the input parameters from Table 4.4 did not vary across each runs. This 

leads to a lot of the “A ” values being zero as can be seen in Table 4.8. For the 

iterative procedure, i.e. Eqs. 4.35 - 4.38, this issue is not as significant as it is for 

Eqs. 4.40 - 4.43. For the inverse matrix method only one of the runs will contribute 

to the measured value of the derivatives with respect to Ug and mo-  Ideally each input 

parameter should be different on each run. The runs labelled 1-7 were generated for 

the purpose of the Tuning Study in Chapter 3. The computational overhead involved 

in re-generating these with different input parameters was beyond the scope of this 

study. The final two simulations, labelled Run 8 &: Run 9 were then generated with 

different values of m o  and Us respectively.

The fitted values are presented together in Table 4.7. The results from the second 

column are measurements from using the iterative method. As mentioned previously, 

although the average value over all bootstraps tended to remain relatively stable, 

the measurements from individual bootstraps did vary considerably. This also led to 

discrepancies in the errors between runs. The figures in this table are quoted with the 

understanding that they were chosen as fits in which the errors using a 68% confidence 

interval were reasonable. A proportion of the fitting runs led to the measured value 

being zero within errors. As such, these figures are presented merely for the sake of 

comparison. It should be pointed out that many of the quoted numbers are similar or 

do agree within errors with those from the matrix inversion method, the individual
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fitting runs were not selected for this reason.

The third and fourth columns present the results from the m atrix inversion 

method with Ug and (3 respectively being chosen as one of the input variables. The 

X /̂A^d.f values for the initial fits before the m atrix inversion were in the region ~  3 —10 

which would be considered as moderate fits. The coefficients ^  and were zero 

within errors. was almost zero within the quoted confidence interval. It can be 

seen th a t there is a surprisingly good correspondence between all three columns. The 

only coefficients which are not consistent are ^  and and it can be seen th a t the 

former is zero for the m atrix inversion and the la tter is zero for the iterative method.

One particularly interesting result from Table 4.4 is the value for One would 

assume th a t increasing the input value would lead to a corresponding increase 

in the renormalised lattice spacing a^.  However the values from all three methods 

were negative. This could be interpreted as evidence th a t the system deviates from 

the assumption of linearity over the region of phase space th a t the simulations were 

performed. It should also be noted th a t the spatial lattice spacing is relatively coarse, 

being in the region 0.15 ~  0.2 fm and this may also contribute to an unquantified 

systematic error.

4.6 Future work

There are a number of obvious suggestions which would be used if the study was to 

be repeated. For the iterative method, the fits could be attem pted using a different 

minimisation m ethod than  the Marquardt-Levenberg. It can be postulated th a t the 

reason th a t this m ethod does not give consistent results is due to the use of the initial 

random covariance matrix. The use of algorithms such as basic steepest descent or 

conjugate gradient would not entail the use of the covariance matrix. For the case of 

the inverse m atrix method, it would be highly beneficial for the determ ination of the 

original fitted param eters if each input param eter varied for each separate run. It 

can be seen from Table 4.8 th a t only one of the input equations actually contributes 

to the determination of the derivative of the output param eter with respect to mo 

and Us-
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Chapter 5 

Concluding remarks

This thesis concerns itself with the non-perturbative study of action parameters in 

anisotropic QCD. It has shown that the action parameters can be precisely deter­

mined for dynamical anisotropic simulations using a two-dimensional plane fit. The 

tuning procedure leads to the recovery of Lorentz invariance and the tuned dataset 

can subsequently be used for a variety of physics including spectroscopy and decays.

The second part of the thesis considers the application of the techniques developed 

for determination of the action parameters to the field of finite temperature QCD. 

The equations of state of a finite temperature QCD system are paramount to the 

understanding of that system. One method of determining these equations of state 

requires the knowledge of Karsch’s anisotropy coefficients. These coefficients have 

proven notoriously difficult to calculate, both perturbatively and non-perturbatively. 

This study shows that the same datasets used in the tuning procedure mentioned 

above can also provide a basis for a non-perturbative determination of these coeffi­

cients. It is shown how the application of two different approaches can result in a 

significant increase in stability of the measurements and an associated reduction in 

statistical errors.
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A ppendix A  

A ppendix

A .l  Hardware specifications

The main computing facilities available from “TCHPC” were the clusters detailed in 

Table A.I.

A. 1.1 Tables o f m om enta used

The tables of momenta which were averaged over for the purposes of generating 

dispersion relations are given in Tables A. 1.1 and A. 1.1.
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ZI
I

Name Nodes RAM Arch Interconnect Theoretical Peak Performance
iitac.tchpc.tcd.ie 356 Dual AMD Opteron 1.4TB 64bit Voltaire Infiniband 3.4TFlops
moloch.tchpc.tcd.ie 65 Dual Intel Xeon 130GB 32bit Gigabit Ethernet O.STFlops
aegir.maths, ted.ie 32 2Dual Intel Xeon 32GB 32bit Gigabit Ethernet 0.064TFlops

Moloch Node Specifications
Processors 2
Vendor Intel
Model Xeon
CPU Speed 3.06 Ghz
Cache size LI 16Kb instruction, LI 16Kb data, L2 512Kb
RAM 2GB 400Mhz DDR
Disk SCSI 73407 MB
Ethernet 2 Broadcom BCM5703 Gigabit Ethernet

IITAC Node Specifications
Processors 2
Vendor AMD
Model Opteron 250
CPU Speed 2.4 Ghz
Cache size LI 64Kb instruction, LI 64Kb data, L2 1024Kb
RAM 4GB DDR PC3200
Disk 80GB SATA
Ethernet 2 Broadcom BCM5704 Gigabit Ethernet

Table A.l: Main computing clusters available from TCHPC



(0 ,0 ,0 )
(0 ,0 , 1) , ( 0 ,1,0 ) , ( 1,0 ,0 )
(0,1,1) , (1,0,1) , ( 1,1,0)

( 1 ,1 , 1 )
(0 ,0 ,2) , ( 0 ,2 ,0 ) , ( 2 ,0 ,0 )
(0 , 1,2 ) , ( 1,0 ,2 ) , ( 1,2 ,0 ) , ( 0 ,2 ,1) , ( 2 , 1,0 ) , ( 2 ,0 , 1) 
( 1,1 ,2 ) , ( 1,2 ,1) , ( 2 ,1 ,1)
(2 ,2 , 1) , ( 2 ,1,2 ) , ( 1,2 ,2 )
(2 ,2 ,2 )_________________________________________

Table A.2: This table shows the equivalent momenta used to generate point 
propagators. Note that not all possible momenta in the range [0 — 12] were 
used.(0, 2, 2), (0,0, 3), (0, 3,1), (1, 3,1) and equivalent momenta were omitted

(0 ,0 ,0 )_______________________________________________________________________________________________
(0 ,0 ,1) , (0 , 1,0 ) , ( 1,0 ,0 )
(0 , 1, 1) , ( 0 ,1, - 1) , ( 1,0 , 1) , ( 1,0 , - 1) , ( 1, 1,0 ) , ( 1, - 1,0 )
( 1,1, 1) , ( 1,1, -1) , ( 1, -1,1) , ( - 1, 1, 1)
(0 ,0 ,2) , ( 0 ,2 ,0 ) , ( 2 ,0 ,0 )
(0 ,1,2 ) , (0 ,1,-2 ) , (0 ,2 ,1) , (0 ,2 , -1) , ( 1,0 ,2 ) , ( 1,0 ,-2) , ( 1,2 ,0) , ( 1,-2 ,0 ) , (2 ,0 ,1) , (2 ,0 , -1) , (2 ,1,0) , (2 ,-1,0)

Table A.3: Momenta used for all-to-all propagators
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A ppendix B

D eterm ination of as

A preliminary determination of tiie lattice spacings were made by fitting the in­

terquark potential to the Cornell potential and using the fitted parameters to set 

the scale. The final determination was made by using the Sommer parameter. The 

potential plots and Cornell fit parameters which were not included in the main body 

of the thesis are included here for completeness.
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Range A B C X^dof
[1:7] 0.20089 (0.00000) -0.37904 (0.00005) 0.84123 (0.00005) 2.17e+03
[2:7] 0.19528 (0.00010) -0.43269 (0.00071) 0.87927 (0.00116) 1.98e+03
[3:7] 0.15870 (0.00117) -1.05791 (0.00773) 1.19044 (0.00873) 8.85e+00
[4:7] 0.15976 (0.00305) -1.03158 (0.03895) 1.17972 (0.01798) 4.36e-t-00
[5:7] 0.15274 (0.00843) -1.26887 (0.24462) 1.26215 (0.08859) 2.84e-14
[1:6] 0.20194 (0.00022) -0.37692 (0.00042) 0.83806 (0.00066) 1.50e+03
[2:6] 0.19950 (0.00040) -0.39968 (0.00003) 0.85433 (0.00042) 1.48e+03
[3:6] 0.15894 (0.00021) -1.05442 (0.01360) 1.18855 (0.00552) 8.85e+00
[4:6] 0.16272 (0.00541) -0.96940 (0.09121) 1.15235 (0.04575) 8.426-10
[1:5] 0.20329 (0.00005) -0.37422 (0.00006) 0.83402 (0.00011) 1.06e+03
[2:5] 0.20626 (0.00079) -0.34793 (0.00523) 0.81493 (0.00423) 1.02e+03
[3:5] 0.15749 (0.00097) -1.07394 (0.02474) 1.19939 (0.01192) 5.28e-14
[1:4] 0.20580 (0.00013) -0.36919 (0.00027) 0.82648 (0.00039) 7.97e+02
[2:4] 0.23355 (0.00050) -0.16128 (0.00296) 0.66700 (0.00093) 8.29e-17
[1:3] 0.19545 (0.00024) -0.38985 (0.00046) 0.85748 (0.00069) 1.23e-15

Table B.l: Fit parameters for the fit to the Cornell potential for RUN 4. The first 
column shows the relevant fit range. The central columns show the fit parameters 
from a fit to Ax + B / x  + C . The figures in brackets are statistical errors obtained 
using a 68% confidence interval over the set of 1000 bootstraps. The final column 
shows the per degree of freedom for the best fit. The relevent plots are those in 
Fig. B-1.
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Figure B-1: Fits to the Cornell Potential for Run 4 for all values of Rmax and Emin- 
The resulting measured fit parameters can be found in Tab. B.l.
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Range A B C X^/dof
[1:7] 0.14871 (0.00006) -0.38104 (0.00011) 0.82777 (0.00017) l.OOe+04
[2:7] 0.13811 (0.00008) -0.48678 (0.00027) 0.90184 (0.00028) 7.72e+03
[3:7] 0.10099 (0.00030) -1.16625 (0.00482) 1.22978 (0.00270) 2.29e+03
[4:7] 0.10696 (0.00056) -1.01398 (0.01062) 1.16867 (0.00745) 2.24e+03
[5:7] -0.04177 (0.00132) -6.09987 (0.02799) 2.92683 (0.02491) 1.72e-14
[1:6] 0.15129 (0.00003) -0.37587 (0.00006) 0.82002 (0.00009) 3.88e-(-03
[2:6] 0.14613 (0.00007) -0.42519 (0.00030) 0.85499 (0.00090) 3.440+03
[3:6] 0.11535 (0.00110) -0.95081 (0.00419) 1.11628 (0.00364) 1.36e+03
[4:6] 0.17650 (0.00043) 0.44838 (0.00159) 0.52581 (0.00635) 1.13e-10
[1:5] 0.15160 (0.00009) -0.37525 (0.00017) 0.81908 (0.00026) 3.81e+03
[2:5] 0.14473 (0.00021) -0.43665 (0.00283) 0.86353 (0.00134) 3.41e+03
[3:5] 0.08842 (0.00003) -1.31332 (0.00328) 1.31858 (0.00169) 2.57e-14
[1:4] 0.15741 (0.00013) -0.36362 (0.00025) 0.80165 (0.00038) 1.25e+03
[2:4] 0.13943 (0.00006) -0.49402 (0.00053) 0.90282 (0.00072) 3.43e+03
[1:3] 0.14748 (0.00000) -0.38348 (0.00000) 0.83143 (0.00000) 2.38e-ll

Table B.2: Fit parameters for the fit to the Cornell potential for RUN 5. The first 
column shows the relevant fit range. The central columns show the fit parameters 
from a fit to Ax + B / x  + C. The figures in brackets are statistical errors obtained 
using a 68% confidence interval over the set of 1000 bootstraps. The final column 
shows the degree of freedom for the best fit. The relevant plots are those in
Fig. B-2.
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Figure B-2: Fits to the Cornell Potential for Run 5 for all values of i?max and Rmm-  

The resulting measured fit param eters can be found in Tab. B.2.
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Range A B C X Idof
[1:7] 0.14902 (0.00003) -0.33200 (0.00002) 0.74841 (0.00006) 1.23e-t-04
[2:7] 0.14678 (0.00015) -0.35563 (0.00071) 0.76468 (0.00038) 1.21e+04
[3:7] 0.12250 (0.00007) -0.80187 (0.00043) 0.98114 (0.00093) 7.26e+03
[4:7] 0.05099 (0.00063) -2.61871 (0.01575) 1.71324 (0.00297) 6.46e-)-00
[5:7] 0.06079 (0.00013) -2.28213 (0.05737) 1.59724 (0.00553) 4.19e-09
[1:6] 0.15182 (0.00006) -0.32644 (0.00005) 0.74006 (0.00014) 4.86e+03
[2:6] 0.15758 (0.00001) -0.26902 (0.00147) 0.69989 (0.00103) 4.26e-h03
[3:6] 0.14469 (0.00070) -0.48461 (0.00940) 0.80878 (0.00315) 3.59e+03
[4:6] 0.04612 (0.00041) -2.72201 (0.01432) 1.75853 (0.00281) 4.72e-ll
[1:5] 0.15430 (0.00006) -0.32139 (0.00007) 0.73252 (0.00013) 2.91e+03
[2:5] 0.16865 (0.00027) -0.19009 (0.00019) 0.63827 (0.00058) 3.87e+02
[3:5] 0.18466 (0.00084) 0.04877 (0.00960) 0.51168 (0.00770) 4.69e-14
[1:4] 0.14894 (0.00006) -0.33227 (0.00008) 0.74875 (0.00014) 4.11e+02
[2:4] 0.15981 (0.00034) -0.24949 (0.00301) 0.68567 (0.00179) 3.40e-13
[1:3] 0.14453 (0.00000) -0.34114 (0.00004) 0.76204 (0.00004) 7.61e-12

Table B.3: Fit parameters for the fit to the Cornell potential for RUN 6. The first 
column shows the relevant fit range. The central columns show the fit parameters 
from a fit to Ax + B j x  -\- C. The figures in brackets are statistical errors obtained 
using a 68% confidence interval over the set of 1000 bootstraps. The final column 
shows the P^r degree of freedom for the best fit. The relevent plots are those in 
Fig. B-3.
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Figure B-3: Fits to the Cornell Potential for Run 6 for all values of i?max and i?min- 
The resulting measured fit parameters can be found in Tab. B.3.
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Range A B C X^/dof
1:7] 0.11776 (0.00005) -0.40016 (0.00009) 0.82498 (0.00014) 1.53e+04

[2:7] 0.12063 (0.00001) -0.37023 (0.00019) 0.80427 (0.00031) 1.50e+04
[3:7] 0.09626 (0.00040) -0.83240 (0.00451) 1.02303 (0.00012) 7.05e+03
[4:7] 0.05929 (0.00039) -1.83725 (0.00107) 1.41375 (0.00156) 2.86e-f03
[5:7] 0.16728 (0.00100) 1.87466 (0.01589) 0.13518 (0.00992) 2.29e-15
[1:6] 0.11839 (0.00005) -0.39890 (0.00011) 0.82308 (0.00016) 1.36e+04
[2:6] 0.12683 (0.00005) -0.31425 (0.00039) 0.76388 (0.00076) 1.16e+04
[3:6] 0.09751 (0.00018) -0.81355 (0.00497) 1.01299 (0.00207) 7.03e+03
[4:6] 0.00388 (0.00038) -3.02737 (0.00741) 1.93260 (0.00628) 6.17e-ll
[1:5] 0.12080 (0.00003) -0.39408 (0.00005) 0.81586 (0.00008) 9.24e-f03
[2:5] 0.14473 (0.00030) -0.17150 (0.00256) 0.65670 (0.00185) 1.08e+02
[3:5] 0.15265 (0.00061) -0.05185 (0.00475) 0.59361 (0.00005) 2.89e-13
[1:4] 0.11263 (0.00007) -0.41041 (0.00014) 0.84035 (0.00021) 2.98e+03
[2:4] 0.11096 (0.00005) -0.41908 (0.00025) 0.84804 (0.00009) 3.15e+03
[1:3] 0.10190 (0.00018) -0.43188 (0.00036) 0.87255 (0.00054) 6.86e-ll

Table B.4: Fit parameters for the fit to the Cornell potential for RUN 7. The first 
column shows the relevant fit range. The central columns show the fit parameters 
from a fit to Ax -\- B / x  C . The figures in brackets are statistical errors obtained 
using a 68% confidence interval over the set of 1000 bootstraps. The final column 
shows the per degree of freedom for the best fit. The relevent plots are those in 
Fig. B-4.
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Figure B-4: Fits to the Cornell Potential for Run 7 for all values of 
The resulting measured fit param eters can be found in Tab. B.4.

and Rn
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Range A B C X^/dof
[1:7] 0.13404 (0.00004) -0.39058 (0.00009) 0.80365 (0.00013) 2.73e-F03
[2:7] 0.12597 (0.00007) -0.47507 (0.00101) 0.86204 (0.00074) 7.07e+02
[3:7] 0.11830 (0.00001) -0.62631 (0.00330) 0.93256 (0.00175) 1.81e+02
[4:7] 0.11184 (0.00043) -0.78996 (0.00342) 0.99834 (0.00048) 1.08e+02
[5:7] 0.13424 (0.00123) -0.02306 (0.07277) 0.73326 (0.02735) 4.08e-15
[1:6] 0.13501 (0.00008) -0.38864 (0.00017) 0.80074 (0.00025) 1.72e+03
[2:6] 0.12767 (0.00023) -0.46062 (0.00057) 0.85142 (0.00088) 6.25e+02
[3:6] 0.11810 (0.00040) -0.62907 (0.00329) 0.93408 (0.00089) 1.78e+02
[4:6] 0.10142 (0.00058) -1.00764 (0.01020) 1.09427 (0.00261) 1.45e-12
[1:5] 0.13617 (0.00007) -0.38632 (0.00013) 0.79726 (0.00020) 2.98e-|-02
[2:5] 0.13219 (0.00011) -0.42329 (0.00023) 0.82372 (0.00037) 6.82e+01
[3:5] 0.12521 (0.00049) -0.53187 (0.00834) 0.88017 (0.00384) 3.89e-15
[1:4] 0.13800 (0.00016) -0.38267 (0.00032) 0.79178 (0.00048) 2.07e+01
[2:4] 0.13700 (0.00063) -0.39044 (0.00181) 0.79768 (0.00167) 1.99e-10
[1:3] 0 13844 (0.00009) -0.38178 (0.00017) 0.79046 (0.00026) 2.27e-12

Table B.5: Fit parameters for the fit to the Cornell potential for RUN 8. The first 
column shows the relevant fit range. The central columns show the fit parameters 
from a fit to Ax  + B / x  + C. The figures in brackets are statistical errors obtained 
using a 68% confidence interval over the set of 1000 bootstraps. The final column 
shows the degree of freedom for the best fit. The relevent plots are those in
Fig. B-5.
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Figure B-5: Fits to the Cornell Potential for Run 8 for all values of R„ 
The resulting measured fit parameters can be found in Tab. B.5.

and R„
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Range A B C X / d o f
[1:7] 0.16517 (0.00007) -0.35537 (0.00014) 0.75801 (0.00022) 1.42e+04
[2:7] 0.14736 (0.00011) -0.52453 (0.00078) 0.87820 (0.00056) 7.37e+03
[3:7] 0.11611 (0.00030) -1.09459 (0.00316) 1.15336 (0.00228) 1.46e+03
[4:7] 0.08371 (0.00093) -1.92886 (0.00901) 1.48770 (0.00312) 2.42e+02
[5:7] 0.13638 (0.00279) -0.13330 (0.11594) 0.86602 (0.02858) 1.Ole-14
[1:6] 0.16772 (0.00008) -0.35027 (0.00016) 0.75037 (0.00024) 6.37e+03
[2:6] 0.15605 (0.00018) -0.45559 (0.00201) 0.82635 (0.00074) 4.40e+03
[3:6] 0.12310 (0.00022) -0.99662 (0.00488) 1.09995 (0.00102) 1.26e+03
[4:6] 0.06009 (0.00042) -2.42188 (0.02698) 1.70517 (0.00477) 2.82e-10
[1:5] 0.16978 (0.00002) -0.34615 (0.00004) 0.74418 (0.00006) 4.64e-F02
[2:5] 0.16729 (0.00016) -0.36781 (0.00010) 0.75999 (0.00047) 4.03e+02
[3:5] 0.14922 (0.00017) -0.63933 (0.00436) 0.90302 (0.00299) 2.55e-13
[1:4] 0.17140 (0.00006) -0.34290 (0.00013) 0.73931 (0.00019) 1.22e-t-02
[2:4] 0.17809 (0.00006) -0.29286 (0.00080) 0.70091 (0.00131) 1.500-14
[1:3] 0.16892 (0.00009) -0.34786 (0.00019) 0.74674 (0.00028) 6.55e-12

Table B.6: Fit parameters for the fit to the Cornell potential for RUN 9. The first 
column shows the relevant fit range. The central columns show the fit parameters 
from a fit to Ax B j x  C . The figures in brackets are statistical errors obtained 
using a 68% confidence interval over the set of 1000 bootstraps. The final column 
shows the per degree of freedom for the best fit. The relevent plots are those in 
Fig. B-6.
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Figure B-6: Fits to the Cornell Potential for Run 9 for all values of R„ 
The resulting measured fit parameters can be found in Tab B.6.

and Rr,

131



Bibliography

[1] J. D. Jackson, Classical Electrodynamics 3rd Ed., John Wiley & Sons, New 
York and Chichester, 1998, ISBN: 978-0-471-30932-1.

[2] S. F. Novaes, Standard Model: An Introduction,'’‘‘'Paxticle and Fields” , Proc. 
X J. A. Swieca Summer School (World Scientific, Singapore, 2000), [hep- 
ph/0001283].

[3] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory, 
Westview Press (1995), ISBN: 0-202-50397-2.

[4] R. P. Feynman, Very High-Energy Collisions of Hadrons, Phys. Rev. Lett. 23, 
1415-1417 (1969).

[5] D.J. Gross, F. Wilczek, Ultraviolet Behavior of Non-Abelian Gauge Theories, 
Phys. Rev. Lett. 30, 1343-1346 (1973).

[6] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. 
Rev. Lett. 30, 1346-1349 (1973).

[7] S. Coleman, D.J. Gross, Price of Asymptotic Freedom, Phys. Rev. Lett. 31, 
851-854 (1973).

[8] M. A. Luty, J. March-Russell, Baryons from Quarks in the 1 /N  Expansion, 
Nucl. Phys. B426, 71-93 (1994), [hep-ph/9310369].

[9] U. van Kolck, L.J. Abu-Raddad, D.M. Cardamone, Introduction to Effective 
Field Theories in QCD, [nucl-th/0205058].

[10] G. Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys. 35, 1-80 (1995), 
[hep-ph/9501357].

[11] B. Ananthanarayan, Review of chiral perturbation theory, Pramana 61, 911-920 
(2003), [hep-ph/0304061].

[12] S. Sharpe, R. Singleton, Spontaneous Flavor and Parity Breaking with Wilson 
Fermions, Phys. Rev. D58 074501 (1998), [hep-lat/9804028].

[13] S. Aoki, Chiral perturbation theory with Wilson-type fermions including a  ̂
effects: N f = 2 degenerate case, Phys.Rev. D68, 054508 (2003), [hep- 
lat/0306027].

132



[14] C. Allton et al., Physical Results from  2+1 Flavor Domain Wall QCD and 
SU(2) Chiral Perturbation Theory., Phys. Rev. D78 114509 (2008), [hep- 
lat/0804.0473].

[15] D. Gross, Gauge Theory-Past, Present, and Future?, Chinese Journal of Physics 
Vol. 30, No. 7 Dec. 1992.

[16] H. Georgi, Lie Algebras in Particle Physics, Perseus Books Group, ISBN: 978- 
0738202334.

[17] H. J. Rothe, Lattice Gauge Theories. A n  introduction. World Scientific Lecture 
Notes in Physics - Vol. 74.

[18] G. P. Lepage, Lattice QCD for Novices, [hep-lat/0506036].

[19] L Montvay, G. M unster, Quantum Fields on a Lattice, Cambridge University 
Press (2003). ISBN: 0-521-40432-0.

[20] R. Gupta, Introduction to Lattice QCD, [hep-lat/9807028].

[21] N. H. Christ, R. Priedberg, T. D. Lee, Random lattice field theory: General 
formulation, Nucl. Phys. B202, 89-125 (1982).

[22] M. Liischer, Volume dependence of the energy spectrum in massive quantum  
field theories. L Stable particle states, Commun. M ath. Phys. 104, 177-206 
(1986).

[23] B. Orth, T. Lippert, K. Schilling, Finite-size effects in lattice QCD with dy­
namical Wilson fermions, Phys. Rev. D72, 014503 (2005).

[24] S. Aoki, T. Umemura, M. Fukugita, N. Ishizuka, H. Mino, M. Okawa, A. Ukawa, 
Finite-size effects o f hadron masses in lattice QCD: A comparative study for  
quenched and fu ll QCD simulations, Phys. Rev. D50, 486-494 (1994).

[25] F. Butler, H. Chen, J. Sexton, A. Vaccarino, D. Weingarten, Hadron mass 
predictions o f the valence approximation to lattice QCD, Nucl. Phys. B430 179 
(1994); Phys. Rev. Lett. 70, 2849-2852 (1993).

[26] K. Wilson, Confinement o f quarks, Phys. Rev. DIO, 2445-2459 (1974).

[27] D. H. Adams, Simplified Test o f Universality in Lattice QCD, Phys. Rev. Lett. 
92, 162002 (2004), [hep-lat/0312025].

[28] D. H. Adams, Testing universality and the fractional power prescription fo r the 
staggered ferm ion determinant, [hep-lat/0409013vl].

[29] K. Wilson, Quarks and Strings on a Lattice, New Phenomena In Subnuclear 
Physics. Part A. Proceedings of the First Half of the 1975 International School 
of Subnuclear Physics, Erice, Sicily, July 11 - August 1, 1975, ed. A. Zichichi, 
Plenum Press, New York, 1977, 69-142, Also published in Proc. Gauge theories 
and modern field theory Boston Conf. (1975).

133



[30] K. Symanzik, Continuum Limit and Improved Action in Lattice Theories (I). 
Principles and theory, Nucl. Phys. B226, 187-204 (1983).

[31] K. Symanzik, Continuum Limit and Improved Action in Lattice Theories (II). 
0 { N)  non-linear sigma model in perturbation theory, Nucl. Phys. B226, 205-227 
(1983).

[32] P. Weisz, Continuum Limit Improved Lattice Action for Pure Yang-Mills The- 
ory(I), Nucl. Phys. B212, 1 (1983).

[33] G. Curci, P. Menotti, G. Paffauti, Symanzik’s Improved Lagrangian for Lattice 
Gauge Theory, Phys. Lett. B130, 205-214 (1983).

[34] P. Weisz, R. Wohlert, Continuum Limit Improved Lattice Action for Pure Yang- 
Mills Theory(II), Nucl. Phys. B236, 397-422 (1984).

[35] M. Liischer and P. Weisz, On-shell improved lattice gauge theories, Commun. 
Math. Phys. 97, 59-98 (1985), [Erratum-ibid. 98 (1985) 433].

[36] P. B. Mackenzie, G. P. Lepaee, Viability of lattice perturbation theory, Phys. 
Rev. D48, 2250-2264 (1993).

[37] M. Alford, W. Dimm, G. P. Lepage, G. Hockney, P. B. Mackenzie, Lattice QCD 
on Small Computers, Phys.Lett. B361, 87-94 (1995), [hep-lat/9507010].

[38] H. P. Shanahan et. al.. The effect o f tree-level and mean-field improvement on 
the liqht-hadron spectrum in quenched QCD, Phys.Rev. D55, 1548-1558 (1997), 
[hep-lat/9608063],

[39] K. Wilson, J. Kogut. The renormalization qrouv and the e expansion, Phys. 
Rep. C12, 75-199 (1974).

[40] K. Wilson, The renormalization group: Critical phenomena and the Kondo 
problem, Rev. Mod. Phys. 47, 773-840 (1975).

[41] P. Hasenfratz, F. Niedermayer, Perfect lattice action for asymptotically free 
theories, Nucl. Phys. B414, 785-814 (1994), [hep-lat/9308004].

[42] P. Hasenfratz, The theoretical backqround and properties of perfect actions, 
[hep-lat/9803027vl].

[43] Y. Iwasaki, Renormalization Group Analysis of Lattice Theories and Im ­
proved Lattice Action. II. Four-Dimensional Nonabelian Su(N) Gauge Model, 
UTHEP-118 (1983). Nucl. Phys. B258, 141-156 (1985).

[44] P. de Forcrand et. al.. Renormalization group flow of SU(3) lattice gauge theory 
- Numerical studies in a two couplinq space, Nucl. Phys. B577, 263-278 (2000), 
[hep-lat/9911033].

[45] S. Necco, Universality and scaling behavior of RG gauge actions., Nucl. Phys. 
B683, 137-167 (2004). [hep-lat/0309017].

134



[46] Beinlicli, B.; Karsch, F.; Laermann, E., Improved Actions for QCD Thermody­
namics on the Lattice, Nucl. Phys. B462, 415-436 (1996), [hep-lat/9510031].

[47] B. Sheikholeslami, R. Wohlert, Improved continuum limit lattice action for 
QCD with wilson fermions, Nucl. Phys. B259, 572-596 (1985).

[48] M. Alford, T. Klassen, P. Lepage, A quark action for very coarse lattices, 
Phys.Rev. D58. 034503 (1998). [hep-lat/9712005].

[49] T. R. Klassen, The Anisotropic Wilson Gauge Action, Nucl. Phys. B533. 557- 
575 (1998), [hep-lat/9803010].

[50] C. Morningstar, M. J. Peardon, The glueball spectrum from novel improved 
actions, Nucl. Phys. Proc. Suppl. 83, 887-889 (2000), [hep-lat/9911003].

[51] H. W. Hamber, C. Min Wu, Some predictions for an improved fermion action 
on the lattice, Phys. Lett. B133, 351-358 (1983).

[52] Justin Foley, Alan O Cais, Mike Peardon, Sinead M. Ryan, A non-perturbative 
study of the action parameters for anisotropic-lattice quarks, Phys.Rev. D73, 
014514 (2006), [hep-lat/0405030].

[53] W. Bardeen, A. Duncan, E. Eichten, G. Hockney, H. Thacker, Light quarks, 
zero modes, and exceptional configurations., Phys. Rev. D57, 1633-1641 (1998), 
[hep-lat/9705008]; Phys. Rev. D57, 1633-1641 (1998), [hep-lat/9705008].

[54] C. T. H. Davies et al., High-Precision Lattice QCD Confronts Experiment, Phys. 
Rev. Lett. 92, 022001 (2004).

[55] J. Viehoff et al.. Improving Stochastic Estimator Techniques for Disconnected 
Diagrams, Nucl. Phys. Proc. Suppl. 63, 269-271 (1998), [hep-lat/9710050v2].

[56] H. Neff, N. Eicker, Th. Lippert, J. W. Negele, K. Schilling, On the low fermionic 
eigenmode dominance in QCD on the lattice. Phys. Rev. D64, 114509 (2001). 
[hep-lat/0106016].

[57] J. Foley et al.. Practical all-to-all propagators for lattice QCD, Comput. Phys. 
Commun. 172, 145-162 (2005), [hep-lat/0505023].

[58] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical 
Recipes in C, Cambridge University Press (1992). ISBN:978-0521431088.

[59] R. Fletcher and M.J.D. Powell, A rapidly convergent descent method for mini­
mization, Comput. J., 6, 163-168 (1963/1964).

[60] R. Fletcher, Practical methods of optimization, Chichester : Wiley, (2001). 
ISBN:978-0471494638.

[61] A. Hasenfratz, F. Knechtli, Flavor Symmetry and the Static Potential with 
Hypercubic Blocking, Phys. Rev. D64, 034504 (2001) [hep-lat/0103029].

135



[62] S. Diirr, Gauge action improvement and smearing, Comput. Phys. Commun. 
172, 163-186 (2005), [hep-lat/0409141],

[63] M. Albanese et al., Glueball Masses and String Tension in Lattice QCD, Phys. 
Lett. B192, 163-169 (1987).

[64] C. Morningstar and M. J. Peardon, Analytical smearing of SU(3) link variables 
in lattice QCD, Phys. Rev. D69, 054501 (2004), [hep-lat/0311018].

[65] H.B Nielsen, M. Ninomiya, Absence of Neutrinos on a lattice, Nucl. Phys. B185 
20-64 (1981).

[66] L. H. Karsten, J. Smit, Lattice Fermions: Species Doubling, Chiral Invariance, 
and the Triangle Anomaly Nucl. Phys. B183, 103-140 (1981).

[67] P. Hasenfratz, Chiral symmetry on the lattice, [hep-lat/0406033].

[68] M. Liischer, Exact chiral symmetry on the lattice and the Ginsparg- Wilson re­
lation, Phys. Lett. B428, 342-345 (1998), [hep-lat/9802011].

[69] S. D. Cohen, QCD, Symmetry Breaking and the Random Lattice, Nucl. Phys. 
B - Proc. Suppl. Vol. 140, 698-700, (2005).

[70] J. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theo­
ries, Phys. Rev. D ll, 395-408 (1975).

[71] B. Bunk, M. Della Morte, K. Jansen, F. Knechtli,Loca/iiy with staggered 
fermions, Nucl. Phys. B697, Issues 1-2, 343-362 (2004).

[72] A. Hasenfratz, R. Hoffmann, Validity of the Rooted Staggered Determinant in 
the continuum limit, Phys.Rev. D74, 014511 (2006), [hep-lat/0604010].

[73] P. H. Ginsparg, K. G. Wilson, A remnant of chiral symmetry on the lattice, 
Phys. Rev. D25, 2649 (1982).

[74] L Horvath, Ginsparg-Wilson Relation and Ultralocality, Phys. Rev. Lett. 81, 
4063-4066 (1998), [hep-lat/9808002v2].

[75] D. B. Kaplan, A method for Simulating Chiral Fermions on the Lattice, Phys. 
Lett. B288, 342-347 (1992), [hep-lat/9206013].

[76] Rajamani Narayanan, Herbert Neuberger, Infinitely many regulator fields for 
chiral fermions, Phys. Lett. B302, 62-69 (1993), [hep-lat/9212019].

[77] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B417, 141 
(1998).

[78] H. Neuberger, Overlap lattice Dirac operator and dynamical fermions, Phys. 
Rev. D60, 065006 (1999).

136



[79] R. Prezzotti, P. A. Grassi, S. Sint, P. Weisz, Lattice QCD with a chirally twisted 
mass term, JH EP 0108, 58-87 (2001), [hep-lat/0101001].

[80] R. Morrin et al.. Dynamical QCD simulations on anisotropic lattices, Phys.Rev. 
D74, 014505 (2006), [hep-lat^602021].

[81] I.T  Drummond, R.R Morgan, H. Shanahan, M. J. Peardon, Measuring the as­
pect ratio renormalisation of anisotropic-lattice gluons, Phys. Rev. D63, 074501 
(2001), [hep-lat/0003019],

[82] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo, 
Phys. Lett B196, 216-222 (1987).

[83] R. Morrin et al.. Tuning anisotropies fo r  dynamical gauge configurations, PoS 
LAT2005 (2005) 236-242, [hep-lat/0510016].

[84] R. Morrin et al., Charmonium spectral functions in N f = 2 QCD, PoS LAT2005 
(2005) 176-182, [hep-lat/0509115].

[85] G. A arts et al.. Mesons at high temperature in N j = 2 QCD, Nucl. Phys. Proc. 
Suppl. 153, 296-299 (2006), [hep-lat/0511028].

[86] G. Aarts et al., Charmonium spectral functions in two-flavour QCD, Nucl. Phys. 
A785, 198-201 (2007), [hep-lat/0608009].

[87] G. Aarts et al., Charmonium spectral functions in N f  = 2 QCD at high tem ­
perature, PoS(LAT2006) 126-132, [hep-lat/0610065].

[88] J. C. Collins and M.J. Perry, Superdense Matter: Neutrons or Asymptotically 
Free Quarks?, Phys. Rev. Lett. 34, 1353-1356 (1975).

[89] Results from  the first three years at RHIC: Hunting the Quark Gluon Plasma, 
“http://w w w .bnl.gov/npp/H unting the QGP.pdf” .

[90] T. Ludlam, Experimental results from the early measurements at RHIC; hunting 
fo r  the quark-gluon plasm, Nucl. Phys. A750, 9-29 (2005).

[91] L Behkov, Physics o f the ALIC E Experiment, [hep-ex/0605035vl].

[92] E. Laermann, 0 . Philipsen, The Status o f Lattice QCD at Finite Temperature, 
Ann. Rev. Nucl. Part. Sci. 53, 163-198 (2003). [hep-ph/0303042].

[93] A.D. Linde, Infrared problem in the thermodynamics of the Yang-Mills gas. 
Phys. Lett. B96, 289-292 (1980).

[94] Y. Nakahara, M. Asakawa, T. Hatsuda, Hadronic Spectral Functions in Lattice 
QCD, Phys.Rev. D60, 091503 (1999). [hep-lat/9905034v2].

[95] T. Umeda, Constant contribution in meson correlators at finite temperature. 
[hep-lat / 0701005v2].

137



[96] C. Bernard et al., Equation of state for two flavor QCD at Nt = 6. Phys. Rev. 
D55, 6861-6869 (1997). [hep-lat/9612025].

[97] J. Engels et al., Thermodynamics of four flavour QCD with improved staggered 
fermions. Phys. Lett. B396, 210-216 (1997). [hep-lat/9612018].

[98] F. Karsch, E. Laermann, and A. Peikert, The Pressure in two flavor, 
(2+l)-flavor and three flavor QCD. Phys. Lett. B478, 447-455 (2000). [hep- 
lat/0002003].

[99] CP-PACS Collaboration, A. All Khan et al., Equation of state in finite- 
temperature QCD with two flavors of improved Wilson quarks. Phys. Rev. D63, 
034502 (2001). [hep-lat/0103028].

[100] F. Karsch, SU(N) Gauge Theory Couplings on Asymmetric Lattices, Nucl. 
Phys. B205, 285-300 (1982) .

[101] S. Huang, J. Potvin, C. Rebbi, S. Sanielevici, Surface tension in finite- 
temperature quantum chromodynamics, Phys. Rev. D42, 2864-2874 (1990).

[102] G. Burgers, F. Karsch, A. Nakamura, I. O. Stamatescu, QCD on anisotropic 
lattices, Nucl. Phys. B304, 587-600 (1988).

[103] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T. -M. 
Yan, Spectrum of Charmed Quark-Antiquark Bound States, Phys. Rev. Lett. 
34, 369-372 (1975).

[104] G.S. Bah and K. Schilling. Running Coupling and the Lambda-Parameter from  
SU(3) Lattice Simulations. Phys. Rev. D47, 661-672 (1993). [hep-lat/9208028].

[105] C. Michael. The Running Coupling from Lattice Gauge Theory. Phys. Lett. 
B283, 103-106 (1992). [hep-lat/9205010].

[106] C. B. Lang and C. Rebbi. Potential and Restoration of Rotational Symmetry 
in SU(2) Lattice Gauge Theory. Phys. Lett. B115, 137-142 (1982).

[107] J. L. Richardson, The heavy quark potential and the T , J /'^  systems. Phys. 
Lett. B82, Issue 2, 272-274 (1979).

[108] C. Alexandrou, S. Guesken, F. Jegerlehner, K. Schilling, R. Sommer. The Static 
Approximation of Heavy-Light Quark-Systems - A Systematic Lattice Study, 
Nucl. Phys. B414, 815-855 (1994). [hep-lat/9211042].

[109] U. Glassner, S. Giisken, H. Hoeber, Th. Lippert, G. Ritzenhofer, K. Schilling, 
G. Siegert, A. Spitz, A. Wachter. First Evidence of Nf-Dependence in the QCD 
Interquark Potential. Phys. Lett. B383, 98-104 (1996). [hep-lat/9604014].

[110] F. Karsch and L Stamatescu, QCD Thermodynamics with Light Quarks: Quan­
tum Corrections to the Fermionic Anisotropy Parameter, Phys. Lett. B227, 
153-160 (1989).

138



111] R. Trinchero, One-loop ferm ion contribution in an asymmetric lattice regular­
ization of SU(N) gauge theories, Nucl. Phys B227, 61-74 (1983).

112] T. Blum, Leo Karkaainen, D. Toussaint, S. Gottlieb, P- function and equation 
of state fo r  QCD with two flavors of quarks, Phys. Rev. D51, 5153-5164 (1995).

113] G.S. Bali, Th. Diissel, Th. Lippert. Neff, Z. Prkain and K. Schilling. 
breaking with dynamical Wilson fermions. Nucl. Phys. B Proc. Suppl. Vol. 140, 
609-611 (2005). [hep-lat/0409137].

114] F. Knechtli, R. Sommer. String breaking as a mixing phenomenon in the SU(2) 
Higgs model. Nucl. Phys. B590, 309-328 (2000). [hep-lat/0005021].

115] G. S. Bah, H. Neff, T. Duessel, T. Lippert, K. Schilling. Observation of String 
Breaking in QCD. Phys. Rev. D71 114513 (2005). [hep-lat/0505012v2].

116] R. Sommer. A New Way to Set the Energy Scale in Lattice Gauge Theories and 
its Application to the Static Force and q:̂  in SU (2) Yang-Mills Theory. Nucl. 
Phys. B411, 839-854 (1994). [hep-lat/9310022].

117] S. Necco, R. Sommer. The N f — 0 heavy quark potential from  short to inter­
mediate distances. Nucl. Phys. B622, 328-346 (2002). [hep-lat/0108008].

118] K. J. Juge et al.. The spectrum of radial, orbital and gluonic excitations of 
charmonium, [hep-lat/0610124vl].

119] S. Ejiri, Y. Iwasaki, K. Kanaya..Non-perturbative determination of anisotropy 
coefficients in lattice gauge theories. Phys.Rev. D58, 094505 (1998). [hep- 
lat/9806007].

120] R. Gupta, T. Bhattacharya, Light Quark Masses from  Lattice QCD, Phys.Rev. 
D55, 7203-7217 (1997), [hep-lat/9605039v3],

121] L. Levkova, Staggered ferm ion thermodynamics using anisotropic lattices.. 
Nucl. Phys. Proc. Suppl. 119, 520-522 (2003). [hep-lat0209069].

122] L. Levkova, T. Manke, R. Mawhinney, Two-flavor QCD thermodynamics using 
anisotropic lattices.. Phys. Rev. D73 074504 (2006). [hep-lat/0603031].

139


