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Summary

The advantages of using anisotropic lattices, instead of the more usual isotropic
lattices, in QCD simulations are well established. Anisotropic lattices can be used to
increase signal resolution and allow computational overhead to be kept to a minimum
while minimising finite volume effects. A fine temporal discretisation can be used to
suppress mass-dependent errors which has considerable advantages; particularly for
heavy quark simulations. Finite temperature field theory has a natural asymmetry
which is ideally suited to an anisotropic lattice formulation.

This thesis starts with a general introduction to the field and continues with a brief
overview of the techniques and improvements used in the course of the simulations
conducted therein.

The use of an anisotropic lattice introduces two separate bare parameters into the
quark and gluon actions. These parameters must be tuned so that the resulting
physical measurements of the renormalised anisotropy are the same for both the gauge
and fermion fields. This tuning procedure is trivial for quenched QCD. The increase
of available computational power means that the introduction of dynamical fermions
into simulations has become feasible. The introduction of these dynamical fermions
complicates the tuning procedure considerably. A non-perturbative procedure for
tuning these anisotropy parameters is presented and is shown to be successful.
Finite temperature lattice QCD provides a tool for investigation into the nature of
the transition from the hadronic phase at low temperature to the quark-gluon plasma
phase at high temperature. The equations of state of the quark-gluon plasma must
be determined in order to understand its underlying properties. One of the methods
which can be used to determine the equations of state requires the measurement
of Karsch’s anisotropy coefficients. These coefficients have proven to be notoriously
difficult to calculate. Attempts have been made to calculate them perturbatively.
However the perturbative coefficients are known to lead to pathological results such
as negative pressure and a non-vanishing pressure gap at the deconfining phase of
SU(3) gauge theory. Non-perturbative attempts at their calculation have also been
shown to be difficult. The gauge configurations used in the tuning procedure men-
tioned above are recycled along with a number of new simulations which allow for
the investigation into the viability of an alternative method for the computation of
the Karsch coefficients. Two approaches are attempted and are found to give con-
sistent answers. The measured values are well behaved with reasonable associated
statistical errors. It is concluded that this method holds considerable promise for the

determination of the required coeflicients.
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Chapter 1

Introduction

Since the 1970’s, most particle physicists have agreed that the elementary par-
ticles that make up matter consist of a set of fermions which interact primarily
through the exchange of vector bosons. These elementary fermions include the
quarks, (Z), (z), (Z), and the leptons, (e, y, T, ve, vy, V). All of these particles are
spin-% fermions.

These fermions interact through three forces, the strong, weak and electromagnetic
forces. The strong interaction is responsible for nuclear binding and the interactions
of the constituents of nuclei. The weak interaction is responsible for radioactive

beta decay processes. The electromagnetic interaction is coupled minimally to all

electrically charged quarks and leptons.

Each quark can come in one of three types, each denoted by a different “colour”.
Colour is the “charge” associated with the strong interaction. Quarks also carry
an electric charge. Leptons do not carry a colour charge and do not participate in
the strong interaction. The neutrinos do not carry any electric charge and do not
participate in electromagnetic interactions. All of the particles may interact via the
weak interaction which is mediated by the exchange of spin-1 bosons. The photon
mediates the electromagnetic interaction, the heavy W and Z bosons mediate the
weak interaction and the strong interaction is mediated by 8 massless colour-charged

gluons.

The Standard Model (SM) of particle physics has been successful in synthesising
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the strong, weak and electromagnetic forces, together into a single theory. Mathemat-
ically it can be described as a SU(3) x SU(2) x U(1) gauge theory. The fourth and final
fundamental interaction, gravity, is omitted from the SM. However at the energies
with which the standard model is concerned, its effects are very weak when com-
pared to the other three fundamental forces. Quantum Electrodynamics (QED) [1]
mathematically predicts phenomena involving electrically charged particles interact-
ing by means of exchange of photons. It successfully describes the electromagnetic
interaction part of the SM. QED has the structure of an Abelian gauge theory with
the symmetry group being U(1) gauge group.

A complete theory of the weak interaction requires the simultaneous incorpora-
tion of the electromagnetic interaction. The so-called electroweak interaction [2] of
Glashow, Weinberg and Salam succeeded in unifying the weak and electromagnetic

interactions under a SU(2) x U(1) gauge group.

The part of the Standard Model that deals with the strong force is called Quantum
Chromodynamics (QCD) [3]. It is formulated in terms of quarks and gluons which
are accepted as the basic degrees of freedom that make up hadronic matter. QCD
has approximate flavour symmetry since the strong interaction does not discriminate
between the different quark flavours. However the symmetry is broken by the differing
masses of the quarks which vary in the range 1.5 Mev for the “up” quark to 173 Gev

for the “top” quark.

Low-lying hadron spectra are well described by the quark model. However, at-
tempts to produce single quarks in scattering experiments have proved fruitless. This
can be understood as evidence that the force between two quarks is strong. Paradox-
ically, high-energy cross sections can be successfully described by the parton model
[4] in which the quarks do not interact at all. The scattering amplitude of the QCD
process

+

eTe” — qq, (143

where ¢ and ¢ are a quark and antiquark pair, can be accurately predicted by trivial

changes to the QED process

ete” — utu™, (12
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without including any effects of the strong interaction of the produced quark and
antiquark. This result is counter intuitive and shows that in the high energy limit,
the effect of the strong interaction on the quark production process can be completely
neglected. QCD successfully incorporates both kinds of behaviour via confinement [3]
and asymptotic freedom [5, 6]. Asymptotic freedom means that the interaction be-
tween quarks reduces as the distance between them reduces (and hence energy in-
creases), and tends to zero as the distance between them reduces to zero. Conversely,
as the force between quarks does not diminish with increasing distance, it would take
an infinite amount of energy to separate two quarks an infinite distance apart. If an
attempt is made to separate a pair of quarks, then at some point, the energy required
to produce a separation exceeds the pair production energy of a quark-antiquark pair
and so it is more energetically favourable for a quark-antiquark pair to be produced.
Quarks and gluons are only ever found inside colour-neutral hadrons. This aspect of
the theory is verified within lattice QCD computations, but is not mathematically

proven.

In the early 1970’s, 't Hooft, Politzer, Gross and Wilczek [5, 6] discovered a class of
asymptotically-free field theories in four dimensions. It was subsequently shown that
these non-Abelian gauge theories are the only such theories [7]. Thus any attempt
to construct an asymptotically free theory such as QCD must involve a non-Abelian
gauge. QCD is a gauge theory of the SU(3) gauge group obtained by taking the

colour charge to define a local symmetry

Tools for working with QCD include perturbation theory (3|, 1/N ezpansion [8]
and various effective theories [9]. The masses of the up and down quarks are <
Aqcp ~ 200Mev, the QCD scale. Chiral flavour symmetry is a good approximation
to QCD for these quarks and chiral perturbation theory (ChPT) [10] has had some
success in the non-perturbative regime of the strong interaction [11]. Wilson Chiral
Perturbation Theory (WChPT) [12, 13] is an adaption of ChPT for the lattice. The
mass of the strange quark ~ 100Mev and the applicability of ChPT to the strange
quark sector is under debate [14]. At the hadronic scale, the strong coupling constant,

as ~ 1, and so it becomes impossible to utilise perturbation theory to make accurate

3



predictions. Lattice QCD can be used to make non-perturbative QCD calculations.
It can therefore be used as an important tool to test the effectiveness and accuracy

of QCD and the standard model.




Chapter 2

QCD on the lattice

2.1 The QCD Lagrangian

As stated earlier in Chapter 1, QCD is a gauge theory of the SU(3) gauge group. A
gauge theory is a theory that is based on the idea of gauge invariance [15]. This means
that the theory is invariant under a gauge transformation. This invariance or gauge
symmetry is a transformation that allows an independent symmetry transformation
at every point in spacetime. Gauge symmetry is a fundamental principle that actually

determines the form of the Lagrangian of the theory.

Considering an arbitrary continuous group of transformations which transform as

¥(z) = V(2)y(z), (2.1)

with
V() = explia™z1t9), (2.2)

where the traceless Hermitian matrices, t%, are the basic generators of the group. For
SU(3) t* are taken to be the equal to %& where )\, are generalisations of the Pauli
matrices and are known as Gell-Mann matrices. The generators of the group obey
the usual Lie Algebra commutation relations [¢%,*] = SN *=1 fabese where £ are

the “structure constants” of the group [16].

The difficulty in trying to construct a gauge invariant Lagrangian arises when try-
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ing to consider terms involving derivatives. The standard definition of the derivative

of ¢(z) in the direction of a vector n* is

e e e (2.3)

e—0 €

However, this definition can cause a problem for the case of fields which transform
under Egs. 2.1 as the two fields ¢(z + en) and 9(z) will transform differently. The

solution is to define a “parallel transporter” which transforms as
Uy, z) — V(y)U(y, 2)V(z). (2.4)

This quantity can be used to define a more sensible derivative which is called the

gauge covariant derivative

D = 1%% [(z + en) — U(z + en, x)(z)] . (2.5)

For infinitesimal separation,
U(z + en, z) = 1 + igen®A;t" + O(e), (2.6)

where g is an arbitrarily extracted constant, called the coupling. The coefficient of

the displacement, the vector field Af, is known as a connection. Egs. 2.5 and 2.6

lead to the usual form of the covariant derivative
D, =9, — igAjt*. Wit
The infinitesimal transformation law for Af is
Alsr A+ éaua“ + fabcAZac. (2.8)

The gauge transformation of the covariant derivative has the same transformation




law as the field 1,
D,(z) = V(z)Dyp(z). (2.9)

The commutator of covariant derivatives also follows the same transformation law

(D, DJo(z) — V(z)[D,, D,Jv(x). (2.10)

The field tensor is defined by

[Dy, D] = —igF 1%, (2.11)
with
By = 0A; =~ G A+ gfabCAZAfj. (2:12)
This quantity transforms as
Fe it Viz) iV (), (2.13)
or infinitesimally
F3, — F3, — f*a’Fg,. (2.14)

The required Lagrangian must be a gauge invariant function of ¢ and its covariant
derivatives and of Fjj, and its covariant derivatives and must also be invariant under
global phase transformations. If further symmetries such as 7' (time-reversal) and
P (parity) are required for the theory then the terms in the Lagrangian must not
violate these symmetries. The field strength is not itself a gauge-invariant quantity,
however it is trivial to form gauge invariant combinations of the field strengths. The

simplest case is called the Yang-M:lls Lagrangian

iy —%Tr [(Fe10)?] = —E(F;V)% (2.15)

which is a gauge invariant kinetic energy term for the fields A’. Up to operators
gy m

of dimension four, there are only two other possible terms which satisfy the criteria



mentioned above. These two terms are the terms of the Dirac Lagrangian and adding
these to the Yang-Mills pure gauge Lagrangian from Eq. 2.15 results in the QCD

Lagrangian
1

L= (Fe)?+ ) [y — mptpsiy] (2.16)
a f

where the Dirac and colour indices of the quark fields have been suppressed.

2.2 QCD on the Lattice

Lattice QCD (LQCD) is QCD formulated on a discrete four-dimensional Euclidean
space-time grid using tools analogous to those used in statistical mechanics. Compre-
hensive introductions to the subject can be found in references [17, 18, 19, 20]. The
basic numerical strategy is to approximate integrals using Monte Carlo simulations.
The discrete space-time lattice is useful in that it also acts as a non-perturbative
regularisation scheme by acting as an ultraviolet cut off at = for a regular lattice.
Renormalised physical quantities have a well behaved limit as the lattice spacing is

taken to zero.

2.2.1 Path integral approach to QCD

The path integral approach to quantum mechanics can be most easily rationalised
as a gedanken experiment extension of the classic two slit experiment. Considering
the classic setup of a particle source S and a detector separated by a screen with two
narrow holes A; and A, drilled into it. The pattern of arrivals at the detector at any

point D is an interference pattern which can be explained as
A(Detected at D) = > "(A(S — A4; — D).
i

If this screen is replaced by a screen with /N holes drilled in it rather than two, then
the same equation holds. Now placing another intermediate screen B with M holes

in between screen A and the detector D one must find that the amplitude at D is
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given by
A(Detected at D) = Z Z(A(S’ — A; — B; — D).
)

The logical extension of this is to place an infinite number of screens in between the
source and detector and then drill an infinite number of holes in each screen. Thus
the amplitude for a particle to appear at the detector must be a sum of all amplitudes
over all possible paths that the particle can take. In quantum mechanical notation we
would have that the propagation of a state (¢, t |q,t) = qul DqeSlal where S[q] is the
action for real time. However this formalism is not suitable for numerical calculations
as the paths are weighted with an oscillating function. To get around this problem
a Wick rotation can be performed, t — —ir. As a result (¢,t'|q,t) = qul Dge=Seldl
where Sg[q] is the Euclidean action. qul Dqe~eldl is equivalent to the classical statis-
tical mechanics partition function and thus there exists many equivalences between

a Euclidean field theory and a classical statistical mechanics system.

2.2.2 Discretisation

LQCD is an attempt to numerically simulate QCD on a computer. Computers only
have finite computing power and can only simulate a finite volume of space-time with
a finite number of points in that space-time being sampled. The obvious structured
way to implement this is to introduce a hypercubic grid in which points in the volume
are sampled at regular intervals. The use of random lattices [21] has also been

attempted but is currently unsuitable for computing realistic QCD properties.

Since space-time is discretised, so must the theory of QCD be discretised. The
operators of the theory must be reformulated in terms of their lattice equivalents. A
lattice version of a theory can only be accepted to be valid if the continuum theory
is recovered as the lattice spacing goes to zero. Perhaps the simplest example of this
is to consider the definition of a derivative of a simple one dimensional function f(z)

by first principles. It is given by

Hol Gy oo

(2.17)



On an n-dimensional lattice for a quantity U(xz) this simply becomes

dU(z) Uz +a;)—Ulz)
o ai : (2.18)

where z; denotes the it* direction and a; is the lattice spacing in this direction. This
example is what is known as a forward-difference approximation. An alternative
strategy might be to use a central-difference approximation

df(z) _ . flz+h)—f(z—h)
ik limp_o o : (2.19)

The forward-difference approximation has error O(h) whereas the central difference
approximation has error O(h?). In order to reduce error in any simulation it is
therefore desirable to choose appropriate discretisation schemes and also to try to
keep the “step-size”, h, as small as possible. On a lattice this corresponds to keeping
the lattice spacing, a, as small as possible. Higher order derivatives can be found
by recursively iterating one of the finite difference approximations. For example,

iterating Eq. 2.19 leads to

df(z 5 f(z +4h) —4f(z +2h) +6f(z) — 4f(x — 2h) + f(z — 4h)
i ) 164 ’
(2.20)
or by choosing a step-size of % instead of h,
e L}

Various improved discretisation schemes exist. For example, by expanding the terms

f(z + h) etc. in a Taylor series, it can be easily seen that

# {30+ m =~ fa =) - Gl +20) - fa -]} = L+ o). 222)
Finite Volume Effects

As stated above, a computer may only simulate a finite number of space-time points.

If the number of points being simulated is kept fixed but the spacing between ad-
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jacent points is reduced then the volume of space-time being simulated is reduced.
As the volume becomes smaller, errors due to finite-volume effects become more pro-
nounced. Finite-volume effects have been studied extensively both analytically [22]
and numerically [23]. Studies show that the shift between masses measured on a finite
lattice and the infinite volume masses decrease exponentially to zero with increasing
lattice size. Comparisons between full and quenched QCD simulations have shown
that finite-size effects are smaller for the quenched case [24]. The difference between

quenched and unquenched simulations will be explained in detail in Chapter 3.

Ideally one should have ¢ < L where ( is the quantity that determines the rate
of the exponential decay of a correlation function (i.e. the correlation length) and
L is the linear length of the lattice. In order to obtain good measurements of any
quantity it is also statistically important that the lattice spacing is much less than
the correlation length so that the relatively fine mesh will sufficiently sample the
quantity that is being modelled or measured. One must therefore have a < ( < L

in any simulation.

2.3 Continuum Limit

Due to the fact that any simulation is done on a finite lattice with finite lattice
spacing it follows that in order to determine physical values from any simulations
it is necessary to take the double limit a — 0 and V' — oo in order to reach the

continuum limit values.

The algorithms used in lattice QCD simulations become progressively slower for
decreasing quark mass values so simulations are performed at larger quark masses
than the physical values of the up and down quarks. Therefore, predictions obtained
for hadrons which contain up or down quarks may also require a further extrapolation

down to small quark mass [25].

il



24 Construction of Actions

The Euclidean space equivalent of the QCD Lagrangian density of Eq. 2.16 is given
by
1 v i . —
& _ZFE"FS oy Z by YulOu — igAGtalty + Z msppiy, (2.23)
f f

where a = 1,...,8 is the gluon-colour index, f is the flavour index and ¢, are the
generators of SU(3). In order to successfully reproduce QCD on the lattice, one must
design a lattice version of this quantity which reduces to the continuum Lagrangian

in the limit @ — 0.

2.4.1 Gluon action

The gluonic part of the continuum QCD action is given earlier in Eq. 2.15. The
lattice version of this action will have a number of arbitrary input parameters. In
order to recover the continuum action, these input parameters may have to be tuned.
The number of input parameters will be affected by the choice and properties of
the lattice action. QCD is invariant with respect to gauge transformations. With
explicit gauge invariance the quark-gluon, three-gluon and four-gluon couplings are
equal and the bare gluon mass is equal to zero. If gauge invariance is broken then
these couplings must be independently tuned and a gluon mass introduced in order
to recover QCD. This procedure would be very expensive so it would be highly
advantageous to preserve gauge invariance. It would be possible to formulate QCD
directly in terms of the gauge fields A, however the resulting theory would only have
approximate gauge invariance.

A gauge invariant lattice Lagrangian must be constructed from objects which
themselves are gauge invariant.

The operator constructed from the parametrised path ordered integral running

mom e = (laite = ta s Lat © = 2

G

oD {exp {ig /O o d:AZ(m(s))t“] } (2.24)

12




satisfies Eq. 2.4. P denotes the path ordering operation. The path ordering is a
necessary construct for a non-Abelian group. This quantity is known as a Wilson
line. Note also that Up(z,y) = U};(y, z) from this definition. One possible gauge

invariant quantity is a Wilson line capped by a fermion and an anti-fermion i.e.

D(2)Up(2,9)9(y) = DV ()V (2)Up(2,9) VI )V ()% (y) = $(2)Up (2, y)¥(y),
(2:25)
where the fermion field ¢ transforms as in Eq. 2.1. The only other gauge invariant
quantity that can be constructed using Up(z,y) is TrUp(z, x) where Up(z, x) is taken
about a closed loop. Considering a path taken about a small square of size a in the

pv plane

U’P(xa CE) T U’p(CL', I+aﬂ)UP($+aﬂa m—l-aﬂ—i—al?)Up(x—l-aﬂ-{—aD,x+aﬁ)Up(x+af/,x).
(2.26)
Substituting the discretised version of Eq. 2.24 into 2.26 and expanding up to order

a? results in

2.4
Up(z,z) = 1+ iga®F?, (z)t* — % (Fe,(2)t°)” + (a°). (2.27)

This expression is not gauge invariant as the field strength tensor transforms as in
Eq. 2.13 above and thus F lﬂ’,,(:v)tb is not gauge invariant. However, taking the trace

of Up(z, ) is gauge invariant i.e.

TrUp(z,z) — TrUp(z, x). (2.28)

To transcribe the above derivations to the lattice, one needs to simply consider
a square in the pv plane, as in Fig. 2-1. In this case, the path integral, Eq. 2.24 is
taken along a straight line, say from the point z to a point z 4+ af in the 4 direction,
i.e U(z,z+ ajt). For compactness, this can be written as U,(z). U,(z) is also known

as a link variable and can be thought of as “living” on the links connecting adjacent

13



T + af Ul(z + ab) x + aj+ av
® o ’
Ul(z) ' ‘ Uz + aft)
% -
3 Uu(a) T Soba

Figure 2-1: A diagram showing an elementary 1 x 1 plaquette or Wilson loop

lattice sites. The unit 1 x 1 plaquette can be written as
Wit = Uu(z)Uy(z + p)UL(z + 2)U} (). (2.29)

From Eq. 2.27 above and using the identities from Sec. 2.1 it can be shown that the

following combination, taken over the sum of plaquettes P,

ﬂZ [1 - ~——Tr (Wit + (W,};l)*)] =ﬂ§j DA [%Tr (a4g2 (F:xx)f)Z)} +0(a?),
g (2.30)

ZZTr t)* + O(a?),

In the limit @ — 0 this becomes

(gt 4 b )2
2N4/d [F2) 7, (2.31)

which reduces to the continuum gluon action for = 2. (W) corresponds to a
path integral taken around the same 1 x 1 unit square as W;;‘l, but in the opposite
direction. Taking the combination (Wx* + (W,1X!)!) ensures the hermiticity of the

action. As QCD is an SU(3) gauge theory, the gluonic part of the action can be
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written by taking N = 3 in the above equation.

Sa|lUi= BRI %ReTr [1-Wi(2)], (2.32)

z p<v
using the fact that (§(WL<! + WXt = Re[WLx1]). This action is called the Wilson
Action. This action has discretisation error O(a?). This example is constructed using
only 1 x 1 Wilson loops. The use of small loops reduces computational costs and also
reduces the size of discretisation errors. More accurate lattice gauge actions can be

constructed by the addition of other types of loops as shown in Sec 2.6 below.

2.5 Quark Actions

From Eq. 2.23 we can write the quark part of the QCD Lagrangian as
Sr= > V@)WV +mp)y(z). (2.33)
&y

where V, is the the gauge covariant symmetrised difference operator [26]

V(@) = — 3 [Uu@(e + ) - Ul — Do(z— @], (2:34)

2a
The use of a symmetrised difference is needed in order to preserve the hermiticity
of the theory. However this means that while the lattice spacing is a, the derivative
involves twice the lattice spacing. This leads to the appearance of so-called “doublers”
into the theory. In other words the fermion propagator will have 2¢ = 16 poles in the
first Brillouin zone at (0,0,0,),..., (7, 7,7, ) rather than the physically expected

one. The theory must be modified in order to correct for this.

2.5.1 Wilson Action

A lattice action need only reduce to the continuum action in the limit a — 0. There-
fore additional irrelevant operators can be added to the action as long as the effect

of those operators vanishes as the spacing goes to zero. This is called universality.
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Ref. [27] uncovered a “universality anomaly”, however this anomaly was shown to be
independent of the gauge field and hence physically inconsequential [28]. These addi-
tional operators can be used to reduce error in the model or to solve other problems
such as the doubling problem mentioned in section 2.5 above. The Wilson Action [29]
is obtained by introducing a second derivative term to the naive action. The so-called

“Wilson term” is given by ary01 where

0,0(@) = = [z + 4) + iz — ) — 20(a)]. (2.35)

m

Explicitly, the Wilson Action is written as
- r
o

The effect of this extra term is that the extra fifteen species at p = 7 get a
mass proportional to ~. As the lattice spacing goes to zero, these doublers become
infinitely heavy and decouple from the theory. As this added term is essentially
the mass term for doublers, the chiral symmetry is violated even in the limit of
vanishing bare quark mass. While Wilson fermions are computationally inexpensive,
the approach to the continuum limit is slow. Observables are spoiled by the large
O(a) discretisation errors and quantitative extrapolations to the continuum limit
must be performed from simulations done at small lattice spacings, typically less
than 0.1 fm. This necessitates the use of very large four-dimensional lattices in order

to provide reasonable physical simulation volumes

2.6 Improvements

2.6.1 Symanzik Improvement

In order to successfully simulate any process, one should have a situation where
the lattice spacing is much smaller than the physical scale in order to minimise

discretisation errors. The physical scale should also be much smaller than the box-size
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in order to reduce finite-volume effects. However, finite computational power places
limits on the number of points which can be simulated, so a balance must be reached
between discretisation and finite-volume effects. One possible strategy is to try to
improve the model that is being simulated in order to reduce the discretisation effects.
Symanzik introduced a systematic way of improving corrections to the continuum
theory from finite lattice spacing by modifying lattice actions with added irrelevant
terms. These irrelevant terms can be chosen to compensate for some of the systematic
errors due to finite spacing. It is theoretically possible to eliminate errors to any order
in a by the addition of suitable terms. These terms are higher dimension improvement
terms which mimic the effects of the ultraviolet modes which are removed due to the
lattice cut-off. In Ref. [30] the basic principles were outlined and applied to ¢* theory
and the procedure was also applied to the non-linear sigma model in Ref. [31]. A
preliminary investigation for pure Yang-Mills theory in four dimensions was given
in Ref. [32]. Ref. [33] looked at the addition of the most basic dimension six term
i.e. the 2 x 1 rectangle, to the Wilson action and found that this was sufficient to
remove errors of O(a?). This result was verified by [34] from calculation of the small-a
expansion of the static potential in 1-loop order. Symanzik’s original approach was
to remove the O(a?) artifacts from Green’s functions but this led to a problem as
Green’s functions are not gauge invariant. A solution for this problem was given
by Liischer and Weisz [35] who implemented on-shell improvement by removing
O(a?) artifacts from spectral quantities only. On-shell improved refers to taking the
“minimal” improvement condition which is that the error term is reduced to O(a?)

for all low lying energy values.

2.6.2 Tadpole improvement

Tadpole (or mean-field) improvement refers to the procedure in which gauge fields
are re-scaled by a factor ug. As mentioned in Sec. 2.4.1, lattice perturbation theory
is performed by expanding the link variable as

U.(z) = expliagA,(z)] — 1 +iagA,(z) — ——Au(z)* +.... (2.37)
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The higher order terms in this expression represent higher order vertices that are
purely lattice artifacts. At a first glance, it would seem that contributions from
higher order terms in this expansion would decrease as a — 0. However if the factors
of gaA, in %LZA,‘(x)2 + ... are contracted with each other, the result is ultraviolet
divergences that exactly cancel out the additional powers of @ meaning that the higher
order terms are only suppressed by powers of g? and do not vanish in the limit a — 0.
The solution proposed by Lepage and Mackenzie [36] was to separate out the gauge

field into ultraviolet and infrared (IR) parts and to rewrite Eq. 2.37 as
Uu(z) — U™ A" g (1 + iagAu(x)), (2.38)

where the mean field parameter, ug, is the averaged ultraviolet contribution. wug
depends on the parameters of the theory and can be easily measured in a simulation.

One common choice uses the plaquette expectation value:

u0=:(%m}Ug>%. (2.39)

Other possible definitions include setting ug equal to the expectation value of the link
operator in the Landau gauge are based on such things as the expectation value for

long Wilson lines or the critical hopping parameter for Wilson quarks.

In order to incorporate tadpole-improvement into a simulation, one must simply

make the substitution,

%m=im@, (2.40)

wherever a link U, appears in a lattice operator. The factors uy may alternatively be
absorbed into couplings or masses. The new fields are much closer to their continuum
values since this simple rescaling cancels out much of the tadpole effects. It was
shown in Ref. [37] that tadpole-improved actions could give good results even on
relatively coarse lattices. A comparison of a tadpole-improved action with a non-

tadpole-improved action can be seen in Ref. [38].
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Other improvements for gauge actions

An alternative to the tree-level and one-loop improvements introduced by Symanzik
(Sec. 2.6.1) is an approach based on the renormalisation group (RG) [39, 40]. Blocking
transformations are used to transform the action. These transformations change the
lattice cut off but leave the long range properties of the system intact. In the space
of coupling constants, the blocking transformation makes a transition for a point
S to a new point S'. By repeating this transformation, trajectories are obtained
through coupling space. These trajectories define what is known as the renormali-
sation group flow. There is a special trajectory which starts at the ultraviolet fixed
point. This is denoted the renormalised trajectory. On this renormalised trajectory,
the information corresponding to the continuum physics is preserved. This leads to
the concept of the so-called “perfect action” [41]. If one can find a renormalised
trajectory which corresponds to blocking transformation, it provides an action which
gives accurate results corresponding to the continuum limit. However these actions
do not parametrise well and are expensive to simulate. A comprehensive introduction
to perfect actions can be found in Ref. [42]. The Iwasaki Action [43] defines a distance
from an action to the renormalised trajectory and then uses perturbation theory to
choose an action which is closest to that trajectory. The DBW2 (Double Blocked
Wilson) action [44] estimates the renormalised trajectory using the Schwinger-Dyson
method. These actions use 1 x 1 and 1 x 2 Wilson loops in their construction i.e. are

of the form

o= Z [ceTxW, X (z) + oy TEW % (2)] (2.41)

u<v,x
and differ from each other by choice of the coefficient ¢;. The choices for the three

actions mentioned above are

% Symanzik

c1 =14 —0.331 Iwasaki (2.42)
—-1.409 DBW?2

The universality of the Iwasaki and DBW2 actions were discussed in Ref. [45].
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Other formulations use 1x1 and 2x2 Wilson loops e.g Beinlich-Karsch-Laermann.
This tree level improved action was shown to reduce finite cut-off effects in the ther-

modynamics of SU(N) gauge theories [46].

2.7 Improved Quark Actions

It was shown above in Sec. 2.5.1 how to eliminate the problem of doublers by adding
a dimension-five lattice-laplacian operator. Following on from the discussion of
Symanzik improvement, it is possible to achieve O(a) improvement by including
all possible gauge invariant, local dimension-five operators which respect the symme-
tries of QCD. However, it turns out that the only dimension-five operator explicitly

needed [47] to improve the Wilson action to O(a) is the “clover” term,

igaCswr -

Ol T 4 ¢ Ouv F;w ¢ (243)

The addition of this term to the Wilson action given above results in the Sheikholeslami-

Wohlert action [47]
igaCswr ke
Sgw = S = = > $(@)ouwFu P(z), (2.44)

where Sy is given above in Eq. 2.36. Csyy is the clover coefficient which can be tuned

to completely remove O(a) artifacts.

Further improvement is given by the “D234” action [48]. This action also includes
the clover term from the Sheikholeslami-Wohlert action along with second, third and

fourth order derivative terms. The tadpole-improved form is given by
mo + Z ('y“Afll) = bazvuAl(})A/(f)
o
2

ra 1
- (Aff) e S aWF,w) + casAff)Aff)) ; (2.45)
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where' b=t = 2/3 ¢ =1 /12

APYE) = o (Tue)ia +p)

— U u(@)b(z — ), (2.46)
APY@) = 5 (Tuei+p)

+U_u(@)ble — 1) - (=), (2.47)

and U = U/ug, where (up)* is the tadpole-improved link variable. Classically the

D234 action has O(a?) errors.

2.8 Anisotropic Actions

The use of anisotropic lattices [49] offers further scope for improvements in design-
ing lattice actions. As mentioned above in Sec. 2.6.1, it is possible to reduce the
systematic errors associated with any action to any given order, O(a™). If there are
different temporal, a;, and spatial, a,, spacings present then it may be beneficial to
concentrate on improving the action to a higher order in a, in the case where ag > a;.
The signal to noise ratio of correlation functions decays exponentially. This will be
further expanded upon in Sec. 2.10. With a finer temporal lattice spacing, there
are more points to fit a signal to over a given distance, resulting in a more accurate
fit. This is particularly important for particles with bad signal to noise ratios such
as glueballs. Anisotropic lattices also alleviate potential problems due to unphysical
branches in the quark dispersion relation. These unphysical branches or “ghosts”
are generic to all actions improved beyond O(a). The energies of these ghosts are at
the scale of the temporal cutoff. Therefore using a lattice with a; < ag will push up
the energy of the ghosts and decouple them. Independent derivatives with respect to
temperature and volume are needed in order to fully determine thermodynamic quan-
tities. The easiest way to achieve this is to have independent spatial and temporal
spacings. Due to Euclidean invariance, the fine lattice spacing can be considered as

a spatial direction. This can be beneficial for studying large spatial momenta which
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are phenomenologically important for form factors for example.

The new coefficients of the action must be tuned to restore Euclidean invariance.

The anisotropic actions used in the course of this study are given below.

2.8.1 Anisotropic gluon action

The isotropic Wilson action given above in Eq. 2.32 must be modified for the anisotropic

case, as # a;. Defining the anisotropy ratio, &g,

g==2 (2.48)

)
Gy

and the plaquette operator P, as

1
Bz NReTrWﬁ,fl, (2.49)
then the action can be written as
1
SclU] = p (Eth + 5—93> : (2.50)
g

The new terms in Eq. 2.50 are discretisations of the magnetic and electric field

strengths

Q.= DU (1= Plz)) — % d*sTrB? + O(a?), (2.51)

and

=33 (1 - Pole) = ggig / dzTrE? + O(a?), (2.52)

where 1, 7 are spatial indices.

The specific gauge action used in the course of this project is a two-plaquette

Symanzik-improved action [50] previously developed for high-precision glueball stud-
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ies and given by

o {MQ O Q(R)}

AR E A R e

4 1
0 oS Q(R)
s { 3uu? ¢ 12utu?

where Q, and , are spatial and temporal plaquettes. Qf and QF are 2 x 1 rect-

(2.53)

angles in the (i,7) and (i,t) planes respectively. Q2 is constructed from two spatial
plaquettes separated by a single temporal link. u; and u; are the mean spatial and
temporal gauge link values respectively. The factor 52 is the input anisotropy for the

gluon sector. The action has leading discretisation errors of O(al, a?, aza?).

2.8.2 Quark Action

Following on from the isotropic actions mentioned above in Sec. 2.7, their anisotropic

equivalents are given as

1 1 1
Msw = m.(1+ Eraomc) +V — 570 Z“: A, — 770 o Fr (2.54)

for the Sheikholeslami-Wohlert action and

i
Mpazs = me(l+ ‘Z‘Taomc) 4 Z YV (1 - buaiAu)

n
—%mo (Z A, + % O"F) + Z cud (2.55)
n 2

with b =t 31a; for the generic D234 anisotropic action.

The fermionic action used in the course of this study is a D234-type action which
has been specifically designed for large anisotropies. The usual Wilson term removes
doublers in the temporal direction whereas spatial doublers are removed by the addi-

tion of a Hamber-Wu [51] term. The action has been described in detail in Ref. [52]

and has leading classical discretisation errors of O(a;m,). In terms of continuum
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operators, it can be written

S, = /d4z117(l)+mo)w— %/d“ztﬁ(Dg) ¢+sa§/d4m/_fZDf’w, (2.56)

which highlights the different treatment of temporal and spatial directions. r is the
usual Wilson coefficient which is applied in the temporal direction only in this action
and is set to unity. The analogous parameter in the spatial directions is s (= %),
which parameterises a term that is irrelevant in the continuum limit. In terms of

lattice parameters this action can be written as

A

My = al { <m0at +7r+ 1—88> v(z) + Ls [(’yo — " Ui(z)¥(z + 1) — (yo + U (& — E)p(z — t)]

t §2 2uy
b 3| G = 490U @)(e +1) - G-+ 49)0) o~ (o - )
_uis ((%% — 8)U;(z)Us(z + )3 (x + 23) — (%’yi + 8)Ul(z — )U (z — 20)y(x — 22))] } .

(2.57)

Eq. 2.57 is obtained from Eq. 2.56 using finite difference schemes analogous to those
discussed in Sec. 2.2.2. As this action is intended to be used on lattices with ag >
ay, the improved lattice derivative, (see E.q. 2.22), is used to discretise the v;D;
terms in order to improve the action to O(a?). Unimproved central difference lattice
derivatives are used for the remainder of the terms. The link variables U,(z) are
included to preserve gauge invariance of the derivatives. The factors u,,u; are the

tadpole improvement coefficients in the spatial and temporal directions respectively.

2.9 Numerical simulations of QCD
The QCD partition function has the form

Z= / DUDvypDipe™?, (2.58)
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where 1) and 1 are the fermionic and anti-fermionic fields respectively and U are the

background gauge fields. The expected value of any measurement is given by
1 i
o) = = / DU D} DypOe™5. (2.59)

The QCD action can be split up into gluon and quark parts, S = Sy + S;. The quark

action will be of the form

Sq e &Md}’

where M is the fermion matrix. The fermion fields 1 are Grassman variables and
because of this the S; part of Eq. 2.58 can easily be integrated out analytically to
give

Z= / DUdet(M(U))e™%s. (2.60)

The integral in Eq. 2.60 can be approximated by the usual method of Monte Carlo
integration. The Monte Carlo technique for estimating the expected value of f(z) is

simply to randomly choose N variables z; and take

N—-oo

N
E(f(@) = Jim + 3 /(@) P(a) (2.61)

Where P(z;) is the probability that a given x; will occur. This method can be very
wasteful as often time is wasted exploring areas of phase space which have very low
probability of occurring. A more economic way of estimating a quantity is to use the
method of importance sampling. For the simple example given above, the method is
modified in that the random z; are no longer taken from a flat distribution. Instead
the procedure is modified so that random x; are taken from a probability distribution
P(z). Then the estimate to a straight average over f(z;). To apply this technique
to the numerical estimate for an integral, one can let h(z) be the probability density

for the random variable X so that [ h(z)dz = 1. Then

[ g() LN S X
[ otraa= [ igreres e (355) = b v 3o By
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In practice, to solve Eq. 2.59, a set of gauge configurations U are generated with a

probability distribution given by

P(U) = det(M(U))e*. (2.63)

The quantity det(M(U)) in Eq. 2.63 is a highly non-local term and as such is
very expensive to compute when updating the gauge configurations. M has dimension
NTXNXXNY XxNZxNSPIN x NCOL (= 491520 for a 8% x 80 lattice). NT is the
number of lattice sites in the temporal direction. NX, NY, NZ are the number of sites
in their respective spatial directions. NSPIN = the number of spins and NCOL =
the number of colours). For this reason the vast majority of LQCD simulations were,
until recently, done in the so called quenched approximation. This involved setting
the value of det(M(U)) to be equal to a constant (usually unity). This removed
the influence of quarks on the distribution of the gauge fields. Physically this is
equivalent to neglecting the sea quarks which means that vacuum polarisation effects
are omitted in the quenched approximation. From a formal viewpoint, quenched
simulations correspond to introducing an equal mass “ghost” fermion for each light
quark, so that disconnected loop contributions from the light quarks and the ghosts
exactly cancel. Neglecting the determinant can also lead to the problem that wildly
varying or exceptional configurations can be generated, particularly for small quark
masses. These exceptional configurations are caused by unphysical poles of valence
propagators which occur as eigenmodes of the Wilson-Dirac operator in a quenched
simulation. These exceptional configurations can adversely affect the result of any
measurement done on an ensemble unless steps are taken to remove these artifacts

[53).

A comparison of quenched and unquenched simulations is given in Ref. [54] where
unquenched calculations using staggered quarks were shown to agree with the exper-
imental values of a number of standard quantities within statistical and systematic

errors of 3% or less.
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2.10 Correlation Functions

The two point correlation function is given by

C(t,p) = Y _ e PX(Q|O(x,1)0'(0,0)|0), (2.64)
Ccltp) =Y % (QIORY|? B0, (2.65)

where ) is a sum over the complete set of energy-momentum eigenstates |n).

As t increases, contamination from the higher-order states dies off and only the

ground state contributes

Ot .2.]{3_0 (QUOn) | e~ B, (2.66)

So to extract the ground state energy, Ey, we need only to look at the correlation
function at times large enough that the contribution from higher order states is
negligible. For increasing distance in the ¢ direction, the statistical noise becomes
large relative to the signal being measured, thus rendering useless any attempt to
perform a fit through these points. This can be particularly true for simulations
where techniques such as smearing (Sec. 2.13) are used which can increase statistical
noise. A method which is frequently employed to estimate ground state energy levels
is to use a so-called “effective mass plot”. This method follows from the observations

that, for a given momentum p,

(Ae—E'o(H-l) +A6—Eo(t——1)

; Ae Fot : i
Eo(p) = lim In (W) = lim cosh e > ,  (2.67)

t—o0 —00

or

Y Glsply L L2 (Cit+1,p)+C(—-1,p)
Eo(p) = tlngo In <m> — }LI?O cosh ( 20{.p) > . (2:68)

To use either of the formulae in Eq. 2.68 the result is computed for each timeslice and
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the value of Ej is taken to be the value where a “plateau” is found in the resulting
effective mass plot. A timeslice is simply a “slice” of time i.e. a particular value of t.

An alternate strategy would be to directly fit the function
C(t) = Ale™0?), (2.69)

to the correlation function. Using this method, the parameter Fj is extracted directly
from the fit to the raw data. In this study, because of periodic boundary conditions

the function that is fitted is
CQ) = A(eBl o el (2.70)

where T is the extent of the lattice in the temporal direction.

For the purpose of this study, all effective masses were measured directly from
correlation functions. Effective mass plots were only used as a preliminary guide
to appropriate fit ranges and as visual aids for comparing fitted values to the data.
Where effective mass plots are presented, the plotted values are in terms of E(t),
where E(t) is the value obtained at a particular value of ¢ using either the log or
inverse cosh method given in Eq. 2.67 above; i.e. not taking the limit ¢ — oo0.
Note however that Ey(p) = lim,_,, F(t). All fits were done using a y*-minimisation

algorithm which is detailed in Sec. 2.11.1 below.

2.10.1 Propagators

From standard field theory, the basic building block for fermionic quantities is the

Feynman propagator which is given by the inverse of the Dirac operator

Sr(y,j,b;z,i,a) = (M~1)¥2° (2.71)

z,i,a "

A given element of this matrix (M _1)512 is the amplitude for the propagation of a

quark from site x with spin 7 and colour a to site y with spin 7 and colour b.
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The correlation function in Eq. 2.64 with two operators taking the general form
Oa= i e ORI (2.72)
can be written as

C(p,t) = > e P0|dha(x, )P4 (x, t)h1(0, 0)[“455(0, 0)|)O

= = e PX(Tr(Sra(0; %, )TB(Spr(x, t; 0)T4)). (2.73)
( )

The hermiticity property Sr(0;x,t) = 75Sr(x,t;0)!ys, can be used to write this
expression in terms of S¢(x,¢;0) only. This in turn means that propagators from the
origin to all other points on the lattice are sufficient to calculate the meson correlation
function. These are so-called point propagators. In practice, one needs to calculate
just 12 columns of the matrix M~! given above. Each column corresponds to a

spin-colour degree of freedom.

All-to-all propagators

The only physical quantities that may be studied with point propagators are those
which can be extracted from hadron two point functions or multi-point functions
that can be reduced to connected two point functions. Other quantities such as
flavour singlet mesons, condensates and any phenomena which require quark loops
necessitate propagators from all points in space to all other points in space. These

are so-called all-to-all propagators.

Another important point is that the generation of gauge configurations is com-
putationally expensive. By considering only propagators from a single point to all
other points, one is discarding a large amount of valuable information which could

be extracted from the simulation. The translational invariance of the QCD ground
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state means that one should be able to average over all points on the lattice i.e.

C(p, At) = — e~ PO (Tr(Spo(y, 15 %, t + ATE(Spa(x, t + Aty y, )T4)).

L3T
x,y,t

(2.74)

The factor of L*T outside the summation is just the number of points on the lattice.
However as mentioned previously in Section 2.9, the matrix M is generally a very
large matrix. It is usually far too expensive to compute exactly for typical lattice
sizes. A number of stochastic estimation techniques for the inversion of M have been
attempted. See for example Ref. [55]. Another technique is the use of a truncated
spectral decomposition [56] in which the lowest lying eigenvectors are determined. It
is expected that the long-range physics of QCD will be contained in these eigenvectors
and as such they will dominate the spectral representations of the mesonic correlator.
This study uses both point and all-to-all propagators. For the all-to-all propaga-
tors a general technique which combines the truncated spectral decomposition with
a noisy stochastic estimator is used. The stochastic estimator utilises a sub-space
thinning technique, dilution, to reduce noise. This dilution can be applied to any
combination of the space, time, spin, or colour components of the noise vectors used

in the stochastic process. Ref. [57] contains a detailed description of the method.

2.11 Numerical techniques

In any numerical simulation there are two sources of error which are always present.
There are statistical errors and systematic errors. For LQCD the systematic errors
are due to errors in the model being used, finite difference errors (Sec. 2.2.2), fi-
nite volume errors (Sec. 2.2.2) and also errors due to the absence of certain modes
which are not permitted on the lattice due to the restriction in allowable momenta,
D Ivaa': The statistical errors are a result of the actual simulations. For example,
performing a Monte Carlo estimate of an integral involves approximating the inte-

gral by a finite sum. As the number of samples being measured approaches infinity,

the sum approaches the exact answer. For any finite set of data however, there are

30




statistical errors associated with the simulation. It is important that a measure of
these errors is obtained for each simulation. For a given raw dataset it is possible
to simply average over all the values to get a mean value. However, the only pos-
sible measure of error would be to use a 68% confidence interval on the raw set. A
simple way to increase the statistics is to use the method of “bootstrapping”[58].
Bootstrapping involves creating artificial sets of data from the original single set by
re-sampling by random choice with replacement. The method of “jackknifing” can
also be used to estimate the standard error on a sample. Like the bootstrap it esti-
mates the variability of a sample by measuring the variability between subsamples.
The procedure for the jackknife method for a sample of N measurements is to dis-
regard the j* measurement in a set and then compute m; as the mean of the set of

the N — 1 measurements. m is the mean of the full set. Then the variance is given

by Omean = (N — 1) leil (ﬂ';li)z

25111 e Orting

In many experiments or simulations it is desirable to construct a model of how a
system should behave. Once the model is decided upon, the available data is fitted
to the model and the fit parameters and “goodness-of-fit” can be determined. A
standard method of obtaining the best fit to a model is to minimise what is known

as the chi-square or

X* = i (%) , (2.75)

i=1

where y; are the measurements of the experiment and y,, is the expected value due

to the model. N is the number of measurements and o; is the standard deviation.
The index 7 denotes the different “points” at which the experiment is measured.

If one assumes that each data point y; has a normally distributed error around

the model value ¥, then the probability of an individual measurement y; occurring

within an interval Ay around vy, is given by

1 T Ym >
P; < exp {—5 (y a-y ) }Ay. (2.76)
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Thus the probability of a particular set of measurements occurring is given by the

Pocﬁexp{—w;— <y;—ym>2} Ay. (2.77)

i=1 L

product

The best fit to the data occurs by maximising the probability that a set of data can

occur given a particular model. This is equivalent to minimising

{Z (yl——ym)Q} — NlogAy. (2.78)

20;
i=1 ¢

This is equivalent again to minimising Eq. 2.75 above.

All of the fits done in the course of this thesis were made using the Marquardt-
Levenberg algorithm. This method is a combination of two other methods, the
inverse-Hessian (or Newton) method and the method of steepest descent. The method
of steepest descent suffers from the problem of slow convergence close to the actual
minimum. The inverse-Hessian method is liable to fail if the initial guess is far
away from the final minimum. Thus the Marquardt-Levenberg algorithm switches
smoothly between the two methods, utilising the method of steepest descent when
far away from the minimum and then switching to the inverse-Hessian. The method

is explained in detail in Ref. [58]. A brief summery is given below.

Method of steepest descent

The method of steepest descent is a very naive method of finding a local minimum.
The idea is to start with a point acyrens as an approximation to the minimum of a
function y*(a). A new approximation is then given by moving from point acyerent t0

point a,ey in the direction of steepest descent i.e. —Vx2(acu"em).

Apext = Acurrent — /'va2(acurrent)a (279)

where 4 is a constant which sets how far down the gradient the step is taken. The
choice of p is very important. x needs to be small if the curvature of x? is rapidly

varying. However a value of p which is too small means it can take too many iterations
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to converge to the local minimum. Methods such as the Davidon-Fletcher-Powell
(DFP) [59] and Broyden-Fletcher-Goldfarb-Shanno (BFGS) [60] methods incorporate

techniques to find an optimal u for each step of the procedure.

Inverse Hessian Method

The x? function of M unknown parameters a; can be approximated to second order

by a quadratic form

I
Xz(a)z'y—d-a+§a-D-a. (2.80)
where d; = %’i_?, D;; = %Z—j and 7y is a scalar value. If the current x? value is close

to the minimum one then the minimising parameters are determined by

Amin = Acurrent — D_l : [vxz(acurrent)] . (281)

Using the notation that

1 0x? 18 032
= e AR 2.82
Bk 2 8ak il 2 8ak8al / ( )
the above Eqs 2.79 and 2.81 can be written respectively as

da; = pp, (2.83)

M
Z axda; = [, (2-84)

=1

where da = apexy — Acurrent- Marquardt’s insight was to modify Eq. 2.83 to take some

account of the magnitude of the Hessian matrix by writing

Aagda; = 3, (2.85)
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and by defining

’

27
gy, = an(j # k). (2.86)

a;; = oyi(1 + A),

The result of this is that Eqs. 2.84 and 2.85 can be combined as

M
> auda; = B (2.87)
=il

The net result is that for a large value of A, Eq. 2.87 becomes identical to Eq. 2.85
but for a very small value of A it becomes identical to Eq. 2.84. Thus by varying the
value of )\ it is possible to switch continuously between the two methods. If the 2
value of a new estimate of parameters is greater than the x? for the old parameter
then the value of A is increased, so that the algorithm tends more towards the method
of steepest descent and the step is repeated. However if the new x? is less than the
old x? then the new value is kept and the procedure is repeated, with the value of A

reduced.

Sliding window fits

The use of sliding window fits is a technique which was used extensively during the
course of this project. In a sliding window fit, the measured effective mass from a
fit is plotted as a function of the lower bound of the fit range. As described above
in Sec. 2.10 the ground state effective mass can be extracted from the correlation
function for large times. For a small temporal separation, the correlation function
still has significant contributions from higher order states. However, too far out
along the lattice, the signal can become too noisy to accurately fit. To make a sliding
window fit, a maximum timeslice tnay is chosen and the minimum timeslice, ¢, is
varied. The measured effective mass for each fit range is determined and the result is
plotted with ¢.,;, along the horizontal axis and the extracted effective mass plotted
along the vertical axis. What one is looking for from a fit such as this is stability in

the determination of the effective mass over a number of values of t,;, i.e. a plateau.
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Example sliding window plot

0.18 ' ' '
0.16 ' |
.
o X
| F s |
A
x
X
0.12 | *- ﬂ
0.1 1 ' RNNH
0 i A
tmin

Figure 2-2: An example of a sliding window fit. This fit is taken from RUN 1 for
momentum p? = 0. For further details see Sec 3. For this fit, tmax = 40 and the
x-axis of the plot corresponds to the value for t.;,. The y-axis corresponds to the
measured value of a;Ey obtained when fitting in the range [tmin,40]. The x-axis is
given in units of a,

Such a fit should also be considered in conjunction with the respective x?/Ng s values
to maximise the quality of any extracted results. An example of a sliding window fit
is shown in Fig. 2-2. In practice for this study, t,.x was set to be at the midpoint of

the lattice.

2.12 Generation of Configurations

All of the configurations used in the course of this project were generated using the
hybrid Monte Carlo (HMC) method. The hybrid Monte Carlo method is a combi-
nation of Monte Carlo techniques with molecular dynamics (MD) methods. Monte
Carlo methods usually only involve local updates and have low acceptance rates for
multiple attempted updates at a single step. MD methods involve global updates

but the scheme is prone to instabilities due to the finite time-step. HMC allows for
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global updates but does not suffer from the instabilities of MD methods.

2.13 Smearing

Smearing is a technique which is used to enhance the measurements made in a simu-
lation. In particular it can greatly reduce the ultraviolet divergences due to tadpole
diagrams, (See Sec. 2.6.2). Smearing can be done on both quark and gluon fields. The
two types of gauge smearing used in the course of this project are discussed below.
Other approaches include the hypercubic “fat link” smearing transformation [61].
The effects of different smearing procedures on simulations using a range of different

actions can be found in Ref. [62]

2.13.1 Gluon Smearing

Link smearing [63] refers to the procedure whereby a link is substituted by itself plus

a weighted sum of neighbouring spatial plaquettes.

Ui»U-+e > > P (2.88)

n=+1,—1 j#i
where the RHS of Eq. 2.88 must be projected back onto the SU(3) group since
the combination of links is not itself an element of SU(3). This procedure is then
repeated n times to obtain the final smeared link variables. The purpose of smearing
is to try to eliminate or reduce unphysical short-distance fluctuations present on the
lattice. Smearing leads to a stronger signal but introduces a strong distortion at short

distances from the source.

The projection onto SU(3) is neither analytic nor unique and must be carefully de-
fined in order to preserve all symmetry properties of the link variables. The projection
of a matrix V into SU(3) is often taken to be the matrix U € SU(3) which maximises
ReTr(UV?). Alternatively it can be defined by U = V(V1V)~2det(V -1V 1)s.
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Stout Links

An analytic method of smearing the link variables was given in Ref. [64]. The resulting
variables from this method are called “stout links”. The method consists of creating
the Hermitian and traceless matrix @, (z) defined by,

(Qf( ) — Qu(z)) - ). (1 — Qu(2)) (2.89)

Qulz) = =

[\>I~

where

Zp,w V(@) Uu(z + 0)UNz + ) + Ul (z — 2)Uu(z — 2)Uu(z — D + 1)) UT,
tios (2.90)

and p,, are the weighting parameters. The smearing procedure is then defined by

n Q™ (z n
U;S +1)($) — Q" ( ))Ul(t )(:E) (2.91)

As Q,(z) is Hermitian and traceless, el @) ¢ SU(N) which means that U("+1 (z) €
SU(N) and thus there is no need to project the final link variables back into SU(N).
Ref. [64] showed that results from using “stout links” agreed with results using stan-
dard smearing procedures but that this method was more sensitive to the weighting

parameters.

2.13.2 Quark Smearing

Quark smearing is a procedure which essentially replaces point-like quark-sources on
the lattice with a more realistic quark source with finite size. Smeared operators
constructed from these more realistic sources increase the overlap with the lower
energy states and as such are particularly useful in determining ground state energies.
In order to do this, the short-wavelength, high-momentum modes are dampened
out. A simple way of doing this is to apply a gauge-covariant scheme in which the

smeared quark field at a given site is replaced by a Gaussian weighted average of the
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surrounding sites on the same time slice [48]

P(z) ~ /dBTe_’z/(“"f)@b(x +1) ~ e A (%), (2.92)

For the lattice this expression is approximated by

2

B =1+ 2 )"”wu), (293)

where A is the three-dimensional gauge covariant laplacian

Ap(z)= > (Un(@)p(z+0) — P(z)). (2.94)

n==+1,+2,43

0, is the smearing radius and n, denotes the number of times the smearing procedure

is iterated.

2.14 Other formulations of the quark action.

Although Wilson fermions were exclusively used in this thesis, a short synopsis of

other fermion discretisations are given here also.

2.14.1 No-go theorem

The “No-Go” theorem was first described by Nielsen and Ninomiya [65]. This theorem

stated that given the three assumptions

e Locality of interaction, i.e the Hamiltonian satisfies H(z—y) — 0 as |[z—y| — oo
e Translational invariance on the lattice

e Hermiticity of the N X N matrix Hamiltonian H

then the appearance of equally many right-handed and left-handed species of Weyl
particles with given quantum numbers in the continuum limit is an unavoidable
consequence of a lattice theory. The conclusion of this theorem was that the weak

interaction cannot be put on the lattice.
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A consequence of that theorem is that it is not possible, in strong interaction
models to solve the species doubling problem of Dirac fermions on a lattice in a
chirally invariant way. In the Weinberg-Salam electroweak model mass terms are due
to spontaneously broken gauge symmetries of the weak interaction. A Dirac particle
can be thought of as a left-handed Weyl particle pairing up with a right-handed
particle with a mass term in the Hamiltonian in order to cause a transition between
the two. Karsten and Smit [66] gave a weaker version of this theorem which showed
that the absence of doublers with full chiral symmetry on the lattice was inconsistent
with the Adler-Bell-Jackiw Anomaly and that the appearance of the doublers was to
compensate for the strict chiral symmetry imposed by lattice regularisation.

The Nielsen Ninomiya theorem can be expressed in a form more suitable for lattice

QCD [67, 68]. Considering the free field action,
Sr=a"> ¥(z)Dy(z), (2.95)

where as usual, a is the lattice spacing and D is the lattice Dirac operator. D is

assumed to be invariant under translations so that
De'Py = D(p)ePu (2.96)

The theorem now states that the following properties cannot hold simultaneously.

e D(p) is an analytic periodic function of the momenta p, with period 27/a.

e For momenta far below the cutoff 7/a, D(p) = Y.pyu up to terms of order ap?.

e D(p) is invertible at all non-zero momenta (mod 27/a).

D anti-commutes with ~s.

Note that whereas Wilson and staggered fermions suppress doublers with explicit
breaking of chiral symmetry, the use of a random lattice does so by spontaneous

chiral symmetry breaking [69].
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2.14.2 Staggered Fermions

Kogut-Susskind or Staggered Fermions [70] were developed as an attempt to over-
come the fermion doubling problem detailed above. The basic idea behind staggered
fermions is to double the effective lattice spacing and reduce the Brillioun Zone by
a factor of —;— This is achieved in practice by distributing the fermionic degrees of
freedom over the lattice. The naive continuum limit of any action used must reduce
to the continuum action. In constructing a lattice action for staggered fermions it
turns out that the spin and flavour indices must become mixed. Staggered fermions
do however preserve a remnant U(1) chiral symmetry. The extra species present
due to doubling are reduced from 16 down to “4 tastes” for staggered fermions. In
order to recover a theory with a single fermion, the usual procedure is to take the
fourth root of the fermion determinant. This however leads to the problem that the
resulting action is non-local. The issue of locality with staggered fermions is dis-
cussed in Ref. [71]. Non-local theories are unphysical and lack unitarity. The rooted
action is not invalid as long as the non-local terms are irrelevant and scale away in
the continuum limit. Ref. [72] showed that this was the case in the 2-dimensional
Schwinger model and proved that the rooting procedure was justified for that case.
Lattice QCD with unrooted staggered fermions does have the correct continuum limit
(however with the four degenerate tastes mentioned above). Staggered fermions can
be calculated much more rapidly than Wilson fermions and as such, it is possible to

simulate at much lower bare quark mass values.

2.14.3 Ginsparg-Wilson Relation

For an action to be chiral, its Dirac operator D must anti-commute with the chirality

operator s.
{D, s} =0. (2.97)

Ginsparg and Wilson introduced a modified lattice form of this relation called the
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Ginsparg-Wilson relation [73]

{D,} = 2(DysRD), (2.98)

where R is a local term with {R, s} # 0. A fermion obeying the Ginsparg-Wilson
relation will have an exact chiral symmetry at finite lattice spacing. However, GW
fermions may not exhibit the correct scaling behaviour. There are so-called “perfect
actions”, (See Sec. 2.6.2), which show a scaling identical to the continuum at any
lattice spacing but their construction is almost as difficult as solving the model an-
alytically. GW fermions cannot have the property of “ultra-locality”. GW fermion
couplings will decay exponentially but they cannot drop to zero beyond a finite num-

ber of lattice spacings [74].

2.14.4 Domain Wall Fermions

Kaplan [75] showed that a lattice theory of massive interacting fermions in 2n + 1
dimensions could be used to simulate the behaviour of massless chiral fermions in 2n
dimensions if the fermion mass had a step function shape in the extra dimension. The
Nielsen Ninomiya theorem is satisfied in the 2n + 1 theory as a chiral fermion living
on a certain domain wall has a corresponding chiral fermion of opposite chirality
living on a domain wall of opposite orientation. Following on from the explanation
for doublers for Wilson fermions, Sec. 2.5.1, there are 2?**! massless modes in the
continuum. The addition of a Wilson term removes all but one of the 22"*! zero modes
bound to the domain in the continuum limit with only a single positive chirality mode
remaining. The currents of the 2n + 1 dimensional lattice are exactly conserved but
there is an anomalous current violation in the 2n dimensional effective theory due
to charge flowing in from the extra dimension. However the addition of the extra
dimension greatly increases the computational costs involved in using domain wall

fermions.
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2.14.5 Overlap Fermions

Narayanan and Neuberger [76] showed that the effect of the massless chiral fermion
can be represented as an overlap of two fermionic states. A simpler formula for the

effective action was derived in [77], [78]. The overlap operator can be written as
D (2.99)

with

D
V=—__ — ysign(H). (2.100)

\/ D}, Dy
and Dy is the Wilson lattice operator and H is the Hamiltonian. This formulation
does not contain an explicit fifth dimension, however the addition of the sign operator

makes the simulation procedure difficult.

2.14.6 Twisted Mass Fermions

Simulations in the quenched approximation can lead to so-called exceptional con-
figurations. These are due to large fluctuations which arise from the contribution
of a small eigenvalue to the fermionic correlator which is not balanced due to the
omission of the fermionic determinant. Exceptional configurations are particularly
problematic for simulations at smaller quark masses, particularly below the strange
quark mass. A method to prevent exceptional configurations is the use of twisted
mass fermions. For this approach [79], a chirally twisted mass term is added to the
Dirac operator

th =D+ ,L-'LL,Y57_3’

where the Pauli matrix 73 acts in flavour space. This Dirac operator is protected

from zero modes for any finite value of u as
det Dy, = det[D'D + p?] > 0,
which protects against exceptional configurations.
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Chapter 3

Non-perturbative determination of

action parameters

The use of an anisotropic lattice introduces new parameters into the actions, &, being
introduced as the quark anisotropy parameter in the quark action, Eq. 2.56 and §; as
the gluon anisotropy parameter into the gluon action, Eq. 2.53. At tree level, these
anisotropy parameters are given by the ratio of the lattice spacing in the spatial
direction to the lattice spacing in the temporal direction i.e. §; = o for the quark
sector and similarly for §,. In practice the bare input parameters are renormalised in
a simulation and therefore the measured physical quantity will not be equal to the
input parameters. As such, the input parameters must in general be tuned to give the
desired target renormalised value. In the case of the anisotropy, the determination of
the renormalised anisotropy from both the quark and gluon sector should correspond
with the target anisotropy.

As discussed in Sec. 2.9 the technique of importance sampling applied to QCD
simulations leads to background configurations being generated with probability dis-

tribution

P(U) = det(M(U))e™. (3.1)

The fermion matrix M contains all information relating to the quark sector. As
mentioned in Sec. 2.9 the so called “quenched” approximation involves setting the

value detM equal to a constant. Thus, changing the value of &, has no effect on the
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generation of the gauge configurations within the quenched approximation. On the
other hand, S, contains all the information from the gluon sector. Changing the input
value &, affects the generation of configurations for both the quenched and dynamical
(unquenched) cases. For the quenched case then it is a simple matter to first tune
an input value §; and generate the required configurations. The value of §, can then
be independently tuned to restore Lorentz invariance after the configurations have
been generated. In the unquenched or dynamical case however, detM is taken into
account in the generation of the gauge configurations and changing &, will necessitate
the regeneration of the configurations according to the new distribution. If &, is
tuned to the required renormalised value and then an attempt is made to tune &,
the gauge configurations must be regenerated to take into account the new &;. The
previous value for &, is invalid for the new set of configurations and must be measured
again. In order to solve this problem the two parameters £, and £ must be tuned

simultaneously.

L Quenched Case

The tuning procedure for the quenched case is described in detail in earlier work
[52]. To summarise, a target renormalised anisotropy value of 6 was chosen. &,
was first tuned to the required target anisotropy and £, was subsequently tuned.
The main results of the paper were that the tuning of the input anisotropies was
a straightforward procedure and that the mass dependence of the tuned value was
small across a large range of masses varying from the mass of the strange quark to

the charmed quark.

3.2 Dynamical Case

The dynamical gauge configurations used in the course of this study were generated
with two quark flavours. As mentioned above, in the case of a dynamical simulation,
¢, and &, must be simultaneously tuned [80]. In order to do this, the dependence of

the renormalised values on the input values for any simulation was taken to be linear
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as a first approximation. Writing

€ = ALY + BE) + C, (3.2)
£ = DE) + EE + F. (3.3)

(&, &;) are the renormalised values measured from the simulation. Three sets of
input parameters ( g,fg) are needed to solve these equations for A, B,C, D, E, F.
Once these variables are known it is simply a matter of solving the simultaneous

equations

5 O =g | By, (3.4)
§=F = Dg B, (3.5)

for £ and £, the tuned input anisotropies. £* is the target anisotropy.
q g

3.3 Measuring output anisotropies

The renormalised anisotropy measurements must be determined by a physical probe
of the system after the simulation. Two different methods are presented here, one
for the gluon sector and one for the quark sector. The purpose of this tuning is that
one should be able to determine what input values & and &) should be used so that

both determinations coincide with the target anisotropy value.

3.3.1 Measuring &

The renormalised gluon anisotropy &; is determined by the method of “sideways
potential” [49, 81]. The static source propagation is chosen to be along a coarse
direction and interquark potentials are extracted from Wilson loops in both the fine

and a coarse direction via the relations,
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asVs(x,2) =In (%{%) ; (3.6)

SV < Wﬂtﬁ)—-) : (3.7)

where Vj is the static interquark potential, Wys(x, z) and Wi,(t, z) are Wilson loops
with the subscripts s and t referring to spatial and temporal lattice directions respec-
tively. t is the fine direction and x, z are two coarse directions. The potential V'(|x|)

is then extracted from

lim Vi(x, 2) = Vi(lx]), (3.8)
lim V(t, 2) — Vi(lt)). (3.9)

The static interquark potential should be the same over the same physical distance.
In practice, for a target anisotropy of 6, the fine direction is blocked so that the
product of 6 links in the fine direction is taken to be equivalent to one link in a coarse
direction. V; and V; should give the same result if the anisotropy is tuned correctly.
For a given input anisotropy fg and target anisotropy &' the mismatch parameter
cg = Vi(z)/Vi(t/€) can be determined. V(z) can be assumed to be approximated by
the Cornell potential V(z) = —2 + oz. If z is in the régime where the potential is

nearly linear, the mismatch parameter is approximately related to the actual gauge

anisotropy, ¢y = £,/§.

3.3.2 Measuring &

The value of £ was measured from the pseudoscalar dispersion relation. On the

anisotropic lattice

——n’+ O(p*), (3.10)

Eo(p)* = Eo(0)* + 7 g,

with 7= "Z‘T':ﬁ, L is the length of the lattice. Fy(p) is the ground state energy
for momentum p. Thus for low momenta &, can be determined from the inverse of

the slope of the dispersion relation. Fig. 3-20 shows typical dispersion relations for
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Figure 3-1: This plot shows a typical correlation function for the pseudoscalar with
momentum p? = 0 on a 8 x 80 lattice. All-to-all propagators were used. The
data were generated by averaging over correlation functions measured on a set of
250 configurations. The error bars are given by a 68% confidence interval over the
measured values. Note that the y-axis of this plot is shown on a log scale and the
x-axis is presented in units of a;.

the ensembles used in this study. The process first involves extracting the effective
pseudoscalar mass from the decay of correlation functions; from Sec. 2.10, C(t) =
>, Cu(e7tEn +e~(T=En) A typical correlation function can be seen at Fig. 3-1. For
reasons explained previously, the fit must be performed far enough across the lattice
so that there is no contribution from the higher order states. However as can be
seen from Fig. 3-1, the correlation function can become noisy further out along the
lattice. In order to increase the statistics, the correlation function is “folded” before
the analysis is performed. In other words, C(t) and C(T — t) are averaged. The

resulting energies were used to determine the energy-momentum dispersion relations.
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Run | 1 2 3 4 5 6 7
g L5l 1828 15147 1544 1.520 1.514 1.508
R R AR R B
§§ B 70" 80 666 744 B06 842

Table 3.1: Input parameters for the five dynamical simulations performed in this
tuning procedure. The bare quark mass is a;m, = —0.057 for all runs.

3.4 Simulation Details

This study was carried out on 8 x 48 and 8% x 80 anisotropic lattices with a spatial
lattice spacing as =~ 0.2fm and a target anisotropy £ = 6. The bare sea quark mass
was set to a;m, = —0.057 in all runs. This particular bare input parameter leads to
quarks with mass of the order of the strange quark. A set of 250 gauge configurations,
distributed across ten independent Markov chains, was generated for each set of input
parameters ( g,fg). See Table 3.1. Valence quark propagators were generated with
the same mass as the sea quarks.

To determine the statistical uncertainties, 1000 bootstrapped sets of configura-
tions were taken and analysis was done on these bootstrapped sets. A common
bootstrap ensemble was used for all measurements. This was necessary to ensure
the consistency of the tuning procedure. Both point and all-to-all propagators [57]
were used. The ground state energy Fy, was determined for a range of momenta,
n? e {0,1,2,3,4,5,6,9,12}, where p, = %’E’f and equivalent momentum values were
averaged over. The two-point correlator data were modelled with single exponentials
and a x2-minimisation was used to determine the best-fit ground state. These result-
ing values for Fy were used to generate an energy-momentum dispersion relation.

When more than three simulation points were available a plane was defined using
a constrained-x? fit.

All observables were estimated using the Monte Carlo method. An ensemble of
250 gauge field configurations divided across 10 Markov chains was generated using
the Hybrid Monte Carlo (HMC) algorithm [82].

Stout-link smearing [64] was used for the gauge fields in the fermion matrix. Two

stoutening iterations were used, with a parameter p = 0.22. This was fixed for
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all simulations, and chosen to approximately maximise the expectation value of the

spatial plaquette on the stout links.

3.4.1 Simulation times
83 x 48 lattices

The first 8% x 48 gauge configurations were generated for a glueball project on a cluster
in Carnegie Mellon University and took approximately 6500 CPU hours to generate
a set of 250 configurations. The point propagators were initially generated on single
Pentium 4 workstations and took approximately two to three weeks to generate on
a single machine. The point propagators were generated for 24 different momenta
given in Table A.1.1. 8% x 48 lattices for Runs 3,4, 5 were generated using 10 separate
Monte Carlo chains on the TCHPC “Moloch” cluster. Sec. A.1 contains the technical
specifications of this cluster. Approximately 4000 CPU hours were needed to generate

250 configurations on this cluster.

83 x 80 lattices

The 8 x 80 configurations were generated on the TCHPC “IITAC” cluster, see
Sec. A.1 for technical specifications. Approximately 6000 CPU hours were needed to
generate 250 configurations on “IITAC”. It took a total of 240 CPU hours to generate
the point propagators for 24 momenta for each set of configurations.Approximately
4800 CPU hours were needed to construct correlation functions from all-to-all propa-
gators using time and colour dilution for 41 momenta on the 250 configurations using
only the “IITAC” cluster (19 CPU hrs per config) and approximately 7000 CPU
hours using only the “Moloch” cluster (28 CPU hrs per config). Using only time
dilution took under approximately 1250 CPU hours to generate the required noise
vectors using the faster IITAC cluster. It took approximately 2200 CPU hours using

the Moloch cluster.
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3.5 Results

The study was initially attempted using point propagators on lattices with 8 sites
in each of the spatial directions and 48 sites in the temporal direction. Three initial
sets of input parameters were chosen in the region in which it was believed that the
tuned point would lie. These input parameters, numbered 1,2,and 3, are given in

Table 3.1.

3.5.1 83 x 48 lattice

Some preliminary results using point propagators on 8 x 48 lattices were presented

in Ref. [83].

&

The gluon anisotropy is determined from the static quark potential at a selected
distance R and time 7. It is important to choose values of R and 7" where the
potential is well determined and the value obtained for ¢, = V‘:—(% is stable with
respect to small variations in R and 7. The same values of R and 7" must then be
used for all runs in order to have a consistent procedure.

cy was measured for all of the lattices for different separations in the temporal
and spatial directions. Figs. 3-2, 3-3 shows the values for a,Vi(x, z) and asVi(t, 2)
measured for spatial separations R = 3,4 for Run 1. The error bars on these plots
are generated using a 68% confidence interval over 1000 bootstrapped sets generated
from the initial 250 background gauge configurations. The same bootstrapping order
was maintained for computing ¢, as for computing &, in order to preserve consistency.

(T, R) = (2, 3) were chosen as the parameters used in the measurement of ¢, for the

final analysis.

&g

Point propagators were measured with sources at four different timeslices and the

resulting data were averaged. Equivalent momenta were also averaged over, for ex-
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Figure 3-2: These plots show the measured static quark inter-potential for Run 1 on
an 8% x 48 lattice. These plots are from Wilson loops measured in the (¢, z) direction.
The top plot is for a spatial separation R = 4 and the bottom plot is for separation
R = 3. The horizontal axis shows the temporal spacing in blocked lattice units i.e.
in units of 6a; ~ a,.
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Figure 3-3: These plots show the measured static quark inter-potential for Run 1
on an 8 x 48 lattice. These two plots are from Wilson loops measured in the (z, 2)
direction. The top plots is for a spatial separation R = 4 and the bottom plot is for
separation R = 3. Again the horizontal axis shows the spacing in lattice units as,.
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ample {0,0,1},{0,1,0},{1,0,0}. The quark fields were not smeared for the initial
measurements. The quark anisotropy was measured from the pseudoscalar dispersion
as described in Sec. 3.3.2. Measurements of a;Fy were taken for Run 1 for momenta
n*=0,1,2,3,4,5,6,9,12. The resulting dispersion relation can be seen in Fig. 3-5.
This procedure was repeated for Runs 2 and 3. The dispersion relations from Run
2 and Run 3 can be seen in Fig. 3-6. However the data for Run 3 was extremely
noisy and any attempts at a straight line fit resulted in large x? values. It was de-
cided to repeat the procedure using smeared quark fields in an attempt to reduce

contamination from higher order states.

Smeared vs Unsmeared

The smearing procedure is described above in Sec. 2.13.2. The quark fields were
smeared with five iterations using a weighting of 0.1 in each spatial direction. The
effect of the smearing procedure can be seen in Fig. 3-4 which compares an effective
mass plot from unsmeared quark fields with one from smeared quark fields. Fig. 3-7
also shows the difference in the form of a sliding window fit for momentum n? = 3.
This plot also shows the effect of smearing on the resulting x?/Ng4; values. Some
of the lower x?/Ny for the smeared data can be attributed to the extra noise in
the correlation functions from the smeared fields. An attempt was made to fit over
an increased number of timeslices by fitting the correlation function to a double
exponential rather than a single exponential function, C(t) = Ae Fot 4+ Be E1t 4
AeBo(T=t) 4 Be=E1(T-8)  However it was found that the resulting fits were very
sensitive to the choice of fit range and the number of timeslices that could be fitted
over to give a reasonable x? value was not much greater than for the single exponential
fit. For example, an attempt to fit momentum p?> = 0 on Run 1 with a double
exponential fit between timeslices (8, 14] gave a value of a;Ey = 0.069 £ 0.006 with a
x?/Na; = 0.86 whereas a fit between timeslices [9, 15] gave a value of a,Ey = 0.522 &
0.005 and a x?/N4; = 0.44. These fits further out the lattice were not consistent
with a visual inspection of the effective mass plot. When the fitted parameters were

substituted back into the model for C(t), the result differed significantly from the

53



Unsmeared Data

S QR T
0.3 Error — |
= D25 | |
L
« 0.2 | _
a6 - _
0.1 ke e
VMBS RS ) B |- NSO SRR o
t
Smeared Data
B ' ' Best fit
0.3 | Error - -
&= 025} _
L
W 02t _
075 FORE |
0.1 . . 0006602

B0 e oot Al 88
t

Figure 3-4: These plots show the effects of smearing on effective mass plots. A fit
was attempted on both smeared and raw data sets between timeslices 19 and 24.
The results for the smeared data was 0.114 + 0.001 with a large x?/Na; ~ 12.For
the unsmeared data the fit was 0.121 £ 0.001 with a x?/N4; ~ 3. Both these fits
were attempted on 8% x 48 lattices for momentum n? = 0 and with input values
corresponding to Run 1 in Table 3.1. The horizontal axis is given in units of a,.
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Figure 3-5: This plot is an initial attempt to measure &, for Run 1. The quark
fields were unsmeared and momenta to n? = 12 were measured. A straight line fit
was attempted to all of the points. Note that this plot was only a preliminary plot
and later fits were performed to only the first three momenta. The result from this
particular fit was a value of £ = 4.84 4+ 0.06 with a x?/Ny; = 4.14.
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Figure 3-6: Pseudoscalar dispersion relations for Runs 1 & 2. These plots show
momenta up to n? = 12. The results from these fits were discarded due to the high
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Comparison of sliding window fits
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Figure 3-7: These plots show the effects of smearing on sliding window fits and on
the associated x? value for each effective mass fit. The top plot shows the effect of
smearing on the sliding window fit obtained for an 8 x 48 lattices for momentum
n? = 3 and with input values corresponding to Run 1 in Table 3.1. The bottom plot
compares the corresponding x?/Nq ¢ values for each fit for the smeared and unsmeared
cases. The dotted is included to highlight x?/Ngs The horizontal axis is given in
units of a;.
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original data out towards the centre of the lattice. It was found that choosing a fit
range close to the origin of the lattice, for example, choosing a range of [2, 8] gave
a;Ey = 0.111 £0.005 with x2/N, s = 4.9/5 which agreed with the value for the single
exponential fit. Due to the sensitivity of the fitted parameters to the fit range it was
decided to continue using single exponential fits. The single and double exponential

fits for Run 1 for p? = 0 are shown in Fig. 3-8.

Figs. 3-11 and 3-12 show four pseudoscalar dispersion relations resulting from
analysis of the smeared quarkfields for Runs 1,2 and 3. The first three plots are
preliminary plots in which fits were attempted up to a momentum of n? = 12. The
fits that were used to obtain the anisotropy were made only up to a momentum of
n? = 3. A more accurate dispersion relation for momenta up to n? = 6 along with
the effective mass plot for n> = 4 can be seen in Fig. 3-10. Measurements of &,
used in the eventual tuning procedure were taken from more precise fits using ground
state masses extracted from momenta n? = {0, 1,2, 3}, for example the last plot in
Fig. 3-12. The resulting values for £, are given in Table 3.4. The simulation closest

to the “tuned point” corresponded to Run 2.

The measurements of &, and &, for the first three runs were then combined as
explained in Sec. 3.2. The resulting scatterplot shown in Fig. 3-14(i) is extremely
noisy. Another set of gauge configurations were generated with input parameters
( 2, fg) corresponding to the central values obtained from the scatterplot. This point
is denoted as Run 4 in Fig. 3-14(i) and in Table 3.1. (£7, c,) were again measured over
the bootstrapped samples for Run 4 and were found to be 6.4740.05 and 0.98540.005
respectively. A constrained-x? fit was made using values all four available runs (Runs
1, 2 3 4). The resulting scatterplot is shown in Fig. 3-14(4i). This gave simulation
point for Run 5. The procedure was repeated again and the renormalised output
values were found to be (7, c,) = (5.80 & 0.05,0.995 £ 0.003). Another constrained-
x? fit using all five simulations was made and again this can be seen in Fig. 3-
15(74i). This scatterplot was not vastly different from the scatterplot obtained using
only the previous four runs. The spread of points has become somewhat smaller

but was still significantly large. To get a measure of the spread of the intersection
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point, histograms were obtained by projecting the points into the respective axes and
binning the data, see Fig. 3-16. At this point it was decided that 48 timeslices were not
sufficient to allow contributions from higher order states to die off in the correlation
functions so it was decided to go back and repeat the procedure for lattices with 80
sites in the temporal extent. A rough plot was later made using the unsmeared quark
data and it is included here in Fig. 3-9 for the sake of comparison with the results

from the smeared quarks data e.g Fig. 3-14.

3.5.2 83 x 80 lattice

A simulation was performed on 8 x 80 lattices at point 5 in Table 3.1. Both point
and all-to-all propagators, [57], were used for the initial run. All-to-all propagators
were determined for a total of 41 momenta up to n? = 6, See Table A.1.1 for a list
of these momenta. The propagators were first generated with 50 eigenvectors for
Run 5 and then with no eigenvectors. It was determined that the extra computation
involved in the generation of the eigenvectors did not justify the very small change in
the quality of the resulting signal. Subsequent runs did not utilise any eigenvectors.
The noise vectors were first generated using only time dilution and then by using
both time and colour dilution. Fig. 3-17 shows the effect of the different dilutions for
an individual correlator. Fig. 3-18 shows the effect of the different dilution levels on
a resulting effective mass plot. It can be easily seen that addition of colour dilution
significantly reduces the noise. Time and colour dilution with no eigenvectors was
used for the remaining measurements.

An immediate improvement in the quality of the fit due to the longer temporal
extent of the lattice was observed. Sliding window fits were used to determine the
optimal fit ranges to the correlator data. An example of such a plot is given in
Fig. 3-19. The fit ranges chosen are given in Table 3.3. The ground state energy
was determined from fits over at least 15 timeslices and was stable with respect
to changes in t,;,. The effect of the longer lattice is illustrated in Figure 3-20. It
shows that the values of a;Fy extracted from the shorter lattice are overestimated due

to contamination from higher order states. The stability of the sliding window plots
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Figure 3-8: Effective mass plots for Run 1. Quark smearing has been used. For
the single exponential fit a fit range of [19,23] was used and the resulting value
atFy = 0.115+0.001 was extracted with a xz/Nd,f = 13/3 for the fit. For the double
exponential fit, the fit range used was [2,8], a;Fo = 0.11140.005 with x2/Ny s = 4.9/5.
The horizontal axis is given in units of a;.
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Figure 3-9: This plot shows the resulting scatterplot from the first three runs. Each
point on the graph represents an intersection point from the two unconstrained planar
fits with the target anisotropy &* for a particular bootstrap.
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Figure 3-10: The left plot shows the effective mass for degenerate quark mass a;m, =
—0.057 momentum n? = 4. The fit range is [14:20] with a x2/Na; = 0.81. The
horizontal axis is given in units of a;. The right plot is a pseudoscalar dispersion
relation with a x?/Ny; = 0.14. Both come from simulation parameters at point 1 on
Fig. 3-14 using point propagators and smeared quark fields.
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Dispersion Relation. Run 1. Smeared
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Figure 3-11: These plots show initial attempts at plotting dispersion relations ob-
tained from the smeared quarks on Runs 1 and 2 on the 83 x 48 lattices. Note that the
values of &, used in the generation of the scatterplots were taken from more precise
fits using only momenta n? = {0, 1, 2, 3}.
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Dispersion Relation. Run 3. Smeared
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Figure 3-12: These plots show initial attempts at plotting dispersion relations ob-
tained from the smeared quarks on Run 3 on the 8 x 48 lattices. The bottom
plot shows a fit for Run 3 using only the first 4 momenta. This fit gives a value of
€, = 5.18 £0.08 with a x?/N4s = 2.6. The plot on the top shows a fit on momenta
up to n? = 12 and the value obtained is £, = 6.05 + 0.03 but with a x*>/Ng; = 45.7.
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Dispersion Relation. Run 4. Smeared

0.06 T .
Errog
(aiEp)
o 0.04
S e
Ll e
\CU/ /’//4
QIO | o
/f
O I
MRS GO R TR R S
o2
Dispersion Relation. Run 5. Smeared
0.08 Fit —
Erro5
0.06 (aEp) 2
N/-\
u  0.04 t
L
0.02
0 1
IR L SRR PR - e S
i

Figure 3-13: Dispersion relations for Runs 4 and 5. The measured value for &, is
6.48 + 0.05 with a x2/Ny s = 2.25 for Run 4 and 5.88 + 0.10 with a x?/Ny; = 0.19
for Run 5.
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Figure 3-14: This figure shows the first two steps in the progression of the tuning
procedure. (i) shows the scatterplot for a fit to the first 3 sets of configurations. (ii)
shows a 2 fit for the first four points. Each point on a scatterplot shows an estimate
of a tuned point from different bootstrapped samples.
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Figure 3-15: This figure shows the next stage in the progression of the tuning proce-
dure. Plot (iii) shows a x? fit for 5 sets. (iv) shows all 3 scatterplots together.
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Figure 3-16: Histogram of coordinates for 5-run scatterplot from Figure (3-15). The
plot on the left is the x-coordinate, &, plot on the right is for the y-coordinate &,.

however leads to the conclusion that the 8% x 80 lattices are sufficient to measure a,Fy
accurately. This plot also compares simulations using point and all-to-all propagators.
The all-to-all propagators lead to improved precision in the fitted energies however
at an increased computational cost. The central values are in agreement with the
energies determined using point propagators but the statistical error is smaller. The
renormalised anisotropies measured for Run 5 gave (cg, £ff) = (0.991(7),6.95(8)). The
same tuning procedure used on the 8 x 48 lattices was repeated for the longer lattices
by simulating again at points 1 and 4 as together these spanned the largest area of
the plane. Consistently good fits are found for all runs for the first four momenta
considered (n? = 0,1,2 and 3). The renormalised quark anisotropy is therefore
determined from fits to these momenta. Fig. 3-21 shows the resulting pseudoscalar
dispersion relations for Runs at points 1 4 and 5. When combined with the values for
¢y from these runs, the resulting scatterplot is shown in Fig. 3-22 by the plot marked

R=3,T=2

58 &

As a check on the stability of the tuning procedure, ¢, was again measured using
different values of R and T in the determination of the gluon anisotropy for the
8% x 80 lattices. Table 3.2 shows the resulting ¢, for different R and 7. It can be seen

that the values are generally quite consistent for each run. Looking more closely at
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Different levels of dilution for Run 5
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Figure 3-17: This plot shows the effect of different dilution on the correlation func-
tion measured on a single background configuration. These are pseudoscalar (pion)
correlation functions for momentum n? = 0 from Run 5. See Table 3.1. Again the
x-axis is given in units of a;.
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Sliding window plot. n®=0. Run 5
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Figure 3-18: The top plot shows a fit to 173 configurations using noise generated with
time dilution only. The bottom plot shows a fit using noise generated with time and
colour dilution but on 250 configurations. In both plots, the left vertical axis denotes
a;Eo and the right vertical axis gives the x?/N, ;s value for a fit back to a particular
timeslice. t,,q. was set to 40 in both cases. The x-axis is presented in units of a;
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¢y = Vi(z)/Vi(t/€) at different (T,R)
Run | (1,3) (1,4) (2:3) (2,4) (8:5) (3,4)
T |0.972(2) 0.959(3) 0.972(7) 0.965(13) 0.991(25) 1.13(8)
4 |0.951(2) 0.941(4) 0.945(8) 0.926(18) 0.942(34) 0.89(9)
5 |0.994(2) 0.990(3) 0.991(7) 0.998(13) 0.965(25) 1.01(7)
6 | 1.004(2) 0.997(3) 0.983(6) 0.994(12) 1.014(19) 1.04(6)
7 | 1.010(1) 1.005(2) 1.006(4) 1.003(5) 1.033(12) 1.038(22)

Table 3.2: The gluon anisotropy parameter c, for different separations, R and times,
T. The final results were determined from data at 7'= 2 and R = 3.

TL2 tmin tmax
0 |23 40
I 2d - dd
PS8 | BRRSE
3 119 48

Table 3.3: Fit ranges.

the effective potential for each R as a function of T, it can be seen that it has not
yet reached a plateau at 7' = 1, while the value for 7" = 3 is consistent within errors
with that for 7' = 2. (T, R) = (2,3) were again chosen as the parameters, since this
combination yields reasonably small statistical errors, while R is large enough to be
in the linear régime. Figs. 3-22 and 3-23 compare the effect of the different choices of
R, T on the resulting scatterplot for the unconstrained fit. The plot shows that the
anisotropies are insensitive to a change in R but that increasing the value of 7' from
2 to 3 leads to large statistical uncertainty, particularly in the gluon anisotropy.
The same fit ranges and smearing parameters were chosen for all simulation points
in order to obtain a consistent determination of the dispersion relation. The final fit

ranges are given in Table 3.3.

3.5.4 Simulation with tuned parameters

Applying the plane fit procedure of Sec. 3.2 to a subset of configurations of Runs
1, 4 and 5 preliminary, tuned parameters £ = 8.0677,£0 = 7.5273; were obtained.
This point is denoted as Run 6 on the relevant plots. 250 configurations were then

generated with these parameters, and ¢, and £, determined using the same values for
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Figure 3-19: A typical ¢y, plot, showing the energy for momentum n? = 1 on run 1,
8% x 80 lattices from fits to time ranges tmax = 40 for various tmin. A stable ground
state energy determination, with a good x?, is achieved for 22 < tyi, < 30.

R, T and fit ranges as in Sections 3.3.1 and 3.3.2. It was found that ¢, = 0.983%§ ¢, =
6.2179). It was found that both quark and gluon anisotropies were within 3% of the
target value of 6. Although the anisotropies were not equal within statistical errors,
it was noted that there are still systematic uncertainties at the percent level, in
particular for £, as shown in Table 3.2. For example, if R = 3,7 = 3 was chosen it

was found that ¢, = 1.01(2).

The plane fit procedure was repeated to include the new information from Run
6. Figure 3-24 shows the resulting scatterplot determined on the 8% x 80 lattice from
runs 1, 4, 5 and 6. A new scatterplot, Fig. 3-24 was obtained. The intersection points
shifted in a direction to move ¢, and &, even closer to the target anisotropy. The
corresponding histograms are presented in Fig. 3-25. A final two input parameters
of £} = 7.43 and &) = 8.42 were chosen. and this point is denoted as Run 7 in the
relevant tables. The renormalised values measured at simulations at this point were

cg = 1.006(4) and &, = 5.68(4).
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Figure 3-20: A comparison of the dispersion relations determined from an 8 x 48
lattice and an 83 x 80 lattice. The solid lines are the best fits and the dotted lines are
the 68% confidence levels. The figure also shows a comparison of all-to-all propagators
and point propagators on the same (longer) lattice. The plot shows that the ground
state energies have not reached a plateau on the shorter lattice. On the longer lattice
the all-to-all and point data agree, while higher precision is achieved with all-to-all
propagators. These measurements were done for the Run 5 parameters.

The information from the simulation at point 7 was combined with the other
four point (1,4,5,6) to determine the scatterplot presented at the top of Fig. 3-26.
The measurement obtained from this scatterplot gave a new set of input parameters
(£2,€9) = (8.2270:03,7.6475:09). Two unconstrained fits were also attempted using the
nearest points in order to compare the resulting scatterplots. These are shown at the
bottom of Fig. 3-26 for (1,6, 7); and the top of Fig. 3-27 for (5,6,7). It can be seen
that the results from all three fits coincided with each other. All three scatterplots
are plotted on top of each other for the bottom plot of Fig. 3-27.

It was decided that the fitting procedure had resulted in input parameters that
were sufficiently tuned and further simulation was not performed at the values ob-
tained from the new scatterplot.

In order to get a rough idea of the physical scales of these lattices, the pion

mass, the rho mass and the string tension were computed. For Run 6, the measured
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Figure 3-21: Dispersion relations from runs 1, 4 and 5 on 8 x 80 lattices using all-
to-all propagators. The solid line is a fit to the four points and the dotted lines are
the 68% confidence levels. The quality of all three fits is very good with x?/Ng, § =
2.0/2,1.9/2,2.0/2 for runs 1,4 and 5 respectively.

values obtained were a;m, = 0.066(1) and a;m, = 0.120(5), which gives m,/m, =
0.54, while a crude measurement of the string tension from the gives a; = 0.2fm.
This crude measurement was performed by measuring the interquark potential for
large separations and fitting it to the linear part of the Cornell Potential. More
precise measurements of the lattice spacings were performed in the study of Karsch

Coefficients in Chapter 4 and the method will be discussed further in Section 4.2.

3.6 Conclusions

It was found that the original (8 x 48) lattices used were too short in the time
direction to allow a reliable determination of ground state energies, which were found
to be systematically high, in particular for higher momenta. This led in turn to
systematically high values for ;. The adoption of lattices with longer time extent
was a crucial step in the procedure. As Table 3.3 shows, the optimal fit ranges were

generally found to be beyond the range of the shorter lattice.
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Unconstrained fit. 8° x 80 lattice,R=3,T=2
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Figure 3-22: Tuned values of input parameters ( g, fg) determined from the plane fit
procedure on the 8 x 80 lattice. The plots show the results for different values of T
used to determine the gluon anisotropy when R = 4. Each point corresponds to one
bootstrap sample. A similar plot is shown for R = 4 in Fig. 3-23.
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Unconstrained fit. 8% x 80 lattice,R=4,T=2
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Figure 3-23: Tuned values of input parameters ( 3, 52) determined from the plane fit
procedure on the 8 x 80 lattice. The plots show the results for different values of
T used to determine the gluon anisotropy when R = 3. A similar plot is shown for
R =3 in Pig. 3-22.
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83 x 48 83 x 80
Run €y & €y L

1 |0.991(3) 4.98(6) | 0.972(7) 5.54(6)
2 |0.986(3) 6.27(4)

3 |1.001(3) 5.18(6)

4 |0.985(5) 6.47(5) | 0.945(8) 7.08(5)
5 |0.995(3) 5.80(5) | 0.991(7) 6.95(8)
6 0.983(6) 6.2(1)
/j 1.006(4) 5.78(4)

Table 3.4: Table of measured output anisotropies at each of the run points. The
errors are statistical only.

The first attempted tuned point was found to lie marginally outside the triangle
used for the plane fit procedure, so the end result was based on an extrapolation rather
than an interpolation. This increases both the statistical and systematic uncertainties
of the determination. To avoid this problem, it is important to choose a large enough
triangle to start with, so that successive parameter determinations are always based
on interpolations.

The tuned parameters ( 3,{3) were determined with a statistical uncertainty of
1% and 3% respectively from the ensembles of 250 configurations. In addition, there

are three main sources of systematic uncertainties:

1. The R and T values used in the determination of the sideways potential, and
the fit ranges used in the determination of the pseudoscalar dispersion relation.
Since the fit ranges are chosen to give stable ground state energies, it can safely
be assumed that the latter is a small effect. The effect of varying R is also
small, as shown in Figs. 3-22 and 3-23. There may be a systematic error arising
from the choice of T, but this is obscured by the larger statistical uncertainties

in the T' = 3 data, particularly in the 53 direction.

2. Lattice sizes. The pion dispersion relation is unlikely to be strongly affected
by the finite lattice volume, but the static quark potential may contain finite
volume errors which affect our results. Simulations at the tuned point on larger

volumes, could be used to determine whether this is a significant issue.
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Constrained fit. 83 x 80 lattice
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Figure 3-24: As in Fig 3-23. The figure shows the results from a plane fit using
parameters from runs 1, 4, 5 and 6. The point at the centre of the scatterplot, at
(&,€7) = (8.42,7.23), indicates the result of the best fit.

3. Nonlinearities in the dependence of (&,,&,) on (£, £7). The final fit to five points
shows no evidence of any significant nonlinearity. If this were found to be a
serious issue in any future simulation, a two-step procedure may be adopted
where a smaller triangle centred on the preliminary tuned point is used in the

second step.

Some preliminary results using the parameters corresponding to point 6 in Fig. 3-
24 were presented in Ref. [84, 85, 86]. Further results using the more accurately
tuned Run 7 were presented in Ref. [87].
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Figure 3-25: Histograms for point 7
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Constrained fit, 5 points. 8° x 80 lattice
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Figure 3-26: The top figure shows the results from a plane fit using parameters from
runs 1, 4, 5, 6 and 7. The other plot is an unconstrained fit to a sets of three points,
namely (1,6,7). Two similar plots are shown in Fig. 3-27.
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Unconstrained fit,points 5,6,7. 8% x 80 lattice

9 T Nl ! Y
& 4 ﬂf 5

8.9 ¢t X | 1
8 I :--J 7
ST Bt % 2 3 gﬂéib7 T
T 0 1
8.5 | ' 1
6 t . : 1 g ]

6.5 F 4 LB 8 8.5

&g’
Combined Plots. 8° x 80 lattice
9 T T T
4 * 5
8.0 X , : 1
8 £ e T ]
o OTE A
el b _
1.6.7

6.5 r 5,6,7 i
6 H 1’4’|5’6’7 1‘ \1‘\/1 ) d

6.5 i 7.8 8 8.5

&°

Figure 3-27: The top figure shows the results from an unconstrained plane fit using
parameters from runs (5,6,7). The bottom plot last plot is a superposition of the
top plot and the two plots from Fig. 3-26. The fact that the unconstrained fit using
point 1 agrees with the unconstrained fit using point 5 gives an indication that the
linear model approximation used is valid.

80



90

80 r
M
60
50
40 r
30 |
20
10 ¢
0

No of points per bin

1

8.05 8

60

.1 8.15 8.2 8.25 8.3 8.35 8.4 8.45

x

50
40 |
30
20 |
10 |

No of points per bin

i R e & e ] 8

Figure 3-28: Histograms for constrained fit for Fig. 3-26.
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Chapter 4

Finite Temperature QCD

One of the most challenging issues in particle physics is to study QCD in extreme
conditions. Soon after the discovery of QCD, asymptotic freedom was used to argue
that matter at high energy density will be weakly coupled [88]. Thus, under these
conditions, hadronic matter will deconfine into an amorphous soup of gluons and
quarks. Under the Standard Model of Cosmology, all matter in the universe existed
in the form of this Quark Gluon Plasma (QGP) until ~ 1us after the big bang. It
is also considered that this state may exist at the extreme conditions found inside
the cores of dense neutron stars. Experiments at the Relativistic Heavy Ion Collider
(RHIC) have been conducted and have been concluded by many theorists to have
provided sufficient evidence as to the existence of the QGP [89, 90]. The ALICE
experiment at CERN hopes to provide further probes into the properties of the QGP
[91].

Finite temperature studies have developed into a large subfield of Lattice QCD
[92]. One reason for this is that phase transitions can only be studied non-perturbatively.
Another reason is that the non-perturbative nature of non-Abelian quantum field the-
ories means that the physics is non-perturbative beyond the length scales 1/¢*(T),
where ¢2(T) is the gauge coupling [93]. As such, lattice QCD remains the only tool
by which one can hope to make reliable predictions from first principles.

Finite temperature field theory is defined by the Matsubara formalism for finite

temperature statistical systems. The temporal coordinate is replaced by % This
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coordinate is analogous to Euclidean time. The canonical partition function of such

a system can be written as

Z = Tre H/F = / [dpe=51#), (4.1)

1/T

where H is the Hamiltonian and S[¢] = |;

dzy [ d*TL($,0,¢). This is formally
equivalent to the path-integral representation of a Euclidean field theory. Following
on from this, it can be seen that the temperature will be defined by the temporal

extent of the lattice, i.e.
1

T =
Ntat’

(4.2)

where N, is the number of timeslices and a, is the temporal lattice spacing. The ex-
traction of reliable information from numerical data for correlators becomes increas-
ingly difficult with increasing temperature. Noisy temporal correlators are hampered
further by the fact that the temporal extent of the system is physically limited by
the inverse temperature. This can lead to difficulties in isolating the ground state
contributions from the higher state contributions The Maximum Entropy Method
[94] has been utilised in extracting the spectral density from such noisy correlators.
It should also be noted that a single coloured quark state is allowed as a state with
finite action in the deconfined phase and as such a “wraparound” quark propaga-
tor may yield a finite expectation value. Due to this contribution, the correlators
of certain meson-like operators e.g. charmonia, my be drastically changed after the
deconfinement transition [95]. There are two important factors when studying corre-
lators at finite temperature: the granularity of the lattice in the temporal direction
and the physical extent of the lattice in the temporal direction. It can be easily seen
from Eq. 4.2 that reducing the lattice spacing a; allows one to simulate at higher
temperatures while keeping V; fixed. Increasing the number of lattice points while
keeping the lattice dimension fixed results in a substantial increase in computational
cost. Anisotropic lattices allow one to decrease the lattice-spacing in the temporal

direction only in order to reduce this cost.

In full QCD with two flavours of dynamical quarks, thermodynamic quantities on
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coarse lattices have been found to show a large lattice spacing dependence [96, 97,

98, 99]. Isotropic lattices were used in the quoted studies.

Anisotropic lattices provide an efficient calculation method for thermodynamic

quantities.

4.1 Equations of state

The equations of state for the QGP must be determined in order to understand its
underlying properties. Perturbation theory is not entirely suitable in the required
regime due to the large strong gauge coupling. There are two separate approaches
in lattice theory to solving these equations. One method requires the use of Karsch
Coefficients [100, 102]. The measurement of these coefficients is the subject of this
study. The second method is the integral method [101]. This method has a number
of disadvantages in that scaling violations exist and it is also computationally expen-
sive. A number of different simulations are required for each quark mass for a given
temperature.

The calculation of the energy density € and pressure p is of central importance
to the investigation of the phase transition from hadronic matter to the QGP. These
observables are defined as derivatives of the partition function Z with respect to

temperature, 7', and volume, V'

1S alnZ olnZ

= Bl L '
AL

E(T) 7 _73 6(%) o ) (43)

Following on from Eq. 4.3, the temperature and volume must be independent
variables. This is achieved by keeping the temporal and spatial lattice spacings

independent so that
il

i 3 g
V= (M), T=g (4.4)
Using
9 £ B 9 e
s =~ 4,
8 T Mm@ " B, 3V oa (4.5)



and

Z = / dipdipdUe S, (4.6)

Eqgs 4.3 can be re-written in the form

0 & oS
e N3N, ada, <5§ as> : 512
and
Qs as
p(T) W _3N§’Nta2at <%3‘ at> ) (48)

where, as usual, ( ) denotes the average over the ensemble. Using the transformation

9] J 1e¢
= — = 4.9
0as |, Odg §+ e OF | = (58!
Eq. 4.8 can be written as
(T, = R e U e )
£ ~ 3N3N;a3a; \ O¢ ¥ 3N} Niada, \ Oas |,

ahactl) s G, aS
S 3R INAN G g VO,

> . (4.10)
€

Note that although the renormalised anisotropy measured from the pure gauge sector,
&g, will coincide with the renormalised quark anisotropy, &;, for any tuned run; in
general they will not coincide. Therefore, for the remainder of this study &+ =
%(Eq + &) is taken as the renormalised anisotropy value. The gluonic and fermionic
parts of the action may be studied separately, i.e. S = S;+S,;. The relevant actions
from Egs. 2.57 and 2.53 are repeated here for convenience.

S B {MQ _5E_Qg2t) L _LQ(R)}

T E05] ag i S 3 1208

i ; (4.11)
0 (R)
P {3u2ut2 i 12udu? Qt } ’
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and S, = ¥ M) with

My il {(moat +7r+ @> Y(z)

a; §3

iF 2—:; [(vo ~ 1) U(2)¥(z + &) — (y0 + U] (z — D)p(z — f)}

+ éul Z [(%’n — 45)U(z)p(z + 1) — (2% +45)U] (z — D)p(z — 7)

—uis ((1—12% — 8)Ui(z)Ui(z + i)b(z + 22) — (115% +8)UNz — )Ul (z — 20)9(x ~ 22))} '

(4.12)

When the fermion fields in the partition function are integrated out explicitly, an

“effective” fermion action can be defined as

St = In det[M], (4.13)
or
Sy = Tr[InM]. (4.14)
The identity
O(Tr In[M]) _OM
% = Tr o (4.15)
leads to
ghy i e Bl
6§+_Tr[6§+M ], (4.16)

and similarly for g—si.
as

From this point on the input mass is assumed to be the dimensionless quantity
mo = moa;. U, is fixed to unity. Working in terms of dimensionless lattice units the

derivatives in Egs 4.7 and 4.8 involve the quantities 37”5, gE—Af, g—f}, %il, which can be
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written as

oM Omg  18s 5{8
Oas o ( das @3_%) Vi)

0€? ; ;
% (Eé)guisai‘: Z {(—% — 4s)Ui(z)d(z +1) - (2% +4s)U} (z — i)¢(z — 1)

L (L= 060 + e+ 2~ Gt e~ 0= ot~ )

(g’yl + 4s)U (z —2)h(x — 1)

oy {(2% — 45)Ui(@)y(z +1) -

6072
&g u; Oag .

+—3— ((1—12% — 8)Ui(z)Ui(z + )¢ (z + 22) — (112% + 8) Ul (z — )U} (z — 20)9(z — 22))]
(4.17)
and
aM e aTrl() 18s 860
= (3 - o) Ve
108 15 9k 9 2 2 X
(“5(10)_21,7335—1 Z [(5% —48)Ui(@)$( + 1) — (3% +49)U} (z — )p(z - 2)
—“ul_ ((115% — 8)Ui(z)Ui(z + 1)v(z + 2) — (1127, -+ s)U (x — z)UT(m — 2)(z — 25))]
1 deions ) o g s
" Zgu—ga§+ Z [(5% — 45)Ui(z)(z +1) — (3% + 48)U} (z — 2)p(z — 2)
s ((i%‘ — 8)Ui(z)U;(z + i)(z + 21) — (— . —; + 8)Ul (z — 1)U} (z — 20)0(z — 22))}
Wi A\ T 12
(4.18)
Similarly for the gluonic part of the action,
95y _ ¢, B0 BlE W) et ol W (R)
o+ et [ (ap { 3ud 2 3ud % 12uGQ }
1
ol )
3u’ 12u? (4.19)

_ Ous ﬁ 00+w)g _ Awoey _ 1 gw
get € 3us il 3y T

oSG L™
Y { 12u59‘ }]
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and

95y, 96 [ B [5(1+w)y  5woey 1 om
da, " da, |+ (E7)? Jud s 3ule @ 1299 .2

+ﬂ{ 3up " 12u 49 H (4.20)

2
_ Ou, [ﬁo {__(1_+_W_)Q _ 40w ey 1 Q(R)}
& d

Jdas 3ud e 2u!
8
08 BON (R)
+ 08, {3 Q — 124 5Q H

Th R 350 350 65 dmg Omg Ous Ous :
e coefficients, {ag+’ o ’a§+’ 25, 8£+ 5 _Qaa ' 9Et da }, must be measured in order

to determine the pressure and energy density of the system. These are the Karsch

Coefficients.

4.2 Determination of lattice spacings

The Karsch coefficients contain terms which are derivatives of input quantities with
respect to the measured spatial lattice spacing. Therefore it is necessary to determine
the lattice spacing for all of the simulations. Two different methods were used. In
the following sections a description of both methods used are presented. A number
of tables and figures are presented in this chapter to assist in the explanation of the
steps involved. The remainder of the relevant tables and figures are presented in

Appendix B.

4.2.1 Interquark potential

The static q7 potential can in principle be determined by calculating the limit [17]

T—o0

ViR m [%an(R, T)] , (4.21)

where W (R, T) is the expectation value of the Wilson loop with spatial and temporal

extension R and T respectively. The relationship between Wilson loops and the
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ground state potential V(R) can be written as

W(R,T) = C(R)e™"®T 4 “excited state contributions”, (4.22)

where C(R) is the overlap with the “ground state”. The static potential can be

obtained from

@V (R) = lin In L)

o WRT £ D)) i

where T is selected as the smallest time on which the excited states become negligible.

Alternatively, a single exponential fit of the form
WA(R,T) = Ae ™, (4.24)

can be made to the data across a number of timeslices order to extract the parameter

B = a;V (z,t).

4.2.2 Cornell Potential

A first attempt was made to determine the lattice spacing via a fit to the static
interquark potential. This phenomenologically QCD-motivated form of the potential
consists of a % term which is due to to the potential induced by one-gluon exchange
between the quark and the anti-quark and a linear R term which is the confinement

part of the potential. This Cornell Potential [103] can be written as

VI(R) = % +or+ Vo (4.25)

Lattice artifacts in the potential due to the difference of the one-gluon exchange on

the lattice and in the continuum are corrected by subtracting a term proportional to

i 1 1
-l (420
Where [%] denotes the lattice one gluon exchange extrapolated to infinite volume

[104, 105, 106]. Alternate proposals exist for potential models which incorporate
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asymptotic freedom and linear quark confinement such as the Richardson Potential
[107].

For the case of partially-quenched QCD, the interquark potential is “screened”
by pair production. String breaking will occur when the potential energy needed
to separate the quarks exceeds the energy needed for the production of a quark-
antiquark pair. One would thus expect a flattening out of the measured potential for
larger separation.

Using quenched data, one can obtain an upper bound for which string breaking
should be observable [108]. A comparison of interquark potential for quenched vs
unquenched QCD can be seen in [109]. No evidence for string breaking was seen in
that study for a volume of V & (1.5fm)?. The first observation of string breaking in
4-dimensional lattice QCD was observed in [113] from the energy level crossing [114].
[115] measured the distance for the string breaking to occur to be a = 1.25fm.

Thus, a fit of V/(R) to Eq. 4.25 from a lattice simulation with dynamical fermions
will be less accurate. Finite spacing effects will affect the measurement of V(R) for
small values of R and string breaking will affect measurements for large values of
R. The choice of fit range will have a significant effect on the resulting measured
fit parameters. For the purpose of the “rough” determination of the lattice spacing
which was done for the Tuning Project (Chapter 3), a linear fit to potential was

made for large R and the slope was identified with the string tension.

Determining a, using the Cornell potential

It is possible to measure a value for a, from a fit of V(R) to the Cornell potential
by determining a,V'(R) for a range of values of R and performing a fit to the re-
sulting values. The quantity a;V (R) from equation 4.23 is simply multiplied by the
anisotropy value &;. The coefficient of the r term in Eq. 4.25 is called the “string
tension” and this is the term used to set the scale from the potential. The standard
value is generally taken to be 0gandara = (440MeV)2. The lattice version of Eq. 4.25
is given by

ey R as% ol +a.Vo. (4.27)
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with & = a%0 and R= +- The lattice spacing can then be determined from

V&

g = —— o 4.2
a 0'44GeV : (4.28)
and

1

Steps involved in measuring Cornell potential

The first step in determining V' (R) consists of measuring the expectation value of
Wilson loops in the R — ¢ plane. V(R,T') was then extracted from a plot of W (R, t)
against ¢t as described in Eq. 4.24. Fig. 4-1 shows a log plot of W(R,t) for R = 3
for Run 6. It also shows the corresponding “effective mass” plot for V(R,t). Note
again that the V (R, t) in practice is not determined from the effective mass plot but
is fitted directly to W (R, t). From Eq. 4.22 it can be seen that a;V'(R) can be taken
to be V(R,t) in the large ¢ limit. Sliding window fits were again employed in order
to determine the optimum fit range. Fig. 4-2 shows an example of such a sliding
window fit and the corresponding x2?/Ng;. It can be seen from the plots in Fig. 4-1
that the signal becomes noisy out near the centre of the lattice. For this reason, a
number of different values of t,,,x were tried. Fig. 4-3 shows sliding window fits for
a fit to V(R,t) for a range of different values of ¢,,.x for Run 7 with R = 4. Fig. 4-4
shows the corresponding x?/Ng for the fits. This procedure is repeated for values of
R = 1-7. For the purpose of illustration, a set of sliding window plots for Run 1 with
tmax = 40 for values of R = 1 — 6 are shown in Fig. 4-5. Table 4.2.2 shows the chosen
values of t,;, and t,. which were used for all of the Runs. The resulting values of
V(R) were plotted against R; an example is shown in Fig. 4-6. Finally, these plots
of V(R) are fitted against the Cornell potential V' (R), Eq. 4.25. All possible values
of Ruin and Ry,.x are considered. The resulting fit parameters for Run 1 are given in
Table 4.2 and the modelled data are also plotted in Fig. 4-6 for comparison with the

measured data. Plots and tables for the other Runs are included in Appendix B.

Taking for example, Run 1, and assuming [1,5] to be an appropriate fit-range,
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R tmin | tmax
L i
21 18 fagdl
S R Y S
41210 .48
TR 20
6 | 10120
7wl ir=ila

Table 4.1: This table shows the fit ranges that are used for determining V' (R) from
W(R,1).

the measured lattice string tension & = 0.16480(13). This corresponds to a lattice

spacing of a; = 0.18176(16) fm.

The values for the potential obtained during these simulations did not vary sig-
nificantly over the bootstraps. The result of this was that the error bars used in
the Cornell fit were extremely small and the variance of the fit parameters did not
vary across the bootstraps. This led to the large x? values obtained in the fits and
also to the small statistical errors quoted in the tables. It is also generally accepted
that fitting the measured potential to the Cornell potential is not the most accurate
method for determining the lattice spacing. It can also be seen again from Table 4.2
that the measured value for & was not stable and depended largely on the values of
Rpax and Rpin chosen. It was decided to use a more reliable method to set the lattice

spacings.

4.2.3 Sommer Scale

An alternate way to determine the scale of a lattice simulation was introduced in [116].
This method involves using the force F(r) between static quarks at intermediate
distances, r to define a hadronic scale rq. The implicit equation used to do this is

determined by
= (4.30)

T—



Expectation value for Wilson loop
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Figure 4-1: This figure shows the first two steps involved in measuring the interquark
potential. This is from Run 6. The spatial lattice spacing is R = 3. The top
plot shows the expectation value of the Wilson loop W (z,t) averaged over the 1000
bootstrapped sets of 250 configurations. The bottom plot shows the value V(z,t)

obtained by taking the log of the ratio of W(.’E,.t) on adjacent timeslices. Two more
plots showing the next stage of the procedure are given in Fig. 4-2.
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Sliding window. t,,,,,=40, R=3, RUN 6
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Figure 4-2: This figure shows the next two steps involved in measuring the interquark
potential. These plots are a continuation of the two plots presented in Fig. 4-1. The
top plot is a sliding window plot, fitting W (z,t) to a single exponential between ¢,
and #me, = 40. The bottom plot shows the value for the x2/Ny ¢ for the corresponding
fit.
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Figure 4-3: Plots comparing the effect of choosing a different value of t,,.x. Above
are shown sliding window fits for Run 7 for a range of different values of t,,0. =

{40, 35, 30, 25, 25,20, 15}. The corresponding X2/Nd_f values are shown in Fig. 4-4.
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Figure 4-4: These plots show the x?/Nq ¢ values for the fits in the corresponding plots
in Fig. 4-3.
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Sliding window plot for R=1 RUN 1

Zz 0112
e
9, LR
¢ 0108 |
S
5 0Ne6
e}
Q
z 0.104 |
]
® o102}
s
()] 01 r +
= :
2 0098 —— : ' ~ : . :
& 0i 5N 10 VR G Jan i tas  Eian KAgE IR 40
t
Sliding window plot for R=3 RUN 1
Z....0.38 T - . . -
= 1086} ;
@ 034 B
T 032¢ |
2 03 f
2 o028t |
z 026} ||
9 |
2 024}
2 022t , 1
£ 02} HH
2 0.18 e ot o o et
2] 0 =5l 10 %15 #20% v@5' “ 30" 36, /40
t
Sliding window plot for R=5 RUN 1
05
0.4}
€ 03, [
ST R e LT
02k ]
01} ]
0 5 10255100 95 a0 M 35
t
Figure 4-5

V(R,}) Sliding window plot for R=2 RUN 1
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: A comparison of interquark potential measurements for different spatial

separations. These sliding window plots show the effective potential V' (R, t) extracted
by fitting W (R, t) to a single exponential. For each plot, the x-axis denotes the value
of t,in used in the fit. T,,., is set to 40 for all of the plots. The plot R = 7 is not

included. The spatial separation for each plot is included in the title of that plot.
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Figure 4-6: Fits to the Cornell Potential for Run 1 for all values of Ryax and Rpyin,.
The resulting measured fit parameters can be found in Tab. 4.2. Note that Run 1 is
chosen merely for illustrative purposes. Run 7 was the final tuned run.
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Range A B C x%/dof
1:7] | 0.15955 (0.00006) -0.39860 (0.00011) 0.83424 (0.00017) | 8.80e+03
2:7] | 0.15285 (0.00024) -0.46687 (0.00014) 0.88178 (0.00044) | 8.02e+03
3:7] | 0.12166 (0.00026) -1.02717 (0.00113) 1.15409 (0.00238) | 4.07e+03
4:7) | 0.05828 (0.00065) -2.62498 (0.00143) 1.80018 (0.00778) | 3.29e+02
St 0.11736 (0.00143) -0.61256 (0.00524) 1.10321 (0.00286) | 1.44e-15
1:6] | 0.16155 (0.00002) -0.39459 (0.00004) 0.82823 (0.00006) | 5.42e+03
2:6] | 0.16031 (0.00027) -0.40674 (0.00094) 0.83679 (0.00075) | 5.39e+03
3:6] | 0.13181 (0.00091) -0.88324 (0.01146) 1.07595 (0.00869) | 3.50e+03
4:6] | 0.03229 (0.00002) -3.16467 (0.01175) 2.03898 (0.00769) | 1.42¢-10
1:5] | 0.16480 (0.00013) -0.38810 (0.00026) 0.81848 (0.00039) | 8.20e+02
2:5 0.17521 (0.00012) -0.29204 (0.00017) 0.74963 (0.00045) | 1.39e+01
3:5] | 0.17820 (0.00018) -0.24664 (0.00681) 0.72586 (0.00349) | 8.60c-14
1:4] | 0.16170 (0.00006) -0.39430 (0.00011) 0.82779 (0.00017) | 2.19e+02
2:4] | 0.13450 (0.00018) -0.59844 (0.00004) 0.98425 (0.00054) | 2.83e+03
1:3] | 0.15687 (0.00000) -0.40395 (0.00001) 0.84227 (0.00001) | 2.31e-13

Table 4.2: Fit parameters for the fit to the Cornell potential for RUN 1. The first

column shows the relevant fit range. The central columns show the fit parameters
from a fit to Az + B/z + C. The figures in brackets are statistical errors obtained
using a 68% confidence interval over the set of 1000 bootstraps. The final column
shows the x? per degree of freedom for the best fit. The relevent plots are those in

Fig. 4-6.
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The force F(R) can be determined from the potential by the discretisation of the

derivative of the potential with respect to distance in the standard way i.e.

F(r)= - . (4.31)

Forward, backward and central-difference approximations were measured. The central-
difference approximation was taken as the most accurate estimation. The values for
the forward and backward difference provide a measure of the systematic error in-
herent in the discretisation.

It can be determined from phenomenological potential models that ry = 7(1.65)
for Eq. 4.30 above corresponds to a value of r = 0.49 fm. Other values of r(c) have
been proposed. For example, for the case of short distances, a value of r, = r(0.65)
was introduced by [117] and it was determined that using this value resulted in
% = 0.51. However, as seen in Fig. 4-7, using ro would be a more appropriate choice
as it involved interpolation for each of the finite-difference schemes whereas r; would
necessitate an extrapolation for the backward and central difference approximations.

The plots for the measurements of F'(R) for each of the runs are presented in
Fig. 4-7. The resulting interpolations to r(c) give rise to determinations of the lattice
spacings given in Table 4.3. The determination of the spacing by this method agrees
with a previous measurement from [118]. That study used the preliminary tuned
point corresponding to Run 6 and determined the lattice spacing to be ay ~ 0.17 fm
from the (1P-1S) splitting in charmonium. This corresponds to a value of 0.17(1)
fm determined using the Sommer scale with a central difference approximation for
F(R). The errors quoted are determined from the values obtained when using the

forward and backward difference discretisations.

4.2.4 Karsch Coefficients

The Karsch coefficients presented above in Section 4.1 are simply the partial deriva-
tives of the action input parameters with respect to the renormalised anisotropy and

spatial lattice spacing. Attempts have been made to calculate these coefficients per-
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Average

Median

Low

High

Run 1

Forward

0.171891

0.172228

0.167275

0.176393

Backward

0.206549

0.206900

0.203044

0.210080

Central

0.184393

0.184468

0.181959

0.186834

Run 4

Forward

0.194474

0.194823

0.190801

0.198158

Backward

0.231735

0.231887

0.230410

0.233135

Central

0.208027

0.208045

0.205795

0.210268

Run 6

Forward

0.161442

0.161640

0.156932

0.166007

Backward

0.180817

0.181129

0.176449

0.185176

Central

0.168923

0.168953

0.166396

0.171529

Run 7

Forward

0.146766

0.147003

0.141161

0.152151

Backward

0.148068

0.148860

0.138544

0.157131

Central

0.147536

0.147560

0.144190

0.150779

Run 8

Forward

0.154058

0.154249

0.148937

0.159312

Backward

0.183588

0.184044

0.178833

0.188434

Central

0.165274

0.165320

0.162601

0.167797

Run 9

Forward

0.173983

0.174267

0.169978

0.178169

Backward

0.202687

0.202948

0.199851

0.205453

Central

0.185282

0.185376

0.183336

0.187115

Table 4.3: This table shows the measurements of the lattice spacing obtained using
the Sommer parameter r9 to set the scale. The value of force used in each interpo-
lation were determined by forward, backward and central differences from the static
interquark potential. The measurements are obtained over a set of 1000 bootstrapped
configurations. The high and low values in the above table are obtained using a 68%
confidence interval.
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turbatively [110, 111]. The perturbative coefficients are known to lead to pathological
results such as negative pressure and a non-vanishing pressure gap at the deconfining
phase in SU(3) gauge theory [119]. Non-perturbative calculations have proved diffi-
cult [112]. A study by [122] attempted their measurement for the case of staggered
fermions using a similar procedure to one of those used in this study. [119] attempted
to compute them from a precise measurement of the finite temperature deconfining

transition curve.

This study attempted a non-perturbative determination of the coefficients. Two
approaches are employed in the measurement of these coefficients. In the first ap-
proach it is assumed that the action input parameters are linearly dependent on the
measured output parameters. Identifying this assumption with a Taylor expansion
shows that the fitted parameters for a linear fit are the required Karsch coefficients. In
the second approach, the measured output parameters are taken to be linearly depen-
dent on the input parameters. A matrix is defined from the resulting fit parameters
and this matrix is then inverted in order to determine the Karsch coefficients. The

notation used in the following sections is repeated here for clarity.

Notation:

The input parameters which are varied between the different simulations are the
gluon anisotropy fg, the quark anisotropy Eg, the dimensionless bare quark mass my
and the spatial plaquette ugs. After each simulation a number of output parameters
are measured. The output gluon anisotropy, §,, is determined from the “sideways
potential” (Sec. 3.3.1). The output quark anisotropy, &, is determined from the
pseudoscalar dispersion relation as explained in (Sec. 3.3.2). The lattice spacing, as,

is determined using the Sommer Scale (Sec. 4.2.3. The pion and rho rest-masses, m,
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Em [ & &t Lm | B
1 G.0: 180" 1032 [5=0.057 111.513
4 |8.726.65|0.32|-0.057 | 1.544
) 8.83 | 7.44 | 0.32 | -0.057 | 1.522
6 |752]|8.06]0.32]-0.057|1.514
T 1743 | 8,42 1'0.32 | -0.057 | 1.508
8 743 | 8.42 1032 | -0.06 | 1.514
9 (743|842 (0.31|-0.057 | 1.458

Table 4.4: This table shows the input parameters for the quark and gluon actions for
each of the runs used in the determination of the Karsch coefficients.

and m,, are also determined. A number of composite variables are defined as:

§+
f_

M

tl, (4.32)
59 % fq
St (4.33)

(mﬂ
mp

)2. (4.34)

M is chosen rather than %z: as it is expected to be linearly related to the quark mass

[120)].

Simulation Details

250 gauge configurations were generated for each Run. The input parameters for

each Run are given in Table 4.4.

4.3 Method 1

The first attempt considers the action input parameters, {&),£J, us, mo}, as a linear

Taylor expansion of the renormalised measured parameters, {{*,as, &, M}. This
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method is analogous to the one used in [121, 122]. This leads to the equations

AV gg ALt + ai"A as + gg—‘?Ag‘ + gMAM (4.35)
i gg ALY + ggo 853 AL~ + gNZ AM, (4.36)
Au, = ggj_ Agt+ gZ“’A ags A+ g;‘; AM, (4.37)
Arig g?f it %’Zs‘) Aa, + %Ag— i %AM. (4.38)

0
95_1 etc., which are the required Karsch Coeflicients, can thus be

The quantities T

obtained from a simple 5d hyper-planar fit
i C1T] €Ly = C3L3 - .CAT A 1=1CE (439)

Four equations are needed order to perform a fit such as Eq. 4.39 meaning that
at least five separate runs are needed to fit to each of the Eqgs. 4.35 - 4.38 above.
With more than five runs, a constrained fit can be performed. A x? minimisation
is attempted using the Levenberg-Marquardt procedure as described in Sec. 2.11.1.
However, the standard procedure cannot be followed exactly as the variance on each
run is not known beforehand. In order to work around this, an iterative procedure
is employed in which the initial values for the variances are determined randomly.
The fitting procedure is followed as normal and the fit parameters are determined.
The fitted parameters are then inserted back into the original equations and a new
estimate for the variances are determined. This procedure is then repeated until
the results for the fit parameters converge. The variance for each run determined
from the “best fit” values and the resulting covariance matrix is used for each of the
individual 1000 bootstraps. A 68% confidence interval is used over the bootstraps in

order to determine the errors.
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4.4 Method 2

Considering the measured renormalised values as a Taylor expansion of the input

quantities &, £, us, mo leads to

gt ggAgugio AE) +
Aa, = ZZ;Ag,‘;Jr gggagg+
e ?956; Ag°+g§§; AL +
AM = Z_ZIMO“L?;A&O

These equations can be written in the form of a matrix equation

1 &

with

ot
agY

age.
€9

oM

%]

and

AET
Aa,
AF=
AM

+
43 Aug + — g
ou

oa

Jus

oM
+—Au,
T s

Bi,

-
Oug

das

Ous

Gl
Ous
oM
Ous

8
I

5—3Au8
g

AEO

q

AFY

g

Aug

Amo

Oa
omo

(4.40)
(4.41)
(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

The required Karsch coefficients can be determined from the inverse of the above
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Run e & as My agm,
1 | 5.54700: | 5.83% 075, | 0.1847 005 | 0.10370:060s | 0.1547566;

7,081 el I B.6TE e [ 0208 s | 0eRsTiemE | 012978
R R O R R
6210 (580 ees | D969 s 00BE L it | 01207 8
BT e Loid e | 0 1asaRe s | 0BT e | 01260

6.2670 05 | 6.0870 03 | 0-18575 005 | 0-07797 50004 | 0-1197 p0p

O 00| | O O =

Table 4.5: This table shows the measured quantities which are used for the Karsch fit-
ting procedure. Each quoted value is determined from fitting to the non-bootstrapped
data. The error bars are determined from a 68% confidence interval across 1000 boot-
straps.

matrix, i.e.

% o % &%
gt das ats oM
0 0 0 0
LR ST R
B—] i 8{"' das 66_ oM (447)
Ous  Ous Oduy  Ous
ot das (ol oM
Omg Omg Jdmg O9mg
ot das Glas oM

Unlike the previous method, the variances of each point in the phase space can be

determined directly from the measured variables. No iterative procedure is needed.

4.5 Results

Run 7 was chosen to be the central run around which the other runs were expanded.
This leads to 6 equations with 4 parameters for each of the fitted values. This allowed

the use of constrained fits with two degrees of freedom.

Note on [ vs. ug:

As can be seen from the actions in Eqgs. 4.12 and 4.11 and also from Table 4.4 there
are five input parameters for each run. However two of these variables, us and 3 are
dependent on each other. Therefore it is appropriate to take one of them to be a fixed

parameter and consider the other one to vary. It was decided to take ug to be the
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varying parameter and to treat [ as a constant. For the sake of comparison, the fits
were also attempted by using [ as a varying parameter in order to see if this affected
the fitted values for the other coefficients. In practice, the values for  were tuned
during the initial gauge generation process in order to obtain a particular value of
T

The coefficients for the partial derivatives of the input [ values with respect to

the output values, 3%%, are also determined for the sake of comparison.

4.5.1 Results for method 1

As discussed in the previous section, this method involves starting by guessing the
initial variances assigned to each point. A fit is performed to each bootstrap. Two
different approaches were used for the initial guess in the fitting procedure. The
first approach consists of performing an unconstrained fit using the “best-fit” val-
ues. These values are the measurements obtained from the original unbootstrapped
configurations. This initial guess is then used as the starting point for each of the
individual bootstraps for the first iteration. For each subsequent iteration, the guess
starts with the fitted values obtained from the previous iteration. In the second ap-
proach, the same initial guess from the best-fit is used for each iteration. After each
iteration of the procedure the fitted parameters are inserted back into the original
equation along with the input values and the variances are determined by using the
jackknife method over the 1000 bootstrapped data sets. For example, considering
Eq. 4.35, the measured parameters are {AE", Aa,, A6~, AM}. After each iteration
the values, {a§+’ %‘3, ggo : gfw} are determined. Then the “modelled” value £™ is

determined from

oe? €0 €0 9E°
AE™ = a§+A§+ qAa3+ agq acr oM (4.48)

and the variance of 52 is taken to be the variance of €™. However this procedure is
somewhat circular and does not lead to a good independent estimate of the variance.

If the first iteration leads to a very close fit to the measured values for §° this in
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turns leads to a very small estimate of the variance for the next iteration. This
in turn affects the x? goodness of fit measure for that iteration and will also limit
the inverse-Hessian part of the Marquardt-Levenberg algorithm. There is a danger
that the algorithm can get stuck in a local minimum and will not move far from its
previous position. Various tolerance levels for convergence were also examined. The
tolerance level is defined as the maximum change in corresponding fitted values for
the same bootstrapped sample between consecutive iterations. It was found that the
results did not deviate substantially when changing the tolerance level from 0.001

through to 0.0000001.

The resulting fits from this procedure were not stable. The iterative procedure
immediately led to very small estimates for the variances which then approached zero
with subsequent iterations. As a consequence of this, the initial random covariance
matrix had a large influence in which direction the minimising algorithm progressed.
Thus the final fits for an individual bootstrap data set changed with different initial
variances. The average values over the entire bootstrapped set was relatively stable
in that the majority of fitting attempts gave similar answers but the final x? values
were far too large for the fit to be trusted in any case. It should also be noted that
the second approach mentioned above, whereby the same initial guess is used for
each iteration, failed to produce any meaningful results except for the case of very
large tolerances ~ 0.01. The reason for this is that as the iterations progress the
variances reduce as described above. With a very small covariance matrix, the fitting
procedure will fail to move from the initial guess. Table 4.6 illustrates the fitting
procedure for Eq. 4.37. This table shows how the fitted values change between the first
and final iteration of the iterative procedure and also between different random initial
variances. The values for both the average value over each bootstrap and the value for
one specific individual bootstrap sample (labelled bootstrap 1) are presented. It can
be seen that the fitted parameters do not change significantly between the first and
final iteration. This is due to the jackknife estimates of the variance quickly becoming
very small and inhibiting the fitting procedure. Considering the two different initial

covariance matrices, it can also be seen that although the average values do not vary
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Initial covariance matrix 1 Initial covariance matrix 2

1%t iteration Final value Final value
Average gt ] Average #1 Average el
e | —0.0338% 010085 | -0.0271 | —0.0382F7:0065 | -0.0300 || —0.01707 75651 | -0.0150
Tus | —0.2764 7 105 | -0.3695 | —0.26217 715 | -0.3736 || —0.27267 00257 |  -0.2453

gex | —0.0368% 007 | -0.0309 | —0.0378¥0:505 | -0.0314 || —0.0270% 75077 | -0.0253

2w | 0.0079700518 | 0.0313 | 0.008970075 | 0.0379 | 0.008670005, |  -0.0083

Table 4.6: This table illustrates the effects of starting with different initial covariance
matrices in the iterative procedure. In this case the relevant equation is Eq.4.37.
The first column shows the coefficient in question. The second shows the result of
the fitting procedure after the first iteration. The figure quoted is the average value.
The error bars are obtained from a 68% confidence interval over 1000 bootstraps.
The third column shows the result for fitting a specific individual bootstrap sample.
The fourth column and fifth columns show the equivalent results after the iterative
procedure is completed. The sixth and seventh columns show the same results after
the iterative procedure is completed after starting with a different initial random
covariance matrix. However the respective x2/Ng4; are 0.0002, ~ 7000 and ~ 10000
respectively. These x?/Ny¢ values call the quality of all the fits into question. These
values can also be compared with those given in Table 4.7. In particular note that the

individual bootstrap values for g—’ﬁ changed signs between repeats of the procedure.

greatly between the two runs, the results for the individual bootstraps can change
significantly. However, on examining the x2/Ng for all of these fits it can be seen that

they are either too large or too small for the fitted values to have any significance.

4.5.2 Results for method 2

The fitting procedure for this method is more straightforward than the previous
method. Each of the Eqs. 4.40-4.43 are fitted in order to obtain the parameters of
the matrix in Eq. 4.45. This matrix is then inverted and the Karsch Coefficients are
determined from the inverse of this matrix as shown in Eq. 4.47. In order to obtain
a measure of the legitimacy of this inversion procedure fit and the choice of u, over
B, it was repeated with u, replaced by 3. The results for fitting Eqs. 4.40 - 4.43 are

given below in equation Eq. 4.49
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The x2/Ng; for the “best fits” in the rows in Eq. 4.49 are 9.8, 4.8, 8.3 and 3.0

respectively. The resulting matrix inversion leads to the values quoted in Tab. 4.7.

The fitting procedure was repeated with u, replaced by ( in the above equations.

The resulting fits lead to the matrix

[o MR | Bt
9gy.0 oey 08
da; Oas  Oag
e 960 €0 0B
ol Ol Ot
DET . DS Bp
oM oM oM
EORE OLDE IO
+0.020
0.231%5939
+0.001
o —0.010Z¢001
+0.018
—0.14075929
+0.008
—0.0855/007

gt

dmo

Oas

dmyo

2

dmo

oM

Omo

il g Lo Lo oL e T S
—0.054+0008 _ 6o 0057 9 7+06l (4.50)
Barh sty oo didi e iy g
—0.3041002L  _3 964039 39 giaT

The x2/Nqy; for the “best fits” fits in the rows in Eq. 4.50 are 6.5, 3.2, 6.7 and 6.6

respectively. Again the inversion of this matrix gives the required Karsch coefficients.

The results for the Karsch coefficients from all three different fitting procedures

are given together in Table 4.7.
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Method 1 Method 2
The B

€y +0.51 +0.47 +0.48
ﬁ 1.58%¢53 1.55% (39 1.51%¢39

Ly RO 251157 1.79+36

KL RO G AR —2.10%0:8

o 2711169 —4.6019.%8 —4.441059

% 3.0019:53 2 B4 ties 2.6410%3
% | —4a.29t418 —5.04+435 _5.397426
(231 407058 3.761052 3.76+051
%, 2 L1kt 1681282 LGgT0es
gt || —0.0315475506, || —0.0352 0507
250310709 || —0.3807 9903
2w —0.03247 00 || —0.0404T5 00>
uy 002 o 0.013 0 e
B8 0 1777001 —0.224% 504
B[ ] 57038 =197 54

B BRSTT R I (.ol

- Z 1 0.07705507 Hip7

gl Co o0rs et Il 0,001 4 T 0. 001 1t
2o |0 TaiRoR | 0a3sEon | 0233700
S | 0.002275507 || —0.00317500 | —0.00317500%0
oo | 0.0405750050 || 0.035575004 | 0.03581005%

Table 4.7: This table shows the result of the attempts to fit the Karsch Coefficients.
The numbers quoted in the first column are the average results obtained over 1000
bootstraps using the iterative procedure described above. The second and third
columns show the results obtained by inverting the parameter matrix. The second
column considers {£9,£),us,mo} as input variables compared to {£,£J,3,mo} for
the third column. All quoted errors are obtained using a 68% confidence interval
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Rith | As A [ Ane'| 108 00

A4 | 1.29 |-1.77 | 0.000 | 0.00 | 0.036
A8 | 0.00 | 0.00 | 0.007 | 0.00 | 0.006
A9 | 0.00 | 0.00 | 0.000 | -0.01 | -0.050
Al | -1.43 |-0.42 | 0.000 | 0.00 [ 0.005
A5 | 1.40 |-0.98 | 0.000 | 0.00 | 0.014
A6 | 0.09 | -0.36 | 0.000 | 0.00 | 0.006

Table 4.8: This table shows the input values used for each of the Karsch fits. Run 7
is taken to be the central run around which the other runs are expanded. (A&))aq =
(§8)Run 4— ({S)Run 7 etc. The first four rows of the table are used in order to find an
initial guess via an unconstrained fit.

4.5.3 Discussion of Results

Some of the input parameters from Table 4.4 did not vary across each runs. This
leads to a lot of the “A” values being zero as can be seen in Table 4.8. For the
iterative procedure, i.e. Eqgs. 4.35 - 4.38, this issue is not as significant as it is for
Eqgs. 4.40 - 4.43. For the inverse matrix method only one of the runs will contribute
to the measured value of the derivatives with respect to us, and my. Ideally each input
parameter should be different on each run. The runs labelled 1-7 were generated for
the purpose of the Tuning Study in Chapter 3. The computational overhead involved
in re-generating these with different input parameters was beyond the scope of this
study. The final two simulations, labelled Run 8 & Run 9 were then generated with
different values of mg and u, respectively.

The fitted values are presented together in Table 4.7. The results from the second
column are measurements from using the iterative method. As mentioned previously,
although the average value over all bootstraps tended to remain relatively stable,
the measurements from individual bootstraps did vary considerably. This also led to
discrepancies in the errors between runs. The figures in this table are quoted with the
understanding that they were chosen as fits in which the errors using a 68% confidence
interval were reasonable. A proportion of the fitting runs led to the measured value
being zero within errors. As such, these figures are presented merely for the sake of
comparison. It should be pointed out that many of the quoted numbers are similar or

do agree within errors with those from the matrix inversion method, the individual
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fitting runs were not selected for this reason.

The third and fourth columns present the results from the matrix inversion
method with u; and [ respectively being chosen as one of the input variables. The
X2/ Ny values for the initial fits before the matrix inversion were in the region ~ 3—10
which would be considered as moderate fits. The coefficients 3753 and % were zero
within errors. g—?{l was almost zero within the quoted confidence interval. It can be
seen that there is a surprisingly good correspondence between all three columns. The
only coeflicients which are not consistent are g—i‘? and % and it can be seen that the
former is zero for the matrix inversion and the latter is zero for the iterative method.

One particularly interesting result from Table 4.4 is the value for gg% One would
assume that increasing the input value 52 would lead to a corresponding increase
in the renormalised lattice spacing as. However the values from all three methods
were negative. This could be interpreted as evidence that the system deviates from
the assumption of linearity over the region of phase space that the simulations were
performed. It should also be noted that the spatial lattice spacing is relatively coarse,

being in the region 0.15 ~ 0.2 fm and this may also contribute to an unquantified

systematic error.

4.6 Future work

There are a number of obvious suggestions which would be used if the study was to
be repeated. For the iterative method, the fits could be attempted using a different
minimisation method than the Marquardt-Levenberg. It can be postulated that the
reason that this method does not give consistent results is due to the use of the initial
random covariance matrix. The use of algorithms such as basic steepest descent or
conjugate gradient would not entail the use of the covariance matrix. For the case of
the inverse matrix method, it would be highly beneficial for the determination of the
original fitted parameters if each input parameter varied for each separate run. It
can be seen from Table 4.8 that only one of the input equations actually contributes
to the determination of the derivative of the output parameter with respect to mg

and ug.
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Chapter 5

Concluding remarks

This thesis concerns itself with the non-perturbative study of action parameters in
anisotropic QCD. It has shown that the action parameters can be precisely deter-
mined for dynamical anisotropic simulations using a two-dimensional plane fit. The
tuning procedure leads to the recovery of Lorentz invariance and the tuned dataset
can subsequently be used for a variety of physics including spectroscopy and decays.

The second part of the thesis considers the application of the techniques developed
for determination of the action parameters to the field of finite temperature QCD.
The equations of state of a finite temperature QCD system are paramount to the
understanding of that system. One method of determining these equations of state
requires the knowledge of Karsch’s anisotropy coefficients. These coefficients have
proven notoriously difficult to calculate, both perturbatively and non-perturbatively.
This study shows that the same datasets used in the tuning procedure mentioned
above can also provide a basis for a non-perturbative determination of these coeffi-
cients. It is shown how the application of two different approaches can result in a
significant increase in stability of the measurements and an associated reduction in

statistical errors.
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Appendix A

Appendix

A.1 Hardware specifications

The main computing facilities available from “TCHPC” were the clusters detailed in

Table A.1.

A.1.1 Tables of momenta used

The tables of momenta which were averaged over for the purposes of generating

dispersion relations are given in Tables A.1.1 and A.1.1.
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L1

Name Nodes RAM | Arch | Interconnect Theoretical Peak Performance
iitac.tchpc.ted.ie 356 Dual AMD Opteron | 1.4TB | 64bit | Voltaire Infiniband | 3.4TFlops
moloch.tchpe.ted.ie | 65 Dual Intel Xeon 130GB | 32bit | Gigabit Ethernet 0.8TFlops
aegir.maths.ted.ie | 32 2Dual Intel Xeon 32GB | 32bit | Gigabit Ethernet | 0.064TFlops
Moloch Node | Specifications

Processors 2

Vendor Intel

Model Xeon

CPU Speed | 3.06 Ghz

Cache size L1 16Kb instruction, L1 16Kb data, L2 512Kb

RAM 2GB 400Mhz DDR

Disk SCSI 73407 MB

Ethernet 2 Broadcom BCM5703 Gigabit Ethernet

IITAC Node | Specifications

Processors 2

Vendor AMD

Model Opteron 250

CPU Speed 2.4 Ghz

Cache size L1 64Kb instruction, L1 64Kb data, L2 1024Kb

RAM 4GB DDR PC3200

Disk 80GB SATA

Ethernet 2 Broadcom BCMb5704 Gigabit Ethernet

Table A.1: Main computing clusters available from TCHPC




(0,0,0)
(0,0,1),(0,1,0),(1,0,0)
(01,1),( 1) UIEL U
(1,1,1)
(0,0,2),(0,2,0),(2,0,0)
(0,1,2),(1,0,2),(1,2,0),(0,2,1),(2,1,0),(2,0,1)
(1.1, 2),(1,2,1),(2,1,1)

(2,2,1),(2,1,2),(1,2,2)

(2.9.9)

Table A.2: This table shows the equivalent momenta used to generate point
propagators. Note that not all possible momenta in the range [0 — 12] were
used. (0, 2, 2), (0,0, 3),(0,3,1),(1,3,1) and equivalent momenta were omitted

(0,0,0)

(0,0,1),(0,1,0,(1,0,0)

O.110 110000 (1.0:1)..10).01-1.0)

T ) (1)

(0,0,2),(0,2,0),(2,0,0)

£0,1,20.00,1-2),(0,2.1)4(0,2.21),01.0,2),02.0 221,(1.2.0) (1 :2,0),(2,0,1),(2,0,5:1),(2,1,0),(2:1,0)

Table A.3: Momenta used for all-to-all propagators
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Appendix B

Determination of a,

A preliminary determination of the lattice spacings were made by fitting the in-
terquark potential to the Cornell potential and using the fitted parameters to set
the scale. The final determination was made by using the Sommer parameter. The
potential plots and Cornell fit parameters which were not included in the main body

of the thesis are included here for completeness.
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Range A B ¢ x%/dof
1:7] | 0.20089 (0.00000) -0.37904 (0.00005) 0.84123 (0.00005) | 2.17e+03
2:7] | 0.19528 (0.00010) -0.43269 (0.00071) 0.87927 (0.00116) | 1.98e+03
[3:7] | 0.15870 (0.00117) -1.05791 (0.00773) 1.19044 (0.00873) | 8.85¢+00
4:7] | 0.15976 (0.00305) -1.03158 (0.03895) 1.17972 (0.01798) | 4.36e+00
5:7 0.15274 (0.00843) -1.26887 (0.24462) 1.26215 (0.08859) | 2.84e-14
1:6] | 0.20194 (0.00022) -0.37692 (0.00042) 0.83806 (0.00066) | 1.50e+03
2:6] | 0.19950 (0.00040) -0.39968 (0.00003) 0.85433 (0.00042) | 1.48e+03
3:6] | 0.15894 (0.00021) -1.05442 (0.01360) 1.18855 (0.00552) | 8.85e+00
4:6 0.16272 (0.00541) -0.96940 (0.09121) 1.15235 (0.04575) | 8.42¢-10
1:5] | 0.20329 (0.00005) -0.37422 (0.00006) 0.83402 (0.00011) | 1.06e+03
2:5] | 0.20626 (0.00079) -0.34793 (0.00523) 0.81493 (0.00423) | 1.02¢+03
SHE 0.15749 (0.00097) -1.07394 (0.02474) 1.19939 (0.01192) | 5.28e-14
1:4] | 0.20580 (0.00013) -0.36919 (0.00027) 0.82648 (0.00039) | 7.97e+02
9:4] | 0.23355 (0.00050) -0.16128 (0.00296) 0.66700 (0.00093) | 8.29¢-17
1:3] | 0.19545 (0.00024) -0.38985 {0.00046) 0.85748 (0.00069) | 1.23e-15

Table B.1: Fit parameters for the fit to the Cornell potential for RUN 4. The first

column shows the relevant fit range. The central columns show the fit parameters
from a fit to Az + B/z + C. The figures in brackets are statistical errors obtained
using a 68% confidence interval over the set of 1000 bootstraps. The final column
shows the x? per degree of freedom for the best fit. The relevent plots are those in

Fig. B-1.
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Figure B-1: Fits to the Cornell Potential for Run 4 for all values of Ryax and Ryin.
The resulting measured fit parameters can be found in Tab. B.1.
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Range A B x%/dof
1:7] | 0.14871 (0.00006) -0.38104 (0.00011) 0.82777 (0 00017) | 1.006+04
2:7] | 0.13811 (0.00008) -0.48678 (0.00027) 0.90184 (0.00028) | 7.726+03
3:7 0.10099 (0.00030) -1.16625 (0.00482) 1.22978 (0.00270) | 2.29e+03
4:7 0.10696 (0.00056) -1.01398 (0.01062) 1.16867 (0.00745) | 2.24e+03
5:7) |-0.04177 (0.00132) -6.09987 (0.02799) 2.92683 (0.02491) | 1.72e-14
1:6] | 0.15120 (0.00003) -0.37587 (0.00006) 0.82002 (0.00009) | 3.88¢+03
2:6 0.14613 (0.00007) -0.42519 (0.00030) 0.85499 (0.00090) | 3.44e+03
3:6 0.11535 (0.00110) -0.95081 (0.00419) 1.11628 (0.00364) | 1.36e+03
4:6 0.17650 (0.00043)  0.44838 (0.00159) 0.52581 (0.00635) | 1.13e-10
T:5 | 0.15160 (0.00000) -0.37525 (0.00017) 0.81908 (0.00026) | 3.816+03
2:5] | 0.14473 (0.00021) -0.43665 (0.00283) 0.86353 (0.00134) | 3.416+03
3:5] | 0.08842 (0.00003) -1.31332 (0.00328) 1.31858 (0.00169) | 2.57c-14
T:4] | 0.15741 (0.00013) -0.36362 (0.00025) 0.80165 (0.00038) | 1.256-+03
2:4 0.13943 (0.00006) -0.49402 (0.00053) 0.90282 (0.00072) | 3.43e+03
1:3] | 0.14748 (0.00000) -0.38348 (0.00000) 0.83143 (0.00000) | 2.38¢-11

Table B.2: Fit parameters for the fit to the Cornell potential for RUN 5. The first
column shows the relevant fit range. The central columns show the fit parameters
from a fit to Az + B/x + C. The figures in brackets are statistical errors obtained
using a 68% confidence interval over the set of 1000 bootstraps. The final column
shows the x? per degree of freedom for the best fit. The relevent plots are those in
Fig. B-2.
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Figure B-2: Fits to the Cornell Potential for Run 5 for all values of Ry.x and Rpyin.
The resulting measured fit parameters can be found in Tab. B.2.
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Range A B C x?/dof
1:7] | 0.14902 (0.00003) -0.33200 (0.00002) 0.74841 (0.00006) | 1.23e+04
2:7) | 0.14678 (0.00015) -0.35563 (0.00071) 0.76468 (0.00038) | 1.21e+04
3:7] | 0.12250 (0.00007) -0.80187 (0.00043) 0.98114 (0.00093) | 7.26e+03
4:7] | 0.05099 (0.00063) -2.61871 (0.01575) 1.71324 (0.00297) | 6.46e+00
5:7] | 0.06079 (0.00013) -2.28213 (0.05737) 1.59724 (0.00553) | 4.19e-09
1:6] | 0.15182 (0.00006) -0.32644 (0.00005) 0.74006 (0.00014) | 4.86e+03
2:6] | 0.15758 (0.00001) -0.26902 (0.00147) 0.69989 (0.00103) | 4.26e-+03
3:6] | 0.14469 (0.00070) -0.48461 (0.00940) 0.80878 (0.00315) | 3.59e+03
4:6] | 0.04612 (0.00041) -2.72201 (0.01432) 1.75853 (0.00281) | 4.72e-11
1:5] | 0.15430 (0.00006) -0.32139 (0.00007) 0.73252 (0.00013) | 2.91e+03
2:5] | 0.16865 (0.00027) -0.19009 (0.00019) 0.63827 (0.00058) | 3.87e+02
3:5] | 0.18466 (0.00084) 0.04877 (0.00960) 0.51168 (0.00770) | 4.69e-14
1:4] | 0.14894 (0.00006) -0.33227 (0.00008) 0.74875 (0.00014) | 4.11e+02
2:4] | 0.15981 (0.00034) -0.24949 (0.00301) 0.68567 (0.00179) | 3.40e-13
1:3] | 0.14453 (0.00000) -0.34114 (0.00004) 0.76204 (0.00004) | 7.61e-12

Table B.3: Fit parameters for the fit to the Cornell potential for RUN 6. The first

column shows the relevant fit range. The central columns show the fit parameters
from a fit to Az + B/z + C. The figures in brackets are statistical errors obtained
using a 68% confidence interval over the set of 1000 bootstraps. The final column
shows the x? per degree of freedom for the best fit. The relevent plots are those in

Fig. B-3.
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Figure B-3: Fits to the Cornell Potential for Run 6 for all values of Ryax and Rpy.

2 3 4 5 6 7

0.8+

0.6

04r
gi2r

1.8
1.6
1.4

1.8

0.8+

0.6

04+
Q21

RUN 6 - Fit to A*x + B/x +C with R, =4

1.8}

16}
1.4+
1:2:k

DatgPolms
}14 | A=0.149, B=-0.332, C=074§|x =411
[24| 0160 B=0252 csgssau =3.4e-13

b

4 5 6 7
R

=

RUN 6 - Fit to A*x + B/x +C with R, =6

1
e

P e

j =

i

Data Points -+

= 4.86e+03
=4.26e+03
86, C=0.810 =3599+03
c=1 754 | %% = ¢ 729-\1 2

n =2.709
2 3 4 T
R

The resulting measured fit parameters can be found in Tab. B.3.
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Range B x*/dof
[ 11775 (0 00005) -0.40016 (0.00009) 0.82498 (0 00014) | 1.53e+04
20 0.12063 (0.00001) -0.37023 (0.00019) 0.80427 (0.00031) | 1.50e+04
3i1 0.09626 (0.00040) -0.83240 (0.00451) 1.02303 (0.00012) | 7.05e+03
4:7 0.05929 (0.00039) -1.83725 (0.00107) 1.41375 (0.00156) | 2.86e+03
5:7 0.16728 (0.00100) 1.87466 (0.01589) 0.13518 (0.00992) | 2.29¢-15
1:6 0.11839 (0.00005) -0.39890 (0.00011) 0.82308 (0.00016) | 1.36e+04
2:6 0.12683 (0.00005) -0.31425 (0.00039) 0.76388 (0.00076) | 1.16e+04
3:6] | 0.09751 (0.00018) -0.81355 (0.00497) 1.01209 (0.00207) | 7.036+03
4:6 0.00388 (0.00038) -3.02737 (0.00741) 1.93260 (0.00628) | 6.17e-11
1:5] [ 0.12080 (0.00003) -0.39408 (0.00005) 0.81586 (0.00008) | 9.246+03
2:5 0.14473 (0.00030) -0.17150 (0.00256) 0.65670 (0.00185) | 1.08e+02
3:5 0.15265 (0.00061) -0.05185 (0.00475) 0.59361 (0.00005) | 2.89e-13
1:4] | 0.11263 (0.00007) -0.41041 (0.00014) 0.84035 (0.00021) | 2.98¢+03
5:4] | 0.11096 (0.00005) -0.41908 (0.00025) 0.84804 (0.00009) | 3.156-+03
1:3] 1 0.10190 (0.00018) -0.43188 (0.00036) 0.87255 (0.00054) | 6.86e-11

Table B.4: Fit parameters for the fit to the Cornell potential for RUN 7. The first
column shows the relevant fit range. The central columns show the fit parameters
from a fit to Az + B/x + C. The figures in brackets are statistical errors obtained
using a 68% confidence interval over the set of 1000 bootstraps. The final column
shows the x? per degree of freedom for the best fit. The relevent plots are those in

Fig. B-4.
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Figure B-4: Fits to the Cornell Potential for Run 7 for all values of Ryax and Rpin.

RUN 7 - Fit to A*X + B/x +C with Rp5,=3

4
R

RUN 7 - Fitto A*x + B/x +C with R, =4

The resulting measured fit parameters can be found in Tab. B.4.
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Range

C

x*/dof

ey

0.80365 (0.00013

2.73e+03

2.

0.86204 (0.00074

7.07e+02

Bur

0.93256 (0.00175

1.81e+02

47

0.99834 (0.00048

1.08e+02

57

0.73326 (0.02735

4.08e-15

1:6

0.80074 (0.00025

1.72e+03

2:6

6.25e+02

3:6

1.78e+-02

4:6

1.09427 (0.00261

1.45e-12

1:5

0.79726 (0.00020

2.98e+02

2:5

0.82372 (0.00037

6.82e+4-01

3:0

-0.53187 (0.00834

0.88017 (0.00384

3.89%e-15

17t

-0.38267 (0.00032

(
(
(
(
E
0.85142 (0.00088
(
(
(
E
0.79178 (0.00048

2.07e+01

2:4

0.79768 (0.00167

1.99e-10

123

)
)
)
)
)
;
0.93408 (0.00089)
)
)
)
)
)
)
)

0.79046 (0.00026

2.27e-12

Table B.5: Fit parameters for the fit to the Cornell potential for RUN 8. The first
column shows the relevant fit range. The central columns show the fit parameters
from a fit to Az + B/x + C. The figures in brackets are statistical errors obtained
using a 68% confidence interval over the set of 1000 bootstraps. The final column
shows the x? per degree of freedom for the best fit. The relevent plots are those in

Fig. B-5.
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The resulting measured fit parameters can be found in Tab. B.5.
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Range A B C x?/dof
1:7] | 0.16517 (0.00007) -0.35537 (0.00014) 0.75801 (0.00022) | 1.42e+04
2:7] | 0.14736 (0.00011) -0.52453 (0.00078) 0.87820 (0.00056) | 7.37e+03
3:7] ]0.11611 (0.00030) -1.09459 (0.00316) 1.15336 (0.00228) | 1.46e+03
4:7] 10.08371 (0.00093) -1.92886 (0.00901) 1.48770 (0.00312) | 2.42e+02
577] | 0.13638 (0.00279) -0.13330 (0.11594) 0.86602 (0.02858) | 1.0le-14
1:6] | 0.16772 (0.00008) -0.35027 (0.00016) 0.75037 (0.00024) | 6.37e+03
2:6] | 0.15605 (0.00018) -0.45559 (0.00201) 0.82635 (0.00074) | 4.40e+03
3:6] | 0.12310 (0.00022) -0.99662 (0.00488) 1.09995 (0.00102) | 1.266+03
4:6] | 0.06009 (0.00042) -2.42188 (0.02698) 1.70517 (0.00477) | 2.826-10
1:5] | 0.16978 (0.00002) -0.34615 (0.00004) 0.74418 (0.00006) | 4.64e+02
2:5] | 0.16729 (0.00016) -0.36781 (0.00010) 0.75999 (0.00047) | 4.036+02
35 | 0.14922 (0.00017) -0.63933 (0.00436) 0.90302 (0.00299) | 2.55e-13
1:4] | 0.17140 (0.00006) -0.34290 (0.00013) 0.73931 (0.00019) | 1.22e+02
5:4] | 0.17809 (0.00006) -0.29286 (0.00080) 0.70091 (0.00131) | 1.50e-14
1:3] | 0.16892 (0.00009) -0.34786 (0.00019) 0.74674 (0.00028) | 6.550-12

Table B.6: Fit parameters for the fit to the Cornell potential for RUN 9. The first
column shows the relevant fit range. The central columns show the fit parameters
from a fit to Az + B/z + C. The figures in brackets are statistical errors obtained
using a 68% confidence interval over the set of 1000 bootstraps. The final column
shows the x? per degree of freedom for the best fit. The relevent plots are those in
Fig. B-6.
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The resulting measured fit parameters can be found in Tab B.6.

131

6




Bibliography

[1] J. D. Jackson, Classical Electrodynamics 3rd Ed., John Wiley & Sons, New
York and Chichester, 1998, ISBN: 978-0-471-30932-1.

[2] S. F. Novaes, Standard Model: An Introduction,“Particle and Fields”, Proc.
X J. A. Swieca Summer School (World Scientific, Singapore, 2000), [hep-
ph/0001283].

[3] M. E. Peskin, D. V. Schroeder, An Introduction to Quantum Field Theory,
Westview Press (1995), ISBN: 0-202-50397-2.

(4] R. P. Feynman, Very High-Energy Collisions of Hadrons, Phys. Rev. Lett. 23,
1415-1417 (1969).

[6] D.J. Gross, F. Wilczek, Ultraviolet Behavior of Non-Abelian Gauge Theories,
Phys. Rev. Lett. 30, 1343-1346 (1973).

[6] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys.
Rev. Lett. 30, 1346-1349 (1973).

(7] S. Coleman, D.J. Gross, Price of Asymptotic Freedom, Phys. Rev. Lett. 31,
851-854 (1973).

[8] M. A. Luty, J. March-Russell, Baryons from Quarks in the 1/N Ezpansion,
Nucl. Phys. B426, 71-93 (1994), [hep-ph/9310369].

[9] U. van Kolck, L.J. Abu-Raddad, D.M. Cardamone, Introduction to Effective
Field Theories in QCD, [nucl-th/0205058].

[10] G. Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys. 35, 1-80 (1995),
[hep-ph/9501357].

[11] B. Ananthanarayan, Review of chiral perturbation theory, Pramana 61, 911-920
(2003), [hep-ph/0304061].

[12] S. Sharpe, R. Singleton, Spontaneous Flavor and Parity Breaking with Wilson
Fermions, Phys. Rev. D58 074501 (1998), [hep-lat/9804028].

[13] S. Aoki, Chiral perturbation theory with Wilson-type fermions including a?
effects: Ny = 2 degenerate case, Phys.Rev. D68, 054508 (2003), [hep-
lat/0306027).

132



[14] C. Allton et al., Physical Results from 2+1 Flavor Domain Wall QCD and
SU(2) Chiral Perturbation Theory., Phys. Rev. D78 114509 (2008), [hep-
lat/0804.0473].

[15] D. Gross, Gauge Theory-Past, Present, and Future?, Chinese Journal of Physics
Vol. 30, No. 7 Dec. 1992.

[16] H. Georgi, Lie Algebras in Particle Physics, Perseus Books Group, ISBN: 978-
0738202334.

[17] H. J. Rothe, Lattice Gauge Theories. An introduction, World Scientific Lecture
Notes in Physics - Vol. 74.

[18] G. P. Lepage, Lattice QCD for Novices, [hep-lat/0506036].

[19] 1. Montvay, G. Miinster, Quantum Fields on a Lattice, Cambridge University
Press (2003). ISBN: 0-521-40432-0.

[20] R. Gupta, Introduction to Lattice QCD, [hep-lat/9807028].

[21] N. H. Christ, R. Friedberg, T. D. Lee, Random lattice field theory: General
formulation, Nucl. Phys. B202, 89-125 (1982).

[22] M. Lischer, Volume dependence of the energy spectrum in massive quantum
field theories. 1. Stable particle states, Commun. Math. Phys. 104, 177-206
(1986).

[23] B. Orth, T. Lippert, K. Schilling, Finite-size effects in lattice QCD with dy-
namical Wilson fermions, Phys. Rev. D72, 014503 (2005).

[24] S. Aoki, T. Umemura, M. Fukugita, N. Ishizuka, H. Mino, M. Okawa, A. Ukawa,
Finite-size effects of hadron masses in lattice QCD: A comparative study for
quenched and full QCD simulations, Phys. Rev. D50, 486-494 (1994).

[25] F. Butler, H. Chen, J. Sexton, A. Vaccarino, D. Weingarten, Hadron mass
predictions of the valence approximation to lattice QCD, Nucl. Phys. B430 179
(1994); Phys. Rev. Lett. 70, 2849-2852 (1993).

[26] K. Wilson, Confinement of quarks, Phys. Rev. D10, 2445-2459 (1974).

[27] D. H. Adams, Simplified Test of Universality in Lattice QCD, Phys. Rev. Lett.
92, 162002 (2004), [hep-lat/0312025).

[28] D. H. Adams, Testing universality and the fractional power prescription for the
staggered fermion determinant, [hep-lat/0409013v1].

[29] K. Wilson, Quarks and Strings on a Lattice, New Phenomena In Subnuclear
Physics. Part A. Proceedings of the First Half of the 1975 International School
of Subnuclear Physics, Erice, Sicily, July 11 - August 1, 1975, ed. A. Zichichi,
Plenum Press, New York, 1977, 69-142, Also published in Proc. Gauge theories
and modern field theory Boston Conf. (1975).

133



[30] K. Symanzik, Continuum Limit and Improved Action in Lattice Theories (I).
Principles and ¢* theory, Nucl. Phys. B226, 187-204 (1983).

[31] K. Symanzik, Continuum Limit and Improved Action in Lattice Theories (II).
O(N) non-linear sigma model in perturbation theory, Nucl. Phys. B226, 205-227
(1983).

[32] P. Weisz, Continuum Limit Improved Lattice Action for Pure Yang-Mills The-
ory(I), Nucl. Phys. B212, 1 (1983).

[33] G. Curci, P. Menotti, G. Paffauti, Symanzik’s Improved Lagrangian for Lattice
Gauge Theory, Phys. Lett. B130, 205-214 (1983).

[34] P. Weisz, R. Wohlert, Continuum Limit Improved Lattice Action for Pure Yang-
Mills Theory(II), Nucl. Phys. B236, 397-422 (1984).

[35] M. Liischer and P. Weisz, On-shell improved lattice gauge theories, Commun.
Math. Phys. 97, 59-98 (1985), [Erratum-ibid. 98 (1985) 433].

[36] P. B. Mackenzie, G. P. Lepage, Viability of lattice perturbation theory, Phys.
Rev. D48, 2250-2264 (1993).

[37] M. Alford, W. Dimm, G. P. Lepage, G. Hockney, P. B. Mackenzie, Lattice QCD
on Small Computers, Phys.Lett. B361, 87-94 (1995), [hep-lat/9507010].

[38] H. P. Shanahan et. al., The effect of tree-level and mean-field improvement on
the light-hadron spectrum in quenched QCD, Phys.Rev. D55, 1548-1558 (1997),
[hep-lat/9608063].

[39] K. Wilson, J. Kogut, The renormalization group and the € expansion, Phys.
Rep. C12, 75-199 (1974).

[40] K. Wilson, The renormalization group: Critical phenomena and the Kondo
problem, Rev. Mod. Phys. 47, 773-840 (1975).

[41] P. Hasenfratz, F. Niedermayer, Perfect lattice action for asymptotically free
theories, Nucl. Phys. B414, 785-814 (1994), [hep-lat/9308004].

[42] P. Hasenfratz, The theoretical background and properties of perfect actions,
[hep-lat/9803027v1].

[43] Y. Iwasaki, Renormalization Group Analysis of Lattice Theories and Im-
proved Lattice Action. II. Four-Dimensional Nonabelian Su(N) Gauge Model.,
UTHEP-118 (1983). Nucl. Phys. B258, 141-156 (1985).

[44] P. de Forcrand et. al., Renormalization group flow of SU(8) lattice gauge theory
- Numerical studies in a two coupling space, Nucl. Phys. B577, 263-278 (2000),
[hep-lat/9911033].

[45] S. Necco, Unwversality and scaling behavior of RG gauge actions., Nucl. Phys.
B683, 137-167 (2004). [hep-lat/0309017].

134



[46]

47

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Beinlich, B.; Karsch, F.; Laermann, E., Improved Actions for QCD Thermody-
namics on the Lattice, Nucl. Phys. B462, 415-436 (1996), [hep-lat/9510031].

B. Sheikholeslami, R. Wohlert, Improved continuum limit lattice action for
QCD with wilson fermions, Nucl. Phys. B259, 572-596 (1985).

M. Alford, T. Klassen, P. Lepage, A quark action for very coarse lattices,
Phys.Rev. D58. 034503 (1998). [hep-lat/9712005].

T. R. Klassen, The Anisotropic Wilson Gauge Action, Nucl. Phys. B533. 557-
575 (1998), [hep-lat/9803010).

C. Morningstar, M. J. Peardon, The glueball spectrum from novel improved
actions, Nucl. Phys. Proc. Suppl. 83, 887-889 (2000), [hep-lat/9911003].

H. W. Hamber, C. Min Wu, Some predictions for an improved fermion action
on the lattice, Phys. Lett. B133, 351-358 (1983).

Justin Foley, Alan O Cais, Mike Peardon, Sinead M. Ryan, A non-perturbative
study of the action parameters for anisotropic-lattice quarks, Phys.Rev. D73,
014514 (2006), [hep-lat/0405030).

W. Bardeen, A. Duncan, E. Eichten, G. Hockney, H. Thacker, Light quarks,
zero modes, and exceptional configurations., Phys. Rev. D57, 1633-1641 (1998),
[hep-lat/9705008]; Phys. Rev. D57, 1633-1641 (1998), [hep-lat/9705008).

C. T. H. Davies et al., High-Precision Lattice QCD Confronts Ezperiment, Phys.
Rev. Lett. 92, 022001 (2004).

J. Viehoff et al., Improving Stochastic Estimator Techniques for Disconnected
Diagrams, Nucl. Phys. Proc. Suppl. 63, 269-271 (1998), [hep-lat/9710050v2].

H. Neff, N. Eicker, Th. Lippert, J. W. Negele, K. Schilling, On the low fermionic
eigenmode dominance in QCD on the lattice. Phys. Rev. D64, 114509 (2001).
[hep-lat/0106016].

J. Foley et al., Practical all-to-all propagators for lattice QCD, Comput. Phys.
Commun. 172, 145-162 (2005), [hep-lat/0505023].

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipes in C, Cambridge University Press (1992). ISBN:978-0521431088.

R. Fletcher and M.J.D. Powell, A rapidly convergent descent method for mini-
mization, Comput. J., 6, 163-168 (1963/1964).

R. Fletcher, Practical methods of optimization, Chichester : Wiley, (2001).
ISBN:978-0471494638.

A. Hasenfratz, F. Knechtli, Flavor Symmetry and the Static Potential with
Hypercubic Blocking, Phys. Rev. D64, 034504 (2001) [hep-lat/0103029].

135



[62] S. Diirr, Gauge action improvement and smearing, Comput. Phys. Commun.
172, 163-186 (2005), [hep-lat/0409141].

[63] M. Albanese et al., Glueball Masses and String Tension in Lattice QCD, Phys.
Lett. B192, 163-169 (1987).

[64] C. Morningstar and M. J. Peardon, Analytical smearing of SU(3) link variables
in lattice QCD, Phys. Rev. D69, 054501 (2004), [hep-lat/0311018].

[65] H.B Nielsen, M. Ninomiya, Absence of Neutrinos on a lattice, Nucl. Phys. B185
20-64 (1981).

[66] L. H. Karsten, J. Smit, Lattice Fermions: Species Doubling, Chiral Invariance,
and the Triangle Anomaly Nucl. Phys. B183, 103-140 (1981).

[67] P. Hasenfratz, Chiral symmetry on the lattice, [hep-lat/0406033].

[68] M. Liischer, Ezact chiral symmetry on the lattice and the Ginsparg-Wilson re-
lation, Phys. Lett. B428, 342-345 (1998), [hep-lat/9802011].

[69] S. D. Cohen, QCD, Symmetry Breaking and the Random Lattice, Nucl. Phys.
B - Proc. Suppl. Vol. 140, 698-700, (2005).

[70] J. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theo-
ries, Phys. Rev. D11, 395-408 (1975).

[71] B. Bunk, M. Della Morte, K. Jansen, F. Knechtli,Locality with staggered
fermions, Nucl. Phys. B697, Issues 1-2, 343-362 (2004).

[72] A. Hasenfratz, R. Hoffmann, Validity of the Rooted Staggered Determinant in
the continuum limit, Phys.Rev. D74, 014511 (2006), [hep-lat/0604010].

[73] P. H. Ginsparg, K. G. Wilson, A remnant of chiral symmetry on the lattice,
Phys. Rev. D25, 2649 (1982).

[74] 1. Horvath, Ginsparg-Wilson Relation and Ultralocality, Phys. Rev. Lett. 81,
4063-4066 (1998), [hep-lat/9808002v2].

[75] D. B. Kaplan, A method for Simulating Chiral Fermions on the Lattice, Phys.
Lett. B288, 342-347 (1992), [hep-lat/9206013].

[76] Rajamani Narayanan, Herbert Neuberger, Infinitely many regulator fields for
chiral fermions, Phys. Lett. B302, 62-69 (1993), [hep-lat/9212019].

[77] H. Neuberger, Ezactly massless quarks on the lattice, Phys. Lett. B417, 141
(1998).

[78] H. Neuberger, Overlap lattice Dirac operator and dynamical fermions, Phys.
Rev. D60, 065006 (1999).

136



[79] R. Frezzotti, P. A. Grassi, S. Sint, P. Weisz, Lattice QCD with a chirally twisted
mass term, JHEP 0108, 58-87 (2001), [hep-lat/0101001].

[80] R. Morrin et al., Dynamical QCD simulations on anisotropic lattices, Phys.Rev.
D74, 014505 (2006), [hep-lat/0602021].

[81] I.T Drummond, R.R Horgan, H. Shanahan, M. J. Peardon, Measuring the as-
pect ratio renormalisation of anisotropic-lattice gluons, Phys. Rev. D63, 074501
(2001), [hep-lat/0003019).

[82] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo,
Phys. Lett B196, 216-222 (1987).

[83] R. Morrin et al., Tuning anisotropies for dynamical gauge configurations, PoS
LAT2005 (2005) 236-242, [hep-lat/0510016].

. Morrin et al., Charmonium spectral functions in = )
84] R. Morri ey ' i ' m Ny =2 QCD, PoS LAT2005
(2005) 176-182, [hep-lat/0509115].

[85] G. Aarts et al., Mesons at high temperature in Ny = 2 QCD, Nucl. Phys. Proc.
Suppl. 153, 296-299 (2006), [hep-lat/0511028].

[86] G. Aarts et al., Charmonium spectral functions in two-flavour QCD, Nucl. Phys.
A785, 198-201 (2007), [hep-lat/0608009].

[87] G. Aarts et al., Charmonium spectral functions in Ny = 2 QCD at high tem-
perature, PoS(LAT2006) 126-132, [hep-lat/0610065].

[88] J. C. Collins and M.J. Perry, Superdense Matter: Neutrons or Asymptotically
Free Quarks?, Phys. Rev. Lett. 34, 1353-1356 (1975).

[89] Results from the first three years at RHIC: Hunting the Quark Gluon Plasma,
“http://www.bnl.gov/npp/Hunting the QGP.pdf”.

[90] T. Ludlam, Ezperimental results from the early measurements at RHIC; hunting
for the quark-gluon plasm, Nucl. Phys. A750, 9-29 (2005).

[91] 1. Belikov, Physics of the ALICE Ezperiment, hep-ex/0605035v1].

[92] E. Laermann, O. Philipsen, The Status of Lattice QCD at Finite Temperature,
Ann. Rev. Nucl. Part. Sci. 53, 163-198 (2003). [hep-ph/0303042].

[93] A.D. Linde, Infrared problem in the thermodynamics of the Yang-Mills gas.
Phys. Lett. B96, 289-292 (1980).

[94] Y. Nakahara, M. Asakawa, T. Hatsuda, Hadronic Spectral Functions in Lattice
QCD, Phys.Rev. D60, 091503 (1999). [hep-lat/9905034v2)].

[95] T. Umeda, Constant contribution in meson correlators at finite temperature.
[hep-lat/0701005v2)].

137



[96] C. Bernard et al., Equation of state for two flavor QCD at N, = 6. Phys. Rev.
D55, 6861-6869 (1997). [hep-lat/9612025].

[97] J. Engels et al., Thermodynamics of four flavour QCD with improved staggered
fermions. Phys. Lett. B396, 210-216 (1997). [hep-lat/9612018].

[98] F. Karsch, E. Laermann, and A. Peikert, The Pressure in two flavor,
(2+1)-flavor and three flavor QCD. Phys. Lett. B478, 447-455 (2000). [hep-
lat/0002003].

[99] CP-PACS Collaboration, A. Ali Khan et al., Fquation of state in finite-
temperature QQCD with two flavors of improved Wilson quarks. Phys. Rev. D63,
034502 (2001). [hep-lat/0103028].

[100] F. Karsch, SU(N) Gauge Theory Couplings on Asymmetric Lattices, Nucl.
Phys. B205, 285-300 (1982) .

[101] S. Huang, J. Potvin, C. Rebbi, S. Sanielevici, Surface tension in finite-
temperature quantum chromodynamics, Phys. Rev. D42, 2864-2874 (1990).

[102] G. Burgers, F. Karsch, A. Nakamura, I. O. Stamatescu, QCD on anisotropic
lattices, Nucl. Phys. B304, 587-600 (1988).

[103] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T. -M.
Yan, Spectrum of Charmed Quark-Antiquark Bound States, Phys. Rev. Lett.
34, 369-372 (1975).

[104] G.S. Bali and K. Schilling. Running Coupling and the Lambda-Parameter from
SU(3) Lattice Simulations. Phys. Rev. D47, 661-672 (1993). [hep-lat/9208028|.

[105] C. Michael. The Running Coupling from Lattice Gauge Theory. Phys. Lett.
B283, 103-106 (1992). [hep-lat/9205010].

[106] C. B. Lang and C. Rebbi. Potential and Restoration of Rotational Symmetry
in SU(2) Lattice Gauge Theory. Phys. Lett. B115, 137-142 (1982).

[107] J. L. Richardson, The heavy quark potential and the Y, J/¥ systems. Phys.
Lett. B82, Issue 2, 272-274 (1979).

[108] C. Alexandrou, S. Guesken, F. Jegerlehner, K. Schilling, R. Sommer. The Static
Approzimation of Heavy-Light Quark-Systems - A Systematic Lattice Study,
Nucl. Phys. B414, 815-855 (1994). [hep-lat/9211042].

[109] U. Gléassner, S. Giisken, H. Hoeber, Th. Lippert, G. Ritzenhofer, K. Schilling,
G. Siegert, A. Spitz, A. Wachter. First Evidence of Ny-Dependence in the QCD
Interquark Potential. Phys. Lett. B383, 98-104 (1996). [hep-lat/9604014].

[110] F. Karsch and I. Stamatescu, @QCD Thermodynamics with Light Quarks: Quan-
tum Corrections to the Fermionic Anisotropy Parameter, Phys. Lett. B227,
153-160 (1989).

138



[111] R. Trinchero, One-loop fermion contribution in an asymmetric lattice regular-
ization of SU(N) gauge theories, Nucl. Phys B227, 61-74 (1983).

[112] T. Blum, Leo Kérkadinen, D. Toussaint, S. Gottlieb, 8- function and equation
of state for QCD with two flavors of quarks, Phys. Rev. D51, 5153-5164 (1995).

[113] G.S. Bali, Th. Diissel, Th. Lippert. Neff, Z. Prkain and K. Schilling.String
breaking with dynamical Wilson fermions. Nucl. Phys. B Proc. Suppl. Vol. 140,
609-611 (2005). [hep-lat/0409137].

[114] F. Knechtli, R. Sommer. String breaking as a mizing phenomenon in the SU(2)
Higgs model. Nucl. Phys. B590, 309-328 (2000). [hep-lat/0005021].

[115] G. S. Bali, H. Neff, T. Duessel, T. Lippert, K. Schilling. Observation of String
Breaking in QCD. Phys. Rev. D71 114513 (2005). [hep-lat/0505012v2].

[116] R. Sommer. A New Way to Set the Energy Scale in Lattice Gauge Theories and
its Application to the Static Force and ag in SU(2) Yang-Mills Theory. Nucl.
Phys. B411, 839-854 (1994). [hep-lat/9310022].

[117] S. Necco, R. Sommer. The Ny = 0 heavy quark potential from short to inter-
mediate distances. Nucl. Phys. B622, 328-346 (2002). [hep-lat/0108008].

[118] K. J. Juge et al., The spectrum of radial, orbital and gluonic excitations of
charmonium, [hep-lat/0610124v1].

[119] S. Ejiri, Y. Iwasaki, K. Kanaya.Non-perturbative determination of anisotropy
coefficients in lattice gauge theories. Phys.Rev. D58, 094505 (1998). [hep-
lat/9806007].

[120] R. Gupta, T. Bhattacharya, Light Quark Masses from Lattice QCD, Phys.Rev.
D55, 7203-7217 (1997), [hep-lat/9605039v3)].

[121] L. Levkova, Staggered fermion thermodynamics using anisotropic lattices..
Nucl. Phys. Proc. Suppl. 119, 520-522 (2003). [hep-lat0209069].

[122] L. Levkova, T. Manke, R. Mawhinney, Two-flavor QCD thermodynamics using
anisotropic lattices.. Phys. Rev. D73 074504 (2006). [hep-lat/0603031].

139



