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Summary

An important goal of mathematical neuroscience is to understand the coding princi

ples governing the behaviour of sensory systems under stimulation. Here, we inves

tigate the theory of efficient coding in nenral sensory systems using linear models 

of neuronal response, as well as network models of neuronal interactions in sensory 

cortex.

The response of an auditory neuron to a stimulus is commonly described by its 

Spectro-Temporal Receptive Field (STRF), a linear kernel which gives a prediction 

of the neural firing rate. We describe a novel method of calculating STRFs which 

gives improved predictive accuracy over the standard algorithm. Furthermore, this 

method clarifies the STRF calculation, and avoids the use of approximations em

ployed in the established method. We then use this STRF formulation to calculate 

an optimal sparse code for natural stimuli.

Sparse Coding is a sensory coding strategy which represents a trade-off between 

metabolic efficiency and representational accuracy. We compute an optimal sparse 

code for an ensemble of natural sounds consisting of zebra finch song recordings. 

Using our simplified STRF formulation, we obtain a set of predicted STRF-like 

kernels which allow an accurate sparse coding of zebra finch song. These are com

pared to STRFs from the Field L region of the zebra finch auditory pathway. The 

sparse kernels and the receptive fields, though differing in some respects, display 

several significant similarities, which are described by computing quantative proper

ties such as the seperability index and Q-factor. These findings imply that Field L 

neurons are specifically adapted to sparsely encode birdsong and supports the idea 

that sparsification may be an important element of early sensory processing.

Finally, we demonstrate that sparse coding may arise naturally in sensory sys

tems through neuronal interactions. We construct a simple network model of sen

sory neurons which generates accurate sparse representations of novel stimuli. This 

network learns a sparse code for a stimulus ensemble in an unsupervised manner,
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and thus suggests a biologically plausible mechanism whereby sparse coding may be 

implemented in primary sensory areas.
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Chapter 1

Introduction

Neurons are the principle active components of the nervous system and are believed 

to perform most of the cognitive and computational functions of the brain. For 

this reason, a proper understanding of the behaviour of individual neurons and 

their response to stimuli is essential to building a bottom-up understanding of brain 

function. However, at the risk of understatement, the brain is a complex system, 

and in its computational abilities is far greater than the proverbial sum of its parts. 

To try and explain brain function, it is therefore necessary to study neural systems 

at many levels, from the molecular biology of individual cell membranes, through 

cortical networks, up to emergent behaviour at the level of brain regions.

The work presented here focuses on the level of individual neurons and small 

scale networks of neurons in the sensory cortex. Arguably, it is on this scale of 

local networks that the brain is most amenable to mathematical modelling, being 

small enough to to take into account the dynamics of individual cells but large 

enough to perform recognisable computational functions, such as signal filtering 

and decomposition. At this level it is possible to understand how mechanisms of 

neural computation and information transmission can arise from the biophysical 

characteristics of neuronal networks.



1.1 The Neuron

Neurons are found in all but the simplest forms of animal life and are thought to be 

responsible for practically all motor and sensory functions. A neuron is a single cell 

which can be electrically excited by the exchange of ions through its outer membrane. 

Neurons can transmit electrical signals in the form of voltage spikes, known as action 

potentials, which result from non-linear feedback effects in the action of ion channels 

in the cell membrane.

There exists a significant difference in electrical potential between the interior of 

a neuron and the outside environment. This is a result of differing concentrations 

of sodium and potassium ions, as well as small quantities of other ion species such 

as calcium. These differences create a voltage across the cell membrane, known as 

the membrane potential, with a typical resting value of around — 70mV.

Small changes in this membrane potential can cause voltage-dependent ion gates 

in the cell wall to open. If a depolarizing (positive) change occurs, sodium gates 

open, allowing a flow of depolarizing Na'^ ions to enter the cell, while potassium 

gates allow an opposing current of K~^ ions to leak out of the cell. If the fluctu

ation in potential is small, the potassium leak current quickly exceeds the sodium 

current, and the membrane potential returns to it’s resting value. However, the 

voltage dependency of ion gates is highly non-linear: if the initial depolarization is 

sufficient to raise the membrane potential above a certain threshold value - typically 

around —55mV - many more sodium gates are opened, creating a runaway non

linear excitation, in which the membrane potential rapidly rises to values as high 

as -l-30mV, before just as rapidly falling again due to a similar non-linear increase 

in the potassium current. After a brief oscillatory period, the membrane potential 

quickly returns to its resting value of — 70mV. The creation of a voltage spike in 

one patch of cell membrane stimulates the opening of ion channels in neighbouring 

patches, and so the spike, or action potential, propogates along the length of the 

neuron.



Figure 1.1: An early sketch of pyramidal cells in the human cortex by the neuro
histologist Santiago Ramon y Cajal [75]. The brain slice is stained with 
silver nitrate, making the neural structure visible. The cells labelled A-E 
are pyramidal cells, so named for the shape of their soma. These are the 
most common cells in cortex, and the principle carriers of feedforward infor
mation. (Picture taken from kavlifoundation.org)



Figure 1.2: A membrane potential plot for a model neuron, produced by numerical sim
ulation of the Hodgkin-Huxley [28] model under stochastic input. The effec
tive threshold value of -50mV is shown.

Anatomically, a typical neuron consists of three principal parts, (see Figure 1.1): 

the body of the cell, called the soma, which contains the cell nucleus; a large number 

of small branched projections from the soma called dendrites, which carry input 

voltage signals; and finally the axon, a single long projection which connects to the 

soma at a point known as the axon hillock and carries the outgoing voltage spikes. 

Near its end, the axon typically splits into many branches, which form connections 

with the dendrites of other cells via junctions known as synapses.

1.1.1 Modelling Neuronal Dynamics

The membrane dynamics of neurons have been widely studied for decades, begining 

with the seminal work of Hodgkin and Huxley in the 1950s [28]. Their work - in 

which they modelled the voltage dynamics of a single giant axon found in Atlantic 

squid - described the neuron in terms of an R-C circuit. Here ion exchange across 

the cell membrane is modelled by voltage-dependant conductances for different ion 

species, as well as constant leak conductances.

Though highly succesful in describing membrane dynamics of single cells (see



Figure 1.2), the Hodgkiii-Huxley model requires the fitting of a large number of free 

parameters, and is often considered too complicated to be used in network simu

lations. Accordingly, many more models of varying complexity have been devised 

to decribe spiking neurons, such as the Fitzhugh-Nagumo [53], Morris-Lecar [44] 

and adaptive-exponential models [14]. Though differing in their details, these mod

els are united in defining the membrane potential as a time integral of input and 

leak currents, and in each case, these models allow the membrane to be described 

by an equivalent capacitive electrical circuit. In this aspect, they share much in 

common with a far older neuron model, which was developed long before accurate 

measurement of ion currents or membrane potentials was possible.

The Leaky Integrate-and-Fire (LIF) model, first developed by Lapicque in 1907 

[36], describes a neuron membrane as a capacitor and resistor in parallel. Subject 

to a time dependent polarizing current, the voltage across the capacitor - equivalent 

to the membrane potential - increases at a rate determined by the capacitance, C, 

while the current across the resistor simulates the leak of positive charge through 

the cell membrane. The voltage dynamics of this circuit are given by the differential 

equation

cv{t) = m - l{r(t) - U), (1.1)

where R is the resistance, and Vr is the resting potential. The equivalent circuit 

diagram is shown in Figure 1.3.

Clearly, neural spiking dynamics cannot be described by such a simple ffrst-order 

model. However, spikes are short-lived events, and for many practical purposes the 

voltage trajectory during a spike is of little interest compared to the timing of the 

spikes . Hence, we can simulate a spiking neuron using this model by the addition of a 

simple non-linearity: whenever the voltage exceeds a certain threshold value, a delta 

function spike is produced, and the voltage reset to the resting value. Remarkably, 

though developed over one hundred years ago, this simple model is quite effective in 

reproducing the spike timing and firing rate characteristics of sensory neurons, and
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Figure 1.3: Equivalent circuit diagram for the Lapicque’s leaky integrating neuron. The 
membrane potential, V is described by the voltage across the capacitor, C.

is still used to describe neuron dynamics in many recent network models [73, 29, 43].

In chapter 4 we make use of a thresholded integrating neuron model largely based 

on the LIE. Though our model omits the spiking mechanism entirely in favour of a 

rale based approach (see Section 1.3.1 on rate coding), the treatment of the neuron 

as a leaky integrator and the use of a threshold function to simulate firing are directly 

inspired by their use in the Lapicque’s original model.

1.2 Synapses, Neurotransmission and Synaptic Plas

ticity

Neuronal action potentials are the carriers of both feed-forward and feedback in

formation in the brain. However, such signals are not simply replicated or linearly 

passed on from neuron to neuron. Rather, information transfer is mediated by 

chemical signalling across synaptic junctions.

The arrival of an action potential at an axon terminal causes the activation of ion 

channels in the terminal membrane. This results in the release of vesicles containing 

neurotransmitting chemicals into the gap between the axon and the post-synaptic 

dendrite. The neurotransmitter disperses into this gap, known as the synaptic cleft,
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Figure 1.4: Schematic of neuronal synapse. The arrival of an action potential at the 
axon terminal stimulates the release of neurotransmitters into the synaptic 
cleft, which then bind to receptors in the post-synaptic dendrite. Temporal 
profiles of pre-synaptic spikes and post-synaptic potential are shown.

before bonding to receptors in the dendrite membrane. This in turn creates a change 

in the membrane potential of the post-synaptic cell dendrite, known as the Post- 

Synaptic Potential (PSP). Incoming PSPs from many dendrites are integrated in 

the post-synaptic cell soma and, if sufficiently large, may result in the creation of 

an action potential. This action potential propogates along the axon, and in turn 

stimulates further synaptic activity. Figure 1.4 shows a schematic of this process of 

synaptic neurotransmission.



1.2.1 Synaptic Weights

In general, the likelihood of spike generation in a post-synaptic cell is dependent 

on the number and timing of pre-synaptic spikes, as well as on the strength or 

effectiveness of the individual synaptic connections. The information conveyed by a 

neural spike, and indeed, any computation that may be thought to be performed by 

a neuron, are determined by the relative importance of the cell’s synaptic inputs. It 

is useful, therefore, to define a measure of the connection strength of a particular 

synapse.

The activity of a synapse is determined by a large number of variables; the 

temporal profile of pre-synaptic spikes, the concentration of vesicles in the axon 

terminal button, the availability of receptor sites on the post-synaptic dendrite and 

so on. In functional terms it may be more useful to reduce the description of a 

synapse’s effectiveness to a single quantity; namely, the conditional probability that 

a pre-synaptic spike will result in a post-synaptic spike. In practice, however, it may 

require inputs from several pre-synaptic cells to precipitate a threshold crossing in 

the soma of the post-synaptic cell, and so this probability can be defined only with 

reference to all other inputs. Instead, a synapse is perhaps best described by the 

effect of a pre-synaptic spike on the post-synaptic potential. We quantify this effect 

by a single scalar parameter, the synaptic weight, w.

The activity of a post-synaptic cell is influenced by that of all the neurons which 

synapse onto it, and so we might express the evoked post-synaptic potential as a 

weighted sum over the activities of the pre synaptic cells [17]:

M(i) = ^ tutaiit) (1.2)

Where Oj represents the activity of the presynaptic cell, and is approximated by

aiit) = 4) (1.3)



where {ts\s G N} is the set of spike times. If time is sampled discretely, this becomes

{Au)t = (L4)

and the synaptic weights are found using the standard least squares solution. In 

other words, the change in PSP is produced by a linear filtering of a set of inputs, 

aj(f), where the filter components are given by the synaptic weights. The use of 

linear filters to describe neuronal behaviour is discussed at much greater length in 

Chapters 2 and 3.

In the case where the pre-synaptic inputs, in Equation (1.2) are independent, 

the weights Wi can be thought of as the causal correlations between the firing of 

each presynaptic cell i and the PSP.

Importantly, this formulation allows for negative weight values. The firing of a 

cell j whose synaptic weight Wj is negative will tend to inhibit or supress the firing 

of the post-synaptic cells. Inhibition is believed to play an important role, both 

in neural computation and in preventing runaway excitation in neural circuits. It 

is estimated that up to one third of neurons in certain cortical areas perform an 

inhibitory function [59].

1.2.2 Synaptic Plasticity

Though it is convenient for many purposes to describe synaptic weights as constants, 

in fact they vary in time as a function of both pre- and post-synaptic activity. Such 

changes can result from a range of biochemical effects, and are generally classified 

according to the timescale on which they occur.

Short term plasticity effects such as Short Term Depression (STD), or synapse 

fatigue, are observed on the millisecond to second timescale of action potentials and 

neural spike trains [1]. Such changes are generally attributed to short term changes 

in the concentration of neurotransmitters in the synapse, and in particular, synaptic



fatigue is often considered to arise from a depletion of vesicles in the synapse during 

periods of rapid firing. More recent studies have shown that synaptic depression may 

in fact serve a computational purpose in allowing for the encoding of information 

in slow-firing cells [1, 15]. Nonetheless, such effects are generally temporary, with 

the synapse effectiveness rapidly returning to normal after a period of silence. As 

a result, in many simple models of neurotransmission, such effects are ignored, or 

treated as minor perturbations around an constant weight value. However, many 

models exist which take account of such effects, and recent spike-metric techniques 

explicitly model the effects of short term depression [31].

Perhaps of more interest from the point of view of neural information are long 

term plasticity effects. These changes may take the form of increases in effectiveness, 

known as Long Term Potentiation (LTP) or decreases known as Long Term Depres

sion (LTD). These effects are believed to constitiute the principal mechanisms of 

learning and memory formation in the brain.

The profile of a neural action potential appears unchanged over the lifetime of 

the cell. Likewise, the threshold potential for spike generation is considered to be a 

constant for a given cell. Therefore, long term changes in the functional behaviour 

of a neuron must result from changes in the only significant remaining variables, the 

synaptic weights.

Changes to a cell’s incoming synaptic weights result in changes in the information 

encoded by that cell’s activity. The firing of the cell may indicate the presence a 

particular pattern of activity in the pre-synaptic neurons. In the case of sensory 

neurons, this may correspond to a particular image or sound, while the pre-synaptic 

cells encode the presence of image components. A change in the pattern of synaptic 

weights results in a different image or sound being encoded by the post-synaptic cell. 

Likewise, single neurons may perform simple computational tasks. If we imagine a 

cell with only two non-zero input weights, both pre-synaptic cells may need to fire 

to precipitate firing of the post-synaptic cell. In this case, the post-synaptic neuron

10



performs a coincidence detection computation on its inputs. Again, changes in the 

cell’s synaptic weights result in a change in the neuron’s computational function.

It is generally believed that changes in synaptic weights are the result of corre

lations in the firing of pre- and post-synaptic neurons. In this way, the behaviour of 

a neural system is adapted as a function of the information which it encodes. This 

process is more familiarly known as learning.

1.2.3 Hebbian Learning

If learning and memory arise from synaptic plasticity, then it is obviously important 

to derive models for synaptic change. Perhaps the first attempt to describe this 

behaviour was by Hebb [26]. His hypothesis, often incorrectly summarised as “Cells 

that fire together, wire together” in fact proposed a more insightful principle which 

still underlies most studies on plasticity. Hebb’s rule can more accurately be stated 

as

If the firing of cell a results in the firing of cell b, then the connection 

from a to b should strengthen.

This rule, which requires a causal link between the firing of the pre-synaptic and 

post-synaptic cells more accurately reflects modern theories about plasticity mech

anisms than the many correlation based rules inspired by Hebb’s hypothesis.

There exist many models of synaptic changes, varying greatly in their degree of 

complexity. In recent times, the most popular synaptic learning mechanisms are 

those based on Spike Timing Dependant Plasticity (STDP) [9, 10]. These models 

describe synaptic change as a function of minute differences in the timing of pre- 

synaptic and post-synaptic spikes. Such rules are in keeping with the spirit of Hebb’s 

conjecture, and account for both positive (LTP) and negative (LTD) weight changes.

11



A commonly used STDP rule is of the form [63];

- C)
/ p

W{t) =
A+ exp —t/T+ t > 0 

—A_ expf/r_ t < 0

(1.5)

(1.6)

where wjj is the synaptic weight from cell i to cell j, {tj\f = 1,2...} is the set of 

spike times for post-synaptic cell j, and {i^\p = 1, 2... } are the pre-synaptic spike 

times.

Though STDP rules are highly effective in modelling synaptic change where 

precise spike timings are known, it is often more convenient to model neural systems 

in terms of neural firing rates (see Section 1.3.1 on rate coding). In these cases, spike 

timing information is unavailable, and we must fall back on acausal correlation based 

methods. The simplest Hebb type rule which can be applied in these cases is simply 

given by
1

Wij = -ai{t)aj{t) (1.7)

where Oj(f) and are the instantaneous neural activity rates. This rule, though 

popular in rate-based models, has two significant drawbacks. Firstly, since firing 

rates are non-negative, it does not model synaptic depression (LTD). Secondly, the 

update rate is bilinear in the firing rates, which can result in positive feedback and 

exponential growth in the synaptic weight.

Long-term depression can be more effectively achieved in so-called covariance 

models, in which the post-synaptic firing rate is replaced by its deviation above or 

below a threshold, such as in the Bienenstock, Cooper and Munro model (BCM) 

[11]. However, such models still suffer from the possibility of unbounded growth.

A simpler solution, which models both positive and negative weight changes and 

places an upper bound on weights, is to use a simple correlation rule as in Equation 

(1.7) and then normalise the synaptic weight vector at each update. In effect, this

12



places an upper limit on the magnitude of the excitatory input a cell may receive, 

and ensures that synapses with proportionally lower correlation functions will be 

weakened. Though lacking somewhat in realism, such a model does reflect certain 

biological limitations. In particular, the finite supply of neurotransmitters and limits 

on ion flow through gated channels do in fact place practical upper limits on the the 

effectiveness of synaptic connections.

In cases where fast simulation of network interactions are of greater concern 

than highly accurate modelling of individual synapses, this normalised correlation 

rule is often highly convenient. In fact, in chapter 4 of this thesis we make use of 

such a rule when simulating networks of sensory neurons. Output cells in our model 

have activity rates rj{f) and receive excitatory input from a layer of input cells 

with activities Sj(t). Synaptic weights are updated periodically using the Hebbian 

correlation rule

Aujjj =< Si{t)rj{t) >t (1.8)

where the average is taken over the time since the last update. Weights are then 

normalised after each update:

w.
Wi (1.9)

Using this rule, the total potential input to each output cell remains constant, 

but the weighting of this input is distributed among the input cells in proportion to 

the correlation of their firing rates with that of the output cell. As we shall see in 

chapter 4, this very simple learning rule is sufficient to reproduce several features of 

the behaviour of sensory cortex in a two-layer network model.

13



1.3 Sensory Coding

The goal of mathematical neuroscience is to understand and model the means by 

which information is encoded, transmitted and stored in the brain. An obvious ap

proach to this problem is to study how external sensory information is translated 

into neural signals. Electrophysiological methods allow us to record directly from 

cells in the sensory pathways during exposure to an experimentaly controlled stim

ulus. Hence, we can directly compare a visual or auditory signal with its neural 

representation in the brain. The mapping between a stimulus and its resulting cor

tical activity is known as a neural code. In this thesis, we will address three related 

questions which arise in the study of neural coding of sensory inputs:

1. How do we characterise the response properties of a neuron under stimulation?

2. What determines these properties, and how do they relate to the theory of 

efficient coding?

3. How are efficent codes implemented in a neural system?

These questions are explored in chapters 2,3 and 4 respectively. To approach 

these problems we make use of two common concepts in neural coding. Firstly, we 

make use of the simplifying, though somewhat inaccurate assumption that sensory 

inputs are encoded in neural firing rates (rate coding). Secondly we adopt the 

hypothesis of efficient coding, that is, the assumption that the brain encodes stimuli 

in a way that is energetically efficient. These concepts are further explained below.

1.3.1 Rate Coding

Signals in the nervous system are transmitted in the form of changes in neuronal 

membrane potentials. Synapses, which form the junctions between neurons, are 

generally activated only by large voltage spikes in the form of action potentials, and 

so we can conclude that sub-threshold variations - that is, variations in membrane 

potential which do not result in a spike - feed forward little, if any information

14



to post-synaptic cells. Hence, we proceed on the basis that neural information is 

encoded entirely by the action potentials. Furthermore, the action potentials of any 

one neuron are generally stereotypical, displaying little or no variation in temporal 

profile or amplitude. Hence we can assume that the signal information is contained 

solely in the timing and frequency of spikes. However, it is still unclear exactly how 

spikes encode sensory information.

Neural spiking is an inherently noisy process, and a given neuron will rarely 

respond identically to several repetitions of the same stimulus (see Figure 1.5). 

Hence, neural firing is often treated as a stochastic, Poisson-like process, where spikes 

occur randomly with a probability determined by an underlying firing rate. From 

this viewpoint, known as rate coding, the timing of individual spikes is considered to 

be unimportant, and the neural representation of a stimulus is described completely 

by the firing rates.

The assumption of rate coding is in many ways a vast over-simplification, and in 

fact, it is well known that certain neural functions, such as plasticity, rely heavily on 

spike-timing effects [54, 63, 64]. Nonetheless, in many systems, and particularly in 

those areas where neurons display a high degree of variability, rate coding allows an 

intuitive first-order characterisation of the stimulus-response properties which can 

explain much of observed behaviour of these cells [3, 2, 32]. This is particularly true 

in the auditory and visual systems, which encode stimuli which generally vary on a 

timescale significantly longer than that of neural spiking.

Moreover, since such stimuli are continuously varying, it is reasonable to con

sider them as being encoded in continuously varying rate functions, rather than in 

sequences of discrete spike times.

There also exists a more direct biological justification for the use of rate codes, 

in the form of synaptic transmission. Although action potentials can be reason

ably described within a neuron as discrete, instantaneous events, their effect on a 

post-synaptic neuron is mediated by the release, dispersion and binding of neuro-
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Figure 1.5: Raster plots showing response of auditory neurons in the zebra finch to a 
known stimulus song recording. A shows the one second wave form of the 
stimulus song. In B, C and D each box corresponds to ten responses at a 
single recording site to repeated stimulation with the song shown in A. Time 
increases along the horizontal axis and the results of ten different trials are 
stacked vertically. A spike is marked by a vertical dash. Site C shows a 
typical response, with a wide variation in spike trains between repetitions, 
site B is unusually reliable, though responses still vary significantly, while 
site D is unusually poor, showing very little coherence. Figure adapted from 
paper by C. Houghton, 2009 [30].
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transmitters in the synapse, which are best modelled as continuous time-dependent 

processes. Hence, although information in a neuron may be carried by spikes, this 

information is transmitted across a synapse in the form the continuous rate func

tion describing the uptake of neurotransmitter in the post-synaptic dendrite. This 

notion is commonly applied in Van Rossum type spike metrics, where a spike train 

is described by a synaptic rate function [69, 31].

In this thesis, we discuss sensory processing largely in terms of rate coding. 

This has the advantage of allowing us to formulate neural codes in terms of time 

dependent linear filters (see Chapter 2: Spectro-Temporal Receptive Fields) and 

also allows us to construct efficient codes for natural stimuli by decorrelating neural 

responses, as discussed in Chapter 2. Though by no means a complete description of 

a neural signal, the firing rate is believed to carry much of the stimulus information 

in primary sensory areas. Importantly, the use of a firing rate code does not preclude 

the possibility that further information is contained in the precise spike times, and 

so it may be useful to think of rate coding as a first approximation to a true neural 

code.

1.3.2 Optimal Coding

It is commonly - indeed, almost universally - believed that sensory information is en

coded in the cortex in a way that is metabolically efficient [6, 47, 50, 49, 5]. That is, 

the neural code used in the brain is that which requires the lowest energy consump

tion, consistent with a sufficiently high processing speed and capacity. This is hardly 

surprising, and indeed the brain does appear to be remarkably efficient, running at 

an average power as low as 20H^ according to some estimates. By comparison, a 

typical desktop computer may consume around lOOkb while idle.

It is natural to wonder how this efficiency might be reflected in the firing patterns 

of sensory neurons. A neuron’s metabolic consumption is highest during, or just 

after, the creation of a spike, though neurons do consume energy even when idle in
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order to maintain their membrane potentials. Hence, energy efficiency is achieved 

by reducing the total number of action potentials produced, and one might therefore 

conclude that:

The most efficient encoding is that in which the smallest number of spikes 

are required to encode the stimulus.

However, an optimal neural code must also reflect the functional goals of the sen

sory system, and so we can refine this notion further in light of some computational 

considerations: For a given layer of sensory cortex, the encoding which requires the 

smallest number of spikes may involve relatively large number of neurons each firing 

a small number of spikes, or a small number of neurons firing more frequently. An 

encoding in which a larger number of cells are weakly active - often called a dense 

representation - can be computationally difficult for higher layers to decode, and 

may in fact result in higher rates of firing in other layers. Furthermore, such an en

coding is more susceptible to contamination by noise, since the firing rate for some 

cells may be close to the cell’s background firing rate. So, for a given level of activity 

across a cortical layer, an encoding in which a small number of neurons are strongly 

active may preserve more of the stimulus information than a more distributed rep

resentation, and may also result in lower levels of activity in subsequent layers, thus 

increasing overall efficiency. In light of this, we may augment our statement from 

above to read:

The most efficient encoding is that in which the smallest number of spikes 

are required to encode the stimulus and, for a given total activity level, 

the smallest number of cells are simultaneously active.

This is, in essence a re-statement of an idea known as Barlow’s Efficient Coding 

Hypothesis [6] which is at the heart of most common conceptions of primary sensory 

coding, and is believed to be one of the principle determinants of auditory and visual 

codes [47, 38, 71, 24].
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Metabolic efficiency, however, is not the only factor in determining optimal sen

sory codes. As mentioned above, a neural encoding can often be described in terms 

of its density, that is, the proportion of cells which are simultaneously active. This 

has a considerable influence on the representational and storage capacity of the sys

tem. Low-density or local codes can be rapidly and easily decoded, and can allow 

the concurrent representation of several distinct stimuli. However, such codes place 

a severe limit on total number of possible stimuli which can be represented by the 

system. In the low density limit where only one cell is required to encode each stim

ulus, the system can represent only as many stimuli as there are cells. In addition, 

the use of completely distinct representations for even quite similar stimuli may 

hinder the formation of associative connections in the cortex, which are essential for 

many cognitive tasks.

By contrast, a highly dense code provides a much larger representational ca

pacity, but also brings with it certain deficiencies. In particular, very dense codes 

are computationally costly to decode, and cannot represent distinct simultaneously 

occuring events. It is therefore necessary to find a code which interpolates between 

these extremes.

In chapters 3 and 4 of this thesis we will discuss at some length the notion of 

Sparse Coding [23], which can be cosidered as a trade off between these regimes, 

while also generating metabolically efficient representations of highly structured 

data. Sparse coding neurons are associated with important, commonly occuring 

stimulus components which are both highly statistically independent and span the 

relevant stimulus space. This organisation produces efficient, low-density represen

tations of important natural stimuli, while also allowing dense representations of 

rarer events.
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1.4 Songbirds and the Coding of Natural Sounds

Though we often discuss sensory coding in terms of efficiency, it is important to 

remember that the goal of primary sensory areas is not simply to find a low-energy 

representation of a signal, but also to ensure that the signal so encoded contains a 

high degree of relelvant information. The natural auditory environment is to a large 

extent an ocean of noise from which the auditory system extracts and amplifies 

relevant or important sounds. The definition of a set of important sounds raises 

many questions in itself, but is most often thought of in evolutionary terms as the 

set of sounds whose detection is advantageous to the animal in question: snapping 

or cracking sounds which may indicate the presence of a predator, or animal noises 

and vocalisations, which may suggest opportunities for procreation, and so on. The 

auditory system must extract these features from an often cacophanous acoustic 

environment, while less relevant features are filtered out. It follows, therefore, that 

the response properties of auditory neurons are adapted to the particular structures 

and statistics of these important natural sounds [18, 41, 42]. Hence, if we wish to 

study the behaviour of an auditory system, it is important to ensure that the system 

is responding to a stimulus which is considered relevant to the animal in question, 

so as to ensure that the stimulus is, in fact, being encoded in the auditory cortex, 

and not discarded as irrelevant noise.

Auditory Coding is commonly studied in songbirds. Although songbirds and 

humans differ greatly in their neurobiology, the songbird auditory system is to a 

large extent functionally analagous to that of humans, and so we can draw many 

useful conclusions about auditory processing which are relevant to humans, and 

indeed to most hearing animals. Importantly, in the case of songbirds, there exists 

an obvious and easily isolated ensemble of important stimuli, in the form of the 

birds’ songs themselves. In chapters 2 and 3 we discuss the characterisation of 

auditory neuron responses and the calculation of optimal auditory codes using data 

gathered from experiments performed on male zebra finches. The zebra finch is a
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songbird native to central Australia, and is a popular choice of subject in auditory 

studies. The zebra finch auditory system is highly adapted to encode conspecific 

song, and in fact large parts of its auditory pathway are believed to be adapted to 

the identification and classification of songs.

1.4.1 Avian Auditory Pathway

In chapters 2 and 3 of this thesis we discuss the encoding of natural sounds in the 

zebra finch auditory forebrain. Zebra finch is widely used as a model organism in 

studies of avian learning and song production, and so the structure of the auditory 

forebrain is often discussed in the context of its connections to the rather compli

cated song system and associated motor pathways. Here however we are concerned 

with the encoding of incoming auditory signals. Hence, though we make use of bird

song stimuli - indeed, it is our hypothesis that the zebra finch auditory forebrain is 

specifically adapted to encode song - we do not concern ourself here with any as

pects of the vocalisation system, and instead focus solely on the ascending auditory 

pathway.

As in mammals, the neural processing of auditory signals begins with the so- 

called hair cells of the cochlea, or inner ear. Hair cells are mechanically stimulated 

by longitudinal vibrations on the fluid filling the cochlea. Though hair cells do not 

themselves produce spikes, mechanical perturbation of the inner hair cells results 

in the depolarization of auditory nerve fibres, resulting in the creation of action 

potentials. The arrangement and connectivity of hair cells produces a number of 

different effects, among them the amplification of weak sounds by the outer hair 

cells. However, two characteristics or cochlear response are of particular interest. 

Firstly, the response of hair cells to auditory stimuli is thought to be logarithmic in 

stimulus amplitude, and secondly, different hair cells are known to be selective for 

particular sound frequencies, and so the cochlea is believed to perform a spectral 

decomposition on incoming stimuli. Here, as in many studies of auditory coding,
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we mimic these effects by using a spectrographic representation of sound stimuli, in 

which the stimulus is represented by the log amplitude of the sound waveform in 

each of several frequency bands.

From the cochlea, signals then feedforward, via the auditory nerve, to the brain

stem nuclei NM (nucleus magnocellularis) and NL (nucleaus laminaris). NL is the 

site of convergence of binaural signals, and it is believed that sound localisation 

computations occur here, through the use of coincidence detection circuits [35]. In- 

tepretation and recognition of signal content, however, is performed at higher level, 

in the analogue of auditory cortex.

From NL, auditory signals feed forward to nucleus ovoidalis, the avian equivalent 

to the thalamus in the human brain. As with the thalamus, ovoidalis is believed 

to function primarily as a relay between peripheral sensory areas, and their corre

sponding forebrain structures. However, also in common with the thalamus, the 

large number of feedback connections to ovoidalis suggest that it performs other 

subsidiary functions in sensory processing, perhaps forming part of a system for 

estimating the error in cortical representations of stimuli.

Ovoidalis projects principally into the Field L region of the avian forebrain [58, 

35, 74]. Field L is the functional analogue of primary auditory cortex, and as such 

shares many features in common with auditory and visual cortex in mammals. In 

particular, it is overcomplete, meaning that it contains many times more neurons 

than the areas which project into it, and it displays tonotopy [76, 45], meaning that 

neighbouring cells respond to spectrally and temporally similar stimuli.

Field L is often studied as one of the areas which projects forward into the 

vocalisation system of songbirds [20, 62, 46]. However, it is important to note that 

the song production is not the primary role of Field L, and that Field L is found 

even in bird species which do not sing [35]. In chapters 2 and 3 of this thesis we 

analyse and model the response of Field L neurons to natural stimuli. We do this 

with refernce to electrophysiological recording taken from zebra finch Field L by
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Figure 1.6: Schematic of the ascending auditory pathway in the zebra finch brain. Sound 
waveforms are converted into neural signals at the cochlea, and projected 
through the brainstem nuclei NL and NM to nucleus ovoidalis. From there, 
the signal is projected into Field L, the avian analogue of the primary au
ditory cortex. Field L representations are projected, via two seperate path
ways, into the higher vocal centre (HVC). HVC forms the nexus between 
the ascending auditory input, and the descending motor pathway and song 
system.
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our experimental collaborators at the Natural Sounds and Coding Lab in Boston 

University.

1.4.2 Electrophysiological Recording

To gain a significant insight into the function of neurons as computational compo

nents of the brain, we must study their behaviour, not just in isolation, but also 

while functioning as part of a much larger neural system. This can most usefully be 

achieved by recording the voltage dynamics of active neurons within a living brain. 

Furthermore, in order to determine what function is performed by a particular neu

ron or brain structure, it is important to know what input the system is receiving, 

and what information it conveys. The study of primary auditory and visual systems 

satisfy both these requirements: In a laboratory environment it is easy to control 

and record the sensory stimuli to which the system is exposed, while the poitioning 

of auditory and visual areas in the vertebrate cortex makes them convenient sites 

for electrophysiological recordings, and in particular, recordings of intra-cellular and 

extra-cellular potentials.

Neuronal spiking is caused by ionic currents through voltage dependent gates 

in the cell membrane, causing changes in charge concentrations, both inside and 

outside the cell [28]. These changes result not only in changes in the membrane 

potential, but also in fluctuating potential differences relative to an external source. 

Under laboratory conditions, it is possible to insert electrodes into the brain, which 

can be used to measure these fluctuations in potential, both inside and outside the 

cell.

Ideally, neural recordings are made with the electrode inserted directly into the 

cell axon. This allows accurate measurement of the internal cell potential, and the 

detection of spikes without interference from external sources. Unfortunately, due to 

the size of neuronal axons (generally of order 10“^m) such experiments are extremely 

difficult and time consuming, and are still considered impractical for most purposes.
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Instead, it is most common to use measurements of potential fluctuations in the 

inter-cellular medium, taken ouside the cell membrane. All neuronal data used in 

this thesis waas acquired using such extra-cellular recordings.

The principal disadvantage of this method is that fluctuations in extra-cellular 

potential may result from the activity of several neighbouring neurons, as well as a 

high degree of environmental noise. Using band pass Alters, it is generally possible 

to remove low-frequency noise from such recordings, allowing the identiflcation of 

potential spikes corresponding to action potentials. It may then be necessary to 

classify such spikes according to the neuron which produced them.

Generally, experimentalists aim to position the electrode as closely as possible 

to a single cell, in which case the action potentials of that cell should be clearly 

distinguishable within the signal due to their large amplitude. This is not always 

possible, however, and it is necessary to apply a spike sorting algorithm to extract 

the component signals. A variety of spike sorting algorithms exist which differ 

widely in their complexity. The majority of these methods rely on finding distinct 

spike profiles for different cells, and employ a range of techniques including template 

matching, clustering algorithms, and wavelet analysis.

Details of experimental conditions and spike sorting methods applied to record

ings used in this thesis are given in Appendix A.

1.5 Background and State of the Art

1.5.1 Characterising Neuronal Responses.

The most commonly used model for characterising the responses of auditory cortical 

neurons is the Spectro-Temporal Receptive Field (STRF) model. The STRF is 

defined as a linear spectro-temporal kernel, which is convolved with the stimulus 

spectrogram to give a prediction of the neuronal firing rate. The ‘true’ STRF for 

a given neuron is that Alter which gives the most accurate prediction. Though
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generally employed as a purely linear model, the STRF can also be thought of as 

the first term in a higher order Volterra series.

Theunissen et al.[65] describe the standard method for calculating the STRF. 

This algorithm, known as STRFPak, proceeds by normalised reverse correlation: 

The calculation is first transformed into the space of temporal modulation frequen

cies (or Avspace) by means of the convolution theorem, which transforms the convo

lution of stimulus and STRF into a simple product of fourier transforms. The STRF 

is then found by reverse correlation using the least squares method. As is common 

with reverse correlation calculations, the STRF estimate obtained by this method 

may be highly contaminated by noise, and so the calculation must be regularised. 

This regularisation is acheived by singular value decomposition in A’-space.

This method of STRF calculation is extremely popular, and has been used suc- 

cesfully to characterise auditory reponses in a number of studies [65, 58, 40, 39, 74]. 

However, it also possesses a number of drawbacks: the use of the convolution the

orem in this case is ill-justified mathematically, and also requires the smoothing 

of neuronal firing rates so that the fourier transform may be calculated. Further

more, the regularisation method used is computationally expensive compared to a 

regularisation in the temporal domain, and is somewhat lacking in transparency.

David et al. [16] describe an alternative method for STRF calculation. This 

technique, known as boosting, avoids several of the problems associated with the 

reverse correlation method. This iterative algorithm describes the STRF as a vector 

in spectro-temporal space. At each iteration, a single STRF component is increased 

or decreased by an increment e. The component to be incremented, and the sign 

of the change are chosen from all possible combinations to give the best improve

ment in the predictive power of the STRF. To prevent over-fitting to noise in the 

training data, the calculation as stopped after a number of iterations determined 

by a stopping parameter. This early stopping condition serves a similar role to the 

regularisation performed in reverse correlation calculations.
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For suitable choices of the step size, e, and a stopping condition, this algorithm 

matches the performance of the STRFPak method when applied to natural stim

uli, and produces a significant improvement in computational efficiency. However, 

despite avoiding some of the problems associated with the STRFPak method, the 

boosting algorithm has a number of drawbacks of its own. Most importantly, the 

performance of the algorithm is highly dependent on the choice of the stopping con

dition, as well as on the step size, and so this method requires the optimisation 

of two model parameters, as opposed to a single regularization parameter for the 

reverse correlation method. As a result, this method is significantly more likely to 

converge on a highly inaccurate STRF estimate. In addition, this method lacks the 

intuitive simplicity of the reverse correlation calculation, and, as is the case with 

the STRFPak algorithm, the precise nature of the regularisation is unclear.

In Chapter 2 of this thesis we will describe an improved method of STRF esti

mation through reverse correlation which avoids the problems associated with the 

STRFPak method, but without the introduction of additional model parameters.

1.5.2 Finding Optimal Codes for Natural Stimuli

Having derived a STRF model to characterise the response of auditory neurons, it is 

natural to wonder what determines the structure and organisation of such STRFs. 

In chapter 3 we investigate whether zebra finch auditory STRFs are optimised to 

perform a sparse encoding of con-specific song by calculating a sparse basis for zebra 

finch songs.

Olshausen and Field [47] have demonstrated that the receptive fields of the pri

mary visual cortex form a sparse code for natural images by calculating such a sparse 

basis. Using a large ensemble of images samples, they calculated an overcomplete 

set of optimal basis functions, or image components which allowed an accurate but 

sparse reconstruction of natural scenes by minimising redundancy in the neural rep

resentation. Images were first pre-processed with a regularising low-pass whitening
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filter, which normalised the image variance across spatial frequencies, and removed 

noisy high-frequency contributions. A sparse basis for these whitened images was 

then calculated by minimising an energy function which combined the error in the 

image reconstruction with a sparseness cost function, which penalised redundant 

representations. This method of redundancy reduction can be considered in many 

cases to be a form of Independent Component Analysis (ICA) [7]

The resulting set of basis functions closely matched the observed receptive fields 

of neurons in the primary visual cortex, suggesting that the visual cortex utilises a 

sparse code for natural images.

Algorithms of this type have since been used widely in studies of efficient coding. 

Vincent et al. [71] made use of a similar algorithm in modelling sparse coding in 

the early visual system. They constructed a three-layer model of the retina and 

primary visual cortex and found that the tuning and organisation of both retinal 

ganglion cells and cortical simple cells could be accurately predicted. In particular, 

the centre-suround receptive fields of retinal ganglion cells, and the gabor-like tuning 

of simple cells were found by optimising a sparseness cost function of the type used 

by Olshausen and Field.

Though such methods have not yet been applied to the auditory cortex, there 

is evidence to suggest that sparse coding occurs in the early visual system. Lewicki 

[38] used an ICA algorithm to predict the tuning properties of hair cells in the 

cochlea of the inner ear. As discussed earlier, the cochlea is believed to perform 

a spectral decomposition on the incoming sound waveform. This is acheived by 

temporal filtering in the hair cells.

Lewicki calculated sets of optimal hair cell filters for different sound ensembles, 

which maximised statistical independence between cells. For a stimulus ensemble 

comprising a mix of animal vocalisations and environmental sounds, he found a set 

of predicted optimal filters which closely matched those measured in the auditory 

nerve fibres. This is suggestive of a sparse code for natural sounds in the early
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auditory pathway.

In Chapter 3 we will investigate whether the principle of sparseness extends to 

the auditory cortex by using a modified Olshausen-Field type algorithm.

1.5.3 Optimal Coding through Network Interactions

Though many studies have found evidence of sparse coding in sensory systems, it 

remains to be conclusively demonstrated how such codes are implemented on a neu

ral level. Since the neural code in primary visual and auditory areas is known to 

be highly overcomplete, then for many stimulus there must exist a large number of 

neurons whose receptive fields closely match the input. There must therefore exist 

some netowrk non-linearity which prevents all these cells from becoming simulata- 

neously active. Furthermore, many theoretical models of sparse coding, including 

the ones discussed in Chapter 3 produce representations which are highly unsta

ble with respect to small changes in input, and predict rapid large fluctuations in 

neural activity in response to smoothly changing inputs. A realistic neural coding 

model should be expected to produce smoothly varying representations in response 

to continuously changing stimuli.

Rozell et al. [55] propose a network model in which sparseness arises through 

lateral inhibitory connections between cells in the visual cortex. In this model each 

cell receives excitatory input proportional to the similarity between its RF and the 

input image, in addition to an inhibitory input from all other active cells. The 

strength of this inhibitory input is given by the product of the activity of the pre- 

synaptic cell and the similarity of the two cells’ receptive fields. The activity of 

each cell is determined by a sigmoidal threshold function. These cells then learn the 

sparse structure of the stimulus through a Hebbian learning rule.

This model successfully yields smoothly varying sparse reconstructions of natural 

images and, through variation of the threshold function, can be shown to implement 

a wide family of optimisation algorithms, including Matching Pursuit and Basis
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Pursuit De-Xoising. The model rapidty sparsifies the network response through 

inhibitory connections whose strength is determined by the Gram matrix of the 

cells’ receptive fields. However, this connectivity is imposed globally in a biologically 

unrealistic manner. In order to convincingly demonstrate a network mechanism for 

sparse coding, such connectivity must develop in an unsupervised manner through 

synaptic plasticity. Furthermore, this model makes use of direct, instantaneous 

inhibitory connections between excitatory cells. In reality, such connections must 

be mediated by inhibitory interneurons, with their own internal dynamics.

Rather than impose inhibitory connections through a global learning rule, it is 

perhaps more realistic to make use of a model in which such connections might 

develop in a self-organised manner. Self-organisation is a well observed property 

of networks which obey Hebbian learning rules, and was famously demonstrated 

by Song and Abbott [63] in the case of STDP. They simulated a network of leaky 

integrate-and-fire neurons with local excitatory and long-range inhibitory connec

tions. This network rapidly formed highly organised topographic maps of the input 

space.In Chapter 4 we propose a network model which learns sparse coding through 

the development of topographic organisation in a two-layer network of excitatory 

and inhibitory cells.
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Chapter 2

Spectro-Temporal Receptive

Fields

The receptive field (RF) [25, 32] has long been used to characterize the response of 

sensory neurons, particularly neurons in the visual system, using a linear model of 

the neural firing rate. The RF is defined as the linear filter h which, when applied 

to a stimulus image, gives the best prediction of the firing rate response. For a two 

dimensional image, I^y, the response prediction is given by

(t) 'y '^Jlxy^xyif) (2.1)

The RF filter, h^y can be shown to be equal, up to a multiplicative constant, to the 

stimulus which elicits the maximal response from the cell [17].

While neuronal signalling is most likely too complicated to be typified by a rate 

response and a linear model can only ever be an approximation, RF models are 

rather successful and seem to apply in one form or another across many sensory 

systems.

Linear models of neuronal response have been in use for over 80 years, beginning 

with the work of Adrian and Zotterman in 1926 [2]. They studied the response 

of somatosensory nerve fibres in muscle tissue from which weights were suspended.
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They found that the firing rate of somatosensory neurons in the muscle tissue varied 

linearly with the mass of the applied weights.

In the intervening years, linear rate models have been successfully applied to a 

range of sensory systems, perhaps most famously in the mammalian visual cortex. 

Hubei and Wiesel [32] developed a receptive field model to describe the stimulus 

response properties of neurons the the primary visual cortex of cats. A large number 

of subsequent studies have quantified visual cortex responses in terms of receptive 

fields [33, 19, 51, 47, 56, 60].

In addition, RF models have been generalised to quantify responses to time- 

varying stimuli, particularly in the auditory system [3, 21, 67, 65]. Here we describe 

such a model, known as the Spectro-Temporal Receptive Field [65, 58, 40, 39, 74], 

which is commonly applied to neurons in primary auditory areas. The STRF de

scribes a neuron’s sensitivity to both the spectral and temporal structure of the 

stimulus. Hence, in order to apply such a model, we must first derive a spectro- 

graphic representation of sounds.

2.1 Spectrogram

In the visual RF model, an image is labelled by the spatial indices x and y, corre

sponding to the two spatial dimensions. An unprocessed auditory signal, however, 

has no equivalent spatial dimensions. Rather, auditory signals are canonically de

scribed by the sound pressure waveform, a single valued function in time. However, 

it is known that the frequency tuning of cochlear hair cells results in an effective spec

tral decomposition of sound in the auditory system. It is usual therefore, in studies 

of auditory coding, to mimic this effect by using a spectrographic representation of 

stimuli, where the sound waveform is replaced by a vector valued function of time, 

whose components correspond to the signal amplitudes at different frequencies.

Here, auditory waveforms s{t) are represented by a set of narrowband signals
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{sf{t)}, where Sf{t) is the deviation from mean of the log-amplitude of the stimulus 

in the frequency band /. The use of the amplitude logarithm is thought to model 

the logarithmic response of hair cells.

The spectral decomposition can be achieved either by use of a time windowed 

Fourier transform, or equivalently, by band pass filtering in the frequency domain. 

Spectrograms used here are produced by filtering in the frequency domain using 

a bank of overlapping gaussian filters seperated by one standard deviation. This 

filtering method has been shown to allow extremely accurate signal reconstruction 

[66, 67].

The number of frequency bands into which a stimulus is decomposed is deter

mined by the filter width, and hence by the frequency resolution of the spectrogram. 

The spectral and temporal resolution of spectrographic signals are governed by the 

signal processing uncertainty principle

A/At \s{t)‘̂ \dt (2.2)

In short, this means that any increase in spectral resolution of the signal must be 

traded off against a decrease in temporal resolution. Hence, we must choose an 

appropriate filter width which best preserves the stimulus structure. Studies of the 

zebra finch anditory system [66] suggest that recognition of decomposed signals in 

higher auditory centres is best preserved at a spectral resolution of 250Hz. Unless 

otherwise stated, all sound spectrograms used here are composed of 32 frequency 

bands of width 250Hz, spanning the range from 250Hz - 8000Hz.

2.2 Spectro-Temporal Receptive Field Model

Using the spectrographic representation of sound just described, an RF model can 

be applied to neurons in primary regions of the auditory pathway. In this model the 

stimulus spectrogram is convolved with a kernel to give a prediction of the neuronal
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Figure 2.1: A sample spectrogram of one of our zebra finch song recordings. Amplitude 
is shown on a colour scale from blue (lowest) to red (highest) The temporal 
resolution of the spectrogram is 1ms, and the spectral resolution is 250Hz

firing rate. The predicted firing rate r'{t) is given by

”/ rT
'(t) = ^/ hf{s)sf{t-s)ds 

/=i'^o
(2.3)

where Sf{t) is the stimulus spectrogram at time t and frequency band /, n/ is the 

number of frequency bands in the spectrogram and ^/(t) is the kernel which is 

refered to as a spectro-temporal receptive field (STRF).

As is the case with visual receptive fields, the STRF is proportional to the 

stimulus optimally exciting the cell [17]. The STRF model has been successful in 

describing the response properties of some auditory neurons [58]. Furthermore, since 

this model associates a particular stimulus element with each cell, the STRFs of a 

set of neurons can be considered as the basis of a neural code for natural sounds 

[24],

The STRF for a given auditory cell is typically found by minimising the squared 

error of this prediction

(2.4)^ ~ J J ~ 'f'Ydt
where r is the actual neuronal firing rate determined from electrophysiological 

recordings. In this chapter, we describe a novel method of performing this cal-
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dilation.

The standard package for calculating auditory STRFs, STRFPak [65] makes 

use of the convolution theorem to transform the convolution in the STRF equation 

(2.3) into a product of Fourier transforms. The STRF is then found by least- 

squares minimisation of the k-space error between this product and the Fourier 

transformed firing rate. Although the use of the Fourier transform to deconvolve 

the formula for r appears to be somewhat successful, it is not transparent: the 

deconvolution theorem for Fourier transforms applies to periodic functions or to 

the acausal convolution whereas the kernel here is compact and the convolution 

is causal. Furthermore, this method requires that neural spike time data be pre- 

processed using a smoothing window before the Fourier transform can be applied. 

Our intention here is to derive an alternative formulation for the STRF which avoids 

the use of the Fourier transform.

Here, we describe a simplified calculation in which the Fourier transform is 

avoided by re-formulating the problem as one of regularized matrix inversion in 

the stimulus space. This formulation is more mathematically robust than the stan

dard STRFPak method, and does not require any smoothing of firing rates. In 

addition, these improvements allow us to calculate STRFs which more accurately 

predict the responses to novel stimuli

2.3 A Straightforward Calculation of the STRF

In the standard method for STRF calculation, the linear convolution equation, (2.3), 

is replaced by a Fourier transform equation:

rif

^'(k) = 5^s/(A:)/r/(A:) 
/=i

(2.5)
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where Sf{k) and hf{k) are the Fourier transforms of s/(t) and hf{t). The aim now 

is then to minimise the A:-space error

£k= [r{k) - f'{k)fdk (2.6)

with respect to hf{k). If r'{k) was the inverse Fourier transform of r'{t) then the 

Plancherel formula would say that Ek = £■■ The minimization problem has a least 

squares solution and for each value of k, hf{k) is found by regularized inversion of 

the Uf X rif stimulus autocorrelation matrix. The STRF hf{s) is then set equal to 

the causal part of the inverse Fourier transform.

Our straightforward STRF calculation takes advantage of the fact that, since 

both the firing rate and stimulus are, in reality, discretely sampled, the convolution 

can be written as a simple matrix multiplication. Thus, the STRF can be calculated 

by a single inversion. In other words, although the formula for £ has the appear

ance of an integral, time is, in practice, discretized into bins of width St and the 

convolution is rewritten in matrix form with time indices r and cr corresponding to 

t = rSt for time and s = aSt, corresponding to the temporal support of the STRF. 

Temporal arguments are replaced by indices

Rr = r{TSt), B!^ = r'{Tdt), Srf = Sf{rSt), Hf„ = hf{aSt) (2.7)

and the linear model, (2.3), is now

ris

/=! CT = 1

where risSt = T, the temporal width of the STRF. The error is now given by

(2.8)

rif nt

-■«•)" = E R- - E /o- (2.9)
T = 1 r=l
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where L = titSt is the temporal length of the stimulus.

Differentiating with respect to Hf^ gives the least squares fit solution

^ ' ST—a-,fSr—p,gHgp — ^ ^ Rt-St— <T,/ (2.10)

T,p-.g

Thus, the problem of calculating the STRF reduces to a simple matrix inversion 

problem. To make this clearer, the STRF indices cr and / are vectorized so that 

/ = (/ — l)n/ + a and J = {g — l)n/ + p and hence Sri = Sr-aj and, for example, 

Hj = Hgp. Now, the equation becomes

nj
Y,(S^S)ijHj = Cl (2.11)

j=i

where Ci = RrSr-a.f, the dimension ni = UfTig and, for clarity, the shorthand

{S^S)ij = J2SrlSrJ (2.12)

has been used for the square matrix. Now, Hj, and therefore the STRF, is recovered 

by inverting S'^S.

The matrix S'^S is known as the stimulus autocorrelation matrix, and represents 

the temporal, spectral, and temporal-spectral correlations in the stimulus ensemble. 

In the pqst, experiments of this kind were often performed using Gaussian white 

noise stimuli. In this case, the matrix S^S approximates to a scalar multiple of the 

identity, In,, and so the STRF reduces to

Hfa = RrSr^aJ (2.13)

which, up to a multiplicative constant, is simply the spike triggered average.

However, it is known that receptive fields, including STRFs, are highly depen

dent on the choice of stimulus ensemble. Furthermore, since neural spiking is an
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inherently noisy process, stimuli must be used which elicit a strong response in the 

cells being studied, in order to minimise noise in the estimation of neuronal firing 

rates. In the case of songbirds, a corpus of con-specific songs is considered a good 

proxy for natural sounds. However, the difficulty is that the correlation structure of 

such natural sounds makes the matrix inversion ill-conditioned. This must be dealt 

with through regularization and dimensional reduction.

2.4 Stimulus Correlation and Regularization

Natural sounds such as birdsong are highly structured, and so can contain strong 

correlations in either time and frequency. The effect of these correlations is that 

the signal is predominately carried in a relatively small number of high variance 

dimensions, and as a result, the stimulus autocorrelation matrix has a number of 

very small eigenvalues, corresponding to the low variance dimensions in the time- 

frequency space. Given the spectral decomposition:

{S^S)ij = Y^KE^iE,j (2.14)

the inverse is given by

Aq

(2.15)

and so the small eigenvalues, become very large on inversion, and dominate the 

inverse.

In mathematical terms, the autocorrelation matrix is ill-conditioned, and so its 

inverse is susceptible to noise in poorly sampled dimensions. This presents a prob

lem: in order for the autocorrelation matrix to be well-conditioned - that is, to 

have a stable inverse - the stimulus ensemble is required to well sample the entire 

time-frequency space. However, in order to evoke a strong response from auditory 

neurons naturalistic stimuli must be used and, by their nature, such stimuli contain
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a high degree of correlation, and are therefore ill conditioned.

This problem can be circumvented by a number of methods. A common approach 

to dealing with such ill-conditioned matrices is Tikhonov regularization, also known 

as ridge regression. This technique progressively diminishes the contributions of 

smaller eigenvalues to the inverse. Alternatively, the problem may be solved by 

dimensional reduction. Simply put, the stimuli are projected down into the sub

space of significant dimensions, that is, dimensions which are well sampled by the 

stimulus ensemble; in other words, principle component analysis is performed on the 

stimulus.

The relative merits of these techniques are discussed below. As a further compli

cation, we must also consider whether the correlations in the stimulus are in time, 

frequency, or both.

2.4.1 Tikhonov regularization in STRF-space

One possible approach to regularization is to impose a prior condition on the solution 

which prevents overfitting, and eliminates unstable solutions. Tikhonov regulariza

tion [68] allows us to find a reasonable solution to an ill posed inverse problem by 

incorporating additional qualitative information about the problem. For example, 

we might intuitively expect a good, noiseless solution to be reasonably smooth, or 

to have a reasonable upper bound on its norm. We can then impose a smoothness 

or boundedness condition on the solution, H, which has the effect of suppressing 

noisier solutions.

The least squares STRF estimate is found by solving:

Hj = arg min ^ SrjHi (2.16)

T=1

The regularized solution is found by adding an extra term to this expression
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which penalises unsuitable solutions.

Hi = arg min 5^ ^V^DiHiY (2.18)
r=l

where D G is a linear operator characterising some property of the solution 

which is to be minimised. Common choices are D = In, where we require the norm 

of H to be small, or a differential operator in the case where smoothness is requred. 

This gives the stable regularized solution:

n,
Y,{S^S + r^D^D)ijHj = Cj (2.19)
j=i

for some regularization parameter 77 > 0, and the STRF is now recovered by 

finding the inverse of (5^5 + t]D^D)

In the standard case where D = In,, this is equivalent to simply adding a small 

multiple of the identity matrix to S'^S. This gives the inverse:

-1{S^ S + rjln,)j} =
1

a
EalEaj, (2.20)

and so the contribution to the inverse of small eigenvalues is bounded, converging 

to l/?7 as A approaches zero.

2.4.2 Regularization by dimensional reduction in STRF-space

The birdsong data used in our STRF calculations consists mainly of a number of 

highly structured motifs, which are repeated with little variation. As a result, it is 

likely that that the information in the stimulus is contained in a small number of 

dimensions, and that the low-variance components of the stimulus contain little or no 

relevant information. In such cases, it may be preferable to remove the contributions 

due to these dimensions entirely. This can be achieved through Principal Component 

Analysis (PCA) and dimensional reduction.
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In the case of STRF calculations, if the stimulus is highly correlated in both 

time and frequency, the dimensional reduction should be performed on the entire 

71/ = n/Tis-dimensional time-frequency space; the space of STRF vectors. This is 

achieved by replacing the inverse of S^S with the Moore-Penrose pseudoinverse, 

which removes contributions due to low-variance dimensions:

(s^s)Ui)= E
a:Aa>£

(2.21)

where e is a tolerance value, separating significant eigenvalues from noise. By virtue 

of the orthogonality of eigenvectors.

EalEpi = S,aj3 (2.22)

this yields a STRF, Hj{e), which is restricted to the subspace of significant eigen

vectors. The tolerance value, e is determined by cross validation.

This gives a dimensional reduction in the time-frequency space of STRFs. As 

a result both spectral and temporal features have been removed from the STRF 

estimate. However, neural firing rates contain fine temporal structure, and so by 

projecting the problem in STRF space, significant temporal information may be lost 

from the STRF estimate. In other words, though the matrix S'^S exists in time- 

frequency space, the under-sampling which causes it to be ill-conditioned may be in 

frequency space only, and so we must also consider a solution which removes noise 

due to spectral correlations in the stimulus, but retains temporal information.

In practice, the time-frequency approach leads to STRFs which are poor at 

predicting firing rates for novel stimuli. A better approach, in fact, is to consider 

only the redundancy in frequency.
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2.4.3 Regularization in frequency space

At each time step, t, Sfr gives an n/ dimensional vector in frequency space; if there 

is redundancy, this stimulus vector can be projected down to a lower dimensional 

space without significant loss of signal. To determine this subspace, the nj x nj 

matrix of spectral correlations:

(2.23)

is calculated. If the stimulus contains a high degree of spectral correlation, then 

this matrix will have a small number of large eigenvalues corresponding to the basis 

vectors of the sub-space of significant dimensions. The stimulus is then projected 

down onto this subspace to obtain the projected stimulus

Uf

^-"W = E7=1 \g=l
my (2.24)

where Vj. is an eigenvector of C^, and m runs from 1 to Ur, the dimension of the 

restricted subspace formed by the first n.r eigenvectors of C®. The STRF is then cal

culated using the projected stimulus. It will be seen that this approach is successful 

in regularizing the STRF calculation.

This projection in the frequency space is similar to the regularization used in con

junction with the Fourier transform in the STRFPak calculation. In that method, 

an Uf X rif correlation matrix is inverted for each value of k in the A;-space of am

plitude modulation frequencies. These matrices are then regularized by using the 

Moore-Penrose inverse. This approach has the advantage that a different subspace 

can be selected for each value of k, allowing much greater freedom in the choice of 

information to be retained in the STRF estimate.

Conversely, the approach suggested here has the advantage of being compu

tationally less demanding than STRFPak, since the stimulus projection must be
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performed only once. Furthermore, it has the conceptual advantage that the nature 

of the regularization is intuitively clearer.

2.4.4 Cross-Validation

In all of the regularization methods described above, we must optimise the cal

culation with respect to a regularization parameter. The tolerance value, 6, or 

equivalently, the number of retained dimensions, is chosen so as to give the most 

accurate prediction of the response to novel stimuli. In both cases this is acheived 

by means of cross-validation.

To achieve a reliable STRF estimate, we must ensure that the STRF is not 

over-fitted to the noise in the training data. To avoid this, we must validate our 

STRF by applying it to data not used in training. Prior to calculation a subset of 

the data, known as the validation set, is put aside and the STRF calculated using 

the remainder of the data, known as the training set. The resulting STRF is then 

used to predict the response to the validation data. The value of the regularization 

parameter is chosen as that which miniminses the prediction error on the validation 

set.

Here, we have used a rigorous validation regime known as 10-fold cross-validation. 

In this case, the training data is divided into 10 subsets. The cross calidation is 

then repeated 10 times, with a different subset chosen as the validation set on each 

repetition. Prediction accuracy for each value of the regulsrisation parameter is then 

averaged across all repetitions of the validation, and the regularisation value chosen 

as that which gives the highest mean correlation across all 10 validation sets. This 

method of cross-validation has the advantage that the result is validated against the 

entire data set, while still ensuring that the result is not overfitted to noise in the 

training set. Here our data consisted of 20 zebra finch song recordings, and so we 

performed a validation in which one of 10 song pairs was excluded from the training 

set on each repetition.
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2.5 Results

We apply our novel STRF calculation methods to a dataset consisting of zebra finch 

song recordings and corresponding spike trains recorded from 10 cells in the Field 

L region of the zebra finch auditory forebrain. Song spectrograms were calculated 

for an ensemble of 20 conspecific songs as described in Section 2.1 above, with 

Tif = 32 frequency bands of with 250Hz, and centre frequencies ranging from 250- 

8000Hz. Neural data was recorded in spike arrival time format, and binned to form 

a Peri Stimulus Time Histogram (PSTH). The STRF is calculated directly from 

an unsmoothed PSTH with 1ms resolution. Results shown are for STRFs with a 

temporal width of 100ms. However, STRF width may be reduced to as little as 

50ms with little deterioration in predictive performace.

Figure below shows the mean prediction accuracy for our calculation method 

using the three regularization techniques described in the previous section, as well 

as that obtained from the STRFPak calculation. As can be seen, the frequency- 

space regularization produces the most accurate STRF estimate, with performance 

comparable to that of STRFPak. Detailed comparison between this method and 

the STRFPak algorithm is shown below.

Table 2.1 displays the correlation coefficient for each of our 10 cells for optimal 

values of the respective regularization parameters. As can be seen, our method 

produces predictions with similar, and on average, slightly improved accuracy over 

STRFPak. Correlation values for other regularization methods are also shown for 

comparison. The final column displays the test statistic for matched sample t-test 

between Frequency Space regularization and STRFPak predictions. Statistically 

significant results are shown in bold. In 3 out of 10 cells our frequency based method 

produces significant improvements over STRFPak, while STRFPak is significantly 

better in 2 out of 10 cases. For the remaining 5 cells differences in correlation were 

not significant at the 5% level.

In addition, both of these methods were significantly more accurate than either
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the Tikhonov or STRF-space methods in the majority of cases. In no instance did 

either of Tikhonov or STRF-space methods produce signihcantly better predictions.

Cell no. Tikhonov STRF-space proj. Freq.-space proj. Strfpak f-value
1 0.167(0.028) 0.191(0.031) 0.235(0.036) 0.261(0.04) 2.06
2 0.147(0.023) 0.161(0.024) 0.185(0.041) 0.194(0.037) 0.51
3 0.202(0.023) 0.196(0.018) 0.243(0.021) 0.215(0.029) 2
4 0.138(0.019) 0.158(0.02) 0.182(0.025) 0.183(0.024) 0.09
5 0.273(0.024) 0.303(0.029) 0.429(0.032) 0.319(0.033) 7.58
6 0.027(0.022) 0.042(0.035) 0.052(0.042) 0.034(0.036) 1.03
7 0.192(0.017) 0.202(0.031) 0.240(0.035) 0.214(0.027) 1.86
8 0.203(0.034) 0.215(0.038) 0.243(0.066) 0.239(0.051) 0.15
9 0.131(0.026) 0.163(0.032) 0.155(0.03) 0.183(0.034) 1.62
10 0.134(0.029) 0.159(0.033) 0.162(0.041) 0.209(0.047) 2.37
Mean (STD): 0.161(0.062) 0.179(0.061) 0.213 (0.092) 0.205 (0.072)

Table 2.1: The mean correlation coefficient between predicted and actual firing rates for 
each cell is shown for 4 estimation methods Standard deviations are given in 
parentheses. Also shown are matched sample t-test values for our frequency 
space method versus the standard Strfpak calculation (5% significance level: 
1.86). Bold type indicates valuea above the significance level.

The STRF calculation is dependent on the number of principal components 

retained in our representation of the stimulus. This number is determined for each 

cell by means of cross validation; being chosen as that value which returns the 

most accurate prediction of responses to the validation stimuli. In the STRFPak 

calculation, this number is expressed in terms of a tolerance factor, p. Only those 

dimensions with eigenvalues larger than jiXi are retained in the solution, where Ai 

is the first, or largest eigenvalue.

Figure 2.2 shows the prediction accuracy for both our frequency space method 

and STRFPak as functions of Ur and respectively. Accuracy is measured using 

the correlation coefficent of unsmoothed predicted and actual firing rate histograms.

To achieve the best possible prediction, must be determined for each cell. 

Optimal values were in the range — 5 < < 8. The first 8 principle components

are shown in Figure 2.3.
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Figure 2.2: Dependence on regularization parameter: Correlation coefficient of predicted 
and actual responses for cell 4 are shown for our method (A) and Strfpak 
(B ) as a function of the respective regularization parameters, and /i

2.6 Discussion

The results above confirm that it is possible to calculate reasonably accurate, low- 

noise STRF estimates without the use of the many approximations implicit in de- 

convolution based methods.

In addition, by avoiding the transformation of the problem into A:-space, we 

demonstrate how the STRF calculation can be conceptually simplified, and the 

regularization process more easily understood as a dimensional reduction in the 

space of stimulus spectrograms. However, although it gives similar predictive power 

to the STRFPak method, the STRF as calculated here still produces relatively poor 

predictions of neural firing rates. This is due in large part, to the inherent non-
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linearity of neural responses, which can at best be roughly approximated by such 

linear estimates. However, there may still l)e significant scope for improvements in 

the linear STRF model.

As discussed previously, it is essential when calculating STRF estimates to use 

a training set which well samples the relevant stimulus space. However, in order 

to effectively do this for such a complicates stimulus set as birdsong, it may be 

necessary to use a much larger dataset than that used here in order to obtain a 

good estimate. It is instructive to consider the performance of the STRF when 

predicting responses to the validation data compared to the peformance on data 

used in training.

Cell no. Mean training set correlation Mean validation set correlation
1 0.371 0.235
2 0.325 0.185
3 0.367 0.243
4 0.332 0.182
5 0.494 0.429
6 0.214 0.052
7 0.322 0.240
8 0.354 0.243
9 0.323 0.155
10 0.303 0.162
Mean (STD): 0.341 (0.066) 0.213 (0.092)

Table 2.2: The correlation coefficient between predicted and actual firing rates, averaged 
over all songs, is shown for both our direct method, and the standard Strfpak 
calculation.

Table 2.2 shows the mean prediction correlations for both the validation and 

training data using our frequency space method. The prediction accuracy is seen 

to be significantly worse for the validation set than for the songs used in training 

(Matched sample f-test: f=3.6; 5% significance level = 1.73). Of course, it is always 

possible to produce a highly accurate prediction for the training data if the model is 

’over-fitted’ to the noise in the training set. However, the regularization procedure 

used here is specifically designed to prevent such overfitting, and so if the training 

data well-samples the space of significant stimuli, we might expect the performance 

on both training and validataion sets to be comparable. This is not the case here,
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indicating that there are significant dimensions within the validation stimulus which 

are not well sampled by the training stimuli. This suggests that the dataset of 20 

zebra finch songs used here is not sufficiently large to provide a good STRF estimate, 

and that significant improvements in performance may be obtained by training with 

a larger sample.

It may also be possible to obtain improvements in performace by further refine

ment of the regularization process. We have described three possible methods for 

regularizing the STRF calculation through ridge regression and dimensional reduc

tion; two in which this reduction is performed on the entire time-frequency space of 

STRFs, and another in which the projection is performed in frequency only.

As we have seen, the frequency only method produces the more accurate STRF 

estimate, and so we can conclude that the under-sampling in our stimulus is pri

marily in the spectral dimensions. However, it is possible that there remain poorly 

sampled temporal dimensions in the projected stimulus, and so it may be possible 

to improve our STRF calculation by performing a second, less drastic regularization 

in the temporal domain. Unfortunately this method has the drawbacks of requiring 

the optimization of a second regularization parameter, and of significantly increasing 

the computation time of the calculation.

Another potential improvement to the STRF estimate may be achieved through 

the introduction of a filtering kernel for the neuronal firing rate data. As discussed 

above, many STRF estimation methods, including STRFPak, require the smoothing 

of input firing rates prior to estimation. This is typically achieved using a Hanning 

window [12], or similar filter function. The inclusion of this pre-processing step is 

often poorly justified, and primarily motivated by the need to smooth the firing rate 

function prior to the calculation of its fourier transform. Nonetheless, the use of such 

a smoothing window has been shown to slightly improve the prediction accuracy of 

STRFs. It is interesting to consider why this may be so.

Neural action potentials have an extremely narrow temporal profile, and for most
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coding purposes, may be treated as instantaneous events. As a result, they are often 

approximated mathematically as h-functions. However, such spikes are perceived by 

other neurons through their effects on those cells’ post synaptic potentials, which 

often persist over a much longer timespan. Typically, the effect of a pre-synaptic 

spike on a post synaptic dendrite is to produce a rapid increase in the dendrite 

potential, which then decays exponentially on a timescale significantly larger than 

that of the pre-synaptic spike. Hence, a neural spiketrain is transmitted across a 

synapse, not as a series of (5-function spikes, but rather as the sum of a series of 

decaying exponential functions.

This idea is used extensively in the design of kernel based spike metrics, where 

a spike train of delta function spikes

m = (2-25)
5

is convolved with a causal filter, 9 to give a rate function of the type

Rt) = (2.26)
i=l

where 9 is of the form

9{t) =
} t<0

t > 0
(2.27)

This filtering is functionally similar to that carries out by smoothing firing rates 

with a Hanning window in STRF calculations, and has the same effect of broadening 

the temporal profile of spikes. Unlike the Hanning window, however the shape of 

the filter function used here is directly inspired by neurophysiological measurements. 

Hence, we may expect that the use of such a filter function in STRF estimation might 

improve the predictive power of the STRF model.
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Chapter 3

Sparse Coding of Natural Stimuli.

It has long been established that the firing rate behaviour of many cells in the 

primary visual and auditory areas can be predicted by a linear filter model. Any 

discussion of this prediction must be undertaken with several caveats: the accuracy 

of the prediction is modest [40, 21, 67, 58] and there are numerous non-linear ef

fects which make the calculation of the kernel dependent on the corpus of stimuli 

[41, 65, 66, 18]. Furthermore, the model predicts only the spike rate and provides no 

information about spike timing. Nonetheless, these linear models do associate a par

ticular kernel with a given cell and it is obviously interesting to ask what determines 

the selection of these kernels.

This question is perhaps unusually well-specified in the case of song birds. Since 

song birds are adept at distinguishing between different con-specific songs, these 

songs can be considered an important class of natural sounds. Ideally, sensory 

processing is studied using stimuli whose statistics reflect those of the natural envi

ronment [18]. A guiding principle in neural coding is that sensory systems should 

efficiently encode such stimuli, and in fact, there is already evidence from the study 

of the visual system, that the linear kernels of visual neurons are related to a sparse 

code for natural images [71, 47, 72, 5]. Furthermore, modelling of auditory systems 

[38] has shown that the tuning properties of cochlear hair cells are well predicted by

52



a sparse code for natural sound waveforms.

Our aim in this chapter is to extend these ideas to the avian auditory system. 

The methods used are similar to those employed in these previous studies, how

ever, additional difficulties arise because birdsong does not well-sample the entire 

frequency-time domain.

The male zebra finch sings; along with a variety of simple calls, such as warning 

cries, the male bird has a single, identifying song, which develops under the tutelage 

of an adult male. The female finch does not sing, however, both the male and female 

birds are able to distinguish songs. Songs usually begin with a series of introductory 

notes, followed by two or three repetitions of the motif: a series of complex frequency 

stacks known as syllables, separated by pauses. Syllables are typically about 50ms 

long, with songs lasting about two seconds. Although perhaps discordant to the 

human ear, zebra finch songs have a very rich and complex structure. Importantly, 

the zebra finch auditory system is believed to be highly tuned to detect and recognise 

this song structure [41, 18, 67].

As discussed in the previous chapter, the response characteristics of auditory 

neurons are described by the spectro-temporal receptive field (STRF), a linear kernel 

relating the spectrogram of the stimulus to the firing rate response of the neuron. 

While linear in the spectrogram, the STRF model is non-linear in the stimulus due 

to a non-linear transformation in the calculation of the spectrogram. Such a linear 

mapping from spectrogram to response is rather naive and, not surprisingly, gives 

an incomplete description of neuronal behaviour [40, 21, 67, 58]. Nonetheless, the 

model does provide a good approximation for some cells, and a description of how 

information is processed and encoded in the primary auditory areas should account 

for this linear behaviour.

Numerous previous studies, [65, 40, 58], have produced STRFs for auditory neu

rons from electrophysiological recordings, using the traditional STRFPak algorithm. 

In particular, the STRFs of Field L neurons in the zebra finch auditory forebrain
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have been calculated and parameterised by a number of quantitative measures, such 

as the location and width of the time and frequency peaks. These STRFs are also 

characterised by a number of distinctive spectral and temporal features such as 

narrowband selection and on-off switching.

We investigate whether these properties of simple neurons can arise naturally 

from a sparse coding strategy for natural sounds. Specifically, we consider optimal 

strategies for the encoding of an ensemble of 20 zebra finch songs and generate a 

set of optimal kernels which sparsely encode this ensemble using an Olshausen-Field 

type algorithm [47].

Such learning algorithms have been succesfully used to calculate sparse bases 

for natural images [47, 71]. Here,we adapt it for use with highly correlated, ill- 

conditioned data, and apply it to the birdsong spectrograms. Using our novel for

mulation of the STRF from Chapter 2, we can then calculate optimal linear filters 

for zebra finch auditory neurons which are explicitly equivalent to neuronal STRFs.

3.1 Recap: Spectrotemporal Receptive Fields

As in Section 2.1, we consider a spectrographic representation of our songs, where 

the spectrogram represents the log amplitude of the stimulus in frequency and time, 

obtained by narrowband filtering Fourier transform of the song waveform. Spectro

grams are represented by a combination of Uf = 32 narrowband signals, {s/(i)}i 

with centre frequencies between 250 and 8000Hz.

To recap from Chapter 2, according to the STRF model, an approximate firing 

rate is calculated by convolving the spectrogram with a kernel hf{s):

nf

= Sf{t- s)hf{s)ds
/=1

(3.1)

This calculation can then be discretised and the STRF indices combined, to give
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the STRF equation in vector form:

rifUs

R,= Y^Sr,H,. (3.2)
7=1

where Ug is the temporal width of the STRF, and the vector index / labels both 

spectral and temporal dimensions.

The STRF is defined as the best approximate solution of Equation (3.2) which 

minimises the squared error between the predicted firing rate, Rr and the actual 

neuronal firing rate, B-j-. This is given by the least squares solution

f'R'S

J2iS’^S)uHj = Ci (3.3)
j=i

where Ci = RrSr-aj and, for clarity, the shorthand

{S^S)lj = J2SrlSrJ (3.4)

has been used for the square matrix. Now, Hj, and therefore the STRF, is recovered 

by inverting S'^S.

In practice, however, this precise solution does not give the best STRF estimate, 

and the STRF calculated in this way will, in fact, give a poor prediction of the 

response to novel stimuli not used in the calculation. This is a consequence of 

overfitting to the training data.

As discussed above, to realistically characterise neural responses, we must use 

stimuli which provoke a strong response in the neurons of interest [18, 67, 66]. In fact, 

the existence of an easily specified ensemble of natural stimuli is a key advantage of 

using song birds in studies of the auditory system. However, there is a disadvantage: 

natural sounds such as birdsong have a high degree of temporal and spectral auto

correlation, and so the majority of the information in the stimulus is contained in a 

relatively small number of significant dimensions. As a result, there exist dimensions
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within the stimulus space along which the variance is extremely low and in whch 

noise becomes significant. Since the least squares solution gives equal weighting to 

all dimensions in the stimulus, this results in the STRF being fitted to the ncise 

in these dimensions. In other words, the stimulus autocorrelation matrix S'^S is 

generally ill-conditioned.

As described in Section 2.4, this problem can be overcome by regularized inver

sion in the space of STRFs: If

{S^S)jj = ^ XaEalEaJ (3.5)

is the spectral decomposition of over its eigenvalues, A^, and eigenvectors, Ea, 

then the inverse is given by

{S'^S)!J = Y, -^EaiEaj
a

(3.6)

Regularization is achieved by taking the Moore-Penrose pseudoinverse [52]

V i^ A,
a:Act>£

(S^S)+j(£) = > : (3.7)

where the contributions due to poorly sampled dimensions, which correspond to 

small eigenvalues, are removed from the inverse.

The tolerance value, e, is chosen by cross validation so as to give the most 

accurate prediction of the response to novel stimuli.

3.2 Sparse Coding

According to the sparse coding hypothesis for sensory systems, only a small subset of 

the neurons in a sensory pathway need be strongly active while accurately encoding 

a given stimulus [50, 47, 22, 4]. From an information theoretic point of view, an
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ideal sparse coding regime is one in which the neuronal firing rates are statistically 

independent [4, 38, 47] and individual cells favour either low or high activity. Here, 

neurons are identified with kernels or STRFs, so each neuron corresponds to one 

direction in a stimulus space. In this section, we calculate an optimal set of linear 

kernels which sparsely encode zebra finch song.

Using the same vectorized notation as in the previous section, Sri can be thought 

of as a patch of the stimulus spectrogram with the same temporal width as the 

STRFs, ending at the time t = rSt- The spectrogram patch is decomposed at fixed 

time r over a basis Bni where n is a component index. Hence, let

StI ^ ^ ^rn^nl (3.8)

where A is the matrix of components. Assuming that the basis B is invertible, it is 

possible to choose the component matrix A so that Sri — Sri by setting

Arn = Y,Srl{B-^) In’ (3.9)

Where each row of R is a basis vector associated with the neuron n. Notably, this 

equation shares the form of the vectorised STRF equation (3.2) In this way, the 

column of the inverse basis R“Ms equivalent to the STRF, Hi, of the neuron n and 

Aril is ecjuivalent to the firing rate of that neuron at time t = rSf. However, in an 

efficient coding regime, we must also require that the firing rates be sparse. This is 

achieved by placing a constraint on A which enforces sparseness in the distributions 

of firing rates. We can then determine an accurate sparse coding of our stimuli by 

allowing a trade off between the sparseness of the representation and the accuracy of 

the stimulus reconstruction S. Furthermore, as with the STRFs, it will be neccessary 

to regularize the calculation.

Following the method of Olshausen and Field and Vincent et al. [47, 71] we seek
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to minimise an energy function, E{A,B\ij) for the sample at each time r:

E = Y,{Sr,~SA -U.Y,C(Arn) (3.10)

where the first term represents the reconstruction error in the representation, and 

where C'(-) is some sub-linear cost function which penalises redundancy in the coding 

for a given sample. A typical choice [47] which is used here, is

C{^Tn) — ~ [log(l + ArnArn)] , (3.11)

which favours representations having fewer non-zero coefficients, since X^jlogj(l + 

X?) > log(l -l-^j x^) for all Xj. ^ is a positive constant which determines the relative 

importance of sparseness and reconstruction accuracy.

To find the minimum a two-step iterative method is used: E{A, B; n) is first min

imised with respect to the components Am by conjugate gradient descent, averaged 

over many samples. The basis functions are then updated by

AB„/ = t](A {Sri- S.t1 (3,12)

where r; > 0 is the learning rate. Beginning with a random basis set, this algorithm 

converges after several thousand iterations to a matrix B of optimal basis functions 

which allow an accurate sparse encoding of the stimulus. Figure 3.1 shows the 

increase in the sparseness of the system after learning. The optimal kernels are now 

given by Hence, B must be required to be invertible and well conditioned.

Difficulties arise in this calculation due to the highly correlated nature of the 

data used. Such difficulties are dealt with in many studies [47, 8] by a process of 

whitening, or sphering the data. However, in this case, in order to allow for the 

inversion of our basis, and the direct comparison of our sparse kernels with auditory 

STRFs, we proceed by means of dimensionality reduction, as used in the calculation
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Figure 3.1: A: Distribution of weights for learned basis functions (dotted line) compared 
to those for a random basis (solid line) averaged over all filters. The large 
peak and heavy tail of the distribution for learned basis functions is char
acteristic of a sparse response. B: The kurtosis, K, of the distribution of 
weights for learned basis functions increases as a function of the sparseness 
parameter.

of STRFs. As we have described in Section 3.1 above, the regularized STRF is 

calculated by removing the contributions due to low variance dimensions in the 

stimulus, and projecting the songs onto a sub-space of high-variance dimensions. 

Hence, if, as above

{S^S)ij = Y,^aEalE^j (3.13)

and anything with an / index can be decomposed over the eigenbasis

Sri

Sri

Bnl

^ ^ ^raE( 

a
^ ^ ^raE( 

a
^ ^ bnaE(

al

al

(3.14)
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Substituting these into the energy function, and using Yli EaiEpj = SaBi

B = ^ (Srt, - inf - /* (3.15)

To project the problem onto the significant stimulus dimensions, we need only re

strict the range of a. We write A{€) for the set of a such that > e, where e is 

a cut-off value seperating the high-variance dimensions of the songs - the ones that 

will be preserved - from the noise. The energy function now becomes

£'(e) = ^ {Sra- Sraf - fi'^C{Arn) 
a&A{e) n

(3.16)

and we minimize over bna rather than Bni- Bni can be reconstructed as

Bjil ^ ^ ^naBal• 

a&A{e)

(3.17)

To obtain a set of optimal kernels, B must now be inverted. If a complete 

representation is chosen, where the number of basis elements N is the same as tdie 

number of dimensions in the stimulus; N = |Al(e)| then the matrix b is square and

= E
a&A{e)

(3.18)

Alternatively, an overcomplete representation can be considered where N > |Al('e)l, 

in which case b~^ must be replaced by the Moore-Penrose pseudoinverse, &''‘(e).

The eigenvalue cut-off, e, is often expressed in terms of the tolerance factor e/Ai, 

where Ai is the largest eigenvalue. In STRF calculations the optimal tolerance 

factor is determined through cross validation. Here, we have used a tolerance value 

of 0.004. This is within the range of tolerance values used in the calculation of actual 

Field L STRFs [67, 58] and gives 20 dimensions: |A.(e)| = 20, (see Figure 3.2). This 

value is sufficient to remove noise while still allowing an accurate reconstruction of
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Figure 3.2: A{e) is the set of a such that > e. Here e = 0.004Ai. The contributions 
due to low-eigenvalue dimensions are ignored.

Figure 3.3: Proportion of dimensions above tolerance as a function of sample width 
(e = 0.004). Longer samples contain a higher degree of temporal correlation, 
and so have proportionally fewer high variance dimensions. Here |^(e) | is the 
number of significant dimensions, and njUg is the total number of dimensions 
in the stimulus space.

the stimulus, with more than 90% of stimulus variance explained.

It should also be noted that |^(e)l is dependent on the length of the samples cho

sen, since longer samples will display a higher degree of temporal auto-correlation, 

and hence will have a higher proportion of noisy, low-eigenvalue dimensions. Fig

ure 3.3 shows the proportion of dimensions above tolerance as a function of sample 

length.

3.3 Results

apply these methods to an ensemble of 20 zebra finch song spectrograms, each 

of one to two seconds duration. For suitable choices of e and /r, we obtain a set of
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optimal kernels sharing many of the observed characteristics of STRFs in the zebra 

finch auditory forebrain.

Figure 3.4 shows the set of optimal kernels of length 50ms calculated for N = 

|yl(e)| = 20. Though qualitatively differing from Field L STRFs in a number of re

spects, these kernels nonetheless display certain similarities with neuronal receptive 

fields: there are excitatory and inhibitory peaks on similar scales to those found in 

Field L STRFs, with both excitatory and inhibitory regions having similar ampli

tude, and kernels are localized in space and time, though possibly not as markedly 

localized as some STRFs of experimentally observed cells. Many of the sparse kernels 

show sensitivity to complex features such as frequency stacks, which are a common 

feature of zebra finch song. These kernels display somewhat similar tuning to many 

found in Field L of the zebra finch forebrain, though it should be noted that the 

multiple peaks obseved in these kernels are not common to the majority of Field L 

STRFs. Importantly, though these kernels do differ from Field L STRFs, it appears 

that those similarities which are observed increase with sparsification of the system, 

and are not observed in non-sparse filters.

Furthermore, we can quantitatively characterise the sparse kernels using a num

ber of spatial parameters, and compare these values to those obtained from auditory 

STRFs. Parameters commonly used to characterise STRFs include the width of the 

largest peak in both time and frequency directions, Wt and Wf; the peak frequency, 

Fpeak; the time to the largest peak Tpeakl the quality factor, Q; the best modulation 

frequency, BMF and the spectral-time separability, SI.

These values, as calculated from the sparse kernels, agree well with those found 

in several studies of the avian auditory forebrain [76, 45, 27, 67] (See Table 3.1). 

The observed range of peak frequencies, Fpeak closely matches that found in Field L 

STRFs, as do the seperability index, SI, and quality factor, Q.

The sparse kernels exhibit fine spectral tuning with localized peaks of average 

width Wf =1.1 kHz, and temporal tuning with Wt typically in the range of 10 -
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Figure 3.6: Average spectral peak width, Wf as a function of sparseness parameter. 
Sharp spectral tuning arises from increased sparseness in the system.

20ms (mean value 14.2ms). The kernels show little variation in peak widths, and Wf 

appears largely independent of peak frequency. Interestingly, Wf is seen to decrease 

as a function of the sparseness parameter, /it, as shown in Figure 3.6, suggesting that 

localized kernels arise as a result of sparsification.

The sharpness of the spectral tuning is measured by the quality factor, Q, defined 

as the ratio of the peak frequency to the width: Q = F-peak/Wf. Values of Q are in 

the range 1-5 (mean value 2.9), matching the findings of Theunissen et al. [67].

The best modulation frequency, BMF, is a measure of the AM frequency to which 

a neuron is best tuned, and is obtained from the Power Spectral Density of the linear 

kernel. The BMFs of individual sparse kernels were in the range 0 - 40Hz, with 90% 

of sites having BMF < 20Hz (resolution 20Hz), indicating a strong preference for 

low frequency amplitude modulations, as seen in auditory STRFs [58]. The overall 

BMF of the set of optimal kernels was obtained by concatenating peak timeslices of 

all the sparse kernels. This gives an overall BMF value of 8Hz (resolution IHz).

Spectral-temporal seperability is measured by the SI value, obtained from the 

Singular Value Decomposition (SVD) of the STRF [58]. It is

SI = Pi (3.19)
En—i f

i=\ Pi

where = pi — pn, and pi is the singular value. As in previous studies [58],
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Figure 3.7: The average separability of the 20 sparse kernels increases with the sparseness 
parameter

we choose n = 4 since the majority of features in the sparse kernels are accnrately 

reconstructed from the first three singular values. As is the case with actual Field L 

neuronal STRFs, kernels are obtained with a wide variation in separability, ranging 

from relatively complex inseparable kernels to simpler, roughly separable kerneds. 

Values of SI are in the range 0.43 - 0.84, with a mean value of 0.59 for the kernels 

shown in Figure 3.4. In general, we observe that the average separability of the 

sparse kernels increases as a function of the sparseness parameter, /i, (Figure 3-7) 

indicating that separability arises as a consequence of sparse coding.

For comparison, we also calculated a set of non-sparse kernels by setting ji ^ 

(Figure 3.8). These kernels exhibit significantly broader tuning than our sparse 

kernels and more closely resemble PCA kernels than auditory STRFs. Peak fre

quencies, Fpeak are not restricted to low frequencies, occuring over the range (250 - 

7750Hz), while peaks are broader in both time and frequency directions, with me;an 

values Wf = 1.7kHz, Wt = 20ms and Q = 1.4. These kernels displayed statistically 

significant differences in both SI (t-test: t = 3.1, significance level: 1.73) and Q {t 

= 4.1) from our sparse kernels.

In addition, in order to rule out ensemble effects, the calculation of the sparse 

basis was repeated using new song recordings not used in the initial calculation. 

The inclusion of this new song data was found to have no significant effect on the 

results.

Furthermore, we applied our algorithm to an ensemble of low noise human voice
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recordings and calculate the corresponding sparse kernels (Figure 3.9). As with the 

non-sparse filters mentioned above, these filters differ significantly in their tuning 

from those calculated for birdsong {t = 5.2 for Q, t=3.8 for SI) and from Field L 

STRFs. This disimilarity further supports the hypothesis that the tuning of Field 

L neurons is specifically adapted to encode con-specific song. To better illustrate 

this, we calculate the standard deviation of the distributions of SI and Q for each 

of our three filter sets, and use this to quantify the deviation of the Field L filter 

mean from the mean of each of these sets. As can be seen, the deviation for our 

sparse filters is significantly smaller than for our two control filter sets. However, in 

the absence of more detailed Field L data, we lack a suitable statistical model by 

which to further analyise the significance of our prediction.

Table 3.1 below summarises the tuning properties of each of the filter sets. Table 

3.2 shows the deviation of the field L mean values for Q and SI from the mean of 

each calculated filter set.

Parameter Field L Sparse Non-Sparse Voice
-^peak(^^) 375-5125 750-5250 250-7750 250-3750
Q 0.4-7.8 (2.5) 1.4-4.8 (2.9) 0.3-3.9 (1.4) 0.3-3.0 (0.93)
SI 0.49-0.83 (0.66) 0.43-0.84 (0.59) 0.38-0.67 (0.5) 0.41-0.75 (0.52)
BMFiRz) 5-30 (15) 0-40 (8) 0-20 (10) 0-40 (10)
IF/(Hz) n/a 850-2200 (1100) 700-2750 (1700) 250-3750 (1300)
iFf(ms) ii/a 10-20 (14.2) 11-37 (21.4) 3-9 (6.6)

Table 3.1: The range of STRF parameter values obtained from each of the three sets of 
calculated kernels, compared to those for Field L STRFs as found by The- 
unissen et al. [67], (Apeak) and for subregion L3 STRFs as given by Sen et al. 
[58], (Q, SI, BMP). Mean values are shown in parentheses.

Parameter Sparse Non-Sparse Voice
AQ 0.4 = 0.3cr, a = 1.3 1.1 = l.lcr, a = 1 1.57 = 1.4(7, CT = 1.1
ASI 0.0 7= 0.6cr, cr = 0.11 0.16 = 2.3(7, (7 = 0.07 0.14 = 1.2(7, (7 = 0.12

Table 3.2: The deviations, AQ and ASI of field L mean parameter values from predicted 
mean values for our three filter sets. In each case, a is the standard deviation 
in the given parameter for the corresponding filter set.
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Figure 3.9: Sparse filters calculated for an ensemble of human voice recordings. These 
recordings were made using a Pearl CC 30 microphone in a semi-anechoic 
chamber, at a sampling rate of 44,100Hz. The text used was Jonothan Swift’s 
A Modest Proposal. This text is in the public domain. Both the text and 
the original WAV files can be found at http://www.maths.tcd.ie/mnl

69



3.4 Discussion

The modified Olshausen-Field type algorithm described above identifies a sparse 

structure of dimension |^(e)| within the song spectrograms. We generated a system 

of STRF-like linear kernels which accurately and efficiently encode this structure. 

Comparison with neuronal receptive fields from the zebra finch, and with non-sparse 

filters shows that the sparseness constraint produces kernels which more closely 

resemble Field L STRFs. In addition, these sparse kernels differ significantly from 

kernels calculated for human voice recordings, which share little similarity with 

neuronal STRFs. The relative similarity between the sparse kernels and neuronal 

STRFs from the zebra finch suggests that the zebra finch auditory pathway is well 

ada])ted to encode the sparse structure of birdsong. In particular, the fine spectral 

tuning and localized peaks characteristic of many Field L STRFs are seen to arise in 

the sparse kernels as a consequence of sparsification. Similarly, greater separability 

is seen to arise from increased sparsification of the system. By comparison, both 

the set of non-sparse kernels and the sparse kernels calculated for human spec^ch 

differ significantly in their tuning parameters from zebra finch auditory STRFs. 

This supports our hypothesis that the tuning is specifically optimised to encode 

conspecific song.

The main result here is the comparison of the sparse kernels with experimentally 

measured STRFs. In order to make this comparison, it is necessary to regularize 

the calculation. There are three reasons for this. Firstly, the biologically relevant 

timescale appears to be quite long, at about 50ms: as shown in Figure 3.3, longer 

samples possess a lower proportion of significant dimensions. Secondly, the cor])us 

of stimuli we consider is limited to bird songs. It would be tempting to add other 

natural sounds to sample other stimulus dimensions, however, since sensory neurons 

are non-linear [41, 18, 67], the sparse kernels would be less relevant to the electro- 

physiological experiments which were performed using clean songs in an acoustically 

isolated environment [58]. Finally, the sparse kernels are computed by inverting the
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sparse basis, potentially allowing noise to dominate the result.

Efficient or sparse coding certainly seems to be one of the primary goals of early 

visual processing [8, 47, 5, 71] and there is reason to believe that the same is true for 

auditory systems. Lewicki, for example, considered a sparse basis for an ensemble 

of natural sound waveforms composed of animal vocalizations and environmental 

noises [38] . Interestingly, for a specific mixture of sounds he found that this sparse 

basis has similar tuning properties to the fibres of the auditory nerve. Since the 

focus is on an earlier stage of sound processing, far shorter, 8ms, samples are used 

and the basis is not inverted; for this reason regularization is not required and so 

this calculation differs from ours, though the conclusion is very much in the same 

spirit. Furthermore, Smith and Lewicki [61] have shown that such sparse codes yield 

extremely efficient representations of acoustic signals.

In the specific case of birdsong, the idea that the receptive fields are adapted to 

song is supported by Woolley et al. [74], who produced is a comparison between 

the tuning properties of cells and the statistical structure of the songs themselves. 

Recent modelling of avian auditory areas by Blattler and Hahnloser [13] also suggests 

that sparse coding in Field L could play a role in higher level avian auditory processes 

such as song selection.

The results presented in this chapter suggest that there does in fact exist such 

a sparse coding in Field L, and imply the existence of a sparsifying interaction 

between Field L cells. However, the nature of this interaction remains obscure. It 

seems unlikely that a direct gradient descent of the type described here could be 

implemented in a realistic neural network. Instead, sparsification is assumed to 

come about as a result of a locally inhibitory interaction between cells. In the next 

chapter, we describe a simple neuronal network model in which sparsification arises 

through inhibitory competition between cells.
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Chapter 4

Network Models of Sparse Coding

Any theory of primary sensory coding represents a trade off between the competing 

demands of representational accuracy and computational efficiency. Local codes, 

in which each neuron responds to one unique stimulus and the average activity of 

each cell is near zero, constitute the ideal in coding efficiency. However, such codes 

are unable to represent a large range of stimuli. Densely distributed codes - in 

which all cells are highly active - allow for much greater representational capacity, 

but are energetically costly and less obviously subserve computational goals such as 

recognition [50, 23]. The theory of sparse coding represents a compromise between 

these two ideals in which commonly occuring stimuli are represented by a small 

number of cells, while allowing for a denser representation of rare inputs. An effective 

sparse coding system must identify the particular sparse components within the 

corpus of natural stimuli to which it is adapted. Hence, sparse coding is often 

regarded as a form of independent component analysis (ICA). [7, 49]

Sparse coding may be one of the central tasks of primary sensory processing 

[22, 38, 24]. Studies of both auditory and visual systems [48, 71, 47, 72] have shown 

that primate VI and avian Field L areas are well adapted to allow sparse represen

tations of natural stimuli, and indeed, we have shown in the preceeding chapter that 

Field L may perform a sparse coding of birdsong. However, though these studies
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demonstrate that sparse representations are possible, they do little to demonstrate 

how this sparseness may arise through neuronal interactions. Specifically, it remains 

unclear how an analogue of the ICA algorithms and gradient descent methods em

ployed in these studies can be implemented in a biologically realistic neuronal setting.

Representations in VI and Field L are highly overcomplete, with both of these 

areas having many times more neurons than their respective input layers, the retina 

and cochlea. Hence, there are more cells in these layers than there are independent 

dimensions in their input, and so a simple, feed-forward projection of activity from 

the input layer would result in a highly dense representation, in which many cells 

with neighbouring receptive fields are simultaneously active. If this were the case, 

the response would not be sparse. Even when the sensory input contained only 

a few sparse components, cells coding for distinct but nearby components would 

also fire, resulting in a redundant representation. Therefore, it is likely that, to 

achieve an efficient sparse representation, several cells compete to represent each 

sparse component of the input signal, with those cells which give the most accurate 

sparse representation winning out.

Sparse coding studies usually rely on gradient descent methods to determine the 

best representation for a given stimulus, as we have done in the previous chapter 

[24, 47, 71]. Alternatively, one can artificially enforce direct competition between 

cells [55]. However, if sparse coding is to be considered a reasonable theory of sensory 

coding, it should be shown that sparse representations can arise naturally through 

neuronal interactions. Similarly, it should be demonstrated that the sensory code 

can be dynamically learnt by training on the relevant corpus of stimuli.

Here we model a neuronal network in which sparse coding arises naturally in a 

layer of excitatory neurons through interaction with a layer of inhibitory interneu

rons. This network rapidly and efficiently sparsifies its response to stimuli that have 

an underlying sparse structure, while simultaneously learning an optimal code for 

the corpus. The network also displays ordering of its receptive fields, analagous to
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retinotopy in the visual system, or tonotopy in the auditory system [76, 45].

4.1 Sparse Coding Models

In standard rate models of sensory coding, the neuronal representation of a stimulus 

S at time t is a linear combination over a set of component vectors, Bn, corresponding 

to the available neurons with the coefficients given by the firing rates, r„(t), of the 

cells:

S{t) = Y^rn{t)Bn (4-1)
n

Rather than seek the most accurate representation, the optimal response in a sparse 

coding model is the one which minimises an objective function combining the error 

in the stimulus reconstruction and the density of the representation, [47]

E{t) = (S{t) - S{t)f - (4.2)

where the first term penalises inaccuracy in the stimulus reconstruction and the sec

ond penalises non-sparse representations, through a sparseness cost function, C'(-). 

C'(-) can be chosen as any suitable function satisfying Jensen’s Inequality, so that 

the energy function, E{t) favours representations with a small number of strongly 

active cells.

In our previous work on sparse coding [24], described in Chapter 3, sparse rep

resentations for auditory stimuli were found by minimising this cost function using 

conjugate gradient descent. Here, instead, we achieve a similar trade-off through 

network interactions.

Rozell et al. [55] have shown that sparse responses can arise in artificial networks 

of thresholded neurons through local competition. We achieve a similar sparsifica- 

tion through realistic interactions between excitatory and inhibitory layers. Upon 

presentation of each new stimulus the network rapidly reaches an equilibrium state
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in which a few excitatory cells ‘win’, accurately encoding the stimulus, while others 

‘lose’ and are inhibited by the interneurons. Moreover, using simple Hebbian rules, 

this network dynamically learns the sparse structure of a stimulus set.

4.2 Methods

4.2.1 Network Model

Our network consists of three layers. The first layer, S, simulates the sensory input. 

These excitatory cells are not modelled dynamically, rather, the input firing rates 

are chosen randomly, but in such as way that the input has a sparse structure. 

There are two network layers, an excitatory layer, E, with lateral nearest-neighbour 

connectivity. E should be thought of as determining the output which would then 

feed-forward along the sensory pathway. Finally there is an inhibitory layer, I, of 

interneurons, which regulate activity in excitatory layer E. In the two network layers, 

E and I, the neurons are modelled as thresholded leaky integrating neurons.

The signal representation is given by the firing rates of the cells in the excitatory 

layer, E. These cells receive excitatory inputs from the input layer, S, and through 

lateral connections from other layer E cells. They also receive inhibitory input from 

the inhibitory layer, I. The layer I cells are excited only through connections from 

layer E.

For simplicity, we consider a small model encoding simple vector inputs. The 

input layer S consists of three cells, corresponding to orthogonal unit vectors. The 

stimulus therefore consists of non-negative combinations of these three components. 

These input cells feedforward to layer E, consisting of eight excitatory cells with a 

periodic boundary. Output cells have excitatory connections, both to their nearest 

neighbours in the output layer, and to neighbouring cells in the I layer. The I layer 

consists of four cells, each of which has two-way connection to each of the three 

nearest cells in the excitatory layer.
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I

Figure 4.1: Schematic of network connectivity. We have two layers, S and E, of ex
citatory cells, and one layer, I, consisting of inhibitory interneurons.S-E 
connections are one way, while E-E and E-I connections are two-way.

This network connectivity, while highly simplified, models several important 

characteristics of primary sensory cortex, and could be easily scaled up to allow 

encoding of complex higher-dimensional stimuli. In particular, individual cells in 

our model may be seen as modelling the behaviour of localised populations, while 

the short range lateral connections and longer range inhibitory interactions reflect 

the ‘Mexican hat’ connectivity commonly observed in visual systems. This connec

tivity, as we will show, may bring about the desired rapid sparsification of output 

signals and, on a longer time scale, lead to retinotopic organisation of receptive fields 

through local entrainment and non-local repulsion, via a standard Hebbian learning 

rule for synaptic weights. Similarly, the competing effects of inhibitory and excita

tory inputs may bring about oscillatory firing patterns, which are widely observed 

in biological neural systems.

4.2.2 Cell dynamics

In the thresholded leaky integrating neuron model [55] used for the E and I layers, a 

cell has an internal state described by its membrane potential, u, which is governed
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by the ordinary differential equation

TUa{t) + ay2 -PYI wloTpit) - yua{t) (4.3)
pm^n

where and are the synaptic weights corresponding to the S, E and I

layers, respectively. The i € {1,2,3} index runs over the three S neurons, the 

m G (1... .8} index over the E neurons and the p G {1,... ,4} runs over the I 

neurons. In the equation the index a can refer to a both E and I neurons, r^, 

and Tp are firing rates, the stimulus S firing rates r* are an input determined by the 

corpus of stimuli. For layers E and I the cells activity determines its firing rate, r. 

This is given by a sigmoidal threshold function:

ra{t) =
Ua{t) - T (4.4)1 -|_ Q-p{Ua{t)-T)

In the limit where p goes to infinity, this threshold sharpens, and becomes a simple 

step function, with

0 uit) < T
(4.5)

u{t) — T u{t) > T

Learning in the network occurs through changes in the synaptic weights, w, 

determined by a standard Hebbian update rule;

ra{t)

Awab = s {ra{t)rb{t))^ (4.6)

where the average is taken over a much longer timescale than the rate at which the 

stimulus changes, and <5 determines the learning rate. The input, excitatory and 

inhibitory weight vectors for each cell are then normalised after each update.

The firing rate response characteristics of a neuron are generally characterised 

by a receptive field (RF) [33], a vector which is convolved with the stimulus to give

77



an estimated firing rate. Here, the RF is given by the spike triggered average;

ha = {ra{t)s{t))^. (4.7)

4.2.3 Training data and learning

The simulation begins with random synaptic weights, w. The network is trained 

on a dataset consisting of three-dimensional vectors with non-negative components. 

These components correspond to the firing rates of the three layer S neurons. The 

dataset is constructed so as to contain three significant sparse directions. At each 

new presentation, one sparse vector, v, is randomly selected and a stimulus vector 

is generated of the form

Si = Vi + A/'(0, a)v:^ (4.8)

where v-^ is a randomly chosen unit vector perpendicular to v, and a determines 

the noise level of the stimulus. Negative components resulting from the addition of 

noise are reset to zero.

Each presentation lasts for 6^ = lOr timesteps, where r is the characteristic 

timescale of the neuron model, given in Equation 4.3. Learning takes place over a 

longer timescale, with the Hebbian update rule applied every 9^ = 500r timesteps.

4.3 Results

Eor appropriate choices of the neuron model parameters, a, (3 and 7 (see Appendix 

B) the network proves to be highly adept at learning the sparse structure of the 

stimulus. It relaxes into a stable organisation on a timescale of the order of lO^r 

timesteps. The network is seen to arrange itself into a locally redundant clusters 

of cells with similar RFs, corresponding to the sparse directions in the stimulus 

space. These clusters consist of between one and three neighbouring excitatory cells 

grouped around a single inhibitory cell. The closeness of this clustering is seen to
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depend on the noise level, a, of the stimulus.

This arrangement allows a very accurate sparse representation of our stimuli, 

with only one or two active cells. We also observe a number of mediatory cells 

whose RFs do not corresponds to sparse vectors. These cells, which are on average 

very weakly active, allow for the encoding of rare stimuli which do not lie along 

one of the sparse directions. Figure 4.2 below shows a stereographic projection of 

the RF vectors of the output excitatory cells, both before and after learning on a 

typical sparse dataset. As can be seen, these RF vectors quickly converge on the 

sparse vectors of the training data. Details of the sterographic projection used are 

given in Appendix C.

The network proves surprisingly robust at isolating widely seperated sparse di

mensions of the stimulus, though this ability breaks down as the distance between 

sparse vectors decreases towards the noise level. In general, the network fails to 

distinguish sparse vectors Vi and Vj seperated by a distance \vi — Vj\ less than 2a. 

This is illustrated in Figure 4.3.

After learning, the network settles into a stable organisation, corresponding to 

the optimal sparse code for the training dataset. Subsequent stimuli are represented 

sparsely as a result of competition between cells. Both local and non-local compe

tition is observed. Initially, particularly during the learning pheise, several clusters 

may compete to represent a novel stimulus, with one, or possibly two clusters quickly 

becoming dominant. We also observe a longer lasting competition between similar 

cells within the dominant cluster, with the cell whose RF most closely approximates 

the stimulus winning out.

Figure 4.4 shows the internal potential, u, of output layer cells in the post

learning phase as a function of time after the onset of stimulus presentation. Here we 

can observe the distinct clustering of layer E responses as well as local competition 

between neighbouring cells in the dominant cluster. Oscillatory behaviour, which 

is typical of excitatory-inhibitory networks, can also be observed with a period of
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Figure 4.2: RFs of cells in the output layer are shown before (A), during (B,C) and 
after (D) learning. We use a stereographic projection of the first octant 
of the unit sphere, projecting from the point p = (—1,-1, —1). The point 
(A = 0,y = 0) in the projection represents the (1,1,1) direction on the 
sphere. The curved boundaries shown correspond to the intersections of the 
unit sphere with the x = 0, y = 0 and z — 0 planes. The sparse directions 
within the training stimulus are represented by diamonds, while RF vectors 
of layer E cells are shown with crosses. The majority of RF vectors converge 
on the sparse directions after ~ lO^r timesteps.
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Figure 4.3: The network fails to accurately distinguish sparse vectors with a seperation 
of less than approximately 2a. The stereographic plots above show the initial 
and final network states for a set of sparse vectors with average seperation 
\vi — Vj\ ~ 0.2, where a = 0.15. Output RFs converge on a point roughly 
equidistant between the two most closely positioned sparse vectors.

approximately 2r. The corresponding firing rates are given by the value of ii above 

the threshold, T.

Figure 4.4: Internal potential u of excitatory cells as a function of time after stimulus 
onset. The threshold value is T = 1. In the limit as p oo, firing rates 
are given u — T. Three distinct clusters can be seen, as well as a single 
intermediate cell. The two cells whose RFs best match the stimulus compete, 
with only one becoming significantly active. In addition, we can observe 
firing rate oscillations with a period of 1.8r. Line types reflect distinct RF 
clusters, and the threshold value u = 1 is shown.
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Figure 4.5: Representation density distribution, is the number of active cells in 
the equilibrium state for each stimulus. Though the network favours sparse 
representations, denser representations are possible for rare inputs.

Importantly, the network allows both sparse representations of commonly occur- 

ing stimuli, and non sparse representations of rarer inputs, with several cells active 

in the equilibrium state in these cases. This confirms that the network does in fact 

achieve a sparse code, as opposed to a pure local code for the sparse directions.

Furthermore, each output cell is active on average less than 15% of the time, 

which demonstrates that the network achie\"es sparseness both across the population, 

as demonstrated in Figure 4.5, and in the firing of individual cells.

Interestingly, in addition to sparsifying firing rates, our model reproduces other 

non-linear behaviour which has been observed in sensory areas. Narayan et al. [46] 

have shown that the response of zebra finch auditory neurons to natural stimuli is 

altered in the presence of a noisy masking signal. They measure the response of Field 

L neurons which are highly tuned to specific syllables of their bird song stimulus and 

they find that in the presence of an auditory mask the response of these cells to the 

target syllables is reduced compared to the response to the unmasked signal, even 

where the intensity of the target syllables is conserved in the masked signal. Like 

sparsification, this behaviour can not be explained by a simple linear filter model of

82



sensory processing.

We reproduce this phenomenon in our model by presenting stimuli consisting 

of the sparse vectors on which the network has been trained, masked with random 

noise. Given a sparse vector, u, we produce stimulus vectors of the form

Si = Vi + r]Vi (4.9)

+
+

+ + + +

+ + +
+

+

where v-^ is a randomly chosen unit vector perpendicular to v, and 77 is a parameter 

controlling the noise level. For comparison, we also produce a set of noise free 

stimuli of the form Sj = \/l + rfvi, such that for a given value of rj, the total signal 

strength is the same in both cases. We examine the response to these stimuli of layer 

E cells whose RFs are tuned to the sparse vector v. As can be seen in Figure 4.6 

below, whereas the response to the noise free stimulus increases linearly with signal 

strength, in approximately 90% of cases the average response to the noisy stimuli 

falls off as a function of rj.
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r 0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

V

Figure 4.6: Average firing rate response as a function of the noise parameter 77 for a 
typical layer E cell in the post-learning phase. Response to noisy stimuli 
is represented by diamonds. For comparison, the reponse to the noise free 
stimulus set is represented by crosses. For each value of 77, the signal strength 
is the same for both data sets.

83

+ +
+

<^00 0 0 00000000
0 0 0 0 0



4.4 Discussion

Despite numerous simplifications, the network model presented appears to demon

strate a viable mechanism for sparse coding in sensory systems. The limitations of 

such a model are obvious: its size does not allow the encoding of complex stimuli, 

the E-I connectivity used is somewhat artificial, and the rate based neuron model 

entirely neglects spike timing effects. Nonetheless, the model is surprisingly effec

tive in reproducing numerous salient features in the behaviour of sensory cortex. In 

particular, the sparsification of responses and the diminished response to masked 

stimuli suggest that even apparently complicated soft linearities can be reproduced 

through simple and biologically realistic rules [46], namely, thesholding of neural 

reponses, mexican hat connectivity, and Hebb-like plasticity.

Furthermore, though limited in application by its size, such a network may quite 

easily be scaled up to allow encoding of higher dimensional auditory and visual 

stimuli. This presents interesting possibilities for investigating the neuronal mecha

nisms underlying some surprising effects observed in sensory cortex. In the songbird 

auditory system, for example. Anterior Forebrain cells have been found to display a 

remarkable degree of selectivity for specific song motifs [62, 20] while in the visual 

system, VI cell responses have been shown to depend on fourth order correlations 

in the stimulus [70]. It may be of great interest to determine whether these effects 

can arise in such networks through known principles of connectivity and learning 

or, if not, what conditions are necessary to bring them about.
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Chapter 5

Discussion and Conclusions

5.1 Discussion of Linear Models

The fundamental notion underpinning much of this thesis is that of efficient coding, 

and in particular, the hypothesis that sensory systems should efficiently encode 

natural stimuli. This idea has been addressed at length in our discussion of sparse 

neural codes and sparsifying networks (Chapters 3 and 4). However, in order to 

usefully study sensory codes on a system scale, it is first necessary to derive a method 

of quantifying the response properties of a single neuron under stimulation. Here, 

as in much of the literature on sensory systems [58, 67, 65, 47, 32, 33, 3, 21, 74, 56], 

we have largely relied on classical linear models of neuronal response.

It is to some degree surprising that such linear models remain popular in describ

ing the sensory cortex: it has been established by many studies [32, 57, 67, 37] that 

cortical neurons rarely respond linearly to sensory stimuli, while common theories 

about sensory coding - such as the sparse coding hypothesis discussed in previous 

chapters - predict explicitly non-linear responses. Conversely, however, there is sig

nificant evidence to support linear models of neuronal behaviour: neural firing rates 

in peripheral sensory systems have been shown to be well approximated by linear 

models [2, 34], while the majority of established neuron simulation models describe
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membrane potential as being linear in the synaptic input [36, 14, 28].

The solution to this apparent paradox is perhaps implicit in the formulation of 

these neuron models, and indeed in the neuron model used in our own network 

simulation (Chapter 4). In all of these cases the neuron performs a roughly linear 

integration of the feed-forward input current. However, this linear behaviour is 

subject to interference due to threshold or near-threshold non-linearities, as well as 

the effects of excitatory and inhibitory inputs from other cells. In cortical areas, 

where neurons generally receive a higher number of lateral connections, we may 

expect these effects to be more prominent, causing the cell’s behaviour to deviate 

further from linearity.

In light of this theory, though linear models may give poor predictions of the 

behaviour of cortcal cells, they may still be of much use in providing an informative 

description of the underlying tuning properties of a neuron. In this spirit, we have 

used such models in developing theories of auditory coding in the zebra finch. More 

generally, throughout this thesis, we have considered the neuron as a fundamen

tally linear integrator of input current, which may nonetheless exhibit non-linear 

behaviour as a result of threshold and network effects.

5.2 Summary

In Chapter 2, we reformulated the commonly used STRF model for auditory neurons 

in terms of a regularized inversion. In doing so we comapre several possible regular

ization techniques, and find that the most effective method untilises a dimensional 

reduction in the space of sound frequencies. This formulation is computationally 

and conceptually simpler that that used in previous studies, and avoids several ap

proximations used in the standard deconvolution method. This method produced 

a modest improvement in the predictive power of the STRF when applied to novel 

stimuli. In addition, and just as importantly, this formulation makes possible the
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explicit computation of an optimal sparse code for auditory stimuli.

In Chapter 3 we made use of our simplified STRF calculation to compute a 

set of predicted sparse coding filters for zebra finch song spectrograms. Using an 

Olshausen-Field type algorithm, we calculated a sparse basis for an ensemble of zebra 

finch songs by minimisation of a representational cost function. We subsequently 

obtained a set of optimal STRF-like filters by regularized inversion of this basis. 

These predicted filters shared certain similarities with STRFs of cells from zebra 

finch Field L which were not found in a set of optimal non-sparse kernels. In addition, 

similar calculations using human voice recordings failed to produce such similarities 

in tuning. This result suggests that the zebra finch primary auditory system may 

use a sparse representation of conspecific song.

Finally, in Chapter 4, we suggested a viable neuronal mechanism whereby a 

sparse coding can arise in biological sensory systems. We described a two-layer 

neural network consisting of a layer of excitatory feed-forward neurons with lateral 

excitation and a layer of inhibitory interneurons. Cell dynamics were simulated 

using a leaky inegrating rate model. This network rapidly sparsified its responses to 

stimuli through inhibitory competition, and dynamically learned a sparse code for 

a stimulus ensemble. The network also reproduced several characteristic features of 

sensory cortical neurons, including receptive field ordering, and response suppression 

in the presence of noise. Though highly simplified, this network models several 

important aspects of neural connectivity in sensory cortex, and the results here 

represent strong evidence that sparse codes may arise in sensory systems through 

the interplay of excitatory and inhibitory connections.

In summary, though cortical firing rates may be poorly predicted by linear mod

els, we have attempted to demonstrate that these models are still of considerable 

value. Specifically, they allow an intuitive description of the stimulus to which a 

cell would preferentially respond in the absence of network effects and, in the case 

of the STRF model, provide a framework in which to formulate sparse codes. Here,
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we have derived an improved version of such a linear model for auditory neurons 

and, using this model, have produced evidence of sparse coding in the zebra finch 

auditory pathway (Chapters 2 and 3). This result begs the question of how a non

linear effect such as sparse coding can arise in the framework of linear neurons. To 

address this question, we describe a realistic mechanism whereby sparse coding and 

other non-linear effects might arise in networks of linear integrating neurons through 

network interactions.

5.3 Remarks on Scientific Approach.

The work described here has several strengths associated with it. Specifically, we 

have tried, with a certain degree of success, to clarify and simplify a number of 

important but poorly understood concepts in neural coding while, at the same time, 

making a novel contribution to the theory of optimal coding of natural stimuli. For 

example, our work on calculation of auditory STRFs produced a new STRF for

mulation which is inuitively far simpler to understand, while producing comparable 

performance to the standard method. In addition our comparison of several regu- 

larisation methods provides valuable insight into the relative importance of spectral 

and temporal information in natural sounds.

Furthermore, in our work on network models of sparse coding, we have demon

strated a conceptually simple model of sparse coding which is nonetheless biologically 

plausible. More generally, though this is a largely theoretical study, we have made 

a virtue of mathematical simplicity and intuitiveness. We hope that this brings the 

advantage of making the work presented here more accessible to a general audience.

There are however, a number of limitations in the work presented here which 

should also be mentioned. Perhaps the most obvious of these is the lack of suffi

cient comparison to experimental results. The work on auditory STRFs presented 

in chapter 2 is somewhat compromised by the use of a very small training data set.
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which may not be large enough to allow complete characterisation of neuronal re

sponses. A similar problem affects onr work on sparse coding in Chapter 3. In this 

case, a shortage of data on experimentally obtained STRFs severely limits the sta

tistical comparisons possible between our predicted sparse kernels and the receptive 

fields of auditory neurons.

In a broader sense, we have taken a purely model based approach to the work 

covered here and, while this has its advantages, the absence of meaningful compar

ison to experiment may reduce the informativeness of some results. Such studies 

may benefit greatly from the input of an experimental collaborator.

5.4 Further Work

As previously discussed in the conclusion of Chapter 2, several possibilities exist for 

further improving the linear STRF model. It may be possible to further increase 

the prediction accuracy through an additional, seperate dimensional reduction in 

temporal space. This would, however, have the disadvantage of requiring optimisa

tion of a second model parameter. A perhaps more interesting potential approach 

involves smoothing the spectrogram with a synapse-like temporal filter. Temporal 

smoothing has been shown to improve prediction accuracy in other STRF models, 

but is generally poorly justified, and also requires the choice of an appropriate filter, 

which may also require optimisation. Our proposed method avoids these problems 

by using a biologically inspired filter whose ideal width is already from experiment.

We also propose to further expand the network model described in Chapter 4 

to enable the encoding of complex visual and auditory stimuli. This would allow 

verification of our hypothesis that simple inhibitory connectivity is sufficient to bring 

about sparse coding. It may also be of interest to investigate the predicted model 

receptive fields of excitatory and inhibitory populations in a sparse coding regime.
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Appendix A

Zebra Finch Song Data and 

Neuronal Recording in Zebra

Finch

Zelira finch song samples used in Chapters 2 and 3 were taken from an ensemble of 

20 songs, previously used in the work of Theunissen et ah (2000) [67] and Sen et 

ah (2001) [58]. Songs are of average length 2.1s, and song waveforms recorded at a 

sampling rate of 44kHz. Spectrograms of these songs were produced at a spectral 

resolution of 250Hz.

Electrophysiological recordings used in the calculation of Field L STRFs were 

kindly donated by Kamal Sen and co-workers at the Natural Sounds and Neural 

Coding Lab in Boston University. A detailed description of experimental procedures 

is given in their paper. Sen et ah, (2001). [58]. To summarise:

All recordings were made in anesthetized adult male zebra finches. Extracellu

lar potential wave- forms were obtained using parylene-coated tungsten electrodes 

inserted into the neostriatum of the bird. Waveforms are first band-pass filtered, 

and then transformed into spike trains, using a window discriminator. Successive 

action potential profiles are compared to determine the number of units present in
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the recording. Waveforms containing a single stereotyped spike profile are classified 

as single-unit recordings. Data used in this thesis is taken entirely from such single 

unit recordings.

Spiketrains obtained from extracellular waveforms are subsequently converted 

into spike arrival time format, with a sampling rate of 32kHz. For STRF caluclations 

these data are downsampled into spike count format at a resolution of IkHz. In this 

format, entries correspond to the number of spikes observed in each 1ms time bin.

For the recordings used in Chapter 2, spiketrains are obtained for 10 repetitions 

of each stimulus song. Firing rates used in STRF calculations are found by averaging 

over the responses for each repetition.
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Appendix B

Typical Values of Neuron Model 

Parameters

Neuron dynamics within our model are determined by the neuron parameters a, f5 

and 7, which simulate the inhibitory, excitatory and leak condunctances of the cell, 

as well as the threshold parameter, p, which determines the speed of transition at 

threshold. Typical values for excitatory and inhibitory cells are shown in Table 1. In 

addition, network learning behaviour is dependent on the learning rate paramater, 

S, and the noise level, a. Except where otherwise stated, all data and plots shown 

here were generated using values of 5 = 0.005 and a = 0.15.

Cell type a 13 j p
Excitatory
Inhibitory

1 0.6 0.98 1000
0 1 0.8 1000

Table B.l: Typical values of cell paramaters for layer E and I model neurons.
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Appendix C

Stereographic Projection

The plots of output receptive fields in Figure 2 are generated using a stereographic 

projection. RFs in our model are represented by three dimensional unit vectors 

with non-negative components, and so can be expressed as points on the first octant 

of the 2-sphere. In order to illustrate the learning behaviour of these RFs, we 

seek a planar representation of our three-dimensional vectors. We can define a 

stereographic projection of the 2-sphere at a point p as a mapping

0 : S^\{p} ^ (C.l)

from the sphere onto the plane, where p is the projection point. This map is defined 

at all points on the sphere except p, and by convention the antipode of p is mapped 

to the origin.

Here, we seek a projection of the first octant of 5^, centered on the point 

[l/v^S), l/>/(3), l/i/(3)], with projection point [-1/^(3), -1/V^, -1/V^]. Equiv

alently, and more straighforwardly, we can perform a rotation, ip on our set of 

vectors, such that ?/’([l/y^3), l/y^3), l/i^3)]) = [0,0,1] and hence perform the 

projection from the south pole, p = [0,0, — 1]. A commonly used formula for this
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projection is given by
X y (C.2)

1 + z' l + z_

This generates a two-dimensional representation of our data with the centre point, 

[I/y^S), 1/y^3), 1/-\/(3)] mapped onto the origin in . The boundary curves of 

the hrst octant, defined by the intersections of the x — y, x — z and y — z planes with 

the unit sphere can be similarly transformed to give the boundary curves shown in 

Figure 2.
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