Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in part, the material for valid purposes, providing the copyright owners are acknowledged using the normal conventions. Where specific permission to use material is required, this is identified and such permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising from use of the thesis for whatever reason. Information located in a thesis may be subject to specific use constraints, details of which may not be explicitly described. It is the responsibility of potential and actual users to be aware of such constraints and to abide by them. By making use of material from a digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from Trinity College Library is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for your research use or for educational purposes in electronic or print form providing the copyright owners are acknowledged using the normal conventions. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
Synthetic and Spectroscopic Studies of Novel Nonplanar Tetrapyrrolic Macrocycles

Submitted by

Eimear M. Finnigan

B. A. (Mod) in Chemistry

A thesis submitted to the University of Dublin, Trinity College for the degree of Doctor of Philosophy

University of Dublin, Trinity College 2010
Declaration
This thesis has not been submitted as an exercise for a degree at this or any other university. Except where otherwise indicated, the work described herein has been carried out by the author alone.

The author agrees that the library may lend or copy this thesis upon request.
Summary

The aim of this work was to develop a new synthetic route for the synthesis of hydroporphyrins and to investigate their photophysical properties. A second aim was to investigate the effect of protonation on the conformation of both porphyrins and hydroporphyrins.

A new pathway was discovered for the synthesis of 2-mono- and 2,3-disubstituted chlorins, and 5,10-disubstituted porphodimethenes (PDM) from meso tetrasubstituted porphyrin starting materials. Reaction of meso tetraalkylporphyrins with organolithium reagents afforded both mono- and disubstituted chlorins in good yields. Use of palladium-based catalysts ensured selectivity for the single or double addition product. By and large, reaction of meso tetraarylporphyrins with aryllithium reagents afforded an unconjugated 5,10-disubstituted PDM product. Yields were improved more than ten-fold compared to those previously reported in literature.

Formation of chlorins and particularly, porphodimethenes, results in significant distortions to the tetrapyrrolic macrocycle. 5,10-Disubstituted PDMs are a relatively under-investigated area of porphyrin chemistry. Thus, intensive UV-vis and 1H NMR investigations were performed on two of these compounds. It was found that the effect of protonation on PDMs contrasted to the effect on porphyrins. Different acids were tested to investigate anion effects, and like porphyrins, PDM dications were found to coordinate to the acid anion. Significantly, the formation of an elusive monocation intermediate was verified. Although of much interest, this intermediate is rarely observed in porphyrin chemistry.

Porphyrin trimers, linked by a rigid triptycene moiety were prepared and chelated with zinc. Their potential for applications in host-guest chemistry was investigated with bidentate ligand using UV-vis spectroscopy. The cavity size of the trimeric systems could be altered by using different linker groups. UV-vis investigations showed differences in the binding properties of each trimeric system upon ligand coordination. The main outcome of this study showed concentration-dependent binding interactions. At lower concentrations of the bidentate ligand, both sandwich and external binding interactions were observed. However, at higher concentrations, two systems formed fully externally complexed ligand/trimer systems.
Publications

Finnigan, E. M.; Giordani, S.; Senge, M. O.; McCabe, T.: Structural, spectroscopic and anion binding properties of 5,10-porphodimethenes, an unusual class of calixphyrins. J. Phys. Chem. A 2010,

Conference Abstracts

Natalia N. Sergeeva, Eimear Finnigan and Mathias O. Senge; Palladium catalysed reactions for the synthesis of hydroporphyrins: Book of Abstracts, 15th European Symposium on Organic Chemistry, University College Dublin, Ireland, 8th-13th July 2007, P96

Eimear Finnigan and Mathias O. Senge; Studies towards the synthesis of hydroporphyrins: Chlorins porphodimethenes and porphyrin dications: 9th Annual Symposium on Supremolecular Chemistry in Ireland, Trinity College Dublin, Ireland, 13th March 2008.

Eimear Finnigan, Silvia Giordani and Mathias O. Senge; Hydroporphyrins as conformationally designed tetrapyrrole receptors: Tetrapyrrole Discussion Group Meeting, Trinity College Dublin, Ireland, 12th-14th September 2008.
Eimear Finnigan, Silvia Giordani and Mathias O. Senge; Organic Synthesis: Hydroporphyrins as conformationally designed tetrapyrrole receptors: 2nd EU CheMS Chemistry Congress, Torino, Italy, 16th-20th September 2008. I.O-S Poster no. 58.
Acknowledgements

Firstly, I would like to thank my supervisor Prof. Mathias Senge for his support, guidance and encouragement throughout my PhD. I would like to thank Dr. Silvia Giordani from Trinity College, for sharing her enthusiasm for my research into porphodimethenes. Thanks also, to Dr. Nathalie Solladié and Dr. Régis Rein for welcoming me to the Laboratoire de Chimie de Coordination, Toulouse, France and for their advice on the ligand binding project. I would also like to thank Science Foundation Ireland for financial support.

I would like to acknowledge all of the help I received from the technical and administrative staff in the School of Chemistry, especially to Dr. John O’Brien for all the help with my NMR titrations and measurements and Dr. Manuel Rüther, also for the countless NMR’s. Thanks must go to Drs. Martin Feeney, Dilip Rai and J. Bernard Jean-Denis for the accurate masses, and Dr. Tom McCabe for collecting and solving X-ray crystallographic data. And to Dr. Robert J. Cundell for the complimentary supply of boronic acids.

I would like to thank all members of the Senge group, past and present: Dr. Nataliya Sergeeva for all her help with my first project; Dr Yasser M. Shaker, Dr. Oliver Locos, Dr. Katja Dahms, Dr Mohd. Bakri Bakar, Monika Zawadzka, Aoife Ryan, Mia Davis, Edyta Paszko, Gisela Vaz and Muntaz Abu Bakar.

Special thanks to Dr. Sabine Horn and Dr. Frances Blaikie, for their friendship, and all their help and encouragement especially over the last few months. To Dr. Rebecca Duke, most of all for being a great friend throughout college, but also for her help with my final project.

Finally, thanks to Rory and to my family for all of their love, support, understanding and encouragement throughout the highs and lows of the last few years, and for always reminding me “not to be worrying.”
For my parents
Table of Contents

Declaration
Summary
Publications
Conference Abstracts
Acknowledgements
Table of Contents
List of Schemes
List of Figures
List of Tables
Abbreviations

1. **Chapter 1 Introduction**
1.1 Structure and basic properties of porphyrins
1.2 Synthesis of porphyrin compounds
1.2.1 Classes of \textit{meso} substituted porphyrins
1.2.2 Synthesis of \textit{meso} substituted porphyrins
1.3 Reactivity of porphyrin compounds
1.3.1 Nucleophilic reactions at the \textit{meso} position with organolithium reagents
1.3.2 Carbon-carbon coupling reactions
\hspace{1em} A. Suzuki cross coupling
\hspace{1em} B. Sonogashira Reaction
\hspace{1em} C. Heck Reaction
1.4 Chlorins; 2,3-dihydroporphyrins
1.5 Porphodimethenes; 5,10- and 5,15-dihydroporphyrins
1.6 Porphyrin dications; 22,24-dihydropolporphyrins and nonplanarity
1.7 Coordination Chemistry of Porphyrins
1.8 Objectives

2. **Chapter 2 Studies towards the synthesis of hydroporphyrins**
2.1 Syntheses of hydroporphyrins
2.2 Synthetic methods
\hspace{1em} 2.2.1 Synthesis of \textit{meso} tetrasubstituted porphyrins
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2 Synthesis of hydroporphyrins</td>
<td>34</td>
</tr>
<tr>
<td>2.3 Reaction Mechanism</td>
<td>40</td>
</tr>
<tr>
<td>2.4 Spectroscopic properties of porphyrins and hydroporphyrins</td>
<td>41</td>
</tr>
<tr>
<td>2.4.1 UV-vis Spectroscopy</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2 1H NMR Spectroscopy</td>
<td>43</td>
</tr>
<tr>
<td>2.4.3 Structural features of 5,10-PDMs</td>
<td>50</td>
</tr>
<tr>
<td>2.5. Functionalised 5,10-porphodimethenes</td>
<td>52</td>
</tr>
<tr>
<td>2.6 Conclusions</td>
<td>55</td>
</tr>
</tbody>
</table>

Chapter 3 Nonplanar porphyrins

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Nonplanar porphyrins: Porphyrin dications</td>
<td>57</td>
</tr>
<tr>
<td>3.2 Results and discussion</td>
<td>59</td>
</tr>
<tr>
<td>3.2.1 Synthesis</td>
<td>61</td>
</tr>
<tr>
<td>3.2.2 UV-vis spectroscopy</td>
<td>61</td>
</tr>
<tr>
<td>A. Phenylporphyrin series</td>
<td>62</td>
</tr>
<tr>
<td>B. 1-Ethylpropylporphyrin series</td>
<td>63</td>
</tr>
<tr>
<td>C. Hexylporphyrin series</td>
<td>64</td>
</tr>
<tr>
<td>3.2.3 1H NMR Spectroscopy</td>
<td>65</td>
</tr>
<tr>
<td>3.2.4 X-ray Crystallography</td>
<td>65</td>
</tr>
<tr>
<td>3.3 Conclusions</td>
<td>68</td>
</tr>
</tbody>
</table>

Chapter 4 Structural, spectroscopic and anion binding

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>properties of 5,10-porphodimethenes</td>
<td>69</td>
</tr>
<tr>
<td>4.1 Porphodimethenes</td>
<td>71</td>
</tr>
<tr>
<td>4.2 Results</td>
<td>72</td>
</tr>
<tr>
<td>4.2.1 Crystallography</td>
<td>72</td>
</tr>
<tr>
<td>4.2.2 UV-Vis Analysis</td>
<td>74</td>
</tr>
<tr>
<td>4.2.3 NMR Analysis</td>
<td>76</td>
</tr>
<tr>
<td>4.2.4 Monocation Intermediate</td>
<td>80</td>
</tr>
<tr>
<td>4.3 Conclusions</td>
<td>82</td>
</tr>
</tbody>
</table>

Chapter 5 Triptycene-linked porphyrin arrays

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Rigid porphyrin linkers</td>
<td>85</td>
</tr>
<tr>
<td>5.2 Synthetic methods</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>88</td>
</tr>
</tbody>
</table>

xii
List of Schemes

Scheme 1.1. Lindsey method for the synthesis of meso substituted porphyrins. 7

Scheme 1.2. The six porphyrins derived from a mixed condensation reaction of two different aldehydes A and B with pyrrole. 8

Scheme 1.3. Synthetic routes to 5,15-A2B2- and 5,10-A2-porphyrins a condensation reaction. 9

Scheme 1.4. Synthesis of unsymmetric A2B-porphyrins via reaction with organolithium reagents. 10

Scheme 1.5. One-pot, two step reaction for the synthesis of A2BC-type porphyrins. 11

Scheme 1.6. Suzuki cross coupling of β-bromoporphyrins. 13

Scheme 1.7. Synthesis of covalently-linked porphyrin dimer via a Sonogashira coupling reaction. 14

Scheme 1.8. Introduction of ethenyl moiety via a palladium-catalysed Heck reaction. 15

Scheme 1.9. Final steps of Woodward’s total synthesis of chlorin e6 trimethyl ester. 16

Scheme 1.10. Chlorin formation via an electrophilic addition reaction. 17

Scheme 1.11. Synthesis of 3,3-dimethylchlorin via a bilane intermediate. 18

Scheme 1.12. Synthesis of 3,3-dimethylchlorin with β-functionality. 19

Scheme 1.13. Oxidation of porphyrinogen to porphyrin. 20

Scheme 1.14. [2+2] Condensation approach to the synthesis of 5,15-PDMs. 21

Scheme 1.15. Synthesis of sterically hindered porphyrins. 22

Scheme 1.16. meso Functionalisation of Ni(II)OEP. 23

Scheme 1.17. Synthesis of a 5,15-porphodimethene with an exocyclic double bond. 23

Scheme 2.1. The general mechanism for the nucleophilic substitution reaction of free base porphyrins using organolithium reagents. 32

Scheme 2.2. Reaction of H2TPP 58 with t-BuLi. 33

Scheme 2.3. Synthesis of meso tetrasubstituted porphyrin from pyrrole and aldehyde. 34

Scheme 2.4. Nucleophilic addition for the synthesis of functionalised 5,10-PDMs. 54

Scheme 2.5. Nucleophilic substitution reaction occurring at the meso phenyl position. 55

Scheme 3.1. Synthetic approaches for the syntheses of A-, A2-, A3- and A4-type porphyrins from pyrrolic precursors. 62

Scheme 5.1. Synthesis of 2,6,14-triiodotriptycene 126 from triptycene 123. 89

Scheme 5.2. Modification and functionalisation of A2-type porphyrins. 90

Scheme 5.3. Boronylation and metallation of bromoporphyrins. 91
Scheme 5.4. Synthesis of triptycene-linked porphyrin trimers via Suzuki-Miyaura cross-coupling reactions with 2,6,14-triiodotriptycene.

Scheme 5.5. Synthesis of A\textsubscript{3}B-type porphyrin 146 via a mixed condensation reaction.

Scheme 5.6. Attempted isolation of 152.

Scheme 5.7. Synthesis of A\textsubscript{2}B-type porphyrins.

Scheme 5.8. Sonogashira coupling reaction of 2,6,14-triiodotriptycene with an ethynyl functionalised porphyrin.
List of Figures

Figure 1.1. Unsubstituted porphyrin macrocycle with IUPAC nomenclature and designation of atoms. 3

Figure 1.2. Aromatic and non-aromatic hydroporphyrins. 4

Figure 1.3. Schematic representation of possible meso substitution patterns. 6

Figure 1.4. Catalytic cycle for the Suzuki-Miyaura reaction. 12

Figure 1.5. Catalytic cycle for the Sonogashira reaction. 13

Figure 1.6. Structure of a multiporphyran array. 14

Figure 1.7. Catalytic cycle for the Heck reaction. 15

Figure 1.8. Illustration of the four main distortion modes observed for porphyrins. 25

Figure 1.9. Schematic representation of porphyrin metallation with common axial coordination types. 26

Figure 2.1. Reaction of 72 with RLi and Pd-based catalysts. 35

Figure 2.2. Reaction of 73 with RLi and Pd-based catalysts. 36

Figure 2.3. Reaction of meso-tetraarylporphyrins with RLi and Pd-based catalysts. 38

Figure 2.4. Reaction of meso-tetraarylporphyrins with RLi. 39

Figure 2.5. Proposed activation site of the palladium catalyst. 40

Figure 2.6. UV-vis spectrum of H$_2$TPP 58 in dichloromethane (1 x 10$^{-6}$ M). 41

Figure 2.7. Q bands in the UV-vis spectra for porphyrin 72 and chlorin 78. 42

Figure 2.8. UV-vis spectra of 86 in dichloromethane (1 x 10$^{-5}$M). 42

Figure 2.9. 1H NMR spectrum of β- and N-protons of H$_2$TPP 58. 43

Figure 2.10. 1H NMR spectrum of porphyrin 72 and chlorin 79. 44

Figure 2.11. Delocalisation of the 18 π-electrons in free base porphyrins. 45

Figure 2.12. 1H NMR spectrum of 86. 45

Figure 2.13. 1H NMR spectrum of 87. 46

Figure 2.14. H-H COSY spectrum of 5,10-porphodimethene 87. 48

Figure 2.15. HSQC/HMBC spectra of 87. 49

Figure 2.16. Schematic representation of 5,15-porphodimethene configurations. 51

Figure 2.17. 1H NMR spectra of the β-7 and β-18 protons of 5,10-PDMs 86 and 87. 52

Figure 2.18. meso Tetraarylporphyrin precursors prepared for the synthesis of functionalised 5,10-porphodimethenes. 53

Figure 3.1. Highly distorted porphyrin compounds. 60

Figure 3.2. Crystal structure of nonplanar porphyrins. 60
Figure 3.3. View of the molecular structure of 22 in the crystal. 66
Figure 3.4. View of the molecular structure of 114 in the crystal. 66
Figure 3.5. View of the molecular structure of [114][CF3COO]2 formed in the crystal. 67
Figure 3.6. View of the skeletal deviations from the A24 plane of [H4114]2+. 68
Figure 4.1. sp2 and sp3-carbon centres present in 5,10-disubstituted PDMs. 71
Figure 4.2. Top and side view of the molecular structure of PDM 86 in the crystal. 73
Figure 4.3. UV-vis titration of H2TPP 58 (1 x 10^-6 M) with HClO4. 74
Figure 4.4. UV-vis titration of PDM 86 (1x10^-5) with HBr. 75
Figure 4.5. Relative absorption of PDM 86 (1 x 10^-5 M) versus equivalents of acid. 75
Figure 4.6. UV-vis titration of PDM 87 (1 x 10^-5M) with MeSO3H. 76
Figure 4.7. 1H NMR of H2TPP 58, intermediate spectrum and dication formed upon addition of TFA. 77
Figure 4.8. Spectral changes in the 1H NMR of nitrogen protons of H2TPP 58 upon addition of TFA. 78
Figure 4.9. 1H NMR spectral changes for the N- and β-protons observed upon addition of MeSO3H to PDM 86. 79
Figure 4.10. UV-vis titration of PDM 86 (1 x 10^-5 M) with HClO4. 81
Figure 4.11. 1H NMR titration of 87 (1 x 10^-5 M) with HClO4. 82
Figure 5.1. 5,10,15-Triphenylporphyrin covalently linked to quinone systems. 88
Figure 5.2. Schematic representation of the species involved in the binding equilibria of bipy to zinc(II) porphyrin. 97
Figure 5.3. Changes in the absorption spectra of 158 (1.34 x 10^-6M) upon addition of bipy. 98
Figure 5.4. Schematic representation of a 1:1 bidentate ligand sandwich complex and 2:1 open complex. 98
Figure 5.5. Schematic representation of the species in the equilibria of binding bipy to a trisporphyrin. 99
Figure 5.6. The changes in the absorption spectra of 140 (8 x 10^-7M) upon addition of bipy. 100
Figure 5.7. The species distribution plot of 140 upon the addition of bipy. 102
Figure 5.8. UV-vis titration of 156 (9.2 x 10^-7M) with bipy. 103
Figure 5.9. The species distribution diagram of 156 upon the addition of bipy. 104
Figure 5.10. UV-vis titration spectra of 157 (1.13 x 10^-6 M) with bipy. 105
Figure 5.11. The species distribution plot of 157 upon the addition of bipy.

Figure 5.12. Plot of the variation of absorption versus the equiv. of bipy added per porphyrin.
List of Tables

Table 2.1. 1H and 13C NMR assignment for 87 recorded in CDCl$_3$. 50

Table 3.1. UV-vis absorption spectra for free base meso phenylporphyrin recorded in dichloromethane and trifluoroacetate dications recorded in dichloromethane + 5% trifluoroacetic acid. 63

Table 3.2. UV-vis absorption spectra for meso 1-ethylpropylporphyrins free base in dichloromethane and dications in dichloromethane + 5% trifluoroacetic acid. 64

Table 3.3. UV-vis absorption spectra for meso hexylporphyrins free base in dichloromethane and dications in dichloromethane + 5% trifluoroacetic acid. 64

Table 3.4. Hydrogen bonding interactions. 67

Table 5.1. The absorption maxima and binding constants for the complexation between 140 and mono- and bidentate ligands. 101

Table 5.2. The absorption maxima and binding constants for the complexation between 156 and mono- and bidentate ligands. 102

Table 5.3. The absorption maxima and binding constants for the complexation between 157 and mono- and bidentate ligands. 105
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>aromatic</td>
</tr>
<tr>
<td>AsPh<sub>3</sub></td>
<td>trpheynlarsine</td>
</tr>
<tr>
<td>BF<sub>3</sub>OEt<sub>2</sub></td>
<td>boron trifluoride etherate</td>
</tr>
<tr>
<td>Bipy</td>
<td>4,4'-bipyridine</td>
</tr>
<tr>
<td>BNCT</td>
<td>boron neutron capture therapy</td>
</tr>
<tr>
<td>br</td>
<td>broad</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>calcd</td>
<td>calculated</td>
</tr>
<tr>
<td>CDC<sub>3</sub></td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>CH<sub>2</sub>Cl<sub>2</sub></td>
<td>dichloromethane</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-diazabicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>dd</td>
<td>doublet-doublet</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>equiv.</td>
<td>equivalent</td>
</tr>
<tr>
<td>ES</td>
<td>electrospray</td>
</tr>
<tr>
<td>FB</td>
<td>free base</td>
</tr>
<tr>
<td>Hex</td>
<td>hexyl</td>
</tr>
<tr>
<td>HMBC</td>
<td>Heteronuclear Multiple Bond Correlation</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>HSQC</td>
<td>Heteronuclear Single Quantum Coherence</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td><i>J</i></td>
<td>coupling constant measured in Hertz</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>MALDI</td>
<td>matrix-assisted laser desorption/ionisation</td>
</tr>
<tr>
<td>me</td>
<td>methyl</td>
</tr>
<tr>
<td>MeOH</td>
<td>methanol</td>
</tr>
<tr>
<td>mp</td>
<td>melting point</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td><i>m/z</i></td>
<td>mass-to-charge ratio</td>
</tr>
</tbody>
</table>
NBS \textit{N}-Bromosuccinimide

NCS \textit{N}-Chlorosuccinimide

NEt₃ triethylamine

NLO nonlinear optics

NMR nuclear magnetic resonance

noe nuclear overhauser effect

H₂OEP 2,3,7,8,12,13,17,18-octaethylporphyrin

PdCl₂(PPh₃)₂ dichlorobis(triphenylphosphine)palladium(II)

Pd₂(dba)₃ tris(dibenzyldieneacetone)dipalladium(0)

Pd₂(dba)₃.CHCl₃ tris(dibenzyldieneacetone)dipalladium(0).chloroform complex

Pd(OAc)₂ palladium(II)acetate

Pd(PPh₃)₄ tetrakis(triphenylphosphine)palladium(0)

PDM porphodimethene

PDT photodynamic therapy

Ph phenyl

ppm parts per million

q quartet

quin quintet

rec'd recovered

Rᵣ retention factor

RI alkyl iodide reagent

RLi organolithium reagent

ROESY rotational nuclear Overhauser Effect Spectroscopy

rt room temperature

s singlet

SₑAr electrophilic aromatic substitution

SₙAr nucleophilic aromatic substitution

t triplet

TBAF tetra-\textit{n}-butylammonium fluoride

TFA trifluoroacetic acid

THF tetrahydrofuran

TLC thin layer chromatography

TMS trimethylsilane

H₂T(3-MeOP)P 5,10,15,20-tetrakis(3-methoxyphenyl)porphyrin
<table>
<thead>
<tr>
<th>Compound</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂T(4-MeOP)P</td>
<td>5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin</td>
</tr>
<tr>
<td>H₂TEPP</td>
<td>5,10,15,20-tetrakis(1-ethylpropyl)porphyrin</td>
</tr>
<tr>
<td>H₂T/BuP</td>
<td>5,10,15,20-tetra(iso)butylporphyrin</td>
</tr>
<tr>
<td>H₂TPP</td>
<td>5,10,15,20-tetraphenylporphyrin</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume to volume</td>
</tr>
<tr>
<td>vis</td>
<td>visible</td>
</tr>
<tr>
<td>δ</td>
<td>chemical shift measured in parts per million (ppm)</td>
</tr>
<tr>
<td>ε</td>
<td>molar absorption coefficient</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength measured in nanometre (nm)</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction
1.1 Structure and basic properties of porphyrins

The class of organic compounds collectively known as porphyrins are found abundantly in nature. They are involved in oxygen transport (haem)\(^1\) and storage (myoglobins),\(^2-7\) and electron transport (cytochrome c),\(^8-11\) whereas their reduced forms play a fundamental part in photosynthesis (chlorophylls)\(^12-16\) and oxygen reduction (oxidases).\(^17\) The porphyrin structure was first proposed by Küster in 1912 and confirmed by Fischer in 1929 when he succeeded in synthesising protohaem.\(^17\) They comprise four pyrrole rings linked by one bridging carbon atom, to form a large macrocycle of twenty carbon atoms and four nitrogen atoms. The porphyrin macrocycle contains 22 conjugated \(\pi\)-electrons, only 18 of which are involved in the delocalisation pathway of the aromatic system, as can be seen in Figure 1.1. Thus, according to Hückel's Rule for aromaticity,\(^18,19\) with \([4n + 2]\) \(\pi\)-electrons, where \(n = 4\), porphyrins are aromatic compounds. Porphyrins have several distinguishing characteristics resulting from their aromaticity. For example, the main absorption band in the spectra of porphyrins, the Soret band, has a very high extinction coefficient which is characteristic of the macrocyclic conjugation. Additionally, X-ray crystallography has revealed the planarity of the nucleus which is a basic requirement for aromatic character.\(^1\)

![Figure 1.1. Unsubstituted porphyrin macrocycle with IUPAC nomenclature and designation of atoms.](image)

There are four different types of atoms on the porphyrin macrocycle; the four pyrrole nitrogen atoms (numbered 21-24); the bridging methine carbon atoms, numbered 5, 10, 15 and 20 called the *meso* carbon atoms; the \(\alpha\)-pyrrole atoms, numbered 1, 4, 6, 9, 11, 14, 16 and 19; and the \(\beta\)-pyrrole atoms are numbered 2, 3, 7, 8, 12, 13, 17 and 18. The \(\beta\)- and *meso* positions, at the porphyrin periphery, are available to undergo numerous addition and substitution reactions. The electronic properties of the porphyrin determine which of the two sites are activated.\(^20\) Addition to the \(\alpha\)-position is rare, however such
occurrences result in ring-opening i.e. bilane formation. Each of the two central pyrrolenine nitrogen atoms (N-22 and N-24) are capable of accepting a proton to form a porphyrin dication and the two N-H atoms (21 and 23) are capable of losing a proton to form the dianion. The porphyrin dianion has the potential to form metalloporphyrins. The main function of porphyrins in nature is to chelate metals, forming complexes that subsequently play an integral role in numerous biochemical processes.

As just 18 of the 22 conjugated π-electrons are incorporated into the delocalisation pathway, one or two of the peripheral β-β' double bonds are available to undergo addition reactions to form chlorins 2, bacteriochlorins 3 and isobacteriochlorins 4, without substantial loss of aromaticity (Fig 1.2). (IUPAC nomenclature will be followed throughout with the exception of the nomenclature proposed for chlorins [2,3-dihydro-21H,23H-porphyrin] which will be disregarded in favour of 2,3-dihydro-22H,24H-porphyrin). In 3 the reduced pyrrole rings are opposite each other, whereas in 4 they are adjacent to one another. Addition to the meso position of 1 causes an interruption in the macrocyclic conjugation to form phlorins 5, with one sp^3-hybridised meso carbon centre, porphodimethenes 6 with two, and porphomethenes 7 with three. Porphyrinogens 8 do not contain any sp^2-hybridised meso carbon atoms, with the result that they lack the highly conjugated double bond structure found in porphyrins, are colourless and do not fluoresce in solution.

Figure 1.2. Aromatic (top) and non-aromatic (bottom) hydroporphyrins.
In recent years, porphyrinogens have become more commonly known as calix[4]pyrroles. Porphyrinogens were originally named as they were observed as intermediates in the (bio)synthesis of porphyrins.23 However, their analogy to calix[4]arenes has led researchers to reclassify these macrocycles.24 Nowadays, the non-aromatic hydroporphyrins are commonly called calix[4]pyrin, as they possess a mixture of sp2- and sp3-hybridised bridging meso carbon atoms i.e. they are a hybrid of calixpyrroles and porphyrins.22

1.2 Synthesis of porphyrin compounds

Porphyrins play an important role in nature where they are involved in numerous biochemical processes. The majority of naturally occurring porphyrins are β-substituted. However, the syntheses of meso substituted porphyrins are considerably more attractive than those of the β-substituted derivatives as they can be easily prepared in a one-pot, two step reaction.25 This has lead to the development of more diverse and elaborate chemistry for the meso substituted class of porphyrins. They have no direct biological counterparts, however, they have found widespread applications in multiporphyrin assemplies,26 materials chemistry,27 catalysis,28 photodynamic therapy (PDT),29,32 electrochemical sensors33 and molecular recognition.34

1.2.1 Classes of meso substituted porphyrins

Synthetic control over the substitution pattern on the porphyrin periphery enables porphyrins to be designed and tailored for specific applications. Figure 1.3 shows the different degrees of substitution that meso substituted porphyrins can possess. These are: 1) monosubstitution, A-type porphyrins; 2) disubstitution comprising two symmetric, A\textsubscript{2}- and two unsymmetric AB-type porphyrins; 3) trisubstitution comprising A\textsubscript{3}, symmetric and unsymmetric A\textsubscript{2}B- and ABC-type; and 4) tetrasubstitution comprising seven types: A\textsubscript{4}, A\textsubscript{3}B, cis and trans A\textsubscript{2}B\textsubscript{2} and A\textsubscript{3}BC, and ABCD.23
1.2.2 Synthesis of *meso* substituted porphyrins

Rothemund first synthesised the parent compound, porphine 1, and other *meso* tetrasubstituted porphyrins from condensation of aldehyde and pyrrole.35 He later went on to modify this procedure,36 however, high temperatures and high concentrations were required. In addition, no oxidant was added to the reaction, resulting in contamination by chlorin 2 (10-20\%) in the reaction mixture. Yields were between 7.5-9\%. The Adler Longo method was developed in 1967.37 Refluxing propionic acid was used to dissolve
the aldehyde and pyrrole and crystalline porphyrins were directly obtained from the reaction mixture. Yields reached more than 20% for many aldehydes, however 2-10% chlorin impurity was still present. Also, when the porphyrin did not crystallise from the crude reaction mixture, isolation of the product proved difficult. The Lindsey method was developed in 1987 and is now the most commonly used method (Scheme 1.1). It involves a one-pot reversible reaction of pyrrole and aldehyde at room temperature to form a tetrasubstituted porphyrinogen (calix[4]pyrrole) 9. The addition of 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) irreversibly oxidises 9 to the corresponding aromatic porphyrin 10.

Mixed aldehyde condensation reactions are commonly employed to gain access to porphyrins bearing two different meso substituents. The reaction of pyrrole with two different aldehydes yields, in principle, a set of six porphyrins (Scheme 1.2): The two parent porphyrins, 11 and 12; and four hybrid porphyrins 13-16. This method was first used to prepare monohydroxy- and monopyridylporphyrins and gained popularity for the preparation of a wide variety of porphyrins bearing two different types of substituents.
Introduction

A-CHO + N + B-CHO

1. H⁺
2. [O]

Scheme 1.2. The six porphyrins derived from a mixed condensation reaction of two different aldehydes A and B with pyrrole.

Often, the desired product from a mixed aldehyde condensation is either of the A₂B₂-type porphyrins 13 and 14. The yield of this fraction is optimised theoretically by reaction of a 4:3:1 ratio of pyrrole/aldehyde A/aldehyde B.²⁻³ However, the yield also depends on the actual reactivities of the two aldehydes and the ease of separation from the mixture of porphyrins.²⁻⁴ Therefore different ratios are sometimes used.²⁻⁵ The products in the reaction mixture can possess very similar polarities, making chromatographic purification difficult, particularly when the 5,10- or 5,15-A₂B₂-isomer is the desired product.²⁻⁶

Due to the difficulties in isolating the desired products from a mixed-aldehyde condensation reaction, several other synthetic routes have been investigated for the formation of differently meso substituted porphyrins. The [2+2] MacDonald condensation between a 1,9-diformyl- and a 1,9-diunsubstuted dipyrromethane or its 1,9-dicarboxylic acid in the presence of an acid catalyst was developed for the syntheses
of β-substituted porphyrins. Procedures were developed for the synthesis of meso substituted porphyrins based on this [2+2] approach. Reaction of a dipyrromethane 17 with an aldehyde affords trans-A₂B₂ 18 and A₂-porphyrins 19 (Scheme 1.3). A variation of this, the [3+1] condensation of a tripyrrane 20 and an aldehyde can be used to make the 5,10-derivative 21 (Scheme 1.3).

Scheme 1.3. Synthetic routes to (a) 5,15-A₂B₂- (and A₂-) porphyrins via a [2+2] MacDonald-type condensation reaction and to (b) 5,10-A₂-porphyrins via a [3+1] condensation reaction of tripyrrane and an aldehyde.

Porphyrs with free meso positions are synthetic precursors for numerous reactions including nucleophilic and electrophilic substitution reactions, and subsequently, palladium-catalysed cross coupling reactions such as Heck, Suzuki and Sonogashira reactions.

1.3 Reactivity of porphyrin compounds

Porphyrins are essentially aromatic molecules and as such, are expected to undergo the characteristic reactions of these compounds, i.e. electrophilic substitution reactions such as Vilsmeier formylations, nitrations, halogenations and acylations; nucleophilic reactions such as those with organometallic reagents; and oxidation and reduction reactions.
1.3.1 Nucleophilic reactions at the meso position with organolithium reagents

Porphyrins bearing substituents in the 5,15-positions are useful precursors for the synthesis of functionalised porphyrins. Highly functionalised asymmetric 5,10,15,20-tetrasubstituted porphyrins are required for catalysis, nonlinear optics (NLO), molecular recognition and photosensitisers.

Porphyrins react with nucleophiles such as Grignard and organolithium reagents at the meso or β-positions. However, most of these reactions require prior activation of the macrocycle with electron withdrawing groups or high valent metals. Notably, Senge et al. successfully synthesised unsymmetrically substituted porphyrins from unactivated porphyrin starting materials via a nucleophilic substitution reaction. A range of functionalised porphyrins were synthesised in yields up to 86% through the reaction of an organolithium reagent with 5,15-diphenylporphyrin 22 (Scheme 1.4). An excess of organolithium reagent was used (10-15 equiv.) to ensure high yields of the desired products and to prevent the formation of ring-opened side products. Using this method, a range of A₂B-type porphyrins 23a-h, bearing highly reactive centres were easily prepared.

![Scheme 1.4. Synthesis of unsymmetric A₂B-porphyrins via reaction with organolithium reagents.](image-url)
Introduction

Detailed mechanistic studies of the reaction with an organolithium reagent and (5,15-diphenylporphyrinato)Ni(II) 24 revealed the formation of a Meisenheimer-type complex. The negative charge was partly located at the 20-position of the nickel(II) porphyrin after addition of the organic nucleophile to the 10-position.\(^{62}\) It was found that this porphyrin anion 25 reacted directly with electrophiles such as alkyl iodide to yield A_{2}BC-type porphyrins 27 via the formation of porphodimethenes 26 (Scheme 1.5).

Scheme 1.5. One-pot, two step reaction for the synthesis of A_{2}BC-type porphyrins.

1.3.2 Carbon-carbon coupling reactions

Over the past decades palladium-catalysed reactions have proven to be one of the most adept and versatile metal-mediated transformations in organic chemistry.\(^{63}\) Due to the facile performance of these reactions they have been extensively used in porphyrin chemistry with great success. Direct nucleophilic substitution of a halogen atom at an sp\(^{2}\)-centre is not readily achievable due to the inaccessibility of the carbon-halide antibonding orbital. Metal-mediated cross-coupling methodology developed largely by Suzuki,\(^{64}\) Sonogashira,\(^{65}\) Kumada,\(^{66}\) Negishi,\(^{67}\) Heck,\(^{68}\) and Stille\(^{69,70}\) has become an important tool in modern organic chemistry to facilitate formation of carbon-carbon bonds between aryl or alkenyl halide substrates and a variety of alkyl, aryl and vinyl organometallic reagents. A typical cross-coupling pathway involves oxidative addition of an aryl halide to a transition metal catalyst, followed by ligand exchange to give the complex. Finally, reductive elimination of the product regenerates the active catalyst. A wide range of palladium(0) catalysts, or precursors can be used for the above reactions. Tetrakis(triphenylphosphine)palladium(0) is most commonly used but bis(triphenyl-phosphine)palladium(II) chloride, palladium(II) acetate, triphenylphosphine, or other phosphine ligands are also effective, since they are stable to air and are readily reduced to the active palladium(0) complex. This methodology is directly applicable to a wide
variety of porphyrin synthetic schemes. Three palladium catalysed reactions will be discussed in this thesis.

A. Suzuki cross coupling

In the Suzuki coupling reaction an aryl or vinyl boronic acid are coupled with an aryl or vinyl halide using a palladium(0) catalyst (Figure 1.4).

![Catalytic cycle for the Suzuki-Miyaura reaction.](image)

The first report of a Suzuki cross-coupling reaction on a porphyrin was for the β-position of a porphyrin (Scheme 1.6). A series of β-aryl, and later β-alkyl porphyrins were prepared from the reaction of β-bromophyrin with various p-substituted arylboronic acids and alkylboronic acids. Yields were between 55 and 88%. Since then, this reaction has also been developed for meso p-bromophenylporphyrins with yields up to 79%, and by Shi et al. for meso bromoporphyrins for the synthesis of unsymmetrically substituted meso phenylporphyirns. Yields reported were between 24-78%.
Introduction

28
\[\text{Ar} = \text{phenyl, 2,4,6-trimethylphenyl} \]
\[\text{R}^1 = \text{alkyl, aryl} \]

Reagents and conditions: \(\text{K}_2\text{CO}_3, \text{Pd(PPh}_3\text{)}_4, \text{toluene, 1-7 days.} \)

Scheme 1.6. Suzuki cross coupling of \(\beta \)-bromoporphyrin with alkyl- and arylboronic acids.

Additionally, Hyslop et al. applied this methodology to boronylporphyrins i.e. a boronic ester was attached to the porphyrin.\(^{77} \) This approach was later employed by Osuka et al. for the synthesis of covalently linked porphyrin dimers and trimers using one haloporphyrin and one boronylporphyrin.\(^{78} \)

B. Sonogashira Reaction

The Sonogashira reaction involves the coupling of a terminal alkyne with an aryl or vinyl halide (1.2).\(^{65} \) It proceeds under basic conditions and generally requires the use of a copper iodide co-catalyst (Figure 1.5).

Figure 1.5. Catalytic cycle for the Sonogashira reaction.\(^{65} \)
Introduction

This reaction was first applied to a porphyrin by Arnold and Nitschinsk (Scheme 1.7). A covalently-linked porphyrin dimer 31 was obtained from the reaction of a 5-ethynyl porphyrin 30 with 1,4-diiodobenzene in 60% yield. Since then the Sonogashira reaction has also been applied to β- and meso halogenated porphyrins to yield various alkynyl substituted porphyrins.

Scheme 1.7. Synthesis of covalently-linked porphyrin dimer via a Sonogashira coupling reaction.

Sonogashira reactions are commonly used for the synthesis of multiporphyrin arrays (Fig. 1.4) as they provide the rigid, covalently-linked framework light-harvesting systems require to mimic photosynthesis.

Figure 1.6. Structure of a multiporphyrin array synthesised by Lindsey and co-workers via Sonogashira coupling conditions.
C. Heck Reaction

The Heck reaction is the palladium-catalysed coupling of a haloarene or haloalkene with an alkene.84

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {\textbf{Figure 1.7.} Catalytic cycle for the Heck reaction.84};
\end{tikzpicture}
\end{center}

Heck reactions provide a useful method for introducing ethenyl substituents to the β-positions of porphyrins in high yields. Gauler and Risch reported synthesis of a 3,8-distyrylporphyrin 33 in 87% yield from bromoporphyrin 32 (Scheme 1.8).85

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {Scheme 1.8. Introduction of ethenyl moiety via a palladium-catalysed Heck reaction.};
\end{tikzpicture}
\end{center}

1.4 Chlorins; 2,3-dihydroporphyrins

Chlorins are very similar to porphyrins in that they both are highly conjugated tetrapyrrolic macrocycles. However, one pyrrole ring in a chlorin is saturated across the β-positions. Different physicochemical properties result from this altered symmetry and path of conjugation. An obvious visible difference is that chlorins absorb strongly in
Introduction

both the red and blue region (resulting in their green colour) whereas porphyrins mainly absorb in the blue region (and are therefore purple). Chlorins have a lower oxidation potential which makes them suitable as excited state reductants. Because of these features, along with several others, chlorins have found multiple applications as photosensitisers in photodynamic therapy (PDT)29,31,86 and boron neutron capture therapy (BNCT),87,88 and as models for photosynthetic reaction centres.89–92 The development of new synthetic routes to chlorins has not matched their obvious appeal over porphyrins. This is due to the difficulty in obtaining their requisite building blocks and has resulted in porphyrins being used in preference to chlorins. Thus the full potential of chlorins will not be realised until reasonable methodologies for their syntheses are developed.

Routes to chlorin syntheses are as elaborate as Woodward’s classical synthesis of chlorin e\textsubscript{6} trimethyl ester, a precursor of chlorophyll, and as simple as hydrogenation of a synthetic or naturally occurring porphyrin. The final steps of Woodward’s total synthesis involved a MacDonald-type reaction followed by transformation of a porphyrin 35 to yield the chlorin product 36 (Scheme 1.9).93

\begin{align*}
\text{Scheme 1.9. Final steps of Woodward’s total synthesis of chlorin e}_6\text{ trimethyl ester.}
\end{align*}

In recent years, these methods have been widely developed and now include: [2+2] MacDonald-type condensations of dipyrromethane precursors,94,95 Diels Alder reaction,96–98 reduction with diimide,99 oxidation with osmium tetroxide100,101 and 1,3-dipolar cycloaddition102–105 on the peripheral double bonds of porphyrins.

Carbenes can attack the porphyrin at β-pyrrole positions to produce cyclopropanechlorins.106 Porphyrins can also be reduced to give hydroporphyrins.107 However, reductions work best when the porphyrin is metallated with Fe(III), Mn(III)
Introduction

or Sn(IV), so as to decrease the electron density on the macrocycle and to make it more susceptible to reduction.20

Electrophilic addition reactions tend to occur at the peripheral β-β' positions in the macrocycle which possess more double bond character (Section 1.1). For example, chlorin formation was achieved by reacting the tin(IV) dihydroxide complex 37 in the presence of AlBr₃ to yield the chlorin 38. Reduction with sodium borohydride and demetallation yielded a methylchlorin 39 (scheme 1.10).108

Scheme 1.10. Chlorin formation via an electrophilic addition reaction.

Lindsey et al. recently published a series of papers in which a number of chlorins were synthesised via a [2+2]-type condensation reaction.109-111 Two sets of dipyrroles were prepared, each comprising an “eastern half”, and a “western half”. In the first route, shown in Scheme 1.11, the reaction of the eastern half, a 9-bromodipyrromethane-1-carbinol 41, and the western half, 1,3,3-trimethyltetrahydrodipyrrin 40, proceeded in a two-step process, the first of which was a condensation to yield a 1-methyl-19-bromo-bilane derivative 42.112 The geminal dimethyl group of 40 ensured the stability of the reduced pyrroline ring, precluding adventitious dehydrogenation to the porphyrin. The second step, a metal-mediated oxidative cyclisation of the bilane 42, yielded the desired chlorin 43. A series of aromatic chlorins 43a-f were prepared in yields between 12-45%.
The second route proceeded in a similar fashion (Scheme 1.12). The eastern half comprised 9-bromodipyrrromethane-1-carboxaldehyde 45 and the western half comprised a 1,3,3-trimethyltetrahydodipyrrin 44 similar to that in Scheme 1.11. Overall yields were between 7 and 42% and allowed introduction of bromo- and ethynyl functionality onto the porphyrin periphery. 112
Introduction

\[
\begin{array}{ccc}
\text{44} & + & \text{45} \\
\text{46} & \text{i} & \text{47}
\end{array}
\]

\(R = H, 2,4,6\text{-trimethylphenyl} \)
\(R^1 = H, \text{Br}, \text{TIPS} \)
\(R^2 = H, \text{Br} \)

Reagents and conditions: (i) \(p\text{-TsOH.H}_2\text{O, CH}_2\text{Cl}_2/\text{MeOH, rt, 30 min} \); (ii) \(\text{AgOTf, Zn(0Ac)}_2, \) piperidine, reflux, 18-24 h

Scheme 1.12. Synthesis of 3,3-dimethylchlorin with \(\beta \)-functionality.

The above reactions provided an attractive method for the preparation of chlorins with no substituent or a single substituent on the meso carbon atoms. However, preparation of the eastern and western dipyrrroles required two to three steps, so although the yields were acceptable, they had been determined from the dipyrrolic precursors. There are few reports of rational syntheses of chlorins from monopyrroles, and the 2,3-dihydroporphyrins are largely obtained by modification of naturally occurring chlorins or reduction of porphyrins and metalloporphyrins.

1.5 Porphodimethenes; 5,10- and 5,15-dihydroporphyrins

Porphodimethenes display different physicochemical properties than porphyrins. Only two of the meso positions are sp\(^2\)-hybridised with the result that the conjugation in the macrocycle is interrupted. Porphodimethenes were first observed as intermediates in the (bio)synthesis of porphyrins. The acid catalysed condensation of pyrroles with aldehydes proceeds first to a porphyrinogen 48 and then via separate oxidation steps via a porphodimethene 49 to yield the desired porphyrin 50 (Scheme 1.13). It is believed that the chlorin by-product obtained from the Rothemund and Adler-Longo condensation methods (Section 1.2.2), forms as a result of a transformation of the porphodimethene intermediate 49.\(^{113}\)
Porphodimethenes also bear analogy to another class of tetrapyrroles, calixpyrroles. Calixpyrroles are unoxidisable porphyrinogens with all four meso positions sp^3-hybridised. They have eight alkyl or aryl meso substituents, which prevent oxidation of the macrocycle to give the corresponding porphyrin. Calixpyrroles were first synthesised by Baeyer in the nineteenth century, but interest in these molecules only developed in the last two decades. Floriani and co-workers114-118 have investigated metallated calixpyrroles and more recently Sesesler and co-workers119-121 examined the anion binding properties of these compounds. Porphodimethenes are often referred to as a hybrid of porphyrins and calixpyrroles and therefore have the potential to possess both the biological affinity of porphyrins and the anion binding properties of calixpyrroles.

Initially the only method for the synthesis of porphodimethenes was Buchler’s method for the reductive alkylation of metalloporphyrins, however this procedure was limited to certain metalloporphyrins and was not compatible with all types of β-substituents. A number of alternative methods have been developed. These include a [2+2] MacDonald-like condensation reaction with a ketone,122-124 acid catalysed condensation of an oligopyrrole with acetone,22,125,126 and approaches based on the reaction of sterically hindered aldehydes with pyrrole.127

Král et al. employed a [2+2] condensation reaction (Scheme 1.14). Diaryl tetraalkyl porphodimethenes of type 53 were prepared by reaction of a 5-substituted dipyrrromethane 51 with acetone.22 This method was later developed (route b) to allow for the placement of bulkier groups on the sp^3-hybridised bridging carbons 52.128
Introduction

By altering the reaction conditions (longer reaction time, and using TFA), a higher yield was obtained for ring expanded calixphyrins. Both hexa- and octapyrroles were obtained: calix[6]phyrins and calix[8]phyrins respectively.

Senge and co-workers made use of steric constraints to synthesise several dihydroporphyrins. Occasionally, during the synthesis of sterically crowded porphyrins, a number of stable hydroporphyrins had been observed. Reaction of pyrrole, pivaldehyde and benzaldehyde (4:3:1 ratio) under Lindsey conditions, with TFA as catalyst and DDQ as oxidant, yielded a set of five products 54-58. Two of which were hydroporphyrins 54 and 55 (Scheme 1.15).
Introduction

The formation of these hydroporphyrins was attributed to the steric demand of the meso substituents. Due to overcrowding at the porphyrin periphery, relief from macrocyclic strain was achieved by the formation of the corresponding porphodimethenes. sp\(^3\)-Hybridised meso carbon atoms facilitated significant out-of-plane distortions of the pyrrole rings to minimise steric interactions of bulky meso substituents with β-pyrrole substituents.

During investigations into the nucleophilic substitution reaction of a β-octasubstituted porphyrin with an organolithium reagent, Senge et al. observed oxidation-resistant hydroporphyrin side-products.\(^{61,130}\) After four cycles of nucleophilic substitution of (2,3,7,8,12,13,17,18-octaethylporphyrinato)nickel(II) 59 with n-butyllithium, the final reaction mixture included both the expected product 60 and a 5,15-dihydroporphodimethene 61 in 40% yield (Scheme 1.16).\(^{131}\)
Reagents and conditions: (i) n-BuLi, THF, -70°C; (ii) H₂O; (iii) DDQ

Scheme 1.16. *meso* Functionalisation of Ni(II)OEP by nucleophilic substitution with organolithium reagents.

To understand the formation of the 5,15-porphodimethene 61, the same reaction was performed with a tetra-*meso* alkylporphyrin 62. Treatment with *n*-butyllithium at -100 °C followed by addition of water also yielded a 5,15-porphodimethene 63 in 90% yield. Upon treatment with DDQ, this oxidation resistant porphodimethene gave 64 in 80% yield (Scheme 1.17).

Reagents and conditions: (i) n-BuLi; (ii) H₂O (iii), DDQ

Scheme 1.17. Synthesis of a 5,15-porphodimethene with an exocyclic double bond from a tetra-*meso* alkylporphyrin.

1.6 Porphyrin dications; 22,24-dihydroporphyrins and nonplanarity

The two pyrolenine nitrogen atoms bearing lone pairs of electrons can be protonated easily with acids such as trifluoracetic acid. The most striking feature of porphyrin dications is their deviation from planarity which makes them ideal model systems for nonplanar porphyrins.
Even though planarity is a feature of aromaticity, the porphyrin macrocycle is conformationally flexible and is capable of adopting nonplanar conformations.132-134 It is widely agreed that the conformation of a tetrapyrrolic macrocycle plays a role in controlling their biological properties in photosynthetic reaction centres,135,136 photosynthetic antenna systems,137 factor F\textsubscript{430} from methyl reductase,138,139 vitamin B\textsubscript{12} and vitamin B\textsubscript{12}-dependent enzymes140 and haem proteins.141 In porphyrin dications, the distortion is caused by steric crowding in the porphyrin core and often results in out-of-plane tilting of the macrocycle.142,143

Other methods for the synthesis of nonplanar porphyrins include: metallation; interruption of the aromatic system (phlorin or porphodimethene formation) and extensive substitution on the porphyrin periphery.144 Depending on the type, location and number of substituents used, different types of distortions result.

Scheidt and Lee145 suggested four different out-of-plane distortion modes to be used in order to describe porphyrin conformation (Fig. 1.5). Saddled and ruffled conformations are found most frequently. In saddle distorted macrocycles (a), the pyrrole rings are alternately displaced above and below the mean plane while the \textit{meso} carbons largely remain in-plane. In ruffled porphyrins (b), often found in macrocycles chelated with small metals, the metal-nitrogen bond shortening causes a twisting about this bond which results in alternating displacement of the \textit{meso} carbons above and below the plane. Domed conformations (c) are most frequently found in porphyrins metallated with five-coordinate metal atoms. The axial ligand forces the metal ligand out of the plane of the macrocycle, which in turn, displaces the macrocyclic atoms in the opposite direction. In wave conformations (d), two atoms of the \textit{meso} or \(\beta\)-position are displaced alternately above and below the mean plane of the central 4N core. Normally, dications formed with CF\textsubscript{3}COOH, H\textsubscript{2}SO\textsubscript{2}, HClO\textsubscript{4} and HX (where X = F, Cl, Br, I), exhibit a saddle distortion and are hydrogen bonded to the counter ion.143,146-149 The degree of distortion can also depend on the nature of the anion.
Figure 1.8. Illustration of the four main distortion modes observed for the porphyrin macrocycles. Only the most significant displacements are shown. (+) indicates displacements above the mean plane of the central 4N core and (-) indicates displacements below the mean plane core.

Porphyrins also display in-plane deformations. These include stretching of the meso carbon bonds (m-str), stretching in the direction of the nitrogen atoms (N-str), doubly degenerate deformations in x and y directions \([trn(x)\) and \([trn(y)]\), a macrocycle breathing deformation \([bre]\) and pyrrole rotation \([rot]\).\(^{133}\)

The photophysical properties of nonplanar porphyrins differ significantly from their planar analogues. In the UV-vis spectra, the main absorption band, or Soret band, is shifted to longer wavelengths, whereas, in the fluorescence spectra, there are large spacings between the fluorescence and long wavelength absorption maxima, i.e. a large Stokes shift.\(^{150}\)

1.7 Coordination Chemistry of Porphyrins

Porphyrins are famous for their versatile metal coordination properties. They form complexes with most metallic elements in the periodic table, most of which are capable of binding additional axial ligands (Figure 1.6). Axial coordination alters the spectroscopic, electrochemical, structural and photophysical properties of metalloporphyrins.\(^{151}\)
Whereas the fundamental purpose of understanding the effects of axial ligation on the electronic spectra of iron porphyrins is a frequent goal, iron porphyrins are not easily analysed. This is because their d orbitals are only partially filled and there are uncertainties in relation to their coordination numbers, spin states and oxidation states.152 Therefore, simpler synthetic porphyrins are used to model more complex biological systems.153-158 Zinc porphyrins are preferred as model compounds for investigations into axial ligation.151 They are easy to prepare and are readily studied by 1H NMR. The metal is unambiguously in the 2+ oxidation state and four coordinate zinc porphyrins will only accept one axial ligand to form five coordinate complexes. Since their electronic configuration is d10, there are no empty d orbitals involved in the bonding. Nappa \textit{et al.} revealed that the changes seen in the UV-vis spectra of the model zinc systems, were seen in more complex metalloporphyrins also.152

Zinc porphyrins are also widely used in the assembly of multiporphyrin arrays. Multiporphyrin assemblies provide insight into naturally occurring tetrapyrrolic aggregates that perform key processes in bacterial photosynthetic reaction centres, light harvesting antennae complexes and electron transfer processes in proteins containing several haem groups. Artificial light harvesting antennae require multiple chromophore units that are well organised in space. Attractive synthetic strategies exploit the formation of coordination bonds, multiple hydrogen bonds or both. Zinc porphyrins readily coordinate to basic nitrogen ligands and have been widely used to probe the scope of noncovalent chemistry for controlling structure and reactivity.
1.8 Objectives

Many synthetic studies have been directed towards the synthesis of β- and meso substituted dihydroporphyrins, because of the biological relevance of the former, and the potential anion binding properties of the latter. However, the synthetic routes available are low in yield and not applicable to a wide variety of tetrapyrroles.

The aim of this work was to develop a new synthetic approach that would afford both 2,3- and 5,10-dihydroporphyrin regioisomers in one step, selectively and in good yields from meso tetrasubstituted porphyrin starting materials. Meso tetralky- and tetraarylporphyrins were investigated. A palladium-based catalyst was employed to aid in the regioselectivity of the hydroporphyrin product. A second aim was to apply this methodology to the synthesis of functionalised hydroporphyrins, in particular, macrocycles bearing amino residues. These hydroporphyrins were prepared with investigations into their anion binding properties in mind.

While 5,15-porphodimethenes (PDMs) have been known for decades, their 5,10-regioisomers are a relatively new discovery, and thus remain an under-investigated class of tetrapyrroles. Porphodimethenes, or calix[4]pyrins as they are becoming increasingly known as, have unique structural features which give rise to specific conformations. A series of spectroscopic investigations were performed to determine their photophysical properties and to investigate their anion binding capabilities. Comparisons with their conjugated porphyrin counterparts were also carried out.

A series of porphyrins with different degrees of substitution were examined. Crystal structures of their dication salts were prepared in order to determine the extent of conformational distortion imposed by the degree of substitution.

Finally, a series of porphyrin trimers were synthesised. These were linked by a triptycene molecule which acted as a rigid scaffold for the porphyrin molecules. Using Suzuki-Miyaura, and Sonogashira reactions, three classes of trimers were prepared. These were directly linked to the scaffold, ethyne-linked and phenylethyne-linked. Chelation of the porphyrin with a zinc metal provided a binding site to probe the host/guest properties of these multiporphyrin arrays.
Chapter 2

Studies towards the synthesis of hydroporphyrins
2.1 Syntheses of hydroporphyrins

Recently interest in hydroporphyrin chemistry, particularly in calix[4]phyrins, has grown due to the discovery of their applications in supramolecular and anion receptor chemistry.159,160 The development of new and flexible syntheses for hydroporphyrins that would allow for the creation of specific porphodimethenes and chlorins was needed.

Numerous methods have been developed for the synthesis of mono- and disubstituted chlorins. They include reduction of porphyrins or metalloporphyrins,59,161-164 total synthesis and modification of natural chlorins. However, reduction of porphyrins or metalloporphyrins produces chlorins or bacteriochlorins that are readily re-oxidised. Total syntheses involve elaborate, multistep procedures and modification of natural chlorins can be limiting. Since the diimide reduction introduced by Whitlock \textit{et al.} in 1969,99 relatively few methods have been developed for the synthesis of \textit{meso} tetraarylchlorin analogues from \textit{meso} tetraarylporphyrins. Direct modifications of the tetrapyrrole have been achieved by the addition of carbenes and activated dienes or vicinal-β-β'-dihydroxylation.165

Initially, porphodimethenes could only be prepared \textit{via} Buchler's procedure which involved reductive alkylation at the \textit{meso} position of metallated porphyrins.129,166-168 Alternative methods have been developed which allow both metallated and non-metallated PDMs to be synthesised. However these methods lacked regioselectivity, stability and/or good yields.22,123,125,127,169

In 1962 Woodward proposed simple generalisations on the reactivity of porphyrins and chlorins based on valence bond considerations.170 He predicted that the \textit{meso} positions possessed greater electrophilic character than the β-pyrrolic positions. The two pyrrolenine units in porphyrins tend to achieve individual aromatic sextet of electrons, this then withdraws electron density from the neighbouring \textit{meso} carbons, thus making them more electrophilic and more susceptible to reaction with nucleophiles such as organolithium reagents.

Organolithium reagents have been proven to be excellent reagents in porphyrin chemistry as they react readily with \textit{meso} carbon atoms to form unsymmetric porphyrins in very good yields.46,61,62,131,171-174 Organolithium reagents attack the
Studies towards the synthesis of hydroporphyrins

porphyrin via an S_NAr reaction (Scheme 2.1). The initial reaction of the organic nucleophile, RLi, with the free meso carbon in A_2-type free base porphyrins 65 yields the phlorin-type intermediate 66, which is converted to an anionic species 67. Hydrolysis of 67 with water gives a 10,20-dihydroporphyrin 68. Subsequent oxidation with DDQ yields the A_3B-type meso-substituted porphyrin 69.

![Scheme 2.1. The general mechanism for the nucleophilic substitution reaction of free base porphyrins using organolithium reagents.](image)

Previous work carried out with 5,15-disubstituted porphyrins found that reaction of 5,15-diphenylporphyrin or 5,15-dibutylporphyrin with sterically undemanding reagents like phenyl- or n-butyllithium yielded the 5,10,15-trisubstituted porphyrin in quantitative yields. However, the analogous reactions with more sterically demanding organolithium reagents led to a reduced yield of the trisubstituted product and the formation of multiple side products that were not isolable, i.e. reaction at the β-position became a competing reaction.

Together with reactions involving organometallic reagents, C-C bonds are commonly formed via transition metal catalysed cross coupling reactions. These two methods have been combined in numerous reactions. Organocopper reagents and vinyl halides were combined to form alkenes. Vinyl halides and Grignard reagents were reacted with iron catalysts by Kochi et al. and with nickel catalysts by Corriu et al. and
Kumada and Tamao. As nickel catalysts were not appropriate for reaction with organolithium reagents, numerous workers employed palladium as a suitable catalyst.

Krattinger and Callot carried out intensive work on the synthesis of phlorins (5,21-dihydroporphyrins) which led them to investigate the synthesis of hydroporphyrins from unactivated porphyrin starting materials. Using organolithium reagents, the formation of both chlorins and 5,10-PDMs was reported (Scheme 2.2). However, low yields coupled with no regioselectivity in the formation of chlorins and/or PDMs meant that further studies into the synthesis of hydroporphyrins via this method were not attractive.

By adapting Krattinger and Callot’s method and introducing palladium-based catalysts, it was found that the yields of both chlorins and porphodimethenes could be improved.

2.2 Synthetic methods

2.2.1 Synthesis of meso tetrasubstituted porphyrins

Meso tetrasubstituted porphyrins were prepared using the standard Lindsey method. Symmetric porphyrins (A₄-type porphyrins) were easily synthesised in moderate yields (up to 40%) using pyrrole and the respective aldehyde (Scheme 2.3). Due to the wide availability of aldehydes, a range of A₄-type porphyrins could be prepared without the need for elaborate multistep syntheses. In the present work, the meso positions were substituted with both alkyl and aryl groups, but possibilities included both heterocyclic and aromatic groups, along with other porphyrins (bis-porphyrins).
Studies towards the synthesis of hydroporphyrins

Using *meso* tetraalkylporphyrins, 5,10,15,20-tetakis(1-ethylpropyl)porphyrin (H$_2$TEPP) 72 and 5,10,15,20-tetra(isobutyl)porphyrin (H$_2$TiBuP) 73 and *meso* tetraarylporphyrins, 5,10,15,20-tetraphenylporphyrin (H$_2$TPP) 58, 5,10,15,20-tetrakis(3-methoxy)phenylporphyrin (H$_2$T(3-MeOP)P) 74 and 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin (H$_2$T(4-MeOP)P) 75, a series of reactions with both alkyl- and aryllithium reagents were performed.

2.2.2 Synthesis of hydroporphyrins

The reactivity of free base porphyrins strongly depended on the nature of the *meso* substituents.20 Solubility, steric and electronic effects could influence the outcome of a particular reaction. A new method was developed for the preparation of 5,10-porphodimethenes and mono- and disubstituted chlorins. By combining a palladium based catalyst and a copper(I) co-catalyst with alkyl- or aryllithium reagents, access to these hydroporphyrins was achieved.182 Investigation into the reaction behaviour of a series of *meso* tetrasubstituted porphyrins showed that a range of hydroporphyrins could be synthesised. In the case of *meso* tetraalkylporphyrins, the palladium catalyst proved crucial in minimising side products, and in certain cases, showed selectivity for either the mono- or disubstituted chlorin depending on the structure of the catalyst.
Studies towards the synthesis of hydroporphyrins

5,10,15,20-Tetrakis(1-ethylpropyl)porphyrin 72 reacted smoothly with alkyllithium reagents in the presence of Pd(PPh₃)₄ or Pd₂(dba)₃.CHCl₃ and Cul to form both the 2-mono and 2,3-disubstituted chlorins in low yields (Fig. 2.1). The less sterically demanding organolithium reagent, n-hexyllithium, gave the double addition product, 77, as the major product (1:14 ratio, mono:disubstituted chlorin) when Pd(PPh₃)₄ was used. With t-butyllithium and Pd₂(dba)₃.CHCl₃ a higher proportion of the single addition product 78, was isolated (1:2 ratio). Given that 56% of starting material was recovered from the former reaction whereas 30% was recovered from the latter, overall conversion to products was lower in the former set of conditions than the later. Within our group, the reaction with t-butyllithium was also carried out with Pd₂(dba)₃. The double addition hydroporphyrin 79 was isolated in 31% yield as the sole product. Largely, the dibenzylidene-based palladium catalysts yielded isolable hydroporphyrins when they

Figure 2.1. Reaction of 5,10,15,20-tetrakis(1-ethylpropyl)porphyrin 72 with RLi and Pd-based catalysts.

<table>
<thead>
<tr>
<th>Comp'd</th>
<th>R²</th>
<th>Catalyst</th>
<th>2-mono-chlorin</th>
<th>2,3-di-chlorin</th>
<th>S.M. rec'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>n-Hexyl</td>
<td>Pd(PPh₃)₄</td>
<td><1% 76</td>
<td>14% 77</td>
<td>56%</td>
</tr>
<tr>
<td>72</td>
<td>t-Butyl</td>
<td>Pd₂(dba)₃.CHCl₃</td>
<td>10% 78</td>
<td>21% 79</td>
<td>30%</td>
</tr>
<tr>
<td>72</td>
<td>t-Butyl</td>
<td>Pd₂(dba)₃</td>
<td>31% 79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>n-Hexyl</td>
<td>Pd₂(dba)₃.CHCl₃</td>
<td>Inseparable mixture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Phenyl</td>
<td>Pd(PPh₃)₄</td>
<td>6% 80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Phenyl</td>
<td>Pd₂(dba)₃.CHCl₃</td>
<td>Inseparable mixture</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Work carried out by Dr. N. N. Sergeeva
were reacted with \(t \)-butyllithium, whereas Pd(PPh\(_3\))\(_4\) was the preferred catalyst in reactions with phenyllithium.

The reaction between 72 and phenyllithium with Pd(PPh\(_3\))\(_4\), was slow to proceed. Upon gentle heating (40 °C), a complex mixture of products was obtained from which the 2,3-disubstituted chlorin 80 could be isolated in 6% yield. In changing the catalyst to Pd\(_2\)(dba)\(_3\)CHCl\(_3\), three new compounds formed, two of which were green in colour (TLC) indicating chlorin formation. Attempts at purification failed with multiple decomposition products forming. It was therefore, impossible to further characterise these fractions.

![Chemical structures](image)

<table>
<thead>
<tr>
<th>Comp'd</th>
<th>(R^1)</th>
<th>Catalyst</th>
<th>2-mono chlorin</th>
<th>5,10-PDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>73*</td>
<td>(t)-Butyl</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>17% (81)</td>
<td>16% (82)</td>
</tr>
<tr>
<td>73*</td>
<td>(t)-Butyl</td>
<td>Pd(_2)(dba)(_3)</td>
<td>43% (81)</td>
<td>12% (82)</td>
</tr>
<tr>
<td>73</td>
<td>(t)-Butyl</td>
<td>Pd(PPh(_3))(_4)</td>
<td>Inseparable mixtures</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>(n)-Hexyl</td>
<td>Pd(PPh(_3))(_4)</td>
<td>(\sim 22%) chlorin</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Phenyl</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>No reaction</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Phenyl</td>
<td>Pd(PPh(_3))(_4)</td>
<td>Inseparable mixtures</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.2. Reaction of 5,10,15,20-tetra(iso-butyl)porphyrin 73 with RLi and Pd-based catalysts.

5,10,15,20-Tetra(iso-butyl)porphyrin 73 was reacted with \(t \)-butyl-, \(n \)-hexyl- and phenyllithium. Using Pd\(_2\)(dba)\(_3\)CHCl\(_3\) the 2-monosubstituted chlorin 81 and the 5,10-disubstituted porphodimethene 82 were isolated in 16 and 17% yield respectively. With Pd\(_2\)(dba)\(_3\) the yield of the chlorin 81 improved to 43%, whereas that of 82 was reduced.

* Work carried out by Dr. N. N. Sergeeva
Studies towards the synthesis of hydroporphyrins

to 12%. Thus the structure of the palladium catalyst played a role in the regiochemistry of the resulting hydroporphyrin. When using t-butyllithium and Pd(PPh₃)₄, almost complete conversion of the starting material was achieved. One main new product was observed by TLC. This compound was unstable as after work up (treatment with saturated ammonium chloride and filtration through a layer of aluminium oxide) numerous fractions were observed by TLC. Purification was therefore not attempted.

Full conversion of the starting meso alkylporphyrin 73 was achieved in the reaction with n-hexyllithium and Pd(PPh₃)₄. However, a complex mixture of products was obtained, from which only ca. 20% of hydroporphyrin product was isolated. Due to decomposition of this product during work up, it could not be characterised by NMR spectroscopy. It was identified as a chlorin using UV-vis measurements. Reaction of 73 with phenyllithium and Pd(PPh₃)₄ was unsuccessful. The reaction either did not proceed or proceeded with less than 30% conversion. Only 2% of a chlorin product was isolated and identified using UV-vis spectroscopy. Another, more polar fraction was observed by TLC, however decomposition occurred during column chromatography so this fraction was not classified. In changing the catalyst to Pd₂(dba)₃CHCl₃, no reaction occurred and the starting porphyrin was recovered.
Studies towards the synthesis of hydroporphyrins

The reaction of 5,10,15,20-tetraphenylporphyrin 58 with the sterically unhindered \textit{n}-hexyllithium led to the formation of chlorin products. Depending on the structure of the catalyst, the single or double addition product could be isolated, indicating the influence of the palladium catalyst on the reaction mechanism. The 2-monosubstituted chlorin, 83 was isolated from the reaction with Pd(PPh\textsubscript{3})\textsubscript{4}, whereas the 2,3-disubstituted chlorin, 84 was obtained from the reaction with Pd\textsubscript{2}(dba)\textsubscript{3}.CHCl\textsubscript{3}. In this case, the product of the reaction could be specifically directed by the choice of catalyst.

In reacting \textit{meso} tetraarylporphyrins with aryllithium instead of alkylolithium reagents, complete regioselectivity for the 5,10-disubstituted porphodimethene was observed, with no evidence of \textit{β}-addition products. Yields for the reaction between \textit{meso} tetrakis-(3-methoxy)phenylporphyrin 74, phenyllithium and Pd(PPh\textsubscript{3})\textsubscript{4} were lower than those for the \textit{meso} tetraphenyl derivative. However, conversion to products for both experiments was low, with 56% of 58 recovered and > 70% of 74. Thus, the lower yield of 85 compared to 86 was consistent with the lower solubility of 74 compared to 58. When the catalyst was changed to Pd\textsubscript{2}(dba)\textsubscript{3}.CHCl\textsubscript{3}, there was a decrease in both the yield of the hydroporphyrin 86 (3%) and conversion of the starting porphyrin (39%).

<table>
<thead>
<tr>
<th>Comp'd</th>
<th>R2</th>
<th>Catalyst</th>
<th>5,10-di-PDM</th>
<th>2-mono-chlorin</th>
<th>2,3-di-chlorin</th>
<th>S. M. rec'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>\textit{n}-Hexyl</td>
<td>Pd(PPh\textsubscript{3})\textsubscript{4}</td>
<td>29% 83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>\textit{n}-Hexyl</td>
<td>Pd\textsubscript{2}(dba)\textsubscript{3}.CHCl\textsubscript{3}</td>
<td></td>
<td>25% 84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Phenyl</td>
<td>Pd(PPh\textsubscript{3})\textsubscript{4}</td>
<td>18% 85</td>
<td></td>
<td></td>
<td>> 70%</td>
</tr>
<tr>
<td>58</td>
<td>Phenyl</td>
<td>Pd(PPh\textsubscript{3})\textsubscript{4}</td>
<td>26% 86</td>
<td></td>
<td></td>
<td>56%</td>
</tr>
<tr>
<td>58</td>
<td>Phenyl</td>
<td>Pd\textsubscript{2}(dba)\textsubscript{3}.CHCl\textsubscript{3}</td>
<td>3% 86</td>
<td></td>
<td></td>
<td>61%</td>
</tr>
</tbody>
</table>

\textbf{Figure 2.3.} Reaction of 5,10,15,20-tetraarylporphyrins with RLi and Pd-based catalysts.
Studies towards the synthesis of hydroporphyrins

It is likely the porphodimethene products of the reactions above are formed due to the relief of steric strain achieved by their formation. The same reactions were thus carried out without palladium catalysts to investigate whether the catalysts were preventing the approach of the aryllithium reagents:

![Diagram of porphyrin structures](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R²</th>
<th>5,10-di-PDM</th>
<th>2-mono-chlorin</th>
<th>2,3-di-chlorin</th>
<th>S.M. rec'd</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Phenyl</td>
<td>62%</td>
<td>86</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Phenyl</td>
<td>31%</td>
<td>85</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Phenyl</td>
<td>47%</td>
<td>87</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>sec-Butyl</td>
<td>8%</td>
<td>88</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>n-Butyl</td>
<td>17% chlorin</td>
<td></td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.4. Reaction of 5,10,15,20-tetraarylporphyrins with RLi.

Yields of the PDMs improved without the palladium catalyst indicating the extra bulk around the activating site served to hinder the approach of the organolithium reagent in the meso tetraarylporphyrins (Fig. 2.4). Conversion to products reached 88% without the catalyst. The lower yields of the methoxyphenyl-derivatives were attributed to the lower solubility of 74 and 75 (60% conversion) compared to 58. Reactions were thus carried out with meso-arylporphyrins and alkylithium reagents without the use of a palladium catalyst.

Compound 74 was reacted with alkylithium reagents, sec- and n-butyllithium. 43 and 70% of starting material was consumed respectively. The lower conversion in the former reaction was credited to the larger steric demands of the sec-butyl group. Complex mixtures were obtained from which hydroporphyrin products were difficult to
extract. Reaction of \textit{meso} arylporphyrins with alkylolithium reagents yielded only the \(\beta\)-addition products. In reacting \textit{meso} tetraalkylporphyrins with organolithium reagents the non-catalysed approach was largely unsuccessful as inseparable mixtures were frequently formed.

\subsection*{2.3 Reaction Mechanism}

As highlighted in the introduction, palladium catalysed reactions are widely applied in porphyrin chemistry and are used on activated porphyrins to functionalise the periphery. Heck,84 Suzuki,64 Stille,69 Kumada, Negishi185,186 and Sonogashira65 have all successfully used palladium-based catalysts to develop new methods for the formation of carbon-carbon bonds. Palladium was introduced in the reaction between unfunctionalised porphyrins and organolithium reagents to activate the porphyrin towards nucleophilic attack.

High temperatures and harsh reaction conditions are required to insert palladium metal into the core of the porphyrin. We were confident that palladium did not activate the porphyrin in this manner.

As palladium has an affinity for \(\pi\)-electron systems, by coordinating to a double bond on the porphyrin, the macrocycle was activated towards nucleophilic attack (Fig. 2.5). Cu(I) was originally included in the system to promote the dissociation of the phosphine ligands from the palladium catalyst, thus promoting the reaction.187,188 However it was found that reaction with the palladium dibenzylidene complexes also required Cu(I). It was believed that an organo-copper complex, similar to a Gilman reagent, formed and subsequently associated with the palladium to synthesise the resulting hydroporphyrins. However, beyond this, we were hesitant to assign a model for the reaction.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{activation.png}
\caption{Proposed activation site of the palladium catalyst.}
\end{figure}
2.4 Spectroscopic properties of porphyrins and hydroporphyrins

2.4.1 UV-vis Spectroscopy

UV-vis spectroscopy is one of the most important characterisation tools in hydroporphyrin chemistry. Due to the distinctive and intense absorptions of many tetrapyrroles, and the large number of known spectra, this method is both sensitive and selective. The spectrum consists of two distinct regions. The Soret band appears in the near UV region between 390 and 425 nm and represents an allowed $\pi-\pi^*$ transition (Fig 2.6). The Q bands appear as a set of between two and four much weaker bands in the visible region between 480-700 nm. They occur due to quasi permitted $\pi-\pi^*$ transitions and show a vibrational fine structure. The pattern, number and/or intensity of the Q bands can give information about the substitution pattern on the porphyrin periphery, whether it is metallated or free base, and if it is metallated, the stability of the metal cation. Metal free porphyrins have four Q bands (Fig 2.6).

![Figure 2.6. UV-vis spectrum of H$_2$TPP 58 in dichloromethane (1 x 10$^{-6}$ M).](image)

As chlorins are also aromatic, their UV-vis spectra are very similar to those of porphyrins. Chlorins display a general bathochromic shift together with a more intense band in the visible region, typically at around 660 nm, which is due to the relaxation of the quasidegeneracy of the excited states. In the free base porphyrin system, the transition moments cancel each other out, whereas in the chlorin, this cancellation is incomplete. This leads to an increase in intensity of the Q band. This characteristic band is the most convenient way of identifying chlorins (Fig. 2.7).
Dramatic differences are seen in the UV-vis spectra of 5,10-porphodimethenes. As the macrocycle is no longer aromatic, the spectra do not possess the distinctive features of porphyrin and chlorin spectra. The UV-vis spectra of 5,10-PDMs comprise two absorption bands, one at ~350 nm and the other at ~550 nm. In 5,10-PDMs, the tetapyrrole ring is divided into a tripyrrane unit and an isolated pyrrole unit (see insert in Fig. 2.12). The tripyrrane moiety is responsible for these two broad absorbances, with the absorption due to the isolated pyrrole unit being too weak to be measured. The extinction coefficients of both absorption bands in the PDM spectrum were considerably reduced compared to those in the parent porphyrin 58. This was attributed to the interrupted conjugation in the porphodimethene (Fig. 2.8).
2.4.2 1H NMR Spectroscopy

The 1H NMR spectra of porphyrins are very different from most other compounds. They are diamagnetic compounds, and as such, their chemical shift is strongly dependent upon the distance and orientation of the proton in relation to the delocalisation pathway of the π-electrons of the porphyrin. Protons above or inside the porphyrin macrocycle are in the shielding region of the ring current effect, whereas those in the plane of the macrocycle, but on the porphyrin periphery are in the deshielding region. This occurrence was readily apparent in the 1H NMR spectra of free base porphyrins (Fig. 2.9). When compared to the chemical shifts of the protons in pyrrole, the N-protons in porphyrins displayed upfield shifts of ca. 11 ppm and the β-protons displayed downfield shifts of 5 ppm. In H$_2$TPP 58 there are four planes of symmetry. Consequently, one signal was observed for the eight β-pyrrole protons and one for the two N-protons. The β-protons, located on the porphyrin periphery, resonated at 8.85 ppm. The N-protons, in the core of the porphyrin, were shielded by the ring current and resonated upfield at -2.86 ppm. The meta- and para-protons of the phenyl ring displayed similar chemical shifts. This was attributed to steric hindrance which caused the phenyl groups to twist out of plane. Although the meta-protons were closer to the porphyrin, they were in a less deshielding region and appeared as a multiplet at 7.78 ppm.

![Figure 2.9. 1H NMR spectrum of β- (blue) and N-protons (red) of H$_2$TPP 58 in CD$_2$Cl$_2$.](image-url)
Chlorins and porphodimethenes are isomers of one another and both possess two sp3 hybridised carbon atoms which are absent from the free base porphyrin. Any structural modification to the porphyrin changes its ring current. Opposite shifts were observed for resonances of protons that were inside the ring versus those outside. In the hydroporphyrins, the lowered symmetry resulted in a downfield shift of the N-protons and an upfield shift of β-pyrrole protons. Shown in Figure 2.10 are the 1H NMR spectra of meso tetraalkylporphyrin 72 and the corresponding 2,3-disubstituted chlorin 79. In chlorins the macrocycle retained its aromaticity (Fig. 2.11) with the N-protons experiencing a downfield shift ($\Delta \delta = 2.47$ ppm) and the β-protons (β7, β8, β12, β13, β17 and β18-H) a slight upfield shift ($\Delta \delta = 0.77$ ppm). The lowered symmetry also resulted in a splitting of resonances. Instead of one signal for the β-protons, there were four: (4.7 [β$^{2/3}$-H], 8.8 [β$^{7/8}$-H], 9.1 [β$^{12/13}$-H] and 9.2 [β$^{17/18}$-H] ppm). The protons on the reduced pyrrole ring (β2- and β3-H) no longer participated in the delocalisation pathway so they were not influenced by the chemical anisotropy and appeared upfield at 4.7 ppm (not shown).

Figure 2.10. 1H NMR spectrum of 5,10,15,20-tetrakis(1-ethylpropyl)porphyrin 72 (top) and 2,3-di-tert-butyl-5,10,15,20-tetrakis-(1-ethylpropyl)chlorin 79 with IUPAC numbering (bottom) recorded in CDCl$_3$.

44
Addition to the *meso* position of a porphyrin interrupted the conjugation of the macrocycle, which in turn, caused dramatic changes to the chemical shifts of the \(\beta\)- and N-protons. Previously the N-protons were in the shielding region of the aromatic porphyrin macrocycle, in porphodimethenes they came inside the deshielding region of the pyrrole rings. The change in chemical environment was reflected in the \(^1\text{H}\) NMR spectra where an enormous chemical shift change of 14 ppm to 10.51 and 12.59 ppm was observed. The \(\beta\)-protons experienced an upfield shift from 8.85 to between 5.46 and 6.65 ppm (Fig 2.12).

Figure 2.12. \(^1\text{H}\) NMR spectrum of 5,5',10,10',15,20-hexaphenylporphyrin 86 recorded in CDC\(_3\).
Similar to the 2,3-disubstituted chlorin, there was only one plane of symmetry in 5,10-disubstituted PDMs. The pyrrole protons were split into four sets of signals each with an integration value of two. In contrast to the chlorins, there were two signals for the PDM N-protons. This was due to the different chemical environments experienced by the two inner protons. The resonance furthest downfield at 12.59 ppm was associated with the tripyrrane region (highlighted in Fig. 2.12), whereas the resonance further upfield was attributed to the proton in the pyrrole region. The phenyl protons in porphyrins resonated at 7.81 and 8.28 ppm (Fig. 2.9). In 5,10-PDMs they appeared further upfield at 7.06, 7.24 and 7.42 ppm. The resonance furthest downfield at 7.42 ppm is related to the phenyl protons on C15 and C20. The phenyl protons on C5 and C10 appear as two multiplets. It was not possible to further assign these resonances.

Due to the obvious differences between the 1H NMR spectra of porphyrins and those of 5,10-porphodimethenes, in depth investigations were carried out into the spectra of 5,10,15,20-tetrakis(4-methoxyphenyl)-5',10'-diphenylporphyrin 87. A large amount of information on the structure of 5,10-disubstituted porphodimethenes was obtained from the 1H NMR spectrum of this molecule (Fig. 2.13). The aromatic groups on the 5- and 10-positions were distinguishable in 87 whereas the higher symmetry element possessed by it over 85 meant the 1H NMR spectra could be clearly interpreted.

![Figure 2.13. 1H NMR spectrum of 5,10,15,20-tetrakis-(4-methoxyphenyl)-5',10'-diphenylporphyrin 87 recorded in CDCl₃. Highlighted in red, blue and green are the N-, β-, and OCH₃ protons respectively.](image)
NOESY, HMBC, HSQC and selective ROESY experiments were performed to investigate the influence of meso addition on the porphyrin macrocycle. As was noted with 86, the N- and β-protons shifted in opposite directions which related to a decrease in aromatic ring current with hydroporphyrin formation. Each with coupling constants of $^{3}J = 8.4$ Hz, the doublets at $\delta = 6.94$ and 7.35 ppm were identified as being apart of the same spin system. As were the resonances at $\delta = 6.16$ and 6.65 ppm with $^{3}J = 4.6$ Hz. (Fig. 2.13 and 2.14).

Selective ROESY experiments were performed by exciting the methoxy resonances at $\delta = 3.81$ and 3.89 ppm. From this, the meta-phenyl protons on C20 and C5 were identified. Using H-H COSY (Fig. 2.14) and coupling constants, the chemical shifts of the ortho protons were determined. Meta- and ortho-protons on C5 (red) resonated at 6.77 and 6.96 ppm respectively. The corresponding protons on C20 (green) resonated at 6.94 and 7.35 ppm. In the parent porphyrin macrocycle, the meta protons resonated at 7.32 and the ortho at 8.15 ppm. The phenyl resonances on the sp3 hybridised centre, C5, experienced the largest chemical shift of $\Delta \delta = 0.55$ (meta) and 1.19 (ortho) ppm compared to $\Delta \delta = 0.38$ and 0.80 ppm for those on the more conjugated C20. The resonances at $\delta = 7.07$ and 7.24 ppm were assigned as the meta and ortho/para phenyl protons on C5 (pink). The resonances at 3.81 and 3.89 ppm were assigned to the methoxy group on C5 and C20 respectively. This signal resonated at $\delta = 4.13$ ppm in the parent porphyrin. Again, the OCH$_3$ protons on C5 experienced the greatest chemical shift ($\Delta \delta = 0.32$).
Studies towards the synthesis of hydroporphyrins

Figure 2.14. H-H COSY spectrum of 5,10-porphodimethene 87 recorded in CDCl₃.

HSQC and HMBC experiments were performed to fully assign the ¹³C spectra. A similar trend to the ¹H NMR spectra was seen. However, using HMBC, a correlation between β-H⁷ and N-H²² was observed. The two N-protons could therefore be differentiated. N-H²² was assigned as δ = 10.59 ppm and N-H²⁴ as δ = 12.58 (Fig. 2.15).
Figure 2.15. HSQC/HMBC spectra of 87 indicating the correlation between N-H22 and β-H7.
Table 2.1. 1H and 13C NMR assignment for 87 recorded in CDC13.

<table>
<thead>
<tr>
<th>Position</th>
<th>1H (ppm)</th>
<th>Mult. J (Hz) (Int)</th>
<th>COSY</th>
<th>Sel ROESY</th>
<th>1C (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/13</td>
<td>6.65</td>
<td>d (4.6) (2 H)</td>
<td>3/12</td>
<td>20o</td>
<td>134.7</td>
</tr>
<tr>
<td>3/12</td>
<td>6.16</td>
<td>d (4.4) (2 H)</td>
<td>2/13</td>
<td>5o, 5o/p</td>
<td>129.0</td>
</tr>
<tr>
<td>7/8</td>
<td>5.47</td>
<td>d (2.3) (2 H)</td>
<td>-</td>
<td>5o, 5o/p</td>
<td>109.7</td>
</tr>
<tr>
<td>17/18</td>
<td>6.09</td>
<td>s (2 H)</td>
<td>-</td>
<td>20o</td>
<td>122.3</td>
</tr>
<tr>
<td>5a</td>
<td>6.96</td>
<td>m (4 H)</td>
<td>5m</td>
<td>-</td>
<td>130.7</td>
</tr>
<tr>
<td>5m</td>
<td>6.77</td>
<td>m (4 H)</td>
<td>5o</td>
<td>-</td>
<td>112.92</td>
</tr>
<tr>
<td>5p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>158.1</td>
</tr>
<tr>
<td>5-OCH$_3$</td>
<td>3.81</td>
<td>s (6 H)</td>
<td>-</td>
<td>5m</td>
<td>55.6</td>
</tr>
<tr>
<td>5$'^a$</td>
<td>7.24</td>
<td>m (6 H)*</td>
<td>5$'^m$</td>
<td>3/12, 7/8</td>
<td>127.6/126.4</td>
</tr>
<tr>
<td>5$'^m$</td>
<td>7.07</td>
<td>m (4 H)</td>
<td>5$'^o$/p</td>
<td>3/12, 7/8</td>
<td>129.6</td>
</tr>
<tr>
<td>5$'^p$</td>
<td>7.24</td>
<td>m (6 H)*</td>
<td>5$'^m$</td>
<td>3/12, 7/8</td>
<td>127.6/126.4</td>
</tr>
<tr>
<td>20o</td>
<td>7.35</td>
<td>d (8.4) (4 H)</td>
<td>20m</td>
<td>2/13, 17/18</td>
<td>132.1</td>
</tr>
<tr>
<td>20m</td>
<td>6.94</td>
<td>d (8.6) (4 H)</td>
<td>20o</td>
<td>2/13, 17/18</td>
<td>112.86</td>
</tr>
<tr>
<td>20p</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>159.8</td>
</tr>
<tr>
<td>20-OCH$_3$</td>
<td>3.89</td>
<td>s (6 H)</td>
<td>-</td>
<td>20m</td>
<td>55.3</td>
</tr>
</tbody>
</table>

2.4.3 Structural features of 5,10-PDMs

In the addition reaction to form 87, the product was expected to contain a mixture of diastereomers. Both 5,10-PDMs were compared with previous data reported for 5,15-PDMs of H$_2$OEP (OEP = 2,3,7,8,12,13,17,18-octaethylporphyrin). According to the results published by Buchler et al. in 1987, 5,15-PDMs exist in two different
Studies towards the synthesis of hydroporphyrins

conformations: syn-axial “aa” as the major conformation (5–58%) and diagonal “dd” (2–8%) as the minor conformer. The term syn-axial “aa” configuration for 5,15-porphodimethenes describes conformations with large substituents at meso sp^3-carbon atoms positioned axial to the folding axis of the porphyrin core and parallel to each other. The term “dd” refers to the diagonal conformation of two groups if the porphodimethene core is planar (Figure 2.16). The two substituents at the 5- and 15-positions can no longer be termed axial or equatorial, due to their intermediate positions.

![Schematic representation of 5,15-porphodimethene configurations.](image)

Figure 2.16. Schematic representation of 5,15-porphodimethene configurations.

Spectroscopic studies for the series (syn-axial “aa”) showed that the 5,15-PDM skeleton was far from planar and displayed a folding at the meso sp^3-hybridised carbon atoms. Studies of the syn-5,15-PDM complexes confirmed a high symmetry in the system. In the ¹H NMR spectra only two sets of signals appeared for the corresponding β-CH₂ and β-CH₃ of the ethyl groups. Also, one set of signals was observed for the enantiotopic protons meso CH⁵,¹⁵ at the sp^3-carbon atoms. The atoms at meso CH¹⁰,²⁰ are enantiotopic in all the configurations too. A strong tautomeric effect of the NH protons resulted in the appearance of one broad signal. The corresponding “dd” isomer of the 5,15-PDM with two meso tert-butyl groups derived from OEP, showed two sets of signals for the enantiotopic protons meso CH⁵,¹⁵ (at sp^3-carbon) and meso CH¹⁰,²⁰ (at sp²-carbon), additionally, β-CH₂ (2.56 ppm) and β-CH₃ (1.17 ppm) appeared as multiplets.¹⁹²

Figure 2.17 displays an expanded view of the β-protons at positions 7/8 and 17/18 of compounds 86 and 87. Singlet resonances were expected in both porphodimethenes, however, the resonances were unexpectedly split. In light of the research carried out by Buchler et al. the splitting was ascribed to the presence of different configurations in solution.
Studies towards the synthesis of hydroporphyrins

Figure 2.17. 1H NMR spectra of the β-7 and β-18 protons of 5,10-PDMs 86 and 87.

In compound 86, residues at the syn and axial positions are the same (phenyl), thus “aa”, “ee”, and “ae” give rise to the same conformations. This suggested that along with “dd,” only two conformations were possible. The splitting could either be attributed to a mixture of both conformations, or, as Buchler outlined, the “dd” conformation alone could give rise to this observed splitting.

Compound 87, with different residues at the axial and equatorial positions (phenyl and 4-methoxyphenyl), could potentially display both syn and anti configurations resulting in a mixture of all four conformations. However, as the signal is split into two resonances and not into four, it was believed that only the syn or anti configuration formed in the reaction. X-ray structures of each conformation will need to be elucidated before the syn and/or anti configurations can be unambiguously assigned.

2.5. Functionalised 5,10-porphodimethenes

Nitro and amino substituted amphiphilc porphyrins are useful precursors to biologically active molecules and they can be easily conjugated with bioactive molecules such as polymer backbones and cyclodextrins. In addition, nitro and amino groups can be easily functionalised. Given the development of a new synthetic pathway, that selectively provided access to 5,10-disubstituted PDMs, several synthetic targets were set, which would yield PDMs bearing functional groups.

Firstly, a series of meso tetrasubstituted nitro- and aminophenylporphyrins were prepared as synthetic precursors for the functionalised hydroporphyrins. These will then undergo nucleophilic addition reactions to yield the sought after 5,10-porphodimethenes.
Studies towards the synthesis of hydroporphyrins

A series of A_4-92 and 93, and A_2B_2-type porphyrins 94-99 were prepared for reaction with organic nucleophiles. These porphyrins would ensure the formation of a single isomeric product. Synthetic routes for the formation of 92-103 included: 1) the Adler-Longo (mixed) aldehyde condensation reaction 92 and 100; 2) Suzuki cross coupling with boronic acids 94, 96, 99, 102 and 103; 3) Electrophilic addition to the para phenyl position of H_2TPP 97 and 3) reduction using stannous chloride or palladium on carbon and sodium borohydride 93, 95, 98, and 101.

Figure 2.18. *meso* Tetraarylporphyrin precursors prepared for the synthesis of functionalised 5,10-porphodimethenes.

Unfortunately unfavourable results were obtained for the reaction of the above precursors with phenyllithium, in the absence of a catalyst. Reaction of 92 and 93 with either phenyllithium or tert-butyllithium did not proceed. When the number of functional groups was reduced to two 94-99, reactions proceeded however, mostly with the production of multiple side products. The reaction of 99 with phenyllithium

formed in situ
Studies towards the synthesis of hydroporphyrins

Proceeded smoothly with three fractions observed by TLC (starting material and two additional fractions). Attempts at purification afforded only starting material (21%) and one of the other two observed fractions (14.9 mg, 12%). This was identified as porphodimethene \(104\) using \(^1\)H NMR and UV-vis spectroscopy, however further \(^1\)H NMR investigations were not possible, due to the instability of the porphodimethene.

\[
\begin{align*}
99 & \quad \text{PhLi} \quad \rightarrow \quad 104 \quad 12\%
\end{align*}
\]

Scheme 2.4. Nucleophilic addition for the synthesis of functionalised 5,10-PDMs.

In a final attempt, the reaction was attempted with \textit{meso} tetraarylporphyrins that bore just one functional group \(100\-103\). Unsatisfactory results were obtained for the reaction of nitro and amino derivatives \(100\) and \(101\) with phenyllithium. Multiple side products were formed. The reactions of \(103\) with PhLi did not proceed however reaction with \(102\) yielded the substitution product \(105\) (Scheme 2.6).
Studies towards the synthesis of hydroporphyrins

Scheme 2.5. Nucleophilic substitution reaction occurring at the meso phenyl position.

Compound 105, was further reacted with the organic nucleophile, however, the reaction was unsuccessful, with no reaction occurring.

2.6 Conclusions

The use of palladium-based catalysts in the organolithium reaction of porphyrins resulted in formation of both meso and β-substituted hydroporphyrins. The mechanism of the reaction is a type of nucleophilic addition reaction, however, the precise pathway involving the Pd/organo/Cu complex could not be proven. The regiochemistry of the hydroporphyrins depended on the type of the catalyst. Predominantly, chlorins were formed in reactions with aliphatic organolithium reagents and PDMs in reactions with phenyllithium. Particular success was achieved in the reactions of H$_2$TPP 58. When reacting alkylolithium reagents with 58, selective formation of the 2-mono- or 2,3-disubstituted chlorin was achieved. Whereas, using phenyllithium and no catalyst, 5,10-PDMs were isolated as the sole product in yields up to twelve times higher than those previously reported in the literature. The role of copper(I) iodide was uncertain. However additional experiments were performed without the copper(I) reagent. It was found that the number of side products increased and no hydroporphyrin derivatives could be isolated.

Both UV-vis and 1H NMR spectroscopies were employed to classify the hydroporphyrin products. UV-vis techniques proved a crucial indicating tool to determine the outcome of certain reactions. 1H NMR spectroscopy revealed the drastic effect of the loss of conjugation on the ring current of the tetrapyrrole.
Attempts at synthesising functionalised porphodimethenes were largely unsuccessful. Reactions with functionalised meso tetraaryl and phenyllithium did not proceed, however, a mixture of products was obtained from the reaction of di- and monofunctionalised porphyrins. This indicated the extra steric bulk around the reaction site hampered the progress of the reaction. Reaction with 5,15-dihydroxyphenyl-10,20-diphenylporphyrin were promising, however, the instability of the products precluded full characterisation.
Chapter 3
Nonplanar porphyrins
3.1. Nonplanar porphyrins: Porphyrin dications

The conformation of porphyrins is widely studied with regard to the connection between macrocycle distortion and physicochemical properties. In 1971 Hoard revealed the flexibility that porphyrin macrocycles were capable of,194 and since then many factors that influence conformational distortion have been investigated. The degree of distortion of the macrocycle can depend on environmental, metal, packing and axial ligand effects.145 Conformational flexibility has wide implications for the study of chromophore-protein interactions \textit{in vivo}195 and nonplanar tetrapyrrole conformations have been observed in the bacterial photosynthetic reaction centre,135,196 a photosynthetic antenna complex,137,197 haem proteins, methyl reductase and vitamin B\textsubscript{12}-dependent enzymes.198

The photophysical properties of nonplanar porphyrins differ significantly from those of their planar analogues (bathochromic shifts, larger Stokes shifts, etc.).199,150 The nonplanar distortions of the macrocycle were initially induced by the introduction of steric bulk at all available peripheral positions, for example, dodecasubstituted porphyrins such as 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetraphenylporphyrin \textbf{106}, ($\lambda_{\text{max}} = 446$ nm in dichloromethane)113,195,200 which combined the substitution pattern of both the well known β-octaethylporphyrin ($\lambda_{\text{max}} = 398$ nm)201 and \textit{meso} tetraphenylporphyrin ($\lambda_{\text{max}} = 417$ nm) (Fig. 3.1). In most cases, these porphyrins exhibited severely distorted \textit{saddle} conformations (Section 1.6),113,195,200,202,203 with the exception of sterically hindered porphyrins bearing \textit{meso} alkyl groups. These compounds tend to crystallise in \textit{ruffled} conformations.204 Ema \textit{et al.} reported that 5,10,15,20-tetrakis(\textit{tert}-butyl)porphyrin \textbf{107} ($\lambda_{\text{max}} = 446$ nm) underwent a nucleophilic addition reaction at the \textit{meso} position to yield 5,15-porphodimethenes.183 Senge \textit{et al.} later reported that this was caused by a severely \textit{ruffled} distortion.205
Nonplanar porphyrins

However, core substitutions, either by protonation of the two pyrrolidine nitrogen atoms or by the preparation of N-alkyl or N-aryl porphyrins have been shown to lead to significantly distorted macrocycles. This is caused by a) the steric hindrance that results when all four inner hydrogen atoms are coplanar and by b) the electrostatic repulsion of the inner nitrogen atoms assuming that each of them has a charge of $+\frac{1}{2}$. There is a vast conformational difference between the diprotonated porphyrin and that of the analogous free base macrocycle. In fact, the dication of 5,10,15,20-tetraphenylporphyrin, $[\text{H}_4\text{TPP}]^{2+}$ 58 ($\lambda_{\text{max}} = 438$ nm), displays a similar saddle-type distortion to that observed for dodecasubstituted porphyrins 108 ($\lambda_{\text{max}} = 466$) (Fig. 3.2).

Figure 3.1. Highly distorted porphyrin compounds.

Figure 3.2. Crystal structure of highly substituted, (left) and diprotonated, nonplanar porphyrins.
Nonplanar porphyrins

Three series of porphyrin dications, with different degrees of meso substitution, were prepared. Using UV-vis spectroscopy and X-ray crystallography the effect of peripheral substitution on porphyrin macrocycles could be determined.

3.2 Results and discussion

3.2.1 Synthesis

Monosubstituted A-type porphyrins can be obtained by condensation of pyrrole-2-carbaldehyde \(109\) (2 equiv.) with dipyrromethane \(17\) (1 equiv.) in yields of up to 7% (Scheme 3.2).\(^{46}\) However, they have also been observed as by-products in the synthesis of 5,10-disubstituted porphyrins from tripyrrane \(20\) and pyrrole.\(^{46}\) 5,15-Disubstituted porphyrins were synthesised using dipyrromethane and the appropriate aldehyde to yield \(22, 114\) and \(117\) in 67%, 67%, and 32% yields respectively. A\(_3\)-Type 5,10,15-trisubstituted porphyrins were prepared by reaction of the above 5,15-derivative with the desired organolithium reagent. A\(_4\)-Type 5,10,15,20-tetrasubstituted porphyrins were prepared according to standard Lindsey methods,\(^{25}\) as outlined in the previous chapter.
Scheme 3.1. Synthetic approaches for the syntheses of A-, A₂-, A₃- and A₄-type porphyrins from pyrrolic precursors.*

Porphyrin dications were prepared by stirring free base porphyrins in a solution of dichloromethane containing 5% trifluoroacetic acid.

3.2.2 UV-vis spectroscopy

The UV-vis spectrum of a free base porphyrin comprises an intense Soret band at ca. 420 nm accompanied by four less intense Q bands at longer wavelengths.²¹⁰ The UV-vis spectra of aromatic porphyrins have extinction values in the order of $10^6 \text{M}^{-1}\text{cm}^{-1}$.

* Provided by Prof. Mathias O. Senge.
A. Phenylporphyrin series

Ryppa et al. investigated the absorption spectra of a complete series of meso phenylporphyrins (Table 3.1) after reporting methods for the syntheses of the elusive 5-mono- 110 and 5,10-disubstituted 111 porphyrins. Both the Soret and Q bands gradually shifted bathochromically with increasing number of phenyl residues (Table 3.1). As the UV-vis spectra of 22 and 111 displayed similar shifts in both the Soret and Q band regions, the sequential bathochromic shifts with increasing number of phenyl residues was attributed to mainly electronic effects.\(^{195,211-213}\)

Table 3.1. UV-vis absorption spectra for free base meso phenylporphyrin (fb) recorded in dichloromethane and trifluoroacetate dications (dc) recorded in dichloromethane + 5% trifluoroacetic acid.

<table>
<thead>
<tr>
<th></th>
<th>Soret band (fb)</th>
<th>Q bands (fb)</th>
<th>Soret band (dc)</th>
<th>Q bands (dc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>403(^{46})</td>
<td>595, 526, 568, 622</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>111</td>
<td>406(^{46})</td>
<td>504, 534, 579, 630</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>406(^{214})</td>
<td>502, 536, 574, 630</td>
<td>420</td>
<td>569, 614</td>
</tr>
<tr>
<td>112</td>
<td>412(^{174})</td>
<td>508, 543, 582, 638</td>
<td>429</td>
<td>581, 633</td>
</tr>
<tr>
<td>58</td>
<td>417(^{25})</td>
<td>514, 549, 589, 644</td>
<td>437</td>
<td>594, 653</td>
</tr>
</tbody>
</table>

Upon the addition of trifluoroacetic acid to meso substituted porphyrins, the Soret band in UV-vis spectrum was shifted to longer wavelengths and the four Q bands were replaced by two more intense bands (Table 3.1). The spectral simplification for porphyrin dications was attributed to the higher symmetry of porphyrin dications compared to that of their free base forms.\(^1\) A bathochromic shift of 14, 17 and 20 nm was observed upon the formation of the 5,15-di- 22, 5,10,15-tri- 112 and 5,10,15,20-tetraphenylporphyrin 58 dications respectively.

B. 1-Ethylpropylporphyrin series

The solutions of compounds 113-115 and 72 in free base form ranged in colour from blue (for the mono derivative) to purple (tetrasubstituted derivative), whereas the dications ranged in colour from pink to green (mono to tetra). A comparison of the UV-vis spectra of the free base forms clearly showed bathochromic shifts correlated with the presence of extra meso substituents (Fig. 3.3) and like in the meso phenyl series, was attributed to electronic effects.
Nonplanar porphyrins

Bathochromic shifts of 5, 8, 9 and 8 nm were observed upon formation of the mono-, bis-, tris- and tetrakis(1-ethylpropyl)porphyrin dications (113-115 and 72) respectively (Table 3.2). This was correlated with a lower degree of distortion from planarity than what was observed for the series of *meso* phenyl substituted porphyrin dications (14-20 nm).

Table 3.2. UV-vis absorption spectra for *meso* 1-ethylpropylporphyrins free base (fb) in dichloromethane and dications (dc) in dichloromethane + 5% trifluoroacetic acid.

<table>
<thead>
<tr>
<th></th>
<th>Soret band (fb)</th>
<th>Q bands (fb)</th>
<th>Soret band (dc)</th>
<th>Q bands (dc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>113</td>
<td>399^sh</td>
<td>497, 526, 568, 621</td>
<td>404</td>
<td>551, 643</td>
</tr>
<tr>
<td>114</td>
<td>403^sh</td>
<td>504, 535, 575, 630</td>
<td>411</td>
<td>562, 608</td>
</tr>
<tr>
<td>115</td>
<td>412</td>
<td>512, 546, 587, 642</td>
<td>421</td>
<td>574, 623</td>
</tr>
<tr>
<td>72</td>
<td>420^184</td>
<td>522, 539, 601, 669</td>
<td>428</td>
<td>593, 643</td>
</tr>
</tbody>
</table>

C. Hexylporphyrin series

UV-vis analysis of a second series of *meso* alkylporphyrins 117-119 revealed similar bathochromic shifts upon formation of the dications (5-9 nm) to those observed above (Table 3.3). Of note was the 5 nm shift observed upon addition of two protons to the tetrasubstituted derivative 119. This compared with an 8 nm shift upon dication formation in 72, and could possibly be attributed to extra steric bulk surrounding the *meso* positions in 72, thus forcing the macrocycle display a higher distortion from planarity.

Table 3.3. UV-vis absorption spectra for *meso* hexylporphyrins free base (fb) in dichloromethane and dications (dc) in dichloromethane + 5% trifluoroacetic acid.

<table>
<thead>
<tr>
<th></th>
<th>Soret band (fb)</th>
<th>Q bands (fb)</th>
<th>Soret band (dc)</th>
<th>Q bands (dc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>401^sh</td>
<td>496, 525, 570, 622</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>117</td>
<td>404^215</td>
<td>504, 535, 578, 639</td>
<td>411</td>
<td>564, 615</td>
</tr>
<tr>
<td>118</td>
<td>412^216</td>
<td>512, 545, 582, 647</td>
<td>421</td>
<td>567, 615</td>
</tr>
<tr>
<td>119</td>
<td>418^215</td>
<td>520, 555, 601, 660</td>
<td>423</td>
<td>586, 633</td>
</tr>
</tbody>
</table>
3.2.3 1H NMR Spectroscopy

Upon addition of two hydrogen atoms to the core of the porphyrin, there was a downfield shift of the N-H resonances (~1.2-2 ppm) and an upfield shift of the β-resonances. Many investigations have revealed that the chemical shifts in porphyrins are strongly influenced by hydrogen bonding, particularly those of the N-protons. In addition, the concentration of trifluoroacetic acid influences the chemical shifts. Thus, the N-H resonance is not a good indication of ring distortion and will not be discussed further in this thesis.

3.2.4 X-ray Crystallography

In order to address the question of the extent that dication formation and different substituents in Λ_x porphyrins (with $x < 4$) affect the conformation a number of simple porphyrin derivatives were used for an initial crystallographic study.

An impression to what extent multiple conformations and crystal modifications are possible comes from an analysis of 5,15-diphenylporphyrin (Fig. 3.3). Here, a monoclinic (P2$_1$/c) modification of a methylene chloride solvate structure showed small but distinct deviations from planarity. The macrocycle was planar with a mean deviation of the 24 macrocycle atoms from their least-squares-plane (ΔA_{24}) of 0.083 Å, and the largest deviations from this plane were observed for the two substituted $meso$ positions (0.16 and 0.18 Å, respectively). Upon closer inspection, differences between the $meso$ H and $meso$ phenyl quadrants of the molecule were detected. The C$_{\alpha}$-C_{meso} bond lengths were elongated (1.406 vs. 1.386 Å) whereas the N-C$_{\alpha}$-C_{meso} (124.4 vs. 126.9°) and C$_{\alpha}$-C_{meso}C$_\alpha$ (123.8 vs. 127.5°) bond angles were narrowed in the $meso$ phenyl quadrants. The phenyl rings were twisted with respect to the least squares plane, which reduced steric repulsion between the phenyl rings and the hydrogens at the β-positions of neighbouring pyrrole rings.
A small but significant degree of ruf distortion was present as well. Another modification (unsolvated, space group P-1) of 5,15-diphenylporphyrin showed minor deviations from planarity with a $\Delta 24$ of 0.06 Å. Here, a degree of pyramidalisation was observed for the nitrogen atoms ($\Delta = 0.14$ and 0.02 Å, respectively).

The free base form of compound 114 crystallised in trigonal space group R-3 and contained a disordered cyclohexane molecule of salvation. As shown in Figure 3.4, the asymmetric unit contained half of the porphyrin molecule. The $\Delta 24$ value was 0.007 Å. Again, the C_α-C_{meso} bond lengths were elongated (1.41 vs. 1.39 Å), whereas the $N-C_\alpha$-C_{meso} (124.4 vs. 126.8°) and C_α-C_{meso}-C_α (122.9 vs. 129.3°) bond angles were narrowed in the meso substituted quadrants.

The impact of the formation of a dication, i.e. the steric overload of the core of the porphyrin with four NH groups was clearly seen in the structure of the bis(trifluoroacetate) salt of 5,15-bis(1-ethylpropyl)porphyrin. The compound crystallised with half the tetrapyrrole and one trifluoroacetate residue in the independent unit. A side view of the dication structure formed is shown in Figure 3.5.
Nonplanar porphyrins

Figure 3.5. View of the molecular structure of the dication salt of 114 formed in the crystal. Hydrogen atoms have been omitted for clarity.

Hydrogen bonds and the weak interactions formed are shown below in Table 3.4.

Table 3.4. Hydrogen bonding interactions.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N(22)-H(22A)···N(23)</td>
<td>intramolecular</td>
<td>0.88</td>
<td>2.32</td>
<td>2.825(4)</td>
<td>117</td>
</tr>
<tr>
<td>N(22)-H(22A)···O(2S)</td>
<td>-x,1-y,-z</td>
<td>0.88</td>
<td>1.93</td>
<td>2.711(4)</td>
<td>147</td>
</tr>
<tr>
<td>C(10)-H(10A)···O(1S)</td>
<td>x,1/2-y,1/2+z</td>
<td>0.95</td>
<td>1.93</td>
<td>3.284(5)</td>
<td>151</td>
</tr>
<tr>
<td>C(13)-H(13A)···O(1S)</td>
<td>......</td>
<td>0.95</td>
<td>2.31</td>
<td>3.199(4)</td>
<td>155</td>
</tr>
</tbody>
</table>

In the bulk crystal the molecules formed a close spaced lattice structure in which neighbouring dication units were related by a contact between a \textit{meso} C-H and the oxygen atom of the anion not involved in N-H binding [C10A···O1SA 2.426 Å] (not shown).

The tetrapyrrole macrocycle exhibited a rather unusual conformation, where two neighbouring N-H units pointed towards the same face of the molecule. The NSD (normal coordinate structural decomposition) analysis clearly showed this to be the result of a wave distortion (Section 1.6). The in-plane distortions were very large with major contributions from \textit{meso}-stretch, N-stretch and macrocycle breathing distortion modes (Fig. 3.7). The average ΔA_{24} was 0.18 Å (compared to 0.007 for the free base form).
Nonplanar porphyrins

Figure 3.6. View of the skeletal deviations from the $\Delta24$ plane of $[\text{H}_4114]^2^+$. The sequence of meso carbon atoms is C20, C5, C10, C15, C20 from left to right. Substituted meso positions are indicated.

A crystal structure of the dication of the trisubstituted derivative 118 was also obtained, however, as the sample could not be refined satisfactorily, only an overview of some key observations will be reported in this thesis.

The impact of further meso substituents was indicated by preliminary data from a crystal structure of 118 bistrifluoroacetic acid solvate. The structure showed high vibrational movement of the meso alkyl substituents and preliminary data indicated that the $\Delta24$ was significantly larger with a value of 0.44 Å.

3.3 Conclusions

The porphyrin dications obtained via protonation of the respective free base porphyrins exhibited nonplanar conformations, as could be evidenced by UV-vis spectroscopy. A preliminary crystallographic study revealed the occurrence of in-plane distortions in the macrocycle of the free base forms of both aryl and alkyl disubstituted porphyrins. The dication of the alkyl derivative displayed a significant out-of-plane wave distortion which was due to overcrowding in the core of the porphyrin. In addition, evidence for significant conformational flexibility of 5,15-diphenylporphyrin was observed. Until further crystallographic analysis can be performed, the precise influence of overcrowding in the porphyrin core on the conformation cannot be determined.
Chapter 4

Structural, spectroscopic and anion binding properties of 5,10-porphodimethenes
4.1 Porphodimethenes

Tetrapyrroles include both the fully conjugated porphyrins and the unconjugated calixpyrroles. Calixpyrroles have been established as excellent anionic and neutral receptor systems. Anions are essential to life as many biological processes depend on their recognition, transport or transformation. They function in the majority of enzyme-substrate and enzyme-cofactor complexes as well as in the interaction between proteins and RNA or DNA. Conversely, anions have detrimental effects on the environment. Anionic pollutants such as phosphate and nitrate are the cause of eutrophication of lakes and inland waterways. There is a discernible demand for the production of selective anion receptors and sensors. Calix[4]pyrroles have been identified as neutral, non-aromatic polypyrrolic macrocycles that selectively bind anions. Likewise, sapphyrins, pentapyrrolic aromatic macrocycles, have been proven as excellent receptor systems when diprotonated.

Until now, there have been no investigations into the coordination and ligand binding properties of these compounds, how they compare to porphyrins and their value as receptors. Due to their appearance in the porphyrin biosynthetic pathway, 5,15-disubstituted PDMs have been thoroughly researched. The isomeric class, 5,10-disubstituted PDMs, however, has not received the same attention since it was first isolated in 1996 by Callot et al. Thus, we have carried out in-depth research into 5,10-PDMs in order to more fully understand the properties and functionalities of this intriguing class of receptors.

![Figure 4.1. sp² and sp³-carbon centres present in 5,10-disubstituted porphodimethenes.](image)

Due to the presence of sp³-hybridised centres the macrocycles must adopt nonplanar conformations. As shown in chapter 2, this leads to changes in their
photophysical properties. There is a large catalogue of research papers dedicated to the chemistry, properties and applications of these nonplanar molecules. Due to the significance of protons in essential biological processes and the effect of protonation on the porphyrin chemical and biological functions, a number of research groups have studied the porphyrin protonation process in the past decades. In meso arylporphyrins, the dication is formed in one step, without the isolation of an intermediate monocation. The differences in physical and chemical properties between the free base and the diprotonated species have been observed by using different acids such as trifluoroacetic acid, glacial acetic acid and perchloric acid. To date, only limited research has been carried out on the effect of protonation and the properties of calixphyrin chemistry. This was an ideal starting point to investigate more closely the properties of PDM diacids and how they differ from their PDM and porphyrin analogues.

We were able to obtain and characterise the diacid form \([\text{H}_4(\text{PDM})][\text{X}]_2\) upon the addition of several acids to PDM's 86 and 87, where \(\text{X}\) denotes the anions of acids; HCl, HBr, MeSO₃H, CF₃CO₂H and HClO₄.

4.2 Results

4.2.1 Crystallography

In order to establish the conformation and structural properties of the 5,10-PDM we grew crystals suitable for single crystal X-ray crystallographic analysis of the 5,5\(^\prime\),10,10\(^\prime\)15,20-hexaphenylporphyrin 86 (Fig. 4.2). The structure clearly shows the two \(\text{sp}^3\) centres at the 5- and 10-position. As expected, the macrocycle is extremely nonplanar as indicated by the \(\Delta 24\) value of 0.40 Å for the 24 macrocycle atoms. \(\Delta 24\) is the average deviation of the 24 macrocycle atoms from their least squares plane. The displacement of the \(\text{meso}\) carbon atoms is highly unsymmetrical. Displacement for the C5, C10, C15 and C20 atoms from the 24 macrocycle atom least-squares-plane are 1.23, 1.22, 0.59 and 0.58 Å, respectively. The related values for deviation from the 4N plane are 0.85, 1.0, 0.95 and 0.83 Å, respectively. The conformation can roughly be described as an unsymmetrical roof-type conformation (as found for 5,15-PDM) with significant contributions from other distortion modes. The two N-H vectors point towards each other in the central core of the macrocycle. Thus, they are still somewhat
shielded in this free base PDM and similar to the general situation found in planar porphyrins and \textit{saddle} distorted nonplanar porphyrins.

\textbf{Figure 4.2}. Top and side view of the molecular structure of PDM 86 in the crystal. Hydrogen atoms have been omitted for clarity and thermal ellipsoids are drawn for 40\% occupancy.

We were able to obtain crystals of the dication of 86, \([H_486][ClO_4]_2\). The compound crystallised with four independent molecules in the unit cell and included several solvent molecules. Together with low high angle reflection this resulted in a structure of only marginal quality (not shown). Thus only an overall conformational analysis will be given here. As expected, the structure is more distorted than the free base 86, and the four independent molecules exhibited \(\Delta 24\) values of 0.62 to 0.66 \(\text{Å}\). The displacement of the \textit{meso} carbon was unsymmetric. For example, for one molecule the C5, C10, C15,
and C20 displacements from the least-squares plane of the 24 macrocycle atoms were 0.46, -0.08, 0.24 and -0.2 Å, respectively. In the other molecules these values varied between 0 and 0.42 Å while β-displacements reached up to 1.4–1.5 Å. Thus, the asymmetry in the macrocycle distortion of the free base is retained in the dication.

4.2.2 UV-Vis Analysis

Upon the addition of each acid to H₂TPP and H₂T(4-MeOP)P the solutions changed colour from purple to green. The Soret band in the porphyrin UV-vis spectrum was shifted to longer wavelengths upon protonation and the four Q bands were replaced by one more intense band (Fig. 4.3). The porphyrin dications formed with acid halides Cl⁻ and Br⁻ gave absorbances that were more red shifted than those formed from the oxygen donor anions CF₃CO₂⁻ and MeSO₃⁻. The Soret band of the dication was of lower intensity than that of the respective free base meso arylporphyrin.

![Figure 4.3. UV-vis titration of H₂TPP 58 (1 x 10⁻⁶ M) with HClO₄ recorded in dichloromethane.](image)

A series of UV-vis investigations were carried out on compounds 86 and 87 with several acids to determine the effect of protonation on the PDM macrocycle, to observe any anion effects that might occur and to compare the spectra to the analogous porphyrin. No fluorescence is observed for PDMs 86 and 87 due to their lack of aromaticity.
Figure 4.4. UV-vis titration of PDM 86 (1x10^{-5}) with HBr recorded in dichloromethane.

The UV-vis spectrum of 5,10-PDMs comprises two absorption bands of similar intensity, one at ~350 nm and the other at ~550 nm (Fig. 4.4). The UV-vis spectra of PDM dications displayed an intense absorption band at ca. 412 nm (86) or at ca. 425 nm (87) and a less intense band at ca. 635 nm (Fig. 4.4). In both PDMs the MeSO_3H dication was most blue shifted, followed by the dication formed from the addition of TFA to the porphyrin. The HBr dication was the most red shifted.

Figure 4.5. Relative absorption of PDM 86 (1 x 10^{-5} M) versus equivalents of acid recorded in dichloromethane.

Upon addition of 2 equiv. of HCl, HBr and HClO_4, complete protonation of both PDMs was observed. Full protonation of PDMs 86 and 87 was achieved with 4.5 and 2.5 equiv.
of MeSO$_2$H respectively, whereas 70 (86) and 5 (87) equiv. of TFA were needed (Fig. 4.5). This trend was in agreement with the pK$_a$ values of the acids. The titration of TFA with both H$_2$TPP and 86 required over 40 equiv. of acid to form the dication, whereas with H$_2$T(4-MeOP)P and 87, less than 10 equiv. of acid were required. We have attributed this to a higher basicity of the pyrroline nitrogen atoms in the phenyl derivatives.

Figure 4.6. UV-vis titration of PDM 87 (1 x 10$^{-7}$M) with MeSO$_2$H recorded in dichloromethane.

The UV-vis absorption spectra of the dications of compound 87 displayed an additional absorption band which was not present in the hexaphenyl derivative 86 (Fig. 4.6). In the area of 460-520 nm there was one broad absorption band that so far, we have been unable to account for. As similar equivalents of acid were required to fully protonate both PDMs, it is likely that the methoxy groups on the periphery influenced the behaviour of the PDM in solution.

4.2.3 NMR Analysis

In order to elucidate the protonation in more detail, 1H NMR titrations were carried out with H$_2$TPP and PDMs 86 and 87. 1H NMR titrations were not performed with H$_2$T(4-MeOP)P due to its low solubility in chloroform and dichloromethane.
Upon protonation of H$_2$TPP with TFA, the β-proton resonance at 8.87 ppm shifted to higher field to 8.62 ppm and the phenyl protons shifted to lower field (Δδ = 0.37 ± 0.01 ppm for the ortho protons and Δδ = 0.24 ppm for the meta and para protons) (Fig. 4.7). The nitrogen protons were more sensitive to acid than the peripheral protons. The NH resonance shifted downfield by Δδ = 3.2 ppm (Fig. 4.8). The higher field shift of the β-protons and the downfield shift of the nitrogen protons relate to a decrease in the aromatic ring current with protonation. When the concentration of acid was increased beyond the minimum amount required for dication formation, the direction of the shift changed. Aromatic and β-signals generally shifted to lower field and all signals continuously shifted with increasing acid concentration. The NH resonance shifted to higher field by Δδ = 0.98 ppm with 10 equiv. and Δδ = 1.44 ppm with 100 equiv. (Fig. 4.8). This continuous shift was in agreement with previous literature data where it was reported that the resonances shifted continuously to limiting values in TFA solvent.
Structural, spectroscopic and anion binding properties of 5,10-porphodimethenes

Figure 4.8. Spectral changes in the 1H NMR of nitrogen protons of H_2TPP 58 upon addition of TFA recorded in CDCl$_3$.

A similar trend was observed for the other acids. In $[H_4TPP][Cl]_2$ the nitrogen protons shifted downfield by $\Delta\delta = 3.39$ ppm. With the addition of up to 10 equiv. of acid, an upfield shift was observed ($\Delta\delta = 0.64$ ppm). In $[H_4TPP][ClO_4]_2$ an overall shift of $\Delta\delta = 3.59$ ppm was observed and in $[H_4TPP][MeSO_3]_2$, $\Delta\delta = 3.72$ ppm.

In the 1H NMR of the PDM dications of 86 and 87, different behaviour was observed. In contrast to the conjugated porphyrin dications, the β-protons of the PDM dications shifted downfield upon protonation and the proton at N22 moved upfield (Fig. 4.9). Similar to the nitrogen protons in the porphyrin, the proton at N24 shifted to lower field which was attributed to the proton being located at the more conjugated part of the PDM. This behaviour suggested that the aromatic ring current was increasing with diprotonation, more noticeably at the unconjugated component of the macrocycle. In the PDM dications, the resonance at 6.09 ppm (β-18 proton) displayed the largest downfield shift (up to $\Delta\delta = 0.87$ ppm) followed by the resonance at 6.15 ppm (β-3 proton). The resonances due to β-7 and β-2 generally displayed similar downfield shifts upon protonation.
Structure, spectroscopic and anion binding properties of 5,10-porphodimethenes

Figure 4.9. 1H NMR spectral changes for the central protons N24/N21/23 (cyan) and N22 (magenta) and β-18 (green), β-2 (blue), β-3 (red) and β-7 (purple) observed upon addition of MeSO$_3$H to PDM 86 in CD$_2$Cl$_2$.

Using HClO$_4$ as the proton source, the β-protons shifted to lower field by $\Delta\delta = 0.63$ ppm compared to $\Delta\delta = 0.53 \pm 0.01$ ppm, 0.52 ± 0.01 ppm and 0.50 ± 0.05 ppm, when the dication was formed with HCl, MeSO$_3$H and TFA respectively. Consequently, the proton at N22 in [H$_4$PDM][ClO$_4$]$_2$ displayed the largest upfield shift from $\delta = 10.52$ to 8.94 ppm in [H$_4$86][ClO$_4$]$_2$ and 10.56 to 8.65 ppm in [H$_4$87][ClO$_4$]$_2$. When further aliquots of HClO$_4$ were added, a downfield shift was observed. Using MeSO$_3$H to form the PDM dication, the proton at N22 shifted upfield and then shifted further upfield upon addition of further amounts of acid ($\Delta\delta = 0.81 \pm 0.10$ ppm). Generally, the 1H NMR resonances of the free base PDMs disappeared as those for the protonated species appeared. However, when the PDM dication of 86 was formed by protonation with TFA, the original resonances for the free base were only seen to shift. This is indicative of
binding. This also contrasted to the trend observed in the porphyrin. HCl displayed different behaviour entirely, as the signal for the proton at N22 appeared at low field at ca. 11.38 ppm (86) and 11.09 ppm (87) and then proceeded to shift to high field after further aliquots of acid were added ($\Delta \delta = 0.38 \pm 0.05$ ppm with 10 equiv.). This initial downfield shift, followed by an upfield shift, was seen in the porphyrin dications and indicated a decrease in ring current upon protonation.

4.2.4 Monocation Intermediate

Upon protonation of PDMs 86 and 87 with HClO₄, transient UV-vis and 1H NMR spectra were observed which have been attributed to the presence of a monocation species. The observation of a monoprotonated porphyrin has rarely been reported before and proof of their existence has been the subject of considerable effort.¹⁴⁷,²⁴⁸,²⁵¹,²⁵²

Free base porphyrins with two unprotonated nitrogen atoms are capable of exhibiting the following acid-base equilibria:

\[
\begin{align*}
[H_4P]^{2+} & \rightleftharpoons [H_3P]^+ + H^+ & K_1 & (4.1) \\
[H_3P]^+ & \rightleftharpoons H_2P + H^+ & K_2 & (4.2)
\end{align*}
\]

There have been many investigations into the above equilibria for various porphyrins and chlorins using both potentiometric and spectrophotometric techniques.²⁴⁷,²⁴⁸,²⁵³-²⁵⁶

By more fully understanding the acid-base properties of tetrapyrroles, more information can be obtained on metal-macrocycle reactivity, π-electron delocalisation, resonance energy N,N'-tautomerism, substitution pattern and stereochemistry.²⁵⁷

Both $[H_4P]^{2+}$ and H_2P are very stable molecules, with the former possessing a four-fold axis of symmetry and the latter a two-fold. The difficulty in observing the monocation species of meso-arylporphyrins was attributed to loss of symmetry which decreased resonance stabilisation and distorted the macrocycle. The monoprotonated derivative could therefore only exist over a very narrow pH range, i.e. $K_1 << K_2$.¹⁴⁷⁻¹⁴⁹,²⁰⁹,²⁴²,²⁴⁸,²⁵⁸⁻²⁶⁴

In the UV-vis and 1H NMR studies we carried out on the porphyrin, we found that the ring current decreased upon protonation. In the UV-vis studies this was shown by a less intense Soret band in the dication compared to the free base. Whereas in the 1H NMR titrations, a lower field shift of the nitrogen protons and a higher field shift of the β-protons were consistent with a decrease in aromatic character and consequently, a decrease in stability. In contrast, in the PDM dications the major band was more intense.
Structural, spectroscopic and anion binding properties of 5,10-porphodimethenes

and the chemical shifts in the NMR moved in the opposite directions, suggesting a more stable dication than free base form and conceivably, a more stable monocation.

Figure 4.10. UV-vis titration of PDM 86 (1 x 10^{-5} M) with HCIO_{4} with free base (green) monocation (blue) and dication (red) spectra indicated, and relative absorption at 732 nm (inset) recorded in dichloromethane.

Complex changes in the absorption profile of H_{2}(PDM) \rightarrow [H_{4}PDM][ClO_{4}]_{2} pointed towards the occurrence of multiple equilibria in solution. This was attributed to the conversion of the free base species to its diacid form via the formation of a PDM monoprotonated at the core [H_{3}PDM][ClO_{4}]. In PDM 86, there was a shift in isosbestic points from 371 nm to 387 nm, from 466 nm to 493 nm and also a red shift from 606 nm in the monocation to 631 nm in the dication. A new maximum was observed at 732 nm. With the addition of 0.75 equiv. of acid to the PDM solution the absorbance at 732 nm reached a maximum, then weakened as further aliquots of acid were added (Fig. 4.10). These features pointed towards the presence of a chemically distinguishable monocation. In 87 there was only a slight change in isosbestic points. Here the new absorption appeared at 719 nm after the addition of 0.75 equiv. of HCIO_{4} and disappeared after the addition of 1.50 equiv.

With less than the 2 equiv. per mole of H_{2}TPP required to convert the porphyrin completely to [H_{4}TPP]^{2+}, the ^{1}H NMR spectra contained a set of signals for each of the species at their expected chemical shift values. There were no signals at intermediate positions which could be attributed to a monoprotonated intermediate. In the ^{1}H NMR titration of PDM 86 and 87 with HCIO_{4}, intermediate spectra were observed (Fig. 4.11). The monocation was clearly detected by four sets of signals that were present between
Structural, spectroscopic and anion binding properties of 5,10-porphodimethenes

0.25 and 1.75 equiv. For 87, the C-20 methoxy resonance also showed an intermediate resonance. The free base resonated at 3.89 ppm, the monocation at 3.93 ppm and the dication at 3.97 ppm. Many resonances in the aromatic region overlapped so it was not possible to isolate a full set of signals for this intermediate species.

Figure 4.11. \(^1\)H NMR titration of 87 (1 x 10\(^{-3}\) M) with HClO\(_4\) (MeOD) in CD\(_2\)Cl\(_2\). Highlighted in red are the resonances due to a monocation species.

4.3 Conclusions

5,10-PDMs were found to exhibit highly nonplanar conformations. The effects of core protonation on 5,10-PDMs was investigated by UV-vis absorption and \(^1\)H NMR spectroscopies and compared to porphyrin dications. It was found that PDM dications exhibited opposite behaviour to their porphyrin analogues. PDM dications were more conjugated and therefore more stable than their free base counterparts. Porphyrin dications, on the other hand were less conjugated than their free base forms. Different outcomes were observed depending on the acid used. The PDM dications formed from acid halides gave absorbances that were more red shifted than those formed with the oxygen donor anions whereas the most dramatic changes in the \(^1\)H NMR spectra occurred when the dication was formed with HClO\(_4\). We achieved a clear and distinct set of spectra which support the assignment of the monoprotonated PDM. This
occurrence has not been reported or proven previously. We expect this may provide insight into the role of monoprotonated species in the coordination of metal ions into the hydroporphyrin macrocycle. In the 1H NMR investigations, similar to porphyrins, PDMs were found to coordinate the acid anions. Thus, given the anion recognition features of sapphyrin dications, it is likely that the closely related PDMs could be used as receptors for small molecules and anions.
Structural, spectroscopic and anion binding properties of 5,10-porphodimethenes
Chapter 5
Triptycene-linked porphyrin arrays
5.1 Rigid porphyrin linkers

Synthetic multiporphyrin arrays can mimic naturally occurring tetrapyrrolic aggregates that are involved in photosynthesis, light harvesting and electron transfer. In nature, the rates of these processes are optimised by organising the active components at ideal distances and orientations, which is achieved by the use of multiple, non-covalent interactions.265-268 Synthetically this can be achieved using multiple covalent and/or coordination bonds which serve to dramatically increase the association constants between components and ensure a well-defined geometry for the resulting complex.269-271

Triptycene and its derivatives possess rigid three-dimensional frameworks272-278 and thus have potential applications in host-guest complexes, molecular inclusion compounds and coordination compounds with unusual geometries.61,77,130,131,279-281 The 120° orientation provided by this framework constitutes a useful linker group for multichromophore assemblies.282 Consequently, we became interested in using a triptycene unit as a scaffold for the construction of porphyrin arrays with applications in host-guest chemistry. Triptycene was earlier used by us for the preparation of triptycene-quinones for electron transfer studies.64,71

Triptycene was first linked to a porphyrin by Wasielewski \textit{et al.} to investigate photoinduced electron transfer reactions (Figure 5.1).267,277,278,283,284 The porphyrin quinones were prepared \textit{via} mixed condensation reactions of pyrrole, 2-anthraldehyde and benzaldehyde. Further modifications with anthroquinone 120, naphthoquinone 121 and benzoquinone 122 yielded the desired porphyrins in up to 40% yield. Introduction of a quinone moiety to the rigid triptycene linker yielded molecules with well defined donor-acceptor distances and geometries. These properties are required to promote efficient charge separation and to hinder charge recombination.196,274,275,285,286
Three types of *meso* linked triptycencylporphyrin arrays were prepared with varying cavity sizes and were easily metalated with zinc(II). Zinc(II) porphyrins have a simple coordination chemistry and typically form 1:1 complexes with N-donor ligands. Thus, we also performed initial investigations into the host-guest chemistry of the zinc(II) triptycencylporphyrin arrays.

5.2 Synthetic methods

Triptycene-linked porphyrin trimers, previously synthesised within the group, were chosen as suitable candidates for multidentate host-guest chemistry. By varying the porphyrin centre-to-centre distances, the coordination properties of the rigid trimers could be investigated.

Commercially available triptycene 123 was reacted with nitric acid under reflux according to a procedure by Zhang *et al.* A mixture of 2,6,14-124 and 2,7,14-trinitrotriptycene was obtained, from which the former was isolated in 85% yield using column chromatography on silica gel with dichlormethane/*n*-hexane (1:1) as eluent. Reduction of the nitro residues to amino residues yielded 2,6,14-triaminotriptycene 125 in quantitative yield. 2,6,14-Triiodotriptycene 126 was obtained from a Sandmeyer reaction using hydrochloric acid, sodium nitrite and potassium iodide.
Triptycene-linked porphyrin trimers

Scheme 5.1. Synthesis of 2,6,14-triiodotriptycene 126 from triptycene 123.

Introduction of a boronate or ethyne functionality onto the *meso* position of a porphyrin, allows subsequent Suzuki-Miyaura and Sonogashira coupling reactions of these derivatives. The halogen-bearing moiety 126 was thus coupled to the respective porphyrins to yield triptycene-linked porphyrin trimers. Three different porphyrin monomers were synthesised bearing a boronic ester, an ethyne and a phenylethyne functionality, respectively.

5.2.1 Suzuki-Miyaura coupling reaction

Porphyrins modified at the *meso* positions were obtained *via* condensation of pyrrole or a pyrrolic derivative with various aldehydes. A₂-type porphyrins, 127 and 128, with two unsubstituted *meso* positions available for further functionalisation, were synthesised from the dipyrromethane precursor following a procedure developed by Lee and Lindsey.279 A nucleophilic substitution reaction yielded trisubstituted porphyrins in good yields. The organic nucleophile reacted with one of the free *meso* carbons in A₂-type porphyrins 127 and 128. Hydrolysis with water, followed by oxidation with DDQ yielded the desired A₂B-type porphyrins 129 (77%) and 130 (77%) (Scheme 5.2). Bromination with N-bromosuccinimide (NBS) yielded the porphyrin precursors 131 and 132.
TRIPTYCENE-LINKED PORPHYRIN TRIMERS

Scheme 5.2. Modification and functionalisation of A₂-type porphyrins using organolithium reagents and NBS.

meso-Boronylation of bromoporphyrins 131 and 132 was performed according to a procedure by Therien and coworkers (Scheme 5.3).77 The reaction of 131 and 132 with 4,4,5,5-tetramethyl-1,3,2-dioxaborolane proceeded as expected in 12 hours. Debromination of the starting material was a competing reaction, thus a 10-fold excess of pinacolborane was used to ensure a high yield of the boronate porphyrins 133 and 134 (Scheme 5.3). Metallation with zinc(II) acetate yielded 135 (56%) and 136 (80%). The boronate porphyrins, required for the Suzuki-Miyaura coupling reaction, were isolated at this point. The large difference in the retention factors of the metallated tetrapyrroles allowed the porphyrins to be separated easily by silica gel filtration.
Triptycene-linked porphyrin trimers

Scheme 5.3. Boronylation and metallation of bromoporphyrins. Yields are isolated yields over two steps.

In the following step boronate porphyrins 135 and 136 were reacted with 2,6,14-triiodotriptycene 126 using conditions described by Chng et al. for the preparation of a dibenzofuran-linked porphyrin dimer.282 The Suzuki cross-coupling reaction yielded 140 in 27% yield (Scheme 5.4). Due to the difficulty in purifying the zinc(II) trimer by column chromatography, the cross-coupling reaction was attempted with the free base monomer 133. The yield for this reaction increased to 33% and was due to the improved separation of the free base trimer over the zinc(II) trimer, thus leading to minimal loss of product. Metallation of 139 with zinc(II) acetate yielded the desired zinc(II) trimer 140 in quantitative yield.
Triptycene-linked porphyrin trimers

Scheme 5.4. Synthesis of triptycene-linked porphyrin trimers via Suzuki-Miyaura cross-coupling reactions with 2,6,14-triiodotriptycene.

5.2.2 Sonogashira coupling reaction

Precursors of the Sonogashira coupling reaction65,290 required an ethyne moiety to react with the triiodotriptycene. The porphyrin monomer was synthesised from a mixed condensation reaction of pyrrole with two different aldehydes.

A mixed condensation reaction can be employed to synthesise differently meso substituted porphyrins.38,39,43,248 Depending on the desired substitution pattern required, different ratios of aldehyde are used. The reaction of pyrrole with two aldehydes affords a set of six porphyrins (Scheme 5.5). Mixed condensation reactions are sometimes advantageous as they replace the elaborate, multi-step syntheses seen in Scheme 5.2. However, this is replaced by an elaborate purification step. The ease of separation of the mixture depends on the differences in polarity of the two types of meso substituents.
Reagents and conditions: (i) $\text{BF}_3 \cdot \text{OEt}_2$, CHCl$_3$, rt, 6 h; (ii) DDQ, rt, 1 h; (iii) TBAF, CH$_2$Cl$_2$, 30 min.

Scheme 5.5. Synthesis of A$_3$B-type porphyrin 146 via a mixed condensation reaction.

3-Trimethylsilylpro-2-pynal served as the reactive aldehyde, whereas, p-tolualdehyde was chosen because of its availability and enhanced solubility of the porphyrin over the phenyl derivative, thus aiding chromatography. Different ratios of pyrrole, p-tolualdehyde and 3-trimethylsilylpro-2-pynal were used including 4:3:1, 6:6:1 and 4:2.1:2. The latter gave the highest yield of the desired product. Deprotection of
the ethyne group in 146 with tetrabutylammonium fluoride (TBAF) yielded the ethynyl-substituted porphyrin 148 in a quantitative yield (Scheme 5.5).

A mixed condensation reaction was also attempted for the synthesis of porphyrin 150 according to a procedure previously reported by Fazio et al. Several attempts were made to isolate the desired product from the reaction mixture but were unsuccessful. The mixture was then submitted to metallation in order to obtain 151, but purification was difficult at this stage, too (Scheme 5.6). The mixture was then subjected to a procedure to deprotect the ethynyl group in the hope of being able to isolate the desired product 152 from the reaction mixture. This was not possible either. The expected products were observable in the 1H NMR spectra of the mixtures and the difficulties in purifying these mixtures could be due to the similar polarities of the components of the mixtures.

The 4-ethynylphenyl residue was introduced into 128 by a nucleophilic substitution reaction (Scheme 5.7). 1-Bromo-4-ethynylbenzene was reacted with n-butyllithium under inert conditions, to yield the desired organolithium reagent 153. Addition of 128
Triptycene-linked porphyrin trimers

Reagents and conditions: (i) CHCl₃, ZnOAc, py

Scheme 5.7. Synthesis of A₂B-type porphyrins via a nucleophilic substitution reaction.

in THF yielded 154 in 69% yield. Subsequent treatment with zinc(II) acetate yielded the desired porphyrin precursor 156.

Sonogashira coupling reactions have commonly been used for the synthesis of multicomponent systems. The palladium coupling conditions are reasonably attractive as they are performed in neutral to basic conditions, where demetallation does not occur. However, using copper as a co-catalyst, and under specific conditions, transmetallation can occur with the zinc(II)porphyrin. In agreement with Farina et al. who reported an improved rate of the Stille reaction upon addition of triphenylarsine, Lindsey et al. successfully outlined the conditions for a copper-free Sonogashira reaction involving triphenylarsine and tris(dibenzylideneacetone)di-palladium(0). Thus, under mild, nonacidic, nonmetallating conditions, zinc(II) porphyrins 149 and 155 were coupled with 2,6,14-triiodotriptycene 126 to yield the desired ethynyl- and phenylethynyl-linked porphyrin trimers 156 and 157 (Scheme 5.8).
5.3 Host-guest properties

In order to understand the behaviour of the trimer complexes 140, 156 and 157, upon ligand coordination, investigations were first carried out to determine how the bidentate ligand, 4,4'-bipyridine (bipy) coordinated to a monomeric metalloporphyrin (5,10,15,20-tetramesitylporphyrinato)zinc(II) 158. UV-vis spectroscopy has been used to elucidate the stoichiometry of binding, binding constants and a limited amount of structural information. Previous studies showed that upon coordination of an N-donor ligand to a zinc(II) porphyrin, a bathochromic shift of about 10 nm occurred in the Soret
region indicating a 1:1 binding stoichiometry.295,296 In addition, 1H NMR spectroscopy had shown that at millimolar concentrations a 2:1 porphyrin/ligand sandwich complex (Fig. 5.2b) was formed upon addition of 0.5 equiv. of a bidentate ligand.297 The 2:1 complex then opens up to give the 1:1 open complex (Fig. 5.2c) in the presence of excess ligand.

Figure 5.2. Schematic representation of the species involved in the binding equilibria of bipy to zinc(II) porphyrin.

The addition of incremental amounts of bipy to 158 ($\varepsilon = 756,600 \text{ M}^{-1}\text{cm}^{-1}$) in dichloromethane resulted in a Soret band shift from 420 to 428 nm ($\Delta \lambda = 8$ nm) with one definite isosbestic point at 424 nm, clearly indicating an equilibrium between two defined species (Fig. 5.3).298 The titration data were analysed using the nonlinear regression analysis program SpecfitTM which analyses the entire series of spectra simultaneously.299,300 The data was best fit for a 1:1 binding model and resulted in a binding constant of $\log K_{1:1} = 4.4 \pm (0.004)$, which was expected for the formation of the open complex.295,296 Methods for the determination of binding constants are described in the experimental chapter, Section 6.8.
Figure 5.3. Changes in the absorption spectra (Soret band spectral region) of 158 (1.34 x 10^{-4} M) recorded in dichloromethane, upon addition of bipy. Insert: The changes at 428 nm with a 1:1 fit (0 to 6,000 equiv.).

UV-vis experiments were carried out on trimers 140, 156 and 157 with mono- and bidentate ligands to determine the coordination properties of these rigid porphyrin arrays. Bidentate ligands are capable of displaying multiple binding interactions with these porphyrin trimers (Fig. 5.5). Previous UV-vis and 1H NMR investigations on porphyrin systems have revealed that dimeric bridging ligand complexes preferentially adopt the bridged structure at low concentrations of ligand, in spite of the fact that the exo side is considerably more accessible than the endo side.\(^{206,301-304}\) In 1H NMR spectroscopy, this phenomenon resulted in a high-field resonance at \(\delta = -5\) ppm for the CH\(_2\) protons of a 1,4-diazabicyclo[2.2.2]octane ligand (DABCO) tightly bound to two zinc(II) porphyrins, which was completely absent when monodentate ligands were used.\(^{295,296,305}\) Monomeric and dimeric binding have also been differentiated using UV-vis spectroscopy. Formation of a 1:1 dimer/ligand sandwich complex (Fig. 5.4a) was accompanied by a 5 nm red-shift, compared to a 10 nm red-shift in the 1:2 open system (Fig. 5.4b) which was observed with the addition of excess ligand.\(^{295}\)

Figure 5.4. Schematic representation of a 1:1 bidentate ligand sandwich complex (a) and 2:1 open complex (b).
Figure 5.5. Schematic representation of the species in the equilibria of binding bipy to a trisporphyrin.
Also, association constants determined from UV-vis titrations for the formation of dimeric sandwich complexes are much greater than those for the corresponding monodentate binding motifs. Unfortunately, due to time constraints, \(^1\)H NMR titrations could not be performed, however, in-depth studies were carried out using UV-vis spectroscopy. UV-vis titrations were performed on directly-linked 140, ethynyl-linked 156 and phenylethynyl-linked 157 porphyrin trimers.

5.3.1. Absorption titration of directly linked trimer 140 with bipy

The absorption spectrum of the directly linked trimer 140 (\(\varepsilon = 816,000 \text{ M}^{-1}\text{cm}^{-1}\)) exhibited a \(\lambda_{\text{max}}\) at 424 nm with a shoulder at 417 nm. This was indicative of slight electronic interaction between the porphyrin components. Upon titration of 140 with bipy in dichloromethane, two new transitions formed at 430 (\(\Delta \lambda = 6\) nm) and 433 nm (\(\Delta \lambda = 9\) nm), with isosbestic points at 427 and 428 nm respectively (Fig. 5.6). Titration with the monomeric ligand, pyridine, resulted in a 9 nm bathochromic shift (Table 5.1), thus confirming that the final species in the 140/bipy solution was the 1:3 open complex.

![Figure 5.6](image-url)

Figure 5.6. The changes in the absorption spectra (Soret region) of 140 (8 x 10^{-7}M) upon addition of bipy, recorded in dichloromethane. Insert: The changes at 433 nm fit to a five-component system.
Triptycene-linked porphyrin trimers

Table 5.1. The absorption maxima and binding constants for the complexation between 140 and mono- and bidentate ligands.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max}</th>
<th>Log$K_{1:1}$</th>
<th>Log$K_{1:2}$</th>
<th>Log$K_{1:3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>424, 548, 587</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140 + bipy</td>
<td>433, 563, 602</td>
<td>5.3 ± 0.03</td>
<td>5.4 ± 0.03</td>
<td>3.3 ± 0.02</td>
</tr>
<tr>
<td>140 + pyr</td>
<td>433, 563, 602</td>
<td>4.8 ± 0.18</td>
<td>4.1 ± 0.22</td>
<td>3.4 ± 0.23</td>
</tr>
</tbody>
</table>

The changes in the spectra were best fit to a five-component system (host, guest, and 1:1, 1:2 and 1:3 host/guest) using Specfit™ and are shown as an insert in Figure 5.6. In the case of the current trimer 140, it seemed unlikely that the zinc(II) metal would remain four-coordinate in the presence of excess bipy so we proposed that the 6 nm red shift was due to the formation of a 1:2 trimer/ligand complex where one bidentate ligand formed a sandwich, and the other, an open complex (i.e. monodenate binding) as shown in Figure 5.5d. The overall shift of 10 nm was assigned to the 1:3 trimer/ligand open complex (Fig 5.6e). The binding constants for this fit were log$K_{1:1}$ = 5.28 (± 0.03), log$K_{1:2}$ = 5.45 (± 0.03) and log$K_{1:3}$ = 3.25 (± 0.02). The binding constants for the 1:1 and 1:2 species were of similar magnitude and indicated the formation of the more stable sandwich complexes.

The species distribution plot for the five-component system (Fig. 5.7) showed the simultaneous formation of the 1:1 and 1:2 trimer/ligand species at low concentrations of bipy. We were unable to unambiguously classify the two species. However, given the close proximity of the metal coordination sites in 140 compared to those in 156 and 157, we assumed that the higher binding constant for the formation of the 1:2 trimer/ligand species was as a result of a structural influence.
Figure 5.7. The species distribution plot of 140 (8 x 10^{-7} M) upon the addition of bipy recorded in dichloromethane 0 to 3,000 equiv. (left) and 0 to 50 equiv. (right).

5.3.2. Absorption titration of ethyne-linked porphyrin trimer 156 with bipy

The spectra for compound 156 (ε = 996,400 M^{-1} cm^{-1}) exhibited a λ_{max} at 443 nm. Upon titration with bipy, a new transition at 449 nm (Δλ = 6 nm) developed and an isosbestic point at 444 nm (Fig. 5.8) could be identified. The changes in the spectra with increasing concentrations of bipy were best described by a five-component system (host, guest, 1:1 host/guest and 1:2 host/guest) after fitting using Specfit™, the fit of which is shown as an insert in Figure 5.8.

Upon the formation of a 1:1 complex monomer 158 exhibited an 8 nm red shift (Section 5.3). In the case of dimeric ligands, the formation of a 1:1 open complex was accompanied by a 10 nm red shift, whereas the formation of a sandwich complex resulted in a 5 nm red shift. However, titration with pyridine also resulted in an overall bathochromic shift of 6 nm (Table 5.2).

<table>
<thead>
<tr>
<th></th>
<th>λ_{max}</th>
<th>LogK_{1:1}</th>
<th>LogK_{1:2}</th>
<th>LogK_{1:3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>443, 567, 614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156 + bipy</td>
<td>449, 582, 635</td>
<td>6.18 ± 0.01</td>
<td>5.14 ± 0.09</td>
<td>3.79 ± 0.09</td>
</tr>
<tr>
<td>156 + pyr</td>
<td>449, 581, 636</td>
<td>4.62 ± 0.18</td>
<td>3.95 ± 0.17</td>
<td>3.43 ± 0.14</td>
</tr>
</tbody>
</table>

Table 5.2. The absorption maxima and binding constants for the complexation between 156 and mono- and bidentate ligands.
The changes in the spectra were therefore attributed to a five component system (Host, guest and 1:1, 1:2 and 1:3 host/guest complexes). The binding isotherm is shown as an insert in Figure 5.8. Again, the binding constants for the formation of the 1:1 and 1:2 156/bipy complexes were considerably higher than for the formation of the 156/pyr complexes, and indicated the formation of sandwich-type complexes with the bidentate ligand.

![Graph showing UV-vis titration (Soret region) of 156 with bipy recorded in dichloromethane (0 to 70,000 equiv.). Insert: The changes at 449 nm with a 1:2 trimer/ligand fit (0 to 500 equiv.).]

Figure 5.8. UV-vis titration (Soret region) of 156 (9.2 x 10^{-7} M) with bipy recorded in dichloromethane (0 to 70,000 equiv.). Insert: The changes at 449 nm with a 1:2 trimer/ligand fit (0 to 500 equiv.).

The species distribution diagram in Figure 5.9 obtained from the fit showed that the 1:1 complex reached 62% formation at only 1 equivalent of ligand per porphyrin. The 1:2 complex became the main species in solution after the addition of 3 equiv. of ligand, whereas the 1:3 species was predominant in solution after the addition of almost 60 equiv. of bidentate ligand.
Figure 5.9. The species distribution diagram of 156 (9.22 x 10^{-7}M) upon the addition of bipy (0 to 500 equiv.) recorded in dichloromethane.

5.3.3. Absorption titration of phenylethynyl-linked trimer 157 with bipy

In the case of the phenyl acetylene linked porphyrin trimer 157 (ε = 958,100 M^{-1}cm^{-1}), the addition of bipy resulted in a decrease in the absorption at 415 nm while a new band appeared at 422 nm (Δλ = 6 nm), with an isosbestic point at 419 nm (Fig. 5.10). With the addition of further equivalents of bipy, a second isosbestic point could be identified at 421 nm, and a final absorption with a λ_{max} at 425 (Δλ = 10 nm) resulted. This was comparable to UV-vis investigations carried out with pyridine, where a new absorption at 425 nm (Δλ = 10 nm) was observed with a single isosbestic point at 420 nm. This confirmed the final species in the trimer/bipy solution to be the 1:3 open complex. Using Specfit™ the changes in the absorption spectra upon titration with bipy were assigned to a five-component system (host; guest; and 1:1; 1:2 and 1:3 trimer/ligand complexes). The binding isotherm is shown as an insert in Figure 5.10.

The binding constants obtained for this fit were logK_{1:1} = 5.11 (± 0.01), logK_{1:2} = 3.69 (± 0.07) and logK_{1:3} = 3.88 (± 0.07). The 6 nm red shift, also seen in trimer 140, was attributed to the formation of a 1:2 trimer/ligand complex (Fig. 5.5d), whereas the overall red shift of 10 nm relative to the original trimer absorption was consistent with the formation of the 1:3 open complex (Fig. 5.5e).
The binding constants obtained for this fit are shown in Table 5.3. The binding constant for the formation of the 1:1 complex was greater than the latter two, indicating the formation of the more stable sandwich complex. The lower 1:2 and 1:3 constants, indicated the formation of open complexes.

Table 5.3. The absorption maxima and binding constants for the complexation between 157 and mono- and bidentate ligands.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max}</th>
<th>Log$K_{1:1}$</th>
<th>Log$K_{1:2}$</th>
<th>Log$K_{1:3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>157</td>
<td>415, 542, 578</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157 + bipy</td>
<td>425, 557, 595</td>
<td>5.1 ± 0.01</td>
<td>3.7 ± 0.07</td>
<td>3.9 ± 0.07</td>
</tr>
<tr>
<td>157 + pyr</td>
<td>425, 556, 596</td>
<td>3.5 ± 0.08</td>
<td>3.3 ± 0.17</td>
<td>3.5 ± 0.09</td>
</tr>
</tbody>
</table>

The speciation diagram in Figure 5.11 depicted 69% formation of the 1:1 ligand/trimer complex at 11 equivalents of bipy per porphyrin. The 1:2 and 1:3 trimer/ligand species formed simultaneously, with the former reaching its maximum concentration at 53 equiv. of guest. Both species had similar binding constants and were consistent with external complexation.
5.3.4 Comparison

Plotting the variation of the absorbance versus the number of added equiv. of bipy per porphyrin revealed that complexation occurred at lower concentrations of bipy for the trimers than for the reference monomer 158 (Figure 5.12).

Figure 5.12. Plot of the variation of absorption versus the equiv. of bipy added per porphyrin.

5.4 Conclusions

2,6,14-Trisubstituted triptyceny1porphyrins were synthesised in yields up to 36% via both Suzuki and Sonogashira coupling reactions. The porphyrin precursors were
Triptycene-linked porphyrin trimers

prepared by nucleophilic addition reactions of A_2-type porphyrins or mixed condensation reactions. The best ratio for the formation A_3B-type porphyrins from the mixed condensation reaction was $4:2.1:2$ pyrrole/reactive aldehyde/aldehyde. The systems investigated provide a proof of concept for the construction of larger porphyrin arrays based on a rigid triptycene core.

Preliminary studies were performed to investigate the host/guest properties of the triptycene-linked porphyrin trimers. Complexation experiments with the trimers and bidentate 4,4'-bipyridine were performed and binding constants were determined using Specfit™. Pyridine, a monodentate ligand, was used for a comparative study. In each array, the binding constants for the formation of the 1:1 complex were greater by an order of magnitude with 4,4'-bipyridine compared with pyridine. This was consistent with intramolecular sandwich-type complexation. Larger binding constants were also obtained for the formation of the 1:2 trimer/ligand complexes of 140 and 156 with bipy, whereas 157, displayed a comparable value for both bipy and pyr.

An intermediate species was detected for compounds 140 and 157 and was 6 nm red shifted from the uncoordinated porphyrin array. This was assigned to the 1:2 trimer/ligand complex which displayed both sandwich and open binding interactions. At higher concentration of bipy, overall red-shifts of 9/10 nm were observed. These shifts were comparable to results obtained with pyridine and were consistent with the formation of a 1:3 trimer/ligand open complex. Compound 156 displayed different behaviour: An intermediate species, with a clear set of isosbestic points could not be detected and a red-shift of 6 nm was observed in the presence of excess ligand. A comparison with pyridine confirmed that the final species was in fact the 1:3 open complex.

These types of trimers have not been investigated previously. They are not fully symmetric with the result that both sandwich and open complexation was observed simultaneously in titrations with bipy. Previous investigations into the coordination chemistry of multiporphyrin arrays focused either on fully symmetric systems, whereby sandwich and/or open complexes were observed sequentially, or on dendrimer-type systems whereby the intermediate complexes could not be decisively classified.
Triptycene-linked porphyrin trimers
Chapter 6
Experimental
6.1 Instrumentation and General Considerations

All chemicals were of analytical grade and were purchased from Aldrich Co. unless otherwise stated. Dichloromethane was dried over phosphorus pentoxide followed by distillation and tetrahydrofuran (THF) was distilled from sodium/benzophenone under argon. All condensation reactions were performed under an argon atmosphere with the reaction flask shielded from ambient light. Reactions with organolithium reagents were carried out using standard Schlenk techniques and glassware under an atmosphere of argon. NMR spectra were recorded on Bruker DPX 400 (400.13 MHz for 1H NMR, 100.61 MHz for 13C NMR) and/or Bruker AV 600 (600.13 MHz for 1H NMR, 150.90 MHz for 13C NMR). Chemical shifts recorded in ppm refer to tetramethylsilane (TMS) set at 0.00 ppm. Data are reported as follows: chemical shifts, multiplicity (s: singlet, d: doublet, dd: double doublet, t: triplet, q: quartet, br: broad, m: multiplet), coupling constants (J in Hz), integration and assignment. High resolution mass spectrometry was carried out on a Micromass/Waters Corp. USA liquid chromatography time-of-flight spectrometer equipped with electrospray source. UV-vis measurements were performed on Shimadzu multiSpec-1505 using dichloromethane as solvent. Melting points were acquired on Stuart SMP10 melting point apparatus and were uncorrected. Thin layer chromatography (TLC) was performed on silica gel 60F254 (Merck) precoated aluminum sheets. Chromatography on silica gel was carried out using a forced flow of the indicated solvent system on Fluka Silica Gel 60 (230-400 mesh).

Crystal structure determination: Growth and handling of crystals followed the concept developed by Hope. Intensity data were collected at 108 K with a Saturn724 system complete with 3-circle goniometer and CCD detector utilizing Mo-K$_\alpha$ radiation ($\lambda = 0.71073$ Å). The intensities were corrected for Lorentz, polarization and extinction effects. The structure was solved with Direct Methods using the SHELXTL PLUS program system and refined against |F2| with the program XL from SHELX-97 using all data. Nonhydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were generally placed into geometrically calculated positions and refined using a ridging model. The N-H hydrogen atoms were located in difference maps and refined using the standard riding model. Some of the phenyl groups showed high thermal librational movement. Refinement with split positions did not improve the refinement model.
Experimental

6.2 Starting materials

Dipyrromethane,313,314 5,15-bis(1-ethylpropyl)porphyrin,46 5,15-dihexylporphyrin,46 5,15-diphenylporphyrin,315 5,15-ditolyiporphyrin,315 5,10,15-trihexylporphyrin216 and 15,10,15-triphenylporphyrin72,74 were prepared, metallated21 and brominated57 according to literature procedures.

General procedure for the synthesis of 5,10,15,20-tetra-substituted porphyrins

5,10,15,20-tetrakis(1-ethylpropyl)-porphyrin \textbf{72}, 5,10,15,20-tetraisobutylporphyrin \textbf{73} 5,10,15,20-tetraphenyiporphyrin \textbf{58}, 5,10,15,20-tetrakis(3-methoxyphenyl)porphyrin \textbf{74} and 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin \textbf{75} were prepared according to a procedure by Lindsey \textit{et al.}25 Pyrrole (10.5 mL, 0.15 mol) and the appropriate aldehyde (0.15 mol) were dissolved in dry dichloromethane (1.8 mL) in a three-neck 2 L round bottom flask equipped with a gas inlet (argon). The flask was shielded from ambient light before trifluoroacetic acid (1.7 ml, 15 mmol) was added. The reaction mixture was stirred for 12 h at rt, after which, DDQ (38.2 g, 0.165 mol in dichloromethane) was added. The reaction mixture was stirred for a further hour before the addition of triethylamine (3 mL). The crude porphyrin mixture was filtered through a layer of silica gel using dichloromethane as eluent. Recrystallisation from dichloromethane/methanol yielded the desired porphyrins.

\textbf{72}: Prepared according to the above procedure using 2-ethylbutyraldehyde (18.5 mL, 0.15 mol) to yield \textbf{72}; 4.04 g, 18.2%; \textit{R} = 0.54 (SiO\textsubscript{2} ethyl acetate/n-hexane 1:6, v/v); 1H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta = -2.25 \) (s, 2H, NH), 1.00 (t, \(\ ^3J = 7.4 \text{ Hz} \), 24H, CHCH\textsubscript{2}CH\textsubscript{3}), 2.73-2.97 (m, 16H, CHC\textsubscript{2}CH\textsubscript{3}), 4.89 (m, 4H, CHCH\textsubscript{2}CH\textsubscript{3}), 9.54 (s, 8H, \(\beta H \)) ppm; UV-vis (CH\textsubscript{2}Cl\textsubscript{2}): \(\lambda_{\text{max}} \) (lg \(\varepsilon \)) = 420 (5.27), 522 (4.14), 655 (4.17) nm. The analytical data were in agreement with the literature.184

\textbf{73}: Prepared according to the above procedure using 3-methylbutyraldehyde (16.1 mL, 0.15 mol to yield \textbf{73}; 3.2 g, 11.9%; \textit{R} = 0.57 (SiO\textsubscript{2} dichloromethane/n-hexane 1:2, v/v); 1H NMR (400 MHz,CDCl\textsubscript{3}): \(\delta = -2.65 \) (s, 2H, NH), 1.21 (d, \(^3J = 6.4 \text{ Hz} \), 24H, CH\textsubscript{3}), 2.78 (sept, \(^3J = 7.0 \text{ Hz} \), 4H, CH\textsubscript{3}), 4.87 (d, \(^3J = 7.6 \text{ Hz} \), 8H, CH\textsubscript{2}), 9.50 (s, 8H, \(\beta H \)) ppm; UV-vis (CH\textsubscript{2}Cl\textsubscript{2}): \(\lambda_{\text{max}} \) (lg \(\varepsilon \)) = 418 (5.56), 521 (4.42), 555 (4.35), 655 (4.47) nm. The analytical data were in agreement with the literature.184
Experimental

58: Prepared according to the above procedure using benzaldehyde (15.2 mL, 0.15 mol to yield 58; 8.06 g, 35%; Rf = 0.71 (SiO₂ ethyl acetate/n-hexane 1:6, v/v)); ¹H NMR (400 MHz, CDCl₃): δ = -2.70 (s, 2H, N=), 7.81 (d, ³J = 7.0 Hz, 12H, Ar-H), 8.28 (d, ³J = 7.4 Hz, 8H, Ar-H), 8.92 (s, 8H, βH) ppm; UV-vis (CH₂Cl₂): λ_max (lg ε) = 417 (5.7), 515 (4.3), 550 (4.0), 593 (3.8), 646 (3.7) nm. The analytical data were in agreement with the literature.²⁵

74: Prepared according to the above procedure using m-anisaldehyde (18.3 mL, 0.15 mol to yield 74; Rf = 0.53 (SiO₂ ethyl acetate/n-hexane 1:4, v/v); 5.84 g, 21%; ¹H NMR (400 MHz, CDCl₃): δ = -2.78 (s, 2H, N=), 4.01 (s, 12H, OCH₃), 7.36 (d, ³J = 8.0 Hz, 4H, Ar-H), 7.67 (t, ³J = 7.6 Hz, 4H, Ar-H), 7.83 (m, 8H, Ar-H), 8.91 (s, 8H, βH) ppm; UV-vis (CH₂Cl₂): λ_max (lg ε) = 419 (5.06), 515 (3.98) nm. The analytical data were in agreement with the literature.²⁵

75: Prepared according to the above procedure using p-anisaldehyde (18.3 mL, 0.15 mol to yield 75; 2.98 g, 11%; Rf = 0.53 (SiO₂ ethyl acetate/n-hexane 1:4, v/v)); ¹H NMR (400 MHz, CDCl₃): δ = -2.79 (s, 2H, N=), 4.13 (s, 12H, OCH₃), 7.35 (d, ³J = 8.6 Hz, Ar-H), 8.17 (d, ³J = 8.4 Hz, Ar-H), 8.92 (s, 8H, βH) ppm; UV-vis (CH₂Cl₂): λ_max (lg ε) = 421 (5.6), 518 (4.1), 556 (3.9), 591 (3.5), 650 (3.6) nm. The analytical data were in agreement with the literature.²⁵

6.3 Hydroporphyrins

General procedure for the reaction of meso tetrasubstituted porphyrins with organolithium reagents.

A 100 mL Schlenk flask was charged with porphyrin (1 equiv.), a palladium-based catalyst (0.1 equiv.), and copper iodide (0.15 equiv.) in dry THF (40 mL) under an argon atmosphere. The reaction mixture was cooled to -80 °C for the addition of n-hexyl-, tert-butyl- and sec-butyllithium, or 0 °C for the addition of phenyllithium. Organolithium reagents were added dropwise via syringe over 10 min upon which, a colour change to green was observed. After removal of the cold bath, the solution was allowed to stir for 4 h (TLC control). A colour change to green/brown was observed. Aqueous NH₄Cl (1 mL) was added to quench the reaction. After stirring for 10 min, the reaction mixture was filtered through silica gel. The crude porphyrin mixture was dried in vacuo and subjected to either column chromatography or preparative TLC.
5,10,15,20-tetrakis(1-ethylpropyl)-2,3-di(hexyl)chlorin 77

Following the above procedure, H₂TEPP 72 (100 mg, 0.17 mmol), tetrakis(triphenylphosphine)palladium(0) (19.6 mg, 0.017 mmol), copper iodide (4.8 mg, 0.025 mmol) and hexyllithium (0.74 mL of a 2.3 M solution in hexane, 1.7 mmol) were reacted and subjected to column chromatography on silica gel using ethyl acetate/n-hexane (1:20, v/v) as eluent. The second fraction gave the title compound as a purple solid (18.1 mg, 14%); mp 190 °C; R_f = 0.34 (SiO₂, ethyl acetate/n-hexane 1:20, v/v); ¹H NMR (400 MHz, CDCl₃): δ = -0.21 (s, 2H, NH), 0.57 (t, 3J = 7.32 Hz, 6H, CHCH₂CH₃), 1.33 (m, 6H, Hex-CH₃), 1.55 (t, 6H, J = 7.4 Hz, CHCH₂CH₃), 1.71 (m, 10 H, Hex-CH₂), 2.05-2.35 (m, 8 H, CHCH₂CH₃), 2.37-2.78 (m, 10H, Hex-CH₂), 2.83-3.07 (m, 8H, CHCH₂CH₃), 3.69 (quin, 3J =7.4 Hz, 2H, CHCH₂CH₃), 4.51, (d, 3J = 10.2 Hz, 2H, βH), 4.56 (b, 2H, CHCH₂CH₃), 8.93 (d, 3J = 4.9 Hz, 2H, βH), 9.13 (s, 2H, βH), 9.19 (b, 2H, βH) ppm; ¹³C NMR (100.6 MHz, CDCl₃): δ = 13.3 (Hex-CH₃), 22.2 (CH₂), 27.5 (CH₂), 28.8 (CH₂), 28.9 (CH₂), 29.3 (CH₂), 30.9 (CH₂), 31.4 (CH₂), 31.5 (CH₂), 32.2 (CH₂), 32.5 (CH₂), 47.3 (CH), 49.7 (CH), 51.4 (βH), 111.5 (qC), 121.4 (β-CH), 125.0 (β-CH), 129.1 (β-CH), 166.2 (qC) ppm; UV-vis (CH₂Cl₂): λ_max (lg ε) = 422 (4.08), 536 (3.08), 564 (3.11), 660 (3.20) nm; HRMS (ES⁺) [C₅₂H₈₀N₄⁺H] cacld. 761.6461, found 761.6432.

2-tert-Butyl-5,10,15,20-tetrakis(1-ethylpropyl)porphyrin 78 and 2,3-di(tert-butyl)-5,10,15,20-tetrakis(1-ethylpropyl)porphyrin 79

Following the above procedure, H₂TEPP 72 (100 mg, 0.17 mmol), tris(dibenzylideneacetone)dipalladium(0) (17.5 mg, 0.017 mmol), copper iodide (4.8 mg, 0.025 mmol) and tert-butyllithium (1.0 mL of a 2.3 M solution in pentane, 1.7 mmol) were reacted and subjected to column chromatography on silica gel using methanol/n-hexane (1:40, v/v) as eluent. The second fraction gave 79 as a purple solid (24.7 mg, 21%). The
final fraction contained a mixture of two compounds which were further purified by preparative TLC on silica gel using dichloromethane/n-hexane (1:1, v/v). Fraction one contained unreacted starting material 72 (30 mg, 30%), fraction two contained 78 (11.1 mg, 10%).

78: mp 199 °C; Rf = 0.22 (SiO2, n-hexane/methanol 80:1, v/v); 1H NMR (400 MHz, CDCl3): δ = -0.09 (br, 2H, NH), 0.39 (s, 9H, tBuCH3), 1.21 (t, 3J = 7.3 Hz, 6H, CHCH2CH3), 1.28 (m, 14H, CHCH2CH3, CHCH2CH3), 1.43 (t, 3J = 7.4 Hz, 6H, CHCH2CH3), 1.91 (m, 2H, CHCH2CH3), 2.75 (m, 12H, CHCH2CH3), 3.67 (s, 1H, CHCH2CH3), 3.89 (s, 1H, CHCH2CH3), 4.37 (d, 3J = 7.7 Hz, 1H, βH), 4.53 (m, 3H, CHCH2CH3, βH), 4.68 (d, 3J = 7.4 Hz, 1H, βH), 8.80 (m, 2H, βH), 9.08 (m, 4H, βH) ppm 13C NMR (150.9 MHz, CDCl3): δ = 13.1 (CH3), 13.5 (CH3), 13.8 (CH3), 14.1 (CH3), 26.8 (CH3), 29.3 (CH2), 30.1 (CH2), 30.4 (CH2), 32.5 (CH2), 33.1 (CH2), 35.3 (qC), 40.9 (β-C), 47.5 (CH), 48.4 (CH), 49.4 (CH), 49.8 (CH), 54.0 (β-C), 108.9 (qC), 114.5 (qC), 120.4 (β-C), 122.2 (β-C), 123.6 (β-C), 125.9 (β-C), 128.6 (β-C), 133.2 (qC), 138.5 (qC), 162.8 (qC) ppm; UV-vis (CH2Cl2): λmax (lg ε) 424 (4.0), 538 (3.0), 662 (3.1) nm; HRMS (ES+) [C44H64N4+H] calcd. 649.5209, found 649.5217.

79: mp 248 °C; Rf = 0.45 (SiO2, n-hexane/methanol 80:1, v/v); 1H NMR (400 MHz, CDCl3): δ = 0.21 (s, 2H, NH), 0.85 (s, 18H, tBu-CH3), 1.10 (t, 3J = 7.3 Hz, 15H,
CH\textsubscript{2}CH\textsubscript{3}), 1.47 (b, 4H, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 1.74 (t, \textit{J} = 4.9 Hz, 9H, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 2.37 (m, 4H, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 2.90 (m, 4H, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 3.28 (m, 2H, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 3.83 (b, 2H, CHCH\textsubscript{2}CH\textsubscript{3}), 4.48 (b, 2H, CHCH\textsubscript{2}CH\textsubscript{3}), 4.69 (s, 2H, \beta H), 8.77 (d, \textit{J} = 4.9 Hz, 2H, \beta H), 9.07 (s, 2H, \beta H), 9.12 (d, \textit{J} = 4.6 Hz, 2H, \beta H) ppm; 13C NMR (150.9 MHz, CDCl\textsubscript{3}): \delta = 13.4 (CH\textsubscript{3}), 18.5 (CH\textsubscript{3}), 31.8 (CH\textsubscript{2}), 34.2 (CH\textsubscript{2}), 34.3 (CH\textsubscript{2}), 36.9 (CH\textsubscript{2}), 47.9 (CH), 49.7 (CH), 60.6 (\beta-CH), 116.2 (qC), 123.3 (\beta-CH), 125.4 (\beta-CH), 129.0 (\beta-CH), 161.9 (qC) ppm; UV-vis (CH\textsubscript{2}Cl\textsubscript{2}): \lambda_{\text{max}} (lg e) 429 (4.1), 458 (3.8), 581 (3.1), 6.03 (3.2), 656 (3.2) nm; HRMS (ES+) [C\textsubscript{48}H\textsubscript{72}N\textsubscript{4}+H] cacld. 705.5835, found 705.5801.

5,10,15,20-Tetra(1-ethylpropyl)-2,3-diphenylchlorin 80

Following the above procedure, H\textsubscript{2}TEPP 72 (100 mg, 0.17 mmol), tetrakis(triphenylphosphine)palladium(0) (19.6 mg, 0.017 mmol), copper iodide (4.8 mg, 0.025 mmol) and phenyllithium (0.94 mL of a 1.8 M solution in dibutyl ether, 1.7 mmol) were reacted. After warming the solution to rt, no reaction had occurred and the solution remained green. The reaction mixture was warmed to 60 °C upon which, a colour change to dark green/brown was observed. The crude porphyrin mixture was subjected to column chromatography on silica gel using ethyl acetate/n-hexane (3:7 v/v) as eluent. The first fraction contained traces of metallated porphyrin. The second fraction contained unreacted starting material 72 (13 mg, 13%). The product was obtained as the third fraction (6.6 mg, 5.5%) \textit{R} = 0.56 (SiO\textsubscript{2}, ethyl acetate/n-hexane 30:70, v/v); 1H NMR (400 MHz, CDCl\textsubscript{3}): \delta = -0.53 (s, 2H, NH), 0.86 (m, CHCH\textsubscript{2}CH\textsubscript{3}), 0.92 (m, CHCH\textsubscript{2}CH\textsubscript{3}), 2.47-3.08 (m 16H, CH\textsubscript{2}CH\textsubscript{3}), 3.36 (b, 1H CH\textsubscript{2}CH\textsubscript{3}), 3.82 (b, 1H, CHCH\textsubscript{2}CH\textsubscript{3}), 4.56 (m, 3H, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}, \beta H), 5.14 (m, 1H, CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 7.56 (m, 6H, Ar-\textit{H}), 7.74 (m, 4H Ar-\textit{H}), 8.96 (m, 2H, \beta H), 9.16 (m, 2H, \beta H), 9.25 (m, 2H, \beta H) ppm; UV-vis (CHCl\textsubscript{2}): \lambda_{\text{max}} (lg e) 376 (3.5), 423 (4.0), 533 (3.0), 659 (3.1) nm.
Experimental

2-Hexyl-5,10,15,20-tetraphenylporphyrin 83

Following the above procedure, H$_2$TPP 58 (100 mg, 0.16 mmol), tetrakis(triphenylphosphine)palladium(0) (18.8 mg, 0.016 mmol), copper iodide (4.8 mg, 0.025 mmol) and n-hexyllithium (1.42 mL of a 1.7 M solution in pentane, 3.27 mmol) were reacted and subjected to column chromatography on silica gel using dichloromethane/n-hexane (1:3 v/v) as eluent. The second fraction gave the title compound 83 as a brown solid (31.9 mg, 25%); mp 241 °C; R$_f$ = 0.45 (SiO$_2$, dichloromethane/n-hexane 1:3, v/v); 1H NMR (400 MHz, CDCl$_3$): δ = -1.47 (br, 2H, NH), 0.77 (t, 3J = 7.46 Hz, 3H, CH$_3$), 0.94 (m, 4H, CH$_2$), 1.09 (m, 2H, CH$_2$), 1.43 (m, 2H, CH$_2$), 1.62 (m, 2H, CH$_2$), 3.94 (d, 3J = 16.96 Hz, 1H, β-CH$_2$), 4.49 (dd, 3J = 9.36 Hz, 1H, 2J = 16.96 Hz, β-CH$_2$), 4.70 (m, 1H, βH), 7.72 (m, 14H, Ar-H), 8.06 (m, 2H, Ar-H), 8.16 (m, 2H, Ar-H), 8.24 (m, 2H, βH), 8.27 (m, 2H, Ar-H), 8.47 (s, 2H, βH), 8.62 (m, 2H, βH) ppm; 13C NMR (100.6 MHz, CDCl$_3$): δ = 13.5 (CH$_3$), 22.0 (CH$_2$), 25.3 (CH$_2$), 28.2 (CH$_2$), 30.9 (CH$_2$), 34.7 (CH$_2$), 42.3 (β-CH$_2$), 44.5 (β-C [nHex]), 111.85 (qC), 112.4 (qC), 121.9 (qC), 122.2 (qC), 123.16 (β-C), 123.18 (β-C), 126.3 (br, Ar-C), 126.7 (Ar-C), 127.0 (Ar-C), 127.1 (Ar-C), 127.3 (Ar-C), 127.4 (Ar-C), 127.48 (C), 127.52 (C), 127.6 (Ar-C), 131.4 (Ar-C), 131.6 (Ar-C), 131.7 (Ar-C), 132.05 (C), 132.1 (β-C), 132.1 (β-C), 133.3 (Ar-C), 133.4 (Ar-C), 133.5 (Ar-C), 133.6 (Ar-C), 134.2 (Ar-C), 134.7 (qC), 134.8 (qC), 140.2 (qC), 140.8 (qC), 141.6 (qC), 141.7 (qC), 141.8 (qC), 142.8 (qC), 151.9 (qC), 152.1 (qC), 165.0 (qC), 170.0 (qC) ppm; UV-vis (CH$_2$Cl$_2$): λ_{max} (lg e) 420 (3.9), 519 (3.0), 547 (2.9), 598 (2.8), 651 (3.2) nm; HRMS (ES$^+$) [C$_{50}$H$_{44}$N$_4$+H]: calcd. 701.3644, found 701.3635.
Experimental

2,3-Dihexyl-5,10,15,20-tetraphenylporphyrin 84

Following the above procedure, H$_2$TPP 58 (100 mg, 0.16 mmol), tris(dibenzylidene-acetone)dipalladium(0) chloroform complex (16.9 mg, 0.016 mmol), copper iodide (4.8 mg, 0.025 mmol) and t-butyllithium (1.42 mL of a 1.7 M solution in pentane, 3.27 mmol) were reacted and subjected to column chromatography on silica gel using dichloromethane/n-hexane (1:3 v/v) as eluent. The second fraction gave the title compound 84 as a brown solid (31.9 mg, 25%); mp >250 °C; R$_f$ = 0.50 (SiO$_2$, dichloromethane/n-hexane 1:3, v/v); 1H NMR (400 MHz, CDCl$_3$): δ = -1.41 (b, 2H, NH), 0.87 (m 6H, CH$_3$), 0.91 (m, 4H, CH$_2$), 1.06 (m, 4H, CH$_2$), 1.18 (m, 4H, CH$_2$), 1.61 (m, 8H, CH$_2$), 4.37 (m, 2H, βH), 7.77 (m, 14H, Ar-H), 7.97 (m, 2H, Ar-H), 8.17 (m, 2H, Ar-H), 8.20 (m, 2H, βH), 8.29 (m, 2H, Ar-H), 8.45 (m, 2H, βH), 8.50 (m, 2H, βH) ppm; 13C NMR (100.6 MHz, CDCl$_3$): δ = 13.5 (CH$_3$), 22.0 (CH$_2$), 26.1 (CH$_2$), 28.2 (CH$_2$), 31.0 (CH$_2$), 33.6 (CH$_2$), 51.3 (β-CH), 112.4 (qC), 121.9 (qC), 123.2 (β-C), 126.2 (Ar-C), 126.7 (Ar-C), 126.9 (Ar-C), 127.1 (Ar-C), 127.3 (Ar-C), 132.3 (Ar-C), 133.4 (m, Ar-C), 133.6 (Ar-C), 134.7 (qC), 140.7 (qC), 141.7 (qC), 141.9 (qC), 151.9 (qC), 168.7 (qC) ppm; UV-vis (CH$_2$Cl$_2$): λ_{max} (lg ϵ) 420 (5.3), 519 (4.4), 548 (4.3), 598 (4.2), 652 (4.5) nm; HRMS (ES$^+$) [C$_{56}$H$_{56}$N$_4$+H$^+$]: calcd. 785.4583, found 785.4583.
Following the above procedure, H₂T(3-MeOP)P 74 (100 mg, 0.14 mmol), tetrakis(triphenylphosphine)palladium(0) (23.6 mg, 0.02 mmol), copper iodide (2.5 mg, 0.01 mmol) and phenyllithium (1.50 mL of a 1.8 M solution in dibutyl ether 2.72 mmol) were reacted and subjected to purification via preparative TLC using ethyl acetate/n-hexane (1:4 v/v) as eluent. The second fraction gave the title compound 85 as a pink solid (17.1 mg, 14%); mp 232 °C; Rf = 0.61 (SiO₂, ethyl acetate/n-hexane 3:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ = 3.71 (m, 6H, OCH₃), 3.84 (s, 6H, OCH₃), 5.51 (m, 2H, βH), 6.08 (d, ³J = 2.12 Hz, 2H βH), 6.15 (m, 2H, βH), 6.66 (m, 6H, βH, Ar-H), 6.80 (d, ³J = 8.1 Hz, 2H, Ar-H), 7.03 (m, 10H, Ar-H), 7.16 (t, ³J = 7.9 Hz, 2H, Ar-H), 7.23 (m, 6H, Ar-H), 7.32 (t, ³J = 7.9 Hz, 2H, Ar-H), 10.57 (s, 1H, NH), 12.57 (s, 1H, NH) ppm; ¹³C NMR (100.6 MHz, CDCl₃): 54.7, 54.9, 109.7, 111.5, 113.6, 115.3, 115.8, 121.9, 122.9, 128.0, 129.0, 129.1, 134.7; UV–vis (CH₂Cl₂): λmax (lg ε) 328 (4.1), 353 (4.1), 419 (4.0), 453 (3.6), 532 (4.0), 566 (4.0). HRMS (ES⁺) [C₆₀H₄₅N₄O₄]: calcd for [M+H+] 889.3754, found 889.3772.
Experimental

5,5',10,10',15,20-Hexaphenylporphyrin 86

Catalysed approach:

Following the above procedure, 5,10,15,20-tetraphenylporphyrin 23 (100 mg, 0.16 mmol), Pd(PPh₃)₄ (18.8 mg, 0.016 mmol), Cul (2.5 mg, 0.014 mmol) and phenyllithium (1.5 mL of a 1.8 M solution in dibutyl ether, 3.26 mmol) were reacted and subjected to purification via preparative TLC using ethyl acetate/n-hexane (1:8, v/v) as eluent. The first fraction contained unreacted starting material 23 (43.6 mg, 44%). The second contained the title compound 36 (32.5 mg, 26%) as a pink solid (24.7 mg, 21%): mp 215°C; Rₛ = 0.59 (SiO₂, ethyl acetate/n-hexane 1:8, v/v); ¹H NMR (400 MHz, CDCl₃): δ = 5.47 (d, ³J = 2.6 Hz, 2H, βH), 6.03, s, 2H, βH), 5.15 (d, ³J = 4.6 Hz, 2H, βH), 6.60 (d, ³J = 4.6 Hz, 2H, βH), 7.07 (m, 8H, Ar-H), 7.24 (m, 12H, Ar-H), 7.42 (m, 10H, Ar-H), 10.51 (s, 1H, NH), 12.59 (s, 1H, NH) ppm; ¹³C NMR (100.6 MHz, CDCl₃): δ = 110.0 (β-C), 122.4, (β-C), 126.6 (Ar-C), 127.4 (Ar-C), 127.7 (Ar-C), 128.3 (Ar-C), 129.5 (β-C), 129.6 (Ar-C), 130.7 (Ar-C), 136.6 (qC), 137.5 (qC), 138.3 (qC), 139.1 (qC), 145.8 (qC), 151.8 (qC) ppm; UV-vis (CH₂Cl₂): λ_max (lg ε) 341 (4.5), 356 (4.5), 529 (4.3), 563 (4.4) nm; HRMS (ES⁺) [C₅₆H₄₁N₄⁺H] calcd. 769.3331, found 769.3328.

Non-catalysed approach:

A 100 mL schlenk tube was charged with H₂TPP 58 (100 mg, 0.16 mmol) in dry THF (20 mL). The reaction mixture was cooled to 0°C and phenyllithium (1.5 mL of a 1.8 M solution in dibutyl ether, 3.26 mmol) was added dropwise via syringe over a period of 10 minutes. The solution was warmed to rt and allowed to stir for 1 h (TLC control) after which no reaction had occurred. The reaction mixture was warmed to 60°C. No colour change was observed. The reaction was quenched with saturated NH₄Cl (1 mL). After stirring for 10 min, the reaction was filtered through silica gel. The crude
Experimental

Porphyrid mixture was dried in vacuo and subjected to purification via preparative TLC using ethyl acetate/n-hexane (1:8, v/v) as eluent. The first fraction contained unreacted starting material (12 mg, 12%), the second contained the title compound 86 (77.3 mg, 62%).

5,10,15,20-Tetrakis(4-methoxyphenyl)-5',10'-diphenylporphyrin 87

Following the procedure outlined for the non-catalysed approach, H₂T(4-MeOP)P 75 (100 mg, 0.14 mmol) and phenyllithium (0.78 mL of a 1.8 M solution in dibutyl ether, 1.4 mmol) were reacted and subjected to purification via preparative TLC using ethyl acetate/n-hexane (1:4, v/v) as eluent. The first fraction contained unreacted starting material (40 mg, 40%), the second contained the title compound 87 (56.9 mg, 47%): mp 232 °C; R_f = 0.61 (SiO₂, ethyl acetate/n-hexane 1:3, v/v); ¹H NMR (600 MHz, CDCl₃): δ = 3.81 (s, 6H, CH₃), 3.89 (s, 6H, CH₃), 5.47 (m, 2H, βH), 6.09 (s, 2H, βH), 6.16 (d, ³J = 4.4 Hz, 2H, βH), 6.65 (d, ³J = 4.6 Hz, 2H, βH), 6.77 (m, 4H, Ar-H), 6.94 (d, ³J = 8.6 Hz, 4H, Ar-H), 6.97 (m, 4H, Ar-H), 7.06 (m, 4H, Ar-H), 7.24 (m, 4H, Ar-H), 7.35 (d, ³J = 8.4 Hz, 4H, Ar-H), 10.58 (m, 1H, NH), 12.58 (s, 1H, NH) ppm; ¹³C NMR (100.6 MHz, CDCl₃): δ = 55.2 (OCH₃), 55.3 (OCH₃), 109.7 (β-C), 112.8 (Ar-C), 112.9 (Ar-C), 122.3 (β-C), 126.5 (Ar-C), 127.6 (Ar-C), 129.1 (β-C), 129.6 (Ar-C), 130.7 (Ar-C), 132.1 (Ar-C), 135.2 (Ar-C), 136.7 (qC), 137.5 (qC), 138.2 (qC), 139.4 (qC), 146.3 (qC), 152.0 (qC), 158.1 (qC), 159.8 (qC) ppm; UV-vis (CH₂Cl₂): λ_max (lg ε) 325 (4.3), 380 (4.5), 531 (4.3), 566 (4.3) nm; HRMS(ES⁺) [C₆₀H₄₉N₄O₄+H] calcd. 889.3754, found 889.3772.
2-(sec-Butyl)-5,10,15,20-tetrakis(3-methoxyphenyl)chlorin 88

Following the procedure outlined for the non-catalysed approach, H₂T(3-MeOP)P 74 (100 mg, 0.14 mmol) and sec-butyllithium (0.53 mL of a 1.4 M solution in cyclohexane, 0.75 mmol) were reacted at rt and subjected to column chromatography on silica gel using ethyl acetate/n-hexane (1:3, v/v) as eluent. The first fraction contained 89 (20.7 mg, 18%), the second fraction contained 88 (8.5 mg, 8%), and the final fraction contained unreacted starting material 74 (57.1 mg, 57%).

88; mp = 228 °C; Rf = 0.66 (SiO₂, ethyl acetate/n-hexane 1:3, v/v); ¹H NMR (400 MHz, CDCl₃): δ = -1.48 (s, 2H, NH), 0.66 (m, 3H, CH₃), 0.88 (m, 3H, CH₃), 1.27 (m, 2H, CH₂CH₃), 1.86 (m, 1H CH), 4.00 (m, 13H, OCH₃, β-CH₂), 4.22 (m, 1H, β-CH), 4.99 (m, 1H, β-CH₂), 7.28 (m, 4H, Ar-H), 7.62 (m, 12H, Ar-H), 8.26 (m, 2H, βH), 8.49, (s, 2H, βH), 8.64 (m, 2H, βH) ppm; ¹³C NMR (100.6 MHz, CDCl₃): δ = 11.4 (CH₃), 13.0 (CH), 17.3 (CH₃), 29.3 (CH₂), 36.8 (β-C), 47.2 (β-C), 55.1 (OCH₃), 113.1 (β-C), 119.2 (Ar-C), 123.2 (β-C), 126.6 (Ar-C), 127.0 (Ar-C), 127.5 (Ar-C), 128.6 (Ar-C), 131.5 (Ar-C), 134.5 (qC), 140.1 (qC), 142.9 (qC), 143.1 (qC), 151.7 (qC), 157.5 (qC), 165.7 (qC), 173.6 (qC) ppm; UV-vis (CH₂Cl₂): λₘₐₓ (log ε) 449 (5.2), 556 (3.6), 559 (3.9), 656 (4.4) nm; HRMS (ES⁺) [C₅₂H₄₈N₄O₄+H] calcd. 793.3742, found 793.3732.
Experimental

2,3-Di(sec-butyl)-5,10,15,20-tetrakis(3-methoxyphenyl)chlorin 89

![Structural formula of 2,3-Di(sec-butyl)-5,10,15,20-tetrakis(3-methoxyphenyl)chlorin 89](image)

89: mp = 245°C; R_f = 0.59 (SiO_2, ethyl acetate/n-hexane 1:3, v/v); ^1^H NMR (400 MHz, CDCl_3): δ = -1.48 (s, 2H, NH), 0.19 (m, 6H, CH_3), 0.69 (m, 3H, CH_3), 0.95 (m, 3H, CH_3), 1.29 (m, 2H, CH_2), 1.41 (m, 2H, CH_2), 1.99 (m, 2H, CH), 3.97 (m, 12H, OCH_3), 4.55 (m, 2H, β-CH), 7.25 (m, 2H, Ar-H), 7.30 (m, 2H, Ar-H), 7.39 (m, 2H, Ar-H), 7.62 (m, 6H, Ar-H), 7.84 (m, 4H, Ar-H), 8.26 (m, 2H, βH), 8.50 (s, 2H, βH), 8.66 (b, 2H, βH) ppm; ^13^C NMR (100.6 MHz, CDCl_3): δ = 11.5 (CH_3), 17.3 (CH_3), 27.0 (CH_2), 29.3 (CH_2), 38.7 (CH), 49.8 (β-C), 53.2 (β-C), 55.0 (OCH_3), 113.0 (Ar-C), 117.2 (Ar-C), 119.2 (Ar-C), 121.4 (Ar-C), 123.4 (β-C), 124.6 (Ar-C), 126.5 (Ar-C), 127.0 (β-C), 127.3 (Ar-C), 127.4 (Ar-C), 131.5 (β-C), 134.5 (qC), 140.9 (qC), 143.0 (qC), 143.3 (qC), 151.7 (qC), 157.5 (qC) ppm; UV-vis (CH_2Cl_2): λ_max (lg e) 446 (5.2), 552 (4.1), 595 (4.1), 656 (4.5) nm; HRMS (ES^+): [C_{56}H_{56}N_{4}O_{4}]^+: cacld. 849.4301, found 849.4311.

6.4 Functionalised hydroporphyrins

5,10,15,20-Tetrakis-(3-nitrophenyl)porphyrin 92

![Structural formula of 5,10,15,20-Tetrakis-(3-nitrophenyl)porphyrin 92](image)

m-Nitrobenzaldehyde (13.75 g, 91 mmol) and acetic anhydride (15 mL) were added to a 1 L round bottomed flask containing propionic acid (600 mL). The solution was brought
Experimental
to reflux and fresh distilled pyrrole (6.25 mL, 91 mmol) in propionic acid (25 mL) was added. After 45 min at reflux, the solution was allowed to cool and stand overnight. A dark solid (purple) was collected by filtration, washed with water (6 x 100 mL) and dried. The product was extracted into toluene (500 mL) using an insulated Soxhlet apparatus. The solvent was evaporated under reduced pressure, redissolved in dichloromethane (300 mL). Silica gel (~ 200 mL) was added and the mixture was stirred. The product was removed by filtration until the rinsings were pale. The solvent was evaporated under reduced pressure and a purple solid was obtained (2.5 g, 14%): Rf = 0.73 (SiO2, (THF/n-hexane 1:1, v/v); 1H NMR (400 MHz, CDCl3): δ = -2.80 (s, 2H, NH), 8.03 (m, 4H, Ar-H), 8.60 (m, 4H, Ar-H), 8.75 (d, J = 6.9 Hz, 4H, Ar-H), 8.84 (s, 8H, βH), 9.12 (s, 4H, Ar-H) ppm. The data were in agreement with the literature.

5,10,15,20-tetrakis-(3-aminophenyl)porphyrin 93

A solution of 92 (2 g, 2.5 mmol) in concentrated HCl (100 mL) was bubbled with argon for 1 h. A solution of stannous chloride dehydrate (9 g, 40 mmol) in concentrated HCl (140 mL) also bubbled with argon, was added to the porphyrin solution and the solution was stirred and heated in a water bath (75-80 °C) for 30 min. The hot water bath was replaced with a cold water bath and then with an ice bath. The reaction mixture was then neutralised under argon by slow addition of ammonia (125 mL), all the time at low temperature. The resulting solution was then filtered to yield a green solid. 5% Sodium hydroxide (200 mL) was added and the solution was stirred vigorously. The solid was filtered again, washed with water and extracted with chloroform (250 mL) using a soxhlet apparatus. The product was obtained as a purple solid (1.1 g, 52%), Rf = 0.63 (SiO2, THF/n-hexane 1:1, v/v); 1H NMR (400 MHz, CDCl3): δ = -2.75 (s, 2H, NH), 5.64 (s, 8H, NH2), 7.16 (m, 4H, Ar-H), 7.57 (m, 8H, Ar-H), 7.75 (t, J = 7.6 Hz, 4H,
Experimental

Ar-H, 7.91 (s, 4H, Ar-H), 8.96 (s, 8H, βH) ppm. The NMR data were in agreement with the literature.

General procedure for the Suzuki-Miyaura reaction of 5,15-bromoporphyrins

5,15-Disubstituted bromoporphyrin (1 equiv.), boronic acid (10 equiv.) and potassium phosphate (20 equiv.) were added to a 100 mL Schlenk and dried under vacuum. The vacuum was released to allow the addition of anhydrous THF (60 mL). The mixture was degassed via three freeze-pump-thaw cycles before the vessel was purged with argon and tetrakis(triphenylphosphine)palladium(0) (0.1 equiv.) was added. The Schlenk flask was sealed and heated at reflux overnight. The solvent was removed and the residue was redissolved in dichloromethane, washed with aqueous sodium hydrogen carbonate, water, and brine before being dried over anhydrous sodium sulfate. The organic solvent was evaporated and the crude product was purified by column chromatography on silica gel.

5,15-Bis(3-nitrophenyl)-10,20-diphenylporphyrin 94

Following the above procedure 5,15-dibromo-10,20-diphenyl porphyrin (100 mg, 0.16 mmol), 3-nitrophenylboronic acid (264.83 mg, 1.59 mmol), potassium phosphate (684.0 mg, 3.22 mmol) and and tetrakis(triphenylphosphine)palladium(0) (18.6 mg, 0.02 mmol) were reacted and subjected to purification via column chromatography on silica gel using dichloromethane/n-hexane (1:2, v/v) as eluent. The title compound was obtained as a purple solid (46.8 mg, 45%); Rf = 0.83 (SiO2, dichloromethane/n-hexane 1:1, v/v); 1H NMR (400 MHz, CDCl3): δ = -2.78 (s, 2H, NH), 7.82 (m, 6H, Ar-H), 8.00 (t, J = 7.9 Hz, 2H, Ar-H), 8.24 (br, 4H, Ar-H), 8.58 (s, J = 7.6 Hz, 2H, Ar-H), 8.72 (d, J = 8.6 Hz, 2H, Ar-H), 8.77 (s, J = 4.6 Hz, 4H, βH), 8.94 (d, J = 4.6 Hz, 4H, βH), 9.11 (s, 2H, Ar-H) ppm. The NMR data were in agreement with the literature.
5,15-Bis-(3-aminophenyl)-10,20-diphenylporphyrin 95

5,15-Bis-(3-nitrophenyl)-10,20-diphenylporphyrin 94 (100 mg, 0.13 mmol) was dissolved in dry dichloromethane (40 mL) and dry methanol (40 mL) and palladium on carbon 69.6 g, 10 wt.% was added. The suspension was placed in an ice bath and sodium borohydride (123.4 mg, 3.26 mmol) was added slowly. After 30 min, the reaction mixture was filtered and washed with dichloromethane. The organic phase was washed with water (40 mL x 2) and brine (40 mL x 2). The organic solvent was removed in vacuo to yield a purple solid (71.4 mg, 88%). Rf = 0.43 (SiO2, dichloromethane/n-hexane 1:2, v/v); 1H NMR (400 MHz, CDCl3): δ = 2.78 (s, 2H, N7), 3.97 (s, 4H, N7), 7.13 (d, J = 7.8 Hz, 2H, Ar-H), 7.53 (t, J = 7.8 Hz, 2H, Ar-H), 7.57 (s, 2H, Ar-H), 7.65 (m, 2H, Ar-H), 7.79 (m, 6H, Ar-H), 8.24 (d, J = 6.3 Hz, 4H, Ar-H), 8.85 (s, J = 4.6 Hz, 4H, βH), 8.96 (d, J = 4.6 Hz, 4H, βH) ppm; 13C NMR (150.9 MHz, CDCl3): δ = 114.2 (Ar-C), 119.9 (qC), 120.3 (qC), 126.0 (Ar-C), 126.7 (Ar-C), 127.4 (Ar-C), 127.6 (Ar-C), 134.5 (Ar-C), 142.3 (qC), 143.2 (qC), 146.6 (qC) ppm; UV-vis (CH2Cl2): λmax (ε) 420 (5.5), 516 (4.4), 550 (4.3), 590 (4.2), 646 (4.2) nm; HRMS (ES+) [C44H33N4+H] calcd. 645.2767, found 645.2765.
Experimental

5,15-Bis(3-tert-butoxycarbonylaminomethylphenyl)-10,20-ditolylporphyrin 96

Prepared according to the procedure for a Suzuki coupling reaction using 5,15-dibromo-10,20-ditolylporphyrin (64.8 mg, 0.1 mmol), potassium phosphate (424.8 mg, 2 mmol), 3-tert-butoxycarbonylaminophenyl)boronic acid (251.1 mg, 1 mmol) and tetrakis(triphenylphosphine)palladium(0) (11.6 mg, 0.01 mmol). The crude product was purified via preparative TLC using dichloromethane as eluent (56.8 mg, 63%); mp 238°C; R_f = 0.51 (SiO_2, dichloromethane) ¹H NMR (400 MHz, CDCl₃): δ = -2.77 (s, 2H, NH), 1.47 (s, 18H, CH₃), 2.74 (s, 6H, CH₃), 4.66 (br, 4H, CH₂), 5.10 (s, 2H, NH), 7.59 (d, 3J = 7.8 Hz, 4H, Ar-H), 7.73 (m, 4H, Ar-H), 8.12 (m, 8H, Ar-H), 8.86 (dd, 3J = 4.6, 19.4 Hz, βH) ppm; ¹³C NMR (150.9 MHz, CDCl₃) δ = 21.4 (CH₃), 28.2 (CH₃), 44.6 (CH₂), 53.2 (qC), 119.5 (qC), 120.2 (qC), 126.5 (Ar-C), 126.8 (qC), 127.3 (ar-C), 133.3 (qC), 134.4 (Ar-C), 134.8 (Ar-C), 137.2 (qC), 139.0 (qC), 142.4 (qC), 155.8 (qC) ppm; UV-vis (CH₂Cl₂): λ_max (lg ε) = 415 (5.7), 514 (4.5), 548 (4.3), 588 (4.2), 646 (4.1) nm; HRMS (ES⁺) [C₅₂H₅₇N₆O₄+H]: calcd 901.4441, found 901.4446.
Experimental

5,15-Bis-(4-aminophenyl)-10,20-diphenylporphyrin 98

A 50 mL round bottom flask was charged with H₂TPP 58 (200 mg, 0.33 mmol) in TFA (10 mL). Sodium nitrite (183 mg, 2.65 mmol) was added to the reaction mixture. After 90 sec, the reaction was poured into water (100 mL) and the product was extracted with dichloromethane (6 x 25 mL). The organic layers were combined and washed with saturated aqueous NaHCO₃ and water before being dried over anhydrous Na₂SO₄. The residue was then dissolved in concentrated hydrochloric acid (50 mL) and, while stirring, stannous SnCl₂ (800 mg, 3.55 mmol) was added. Mixture was heated at 65 °C under argon for 1 h before being poured into cold water (100 mL). The aqueous solution was neutralised with sodium hydroxide and extracted with dichloromethane until colourless. The organic layers were combined and the solvent, removed under reduced pressure. The two regioisomers (5,10- and 5,15-) were separated by column chromatography on aluminium oxide using dichloromethane as eluent. The 5,10-isomer eluted first (32.3 mg, 15%); R_f = 0.34 (Al₂O₃, dichloromethane); ¹H NMR (400 MHz, CDCl₃): δ = -2.73 (s, 2H, NH), 4.06 (s, 4H, NH₂), 7.09 (d, ³J = 8.2 Hz, 4H, Ar-H), 7.79 (m, 6H, Ar-H), 8.01 (d, ³J = 8.2 Hz, 4H, Ar-H), 8.23 (m, 4H, Ar-H), 8.84 (d, ³J = 4.7 Hz, 4H, βH), 8.95 (d, ³J = 4.7 Hz, 4H, βH) ppm. The second fraction contained the title compound 98: (95.3 mg, 45%); R_f = 0.20 (Al₂O₃, dichloromethane) ¹H NMR (400 MHz, CDCl₃): δ = -2.71 (s, 2H, NH), 4.04 (s, 4H, NH₂), 7.08 (d, ³J = 8.2 Hz, 4H, Ar-H), 7.79 (m, 6H, Ar-H), 8.02 (s, ³J = 8.2 Hz, 4H, Ar-H), 8.25 (m, 4H, Ar-H), 8.85 (s, 4H, βH), 8.96 (s, 4H, βH) ppm. The data were consistent with literature data.
Experimental

5,15-Bis(4-hydroxyphenyl)-10,20-diphenylporphyrin 99

Following the procedure for the Suzuki-Miyaura coupling reaction, 5,15-dibromo-10,20-diphenylporphyrin (100 mg, 0.16 mmol), 4-hydroxyphenylboronic acid (222.3 mg, 1.61 mmol), potassium phosphate (684.0 mg, 3.2 mmol) and tetrakis(triphenylphosphine)palladium(0) (18.6 mg, 0.02 mmol) were reacted. After work-up the product was filtered through a layer of silica gel using dichloromethane as eluent, the solvent was evaporated under reduced pressure and recrystallisation from dichloromethane/methanol yield purple crystals. (81.3 mg, 78%); Rf = 0.53 (SiO2, ethyl acetate/n-hexane, 2:3, v/v); 1H NMR (400 MHz, CDCl3): δ = -2.75 (S, 2H, NH), 6.19 (s, 2H, OH), 7.23 (d, J = 8.3 Hz, 4H, Ar-H), 7.78 (m, 4H, Ar-H), 8.08 (m, 6H, Ar-H), 8.24 (d, J = 6 Hz, 4H, Ar-H), 8.89 (dd, J = 4.7, 19.1 Hz, 8H, βH) ppm. The NMR data were in agreement with the literature.

5-(3-Nitrophenyl)-10,15,20-triphenylporphyrin 100

Benzaldehyde (35.4 g, 0.34 mol) and 3-nitrobenzaldehyde (25.25 g, 0.167 mol) were dissolved in hot glacial acetic acid (1 L) in a 2L, three-neck, round bottom flask. The mixture was brought to reflux and freshly distilled pyrrole (34.7 mL, 0.5 mol) was
added as quickly as possible, without causing an uncontrollable exothermic reaction (10 min). The resulting black solution was heated to reflux for 20 min before being cooled to 35 °C and filtered through a coarse sintered glass funnel and washed with methanol. A purple powder was obtained which was purified by column chromatography on silica gel using dichloromethane/n-hexane (1:1, v/v) as eluent. The first fraction contained H₂TPP 58 (2.28 g, 3%): The second fraction contained the title compound (1.38 g, 5%); R_f = 0.63 (SiO₂, dichloromethane/n-hexane, 1:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ = -2.77 (s, 2H, NH₂), 7.80 (m, 9H, Ar-H), 7.97 (t, ³J = 7.9 Hz, 1H, Ar-H), 8.24 (d, ³J = 6.2 Hz, 6H, Ar-H), 8.57 (³J = 7.6 Hz, 1H, Ar-H), 8.70 (m, 1H, Ar-H), 8.74 (d, ³J = 4.7 Hz, 2H, β-H), 8.88 (s, 4H, β-H), 8.92 (d, ³J = 4.6 Hz, 2H, β-H), 8.96 (s, 1H, Ar-H) ppm. The 5,10- and 5,15-bis-(3-nitrophenyl)porphyrins were obtained as a mixture in the third fraction (2.7 g, 3%); 5,10,15-tris-(3-nitrophenyl)-20-phenylporphyrin was obtained as the fourth fraction (201.6 mg, 0.2%); R_f = 0.3 (SiO₂, dichloromethane/n-hexane, 1:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ = -2.79 (s, 2H, NH₂), 7.83 (m, 3H, Ar-H), 8.01 (t, ³J = 7.5 Hz, 3H, Ar-H), 8.25 (m, 2H, Ar-H), 8.56 (br, 3H, Ar-H), 8.73 (m, 3H, Ar-H), 8.79 (d, ³J = 4.5 Hz, 2H, β-H), 8.82 (s, 4H, β-H), 8.96 (d, ³J = 4.6 Hz, 2H, β-H), 9.11 (br, 3H, Ar-H) ppm. The analytical data were in agreement with the literature.

5-(3-tert-Butoxycarbonylaminoaryl)-10,15,20-tritolylporphyrin 102

Prepared according to the procedure for a Suzuki coupling reaction using 5-bromo-10,15,20-tritolylporphyrin (66 mg, 0.1 mmol), potassium phosphate (424.6 mg, 2.0 mmol), 3-tert-butoxycarbonylaminoarylboronic acid (251.2 mg, 1.0 mmol) and tetrakis(triphenylphosphine)palladium(0) (11.6 mg, 0.01 mmol). The crude product was purified via column chromatography on silica gel using dichloromethane/n-hexane as eluent (2:1, v/v). The product was obtained as a purple solid (44 mg, 56%) mp 234 °C;
Experimental

$R_f = 0.24$ (SiO$_2$, dichloromethane/n-hexane, 1:1, v/v); 1H NMR (600 MHz, CDCl$_3$): $\delta = -2.74$ (s, 2H, NH), 1.47 (s, 9H, CH$_3$), 2.74 (s, 9H, CH$_2$), 4.66 (br, 2H, CH$_2$), 5.09 (s, 1H, NH), 7.59 (d, 3J = 7.5 Hz, 6H, Ar-H), 7.74 (m, 2H, Ar-H), 8.13 (m, 8H, Ar-H), 8.86 (m, 8H, βH) ppm; 13C NMR (400 MHz, CDCl$_3$): $\delta = 21.4$ (CH$_3$), 28.2 (CH$_2$), 30.7 (qC), 43.7 (CH$_2$), 119.3 (qC), 120.1 (qC), 126.8 (qC), 127.3 (Ar-C), 133.2 (Ar-C), 134.4 (Ar-C), 137.2 (qC), 139.2 (qC), 142.5 (qC) ppm; UV-vis (CH$_2$Cl$_2$): λ_{max} (lg ε) = 416 (5.5), 515 (4.3), 549 (4.2), 593 (4.1), 648 (4.0) nm; HRMS (ES$^+$) [C$_{58}$H$_{57}$N$_6$O$_4$+H]: calcd 786.3808, found 786.3813.

5-(3-Acetylaminophenyl)-10,15,20-triphenylporphyrin 103

![5-(3-Acetylaminophenyl)-10,15,20-triphenylporphyrin](image)

Prepared according to the procedure for a Suzuki coupling reaction using 5-bromo-10,15,20-triphenylporphyrin (61.6 mg, 0.1 mmol), potassium phosphate (424.6 mg, 2 mmol), 3-acetylaminophenylboronic acid (89.5 mg, 0.5 mmol) and tetrakis(triphenylphosphine)palladium(0) (11.6 mg, 0.01 mmol). The crude product was purified via column chromatography on silica gel using dichloromethane/n-hexane (2:1, v/v) as eluent. After recrystallisation from dichloromethane/methanol, the title compound was obtained as purple crystals (41.3 mg, 60%); mp >300 °C; $R_f = 0.28$ (SiO$_2$, dichloromethane); 1H NMR (400 MHz, CDCl$_3$): $\delta = -2.75$ s (2H, NH), 2.29 (s, 3H, CH$_3$), 7.41 (s, 1H, NH), 7.78 (m, 9H, Ar-H), 8.01 (d, 3J = 6.7 Hz, 1H, Ar-H), 8.19 (m, 2H, Ar-H), 8.24 (d, 3J = 6.8 Hz, 6H, Ar-H), 8.87 (m, 8H, βH) ppm; 13C NMR (150.9 MHz, CDCl$_3$): $\delta = 24.6$ (CH$_3$), 119.0 (Ar-C), 120.1 (Ar-C), 125.8 (qC), 126.5 (ar-C), 127.3 (qC), 127.6 (Ar-C), 130.7 (Ar-C), 134.4 (ar-C), 136.2 (qC), 142.0 (qC), 142.8 (qC), 168.4 (qC) ppm; UV-vis (CH$_2$Cl$_2$): λ_{max} (lg ε) = 418 (5.6), 514 (4.4), 550 (4.2), 592 (4.1), 647 (4.1) nm; HRMS (ES$^+$) [C$_{46}$H$_{34}$N$_5$O$^+$]: calcd 672.2763, found 672.2761.
5,15-Bis(4-hydroxyphenyl)-5',10,10',20-tetraphenylporphyrin 104

Following the procedure developed for the synthesis of 5,10-disubstituted porphodimethenes in Section 7.1, 99 (50 mg, 0.08 mmol) and phenyl lithium (0.43 mL of a 1.8 M solution in dibutyl ether, 0.78 mmol) were reacted and subjected to purification via column chromatography on silica gel using ethyl acetate/n-hexane (1:5, v/v) as eluent. The first fraction contained starting material (13.1 mg, 26%). The second fraction contained the title compound 104 (20 mg, 16%); $R_f = 0.43$ (SiO$_2$, ethyl acetate/n-hexane 2:3, v/v); 1H NMR (400 MHz, CDCl$_3$) δ = 5.46 (s, 2H, βH), 6.06 (m, 2H, βH), 6.16 (d, $^3 J = 4.1$ Hz, 2H, βH), 6.59 (d, $^3 J = 4.6$ Hz, βH), 6.68 (m, 4H, Ar-H), 6.86 (d, $^3 J = 8.4$ Hz, 2H, Ar-H), 6.91 (d, $^3 J = 8.6$Hz, 2H, Ar-H), 7.06 (m, 6H, Ar-H), 7.24 (m, 9H, Ar-H), 7.42 (m, 5H, Ar-H), 7.56 (m, 2H, Ar-H), 7.73 (m, 2H, Ar-H) 10.53 (s, 1H, NH), 12.56 (s, 1H, NH) ppm; HRMS (ES$^+$) [C$_{56}$H$_{41}$N$_4$O$_2$+H]: calcd 801.3230, found 801.3266.

5-(3-Phenylaminomethylphenyl)-10,15,20-tritolylporphyrin 105

Prepared according to the procedure for the synthesis of 5,10-porphodimethenes outlined in Section 7.1. 5-(3-tertbutoxycarbonylaminomethylphenyl)-10,15,20-tritolylporphyrin (40 mg, 0.05 mmol) and phenyllithium (0.6 mL of a 1.8 M solution in
Experimental
dibutyl ether, 1.0 mmol). The product was purified via column chromatography on silica gel using ethyl acetate/n-hexane as eluent (3:1, v/v). The product was obtained as a purple solid (17.2 mg, 44%); mp >300 °C; \(R_f = 0.28 \) (SiO\(_2\), ethyl acetate/n-hexane, 3:1, v/v); \(^1\)H NMR (600 MHz, CDCl\(_3\)): \(\delta = -2.74 \) (s, 2H, NH), 2.74 (s, 9H, C\(\beta \)\(\beta \)), 5.00 (d, \(^3\)J = 5.6 Hz, 2H, CH\(_2\)), 6.65 (s, 1H, NH), 7.44 (m, 3H, Ar-H), 7.51 (m, 1H, Ar-H), 7.59 (\(^3\)J = 7.4 Hz, 7.77 (t, \(^3\)J = 7.4 Hz, 1H, Ar-H), 7.82 (m, 2H, Ar-H), 7.86 (d, \(^3\)J = 7.4 Hz, 1H, Ar-H), 8.12 (d, \(^3\)J = 7.4 Hz, 6H, Ar-H), 8.21 (m, [2+1]H, Ar-H), 8.88 (m, 8H, \(\beta \)-H) ppm; \(^13\)C NMR (150.9 MHz, CDCl\(_3\)): \(\delta = 21.0 \) (qC), 21.4 (CH\(_3\)), 44.9 (CH\(_2\)), 46.6 (qC), 76.7 (qC), 119.6 (qC), 126.5 (qC), 126.8 (qC), 126.9 (Ar-C), 127.3 (Ar-C), 128.4 (Ar-C), 131.0 (qC), 131.6 (Ar-C), 133.3 (qC), 133.7 (Ar-C), 134.5 (Ar-C), 136.1 (qC), 136.8 (qC), 138.7 (qC), 142.3 (qc), 167.0 (qC) ppm;

6.5 Spectroscopic data of porphyrin dications

\([5,15\text{-Diphenylporphyrin}][\text{CF}_3\text{COO}]_2\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 1.28 \) (s, 2H, NH), 7.96 (s, 6H, Ar-H), 8.46 (s, 4H, Ar-H), 9.02 (s, 4H, \(\beta \)H), 9.45 (s, 4H, \(\beta \)H), 10.70 (s, 2H, meso H) ppm; UV-vis (CH\(_2\)Cl\(_2\) + 5% CF\(_3\)COOH): \(\lambda_{\text{max}} \) (lg \(\varepsilon \)) 420 (5.3), 569 (4.1), 614 (4.2) nm.

\([5,10,15\text{-Triphenylporphyrin}][\text{CF}_3\text{COO}]_2\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 1.30 \) (s, 2H, NH), 8.53 (m, 9H, Ar-H), 9.02 (m, 6H, Ar-H), 9.35 (m, 4H, \(\beta \)H), 9.68 (d, \(^3\)J = 4.7 Hz, 2H, \(\beta \)H), 10.06 (d, \(^3\)J = 4.8 Hz, 2H, \(\beta \)H), 11.32 (s, meso H) ppm; UV-vis (CH\(_2\)Cl\(_2\) + 5% CF\(_3\)COOH): \(\lambda_{\text{max}} \) (lg \(\varepsilon \)) 429 (5.4), 581 (4.1), 633 (4.4) nm.

\([5,10,15,20\text{-Tetraphenylporphyrin}][\text{CF}_3\text{COO}]_2\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = -0.49 \) (s, 4H, NH, N\(^-\)H), 8.03 (m, 12H, Ar-H), 8.60 (d, \(^3\)J = 6.2 Hz, 8H, Ar-H), 8.70 (s, 8H, \(\beta \)H) ppm; UV-vis (CH\(_2\)Cl\(_2\) + 5% CF\(_3\)COOH): \(\lambda_{\text{max}} \) (lg \(\varepsilon \)) 449 (5.6), 683 (4.8) nm.

\([5\text{(1-Ethylpropyl)porphyrin}][\text{CF}_3\text{COO}]_2\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = -0.17 \) (br, 2H, NH), 1.06 (t, \(^3\)J = 7.4 Hz, CH\(_2\)CH\(_2\)CH\(_3\)), 2.91-3.11 (m, 4H, CHCH\(_2\)CH\(_3\)), 5.03 (m, 1H, CHCH\(_2\)CH\(_3\)), 9.44 (s, 2H, \(\beta \)H), 9.55 (m,
Experimental

6H, βH), 10.56 (s, 1H, meso H), 10.68 (s, 2H, meso H) ppm; UV-vis (CH₂Cl₂ + 5% CF₃COOH): λ_max (lg ε) 404 (5.6), 551 (4.5), 643 (4.2) nm

[5,15-Bis(1-ethylpropyl)porphyrin][CF₃COO]₂

1H NMR (400 MHz, CDCl₃): δ = -1.01 (s, 4H, NH, N⁺H), 1.05 (t, J = 4.7 Hz, 12H, CHCH₂CH₃), 2.85-3.06 (m, 8H, CHCH₂CH₃), 4.90 (m, 2H, CHCH₂CH₃), 9.33 (m, 4H, βH), 9.11 (m, 4H, βH), 10.59 (s, 2H, meso H) ppm; UV-vis (CH₂Cl₂ + 5% CF₃COOH): λ_max (lg ε) 411 (5.5), 562 (4.3), 608 (4.3) nm.

[5,10,15-Tris(1-ethylpropyl)porphyrin][CF₃COO]₂

1H NMR (400 MHz, CDCl₃): δ = -0.40 (br, 4H, NH, N⁺H), 1.07 (m, 18H, CHCH₂CH₃), 2.77-2.96 (m, 12H, CHCH₂CH₃), 4.64 (m, 3H, CHCH₂CH₃), 9.09 (m, 8H, βH), 10.12 (s, 1H, meso H) ppm; UV-vis (CH₂Cl₂ + 5% CF₃COOH): λ_max (lg ε) 421 (5.4), 574 (4.1), 623 (4.2) nm.

[5,10,15,20-Tetrakis(1-ethylpropyl)porphyrin][CF₃COO]₂

1H NMR (400 MHz, CDCl₃): δ = 0.97 (m, 24H, CHCH₂CH₃), 3.37 (m, 16H, CHCH₂CH₃), 5.11 (m, 4H, CHCH₂CH₃), 9.66 (s, 8H, βH) ppm; UV-vis (CH₂Cl₂ + 5% CF₃COOH): λ_max (lg ε) 428 (5.3), 593 (4.0), 643 (4.2) nm.

6.6 Spectroscopic data of porphodimethene dications

UV-vis titrations were performed with a Perkin Elmer, Lambda 1050 spectrophotometer. Solutions of porphyrins 58, 82 and PDMs 86 and 87 were prepared in spectrophotometric grade dichloromethane (Sigma). MeSO₃H, TFA solutions were also prepared in spectrophotometric grade dichloromethane, however, as not all materials were soluble in dichloromethane, HCl, HBr and HClO₄ were dissolved in spectrophotometric grade methanol. In order to assure that the protonation constant in dichloromethane was not dramatically affected by small amounts of methanol, a test titration was carried out with TFA in methanol. No noticeable differences were evident in the resulting spectra when compared to the corresponding titration with TFA in dichloromethane. NMR titrations were either carried out in deuterated chloroform or deuterated dichloromethane, HCl and HClO₄ were dissolved in deuterated methanol. To rule out effects from the use of methanol, [H₄TPP](Cl)₂ was compared to previous results reported in the literature whereby protonation was achieved with TFA and
subsequent anion coordination was accomplished with TBA-Cl to observe binding. The resonances were comparable.

[5,5',10,10'15,20-Hexaphenylporphyrin][MeSO₃]₂:

1H NMR (600 MHz, CDCl₃): $\delta = 5.77$ (s, 2H, βH), 6.79 (d, $^3J = 4.6$ Hz, 2H, βH), 6.86 (s, 2H, βH), 7.11 (d, $^3J = 4.7$ Hz, βH), 7.33 (m, 20H, Ar-H), 7.67 (d, $^3J = 7.2$ Hz, 4H, Ar-H), 7.75 (t, $^3J = 7.2$ Hz, Ar-H), 10.57 (s, 1H, NH), 14.15 (m, 3H, NH, N^+) ppm; 13C (150.9 MHz, CDCl₃): 110.7 (β-C), 125.5 (β-C), 127.4 (Ar-C), 128.2 (Ar-C), 128.3 (Ar-C), 128.5 (qC), 128.7 (β-C), 129.5 (Ar-C), 129.7 (qC), 130.7 (qC), 132.2 (qC), 133.0 (Ar-C), 133.4 (qC), 134.7 (Ar-C), 137.0 (qC), 137.9 (qC), 138.5 (qC), 142.3 (qC), 141.5 (qC), 142.5 (qC), 148.2 (qC), 167.4 (qC), 172.6 (qC) ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) 408 (4.9), 639 (4.5) nm.

[5,5',10,10'15,20-Hexaphenylporphyrin][CF₃COO]₂:

1H NMR (600 MHz, CD₂Cl₂): $\delta = 5.94$ (d, $^3J = 2.2$ Hz, βH), 6.82 (m, 4H, βH), 7.20 (m, [2+8]H, βH, Ar-H), 7.31 (m, 12H, Ar-H), 7.61 (m, 8H, Ar-H), 7.80 (t, $^3J = 7.0$ Hz, 2H, Ar-H), 9.65 (s, 1H, NH) ppm; 13C NMR (150.9 MHz, CD₂Cl₂): $\delta = 111.2$ (β-C), 126.2 (β-C), 127.7 (Ar-C), 128.3 (β-C), 128.4 Ar-C), 128.6 (Ar-C), 129.1 (Ar-C), 133.7 (qC), 133.8 (Ar-C), 134.8 (Ar-C), 136.4 (qC), 138.0 (β-C), 139.2 (qC), 141.5 (qC), 141.5 (qC), 142.5 (qC), 173.6 (qC) ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) 410 (4.8), 629 (4.5) nm.

[5,5',10,10'15,20-Hexaphenylporphyrin][ClO₄]₂:

1H NMR (600 MHz, CDCl₃): $\delta = 6.08$ (d, 2H, $^3J = 2.0$ Hz, βH), 6.85 (d, $^3J = 4.9$ Hz, βH), 7.24 (m, [8$+2$]H, βH, Ar-H), 7.28 (m, 12H, Ar-H), 7.60 (m, 8H, Ar-H), 7.77 (m, 2H, Ar-H), 8.94 (s, 1H, NH) ppm; 13C NMR, (150.9 MHz, CD₂Cl₂): $\delta = 111.2$ (β-C), 126.3 (β-C), 127.9, (Ar-C), 128.6 (Ar-C), 129.1 (Ar-C), 133.9 (Ar-C), 134.6 (qC), 134.9 (Ar-C), 136.3 (qC), 137.8 (qC), 139.2 (β-C), 140.7 (qC), 148.5 (qC), 152.0 (qC) ppm; UV-vis (CH₂Cl₂): λ_{max} (lg ε) 414 (4.9), 631 (4.5) nm.

[5,5',10,10'15,20-Hexaphenylporphyrin][Cl]₂:

1H NMR (400 MHz, CD₂Cl₂): $\delta = 5.87$ (d, $^3J = 4.9$Hz, 2H, βH), 6.73 (d, $^3J = 4.9$ Hz, 2H, βH), 6.76 (s, 2H, βH), 6.97 (s, $^3J = 4.9$ Hz, 2H, βH), 7.17 (m, 12H, Ar-H), 7.50 (m, 8H,
Experimental

Ar-\(H\), 7.65 (m, 2H, Ar-\(H\)), 10.94 (s, 1H, NH) ppm; UV-vis (\(\text{CH}_2\text{Cl}_2\)): \(\lambda_{\text{max}}\) (lg \(\varepsilon\)) 412 (4.8), 640 (4.5) nm.

[5,10,15,20-Tetrakis(4-methoxyphenyl)-5'10'-diphenylporphyrin][\(\text{MeSO}_3\)]$_2$

\(^1\)H NMR (400 MHz, CDCl$_3$): \(\delta = 3.84\) (s, 6H, OCH$_3$), 3.96 (s, 6H, OCH$_3$), 5.78 (br, 2H, \(\beta\)H), 6.71 (m, 2H, \(\beta\)H), 8.83 (d, d, \(^3\)J = 8.9 Hz, 4H, Ar-\(H\)), 6.94 (s, 2H, \(\beta\)H), 7.06 (d, \(^3\)J = 8.5 Hz, Ar-\(H\)), 7.09 (d, \(^3\)J = 4.0 Hz, \(\beta\)H), 7.22 (m, 4H, Ar-\(H\)), 7.31 (m, 10H, Ar-\(H\)), 7.63 (d, \(^3\)J = 8.3 Hz, 4H, Ar-\(H\)), 10.24 (br, 3H, N//, N^//) ppm; \(^{13}\)C NMR (150.9 MHz, CDCl$_3$): \(\delta = 55.3\) (OCH$_3$), 55.8 (OCH$_3$), 110.8 (\(\beta\)-C), 113.7 (Ar-C), 114.4 (Ar-C), 124.4 (\(\beta\)-C), 127.4 (Ar-C), 128.4 (Ar-C), 129.3 (\(\beta\)-C), 130.8 (Ar-C), 134.6 (qC), 137.2 (qC), 137.6 (\(\beta\)-C), 138.1 (Ar-C), 142.4 (qC), 158.8 (qC), 165.0 (qC), 171.1 (qC) ppm; UV-vis (\(\text{CH}_2\text{Cl}_2\)): \(\lambda_{\text{max}}\) = 423 (4.8), 485 (4.5), 636 (4.4) nm.

[5,10,15,20-Tetrakis(4-methoxyphenyl)-5'10'-diphenylporphyrin][\(\text{CF}_3\text{COO}\)]$_2$

\(^1\)H NMR (400 MHz, CDCl$_3$): \(\delta = 3.84\) (m, 6H, OCH$_3$), 3.99 (s, 6H, OCH$_3$), 5.89 (d, \(^3\)J = 2.6 Hz, 2H, \(\beta\)H), 6.72 (d, \(^3\)J = 4.8 Hz, 2H, \(\beta\)H), 6.79 (d, d, \(^3\)J = 9.0 Hz, 4H, Ar-\(H\)), 6.83 (s, 2H, \(\beta\)H), 7.11 (m, 14H, Ar-\(H\)), 7.54 (d, \(^3\)J = 8.8 Hz, 4H, Ar-\(H\)), 9.50 (s, 1H, NH), 13.45 (s, 2H, N^//) ppm; \(^{13}\)C NMR (150.9 MHz, CDCl$_3$): \(\delta = 55.0\) (OCH$_3$), 55.7 (OCH$_3$), 110.5 (\(\beta\)-C), 113.7 (Ar-C), 114.5 (Ar-C), 124.8 (\(\beta\)-C), 127.3 (Ar-C), 127.7 (\(\beta\)-C), 128.3 (Ar-C), 129.0 (Ar-C), 130.4 (Ar-C), 133.9 (qC), 136.8 (\(\beta\)-C), 137.6 (Ar-C), 141.3 (qC), 148.2 (qC), 158.7 (qC), 165.1 (qC), 171.2 (qC) ppm; UV-vis (\(\text{CH}_2\text{Cl}_2\)): \(\lambda_{\text{max}}\) = 423 (4.8), 480 (4.5), 627 (4.4) nm.

[5,10,15,20-Tetrakis(4-methoxyphenyl)-5'10'-diphenylporphyrin][\(\text{ClO}_4\)]$_2$

\(^1\)H NMR (600 MHz, CDCl$_3$): \(\delta = 3.83\) (s, 6H, OCH$_3$), 3.98 (s, 6H, OCH$_3$), 6.16 (s, 2H, \(\beta\)H), 6.72 (m, 2H, \(\beta\)H), 6.77, 6.81 (d,d, \(^3\)J = 8.2 Hz, Ar-\(H\)), 6.93 (s, 2H, \(\beta\)H), 7.08 (d, \(^3\)J = 8.6 Hz, Ar-\(H\)), 7.13 (d, \(^3\)J = 3.5 Hz, \(\beta\)H), 7.26 (m, 6H, Ar-\(H\)), 7.34 (m, 4H, Ar-\(H\)), 7.55 (d, \(^3\)J = 8.6 Hz, Ar-\(H\)), 8.67 (s, 1H, NH), 11.92 (s, 2H, N^//) ppm; \(^{13}\)C NMR (150.9 MHz, CDCl$_3$): \(\delta = 55.2\) (OCH$_3$), 55.8 (OCH$_3$), 111.2 (\(\beta\)-C), 114.0 (Ar-C), 114.6 (Ar-C), 125.2 (\(\beta\)-C), 127.5 (Ar-C), 128.7 (Ar-C), 129.1 (Ar-C), 129.3 (\(\beta\)-C), 130.6 (Ar-C), 133.3 (qC), 134.4 (qC), 136.5 (qC), 137.7 (Ar-C), 138.2 (\(\beta\)-C), 141.7 (qC), 147.7 (qC), 158.8 (qC), 165.1 (qC), 171.4 (qC) ppm; UV-vis (\(\text{CH}_2\text{Cl}_2\)): \(\lambda_{\text{max}}\) = 425 (4.8), 499 (4.6), 636 (4.3) nm.
Experimental

[5,10,15,20-Tetrakis(4-methoxyphenyl)-5′10′-diphenylporphyrin][Cl]₂

¹H NMR (600 MHz, CDCl₃): δ = 3.84 (m, 6H, OCH₃), 3.98 (s, 6H, CH₃), 5.76 (s, 2H, βH), 6.78-6.83 (d, d, ³J = 4.4, 8.0 Hz, 2H, 4H, Ar-H), 6.90 (s, 2H, βH), 7.07 (d, ³J = 4.4 Hz, 2H, βH), 7.11 (d, ²J = 8.6 Hz, 4H, Ar-H), 7.27 (m, 6H, Ar-H), 7.38 (br, 5H, Ar-H), 7.46 (m, 4H, Ar-H), 7.58 (d, ³J = 8.4 Hz, 4H, Ar-H), 11.28 (br, 1H, NH), 14.52 (s, 2H, N⁺H), 14.75 (s, 1H, NH) ppm; ¹³C NMR (150.9 MHz, CDCl₃): δ = 55.5 (OCH₃), 56.2 (OCH₃), 109.6 (β-C), 113.7 (Ar-C), 114.7 (Ar-C), 124.9 (β-C), 127.3 (qC), 127.7 (β-C), 128.4 (Ar-C), 130.0 (Ar-C), 130.2 (qC), 131.2 (qC), 131.4 (Ar-C), 132.8 (qC), 135.3 (qC), 136.1 (qC), 136.8 (β-C), 138.1 (Ar-C), 142.2 (qC), 143.7 (qC), 147.4 (qC), 158.9 (qC), 165.1 (qC), 167.8 (qC), 171.9 (qC) ppm; UV-vis (CH₂Cl₂): λ_max = 426 (4.8), 474 (4.5), 639 (4.4) nm.

[5,10,15,20-Tetraphenylporphyrin][MeSO₃]₂

¹H NMR (400 MHz, CD₂Cl₂): δ = -0.69 (s, 3H), -0.35 (s, 6H), 0.92 (br, 2H, NH), 8.08 (m, 12H, Ar-H), 8.70 (d, ³J = 6.7 Hz, 8H, Ar-H), 8.74 (s, 8H, βH) ppm; UV-vis (CH₂Cl₂): λ_max = 440 (5.6), 655 (4.7) nm.

[5,10,15,20-Tetraphenylporphyrin][ClO₄]₂

¹H NMR (400 MHz, CD₂Cl₂): δ = -2.10 (s, 1H, NH), 8.01 (m, 12H, Ar-H), 8.62 (d, ³J = 6.3 Hz, 8H, Ar-H), 8.81 (s, 8H, βH) ppm; UV-vis (CH₂Cl₂): λ_max = 454 (5.5), 695 (4.8) nm.

[5,10,15,20-Tetraphenylporphyrin][Cl]₂

¹H NMR (400 MHz, CD₂Cl₂): δ = -0.12 (s, 1H, NH), 0.84 (m, 3H, NH, N⁺H), 8.04 (m, 12H, Ar-H), 8.64 (m, 16H, Ar-H, βH) nm; UV-vis (CH₂Cl₂): λ_max = 454 (5.6), 693 (4.5) nm.
6.7 Triptycene-linked porphyrin trimers

2,6,14-Trinitrotriptycene 124

[Chemical structure image]

Triptycene (2.5 g, 10 mmol) was dissolved in concentrated HNO₃ (100 mL, 65%), and heated to 75 °C for 24 h. The brown solution was cooled to rt, poured into H₂O (1 L) and stirred. The precipitate was collected, washed with cold water and dried in air. The crude product was separated by column chromatography using dichloromethane/n-hexane (1:1, v/v) as eluent, to afford the title compound (3.3 g, 85%); ¹H NMR (400 MHz, CDCl₃): δ = 5.85 (s, 1H, CH), 5.87 (s, 1H, CH), 7.67 (m, 3H, Ar-H), 8.08 (dd, ²J = 2.1, ³J = 8.1 Hz, 3H, Ar-H), 8.36 (m, 3H, Ar-H) ppm. The NMR data were in agreement with the literature.

2,6,14-Triaminotriptycene 125

[Chemical structure image]

2,6,14-Trinitrotriptycene (1 g, 2.6 mmol) was dissolved in dry dichloromethane (20 mL) and dry methanol (20 mL) and palladium on carbon (1.4 g, 10 wt.%) was added. The suspension was placed in an ice bath and sodium borohydride (2.44 g, 65 mmol) was added slowly. After 30 min, the reaction mixture was filtered and washed with dichloromethane. The organic phase was washed with water (40 mL x 2) and brine (40 mL x 2). The organic solvent was removed in vacuo to yield a white solid in quantitative yield; ¹H NMR (400 MHz, CDCl₃): δ = 3.50 (b, 6H, NH₂), 5.05 (s, 1H, CH), 5.07 (s, 1H, CH), 6.74 (m, 3H, Ar-H), 6.27 (m, 3H, Ar-H), 6.74 (m, 3H, Ar-H) ppm. The NMR data were in agreement with literature data.
2,6,14-Triiodotriptycene (660 mg, 2.20 mmol) was dissolved in hydrochloric acid (5 mL) and water (10 mL). The reaction mixture was cooled in an ice bath. Sodium nitrite (501 mg, 7.3 mmol) was dissolved in water and added to the reaction mixture over a period of 10 min. Potassium iodide (2.75 g, 16.5 mmol) was dissolved in H$_2$O (5 mL) and added over 30 min. The mixture was heated to 80 °C for 2 h, cooled, and then extracted with dichloromethane (30 mL x 3). The combined extracts were washed with sodium bisulfate (20 mL x 2), dried over anhydrous sodium sulfate and concentrated to remove the organic solvents. The crude product was subjected to column chromatography on silica gel using dichloromethane/n-hexane (1:3, v/v) as eluent to give the product as a white solid (372.5 mg, 27%). 1H NMR (400 MHz, CDCl$_3$): $\delta = 5.29$ (m, 2H, CH), 7.14 (d, 3J = 7.8 Hz, 3H, Ar-H), 7.38 (d, 3J = 7.5 Hz, 3H, Ar-H), 7.74 (b, 3H, Ar-H) ppm. The NMR data were in agreement with the literature.

General procedure for the boronylation of bromoporphyrins

A 100 mL Schlenk flask was charged with 5-bromo-10,15,20-trisubstitutedporphyrin or [5-bromo-10,15,20-trisubstitutedporphyrin]zinc (1 equiv.) and dried under vacuum. Dry 1,2-dichloroethane (20 mL) and dry triethylamine (13 equiv.) were added under argon. The solution was degassed via 3 freeze-pump-thaw cycles before the vessel was purged with argon. 4,4,5,5-Tetramethyl-1,3,2-dioxaborolane (10 equiv.) and dichlorobis(triphenylphosphine)palladium(II) (0.03 equiv.) were added. The Schlenk tube was sealed and heated to 90 °C overnight. The reaction was cooled and quenched with a saturated KCl (10 mL) solution, washed with water and dried over anhydrous sodium sulfate. The organic solvents were removed in vacuo and subjected to purification via column chromatography.
5-(4′,4′,5′,5′-Tetramethyl-[1′,3′,2′]-dioxaborolan-2′-yl)-10,15,20-triphenylporphyrin 133

5-Bromo-10,15,20-triphenylporphyrin 131 (400 mg, 0.65 mmol), triethylamine (1.17 mL, 8.42 mmol), borolane (0.94 mL, 6.48 mmol) and dichlorobis(triphenylphosphine)-palladium(II) (13.6 mg, 0.02 mmol) were reacted according to the procedure outlined above and subjected to column chromatography using dichloromethane as eluent, to yield a purple solid (241.1 mg, 56%); mp >300 °C; R_f = 0.2 (SiO_2, dichloromethane/n-hexane 1:2, v/v); ^1H NMR (600 MHz, CDCl_3) δ = -2.75 (s, 2H, N/T), 1.87 (s, 12H, C/C3), 7.78 (m, 9H, Ar-C), 8.24 (m, 6H, Ar-H), 8.85 (dd, J = 4.4, 14.2 Hz, 4H, βH), 9.00 (d, J = 4.6 Hz, 2H, βH), 9.89 (d, J = 4.6 Hz, 2H, βH) ppm; ^13C NMR (150.9 MHz, CDCl_3) δ = 23.3(CH_3), 85.2 (qC), 120.0 (qC), 121.8 (qC), 126.6 (Ar-C), 127.7 (Ar-C), 134.5 (Ar-C), 142.0 (qC), 144.2 (qC) ppm; λ_max (lg ε) 417 (5.4), 514 (4.3), 546 (4.0), 588 (4.0), 649 (3.9) nm; HRMS(ESI) [C_{44}H_{38}N_4+H] calcd. 665.3088, found 665.3109.

5-Butyl-15-(4′,4′,5′,5′-tetramethyl-[1′,3′,2′]-dioxaborolan-2′-yl)-10,20-bis(4-methylphenyl)porphyrin 134

5-Bromo-15-butyl-10,20-ditolylporphyrin 132 (400 mg, 0.64 mmol), triethylamine (1.16 mL, 8.31 mmol), borolane (0.93 mL, 6.39 mmol) and dichlorobis(triphenylphosphine)-palladium(II) (13.5 mg, 0.02 mmol) were reacted according to the procedure outlined above and subjected to column chromatography
using dichloromethane as eluent, to yield a purple solid (283.9 mg, 66%); mp 191 °C; Rf = 0.32 (SiO2, dichloromethane/n-hexane 1:2, v/v); 1H NMR (400 MHz, CDCl3) δ = -2.61 (s, 2H, NH), 1.15 (t, J = 7.4 Hz, 3H, CH2CH2CH2CH3), 1.85 (m, 14H, CH3, CH2CH2CH2CH3), 2.56 (m, 2H, CH2CH2CH2CH3), 2.77 (s, 6H, tolyl-CH3), 5.03 (t, J = 7.9 Hz, 2H, CH2CH2CH2CH3), 7.60 (d, J = 7.6 Hz, 4H, Ar-H), 8.12 (d, J = 7.6 Hz, 4H, Ar-H), 8.97 (dd, J = 4.6 Hz, 12.2, 4H, βH), 9.50 (d, J = 4.7 Hz, 2H, βH), 9.84 (d, J = 4.6 Hz, 2H, βH) ppm; 13C NMR (150.9 MHz, CDCl3) δ = 14.2 (CH3), 21.5 (CH3), 23.7 (CH2), 25.3 (CH3), 35.2 (CH2), 40.9 (CH2), 85.0 (qC), 119.5 (qC), 122.5 (qC), 127.1 (β-C), 127.2 (Ar-C), 131.1 (β-C), 131.6 (β-C), 134.4 (Ar-C), 137.2 (qC), 139.7 (qC) ppm; UV-vis (CH2Cl2): λmax (lg e) 417 nm (5.35), 517 (4.22), 549 (3.79), 589 (3.77), 644 (3.53); HRMS (ES+) [C44H45BN4O2Zn+H]: calcd 726.2145, found 726.2165.

5-Bromo-10,15,20-triphenylporphyrin 131 (400 mg, 0.65 mmol), Et3N (1.17 mL, 8.42 mmol), borolane (0.94 mL, 6.48 mmol) and dichlorobis(triphenylphosphine)-palladium(II) (13.6 mg, 0.02 mmol) were reacted according to the procedure outlined above to yield a purple solid (241.1 mg, 56%); mp >300 °C Rf = 0.14 (SiO2, dichloromethane/n-hexane, 1:1, v/v); 1H NMR (400 MHz, CDCl3) δ = 1.90 (s, 12H, CH3), 7.82 (m, 9H, Ar-H), 8.27 (m, 6H, Ar-H), 9.00 (m, 4H, βH), 9.14 (d, J = 4.6 Hz, 2H, βH), 9.97 (d, J = 4.6 Hz, 2H, βH) ppm; 13C NMR (150.9 MHz, CDCl3) δ = 25.2 (CH3), 85.1 (qC), 120.8 (qC), 122.4 (qC) 126.3 (Ar-C), 127.3 (ar-C), 131.3 (β-C), 132.0 (β-C), 137.8 (β-C), 134.2 (Ar-C), 142.7 (qC), 149.8 (qC), 150.3 (qC), 154.3 (qC) ppm; UV-vis (CH2Cl2): λmax (lg e) 414 (5.6), 548 (4.4), 585 (4.0) nm; HRMS(ES+) [C44H35N4O2Zn+H] calcd. 726.2145, found 726.2165.
Metallation was performed on the crude product of the above reaction (before column chromatography). Filtration through a frit using silica gel and dichlormethane/n-hexane (1/1, v/v) isolated the debrominated porphyrin side product. Changing the eluent to dichloromethane yielded the title compound 136 as a purple solid (390.4 mg, 80% for two steps); mp >300 °C; Rf = 0.51 (SiO2, dichloromethane/n-hexane 3:1, v/v) 1H NMR (400 MHz, CDCl3) δ = 1.17 (t, J = 7.4 Hz, 3H, CH₂CH₂CH₂CH₃), 1.90 (m, 14H, CH₃, CH₂CH₂CH₂CH₂CH₃), 2.54 (m, 2H, CH₂CH₂CH₂CH₂CH₃), 2.79 (s, 6H, tolyl-CH₃), 4.92 (m, 2H, CH₂CH₂CH₂CH₂CH₃), 7.62 (d, J = 7.2 Hz, 4H, Ar-H), 8.13 (d, J = 7.3 Hz, 4H, Ar-H), 9.05 (m, 4H, βH), 9.50 (m, 2H, βH), 9.91 (m, 2H, βH) ppm; 13C NMR (150.9 MHz, CDCl3) δ = 14.2 (CH₃), 21.5(CH₃), 23.8 (CH₂), 25.3 (CH₃), 35.6 (CH₂), 41.2 (CH₂), 85.1 (qC), 120.4 (qC), 123.2 (qC), 127.7 (Ar-C), 128.9 (β-C), 131.8 (β-C), 132.9 (β-C), 134.4 (Ar-C), 137.0 (qC), 140.1 (qC), 149.2 (qC), 149.7 (qC), 150.0 (qC), 154.6 (qC) ppm; UV-vis (CH₂Cl₂): λmax (lg ε) = 419 (5.7), 548 (4.5), 585 (4.1) nm; HRMS(ES⁺) [C₄₄H₄₁N₂O₂Zn+H] calcd. 734.2771, found 734.2749.

Suzuki-Miyaura coupling reaction

Boronic acid (1 equiv.), 2,6,14-triiodotriptycene (0.3 equiv.) and potassium phosphate (4 equiv.) were added to a 100 mL Schlenk flask and dried under vacuum. The vacuum was released to allow the addition of dry dimethylformamide (25 mL). The mixture was degassed via three freeze-pump-thaw cycles before the vessel was purged with argon and tetrakis(triphenylphosphine)palladium(0) (0.1 equiv.) was added. The Schlenk flask was sealed and heated to 100 °C overnight (TLC control; dichloromethane/n-hexane 1:1, v/v). Then, the solvent was removed and the residue was
Experimental

redissolved in dichloromethane, washed with aqueous sodium hydrogen carbonate. The crude porphyrin mixture was dried *in vacuo* and subjected to purification *via* column chromatography.

2,6,14-[Tris(5,10,15-triphenylporphyrin-20-ylato)zinc(II)]triptycene 140

Following the above procedure [5-(4',4',5',5'-tetramethyl-[1',3',2]-dioxaborolan-2'-yl)-10,15,20-triphenylporphyrinato]zinc(II) 135 (200 mg, 0.27 mmol), 2,6,14-triiodotriptycene (52.1 mg, 0.08 mmol), potassium phosphate (233.3 mg, 1.10 mmol) and tetrakis(triphenylphosphine)palladium(0) (31.6 mg, 0.03 mmol) were reacted and subjected to purification *via* column chromatography on silica gel using dichloromethane/n-hexane (1:1, v/v) as eluent. The title compound was obtained in a yield of 27% (44.4 mg); mp >300 °C; *R*/*f* = 0.21 (SiO₂, dichloromethane/n-hexane 1:1, v/v); ¹H NMR (600 MHz, CDCl₃): δ = 6.16 (s, 1H, *CH*), 6.31 (s, 1H, *CH*), 7.82 (m, 27H, Ar-H), 8.01 (d, ³J = 7.1 Hz, 1H, Ar-H), 8.13 (d, ³J = 7.3 Hz, 1H, Ar-H), 8.17 (m, 1H, Ar-H), 8.30 (m, 20H, Ar-H), 8.52 (s, 1H, Ar-H), 8.61 (s, 1H, Ar-H), 8.70 (s, 1H, Ar-H), 8.99-9.11 (m, 18H, βH), 9.22 (m, 6H, βH) ppm; ¹³C (150.9 MHz), CDCl₃): δ = 56.2 (Ar-C), 120.7 (AR-C), 122.4 (Ar-C), 126.6 (Ar-C), 127.5 (Ar-C), 130.6 (Ar-C), 132.0 (Ar-C), 132.1 (β-C), 132.4 (β-C), 134.5 (Ar-C) ppm; UV-vis (CH₂Cl₂): λmax (lg ε) 424 (5.9), 548 (4.6), 587 (4.0) nm; HRMS (MALDI LD⁺) [C₁₃₄H₈₀N₁₂Zn₃H⁺]: calcd. 2048.4503, found 2048.4529.
Following the above procedure [5-Butyl-15-(4',4',5',5'-tetramethyl-[1',3',2']dioxaborolan-2'-yl)-10,20-bis(4-methylphenyl)porphyrinato]zinc(II) 136 (200 mg, 0.27 mmol), 2,6,14-triiodotriptycene (51.5 mg, 0.08 mmol), potassium phosphate (230.7 mg, 1.10 mmol) and tetrakis(triphenylphosphine)palladium(0) (31.4 mg, 0.03 mmol) were reacted and subjected to purification via column chromatography on silica gel using dichloromethane/n-hexane (2:1, v/v) as eluent. The title compound was obtained in a yield of 22% (22 mg, 27%); >300°C; R_f = 0.41 (SiO2, dichloromethane/n-hexane 1:2, v/v); ^1H NMR (400 MHz, CDCl3): δ = 1.18 (t, 3J = 7.3 Hz, 9H, CH2CH2CH2CH2), 1.90 (m, 6H CH2CH2CH2CH2), 2.60 (m, 6H, CH2CH2CH2CH2), 2.77 (s, 6H, tolyl-CH2), 2.79 (s, 12H, tolyl-CH3), 5.04 (m, 6H, CH2CH2CH2CH2), 5.10 (s, 1H, Ar-H), 6.26 (s, 1H, Ar-H), 7.52 (m, 12H, Ar-H), 7.97 (d, 3J = 7.3 Hz, 1H, Ar-H), 8.14 (m, 18H, Ar-H), 8.54 (s, 1H, Ar-H), 8.63 (s, 1H, Ar-H), 9.07 (m, 18H, βH), 9.58 (m, 6H, βH) ppm; ^13C (150.9 MHz), CDCl3: 13.9 (CH3), 21.4 (CH3), 23.6 (CH2), 35.4 (CH2), 41.0 (CH2), 46.2 (qC), 54.3 (Ar-C), 120.5 (qC), 122.2 (Ar-C), 127.2 (Ar-C), 128.6 (β-C), 130.4 (Ar-C), 130.7 (Ar-C), 131.7 (β-C), 132.1 (β-C), 132.3 (β-C), 134.2 (Ar-C), 136.9 (qC), 139.9 (qC), 149.9 (qC), 150.4 (qC) ppm; UV-vis (CH2Cl2): λ_max (lg ε) 424 (6.0), 552 (4.8), 593 (4.6) nm. HRMS (MALDI LD^+) [C134H104N12Zn3]+: calcd. 2072.6381, found 2072.6462.
Experimental

5,10,15-Tritolyl-20-trimethylsilylethynylporphyrin 146

Pyrrole (1.38 mL, 22 mmol), \(p \)-tolulaldehyde (1.42 mL, 11.6 mmol) and 3-trimethylsilylpro-2-pynal (1.18 mL, 10.8 mmol) were dissolved in dry chloroform (1.8 L), in a three-neck, 2 L, round-bottom flask equipped with an argon inlet. The flask was shielded from ambient light before trifluoroboron etherate (0.26 mL, 1.58 mmol) was added. The reaction was stirred at rt overnight, after which DDQ (3.4 g, 15 mmol) was added. The reaction mixture was stirred for a further hour. Triethylamine (3 mL) was added before the crude mixture was filtered through a layer of silica gel using dichloromethane as eluent. The organic solvents were evaporated *in vacuo* and the crude product was subjected to purification *via* column chromatography on silica gel using dichloromethane/\(n \)-hexane (1:1, v/v) as eluent. The first fraction contained trace amounts of 5,10,15,20-tetra(trimethylsilylethynyl)porphyrin 142. The second fraction contained 5-tolyl-10,15,20-tri(trimethylsilylethynyl)porphyrin 143 (60 mg, 2%): \(R_f = 0.75 \) (SiO\(_2\), dichloromethane/\(n \)-hexane 1:1, v/v)); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = -2.12 \) (s, 2H, NH), 0.66 (s, 18H, Si\(\text{CH}_3 \)), 0.68 (s, 9H, Si\(\text{CH}_3 \)), 2.75 (s, 3H, tolyl-\(\text{CH}_3 \)), 7.60 (d, \(^3\)J = 7.6 Hz, 3H, Ar-H), 8.06 (d, \(^3\)J = 7.6 Hz, 2H, Ar-H), 8.80 (d (\(^3\)J = 4.6 Hz, 2H, \(\beta \)H), 9.52 (d, \(^3\)J = 4.6 Hz, 2H, \(\beta \)H), 9.58 (dd, \(^3\)J = 8.5, 4.6 Hz, 4H, \(\beta \)H) ppm. The third fraction contained a mixture of 5,10-ditolyl-15-,20-di(trimethylsilylethynyl)porphyrin and 5,15-ditolyl-10,20-di(trimethylsilylethynyl)-porphyrin 144 and 145 (168 mg 4%): \(R_f = 0.67 \) (SiO\(_2\), dichloromethane/\(n \)-hexane 1:1, v/v). The fourth fraction contained the title compound 146 (310 mg, 8%); \(R_f = 0.59 \) (SiO\(_2\), dichloromethane/\(n \)-hexane 1:1, v/v)); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta = -2.37 \) (s, 2H, NH), 0.65 (s, 9H, Si\(\text{CH}_3 \)), 2.73 (s, 3H, tolyl-\(\text{CH}_3 \)), 2.75 (s, 6H, tolyl-\(\text{CH}_3 \)), 7.57 (d, \(^3\)J = 7.9 Hz, 2H, Ar-H), 7.61 (d, \(^3\)J = 7.8 Hz, 4H, Ar-H), 8.09 (d, \(^3\)J = 8.0 Hz, 2H, Ar-H), 8.11 (d, \(^3\)J = 7.8 Hz, 4H, Ar-H), 8.82 (s, 4H \(\beta \)H), 8.95 (d, \(^3\)J = 4.7 Hz, 2H, \(\beta \)H), 9.67 (d, \(^3\)J = 4.7 Hz, 2H, \(\beta \)H) ppm; UV-vis (CH\(_2\)Cl\(_2\)): 145
$\lambda_{\text{max}} (\lg \varepsilon) = 453$ (5.4), 568 (4.3), 607 (4.7), 648 (4.2), 670 (4.1) nm. The final fraction contained 5,10,15,20-tetratolylporphyrin 147 (515.5 mg, 14%) $R_f = 0.48$ (SiO$_2$, dichloromethane/n-hexane 1:1, v/v); UV-vis (CH$_2$Cl$_2$): $\lambda_{\text{max}} (\lg \varepsilon) = 420$ (5.7), 517 (4.4), 553 (4.2), 593 (4.1), 659 (4.0) nm. The spectroscopic data were in agreement with the literature.

\[5\text{-Ethynyl-10,15,20-tritolylporphyrinato}\text{zinc(II)} 149\]

A 50 mL round bottom flask was charged with [5,10,15-tritolyl-20-(trimethylsilyl-ethynyl)porphyrinato]zinc(II) 146 (335 mg, 0.45 mmol) and tetrabutylammonium fluoride (0.6 mL of a 1 M solution in THF 0.6 mmol). The reaction mixture was stirred at rt for 30 min (TLC control). The crude product was then filtered through a short layer of silica gel using dichloromethane as eluent. The solvent was removed under reduced pressure and the product 149 was obtained in quantitative yield. $R_f = 0.45$ (SiO$_2$, dichloromethane/n-hexane 1:1, v/v); 1H NMR (400 MHz, CDCl$_3$) $\delta = 2.73$ (s, 3H, tolyl-CH$_3$), 2.75 (s, 6H, tolyl-CH$_3$), 4.17 (s, 1H, C=CH), 7.58 (m, 6H, Ar-H), 8.09 (m, 6H, Ar-H), 8.93 (s, 4H, βH), 9.04 (d, $^3J = 4.5$ Hz, 2H, βH), 9.77 (d, $^3J = 4.5$ Hz, 2H, βH) ppm; 13C NMR (150.9 MHz, CDCl$_3$) $\delta = 21.3$ (CH$_3$), 83.1 (CH), 127.2 (Ar-C), 130.6 (β-C), 131.6 (β-C), 132.9 (β-C), 134.1 (Ar-C), 137.1 (qC), 139.4 (qC), 149.9 (qC), 150.6 (qC), 152.5 (qC) ppm; UV-vis (CH$_2$Cl$_2$): $\lambda_{\text{max}} (\lg \varepsilon) 427$ (5.7), 558 (4.5), 599 (4.3) nm. The NMR data were in agreement with the literature.

146
A 100 mL, 3-neck round-bottom flask was dried under high vacuum, purged with argon and charged with 1-bromo-4-ethynylbenzene (0.91 g, 5 mmol). Dry diethyl ether (<5 mL) was added and the solution was cooled to -70 °C. n-Butyllithium (4 mL of a 2.5 M solution in hexanes, 10 mmol) was added dropwise over 1 h at -70 °C. The reaction mixture was warmed to -40 °C and dry THF was added until a white/pink suspension formed (~2 mL). Then, 5,15-ditolylporphyrin (200 mg, 0.41 mmol) dissolved in THF (80 mL), was added rapidly to the vigorously stirred solution and the reaction was stirred at rt for 4 h (colour change to brown). Saturated ammonium chloride (2 mL, colour change to green) and DDQ (280 mg, 1.23 mmol, colour change to red) were added. After 1 h, the crude product was filtered through a layer of silica gel using dichloromethane as eluent. Recrystallisation from dichloromethane/methanol yielded 153 (167 mg, 69%); Rf = 0.5 (SiO2, dichloromethane/n-hexane 1:1, v/v); ¹H NMR (400 MHz, CDCl₃) δ = -2.99 (s, 2H, NH), 2.75 (s, 6H, tolyl-CH₃), 3.35 (s, 1H, C=CH), 7.62 (d, J = 7.7 Hz, 4H, Ar-H), 7.91 (d, J = 7.8 Hz, 2H, Ar-H), 8.15 (d, J = 7.7 Hz, 4H, Ar-H), 8.20 (d, J = 7.8 Hz, 2H, Ar-H), 8.86 (d, J = 4.8 Hz, 2H, βH), 8.96 (d, J = 4.8 Hz, 2H, βH), 9.07 (d, J = 4.7 Hz, 2H, βH), 9.37 (d, J = 4.6 Hz, 2H, βH), 10.25 (s, 1H, meso CH) ppm. The NMR data were in agreement with the literature.

153 was dissolved in chloroform (50 mL) and added to a 100 mL round bottom flask equipped with a reflux condenser and brought to reflux. Zn(OAc)₂ (10 equiv.) was dissolved in methanol and added to the refluxing solution. The progress of the reaction was monitored by TLC. After 15 min. the heat source was removed and the solution was allowed to cool before being passed through a plug of silica using dichloromethane as eluent. The product 154 was obtained as a pink solid in quantitative yield; mp >300
0°C; Rf = 0.46 (dichloromethane/n-hexane, 1:1, v/v); ¹H NMR (400 MHz, CDCl₃): δ = 2.76 (s, 6H, CH₃), 3.34 (s, 1H, C=CH), 7.61 (d, 3J = 7.6 Hz, 4H, Ar-H), 7.92 (d, 3J = 7.6 Hz, 2H, Ar-H), 8.14 (d, 3J = 8.2 Hz, 4H, Ar-H), 8.21 (d, 3J = 8.2 Hz, 2H, Ar-H), 8.97 (d, 3J = 4.7 Hz, 2H, β-H), 9.06 (d, 3J = 4.7 Hz, 2H, β-H), 9.13 (d, 3J = 4.7 Hz, 2H, β-H), 9.38 (d, 3J = 4.1 Hz, 2H, β-H), 10.23 (s, 1H, meso CH) ppm; ¹³C NMR (100.6 MHz, CDCl₃): δ=21.6, 83.8, 105.9, 120.2, 120.8, 121.3, 127.4, 130.3, 131.5, 131.7, 132.1, 132.7, 134.4, 134.5, 137.2, 139.6, 143.7, 149.3, 149.7, 150.3 ppm; UV-vis (CH₂Cl₂): λmax (lg ε) = 415 (5.7), 542 (4.8) nm; HRMS (ES⁺): [C₄₂H₃₀N₄M⁺]: cacld 652.1605, found 652.1588.

General procedure for the Sonogashira coupling reaction

Ethyl-substituted porphyrins (1.0 equiv.), 2,6,14-triiodotriptycene (0.33 equiv.) and triphenylarsine (2.0 equiv.) were added to a 100 mL Schlenk flask and dried under vacuum. The vacuum was released to allow for the addition of dry THF (10 mL) and dry triethylamine (5 mL). The mixture mixture was degassed via three freeze-pump-thaw cycles before the vessel was purged with argon and tris(dibenzylideneacetone)-dipalladium(0) was added. The Schlenk tube was sealed and the reaction mixture stirred overnight at 30°C. Then, dichloromethane (60 mL) was added, the mixture was washed with water (2 x 30 mL) and dried over sodium hydrogen carbonate. The solvent was evaporated under reduced pressure and the product purified by column chromatography on silica gel.
Experimental

2,6,14-[Tris(10,15,20-tritolylporphyrin-20-y1ato)zinc(II)]ethynetriptycene 156

[5-Ethynyl-10,15,20-Tritolylporphyrinato]zinc(II) 149 (100 mg, 0.15 mmol) 2,6,14-triiodo-triptycene (31.5 mg, 0.05 mmol), triphenylarsine (91.7 mg, 0.3 mmol) and tris(dibenzylideneacetone)dipalladium(0) (27.4 mg, 0.03 mmol) were reacted according to the above procedure. The crude product was subjected to column chromatography on silica gel using dichloromethane/n-hexane (1:1, v/v) as eluent to yield the title compound 156 (mg, 28%); mp >300 °C; Rf = 0.61 (SiO2, dichloromethane/n-hexane 3:1, v/v); 1H NMR (600 MHz, CDCl3): δ = 2.75 (m, 27H, tolyl-CH3), 5.93 (s, 1H, Ar-H), 6.00 (s, 1H, Ar-H), 7.59 (m, 24H, Ar-H), 7.83 (m, 6H, Ar-H), 8.11 (m, 24H, Ar-H), 8.29 (s, 1H, Ar-H), 8.32 (s, 1H, Ar-H), 8.35 (s, 1H, Ar-H), 8.91 (m, 12H, βH), 9.06 (m, 6H, βH), 9.86 (m, 6H, βH) ppm; 13C (150.9 MHz, CDCl3); δ = 21.4 (CH3), 53.9 (Ar-C), 121.4 (qC), 124.2 (Ar-C), 127.2 (qC), 127.2 (Ar-C), 128.7 (Ar-C), 129.2 (Ar-C), 130.6 (Ar-C), 131.7 (Ar-C), 132.8 (Ar-C), 134.1 (Ar-C), 134.2 (qC), 137.1 (qC), 139.4 (qC), 144.9 (qC), 149.8 (qC) ppm; UV-vis (CH2Cl2): λmax (lg ε) = 443 (6.0), 527 (4.2), 566 (4.7), 614 (4.9) nm; HRMS (MALDI LD+) [C149H98N12Zn3+H]: calcd. 2246.5912, found 2246.5916.
Experimental

2,6,14[Tris(10,20-ditolyporphyrin-5-ylato)zinc(II)]phenylethynetriptycene 157

[5-Phenylethynyl-10,20-ditolyporphyrinato]zinc(II) 155 (100 mg, 0.15 mmol) 2,6,14-triiodotriptycene (32.2 mg, 0.05 mmol), triphenylarsine (93.6 mg, 0.3 mmol) and tris(dibenzylideneacetone)dipalladium(0) (28.0 mg, 0.03 mmol) were reacted according to the above procedure. The crude product was subjected to column chromatography on silica gel using dichlormethane/n-hexane (1:1, v/v) as eluent to yield the title compound 156 (39.6 mg, 36%); mp >300°C; $R_f = 0.49$ (SiO$_2$, dichloromethane/n-hexane 1:1, v/v);

1H NMR (600 MHz, CDCl$_3$): $\delta = 2.77$ (m, 18H, tolyl-CH_3), 5.66 (s, 1H, Ar-H), 5.68 (s, 1H, Ar-H), 7.49 (d, $^3J = 6.9$ Hz, 3H, Ar-H), 7.62 (m, 12H, Ar-H), 7.74 (m, 3H, Ar-H), 7.87 (m, 3H, Ar-H), 7.96 (d, $^3J = 7.9$ Hz, 6H, Ar-H), 8.15 (m, 12H, Ar-H), 8.24 (d, $^3J = 7.9$ Hz, 6H, Ar-H), 9.04 (m, 12H, βH), 9.13 (m, 6H, βH), 9.37 (m, 6H, βH), 10.20 (m 3H, mesoCH) ppm; 13C (150.9 MHz, CDCl$_3$): $\delta = 21.4$ (CH$_3$), 53.7 (Ar-C), 106.0 (meso-CH), 124.7 (Ar-C), 125.2 (qC), 127.2 (Ar-C), 128.2 (Ar-C), 128.8 (Ar-C), 129.6 (Ar-C), 130.3 (qC), 131.6 (Ar-C), 132.0 (Ar-C), 132.6 (Ar-C), 134.3 (Ar-C), 137.0 (qC), 143.2 (qC) ppm; UV-vis (CH$_2$Cl$_2$): λ_{max} (lg ε) = 415 (6.0), 542 (4.6), 581 (3.5) nm; HRMS (MALDI LD$^+$) [C$_{46}$H$_{92}$N$_{12}$Zn$_3$+H]: calcd. 2204.5442, found 2204.5479.
6.8 Determination of Binding Constants

UV-vis titrations were performed with a Perkin Elmer, Lambda 25 spectrophotometer. Solutions of porphyrin monomer 158 and trimers 140, 156 and 157 were prepared in spectrophotometric grade dichloromethane (Sigma). 4-4'-bipyridine solutions were also prepared in spectrophotometric grade dichloromethane.

Within this thesis, the binding constants have been determined by using the nonlinear least-squares program SPECFIT/32™, which is a multivariate data analysis program for modeling and fitting experimental data sets (such as chemical kinetics and equilibrium titrations) obtained from multivariate spectrophotometric measurements. The fitting methodology, which relies on the use of various mathematical parameters, uses the Levenberg-Marquardt procedure to minimise the least-squares residuals between the data set and the model system. In order to solve the number of species (speciation) present at equilibrium, SPECFIT takes advantage of the Newton-Raphson method. The model used specifies various states of interaction, for instance complexation between Host and Guest species, in terms of the overall stability constants (β). Considering the two stepwise equilibrium process involved in the binding interaction between a host (M) and a guest (L), the equilibrium constants K_1 and K_2 implicated in the interaction can be expressed using Equation 6.1 and Equation 6.2.

\[
M + L \rightleftharpoons K_1 [ML] \quad (6.1)
\]

\[
[ML] + L \rightleftharpoons K_2 [ML_2] \quad (6.2)
\]

Brackets signify equilibrium molar concentrations. The stepwise binding constants K_1 and K_2 can be determined using Equations 6.3 and 6.4.

\[
K_1 = \frac{[ML]}{[M][L]} \quad (6.3)
\]

\[
K_2 = \frac{[ML_2]}{[M][L]} \quad (6.4)
\]
The overall equilibrium constant for this process, β, is the product of the two stepwise constants K_1 and K_2 ($\beta = K_1K_2$). SPECFIT yields binding constants as cumulative log β values. So, for the 1:2 (M:L$_2$) equilibrium process this is translated by the log $\beta_{1,2}$, which represents the sum of the individual constants ($\log \beta_{1,2} = \log K_1 + \log K_2$). Therefore, for any multi-step equilibrium, by subtraction of successive log β values, the log K for each equilibrium step can then be determined.

This program automatically scales its calculations with the supplied initial concentrations (allowing for dilution).
References
References

(18) Hückel, E. Z. *Phys* 1931, 70, 204-286.
References

References

References

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(129) Bischoff, I.; Feng, X. D.; Senge, M. O. Tetrahedron 2001, 57, 5573-5583.</td>
</tr>
</tbody>
</table>
References

References

References

References

(277) Senge, M. O. J. Porphyrins Phthalocyanines 1998, 2, 107-121.

References