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A fundamental question about adaptation in a population is the time of

onset of the selective pressure acting on beneficial alleles. Inferring this

time, in turn, depends on the selection model. We develop a framework of

approximate Bayesian computation (ABC) that enables the use of the full

site frequency spectrum and haplotype structure to test the goodness-of-fit

of selection models and estimate the timing of selection under varying popu-

lation size scenarios. We show that our method has sufficient power to

distinguish natural selection from neutrality even if relatively old selection

increased the frequency of a pre-existing allele from 20% to 50% or from

40% to 80%. Our ABC can accurately estimate the time of onset of selection

on a new mutation. However, estimates are prone to bias under the standing

variation model, possibly due to the uncertainty in the allele frequency at the

onset of selection. We further extend our approach to take advantage of

ancient DNA data that provides information on the allele frequency path

of the beneficial allele. Applying our ABC, including both modern and

ancient human DNA data, to four pigmentation alleles in Europeans, we

detected selection on standing variants that occurred after the dispersal

from Africa even though models of selection on a new mutation were

initially supported for two of these alleles without the ancient data.
1. Introduction
Adaptations to local selective pressures in natural populations have been

broadly attributed to two main models of natural selection: selection on new

mutations, also referred to as selective sweeps, and selection on pre-existing

(i.e. standing) genetic variation [1–5]. An important difference between these

models, in the context of exposure to new environmental pressures, is that

under the selective sweep model the adaptive process must wait for the emer-

gence of new beneficial mutations, while standing variants are immediately

available as the source of beneficial alleles in the new environment. Therefore,

these two models of natural selection result in different population dynamics of

beneficial alleles [6]. Understanding the tempo and mode of natural selection

can provide insights into the process of adaptation to new selective pressures.

Natural selection may leave distinctive footprints on patterns of neutral

sequence variation linked to the advantageous allele [7], which are strongly

shaped by the joint effects of allele frequency at the selected site ( f0) at present

(i.e. t ¼ 0) and of three additional parameters: the time of onset of selection (T ),

the frequency of the beneficial allele at the onset of selection ( fT) and the strength

of selection acting on the selected site (s). Selective sweeps are expected to reduce

levels of genetic variation at linked neutral sites due to the rapid increase of the

beneficial allele frequency, and to generate a skew in the site frequency spectrum

(SFS) [8–11]. By contrast, a standing adaptive variant may have existed in a
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population long enough to break up the association between

the adaptive allele and nearby neutral alleles. Depending on

the values of T, fT and s, natural selection will leave a signature

that ranges between the patterns expected from selective

sweeps and those for neutral models [2–4]. Therefore, f0 and

intra-allelic variability at linked neutral sites are informative

for identifying the model of natural selection and for estimating

the onset of selection [12–15].

Many scans for selection signals have been performed in

humans and in other species [16–18], and, especially in

humans, they have been connected with specific traits by

using either functional annotations or catalogues of variants

identified in genome-wide association studies [19]. In this

paper, our goal is to develop a framework to estimate the

timing of the selective pressures acting on the selection sig-

nals identified in the studies above and ultimately to help

distinguish among hypotheses of selective pressures shaping

different traits. To this end, we developed an approximate

Bayesian computation (ABC) approach for inference of the

mode and tempo of natural selection with a particular

focus on the history of selective pressures during human

evolution. Handling efficiently high-dimensional summary

statistics, which are necessary to capture the subtle differ-

ences in patterns of genetic variation expected for selection

on standing variation versus neutral models or for selection

on standing variation versus selective sweep models [2–4],

is a well-known challenge in ABC approaches [20]. To

address this challenge, we employ kernel ABC that enables

the use of full genetic variation information to attain a

better approximation [21,22]. Our approach is built on simu-

lations of variation data under varying population size

models that more closely approximate the true population

history [23]. We also simulate a constant size model for com-

parison. A key innovation is that we condition the parameter

space on the allele frequency in the past by using available

ancient DNA data [24,25]. We first evaluate the performance

of our ABC framework without using ancient DNA data to

test the goodness-of-fit of selection models and estimate the

onset of selection. Then, we condition on an allele frequency

at a past time point estimated from ancient DNA data and

compare the results to the inferences based only on contem-

porary allele frequency. Finally, applying our ABC to light

skin pigmentation alleles, well-known examples of natural

selection in humans, we find that our approaches provide

greater support for selection on standing variation than for

selective sweep and neutral models, allowing estimation of

the onset of selection on pigmentation alleles.

2. Material and methods
Our goal is to infer the age of an advantageous allele. However,

this inference is dependent on the mode of selection acting on the

allele because different models are defined by different sets of

parameters. Therefore, our ABC framework consists of three

main steps: (i) specifying selection models, (ii) choosing the

best fitting model and (iii) estimating the parameters of interest.

This framework is developed by default to make use of DNA

sequence variation from contemporary populations. We also pro-

vide an extended approach by incorporating ancient DNA data

into our ABC as an additional observation.

(a) Defining and simulating evolutionary models
We simulated two different models of selection: on a new

mutation (SNM) or on a standing variant (SSV), using four
different parameters: f0 is allele frequency at present, T is onset

of natural selection, s is selection coefficient and fT is allele fre-

quency at T. The difference between SNM and SSV is whether

fT is equal to or larger than 1/2Ne, where Ne is the effective popu-

lation size. We also simulated a neutral model with parameters

Ne and f0. The neutral simulations were used to confirm that

the data for the alleles chosen for age estimation are consistent

with the reported selection signals. Conversely, the SNM and

SSV simulations were used to select the best-fit selection model

to be used for allele age estimation in the ABC.

These three models were simulated using MSSEL (http://genapps.

uchicago.edu/newlabweb/software.html), a modified version of MS

[26], which allows incorporation of the change of allele frequency at a

target site into the standard coalescent process with random

mutation and recombination under a varying population size

model. First, frequency trajectories of a focal allele were gener-

ated by Wright–Fisher forward and backward simulation for

the selection and the neutral phases, respectively (see examples

in electronic supplementary material, figure S1; codes are available

from https://github.com/shigekinakagome/sim_trajectory). To

incorporate information from ancient DNA data into this step,

we conditioned the trajectories with an allele frequency fTpast
at

an additional time point Tpast, as well as with f0 at the present.

Second, neutral variation surrounding the selected site was gener-

ated by coalescent simulations conditional on the trajectory;

coalescent events are confined to lineages descended from the

same class of alleles (i.e. derived or ancestral allele) and their

rate depends on the population size. Third, the simulated data

were summarized into the full SFS and the decay of extended

haplotype homozygosity, both calculated separately for

sequences carrying derived (i.e. beneficial) and ancestral

alleles at the focal site (electronic supplementary material,

figure S2). Details about prior probability distributions and

demographic settings, simulation scheme and summary stat-

istics are provided in the electronic supplementary material,

text. Furthermore, our simulations took account of genomic

contexts by using estimates of local mutation and recombina-

tion rates from genomic data (see also electronic

supplementary material, text).

(b) Model selection by kernel density estimation
This step aims to evaluate the goodness-of-fit of the evolutionary

models to an observation and to identify the best-fit scenario. We

applied the method developed in [27] that measures the simi-

larity of high-dimensional summaries between the observed

and simulated data based on a kernel density estimate, instead

of an acceptance rate as commonly used in ABC [28], and that

calculates an approximated marginal likelihood (aML) of a

given model. To avoid over-smoothing or over-fitting to simu-

lation data, we chose a bandwidth in a normalized Gaussian

kernel function using the 10-fold cross validation [27]. One

million datasets were generated for each model with the simu-

lation scheme described above to compute kernel density

estimates of aMLs. These estimates, in turn, were used to

choose a model for the parameter estimation by calculating

approximate Bayes factors (aBFs) between selection models, as

well as between neutral and selection models.

(c) Parameter estimation by kernel approximate
Bayesian computation

Once the best-fitting model is chosen, the final step is to estimate

the parameters of interest under the model. To take advantage of

the high-dimensional summaries, we employed kernel ABC that

transforms the summary data into high-dimensional space to

measure the similarity between the observed and simulated

data and re-weights the prior samples with the similarity to

http://genapps.uchicago.edu/newlabweb/software.html
http://genapps.uchicago.edu/newlabweb/software.html
http://genapps.uchicago.edu/newlabweb/software.html
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Figure 1. Accuracy of kernel ABC in (a) choosing the SNM models against the neutral or the SSV models and (b) estimating T under the SNM models. Boxplots at the top
panels show log10-scaled aBFs that take ratios of approximate marginal likelihoods (aMLs) between a true model (i.e. SNM) and an alternative model (i.e. neutral or SSV).
The percentage with the parentheses above each boxplot shows the probability that the method can correctly identify the true model with log10(aBF) . 2. The plots at
the bottom represent posterior means of T given the observed summary data, E(TjS(D)). The total 1000 pseudo-observations are used at each time point for (a), of which
100 observations are randomly chosen for (b). The dashed line shows a diagonal plot with slope ¼ 1. (Online version in colour.)
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estimate posterior means [21,22]. These weights were further

used to define credible intervals of the posterior estimates with

a smoothing kernel [29].
(d) Simulation study
We tested the performance of kernel ABC in model selection and

parameter estimation by simulating selection events given f0 ¼
50% or 80% at five time points of 200, 400, 600, 800 and 1200 gen-

erations ago with different values of fT ¼ 1/2Ne, 1%, 5%, 10%,

20%, 30% and 40%.
(i) Model selection
For each combination of f0, T and fT, 1000 pseudo-observations

were simulated by sampling a total of 100 chromosomes with

f0 ¼ 50% or 80%. The mutation and recombination rates were

assumed to be 2.5 � 1028 and 1.0 � 1028 per site per generation,

respectively. Next, one million simulation datasets were gener-

ated for each model under the prior and demographic

conditions (electronic supplementary material, text). These data-

sets were used to estimate aMLs for each pseudo-observation

and to evaluate the accuracy in distinguishing between (i) the

SNM models versus the neutral or the SSV models (figure 1),

and (ii) the SSV models versus the neutral or the SNM models

(electronic supplementary material, figure S3). We define the

power for model selection as the probability that our method

can correctly identify a true model with aBF . 100 and was cal-

culated as the ratio of the number of pseudo-observations

classified into the true model to the total 1000. This threshold

is based on the Kass and Raftery (1995) guidelines [30]. If the
probability is larger than 80%, we consider our method has

enough power to identify true models.

(ii) Parameter estimation
We estimated posterior means of T for 100 pseudo-observations

using 12 000 simulated datasets under the SNM (figure 1) or the

SSV model (electronic supplementary material, figure S4). A

similar comparison was also made for the data simulated

under a constant size model to evaluate the robustness of

our approaches to the demographic assumptions (electronic

supplementary material, figures S5 and S6).

(iii) The use of ancient DNA data
We generated an additional one million simulated datasets by

conditioning the trajectory with fTpast
¼ 5%, 10% or 20% at

Tpast ¼ 400 under the SNM or SSV models (examples are

shown in electronic supplementary material, figure S7). Then,

we tested if the use of ancient DNA data can improve our ability

to distinguish between selection models (electronic supplemen-

tary material, figure S8) and the accuracy in estimating the

parameters under each model (figure 2).

(e) Application to human population data
As an application of our ABC approaches for a real dataset, we

focused on four SNP sites that have been reported to be associ-

ated with signatures of natural selection in humans, as well as

light skin pigmentation (electronic supplementary material,

table S1). We used the complete genomics data for 64 unrelated

individuals of European ancestry and calculated the set of
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Figure 2. Comparisons of posterior estimates between kernel ABC with and without (W.O.) ancient DNA data. Tpast is fixed as 400, and (a) fTpast ¼ 5%,
(b) 10% and (c) 20% are tested for different scenarios of the pseudo-observations under the SNM and SSV models (examples of trajectory under the true
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summary statistics from DNA sequence variation in the genomic

regions including the target SNP sites (see electronic supplemen-

tary material, figure S9 and text). A total of 1 million simulated

datasets were generated under the three evolutionary models

(i.e. SNM, SSV and neutrality) and under the same demographic

model used in our simulation study; this is a varying population

size model inferred in samples of European ancestry [23] (see

electronic supplementary material, text). Parameters were

sampled from the prior distributions taking account of the

local mutation and recombination rates (electronic supplemen-

tary material, table S2). To incorporate ancient DNA data into

our ABC framework, we estimated fTpast
from ancient European

samples, dated within 10 2 7 thousand years ago (ka) [31–34],

using the method described in [15] (see also electronic sup-

plementary material, text). We conditioned trajectories on fTpast

under the SNM and SSV models by accepting them if allele fre-

quency at 10 ka is fTpast
+ 5%. We chose the models by testing the

deviation from neutrality with the data only from the modern

samples and distinguishing the models of natural selection

with the data conditional on the ancient DNA data (table 1).

We then estimated the parameters under the best fitting model

using 30 000 simulations (figure 3).
3. Results
(a) Inferring onsets of natural selection on a new

mutation
We first assessed the ability of our ABC approaches to dis-

tinguish the SNM from other models (figure 1; ‘Model

selection’ in Material and methods). Since s was sampled to

simulate pseudo-observations from the exponential distri-

bution until the trajectory that satisfied the fixed conditions

of T, fT and f0 was accepted, combinations of younger

T and higher f0 tend to need stronger s to generate the trajec-

tory, as expected (electronic supplementary material,

table S3). For f0 ¼ 50%, our method can correctly infer SNM

if T is within 200 to 600 generations ago (figure 1a). Even

for an older time, such as 800 or 1200 generations ago,

most of the observations show higher aMLs in the SNM

models than those in the neutral models. The accuracy of

the model selection further improved if f0 ¼ 80%; our

method can accurately distinguish the SNM models from



Table 1. Results from model selection for four pigmentation SNPs.

SNPs (genes)
rs16891982
(SLC45A2)

rs1426654
(SLC24A5)

rs642742
(KITLG)

rs1042602
(TYR)

allele frequency at 10 – 7 ka (fTpast ) 33.74% 90.42% 59.61% 6.44%

allele frequency at present ( f0) 96.88% 100.00% 81.25% 44.53%

without ancient

DNA

log(aML)

values

neutral 2222.450 2602.147 ln(0.0) 2251.018

SNM 2275.158 2177.428 2222.769 2197.094

SSV 2213.928 2170.599 2263.702 2201.849

best model; log10(aBF)

against neutral

SSV; 3.701 SSV; 187.419 SNM; 17.777 SNM; 23.419

with ancient

DNA

log(aML)

values

SNM 2260.592 2181.289 2503.696 2208.123

SSV 2224.021 2179.457 2461.691 2204.835

best model; log10(aBF)

against SNM or SSV

SSV; 15.883 SSV; 0.796 SSV; 18.242 SSV; 1.428

100
spread of agriculturers1426654

(SLC24A5)

rs16891982
(SLC45A2)

rs642742
(KITLG)

rs1042602
(TYR)

out-of Africa

al
le

le
 f

re
qu

en
cy

 (
%

)

0

0 604836
T (thousand years ago)

2412

20

40

60

80

Figure 3. Posterior estimates of T and fT for four pigmentation SNPs. The
parameters are estimated under the best-fitting model shown from the
model selection with ancient DNA (table 1). The x-axis represents time,
while the y-axis represents allele frequency. The plots show posterior
means of T and fT with 95% credible intervals. Dotted lines describe the
difference in allele frequency between 0 (i.e. the present) and T. Two
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neutrality at any time points from 200 to 1200 generations

ago. By contrast, the distinction between the SNM and SSV

models is more difficult compared with that for selection

versus neutral models. This is because SNM can be considered

as an extreme case of SSV in terms of fT. If fT is as low as 1/2Ne

and f0 is high, selection from a rare mutation results in a selec-

tive sweep and the reduction in linked neutral diversity

associated with SSV is expected to resemble that from SNM

where a beneficial allele on a single haplotype is driven to f0.

Still, the majority of aMLs is higher in the SNM models than

in the SSV models if T is younger than 800 generations ago

under f0 ¼ 50% or 400 generations ago under f0 ¼ 80%.

We then tested the accuracy of our method in estimating

the onset of selection under the SNM models by comparing

posterior probability estimates to known ages (figure 1b;

‘Parameter estimation’ in Material and methods). Even

though we assumed incomplete sweeps of f0 ¼ 50% or 80%,

which is expected to reduce the power in the inference
compared with complete sweeps, the estimates are mostly

close to the true ages. Therefore, the use of high-dimensional

summary statistics can give sufficient information to capture

differences in patterns of genetic variation among these

time points.
(b) Inferring onsets of natural selection on a standing
variant

The allele frequency path under the SSV models is expected

to become similar to the trajectory under the SNM or the neu-

tral models if fT is close to 1/2Ne or f0. Therefore, the aim of

this analysis is to find a lower or an upper limit of fT at differ-

ent time points for distinguishing between SSV and neutral

models or between SSV and SNM (electronic supplementary

material, figure S3). The means of s under each combination

of T, fT and f0 are listed in electronic supplementary material,

table S3. The power to distinguish between the SSV and neu-

tral models depends on fT; the SSV models mostly have

higher aMLs than those for neutral models if fT is low relative

to f0, such as 1%, 5%, 10% or 20%. By contrast, the ability to

distinguish SSV from SNM increases with fT. We mostly make

correct inferences on the SSV models, except when fT is very

low (i.e. 1%). The overall accuracy of the model selection

improves if f0 ¼ 80%, and our method is likely to correctly

classify the true models even if fT ¼ 1%. These results suggest

that our method can accurately infer the SSV models if 5% �
fT � 40% and T � 1200 under f0 � 50%.

We further explored the accuracy in the parameter esti-

mation under the SSV models (electronic supplementary

material, figure S4). In the case of fT ¼ 1%, the posterior

means are close to the true ages, depending on the obser-

vations generated from different T. However, we found that

the accuracy is poor if fT ¼ 5%, 10%, 20%. Different sets of

T and fT generate similar s estimates under a given f0 (elec-

tronic supplementary material, table S3), which may result

in similar patterns of linked neutral diversity in the samples

at the present. If this is the case, the posterior estimates are

likely to be biased towards the prior distributions. Indeed,

the posterior estimates tend to be overestimated and get

closer to the prior mean (i.e. 1600 generations ago; electronic

supplementary material, figure S4).
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(c) Extending the approximate Bayesian computation
framework to include ancient DNA information

Given the challenges of parameter estimation under the SSV

model, we investigated the improvement in accuracy by

including information on the allele frequency in the past,

defined as fTpast at Tpast (‘Defining and simulating evolution-

ary models’ in Material and methods). Here, we assumed

models where a beneficial allele is present at f0 ¼ 50%, but

existed at fTpast ¼ 5%, 10% or 20% at Tpast ¼ 400 (electronic

supplementary material, figure S7; ‘The use of ancient DNA

data’). Since fT is fixed as 1/2Ne under the SNM models, T
is expected to be older than Tpast if fTpast . 1=2Ne. We used

the observed data from T ¼ 800 or 1200 to test the accuracy

in the age estimation under the SNM models. With regard

to the model selection between SNM and SSV, the inclusion

of fTpast makes only a small difference in distinguishing

between selection models (electronic supplementary material,

figure S8), even though adding the information on fTpast can

reduce variance of the estimates and increases the accuracy

(figure 2).

By contrast, selection on standing variation could have

happened at any time relative to Tpast. We can still use the

information to narrow down the time of onset of natural

selection. If T is older than Tpast, fT is expected to be lower

than fTpast whereas fT could take the frequency close to fTpast

if T is younger than Tpast. We compared the accuracy of our

method with and without ancient DNA data (fTpast ¼ 5%,

10% or 20%) using the observations of fT ¼ 5%, 10% or 20%

at T ¼ 400, respectively. Additional cases that we considered

in this comparison are fT ¼ 5% at T ¼ 200, fT ¼ 5% at T ¼ 600

or fT ¼ 10% at T ¼ 600 (electronic supplementary material,

figure S7). The accuracy in choosing the SSV models is similar

with and without ancient DNA data (electronic supplemen-

tary material, figure S8). However, adding the condition of

fTpast
to the estimation reduces the bias in the posterior

means of T and fT and the estimates get closer to the true

values (figure 2). These results suggest that the use of ancient

DNA data can help to restrict the parameter space and to

improve the estimation under both SNM and SSV models.
(d) Application for modern and ancient data from
humans

We applied our method to modern and ancient European

data [31–34] for four SNPs associated with light skin pigmen-

tation and recent positive selection in Europeans (electronic

supplementary material, table S1; ‘Application to human

population data’ in Material and methods). Generating a suf-

ficiently large number of simulated trajectories under a

neutral model may take a long time if the difference between

fTpast
and f0 is large; few trajectories can achieve the change of

allele frequency within Tpast generations only by genetic drift.

This implies that such observations on fTpast and f0 are unlikely

to be explained by the neutral model. However, the allele fre-

quency path captured only by two time points (i.e. Tpast and

T0) may not be sufficient to confidently distinguish natural

selection from neutral. Here, we built a framework to

choose an evolutionary model through two-steps of the

model selection; the first step aims to test the deviation

from neutrality without ancient DNA data and the second

step incorporates the condition of fTpast into the simulation
to evaluate which of SNM and SSV models provides a

better fit to an observation.

The selection scenarios were significantly favoured with

log10-scaled aBFs .3.7 against neutral (table 1), which con-

firmed the previous evidence of natural selection. Two of

the light pigmentation SNPs, rs16891982 at SLC45A2 and

rs1426654 at SLC24A5, were found to better fit the SSV

models, while the data for the other SNPs supported the

SNM models. Then, we evaluated the goodness-of-fit of the

selection models using simulation data with fTpast
. Two out

of the four SNPs fit better the SSV models even though

SNM was inferred to be the best model in our test without

ancient DNA data. This is likely to be because when fT is

low the two models are almost indistinguishable, as shown

in our simulation study (figure 1; electronic supplementary

material, figure S3).

We estimated the parameters under the best fitting

models that were chosen from the model selection with

ancient DNA data (figure 3). As we expected, fT was esti-

mated to be low for the SNPs where SNM was chosen

without using ancient DNA and SSV was chosen when

ancient DNA data was included in the inference (1.2% at

rs642742; 0.8% at rs1042602). The estimates from the four

SNPs show that selection on the pigmentation alleles

occurred after the dispersal out of Africa. Two out of four

SNPs (rs1426654 and rs6427442) have the posterior means

of 23 527 years ago (16 920 2 40 896; s ¼ 0.024 with

0.00520.052) and 24 093 years ago (22 176 2 42 096; s ¼
0.006 with 0.00120.021). This relatively old selection of

rs1426654 supports a scenario that this allele may have

slowly increased its frequency and fixed in Europeans

during last 10 000 years. On the other hand, rs16891982

shows a relatively recent selection on the standing

variant (10 089 years ago, 2736217,472; s ¼ 0.026 with

0.00720.063). Another SNP (rs1042602) has the mean at

17 253 years ago (9984227 984; s ¼ 0.013 with 0.00220.029),

but the credible interval overlaps with the spread of

agriculture.
4. Discussion
We present an ABC framework to make inferences about the

timing of natural selection using high-dimensional data.

Taking advantage of the strength in kernel ABC, we demon-

strate our ABC approaches give reasonably accurate estimates

of T under the SNM models (figure 1), which in turn suggests

that the set of full SFS and decay of haplotype homozygosity

contains more information than summary statistics used in

previous ABC analyses [35]. One key limitation of our

method is that the parameter estimation under the SSV

models is prone to be biased by the priors (electronic sup-

plementary material, figure S4). This reflects the difficulty

in narrowing down the parameter space consistent with the

SSV models only by using observations from a contemporary

population. Recent advances of sequencing technologies have

transformed our ability to generate population-scale data

from ancient specimens. Making use of the new data on

ancient specimens, we were able to reduce the bias and

improve the accuracy by confining the parameter space

(figure 2).

Choosing the appropriate model of selection for the

beneficial allele being examined is a necessary step for its
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age estimation. To this end, we performed model selection

aiming to distinguish between SNM and SSV. When fT � 1/

2Ne, it is more challenging to distinguish between these

models because both generate a similar reduction in linked

neutral diversity levels [1,3,5,36]. However, if SNM occurred

at a relatively recent time, such as 200 or 400 generations ago,

we can distinguish the SNM from SSV models (figure 1).

Moreover, as long as fT � 5%, our method is more likely to

choose the SSV model than the SNM model (electronic sup-

plementary material, figure S3). Although there is a

parameter space where the two selection models are misclas-

sified (if T � 600 under SNM or if fT � 1% under SSV with

f0 ¼ 50%), our method correctly identifies the SSV models if

5% � fT � 20% or 1% � fT � 40% under f0 ¼ 50% or 80%.

Our analysis of ancient and modern human data signifi-

cantly supported natural selection on the pigmentation

alleles that already existed as standing variants at the time

of selection (table 1 and figure 3). The posterior estimates

have no overlap with the dispersal out of Africa, suggesting

that light skin pigmentation became advantageous during a

move to higher latitude within Europe, as proposed in pre-

vious studies [37,38]. Growing evidence from ancient DNA

studies shows that contemporary Europeans are a mixture

of three different ancestries; ancestral hunter–gathers

admixed with Anatolian farmers around 9 ka, followed by

further migration from Pontic-Caspian Steppe around 5 ka

[31–33]. We used ancient DNA data only from 10 to 7 ka

as a reference of allele frequency in the ancestral lineage

and assumed a panmictic population with bottleneck and

expansion to avoid increasing the complexity of the model.

However, this may lead to a violation of our assumption on

the demographic history, and further studies taking account

of realistic scenarios are necessary to reconstruct the history

of human adaptation.

Our ABC framework was tested under the specific demo-

graphic condition inferred for Europeans with the aim of

understanding the history of selective pressures in these

populations. It can be applicable to other scenarios and/or

other species; its applicability solely depends on the machin-

ery for simulating data. The MSSEL software provides flexible

options to simulate a variety of demographic scenarios. Our
method works better with the constant size model (electronic

supplementary material, figures S5 and S6) than the varying

population size (figure 1; electronic supplementary material,

figures S3 and S4); however, it still has sufficient power to

correctly identify evolutionary models and accurately esti-

mate the timing of natural selection as we demonstrate

throughout this study (figures 1 and 2; electronic supplemen-

tary material, figures S3 and S4). A practical way of using our

approach is, for example, to select an SNP site associated with

selection signals or with phenotypic variation, identify the

best selection model by incorporating demography inferred

from existing methods (e.g. [23,39]), and estimate the age of

the potentially beneficial variants. A further caveat to this

application is additional assumptions on local genomic con-

texts including mutation and recombination rates, which

need to be carefully taken into account for simulating realistic

scenarios. Given a rapid growth of genomic-scale data from a

variety of organisms, our framework of simulation and data

usage lends itself to be extended to incorporating more com-

plex demography (e.g. multi-ancestral lineages [40] or

admixture with varying population size) into simulation

and to integrating more ancient DNA data with modern

samples.
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