Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in part, the material for valid purposes, providing the copyright owners are acknowledged using the normal conventions. Where specific permission to use material is required, this is identified and such permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising from use of the thesis for whatever reason. Information located in a thesis may be subject to specific use constraints, details of which may not be explicitly described. It is the responsibility of potential and actual users to be aware of such constraints and to abide by them. By making use of material from a digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from Trinity College Library is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for your research use or for educational purposes in electronic or print form providing the copyright owners are acknowledged using the normal conventions. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
Immunoregulatory Mechanisms in the Lungs of Mice and Humans

Michelle Coleman

BA (Mod)

07134711

A thesis submitted to

Trinity College Dublin

for the degree of

Doctor of Philosophy

Supervisors: Dr Pádraic Dunne

Professor Kingston Mills

Dr Joseph Keane

School of Biochemistry and Immunology and School of Medicine

Trinity College Dublin

2012
Declaration of Authorship

I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository or allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement.
Acknowledgements

It’s been a privilege to have been a student in both labs and I’ve made some brilliant friends along the way. I’d like to thank my supervisors Pádraic, Joe and Kingston for getting me this far. Pádraic has been incredibly supportive in both lab- and non-lab related issues; it’s thanks to his guidance and vision that I made it to the end and I’m especially grateful for the massive help and support I got in the 9 days leading up to my viva.

Thanks to everyone in the Immune Regulation Research Group past and present – Aisling, Belinda, Caroline, Catherine, Fionnuala, Helen, Jean, Jim, Maureen, Lisa, Neil, Pádraig, Pamela, Pat, Rachel, Rowan, Sarah and Vivienne. I’m especially grateful to Aisling for all the FPLC help, to Jean for all the advice in general, but in particular for my human studies, to Pádraig for his input into the bacterial end of things, and to Rachel for her advice on the in vivos. Of course I’m not forgetting all the Postgrad Room folks - Áine, Alicja, Ania, Anna C, Anna M, Cheryl, Conor, Corinna, Karen, Keith, Kevin, Lara, Nick, Paddy, Roisin, Shane, Sharee, Sreeja and Stephen. Aside from all the geeky science-related thanks, it’s been brilliant fun working and socialising with everyone. Not to mention travelling to conferences and learning loads of immunology – like at that amazing clinical session in Liverpool!

Thank you, Barry for all the help with my many, many cell sorts and the various flow cytometry issues. I wouldn’t have a project without you! Thanks for being so good natured all the time, even when I invariably messed up on the Cyan. Special thanks also go to Darren for his amazing work on the AM story - it was such a pleasure to work with you.

Team TB have been fantastic in putting up with my bi-locating and general chaos! Thanks in particular to Seónadh for training me in, and Mary, Ronan, Rachel, Cliona and Steve for their help, ideas, advice and making sure I didn’t endanger anyone. Oh and of course all the Thursday sugary treats! It’s been great working and writing up alongside Ruth and Ciarán – it’s hard to believe that we’re finally finished and all grown up! Thanks also to Anne-Marie, Colette, Ruth, Siti and everyone else in the Bronchoscopy Unit for their massive help in getting samples. Thanks are
also due to Jeremy and the Wellcome Trust/HRB Dublin Centre for Clinical Research. Most importantly, I am extremely grateful to the patients and blood donors who have enabled me to undertake experiments over the past four years.

I'm especially fortunate to have my wonderful friends, we've all had our own ups and downs over the past while and I'm certainly very grateful to them for listening to my whining but most importantly for all the distracting fun and frolics on the way. I don't know how I would have survived the writing process without Leanne and our daily email chats, as well as the shopping trips, Eddie Rockets, and well-behaved cocktail samplings. Oh, almost forgot the Rock Banding too! John – I'm so lucky to be able call you a friend, thank you for all the support, advice and most of all fun over the years. Some (more) celebrating is in order I think, Mrs. Doyle! Kathleen – I've really enjoyed our giant cups of tea and our putting-the-world-to-rights chats. Thank you for taking the time to meet up in the first place, our chats and laughs have always been a great tonic! (Super)Ciara – those recent lost weekends away have been more beneficial than I ever thought possible, but aside from that you've always been a fantastic friend that I can depend upon, but especially have fun with (fancy dress optional). Come Dine and Brew Beer With Me – Red Line special will happen again soon enough! Sarah has been more helpful than she probably realises, from encouraging me back in '07 (and before!) to making this stuff look easy and manageable, you've been quite the fountain of wisdom and a true friend.

As for Mediha, my former lab-partner and fellow Biochem survivor... we've come a VERY long way from those days, but this long slog is almost over and we will soon look back and laugh! Then we won't know what to do with ourselves... maybe shoe shopping??? Or something involving bucketloads of tea anyway! I definitely can't forget the rest of the nerd support group of Gráinne, Isabel, Tatyana and Valerie, and our amazing abilities to chat for hours and also be the loudest people in Avoca. Despite the distance, it's been fabulous staying in touch with the London ladies – Maria, Jane and Sarah – and whenever there is a reunion (roll on September!) it always feels like we only saw each other yesterday. It's great coming through the other side. I can't leave out the Fergal element of our bunch of friends either – there's not enough space to name all the vi
CASL gang (who are great!), but I definitely have to mention Barry and Steven and thank them for all the hospitality, belly laughs and the occasional forays into post-it gambling, painting and decorating, suspected human trafficking and Arctic expeditions...

I’m eternally grateful to my wonderful family – Mum, Dad, Phil, Amy (and Eddie, woof!) - for their unending support and encouragement no matter what I do, and for making me the hard-working, determined person I am. My parents have been especially brilliant in the last few months and I can’t thank them enough for all they’ve done for me over the last (almost!) 27 years, and making me so proud to be their daughter.

Last but not least, the person who really deserves the most thanks is my fiancé (agh!) Fergal for his understanding, support and immense patience with me, whether I was keeping mad hours in the lab or slaving over a rapidly overheating laptop. Thank you for maintaining my sanity, for giving me a life outside of boring labs and for looking after me so well, with all the cups of tea, thesis beers, yummy dinners and general happiness. I promise I won’t forget all this when it’s your writing-up time. Until then we can get back to having a great life and go on even more adventures.

Finally, I’d like to dedicate this to the memory of May Regan, the kindest and most knowledgeable person I’ve ever known.
Abstract

The lungs are constantly exposed to inhaled antigen during respiration. The resident immune cells must be hyporesponsive to innocuous inhaled antigen, yet capable of responding appropriately to respiratory pathogens, with minimal immunopathology to the fragile lung tissue. Regulatory T (Treg) cells are crucial for the maintenance of immune tolerance in the lungs. Alveolar macrophages (AM) also contribute to the local immunosuppressive environment of the lungs.

The results of these studies demonstrate that AM-derived retinoic acid (RA) may help to control immunosuppression in the lungs. Human and murine AM promoted conversion of CD4^FoxP3^ naïve T cells to CD4^FoxP3^ T cells in vitro, which was reversed by inhibiting RA signalling. Furthermore, the majority of CD4^FoxP3^ T cells in the murine lung lack the activation marker CD25. This phenotype resembles that of the FoxP3^ T cells induced by AM in vitro. CD4^FoxP3^CD25^ Treg cells must be pre-activated in the presence of IL-2 before they can suppress effector T (Teff) cells in vitro, which is mediated by IL-10.

The study also shows that an RA receptor antagonist could overcome the profound immunological non-responsiveness to nasally delivered antigen and adjuvant, and allowed systemic immunity to develop. This strategy might represent a target for immunotherapy in the future. Additionally, the numbers of AM in the lungs increase as a consequence of cigarette smoking, and greater numbers of AM are able to induce more FoxP3^ T cells. Smokers who are infected with Mycobacterium tuberculosis have greater morbidity and mortality than infected non-smokers. This might be a consequence of the enhanced frequencies of induced FoxP3^ T cells in their lungs, which could severely impair protective anti-tuberculosis immune responses and result in persistence of the bacteria.

In a respiratory model of infection with Bordetella pertussis, a high frequency of antigen-specific CD4^FoxP3^CD25^IL-10^ cells was found in the lungs throughout the infection. Depletion of CD25^ cells from wild type mice prior to B. pertussis infection did not impair the immunoregulatory response or alter the course of infection, which suggests that an additional method of regulation was present in those mice. However, depletion of CD25^ cells in IL-10-deficient (IL-10^-/-) mice significantly enhanced bacterial clearance. These results indicate the presence of two Treg cell populations in the lung – CD4^FoxP3^CD25^ nTreg cells and IL-10-secreting CD4^FoxP3^CD25^ Treg cells. It is possible that the CD4^FoxP3^CD25^ Treg cells are induced by AM and comprise a “reservoir” of under-activated Treg cells which will only function optimally if IL-2 is present, i.e. during an adaptive immune response. This illustrates a novel feedback loop in the maintenance of immune tolerance in the lungs, which is induced by AM and executed by FoxP3^ T cells.
Publications

List ofAbbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Albumin-Dextrose-Catalase</td>
</tr>
<tr>
<td>AECI</td>
<td>type I Alveolar epithelial cells</td>
</tr>
<tr>
<td>AECII</td>
<td>type II Alveolar epithelial cells</td>
</tr>
<tr>
<td>AICD</td>
<td>Activation-induced cell death</td>
</tr>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>ALDH</td>
<td>Aldehyde dehydrogenase</td>
</tr>
<tr>
<td>ALDH1A</td>
<td>Aldehyde dehydrogenase 1A</td>
</tr>
<tr>
<td>AM</td>
<td>Alveolar macrophages</td>
</tr>
<tr>
<td>AM-CM</td>
<td>Alveolar macrophage-conditioned medium</td>
</tr>
<tr>
<td>AMDC</td>
<td>Airway mucosal dendritic cells</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine monophosphate</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen presenting cell</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>atRA</td>
<td>all-trans Retinoic acid</td>
</tr>
<tr>
<td>BAL</td>
<td>Bronchoalveolar lavage</td>
</tr>
<tr>
<td>BALF</td>
<td>Bronchoalveolar lavage fluid</td>
</tr>
<tr>
<td>BALT</td>
<td>Bronchial-associated lymphoid tissue</td>
</tr>
<tr>
<td>BFA</td>
<td>Brefeldin A</td>
</tr>
<tr>
<td>BG</td>
<td>Bordet Gengou</td>
</tr>
<tr>
<td>B. pertussis</td>
<td>Bordetella pertussis</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic AMP</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>cDMEM</td>
<td>complete DMEM</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>CLN</td>
<td>Cervical lymph nodes</td>
</tr>
<tr>
<td>CM</td>
<td>Conditioned medium</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ConA</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>cRPMI</td>
<td>complete RPMI</td>
</tr>
<tr>
<td>CS</td>
<td>Cigarette smoke</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>Cytotoxic T-lymphocyte antigen 4</td>
</tr>
<tr>
<td>CyaA</td>
<td>Adenylate cyclase from B. pertussis</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cells</td>
</tr>
<tr>
<td>DEAB</td>
<td>Diethylaminobenzaldehyde</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DP</td>
<td>Double positive</td>
</tr>
<tr>
<td>EAE</td>
<td>Experimental Autoimmune Encephalomyelitis</td>
</tr>
<tr>
<td>EBAO</td>
<td>Ethidium bromide/acridine orange</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr Virus</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorobent Assay</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-Activated Cell Sorting</td>
</tr>
<tr>
<td>FAE</td>
<td>Follicle-associated epithelium</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>FHA</td>
<td>Filamentous haemagglutinin</td>
</tr>
<tr>
<td>FMO</td>
<td>Fluorescence minus one</td>
</tr>
<tr>
<td>FoxP3</td>
<td>Forkhead Box P3</td>
</tr>
<tr>
<td>GALT</td>
<td>Gut-associated lymphoid tissue</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GITR</td>
<td>Glucocorticoid-induced Tumor Necrosis Factor receptor</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte/Monocyte Colony Stimulating Factor</td>
</tr>
<tr>
<td>GVHD</td>
<td>Graft-versus-host Disease</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank's Balanced Salt Solution</td>
</tr>
<tr>
<td>HEV</td>
<td>High endothelial venules</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>HKBP</td>
<td>Heat-killed B. pertussis</td>
</tr>
<tr>
<td>HLA</td>
<td>Human leukocyte antigen</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>IBD</td>
<td>Inflammatory Bowel Disease</td>
</tr>
<tr>
<td>ICER</td>
<td>Inducible cAMP early repressor</td>
</tr>
<tr>
<td>ICOS</td>
<td>Inducible co-stimulator</td>
</tr>
<tr>
<td>IDO</td>
<td>Indoleamine 2, 3-dioxygenase</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>i.n.</td>
<td>Intranasal</td>
</tr>
<tr>
<td>iNOS</td>
<td>inducible nitric oxide synthase</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>IPEX</td>
<td>Immunodysregulation Polyendocrinopathy Enteropathy X-linked Syndrome</td>
</tr>
<tr>
<td>IPF</td>
<td>Idiopathic Pulmonary Fibrosis</td>
</tr>
<tr>
<td>i.t.</td>
<td>Intratracheal</td>
</tr>
<tr>
<td>iTreg</td>
<td>inducible Treg cells</td>
</tr>
<tr>
<td>LAG</td>
<td>Lymphocyte activation gene</td>
</tr>
<tr>
<td>LAP</td>
<td>Latency-associated peptide</td>
</tr>
<tr>
<td>LFA</td>
<td>Leukocyte function-associated antigen</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LTBI</td>
<td>Latent tuberculosis infection</td>
</tr>
<tr>
<td>mAb</td>
<td>Monoclonal antibody</td>
</tr>
<tr>
<td>MACS</td>
<td>Magnet-associated cell sorting</td>
</tr>
<tr>
<td>MCP</td>
<td>Monocyte chemoattractant protein</td>
</tr>
<tr>
<td>MDM</td>
<td>Monocyte-derived macrophages</td>
</tr>
<tr>
<td>MFI</td>
<td>Median fluorescence intensity</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinase</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>NK cells</td>
<td>Natural killer cells</td>
</tr>
<tr>
<td>NLR</td>
<td>Nod-like receptor</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NOD</td>
<td>Non-obese diabetic</td>
</tr>
<tr>
<td>NOD SCID</td>
<td>Non-obese diabetic severe combined immunodeficient</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxide synthase</td>
</tr>
<tr>
<td>nTreg</td>
<td>natural Treg cells</td>
</tr>
<tr>
<td>OPD</td>
<td>O-Phenylenediamine</td>
</tr>
<tr>
<td>Ova</td>
<td>Ovalbumin</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen-associated molecular pattern</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>Pseudomonas aeruginosa</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cells</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>PM</td>
<td>Peritoneal macrophages</td>
</tr>
<tr>
<td>PMA</td>
<td>Phorbol myristate acetate</td>
</tr>
<tr>
<td>PM-CM</td>
<td>Peritoneal macrophage-conditioned medium</td>
</tr>
<tr>
<td>PNAAd</td>
<td>Peripheral node addressin</td>
</tr>
<tr>
<td>PPD</td>
<td>Purified protein derivative</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>RA</td>
<td>Retinoic acid</td>
</tr>
<tr>
<td>RALDH</td>
<td>Retinal dehydrogenase</td>
</tr>
<tr>
<td>RAR</td>
<td>Retinoic acid receptor</td>
</tr>
</tbody>
</table>

xvi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RARE</td>
<td>Retinoic acid response element</td>
</tr>
<tr>
<td>RARi</td>
<td>Retinoic acid receptor inhibitor</td>
</tr>
<tr>
<td>RNI</td>
<td>Reactive nitrogen intermediate</td>
</tr>
<tr>
<td>RORγt</td>
<td>Retinoic acid orphan receptor γt</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>RXR</td>
<td>Retinoid X Receptor</td>
</tr>
<tr>
<td>sCD25</td>
<td>soluble CD25</td>
</tr>
<tr>
<td>SCID</td>
<td>Severe Combined Immunodeficient</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal Transducer and Activator of Transcription</td>
</tr>
<tr>
<td>TB</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>TCR</td>
<td>T cell receptor</td>
</tr>
<tr>
<td>Teff</td>
<td>effector T cells</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>Th</td>
<td>T helper cells</td>
</tr>
<tr>
<td>TLN</td>
<td>Thoracic lymph node</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TMB</td>
<td>Tetramethylbenzidine</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>Trl1</td>
<td>Inducible regulatory T cells</td>
</tr>
<tr>
<td>Trem</td>
<td>regulatory effector/memory-like T cells</td>
</tr>
<tr>
<td>Treg</td>
<td>regulatory T cells</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Vascular cellular adhesion molecule-1</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 1 General Introduction ... 15

1.1 Protective immunity against infection .. 17

1.2 Immunological tolerance ... 18

1.2.1 Central tolerance .. 18

1.2.2 Peripheral tolerance ... 19

1.3 Natural regulatory T cells ... 22

1.3.1 FoxP3 .. 22

1.3.2 CD45RB ... 23

1.3.3 CD45RA and CD45RO in humans .. 24

1.3.4 CD127 .. 25

1.3.5 Helios .. 26

1.3.6 Additional surface markers used to identify Treg cells 26

1.4 Adaptive Treg cells .. 29

1.4.1 Tr1 cells .. 30

1.4.2 Th3 Cells .. 30

1.4.3 Inducible FoxP3\(^+\) Treg cells .. 33

1.4.4 Retinoic Acid ... 34

1.5 CD25\(^+\) Treg cells ... 39

1.6 Mechanisms of suppression by Treg cells ... 41

1.7 Lung .. 48

1.7.1 Conducting airways .. 49

1.7.2 Lung Parenchyma ... 49

1.7.3 Bronchial-Associated Lymphoid Tissue 51
1.7.4 Immune cell dynamics in the lung............................... 52
1.7.5 Alveolar Macrophages.. 52
1.7.6 Lymphocyte homing to lungs.................................. 58
1.7.7 Treg cells in the lung.. 58

1.8 Tuberculosis... 60
1.8.1 Transmission of *M. tuberculosis*............................ 62
1.8.2 Granuloma... 63
1.8.3 Immune cells and cytokines in *M. tuberculosis* infection.. 64

1.9 Treg cells in health and disease............................... 66
1.9.1 Infection... 67

1.10 Summary... 69
1.11 Aims ... 70

Chapter 2 Materials and Methods .. 71
2.1 Materials... 73
2.2 Methods... 80
2.2.1 Animals... 80
2.2.2 Cell counts.. 80
2.2.3 Isolation of cells from lung, liver, colon, spleen, cervical and thoracic lymph nodes... 81
2.2.4 Flow cytometry analysis for T cell surface markers........ 81
2.2.5 Flow cytometry analysis for intracellular cytokines........ 82
2.2.6 Cell sorting.. 82
2.2.7 Suppression assay... 82
2.2.8 3H-thymidine incorporation................................... 83
2.2.9 CFSE dilution ... 83
2.2.10 IL-10 receptor blocking .. 83
2.2.11 Transwell assays .. 83
2.2.12 Isolation of murine alveolar macrophages – bronchoalveolar lavage 83
2.2.13 AM and T cell co-culture .. 84
2.2.14 AM supernatant and T cell co-culture ... 84
2.2.15 Proliferation assay .. 85
2.2.16 Ovalbumin intranasal immunisation ... 85
2.2.17 Bordetella pertussis culture .. 86
2.2.18 Exposure of mice to aerosol containing B. pertussis ... 86
2.2.19 Production of heat killed B. pertussis (HKBP) ... 87
2.2.20 Ex vivo T cell responses in the lungs of B. pertussis-infected mice 87
2.2.21 PC61 Hybridoma cell culture ... 87
2.2.22 Purification of anti-CD25 antibody from hybridoma cell supernatant 88
2.2.23 Depletion of CD25⁺ T cells in B. pertussis infection .. 88
2.2.24 B. pertussis-specific cytokine production by spleen and lymph node cells 88
2.2.25 B. pertussis antigen-specific proliferation and cytokine production by purified T cells from spleen or lung ... 89
2.2.26 Nasal delivery of RARi to B. pertussis-infected mice .. 90
2.2.27 Human alveolar macrophages .. 90
2.2.28 Peripheral blood mononuclear cell isolation .. 91
2.2.29 Monocyte-derived macrophages (MDM) .. 91
2.2.30 Mycobacterium tuberculosis culture .. 91
2.2.31 Infection of alveolar macrophages with M. tuberculosis ... 92
2.2.32 Purification of CD4^CD25^CD45RO naïve T cells using EasySep® magnetic separation

2.2.33 Culture of CD4^CD25^ naïve T cells with normal AM and AM infected with *M. tuberculosis* H37Ra

2.2.34 Culture of CD4^CD25^ naïve T cells with macrophage supernatant

2.2.35 Standard cytokine ELISA

2.2.36 Serum IgG2a ELISA

2.2.37 Serum IgE and IgG1 ELISA

2.2.38 Aldefluor assay

2.2.39 Statistical analysis

Chapter 3 Identification of a novel population of hyporesponsive CD4^FoxP3^CD25^ Treg cells in the lungs of naïve mice

3.1 Introduction

3.2 Results

3.2.1 CD4^FoxP3^CD25^ cells are the dominant Treg cell population in the lungs of naïve mice

3.2.2 Surface phenotype of CD4^FoxP3^CD25^ and nTreg cells isolated from the lungs and spleens of naïve mice

3.2.3 CD4^FoxP3^CD25^ Treg cells must be pre-activated in order to suppress responder cells

3.2.4 Suppression by pre-activated CD25^ Treg cells is cell-contact independent

3.2.5 IL-10 is required for CD25^-induced suppression

3.2.6 Kinetics of CD25^ Treg cells in *B. pertussis* infection

3.2.7 Depleting CD25^ T cells in IL-10-deficient mice enhances immunity to *B. pertussis* in vivo
Chapter 4 Murine alveolar macrophages use retinoic acid to induce FoxP3+ T cells \textit{in vitro} and \textit{in vivo} to promote local immunosuppression in the lung environment

4.1 Introduction.. 159

4.2 Results.. 162

4.2.1 Alveolar macrophages suppress T cell proliferation and can induce FoxP3 expression in naïve CD4+FoxP3− T cells.. 162

4.2.2 AM-mediated FoxP3 induction is independent of T cell activation 164

4.2.3 AM use a soluble factor to induce FoxP3 expression, and inhibit Th1 immune responses.. 164

4.2.4 Induction of FoxP3 by AM is dependent on retinoic acid ... 166

4.2.5 Inhibition of lung T cell proliferation by AM \textit{in vitro} can be overcome by inhibiting RA signalling ... 166

4.2.6 Inhibiting RA signalling enhances antigen-specific T cell proliferation.............. 167

4.2.7 Intranasal RARi reduces the frequency of FoxP3+ T cells in \textit{B. pertussis}-infected mice, but does not affect bacterial burden.. 169

4.2.8 RARi overcomes nasal tolerance to induce humoral immunity to nasally-administered antigens and may represent a novel strategy for mucosal vaccination .. 170

4.3 Discussion.. 172

Chapter 5 Human alveolar macrophages use retinoic acid to induce FoxP3+ T cells—implications for cigarette smoking as a risk factor for reactivation tuberculosis

.. 209
5.1 Introduction ...211

5.2 Results ..214

5.2.1 Human AM induce FoxP3 expression in naïve CD4⁺FoxP3⁻ T cells214

5.2.2 Human AM-mediated FoxP3 induction is independent of T cell activation215

5.2.3 Human AM use a soluble factor to suppress T cell proliferation and simultaneously
induce FoxP3 expression in vitro ..216

5.2.4 Human AM can synthesise RA..216

5.2.5 Induction of FoxP3 and suppression of T cell proliferation by AM is dependent on
RA...217

5.2.6 AM from smokers induce FoxP3 expression in T cells to the same extent as AM
from non-smokers in vitro ...218

5.2.7 Infection of AM with M. tuberculosis H37Ra does not affect their ability to induce
FoxP3 in T cells..219

5.3 Discussion... 221

5.4 Figures..229

Chapter 6 General Discussion ..255

Chapter 7 References ...269

Chapter 8 Appendix ..303
Figure 1.1	Central tolerance	13
Figure 1.2	Different mechanisms of oral tolerance	32
Figure 1.3	Mechanisms of Treg cell-mediated suppression	46
Figure 3.1	The majority of CD4⁺FoxP3⁺ T cells in the lungs of naïve mice do not express the activation marker CD25	129
Figure 3.2	The majority of CD4⁺FoxP3⁺ T cells in lungs and other mucosal tissues of naïve mice do not express CD25	131
Figure 3.3	CD4⁺FoxP3⁺CD25⁻ T cells have a similar phenotype to nTreg cells, but express less GITR and CD73 in the lung, and express more ICOS and less CTLA-4 in the spleen	135
Figure 3.4	Freshly isolated lung CD4⁺FoxP3⁺CD25⁻ T cells do not suppress proliferation of Teff cells in vitro	136
Figure 3.5	Pre-activated lung CD4⁺FoxP3⁺CD25⁻ Treg cells suppress proliferation of Teff cells and IFN-γ production at a 1:1 ratio in vitro	137
Figure 3.6	Low levels of contaminating Teff cells do not proliferate in the presence of CD25⁻ Treg cells during pre-activation	138
Figure 3.7	Activation of CD4⁺FoxP3⁺CD25⁻ T cells in vitro with anti-CD3 and exogenous IL-2 enhances CD25 expression	139
Figure 3.8	CD25⁻ Treg cell suppression of Teff cells is not cell-contact dependent	140
Figure 3.9	Addition of a blocking anti-IL-10 receptor antibody reverses the suppressive effect of CD25⁻ Treg cells on effector T cell proliferation	141
Figure 3.10	Transient expression of CD25 by CD4⁺FoxP3⁺ Treg cells in the lungs during infection with *B. pertussis*	142
Figure 3.11	Sustained expression of IL-10 by CD4⁺FoxP3⁺CD25⁻ Treg cells during infection with *B. pertussis*	143
Figure 3.12 Injection of anti-CD25 depleting antibody removes CD4+CD25+ nTreg cells within 24 hours...144

Figure 3.13 Enhanced clearance of *B. pertussis* in IL-10−/− mice depleted of CD25+ cells.........146

Figure 3.14 Enhanced antibody response to *B. pertussis* in IL-10−/− mice depleted of CD25+ cells147

Figure 3.15 Depletion of CD25+ cells and/or IL-10-deficiency results in earlier IFN-γ production by *B. pertussis*-specific splenocytes..149

Figure 3.16 Depletion of CD25+ cells and/or IL-10 deficiency has no effect on *B. pertussis*-specific IFN-γ production in cervical lymph nodes ...151

Figure 3.17 Enhanced production of IFN-γ in the spleens of *B. pertussis*-infected IL-10−/− mice depleted of CD25+ cells...152

Figure 3.18 Enhanced production of IFN-γ in the CLN of *B. pertussis*-infected IL-10−/− mice depleted of CD25+ cells...153

Figure 3.19 IL-10−/− mice produce IFN-γ in response to *B. pertussis* infection, while WT mice depleted of CD25+ cells produce significantly more IL-10 than WT controls154

Figure 3.20 Mice depleted of CD25+ cells produce significantly higher levels of IL-17, TNF-α and IL-1β in response to *B. pertussis* infection than controls..156

Figure 4.1 AM do not support proliferation of naïve T cells ...185

Figure 4.2 AM can induce FoxP3 expression in FoxP3+ naïve T cells ...187

Figure 4.3 Induction of FoxP3 expression in T cells by AM does not require T cell activation *in vitro* ..188

Figure 4.4 Conditioned media from AM culture can suppress the proliferation of naïve T cells...189

Figure 4.5 AM-CM can induce FoxP3 expression in FoxP3+ naïve T cells..191

Figure 4.6 AM-CM promotes IL-10 and inhibits IFN-γ and IL-4 production by T cells in a dose-dependent manner ..193
Figure 4.7 AM produce TGF-β1, IFN-γ, and TNF-α but not IL-4, IL-10 or IL-17. 194

Figure 4.8 AM express aldehyde dehydrogenase A1 at a higher intensity than PM. 195

Figure 4.9 Inhibiting RA and/or TGF-β1 signalling reduces the induction of FoxP3⁺ T cells by AM-CM. 197

Figure 4.10 Inhibiting RA and/or TGF-β1 signalling reduces the induction of FoxP3⁺ T cells by AM. 199

Figure 4.11 AM-mediated suppression of naïve T cells is a consequence of FoxP3⁺ T cell induction, which is mediated by RA. 200

Figure 4.12 Inhibiting RA signalling overcomes AM-mediated suppression of T cell proliferation in vitro. 201

Figure 4.13 Inhibiting RA signalling inhibits AM-mediated induction of FoxP3⁺ T cells in vitro. 202

Figure 4.14 Inhibiting RA signalling reduces antigen-specific IL-10 and increases splenic antigen-specific IFN-γ production. 203

Figure 4.15 Inhibiting RA signalling enhances IL-10 and IFN-γ production in response to anti-CD3 and PMA. 204

Figure 4.16 RARi treatment does not affect the burden of B. pertussis infection. 205

Figure 4.17 RARi treatment significantly decreases the amount of CD4⁺FoxP3⁺ cells in the lungs of infected mice. 206

Figure 4.18 RARi breaks tolerance to nasally delivered antigen with a TLR agonist as adjuvant. 207

Figure 4.19 RARi breaks tolerance to nasally delivered antigen with a TLR agonist as adjuvant. 208

Figure 5.1 Sorted CD4⁺CD25⁻CD45RO⁻ T cells are FoxP3⁺. 231

Figure 5.2 Human AM induce FoxP3 expression in allogeneic naïve CD4⁺FoxP3⁻CD25⁻ T cells cultured with anti-CD3. 233

Figure 5.3 Induction of FoxP3 expression by AM does not require T cell stimulation. 234
Figure 5.4 Conditioned Media from alveolar macrophage culture can suppress the proliferation of naïve T cells ... 235

Figure 5.5 AM-CM can induce FoxP3 expression in FoxP3 naïve T cells ... 237

Figure 5.6 AM-CM can induce FoxP3 expression in FoxP3 naïve T cells ... 238

Figure 5.7 Human AM express the enzyme which produces retinoic acid ... 239

Figure 5.8 Human AM express the enzyme which produces retinoic acid ... 240

Figure 5.9 Inhibiting retinoic acid signalling significantly reduces the induction of FoxP3+ T cells by AM-CM ... 242

Figure 5.10 Inhibiting retinoic acid signalling overcomes the anti-proliferative effect of AM-CM on T cells ... 243

Figure 5.11 AM from smokers are morphologically distinct from AM from non-smokers ... 244

Figure 5.12 AM from smokers induce FoxP3+ T cells to the same extent as AM from non-smokers ... 245

Figure 5.13 AM-CM from smokers induces FoxP3+ T cells to the same extent as AM-CM from non-smokers ... 247

Figure 5.14 Lungs of smokers contain approximately four times more AM than the lungs of non-smokers ... 248

Figure 5.15 AM induce FoxP3+ T cells in a dose-dependent manner ... 250

Figure 5.16 Infection of AM with high MOI of *M. tuberculosis* H37Ra ... 251

Figure 5.17 *M. tuberculosis* infection does not affect the induction of FoxP3+ T cells by human AM ... 253

Figure 5.18 The induction of FoxP3+ T cells by CM from uninfected and *M. tuberculosis*-infected AM is associated with a reduction in T cell proliferation ... 254

Figure 6.1 Induction of peripheral tolerance in the lung by AM ... 266

Figure 6.2 CD4+FoxP3+CD25+ Treg cell activation and function ... 266
Figure 6.3 Cigarette smoking can enhance the induction of peripheral tolerance, which can skew the immune dynamics in the lung and promote excessive immunoregulation...............................267

Figure 8.1 Purification of CD4^CD25^CD45RB^low^ Treg cells from the lungs of naïve mice........303

Figure 8.2 Purification of CD4^CD25^CD45RB^high^ Teff cells from the spleens of naïve mice.....304
Table of Tables

Table 1.1 Summary of important markers for Treg cells ... 28
Table 2.1 Origin of Antibodies and Recombinant Cytokines used in Mouse ELISA 97
Table 2.2 Mouse ELISA Specificities ... 98
Chapter 1

General Introduction
1.1 Protective immunity against infection

The innate and adaptive immune systems work together to efficiently eradicate harmful pathogens. The innate immune system is the first line of defence and it also provides the signals to induce an appropriate adaptive immune response against the invading pathogen (Murphy et al., 2008). Innate immunity is activated upon binding of pathogen-associated molecular patterns (PAMPs) to pattern recognition receptors (PRRs), which are expressed by dendritic cells (DC), macrophages and other innate immune cells. PRRs include Toll-like receptors (TLRs), Nod-like receptors (NLRs), and lectin receptors (Murphy et al., 2008). PRR engagement with PAMPs initiates intracellular signalling pathways, ultimately activating genes associated with the immune response (Murphy et al., 2008).

Immature dendritic cells are resident in most tissues, where they continuously sample their environment by receptor-mediated and receptor-independent mechanisms of phagocytosis. The majority of antigens they encounter are harmless and do not induce an immune response. However, pathogen-induced TLR signalling activates DC and enhances the processing of pathogen-derived antigens (Murphy et al., 2008). TLR signalling also induces the chemokine receptor CCR7 on the surface of DC. CCR7 influences both the migration of DC into draining lymph nodes and the upregulation of costimulatory molecules and major histocompatibility complex (MHC) class II molecules on the surface of DC (Medzhitov and Janeway, 1997; Moser and Murphy, 2000). The activation of DC also downregulates their phagocytic ability – they no longer take up environmental antigen but instead they function as antigen presenting cells (APC) to activate naïve CD4⁺ and CD8⁺ T cells (Moser and Murphy, 2000).

Priming of naïve T cells in the lymph nodes requires three signals – Signal 1 is the activating signal which involves specific interaction of MHC/antigen complex with the T cell receptor (TCR). Signal 2 is a survival signal, mediated by costimulatory molecules on the surface of DC interacting with specific molecules on the T cells. One example includes the B7 group of
molecules (CD80 and CD86) on the DC which bind to CD28 on adjacent T cells (Bour-Jordan and Blueston, 2002).

Signal 3 results in the differentiation of the naïve CD4^+ T cells into T helper (Th1, Th2, and Th17) or regulatory T (Treg) cell subsets. This signal also arises from DC and other innate immune cells and requires cytokines, which polarise the differentiation of the activated T cells into the most appropriate subset to eradicate the particular invading pathogen (Kapsenberg, 2003). Different cytokines influence this differentiation – for example interleukin (IL-12) promotes Interferon-γ (IFN-γ)-secreting Th1 cells, characterised by the transcription factor T-bet, whereas IL-4 induces GATA-3-expressing Th2 cells, while IL-6 and transforming growth factor (TGF)-β1 induce retinoic acid orphan receptor (ROR)yT-expressing Th17 cells (Mills, 2009). Natural and adaptive Treg cells can also be induced/expanded by IL-10 or TGF-β1 (Mills, 2009). Natural Treg cells and some adaptive Treg cells express the transcription factor FoxP3.

1.2 Immunological tolerance

Immunological self-tolerance involves the regulation of a damaging immune response that might arise against self-molecules, cells or tissues (Pugliese, 2004). Loss of this self-tolerance is associated with the onset of autoimmune disease. The induction of self-tolerance is reliant on interactions between lymphocytes and APC for both central tolerance and peripheral tolerance (Pugliese, 2004).

1.2.1 Central tolerance

Central tolerance involves mechanisms of positive and negative selection of T cells within the thymus (Pugliese, 2004). Initially, double positive (DP) CD4^+CD8^+ thymocytes are exposed to MHC-peptide complexes in the thymic cortex. The majority of DP thymocytes will have no affinity to such complexes. They therefore do not receive survival signals and die by neglect via apoptosis (Fig 1.1) (Romagnani, 2006; Starr et al., 2003). Surviving cells (or "positively selected" cells) migrate to thymic medullary areas to differentiate into single positive CD4^+ or CD8^+ thymocytes (Starr et al., 2003). However, this pool of positively selected cells contains those that have affinity
for either foreign antigen or self-antigen. A further process is required to purge the pool of self-reactive cells – this is called negative selection (Fig 1.1).

T cells encounter MHC-self antigen complexes on the medullary epithelial cells. Those that show high avidity for these complexes undergo apoptosis (Fig 1.1) (Romagnani, 2006). Cells which do not react with self antigens and therefore survive negative selection can subsequently migrate from the thymus to peripheral lymphoid organs (Fig 1.1) (Romagnani, 2006).

1.2.2 Peripheral tolerance

Despite the efficiency of central tolerance, not all self-reactive T cells will be deleted in the thymus. An additional mechanism is therefore required to control potentially self-reactive T cell responses in the periphery. This process is known as peripheral tolerance and involves at least four different mechanisms: anergy, deletion and immune suppression (Romagnani, 2006; Taams et al., 2003), and immunological ignorance (Taams et al., 2003).

Anergy occurs when a T cell receives only one activating signal from an APC – i.e. MHC-peptide alone (Signal 1) in the absence of costimulatory signalling (Signal 2). In such cases the T cell is not activated but instead becomes anergic, i.e. unresponsive to antigen even if it later encounters an APC presenting the same MHC-peptide complex with costimulatory molecules (Powell, 2006). Additionally, anergy can occur if a T cell is stimulated with its specific MHC-peptide complex and cytotoxic T-lymphocyte-associated-molecule-4 (CTLA-4), an inhibitory costimulatory molecule (Asnagli and Murphy, 2001). In both cases the T cell does not die but persists in the body in a permanent state of unresponsiveness.

Deletion requires apoptotic cell death of the self-reactive T cells. It usually occurs when T cells encounter high concentrations of specific self antigen and/or are strongly activated (Romagnani, 2006). This is known as activation-induced cell death (AICD) and involves the extrinsic apoptotic pathway, specifically mediated by the “death receptor” Fas and its ligand, FasL (Fas et al., 2006).
Immunological ignorance refers to a situation where reactive T cells in an individual have not encountered their specific antigen and have a naïve phenotype (Ochsenbein, 2005). There is a minimal “threshold” dose of antigen required to induce an immune response to a particular antigen, and is dependent on several factors. For example, an antigen might be exclusively expressed on cells that either do not migrate to secondary lymphoid organs, or do not efficiently migrate there (Ochsenbein, 2005). It is thought that this is true for most self antigens as well as tumour antigens. Tumours arise from the host's own tissues, therefore many of the target antigens are tissue-specific molecules shared by cancer cells and normal cells. These weak antigens therefore do not typically elicit immunity (Perales et al., 2002).

Sequestration, or “walling off” of antigen from the immune system also contributes to immunological ignorance. A well-characterised example is the eye, whose posterior chamber is separated from the immune system early in ontogeny, separated by the blood-retinal barrier (Caspi, 2006). It was believed that ocular antigens therefore remained “unknown” to the immune system, as a result of this relative inaccessibility. However, is is now known that the reality is more complex – in addition to basic sequestration, other mechanisms exist that actively inhibit immune responses within the eye and modulate immune responses to antigens released from the eye (Caspi, 2006).

Immunosuppression is mediated by regulatory T (Treg) cells, which will be described in subsequent sections.
In the thymic cortex, double positive (DP) CD4^+CD8^+ thymocytes are exposed to MHC-peptide complexes. Those which lack affinity for such complexes (>95%) do not respond and die of neglect via apoptosis. Surviving, positively selected DP cells subsequently migrate to the thymic medulla. Here they differentiate into single positive CD4^+ or CD8^+ thymocytes. The pool of positively selected cells has affinity for self antigen as well as foreign antigen. Those which have avidity for self antigen are then "negatively selected", i.e. they undergo apoptosis. Surviving single positive CD4^+ or CD8^+ cells migrate to the secondary lymphoid organs, where they comprise the entire the T cell repertoire, which can respond to foreign antigen presented by self-MHC complexes.
1.3 Natural regulatory T cells

Natural regulatory T (nTreg) cells are a naturally occurring, functionally mature population of CD4\(^+\) T cells which constitutively express CD25, the alpha chain of the IL-2 receptor (Sakaguchi et al., 1995; Sakaguchi et al., 1996; Suri-Payer et al., 1998). After development in the thymus, nTreg cells enter peripheral tissues and mediate peripheral tolerance by suppressing the activation of self-reactive Th cells (Itoh et al., 1999; Toda and Piccirillo, 2006).

The important role of these cells was first shown by Sakaguchi et al (Sakaguchi et al., 1995). Sakaguchi demonstrated that the transfer of CD4\(^+\) T cells, from which the CD4\(^-\)CD25\(^+\) population had been depleted, into immunocompromised mice caused spontaneous autoimmune diseases. This autoimmunity could be prevented by reconstituting the animals with CD4\(^+\)CD25\(^-\) T cells (Sakaguchi et al., 1995).

Murine CD4\(^-\)CD25\(^+\) T cells can suppress CD4\(^+\)CD25\(^-\) responder cells in a cell-contact dependent manner in vitro, which involves the inhibition of IL-2 production by the CD4\(^+\) responder cells (Thornton and Shevach, 1998). However, CD25 is an activation marker for all T cells and is therefore not a definitive marker for nTreg cells (Sakaguchi et al., 1996). This makes it difficult to differentiate between T cells with effector and regulatory function during an immune response. nTreg cells have been identified using a number of other surface markers which include CTLA-4 (Read et al., 2000), glucocorticoid-induced TNF receptor family-related gene (GITR) (Ono et al., 2006), low levels of CD127 (Banham et al., 2006) or low levels of CD45RB (Powrie et al., 1996). Expression of the transcription factor FoxP3 is also used to identify nTreg cells.

1.3.1 FoxP3

The forkhead box protein transcription factor FoxP3 is presently the most definitive marker of nTreg cells in both mice and humans (Fontenot et al., 2003; Khattri et al., 2003). Mutations in FoxP3 result in Scurfy, an X-linked syndrome in male mice, which is a CD4\(^+\) T cell-mediated lymphoproliferative disease characterised by wasting and multi-organ lymphocytic infiltrates (Clark et al., 1999). In humans the recessive IPEX (immunodysregulation polyendocrinopathy
enteropathy X-linked) syndrome, an aggressive, fatal autoimmune condition is secondary to mutations in the human homologue of Foxp3 (Bennett et al., 2001). Other studies have shown that transfection of CD4+CD25FoxP3+ T cells with FoxP3 confers them with regulatory activity (Hori et al., 2003; Ziegler, 2006). In addition, mice with the Scurfy phenotype could avoid disease when reconstituted with CD4+CD25+ Treg cells or when the same mice expressed the FoxP3 transgene (Ziegler, 2006). Moreover, in a conditional deletion system, silencing of the FoxP3 gene resulted in the rapid expression of multiorgan immunity (Kim et al., 2007).

CD4+FoxP3+ cells represent approximately 5-8% of the total CD4+ population in the spleens of naive mice (Bochtler et al., 2006). nTreg cells in human peripheral blood represent approximately 3% of total CD4+ T cells (Walker et al., 2003). Unlike in mice where there is a distinct correlation between FoxP3 and CD25 expression, almost all activated human CD4+ T cells (i.e. CD4+CD25high) are FoxP3+ due to induction of FoxP3 expression via the TCR (Walker et al., 2003). The induced FoxP3+ population only expresses FoxP3 transiently however, and these cells do not suppress CD4+ T cell responses in vitro (Gavin et al., 2006). In addition, the existence of a CD25intermediate (Int) population of CD4+ T cells further complicates the study of nTreg cells in humans; these cells are also FoxP3+ but express it at a lower intensity than CD4+CD25high cells.

Since FoxP3 is a nuclear transcription factor it can only be detected by cell fixation and permeabilisation. For this reason FoxP3 cannot be used to purify live Treg cells from murine or human tissue for in vitro functional assays. As mentioned in section 1.3, CD45RB and CD127 are surface markers which can distinguish nTreg cells from non-Treg cells. The expression of these markers is inversely correlated with FoxP3 expression, and they are used as surrogate markers to identify FoxP3+ and FoxP3+ T cells.

1.3.2 CD45RB

The glycoprotein CD45 is a tyrosine phosphatase expressed abundantly on lymphocytes (Alexander, 2000). Its expression is critical for antigen receptor signalling, as shown by the arrested development of CD45− T and B cells (Kishihara et al., 1993; Koretzky et al., 1990). Eight
different isoforms of CD45 can be generated by alternative splicing of three consecutive exons termed A, B and C (Rogers et al., 1992). Different stages of T cell differentiation and function are associated with the differential expression of the CD45 isoforms (Lee et al., 1990; Trowbridge and Thomas, 1994). In mice, CD45RB is expressed by CD8^+ T cells, CD4^+ helper T cells and most thymocytes (Luke et al., 2001). Its expression decreases as a T cell progresses from naïve to memory states (Lee et al., 1990; Trowbridge and Thomas, 1994).

CD45RB^{high} T cells are associated with organ rejection and inflammation (Powrie et al., 1994a; Powrie et al., 1994b; Read et al., 2000). Notably, T cells with regulatory function express low levels of CD45RB (CD45RB^{low}) and can inhibit allograft rejection (Luke et al., 2001). It has also been shown that the T cells which control intestinal inflammation and autoimmunity express low levels of CD45RB (Read et al., 2000). Anti-CD45RB monoclonal antibody (mAb) administration has been shown to prolong allograft survival (Lazarovits et al., 1996; Parry et al., 1999) and promote immunosuppressive activity in xenografts and preclinical autoimmunity models (Abu-Hadid et al., 2000; Zhang et al., 2000).

Importantly, it has been demonstrated that murine CD4^+CD45RB^{low} T cells express higher levels of FoxP3 than CD4^+CD45RB^{high} T cells (Luke et al., 2006). This discovery has made the purification of functional murine Treg cells more straightforward and less contentious than using CD25 alone, due to the potential contamination of CD25^+ Tregs with non-regulatory activated T cells.

1.3.3 CD45RA and CD45RO in humans

As described in section 1.3.1, almost all activated human CD4^+CD25^{high} T cells are FoxP3^+ due to induction of FoxP3 expression via the TCR (Walker et al., 2003). Nonetheless, the induced FoxP3^+ population only transiently expresses FoxP3, and do not suppress CD4^+ T cell responses in vitro (Gavin et al., 2006). Different isoforms of the surface marker CD45 can be generated by alternative splicing of the three consecutive exons A, B and C (Rogers et al., 1992). Studies in humans have reported that the expression of CD45RA or CD45RO can differentiate
naive T cells and memory T cells, respectively, as expression of these markers is mutually exclusive (Sakaguchi et al., 2010). CD45RO, in conjunction with CD25 and/or FoxP3 expression is a useful human Treg cell marker. CD4^CD25^{high}CD45RO^ T cells express FoxP3, and were believed to be the human counterpart of murine CD4^CD25^{high}FoxP3^ Treg cells (Baecher-Allan et al., 2001; Levings et al., 2001b; Ng et al., 2001; Taams et al., 2002).

However, FoxP3 expression and suppressive function have also been described in naive human CD4^ T cells which express CD45RA, but not CD45RO (Fritzsching et al., 2006; Miyara et al., 2009; Seddiki et al., 2006b; Valmori et al., 2005). These cells have been designated as “naive” Treg cells, and are characterised by their surface expression of CD45RA and their low levels of FoxP3 (Fritzsching et al., 2006; Ito et al., 2008; Miyara et al., 2009). This population of Treg cells are probably not strictly “naive”, given that Treg cells must be stimulated with their cognate antigen in order to be maintained in the periphery (Fisson et al., 2003). However, it has been known for some time that activated CD4^ T cells can express CD45RA (Brod et al., 1989). Nonetheless, most of these CD45RA^{FoxP3^{low}} “naive” Treg cells express CD32, which identifies recent thymic emigrants, while CD45RO^ Treg cells lack this marker (Haas et al., 2007; Miyara et al., 2009). Once they are activated, “naive” Treg cells proliferate, upregulate FoxP3 expression and convert to a CD45RO^CD25^{high}FoxP3^ phenotype (Miyara et al., 2009).

1.3.4 CD127

CD127, the alpha chain of the IL-7 receptor, is also routinely used to discriminate FoxP3^ regulatory T cells from FoxP3^{CD25^{+}} activated CD4^ T cells, as Treg cells are generally CD127^{low} (Banham, 2006). Two studies have illustrated the inverse correlation between FoxP3 and CD127 on Treg cells (Liu et al., 2006; Seddiki et al., 2006a). It was also shown in these reports that CD127 was a more specific marker for Treg cells than CD25 in mice as most CD127^{low} cells were FoxP3^{+} (Liu et al., 2006; Seddiki et al., 2006a). Importantly, both studies found functionally suppressive CD127^{low} human Treg cell populations irrespective of their CD25 expression. In the same way that CD45RB can be used to distinguish murine Treg cells from non-Treg cells, using CD127 negativity
as a surrogate marker for human and murine Treg cells has facilitated the purification of uncontaminated Treg cell populations.

1.3.5 Helios

Helios is a member of the Ikaros transcription factor family (Thornton et al., 2010). Its expression appears to be restricted to the T lymphocyte lineage (Hahm et al., 1998). It is thought that Ikaros family members regulate gene transcription via chromatin remodelling (Thornton et al., 2010). Helios is thought to be a potential FoxP3 target gene, and it has been shown that Helios is selectively expressed in FoxP3^+ T cells (Hill et al., 2007; Kang et al., 2007a; Sugimoto et al., 2006). It has been subsequently reported that Helios is exclusively expressed by thymically-derived FoxP3^+ nTreg cells and can therefore differentiate these cells from those which acquire FoxP3 expression in the periphery in mice and humans (Thornton et al., 2010). Helios expression does not seem to be required for Treg function (Thornton et al., 2010).

However, more recent studies have challenged the idea that Helios can distinguish thymically-derived and peripherally induced FoxP3^+ Treg cells, as it has been identified in inducible FoxP3^+ Treg cells in vitro and in vivo (Gottschalk et al., 2011). Furthermore, Helios expression is apparently induced in human and murine T cells during proliferation and activation, but can regress in the same cells when they are rested (Akimova et al., 2011). It would appear that Helios expression is associated with T cell activation and cellular division, regardless of the cell subset involved. Therefore it might not be suitable as a marker to distinguish natural and induced Treg cells.

1.3.6 Additional surface markers used to identify Treg cells

Depletion of total CD4^+CD25^+ T cells either by thymectomy (Day 3 thymectomy model) or the adoptive transfer of CD4^+CD25^+ T cells into athymic nude mice induces gastritis, thyroiditis and either oophoritis or prostatitis/orchitis, depending on the gender of the mice (Sakaguchi et al., 2006; Sakaguchi et al., 1995). As stated in section 1.3, CD25 is an imperfect phenotypic marker of Treg cells, and it has been reported that FoxP3^+CD25^+ Treg cells exist. However, it is not clear
whether they are nTreg cells which have lost CD25 expression or whether they represent inducible FoxP3+ Treg cells.

Furthermore, there are diverse subsets within the CD25+ Treg cell population, which express or lack particular surface markers. Investigation into organ-specific autoimmune disease has demonstrated that distinct diseases are evident depending on the type of Treg cells that are depleted. CD25+ nTreg cells prevent gastritis and late onset diabetes in NOD SCID (non-obese diabetic, severe combined immunodeficient) mice (Alyanakian et al., 2003), however CD25- CD62L+ (L-selectin) cells protect against fulminant diabetes, and CD4+CD45RBlow cells inhibit colitis with wasting disease but have little or no effect on gastritis or diabetes (Alyanakian et al., 2003). However, only CD4+CD25+ Treg cells could efficiently suppress proliferation of target T effector (Teff) cells in vitro. Furthermore, the cytokine profile varies significantly for each subset analysed (Alyanakian et al., 2003). This data suggests distinct subsets of CD4+ Treg cells prevent induction of certain autoimmune diseases in vivo and these subsets are not necessarily confined to the CD4+CD25+ population.
<table>
<thead>
<tr>
<th>Marker</th>
<th>Function</th>
<th>Human/Mouse</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoxP3</td>
<td>Transcription factor, governs expression of regulatory genes</td>
<td>Human and mouse</td>
<td>CD4<sup>+</sup>FoxP3<sup>+</sup> T cells have regulatory function in vitro and in vivo (Fontenot et al., 2003). Defects in foxp3 gene are associated with IPEX (humans) and scurfy (mice) (Bennett et al., 2001).</td>
</tr>
<tr>
<td>CD25</td>
<td>Alpha chain of IL-2R, T cell activation marker</td>
<td>Human and mouse</td>
<td>Thymically-derived nTreg cells are CD4<sup>+</sup>FoxP3<sup>+</sup>CD25<sup>+</sup> (Sakaguchi et al., 1995). CD25 expression may not be essential to identify functional Treg cells, but may discriminate activated from inactive Treg cells (Zelenay et al., 2005).</td>
</tr>
<tr>
<td>GITR</td>
<td>member of the TNFR superfamily, Costimulatory molecule</td>
<td>Human and mouse</td>
<td>CD4<sup>+</sup>FoxP3<sup>+</sup>CD25<sup>+</sup>GITR<sup>+</sup> T cells have suppressive function in murine organ transplantation (Nishimura et al., 2004), inflammatory bowel disease (Uraushihara et al., 2003) and autoimmune myocarditis in mice (Ono et al., 2006).</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>Inhibitory costimulatory molecule</td>
<td>Human and mouse</td>
<td>Constitutive expression of CTLA-4 has been reported in Treg cells (Read et al., 2000). Anti-CTLA-4 blocking experiments and experiments using CTLA-4-deficient Treg cells have suggested a role for CTLA-4 in Treg cell-mediated suppression via DC (Oderup et al., 2006; Serra et al., 2003).</td>
</tr>
<tr>
<td>ICOS</td>
<td>Costimulatory molecule, stimulates IL-10 production</td>
<td>Human and mouse</td>
<td>ICOS plays an essential and specific role in mucosal tolerance (Miyamoto et al., 2005). ICOS is crucial for the induction of peripheral tolerance (Akbari et al., 2002; Tuettenberg et al., 2009).</td>
</tr>
<tr>
<td>CD45RB</td>
<td>CD45 is a tyrosine phosphatase. CD45RB isoform is a naïve T cell marker</td>
<td>Mouse</td>
<td>FoxP3<sup>+</sup> cells are generally CD45RB<sup>low</sup> (Luke et al., 2001). Regulatory activity has been described for CD4<sup>+</sup>CD45RB<sup>low</sup>CD25<sup>+</sup> T cells in rodents (Hori et al., 2003; Powrie et al., 1994a).</td>
</tr>
<tr>
<td>CD127</td>
<td>Alpha chain of IL-7R</td>
<td>Human and mouse</td>
<td>FoxP3<sup>+</sup> cells are generally CD127<sup>low</sup> (Banham, 2006; Liu et al., 2006; Seddiki et al., 2006a).</td>
</tr>
<tr>
<td>CD45RO</td>
<td>Tyrosine phosphatase. CD45RO isoform is a memory T cell marker</td>
<td>Human</td>
<td>CD45RO can be used in conjunction with FoxP3 and CD25 expression to identify human Treg cells (Baecher-Allan et al., 2001; Taams et al., 2002).</td>
</tr>
<tr>
<td>CD45RA</td>
<td>Tyrosine phosphatase. CD45RA isoform is a naïve T cell marker</td>
<td>Human</td>
<td>Most CD45RA<sup>+</sup> human T cells are FoxP3<sup>+</sup>, however a "naïve" Treg cell population has been described – these cells are CD45RA<sup>+</sup>FoxP3low and become CD45RO<sup>+</sup>FoxP3highCD25<sup>+</sup> upon activation (Miyara et al., 2009).</td>
</tr>
<tr>
<td>Helios</td>
<td>Transcription factor</td>
<td>Human and mouse</td>
<td>May differentiate thymically-derived FoxP3<sup>+</sup> Treg cells from peripherally induced FoxP3<sup>+</sup> Treg cells (Thornton et al., 2010).</td>
</tr>
<tr>
<td>CD62L</td>
<td>Adhesion molecule</td>
<td>Human and mouse</td>
<td>CD25<sup>+</sup>CD62L<sup>+</sup> T cells protect against fulminant diabetes in mice (Alyanakian et al., 2003).</td>
</tr>
</tbody>
</table>

Table 1.1 Summary of important markers for Treg cells
1.4 Adaptive Treg cells

Adaptive Treg cells differ from nTreg cells as they do not develop in the thymus. Instead they are generated from mature CD4+ T cells in the periphery under particular conditions of sub-optimal antigenic stimulation and/or costimulation. The cytokine milieu also plays an important role in their induction (Roncarolo et al., 2006). Adaptive Treg cells are generally FoxP3+ and are defined by their cytokine production profile rather than their cell surface markers (Taams and Akbar, 2005). They are also weaker suppressors than nTreg cells and are less stable (Gupta et al., 2008). Furthermore, there is highly variable expression of CD25 among such Treg cell populations (Bluestone and Abbas, 2003).

Adaptive Treg cells are specific for antigens which are not encountered in the thymus during clonal selection, such as food antigens, commensal microorganisms, and certain pathogens (Curotto de Lafaille and Lafaille, 2009). They are especially important in mucosal immunology, as the mucosal environments, such as the lungs and intestines, encounter substantial amounts of foreign antigen.

In the event of infection or injury, the generation of adaptive Treg cells facilitates a dynamic immune response. Activated T cells can recruit other inflammatory cells to the site, but as the response progresses and matures, adaptive Treg cells can develop locally in response to the inflammatory environment. These Treg cells can allow inflammation to resolve by regulating the magnitude of the T cell response. They can also limit bystander immune responses directed against self-antigen that might have become exposed during the inflammatory response (Buckner and Ziegler, 2004).

It has also been hypothesised that the Treg cells might restrict the number of surviving T cells and therefore memory cells, in order to avoid overwhelming secondary immune responses upon repeated exposure to the same antigen. The importance of Treg cells in this context is highlighted by studies on *Leishmania major* infection, whereby the absence of Treg cells or IL-10
allows the infection to be cleared more quickly in mice, but the animals do not develop resistance to a second infection (Belkaid et al., 2002). On the other hand, the presence of Treg cells leads to low-level persistence of the pathogen but facilitates the development of long-term immunity (Belkaid et al., 2002).

1.4.1 Tr1 cells

CD4^FoxP3^ Treg cells that secrete predominantly IL-10 are called Tr1 cells (Groux et al., 1997). They can be generated in vitro from naive human or mouse CD4^- T cells via antigenic stimulation in the presence of IL-10 (Chen et al., 1994; Groux et al., 1997). IFN-α in conjunction with IL-10 has also been shown to induce human Tr1 cells in vitro (Levings et al., 2001a). Despite being FoxP3', Tr1 cells are functionally similar to FoxP3^- nTreg cells as they are hypo-proliferative when stimulated with antigen (Vieira et al., 2004). Tr1 cells can also be induced in vitro by repeated stimulation of the TCR by immature DC or IL-10-producing DC in the presence of high concentrations of IL-10 (McGuirk et al., 2002). These cells can also be generated by culture with vitamin D3 and dexamethasone (Barrat et al., 2002).

It has been demonstrated that antigen-specific Tr1 cells can be generated in vivo, in mice infected with the gram negative bacterium Bordetella pertussis, and these cells can suppress Th1 cells (McGuirk et al., 2002). It is thought that these cells function to limit immunopathology as a result of the Th1 response against B. pertussis. Pathogens are also able to induce regulatory cells as a mechanism of immune evasion, such as Epstein Barr virus (EBV) which has been reported to induce IL-10-producing Tr1 cells (Marshall et al., 2003).

1.4.2 Th3 Cells

TGF-β1-producing adaptive Treg cells have been called Th3 cells. In the gut the generation of Th3 cells is associated with the induction of oral tolerance to exogenous ingested antigens (Chen et al., 1994). Oral tolerance is a continuous immunologic process established in the gut-associated lymphoid tissue (GALT) (Weiner, 2001b). It is presumed that oral tolerance evolved to avert unwarranted immune responses against commensal flora in the gut and of course
innocuous food antigens from the diet (Weiner, 2001b). Research has shown that there are two mechanisms of oral tolerance – induction of clonal anergy or clonal deletion and induction of Treg cells which actively suppress effector immune responses (Fig 1.2). The dose of antigen appears to be the deciding factor for the type of oral tolerance induced (Weiner, 2001b).

Stimulation with low doses of antigen generates Th2 cells as well as antigen-specific Th3 cells (Chen et al., 1994). Th3 cells are believed to be induced by TGF-β1, which along with IL-10 and IL-4 is constitutively expressed at high levels in the gut (Inobe et al., 1998; Seder et al., 1998). After feeding oral antigen, their expression is further upregulated (Gonnella et al., 1998). Th3 cells are distinct from Th2 cells as they secrete little or no IL-4 or IL-10 (Weiner, 2001a). Notably, these cells can transfer tolerance in vivo and are also able to suppress in vitro (Miller et al., 1992). In contrast, hyporesponsiveness to oral antigen is generated after administration of high dose of antigen and is mediated by anergy or deletion, as demonstrated by a study in which the development of experimental autoimmune encephalomyelitis (EAE) in rats could be inhibited by feeding high doses of antigen known to induce EAE (Whitacre et al., 1991).
The different mechanisms of oral tolerance are determined by the dose of fed antigen. Stimulation with low doses of antigen generates Th2 cells as well as antigen-specific Th3 cells. Th3 cells can actively transfer tolerance *in vivo* and are also able to suppress *in vitro*. In contrast, hyporesponsiveness to oral antigen is generated after administration of high dose of antigen and is mediated by clonal anergy or clonal deletion.
1.4.3 Inducible FoxP3⁺ Treg cells

In contrast to FoxP3⁺ Tr1 and Th3 cells, adaptive or inducible FoxP3⁺ Treg (iTreg) cells have also been reported. Like Tr1 and Th3 cells, iTreg cells arise in the periphery and therefore differ from thymically-derived nTreg cells (Bluestone and Abbas, 2003). *In vitro and in vivo* studies support the existence of FoxP3⁺ iTreg cells, and it appears that TGF-β₁ is important for their induction, at least in mice.

In vitro, TGF-β₁ converts naïve CD4⁺FoxP3⁻ T cells to CD4⁺FoxP3⁺CD25⁺ iTreg cells (Chen *et al.*, 2003; Fantini *et al.*, 2004). These cells were able to suppress normal T cell proliferation *in vitro* and could also inhibit allergic responses upon adoptive transfer *in vivo* (Chen *et al.*, 2003). DC have been reported to play a role in the TGF-β₁-dependent induction of FoxP3⁺ iTreg cells. Studies in a diabetes model have demonstrated that DC pulsed with beta-cell peptide from NOD mice can convert naïve CD4⁺ T cells into CD4⁺FoxP3⁺CD25⁺ iTreg cells in the presence of TGF-β₁. The iTreg cells could inhibit T cell proliferation *in vitro* and prevented autoimmune diabetes *in vivo* (Luo *et al.*, 2007). The induction of Treg cells might be an important strategy for maintaining tolerance at mucosal interfaces. Indeed, the conversion of naïve CD4⁺ T cells to antigen-specific CD4⁺FoxP3⁺ iTreg cells has been shown to take place in the intestine (Coombes *et al.*, 2007). CD103⁺ DC from the mesenteric lymph nodes promoted this conversion, via TGF-β₁ and the vitamin A metabolite retinoic acid (RA) (Coombes *et al.*, 2007).

It has been reported that up to 90% of naïve CD4⁺ T can be converted to FoxP3⁺ iTreg cells in the presence of TGF-β₁ (Selvaraj and Geiger, 2007). Conversion only occurs if TGF-β₁ is added to T cell culture within 2-3 days of activation *in vitro*, and it is reversible, as removal of the cytokine resulted in loss of FoxP3 expression after approximately 4 days (Selvaraj and Geiger, 2007). In addition, FoxP3 expression was lost from most of the iTreg cells upon adoptive transfer into wild-type mice (Selvaraj and Geiger, 2007). This suggests that *in vitro* conversion is transient, and depends on TGF-β₁.
IL-2 may promote the TGF-β1-mediated conversion of iTreg cells (Zheng et al., 2007). Both cytokines are essential for the maintenance of nTreg cells (Khattar et al., 2009). However, normal Treg cell function has been reported in the absence of TGF-β1 or in mice unresponsive to TGF-β1 (Piccirillo et al., 2002). In humans TGF-β1 might not be required for suppression of immune responses, as suggested by a study showing cell-contact dependent iTreg cell function (Walker et al., 2003). Nonetheless, it seems that activation of the T cells by antigen or superantigen is required for the generation of iTreg cells (Buckner and Ziegler, 2004; Duthoit et al., 2004; Thorstenson and Khoruts, 2001; Zheng et al., 2002).

In vivo Treg cell conversion has also been reported. When CD4^CD25^ T cells from CD45.1^ mice were adoptively transferred into congenic CD45.2^ mice, 5-12% of the transferred cells converted to CD4^FoxP3^CD25^ iTreg cells within 6 weeks (Liang et al., 2005). The iTreg cells were refractory to stimulation and could suppress Teff cell proliferation in vitro (Liang et al., 2005). The administration of very low doses of antigen in conjunction with suboptimal DC activation can also induce conversion of FoxP3^ iTreg cells in vivo, which can be further enhanced by TGF-β1 but does not require IL-2 (Kretschmer et al., 2005). Furthermore, blocking TGF-β1 during feeding of Ovalbumin (Ova) inhibited both the induction of oral tolerance and the peripheral conversion of Ova-specific Treg cells (Mucida et al., 2005).

It has been reported that CD4^FoxP3^CD25^ T cells can convert to CD4^FoxP3^CD25^ iTreg cells. Kretschmer et al demonstrated the existence of antigen-specific CD4^FoxP3^CD25^ iTreg in vivo (Kretschmer et al., 2005). Malaria infection can also drive the conversion of CD4^FoxP3^CD25^ T cells to CD4^FoxP3^CD25^ iTreg cells (Couper et al., 2007).

1.4.4 Retinoic Acid

The induction of Treg cells and Th17 cells are reciprocally regulated by cytokines (Bettelli et al., 2006). When activated CD4^ T cells are exposed to TGF-β1 alone, they can convert to FoxP3^ iTreg cells, but if IL-6, IL-1β and IL-23 or IL-21 are also present FoxP3 induction is blocked and Th17 cells are induced (Bettelli et al., 2006; Manel et al., 2008; Mangan et al., 2006; 34
Veldhoen et al., 2006). The induction of iTreg cells by TGF-β1 is concomitant with the inhibition of Th1 and Th2 polarisation (Li et al., 2006; Mucida et al., 2005; Wahl et al., 2006).

This reciprocal relationship suggests that the TGF-β1 polarisation of Treg or Th17 differentiation is highly controlled. Retinoic acid (RA) has been shown to modulate the pleiotropic effects of TGF-β1 and promote induction of FoxP3+ Treg cells (Benson et al., 2007; Coombes et al., 2007; Kang et al., 2007b; Mucida et al., 2007; Sun et al., 2007). If CD4+ T cells are activated in the presence of TGF-β1 and RA, FoxP3+ iTreg cell induction is enhanced. Even if IL-6 is also present, Th17 cell differentiation is inhibited because RA blocks the IL-6-dependent expression of RORγt, the key Th17-polarising transcription factor (Ivanov et al., 2006; Mucida and Cheroutre, 2007; Mucida et al., 2007; Zhou et al., 2008).

RA, or all-trans retinoic acid (atRA), is a biologically active metabolite of vitamin A. Vitamin A is obtained from the diet, in the form of all-trans retinol, retinyl esters or β-carotene (Blomhoff and Blomhoff, 2006; Moise et al., 2007). The oxidation of all-trans retinol or β-carotene by alcohol dehydrogenases or short-chain dehydrogenase reductases results in the synthesis of all-trans retinal. All-trans retinal is the precursor of RA. RA is formed when all-trans retinal is irreversibly oxidised by retinal dehydrogenases (RALDH) (Blomhoff and Blomhoff, 2006; Moise et al., 2007). The expression of RALDH is tightly controlled and is restricted to specific cells and tissues; therefore RA production is restricted to these cells and tissues, for example the gut, where RA is found in abundance. RALDH is expressed by certain gut-associated cells such as intestinal epithelial cells (Iwata et al., 2004; Lampen et al., 2000) and gut-associated DC (Coombes et al., 2007; Germain et al., 2006).

It is well known that vitamins play a role in the immune system, in particular vitamins A and D (Mora et al., 2008). Both promote Th2 responses and inhibit Th1 and Th17 responses. In addition, they promote the induction of FoxP3+ iTreg cells (Cantorna et al., 1994; Mora et al., 2008). The importance of vitamin A in T cell function is exemplified by the fact that vitamin A-
deficient mice have defective T cell activity (Carman et al., 1989), and in vitamin A-deficient rats, where deficiency is associated with decreased Th2 responses (Wiedermann et al., 1993). In a mouse model of asthma, vitamin A supplementation led to increased disease severity, while vitamin A deficiency has the opposite effect, due to decreased Th2 cytokines (Schuster et al., 2008). Vitamin A deficiency also correlates with impaired intestinal immune responses (Mora and von Andrian, 2008; Sirisinha et al., 1980; Wiedermann et al., 1993) and increased mortality, associated with gastrointestinal and respiratory infections (Sommer et al., 1983).

As the biologically active metabolite of vitamin A, the presence or absence of RA is likely to be responsible for these effects. Supplementation of vitamin A blocks the production of Th1 cytokines in vitro and in vivo (Iwata et al., 2003; Nikawa et al., 1999). RA is directly responsible for these effects on T cells. The IL4 gene is induced by RA, and thus promotes Th2 differentiation (Lovett-Racke and Racke, 2002). Furthermore, RA blocks T-bet, the Th1-cell promoter, and induces Th2-cell promoting factors such as GATA3 and STAT6 (Dawson et al., 2006; Iwata et al., 2003).

In addition, RA can enhance the induction of FoxP3+ iTreg cells by TGF-β1 in the periphery (Benson et al., 2007; Mucida et al., 2007). While it has been reported that gut DC from GALT and small intestinal lamina propria use RA to induce iTreg cells (Coombes et al., 2007; Sun et al., 2007), this is contentious since there is evidence that macrophages from lamina propria induce iTreg cells, while DC induce Th17 cells (Denning et al., 2007).

In vivo studies have demonstrated that the administration of exogenous RA inhibited the induction of Th17 cells, while injection of retinoic acid receptor (RAR) antagonists decreased the frequencies of lamina propria FoxP3+ cells (Mucida et al., 2007). RA treatment has proven to be beneficial in an arthritis model. Arthritis is associated with enhanced IL-17 production and treatment with RA improved clinical symptoms by reducing the levels of IL-6, tumor necrosis factor (TNF)-α and IFN-γ (Hirota et al., 2007; Tabata et al., 2006).
Modulation of the immune response by RA also affects B cells. Activated B cells undergo immunoglobulin (Ig) class-switching, which gives rise to different antibody isotypes. Class-switching is differentially influenced by Th1 and Th2 cytokines – IFN-γ (Th1) promotes switching to IgG₂ and IgG₃, whereas IL-4 (Th2) induces IgG₁ and IgE production and suppresses IgG₂₅ and IgG₃ (Snapper et al., 1997). The promotion of Treg/Th2 immunity by RA and its inhibition of Th1 responses therefore affects both humoral and cellular immune responses. With respect to the role of RA in mucosal immunology and homeostasis, its abundant production by intestinal DC, epithelial cells and macrophages results in dominance of RA over IL-6 in terms of modulating the effects of TGF-β₁. This might explain the dominance of FoxP3⁺ Treg cells in the intestine, which facilitate a tolerogenic environment in spite of a large burden of commensal microbes and regular encounters with food antigens (Mucida and Cheroutre, 2007).

RA functions in a paracrine manner, by binding to nuclear hormone receptors (Mora et al., 2008). These receptors belong to the RAR family, which has three isoforms – α, β and γ. Unlike RALDH, RAR proteins are ubiquitously expressed (Blomhoff and Blomhoff, 2006; Moise et al., 2007). They form heterodimers with nuclear receptors of the retinoic X receptor (RXR) family. RAR-RXR heterodimers can interact with retinoic acid responsive elements (RAREs), which are found within the promoters of RA-responsive genes (Blomhoff and Blomhoff, 2006; Moise et al., 2007).

STAT5 and STAT3 are the transcription factors which are important for the transcription of FoxP3 and IL-17, respectively (Ivanov et al., 2006; Laurence et al., 2007; Yang et al., 2007). The enhancement of FoxP3 expression by RA suggests a relationship between RAR and STAT5, in a similar manner to the relationship between RORγt and STAT3. It should also be noted that RARs and RORγt are very homologous (Winoto and Littman, 2002). Indeed, interaction between STAT5 and RARs has been demonstrated in vivo, which promotes RAR-mediated transcription (Si and Collins, 2002). The STAT5 consensus binding site overlaps with a RARE, and therefore facilitates
coordinated transcriptional activity in response to RA signalling, rather than competing for the same binding site (Si and Collins, 2002).

More recent studies have indicated that RA may also have a pro-inflammatory role in immunity, rather than exclusively promote anti-inflammatory responses (Hall et al., 2011). Mice were orally infected with *Toxoplasma gondii*, an intracellular protozoan which induces strong Th1 immunity. Compared with control mice, those on a vitamin A-deficient diet had reduced Th1 cell numbers in their spleens and intestines, and had a higher parasite load (Hall et al., 2011), suggesting that vitamin A/RA is required for an optimal Th1 immune response against *T. gondii*. Feeding of RA to the vitamin A-deficient mice restored CD4⁺ T cell immunity to *T. gondii* (Hall et al., 2011).

The same study also investigated the role of RA in T cell responses to vaccination. Using ovalbumin as antigen, the oral vaccination of vitamin A-deficient mice failed to induce Th1 and Th17 responses, which occur in response to ovalbumin in mice which are fed a normal diet (Hall et al., 2011). As with *T. gondii* challenge, feeding RA to vitamin A-deficient mice allowed them to respond to orally administered ovalbumin (Hall et al., 2011). It has been proposed that the concentration of RA is crucial in determining whether the induction of Th17 cells occurs or not. Lower RA concentrations (1-10 nM) seem to promote, while higher concentrations (>100 nM) suppress Th17 responses (Hall et al., 2011). Furthermore, the presence or absence of microbial antigens may be important in determining the outcome of RA stimulation of naïve T cells. Flagellin is a TLR5 ligand, and it stimulates intestinal DC to both produce RA and induce Th17 cell differentiation (Uematsu et al., 2008). Finally, the source of RA might be important in terms of dictating whether pro- or anti-inflammatory immune responses are invoked. While intestinal DC can produce RA and promote Treg cell induction, it is not clear whether systemic DC can produce RA.

It might be the case that the cytokine milieu determines the outcome of RA signalling. Certainly, RA and TGF-β₁ synergise to induce FoxP3⁺ Treg cells, and TGF-β₁ is abundant in the
gut. However, in the absence of TGF-β₁, and/or abundant production of other cytokines, perhaps RA can promote pro-inflammatory rather than anti-inflammatory immune responses.

1.5 CD25⁺ Treg cells

It has been reported that Treg cells are not exclusive to the CD25⁺ population (Annacker et al., 2001; Lehmann et al., 2002). Subsets of CD4⁺ T cells which lack CD25 expression have been shown to have suppressive function, such as CD4⁺CD25⁺CD62L⁺ cells discussed in section 1.3.6 (Alyanakian et al., 2003) and CD4⁺FoxP3⁺CD25⁺GITR⁺ cells which contribute to suppression of several autoimmune diseases (Ono et al., 2006). Conversely, FoxP3 positivity is proving to be a more reliable indicator of regulatory function, irrespective of cell surface marker expression. A recent study in mice has shown that CD25⁺FoxP3⁺ cells can acquire CD25 expression in lymphopenic conditions to allow them to maintain homeostasis and that CD25 surface expression on Treg cells is labile, with cells able to lose and regain CD25 on the surface without affecting their function (Zelenay et al., 2005). However, the number of CD25⁺ cells that are able to convert to CD25⁻ nTreg cells in vivo is limited (Curotto de Lafaille et al., 2004).

It is not clear whether expression of CD25 on the cell surface is absolutely required for effective regulatory function. However, it has been shown that activation (i.e. upregulation of CD25) confers suppressive ability on CD4⁺CD45RBlowCD25⁻ cells, which otherwise do not suppress (Caramalho et al., 2003). It has also been shown that nTreg cells can “shed” soluble CD25 (sCD25) upon activation, thereby acting as an IL-2 sink to prevent survival of Teff cells (von Bergwelt-Baildon et al., 2006). However, while a recent study has demonstrated that activated human CD4⁺CD25⁺ Treg cells can secrete sCD25, they also showed that sCD25 does not inhibit IL-2-dependent T cell function (Pedersen and Lauritsen, 2009). In addition, a significant increase in the frequency of CD4⁺FoxP3⁺CD25⁻ T cells has been observed in aged mice compared with young mice (Nishioka et al., 2006) and it has been postulated that this population might be responsible for the age-related decline in T cell-mediated immunity rather than to any quantitative or qualitative enhancement of the suppressive capacity of CD4⁺CD25⁻ nTreg (Nishioka et al., 2006).
Regulatory activity has also been described for CD4⁺CD45RB⁺⁺CD25⁺ T cells in rodents (Hori et al., 2003) and the corresponding CD4⁺CD45RO⁺CD25⁺ T cell subset in humans (Yagi et al., 2004). The suppressive activity of CD4⁺CD25⁺ Treg cells is generally weaker than nTreg cells (Annacker et al., 2001; Lehmann et al., 2002; Stephens and Mason, 2000), although CD4⁺FoxP3⁺CD25⁺GITR⁺⁺ T cells have been shown to have suppressive function in murine organ transplantation (Nishimura et al., 2004) and inflammatory bowel disease (Uraushihara et al., 2003). Furthermore, a role has been proposed for CD4⁺CD25⁺GITR⁺⁺ cells in preventing autoimmune myocarditis in mice (Ono et al., 2006). Further studies demonstrated that CD25⁺ Treg cells can also prevent colitis, myositis, hepatitis and glomerulonephritis upon transfer into NOD SCID mice, but not gastritis, thyroiditis, oophoritis, sialoadenitis, adrenalitis or insulitis; all of which can be prevented by transfer of CD4⁺CD25⁺ cells (Alyanakian et al., 2003). This finding is consistent with the suggestion of an organ-specific role for different subsets of Treg cells.

Further evidence that Treg cells are not confined to the CD4⁺CD25⁺ population comes from a study on heart transplantation (Degauque et al., 2007). The transfer of CD3⁺CD25⁺ T cells from rats which had received a heart graft into naïve hosts could convey acceptance to a subsequent heart graft. In addition, CD3⁺CD25⁺ T cells from tolerant rats have high expression of FoxP3, IL-10 and IFN-γ mRNA in response to the graft when compared to control rats.

Studies in the rat lung have illustrated the downregulation of CD25 by adoptively transferred pre-activated CD3⁺CD25⁺ T cells (Strickland et al., 1996b). This phenomenon has been attributed to “active inhibition” in the lung environment and may result from alveolar macrophage (AM)-derived inhibitory molecules such as nitric oxide (NO) (Holt et al., 1993; Strickland et al., 1993). Such organ-specific modulation of T cells might explain how different Treg cell subsets can modulate distinct autoimmune diseases (Alyanakian et al., 2003; Ono et al., 2006).

While there is a large body of evidence regarding suppressive function in CD4⁺FoxP3⁺CD25⁺ T cells, it is not clear whether these cells represent nTreg cells that have
somehow downregulated CD25 expression, or whether FoxP3 expression was induced in the periphery.

1.6 Mechanisms of suppression by Treg cells

It has been widely reported that nTreg cells exert their suppressive effects through direct cell-contact with target cell(s). Evidence supporting this theory has come from experiments using transwell inserts, where the Treg cells and Teff cells are separated by a permeable membrane. These studies have shown that Treg cells are unable to suppress responder cells when both populations are separated (Takahashi et al., 1998; Thornton and Shevach, 1998). However, suppressive mechanisms requiring direct cell-contact between populations are still unclear.

FoxP3\(^+\) nTreg cells do not produce the T cell growth factor IL-2, a feature attributed to transcriptional repression by FoxP3 (Fontenot et al., 2003; Ono et al., 2007). However, nTreg cells still require IL-2 for survival (Maloy and Powrie, 2005). It has therefore been proposed that nTreg cells may suppress by depriving Teff cells of IL-2, thereby preventing their proliferation (Fig 1.3). A recent study reported that nTreg cells can induce cytokine deprivation-mediated apoptosis (Pandiyan et al., 2007). However, this hypothesis has been compounded by conflicting data showing efficient suppression mediated by CD25\(^-\) (IL-2Ra\(^-\)) Treg cells (Fontenot et al., 2005a), and experiments detailing a defect in IL-2 production by responder cells in culture with Treg cells (Duthoit et al., 2005).

Other studies have illustrated that Treg cells can directly lyse target cells using a perforin/granzyme B-dependent mechanism (Fig 1.3) (Cao et al., 2007; Gondek et al., 2005; Zhao et al., 2006). Additionally, it has been proposed that Treg cells may induce the release of adenosine nucleotides (Fig 1.3) (Bopp et al., 2007; Deaglio et al., 2007). Adenosine, generated by the degradation of adenosine nucleotides by the ectonucleotidases CD39 and CD73 on Treg cells, can suppress Teff cell function through its interaction with the A2A receptor on Teff cells (Deaglio et al., 2007). CD39 converts ATP directly to AMP (Wang and Guidotti, 1996). Extracellular ATP is released from damaged cells as a result of trauma or cell death and it acts as a danger signal to alert
the immune system to tissue destruction (Borsellino et al., 2007; Matzinger, 2002). Extracellular ATP predominantly induces proinflammatory responses (Borsellino et al., 2007; Ferrari et al., 1997; Idzko et al., 2002; MacKenzie et al., 2001). CD39 is expressed on a wide range of cell types including activated lymphocytes (Kansas et al., 1991; Maliszewski et al., 1994), vascular endothelial cells (Kansas et al., 1991) and neurons (Wang and Guidotti, 1998; Wang et al., 1997).

Notably, murine CD4^FoxP3^CD25^ Treg cells express CD39 (Borsellino et al., 2007), and it has also been shown that FoxP3 induces CD39 expression (Borsellino et al., 2007). CD39 appears to be a marker for human Treg cells, but unlike murine cells its expression is restricted to a population of FoxP3^ regulatory effector/memory-like T (Trem) cells (Borsellino et al., 2007). It is believed that the removal of extracellular ATP by CD39 could enable Treg cells to enter inflamed tissues and suppress immune responses. Alternatively, CD39^ Treg cells could function to inhibit ATP-induced IL-1β secretion by endothelial cells or monocytes (Imai et al., 2000). Additionally, the generation of the suppressive molecule adenosine from extracellular ATP through CD39 and CD73 could further amplify these anti-inflammatory effects (Ferrari et al., 1997).

Similarly to CD39, CD73 is expressed on a wide range of murine cells including lymphocytes (Thomson et al., 1990), but it does not appear to have a role in human cells. CD73 catalyses the conversion of AMP to adenosine (Bours et al., 2006), and may also play a role in cell adhesion (Airas et al., 1995). Adenosine has potent anti-inflammatory properties, such as inhibition of neutrophil function and prevention of collateral tissue damage (Cronstein, 1994; Ohta and Sitkovsky, 2001; Sitkovsky and Ohta, 2005; Trevethick et al., 2008).

Furthermore, Treg-derived cAMP, the inhibitory second messenger, was shown to enter Teff cells via gap junctions in their cell membrane (Bopp et al., 2007). cAMP has a multitude of functions, including potent inhibition of T cell growth, differentiation and proliferation (Bodor et al., 2001). cAMP can directly attenuate IL-2 production in CD4^ T cells by inducing ICER (Inducible cAMP Early Repressor) (Hoeffler et al., 1988; Molina et al., 1993).
The mechanisms described above all suggest that Treg cells have direct contact or close association with their target T cell(s), however other mechanisms have suggested that Treg cells may act on APC to suppress their maturation and/or function (Bluestone and Tang, 2005). It has been shown that Treg cells contact DC more frequently than Teff cells (Tang et al., 2006). In this respect it has been hypothesised that Treg cells might manipulate the maturation and/or function of DC which is required for Teff cell activation (Fig 1.3) (Bluestone and Tang, 2005). Indeed, it has recently been reported that this direct Treg cell:DC interaction results in attenuation of Teff activation (Tadokoro et al., 2006; Tang et al., 2006).

CTLA-4, which is highly expressed on Treg cells, could be responsible for Treg cell suppression via DC. Data from anti-CTLA-4 blocking experiments and experiments using CTLA-4-deficient Treg cells have suggested a role for CTLA-4 in Treg cell-mediated suppression via DC (Oderup et al., 2006; Serra et al., 2003). Other studies have reported a CTLA-4-dependent increase in indoleamine 2,3-dioxygenase (IDO) in DC (Fallarino et al., 2003). IDO is a potent regulatory molecule which catabolises tryptophan into pro-apoptotic metabolites. These metabolites can subsequently suppress Teff cells (Mellor and Munn, 2004) (Fig 1.3). A recent study has added weight to the argument that Treg cells mediated suppression via DC. The experiments showed that Treg cells can form aggregates on DC and can subsequently downregulate expression of CD80 and CD86, but not CD40 or MHC class II molecules (Onishi et al., 2008). Formation of aggregates appears to be leukocyte function-associated antigen-1 (LFA-1) dependent, but the resulting downmodulation relies on both LFA-1 and CTLA-4 (Onishi et al., 2008).

Lymphocyte activation gene 3 (LAG3) may also influence the suppressive effect of Treg cells on DC. LAG3 is induced upon CD4+ T cell activation, binds MHC class II molecules with high affinity and is required for optimal Treg cell function (Huang et al., 2004; Workman et al., 2004). The binding of LAG3 to MHC class II molecules on DC prevents DC maturation (Liang et al., 2008).
The cytokines IL-10 and TGF-β1 play a role in suppression by Tr1 and Th3 cells; the suppressive effects of Tr1 and Th3 cells can be reversed by anti-IL-10 or anti-TGF-β1 antibodies, respectively (Asseman et al., 1999; Powrie et al., 1996). However, the relative contributions of IL-10 and TGF-β1 to nTreg function is still unclear (Shevach, 2006). IL-10 is a key anti-inflammatory molecule which inhibits the production of the proinflammatory cytokines TNF-α and IL-12 by DC and macrophages (Hawrylowicz, 2005; Hawrylowicz and O'Garra, 2005; Moore et al., 2001). However, there is conflicting evidence about its role in nTreg cell-mediated suppression. For example, adoptive transfer of allergen-specific Treg cells led to enhanced IL-10 production by CD4+ Teff cell upon allergen challenge (Kearley et al., 2005). IL-10 was essential for the suppression of airway hyperreactivity and allergic inflammation. Interestingly, however, Treg cell-derived IL-10 was not crucial for this suppression, as demonstrated by the transfer of IL-10-deficient Treg cells (Kearley et al., 2005). Conversely, IL-10 production by Treg cells is crucial for the prevention of colitis in inflammatory bowel disease (IBD) models (Asseman et al., 1999).

With respect to TGF-β1, studies have indeed shown that it is required for suppression, in particular in the gut (Fig 1.3) (Fahlen et al., 2005), however, it is likely that this cytokine is not secreted by nTreg but is instead generated locally by Th3 cells in the gut and could also be involved in inducing Treg cells in conjunction with RA (Benson et al., 2007; Coombes et al., 2007; Lucas et al., 2000).

IL-35 is a more recently identified cytokine which has been shown to have a role in Treg cell function (Fig 1.3). It is a heterodimer comprised of IL-12p35 and Ebi3 subunits and is expressed by murine nTreg cells (Collison et al., 2007; Gavin et al., 2007). Treg from Ebi3- and IL-12p35-deficient mice have reduced regulatory activity in vitro and cannot prevent IBD in vivo. Additionally, ectopic expression of IL-35 conferred regulatory abilities on naïve T cells, and exogenous IL-35 could suppress T cell proliferation (Collison et al., 2007).
The Treg cell suppressive mechanisms can be interpreted in different ways. The first is "hierarchical" – i.e. only one or two of the mechanisms are really crucial, with the others relevant only when Treg cells encounter a substantial inhibitory challenge (Vignali, 2008). The second is "contextual", whereby the different mechanisms are more or less important depending on the context in which the Treg cell resides and the type of target it must suppress (Vignali, 2008). The contextual interpretation also takes into account the different compartments in which immune responses occur and different disease situations.
Metabolic Disruption

Apoptosis/Cytolysis

Inhibitory Cytokines

DC-Mediated Suppression

Treg

Aza

Adenosine

CD39/CD73

CD25

mTGF-β

IL-35

CD80/CD86

IDO

DC

Teff

Teff

Teff

Teff

Teff

Teff

Teff

Teff

Teff
Several theories have been proposed by which Treg cells mediate suppression. These include metabolic disruption, the production of inhibitory cytokines, promotion of suppressive functions by DC, and apoptosis or cytolysis of target cells. Metabolic disruption can be mediated by the ectonucleotidases CD39 and CD73, expressed on the surface of Treg cells. These enzymes degrade the adenosine nucleotides ATP and AMP to adenosine. Adenosine can interact with the A2A receptor on Teff cells and exert anti-inflammatory effects.

The cytokines IL-10 and TGF-β1 play a role in suppression by Tr1 and Th3 cells. IL-10 inhibits the production of the proinflammatory cytokines TNF-α and IL-12 by DC and macrophages. Studies of TGF-β1 have shown that it is required for suppression, in particular in the gut. IL-35 may also have suppressive function, as ectopic expression of IL-35 can confer regulatory abilities on naïve T cells, and exogenous IL-35 can suppress T cell proliferation.

It is possible that Treg cells can manipulate the maturation and/or function of DC and affect Teff cell activation. Treg cells express high levels of CTLA-4, which can inhibit the function of DC and prevent optimal Teff activation. CTLA-4 signalling might also cause and increase in the regulatory molecule indoleamine 2,3-dioxygenase (IDO) in DC. Furthermore, it has been demonstrated that Treg cells can form aggregates on DC, leading to the downregulated expression of CD80 and CD86, but not CD40 or MHC class II molecules. Lymphocyte activation gene 3 (LAG3) may also influence the suppressive effect of Treg cells on DC. LAG3 is induced upon CD4+ T cell activation, binds MHC class II molecules with high affinity and is required for optimal Treg cell function (Huang et al., 2004; Workman et al., 2004). The binding of LAG3 to MHC class II molecules on DC prevents DC maturation.

With respect to the apoptotic and cytolytic effects of Treg cells, it has been reported that Treg cells can deprive Teff cells of IL-2, causing apoptosis of Teff cells. Additionally, they might cause direct cytolysis of target cells by a perforin/granzyme B-dependent mechanism.
1.7 Lung

The respiratory tract requires T cell-mediated immunity to protect the lung from inhaled pathogens and foreign environmental antigens. However this must be strictly controlled to prevent tissue damage as a consequence of chronic inflammation, for a number of reasons; Firstly, the epithelium at the blood/air interface is very delicate and secondly, the lung is constantly exposed to the external environment and therefore a high frequency of environmental antigens are inhaled, most of which are innocuous and should not induce an immune response (Strickland et al., 1996b). The maintenance of immunological homeostasis in the lung and accordingly, the integrity of the respiratory surfaces is a constant challenge to the immune system. A delicate balance must be struck to discriminate between harmless antigens and much rarer pathogen-derived antigens. Excessive or inappropriate T cell responses in normal lungs are associated with the pathogenesis of a number of respiratory diseases, including sarcoidosis, bronchitis and asthma (Pinkston et al., 1983; Poulter et al., 1994; Reynolds, 1987).

The lung is an important site for accumulation of lymphocytes, and the number of T cells localised within the lung at any time has been estimated to exceed the numbers in peripheral blood. However, most of these cells are only temporarily sequestered in this organ as they transit to lymph nodes (Pabst et al., 1987). It is believed that the unique physiological structure of the peripheral lung vascular bed facilitates this sequestration, as the vessels are ultrafine, there is low net perfusion pressure and the vessels are repeatedly flattened during the respiratory cycle (Strickland et al., 1996b). This maximises physical contact between circulating lymphocytes and the endothelial cells of blood vessels, thus increasing the potential of cell-cell contact (Strickland et al., 1996b).

The lungs comprise two functionally distinct compartments: the conducting airways which are overlayed by mucosal tissue and the lung parenchyma, which consist of alveoli, specialised thin-walled sites of gas exchange (Holt et al., 2008).
1.7.1 Conducting airways

Ciliated cells and secretory goblet cells make up the respiratory epithelium of the airways. In conjunction with local IgA secretion, these cells facilitate clearance of inhaled antigens (Holt et al., 2008). The airway mucosa is enriched with DC and macrophages (Nelson et al., 1994). The DC pool is dominated by myeloid DC but also contains plasmacytoid DC (Jahnsen et al., 2001). Airway mucosal DC (AMDC) which are resident in the airway mucosa are specialised for uptake of antigen due to their strategic position within and directly beneath the surface epithelium (Stumbles et al., 1998). They can also extend protrusions into the airway lumen, indicating they sample antigen directly from the airway luminal surfaces through intact epithelium (Jahnsen et al., 2006). However they are unable to efficiently present antigen as they are functionally immature, MHC class II\(^{low}\), and preferentially stimulate Th2 immunity as a default. However, when AMDC are exposed to cytokine signals such as GM-CSF, they can induce Th1 immunity (Stumbles et al., 1998).

1.7.2 Lung Parenchyma

Immune cells in lung parenchyma are found above the alveolar epithelium in the terminal airways and also in the underlying parenchyma (Holt et al., 2008). In a normal lung, the dominant immune cell (>90%) in the alveolar space is the alveolar macrophage (AM) (Holt et al., 2008). T cells are sequestered in the vascular bed of the lung parenchyma (Holt et al., 2008).

It is believed that primary immune responses to inhaled antigens are initiated in the draining lymph nodes of the lung and that memory T cells subsequently localise to lung tissue where they can mediate secondary immune responses to their cognate antigens (Bice and Muggenburg, 1988).

T cells from human lungs are generally of the memory/activated phenotype and activation of a number of these cells appears to be a recent event (Marathias et al., 1991). For example the lung T cells show increased levels of human leukocyte antigen (HLA)-DR and reduced CD3 expression compared with T cells derived from peripheral blood (Becker et al., 1990; Nylen et al.,
Additionally, both CD4+ and CD8+ T cells from human lung express the memory marker CD45RO. CD4+ and CD8+ T cells are found in distinct locations in the lung—there is a high frequency of CD4+ T cells in the lamina propria, whereas CD8+ cells are intraepithelial (Holt et al., 2008).

Human and rat studies have shown that T cells from lung interstitium and bronchoalveolar lavage (BAL) differ from T cells in blood, showing reduced cloning efficiency and cytokine production (Garlepp et al., 1992; Holt et al., 1988; Nelson et al., 1990). However, lung T cells produce high levels of IFN-γ (Holt et al., 1988). The high frequency of memory cells in the lung has been proposed to account for the poor proliferation of lung T cells in response to mitogens in culture and their poor cloning efficiency, as memory T cells do not respond as readily as naïve cells to these stimuli (Becker et al., 1990).

The lung environment itself also affects the function of T cells. It has been suggested that local T cells in the lung are maintained in a state of "partial hyporesponsiveness", and the lung can employ various immunoregulatory mechanisms to accomplish this. These mechanisms include components of the surfactant lining (Wilsher et al., 1988), alveolar macrophages (Strickland et al., 1996a) and secreted products of type II alveolar epithelial cells (AECIIIs) (Paine et al., 1992). Further support for an "active inhibition" model comes from a study of surface phenotypic markers on lung T cells in the rat (Strickland et al., 1996b). While T cells displayed an activated, memory phenotype, they were found to be "locked in" to the G0/G1 resting phase of the cell cycle as opposed to actively cycling G2-S/M as suggested by both the surface marker expression and the observation that they have reduced calcium flux in response to calcium ionophore stimulation (Strickland et al., 1996b). Additionally, transfer of pre-activated T cells into congenic rats resulted in downregulation of CD25 (Strickland et al., 1996b). The data indicates a mechanism of active inhibition in the lung environment which prevents the cells from progressing normally through the cell cycle into cell division. Of note, several of these observations in lung T cells have also been reported for gut tissue-derived T cells (Jarry et al., 1990), suggesting mucosal organ-specific functions.
1.7.3 Bronchial-Associated Lymphoid Tissue

The airway mucosa contains potential inductive sites called bronchial-associated lymphoid tissue (BALT), composed of discrete organised lymphoid cell aggregates which underlie a specialised epithelium (Holt et al., 2008). This epithelium is comprised of specialised microfold or M cells, which can take up antigen, and follicle-associated epithelium (FAE) (Bienenstock and McDermott, 2005). BALT is distinct from secondary lymphoid tissues, because afferent lymphatics do not transport to it (Bienenstock and McDermott, 2005). Instead antigen enters directly via M cells, and post-capillary high endothelial venues (HEVs) allow lymphocyte migration into BALT (Bienenstock and McDermott, 2005). Lymphocytes in BALT form a follicle, which consists of a large central dome of B cells that is surrounded by a smaller number of T cells (Murphy et al., 2008). Lymphocytes can bind to vascular cellular adhesion molecule-1 (VCAM-1) and peripheral node addressin (PNAd) on HEVs via L-selectin (CD62L) to gain access to BALT.

BALT is common in young children but its role in adults is unclear, and its existence differs between species (Pabst and Tschernig, 1995). Notable findings have shown that inducible BALT in mice, which lack other organised lymphoid tissue, can protect against pathogens (Moyron-Quiroz et al., 2004). This suggests BALT may be important with respect to respiratory immune homeostasis early in life when central lymphoid structures are functionally immature.

In humans, it seems there is a direct correlation between the amount of BALT and the extent of antigenic stimulation (Delventhal et al., 1992; Meuwissen and Hussain, 1982; Pabst and Gehrke, 1990). This suggests that BALT is the result of an adaptation in response to the degree of antigen load and this is compliant with findings in the GALT (Bienenstock and McDermott, 2005).

BALT is part of a common mucosal immune system, as demonstrated by the migration of cells from GALT to other mucosal sites via the bronchus (Scicchitano et al., 1984). Additionally, it has been shown that lymphocytes from GALT can populate the bronchial mucosa and vice versa (Rudzik et al., 1975). The fact that cells can by sensitised at one mucosal site and subsequently
provide primed cells selectively to other mucosal sites, has facilitated to the development of an oral vaccine against acute bronchitis (Clancy et al., 1985).

1.7.4 Immune cell dynamics in the lung

A non-inflammatory Th2 response is the default mechanism in the lung in response to ubiquitous environmental stimuli (Stumbles et al., 1998). Furthermore, it is believed that T cell-mediated immunological tolerance also contributes to sustaining an immunosuppressive environment in the lung, similar to gastric mucosa (Umetsu and DeKruyff, 2006; Weiner et al., 1994). DC appear to dictate this local anti-inflammatory state (de Heer et al., 2004; Strickland et al., 2006). Unwelcome memory T cell responses, which are not controlled by DC, can be regulated by alternative mechanisms including AM (Bilyk and Holt, 1993; Eriksson et al., 2005; Gereke et al., 2009; Lambrecht, 2006; Thepen et al., 1989).

Pathogen sensing is facilitated by PRRs, such as TLRs. These highly conserved components of the innate immune system are expressed by AMDC in the lung. Their engagement circumvents the lung's Th2-dominant phenotype and results in effective Th1 cell-mediated immunity along with the generation of memory T cells against harmful pathogens (Holt et al., 2008). Innocuous inhaled antigens can also trigger PRRs, but it is thought that they can be distinguished qualitatively and quantitatively from pathogen-derived immunomodulatory molecules, which induce a much stronger immune response by virtue of engaging multiple types of PRR and being present at a high enough frequency to induce an appropriate immune response (Eisenbarth et al., 2002).

1.7.5 Alveolar Macrophages

Macrophages are specialised haematopoietic cells which are distributed throughout different tissues of the body. They have diverse functions, including homeostatic tissue remodelling and host defence (Lambrecht, 2006). Macrophage function can be further modified by their particular anatomical location, the environmental factors they encounter there and the stimuli they are exposed to, in order to function most appropriately and effectively (Lambrecht, 2006).
The lung is an obvious gateway for many pathogens to enter the body, and it is also exposed to other environmental challenges, such as toxic gases and particulate matter in the air (Lambrecht, 2006). The main physiological function of the lung is gas exchange, which occurs in the alveoli. Alveoli are comprised of thin type I AECs (AECIs) and thicker AECIIs. To allow gases to diffuse easily, the capillaries of the lung are in close proximity to AECIs. They are only separated by a very thin (0.2 μM) basement membrane. Inhaled pathogens and toxic substances can easily gain access to the bloodstream via this delicate alveolar-capillary membrane. As a result, there must be strong defences in place at this interface, but at the same time such defence mechanisms need to be tightly controlled, because excessive oedema, inflammation and cellular recruitment would lead to the thickening of the alveolar wall, which would interfere with gas exchange (Lambrecht, 2006).

AM are the most common immune cell in the airways of the lower respiratory tract – they comprise greater than 90% of the immune cells in a normal lung (Holt et al., 2008). AM are highly phagocytic (Thepen et al., 1993), but they are normally quiescent, to prevent damage to the alveolar wall (Lambrecht, 2006). Their quiescent state is characterised by low levels of inflammatory cytokine production and reduced migration to draining lymph nodes following the uptake of nasally administered particulate antigen (Jakubzick et al., 2006). They are also poorly phagocytic when quiescent, and downregulate the phagocytic receptor CD11b (Holt, 1978).

Specific and nonspecific immune defence mechanisms are utilised by the lung. Larger particles can be removed from the upper respiratory tract by coughing and sneezing, as well as the secretion of mucus. In the lower respiratory tract, where AM are located, innate immunity is well developed. AM express numerous PRRs for foreign PAMPs. Nonspecific humoral immunity in the lower respiratory tract involves lactoferrins, lysozyme, surfactant proteins, mannose binding lectin and defensins (Lambrecht, 2006).

If such non-specific innate mechanisms fail, the adaptive immune response is instigated by epithelial and alveolar DC (Lambrecht, 2006). Nonetheless, AM are extremely efficient in
phagocytosing large numbers of pathogens and it has been estimated that they can internalise up to \(1 \times 10^9\) intratracheally (i.t.) inhaled bacteria before there is a "spillover" of bacteria to DC and the induction of adaptive immunity (MacLean et al., 1996).

T cells in the lungs bear little phenotypic or functional resemblance to those in blood. They are a heterogeneous population, at various postactivation stages (Strickland et al., 1996b). T cells from lung interstitium and bronchoalveolar lavage fluid (BALF) show strikingly reduced cloning efficiency and a predisposition for IFN-\(\gamma\) production in comparison to peripheral blood T cells (Garlepp et al., 1992; Holt et al., 1988; Nelson et al., 1990). Due to the large numbers of T cells, and the high frequency of inhaled antigen from the environment, the overall level of steady-state T cell responses must be strictly controlled to prevent tissue damage and interference with gas exchange (Strickland et al., 1996a).

AM actively suppress the induction of adaptive immune responses by exerting regulatory effects on alveolar and interstitial DC and T cells. Their robust suppression of adaptive immunity is illustrated by studies which eliminated AM in vivo. Elimination of AM in mice is achieved using a cytotoxic drug – dichloromethylene diphosphonate (Cl\(_2\)MDP). It is targeted to AM by encapsulation in liposomes and administered i.t. into the lung, and completely removes AM but not interstitial macrophages or other immune cells. The elimination of AM resulted in overwhelming inflammation to otherwise innocuous particulate and soluble antigen (Strickland et al., 1993; Thepen et al., 1992; Thepen et al., 1991; Thepen et al., 1989), and it seems to be T cell-dependent (Strickland et al., 1993; Thepen et al., 1991). Studies across several species have demonstrated that AM can suppress the in vitro proliferation of T cells in response to mitogenic stimuli (Holt, 1993). The downregulation of T cell responses in peripheral tissues such as the lung is believed to contribute to peripheral tolerance to exogenous antigen and the control of self-reactive lymphocytes (Schwartz, 1989).

AM can suppress T cell proliferation in response to the mitogen Concanavilin A (ConA) in vitro, and they exhibited even stronger suppression of antigen-specific responses to Ova protein.
(Strickland et al., 1996a). Of note, the suppression of T cell proliferation could only be achieved if AM were added to the T cell culture within 24 hours of activation (Strickland et al., 1996a). Furthermore, AM-mediated suppression of T cell proliferation is reversible, as the removal of AM from ConA- or Ova-activated cultures after 24 hours resulted in increased T cell proliferation despite the absence of additional stimulation (Strickland et al., 1996a; Strickland et al., 1996b).

It appears that AM interfere with T cell progression through the cell cycle. T cells stimulated with ConA progressed to S/G2M phases, while those stimulated with ConA in the presence of AM did not. They remained in G0/G1 phases, similar to unstimulated T cells and also T cells derived from the lung (Strickland et al., 1996b). The removal of AM from culture after 24 hours allowed some progression to S phase (Strickland et al., 1996a). It seems that suppression of T cell responses is only restricted to proliferation, which is the final step in the activation process (Upham et al., 1995). S phase begins after 24 hours of T cells becoming activated, which might explain why AM must be present within a narrow 24 hour window to exert suppression, and why their effect is reversible.

Earlier activation events including CD3 downmodulation, IL-2 secretion and expression of the IL-2R proceed normally, however (Strickland et al., 1996a; Upham et al., 1995). Addition of exogenous IL-2 to AM/T cell cultures had no impact on T cell proliferation (Upham et al., 1995). This finding distinguishes these T cells from “classically anergic” T cells, whose hyporesponsiveness is associated with the failure to produce IL-2, and which is reversible upon the addition of IL-2 to culture (Schwartz, 1989). Loss of CD28 mRNA has been linked to induction of classical T cell anergy (Lake et al., 1993), but the T cells rendered hyporesponsive by AM have normal CD28 expression (Strickland et al., 1996a; Upham et al., 1995). Interestingly, while ex vivo analysis has shown that lung T cells are “locked” into G0/G1 phase like those cultured with AM in vitro, lung T cells had lower IL-2R expression (Strickland et al., 1996b). This might reflect the effect of more prolonged exposure to AM, as occurs in vivo, or additional factors that were not reproducible in vitro. Further evidence for this in vivo phenomenon is the observation that
postactivated T cells lose IL-2R expression, but not other markers, when they traffic to the lung after adoptive transfer (Strickland et al., 1996b).

The fact that only the final stage of T cell activation is reversibly inhibited by AM suggests a subtle and sophisticated mechanism to constrain local tissue damage in vivo, yet allows the "suppressed" T cells to retain their proliferative ability should they migrate from the lung, for instance to the draining lymph nodes. Essentially the capacity to generate T cell memory against commonly encountered lung antigens is not abolished, but tight control of potentially damaging T cell immunity is preserved at the original site of antigen exposure (Strickland et al., 1996a).

Across different species, AM efficiently suppress T cell responses, but it would appear that while they all prevent T cell proliferation, AM from rodents and humans use different mechanisms to achieve this (Upham et al., 1995). AM supernatants from several species can suppress T cell proliferation, indicating a role for a diffusible factor (Pennline et al., 1979; Pennline and Herscowitz, 1981; Strickland et al., 1996a). Indeed, it has been proposed that rat and mouse AM use the nitric oxide synthase (NOS) pathway to regulate T cell proliferation, but human AM suppression does not involve NOS activity (Upham et al., 1995). Rodent macrophages use the NOS pathway to kill microorganisms, but human macrophages can kill the same microorganisms via NO-independent mechanisms (Bermudez, 1993; Cameron et al., 1990; Schneemann et al., 1993).

It has been proposed that human AM might use direct cell-cell contact as a mechanism of T cell suppression, based on experiments in which AM supernatant transfer did not inhibit T cell proliferation (Rich et al., 1991). Nonetheless, given that human AM can strongly suppress antigen-specific T cell proliferation at ratios of 0.05:1 AM:T cells (Upham et al., 1995), cell contact is unlikely to be the only mechanism.

AM adhere closely to AECs at the alveolar wall (Lambrecht, 2006). It is believed that the integrin αvβ6 exerts control over AM activation. αvβ6 binds to the latency associated peptide (LAP), an inactivating fragment of TGF-β1 and activates latent TGF-β1 (Morris et al., 2003). AM
in αvβ6-deficient mice are constitutively activated, presumably due to the absence of active TGF-β1, and its associated immunosuppressive effects (Morris et al., 2003). It has also been reported that the αvβ6/TGF-β1 axis can influence immune homeostasis in the lung (Takabayshi et al., 2006). Under steady-state conditions, AM closely adhere to AECs, which induces the expression of αvβ6 on AECs, in a TGF-β1-dependent manner. This leads to localised TGF-β1 activation in the immediate AM environment. Binding of TGF-β1 to its receptors on AM induces phosphorylation of SMAD-2 and SMAD-3, which suppresses AM phagocytosis and cytokine production. This mechanism appears to be unique to the lung (Takabayshi et al., 2006).

Infectious agents are able to overcome this robust inhibition of AM function. For example, when TLRs are triggered on AM, they lose contact with AECs. Consequently, αvβ6 expression is downregulated in AECs. Accordingly, TGF-β1 is no longer activated and so cannot exert an inhibitory effect on AM. AM become primed to secrete TNF-α and IL-6 and they can phagocytose particulate matter. Once AM are activated they can eliminate the infectious agent on their own (Takabayshi et al., 2006).

Many pathogens also induce the recruitment of CCR2+ inflammatory monocytes to the alveolar space (Warmington et al., 1999). Such cells are proinflammatory and promote T cell and DC activation, and they do not acquire the suppressive phenotype of AM for a few days. Therefore this “lag” allows for the initiation of innate and adaptive immune responses in the lung (Bilyk and Holt, 1995).

Ultimately, collateral damage to the lung tissue must be avoided and gas exchange needs to be restored as quickly as possible. Therefore AM activation must be constrained and there is an efficient and rapid mechanism to achieve this. IFN-γ-producing lymphocytes stimulate the production of matrix metalloproteinase 9 (MMP-9) by AM (Takabayshi et al., 2006). MMP-9 can activate latent TGF-β1, and subsequently inhibit AM function. AM re-adhere to AECs and the expression of αvβ6 by AECs is restored (Takabayshi et al., 2006). A further advantage of
enhanced TGF-β₁ production in this situation would be its stimulation of collagen synthesis in interstitial fibroblasts, which is crucial for the repair of alveolar wall structure (Lambrecht, 2006).

These findings have wider implications for lung fibrosis, a condition that can occur after severe lung infections but also as an idiopathic disease (Gross and Hunninghake, 2001). Fibrosis results in a loss of AECIIs along with hyperplasia of AECIIIs. Despite enhanced levels of activated TGF-β₁, AM are persistently activated and produce excessive TNF-α, IL-1β and IL-6 (Lambrecht, 2006). It is likely that the loss of AECIs results in a loss of anchoring points for AM and a loss of αvβ6. In this way, AM miss an important feedback mechanism and they continuously produce toxic products that can cause tissue damage.

1.7.6 Lymphocyte homing to lungs

The lung is a unique organ in the context that it can recruit cells from two circulatory systems – the systemic circulation via the bronchial arteries and the pulmonary circulation with circulates the lung parenchyma (Holt et al., 2008). Lung-homing T cells have a distinct phenotype from gut-homing T cells, as they express the chemokine receptors CCR5 and CXCR3, but not CCR9 (Campbell et al., 2001). Lung homing T cells can therefore bind the chemokines CCL3, CCL4, CCL5, CXCL9, CXCL10 and CXCL11. However, production of these chemokines is not exclusive to the lung. No lung-specific chemokine has been identified, although disease-specific profiles of chemokine receptors have been defined on T cells from patients with various pulmonary disorders (Medoff et al., 2005).

1.7.7 Treg cells in the lung

Treg cells have been shown to be beneficial in lung disease by controlling lung injury and local inflammation. A study of mice infected with the fungus Pneumocystis demonstrated the crucial role for CD4⁺FoxP3⁺CD25⁺ nTreg cells, as animals which were depleted of CD25⁺ Treg cells had exacerbated Th2 responses (increased levels of IL-4, IL-5 and IL-13) as well as enhanced lung injury (McKinley et al., 2006). Of note, Pneumocystis-infected SCID mice reconstituted with CD4⁺CD25⁺ T cells showed enhanced clearance of the pathogen but developed even worse lung
injury and significantly increased levels of proinflammatory Th1 and Th2 cytokines and chemokines were detected in their lungs (McKinley et al., 2006). However, Pneumocystis-infected SCID mice which were reconstituted with CD4^+CD25^- T cells had similar levels of lung inflammation and damage as non-reconstituted control mice although they had a higher fungal burden (McKinley et al., 2006). This study corroborates widely held hypotheses about Treg cells in that they impair or delay efficient clearance of pathogens but actually benefit the host by preventing collateral damage to host tissue. This is especially important for the lung which is composed of delicate tissue yet is at the environmental interface of the body and so encounters high frequencies of antigen.

In this regard, Treg cells also play a role in controlling allergy. Depletion of CD4^-CD25^- Treg cells prior to allergen challenge results in increased eosinophil recruitment to the lungs and a strong T cell response to the allergen (Boudousquie et al., 2009). Interestingly, both CD4^-CD25^- and CD4^+CD25^- lung-derived T cells have been shown to suppress allergic T cell responses (Boudousquie et al., 2009).

A novel mechanism of lung-specific immunosuppression involving AECIIIs has been proposed (Gereke et al., 2009). AECIIIs can present MHC-restricted self antigen to CD4^+ T cells. Self reactive T cells which recognise endogenous antigen become activated but acquire FoxP3, converting to Treg cells (Gereke et al., 2009). The release of soluble anti-inflammatory factors, such as surfactant proteins and TGF-β1 by AECIIIs has been attributed to this induction of FoxP3^- CD4^- T cells (Gereke et al., 2009). Treg cells have also been associated with prevention of fibrosis. Idiopathic pulmonary fibrosis (IPF) patients have fewer Treg cells in blood and in the lung than controls (Kotsianidis et al., 2009). Furthermore, Treg cells from IPF patients are also functionally deficient, as shown by defective antiproliferative activity and impaired suppression of Th1 and Th2 cytokines by responder T cells (Kotsianidis et al., 2009).

IL-10 is essential for Treg cell-mediated airway immunosuppression, as demonstrated by a study involving mutant IL-10-deficient mice, which had enhanced lung inflammation in response
to antigen challenge, as measured by enhanced eosinophil and total cell infiltrate, increased levels of mucus and airway oedema and higher percentages of goblet cells than controls (Rubtsov et al., 2008). IL-10 has also been shown to have a functional role in preventing rejection of transplanted lungs. Autoimmune responses against the self protein collagen V are associated with decreased levels of Treg cells and lung rejection in transplant recipients (Haque et al., 2002). A novel subset of collagen V-specific IL-10-secreting T cells has been reported in humans. They are induced by CD4^CD25^ Treg cells and can suppress collagen V-specific Th1 cells, thus facilitating graft survival (Bharat et al., 2006).

A wide variety of mechanisms have been proposed to explain how Treg cells function (Section 1.6). Regardless of specific mechanisms utilised, Treg cells must be in close proximity to their targets and therefore must localise with these targets. The migration of Treg cells, in particular the role of chemokines and chemokine receptors, is therefore the focus of much research. It has been shown than CCR4^ Treg cells are enriched in the lung and other nonlymphoid tissues (Sather et al., 2007). Interestingly, CCR4-deficiency results in significantly impaired Treg cell accumulation in the lungs and skin with increased pulmonary inflammation and lymphocytic infiltration (Sather et al., 2007). This data implies that recruitment of immune cells to the lung and other nonlymphoid organs is strictly controlled and that specific factors allow cells to home to distinct compartments. Such mechanisms of migration can be manipulated to benefit the host, for example in graft-versus-host disease (GVHD). In a murine model where GVHD was induced, high levels of the chemokines CXCL9, CXCL10 and CXCL11 were detected in liver, lungs and intestine (Hasegawa et al., 2008). CXCR3 is the receptor for these chemokines, and mice which received nTreg cells that had been transfected with CXCR3 showed enhanced inhibition of GVHD-associated changes in lung, liver and intestine, compared with mice that received either non-transfected or nTreg cells (Hasegawa et al., 2008).

1.8 Tuberculosis

Tuberculosis (TB) is a bacterial disease caused by *Mycobacterium tuberculosis*. *M. tuberculosis* is the single biggest bacterial cause of death globally (Raja, 2004; WHO, 1999).
tuberculosis has persisted for centuries, and is a global health emergency despite the development of chemotherapy and preventative vaccines (Tufariello et al., 2003). TB is a communicable disease, transmitted mainly by the respiratory route (Flynn and Chan, 2001; Lee et al., 2009). After infection, it can spread to most organs of the body (Raja, 2004). Initial infection is known as primary TB. Reactivation TB occurs when latent TB progresses to cause disease after an interval.

Patients whose lungs are the source of M. tuberculosis infection are often infectious due to the ease of transmission by coughing and the creation of infectious aerosols (Ahmad, 2010). However, infection with M. tuberculosis leads to active disease in only 10% of individuals (Styblo, 1980), so anti-TB immunity is sufficient to prevent active disease in most cases. In the vast majority of infected individuals, the immune response only succeeds in containing the infection rather than eradicating it completely (Flynn and Chan, 2001). This is because M. tuberculosis has evolved strategies to subvert the microbicidal effects of immune cells (Ahmad, 2010). Consequently, the pathogen remains in a nonreplicating, dormant or latent state in the host. This is known as latent tuberculosis infection (LTBI). The dormant bacteria can resuscitate and cause reactivation TB to develop if the immune response is somehow disrupted, for example in the case of co-infection with human immunodeficiency virus (HIV) (Ahmad, 2010; Chan and Flynn, 2004).

Individuals with LTBI are non-infectious because the bacilli are contained, and they are asymptomatic (Tufariello et al., 2003). The risk of latently infected individuals developing active TB in their lifetime is 5%-10% (Dye et al., 1999). These different manifestations of disease reflect the balance of the bacillus and host mechanisms, and the outcome reflects the quality of the host immune response (van Crevel et al., 2002).

The World Health Organisation estimates that 1/3 of the world’s population is latently infected with M. tuberculosis (WHO, 2009; WHO, 2010). TB was declared a global health emergency by the WHO in 1993, and part of this resurgence is associated with the AIDS epidemic (De Cock and Chaisson, 1999) and the increasing resistance of M. tuberculosis strains to the most effective first-line anti-TB drugs (Pablos-Mendez et al., 1998; Snider and Castro, 1998). TB is
preventable and curable in most instances, but these measures are confounded by demographic and socioeconomic factors such as population expansion, poor clinical detection and cure rates in developing countries, active transmission of infection in overcrowded hospitals, prisons and other public places, migration of infected individuals from high-incidence countries, drug abuse, social decay and homelessness (Ahmad, 2010; Tufariello et al., 2003).

1.8.1 Transmission of *M. tuberculosis*

M. tuberculosis is transmitted when infectious droplet nuclei are inhaled. They are present in the air when expectorated by patients with active TB. The primary route of infection is via the lungs, because the tiny droplet nuclei can avoid nonspecific bronchial defences due to their small size and they ultimately diffuse to the lower airways. AM and DC can phagocytose the bacilli-containing droplets and initiate the innate immune response, which is coordinated by the signalling of PAMPs through PRRs (Akira et al., 2006). AM provide an intracellular niche that is crucial for *M. tuberculosis* to establish infection in the host, and they are also the main effector cell for its killing (Lee et al., 2009).

Once *M. tuberculosis* has been internalised, it replicates within the host cell. Infected cells can cross the thin alveolar wall to enter the bloodstream and cause systemic dissemination (Bermudez et al., 2002; Teitelbaum et al., 1999). Both the intracellular replication and dissemination of *M. tuberculosis* occur prior to the generation of adaptive immune responses against the pathogen (Chackerian et al., 2002). Once they have phagocytosed *M. tuberculosis*, AM produce inflammatory cytokines and chemokines to recruit monocytes, neutrophils and lymphocytes to the site of infection (Ahmad, 2010).

Furthermore, *M. tuberculosis* has evolved ways to dampen the innate immune response and promote its survival. For example, intracellular bacilli can resist killing by AM by preventing the fusion of phagosomes with lysosomes. Lysosomes are acidic environments and cause death of the bacilli, but *M. tuberculosis* can prevent phagolysosomal fusion, and avoid death. They multiply in the phagosome and cause necrosis of the host AM (Chen et al., 2006). Necrosis allows *M.
tuberculosis to escape and multiply extracellularly, and they can be phagocytosed by other AM, which similarly fail to control bacterial growth and die by necrosis.

1.8.2 Granuloma

DC which have phagocytosed M. tuberculosis mature and migrate to the regional lymph nodes where they prime antigen-specific CD4⁺ and CD8⁺ T cells (Bodnar et al., 2001). In most infected individuals, cell-mediated immunity develops 2-8 weeks after initial infection and it prevents further replication of the bacilli in host cells (Ahmad, 2010). Primed T cells migrate to the site of infection. The accumulation of macrophages, T cells, DC and other cells such as fibroblasts and endothelial cells facilitates the formation of a granuloma at the site of infection (Gonzalez-Juarrero et al., 2001).

The granuloma sequesters the infected cells and tissue and it serves to limit the replication and spread of M. tuberculosis (Ahmad, 2010). The granulomatous environment has low O₂ levels which limits the aerobic respiration of the bacteria (Wayne and Sohaskey, 2001; Zahrt, 2003). Importantly, the granuloma shields the surrounding lung tissue from chronic inflammation, therefore limiting the immunopathological damage caused by the infection and the subsequent aggressive immune response (Co et al., 2004b). Non-infected macrophages comprise the majority of cells in a granuloma, and they include activated epitheloid macrophages and multinucleated giant cells which result from the fusion of macrophages (Ma et al., 2003).

LTBI is a result of this containment of the pathogen within a granuloma in the infected lungs. Ultimately the host is able to contain but not eradicate the pathogen, even though most of the M. tuberculosis bacilli are killed. This is the hallmark of M. tuberculosis infection in humans. M. tuberculosis has evolved effective immune evasion strategies which results in the survival and persistence of some bacilli in a dormant, nonreplicating state in the host (Frieden et al., 2003; Hingley-Wilson et al., 2003; Tufariello et al., 2003). The granuloma microenvironment is hypoxic, with a low pH. Carbon monoxide and nitric oxide are also present, and these extreme and stressful conditions increase the expression of several dormancy genes by M. tuberculosis (Rustad et al.,
Dormant bacilli can survive in the granuloma during the lifetime of the host, as evidenced from the detection of *M. tuberculosis* DNA in the lung tissue of individuals who died from other diseases and who did not exhibit any pathological sign of TB disease (Hernandez-Pando *et al.*, 2000). The dormant bacilli can resuscitate and cause active disease in the event of local immunosuppression (Ahmad, 2010).

1.8.3 Immune cells and cytokines in *M. tuberculosis* infection

The microenvironment of the granuloma promotes interactions among macrophages and other immune cells and the cytokines they produce (Ahmad, 2010). Of particular importance is IFN-γ, which is produced mainly by CD4⁺ T cells, CD8⁺ T cells and natural killer (NK) cells. Humans and mice defective in IFN-γ or IFN-γR genes are more susceptible to *M. tuberculosis* infection (Chan and Flynn, 2004; Cooper, 2009; Flynn *et al.*, 1993). IFN-γ synergises with TNF-α to activate murine macrophages to kill intracellular *M. tuberculosis* (Ahmad, 2010; Co *et al.*, 2004b; Wolf *et al.*, 2008) and stimulate the production of antimicrobial nitric oxide and other reactive nitrogen intermediates (RNI) via inducible NOS (iNOS) (Scanga *et al.*, 2001). IFN-γ also enhances antigen presentation, which results in the recruitment of CD4⁺ and/or CD8⁺ T cells which function in bacterial killing and prevent the exhaustion of memory T cells (Chan and Flynn, 2004; Russell *et al.*, 2009).

M. tuberculosis infection of CD4⁺ T cell-deficient mice has shown that the early production of IFN-γ by CD4⁺ T cells and the ensuing activation of macrophages determine the outcomes of infection (Caruso *et al.*, 1999). CD4⁺ T cells are also crucial for granuloma initiation and construction (Co *et al.*, 2004a). *M. tuberculosis*-infected mice which lack CD4⁺ T cells form anomalous lesions that cannot control bacilli numbers and allow dissemination of the pathogen (Mogues *et al.*, 2001; Saunders *et al.*, 2002). In humans, evidence for a requirement for CD4⁺ T cells in the maintenance of the granuloma comes from HIV co-infected patients, where LTBI becomes reactivated due to the depletion of CD4⁺ T cells by HIV (Barnes *et al.*, 1991; Scanga *et al.*, 2000; Waxman *et al.*, 1995). The loss of CD4⁺ T cells results in decreased levels of IFN-γ and consequently a reduction in macrophage activation and killing of *M. tuberculosis* (Raja, 2004).
Additionally, CD4⁺ T cells induce apoptosis of infected macrophages via Fas/Fas ligand interaction (Ashany et al., 1995; Kagi et al., 1994; Oddo et al., 1998; Stalder et al., 1994). This is particularly important, because the intracellular bacilli are also killed and therefore do not spread, unlike necrosis. Apoptotic vesicles are phagocytosed by DC. They contribute to host defence against *M. tuberculosis* because they contain mycobacterial antigens, and can prime CD8⁺ T cells by antigen cross-presentation.

CD8⁺ T cells are present in similar numbers to CD4⁺ T cells in the *M. tuberculosis*-induced granuloma (Randhawa, 1990). It has been reported that they directly kill *M. tuberculosis* via granulysin (Grotzke and Lewinsohn, 2005; Stenger et al., 1998; Stenger et al., 1999). *M. tuberculosis*-specific CD8⁺ T cells are present in abundance in individuals with LTBI, suggesting they have a role in controlling latent infection. Indeed, the depletion of CD8⁺ T cells results in reactivation in a mouse model of LTBI (van Pinxteren et al., 2000). It is thought that CD8⁺ T cells are protective in the later stages of infection, as their accumulation at the granuloma is somewhat delayed relative to CD4⁺ T cell accumulation (Gonzalez-Juarrero et al., 2001). CD8⁺ T cells also produce IFN-γ during *M. tuberculosis* infection.

TNF-α, produced by macrophages, DC and T cells, has an important role in protection against *M. tuberculosis* infection in mice and humans (Bean et al., 1999; Keane, 2005). Paradoxically, TNF-α is also responsible for much of the pathology associated with TB (Flynn and Chan, 2005). Like IFN-γ, mice which lack TNF-α or its receptor are more susceptible to mycobacterial infections and have aberrant or delayed granuloma formation (Bean et al., 1999; Flynn et al., 1995). TNF-α synergises with IFN-γ to enhance iNOS expression and the antimycobacterial activity of macrophages (Chan and Flynn, 2004; Scanga et al., 2001). Impairment of TNF-α responses results in overgrowth of mycobacteria (Chan and Flynn, 2004; Cooper, 2009). TNF-α also drives phagolysosomal maturation and autophagy events (Harris et al., 2008; Harris and Keane, 2010).
TNF-α also promotes cell migration and the formation of granulomas because it induces the production of chemokines such as IL-8, MCP-1 and RANTES by infected macrophages. These chemokines stimulate the migration of immune cells to the focus of infection (Algood et al., 2003). T cell- and macrophage-derived TNF-α is essential for effective long-term protection against M. tuberculosis infection (Saunders et al., 2005). It is required for maintenance of the granuloma, as it has been shown that neutralisation of TNF-α in mice with chronic M. tuberculosis infection results in the loss of granuloma organisation, abnormal pathology and is ultimately fatal (Mohan et al., 2001). In humans, the blockade of TNF-α as a treatment for inflammatory conditions such as rheumatoid arthritis results in enhanced susceptibility to M. tuberculosis (Keane et al., 2001).

IL-12 is also important in the immune response against M. tuberculosis. As with TNF-α and IFN-γ, mice and humans deficient in IL-12 or IL-12R are more susceptible to mycobacterial infections (Jouanguy et al., 1999). Furthermore, IL-12- or IL-12R-defective individuals have increased susceptibility to active TB disease (Lichtenauer-Kaligis et al., 2003). IL-12 is crucial because it influences CD4+ T cells to produce both TNF-α and IFN-γ.

1.9 Treg cells in health and disease

Treg cells which are induced during infection can be both beneficial and detrimental to the host. Treg cells which are generated in response to pathogens may limit inflammation and therefore limit damage to the host tissue (Belkaid, 2007). However, such Treg cell induction can lead to persistent infection with the pathogen by preventing complete pathogen eradication by the adaptive immune system (Belkaid, 2007; Joosten and Ottenhoff, 2008). Despite this, persistent infections may be kept under control by effective immune dynamics but there is always the possibility of disease reactivation as a result of immune dysfunction later in life (Joosten and Ottenhoff, 2008).

Since pathogens fall into a number of distinct categories (i.e. bacteria, viruses, fungi) and within these categories there are diverse populations, they also have many interactions with the host. Accordingly, Treg cells have a variable influence in the context of different infections. For
instance, in infections which resolve rapidly, inducible or adaptive Treg cells may not be generated in time, and as most nTreg cells are self-reactive they might not respond to acute infections. As a result, most knowledge of Treg cells in the context of infectious disease comes from studies of chronic infections (Belkaid, 2007; Joosten and Ottenhoff, 2008).

1.9.1 Infection

1.9.1.1 Treg cells in Tuberculosis

In general, Treg cells are associated with active tuberculosis – they are found at the site of infection and it is thought they act locally to downregulate protective immunity against *M. tuberculosis* antigens (Joosten and Ottenhoff, 2008). Such impairment of the immune response against the pathogen may lead to its persistence. IL-10-secreting cells have been reported in patients infected with TB but who are anergic, i.e. they do not react to intradermal injection with purified protein derivative (PPD) from *M. tuberculosis*. These patients comprise approximately 15% of those with active disease. They show decreased responses against *M. tuberculosis* but not to other pathogens, indicating that the suppression observed is antigen-specific (Boussiotis et al., 2000; Delgado et al., 2002). It has been reported that patients with active TB have increased frequencies of nTreg cells – i.e. CD25^{high} and/or FoxP3^{+} cells - which normalise with treatment (Guyot-Revol et al., 2006). Importantly the frequency is highest at the site of infection compared with peripheral blood (Chen et al., 2007; Guyot-Revol et al., 2006; Ribeiro-Rodrigues et al., 2006; Scott-Browne et al., 2007).

Moreover, Treg cells are found at a high frequency in granulomas and as such they might function to help contain local infection by preventing excessive immunopathology, or they might dampen protective Th1 immunity (Chen et al., 2007). Indeed, depletion of Treg cells *in vitro* enhances the Th1 response against mycobacterial antigens as measured by increased IFN-γ (Chen et al., 2007; Guyot-Revol et al., 2006; Ribeiro-Rodrigues et al., 2006). Furthermore, the depletion of Treg cells prior to *M. tuberculosis* infection reduced bacterial growth in mice (Kursar et al., 2007; Scott-Browne et al., 2007).
With respect to FoxP3, its expression in whole blood correlates well with the kinetics of Treg cell induction and with active disease (Burl et al., 2007; Roberts et al., 2007). Expression of FoxP3 mRNA in combination with IL-8 and IL-12 mRNA can be used to differentiate LTBI from active disease, as patients with active TB has enhanced expression of these three genes in PBMC when compared with those with LTBI (Wu et al., 2007).

1.9.1.2 Whooping cough

B. pertussis is the bacterium responsible for whooping cough, or pertussis. This respiratory disease is very severe in infants and young children worldwide and remains an endemic disease despite widespread availability of vaccines (Cherry, 2006). *B. pertussis* is a Gram-negative bacterium which colonises ciliated epithelial cells of the upper respiratory tract and bronchial tree of the lungs and can also survive inside macrophages (Dunne et al., 2009).

Humans are the only natural host for *B. pertussis*, however numerous animal models have been developed to study immune responses against the pathogen, including mouse, rat and rabbit models (Mills, 2001). It was first demonstrated that T cells played a role in immunity to *B. pertussis* by experiments with athymic mice which failed to clear the bacterium, whereas wild type mice cleared the infection after approximately 35 days (Mills et al., 1993). Adoptive transfer experiments have shown that *B. pertussis*-specific CD4+ T cells can confer protection to athymic or sublethally irradiated mice (Mills et al., 1993). Additionally, depletion of CD4+ T cells prior to immunisation with killed *B. pertussis* abrogated protection (Leef et al., 2000).

B. pertussis infection of naïve mice results in infiltration of neutrophils, macrophages and lymphocytes into the lung. Eradication of *B. pertussis* is IFN-γ-dependent, the source of which are infiltrating NK cells early in infection and Th1 cells later in the course of disease (Mahon et al., 1997; Mills et al., 1993; Ryan et al., 1997). IFN-γ acts to contain the infection in the respiratory compartment (Mahon et al., 1997). Antigen-specific Th17 cells and IL-10-producing Treg cells are also generated during infection (Fennelly et al., 2008; McGuirk et al., 2002).
B. pertussis is able to utilise certain strategies which enables it to evade host protective immunity. For example, the virulence factor filamentous haemagglutinin (FHA) acts directly on DC to promote IL-10 and therefore inhibit lipopolysaccharide (LPS)-induced IL-12 (McGuirk et al., 2002). In addition, IL-10-producing Tr1 cells are induced by FHA-stimulated DC, permitting the bacterium to further avoid eradication (McGuirk et al., 2002).

The toxic effects of B. pertussis adenylate cyclase toxin (CyaA) are mediated by the enhancement of intracellular [cAMP] (Ladant, 1988). CyaA binds to the αMβ2 integrin CD11b/CD18, expressed on DC and macrophages (Guermonprez et al., 2001). Binding inhibits DC chemotaxis, phagocytosis and superoxide production, resulting in bacterial colonisation and persistence (Njamkepo et al., 2000; Pearson et al., 1987). CyaA also enhances IL-10 production and independently inhibits IL-12, consequently promoting Tr1 cell induction (Boyd et al., 2005; Hickey et al., 2008; Ross et al., 2004). While the induction of antigen-specific IL-10-secreting Tr1 cells during infection with B. pertussis suppresses the protective host immune response mediated by IFN-γ, Tr1 cells also restrict immunopathology (Higgins et al., 2003).

1.10 Summary

Treg cells are important for regulating self-tolerance and preventing autoimmune diseases. They are also crucial for limiting the inflammation and tissue damage, which can result from immune responses. However, the role of CD25+ Treg cells is still unclear, particularly in lung disease. The lung is a key site of antigen entry into the body, yet the induction of immune responses is stringently controlled in this organ to generate protective immunity against pathogens, but simultaneously prevent aberrant reactions to environmental antigens. Therefore I will investigate the role of CD4+FoxP3+CD25+ Treg cells in regulating immune responses in mouse lungs, with particular emphasis on their role in B. pertussis infection. I will study the immunosuppressive function of CD4+FoxP3+CD25+ Treg cells, the mechanisms by which they suppress, and investigate how they influence other cell populations to regulate protective immunity to B. pertussis infection in vivo.
I will also explore how these lung CD25− Treg cells arise and how the broader lung environment influences their phenotype and function. In particular, I will examine whether AM control the induction of these cells in mice and humans and whether the relationship can be targeted for immunotherapy. I will also consider whether lung Treg cells represent a risk factor for the progression of LTBI to active TB disease in smokers.

1.11 Aims

The overall aims of this project were:

1. To examine the distribution and phenotype of CD4+FoxP3+CD25− Treg cells in mouse tissue, and to elucidate the mechanism(s) by which they suppress target cells in vitro and in response to *B. pertussis* infection in vivo

2. To investigate whether human and murine AM can induce FoxP3+ T cells in vitro, and determine the mechanism(s) they use to achieve this

3. To establish
 a. whether the suppressive function of AM represents a target for immunotherapy
 and
 b. if induced FoxP3+ T cells in the lung contribute to the increased risk of developing active TB disease in smokers with LTBI
Chapter 2

Materials and Methods
2.1 Materials

Ammonium Chloride Lysis Buffer
0.829 g NH₄Cl (Sigma)
0.109 g KHCO₃ (Sigma)
0.037 g Disodium Ethylenediaminetetraacetic acid (EDTA, Sigma)
100 ml dH₂O
pH to 7.3 to 7.4.

Cell Culture Medium

Roswell Park Memorial Institute (RPMI)-1640 medium (Biosera) was supplemented with 10% heat inactivated (56°C for 30 mins) foetal calf serum (FCS, Biosera), 100 mM L-Glutamine (Gibco), 100 μg/ml penicillin/streptomycin (Biowest). Complete RPMI (cRPMI) was used to culture murine T cells.

RPMI-1640 medium supplemented with 100 mM L-Glutamine and 100 μg/ml penicillin/streptomycin was used to culture murine alveolar macrophages.

RPMI-1640 supplemented with 10% AB human serum (Sigma), 50 μg/ml cefotaxime (Melford Laboratories), and 50 μg/ml fungizone (Gibco) was used to culture human monocyte-derived macrophages, primary human AM and human T cells.

Dulbecco Modified Eagle Medium (DMEM, Sigma) was supplemented with 2.5%, 5% or 10% ultralow IgG FCS (Invitrogen), 100 mM L-Glutamine, 100 mM penicillin/streptomycin and 0.05 M β-mercaptoethanol (Sigma). Supplemented DMEM was used to culture PC61 hybridoma cells.
Carbonate Buffer (0.05 M)
2.93 g NaHCO₃ (Sigma)
1.5 g Na₂CO₃ (Sigma)
Dissolved in 1L dH₂O

Collagenase D (Roche)

DNase (Sigma)

EDTA (25 mM)
0.93 g EDTA (Sigma)
Dissolved in 50 ml Baxter’s Water

EDTA (0.5 M)
20.8 g EDTA (Sigma)
Dissolved in 100 ml Phosphate Buffered Saline (PBS, Biosera) and filter sterilised

MACS Rinsing/Wash Buffer (PBS + 2 mM EDTA)
2 ml 0.5 M EDTA
500 ml sterile Dulbecco’s Phosphate Buffered Saline (PBS, Gibco)

MACS Buffer (PBS + 2 mM EDTA + 5% FCS)
2 ml 0.5 M EDTA
2.5 ml sterile FCS
500 ml sterile PBS
FACS Buffer

500 ml Dulbecco’s PBS (Biosera)

0.5 g Sodium Azide (Sigma)

5 g Bovine Serum Albumin (BSA, Sigma)

FoxP3 Staining Kit (eBioscience)

Fix/Perm Solution = 1 part Fix/Perm Concentrate to 3 parts Fix/Perm Diluent

Permeabilisation Buffer = 1 part 10X Permeabilisation Buffer to 9 parts dH2O.

2% Paraformaldehyde

100 ml dH2O

2.0 g Paraformaldehyde (Sigma)

Heat to 70°C to allow powder to fully dissolve. Store at 4°C

20X PBS

800 g NaCl, 1.4 M (Aldrich)

92 g Na₂HPO₄, 0.08 M (Sigma)

20 g KH₂PO₄, 0.01 M (Merck)

20 g KCl, 0.03 M (Riedel de Hahn)

Dissolved in 5L dH₂O, pH 7.0

ELISA Wash Buffer (1X PBS + 0.05% Tween)

500 ml 20X PBS

9.5 L dH₂O

5ml Tween (Sigma)
1% BSA in PBS
5 g BSA (Sigma)
500 ml PBS (Biosera)

5% Milk in PBS
25 g Dried Skimmed Milk (Fluka)
500 ml PBS (Biosera)

10% Milk in PBS
50 g Dried Skimmed Milk (Fluka)
500 ml PBS (Biosera)

10% FCS in PBS
50 ml FCS (Biosera)
450 ml PBS (Biosera)

Phosphate Citrate Buffer
10.19 g Anhydrous Citric Acid (Sigma)
36.96 g Na$_2$HPO$_4$.12H$_2$O (Sigma)
Made up in 1L dH$_2$O, pH 5.0

ELISA O-Phenylenediamine (OPD) Developing Solution
1 OPD tablet (Sigma)
25 ml Phosphate Citrate Buffer
15 μl H$_2$O$_2$ (Sigma)

ELISA 3,3',5,5'-Tetramethylbenzidine (TMB) Developing Solution (Sigma)
ELISA Stop Solution

25 μl 1M H₂SO₄ (Fluka)

TGF-β₁ Activation

Incubate samples at 80°C for 10 mins and allow to cool before adding to ELISA plate.

1% Casein

6.0 g NaCl (Aldrich)
10.0 g Casamino acid (Difco)
Adjust pH to 7.0-7.2 with 1 N NaOH (Fluka).
Autoclave at 115°C.

Stainer and Scholte Liquid Medium

10.72 g L-Glutamic acid (monosodium salt) (Sigma)
0.24 g L-Proline (Sigma)
2.5 g NaCl (Aldrich)
0.5 g KH₂PO₄ (Merck)
0.2 g KCl (Riedel de Hahn)
0.1 g MgCl₂.6H₂O (Sigma)
0.02 g CaCl₂.2H₂O (Sigma)
1.525 g Tris (Riedel de Hahn)
Dissolve in 1 L ddH₂O, adjust pH to 7.3-7.4 with 6 N HCl.
Autoclave and store at 4°C.
Supplement for Stainer and Scholte Liquid Medium

0.4 g L-cystine (Sigma)
Dissolve L-cystine in 1 ml conc. HCl, and then add:
0.1 g FeSO₄.7H₂O (Sigma)
0.2 g Ascorbic acid (Sigma)
0.04 g Nicotinic acid (Sigma)
1.0 g Glutathione (reduced) (Sigma)
100 ml ddH₂O, sterilize by membrane filtration

Cephalexin (10 mg/ml)

0.1 g Cephalexin (Sigma)
10 ml dH₂O
Filter sterilise

Bordet Gengou (BG) Blood Agar Plates

500 ml ddH₂O
5 ml Glycerol (Sigma)
14 g BG broth (Difco)
Autoclave with tops slightly loose. Allow to cool to 37°C.
Add 1 ml of Cephalexin (10 mg/ml stock) and 100 ml of pre-warmed sterile horse blood (Cruinn), swirling continuously.
Pipette approximately 23 ml into each Petri dish, avoiding any bubbles.
Allow the plates to dry in the hood overnight.
Store the plates inverted at 4°C. Use within 5 weeks
Middlebrook 7H9 broth

6.47g Middlebrook 7H9 broth (Difco)

50 µl Tween 80 (Difco)

90 ml Low-endotoxin H₂O (Sigma)

Autoclaved 120°C

10 ml Albumin-Dextrose-Catalase (ADC) (Becton Dickinson)
2.2 Methods

2.2.1 Animals

Specific pathogen-free female BALB/c and C57Bl/6 mice were purchased from Harlan UK Ltd (Bicester, UK) and IL-10 knockout mice were bred in-house. All mice were maintained according to the regulations and guidelines of the European Union and the Irish Department of Health. All experiments were conducted under university ethical approval and under license from the Department of Health and Children. Mice were 6-8 weeks old at the initiation of each experiment.

2.2.2 Cell counts

EBAO

Cell counting was performed by diluting 20 μl cells in 20 μl of Ethidium Bromide/Acridine Orange (EBAO). A 20 μl volume of the cell suspension was loaded onto a disposable haemocytometer (Hycor Biomedical). The number of viable cells (green) and dead cells (orange) were counted using a fluorescent microscope. The number of cells per ml was calculated by multiplying the cell numbers in 9 squares, within 1 large square, by 10^4, by the dilution factor:

$$\text{Number of cells/ml} = \text{cell count} \times \text{dilution factor} \times 10^4$$

Trypan Blue

Cell counting was performed by diluting 10 μl cells in 90 μl Trypan blue (Sigma). A 10 μl volume of the cell suspension was loaded onto a haemocytometer (Nunc). The number of viable cells (white) and dead cells (blue) were counted using a light microscope. The number of cells per ml was calculated by multiplying the cell numbers in 9 squares, within 1 large square, by 10^4, by the dilution factor:

$$\text{Number of cells/ml} = \text{cell count} \times \text{dilution factor} \times 10^4$$
2.2.3 Isolation of cells from lung, liver, colon, spleen, cervical and thoracic lymph nodes

Mice were euthanised by cervical dislocation, lungs were removed and digested in RPMI containing 1 mg/ml Collagenase D (Roche) for 1 hour at 37°C on a rotary mixer. Cells were isolated by homogenising lung tissue and passing it through a 40 μm filter. The same procedure was used to isolate cells from liver tissue with the exception that Collagenase IV (Sigma) was used instead of Collagenase D.

Colon tissue was incubated in Hank’s Balanced Salt Solution (HBSS, Biosera) containing 5 mM EDTA (Sigma) and 1 mM dithiothreitol (DTT, Sigma) for 20 minutes at 37°C and passed through a 100 μM cell strainer. The tissue was then digested in 0.05 g of Collagenase D (Roche), 0.05 g of DNAse I (Sigma) and 0.3 g of Dispase II (Roche) digestion solution in 100 ml of PBS for 20 minutes at 37°C.

Spleens and lymph nodes were homogenised and passed through a 40 μm filter.

For all tissues, homogenate was centrifuged at 1800 rpm for 5 mins; erythrocytes were lysed by addition of 3 ml ammonium chloride lysis buffer and incubating at 37°C for 5 mins. cRPMI was added, and a cell count was performed and suspension was centrifuged at 1800 rpm for 5 mins.

2.2.4 Flow cytometry analysis for T cell surface markers

Cells were isolated from tissues as described in section 2.2.3 and resuspended at 1 x 10^7 cells/ml. Cells were stained with various fluorescently labelled antibodies against surface markers. After 15 minutes, cells were washed with FACS buffer and pelleted by centrifugation at 1800 rpm for 5 mins.

Cells were either fixed in 2% paraformaldehyde, or if intracellular markers were to be analysed, they were permeabilised in Fix/Perm Buffer (eBioscience) for 30 mins, washed in
permeabilisation buffer (eBioscience) and stained with relevant fluorescently labelled antibodies for 30 mins. After washing in permeabilisation buffer cells were either analysed immediately or fixed in 2% paraformaldehyde and stored in the dark at 4°C and analysed within 24 hours of staining.

2.2.5 Flow cytometry analysis for intracellular cytokines

Cells were isolated as described in section 2.2.3 and added at 5 x 10^5 cells/well to 96-well round-bottom tissue culture plates (Greiner). 2 µg/ml Brefeldin A (BFA, Sigma) was added to each well and cells were incubated overnight at 37°C, 5% CO₂. Cells were stained as described in section 2.2.4.

2.2.6 Cell sorting

Cell pellet was resuspended at 50 x 10^6 cells/ml in cRPMI and stained with rat anti-mouse CD4-PE (eBioscience), CD45RB-FITC (eBioscience), CD25-PE-Cy5 (eBioscience) and sorted using a MoFlo cell sorter (DakoCytomation). Sorted populations were CD4^CD25^CD45RB^low Treg cells from mouse lungs and CD4^CD25^CD45RB^high naïve T effector cells from mouse spleens.

2.2.7 Suppression assay

Purified CD4^CD25^CD45RB^low (1 x 10^4) lung cells were activated with 1 µg/ml immobilised anti-CD3 (BD Pharmingen) and irradiated spleen cells (APC: 5 x 10^5) in the presence of 20 U/ml IL-2 (Immunotools) for 5 days, then washed and re-activated in the presence of CD4^CD25^CD45RB^high effector T cells (1 x 10^4) purified from spleen, using 10 µg/ml immobilised anti-CD3 and irradiated APC (5 x 10^5). IL-10, IFN-γ, TGF-β1 and TNF-α concentrations were determined in supernatants 48 hours later by enzyme-linked immunosorbent assay (ELISA) (R&D systems) while proliferation was determined by ^3^H-thymidine (Amersham) incorporation after 72 hours.
2.2.8 \(^{3}\text{H}-\text{thymidine incorporation}\)

Supernatant was removed from suppression assay culture after 48h and retained for ELISA analysis. Wells were replenished with fresh medium containing \(^{3}\text{H}-\text{thymidine}\) and cells were incubated overnight at 37°C, 5% CO\(_2\). Cells were harvested using a Tomtec Harvester 96 and radioactive counts were determined using a WALLAC beta plate counter.

2.2.9 \(\text{CFSE dilution}\)

Suppression by carboxyfluorescein diacetate succinimidyl ester (CFSE) loss was determined by labelling freshly isolated CD4\(^{-}\)CD25\(^{-}\)CD45RB\(^{\text{high}}\) effector T cells with 0.5 \(\mu\text{M}\) CFSE (Molecular Probes). Pre-activated CD25\(^{+}\) Treg cells were co-cultured with CFSE-labelled effector T cells (1:1) and activated in the presence of 10 \(\mu\text{g/ml}\) immobilised anti-CD3 and \(5 \times 10^{5}\) irradiated APC for 5 days. Cells were subsequently stained with antibodies directed against surface, CD4 and CD25, and CFSE loss was determined by flow cytometry.

2.2.10 \(\text{IL-10 receptor blocking}\)

CD4\(^{-}\)CD25\(^{-}\)CD45RB\(^{\text{low}}\) (1 \(\times 10^{5}\)) cells were pre-activated and cultured either separately or together with effector T cells as described in section 2.2.7, either in the presence or absence of 10 \(\mu\text{g/ml}\) anti-IL-10R blocking antibody (BD Pharmingen). Cytokine concentrations and proliferation were both determined as described in sections 2.2.7 and 2.2.8.

2.2.11 \(\text{Transwell assays}\)

CD4\(^{-}\)CD25\(^{-}\)CD45RB\(^{\text{low}}\) (1 \(\times 10^{5}\)) cells were activated as described in section 2.2.7 but re-activated in a Transwell plate (Millipore) in a separate chamber from the effector cells. Cytokine concentrations and proliferation were both determined as described in sections 2.2.7 and 2.2.8.

2.2.12 \(\text{Isolation of murine alveolar macrophages – bronchoalveolar lavage}\)

Mice were euthanized by cervical dislocation and a bronchoalveolar lavage (BAL) was performed. This method involves the insertion of a cannula into the exposed trachea. The cannula was connected to a double syringe system; one syringe was filled with cold PBS and the second
syringe acted as a connecting vial. 5 ml total of cold PBS was used in each individual BAL. 1 ml of PBS was injected at a time into the lungs before being removed and kept on ice.

BAL fluid from each mouse was pooled and AM were counted as described in section 2.2.2. AM are noticeably bigger than other cells isolated from the lung (e.g. lymphocytes), therefore smaller cells can be excluded from the cell count. AM were subsequently plated in a flat-bottomed 96 well plate at a concentration of 5×10^4 cells/well in serum-free RPMI and incubated at $37^\circ C$, $5\% CO_2$ for three hours, to allow the AM to adhere. Non-adherent cells were removed by gentle pipetting, fresh serum-free RPMI was added to the AM cultures, and cells were incubated at $37^\circ C$, $5\% CO_2$ for 24 hours prior to the initiation of each experiment.

2.2.13 AM and T cell co-culture

Supernatant was removed from the AM culture and retained. Purified splenic CD$^+$CD25$^+$CD45RBhigh cells (6×10^3) were cultured with AM alone or in the presence of 2 μg/ml soluble anti-CD3. Inhibition studies were performed by the addition of an inhibitor against the retinoic acid receptor alpha-chain (RARi, Biomol; final concentration 5 μM), and/or a neutralising antibody against TGF-β (50 μg/ml; antibody was a gift from Dr. L. Boon, Utrecht, the Netherlands and was produced by 1D11.16.8 hybridoma cells). IL-10, IFN-γ, IL-4, IL-5, TGF-β, and TNF-α concentrations were determined in supernatants 24 hours later by ELISA (R&D Systems), while the induction of FoxP3$^+$ T cells and cell proliferation were determined as described in sections 2.2.4 and 2.2.8, respectively.

2.2.14 AM supernatant and T cell co-culture

Supernatants from AM which had been cultured in vitro for 24 hours were harvested and diluted twofold for in vitro studies. Undiluted, 1:2 and 1:4 dilutions were used. Purified CD$^+$CD25$^+$CD45RBhigh T cells were activated with 2 μg/ml soluble anti-CD3 and 5×10^4 irradiated splenic APC, either in the presence or absence of 20 μl of diluted AM supernatants. This was a 1:10 dilution of the AM-CM, so final dilutions of AM-CM in culture were therefore 1:10, 1:20 and 1:40. Inhibition studies were performed by the addition of an inhibitor against RARi (final
concentration 5 μM), and/or a neutralising antibody against TGF-β1 (50 μg/ml; a gift from Dr. L. Boon, Utrecht, the Netherlands). IL-10, IFN-γ, IL-4, TGF-β1, and TNF-α concentrations were determined in supernatants 24 hours later by ELISA (R&D Systems), while the induction of FoxP3 T cells and cell proliferation were determined as described in sections 2.2.4 and 2.2.8, respectively.

2.2.15 Proliferation assay

Cells were isolated from the lungs or spleens of naïve Balb/c mice, resuspended at 2 x 10⁶/ml and stimulated with 2 μg/ml anti-CD3 and irradiated APC from either spleen or lung. To remove AM, lung cells were cultured in a Petri dish for 3 hours at 37°C, 5% CO₂ for 3 hours prior to purification, to allow AM to adhere to the dish. Non-adherent lung cells were harvested, resuspended at 2 x 10⁶/ml and stimulated under the same conditions as total spleen and total lung cells.

Cells were cultured in the presence or absence of 5 μM RARi. IL-10, IFN-γ, IL-17, TGF-β1, and TNF-α concentrations were determined in supernatants 48 hours later by ELISA (R&D Systems), cells were replenished with either fresh medium or medium containing ³H-thymidine for the final 18 hours of culture, and FoxP3 expression and cell proliferation were determined, as described in sections 2.2.4 and 2.2.8, respectively.

2.2.16 Ovalbumin intranasal immunisation

Naïve female Balb/c mice were given two intranasal vaccine combinations (22 μl), 21 days apart. The individual components of the vaccine were 25 μg (10 μl) Ova protein (Hyglos), 5 μg (5 μl) CpG (CpG 1668, Sigma) as adjuvant, and 100 μg (7 μl) RARi. Stock Ova protein was dissolved in PBS, CpG was dissolved in LAL water and RARi was dissolved in 90% ethanol. Therefore, the specific nasal vaccine combinations per mouse were:

Vehicle: 10 μl PBS + 5 μl LAL water + 7 μl ethanol
Ova protein: 10 μl Ova protein + 5 μl LAL water + 7 μl ethanol
Ova + CpG: 10 μl Ova protein + 5 μl CpG + 7 μl ethanol
Ova + RARi: 10 µl Ova protein + 5 µl LAL water + 7 µl RARi
Ova + CpG + RARi: 10 µl Ova protein + 5 µl CpG + 7 µl RARi

Positive control mice were vaccinated subcutaneously with 25 µg Ova and 5 µg CpG, in 100 µl PBS.

2.2.17 *Bordetella pertussis* culture

Frozen BP W338 was thawed and 100 µl was streaked on pre-warmed blood agar plate which was incubated at 37°C for 5 days. A virulent colony was removed and added to an Erlenmeyer flask (Corning) containing pre-warmed complete Stainer and Scholte (S&S) medium (99 ml plus 1 ml supplement). The culture was incubated on a shaker for 24 hours at 37°C.

This culture was diluted 1/10 – i.e. 10 ml was added to each of 8 Erlenmeyer flasks containing pre-warmed S&S medium (89 ml + 1 ml supplement). Cultures were incubated on a shaker for 48 hours at 37°C. These suspensions were added to 4 autoclaved Kendro Sorvall bottles (200 ml per bottle) and centrifuged for 20 mins at 11,000 rpm (Sorvall R45C Plus ultracentrifuge). Pellets were combined and resuspended in 100 ml 1% casein.

Bacterial concentration was determined – 20 and 50 µl were removed and added to cuvettes containing 980 and 950 µl of 1% casein, respectively. Absorbance was read at 600 nm (blank; 1% casein plus 1 in 50 and 1 in 20 dilutions of bacterial suspension).

Calculation: Multiply the absorbance by 224.1 and by the appropriate dilution factor i.e. 50 or 20. Therefore – the number of bacteria in the solution = 224.1 x dilution factor x absorbance. Solution was adjusted to 3 x 10^10 bacteria in 150 ml of 1% casein.

2.2.18 Exposure of mice to aerosol containing *B. pertussis*

A nebuliser was attached to the Kendro Sorvall bottle containing 3 x 10^10 BP W338 in a Class 2 Laminar Flow Hood. Mice were placed in a cage within a Perspex box, the nebuliser was inserted into a hole in the box and the nebuliser pump was switched on. Mice were exposed to the
aerosol for 15 minutes, then pump was switched off and mice left to rest for a further 10 minutes. The nebuliser delivery rate was 0.5 ml per minute.

2.2.19 Production of heat killed \textit{B. pertussis} (HKBP)

Frozen BP W338 was thawed and cultured as described in section 2.2.18. When the bacterial concentration was determined, the solution was adjusted to 1×10^{10} bacteria per ml of 1% casein. This solution was heated to 65°C for 30 mins to kill the bacteria and was stored in 1 ml (1 x 10^{10} heat killed bacteria) aliquots at -20°C.

2.2.20 \textit{Ex vivo} T cell responses in the lungs of \textit{B. pertussis}-infected mice

Mice were infected with \textit{B. pertussis} by exposure to an aerosol, as described in section 2.2.18. 7, 14, 21 and 29 days post-challenge, mice were injected with 4×10^{5} (400 µl) heat-killed \textit{B. pertussis} 4 hours prior to removal of lungs, which were digested with 1 mg/ml of Collagenase D (Sigma) for 1 hour at 37°C. Lung were homogenized, isolated cells were added at 5×10^{7}/well to a 96-well plate and incubated with 2 µg/ml BFA overnight at 37°C 5% CO$_2$. Cells were stained as described in section 2.2.4.

2.2.21 PC61 Hybridoma cell culture

Frozen cells (European Collection of Cell Cultures, Health Protection Agency, UK) were thawed and added to 10 ml complete DMEM (containing 10% low IgG FCS, Penicillin/Streptomycin, L/Glutamine and β-mercaptoethanol). Cells were washed twice in 10 ml cDMEM (1000 rpm, 5 mins), added to a T25 flask containing pre-warmed cDMEM, and were incubated for 48 hours at 37°C, 5% CO$_2$.

Cells were subcultured in a T75 flask containing 40 ml pre-warmed cDMEM (supplemented with 5% low IgG FCS) and were incubated for 48 hours at 37°C, 5% CO$_2$. Cells were subsequently subcultured in a T175 flask containing pre-warmed 50 ml cDMEM (supplemented with 2.5% low IgG FCS) and were incubated for 48 hours at 37°C, 5% CO$_2$.

87
Cells were centrifuged at 2000 rpm for 5 mins and resuspended in cDMEM (supplemented with 2.5% low IgG FCS). Cell suspension was split between 4 T175 flasks and cells were incubated for 48h at 37°C, 5% CO₂. Cells were split 1/4 or 1/5 every 2-3 days until a sufficient volume of supernatant was obtained. Cell suspension was centrifuged at 2000 rpm for 5 mins; the supernatant was harvested and pooled, and frozen at -20°C until needed.

2.2.22 Purification of anti-CD25 antibody from hybridoma cell supernatant

Supernatant was thawed, filtered (Stericup filter, Millipore) and degassed prior to purification using protein G chromatography (mAB Trap affinity chromatography kit, Amersham Bioscience). The optimal concentration of antibody required to deplete greater that 95% of the relevant target cells was determined by titration. Mice were injected i.p. with increasing concentrations of depleting antibody. The spleens of these mice were examined for CD25 and FoxP3 expression by flow cytometric analysis on 24, 48 h and 7 d post injection. A rat horse radish peroxidase (HRPN) IgG₁ was used as the isotype matched control (Bioxcell). An alternative anti-CD25 antibody specific for a different epitope on the CD25 molecule (7D4; eBioscience) was used to examine CD25 depletion.

2.2.23 Depletion of CD25⁺ T cells in B. pertussis infection

150 μg of either PC61 anti-CD25 depleting antibody or rat IgG₁ control antibody were injected into mice 24 hours prior to infection with B. pertussis. Mice were exposed to B. pertussis aerosol as described in section 2.2.18. After 4 hours and 7, 14 and 21 days, lungs were removed and were homogenised in 1 ml 1% casein and plated onto blood agar (with cephalexin) for colony forming unit (CFU) counting. CFUs were determined after 5 days’ incubation at 37°C. The lung homogenate was also analysed for the presence of IFN-γ, IL-10, IL-17, TNF-α and IL-1β, as described in section 2.2.35.

2.2.24 B. pertussis-specific cytokine production by spleen and lymph node cells

Spleens and cervical lymph nodes from infected mice were removed and homogenised by passing through a 40 μM filter. Cells were resuspended at 2 x 10⁶/ml or 1 x 10⁶/ml, respectively.
and were stimulated for four days with 4 μg/ml filamentous haemagglutinin (FHA, Kaketsuken, Japan), 1 x 10^5/ml heat-killed *B. pertussis* (HKBP), 0.5 μg/ml anti-CD3 and 25 ng/ml phorbol myristate acetate (PMA, Sigma), or medium. Supernatants were removed and IFN-γ concentrations were quantified by ELISA, as described in section 2.2.35. Cells were replenished with fresh medium containing PMA (10 ng/ml) ionomycin (100 ng/ml, Sigma) and BFA (2 μg/ml) for four hours and intracellular staining was performed as described in section 2.2.4.

2.2.25 *B. pertussis* antigen-specific proliferation and cytokine production by purified T cells from spleen or lung

Mice were infected with *B. pertussis* by exposure to an aerosol, as described in section 2.2.18. 21 days post-challenge, cells were isolated from lungs and spleens as described in section 2.2.3. CD3⁺ T cells were purified from both of these tissues using the Pan T cell II isolation kit (Miltenyi Biotec). Prior to purification lung cells were cultured in a Petri dish for 3 hours at 37°C, 5% CO₂ for 3 hours to allow AM to adhere to the dish and prevent them from contaminating the purified cell population. Non-adherent lung cells were harvested and counted as described in section 2.2.2.

Briefly, spleen cells and non-adherent lung cells were resuspended in 40 μl of MACS buffer per 10⁷ cells. 10 μl of biotin-antibody cocktail was added per 10⁷ cells, and the suspension was incubated at 4°C for 10 minutes. 30 μl of buffer and 20 μl of anti-biotin microbeads were added and the suspension was incubated at 4°C for a further 15 minutes. Cells were washed by adding 2 ml buffer to the suspension and centrifuging at 1200 rpm for 10 minutes. Supernatant was aspirated and cells were resuspended at a concentration of 1 x 10⁸ cells/500 μl buffer. T cells were purified from magnetically labelled unwanted cell using the DepleteS programme on the AutoMACS Separator (Miltenyi Biotec).

Purified T cells from lung and spleen were counted, washed and resuspended in cRPMI at a concentration of 2 x 10⁵/ml. Cells were stimulated for 4 days with FHA (4 μg/ml), HKBP (1 x
10^7/ml), anti-CD3 and PMA (5 μg/ml and 250 μg/ml) or medium, in the presence of irradiated syngeneic lung and/or spleen mononuclear cells as a source of APC (2 x 10^6/ml) and in the presence or absence of 5 μM RARi. Supernatants were removed and IL-10, TNF-α, TGF-β1, IL-17 and IFN-γ concentrations were quantified by ELISA, as described in section 2.2.35. Cells were replenished with either fresh medium or medium containing ³H-thymidine for the final 18 hours of culture, and FoxP3 expression and cell proliferation were determined, as described in sections 2.2.4 and 2.2.8, respectively.

2.2.26 Nasal delivery of RARi to *B. pertussis*-infected mice

Mice were infected with *B. pertussis* by exposure to an aerosol, as described in section 2.2.18. 24 hours post-challenge, and every 48 hours thereafter, mice were given 22 μl of treatment, delivered nasally. Treatment consisted of vehicle (PBS + 90% ethanol), 75 μg RARi in PBS, or 150 μg RARi in PBS. After 4 hours and 7, 14 and 21 days, lungs were removed and were either homogenised in 1 ml 1% casein and plated onto blood agar (with cephalaxin) for colony forming unit (CFU) counting, or were digested and cells were stained with rat anti-mouse antibodies against CD4 and FoxP3 and analysed by flow cytometry. CFUs were determined after 5 days’ incubation at 37°C.

2.2.27 Human alveolar macrophages

Human alveolar macrophages were obtained at bronchoscopy, after written consent, under a protocol approved by the St. James’s Hospital/ AMNCH ethics board. The letter of protocol approval is available on request. All regulations regarding patient confidentially were adhered to and the data is fully anonymised. In each case the reason for bronchoscopy was documented.

Normal human AM: These were harvested from bronchoscopies that were performed on patients who were non-smokers, and who were subsequently found to be free of much pulmonary disease. The airway was examined to rule out the presence of any unusual luminal obstruction (e.g. rare endobronchial neoplasms)
Smokers’ AM: These were harvested from bronchoscopies that were done on patients who were smokers. The indication varied, but was often to rule out lung cancer. Specifically, these patients did not have sarcoidosis, or pneumonia, though they may have had COPD. In this regard, they are typical of smokers’ pulmonary conditions.

Lavage fluid was filtered through a 100 μM membrane and centrifuged at 1400 rpm for 15 mins. Cells were then resuspended at 5 x 10^5 cells/ml in RPMI 1640 culture medium. The medium was supplemented with 10% pooled type AB human serum (Sigma), 50 μg/ml fungizone and 50 μg/ml cefotaxime. Cells were incubated for 3 hours at 37°C, 5% CO₂. Nonadherent cells were removed and retained for phenotypic analysis by flow cytometry. Fresh medium was added to adherent cells. These cells were ready for infection after 24 hours.

2.2.28 Peripheral blood mononuclear cell isolation

Peripheral blood mononuclear cells (PBMC) were isolated from the buffy coat of healthy donors (provided, with permission, by the Irish Blood Transfusion Service) by centrifugation (400 g for 25 min) on a Lymphoprep gradient (Axis-Shield), washed, and resuspended in RPMI 1640 culture medium. The medium was supplemented with 10% pooled type AB human serum (Sigma), 50 μg/ml cefotaxime and 50 μg/ml fungizone (Gibco).

2.2.29 Monocyte-derived macrophages (MDM)

PBMC were seeded onto two-well LabTek glass chamber slides (Nunc, Inc., Naperville, IL) and 24-well plates. Nonadherent cells were removed by washing the wells with cRPMI after 24 h, and fresh medium was added. The medium was replaced, with washing to remove any remaining nonadherent cells, every 2 to 3 days. Macrophages were cultured for 7 to 10 days before infection with M. tuberculosis.

2.2.30 Mycobacterium tuberculosis culture

M. tuberculosis H37Ra was obtained from the American Type Culture Collection (ATCC 25177; Manassas, VA) and was grown to log phase in Middlebrook 7H9 broth (Difco)
supplemented with albumin-dextrose-catalase (ADC, Becton Dickinson) and 0.05% Tween 80 (Difco) and made up in low-endotoxin water (Sigma). Aliquots were stored at -80°C, thawed, and propagated in Middlebrook 7H9 medium to log phase prior to infection.

2.2.31 Infection of alveolar macrophages with *M. tuberculosis*

Log-phase mycobacteria were centrifuged (3800 rpm) for 10 min, and the pellet was resuspended in complete RPMI 1640 medium. Prior to inoculation of macrophages, mycobacteria were aspirated through a 25-gauge needle 10 times, followed by centrifugation (800 rpm) for 3 min. The supernatant was transferred to a fresh tube and used to infect macrophages.

To ensure an optimal infection ratio, multiplicities of infection (MOIs) were determined by adding dilutions of prepared bacilli to macrophages growing in two-well LabTek glass chamber slides (Nunc, Inc., Naperville, IL). After 3 h of incubation at 37°C in the presence of 5% CO₂, extracellular mycobacteria were washed away, and the cells were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline for 5 min.

Cells were then stained using a TB Modified Auramine O stain kit (Scientific Device Laboratory, IL) according to the manufacturer’s instructions. Briefly, slides were immersed in Modified Auramine O for 1 min, washed gently in running water, and decolourised with Modified Auramine O Decolorizer for 1 min. This was followed by another wash step and Hoechst 33358 (10 g/ml; Molecular Probes) staining for 5 min in the dark. The slides were finally washed gently with water, and cover slips were added using Dako fluorescent embedding medium (Dakocytomation). The MOI was determined by fluorescent microscopy using a Leica photomicroscope (Leica Microscopy Systems, Heerbrugg, Switzerland).

Macrophages were infected with a high MOI – this required that most cells were infected, ideally with 5-10 bacilli/cell. After 4 h of incubation at 37°C in the presence of 5% CO₂, extracellular mycobacteria were washed away, and fresh medium was added. Macrophages were infected for 24 hours prior to co-culture with allogeneic naïve T cells.

92
2.2.32 Purification of CD4^CD25^-CD45RO naive T cells using EasySep® magnetic separation

PBMC were resuspended at 5 x 10^7 cells/ml in buffer (2% FCS in PBS) and 1-1.5 ml of cell suspension was added to a sterile 5 ml FACS tube. 50 μl anti-CD45RO antibody was added per ml of cells and incubated for 15 mins at room temperature. 50 μl EasySep® negative selection human naïve CD4^+ T Cell enrichment cocktail was added per ml of cells and incubated for a further 10 mins at room temperature. 100 μl EasySep® magnetic nanoparticles was added per ml of cells and suspension was incubated for 10 mins at room temperature.

The sample was brought to a final volume of 2.5 ml with buffer and the tube was placed in the EasySep® magnet for 10 mins at room temperature. The magnet and tube were inverted and the purified fraction was poured off into a new sterile 5ml FACS tube. The magnetically labelled unwanted cells remain bound inside the original tube, held by the magnetic field of the EasySep® magnet. For increased purity, the new tube was placed in the magnet for an additional 10 mins. The enriched population was then ready for use.

2.2.33 Culture of CD4^CD25^- naive T cells with normal AM and AM infected with M. tuberculosis H37Ra

6 x 10^3 purified CD4^+CD25^-CD45RO^- naïve T cells were activated with 2 μg/ml soluble anti-CD3 in the presence of 5 x 10^4 uninfected AM or AM infected with low, medium and high MOIs of M. tuberculosis H37Ra. Inhibition studies were performed by the addition of RARi (5 μM or 20 μM). After 24 hours, the T cell phenotype was determined by flow cytometry, as described in section 2.2.4

2.2.34 Culture of CD4^CD25^- naïve T cells with macrophage supernatant

Supernatants from AM which had been cultured in vitro for 24 hours were harvested and diluted twofold for in vitro studies. Undiluted, 1:2 and 1:4 dilutions of uninfected supernatants were used. Supernatants from infected AM were not diluted. Purified CD4^+CD25^-CD45RO^- naïve
T cells \((6 \times 10^3)\) were activated with 2 \(\mu g/ml\) soluble anti-CD3 and irradiated PBMC (APC: 5 \(\times 10^5\)) in the presence of 50 \(\mu l\) of conditioned medium from uninfected AM or AM infected with low, medium and high MOIs of \(M.\) tuberculosis H37Ra. This was a 1:4 dilution of the AM-CM, so final dilutions of uninfected AM-CM in culture were therefore 1:4, 1:8 and 1:16, while all AM-CM from infected AM was just 1:4. Inhibition studies were performed by the addition of RARi (5 \(\mu M\) or 20 \(\mu M\)). After 24 hours, the T cell phenotype was determined by flow cytometry, as described in section 2.2.4 or cells were replenished with medium containing \(^3\)H-thymidine for the final 18 hours of culture, cell proliferation were determined, as described in section 2.2.8

2.2.35 Standard cytokine ELISA

The concentrations of murine IL-10, IL-4, IL-5, IL-17, IL-1\(\beta\), TGF-\(\beta_1\), IFN-\(\gamma\) and TNF-\(\alpha\) were quantified using pairs of antibodies (Table 2.1). High-binding 96-well microtiter plates (Greiner Bio-one) were coated overnight at 4°C with 50 \(\mu l/well\) of rat anti-mouse capture antibody in coating buffer (Table 2.2). After washing in 1X PBS-Tween, non-specific binding sites were blocked by the addition of 200 \(\mu l/well\) of blocking solution (Table 2.2) for 2 hours at room temperature. After blocking, plates were washed and 50 \(\mu l/well\) of sample supernatant or serially diluted recombinant cytokine (0-2000 pg/ml) in assay diluent (Table 2.2) were added to plates and incubated overnight at 4°C. After washing, 50 \(\mu l\) of biotinylated goat anti-mouse (R&D) or rat anti-mouse (BD Pharmingen) detection antibody was added per well and incubated for 2 hours at room temperature. Plates were washed and cytokine was detected by incubating plates in the dark for 20 mins with 50 \(\mu l/well\) of horseradish-peroxidase (HRP)-conjugated streptavidin followed by washing and addition of 50 \(\mu l/well\) developing solution (OPD substrate in phosphate citrate buffer).

ELISA plates were developed in the dark after which the enzyme reaction was stopped by addition of 25 \(\mu l/well\) of 1M H\(_2\)SO\(_4\). The OD values were determined by measuring absorbance at 492 nm using a microtiter plate reader and cytokine concentration for supernatant samples were calculated using the standard curve prepared using recombinant mouse cytokine.
2.2.36 Serum IgG₂₆ ELISA

Medium binding 96-well microtiter plates (Greiner Bio-one) were coated overnight at 4°C with 50 μl/well of HKBP (1 x 10⁷/ml). After washing in 1X PBS-Tween, non-specific binding sites were blocked by the addition of 200 μl/well of blocking solution (10% milk in PBS) for 2 hours at room temperature. After blocking, plates were washed, and samples were serially diluted in PBS. 50 μl/well of serially diluted serum samples were added to the plates and incubated overnight at 4°C.

After washing, 50 μl of biotinylated rat anti-mouse detection antibody (BD Pharmingen) was added per well and incubated for 1 hour at room temperature. Plates were washed and antigen-specific IgG₂₆ was detected by incubating plates in the dark for 20 mins with 50 μl/well of horseradish-peroxidase (HRP)-conjugated streptavidin followed by washing and addition of 50 μl/well of TMB substrate (Sigma). ELISA plates were developed in the dark after which the enzyme reaction was stopped by addition of 25 μl/well of 1 M H₂SO₄. The OD values were determined by measuring absorbance at 450 nm using a microtiter plate reader and LogEC50 for serum samples were calculated using nonlinear regression analysis (sigmoidal dose response curve fit).

2.2.37 Serum IgE and IgG₁ ELISA

The concentrations of murine IgE and IgG₁ were quantified using pairs of antibodies (Table 2.1). Medium binding 96-well microtiter plates (Greiner Bio-one) were coated overnight at 4°C with 50 μl/well of Ovalbumin protein (10 μg/ml) or rat anti-mouse capture antibody in coating buffer (0.5M Carbonate buffer) (Table 2.2). After washing in 1X PBS-Tween, non-specific binding sites were blocked by the addition of 200 μl/well of blocking solution (10% FCS in PBS for IgE; 1% BSA in PBS for IgG₁) for 2 hours at room temperature. After blocking, plates were washed and 50 μl/well of serum sample, or serially diluted recombinant IgE or IgG₁ (0-500 ng/ml) in assay buffer were added to the plates and incubated overnight at 4°C.
After washing, 50 μl of biotinylated rat anti-mouse detection antibody was added per well and incubated for 1 hour at room temperature. Plates were washed and total and antigen-specific immunoglobulin was detected by incubating plates in the dark for 20 mins with 50 μl/well of horseradish-peroxidase (HRP)-conjugated streptavidin followed by washing and addition of 50 μl/well developing solution (OPD substrate in phosphate citrate buffer). ELISA plates were developed in the dark after which the enzyme reaction was stopped by addition of 25 μl/well of 1M H₂SO₄. The OD values were determined by measuring absorbance at 492 nm using a microtiter plate reader and immunoglobulin concentration for serum samples was calculated using the standard curve prepared using recombinant mouse IgE or IgG₁.

2.2.38 Aldefluor assay

Aldehyde dehydrogenase activity in individual cells was estimated using Aldefluor® staining kits (StemCell Technologies) according to the manufacturer’s protocol. Briefly, 1 x 10⁶ cells were suspended in 1ml in Aldefluor® assay buffer containing activated Aldefluor® substrate (150 nM), in the presence or absence of the ALDH inhibitor diethylaminobenzaldehyde (DEAB; 100 μM) for 45 minutes at 37°C. Cell viability was determined by flow cytometry with propidium iodide exclusion. ALDHIA activity was measured by flow cytometric analysis. Alternatively, cells were also stained with Hoechst 33358 (10 g/ml; Molecular Probes) and ALDHIA activity was determined by fluorescent microscopy using a Leica photomicroscope (Leica Microscopy Systems, Heerbrugg, Switzerland).

2.2.39 Statistical analysis

All statistical analysis was performed using GraphPad Prism software (Version 5.0a). Functionality was compared between study groups using nonparametric tests: Mann-Whitney for comparing only 2 groups and Kruskal-Wallis followed by a Dunn test for multiple comparisons comparing 3 or more groups.
Table 2.1 Origin of Antibodies and Recombinant Cytokines used in Mouse ELISA

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Supplier</th>
<th>Antibody</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-10</td>
<td>R&D</td>
<td>IgE</td>
<td>BD Pharmingen</td>
</tr>
<tr>
<td>TGF-β1</td>
<td>R&D</td>
<td>IgG_1</td>
<td>BD Pharmingen</td>
</tr>
<tr>
<td>TNF-α</td>
<td>R&D</td>
<td>IgG_2a</td>
<td>BD Pharmingen</td>
</tr>
<tr>
<td>IL-17</td>
<td>R&D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1β</td>
<td>R&D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFN-γ</td>
<td>BD Pharmingen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-4</td>
<td>BD Pharmingen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-5</td>
<td>BD Pharmingen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytokine</td>
<td>Capture</td>
<td>Blocking</td>
<td>Detection</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>50 µl well</td>
<td>200 µl/well</td>
<td>50 µl/well</td>
</tr>
<tr>
<td>IL-10</td>
<td>4 µg/ml in PBS</td>
<td>1% BSA in PBS</td>
<td>400 ng/ml in Reagent diluent (1% BSA in PBS)</td>
</tr>
<tr>
<td>TGF-β₁</td>
<td>4 µg/ml in PBS</td>
<td>1% BSA in PBS</td>
<td>200 ng/ml in Reagent diluent (1% BSA in PBS)</td>
</tr>
<tr>
<td>TNF-α</td>
<td>4 µg/ml in PBS</td>
<td>1% BSA in PBS</td>
<td>200 ng/ml in Reagent diluent (1% BSA in PBS)</td>
</tr>
<tr>
<td>IL-17</td>
<td>4 µg/ml in PBS</td>
<td>1% BSA in PBS</td>
<td>400 ng/ml in Reagent diluent (1% BSA in PBS)</td>
</tr>
<tr>
<td>IL-1β</td>
<td>4 µg/ml in PBS</td>
<td>1% BSA in PBS</td>
<td>400 ng/ml in Reagent diluent (1% BSA in PBS)</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>0.5 µg/ml in PBS</td>
<td>5% milk in PBS</td>
<td>1 µg/ml in PBS</td>
</tr>
<tr>
<td>IL-4</td>
<td>1 µg/ml in PBS</td>
<td>5% milk in PBS</td>
<td>1 µg/ml in PBS</td>
</tr>
<tr>
<td>IL-5</td>
<td>1 µg/ml in PBS</td>
<td>5% milk in PBS</td>
<td>1 µg/ml in PBS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Capture</th>
<th>Blocking</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 µl well</td>
<td>200 µl/well</td>
<td>50 µl/well</td>
</tr>
<tr>
<td>IgE</td>
<td>2 µg/ml in coating buffer</td>
<td>10% FCS in PBS</td>
<td>2 µg/ml in PBS</td>
</tr>
<tr>
<td>IgG₁</td>
<td>2 µg/ml in coating buffer</td>
<td>1% BSA in PBS</td>
<td>2 µg/ml in PBS</td>
</tr>
<tr>
<td>IgG₂a</td>
<td>n/a</td>
<td>10% milk in PBS</td>
<td>2 µg/ml in PBS</td>
</tr>
</tbody>
</table>
Chapter 3

Identification of a novel population of hyporesponsive CD4^+FoxP3^+CD25^- Treg cells in the lungs of naïve mice
3.1 Introduction

Treg cells can be divided into two general categories – thymically-derived nTreg cells (Sakaguchi et al., 1995) and iTreg cells (Hafler et al., 1997; McGuirk et al., 2002; Roncarolo et al., 2001; Tran et al., 2007). iTreg cells include Tr1 and Th3 cells as well as inducible FoxP3^ Treg cells. Depletion of or defects in nTreg cells can lead to the emergence of a wide variety of autoimmune disease and debilitating tissue destruction as exemplified in Scurfy mutant mice (Ono et al., 2006) and the IPEX syndrome in humans (Patel, 2001). Both these phenotypes are the consequence of a mutation in the gene encoding the transcription factor FoxP3. Intracellular FoxP3 expression is currently regarded as the definitive marker for cells with regulatory function in mice and humans (Fontenot et al., 2003; Fontenot et al., 2005b).

The use of FoxP3 to identify Treg cells has its drawbacks. It cannot be used to purify live Treg cells from mice or humans for in vitro functional assays for instance, as it can only be detected by cell fixation and permeabilisation. Furthermore, human T cells transiently express FoxP3 when activated, which makes it difficult to distinguish between Treg cells and activated T cells during an immune response (Allan et al., 2007). The search for a common, stable Treg cell marker has proved elusive, forcing researchers to use a battery of surface and intracellular markers to identify a growing number of Treg subsets. Chief of these surface markers has been CD25, the alpha chain of the IL-2 receptor (Asano et al., 1996; Sakaguchi et al., 1995; Suri-Payer et al., 1998). CD25 is constitutively expressed on nTreg cells (Sakaguchi et al., 1995). However, CD25 is essentially an activation marker for both murine and human CD4^ T cells and therefore does not represent a definitive marker for Treg cells (Asano et al., 1996). Nonetheless, a combination of FoxP3 and CD25 is widely used to detect, analyse and purify Treg cells.

In spite of the fact that the majority of Treg cells express surface CD25 (particularly nTreg cells), subsets of CD4^FoxP3^ cells that lack CD25 expression have also been shown to have suppressive function in vitro and in vivo (Alyanakian et al., 2003; Ono et al., 2006). Furthermore, it has been postulated that Treg cells lacking CD25 might accumulate in aged mice and humans.
within memory T cell subsets (Nishioka *et al.*, 2006). Regulatory activity has been detected in CD4^CD45RB^low^CD25^-^ memory T cells in rodents (Hori *et al.*, 2003) and the corresponding CD4^CD45RO^-^CD25^-^ memory T cell subset in humans (Yagi *et al.*, 2004). CD4^FoxP3^-^CD25^-^ GITR^high^ T cells have been shown to have suppressive function in murine organ transplantation (Nishimura *et al.*, 2004), inflammatory bowel disease (Uraushihara *et al.*, 2003) and in the prevention of autoimmune myocarditis in mice (Ono *et al.*, 2006). Further investigation has revealed that CD25^-^ Treg cells can also prevent colitis, myositis, hepatitis and glomerulonephritis following transfer into NOD-SCID mice (Alyanakian *et al.*, 2003).

With respect to the lung, it has been demonstrated that AM can render infiltrating CD4^+^ T cells anergic, which is accompanied by impaired IL-2 signalling (Strickland *et al.*, 1996a; Strickland *et al.*, 1993). It has also been shown, using FoxP3^-^- mice, that CD4^FoxP3^-^CD25^-^ T cells accumulated in the lungs of uninfected as well as chronically *M. tuberculosis^-^-infected mice* (Fontenot *et al.*, 2005b). Furthermore, it was demonstrated that Treg cells from the lung parenchyma of mice infected with respiratory syncytial virus express less CD25 than their counterparts in the draining lymph nodes (Fulton *et al.*, 2010).

The aim of this study was to examine the role of CD4^FoxP3^-^CD25^-^ Treg cells in maintaining tolerance and immunity to a pathogen in the lungs, using a murine model of respiratory infection with *B. pertussis*. I demonstrate that the majority of FoxP3^-^ T cells in the lungs of naïve mice do not express surface CD25. CD4^FoxP3^-^CD25^-^ T cells isolated from naïve murine lungs must be pre-activated in order to suppress CD4^+^ effector T cells *in vitro* and this suppression is not dependent on cell contact, but does require IL-10. In addition, the numbers of IL-10-secreting CD4^FoxP3^-^CD25^-^ T cells significantly increase in the lungs throughout the course of infection with *B. pertussis*. Depletion of CD25^-^ cells prior to challenge with *B. pertussis* significantly accelerated the rate of bacterial clearance, but only in IL-10^-^- mice.
3.2 Results

3.2.1 CD4^FoxP3^CD25' cells are the dominant Treg cell population in the lungs of naïve mice

A number of studies have reported suppressive activity in CD4^CD25'T cells (Annacker et al., 2001; Lehmann et al., 2002; Ono et al., 2006); however the role of such cells in the lung has not been investigated. The present study sought to determine the role of CD4^FoxP3^CD25'T reg cells in the lungs of mice, based on preliminary novel findings that CD4^FoxP3' cells in the lung are predominantly CD25'. Murine cells isolated from lung were stained with antibodies specific for CD4, CD25 and FoxP3, and analysed by flow cytometry.

Approximately 6% of CD4^ T cells in the lung express FoxP3 (Fig. 3.1A) and the majority (62%) of these CD4^FoxP3' cells do not express CD25 (Fig. 3.1B). However, in the spleen, the majority of CD4^FoxP3' cells expressed CD25 (approximately 80%) (Fig. 3.1B). CD25 expression in the lung CD4^ population was approximately 7% (Fig. 3.1C). The percentage of CD4^FoxP3'CD25' T cells is significantly (p<0.01) greater in the lungs of naïve mice when compared with the spleen (Fig. 3.1D). I next investigated whether other mucosal tissues, especially those which are associated with tolerance induction and immune homeostasis (Crispe, 2009; Hill and Artis, 2010), also contained a higher frequency of CD4^FoxP3'CD25'T cells, when compared with peripheral lymphoid tissues. When analysed alongside the data in Fig. 3.1D, it was revealed that the percentage of CD4^FoxP3'CD25' T cells is significantly greater in the liver, colon and lungs of naïve mice when compared with the spleen and the cervical and thoracic lymph nodes (CLN and TLN) (Fig. 3.2A and 3.2B). These results identify a previously uncharacterised population of CD4^FoxP3' T cells resident in mucosal tissues, which are characterised by lack of CD25 expression.

3.2.2 Surface phenotype of CD4^FoxP3'CD25' and nTreg cells isolated from the lungs and spleens of naïve mice

Several studies have used different surface markers to distinguish nTreg cells from other CD4^ populations. For example, CD4^ T cells expressing low levels of CD45RB have been shown
to have regulatory function (Luke et al., 2001) and CD45RB and FoxP3 expression are inversely correlated (Luke et al., 2006). A similar inverse relationship is observed between FoxP3 and CD127 expression (Liu et al., 2006; Seddiki et al., 2006a). In addition, studies have confirmed that nTreg cells express CD39 and CD73, which are nucleotidases involved in converting ATP to AMP and AMP to adenosine, respectively (Bours et al., 2006; Wang and Guidotti, 1996). The present study investigated the phenotype of lung-derived CD4^FoxP3^CD25^- Treg cells and whether the observed phenotype may predict their function in vivo. Cells isolated from murine lung and spleen were stained with antibodies against a variety of phenotypic and functional markers (Fig. 3.3).

CD4^FoxP3^CD25^- Treg cells isolated from lungs and spleens of naïve mice expressed the activation markers CD44 and CD69, however, they did not express the cell surface marker CD45RB, and did not express high levels of CD40L (CD154) (Fig. 3.3A, Fig. 3.3B). As T cells divide they lose expression of CD40L. Lack of CD45RB expression is also an indicator of murine memory cells (Trowbridge and Thomas, 1994). The results indicate that the CD4^FoxP3^CD25^- T cell subset are not naïve T cells, but instead represents a population of activated, antigen-experienced memory T cells. CD127 expression was also very low in this population of cells (Fig. 3.3A, Fig. 3.3B), in keeping with data showing an inverse relationship between levels of FoxP3 and CD127 (Banham, 2006).

Both CD39 and CD73 were expressed by CD4^FoxP3^CD25^- T cells (Fig. 3.3). These results suggest that CD4^FoxP3^CD25^- Treg cells may have a functional role in maintaining the immunosuppressive environment in the lung and preventing tissue damage. Expression of other markers associated with Treg cells was examined. In the lung, CD4^FoxP3^CD25^- T cells had high levels of inducible co-stimulator (ICOS), GITR and CTLA-4, however, GITR expression was still significantly lower than that on CD4^FoxP3^CD25^- T cells (Fig. 3.3B). In the spleen, CD4^FoxP3^CD25^- T cells expressed very significant amounts of ICOS compared with nTreg cells, and the expression of CTLA-4 was significantly lower than on nTreg cells (Fig. 3.3B). Representative dot plots and average values of the median fluorescence intensities of the various surface markers are detailed in Fig. 3.3C and Fig. 3.3D, respectively.
FoxP3 remains the “gold standard” for identification of functional, naturally occurring Treg cells in mice. Indeed, it has been shown that CD4^FoxP3^ T cells are not exclusively CD25^, and that the frequency of CD4^FoxP3^CD25^ T cells increases with age in mice (Nishioka et al., 2006). It has been demonstrated elsewhere that CD25 expression is labile on Treg cells, and the loss and regain of this surface marker does not affect their function (Zelenay et al., 2005). It has been postulated that Treg cells lose or gain CD25 to maintain homeostasis (Zelenay et al., 2005). However, this mechanism appears to be strictly regulated as it has also been shown that only a limited number of CD25^ T cells can convert to a nTreg cell phenotype in vivo (Curotto de Lafaille et al., 2004).

In summary, this study suggests that lung-derived CD4^FoxP3^CD25^ Treg cells are a mature, activated cell population, which express several markers indicative of a regulatory cell population, and have a very similar phenotypic profile to CD4^FoxP3^CD25^ nTreg. The next logical step was to investigate their suppressive function against effector T cells in vitro.

3.2.3 CD4^FoxP3^CD25^ Treg cells must be pre-activated in order to suppress responder cells

CD4^FoxP3^CD25^GITR^ have been reported to suppress in murine organ transplantation (Nishimura et al., 2004) and inflammatory bowel disease (Uraushihara et al., 2003). However, while it appears that CD25 expression is not required for Treg cells to function, it has also been shown that the in vitro suppressive activity of CD4^FoxP3^CD25^ Treg cells is weaker than that of nTreg cells (Annacker et al., 2001; Lehmann et al., 2002; Stephens and Mason, 2000).

As mentioned in section 3.2.2, CD4^ T cells which express low levels of CD45RB have been reported to have regulatory function (Luke et al., 2001) and CD45RB and FoxP3 expression are inversely correlated (Luke et al., 2006). CD4^CD45RB^low T cells have been shown to be mainly comprised of FoxP3^ nTreg cells in naïve mice and can be used to ameliorate colitis in a mouse model, while CD4^CD45RB^high T cells represent FoxP3^ effector cells capable of inducing colitis in immune compromised mice. In order to examine the ability of CD4^FoxP3^CD25^ cells to suppress
effector T cell responses in vitro, lung-derived CD4^CD45RB^low^CD25^- Treg cells were used as a source of CD4^FoxP3^CD25^- Treg cells (Appendix, Fig 8.1).

As CD45RB expression is progressively lost each time a cell divides, it is difficult to differentiate between “positive” and “negative”, as can be seen in Figures 8.1 and 8.2. Rather, expression of CD45RB on cells is classed as “low/negative” or “high”. Strict gating based on fluorescence minus one (FMO) staining controls was applied when purifying CD4^CD45RB^low^CD25^- T cells (Appendix, Fig 8.1). This resulted in low cell yields, but we were confident that the population of interest was as pure as possible, based on such strict gating strategies. A proportion of the sorted CD4^CD45RB^low^CD25^- cells were tested for FoxP3 expression after each sort; these cells were routinely greater than 98% FoxP3 (Fig. 3.4B).

CD4^CD45RB^high^CD25^- naïve effector T (Teff) cells were purified from the spleens of naïve mice and activated with anti-CD3 (2 µg/ml) and irradiated splenic APC (5 x 10^5), in the presence or absence of equal numbers of lung-derived CD4^CD45RB^low^CD25^- Treg cells. Again, strict gating based on FMO staining controls was applied when purifying CD4^CD45RB^high^CD25^- T cells (Appendix, Fig 8.2). After 48 hours of culture, cells were replenished with fresh medium containing ^3H-thymidine and cells were harvested 24 hours later. The results showed that Treg cells were unable to suppress the proliferation of Teff cells at a 1:1 ratio (Fig. 3.4A).

Studies have shown that CD25^- Treg cells must be activated before they can exert suppressive effects in vitro (Caramalho et al., 2003; Zelenay et al., 2005). It is thought that CD25^- Treg cells might have a higher threshold of activation than nTreg cells and therefore require stronger activation stimuli. Zelenay and colleagues have postulated that CD4^FoxP3^CD25^- cells are part of a “reservoir” of Treg cells at the steady state which can upregulate CD25 when required to maintain homeostasis (Zelenay et al., 2005). It was shown that these cells are selectable by IL-2 in vitro, presumably upregulate CD25 in response to this cytokine and consequently gain effective suppressor function. Studies in humans have demonstrated that IL-2 promotes survival and the
suppressive function of Treg cells in vitro, and enhances expression of FoxP3 and CD25 (Yates et al., 2007).

In order to examine the ability of pre-activated CD4⁺FoxP3⁺CD25⁻ cells to suppress effector T cell responses in vitro, CD4⁺CD45RB^{low}CD25⁻ Treg cells were purified from naïve murine lungs and activated for 5 days with immobilised anti-CD3 (1 µg/ml), recombinant IL-2 (20 U/ml) and irradiated splenic APC (5 x 10⁵). After 5 days CD4⁺CD45RB^{high}CD25⁻ Teff cells were sorted from naïve murine spleens and activated with immobilised anti-CD3 (10 µg/ml) and irradiated splenic APC (5 x 10⁵) in the presence or absence of pre-activated CD4⁺CD45RB^{CD25⁺} Treg cells. After 48 hours supernatants were removed and the concentrations of IL-10, IFN-γ and TNF-α were quantified by ELISA. Cell proliferation was determined after 72 hours by ³H-thymidine incorporation. CD4⁺CD45RB^{low}CD25⁻ Treg cells significantly suppressed (p<0.001) proliferation of Teff cells when cultured at a 1:1 ratio (Fig. 3.5A). In addition, co-culture of Treg and Teff cells resulted in significantly reduced IFN-γ (p<0.01) (Fig. 3.5A). TNF-α production was not affected (Fig. 3.5A). Activated Treg cells produced slightly more IL-10 than activated Teff cells, and IL-10 production increased when Treg cells were cultured with Teff cells, but was not significant. TGF-β₁ was not detected in these cultures.

The suppressive capacity of lung CD4⁺CD25⁺CD45RB^{low} Treg cells was confirmed by examining CFSE loss on Teff cells in vitro (Fig. 3.5B). Freshly isolated CD4⁺CD25⁺CD45RB^{high} Teff cells were labelled with 0.5 µM CFSE and subsequently co-cultured with pre-activated CD25⁻ Treg cells (1:1) and activated in the presence of 10 µg/ml immobilised anti-CD3 and 5 x 10⁵ irradiated APC for 5 days. Cells were subsequently stained with antibodies directed against surface CD4 and CD25, and CFSE loss was determined by flow cytometry. As expected, non-activated control effector T cells did not proliferate to any great extent, whereas activated effector T cells alone did (Fig. 3.5B). However, pre-activated CD25⁺ Treg cells suppressed the proliferation of activated effector T cells (solid line) when compared with activated control cells (Fig. 3.5B).
In these experiments, FoxP3⁺ cell contamination of sorted CD4⁺CD45RBʰʸʰCD25⁻ Teff cells was less than 2% (Fig. 3.4B). While co-culture and activation of Teff cells in the presence of pre-activated CD4⁺CD45RB⁻¹⁻CD25⁻ Treg cells at a 1:1 ratio resulted in reduced proliferation, the suppressive capacity of these cells was not as potent as nTreg cells. CD25⁺ nTreg cells have been shown to suppress Teff cells *in vitro* at a ratio of 1:4 or less (Takahashi *et al.*, 1998). Therefore, the suppression observed when sorted CD4⁺CD45RB⁻¹⁻CD25⁻ Treg cells were activated in the presence of Teff cells was unlikely to be due to contaminating nTreg cells.

It was unlikely that the reduced suppressive capacity was due to contaminating Teff cells during pre-activation either. The majority of sorted cells were routinely >98% FoxP3⁺ (Fig. 3.4B). Nonetheless, the effect of “spiking” the pre-activation culture with Teff cells was investigated. CD4⁺CD25⁻CD45RBʰʸʰ Teff cells were purified at the same time as CD4⁺CD25⁻CD45RB⁻¹⁻ Treg cells. Treg cells were activated for 3 days with immobilised anti-CD3 (1 µg/ml), recombinant IL-2 (20 U/ml) and irradiated splenic APC (5 x 10⁵), in the presence or absence of different ratios of Teff cells. Addition of Teff cells at ratios of 0.5:99.5, 1:99, 5:95 and 10:90 Teff:Treg did not increase proliferation levels above that of Treg alone (Fig. 3.6).

Zelenay *et al* have proposed that pre-activation results in upregulation of CD25 on CD4⁺FoxP3⁺CD25⁻ Treg cells (Zelenay *et al.*, 2005). Phenotypic analysis of the cells 24 hours post-stimulation confirmed that approximately 50% of the cells now express CD25 (Fig. 3.7). Some of the cells appeared to be FoxP3⁺; however this might be explained by the presence of irradiated APC in the culture.

The results show that pre-activated CD4⁺FoxP3⁺CD25⁻ Treg cells upregulate CD25, and can suppress proliferation of effector T cells *in vitro*. IL-10 may be responsible for this suppression, as activated Treg cells could produce this suppressive cytokine.
3.2.4 Suppression by pre-activated CD25 Treg cells is cell-contact independent

There are a number of possible mechanisms whereby Treg cells can suppress responder T cells, including direct cell-cell contact and soluble factors (Miyara and Sakaguchi, 2007; Vignali, 2008). The failure of Treg cells to inhibit the suppression of target cells when they are separated by a semi-permeable membrane usually indicates a requirement for \textit{in vitro} cell-cell contact in order for Treg cells to function (Takahashi \textit{et al}., 1998; Thornton and Shevach, 1998).

To examine whether the suppression of Teff cells seen in Section 3.2.3 was mediated by cell-contact or soluble factors, CD4^{+}CD45RB^{-}CD25^{+} Treg cells were sorted from lung tissue and pre-activated with immobilised anti-CD3 (1 \mu g/ml), recombinant IL-2 (20 U/ml) and irradiated splenic APC (5 x 10^5). Treg and Teff cells were co-cultured but separated via a semi-permeable membrane. Each population above and below the semi-permeable membrane was activated with immobilised anti-CD3 (10 \mu g/ml) and irradiated splenic APC (5 x 10^5). While Treg cells and Teff could not directly contact each other, soluble factors were able to cross the 0.4 \mu M membrane. As a positive control, Treg and Teff were also activated and cultured together. Supernatants were harvested after 48 hours to measure cytokine production, and proliferation was measured by 3H-thymidine incorporation after 72 hours.

The results show that Treg cells were able to significantly suppress (p<0.001) proliferation of Teff cells \textit{in vitro} in the absence of cell-cell contact (Fig. 3.8). Furthermore, the observed suppression was similar to that when Treg and Teff cells were activated and cultured together. IFN-\gamma production was also significantly suppressed despite the absence of cell-cell contact (p<0.01) compared with activated Teff cells alone (Fig. 3.8). No change was observed in TNF-\alpha or IL-10 concentrations when the two populations were separated (Fig. 3.8). TGF-\beta_1 was not detected. The data suggests that CD4^{+}FoxP3^{+}CD25^{+} Treg cells are a population of Treg cells which can suppress target T cells without the absolute requirement for direct cell-cell contact.
3.2.5 IL-10 is required for CD25-induced suppression

As shown in Section 3.2.4, the CD4⁺FoxP3⁺CD25⁺ Treg cells are able to suppress their target cells in the absence of cell contact. This suggests they use a soluble mediator to suppress proliferation of effector T cells. IL-10 and TGF-β₁ are well-characterised cytokines with anti-inflammatory properties and have been associated with suppressive functions of both natural Treg cells and adaptive Treg cell populations (Gorelik et al., 2002; Gorham et al., 1998; Hawrylowicz, 2005; Moore et al., 2001). As TGF-β₁ was not detected in activated CD4⁺FoxP3⁺CD25⁺ Treg cells, and pre-activated Treg cells produced IL-10 in vitro, this study investigated the effect of blocking the IL-10 receptor (IL-10R), thus preventing IL-10 from signalling via APC, Treg cells or Teff cells.

CD4⁺CD25⁺CD45RB⁺ Treg cells were sorted from lung tissue and pre-activated for five days with immobilised anti-CD3 (1 μg/ml), recombinant IL-2 (20 U/ml) and irradiated splenic APC (5 x 10⁵). Pre-activated Treg cells and freshly isolated Teff cells were co-activated with immobilised anti-CD3 (10 μg/ml) and irradiated splenic APC (5 x 10⁵) in the absence or presence of anti-IL-10 receptor (IL-10R; 10 μg/ml) antibody. Blocking the IL-10R significantly restored the proliferative capacity of Teff cells (p<0.0001) co-cultured with Treg cells when compared with cells incubated with an irrelevant isotype-matched antibody (Fig. 3.9). There was no significant difference in IL-10 concentrations in the supernatant in the presence of the blocking antibody (Fig. 3.9), but the concentration of IFN-γ and TNF-α were significantly enhanced (p<0.0001 and p<0.01, respectively) (Fig. 3.9).

These results indicate that CD4⁺FoxP3⁺CD25⁺ Treg cells might use IL-10 to suppress effector T cell responses in vitro. Collectively, the results of the in vitro studies so far have indicated a suppressive role for lung CD4⁺FoxP3⁺CD25⁺ Treg cells, which appear to have a higher threshold of activation than nTreg cells. However, once they are activated, they upregulate CD25 and can suppress Teff cells, and this suppression appears to be mediated in part by IL-10. Nonetheless, they do not suppress as effectively as nTreg cells, as they suppressed at a 1:1 ratio of
Treg cells:Teff cells, while it has been reported that freshly isolated nTreg cells can suppress Teff cells at a 1:4 ratio or less (Takahashi et al., 1998). I next examined the possible role of these cells in infection.

3.2.6 Kinetics of CD25^Treg cells in B. pertussis infection

The B. pertussis respiratory model of infection was used to investigate the role of CD4^FoxP3^CD25^ T cells in vivo. Mice were infected with B. pertussis aerosol, and lung cells were examined at weekly intervals post-challenge. In order to quantify the frequencies of antigen-specific Treg cells, mice were injected i.p. with 4 x 10^9 HKBP at the relevant time-points post-challenge. This induces a recall response to the bacterial antigens in vivo. 4 hours after injection of HKBP, cells were isolated from lung tissue and the phenotype and intracellular cytokine expression profile in CD4^FoxP3^CD25^ T cells was determined.

The percentages of CD4^CD25^ or CD4^FoxP3^ cells remained relatively constant during the course of B. pertussis infection (Fig. 3.10A and B). The percentage of CD4^FoxP3^CD25^ cells was low in the lungs of naïve mice. 7 days post challenge the percentage increased to 21%, peaking at 24% 14 days post challenge. The frequencies decreased to pre-infection levels at subsequent time points (Fig. 3.10C)

Both CD4^FoxP3^CD25^ and CD4^FoxP3^CD25^ cells produced IL-10 during B. pertussis infection (Fig. 3.11A); with its intracellular expression peaking in the CD25^cells and CD25^-cells 14 days post-challenge (Fig. 3.11B). These results suggest that CD4^FoxP3^CD25^ cells are able to produce IL-10 upon challenge with B. pertussis. The frequencies of CD4^FoxP3^CD25^-cells increased during the infection, peaking at 24% 14 days post-challenge. These cells may be derived from CD4^FoxP3^CD25^ which have upregulated CD25 upon stimulation, or they may be infiltrating nTreg cells. It has already been shown that CD25^ Treg cells upregulate CD25 upon activation in vitro (Fig. 3.7). However, it is still difficult to tell whether the enhanced levels of CD4^FoxP3^CD25^- Treg cells in this experiment are a consequence of CD25 upregulation by resident CD4^FoxP3^CD25^- Treg cells, or are infiltrating cells.
The next question regarding the role of CD4⁺FoxP3⁻CD25⁺ Treg cells in vivo is whether they can control the immune response to *B. pertussis* when nTreg cells are removed.

3.2.7 Depleting CD25⁺ T cells in IL-10-deficient mice enhances immunity to *B. pertussis* in vivo

The aim of this study was to remove CD25⁺ nTreg cells, leaving the CD25⁻ Treg cells and determine whether they can control infection in the absence of nTreg cells. Mice received a depleting antibody against CD25 i.p. 24 hours prior to aerosol challenge with *B. pertussis*, which reduces the frequency of CD4⁺CD25⁺ T cells in spleen from >5% to <1% (Fig 3.12). It has been reported that this treatment eliminates CD25⁺ T cells in vivo for at least a week (Couper *et al.*, 2007). The peak of activated (CD25⁺) Teff infiltration into the lungs during *B. pertussis* infection is between 7 and 14 days post-challenge, so to avoid the possibility of removing the activated Teff cells, only one injection was administered prior to bacterial challenge.

4 hours, 7, 14 and 21 days post-challenge bacterial levels in the lungs were determined by performing CFU counts. There was no difference in the CFU counts post-challenge in mice treated with anti-CD25 depleting antibody compared with mice that received an isotype control antibody (Fig. 3.13A). The results suggest that the CD4⁺FoxP3⁻CD25⁺ Treg cell population is able to regulate immunity to infection in the lung and can function effectively in the absence of nTreg cells.

The *in vitro* assays (Figs. 3.5, 3.8 and 3.9) and *in vivo* kinetics studies (Fig. 3.10) have suggested CD4⁺FoxP3⁻CD25⁺ Treg cells suppress via IL-10. Therefore, I examined the effect of depleting CD25⁺ nTreg cells in IL-10-deficient mice. It was hypothesised that mice lacking both nTreg cells and IL-10-producing Treg cells would have completely impaired immune regulation and would therefore eradicate the pathogen more quickly than wild-type (WT) mice or control IL-10⁻/⁻ mice. Indeed, depletion of CD25⁺ cells in IL-10⁻/⁻ mice significantly enhanced (p<0.01) bacterial clearance compared with controls (Fig. 3.13C). These mice also had detectable IgG₂a in serum from as early as 7 days post-challenge, suggesting an enhanced Th1 immune response was functioning early to eradicate the infection (Fig. 3.14).
7, 14 and 21 days post challenge splenocytes (2 x 10^6/ml) from infected mice were cultured in vitro with FHA from *B. pertussis* (4 μg/ml), HKBP (1 x 10^7/ml), anti-CD3 and PMA (5 μg/ml and 25 ng/ml) or medium for four days. Culture with HKBP resulted in significant production of IFN-γ by cells from IL-10^-/- mice as early as 7 days post-challenge (Fig. 3.15A), and was this was sustained at days 14 and 21 post-challenge. 7 days post-challenge, IFN-γ was slightly enhanced in cells from CD25-depleted WT mice, but was not significant (Fig. 3.15A). However, splenocytes from these mice did produce significantly higher levels of IFN-γ in response to HKBP at the later time points compared to unstimulated controls. Enhanced FHA-specific IFN-γ production was observed in cells from CD25-depleted WT mice (Fig. 3.15B, C). Antigen-specific IFN-γ was produced by spleen cells from undepleted WT mice from day 14 post-challenge (Fig. 3.15B, C). Anti-CD3 and PMA stimulation promoted strong IFN-γ production in mice from all experimental groups at all time points post-challenge (Fig. 3.15).

Cells from CLN were also cultured with *B. pertussis* antigen, but no antigen-specific IFN-γ was detected in any group at any time point (Fig. 3.16). However, strong IFN-γ production was detected in response to anti-CD3 and PMA stimulation (Fig. 3.16).

Flow cytometry analysis of the restimulated splenocytes found a higher frequency of antigen specific IFN-γ^+ lymphocytes in the spleens of CD25-depleted IL-10^-/- mice (Figs. 3.17A, B) compared with isotype controls 21 days post-challenge, and was significantly higher than controls in response to HKBP stimulation (p<0.05). Cells from CLN did not show a difference in antigen-specific IFN-γ^+ cells (Fig. 3.18B), although stimulation with PMA and anti-CD3 (Fig. 3.18A) revealed significantly higher frequencies of IFN-γ^+ lymphocytes in the CD25-depleted IL-10^-/- mice (p<0.01).

These results indicate that two immunomodulatory arms might be involved in regulating immunity to *B. pertussis* in the lung, namely CD25^+ nTreg and IL-10-secreting Treg cells, which include CD4^+FoxP3^+CD25^+ Treg cells. Depletion of both nTreg and IL-10-secreting Treg cells
completely impairs immunoregulation in *B. pertussis* infection in the lung, resulting in significantly accelerated Th1-mediated clearance of the pathogen.

Further evidence for two immunoregulatory arms in the lung was revealed through analysis of cytokines in the lung homogenate of infected mice. Since significant differences in CFU were observed at day 7 post-challenge, it was decided to investigate whether the CD25-depleted IL-10⁻ mice produced increased pro-inflammatory cytokines at this time point due to lack of immune regulation. Only IL-10⁻ mice had detectable lung IFN-γ, and it was slightly elevated in the CD25-depleted population (Fig. 3.19A). CD25-depleted WT mice produced significantly more IL-10 (p<0.001) than controls (Fig. 3.19B), suggesting that in the absence of CD25⁺ Treg cells, the IL-10-producing CD25⁻ population might compensate for this and prevent excessive Th1 immunity, as no IFN-γ was detected in the lungs of these mice. Interestingly, CD25-depleted WT mice had significantly higher concentrations of the pro-inflammatory cytokines IL-17 (p<0.001), TNF-α (p<0.01) and IL-1β (p<0.05) in lungs 7 days post-challenge (Fig. 3.20).

Presumably the CD25⁺ Treg cells in undepleted IL-10⁻ mice are responsible for regulating immunity to *B. pertussis*, as despite having detectable IFN-γ in their lungs they cleared the infection at the same rate as WT controls. In the same vein, removing nTreg cells from WT mice results in enhanced production of IL-10, which can regulate the protective Th1 response. However, removing CD25⁺ Treg cells in IL-10⁻ mice disables both regulatory mechanisms and allows an excessive IFN-γ-mediated Th1 immune response to proceed, resulting in accelerated bacterial eradication.
3.3 Discussion

The present study has identified a novel population of Treg cells, which are resident in the lungs of naïve mice and are distinguished from nTreg cells by their lack of CD25 expression. These CD4^FoxP3^CD25^- Treg cells have regulatory capacity \textit{in vitro} but are not as effective as nTreg cells at suppressing effector T cell proliferation. They also have a higher threshold of activation than nTreg cells, and are less potent suppressors than nTreg cells, as they suppressed at a 1:1 ratio of Treg cells:Teff cells, while it has been reported that freshly isolated nTreg cells can suppress Teff cells at a 1:4 ratio or less (Takahashi \textit{et al.}, 1998). \textit{In vitro}, CD4^FoxP3^CD25^- Treg cells appear to suppress via IL-10. These cells have a mature phenotype which suggests that they are antigen-experienced memory cells. CD4^FoxP3^CD25^- Treg cells are also present in the liver and gut, so there might be a physiological reason for the accumulation of these cells in classically immunoregulatory environments. \textit{In vivo} experiments using the \textit{B. pertussis} model of infection have also shown that CD4^FoxP3^CD25^- Treg cells produce IL-10 in response to bacterial challenge. Furthermore, removal of CD25^- nTreg cells prior to infection with \textit{B. pertussis} does not affect the bacterial load in mice. These findings suggest that CD4^FoxP3^CD25^- Treg cells function in lung immunology in addition to resident nTreg cells.

The results show that the dominant regulatory T cell population in the naïve lung lacks CD25 expression, which is in direct contrast to those in the spleen. As the lung encounters a wide variety of antigen from the environment (Holt \textit{et al.}, 2008), it is reasonable to expect a tightly regulated immunoregulatory system in order to avoid unnecessary tissue damage. The results of the present study are therefore surprising, as CD4^FoxP3^CD25^- nTreg cells were the minority FoxP3^- population in the lung, and the CD4^FoxP3^CD25^- Treg cells are weaker suppressor than nTreg cells, suppressing at a 1:1 ratio compared with a 1:4 ratio or less, as reported in the literature (Takahashi \textit{et al.}, 1998; Zelenay \textit{et al.}, 2005). However, CD4^+ effector T cells are constantly recruited to the lung and are subsequently exposed to antigen, so it might be possible that the lung microenvironment induces Treg cells from these infiltrating effector T cells, which are CD25^-.
It is possible that the dominant CD4^FoxP3^CD25^ Treg cell population could be unique to mucosal surfaces. In order to investigate this possibility, cells from the liver and colon were examined. Like the lung, these organs are associated with active immunosuppression (Boden and Snapper, 2008; Tiegs and Lohse, 2009). Indeed, CD4^FoxP3^ cells from lung, liver and colon had significantly higher percentages of CD4^FoxP3^CD25^ T cells than in the spleen. While CLN and TLN also contained higher frequencies of these cells than the spleen, the percentages were lower than in the mucosal tissues, and might be attributed to their lung-draining locations.

CD4^FoxP3^CD25^ cells isolated from the lungs of naïve mice bear a memory/activated phenotype associated with high expression of both CD44 and CD69. The expression levels of these markers were similar for both CD25^ and CD25^- cells, indicating that both subsets are antigen experienced, with nTreg cells encountering antigen in the thymus. The origin of CD4^FoxP3^CD25^ Treg cells remains to be identified. In keeping with published data on Treg cells (Banham, 2006; Powrie et al., 1994a), CD4^FoxP3^CD25^ cells isolated from naïve mouse lung and spleen expressed little or no CD45RB or CD127. Both CD25^ and CD25^- cells in lung and spleen also expressed similar levels of CD40L, but this was not especially high (<50%), which indicates that these cells are not naïve and have undergone cell division. Again this correlates with published data on Treg cells (Kasprowicz et al., 2003).

CD4^FoxP3^CD25^ Treg cells isolated from the lung had reduced GITR and CTLA-4 surface and intracellular expression than their CD4^FoxP3^CD25^- counterparts. Expression of these markers on CD4^-CD25^ Treg cells has been widely reported as being crucial for their function (McHugh et al., 2002; Sansom and Walker, 2006; Shevach and Stephens, 2006; Shimizu et al., 2002). The data is consistent with studies in patients with untreated new-onset lupus. CD4^FoxP3^CD25^- Treg cells from lupus patients have decreased GITR and CTLA-4 on their surface compared with CD4^FoxP3^CD25^- Treg cells (Yang et al., 2009). Lupus is associated with an abnormal increase in the percentage of CD4^FoxP3^CD25^- Treg cells (Zhang et al., 2008). The percentage of these cells correlates with disease activity, but treatment with glucocorticoids and cyclophosphamide causes a decrease in their frequency (Zhang et al., 2008). Furthermore, 116
investigation of CD4⁺CD25⁺CD127⁻ Treg cells from children with type 1 diabetes demonstrated a decrease in the mRNA expression of GITR and CTLA-4, but no change in overall frequencies of Treg cells. It is possible that these markers are important for optimal nTreg cell function but less crucial for the function of CD4⁺FoxP3⁻CD25⁻ Treg cells, at least in humans.

CD4⁺FoxP3⁺CD25⁻ and CD4⁺FoxP3⁻CD25⁻ Treg cells isolated from the lung express more ICOS than their counterparts isolated from the spleen. An inverse relationship between ICOS and CTLA-4 was evident in CD25⁻ and CD25⁺ Treg populations from spleen, as has been previously reported (Riley et al., 2001). However, this relationship was not observed in the lung Treg cells, as both populations strongly expressed ICOS and CTLA-4. Studies have shown that ICOS is crucial for the induction of peripheral tolerance (Akbari et al., 2002; Tuettenberg et al., 2009). Specifically, ICOS appears to have an important role in mucosal tolerance (Akbari et al., 2002; Bonhagen et al., 2003; Miyamoto et al., 2005), which might explain why this study detected such high expression of the molecule in the lung but not the spleen.

The expression of ICOS on CD4⁺FoxP3⁺CD25⁻ Treg cells but not on CD4⁺FoxP3⁻CD25⁻ Treg cells in the spleen provides further evidence that these two Treg cell populations might function in different ways. Indeed, it has been previously reported that human FoxP3⁺ cells in both the thymus and periphery can be either ICOS⁻ or ICOS⁺, and that both of these populations have distinct functions, with FoxP3⁺ICOS⁺ cells using IL-10 and TGF-β₁ to suppress DCs and T cells, respectively, and FoxP3⁺ICOS⁻ cells using TGF-β₁ only (Ito et al., 2008). Furthermore, it has recently been reported that IL-10 acts on Treg cells to maintain FoxP3 expression in the gut (Murai et al., 2009). The IL-10 secreted here is derived from lamina propria macrophages. Given that IL-10 is constitutively present in healthy lungs (Bonfield et al., 1995; Fernandez et al., 2004), and ICOS expression is associated with IL-10 production, this provides further support for the hypothesis that ICOS might be required for Treg cells to function in the lung.

The expression of the ectonucleotidases CD39 and CD73 on the surface of CD4⁺FoxP3⁻CD25⁻ Treg cells and CD4⁺FoxP3⁻CD25⁻ Treg cells in the lung and spleen was also
investigated in this study. Both enzymes were strongly expressed by each population in both lung and spleen, in keeping with published data (Deaglio et al., 2007; Eckle et al., 2007). Overall, a similar pattern of expression was observed, with CD39 being more strongly expressed than CD73 in all conditions. Additionally, CD4^FoxP3^CD25^ Treg cells expressed enhanced levels of both enzymes in lung and spleen compared with CD4^FoxP3^CD25^ Treg cells. Except for CD73 expression in the lung, these differences between the two populations were not significant.

It has been previously reported that freshly isolated CD4^CD25^CD45RB^{low} Treg cells do not suppress responder T cells in vitro (Caramalho et al., 2003). However, the Treg cells in that study were purified from spleen and lymph node, not lungs. Nonetheless, our studies on freshly isolated lung-derived CD4^CD25^CD45RB^{low} cells confirm that they cannot suppress responder T cells in vitro. It was hypothesised that CD4^FoxP3^CD25^ Treg cells from the lung must be activated before they can suppress the proliferation of responder T cells. Indeed, Zelenay and colleagues have also shown that CD4^CD25^CD45RB^{low} Treg cells isolated from the lymph nodes of naïve mice must be activated with anti-CD3 and IL-2 before they can suppress (Zelenay et al., 2005). However, the suppressive effect of these cells is still weaker than that observed with freshly isolated nTreg cells (Zelenay et al., 2005). Our experiments demonstrated that purified lung-derived CD4^CD25^CD45RB^{low} Treg cells, which had been activated for 5 days with anti-CD3 and cultured with IL-2, were able to significantly suppress the proliferation and IFN-γ production of responder cells at a 1:1 ratio. Unfortunately, it was not possible to perform a titration to test whether these Treg cells could suppress at other ratios of Treg cells:Teff cells, as Treg cell numbers were a limiting factor. These assays contained 1 x 10^4 Treg cells and 1 x 10^4 Teff cells, which explains why the observed cpm values were relatively low. For these reasons, it was decided to use a 1:1 ratio of Treg cells:Teff cells for subsequent experiments.

It was also shown that activated CD4^CD25^CD45RB^{low} Treg cells can produce the anti-inflammatory cytokine IL-10, which is consistent with the findings of this study (Zelenay et al., 2005).
CD4^{cd25}{cd45rb}^\text{low} cells isolated from the lungs of naïve mice upregulated CD25 \textit{in vitro} in response to the pre-activation stimuli. This finding is in accordance with those of Zelenay \textit{et al}, who have proposed that CD4^{FoxP3}CD25^{+} cells comprise a "reservoir" of Treg cells which can upregulate CD25 to maintain homeostasis (Zelenay \textit{et al}., 2005). These cells can also lose and regain CD25 expression with no apparent functional implications (Zelenay \textit{et al}., 2005). With regard to the lung, such a "reservoir" of under-activated cells might represent a practical way to maintain immune homeostasis. Such Treg cells would be present in the lung, but would be unable to function in the absence of IL-2 – that is, in the absence of a T-cell mediated adaptive immune response. However, when such a response does occur, then the lung has a resident population of regulatory cells which can be "switched on" by the very cells they are required to regulate, and the result is tightly regulated protective immunity -- with minimal tissue pathology. Studies on human Treg cells have highlighted the importance of IL-2 for their survival and function \textit{in vitro} (Yates \textit{et al}., 2007). IL-2 prevents apoptosis of Treg cells and is crucial for maintaining their suppressive phenotype \textit{in vitro} (Yates \textit{et al}., 2007).

A number of different mechanisms have been proposed regarding how Treg cells suppress immune responses (Miyara and Sakaguchi, 2007; Vignali, 2008). Direct cell-cell contact with responder cells in conjunction with secretion of anti-inflammatory mediators has been reported as the modus operandi of nTreg cells. To investigate whether the observed suppression mediated by CD4^{cd25}{cd45rb}^\text{low} Treg cells was cell-contact dependent or due to the production of anti-inflammatory cytokines, activated CD4^{cd25}{cd45rb}^\text{low} Treg cells and Teff cells were separated by a semi-permeable membrane. Despite the absence of cell-cell contact, the proliferation of responder cells and the production of IFN-γ were significantly inhibited by Treg cells, to the same extent as when the two populations were in direct contact with each other.

Blocking the IL-10 receptor and therefore IL-10 signalling completely abrogated the suppression of Teff cells by pre-activated Treg cells and significantly enhanced the production of IFN-γ and TNF-α. This suggests that pre-activated CD4^{cd25}{cd45rb}^\text{low} Treg cells suppress proliferation of Teff cells via IL-10. These \textit{in vitro} suppression assays demonstrate that lung
CD4^CD25^CD45RB^low Treg cells can suppress, but only when they are sufficiently activated. Upon activation, they upregulate CD25 and use IL-10 to inhibit proliferation of Teff cells. However, they are not as potent as nTreg cells at suppressing T cell responses.

Infection with *B. pertussis* increased the percentages of CD4^FoxP3^CD25^ Treg cells in the lung, which peaked 14 days post-challenge. Interestingly, the percentages of CD4^FoxP3^CD25^ Treg cells decreased thereafter and ultimately returned to pre-infection levels. Consistent with the present study, others have shown that CD4^FoxP3^CD25^ Treg cells can upregulate CD25 upon activation (Zelenay *et al.*, 2005), but whether the increased frequency of CD4^FoxP3^CD25^ Treg cells is a result of activation, or whether it is due to increased percentages of resident and/or infiltrating CD4^FoxP3^CD25^ Treg cells proliferating in response to *B. pertussis* infection was not determined. Subsequent experiments have confirmed that CD4^FoxP3^CD25^ Treg cells can upregulate CD25 and produce IL-10 *in vivo*, as determined by tracking PKH67-labelled Treg cells during infection (Coleman *et al.*, 2012). Notably, only some of the labelled cells expressed CD25, indicating that only those with antigen specificity are able to convert to a CD25^ phenotype *in vivo* (Coleman *et al.*, 2012). This is in agreement with the findings by Curotto de Lafaille *et al.*, who report that the number of CD25^ T cells which can express CD25 *in vivo* is limited (Curotto de Lafaille *et al.*, 2004), and also corroborates the hypothesis that CD25 expression on the surface of Treg cells is labile, with cells able to lose and regain CD25 on the surface without affecting their function (Zelenay *et al.*, 2005).

Analysis of Treg cell cytokine production demonstrated a role for IL-10 in regulating the immune response to *B. pertussis*. Both CD4^FoxP3^CD25^ and CD4^FoxP3^CD25^ Treg cells produced IL-10. This data is consistent with the *in vitro* studies which showed that CD4^FoxP3^CD25^ Treg cells suppress proliferation of Teff cells by an IL-10-dependent mechanism. By 28 days post-challenge, both populations produced only background levels of IL-10, suggesting that not only had the frequencies of both cell populations returned to pre-infection levels but that they were in a state of unresponsiveness.
The fact that the frequencies of CD4\(^{+}\)FoxP3\(^{-}\)CD25\(^{+}\) and CD4\(^{+}\)FoxP3\(^{-}\)CD25\(^{-}\) Treg cells return to pre-infection levels suggests that the lung environment might actively keep resident Treg cells in a quiescent state under normal conditions. Indeed, there is evidence for this from studies in rats which found that, like in mice, lung T cells display an activated phenotype, yet have downmodulated CD25 expression and are "trapped" in the resting G\(_0\)/G\(_1\) phase of the cell cycle (Strickland et al., 1996b). Furthermore, these properties are very similar to the properties of T cells activated in the presence of AM (Strickland et al., 1996a). However, this AM-induced T cell anergy is reversible (Strickland et al., 1996a), and studies where AM have been depleted in vivo have demonstrated the restoration of lung T cell immunocompetence (Strickland et al., 1993; Thepen et al., 1989). Additionally, it has been demonstrated that the stimulation of AM via TLRs, in particular TLR2, TLR4 and TLR9, overcomes their inhibitory functions and allows an appropriate immune response to develop (Fernandez et al., 2004). Since LPS, a TLR4 agonist is a component of the Gram-negative \textit{B. pertussis} outer membrane, and \textit{B. pertussis} can infect AM, it is therefore very likely that AM respond in this manner in response to infection with \textit{B. pertussis}.

Furthermore, it has been reported that \textit{B. pertussis} can infect AM along with ciliated epithelial cells of the upper respiratory tract (Hellwig et al., 1999). Once the pathogen has been cleared, it is likely that the immunosuppressive environment of the normal lung serves to limit the local clonal expansion of T cells after activation, presumably to limit collateral damage to the delicate lung tissue. This could be made possible by restoring the inhibitory capacity of AM, which in turn suppress T cell populations in the lung and keep them in a resting, quiescent state. IL-10 has been shown to keep alveolar macrophages in an inhibitory state (Fernandez et al., 2004). Our lab has also demonstrated the induction of FoxP3\(^{-}\)Tr1 regulatory cells in response to \textit{B. pertussis} (McGuirk et al., 2002). These Tr1 cells produce IL-10, and this IL-10 may promote the return to an immunosuppressive environment once the infection has been eradicated.

As this novel population of CD4\(^{+}\)FoxP3\(^{-}\)CD25\(^{+}\) Treg cells appears to have an important role in regulating the immune response to \textit{B. pertussis}, particularly by producing IL-10, the ability of these cells to function in the absence of CD4\(^{+}\)FoxP3\(^{-}\)CD25\(^{+}\) nTreg cells was examined by
administering a depleting antibody against CD25 to remove all nTreg cells prior to challenge with *B. pertussis*. Only one dose of depleting antibody was administered, to avoid the possibility of depleting any infiltrating CD25$^+$ activated CD4$^+$ Teff cells during the peak of *B. pertussis* infection, which occurs 7-14 days after the initial challenge.

I hypothesised that if CD4$^+$FoxP3$^+$CD25$^+$ and CD4$^+$FoxP3$^+$CD25$^+$ Treg cells represented distinct Treg cell populations in the lung, then the removal of nTreg cells would not affect bacterial clearance. Indeed, no change in CFU was observed between CD25-depleted mice and controls. Since depleting CD25$^+$ nTreg cells does not remove CD4$^+$FoxP3$^+$CD25$^+$ Treg cells, it is likely that these cells were able to compensate for the lack of nTreg cells in this study. The effect of antigen-specific Tr1 cells must also be considered, as they are induced during *B. pertussis* infection and allow the pathogen to evade protective immunity (McGuirk *et al.*, 2002). Since IL-10 appears to be the main mechanism by which CD4$^+$FoxP3$^+$CD25$^+$ Treg cells might suppress Teff proliferation - the effect of depleting CD4$^+$FoxP3$^+$CD25$^+$ Treg cells in IL-10-deficient mice was investigated, as this would impair both types of immune regulation in the lung – namely, removal of CD4$^+$FoxP3$^+$CD25$^+$ nTreg cells and functionally impaired CD4$^+$FoxP3$^+$CD25$^+$ Treg cells. While the bacterial burden of undepleted IL-10$^{-/-}$ mice had was similar to WT mice, analysis of bacterial CFU showed that IL-10$^{-/-}$ mice depleted of CD25$^+$ cells cleared the pathogen faster than control mice. This was significant early on in the infection, at 7 days post-challenge.

The accelerated bacterial clearance in CD25-depleted IL-10$^{-/-}$ mice appears to be due to enhanced Th1 immunity to *B. pertussis*, as demonstrated by the presence of antigen-specific IgG$_2a$ in their serum from as early as 7 days post-challenge, compared to 21 days for undepleted IL-10$^{-/-}$ and CD25-depleted WT mice. Furthermore, cells from the spleens of depleted and undepleted IL-10$^{-/-}$ mice produced extremely significant concentrations of antigen-specific IFN-γ early in infection and higher frequencies of IFN-γ$^+$ lymphocytes were present in the spleens of CD25-depleted IL-10$^{-/-}$ mice 21 days post-challenge. While CD25-depleted WT mice also produced some early antigen-specific IFN-γ, the concentrations were lower than that produced by the IL-10$^{-/-}$ mice.
Examination of cytokines and chemokines in the lung homogenate 7 days post-challenge revealed detectable IFN-γ in IL-10^−/− mice only, albeit at low concentrations. Interestingly, the CD25-depleted WT mice had significantly elevated concentrations of IL-10 in their lungs, compared with undepleted WT mice. The elevated IL-10 concentrations possibly compensates for the lack of nTreg cells and might explain why those mice did not clear the infection more quickly than controls, despite the presence of enhanced pro-inflammatory cytokines such as IL-17, TNF-α and IL-1β in their lung homogenate. There is evidence that IL-17 and IFN-γ can be antagonistic, so it is possible that IL-17 prevents extreme Th1-mediated immune responses to *B. pertussis* in these mice.

IL-17 has a protective role in *B. pertussis* infection in mice (Dunne *et al.*, 2010; Higgins *et al.*, 2003). It has been reported that IL-17-deficient mice infected with *B. pertussis* have a greater bacterial burden than WT mice (Dunne *et al.*, 2010). Furthermore, CyaA has been shown to promote Th17 cells in *B. pertussis*-infected WT, but not IL-1R1-deficient mice (Dunne *et al.*, 2010). These observations are linked, as CyaA promotes innate IL-1β production via activation of the NALP3 inflammasome, thereby promoting a Th17 protective immune response to *B. pertussis* (Dunne *et al.*, 2010). Although it is somewhat counterintuitive that the WT CD25-depleted mice had such a high concentration of pro-inflammatory cytokines in their lungs, it is likely that the effects of these cytokines can be regulated by the high levels of IL-10 produced, hence their bacterial burden is the same as undepleted controls.

While the CD25-depleted IL-10^−/− mice did not produce such high levels of these pro-inflammatory cytokines, perhaps the production of IFN-γ in the absence of functional Treg cells is sufficient to mediate the significant eradication of *B. pertussis*. IL-10 and IL-17 are co-regulated, so it is also likely that the IL-10^−/− mice lack appropriate Th17 immunity, which in the CD25-depleted IL-10^−/− mice would further facilitate uncontrolled Th1 responses. The CD25^+ nTreg cells in undepleted IL-10^−/− mice probably regulate the immune response to *B. pertussis* and most likely prevent accelerated clearance of the infection. However, depleting CD25^+ nTreg cells in IL-10^−/−
mice clearly disables both immunoregulatory mechanisms in the lung, enabling the mice to eradicate the infection more quickly, but unable to prevent dysregulated inflammation.

These results suggest that Treg cells prevent the optimal clearance of the pathogen, but it is very likely that they function to limit collateral damage in the lung as a result of an overzealous immune response which might otherwise irreversibly harm the delicate lung tissue. It is also clear that eliminating CD4 FoxP3^CD25^ Treg cells alone is not sufficient to impair the lung’s immunoregulatory mechanisms. Rather, removal of both CD4^FoxP3^CD25^ Treg cells and IL-10-producing CD4^FoxP3^CD25^ Treg cells completely abolishes immune regulation in the lung - suggesting that inducible FoxP3^ Trl cells as well as CD4^FoxP3^CD25^ IL-10^+ cells might play redundant roles in B. pertussis infection. However, it is unclear whether this is unique to B. pertussis infection.

A study of Pseudomonas aeruginosa infection in mice has shown that depletion of CD25^- cells has no effect on the outcome of disease in mice, with depleted animals and control animals showing similar cytokine and chemokine production and similar levels of airway neutrophil infiltration and lung histology (Carrigan et al., 2009). Like B. pertussis, P. aeruginosa is a Gram-negative bacterium which causes acute lung disease. However, the immune response to P. aeruginosa is predominantly a Th2 one. Nonetheless, both the present study and that of Carrigan et al have collectively demonstrated that an additional regulatory mechanism exists in the lungs of mice and is effective in regulating both Th1 and Th2 immune responses. However, the role of antigen-specific, inducible Treg cells such as Trl cells cannot be ruled out.

In summary, this present study has identified a novel population of regulatory T cells in the lungs of mice which are CD4^FoxP3^CD25^. They are distinguishable from nTreg cells by their lack of CD25 expression and are the predominant FoxP3^- population in the lungs of naïve mice. Similar populations have been shown to reside in the livers and colons of naïve mice and may represent a Treg cell population specific to mucosal tissues. In vitro suppression assay have revealed that these cells can suppress the proliferation of CD4^- responder T cells as well as IFN-γ
production, but only when they have been pre-activated in the presence of IL-2, which results in the upregulation of CD25 on the surface of these cells. CD4^FoxP3^CD25^ Treg cells do not require direct cell-cell contact in order to suppress, and the soluble factor which mediates suppression of responder cells is IL-10.

The *B. pertussis* infection model has demonstrated that the frequencies of CD4^FoxP3^CD25^ Treg cells increase in the lung in response to the infection, but return to pre-infection levels once the pathogen has been eradicated. As it has already been shown that CD4^FoxP3^CD25^ Treg cells upregulate CD25 upon activation *in vitro*, it is possible that this reflects an increase in CD25^ Treg cells. CD4^FoxP3^CD25^ Treg cells can produce IL-10 and in response to *B. pertussis* infection, as can CD4^FoxP3^CD25^ Treg cells, although they produce IL-10 later when compared with their CD25^ counterparts. Removal or impairment of one population does not affect bacterial burden in *B. pertussis* infection, but mice which lack nTreg cells and have impaired IL-10 production can clear the infection more quickly. CD4^FoxP3^CD25^ Treg cells might therefore represent a distinct subset of Treg cells in the lung, which function in conjunction with CD4^FoxP3^CD25^ Treg cells and play a redundant immunoregulatory role. Further and more detailed investigations into this regulatory subset might aid in the generation of new therapeutic strategies against lung disease in the future.
3.4 Figures
Figure 3.1 The majority of CD4⁺FoxP3⁺ T cells in the lungs of naïve mice do not express the activation marker CD25
Splenocytes from naïve mice were isolated by physical disruption and passed through a 40 μM filter. Lungs from naïve mice were digested with 1 μg/ml collagenase, homogenised and filtered. Isolated cells were stained with rat anti-mouse CD4, CD25 and FoxP3. Representative dot plots show A) the percentage of FoxP3⁺ and CD4⁺ cells (within the total lymphocyte gate) from the lungs of a naïve mouse., B) CD25 expression on viable CD4⁺FoxP3⁺ T cells isolated from naïve spleen or lung, C) Lung CD25 and CD4 expression within the total lymphocyte gate. D) The percentage of viable CD4⁺FoxP3⁺CD25⁺ cells within the CD4⁺FoxP3⁺ gated population from spleens and lungs of naïve mice. Results are pooled from 8 mice. P values were calculated on the difference between CD25 expression on CD4⁺FoxP3⁺ cells isolated from the lungs and spleens. **p<0.01
Figure 3.2 The majority of CD4⁺FoxP3⁺ T cells in lungs and other mucosal tissues of naïve mice do not express CD25

Cells were isolated from spleen, cervical (CLN) and thoracic (TLN) lymph nodes and enzymatically digested lung, liver and colon. Cells were stained with rat anti-mouse CD4, CD25 and FoxP3. A) Representative dots plots showing the percentage of FoxP3 and CD25 cells (based on the viable CD4⁺ gate) in liver, colon, CLN and TLN. B) The percentage of viable CD4⁺FoxP3⁺CD25[−] cells within the CD4⁺FoxP3⁺ gated population from spleens, lungs, livers, colons, CLN or TLN of naïve mice. Results are pooled from 8 mice. P values were calculated on the difference between CD25 expression on CD4⁺FoxP3⁺ cells isolated from the different tissues relative to spleen. **p<0.01, ***p<0.001
A

Lung

CD69
ICOS
GITR
CTLA4
CD127
CD45RB
CD44
CD40L
CD73
CD39

% CD4+FoxP3+

CD25-
CD25+

B

Spleen

CD69
ICOS
GITR
CTLA4
CD127
CD45RB
CD44
CD40L
CD73
CD39

% CD4+FoxP3+

CD25-
CD25+
Lung CD4⁺FoxP3⁺

<table>
<thead>
<tr>
<th>Antigen</th>
<th>CD25⁻</th>
<th>CD25⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD73</td>
<td>56</td>
<td>68</td>
</tr>
<tr>
<td>CD39</td>
<td>59</td>
<td>77</td>
</tr>
<tr>
<td>CD69</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>CD45RB</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>CD44</td>
<td>85</td>
<td>84</td>
</tr>
<tr>
<td>CD40L</td>
<td>32</td>
<td>48</td>
</tr>
<tr>
<td>CD127</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ICOS</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>GITR</td>
<td>78</td>
<td>96</td>
</tr>
<tr>
<td>CTLA-4</td>
<td>39</td>
<td>58</td>
</tr>
</tbody>
</table>

FoxP3
Figure 3.3 CD4⁺FoxP3⁺CD25⁻ T cells have a similar phenotype to nTreg cells, but express less GITR and CD73 in the lung, and express more ICOS and less CTLA-4 in the spleen

Cells were isolated from the lungs and spleens of naïve mice and stained with rat anti-mouse antibodies as indicated. The phenotype of CD4⁺FoxP3⁺CD25⁻ or CD25⁻ cells was based on a viable forward by side scatter gate. Results show the mean expression values of surface markers within the CD4⁺FoxP3⁺CD25⁻ and CD4⁺FoxP3⁺CD25⁺ gates in cells isolated from the lungs (A) and spleens (B) of naïve mice. C) Results show representative dot plots. D) Table of average median fluorescence intensities (MFI) for selected surface markers. P values were calculated on the difference in surface marker expression between CD25⁺ and CD25⁻ cells. *p<0.05, **p<0.01, ***p<0.001

<table>
<thead>
<tr>
<th>Marker</th>
<th>MFI Lung CD4⁺FoxP3⁺CD25⁻ T cells</th>
<th>MFI Lung CD4⁺FoxP3⁺CD25⁺ T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD73</td>
<td>997.53 +/- 0.46</td>
<td>107.25 +/- 19.18</td>
</tr>
<tr>
<td>CD69</td>
<td>4.5 +/- 9.0</td>
<td>20.2 +/- 4.35</td>
</tr>
<tr>
<td>CD45RB</td>
<td>36.03 +/- 6.21</td>
<td>8.18 +/- 9.49</td>
</tr>
<tr>
<td>CD44</td>
<td>111.93 +/- 12.15</td>
<td>312.5 +/- 23.27</td>
</tr>
<tr>
<td>CD40L</td>
<td>3.18 +/- 6.35</td>
<td>16.88 +/- 1.02</td>
</tr>
<tr>
<td>ICOS</td>
<td>60.48 +/- 6.87</td>
<td>157.05 +/- 106.04</td>
</tr>
</tbody>
</table>
Figure 3.4 Freshly isolated lung CD4⁺FoxP3⁺CD25⁻ T cells do not suppress proliferation of Teff cells in vitro

CD4⁺CD25⁻CD45RB_{low} Treg cells were isolated from the digested lungs of naïve mice. CD4⁺CD25⁻CD45RB_{high} Teff cells were isolated from spleens of naïve mice. Teff cells (1 x 10⁶) were cultured with 2 μg/ml immobilised anti-CD3 and irradiated APC with or without Treg cells (1 x 10⁵). A) Proliferation was determined by ³H-thymidine incorporation 72 hours later. B) Representative dot plot showing the expression of FoxP3 in the sorted CD4⁺CD25⁻CD45RB_{low} population. Results are representative of 3 experiments.
Figure 3.5 Pre-activated lung CD4^FoxP3^CD25^ Treg cells suppress proliferation of Teff cells and IFN-γ production at a 1:1 ratio in vitro

CD4^CD25^CD45RB^low Treg cells were isolated from the digested lungs of naïve mice and activated for 5 days with 1 μg/ml immobilised anti-CD3, 20U/ml IL-2 and irradiated APC (5 x 10^5). CD4^CD25^CD45RB^high Teff cells were isolated from the spleens of naïve mice and were cultured with 10 μg/ml immobilised anti-CD3 and irradiated APC (5 x 10^5) with or without activated Treg cells. A) After 48 hours the supernatants were removed and concentrations of IL-10, IFN-γ and TNF-α were quantified by ELISA. TGF-β1 was not detected in supernatants. Proliferation was determined by ³H-thymidine incorporation after 72 hours. B) Proliferation was also determined by labelling freshly isolated CD4^CD25^CD45RB^high Teff cells with 0.5 μM CFSE. Pre-activated CD25^ Treg cells were co-cultured with CFSE-labelled effector T cells (1:1) and activated in the presence of 10 μg/ml immobilised anti-CD3 and 5 x 10^5 irradiated APC for 5 days. Cells were subsequently stained with antibodies directed against surface CD4 and CD25, and CFSE loss was determined by flow cytometry. Results are representative of 3 experiments. P values were calculated based on the difference in proliferation or cytokine production between activated Teff cells and Teff cells activated in the presence of Treg cells. **p<0.01, ***p<0.001
Figure 3.6 Low levels of contaminating Teff cells do not proliferate in the presence of CD25⁺ Treg cells during pre-activation

CD4⁺CD25⁻CD45RB⁻ Treg cells and CD4⁺CD25⁺CD45RB⁺ Teff cells were isolated from the spleens of naïve mice. CD4⁺CD25⁻CD45RB⁻ Treg cells were activated as described in Fig. 3.5, either in the absence of Teff cells or in the presence of different ratios of Teff cells. Proliferation was determined by ³H-thymidine incorporation after 72 hours. Results are representative of 3 experiments.
Figure 3.7 Activation of CD4^FoxP3^CD25^- T cells *in vitro* with anti-CD3 and exogenous IL-2 enhances CD25 expression

CD4^CD25^-CD45RB^{low} Treg cells were isolated from the digested lungs of naïve mice and activated as described in Fig. 3.5. After 24 hours, cells were stained with rat anti-mouse antibodies against CD4, CD25 and FoxP3. Dot plot represents expression of CD25 and FoxP3 in the CD4^+ population.
Figure 3.8 CD25+ Treg cell suppression of Teff cells is not cell-contact dependent

CD4+CD25+CD45RBlow Treg cells were isolated from the digested lungs of naïve mice and activated as described in Fig. 3.5. After 5 days, CD4+CD25-CD45RBhigh Teff cells were isolated from the spleens of naïve mice and were activated as described in Fig. 3.5. Treg cells were cultured under identical conditions, either separated from the Teff cells by a semi-permeable membrane, or in the presence of Teff cells as a positive control. After 48 hours, supernatants were removed and IL-10, IFN-\(\gamma\) and TNF-\(\alpha\) concentrations were quantified by ELISA. Proliferation was determined by \(^3\)H-thymidine incorporation after 72 hours. Results are representative of 3 experiments. P values were calculated based on the difference in proliferation or cytokine production between activated Teff cells and Teff cells activated but separated from Treg cells by a semi-permeable membrane. **p<0.01, ***p<0.001
Figure 3.9 Addition of a blocking anti-IL-10 receptor antibody reverses the suppressive effect of CD25⁺ Treg cells on effector T cell proliferation

CD4⁺CD25⁺CD45RB^{low} Treg cells were isolated from the digested lungs of naïve mice and were activated as described in Fig. 3.5. After 5 days, CD4⁺CD25⁺CD45RB^{high} Teff cells were isolated from the spleens of naïve mice and were activated as described in Fig. 3.5, with or without activated Treg cells. Cells were cultured either in the presence or absence of 10 μg/ml anti-IL-10R blocking antibody. After 48 hours, supernatants were removed and IL-10, IFN-γ and TNF-α concentrations were quantified by ELISA. Proliferation was determined by ³H-thymidine incorporation after 72 hours. Results are representative of 3 experiments. P values were calculated based on the differences in proliferation and cytokine production by Teff cells activated in the presence of Treg cells and isotype control antibody, and Teff cells activated in the presence of Treg cells and anti-IL10R. **p<0.01, ***p<0.0001
Figure 3.10 Transient expression of CD25 by CD4^FoxP3^ Treg cells in the lungs during infection with *B. pertussis*

Balb/c mice were challenged with an aerosol of live *B. pertussis*. 7, 14, 21 and 28 days post-challenge, mice were injected with HKBP (4 x 10^9 bacteria) to induce a recall response. 4 hours after the injection, cells were isolated from the digested lungs of infected mice and incubated overnight in the presence of 2 µg/ml Brefeldin A. Cells were subsequently stained with rat anti-mouse antibodies against CD4, CD25 and FoxP3. All dot plots shown are based on a viable forward by side scatter gate. A) The percentage of CD4^+CD25^+ cells. B) The percentage of CD4^+FoxP3^+ cells. C) The percentage of CD25 and FoxP3 gated on viable CD4^+FoxP3^+ cells. Results are representative of 6 experiments.
Figure 3.11 Sustained expression of IL-10 by CD4^FoxP3^CD25^ Treg cells during infection with *B. pertussis*
Balb/c mice were challenged with an aerosol of live *B. pertussis*. 7, 14, 21 and 28 days post-challenge, they were then injected with HKBP (4 x 10^9 bacteria) to induce a recall response. 4 hours after the injection, cells were isolated from the digested lungs of infected mice and incubated overnight in the presence of Brefeldin A. Cells were subsequently stained with rat anti-mouse antibodies against CD4, CD25, FoxP3 and IL-10. Results show A) the percentages of IL-10-producing CD25^+ and CD25^- cells during the course of infection and B) representative dot plots indicating the peak of IL-10 production (14 days post-challenge). Graphs and dot plots are representative of 6 experiments.
Figure 3.12 Injection of anti-CD25 depleting antibody removes CD4^CD25^ nTreg cells within 24 hours

C57Bl/6 mice (WT) were injected i.p. with anti-CD25 depleting antibody or with irrelevant isotype-matched IgG1 control antibody. 24 hours after injection, the cells were isolated from the spleens of treated mice and were stained with rat anti-mouse antibodies against CD4 and CD25. CD25 expression was determined by using an alternative conjugated anti-CD25 antibody (7D4) directed against a different epitope to that of the depleting antibody (PC61). Dot plots shown represent the frequencies of CD4^CD25^ cells in A) mice which received isotype-matched antibody and B) mice which received CD25 depleting antibody based on the viable CD4^ gate. Results are representative of 4 experiments.
A

![Graph A](image)

Days Post-challenge

B

![Graph B](image)

Days Post-challenge

C

![Graph C](image)

Days Post-challenge
Figure 3.13 Enhanced clearance of *B. pertussis* in IL-10^{-} mice depleted of CD25^{+} cells

C57BL/6 (WT) or IL-10^{-} mice were injected (i.p.) with either anti-CD25 depleting antibody or with irrelevant isotype-matched control IgG1 antibody 24 hours prior to aerosol challenge with *B. pertussis*. Control WT mice were infected but did not receive antibody. Each treatment group contained n=4 mice. CFU counts were performed on homogenised lungs 4 hours and 7, 14 and 21 days post challenge. Results are representative of 2 experiments. P values were calculated based on the difference between IL-10^{-} mice which received IgG1 isotype control antibody, and IL-10^{-} mice which received the depleting antibody. **p<0.01
Figure 3.14 Enhanced antibody response to *B. pertussis* in IL-10^{−/−} mice depleted of CD25⁺ cells

C57Bl/6 (WT) and IL-10^{−/−} mice were injected with antibody i.p. prior to *B. pertussis* infection, as described in Fig. 3.13. Serum was collected 7, 14 and 21 days post-challenge and relative levels of *B. pertussis*-specific IgG2a was determined. Results are representative of 2 experiments.
A 7 days post-challenge

B 14 days post-challenge

C 21 days post-challenge

WT WT WT IL-10^{-/-} IL-10^{-/-}
+Isotype +Isotype + anti- anti-
CD25 CD25

Unstimulated FHA HKBP anti-CD3 + PMA

IFN-\(\gamma\) (ng/ml)

WT WT WT IL-10^{-/-} IL-10^{-/-}
+Isotype +Isotype + anti- anti-
CD25 CD25

IFN-\(\gamma\) (ng/ml)

WT WT WT IL-10^{-/-} IL-10^{-/-}
+Isotype +Isotype + anti- anti-
CD25 CD25

IFN-\(\gamma\) (ng/ml)

WT WT WT IL-10^{-/-} IL-10^{-/-}
+Isotype +Isotype + anti- anti-
CD25 CD25
Figure 3.15 Depletion of CD25^+ cells and/or IL-10-deficiency results in earlier IFN-γ production by *B. pertussis*-specific splenocytes

C57Bl/6 (WT) and IL-10^-/- mice were injected with antibody i.p. prior to *B. pertussis* infection, as described in Fig. 3.13. 7, 14 and 21 days post-challenge, freshly isolated splenocytes were cultured for four days with medium alone, FHA, HKBP or anti-CD3 and PMA. IFN-γ concentrations were quantified by ELISA A) 7 days B) 14 days and C) 21 days post-challenge. P values were calculated based on the difference between FHA or HKBP-stimulated cells versus unstimulated control *p<0.05, **p<0.01, ***p<0.001*
A 7 days post-challenge

IFN-γ (ng/ml)

- Unstimulated
- FHA
- HKBP
- anti-CD3 + PMA

B 14 days post-challenge

C 21 days post-challenge

WT + Isotype

WT + IL-10−/− + Isotype

IL-10−/− + anti-CD25

IL-10−/− + anti-CD25
Figure 3.16 Depletion of CD25^+ cells and/or IL-10 deficiency has no effect on B. pertussis-specific IFN-γ production in cervical lymph nodes

C57Bl/6 (WT) and IL-10^−/− mice were injected with antibody i.p. prior to B. pertussis infection, as described in Fig. 3.13. 7, 14 and 21 days post-challenge, freshly isolated cells from cervical lymph nodes were cultured for four days with medium alone, FHA, HKBP or anti-CD3 and PMA. IFN-γ concentrations were quantified by ELISA A) 7 days B) 14 days and C) 21 days post challenge.
Figure 3.17 Enhanced production of IFN-γ in the spleens of B. pertussis-infected IL-10^-/- mice depleted of CD25^ cells

C57Bl/6 (WT) and IL-10^-/- mice were injected with antibody i.p. prior to B. pertussis infection, as described in Fig. 3.13. 21 days post-challenge, freshly isolated splenocytes were cultured with (A) FHA or (B) HKBP for four days. Cells were stained with a rat anti-mouse antibody against IFN-γ. Results show the percentage of IFN-γ^+ lymphocytes (based on the viable lymphocyte gate) in cells isolated from the spleens of infected mice 21 days after aerosol challenge with live B. pertussis. P values were calculated based on the difference between WT mice which received the depleting antibody, and IL-10^-/- mice which received the depleting antibody. *p<0.05
Figure 3.18 Enhanced production of IFN-γ in the CLN of *B. pertussis*-infected IL-10^−/− mice depleted of CD25^+ cells

C57Bl/6 (WT) and IL-10^−/− mice were injected with antibody i.p. prior to *B. pertussis* infection, as described in Fig. 3.13. C57Bl/6 (WT) and IL-10^−/− mice were injected with antibody i.p. prior to *B. pertussis* infection, as described in Fig. 3.13. 21 days post-challenge, freshly isolated cells from cervical lymph nodes were cultured with (A) anti-CD3 and PMA or (B) FHA for four days. Cells were stained with a rat anti-mouse antibody against IFN-γ. Results show the percentage of IFN-γ^+ lymphocytes (based on the viable lymphocyte gate) examined in cells isolated from the CLN of infected mice 21 days after aerosol challenge with live *B. pertussis*. P values were calculated based on the difference between WT mice which received the depleting antibody, and IL-10^−/− mice which received the depleting antibody. **p<0.01
Figure 3.19 IL-10⁻/⁻ mice produce IFN-γ in response to *B. pertussis* infection, while WT mice depleted of CD25⁺ cells produce significantly more IL-10 than WT controls.
C57Bl/6 (WT) and IL-10⁻/⁻ mice were injected with antibody i.p. prior to *B. pertussis* infection, as described in Fig. 3.13. A) IFN-γ and B) IL-10 concentrations in homogenised lungs were determined by ELISA 7 days post challenge. Results are representative of 2 experiments. P values were calculated based on the difference between WT mice which received the depleting antibody, and WT mice which received isotype control antibody. ***p<0.001
Figure 3.20 Mice depleted of CD25+ cells produce significantly higher levels of IL-17, TNF-α and IL-1β in response to *B. pertussis* infection than controls

C57Bl/6 (WT) and IL-10−/− mice were injected with antibody i.p. prior to *B. pertussis* infection, as described in Fig. 3.13. A) IL-17, B) TNF-α and C)IL-1β concentrations in homogenised lungs were determined by ELISA 7 days post challenge. Results are representative of 2 experiments. P values were calculated based on the difference between WT mice which received the depleting antibody, and WT mice which received isotype control antibody. *p<0.05, **p<0.01, ***p<0.001
Chapter 4

Murine alveolar macrophages use retinoic acid to induce FoxP3+ T cells *in vitro* and *in vivo* to promote local immunosuppression in the lung environment.
4.1 Introduction

A population of CD4^FoxP3^CD25^ Treg cells which are present in the lungs of naïve mice and are dominant over CD4^FoxP3^CD25^ Treg cells in this compartment were described in Chapter 3. Compared with nTreg cells, these CD25^ Treg cells have a high activation threshold and can suppress Teff cells in vitro via IL-10. These cells appear to comprise a distinct immunoregulatory arm in the lung, as either depleting CD25^ or functionally impairing IL-10 has no effect on the course of B. pertussis infection. However, removing both populations of Treg cell significantly accelerates clearance of the pathogen, apparently by failing to constrain excessive Th1 immune responses.

It is not clear whether the CD4^FoxP3^CD25^ Treg cells are of thymic origin or whether they are induced in the lung. As they suppress via IL-10, and since the suppressive function of thymically-derived nTreg cells have been shown to be cell contact-dependent in vitro (Thornton and Shevach, 1998), it is possible that these cells might be induced in the lung.

In humans, lung T cells generally have a memory/recently activated phenotype (Marathias et al., 1991). Furthermore, human and rat studies on lung interstitium and bronchoalveolar lavage cells have shown that T cells from these environments have reduced cloning efficiency and cytokine production compared with blood T cells (Garlepp et al., 1992; Holt et al., 1988; Nelson et al., 1990). Lung T cells proliferate weakly in response to mitogens in culture, presumably due to the high frequency of memory cells in the lung, which do not respond as readily as naïve cells to such stimuli (Becker et al., 1990).

T cell-mediated immunity is important in the lung and respiratory tract to protect from inhaled pathogens and antigens from the environment. The induction of respiratory T cell immunity must be tightly regulated however, to prevent inflammatory damage to the fragile tissue during an immune response. Additionally, the immune system in the lung continuously encounters a vast amount of antigen, most of which is harmless. It is crucial that the resident immune cells can
distinguish such harmless antigen from pathogen-derived antigens, and effectively "ignore" them, yet respond appropriately and timely when harmful antigen is detected.

The broader lung environment also affects T cell function. It has been suggested that lung T cells are maintained in a state of "partial hyporesponsiveness", and the lung compartment can employ various immunoregulatory mechanisms to accomplish this, including components of the surfactant lining (Wilsher et al., 1988) and secreted products of alveolar type II epithelial cells (Paine et al., 1992). Alveolar macrophages (AM) have also been implicated (Strickland et al., 1996a). AM are the most numerous (>90%) immune cell in the normal lung (Holt et al., 2008). They are located in the alveolar space, while lung T cells are sequestered in the vascular bed of the lung parenchyma (Holt et al., 2008). In the rat, AM have been shown to induce T cell anergy in vitro, which is reversible upon removal of AM from culture (Strickland et al., 1996a). The same group also described the downregulation of the IL-2R (CD25) on T cells isolated from lungs of naïve rats, and that these cells otherwise appear to be "postactivated" and trapped in the G0/G1 unproliferative phase of the cell cycle (Strickland et al., 1996b). They conclude that AM are responsible for limiting T cell activation in the lung, presumably to prevent damage to the delicate tissue (Strickland et al., 1996a; Strickland et al., 1996b).

It has long been recognised that the lung is an immunosuppressive organ. The fact that the CD4⁺FoxP3⁺CD25⁻ Treg cell population described in Chapter 3 bears striking similarity to the lung cells described by Strickland et al led to the hypothesis that AM might be responsible for the induction of CD4⁺FoxP3⁺CD25⁻ Tregs in the lungs of naïve mice. The importance of FoxP3 as the master regulator of Treg cells was first described in 1995 by Sakaguchi and colleagues (Sakaguchi et al., 1995); therefore many of the AM studies cited thus far pre-date its discovery. While Strickland et al reported AM-mediated suppression of T cell proliferation in vitro, I expanded on this finding and sought to investigate whether AM could induce FoxP3 expressing T cells, which might in turn suppress T cell proliferation.
The aim of this study was to determine whether AM are involved in inducing FoxP3^+ T cells in the lungs of naive mice. I have demonstrated that AM can convert FoxP3^- naive T cells to FoxP3^+ T cells in vitro. The mechanism involves a soluble factor rather than direct cell-cell contact, because in vitro culture of naive T cells with conditioned media from AM (AM-CM) also induces FoxP3^+ T cells, and leads to increased IL-10 and reduced IFN-γ and IL-4 production by the T cells. The soluble factors responsible for this are retinoic acid (RA) in conjunction with TGF-β1, and inhibiting the RA receptor (RAR) and/or neutralisation of TGF-β1 inhibits the induction of FoxP3^+ T cells in vitro and enhances T cell proliferation in the presence of AM. In vivo, intranasal administration of RARi as a treatment does not affect bacterial burden in mice infected with B. pertussis. However, RARi is effective at overcoming nasal tolerance when administering vaccines intranasally, as shown by enhanced antigen-specific IgE in the serum of mice which received intranasal antigen, adjuvant and RARi.
4.2 Results

4.2.1 Alveolar macrophages suppress T cell proliferation and can induce FoxP3 expression in naïve CD4+FoxP3- T cells

It is well known that AM act to suppress local immune responses in the lung. Depletion of AM in vivo, using clodronate liposomes, illustrated the importance of AM-mediated immunosuppression; mice depleted of AM exhibited excessive T cell responses against innocuous antigen (Strickland et al., 1993; Thepen et al., 1991; Thepen et al., 1989). Furthermore, it has been demonstrated in vitro that AM from mice, rats and humans inhibited T cell proliferation (Strickland et al., 1996a; Strickland et al., 1993; Upham et al., 1995).

The mechanism by which AM exert control over T cells is unclear, although it is known that they secrete anti-inflammatory mediators such as NO (Hirano, 1998), prostaglandins (De Rose et al., 1997) and the cytokines IL-10 (Chanteux et al., 2007) and TGF-β1 (Nishimura et al., 2007). TGF-β1 in particular is associated with the induction of Treg cells (Huter et al., 2008; Selvaraj and Geiger, 2007; Zhou et al., 2008), however, the precise relationship between AM and the induction of FoxP3+ T cells has not been reported. Most of the studies cited thus far actually pre-date the discovery of FoxP3 as the most definitive Treg cell marker, and while those in vitro studies used purified populations of CD4+ T cells, they did not specifically exclude Treg cells from their experiments (Strickland et al., 1996a; Strickland et al., 1993; Upham et al., 1997). It is possible that Treg cells could have been responsible for the reported inhibition of T cell proliferation, so to exclude this possibility it was first investigated whether AM from bronchoalveolar lavage (BAL) could inhibit the proliferation of highly purified naïve effector T cells in vitro.

Expression of the naïve T cell marker CD45RB is inversely correlated with FoxP3 expression (Luke et al., 2006). CD4+CD45RBlow T cells have been shown to be mainly comprised of FoxP3+ nTreg cells in naïve mice and can be used to ameliorate colitis in mice, while CD4+CD45RBhigh T cells represent FoxP3+ effector cells capable of inducing colitis in immune compromised mice (Luke et al., 2006; Powrie et al., 1996; Powrie et al., 1994a). I therefore
purified splenic CD4^CD45RB^{hi}CD25^ T cells as a source of CD4^FoxP3^CD25^ naïve T effector cells to be co-cultured with AM in vitro (Appendix, Fig. 8.2). A proportion of the sorted CD4^CD45RB^{hi}CD25^ cells were tested for FoxP3 expression after each sort; these cells were routinely less than 2% FoxP3^.

AM were isolated from the lungs of naïve mice by BAL, while peritoneal macrophages (PM) were isolated from the peritoneal cavity by peritoneal lavage and used as a positive control. Cells were cultured overnight at a concentration of 5 x 10^5 macrophages/ml in serum-free medium. Freshly isolated CD4^CD25^CD45RB^{hi} splenic T cells and 2 μg/ml soluble anti-CD3 were added and cultured for a further 48 hours. AM comprise approximately 90% of all immune cells in BAL fluid of naïve animals, therefore, AM were co-cultured with naïve T cells in a ratio of 9:1. ^H-thymidine was added to the cells for the final 18 hours of culture. T cells activated in the presence of PM proliferated strongly (p<0.05 compared to controls), whereas very weak proliferation was induced observed in T cells activated in the presence of AM (Fig. 4.1).

Since the purified T cells in the assay were free of contaminating FoxP3^ T cells, I next investigated whether AM exerted their suppressive effect by inducing FoxP3 expression in bystander T cells, or whether the inhibition of T cell proliferation is independent of Treg cells. AM were cultured overnight at a concentration of 5 x 10^5 AM/ml in serum-free medium. Freshly isolated CD4^CD25^CD45RB^{hi} splenic T cells were cultured with AM in the presence or absence of 2 μg/ml soluble anti-CD3 for a further 24 hours. Cells were stained with rat anti-mouse antibodies against CD4, CD25 and FoxP3 and analysed by flow cytometry. T cells cultured with AM expressed FoxP3 compared with unstimulated T cells (Fig. 4.2A-B), while T cells which were activated and co-cultured with AM expressed significant (p<0.05) FoxP3 compared with T cells activated with anti-CD3 in the absence of AM (Fig. 4.2A-B). Culture of T cells with PM also enhanced FoxP3 expression in T cells, regardless of whether anti-CD3 was present or not, but was significant (p<0.05) when the T cells were activated with anti-CD3 (Fig. 4.2A).
While the induction of FoxP3 expression in the presence of PM after 24 hours' culture was notable and interesting, Fig. 4.1 clearly illustrates that the activated T cells were able to proliferate strongly after 48 hours in the presence of PM. It is possible that the FoxP3 expression observed was only transient, and it certainly did not affect T cell proliferation. For this reason, it was decided to focus on AM in subsequent experiments.

4.2.2 AM-mediated FoxP3 induction is independent of T cell activation

Activated CD4^+CD25^-CD45RB^- T cells up-regulate CD25 in vitro (Fig. 4.3B). This confirms published data which demonstrated that although AM can suppress T cell proliferation in vitro, their effect is limited to this final stage in the activation process, and they do not interfere with earlier activation events such as CD25 upregulation (Upham et al., 1995). However, under normal physiological conditions, T cells trafficking through the lung encounter AM in the absence of activating stimuli. I sought to determine whether T cell activation was required for AM to induce FoxP3 expression. Naïve CD4^+CD25^-CD45RB^hi T cells were cultured with AM for 24 hours in vitro in the presence or absence of 2 µg/ml anti-CD3. CD4^+CD25^-CD45RB^hi T cells cultured with AM without anti-CD3 upregulated FoxP3 to a modest extent (from 1.4 to 3.7%), and these T cells remained predominantly CD25^- (Fig. 4.3A). In contrast, T cells cultured with AM and anti-CD3 upregulated CD25 (Fig. 4.3B). Interestingly, for T cells cultured with AM in the absence of anti-CD3 the ratio of induced CD25^-CD25^+ FoxP3^+ cells was strikingly similar to that observed when FoxP3^+ cells are isolated from the lungs of naïve mice, as described in Chapter 3. These findings suggest that the resident lung AM can actively induce peripheral tolerance, by converting naïve T cells into FoxP3^+ T cells that might be regulatory.

4.2.3 AM use a soluble factor to induce FoxP3 expression, and inhibit Th1 immune responses

In order to test whether the induction of FoxP3 was dependent on AM:T cell contact or whether AM produced soluble immunoregulatory molecules, conditioned medium (CM) was harvested from overnight AM culture, diluted and 20 ml of each dilution was added to naïve T cells. CD4^+CD25^-CD45RB^hi T cells were isolated from the spleens of naïve mice, and these cells
were cultured with 2 μg/ml anti-CD3 and irradiated APC in the presence or absence of decreasing doses of AM-CM for 48 hours. \(^3\)H-thymidine was added for the final 18 hours of culture, and proliferation was determined by its uptake. Alternatively, CD4^+CD25^-CD45RB^- T cells were cultured with 2 μg/ml anti-CD3 and irradiated APC in the presence or absence of decreasing doses of AM-CM for 24 hours, after which FoxP3 expression was determined by flow cytometry. The most concentrated AM-CM (final concentration 1:10) had the greatest anti-proliferative effect on activated effector T cells (Fig. 4.4) and significantly enhanced (p<0.01) FoxP3 expression in these cells compared with control cells that received no AM-CM (Fig. 4.5A). Addition of diluted AM-CM (final concentrations 1:20 and 1:40) recapitulated proliferation of naive T cells activated with anti-CD3 and irradiated APC (Fig. 4.4) and reduced FoxP3 induction (Fig 4.5A and 4.5B). The results reveal that AM might secrete a soluble mediator(s) that could suppress T cell proliferation and induce FoxP3 expression \textit{in vitro}.

Cytokine analysis of the supernatants from these co-cultures demonstrated that AM-CM enhanced IL-10 production, most likely by activated naive T cells (Fig. 4.6). Very low levels of IL-10 were present in AM-CM (Fig. 4.7), so it is likely that the enhanced IL-10 detected in the co-culture was produced by the induced FoxP3^+ cells. Interestingly, addition of AM-CM to cultures resulted in a dose-dependent decrease in IL-4 and IFN-\(\gamma\) production (Fig. 4.6). The data implies that the AM-derived soluble mediator inhibits Th1 and Th2 cytokines, presumably due to the induction of suppressive FoxP3^+ T cells.

Analysis of cytokines present in AM-CM reveals that AM produce TGF-\(\beta_1\), TNF-\(\alpha\), and IFN-\(\gamma\), which was greater than that produced following overnight culture of PM (Fig. 4.7). AM and PM produced very low concentrations of IL-4, IL-10 and IL-17 (Fig 4.7) ALDH1A, an aldehyde dehydrogenase involved in the synthesis of retinoic acid (RA), is known to induce FoxP3^+ Treg cells (Coombes \textit{et al.}, 2007). Analysis of AM revealed that they expressed ALDH1A, which was greater than that expressed by PM (Fig. 4.8).
4.2.4 Induction of FoxP3 by AM is dependent on retinoic acid

In an attempt to identify the soluble factor responsible for FoxP3 induction by AM, T cells were cultured in the presence of AM-CM and inhibitors of RA and/or TGF-β1. TGF-β1 can convert naïve murine CD4^FoxP3^ T cells to CD4^FoxP3^CD25^ iTreg cells in vitro (Chen et al., 2003; Fantini et al., 2004), and this effect has been shown to be reversible (Selvaraj and Geiger, 2007). Studies of DC in the gut have shown that they produce RA, which can induce FoxP3^ Treg cells in conjunction with TGF-β1 (Coombes et al., 2007). Furthermore, it has been reported that gut macrophages express retinal dehydrogenase, an enzyme involved in the conversion of retinal into RA (Manicassamy and Pulendran, 2009). Since TGF-β1 was present in AM-CM (Fig. 4.7), I examined whether neutralising TGF-β1 could inhibit FoxP3 induction in activated naïve T cells co-cultured with AM in vitro. As AM also express the aldehyde dehydrogenase which converts retinaldehyde to RA (Fig 4.8), the effect of blocking RA signalling was also investigated, using a synthetic RA receptor antagonist (RARi, 5 μM).

Inhibition of either TGF-β1 or RA in AM-CM led to a reduction in the percentage of FoxP3^ T cells, and a combination of both TGF-β1 and RARi significantly reduced the percentage of FoxP3^ cells (p<0.05), when compared with controls where activated naïve T cells were cultured with AM-CM, implying an additive effect (Fig. 4.9). Inhibition of RA signalling or neutralisation of TGF-β1 also significantly inhibited (p<0.05) the induction of FoxP3 in activated naïve T cells co-cultured with AM, when compared with controls where T cells were co-cultured with AM in the absence of inhibitors (Fig. 4.10). These data demonstrate that AM suppress effector T cells via TGF-β1 and RA.

4.2.5 Inhibition of lung T cell proliferation by AM in vitro can be overcome by inhibiting RA signalling

Numerous studies have described the anti-proliferative effect that AM have on T cells (Ettensohn et al., 1986; McCombs et al., 1982; Rich et al., 1991; Schauble et al., 1993; Toews et al., 1984; Upham et al., 1995; Upham et al., 1997; Warner et al., 1981). In addition, previous data
from our lab reported the proliferation of macrophage-depleted lung cells or purified lung T cells upon co-culture with splenic APC, but not lung APC, presumably due to the presence of AM (McGuirk et al., 1998). None of these studies address the role of FoxP3 because many of them pre-date the discovery of Treg cells and their associated transcription factor. Based on the data thus far, I hypothesised that the suppression of T cell proliferation by AM might be mediated by the induction of FoxP3 T cells. Since inhibiting RA reduced the frequency of FoxP3 T cells in vitro, I investigated whether this strategy would enhance T cell proliferation in the presence of AM. I decided to focus on the effect of only inhibiting RA from this point on, as cell cultures were maintained in complete RPMI supplemented with FCS, which contains exogenous TGF-β1. AM-CM used in previous experiments did not contain FCS, and was therefore free of contaminating exogenous TGF-β1.

Total mononuclear cells from lungs of naïve Balb/c mice (2 x 10^6 cells/ml) were cultured with 2 μg/ml anti-CD3 in the presence or absence of 5 μM RARi for 72 hours. Cells were replenished with either fresh medium or medium containing 3H-thymidine for the final 18 hours of culture and FoxP3 expression and cell proliferation were determined, respectively. RARi significantly enhanced proliferation (p<0.05) of lung cells (Fig. 4.1A). FoxP3 expression was decreased when lung cells were cultured in the presence of RARi (Fig. 4.1B). Lung cells (2 x 10^5/ml) which had been depleted of AM were also cultured with anti-CD3 in the presence or absence of RARi. RARi did not affect proliferation of these cells (Fig. 4.1A). Collectively, these results demonstrate that inhibiting the effects of RA enhances proliferation of cells cultured in the presence of AM, presumably due to its inhibition of FoxP3 induction.

4.2.6 Inhibiting RA signalling enhances antigen-specific T cell proliferation

It has been previously demonstrated that lung APC have a suppressive effect on T cell proliferation in response to B. pertussis antigens (McGuirk et al., 1998). In these experiments purified T cells from the lungs of mice infected with B. pertussis proliferated poorly in vitro when cultured with antigen in the presence of lung APC, but not splenic APC. Also, addition of lung APC suppressed proliferation of lung T cells cultured with antigen in the presence of splenic APC,
which strongly indicates a role for AM-mediated suppression. Therefore experiments were
designed to examine whether RA and FoxP3⁺ T cells were responsible for the suppressive effects
of lung APC on T cell proliferation.

Naïve Balb/c mice were infected with *B. pertussis*. CD3⁺ T cells were purified from lung
and spleen 21 days post challenge. CD3⁺ T cells were cultured with FHA (4 µg/ml), anti-CD3 and
PMA (5 µg/ml and 25 ng/ml) or medium only, with irradiated lung-derived or splenic APC in the
presence or absence of 5 µM RARi. After 48 hours supernatants were removed for cytokine
analysis by ELISA and cells were replenished with either fresh medium or medium containing ³H-
thymidine, to analyse FoxP3 expression and to determine proliferation, respectively.

Regardless of the stimulus, lung T cells showed reduced proliferation in the presence of
lung APC, when compared to lung T cells stimulated in the presence of splenic APC (Fig. 4.12, left
panels). Addition of RARi to lung T cells activated with lung APC resulted in slightly reduced
FHA-specific proliferation (Fig. 4.12A, left panel), but increased proliferation in response to anti-
CD3 and PMA (Fig. 4.12B, left panel). RARi did not affect proliferation of lung T cells cultured in
the presence of splenic APC, in response to both stimuli (Fig. 4.12, left panels). In other words,
RARi only affected proliferation of T cells cultured in the presence of AM.

Splenic T cells cultured with lung APC showed a dramatic reduction in proliferation in
response to both stimuli when compared to splenic T cells stimulated with splenic APC (Fig. 4.12,
right panels). RARi slightly enhanced FHA-specific proliferation of splenic T cells cultured with
splenic APC, but this was not significant and enhancement was not observed in response to anti-
CD3 and PMA stimulation. RARi slightly enhanced FHA-specific proliferation and proliferation in
response to anti-CD3 and PMA when splenic T cells were cultured with lung APC(Fig. 4.12, tight
panels).
RARi only enhanced proliferation when lung APC, and therefore AM, were present in the cultures. However, a simultaneous decrease in FoxP3^+ cell frequency was not observed in response to antigen (Fig. 4.13A), and was only very slightly reduced when anti-CD3 and PMA were present in culture (Fig. 4.13B). With respect to cytokine production, FHA-specific IFN-γ and IL-10 production by lung T cells was reduced when RARi was added to the co-cultures which contained AM (Fig. 4.14, left panels), while RARi only reduced FHA-specific IL-10 but had no effect on IFN-γ production by lung T cells activated with splenic APC (Fig. 4.14, left panels). RARi decreased FHA-specific IL-10 production by splenic T cells activated in the presence of splenic APC, but increased IFN-γ production by these cells regardless of the source of APC (Fig. 4.14, right panels).

IFN-γ and IL-10 production by lung T cells in response to anti-CD3 and PMA was enhanced when RARi was also present, regardless of the source of APC (Fig. 4.15, left panels). The same effect was observed for splenic T cells (Fig. 4.15, right panels), with the exception of IL-10 production by T cells stimulated with splenic APC. RARi had no effect on IL-10 production in this case (Fig. 4.15A).

4.2.7 Intranasal RARi reduces the frequency of FoxP3^+ T cells in *B. pertussis*-infected mice, but does not affect bacterial burden

Since RARi can enhance antigen-specific T cell proliferation in vitro, I next examined whether inhibition of RA could alter the course of infection in mice with *B. pertussis*. Naïve Balb/c mice were infected with *B. pertussis*. Mice received either 75 μg or 150 μg RARi intranasally (i.n.) every second day, from day 1 post-challenge up to day 19 post-challenge. Control mice received vehicle i.n., which was a mix of PBS and ethanol. 7, 14 and 21 days post-challenge lungs were homogenised and CFU counts were performed. The frequencies of CD4^+FoxP3^+ T cells were also examined.

Treatment with either dose of RARi had no effect on clearance of *B. pertussis*. CFU values from the lungs of mice which received vehicle were similar to RARi-treated mice (Fig. 4.16).
Nonetheless, 7 days post-challenge the mice which received the higher dose of RARi had significantly reduced (p<0.001) frequency of lung CD4^FoxP3^ cells compared with vehicle controls (Fig. 4.17A). The lower dose of RARi was seen to have a significant (p<0.05) effect on the frequency of FoxP3^ cells at day 14 post-challenge (Fig. 4.17B), and both doses reduced the frequencies of lung CD4^FoxP3^ cells when the experiment was terminated on day 21 post-challenge (Fig. 4.17B). These results suggest that nasal administration of RARi is effective at reducing the frequency of induced FoxP3- T cells in the lungs, but this strategy alone does not affect the clearance of the pathogen. It is possible that the remaining FoxP3^ T cells provide adequate immune regulation. These FoxP3^ T cells may represent thymically-derived nTreg cells.

4.2.8 RARi overcomes nasal tolerance to induce humoral immunity to nasally-administered antigens and may represent a novel strategy for mucosal vaccination

I next examined whether inhibiting RA could break nasal tolerance to vaccination with ovalbumin. Studies have shown that mucosal administration of antigen results in immunological nonresponsiveness to the same antigen (van Halteren et al., 1997). It has also been reported that mucosal administration of antigen prior to systemic sensitisation with the same antigen results in long lasting immunosuppression rather than priming (Garside et al., 1995; Hoyne et al., 1996; McMenamin et al., 1994). Based on the data so far, I investigated whether the induction of FoxP3^ T cells by RA-producing AM was responsible for tolerance in the respiratory mucosa, and whether this tolerance could be overcome using RARi.

Naïve Balb/c mice were immunised twice i.n., 21 days apart with 25 µg Ovalbumin (Ova) protein, alone or in the presence of 5 µg CpG as adjuvant. Both types of vaccine were administered in the presence or absence of 100 µg RARi. Control mice were vaccinated subcutaneously with Ova and CpG or i.n. with vaccine vehicle (a mix of PBS and ethanol).

As expected, control mice which received vehicle i.n. did not have detectable Ova-specific IgE in their serum (Fig. 4.18B). Ova-specific IgE was also not detected at levels above background
in mice which were vaccinated with Ova +/- RARi or Ova +/- CpG (Fig. 4.18B). These results correlate with other studies showing non-responsiveness to mucosally administered antigen (Garside et al., 1995; Hoyne et al., 1996; McMenamin et al., 1994; van Halteren et al., 1997). However, significant (p<0.001) Ova-specific IgE was detected in the serum of mice which were vaccinated with Ova + CpG in the presence of RARi, and concentrations were similar to those of mice which were vaccinated subcutaneously with Ova + CpG (Fig. 4.18B). There was no difference in total IgE concentrations in response to the different treatments (Fig. 4.18A). These data suggest that the FoxP3^+ T cells which are induced by RA-producing AM in the lung might be responsible for the induction of respiratory tolerance, and that inhibiting their induction at the time of antigen administration can overcome tolerance to specific antigen.

Conversely, significant (p<0.001) IgG_1 was detected in mice which received Ova + CpG either i.n. or subcutaneously (Fig. 4.19B). There was no difference in total IgG_1 concentrations between the different groups (Fig. 4.18A). These results confirm the findings of others which have shown that oral tolerance inhibits the production of antigen-specific IgE and IgG_1, but nasal tolerance only blocks IgE production (van Halteren et al., 1997). However, nasal administration of Ova + CpG in the presence of RARi reduced the serum concentration of Ova-specific IgG_1 compared to vaccine alone (Fig 4.19).
4.3 Discussion

This study has demonstrated for the first time that AM inhibit T cell proliferation by inducing FoxP3 expression in naïve T cells in vitro. Importantly, the activation status of the T cells did not affect the induction as AM induced FoxP3 expression in both unstimulated and anti-CD3-stimulated T cells in vitro. The phenotype of the Treg cells induced by AM without anti-CD3 stimulation was predominantly CD4^+FoxP3^+CD25^+, which resembles the ex vivo phenotype of FoxP3^+ T cells isolated from the lungs of naïve mice, as described in Chapter 3.

The data so far has pointed to a role for soluble mediators in AM-induced FoxP3 expression in naïve CD4^+ T cells. The induction of FoxP3 and inhibition of T cell proliferation by AM was duplicated using AM-CM. Inhibition studies revealed that AM-derived RA and TGF-β1 were mostly responsible for the induction of FoxP3. In vitro, AM inhibited anti-CD3- or antigen-specific proliferation of T cells, but this inhibition was overcome by blocking RA signalling. Inhibiting RA signalling in vivo, by nasal administration of RARi significantly reduced the frequencies of FoxP3^+ T cells in the lungs of mice infected with B. pertussis, but this had no effect on the bacterial burden. However, the addition of RARi to nasally delivered antigen and adjuvant prevented the induction of nasal tolerance and allowed systemic immunity to develop. This might represent a novel vaccination strategy in terms of delivering vaccines to mucosal sites, where antigens are encountered in real life.

The ability of AM to suppress local immune responses has been well documented, both in vitro and in vivo. AM from mice, rats and humans are able to suppress proliferation of T cells in vitro (Strickland et al., 1996a; Strickland et al., 1993; Upham et al., 1995). Of particular importance are in vivo studies where AM were completely and specifically eliminated. These studies utilised a cytotoxic drug called dichloromethylene diphosphate (Cl_2MDP), which is specifically targeted to macrophages by encapsulation in liposomes. Intratracheal (i.t.) administration of the drug-loaded liposome into the lung eliminated AM and resulted in overwhelming inflammation to otherwise harmless particulate and soluble antigen (Strickland et
al., 1993; Thepen et al., 1992; Thepen et al., 1991; Thepen et al., 1989). The inflammation appeared to be mediated by T cells (Strickland et al., 1993; Thepen et al., 1991).

Clearly AM have a crucial role in regulating T cell responses in the lung, and based on the novel murine lung Treg cell population described in Chapter 3, the possibility that murine AM can influence or induce FoxP3⁺ T cells was examined. It is likely that the CD4⁺FoxP3⁻CD25⁻ Treg cells are induced in the lung rather than derived from the thymus because they suppress via IL-10, unlike thymically-derived Treg cells which suppress in a cell-contact dependent manner (Thornton and Shevach, 1998). It is important to stress that the published studies on AM and T cells did not investigate Treg cells, and in many instances they were published before the relevance of FoxP3 in T cell biology came to light. Therefore, it was first investigated whether *in vitro* culture of highly purified naïve effector T cells with AM resulted in suppression of T cell proliferation, or whether the previously published work merely reflected the presence of contaminating Treg cells in the culture. T cells were purified from the spleen rather than the lung to eliminate the possibility that lung T cells might already be hyporesponsive. Activation of splenic CD4⁺CD25⁻CD45RB⁻ naïve effector T cells with control peritoneal macrophages resulted in T cell proliferation, whereas culture with AM did not promote proliferation of the same T cell population. Undoubtedly AM exert a profound inhibitory effect on T cell proliferation.

Once it was established that AM suppress the proliferation of highly purified, Treg-free splenic CD4⁺CD25⁻CD45RB^{high} T cells, it made sense to investigate whether or not AM induce FoxP3 expression in these cells. Indeed, culture of stimulated CD4⁺CD25⁻CD45RB^{high} splenic T cells with AM induced significant FoxP3 expression in naïve T cells compared to stimulated controls. This is the first time such a link between AM and FoxP3 induction has been reported; the induction of FoxP3⁺ T cells from naïve effector T cells may account for an intermediary step in the suppression of T cell-mediated immunity by AM in the lung.
In order to examine the effect of AM on T cell proliferation \textit{in vitro}, and to investigate if the suppression of proliferation correlated with FoxP3 induction, the T cells had to be activated. As a result, the T cells upregulated CD25 in response to activation with anti-CD3. Therefore, the ability of AM to enhance FoxP3 expression in unstimulated T cells was examined. The results of this experiment confirm that T cells do not need to be activated in order to express FoxP3 as a consequence of culture with AM. The unstimulated induced Treg cell population bore a striking phenotypic resemblance to resident CD4+FoxP3+ cells in the naïve mouse lung, in terms of CD25 expression.

This finding has further implications in terms of what actually happens in the lung under normal conditions rather than artificial \textit{in vitro} assays. Obviously most of the T cells which come in contact with AM would not encounter activating stimuli, so would not express CD25. This could explain why CD4+FoxP3+ T cells isolated from the naïve mouse lung are overwhelmingly CD25+. Although these induced Treg cells do not express CD25 at the steady state, they may comprise a “reservoir” of inactive Treg cells which will effectively suppress immune responses, but only when they are sufficiently activated. Furthermore, studies in the rat have also reported that postactivated T cells lose expression of IL-2R (CD25) but not any other markers upon migration to the lung after adoptive transfer \textit{in vivo} (Strickland \textit{et al.}, 1996b). Therefore the induced FoxP3+ T cells could be derived from naïve CD25+ T cells as well as previously activated T cells which have down-regulated CD25 expression.

With respect to the mechanism by which AM exert suppression over T cells, AM supernatants from several species have been shown to suppress T cell proliferation, indicating a role for a diffusible factor (Pennline \textit{et al.}, 1979; Pennline and Herscowitz, 1981; Strickland \textit{et al.}, 1996a). There is evidence that the diffusible factor differs across species, with rodent AM using NO, but human AM exerting suppression of T cells in an NO-independent manner (Rich \textit{et al.}, 1991; Upham \textit{et al.}, 1995). Nonetheless, the potential contamination by Treg cells in these studies was not addressed, so the ability of conditioned medium from overnight culture of AM (AM-CM) to suppress proliferation and induce FoxP3 expression in highly purified splenic CD4+CD25−
CD45RBhigh T cells was investigated. The results demonstrate that AM-CM can promote FoxP3 expression by these cells and effectively inhibit their proliferation in a dose-dependent manner. Clearly, AM-mediated induction of Treg cells is facilitated by the release of a soluble factor.

Furthermore, AM-CM appeared to promote IL-10 production in a dose-dependent manner. AM-CM contained very low concentrations of IL-10, so it is very unlikely that its presence in this assay results from any additive effects in the culture. Rather, it might be produced by the induced FoxP3+ T cells, because induced Treg cells use cytokines rather than cell-cell contact to suppress (Thornton and Shevach, 1998). Notably, the conversion of CD4+FoxP3\textsuperscript{CD25-} T cells to CD4+FoxP3\textsuperscript{CD25-} iTreg cells has also been reported. The existence of antigen-specific CD4+FoxP3\textsuperscript{CD25-} iTreg has been shown \textit{in vivo} (Kretschmer \textit{et al.}, 2005), and malaria infection can also drive the conversion of CD4+FoxP3\textsuperscript{CD25-} T cells to CD4+FoxP3\textsuperscript{CD25-} iTreg cells (Couper \textit{et al.}, 2007). If the AM-induced Treg cells are the source of IL-10, then it represents yet another similarity to the CD4+FoxP3\textsuperscript{CD25-} Treg cells described in Chapter 3, which use IL-10 to suppress \textit{in vitro} and \textit{in vivo}.

Importantly, TGF-β\textsubscript{1} was detected in AM-CM, but not PM-CM, suggesting that AM might specifically use TGF-β\textsubscript{1} to induce FoxP3+ T cells. AM-CM and PM-CM did not contain foetal calf serum (FCS) and therefore exogenous TGF-β\textsubscript{1} present in FCS was not an issue. \textit{In vitro} conversion of naïve CD4+FoxP3- T cells to CD4+FoxP3\textsuperscript{CD25-} inducible Treg (iTreg) cells by TGF-β\textsubscript{1} has been reported (Chen \textit{et al.}, 2003; Fantini \textit{et al.}, 2004). DC have been shown to play a role in the TGF-β\textsubscript{1}-dependent induction of functional FoxP3- iTreg cells in a diabetes model (Luo \textit{et al.}, 2007). In the intestine, TGF-β\textsubscript{1} and the vitamin A metabolite RA have been shown to convert naïve CD4+ T cells to antigen-specific CD4+FoxP3- iTreg cells (Coombes \textit{et al.}, 2007). Therefore, the induction of Treg cells might be an important strategy for maintaining tolerance at mucosal interfaces such as the intestine and the lung.
In vivo studies have demonstrated that blocking TGF-β1 during feeding of Ova inhibited both the induction of oral tolerance and the peripheral conversion of Ova-specific Treg cells (Mucida et al., 2005). However, TGF-β1 is a pleiotropic cytokine and can promote Treg cell induction or Th17 cells, depending on the cytokine milieu. When activated CD4+ T cells are exposed to TGF-β1 alone, they can convert to FoxP3+ T cells, but if IL-6, IL-1β and IL-23 or IL-21 are also present then FoxP3 induction is blocked and the induction of Th17 cells is favoured (Bettelli et al., 2006; Manel et al., 2008; Mangan et al., 2006; Veldhoen et al., 2006). The presence of TGF-β1 in AM-CM is therefore not sufficient to prove it is absolutely responsible for the induction of FoxP3+ T cells.

RA has been shown to modulate the pleiotropic effects of TGF-β1 and promote FoxP3+ Treg cell induction (Benson et al., 2007; Coombes et al., 2007; Kang et al., 2007b; Mucida et al., 2007; Sun et al., 2007). When CD4+ T cells are activated in the presence of TGF-β1 and RA, FoxP3+ T cell induction is enhanced. Even if IL-6 is also present, Th17 cell differentiation is inhibited because RA blocks the IL-6-dependent expression of RORγt, the key Th17-polarising transcription factor (Ivanov et al., 2006; Mucida and Cheroutre, 2007; Mucida et al., 2007; Zhou et al., 2008). It has been reported that gut DCs from GALT and small intestinal lamina propria use RA to induce Treg cells (Coombes et al., 2007; Sun et al., 2007), this is controversial since there is evidence that macrophages from lamina propria induce iTreg cells while DCs induce Th17 cells (Denning et al., 2007).

The production of RA by AM has not previously been reported. To determine whether RA was responsible for enhancing TGF-β1-dependent FoxP3 induction, in naïve T cells, the expression of retinal dehydrogenases (RALDH) by AM was examined. RA is derived from dietary vitamin A and it is synthesised when all-trans retinal is irreversibly oxidised by aldehyde dehydrogenase 1A (ALDH1A) (Blomhoff and Blomhoff, 2006; Moise et al., 2007). The expression of ALDH1A is tightly controlled and is restricted to specific cells and tissues. Consequentially RA production is restricted to these specific cells and tissues, such as the gut (Coombes et al., 2007; Germain et al.,
ALDH1A activity is therefore an indirect measure of retinoic acid production. Both AM and PM expressed the enzyme, but AM produced slightly more than PM. This is the first time that RA production by AM has been described.

RA exerts its function by binding to nuclear hormone receptors which belong to the retinoic acid receptor (RAR) family, of which there are three isoforms – α, β and γ (Mora et al., 2008). Unlike RALDH, RAR proteins are ubiquitously expressed (Blomhoff and Blomhoff, 2006; Moise et al., 2007). In vivo studies have demonstrated that the injection of RAR antagonists decreased the frequencies of lamina propria FoxP3^+ cells (Mucida et al., 2007). To determine the soluble factor/s responsible for FoxP3 induction by AM, CD4^+CD25^+CD45RB^high T cells were activated in the presence of AM-CM and a variety of inhibitors. The effects of TGF-β1 were blocked by adding a TGF-β1-neutralising antibody to the culture. RA signalling was inhibited by a synthetic RAR antagonist (RARi) either alone or in conjunction with the TGF-β1 blocking antibody. Blocking RA signalling or neutralisation of TGF-β1 reduced the frequency of FoxP3^+ T cells. Combining RARi and anti-TGF-β1 further inhibited the induction of FoxP3^+ T cells. These experiments identify for the first time a mechanism by which AM induce FoxP3^+ T cells.

Inhibition of either RA or TGF-β1 also prevented the induction of FoxP3^+ T cells when T cells were cultured with AM rather than AM-CM, but combining both inhibitors had a stronger effect. It is important to note that while AM-CM did not contain exogenous FCS-derived TGF-β1, co-cultures were maintained in medium supplemented with FCS, so exogenous TGF-β1 would have been present in these cultures. For this reason, it was decided to focus on the effect of only inhibiting RA in subsequent experiments.

Published data from this lab has demonstrated that unseparated mononuclear cells from the spleens of naïve mice proliferated upon stimulation with the mitogen ConA, whereas lung mononuclear cells were unresponsive (McGuirk et al., 1998). However, macrophage-depleted lung cells were capable of proliferating, and it was concluded that the hyporesponsiveness was due to
the presence of suppressive AM (McGuirk et al., 1998). To test whether these findings were compatible with this published data, the experiment was repeated using anti-CD3 as a T cell-specific stimulus rather than ConA, and the cells were cultured in the presence or absence of RARi. The results revealed that blocking RA signalling significantly enhanced proliferation of total but not AM-depleted lung cells, and this enhanced proliferation was associated with a reduction in the frequency of FoxP3⁺ cells.

This lab has also reported that lung mononuclear cells from mice which had been infected with the respiratory pathogen *B. pertussis* were hyporesponsive to purified *B. pertussis* antigens, but spleen cells from the same mice were responsive (McGuirk et al., 1998). Additionally, purified splenic T cells from infected mice could proliferate strongly against purified *B. pertussis* antigens in the presence of splenic APC and they produced relatively high levels of IFN-γ and IL-2. However, this strong response was dramatically reduced when splenic T cells were cultured in the presence of lung APC, or equal numbers of lung APC and splenic APC (McGuirk et al., 1998). Purified lung T cells proliferated and produced low levels of IL-2 and IFN-γ when stimulated in the presence of splenic APC, but as with the splenic T cells these effects were inhibited if lung APC were present. These studies suggest a role for AM (present in the lung APC population) in the suppression of lung T cell responses, however a mechanism by which they exert this suppressive effect was not proposed.

I hypothesised that AM were inducing FoxP3⁺ T cells which were responsible for inhibiting antigen-specific T cell responses. The *B. pertussis* infection experiment was repeated, and CD3⁺ T cells were cultured in the presence or absence of RARi. Addition of RARi resulted in enhanced proliferation when lung-derived or splenic T cells were stimulated with either FHA or anti-CD3 and PMA in the presence of lung APC – or in other words, in the presence of AM. Increased proliferation was generally associated with a reduction in the frequency of FoxP3⁺ T cells, suggesting that the inhibition of RA signalling prevented FoxP3 induction by AM. However, IFN-γ concentrations were only enhanced in the presence of RARi for cells stimulated with PMA.
and anti-CD3. Interestingly, IL-10 was also enhanced in the presence of RARi in response to PMA and anti-CD3. However, FHA-specific IFN-γ and IL-10 production was reduced when RARi was present in culture. It is likely that RARi would not have affected the function of pre-existing nTreg cells or antigen-specific iTreg cells which could have been induced in the mice during *B. pertussis* infection. Rather, RARi would only have prevented AM from inducing FoxP3 expression in FoxP3⁺ T cells *in vitro*, so any pre-existing antigen-specific T cells in the culture would be expected to suppress in response to FHA. This might explain why IFN-γ was reduced along with IL-10; while antigen-specific IL-10-producing FoxP3⁺ T cells might be inhibited *in vitro*, nTreg cells might be functioning to compensate, resulting in reduced antigen-specific IFN-γ production.

Since inhibiting RA signalling could enhance T cell proliferation in response to *B. pertussis* antigens, the question arose whether manipulation of the AM/RA/FoxP3 mechanism could be used to accelerate clearance of bacterial infection in the upper respiratory tract. Mice infected with *B. pertussis* received treatment intranasally every second day. Enumeration of CFUs at days 7, 14 and 21 post-challenge demonstrated that neither dose of RARi significantly affected the bacterial burden of mice compared to controls. Perhaps an increased dose of inhibitor would be more successful, but that would be practical because the inhibitor slightly precipitated out of solution at the higher of the two doses used and this made it difficult for the mice to inhale. More frequent administrations of low-dose RARi might circumvent this. However, flow cytometry analysis of cells isolated from the lungs revealed a significant reduction in the frequency of CD4⁺FoxP3⁺ T cells in infected mice which had received RARi compared to infected mice which received vehicle as a control. Evidently, RARi as a treatment was having the effect it was expected to have *in vivo*, but the resultant reduction in FoxP3⁺ T cells did not translate into enhanced protective immunity to *B. pertussis*.

Nonetheless, these results show for the first time successful inhibition of FoxP3⁺ T cell induction *in vivo* as a consequence of nasal administration. It is possible that despite the significant reduction in the frequency of FoxP3⁺ T cells in the lung in response to RARi treatment, those FoxP3⁺ T cells that remained might have been sufficient to regulate the immune response against
B. pertussis. The remaining FoxP3⁺ T cells might represent thymically-derived nTreg cells. It is therefore possible that the findings from this experiment reflect the observation in Chapter 3 that two populations of Treg cells are present in the lungs of mice, and that both must be removed or functionally impaired in order to eradicate the pathogen more rapidly.

Alternatively, it was investigated whether RARi could be applied to enhance the efficacy of nasal vaccination. It is well known that the administration of antigen via the mucosal surfaces of the body (i.e. nasal, oral or urogenital) results in systemic immunological nonresponsiveness to the same antigen (Garside et al., 1995; Hoyne et al., 1996; McMenamin et al., 1994; van Halteren et al., 1997). The profound immunological nonresponsiveness induced upon mucosal administration of antigen is characterised by reduced production of Th1 and Th2 cytokines, and suppressed immunoglobulin production (van Halteren et al., 1997). Specifically, tolerance induced by the nasal or oral route is mediated by CD4⁺ T cells and results in decreased T cell proliferation, which in turn inhibits isotype switching to IgE (Garside et al., 1995; Hoyne et al., 1996). Importantly, oral tolerance has been shown to inhibit IgE and IgG₁ responses, while nasal tolerance inhibits IgE only (van Halteren et al., 1997). It was hypothesised that the reason for this nonresponsiveness was due to the induction of mucosal FoxP3⁺ T cells in response to the antigen. Since it has been demonstrated that RARi can be successfully administered intranasally to inhibit the induction of FoxP3⁺ T cells by AM in vivo, it was possible that this might represent a novel strategy for developing nasal vaccines.

It was proposed that inhibiting AM-mediated FoxP3⁺ T cell induction by administering RARi at the same time as Ova and CpG would prevent the induction of nasal tolerance and result in systemic immunity to Ova. Analysis of antibodies in the serum of experimental mice revealed no difference in total IgE in response to the different treatments. However, only mice that were immunised subcutaneously and those which received intranasal Ova, CpG and RARi had detectable Ova-specific IgE. All mice that were immunised with Ova and CpG had Ova-specific serum IgG₁, regardless of the route of immunisation or whether RARi was present. However, those
which received antigen and adjuvant in the presence of RARi had reduced IgG1 in serum. It is possible that the enhanced production of IgE in these mice comes at the expense of IgG1.

It is well known that Th2 cytokines, in particular IL-4, promote IgG1 and IgE production (van Halteren et al., 1997). This can be inhibited by IFN-γ (Snapper and Paul, 1987), and it has been shown that tolerised mice have increased IFN-γ production in the spleen along with reduced levels of serum IgG1 (van Halteren et al., 1997). It appears that CD4+ are responsible because the transfer of CD4+ T cells from nasally tolerised mice suppressed IgE but not IgG1 production in primed recipients (Garside et al., 1995; van Halteren et al., 1997) and nasal tolerance can be induced in CD8− mice (Hoyne et al., 1996). Furthermore, blocking IFN-γ prior to adoptive transfer abrogated the suppression of IgE production (van Halteren et al., 1997). It was hypothesised that the “regulatory” CD4+ T cells transferred from nasally tolerised mice suppressed primary and ongoing IgE responses in Th2-skewed recipients, via IFN-γ (van Halteren et al., 1997). It has also been suggested that while low levels of IL-4 might be sufficient for IgG1 class switching, higher levels might be necessary for IgE class switching and would explain why nasal tolerance only suppresses IgE and not IgG1 (van Halteren et al., 1997).

A specific role for AM in regulating this system is supported by a study in which the elimination of AM via intratracheal injection of clodronate liposomes resulted in increased IgE production in the lungs of pre-sensitised rats upon subsequently exposed to antigen aerosols (Thepen et al., 1992). Considerable infiltration of CD4+ T cells into the lungs and airways was also observed (Thepen et al., 1992). My data confirms that nasal tolerance inhibits IgE and not IgG1 immune responses. It also provides evidence that AM and the FoxP3+ T cells they induce are responsible for promoting nasal tolerance because this tolerogenic mechanism can be overcome to promote protective systemic immunity to soluble, nasally-administered antigens.

In conclusion, the results from this study have shown for the first time that AM actively induce FoxP3 in naïve T cells that might have regulatory function but do not appear to be anergic.
This gives further insight into how AM maintain an immunosuppressive environment in the lungs. Interestingly, AM-mediated Treg cell conversion is independent of T cell activation, which might explain why the majority of CD4^FoxP3 T cells isolated from the lungs of naïve mice do not express CD25. AM produce both RA and TGF-β1, which can synergise to mediate FoxP3 T cell induction and promote suppression of effector T cell responses. The induced Treg cells appear to function in an IL-10-dependent manner to inhibit Th1 and Th2 responses, which is also similar to how lung CD4^FoxP3^CD25 Treg cells suppress in vitro and in vivo.

Intranasal administration of an RAR antagonist alone does not represent an effective treatment for respiratory infection, because in the B. pertussis model the prevention of FoxP3 T cell induction did not affect the bacterial burden. Nonetheless, this further highlights the multifaceted ways in which protective immunity is stringently regulated in the lungs; therefore targeting both nTreg cells and induced FoxP3 T cells might be required for treating respiratory infections. However, the manipulation of this novel regulatory network reflects a more promising strategy in terms of mucosal vaccination, as inhibition of RA signalling at the same time as i.n. immunisation with soluble antigen can overcome the overwhelming immune non-responsiveness that is associated with nasal vaccines.
4.4 Figures
Figure 4.1 AM do not support proliferation of naïve T cells

AM were isolated from the lungs of naïve female Balb/c mice by bronchoalveolar lavage and PM were isolated from the peritoneal cavity by peritoneal lavage. Macrophages were cultured at 5 x 10^5/ml in vitro and allowed to adhere overnight. CD4^+CD25^-CD45RB^{high} naïve effector T cells were purified from the spleens of naïve mice and were added to macrophages with 2 µg/ml soluble anti-CD3 48 hours at a ratio of 9:1 macrophages:T cells. Proliferation was determined by ^3^H-thymidine incorporation after 48 hours. P values were calculated based on the difference in proliferation between T cells activated with anti-CD3 and CD4^+ T cells activated with anti-CD3 in the presence of PM. *p<0.05
A

CD4+ T cells + anti-CD3 - AM - PM -

% CD4+FoxP3+ T cells
0 10 20 30 40 50

CD4+ T cells + anti-CD3 + AM -

B

T cells
0.28
T cells + anti-CD3
0.93
T cells + anti-CD3 + AM
19.79

CD4

FoxP3
Figure 4.2 AM and PM can induce FoxP3 expression in FoxP3⁻ naïve T cells

AM and PM were obtained and cultured as described in Fig 4.1 CD4⁺CD25⁻CD45RB^{high} naïve effector T cells were purified from the spleens of naïve mice, activated with 2 µg/ml soluble anti-CD3 and cultured with AM or PM at a ratio of 9:1 macrophages:T cells. After 24 hours, cells were stained with rat anti-mouse CD4, CD25 and FoxP3 and the frequency of CD4⁺FoxP3⁺ T cells was determined following gating on the viable CD4⁺ lymphocytes. A) Results show mean FoxP3 expression. B) Representative dot plots showing the percentage of induced FoxP3⁺ CD4⁺ T cells by AM. P values were calculated based on the difference in FoxP3 expression on CD4⁺ T cells activated with anti-CD3 alone versus CD4⁺ T cells activated in the presence of AM or PM. *p<0.05, p<0.01. Results are representative of 6 experiments.
Figure 4.3 Induction of FoxP3 expression in T cells by AM does not require T cell activation in vitro

AM were obtained and cultured as described in Fig 4.1. CD4^CD25^-CD45RB^{high} naïve effector T cells were purified from the spleens of naïve mice and cultured with AM at a ratio of 9:1 AM:T cells, in the absence (A) or presence (B) of 2 µg/ml soluble anti-CD3. After 24 hours, cells were stained with rat anti-mouse CD4, CD25 and FoxP3 and the frequency of CD4^+FoxP3^+CD25^+ cells was determined following gating on the viable CD4^+ lymphocytes. Dot plots are representative of 3 experiments.
Figure 4.4 Conditioned media from AM culture can suppress the proliferation of naïve T cells

AM were obtained as described in Fig 4.1. AM-conditioned medium (AM-CM) was harvested after 24 hours and twofold dilutions were prepared. CD4^+CD25^-CD45RB^{high} naïve effector T cells were purified from the spleens of naïve mice, activated with 2 μg/ml soluble anti-CD3 and 5 x 10^5 irradiated APC and cultured with decreasing dilutions of AM-CM for 48 hours. 20 μl of AM-CM was added to 180 μl of cells, so the final dilution factors were 1:10, 1:20 and 1:40. Proliferation was determined by ^3H-thymidine incorporation after 48 hours. Results are representative of 3 experiments.
A

% CD4^+FoxP3^+ T cells

CD4^+ T cells + + + + + + + +
anti-CD3 - + + + + + +
APC - + + + + + +
AM-CM - - + + + +

1:40 to 1:10

B

T cells

T cells + anti-CD3 + APC

1:40 AM-CM

CD4

FoxP3

5.9

1:20 AM-CM

8.8

1:10 AM-CM

19.4
Figure 4.5 AM-CM can induce FoxP3 expression in FoxP3- naïve T cells

AM-CM was produced as described in Fig 4.4. CD4^CD25^-CD45RB^{high} naïve effector T cells were purified from the spleens of naïve mice, activated with 2 µg/ml soluble anti-CD3, 5 x 10^5 irradiated APC and decreasing dilutions of AM-CM, as described in Fig 4.4. After 24 hours, cells were stained with rat anti-mouse CD4, CD25 and FoxP3 and the frequency of CD4^FoxP3^ T cells was determined following gating on the viable CD4^ lymphocytes. A) Results show the mean of FoxP3 expression. B) Representative dot plots showing the percentage of induced FoxP3^ CD4^ T cells. P values were calculated on the difference in FoxP3 expression on CD4^ cells activated with anti-CD3 and irradiated APC versus CD4^ T cells activated in the presence of AM-CM. **p<0.01. Results are representative of 6 experiments.
CD4^+ T cells | + | + | + | + | + | 1:40 to 1:10
anti-CD3 | - | + | + | + | + |
APC | - | + | + | + | + |
AM-CM | - | - | + | + | + |
Figure 4.6 AM-CM promotes IL-10 and inhibits IFN-γ and IL-4 production by T cells in a dose-dependent manner

AM-CM was produced as described in Fig 4.4. CD4⁺CD25⁻CD45RB^{high} naïve effector T cells were purified from the spleens of naïve mice, activated with 2 μg/ml soluble anti-CD3 and 5 x 10⁵ irradiated APC and cultured with decreasing dilutions of AM-CM, as described in Fig 4.4. After 24 hours, supernatants were removed and the concentrations of IFN-γ, IL-4 and IL-10 were quantified by ELISA. Results are representative of 4 experiments.
Figure 4.7 AM produce TGF-β1, IFN-γ, and TNF-α but not IL-4 IL-10 or IL-17

AM and PM were obtained and cultured as described in Fig 4.1. Culture media was then harvested and the concentrations of TGF-β1, IFN-γ, TNF-α, IL-4, IL-10 and IL-17 were quantified by ELISA.
Figure 4.8 AM express aldehyde dehydrogenase A1 at a higher intensity than PM

AM and PM were obtained as described in Fig 4.1. Cells were resuspended at 1 x 10^6/ml and aldehyde dehydrogenase 1A (ALDH1A) activity was estimated using the Aldefluor® flow cytometry staining assay. Representative histogram depicts ALDH1A (Aldefluor®) expression as an indirect measurement of RA production on viable unstained control cells (filled grey histogram), peritoneal exudate cells (thin line) and BAL cells (thick line) isolated from a naïve mouse.
A

\[
\begin{align*}
\% \text{CD}^4{+} \text{Fox}^3{+} \text{T cells} &
\end{align*}
\]

\[
\begin{array}{ccccccccc}
\text{CD}^4{+} \text{T cells} & + & + & + & + & + & + & + & + \\
\text{anti-CD3} & - & + & + & + & + & + & + & + \\
\text{APC} & - & + & + & + & + & + & + & + \\
\text{AM-CM} & - & - & + & + & + & + & + & + \\
\text{RARi} & - & - & - & + & + & + & + & + \\
\text{anti-TGF-β\textsubscript{1}} & - & - & - & - & + & + & - & - \\
\text{isotype} & - & - & - & - & - & - & - & - \\
\end{array}
\]

B

AM-CM + T + anti-CD3 + APC + isotype

\[
\begin{array}{cccc}
10^3 & 10^3 & 10^2 & 10^1 \\
10^1 & 10^2 & 10^3 & 10^4 \\
\end{array}
\]

8.25

AM-CM + T + anti-CD3 + APC + anti-TGF-β\textsubscript{1}

\[
\begin{array}{cccc}
10^3 & 10^3 & 10^2 & 10^1 \\
10^1 & 10^2 & 10^3 & 10^4 \\
\end{array}
\]

6.83

AM-CM + T + anti-CD3 + APC + RARi

\[
\begin{array}{cccc}
10^3 & 10^3 & 10^2 & 10^1 \\
10^1 & 10^2 & 10^3 & 10^4 \\
\end{array}
\]

6.82

AM-CM + T + anti-CD3 + APC + RARi + anti-TGF-β\textsubscript{1}

\[
\begin{array}{cccc}
10^3 & 10^3 & 10^2 & 10^1 \\
10^1 & 10^2 & 10^3 & 10^4 \\
\end{array}
\]

4.62
Figure 4.9 Inhibiting RA and/or TGF-β₁ signalling reduces the induction of FoxP3⁺ T cells by AM-CM

AM-CM was produced as described in Fig. 4.4 CD4⁺CD25⁻CD45RBhigh naïve effector T cells were purified from the spleens of naïve mice. The cells were activated with 2 μg/ml soluble anti-CD3 and AM-CM, in the presence or absence of a blocking antibody against TGF-β₁, isotype control antibody, and/or an antagonist of the retinoic acid receptor (RARi). After 24 hours, cells were stained with rat anti-mouse CD4, CD25 and FoxP3 and the frequency of CD4⁺FoxP3⁺ T cells was determined following gating on the viable CD4⁺ lymphocytes. A) Results show the mean FoxP3 expression. B) Representative dot plots showing the inhibition of FoxP3 induction by RARi. P values were calculated on the difference in FoxP3 expression on CD4⁺ cells activated with anti-CD3 and irradiated APC in the presence of AM-CM versus CD4⁺ T cells activated in the presence of AM-CM, RARi and anti-TGF-β₁. *p<0.05. Results are representative of 5 experiments.
A

%CD4^+FoxP3^+ T cells

<table>
<thead>
<tr>
<th>Condition</th>
<th>CD4^+ T cells</th>
<th>anti-CD3</th>
<th>AM</th>
<th>RARi</th>
<th>anti-TGF-β₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

B

- **AM + T**
 - CD4
 - 6.5

- **AM + T + anti-TGF-β₁**
 - FoxP3
 - 3.1

- **AM + T + RARi + anti-TGF-β₁**
 - FoxP3
 - 1.5
Figure 4.10 Inhibiting RA and/or TGF-β₁ signalling reduces the induction of FoxP3⁺ T cells by AM

AM were obtained as described in Fig 4.1. CD4⁺CD25⁻CD45RBhigh naïve effector T cells were purified from the spleens of naïve mice, activated with 2 μg/ml soluble anti-CD3 and cultured with AM at a ratio of 9:1 AM:T cells, in the presence or absence of a blocking antibody against TGF-β₁, and/or an antagonist of the retinoic acid receptor (RARi). After 24 hours, cells were stained with rat anti-mouse CD4, CD25 and FoxP3, and the frequency of CD4⁺FoxP3⁺ T cells was determined following gating on the viable CD4⁺ lymphocytes. A) Results show the mean FoxP3 expression B) Representative dot plots showing the inhibition of FoxP3 induction by RARi and/or TGF-β₁. P values were calculated on the difference in FoxP3 expression on CD4⁺ cells activated with anti-CD3 in the presence of AM versus those activated in the presence of AM, RARi and anti-TGF-β₁. *p<0.05. Results are representative of 3 experiments.
Figure 4.11 AM-mediated suppression of naïve T cells is a consequence of FoxP3+ T cell induction, which is mediated by RA

Total lung mononuclear cells from naïve Balb/c mice were activated with anti-CD3 in the presence or absence of RARi. Separately, AM were depleted from total lung homogenate by allowing them to adhere to plastic and removing the non-adherent cells after 3 hours incubation at 37°C. 2 x 10^6/ml non-adherent lung cells were also activated with anti-CD3 in the presence or absence of RARi. (A) Proliferation was determined by ^H-thymidine incorporation after 72 hours. (B) Lung mononuclear cells were stained with rat anti-mouse CD4, CD25 and FoxP3 and the frequency of CD4+FoxP3+ T cells was determined following gating on the viable CD4+ lymphocytes. Results are representative of 2 experiments. P values were calculated on the difference in proliferation between cells activated with anti-CD3 in the presence of RARi versus cells activated without RARi. *p<0.05
Figure 4.12 Inhibiting RA signalling overcomes AM-mediated suppression of T cell proliferation in vitro

Balb/c mice were infected with *B. pertussis*. 21 days post-challenge CD3+ cells were purified from lungs and spleens of infected mice and were activated with A) FHA from *B. pertussis* or B) anti-CD3 and PMA, with irradiated APC from infected lungs or spleens, in the presence or absence of RARi. ³H-thymidine was added for the final 18 hours of culture and proliferation was determined by uptake of ³H-thymidine.
Figure 4.13 Inhibiting RA signalling inhibits AM-mediated induction of FoxP3+ T cells in vitro

Balb/c mice were infected with *B. pertussis*. 21 days post-challenge CD3+ cells were isolated from lungs and spleen of infected mice and activated with A) FHA from *B. pertussis* or B) anti-CD3 and PMA, with irradiated APC from infected lungs or spleens, in the presence or absence of RARi. After 48 hours cells were stained with rat anti-mouse CD4, CD25 and FoxP3.
Figure 4.14 Inhibiting RA signalling reduces antigen-specific IL-10 and increases splenic antigen-specific IFN-γ production

Balb/c mice were infected with *B. pertussis*. 21 days post-challenge CD3+ cells were isolated from lungs and spleen of infected mice and activated with FHA from *B. pertussis*, with irradiated APC from infected lungs or spleens, in the presence or absence of RARi. After 48 hours, supernatants were removed and IL-10 and IFN-γ concentrations were quantified by ELISA.
Figure 4.15 Inhibiting RA signalling enhances IL-10 and IFN-γ production in response to anti-CD3 and PMA
Balb/c mice were infected with B. pertussis. 21 days post-challenge CD3^+ cells were isolated from lungs and spleen of infected mice and activated with anti-CD3 and PMA, with irradiated APC from infected lungs or spleens, in the presence or absence of RARi. After 48 hours, supernatants were removed and IL-10 and IFN-γ concentrations were quantified by ELISA.
Figure 4.16 RARi treatment does not affect the burden of *B. pertussis* infection
Naïve Balb/c mice were infected with *B. pertussis*. Mice were treated every second
day from day 1 post-challenge by intranasal administration with 75 µg or 150 µg
RARi or vehicle, containing a PBS/ethanol mix. 7, 14 and 21 days post-challenge,
lungs were homogenised and CFU counts were performed.
Figure 4.17 RARi treatment significantly decreases the amount of CD4+FoxP3+ cells in the lungs of infected mice
Naïve Balb/c mice were infected with *B. pertussis* and immunised as described in Fig 4.16. 7, 14 and 21 days post-challenge, lungs were homogenised and cells were stained with rat anti-mouse CD4, CD25 and FoxP3. P values were calculated on the difference in CD4+FoxP3+ cell frequencies between mice which received RARi and mice which received vehicle. *p<0.05, **p<0.01, ***p<0.001
Figure 4.18 RARi breaks tolerance to nasally delivered antigen with a TLR agonist as adjuvant

Naïve Balb/c mice were immunised twice (0, 21 days) with vehicle, Ova, Ova + CpG, Ova + RARi or Ova + CpG + RAR i.n. or Ova + CpG subcutaneously. One week after the second vaccine, mice were sacrificed, and serum was analysed for the presence of (A) total IgE and (B) Ova-specific IgE. P values were calculated on the difference in IgE concentrations between mice which received Ova versus mice which received vehicle. ***p<0.001
Figure 4.19 RARi breaks tolerance to nasally delivered antigen with a TLR agonist as adjuvant

Naïve Balb/c mice were immunised as described in Fig 4.18. One week after the second immunisation, mice were sacrificed, and serum was analysed for the presence of (A) total IgG1 and (B) Ova-specific IgG1. P values were calculated on the difference in IgG1 concentrations between mice which received Ova versus mice which received vehicle. *p<0.05, ***p<0.001
Chapter 5

Human alveolar macrophages use retinoic acid to induce FoxP3+ T cells – implications for cigarette smoking as a risk factor for reactivation tuberculosis
5.1 Introduction

The results from Chapter 4 illustrate the existence of a novel mechanism of tolerance in the lungs of mice, where AM promote the induction of FoxP3⁺ T cells via RA secretion and perhaps to a lesser extent, TGF-β1. Similar to mouse AM, human AM also suppress T cell proliferation in vitro, however the mechanism by which they achieve this is not clear; both cell-cell contact mechanisms and the secretion of soluble mediators have been proposed (Rich et al., 1991; Upham et al., 1995; Upham et al., 1997). Additionally, T cells isolated from lung tissue or obtained from bronchoalveolar lavage of normal subjects display reduced proliferative ability relative to T cells isolated from peripheral blood (Garlepp et al., 1992; Holt et al., 1988; Lecossier et al., 1988). Despite reports that human and murine AM differ in the mechanism by which they inhibit T cell proliferation, the potential role of Treg cells was not investigated in those studies. Therefore, I sought to determine whether human AM exert their suppressive function by inducing FoxP3⁺ T cells in vitro and whether RA is involved in human respiratory tolerance.

Respiratory immune tolerance is important in the context of infection with microorganisms that target the airways. An adequate immune response is desirable in order to eradicate pathogens, but this needs to be strictly regulated to minimise inflammatory damage to the lungs and airways and to prevent overactive responses to innocuous environmental antigen. In pulmonary TB infection, AM represent an intracellular niche required for *M. tuberculosis* to establish infection in the host (Lee et al., 2009).

Ultimately, the outcome of TB infection is determined by the type and the magnitude of the host’s Th1 response (Flynn and Chan, 2001; Kaufmann, 2001; North and Jung, 2004). Inadequate TB-specific Th1 responses are believed to result from Treg cell-mediated immunosuppression (Kaufmann, 2001). Indeed, Treg cells are directly associated with poorer outcomes of TB infection. There are increased frequencies of nTreg cells in PBMC of patients with active TB compared with uninfected controls (Guyot-Revol et al., 2006). Moreover, TB patients have further enrichment of nTreg cells at the site of infection compared with peripheral blood (Chen et al., 2007; Guyot-Revol
et al., 2006; Ribeiro-Rodrigues et al., 2006; Scott-Browne et al., 2007). Expression of FoxP3 mRNA in combination with IL-8 and IL-12 mRNA can be used to differentiate LTBI from active disease, as patients with active disease have higher expression of these three genes when compared with latently infected individuals (Wu et al., 2007). Additionally, FoxP3 expression in whole blood correlates directly with active disease (Burl et al., 2007; Roberts et al., 2007).

It is also thought that increased numbers of Treg cells at the site of infection facilitates the dissemination of *M. tuberculosis* bacilli and the development of extrapulmonary TB. Indeed, higher frequencies of Treg cells have been found in the airways of patients with disseminated TB compared with patients with localised pulmonary TB; these cells appear to suppress immune responses in part via IL-10 secretion (Sharma et al., 2009).

Depletion of AM in mice after challenge with virulent *M. tuberculosis* enhances protective immunity against the pathogen, with evidence of increased survival, reduced CFUs and increased production of Th1 cytokines in lung and spleen (Leemans et al., 2001). It has been demonstrated that depletion of Treg cells *in vitro* enhances the Th1 response against mycobacterial antigens as measured by increased IFN-γ production (Chen et al., 2007; Guyot-Revol et al., 2006; Ribeiro-Rodrigues et al., 2006), and is corroborated by the findings that depletion of Treg cells prior to *M. tuberculosis* infection reduced bacterial growth in mice (Kursar et al., 2007; Scott-Browne et al., 2007).

Interestingly, the number of AM obtained from BAL of smokers is approximately 4-6 times greater than from non-smokers (Brody, 1998; Brody and Craighead, 1975; Harris et al., 1970). Furthermore, there is significant epidemiological evidence that exposure to cigarette smoke is an independent risk factor for tuberculosis infection, with greater progression of primary tuberculosis, development of reactivation tuberculosis, more severe cavitary disease and death from tuberculosis in smokers (Alcaide et al., 1996; Altet-Gomez et al., 2005; Altet et al., 1996; Bates et al., 2007; Davies et al., 2006; den Boon et al., 2005; Gajalakshmi et al., 2003; Jha et al., 2008; Kolappan and Gopi, 2002; Leung et al., 2010; Leung et al., 2004; Lin et al., 2009; Lin et al., 2007; 212
Lin et al., 2008; Moran-Mendoza et al., 2008; Pai et al., 2007; Slama et al., 2007; Zellweger, 2008). Recently it has also been reported that smoking prolongs the infectivity of treated TB patients (Siddiqui et al., 2010). Despite this, the biological mechanisms have not been elucidated (Shang et al., 2011).

Since increased frequencies of Treg cells and cigarette smoking are independently associated with poorer outcomes of TB infection, I investigated whether there was a connection, particularly because higher frequencies of AM are found in the lungs of smokers. I hypothesised that the increased numbers of AM in the lungs of smokers might induce more FoxP3+ T cells compared with non-smokers, and that this might explain why cigarette smoking is associated with progression of primary tuberculosis and development of reactivation tuberculosis. I also investigated whether the capacity to induce FoxP3 expression in T cells was different in AM from smokers and non-smokers, and whether infection of AM with *M. tuberculosis* H37Ra affected FoxP3 expression in T cells.

The results demonstrate that human AM can induce FoxP3 expression in FoxP3+ T cells in vitro, and this is achieved at least in part by RA. AM from smokers and non-smokers expressed similar levels of ALDH1A and induced FoxP3+ T cells to the same extent in vitro. However, the fact that more AM are present in the lungs of smokers in vivo means that more FoxP3+ T cells might be induced in these individuals. Indeed, in vitro culture of T cells with increasing numbers of AM results in a dose-dependent increase in the frequency of induced FoxP3+ T cells. This might explain why smokers have a higher risk for TB infection, progression of primary TB, development of reactivation TB, more severe cavitary disease and death from TB. Finally, I demonstrate that in vitro infection of AM with *M. tuberculosis* H37Ra does not affect their ability to induce FoxP3+ T cells.
5.2 Results

5.2.1 Human AM induce FoxP3 expression in naïve CD4\(^+\) FoxP3\(^-\) T cells

It has been known for some time that human AM, like murine AM, actively suppress T cell proliferation (Ettensohn et al., 1986; McCombs et al., 1982; Rich et al., 1991; Schauble et al., 1993; Toews et al., 1984; Upham et al., 1995; Upham et al., 1997). Furthermore, T cells isolated from human lungs produce less IL-2 than blood-derived T cells from the same donors (Holt et al., 1988). The results from Chapter 4 demonstrated that murine AM achieve their suppressive effects in part by secreting RA, which induces FoxP3\(^+\) T cells. It has been reported that while human and rodent AM suppress T cell proliferation in vitro, they differ in the mechanisms of suppression (Rich et al., 1991; Upham et al., 1995). While it has been demonstrated that murine AM use RNI to inhibit T cell proliferation in vitro, this does not appear to be the case for human AM (Upham et al., 1995). It has been proposed that human AM suppress T cell proliferation via cell-cell contact mechanisms (Rich et al., 1991). I therefore investigated whether human AM are able to induce FoxP3 expression in human T cells and whether they differ from their murine counterparts in this regard.

The foxp3 gene and FoxP3 transcription factor is primarily found in quiescent human CD4\(^-\)CD25\(^-\)CD45RO\(^+\) memory T cell populations (Yagi et al., 2004). Therefore, CD4\(^-\)CD25\(^-\)CD45RO\(^+\) T cells were purified from peripheral blood as a source of CD4\(^+\)FoxP3\(^-\)CD25\(^-\) naïve T effector cells to be co-cultured with AM in vitro. Approximately 5% of CD4\(^+\) T cells in peripheral blood express FoxP3, as demonstrated in Fig. 5.1A. A proportion of the sorted CD4\(^-\)CD25\(^-\)CD45RO\(^+\) T cells were tested for FoxP3 expression after each sort; these cells were routinely less than 1% FoxP3\(^+\) (Fig. 5.1B). The sorting protocol also efficiently depletes CD45RO\(^+\) memory T cells; as shown in Fig. 5.1, frequencies decrease from ~14% to 0.04% post-sort.

Human alveolar macrophages were obtained at bronchoscopy, after written consent, under a protocol approved by the St. James's Hospital/ AMNCH ethics board. AM were cultured overnight at a concentration of 5 x 10\(^3\)/ml. Alternatively, MDM were generated from PBMC of
healthy donors and cultured *in vitro* for 7-10 days prior to co-culture with T cells. Freshly isolated CD4^*CD25*^*CD45RO* ^*T* cells (6 x 10^3) were activated with 2 μg/ml soluble anti-CD3 in the presence or absence of AM or MDM for a further 24 hours. AM comprise approximately 90% of all immune cells in BAL fluid of healthy, non-smoking donors, so to replicate this "normal" cell ratio, macrophages were cultured with effector T cells in a ratio of 9:1. Cells were stained with anti-human antibodies against CD4 and FoxP3 and analysed by flow cytometry. T cells, which were stimulated and co-cultured with AM expressed significantly more FoxP3 (p<0.01) compared with anti-CD3 stimulated T cells alone, or T cells activated with anti-CD3 in the presence of MDM (Fig 5.2). It has been reported that MDM can suppress T cell proliferation in response to mitogen (Schauble *et al.*, 1993). However, they did not induce FoxP3 expression in T cells stimulated with anti-CD3 (Fig 5.2).

This mechanism by which AM induce FoxP3 in effector T cells, appears to be conserved between mice and humans. This previously uncharacterised mechanism adds a new dimension to the body of evidence which describes how the lungs actively suppress immune responses. These findings might represent an important therapeutic target in terms of treating allergy and respiratory diseases.

5.2.2 Human AM-mediated FoxP3 induction is independent of T cell activation

Human CD4^*CD25* ^*T* cells upregulate CD25 in response to activation *in vitro*, in a similar manner to murine CD4^*CD25* ^*T* cells. The results in Chapter 4 showed that the induction of FoxP3 expression by culture with murine AM was independent of T cell activation; therefore I investigated whether this was also the case for human AM and T cells.

Naïve CD4^*CD25*^*CD45RO* ^*T* cells were cultured with AM at a 1:9 ratio for 24 hours in the absence of stimulation with anti-CD3. Unstimulated CD4^*CD25*^*CD45RO* ^*T* cells cultured with AM significantly (p<0.0001) upregulated FoxP3 compared to those cultured in the absence of AM (Fig 5.3). These findings might explain why T cells isolated from human lungs are
hypoproliferative and show reduced IL-2 production and enhanced IFN-γ production compared with blood T cells (Becker et al., 1990; Holt et al., 1988).

5.2.3 Human AM use a soluble factor to suppress T cell proliferation and simultaneously induce FoxP3 expression in vitro

In mice, the induction of FoxP3 expression by T cells co-cultured with AM is in part dependent on RA. The mechanism by which human AM exert their suppressive effect remains unclear. An absolute requirement for cell-cell contact has been proposed by Rich et al (Rich et al., 1991), while others have reported that suppression of effector T cells by AM cells requires a combination of soluble factors and cell-cell contact (Upham et al., 1997). Since other mechanistic differences between human and murine AM have been reported (Upham et al., 1995), I investigated whether conditioned medium (CM; containing any potential soluble factors) from human AM culture could induce FoxP3 expression in naïve CD4⁺CD25⁻CD45RO⁻ T cells.

CM was harvested from overnight AM culture and twofold dilutions were prepared. CD4⁺CD25⁻CD45RO⁻ T cells (6 x 10⁵) were activated with 2 μg/ml anti-CD3 and irradiated APC in the presence or absence of 50 μl of decreasing doses of AM-CM for 48 hours. Proliferation was determined by uptake of ³H-thymidine. Alternatively, CD4⁺CD25⁻CD45RO⁻ T cells were activated with 2 μg/ml anti-CD3 and irradiated APC in the presence or absence of 50 μl decreasing doses of AM-CM for 24 hours, after which FoxP3 expression was determined by flow cytometry. High concentrations of AM-CM (final dilutions 1:4 or 1:8) had an anti-proliferative effect on activated naïve CD4⁺ T cells (Fig. 5.4) and enhanced FoxP3 expression in these cells compared to naïve CD4⁺ T cells activated in the presence of irradiated APC (Figs. 5.5 and 5.6). These findings suggest that a soluble factor(s) produced by human AM is responsible for the induction of FoxP3 expression in CD4⁺ T cells in vitro that may have regulatory function.

5.2.4 Human AM can synthesise RA

The results to date have shown that human AM function in a similar manner to murine AM by utilising a soluble mediator to induce FoxP3 expression in naïve T cells. The default mechanism
in the normal lung is a non-inflammatory Th2 immune response (Stumbles et al., 1998). RA is the biologically active isoform of vitamin A. Deficiency of this vitamin promotes a Th1 phenotype in humans, while RA supplementation restores Th2 and inhibits Th1 cytokine production by PBMCs (Dawson et al., 2006). Furthermore, RA treatment effectively prevents radiation-induced lung fibrosis (Tabata et al., 2006), and cytosolic ALDH1 activity was detected in the rat lung but the ALDH1''-cell type/s were not determined (Yoon et al., 2006). Therefore, I next investigated whether human AM expressed the ALDH1A enzyme. ALDH1A is an aldehyde dehydrogenase which irreversibly synthesises RA from dietary vitamin A (Coombes et al., 2007; Hsu et al., 1999). The results from flow cytometric (Fig. 5.7) and fluorescence microscopic analysis (Fig. 5.8) showed that human AM strongly express this ALDH1A.

Fig. 5.7 shows a slight difference in ALDH1A expression between the two donors depicted. It would appear that the non-smoker expressed more ALDH1A than the smoker, as fluorescence intensity directly correlated with the enzyme's expression. Further studies would need to be undertaken to determine whether this is a reproducible result. Unfortunately, donor cell numbers were not always sufficient to perform this experiment. RT-PCR and/or western blotting could be used to determine relative levels of ALDH1A expression, but this too would require greater cell numbers, which was not always possible to obtain. Nonetheless, these data provide indirect evidence that human AM can produce the immunomodulatory molecule RA and is the first time this activity has been reported in these cells.

5.2.5 Induction of FoxP3 and suppression of T cell proliferation by AM is dependent on RA

A synthetic retinoic acid receptor antagonist (RARi) was used to determine the role of RA in FoxP3 induction in effector T cells. CD4^+CD25^-CD45RO^- T cells (6 x 10^3) were activated with 2 μg/ml anti-CD3 and irradiated APC in the presence of AM-CM and a synthetic RARi (5 μM or 20 μM).
Addition of RARi at a concentration of 20 µM to T cell/AM-CM culture significantly (p<0.05) reversed the effect of AM-CM on FoxP3 expression on T cells (Fig. 5.9). Furthermore, RARi reversed the suppressive effect of AM-CM on T cell proliferation, suggesting that the RA-induced FoxP3⁺ T cells suppress effector T cell proliferation (Fig. 5.10). These results suggest that both human and murine AM can actively promote respiratory tolerance via the induction of FoxP3 in T cells. In these experiments, I chose to focus on the effect of inhibiting RA alone on the induction of human FoxP3⁺ T cells rather than TGF-β1, or RA and TGF-β1 synergy. The reason for this was AM were maintained in complete medium supplemented with FCS, which can contain exogenous TGF-β1. Therefore inhibiting this cytokine might not reflect any AM-specific effects.

5.2.6 AM from smokers induce FoxP3 expression in T cells to the same extent as AM from non-smokers in vitro

Light microscopy analysis has shown that AM obtained from smokers appear morphologically distinct from those obtained from non-smokers. AM from smokers display pigmented cytoplasmic granules (Fig. 5.11). Others have reported that AM from smokers contain more Golgi vesicles, endoplasmic reticulum and residual bodies when compared with AM from non-smokers (Harris et al., 1970). Therefore it seemed possible that cigarette smoking might affect the ability of AM to convert naïve T cells to FoxP3⁺ T cells, so I examined the effect of AM from smokers and non-smokers on naïve T cells. AM and AM-CM from cigarette smokers and non-smokers were able to induce FoxP3 expression on naïve T cells to the same extent in vitro (Figs. 5.12 and 5.13). Despite AM from both cohorts also expressing similar but not identical levels of ALDH1A (Fig. 5.7), this data suggests that there is no qualitative difference in the ability of AM to induce FoxP3 in T cells in response to cigarette smoking. However, consistent with previous studies (Brody, 1998; Brody and Craighead, 1975; Harris et al., 1970), there was a significantly higher number of AM in BAL of smokers compared with non-smokers (Fig. 5.14). It is important to note that the length of time that patients smoked for did not seem to have an impact on AM numbers within the smoking cohort. For example a patient who smoked for 60 years did not have more AM in their lungs when compared with someone who smoked for 30 years. An equal number of AM from smokers and non-smokers were used for in vitro experiments.
whether increasing the number of AM could induce greater frequencies of FoxP3^+ T cells in vitro. CD4^+CD25^-CD45RO^- T cells (6 x 10^5) were activated with 2 μg/ml anti-CD3 with increasing numbers of AM. A dose-dependent increase in FoxP3 expression was observed when T cells were cultured with increasing numbers of AM (Fig. 5.15). Therefore it is possible that increased numbers of AM in the airways of smokers might result in a more tolerogenic environment when compared with the airways of non-smokers.

5.2.7 Infection of AM with *M. tuberculosis* H37Ra does not affect their ability to induce FoxP3 in T cells.

It is well established that smoking is an independent risk factor for progression of primary tuberculosis, development of reactivation tuberculosis, more severe cavitary disease and death from tuberculosis. (Alcaide *et al.*, 1996; Altet-Gomez *et al.*, 2005; Altet *et al.*, 1996; Bates *et al.*, 2007; Davies *et al.*, 2006; den Boon *et al.*, 2005; Gajalakshmi *et al.*, 2003; Jha *et al.*, 2008; Kolappan and Gopi, 2002; Leung *et al.*, 2010; Leung *et al.*, 2004; Lin *et al.*, 2009; Lin *et al.*, 2007; Lin *et al.*, 2008; Moran-Mendoza *et al.*, 2008; Pai *et al.*, 2007; Slama *et al.*, 2007; Zellweger, 2008). It has also been reported that smoking prolongs the infectivity of treated TB patients (Siddiqui *et al.*, 2010). Impaired Th1 responses against TB lead to poorer outcomes of infection, and this is attributed to the dampening of protective immunity by Treg cells (Ribeiro-Rodrigues *et al.*, 2006). These studies may explain why cigarette smokers fare worse than non-smokers in terms of the outcome of infection.

Since AM provide a niche for *M. tuberculosis* to replicate, I next investigated whether infection of AM with an avirulent *M. tuberculosis* strain H37Ra affected their ability to induce FoxP3 expression in naïve T cells. AM were infected with a high multiplicity of infection (MOI), so that most of the cells would be infected with a high bacterial burden (>10 bacilli/cell). The results of staining AM with Auramine and Hoechst showed that most AM were highly infected with *M. tuberculosis* (Fig. 5.16). AM were infected for 3 hours, after which extracellular bacteria were removed. After 24 hours, AM-CM was harvested from infected and uninfected AM cultures
and incubated with CD4^CD25^CD45RO^ naïve T cells (6 x 10^3), purified from the blood of healthy donors and activated with 2 μg/ml anti-CD3.

Infection of AM with *M. tuberculosis* H37Ra had no effect on the ability of AM to induce FoxP3 expression in naïve T cells. CM from infected and uninfected AM induced FoxP3 to the same extent (Fig. 5.17). AM-CM from infected and uninfected cultures both inhibited proliferation of T cells (Fig. 5.18). These results indicate that the H37Ra strain of *M. tuberculosis* does not affect the ability of AM to induce FoxP3 in T cells.
5.3 Discussion

The results from this chapter demonstrate that AM from normal human lung can induce FoxP3 expression in naïve human T cells. This is consistent with the findings in mice and suggests the existence of a previously unreported mechanism of peripheral tolerance in the human lung. This indicates that a highly conserved strategy exists for maintaining immune tolerance in the lung and it has implications for the treatment of respiratory conditions such as TB infection.

The results revealed that human AM can induce significant FoxP3 expression in activated or unactivated FoxP3+ T cells from allogeneic donors in vitro. As in the murine studies, a soluble factor, identified as RA, was found to be at least partly responsible. Interestingly, cigarette smoking does not affect the ability of AM or AM-CM to induce FoxP3+ T cells. Furthermore, infection of AM with *M. tuberculosis* H37Ra does not influence the induction of FoxP3+ T cells either. However, both cigarette smoking and increased frequencies of Treg cells are independently associated with poorer outcomes of TB. An explanation for this and a potential link between these two observations comes from evidence that the lungs of smokers contain more AM than those of non-smokers (Brody, 1998; Brody and Craighead, 1975; Harris *et al.*, 1970). Activation of T cells in the presence of increasing numbers of AM results in a dose-dependent increase in the frequencies of induced FoxP3+ T cells. Therefore it is possible that smokers’ lungs contain more Treg cells than non-smokers’ lungs by virtue of having greater numbers of AM, and this could make them more susceptible to TB infection. Additionally, the increased frequencies of AM-induced Treg cells in these individuals might be responsible for the increased morbidity and mortality reported in TB-infected smokers compared with TB-infected non-smokers, possibly as a result of inadequate Th1-mediated anti-TB immunity (Altet-Gomez *et al.*, 2005; Bates *et al.*, 2007; Davies *et al.*, 2006; den Boon *et al.*, 2005; Gajalakshmi *et al.*, 2003).

Like murine AM, it has long been known that human AM are immunosuppressive. They inhibit proliferation but not effector function of T cells *in vitro* (Upham *et al.*, 1995; Upham *et al.*, 1997). This selective inhibition is thought to prevent excessive local T cell responses but permits
some functional activity. Indeed, when compared with T cells in peripheral blood, those obtained from lung tissue or airways of healthy individuals proliferate much more weakly (Garlepp et al., 1992; Holt et al., 1988; Lecossier et al., 1988), and are phenotypically distinct (Davidson et al., 1985). However, the mechanism by which human AM mediate suppression of T cell proliferation has not been defined, and there is uncertainty as to whether they secrete soluble factors to achieve this or whether they suppress via cell-cell contact (Rich et al., 1991; Upham et al., 1995; Upham et al., 1997). While it has been reported that rodent AM suppress via NO, human AM are able to suppress T cells in an NO-independent manner (Rich et al., 1991; Upham et al., 1995).

Despite the fact that AM from humans and rodents exert the same anti-proliferative effect on T cells in vitro, it has been suggested that they differ in how they achieve this. Studies have shown that rodent AM use RNI, but human AM might suppress proliferation of T cells via direct cell-cell contact rather than a soluble factor (Upham et al., 1995). Nonetheless, these studies did not investigate whether or not FoxP3+ T cells were involved in suppressing T cell proliferation. Furthermore, the T cell populations used were not very highly purified. Consistent with the murine studies described in Chapter 4, the data in this chapter has revealed a role for soluble RA in the induction of FoxP3+ T cells by human AM.

I did not investigate the effect of inhibiting TGF-β1, as AM were cultured in medium containing exogenous TGF-β1 and any observed effects could have been attributed to this, rather than endogenous TGF-β1. Furthermore, TGF-β1 is a pleiotropic cytokine and RA is the key cofactor which modulates the effect of TGF-β1 to promote FoxP3+ T cells induction and directly inhibit RORγT+ Th17 cell induction (Benson et al., 2007; Coombes et al., 2007; Ivanov et al., 2006; Kang et al., 2007b; Mucida and Cheroutre, 2007; Mucida et al., 2007; Sun et al., 2007; Zhou et al., 2008). Additionally, it is already known that TGF-β1 is found in the lungs and that normal AM can secrete this cytokine (Pons et al., 2005). Therefore the presence of RA in an environment also containing pleiotropic TGF-β1 strongly suggests that FoxP3+ T cells can be induced, in vitro and in vivo. I have not shown directly that FoxP3+ cells induced by AM or AM-CM in mice and humans
can suppress effector T cells *in vitro*, but it is now firmly established in the literature that FoxP3 expression is inextricably linked with both inducible and natural Treg cells. Further work will be required to demonstrate, using *in vitro* suppression assays, that the FoxP3⁺ T cells induced by AM are in fact Treg cells, inducible or otherwise.

Culture of highly purified CD4⁺CD25⁺CD45RO⁻ naïve effector T cells from human blood with allogeneic AM significantly enhanced the frequency of FoxP3⁺ T cells after 24 hours. This result was not merely due to combining T cells and AM from different individuals, or an inherent effect of macrophages on T cells, because activation with allogeneic MDM did not induce FoxP3 expression. Indeed, other studies have reported that blood monocytes readily promote antigen-specific proliferation by autologous T cells *in vitro*, but AM are much less potent APC (Toews *et al.*, 1984). It is possible that this is due to the presence of AM-induced Treg cells.

The results suggest that human AM can specifically convert naïve CD4⁺FoxP3⁻ T cells to CD4⁺FoxP3⁺ T cells *in vitro*. These assays involved activation of the T cells with anti-CD3, however I have also shown in subsequent studies that CD4⁺FoxP3⁺ T cells can be induced by AM in the absence of anti-CD3. These findings are consistent with those observed with murine AM. The CD4⁺FoxP3⁺ T cells induced by murine AM in the absence of anti-CD3 activation were predominantly CD25⁺. However, the AM and T cells in the human assays were from allogeneic donors, and in this instance the T cells might become activated in response to HLA mismatch, and it is likely they could upregulate CD25 as a result. Unfortunately it proved impossible to obtain both BAL samples and blood from the same individuals to investigate whether CD25 expression remained low in AM-converted autologous Treg cells *in vitro*.

Further evidence that the observed FoxP3 induction was probably not due to any donor-mismatch effects comes from the studies in which AM-CM was capable of inducing FoxP3 expression and suppressing T cell proliferation in a dose-dependent manner *in vitro*. These results suggest that a soluble factor secreted by AM induces FoxP3⁺ T cells. The findings are consistent
with the murine data described in Chapter 4, and with reports from others which demonstrated inhibition of T cell proliferation by AM-derived regulatory molecule(s) (Holt, 1979).

Flow cytometric and fluorescence microscopic analysis of human AM revealed that they express high levels of ALDH1A, and this provides strong evidence that these cells can produce RA. While ALDH1 expression in rat and human lungs has been documented (Stewart et al., 1996; Yoon et al., 2006), the specific cell types which express this enzyme in the lung have not been determined. Collectively, the data from human and murine cells in the previous study confirm the expression of this enzyme by AM. Clearly, AM from both species have the ability to produce RA and, by extension, promote the induction of FoxP3+ T cells. It is notable that AM from smokers and non-smokers might express different levels of ALDH1A, as a comparison of a smoker and a non-smoker revealed greater fluorescence intensity (approx half a log) for the non-smoker. The amount of fluorescence in the Aldefluor assay should correlate with the amount of enzyme present. This could be confirmed via RT-PCR or western blotting experiments. Unfortunately it is difficult to obtain sufficient cells from a non-smoker to perform several different experiments, so it limited the ability to perform the Aldefluor assay and quantify mRNA and/or protein levels. Furthermore, for this particular experiment, the smoker sample had an unusually low number of cells. The non-smoker's sample contained approximately 10% more cells than the smoker's. Both sample yields were barely within the minimum detection range for the assay, so it is possible that this small difference in cell numbers might be reflected by the fluorescence intensity.

Evidence that RA was involved in FoxP3 induction by human AM was provided by blocking RA signalling with a specific inhibitor. RARi prevented the induction of FoxP3+ T cells by AM-CM, and this was significant at the higher dose of RARi (20 μM). Furthermore, inhibiting RA signalling also promoted T cell proliferation in a dose-dependent manner. When the higher dose of inhibitor was present, T cells were able to proliferate to the same extent as control T cells. These data provide strong evidence for a conserved mechanism employed by human and murine AM to promote peripheral tolerance in the lung. This mechanism might represent a novel way to target therapiest for respiratory infections or allergies.
Cigarette smoking results in increased numbers of AM in the human lung, which are larger and more metabolically active than AM from non-smokers (Bowden, 1984; Harris et al., 1970), and are more debris-laden (Brody, 1998; Brody and Craighead, 1975). It is likely that the enhanced frequencies of AM result from a requirement to "clean up" the airways in response to cigarette smoke exposure. Since AM obtained from the lungs of smokers are more metabolically active and smoking induces a local inflammatory response, this might suggest that these AM might have a greater ability to induce local Treg cells. However, this was not the case, as AM or AM-CM from smokers and non-smokers induced FoxP3⁺ T cells to the same extent in vitro. This is consistent with the flow cytometric analysis, which showed that almost 100% of AM from both smokers and non-smokers expressed ALDH1A; there did not appear to be any qualitative differences in the ability of these cells to produce RA. These findings also suggest that any difference in ALDH1A fluorescence intensity between smokers and non-smokers might just reflect differences in cell numbers between samples, and might not indicate any qualitative differences in ALDH1A expression. However, the relative expression of the enzyme could be confirmed by RT-PCR and/or western blotting if the sample yield facilitated additional studies.

Due to practical limitations, an equal number of AM from smokers and non-smokers were used for in vitro experiments. In general, however, greater numbers of AM were routinely present in BAL samples acquired from smokers. This was to be expected as the lungs of smokers contain far more AM than non-smokers (Brody and Craighead, 1975). Therefore it seemed probable that the in vitro assays did not accurately reflect the ratio of AM:T cells in vivo in the lungs of smokers. It is also possible that the increased numbers of AM in their lungs might induce more FoxP3⁺ T cells. Furthermore, there was an increase in FoxP3⁺ T cells when T cells were cultured with increasing numbers of AM. Therefore it is likely that smokers' lungs contain more FoxP3⁺ T cells as a direct consequence of the enhanced numbers of RA-producing resident AM. High frequencies of FoxP3⁺ T cells have been reported in the large airways of smokers when compared with non-smokers, and this correlates positively with the length of time as a smoker (Isajevs et al., 2009). The data in the present study may explain why this increase in FoxP3⁺ T cells is found in smokers when compared with non-smokers.
Thus far, the data suggests a tolerogenic role for AM in the human lung which can be augmented in individuals who smoke cigarettes. It also suggests that a delicate balance must be struck to ensure optimal immune responses can occur with minimal pathology. The induction of Treg cells is certainly beneficial in terms of limiting overactive immune responses to inhaled antigens and preventing tissue damage. However, excessive immune regulation in the lung can promote the development of tumours and can impair the eradication of microorganisms (Mills, 2004). The increased frequencies of AM-induced Treg cells in the lungs of smokers might facilitate this. Unfortunately, it was difficult to obtain sufficient T cell numbers from BAL to investigate whether increased frequencies of FoxP3⁺ T cells were present in the lungs of smokers. It is well known that exposure to cigarette smoke is the main epidemiologically proven cause of lung cancer (CDC, 2006; Kuper et al., 2002; Stewart et al., 2008). Smoking also increases the risk of microbial infection and can enhance pathogen load (Drannik et al., 2004; Stampfli and Anderson, 2009).

Certainly, individuals exposed to cigarette smoke are more likely to become infected with M. tuberculosis (Bates et al., 2007), and smoking is associated with worse outcomes of infection such as the development of reactivation TB from LTBI (Davies et al., 2006; Zellweger, 2008), disseminated disease (Chiang et al., 2007), and increased mortality (Gajalakshmi et al., 2003; Jha et al., 2008). Treated TB patients who smoke have a prolonged infectivity period when compared with non-smokers (Siddiqui et al., 2010). However, it is not known why this is the case.

Treg cells are also associated with negative outcomes of TB infection. Th1 responses have a major role in immunity to TB, but this can be impaired by Treg cells and allows the persistence of the pathogen (Joosten and Ottenhoff, 2008; Kaufmann, 2001; Scott-Browne et al., 2007). In fact, enhanced expression of FoxP3 mRNA in combination with IL-8 and IL-12 mRNA can differentiate patients with active disease and those with LTBI (Wu et al., 2007), and there is a positive correlation between FoxP3 expression in whole blood and active disease (Burl et al., 2007; Roberts et al., 2007). Patients with active TB have higher frequencies of CD4⁺CD25⁺ T cells in blood when compared with uninfected individuals (Guyot-Revol et al., 2006; Hougardy et al., 2007) and LTBI patients (Hougardy et al., 2007). Depletion of CD4⁺CD25⁺ T cells from PBMC
prior to stimulation with *M. tuberculosis* antigen *in vitro* results in enhanced antigen-specific IFN-γ production (Guyot-Revol *et al.*, 2006). Patients with active TB have greater numbers of Treg cells at the disease site compared with peripheral blood (Chen *et al.*, 2007; Guyot-Revol *et al.*, 2006; Ribeiro-Rodrigues *et al.*, 2006).

It is also thought that increased numbers of Treg cells at the site of infection facilitates the dissemination of *M. tuberculosis* bacilli and the development of extrapulmonary TB. Indeed, enhanced frequencies of Treg cells have been found in the airways of patients with disseminated TB compared to patients with localised pulmonary TB (Guyot-Revol *et al.*, 2006; Sharma *et al.*, 2009). AM provide an intracellular niche required for *M. tuberculosis* to establish infection in the host (Lee *et al.*, 2009). The results of this study have demonstrated that infection of AM with a high MOI of *M. tuberculosis* does not affect their ability to induce FoxP3⁺ T cells *in vitro*, and that AM-CM from infected cells inhibits T cell proliferation to the same extent as that from uninfected AM. A high MOI was chosen to make sure that most if not all AM were infected, thus ensuring that any observed effects could not be attributed to uninfected AM present in the co-culture. These results suggest that neither *M. tuberculosis* infection nor the innate bactericidal mechanisms of the AM influence ALDH1A activity, and therefore *M. tuberculosis*-infected AM can induce FoxP3⁺ T cells to the same extent as uninfected AM *in vitro*.

Since cigarette smoking and enhanced frequencies of Treg cells are independently associated with reactivation TB and the development of extrapulmonary TB, this suggests a potential link between these two risk factors. In view of the fact that in general, the lungs of smokers have greater numbers of AM than non-smokers, and since increasing the number of AM induces more FoxP3⁺ T cells *in vitro*, it is likely that there is greater induction of FoxP3⁺ T cells in the lungs of smokers that might have regulatory function. If a smoker becomes infected with *M. tuberculosis*, then lung-infiltrating T cells stand a greater chance of being converted to a regulatory phenotype, and the already enhanced numbers of pre-existing induced Treg cells could severely impair local protective Th1 immunity against the pathogen. Ultimately, inadequate anti-TB immunity could prevent effective granuloma formation, or if the bacilli are sufficiently contained,
then the Treg cells and their anti-inflammatory products might upset the dynamic of the granuloma and facilitate reactivation TB. Further failure to eliminate *M. tuberculosis* could permit dissemination of the bacteria and the development of extrapulmonary TB. This hypothesis is supported by a study which demonstrates that the elimination of AM from the lungs of mice has a protective effect in pulmonary TB. Despite effective granuloma formation as a result of AM depletion, the mice had reduced bacterial growth and dissemination, 100% survival, enhanced cellular recruitment to the lungs and augmented Th1 responses (Leemans *et al.*, 2001).

In conclusion, human AM can induce CD4^FoxP3^ T cells at least in part by secreted RA. It is possible that CD4^FoxP3^ T cells induced by RA in the lung lack CD25 expression in the absence of an activated immune response. As a result these CD4^FoxP3^CD25^- T cells might represent an under-activated "reservoir" of cells that must be activated by IL-2 in order to optimally function *in vivo*. However, if the numbers of AM increase, then they enhance the induction of FoxP3^ T cells with potential regulatory function. AM numbers increase *in vivo* as a consequence of cigarette smoke exposure, and this can skew the delicate immune equilibrium in the lung to become excessively immunosuppressive, which could favour the development of tumours. It could also increase susceptibility to respiratory infection and impair clearance of microorganisms. The induced Treg cells possibly contribute to this excessive local immunosuppression.

Smokers are more likely to become infected with *M. tuberculosis* than non-smokers and they have greater morbidity and mortality than infected non-smokers. Infection of AM with *M. tuberculosis* does not impair the ability of AM to induce FoxP3 in T cells, which means that smokers infected with this pathogen have greater frequencies of Treg cells in their lungs, when compared with *M. tuberculosis*-infected non-smokers. These Treg cells may well be responsible for the morbidity and mortality that is associated with smoking and TB. Aside from the obvious solution of giving up smoking, perhaps RAR antagonists could be localised to the airways as part of treatment, or immunisation against respiratory infections such as TB in the future.
5.4 Figures
CD4^CD25^-CD45RO' naive effector T cells were purified from PBMC isolated from the buffy coats of healthy blood donors (obtained, with permission, from the Irish Blood Transfusion Service). To test the purity, sorted cells were stained with anti-human CD4, FoxP3, CD45RA and CD45RO, and the frequency of CD4^FoxP3^ cells was determined following gating on the viable CD4^+ lymphocytes. A) Phenotype of cells prior to sorting. B) Phenotype of cells post-sort.

Figure 5.1 Sorted CD4^+CD25^-CD45RO' T cells are FoxP3^- CD4^+CD25^-CD45RO' naïve effector T cells were purified from PBMC isolated from the buffy coats of healthy blood donors (obtained, with permission, from the Irish Blood Transfusion Service). To test the purity, sorted cells were stained with anti-human CD4, FoxP3, CD45RA and CD45RO, and the frequency of CD4^+FoxP3^ cells was determined following gating on the viable CD4^+ lymphocytes. A) Phenotype of cells prior to sorting. B) Phenotype of cells post-sort.
Figure 5.2 Human AM induce FoxP3 expression in allogeneic naïve CD4⁺FoxP3⁻CD25⁻ T cells cultured with anti-CD3

Human AM were obtained by bronchoalveolar lavage (BAL). BAL was performed on patients undergoing bronchoscopy. Human MDM were differentiated from PBMC isolated from the buffy coat of healthy blood donors. Macrophages were cultured at 5 x 10⁵/ml and incubated for at least 24 hours prior to co-incubation with T cells. CD4⁺CD25⁻CD45RO⁻ naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 μg/ml soluble anti-CD3 and cultured in the presence or absence of AM or MDM at a ratio of 9:1 macrophages:T cells. After 24 hours, cells were stained with anti-human CD4 and FoxP3 and the frequency of CD4⁺FoxP3⁺ cells was determined following gating on the viable CD4⁺ lymphocytes. A) Results are pooled from 20 patients. B) Representative dot plots showing the percentage of induced FoxP3⁺ CD4⁺ T cells. P values were calculated on the difference in FoxP3 expression between CD4⁺ T cells cultured with anti-CD3 and AM versus CD4⁺ T cells cultured in the absence of AM. **p<0.01
Figure 5.3 Induction of FoxP3 expression by AM does not require T cell stimulation
Human AM were obtained and cultured as described in Fig. 5.2. CD4^+CD25^-CD45RO^-naive effector T cells were obtained as described in Fig. 5.1. T cells were cultured in the presence or absence of AM at a ratio of 9:1 AM:T cells. After 24 hours, cells were stained with anti-human CD4 and FoxP3 and the frequency of CD4^+FoxP3^+ cells was determined following gating on the viable CD4^+ lymphocytes. A) Results are pooled from 21 patients. B) Representative dot plots showing the percentage of induced FoxP3^+ CD4^+ T cells. P values were calculated on the difference in FoxP3 expression between CD4^+ cells cultured with AM versus CD4^+ T cells cultured without AM ***p<0.0001
Figure 5.4 Conditioned Media from alveolar macrophage culture can suppress the proliferation of naïve T cells

Human AM were obtained and cultured as described in Fig. 5.2. AM conditioned media (AM-CM) was harvested after 24 hours, and twofold dilutions were prepared. CD4^+CD25^−CD45RO^− naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 μg/ml soluble anti-CD3 and 5 x 10^5 irradiated APC and cultured with of decreasing dilutions of AM-CM. 50 μl of AM-CM was added to 150 μl of cells, so the final dilution factors were 1:4, 1:8 and 1:16. Proliferation was determined by ^3H-thymidine incorporation after 48 hours. Results are the mean values for 3 blood donors, each tested with 6 AM-CM samples. P values were calculated on the difference in proliferation between CD4^+ cells activated with AM-CM versus CD4^+ T cells activated without AM-CM. *p<0.05
A

![Graph showing percentage of CD4^+FoxP3^+ T cells with different conditions:](image)

CD4^+ T cells	+	+	+	+	+	+
anti-CD3 | - | + | + | + | + | +
APC | - | - | + | + | + | +
AM-CM | - | - | - | + | + | +

1:16 to 1:4

B

![Flow cytometry plots showing CD4 and FoxP3 expression with different conditions:](image)

T cells

1:16 AM-CM

0.77

T cells + anti-CD3

1:8 AM-CM

0.97

T cells + anti-CD3 + APC

1:4 AM-CM

2.19

CD4

2.41

FoxP3

5.04
Figure 5.5 AM-CM can induce FoxP3 expression in FoxP3- naïve T cells

AM-CM was produced as described in Fig. 5.4. CD4^CD25^-CD45RO^- naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 µg/ml soluble anti-CD3 and 5 x 10^5 irradiated APC and cultured with decreasing dilutions of AM-CM. After 24 hours, cells were stained with anti-human CD4 and FoxP3 and the frequency of CD4^FoxP3^ cells was determined following gating on the viable CD4^+ lymphocytes. A) Results are the mean values for 3 blood donors, each tested with 6 AM-CM samples. B) Representative dot plots showing the percentage of induced FoxP3^+ CD4^+ T cells.
Figure 5.6 AM-CM can induce FoxP3 expression in FoxP3- naïve T cells
AM were obtained as described in Fig. 5.2. CD4+CD25-CD45RO- naïve effector T cells were obtained as described in Fig. 5.1. T cells were activated with 2 μg/ml soluble anti-CD3 in the presence or absence of AM at a ratio of 9:1 AM:T cells. After 24 hours, cells were stained with anti-human FoxP3-PE (red) and Hoechst 3358 nuclear stain (blue), and the extent of FoxP3+ T cell induction was examined by fluorescent microscopy using a Leica photomicroscope. Representative images show A) T cells + anti-CD3 and B) T cells + anti-CD3 + AM. All images are 100x magnification. White arrows indicate FoxP3+ T cells.
Figure 5.7 Human AM express the enzyme which produces retinoic acid
AM were obtained as described in Fig. 5.2. AM were resuspended at 1×10^6/ml and aldehyde dehydrogenase activity was estimated using the Aldefluor® staining assay. Representative histogram depicts ALDH1 (Aldefluor®) expression as an indirect measurement of RA production on viable unstained control cells (filled grey histogram), AM from a smoker (dashed line) and AM from a non-smoker (solid line).
Figure 5.8 Human AM express the enzyme which produces retinoic acid
AM were obtained as described in Fig. 5.2. AM were cultured at 1 x 10⁶/ml and aldehyde dehydrogenase activity was estimated using the Aldefluor® staining assay (green) and Hoechst 3358 nuclear stain (blue) by fluorescent microscopy using a Leica photomicroscope. Representative images depict A) unstained AM, B) AM stained with Aldefluor® reagent in the presence of the ALDH1A inhibitor DEAB and C) AM stained with Aldefluor® reagent. All images are 100x magnification.
Figure 5.9 Inhibiting retinoic acid signalling significantly reduces the induction of FoxP3^+ T cells by AM-CM

AM-CM was produced as described in Fig. 5.4. CD4^+CD25^-CD45RO^- naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 μg/ml soluble anti-CD3 and 5 x 10⁵ irradiated APC and cultured with AM-CM in the presence or absence of an antagonist of the retinoic acid receptor (RARi). After 24 hours, cells were stained with anti-human CD4 and FoxP3 and the frequency of CD4^+FoxP3^+ cells was determined following gating on the viable CD4^+ lymphocytes. A) Results are the mean values for 3 blood donors, each tested with 6 AM-CM samples. B) Representative dot plots showing the percentage of induced FoxP3^+ CD4^+ T cells. P values were calculated on the difference in FoxP3 expression between CD4^+ T cells activated in the presence of AM-CM and RARi versus CD4^+ T cells activated with AM-CM. *p<0.05
Figure 5.10 Inhibiting retinoic acid signalling overcomes the anti-proliferative effect of AM-CM on T cells

AM-CM was produced as described in Fig. 5.4. CD4⁺CD25⁻CD45RO⁻ naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 μg/ml soluble anti-CD3 and 5 x 10⁵ irradiated APC and cultured with AM-CM in the presence or absence of RARi. Proliferation was determined by ³H-thymidine incorporation after 48 hours. Results are the mean values for 3 blood donors, each tested with 6 AM-CM samples.

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4⁺ T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-CD3</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>APC</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>AM-CM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5 μM RARi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>20 μM RARi</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Figure 5.11 AM from smokers are morphologically distinct from AM from non-smokers
AM were obtained as described in Fig. 5.2. AM from each donor were observed using a light microscope (100x magnification). Arrows indicate AMs.
Figure 5.12 AM from smokers induce FoxP3+ T cells to the same extent as AM from non-smokers

AM were obtained as described in Fig. 5.2. CD4+CD25-CD45RO- naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 µg/ml soluble anti-CD3 in the presence or absence of AM from smokers or non-smokers at a ratio of 9:1 AM:T cells. After 24 hours, cells were stained with anti-human CD4 and FoxP3 and the frequency of CD4+FoxP3+ cells was determined following gating on the viable CD4+ lymphocytes. A) Results are pooled from 21 patients. B) Representative dot plots showing the percentage of induced FoxP3+ CD4+ T cells.
A

![Bar chart showing the percentage of CD4^+FoxP3^+ T cells under different conditions.

- CD4^+ T cells +
- anti-CD3 -
- APC -
- Smoker AM-CM -
- Non-smoker AM-CM -

B

![Flow cytometry plots showing the expression of CD4 and FoxP3 under different conditions.

- T cells + anti-CD3 + APC
- T cells + anti-CD3 + APC + smoker AM-CM
- T cells + anti-CD3 + APC + non-smoker AM-CM

Values: 0.77, 5.04, 0.97, 4.87]
Figure 5.13 AM-CM from smokers induces FoxP3+ T cells to the same extent as AM-CM from non-smokers

AM-CM was produced as described in Fig. 5.4. CD4+CD25−CD45RO− naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 μg/ml soluble anti-CD3 and 5 x 10^5 irradiated APC in the presence or absence of AM-CM from smokers or non-smokers. After 24 hours, cells were stained with anti-human CD4 and FoxP3 and the frequency of CD4+FoxP3+ cells was determined following gating on the viable CD4+ lymphocytes. A) Results are the mean values for 3 blood donors, each tested with 6 AM-CM samples (3 x smokers, 3 x non-smokers) B) Representative dot plots showing the percentage of induced FoxP3+ CD4+ T cells.
Figure 5.14 Lungs of smokers contain approximately four times more AM than the lungs of non-smokers
AM were obtained as described in Fig. 5.2. AM from each donor were counted on the basis of size using a light microscope and total AM in each sample was calculated.
A

B

T cells

T cells + anti-CD3

T cells + anti-CD3 + 5 x 10^4 AM

T cells + anti-CD3 + 1 x 10^5 AM

T cells + anti-CD3 + 1.5 x 10^5 AM

T cells + anti-CD3 + 2 x 10^5 AM

FoxP3

0.197

0.456

3.53

9.41

13.5

27.0

249
Figure 5.15 AM induce FoxP3^+ T cells in a dose-dependent manner

AM were obtained as described in Fig. 5.2 and were cultured at different concentrations. CD4^+CD25^-CD45RO^- naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 μg/ml soluble anti-CD3 in the presence or absence of AM. After 24 hours, cells were stained with anti-human CD4 and FoxP3 and the frequency of CD4^+FoxP3^+ cells was determined following gating on the viable CD4^+ lymphocytes. A) Results are pooled from 2 AM donors. B) Representative dot plots showing the percentage of induced FoxP3^+ CD4^+ T cells.
Figure 5.16 Infection of AM with high MOI of *M. tuberculosis* H37Ra
Dilutions of prepared bacilli were added to AM for 3 hours, after which extracellular bacteria were removed and cells were fixed. Infected AM were stained with auramine TB stain (green) and Hoechst 3358 nuclear stain (blue). The MOI was determined by fluorescent microscopy using a Leica photomicroscope. A high MOI was desired for these experiments – i.e. most AM should be infected with a high burden of bacteria (>10 bacilli/cell). Once the ideal MOI was determined, AM were infected with the appropriate volume of bacilli for 3 hours and extracellular bacteria were washed away. 24 hours later, AM were cultured with T cells
A

% CD4^+ FoxP3^+ T cells

CD4^+ T cells + + + + +
anti-CD3 - + + + +
APC - - - + +
AM-CM (Uninfected) - - - - -
AM-CM (Infected) - - - - +

B

T cells

T cells + anti-CD3

T cells + anti-CD3 + APC

T cells + anti-CD3 + APC + Uninfected AM-CM

T cells + anti-CD3 + APC + Infected AM-CM

0.23

0.24

1.51

2.51

2.48
Figure 5.17 *M. tuberculosis* infection does not affect the induction of FoxP3\(^+\) T cells by human AM

AM were obtained as described in Fig. 5.2. AM were either uninfected, or were infected with *M. tuberculosis* H37Ra at a high MOI. After 3 hours extracellular bacteria were removed and AM were replenished with fresh medium. AM-CM was harvested 24 hours later. CD4\(^+\)CD25\(^-\)CD45RO\(^-\) naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 µg/ml soluble anti-CD3 and 5 x 10\(^5\) irradiated APC in the presence or absence of AM-CM from infected or uninfected AM. After 24 hours, cells were stained with anti-human CD4 and FoxP3 and the frequency of CD4\(^+\)FoxP3\(^+\) cells was determined following gating on the viable CD4\(^+\) lymphocytes. A) Results are the mean values for 3 blood donors, each tested with 6 AM-CM samples. B) Representative dot plots showing the percentage of induced FoxP3\(^+\) CD4\(^+\) T cells.
Figure 5.18 The induction of FoxP3+ T cells by CM from uninfected and *M. tuberculosis*-infected AM is associated with a reduction in T cell proliferation
AM were obtained as described in Fig. 5.2. AM were either uninfected, or infected with *M. tuberculosis* H37Ra at a high MOI. After 3 hours extracellular bacteria were removed and AM were replenished with fresh medium. AM-CM was harvested 24 hours later. CD4+CD25-CD45RO- naïve effector T cells were purified from PBMC as described in Fig. 5.1. T cells were activated with 2 μg/ml soluble anti-CD3 and 5 x 10^5 irradiated APC in the presence or absence of AM-CM from infected or uninfected AM. Proliferation was determined by ³H-thymidine incorporation after 48 hours. Results are the mean values for 3 blood donors, each tested with 6 AM-CM samples.
Chapter 6

General Discussion
The airways are constantly exposed to inhaled antigen, yet the lung microenvironment is predominantly non-inflammatory. Most of the antigens encountered in the lung are not from infectious agents. Therefore the lung’s immune system need to “ignore” inhaled innocuous antigen, because excessive inflammation could damage the lung tissue and cause thickening of the alveolar wall, both of which could impair gas exchange and allow inhaled pathogens or toxins to gain access to the bloodstream and spread to other sites of the body. This explains why immune responses in this compartment need to be so highly regulated. Nonetheless, the airways are a common entry point for microorganisms, so when pathogens are encountered, the local immune system of the lung must be capable of initiating a timely, appropriate response.

Evidently, an intricate regulatory network exists in the lung that controls the magnitude of immune responses to inhaled antigen. However, the particular organ-specific mechanisms that are responsible for this immune regulation are unclear. This study examined the role of Treg cells in the lung – specifically CD4^FoxP3^CD25^ Treg cells. The results demonstrated how these cells function in vitro, and in vivo in response to infection with B. pertussis. They have also revealed that FoxP3^ T cells can be induced by AM-derived RA in both mice and humans. This mechanism might represent a target for enhancing the efficacy of mucosal vaccines, or as a treatment for respiratory infections. Furthermore, the results have identified a potential link between enhanced frequencies of Treg cells in the lungs as a consequence of cigarette smoking, which might explain why smokers who are infected with M. tuberculosis tend to have more severe disease when compared with non-smoking patients.

The discovery that the majority of CD4^FoxP3^ T cells in the lungs of naïve mice were overwhelmingly CD25^, or inactive, seemed paradoxical at first. It seemed counterintuitive that most of the Treg cells in the lung would be “switched off”, particularly given the activated/memory phenotype of these cells. Nevertheless, CD25 is a T cell activation marker rather than a specific Treg cell marker, and FoxP3 is the archetypal marker of Treg cells. It has been proposed that CD4^FoxP3^CD25^ Treg cells represent a “reservoir” of inactive Treg cells
which can become activated when required (Zelenay et al., 2005). In the context of lung immunology, this hypothesis seems plausible - if an adaptive immune response is initiated in the lungs, then these pre-existing local Treg cells may become activated and exert their regulatory function, presumably to minimise tissue damage.

It appears that lung CD4^FoxP3^CD25^- Treg cells have a high threshold of activation. They are unable to suppress proliferation of effector T cells \textit{in vitro} when they are freshly isolated from their lungs of naïve mice. However, if they are activated in the presence of IL-2, CD25 expression is enhanced and they subsequently suppress effector T cell proliferation \textit{in vitro}, most likely via IL-10. Nevertheless, CD4^FoxP3^CD25^- T cells are not as suppressive as their nTreg cell counterparts, at least \textit{in vitro}. I have shown by phenotypic analysis that lung CD4^FoxP3^CD25^- Treg cells express ICOS, a surface marker that is strongly associated with IL-10 production, and is crucial for the induction of peripheral tolerance, in particular mucosal tolerance (Akbari et al., 2002; Bonhagen et al., 2003; Miyamoto et al., 2005; Tuettenberg et al., 2009).

A role for IL-10 in the suppression mediated by these cells is supported by the \textit{in vivo} studies where lung CD4^FoxP3^CD25^- Treg cells were found to produce IL-10 during infection with \textit{B. pertussis}. Interestingly, while the frequencies of CD4^FoxP3^CD25^- Treg cells increase around the peak of infection, they are still outnumbered by CD4^FoxP3^CD25^- Treg cells. Ultimately, the ratios of CD25^-CD25^ CD4^FoxP3^- return to pre-infection levels once the pathogen has been cleared. It might have been expected that some activated Treg cells would remain, but it is possible that they underwent AICD or simply CD25 expression was downregulated, which has been shown in adoptive transfer experiments in rats (Strickland et al., 1996b). Therefore, under normal conditions, the lung environment might actively keep resident Treg cells in a quiescent state.
The induction of CD4^FoxP3^CD25' Treg cells may represent an additional population of Treg cells that exist in conjunction with thymically-derived CD4^FoxP3^CD25^ nTreg cells in the lungs of naïve mice. Certainly, depletion of CD25^ cells prior to infection with *B. pertussis*, which removed CD4^FoxP3^CD25^ nTreg cells did not enhance bacterial eradication, suggesting that the residual CD4^FoxP3^CD25' Treg cells function sufficiently in the absence of nTreg cells. Indeed, enhanced concentrations of IL-10 were detected in the lungs of these mice compared with controls. Depleting CD4^FoxP3^CD25^ nTreg cells in IL-10^−/−^ mice accelerated *B. pertussis* clearance, in association with early/enhanced Th1 immune responses. These results suggest that the suppressive function of CD4^FoxP3^CD25' Treg cells is mediated by IL-10.

It appears that two populations of Treg cell are present in the lungs of mice, and it seems likely that the previously unreported CD4^FoxP3^CD25' Treg cells are an induced population, unlike the thymically-derived nTreg cells. It has previously been reported that T cells which are activated in the presence of AM are hypoproliferative, and have an activated phenotype with downmodulated CD25 expression (Strickland *et al.*, 1996b). These properties are similar to those of CD4^FoxP3^CD25' Treg cells described in the present study. AM are the most numerous immune cells in the lung, and many studies have shown that they promote immunosuppression. Indeed, the removal of AM using liposomes containing CI_2 MDP results in massive inflammation in response to otherwise harmless antigen (Strickland *et al.*, 1993; Thepen *et al.*, 1992; Thepen *et al.*, 1991; Thepen *et al.*, 1989). The inflammation appeared to be mediated by T cells (Strickland *et al.*, 1993; Thepen *et al.*, 1991), suggesting that AM have a specific inhibitory effect on T cells in vivo.

Previous studies on the effect of AM on T cells did not examine whether Treg cells were involved, with many of these studies published before the discovery of FoxP3 and its importance in Treg cell biology. The experiments in the present study were based on the hypothesis that FoxP3 expression in T cells might be induced by AM, and that these T cells might be responsible for the suppression of effector T cell responses. The experiments employed highly purified Treg-
free populations of naïve T cells - CD4^CD25^CD45RB^{high} murine T cells and CD4^CD25^CD45RO^ human T cells.

The results of this study demonstrated that AM from humans and mice can inhibit T cell proliferation by inducing FoxP3 expression in naïve T cells \textit{in vitro}. Importantly, the activation status of the T cells does not affect the induction as AM induced FoxP3 expression in both unstimulated and anti-CD3-stimulated T cells \textit{in vitro}. In mice, the phenotype of the Treg cells induced by AM without anti-CD3 stimulation was predominantly CD4^FoxP3^CD25^, which strongly resembles the \textit{ex vivo} phenotype of FoxP3^+ T cells isolated from the lungs of naïve mice. Unfortunately, it was not possible to culture human AM with T cells from the same donor, and establish the expression of CD25 by the induced FoxP3^+ T cells. The induced FoxP3^+ T cells could have become activated as a consequence of MHC mismatches in an MLR-type reaction. Nonetheless, these results have suggested for the first time that AM contribute to immune tolerance in the lungs of mice and humans by promoting the induction of FoxP3^+ T cells.

CD4^+ effector T cells are constantly recruited to the lung and its draining lymph nodes. In the lymph nodes, they encounter inhaled antigen via APC. The vast majority of inhaled antigen is innocuous. In order to prevent unnecessary inflammation it is possible that AM induce FoxP3^+ T cells from these infiltrating effector T cells, which are CD25-. However, if pathogenic microorganisms are present then the local immunosuppression must be inhibited. The stimulation of AM via TLRs, in particular TLR2, TLR4 and TLR9, can apparently overcome their inhibitory function and is permissive to the development of an appropriate immune response to the specific pathogen (Fernandez \textit{et al.}, 2004; Lambrecht, 2006; Takabayshi \textit{et al.}, 2006).

AM could induce FoxP3 expression in unactivated T cells as well as activated T cells \textit{in vitro}. Certainly in SPF mice \textit{in vivo}, most of the T cells which encounter AM would not be activated, so would not express CD25. This could explain why CD4^FoxP3^+ T cells isolated from the naïve mouse lung have a predominantly CD25^ phenotype, and it gives further credence to the
Treg cell “reservoir” theory. In other words, inactive FoxP3⁺ T cells are present in the lung and will effectively suppress immune responses, but only when they are sufficiently activated.

The results have shown that human and mouse AM induce FoxP3 expression in T cells using a common mechanism involving RA, suggesting that it is highly conserved. The study showed for the first time that AM have the ability to produce RA. This is consistent with studies on the gut, where DC and macrophages have been reported to produce RA (Coombes et al., 2007; Denning et al., 2007), so this strategy might be common to APC at mucosal surfaces. The studies in mice have shown that RA synergises with TGF-β₁ to augment induction of FoxP3 expression on naïve T cells, and that blocking RA signalling can enhance antigen-specific and non-specific T cell proliferation in the presence of AM in vitro. These studies also indicate that the AM-induced murine FoxP3⁺ T cells produce IL-10, which represents another similarity with the CD4⁺FoxP3⁺CD25⁺ Treg cells found in the lungs at high frequencies.

This study also examined the possible role of RA-induced Treg cells in controlling immunity to infection in the lungs, using a model of respiratory infection with B. pertussis. The results revealed that nasal administration of RARi significantly reduced the frequency of FoxP3⁺ T cells in the lungs of mice, but this had no effect on the pathogen load. Although RARi appears to be effective in preventing Treg cell conversion by RA, it does not of course remove nTreg cells which may be sufficient at suppressing the immune response against B. pertussis. The results from this experiment are consistent with the experiments in which IL-10⁻/⁻ mice were depleted of nTreg cells, and provide additional evidence for two complementary and possibly redundant immunoregulatory mechanisms in the lung. These results point to future experiments that may shed better light on the mechanism of nasal tolerance. For example, depletion of CD25⁺ cells in conjunction with RARi-mediated inhibition of FoxP3⁺ T cell induction during B. pertussis infection. It is likely that disabling both populations of lung Treg cells would eradicate the pathogen more quickly.
Manipulation of RA-induced Treg cells may be a more promising strategy for enhancing the efficacy of mucosal vaccines. It is known that nasal and oral administration of soluble antigens results in extreme immunological non-responsiveness which is mediated by CD4⁺ T cells and is characterised by decreased T cell proliferation, reduced production of Th1 and Th2 cytokines, and suppressed immunoglobulin production (van Halteren et al., 1997). The results of the present study suggest that AM-induced FoxP3⁺ T cells contribute to the immune non-responsiveness to nasally delivered antigens, and that inhibiting RA signalling might overcome it. Experiments to address this hypothesis found some evidence to support it. Nasal delivery of antigen and adjuvant in conjunction with RARi successfully prevent the induction of nasal tolerance to the antigen and allows systemic immunity to develop, as determined by antigen-specific serum IgE. These findings support the conclusion that the FoxP3⁺ T cells which are induced by RA from AM are at least partly responsible for promoting nasal tolerance. This has implications for the development of vaccines targeted to mucosal sites such as the lung, where so many pathogens and antigens gain entry to the host.

Cigarette smoking is the causative agent of serious respiratory diseases such as lung cancer and chronic obstructive pulmonary disease (COPD) (Domagala-Kulawik, 2008). The pathogenesis of these smoking-related disorders is associated with complex inflammatory processes and changes in the immune system. The respiratory tract is the system most affected by cigarette smoke, and immune consequences include metaplastic and dysplastic changes in the bronchial epithelium, and enhanced secretion of inflammatory cytokines and adhesion molecules (Domagala-Kulawik, 2008). In particular, chronic cigarette smoke exposure results in increased production of matrix metalloproteinases (MMP) by macrophages, which contribute to the destruction of the alveolar wall (Domagala-Kulawik, 2008; Tetley, 2002).

Others have reported that AM in the lungs of smokers are more metabolically active than AM from non-smokers (Harris et al., 1970), so it was hypothesised that they might also differ in the production of RA. However, cigarette smoking had no effect on the expression of ALDH1A
or the ability of human AM to induce FoxP3\(^+\) T cells, when compared with similar numbers of AM from non-smokers. Furthermore, a comparison of uninfected AM with AM infected with \textit{M. tuberculosis} H37Ra demonstrated that they can induce FoxP3\(^+\) T cells to the same extent. However, the lungs of smokers contain significantly greater numbers of AM and Treg cells than non-smokers, and culture of T cells with increasing numbers of AM \textit{in vitro} resulted in the enhancement of FoxP3\(^+\) T cell induction, presumably due to increased production of RA. It is therefore likely that there is greater induction of FoxP3\(^+\) T cells with regulatory potential \textit{in vivo} in the lungs of smokers compared with non-smokers. This might explain why smokers are more susceptible to respiratory infections and are more likely to develop lung cancers.

Not only are smokers more susceptible to infection with \textit{M. tuberculosis}, but they are also more likely to develop reactivation TB, extrapulmonary TB and even die from the disease in comparison with infected non-smokers. Even with effective chemotherapy, smokers have a longer period of infectivity relative to non-smokers. Independently of this, in \textit{M. tuberculosis}-infected patients increased frequencies of Treg cells are associated with worse outcomes of disease (Chen \textit{et al.}, 2007; Qin \textit{et al.}, 2008; Sharma \textit{et al.}, 2009). This suggests that there is a relationship between cigarette smoking and the induction of Treg cells during \textit{M. tuberculosis} infection. If it was possible to get blood and BAL samples from the same patients, then it would also be interesting to examine whether FoxP3\(^+\) T cells induced by AM in the absence of activating stimuli lack CD25 expression. It would also be worthwhile to examine whether the induced FoxP3\(^+\) T cells can inhibit killing of \textit{M. tuberculosis} by infected AM, and whether inhibiting RA signalling can promote killing.

If smokers have enhanced frequencies of AM in their lungs, then elevated levels of AM-induced FoxP3\(^+\) T cells could impair anti-TB immunity and prevent the eradication or containment of the pathogen. If \textit{M. tuberculosis} cannot be eliminated or contained, active disease ensues with the possibility that it can spread elsewhere in the body. Smokers with contained LTBI are also more likely to progress to reactivation TB, but the mechanism is not known. If the AM-
induced FoxP3⁺ T cells in humans also function via IL-10, then perhaps IL-10 can antagonise
TNF-α, which plays a key role in anti-TB immunity. The importance of TNF-α in tuberculosis is
highlighted by the reactivation of LTBI in individuals prescribed TNF-blocking drugs, such as
infliximab (Keane et al., 2001).

The in vivo studies in mice involving nasal delivery of an RAR antagonist have
established that this is an effective strategy to inhibit the induction of FoxP3⁺ T cells in the lungs.
As a result, this approach can be incorporated into a useful immunisation strategy, and I have
demonstrated how nasal administration of antigen and adjuvant in combination with RARi
prevents tolerance to the antigen. It is possible that this approach could be applied to humans
where the RARi could be delivered via an inhaler to enhance immune responses to M. tuberculosish in infected patients, especially smokers. Inhalers would eliminate risk associated
with improper and safe needle use as well as disposal, and it might be more cost-effective, as
trained medical personnel would not be required to inject patients. From a patient perspective, this
approach is more accessible and less invasive than injections. It also makes sense to direct
vaccines against respiratory infections to the lungs. In the case of TB, which is endemic in
developing countries, this simplified and potentially cheaper vaccination technique might make it
accessible to more individuals. Inhalation therapy of RA antagonists might also complement anti-
TB chemotherapy, especially as smokers have a prolonged period of infectivity after commencing
treatment compared with non-smokers, possibly due to the presence of excessive numbers of
FoxP3⁺ T cells.

In conclusion, this study has shown that AM in the lung have the ability to induce FoxP3
expression in naïve, FoxP3⁻ T cells, in part via RA secretion (Fig. 6.1). This is independent of the
activation status of the T cell, and this may explain why the majority of CD4⁺FoxP3⁺ T cells in
the lungs of naïve mice do not express CD25. These CD4⁺FoxP3⁺CD25⁻ Treg cells comprise a
population distinct from CD4⁺FoxP3⁺CD25⁺ nTreg cells because unlike nTreg cells, they
suppress via cytokine production, namely IL-10. They also have weaker suppressive capacity than
nTreg cells. These features suggest that the CD4^FoxP3^CD25^ Treg cells are an induced population rather than thymically-derived Treg cells. Furthermore, in vivo studies using the B. pertussis infection model have suggested that two complementary Treg cell populations exist in the lung: one expressing CD25 and the other secreting IL-10.

It is possible that the induced FoxP3^ T cells exist in this under-activated state to prevent excessive immunoregulation in the lung. However, when they are appropriately stimulated in the presence of IL-2 in vitro, they become sufficiently activated and function to limit T cell responses. In vivo, Teff cells may be the source of IL-2, so this represents a neat feedback loop, in which the Treg cells are only fully activated when inflammatory effector T cells are present, and which must be suppressed to prevent tissue damage (Fig. 6.2). This mechanism of peripheral tolerance could be manipulated by inhibiting RA signalling and it might represent a potential therapeutic approach for promoting immune responses to pathogens in the lungs. Additionally, an imbalance of AM, such as the increase in number as a result of cigarette smoking, may skew the immune dynamic in the lung, due to greater induction of FoxP3^ T cells (Fig. 6.3). Excessive frequencies of Treg cells can impair protective immune responses such as the Th1 response to M. tuberculosis infection. Indeed, smokers infected with M. tuberculosis have increased morbidity and mortality compared with infected non-smokers.

Therefore, the results identify a complex system for maintaining tolerance in the lung and preventing tissue damage, but they also illustrate how an imbalance can negatively impact on protective immunity to microorganisms.
Figure 6.1 Induction of peripheral tolerance in the lung by AM
AM produce RA, which can induce expression of FoxP3 in naive CD4⁺FoxP3⁻CD25⁻ T cells. The induced CD4⁺FoxP3⁺CD25⁺ T cells might comprise an under-active "reservoir" of Treg cells which must be fully activated before they can exert a suppressive effect in vivo.

Figure 6.2 CD4⁺FoxP3⁺CD25⁻ Treg cell activation and function
CD4⁺FoxP3⁺CD25⁻ induced T cells become fully activated in the presence of IL-2, which is secreted by Teff cells during an immune response. Activated FoxP3⁺ T cells subsequently produce IL-10, which suppresses proliferation of Teff cells and prevents excessive immunopathology as a result of an overactive immune response.
Figure 6.3 Cigarette smoking can enhance the induction of peripheral tolerance, which can skew the immune dynamics in the lung and promote excessive immunoregulation

Cigarette smoking results in increased numbers of AM in the lungs, which results in enhanced conversion of FoxP3+ T cells, which might have regulatory function. In general immune cell dynamics need to be delicately balanced - if there are too few Treg cells, then autoimmune diseases can develop; on the other hand, too many Treg cells can impair protective immune responses against pathogens and promote tumor development. In the lung in particular, excessive immunoregulation means that pathogens may persist. Smokers infected with *M. tuberculosis* have poorer outcomes of infection than non-smokers, and Treg cells are independently associated with poorer outcomes as well. These risk factors may be linked, i.e. the augmented numbers of AM in the lungs of smokers may induce increased frequencies of FoxP3+ T cells which might impair protective anti-TB immunity.
Chapter 7

References

276

291

Strickland D., Kees U. R. and Holt P. G. (1996b) Regulation of T-cell activation in the lung: isolated lung T cells exhibit surface phenotypic characteristics of recent activation including down-modulated T-cell receptors, but are locked into the G0/G1 phase of the cell cycle. *Immunology* 87, 242-9.

Chapter 8

Appendix
Figure 8.1 Purification of CD4⁺CD25⁺CD45RB_{low} Treg cells from the lungs of naïve mice

Lungs from naïve mice were digested with 1 µg/ml collagenase, homogenised and filtered. Isolated cells were stained with rat anti-mouse CD4, CD25 and FoxP3. CD4⁺CD25⁺CD45RB_{low} Treg cells were purified using a MoFlow cell sorter. A) Representative dot plots showing the gating strategy and percentages of CD4⁺ and CD4⁺CD25⁺CD45RB_{low} cells prior to purification. B) Representative dot plots showing the percentages of CD4⁺ and CD4⁺CD25⁺CD45RB_{low} cells after purification.
Figure 8.2 Purification of CD4^CD25^CD45RB^{high} Teff cells from the spleens of naïve mice
Spleens from naïve mice were homogenised and filtered. Isolated cells were stained with rat anti-mouse CD4, CD25 and FoxP3. CD4^CD25^CD45RB^{high} Teff cells were purified using a MoFlow cell sorter. A) Representative dot plots showing the gating strategy and percentages of CD4^+ and CD4^-CD25^- CD45RB^{high} cells prior to purification. B) Representative dot plots showing the percentages of CD4^+ and CD4^-CD25^-CD45RB^{high} cells after purification.