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Abstract. Reinforcement Learning (RL) has been extensively used in
Urban Traffic Control (UTC) optimization due its capability to learn the
dynamics of complex problems from interactions with the environment.
Recent advances in Deep Reinforcement Learning (DRL) have opened up
the possibilities for extending this work to more complex situations due
to it overcoming the curse of dimensionality resulting from the exponen-
tial growth of the state and action spaces when incorporating fine-grained
information. DRL has been shown to work very well for UTC on a single
intersection, however, due to large training times, multi-junction imple-
mentations have been limited to training a single agent and replicating
behaviour to other junctions, assuming homogeneity of all agents.
This study proposes the usage of Independent Deep Q-Network (IDQN)
to train multiple heterogeneous agents, which is a more realistic scenario
given heterogeneity of junction layouts in the city. We use Dueling Double
Deep Q-Networks (DDDQNs) with prioritized experience replay to train
each individual agent separately for its own conditions. We enrich this
approach with fingerprinting to disambiguate the age of the data sampled
from the replay memory to mitigate non-stationarity effects resulting
from other agents affecting the environment.
Our IDQN approach is evaluated on three connected heterogeneous junc-
tions in low and high traffic conditions, implementing different combi-
nations of standard and prioritized experience replay and fingerprinting.
Results show that IDQN is suitable approach to optimization in hetero-
geneous UTC with the best performance achieved by the combination of
IDQN with prioritized experience replay but without fingerprinting.

1 Introduction

Traffic congestion is often caused by an inefficient control of traffic lights on in-
tersections, i.e., settings not sufficiently adapted to particular set of conditions.
In recent years several AI-based approaches have been investigated in order
to optimize traffic flow in junctions. The most promising technique has been
Reinforcement Learning (RL) due to its capacity to learn the dynamics of com-
plex problems without any human intervention. Different RL implementations
have been applied in Urban Traffic Control (UTC) [2, 4, 5, 19], both on single
junctions as well as on multiple collaborating junctions. The main issue with RL
approaches is the curse of dimensionality that arises from the exponential growth



of the state and action spaces because of the number of intersections. Combining
RL with Neural Networks led to a method called Deep Reinforcement Learning
(DRL) which enhances hugely the performance of RL for large scale problems.
DRL techniques have demonstrated to work very well for UTC in single agent
environments [8, 12, 13, 16]. Nonetheless, when the problem scales up to multiple
intersections the need for coordination becomes more complex, and as a result,
the latest studies take advantage of the similarity of agents in order to train sev-
eral agents at the same time [14, 22]. However, assuming homogeneous junctions
is not realistic as a city has a large range of different layouts of intersections.

This paper proposes a solution for heterogeneous multi-junction UTC sce-
nario. Our approach is based on the Independent Deep Q-Network (IDQN) to
achieve learning on multiple agents, with each agent using Dueling Double Deep
Q-Network (DDDQN) enriched with fingerprinting to mitigate non-stationarity
present in multi-agent environment. We evaluate the approach in widely used
open source traffic simulator SUMO, and show it can successfully optimize the
traffic flows on three heterogeneous junctions.

The rest of this paper is organized as follows: Section 2 reviews other work
in DRL in UTC. Chapter 3 presents the techniques our approach is based on as
well as the design specifics of our proposed IDQN technique. Chapter 4 presents
the simulation environment, experiment design, results and their analysis, while
Section 5 concludes the paper discussing avenues for future work.

2 Applications of RL in UTC

RL has been extensively applied in UTC [2, 4, 5, 19]. To enable using image snap-
shosts of the intersection as input, while dealing with the curse of dimensionality,
more recent work started exploring DRL and Convolutional Neural Networks
(CNN) solutions in single agent scenarios [16, 13]. Multi-agent DRL work is cur-
rently limited to solutions for homogeneous multi-agent by taking advantage of
the similarity in order to train only one neural network which can be used for all
agents indistinctly. Approach presented in [22] used transfer learning to transfer
the learnt policy across the agents, while in [14] only one agent is trained at each
training episode, and the others react based on their previously learned policies.
However, in the cases where junctions are heterogenous, the knowledge is not
directly reusable, and agents need to be trained separately to account for the
potential impact of other agents’ actions on its own environment.

3 Design of IDQN approach to UTC

This paper proposes the usage of DRL to deal with the curse of dimensionality,
that traditional RL approaches encounter, by using Neural Networks. To train
multiple heterogeneous agents, it uses Independent Q-Learning (IQL), where
each agent learns independently and simultaneously its own policy, treating
other agents as part of the environment. However, the environment becomes



nonstationary from the point of view of each agent, as it involves the interac-
tion with other agents who are themselves learning at the same time, ruling
out any convergence guarantees. The technique we used is Dueling Double Deep
Q-Networks (DDDQN), which relies in a component called experience replay
memory in order to stabilize and improve the learning. (We have used Duel-
ing Networks, Double DQN and Prioritized Experience Replay to improve the
training over standard DQN). However, experience replay technique is incom-
patible with non-stationary environments. In order to combine the experience
replay memory and IQL, we used a technique of fingerprinting which stabilizes
the memory against the non-stationarity. This fingerprint disambiguates the age
of the data sampled from the replay memory.

In this section we describe all the techniques underlying our approach. We
then detail all RL components in our implementation, namely the design of the
state space, action space, reward function, and deep neural network architecture.

3.1 Deep Reinforcement Learning

Reinforcement learning (RL) learns optimal actions for specific environment con-
ditions by trial-and-error learning to maximize the long term reward signal [17].

At each time step t, the agent perceives a state st in state space S from
which it selects an action at in the action space A by following a policy π. The
agent receives a reward rt when it transitions to the state st+1 according to the
environment dynamics, the reward function R(st, at, st+1) and the transition
function T(st, at, st+1). Discount factor γ ∈ [0, 1] is applied to the future rewards.

RL can be either model-based or model-free (where the transition and the
reward functions are unknown). The most common model-free technique is Q-
Learning, where RL agents learn Q-values which are functions of state-action
pair that returns a real value: Q: S x A → R. Thus, the policy is represented as:

π(s) = arg max
a∈A

Q(s, a) (1)

where the Q-value can be learned by using Q-learning updates [24]:

Q(s, a) = (1− α)Q(s, a) + α[R(s, a) + max
a∈A

Q(s′, a′)] (2)

where 0 < α ≤ 1 is a learning rate.
In situations with a large state and action spaces it is unfeasible to learn

Q value estimates for each state and action pair independently as in standard
tabular Q-Learning. Therefore, DRL models the components of RL with deep
neural networks. There are multiple variations and extensions of the basic DRL
model, so in the following subsections we describe the methods our approach
utilizes to develop DRL algorithm applicable in heterogeneous UTC scenarios.

Deep Q Networks [15] proposed Deep Q-Networks (DQN) as a technique to
combine Q-Learning with deep neural networks. RL is known to be unstable
or even to diverge when a non-linear function approximator such as a neural



network is used to represent the Q value. DQN addresses these instabilities by
using two insights, experience replay and target network.

DQN parameterizes an approximate value function Q(s, a; θi) using Convo-
lutional Neural Networks, where θi are the weights of the network at iteration i.
The experience replay stores the agent’s experiences et = (st, at, rt, st+1) at each
time step t in a dataset Dt = e1,. . . ,et pooled over many episodes into a replay
memory. Then, mini batches of experience drawn uniformly at random from the
dataset (s, a, r, s) ∼ U(D) are applied as Q-updates during the training. The
Q-learning update at iteration i follows the loss function:

Li(θi) = E(s,a,r,s)∼U(D)

[(
r + γmax

a′
Q
(
s′, a′; θ−i

)
−Q (s, a; θi)

)2]
(3)

where θi are the Q-network parameters at iteration i and θ−i are the target
network parameters. The target network parameters are updated with the Q-
network parameters every C steps and are held fixed between individual updates.

Double DQN The max operator in standard Q-learning and DQN uses the
same values both to select and to evaluate an action, which produces likely
to select overestimated values, resulting in overoptimistic value estimates. To
prevent this, Double Q-learning decouples the selection and the evaluation [10].

For DQN architectures is not desired to fully decouple the target as in [10]
because the target network provides a intuitive option for the second value func-
tion, without having to include extra networks. For this reason, [9] proposes to
evaluate the greedy policy according to the online network, but using the target
network to estimate its value given as result the Double DQN (DDQN) equation:

Y DDQN
t = Rt+1 + γQ(st+1, arg max

a
Q(st+1, a; θt); θ

−
i ) (4)

Prioritized Experience Replay [18] presented prioritized experience replay
which detaches agents from considering transitions with the same frequency that
they are experienced. Prioritized replay more frequently samples transitions from
which there is a high expected learning progress, as measured by the magnitude
of their temporal-difference (TD) error. It samples transitions with probability
pt relative to the last encountered absolute TD error:

pt ∝
∣∣∣(Rt+1 + γt+1 max

a′
Q
(
s′, a′; θ−i

)
−Q (s, a; θi)

)∣∣∣ω (5)

Where ω is a hyper-parameter that determines the pattern of the distribu-
tion. New transitions are pushed into the replay buffer memory with maximum
priority, providing a bias towards recent transitions.

Dueling Network A dueling network is a technique proposed by [23] which
computes separately the value V(s) and advantage A(s, a) functions that are
represented by a duelling architecture that consists of two streams where each



stream represents one of these functions. These two streams are combined by an
convolutional layer to produce an estimate of the state-action value Q(s, a). The
dueling network automatically produces separate estimates of the state value
and advantage functions without supervision. Besides that, it can learn which
states are valuable, without having to explore the consequence of each action for
each state.By using this approach, Dueling DQN achieves faster training over
DQN. Dueling network is defined with the equation:

Q(s, a; θ, α, β) = V (s; θ, β) +

(
A (s, a; θ, α)− 1

|A|
∑
a′

A (s, a; θ, α)

)
(6)

Multi-agent learning: Independent DQN In a multi-agent setting, multiple
agents can collaborate directly by exchanging Q-values or jointly deciding on
actions, or can operate independently in the shared environment, such as in
the case of Independent Q-Learning (IQL) [21]. Independent DQN (IDQN) is
an extension of IQL for DRL environments using DQN, where each agent a
observes the partial state sat , selects an individual action uat , and receives a team
reward, rt shared among all agents. [20] combines DQN with independent Q-
learning, where each agent a independently and simultaneously learns its own Q-
function Qa(s, ua; θai ) [6]. Since our setting is partially observable, IDQN can be
implemented by having each agent conditioned on its action-observation history,
i.e., Qa(τa, ua). In DRL, this can be implemented by given to each agent a DQN
on its own observations and actions.

Fingerprinting in IQL A key component of DQN is the experience replay
memory. Unfortunately, the combination of experience replay with IQL is prob-
lematic because the non-stationarity introduced by IQL results in data in expe-
rience replay memory no longer indicating the current dynamics in which the
agent is learning. To address this issue, [7] introduced a fingerprint technique,
which associates the data in replay memory with the age of the data, i.e., where
in training trajectory does it originate from. It gradually changes over training
time in order to allow the model to generalise across experiences in which the
other agents execute policies as they learn.

3.2 State Representation

In our approach, the state is a image-like representation of the current state
of the simulator environment (Figure 1a), similar to the concept used in [15].
The state consists of two matrices of 64x64: (1) a binary matrix P for vehicle
positions (Figure 1b), and (2) a matrix S for vehicle speeds (Figure 1c). These
matrices are based on those used in previous works such as [13, 14, 22].

The locations are calculated by mapping the continuous space of the simu-
lated environment into a discretized environment by creating a grid with cells of
size C. The matrix P is a binary matrix where one indicates the presence of a
vehicle and zero the absence of a vehicle (Figure 1b). The matrix S indicates the



(a) Simulation Envi-
ronment State



0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0


(b) Position Matrix



0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.4 0.0 0.0 0.0 1.0
0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0


(c) Speed Matrix

Fig. 1: State Representations

speed of the vehicle in the same cell position where a vehicle was calculated to be
located in the matrix P (Figure 1c). The speed is represented as a percentage of
the maximum allowed speed that it is computed by dividing the current vehicle’s
speed by the maximum allowed speed.

Additionally, a fingerprint is defined as: Let -a be the other agents of agent
a, such that we can include the importance weights of the prioritized experience
replay and the TD-Errors vectors sampled from the other agents into the obser-
vation function as θ −a and TD−a respectively. Given that, the new observation
function is O’(s) = { O(s), θ −a, TD−a }. They are included in a matrix F.

3.3 Action Space

The action space varies depending of the structure of the intersection. For ex-
ample, in a four road intersection the action space is defined as A = {NS, EW,
NST; EWT} where NS stands for turning green North-South roads, EW stands
for turning green East-West roads, NST stands for turning green North-South
right turning, and EWT stands for turning green East-West right turning.

The duration of each phase is 1 time step, but at each time step the phase
can be extended. Additional yellow phase is added during a fixed period of 3
time steps when the previous action is different than the current chosen action.
This middle yellow phase reduces the risk of collisions.

3.4 Reward Function

Let wi,t be the ith vehicle’s waiting time at time step t, and Wt the total cu-
mulative waiting time for all the vehicles in the observation scope of the road
network at time step t as shows in equation 7. The reward function is formulated
in equation 8. Agent receives a positive reward from a range (0.0, 1.0] where the
agent’s reward loses are proportional to the cumulative waiting time at time step
t. Thus, the agent must keep short waiting time in order to receive higher scores.

Wt =
∑
i

wi,t (7)



rt =

{
1.0
Wt
, if cummulative waiting time Wt is greater than 0

1.0, otherwise
(8)

3.5 Deep Neural Network Architecture

Fig. 2: The architecture of the Deep Neural Network.

The Figure 2 illustrates the Deep Neural Network which is the same as used
in [23]. Every agent has its own neural network copy in order to allow it to learn
its own local policy since every agent is trained independently by using IDQN.

4 Evaluation

In this section we present an evaluation of IDQN as a proposed solution for
multi-agent DRL for heterogeneous agents in traffic light control using the traffic
simulator SUMO [11]. We use OpenAI’s baseline framework [3] to implement
our DDDQN with prioritized experience replay. OpenAI Baselines is a set of
implementations of RL in Python which uses TensorFlow library [1].

4.1 Set up and parameters

We run the test in the network layout shown in Figure 3, which consists of three
heterogeneous junctions.

Table 1 lists the hyper-parameters used. Every episode corresponds to 1 hour
of simulation time which is 3600 time steps, where every time step is 1 simulated
second. The values were first chosen from a combination of [13, 18, 22, 23], and
then tuned through several iterations of single and multi-agent experiments.

We select two metrics that have been used in several DRL studies for UTC.
Every metric is taken per episode. Cumulative Reward is the sum of rewards



Fig. 3: Network Layout for Multi-Agent Experiments

Table 1: Multi-agent evaluation hyper-parameters
Parameter Value

Episodes 1000
Time steps 3600000
Pre train time steps 2500
Learning rate 0.0004
Exploration ε 1.0 → 0.01
Time steps from starting ε to ending ε 360000
Target network update 5000
Prioritization exponent α 0.6
Prioritization importance sampling β 0.4 → 1.0
Discount factor γ 0.99
Replay Memory size M 30000
Minibatch size B 32

rt taken on every time step t until the episode is finished. The Average Waiting
Time is the sum of all Wt divided by the number of time steps in the episode.
SUMO defines the waiting time for a vehicle as the time (in seconds) spent with
a speed below 0.1 m/s since the last time it was faster than 0.1 m/s.

We implement and evaluate the following combinations of IDQN, experience
replay, and fingerprinting, to assess impact of each component on the perfor-
mance:

– IDQN without experience replay (PEMR Disabled), therefore the
agent cannot store experiences.

– IDQN with prioritized experience replay (PEMR).
– IDQN with prioritized experience replay and fingerprint (PEMR

+ FP). This is the proposed IDQN technique with the fingerprint to dis-
ambiguate the age of experience replays.

We evaluate the approach against the fixed time (FT) baseline, in which
order of the phases is fixed and preconfigured; phases are actuated in a round
robin manner.

Every technique is tested in two traffic conditions. A low traffic load which
consists of 1300 to 1600 cars per episode. With efficient traffic control the scenario
is expected to result in smooth traffic flow, but any control inefficiencies will
result in longer queues. And a high traffic load which consists of 1900 to 2500
cars per episode. This scenario represents the traffic load in peak times.



4.2 Results and analysis

The Figure 4 presents the results of the experiments executed in low and high
traffic load respectively.

(a) Low Traffic: Cumulative Rewards (b) Low Traffic: Average Waiting Time

(c) High Traffic: Cumulative Rewards (d) High Traffic: Average Waiting Time

Fig. 4: IDQN Experiments - Results per Episode

As can be seen from the Figure 4a, in low traffic conditions, FT gets a con-
stant reward range that varies extremely low around 50 due to it not adapting its
performance to the traffic conditions. PEMR Disabled also gets very low rewards,
even worse than the FT, as it never successfully learns to adapt. Therefore, dis-
abling the experience replay is not useful for our problem. Finally, PEMR and
PEMR + FP, show identical performance, getting 400% bigger rewards than
FT. They both learn very well in spite of the non-stationarity, increasing the re-
wards from around 25-100 in the exploration phase up to around 200-250 in the
exploitation phase. They reach their optimal point at 300 episodes, where they
get to keep a stable rewarding. Based on this similarity of results, we deduce
that the fingerprint in low traffic loads is not helping. As illustrated in figure 4c,
in high traffic conditions, FT actually performs well in terms of the reward, and
in line with PEMR, with both outperforming PEMR Disabled and PEMR + FP



by around 25%. We conclude that the extra layer of the fingerprint reduces the
performance of the technique under intense traffic loads. Moreover, none of the
DRL technique learn sufficiently over the episodes. These results indicate that
the agents need longer training time for such a high load.

The Figure 4b presents the waiting time for low traffic. FT waiting time
follows the same pattern as its rewards. PEMR Disabled produces extremely high
waiting times. Similarly to their performance with respect to rewards, PEMR
and PEMR + FP get similar performance, with very low waiting times which
are approximately 300% less than FT. From these results we can confirm that
the fingerprinting is not helping, as observed when analyzing the rewards. In
high traffic load, the results for waiting time follow the same pattern as for the
rewards in high load: PEMR + FP slightly outperforms PEMR. Overall, no
DRL approach learns a good performance for high load in the amount of time
given for the training.

To further analyse the results, we have looked into unexpectedly bad per-
formance of fingerprinting. One possibility is that the fingerprint might not
be able to improve the performance as prioritized experience replay is already
good enough to deal with the non-stationarity without adding fingerprints. To
test this hypothesis, we run an experiment using only normal experience re-
play (EMR). The figure 5 shows this additional experiment which compares
EMR against PEMR + FP. Both techniques learn well, but PEMR + FP ob-
tains higher rewards outperforming ERM by around 45% in the highest point
of PEMR + FP. Figure 5b illustrates how they get a similar performance in
waiting time, but EMR is more stable than PEMR + FP by not producing
peeks. We conclude the Prioritized Experience Replay helps to deal with the
non-stationarity by getting bigger rewards, which indicates that PEMR has bet-
ter performance than EMR. These results prove that PEMR can be good enough
to deal with the non-stationarity. Potentially PEMR + FP could be improved
by selecting a better fingerprint, but we leave this for future work.

(a) Cumulative Rewards per Episode (b) Average Waiting Time per Episode

Fig. 5: Low Traffic IDQN Experiments with Standard ERM



5 Conclusion and future work

This paper presented IDQN as the first approach in literature to addresses het-
erogeneous multi-agent DRL in UTC. We evaluated IDQN’s performance with
different configurations in low and high traffic loads. Our experiments showed
that IDQN is a suitable techniques for heterogeneous multi-agent UTC environ-
ments which can deal with the non-stationarity. The best results were obtained in
the low traffic load. The high traffic load requires further investigation, by either
fine-tuning hyper-parameters or allowing for the longer training time. We demon-
strated that the experience replay is mandatory to learn efficiently, but that the
fingerprint we chose did not enhance the prioritized experience replay. Therefore,
further investigation is needed to evaluate if different fingerprints could improve
the performance. Further, our technique should be evaluated against standard
RL approaches, to investigate if more fine-grained sensor data enabled by the
use of DRL approaches improves the performance over standard approaches.
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