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ABSTRACT
Recent availability of large amounts of sensor data from Internet
of Things devices opens up the possibility for software systems to
dynamically provide fine-grained adaptations to the observed envi-
ronment conditions, rather than executing only static hard-coded
behaviors. However, in current adaptive systems such adaptations
still need to be specified beforehand, making the development pro-
cess cumbersome as well as restricting the system adaptations
only to those situations foreseen by the developers. We propose
that adaptations should instead be generated by machine learning
techniques at run time. Adaptive systems should incorporate an
adaptation engine, which, through a mix of supervised and unsuper-
vised learning, learns adaptive behaviors, and packages them into
reusable software adaptations. We illustrate this idea with a simple
proof-of-concept example using Context-oriented Programming,
and focus on the challenges of implementing such an approach in
the development of adaptive systems.
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1 INTRODUCTION
Adaptive software systems’ goal is to seamlessly modify their be-
havior to detected situations in their surrounding execution envi-
ronment. Such situations can be gathered from internal system
monitors (self ) or external sensors (context). There are several
ways to realize behavior adaptations [6]. The Context-oriented
Programming (COP) paradigm [3] offers a programmatic approach
to dynamic adaptations. In COP, adaptations are conceived as the
association of specialized behavior (i.e., behavioral adaptations) with
a context object, representing information gathered from sensors.
The systems dynamically adapts whenever the context object is
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sensed, triggering the activation of the behavioral adaptation i.e.,
composing this behavior with the running system. If the context is
no longer sensed, the system is recomposed excluding the contexts’
associated behavioral adaptations.

However, in COP, as well as in other adaptation approaches,
adaptive systems require the explicit definition of both the situ-
ations to which they can adapt, and the adaptation behavior. To
remove this constraint, we propose to incorporate Machine Learn-
ing (ML) techniques within the programming language, able to
identify situations in which adaptation is required, as well as to
dynamically generate suitable adaptations continuously, based on
executed behaviors. This will reduce the development effort of
defining adaptations, and enable the system to react to situations
unforeseen at development time. Packaged adaptations could also
be reused across similar contexts or transferred to other entities
within the system.

2 COP ADAPTATIONS USING ML
ML is incorporated into a COP language by means of an adap-
tation engine, shown in Figure 1, defining a process to generate
adaptations. To generate adaptations, the system must be aware
of both its surrounding environment (environment states), and the
atomic actions taken –that is, the basic set of actions implemented
in the system. Furthermore, the system must associate sequences of
actions to a particular situation from the surrounding execution en-
vironment. Unsupervised learning algorithms (e.g., Reinforcement
Learning (RL) [5]) drive the selection of atomic action sequences
that associate to a given environment state. These sequences can
be learned based on their frequency and the contribution towards
the system’s goal. Once a suitable sequence is identified, an adapta-
tion is generated by extracting the specific situation gathered from
the system as the context, and the action sequence as the associ-
ated behavioral adaptation. Extracted adaptations are then executed
whenever their associated context is sensed.

Figure 1: ML-based adaptation engine
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Additional to this process, the adaptation engine also offers a
supervised learning module to take into account actions explicitly
triggered by users. These actions are then incorporated to generate
new (improved) adaptations from existing ones. The system behav-
ior then consists of the mix of atomic actions and generated/learned
adaptations, continuously evolving if and when new contexts and
behavioral adaptations are detected.

We implemented a proof-of-concept RL-based adaptation engine
integrated with the Context Traits [2] COP language. Snippet 1
shows an example of the adaptation generation by the adaptation
engine in Context Traits. Both the context (Line 1) and behavioral
adaptation (Lines 2-5) objects are generated at run time. We tested
the adaptation engine using a cruise control driving assistant for
autonomous vehicles. The goal of the assistant is to drive while
respecting the traffic rules (speed limit and driving at the correct
side of the road), and to avoiding crashes. The atomic actions are:
changeLane, speedUp, and slowDown.

1 Context1 = new cop.Context({name:"Context1"});
2 Context1Adaptation = Trai t ({
3 systemGoal = function () {
4 action1(); action2(); action3(); action2();
5 } });
6 Context1.adapt(baseSystem ,Ctx1Adaptation);

Snippet 1: Behavior generation stub

Figure 2 shows the results of preliminary evaluation of this ap-
proach in two environment situations requiring adaptation: chang-
ing the speed limit and changing the side of the road on which
a vehicle should drive (switching from driving on the right-hand
side of the road to the left-hand side of the road, as it might be
the case, for example, when traveling from France to the UK). We
observe that before the environment change, the base and adapted
systems behave correctly (base behavior). When the speed limit
or the desired driving side of the road change, the non-adapted
system violates both goals, until the new behaviors are learned
(learned atomic actions), and new adaptations generated (learned
adaptations), leading once again to almost full compliance with the
system goals. However, we also note a single instance in which
adapted behavior violated the speed limit and crashed, evidencing
a reliability problem with learned adaptations, discussed further in
the next section.

3 CHALLENGES
ML can be successfully exploited to generate adaptations dynami-
cally, tackling the problem of explicit definition of adaptations in
adaptive systems. However, several issues need to be addressed
before a full implementation can be considered. Here, we highlight
three of those issues.

Full Adaptation Engine. The dynamic generation of adaptations
is currently only semi-automated. To have full integration between
ML and the language, a better interfacing to the adaptation en-
gine is needed. The programming language needs to be enriched
with abstractions that enable declarative-style specifications of sys-
tem’s atomic actions and high level goals (e.g., drive) to generate

Figure 2: Performance of ML-generated Adaptations

adaptations. Details of the ML implementation, such as as param-
eter selection or sensor discovery, should be hidden away from
the developer. Additionally, the system should be capable of inte-
grating new sensors, data sources, atomic actions and goals at run
time. Otherwise, the development effort of manually specifying the
adaptations will not be removed but only shifted to specifying ML
parameters in the adaptation engine.

Providing Behavior Guarantees. One of the main open challenges
in adaptive systems that utilize ML is the difficulty of providing be-
havioral guarantees, not just in terms of convergence to optimality,
but more crucially guaranteeing that system will not significantly
deviate from the expected safe behavior (as illustrated by our crash
example). This challenge is present in any programming language
utilizing ML-generated code, as it requires testing and verification
of yet unwritten code. Research on theoretical guarantees of ML
implementations is in its infancy, with examples addressing e.g.,
SMT solvers for verifying deep neural networks [4], and formal
verification of RL [1]). Significant research is needed in this area
addressing a wider variety of ML techniques to ensure consistency
of ML-generated adaptations.

Impact on Development and Maintenance Cost. While learning
rather than pre-specifying adaptations reduces development com-
plexity and user effort, there is a growing concern that the use of ML
could increase long-term software maintenance cost [7]. These is-
sues arise from tight coupling of ML code and external data sources,
and feedback loops from the environment; changes in the external
world might make models behave unexpectedly and require contin-
uous runtime monitoring. ML development is prone to a number of
identified anti-patterns, such as excessive glue code and entangled
handling of multiple data streams, that adaptive systems developers
would need to be aware of and avoid.
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