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Figure 1: Example of visualization of predicted visual attention as color-coded timeline during editing in post.

ABSTRACT
Methods of storytelling in cinema have well established conven-
tions that have been built over the course of its history and the
development of the format. In 360◦ film many of the techniques
that have formed part of this cinematic language or visual narrative
are not easily applied or are not applicable due to the nature of the
format i.e. not contained the border of the screen. In this paper, we
analyze how end-users view 360◦ video in the presence of direc-
tional cues and evaluate if they are able to follow the actual story
of narrative 360◦ films. We first let filmmakers create an intended
scan-path, the so called director’s cut, by setting position mark-
ers in the equirectangular representation of the omnidirectional
content for eight short 360◦ films. Alongside this the filmmakers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CVMP ’18, December 13–14, 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6058-6/18/12. . . $15.00
https://doi.org/10.1145/3278471.3278472

provided additional information regarding directional cues and plot
points. Then, we performed a subjective test with 20 participants
watching the films with a head-mounted display and recorded the
center position of the viewports. The resulting scan-paths of the
participants are then compared against the director’s cut using
different scan-path similarity measures. In order to better visualize
the similarity between the scan-paths, we introduce a new metric
which measures and visualizes the viewport overlap between the
participants’ scan-paths and the director’s cut. Finally, the entire
dataset, i.e. the director’s cuts including the directional cues and
plot points as well as the scan-paths of the test subjects, is publicly
available with this paper.
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Test collections; Multimedia content creation;

KEYWORDS
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1 INTRODUCTION
With the increasing commercialization of virtual reality (VR) as a
medium, one of the main factors that drive the uptake of devices is
content. One of the most popular formats to deliver this content
is 360◦ film, which is also called cinematic VR or live-action VR.
In contrast to traditional cinema, where the viewer perceives the
world through a window i.e. the cinema screen, cinematic VR allows
a person to be present within the world by wearing a head-mounted
display (HMD) [Smith et al. 1998].

This poses a new challenge for filmmakers as it necessitates the
expansion of cinematic language to a border-less format. It also
poses technical challenges in the entire production, post-production
and delivery chain. 360◦ video needs resolutions of above 8K in
order to reach a similar quality as current ultra-high-definition tele-
vision because only a fraction of the video, the so-called viewport, is
visible for the end-user. Thus, newways of compressing and stream-
ing of cinematic VR content are required to get quality content to
the final consumers. An example of how a director’s input might
optimize the bandwidth and decoding power requirement of 360◦
video streaming can be found in the report of the ISO/IEC working
group MPEG [Thomas and Gabriel 2017] where the concept of an
additionally streamed ‘director’s view’ with higher bitrates is in-
troduced. If the user is looking into the direction of the director’s
view, then the viewport pixels are rendered from this view instead
of the bitstream of the full sphere, which has lower quality due to
bandwidth limitations. However, visual attention modelling [Borji
and Itti 2013; Carrasco 2011; Itti and Borji 2014] and saliency pre-
diction [Monroy et al. 2018; of Nantes and Technicolor 2017; Rai
et al. 2017] are crucial in order to predict where users will eventu-
ally look. With this information in place, video streaming quality
can be enhanced [Nasrabadi et al. 2017; Ozcinar et al. 2017b,a] or
labor-intensive quality control can be automated in post-production
[Croci et al. 2017]. Finally, understanding visual attention also sup-
ports the storytelling process for 360◦ video [Bender 2018; Pavel
et al. 2017; Sheikh et al. 2016], e.g. through automatic prediction
of visual attention of end-users directly during the editing process
in post. Figure 1 shows an example with a graphical user interface
where the predicted visual attention is visualized with a director’s
cut similarity (DCS) map (see Section 4 for details).

In this paper, we analyze how users view 360◦ video in the
presence of directional cues and plot points, and evaluate if they
can follow the actual story of narrative 360◦ films. We first let
filmmakers create an intended scan-path, the so called director’s
cut (DC), by setting position markers in the equirectangular format
of eight short 360◦ films. Alongside this, the filmmakers provided
additional information regarding directional cues and plot points
for their own films. Then, we performed a subjective test with 20
participants watching the films with an HMD and recorded the
users’ head orientation.

In order to better visualize the comparison of the viewers and the
directors preferred viewing, we introduce a new metric which mea-
sures and visualizes the viewport overlap between the participants’
scan-paths and the director’s cut, which is one of our contributions.

Finally, the entire dataset, i.e. the director’s cuts including the
directional cues and plot points as well as the scan-paths of the
participants, are publicly available with this paper, which is the
main contribution of the paper alongside with the presented anal-
ysis1. To our knowledge, it is the first time that director’s cuts of
professional VR filmmakers combined with subjective data have
been provided to the scientific community. This dataset can be seen
as a first important step to contribute to streaming concepts like
the one introduced by MPEG [Thomas and Gabriel 2017]. More-
over, it can further be used to develop and test saliency prediction
approaches, which can then be integrated into post-production
applications, and new streaming solutions by creating and utilizing
the additional director’s cut, which is an important contribution
for the multimedia community.

The remainder of the paper is organized as follows. In Section 2,
we review related work. In Section 3, we describe the proposed
metrics which measure and visualize the similarities between the
users’ scan-paths and the director’s cut. The methodology and
evaluation of the subjective experiment are presented in Sections 4
and 5, respectively. In Section 6, we conclude the paper with a
discussion and further outlook.

2 RELATEDWORK
Storytelling. Four techniques that have traditionally formed the

‘tools’ that filmmakers rely on to tell their stories are: cinematog-
raphy, mise-en-scene, sound and editing [Vosmeer and Schouten
2017]. The expansion of these tools into VR, however, requires each
to be re-evaluated as the viewer is free to look in any direction of
the 360◦ film without the direct control of the filmmaker. Spatial
audio can be an effective tool to guide the viewer to another area
of the scene as are directional cues by the actors present in it, new
concepts such a presence need to be also taken into account in
[Henrikson et al. 2016].

One of the most central ideas to the notion that continuity-led
film grammars [Bolle et al. 1997] are also applicable to the cinematic
VR is the ability of the director to predict and indirectly control the
user’s viewport [Mateer 2017]. For instance, Serrano et al. [Serrano
et al. 2017] investigated continuity editing in VR video in the context
of segmentation theory [Kurby and Zacks 2008]. Their findings
include that continuity of action across cuts by aligning the region
of interest (ROI) between them is best suited to fast-paced action
while misaligning these regions of interest or action discontinuity
between cuts leads tomore exploratory behavior from the viewer. In
[Kjær et al. 2017], a survey was carried out which aimed to measure
the effect of cut frequency on viewers disorientation and their
ability to follow a story. Their findings suggested that if the ROI
remains consistent across cuts, a high frequency does not increase
disorientation or affect the ability to follow the story.

Nielsen et al. [Nielsen et al. 2016] investigated two methods of
directing the viewer in a 360◦ narrative short; one where the ori-
entation of the virtual body was faced in the ROI, the other where

1https://v-sense.scss.tcd.ie/?p=2477
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the viewers’ attention was guided by the use of implicit diegetic
guidance, in this case a firefly (which is story-centric sense in the
context of the scene). They found that the viewers preferred the
firefly method of guiding attention and that forcing the viewer’s at-
tention by orientating the virtual body increased visual discomfort.
A similar approach to non-narrative 360◦ videos can be found in
[Lin et al. 2017]. Blur was also evaluated as a method to direct the
viewer within a virtual environment in [Hillaire et al. 2008] and in
a 360◦ video in [Danieau et al. 2017].

Scan-path metrics and visualization. Scan-path metrics have been
developed for the processing and analyzing of eye movement such
as string edit algorithms [Bunke 1992; Cristino et al. 2010; Lev-
enshtein 1966], probabilistic approaches [Kübler et al. 2014], and
geometric vector based comparisons [Dewhurst et al. 2012; Foerster
and Schneider 2013]. For instance, Shepherd et al. developed several
methods in [Shepherd et al. 2010] to analyze between scan-paths.
Among these methods one being when two samples have a Eu-
clidean distance that is less than a certain threshold then an overlap
is said to occur. Several geographic movement data visualizations
were tested for eye movement data in [Andrienko et al. 2012]. One
of which was the distance function of path similarity analysis.

Visualizing viewer behavior in a 360◦ video has been the subject
of a number of recent papers. Bender [Bender 2018] investigated
attentional synchrony or "how does the gaze of multiple viewers
exhibit a high degree of clustering in space and time?". To do this
the gaze data of 21 viewers was tracked across two narrative cin-
ematic VR films. Complied heatmaps were then used to measure
the viewers’ attention; this had the effect of being unable to isolate
particular user data or provide a complex statistical analysis.

In [Löwe et al. 2015] Löwe et al. developed a visualization to
illustrate attentional synchrony across multiple viewers of a 360◦
video. They proposed a view similarity measure to illustrate this
information. Three other visualizations as part of their proposed
visual analytic work-flow are: a limited view from the participants’
perspective, a 3D sphere-mapped version of the video to provide
spatial context, and an unwrapped view of the entire frame to
provide global context.

An analytics tool was developed for 360◦ VR in [Bala et al. 2016]
that allows someone without coding skills to select areas in the
scenes that were key to the story. The motivation behind the paper
is quite close to the reasoning in this one. The main difference in
the methodology being the tracker used here is developed for a
post-production tool for greater ease as to how it could be included
in the post-production environment and our aim to analyze the
effectiveness of the filmmakers’ artistic intent of their films from
their direct input.

Visual attention. As our work can be seen as pilot survey for
visual attention modeling and saliency prediction for 360◦ video, we
briefly describe related works in this area. Good overviews in visual
attention research can be found in [Borji and Itti 2013; Carrasco
2011; Itti and Borji 2014]. Visual attention for 360 contents, however,
is a relatively new research area with only a few publications in
the last decade. For instance, the authors of [Bogdanova et al. 2010]
presented a computational model of dynamic visual attention on
the sphere which combines static features (i.e. intensity, chromatic,
and spherical orientation) and motion features.

More recently, a testbed suitable for subjective evaluations of
360◦ video was introduced in [Upenik et al. 2016]. The authors of
[Corbillon et al. 2017] introduced a dataset of head movements of
users watching 360◦ video. The dataset includes data collected from
59 users watching five 360◦ videos on an HMD. In [Upenik and
Ebrahimi 2017] a simple approach to treat raw experimental head
direction trajectories in omnidirectional content to obtain visual
attention maps was proposed. The authors of [De Abreu et al. 2017]
collected viewport data of 32 participants for 21 360◦ images and
proposed a new method, fused saliency maps, to transform the
gathered data into saliency maps. Later, the authors of [Ozcinar
and Smolic 2018] proposed a saliency estimation approach for 360◦
video.

3 SCAN-PATH METRICS
Measuring the similarity between the director’s cut and the scan-
paths of users wearing an HMD is not only of interest for the
director who wants feedback if a viewer can actually follow his
story or not; the integration of a director’s cut is also of interest for
streaming solutions as proposed by MPEG [Thomas and Gabriel
2017; Yip and Champel 2017]. In order to measure the similarity
between the director’s cut and the collected scan-paths, we chose
the following metrics for the evaluation in Section 5:

(1) Angle between the vector of the director’s cut and the vector
of the user scan-path.

(2) Euclidean distance between the vector of the director’s cut
and the vector of the user scan-path.

(3) Percentage of overlap between the DC viewport and the user
viewport.

(4) Percentage of overlap per quarter between the DC viewport
and the user viewport.

(5) Percentage of amount of frames with a viewport overlap of
at least 50%.

While the first two metrics are standard metrics, the measurement
of viewport overlaps is not commonly used to measure scan-path
similarities. However, the percentage of viewport overlaps gives a
direct indication if the viewer is looking into the right direction.
Measuring the percentage of overlap per viewport quarter also gives
additional temporal and directional information of the viewing
directions over time. Moreover, for streaming applications where
a so-called director’s view is provided as an extra bitstream, the
degree of overlapping viewports between the director’s view and
the user’s viewport has a high impact on the rate-distortion and
thus the quality at the user’s side.

Figure 2 shows schematically a spherical surface ΩS with the DC
viewport, an overlapping user viewport, and the center locations of
the viewports. Furthermore, the DC viewport is divided into four
symmetrical quarters Q1 to Q4. It can be assumed that the user can
follow the story if the director’s cut (the center location of the DC
viewport) is within the user viewport, i.e. if the overlap between
the DC viewport and the user viewport is at least 50%.

We also introduce two new simple but efficient visualization
methods to display viewport overlaps, the so-called Director’s Cut
Similarity maps (DCS maps), which are color-coded representations
of the percentages of viewport overlaps on a frame-by-frame basis
(see right graphs in Figure 2). While the upper DCS map visualizes
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Figure 2: Left: Sphere ΩS with DC viewport and user view-
port. CDC and Cu are the viewport centers of the DC and
the user. 1 to 4 are the individual quarters of the DC view-
port. Top right: DCSmap with overall viewport overlap (red:
full overlap, red: 50% overlap, blue: no overlap), bottom right:
DCS map with overlap of viewport quarters.

the overall viewport overlaps between the director’s cut and the
scan-path, the lower DCS map visualizes the viewport overlaps per
quarter. They should give additional information to the filmmakers,
namely from where or into which direction the users are drifting.
As an example, if the viewport overlap is 100% (all 4 quarters are
red) and then quarters 1 and 3 are becoming green and blue while
quarters 2 and 4 are still red, the filmmaker can easily notice that
the users are drifting to the left and thus check for reasons which
might cause this behavior.

This visualization has been developed together professional VR
filmmakers who need intuitive visual feedback about how good
their directional cues work directly during post-production and not
after the film is released. Current metrics and their visualization do
not fulfill this task as they either do not provide the information
over time (e.g. heat maps provided by YouTube, etc.) or they are
too complex and not intuitive [Blascheck et al. 2014].

4 METHODOLOGY
In order to compare a director’s cut with scan-paths recorded during
a subjective experiment, we used a dataset of eight monocular 360◦
videos for testing (see Figure 3). The dataset has a wide range
of content types including documentary, advertisement, tourism
and education. Each 360◦ video is in the equirectangular format
with various resolutions and frame rates. Table 1 describes the
characteristics of the 360◦ videos used in this work.

4.1 Collection of director’s cuts
To collect the director’s cuts for the given set of 360◦ videos, we let
five filmmakers set position markers in the equirectangular format
of their own videos. The setting of the position markers was done
with The Foundry’s professional compositing software Nuke2 using
the Tracker node; Nuke together with the plugin suite CaraVR3 are
widely used in 360◦ video post-production and thus quite suitable

2https://www.foundry.com/products/nuke
3https://www.foundry.com/products/cara-vr

for integration into current work-flows. The filmmakers were in-
structed to set tracking points manually at the intended viewing
locations with keyframes every 2nd second. Tracking points be-
tween the keyframes were calculated through linear interpolation.
Fig. 4 illustrates the setup in Nuke with the tracker node applied to
the video in order to create the director’s cut.

Finally, the Nuke project files were uploaded to the website
Tracksperanto4 in order to export the tracks into a suitable for-
mat and store them for later computations.

Together with the director’s cut, the filmmakers were asked to
provide additional information about plot points and directional
cues used to attract attention of the viewers. In particular, the film-
makers were asked to provide the level of importance for the story
(“plot point”, “essential plot point”, “not relevant”) and the intended
viewing behavior (“maintain attention”, “free exploration”, “not
relevant”) within certain frame ranges. Besides this, the following
directional cues were requested:

• Sound (“character/object”, “other sound cues”)
• Environment (“brightness/contrast/color”, “visual effects el-
ements”, “other environment cues”)

• Motion/action (“camera motion”, “character/object motion”,
“other motion cues”)

4.2 Collection of user data
4.2.1 Test subjects. Subjective experimentswere conductedwith

20 participants (16 males and four females). The participants were
aged between 22 to 46 with an average of 30.8 years. 50% of the
participants had a medium familiarity with visual attention studies;
35% and 15% of the participants had no and high familiarity with vi-
sual attention studies respectively. Furthermore, eight participants
wore glasses, and all of the participants were screened and reported
normal or corrected-to-normal visual acuity.

4.2.2 Test-bed. We developed a test-bed to collect the viewport
tracking data for a given set of 360◦ video from the participants. The
test-bed was implemented using two APIs, namely, three.js [Ca-
bello et al. 2017] and WebVR [web 2017]. The former enabled us to
create and display GPU-accelerated 3D graphics in a web browser.
The latter enabled the creation of fully immersive VR experiences in
a web browser, allowing us to display a set of 360◦ videos without
the use of any other specific software. The participants viewed each
360◦ video on the Oculus Rift CV1 while the test-bed continuously
recorded their head orientation. In parallel with the video, the audio
data was sent to the integrated headphone of the HMD.

4.2.3 Test procedure. Subjective tests were performed as task-
free viewing sessions, i.e., each participant was asked to look natu-
rally at each presented 360◦ video while seated in a freely rotatable
chair. Each session, which lasted approximately 30 minutes, was
split into a training and a test session. During the training session,
one minute of the Help [(Director) 2015] 360◦ video was played to
ensure a sense of familiarity with the viewing setup. Then, during
the test session, the test videos were randomly displayed while the
individual viewport trajectories were recorded for each participant.

After each presented video, we inserted a short questionnaire
period where the test subjects were asked to answer some questions,
4http://tracksperanto.guerilla-di.org
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(a) 360Partnership (b) Cineworld (c) DB (d) Jaunt

(e) Smart (f) Luther (g) Vaude (h) War

Figure 3: Sample frames from the eight 360◦ videos used for the experiment.

Table 1: Description of the dataset. The Help video is the training video.

Video Content Description Resolution FPS Duration

Help [(Director) 2015] Science fiction film: alien destroys buildings and objects; slow moving camera. 3840×2160 30 1m
360Partnership Documentary: urban Indian quarters and schools; camera mostly static with long shots. 3840×1080 30 6m17s
Cineworld Commercial: dark interior with forced viewer attention by use of graphic arrows on screen; moving camera. 2560×1280 30 1m
DB Commercial: bright lit interior and exterior scenes; slow paced moving camera. 4096×1024 30 3m58s
Jaunt Commercial: scene of a parties interior. Actor addresses camera. Slow moving camera. 2304×1152 60 2m52s
Smart Commercial: camera point of view inside moving car; fast movement outside of car. 2880×1440 60 2m7s
Luther Tourism: various German interior and exterior sites; high amount of cuts; camera mostly static. 4096×2048 30 4m25s
Vaude Commercial: scenic mountain exteriors and factory floor interior; slow moving camera. 4096×2048 30 2m25s
War Education: exterior trenches in World War 1; mostly static camera. 4096×1152 25 3m25s

Figure 4: Screenshot of Nuke with tracker node to create the
Director’s Cut at certain keyframes.

while a gray screen was displayed. Three of the questions, which
we evaluate in Section 5 are

• Q1: Did you feel any discomfort?
• Q2: Did you feel immersed in the environment/ engaged
with the video?

• Q3: Did you feel any disorientation?

The full list of questions and answers for further evaluation is
provided with the dataset. Before playing the next 360◦ video, we
reset the HMD sensor to return to the initial position.

5 EVALUATION
Subjective data was collected from participants for the dataset as
described in the previous section. These allow us to explore simi-
larities between the intended viewing directions of the filmmakers
and the actual viewing direction of the users. In particular, we are
interested to analyze these similarities at certain plot points, pro-
vided by the filmmakers, which might be essential to follow the
story. Furthermore, if directional cues had been provided by the
filmmakers, the similarity measures can give an indication about the
efficiency of the used directional cues. However, well pre-defined
stimuli of directional cues are actually necessary to eventually as-
sess the efficiency objectively. Finally, the examination and partial
evaluation of the questionnaires might give additional information
when evaluating the statistics of the similarity measures.

5.1 Subjective questionnaire
The answers to questions Q1 to Q3 give information about the con-
dition of the test subjects when watching each of the videos under
test. Thus, we first evaluate these questions using a 3-point scale:
“no”, “maybe”, and “yes” using the Kruskal-Wallis non-parametric
test. We found no statistical differences (p>0.05) among the answers
for question Q1 (Q1: χ̃2=13.71, d f =7, p=0.06). However, significant
differences (p<0.05) were found among the answers of the Q2 and
Q3 (Q2: χ̃2=18.65, d f =7, p=0.01; Q3: χ̃2=15.27, d f =7, p=0.03). The
number of the answers (“no”, “maybe”, “yes”) of the 20 test subjects
and eight test videos for the questions {Q1,Q2,Q3} is reported in
Table 2.
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Table 2: Mean values of answers (“no”, “maybe”, “yes”) to the
point-scale answered questions for all test subjects.

Video Qv
1 Qv

2 Qv
3

360Partnership (16, 2, 2) (2, 4, 14) (19, 1, 0)
Cineworld (12, 2, 6) (13, 2, 5) (9, 1, 10)
DB (18, 1, 1) (6, 1, 13) (15, 3, 2)
Jaunt (17, 0, 3) (4, 2, 14) (16, 2, 2)
Smart (9, 5, 6) (5, 1, 14) (15, 1, 4)
Luther (16, 1, 3) (2, 5, 13) (17, 1, 2)
Vaude (15, 1, 4) (2, 7,11) (14, 2, 4)
War (13, 4, 3) (3, 5, 12) (12, 4, 4)

As can be seen in the table, the Smart and Cineworld videos seem
to cause a relatively high degree of discomfort with six participants
answering yes for questionQ1, which is likely caused by the moving
camera. Furthermore, the level of immersion for Cineworld is quite
lowwith 13 test subjects answered “no” at questionQ2. Interestingly,
half of the test subjects (ten participants) felt disorientated in the
Cineworld video (see Q3), although graphical arrows were used as
directional cues in order to guide the viewer.

5.2 Similarity measures
For measuring the similarity between the director’s cut and the
users’ scan-paths, we applied the metrics as introduced in Section 3
and show exemplary the results of two videos, Jaunt and Smart, in
Figures 5 and 6. The graphs show mean values of all 20 test subjects.
The individual graphs of all test subjects and all videos are available
with the dataset.

Figures 5a and 6a show two frames from certain plot points of
the videos with the ROI highlighted. The plot points, which were
provided by the filmmakers, are displayed on top of the DCS maps
in Figures 6b and 6b, respectively. A first look at both figures shows
a relatively high similarity between the director’s cuts and the
users’ scan-paths, which can be seen in the large red and green
areas in the DCS maps and the overlaps of the scan-paths with the
viewport area for yaw and pitch in Figures 5c and 6c. Furthermore,
as expected, the scan-paths are equator biased, i.e. users tend to
look into the direction of the equator rather than the pole caps of
the omnidirectional video.

When taking a closer look at the Jaunt video in Figure 5, one can
notice three larger dissimilarities between the scan-paths between
frames 550 and 1,200, frames 8,500 and 9,100, and between frames
9,550 and 10,000. The first two areas are no plot points (only a small
part of the first area belongs to plot point 1). No specific directional
cues have been applied to attract users’ attention. Furthermore, the
filmmaker’s intent was to let the users explore the environment.
Thus, it is unlikely that the director’s cut and the users’ scan-paths
have a high degree of similarity. However, the third area contains
plot point 13 where a logo was composed into the scene as direc-
tional cue. Here, the logo was composed twice, at yaw 0◦ and 180◦.
It is obvious that the test subjects did not follow the fast turn of
the head as intended by the filmmaker as can be seen in Figure 5c.
However, as the test subjects mainly look at yaw 0◦, they are still
able to see the logo.

(a) Screen shots of plot points 4 and 12 with ROI
Plots	1-3 Plot	4 Plot	5 Plot	6 Plots	7-12 Plots	13	&	14

Frames

(b) DCS maps with plot points

Frames

Pi
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h	
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	°
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	°

(c) Director’s cut (dark green) with viewport area (light green) and
user’s scan-path (black)

Frames

Di
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e	
in
	°

(d) Angle and distance between director’s cut and user’s scan-path

Figure 5: Visualization of metrics for the Jaunt video

The Smart video has only three major plot points (see Figure 6).
While the first plot point has a relatively low similarity between the
director’s cut and the users’ scan-paths, the other two plot points
show a relatively high similarity. At this point, we need to mention
that the camera was moving quite fast with the speed of the car
as it was mounted inside the car. The motion cue of the camera
will likely let the users look into the direction of the motion (i.e.
yaw 0◦) in order to not get motion sick. This video had the highest
value of discomfort, probably caused by the motion of the car. Thus,
while the director used additional directional cues, such as acting
characters outside the car, the effect of the camera’s motion was a
more dominant cue.

The statistical evaluation of viewport overlaps between the direc-
tor’s cut and the users’ scan-paths for all videos across all frames are
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(a) Screen shots of plot points 1 and 3 with ROI
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Figure 6: Visualization of metrics for the Smart video

presented in the diagrams in Figure 7. As reference, we computed
a random director’s cut and 20 random scan-paths with uniform
distribution taking the equator bias into account. The left diagram
shows the mean values and standard deviation of the average view-
port overlaps and amount of frames with at least 50% viewport
overlap for all 20 participants, respectively. The other two diagrams
show the boxplots with the same viewport overlap measures.

Obviously, all videos under test have a higher similarity between
the director’s cut and the users’ scan-paths than the randomized
scan-paths. The overall mean viewport overlap is 50.79% and the
mean amount of frames with a viewport overlap > 50% is 57.64%
while the random reference is 11.35% and 8.42%. At this point, we
want to mention that the viewport of the Oculus Rift CV1 only
covers between 11% and 12% of the sphere.

As can be seen in Figure 7, the DB video has the highest amount
of viewport overlaps, followed byCineworld and Smart. On the other
side, 360partnership has the smallest similarity between director’s
cut and users’ scan-paths. Here, the reason is quite straight forward;
the video is a documentary which was produced in a way as if it
is a traditional documentary with the only difference that a 360◦
camera was used. The video has neither essential plot points nor are
special directional cues included in order to attract users’ attention.
Only the action of characters within the environment lets users
look into the direction of the director’s cut at certain points in time.

For five of the eight videos, the filmmakers had provided ad-
ditional information like plot points and directional cues used to
attract users’ attention. Figure 8 shows the statistics for the indi-
vidual plot points for all five videos. As reference, we added the
statistics of the total plot point frames as well as all frames of each
video.

Vaude. The overall similarity between the director’s cut and the
users’ scan-paths for all plot point frames in the Vaude video is,
within the statistical error tolerance, lower than across the entire
video, . This means that the director was not able to attract higher
attention at plot points. This is mainly caused by conflicting di-
rectional cues. While the main directional cue is the voice of the
character, the landscape, i.e. the mountain scenery, is an environ-
mental cue which causes the viewers to freely look around while
listening to the main character. In particular, for plot point 3, the
voice of the bikers is too weak to maintain users’ attention.

DB. The DB video shows a slightly higher similarity for all plot
point frames compared to all frames of the video. Especially, plot
point 1 has a significantly higher similarity, which is caused by
an overlay, i.e. a visual effects element, to attract users’ attention.
Similar overlays have also been used for plot points 3, 5 and 6.

Smart. For the Smart video, the similarity for all plot point frames
and the entire video is nearly identical. While plot points 2 and 3
have a higher similarity, plot point 1 has a much lower similarity
compared to the entire video. Moreover, users seem to look more
often directly into the direction of the director’s cut than slightly
next to it as the percentage of frames with a viewport overlap
> 50% is slightly smaller than the average viewport overlap. The
low similarity is, as previously mentioned, likely caused by the fast
camera motion which is again a conflicting directional cue to the
environmental cue, namely the actors on the street.

Jaunt. The Jaunt video has plenty of plot points as it is a com-
mercial with many story-centric graphical effects. The director
composed many graphical overlays into the environment which
the user should recognize and added special sound cues which help
to maintain user attention. Plot point 1 has no essential directional
cues which explains the low similarity. The very low similarity of
plot point 13 was previously explained with Figure 5.

Luther. For the Luther video, the similarity for all plot point
frames and the entire video is also nearly identical. This video is
actually different to most of the other videos as it has a relatively
large amount of cuts while at each cut a new scenery is introduced.
This usually results in a new exploration of the users in the scene,
i.e. strong directional cues are necessary to maintain attention to
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Figure 7: Evaluation of viewport overlaps between the scan-paths for all videos and participants. Left: mean values and stan-
dard deviation, middle: boxplot of average viewport overlap, and right: boxplot of frames with at least 50% viewport overlap.

certain parts of the scene. In plot points 2 and 7, sound cues like
thunder (plot point 2) and a voice over saying ”look how it goes up”
are used and seem to increase the visual attention.

6 CONCLUSION
In this paper, we provided a new combined dataset for visual atten-
tion analysis and introduced a novel simple but efficient metric and
visualization method for similarity measures between a director’s
cut and users’ scan-paths. The metric has a high relevance for com-
pression and streaming applications towards adding an additional
bitstream utilizing the director’s view, because the degree of over-
lapping user viewports with the director’s view has a high impact
on the rate-distortion and thus the quality at the user’s side. Fur-
thermore, the visualization of viewport overlaps using color-coded
DCS maps makes it easy for content creators to analyze if users
are able to actually follow the story. Once visual attention in 360◦
video (i.e. where users look in the presence of directional cues) can
accurately be predicted, e.g. with deep learning approaches and
sufficiently high amount of available data for learning. Such visual-
ization could be integrated in common post-production software
applications in order to give feedback to content creators directly
during the editing.

We then collected eight intended scan-paths, the so-called di-
rector’s cuts, including the 360◦ videos, plot points and directional
cues from five professional VR filmmakers and performed a sub-
jective experiment with 20 test subjects who watched the videos
while their head orientation was recorded.

Then, the subjective test datawas compared against the director’s
cuts using the proposed metrics. The results show that the mean
viewport overlap and the mean amount of frames with a viewport
overlap > 50% for all videos are 50.79% and 57.64%, respectively.
These numbers indicate that the utilization of an additional bit-
stream containing the director’s view, which was introduced by
MPEG, will likely increase the quality at the consumer side as a large
portion of pixels of the user’s viewport can directly be rendered
from the director’s view. However, this still needs to be evaluated
in a real streaming application, which is beyond the scope of this
paper. Another aspect in this context is the question if the director’s
cut, i.e. the intended scan-path and not the director’s view, should
be integrated into the metadata of the omnidirectional media format
(OMAF). This, however, requires that the filmmakers have efficient
and easy-to-use tools available to create such director’s cuts. In this
work, we presented a method to create a director’s cut with the
professional and commonly used post-production software Nuke,

which allows a simple integration into current post-production
work-flows.

The results also give good indications to filmmakers, namely,
how effective certain directional cues might work to attract viewers’
attention. Storytelling in cinematic VR is still in an early stage and
all stakeholders are at the beginning of a learning curve. Although
pre-defined and separated stimuli would be necessary to objectively
assess certain directional cues, the collected data and evaluation
give good insights into the interaction between directional cues. For
instance, the fast camera motion in the Smart video was a strong
directional cue which even caused discomfort for many test subjects.
As camera motion is a strong directional cue and viewers want to
avoid to become motion sick, environmental cues may compete
with motion cues and thus become less effective. On the other side,
arbitrary environmental cues (like the mountain scenery in Vaude)
might be in conflict with sound cues, which the director actually
used to guide the viewer.

Finally, the entire dataset, i.e. the director’s cuts including the
directional cues and plot points as well as the scan-paths of the test
subjects, is publicly available with this paper and can be accessed
with further details at https://v-sense.scss.tcd.ie/?p=2477. To our
knowledge, it is the first time that director’s cuts of professional
VR filmmakers together with subjective data has been provided to
the scientific community. This combined dataset can be seen as a
first important step to contribute to new streaming concepts like
the one introduced by MPEG. Moreover, it can further be used to
develop and test saliency prediction approaches, which can then be
integrated into post-production applications, and new streaming
solutions by creating and utilizing the additional ‘director’s view’,
which can easily be rendered from the director’s cut, i.e. it is an
important contribution for the multimedia community.

Although the collected data is much richer than presented in this
paper, e.g. we asked between six and seven video related questions
after each video screening and seven general questions after the
entire experiment, it is beyond the scope of this paper to evaluate
all of it. This will be part of future studies. Especially the direc-
tional cues and the answers to all of the questions will be evaluated
together with further experiments for storytelling in VR.
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(d) Jaunt
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Figure 8: Evaluation of viewport overlaps between the scan-paths for all plot points and participants. Left column:mean values
and standard deviation,middle column: boxplot of average viewport overlap, and right column: boxplot of frames with at least
50% viewport overlap.
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