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Summary 

Alcohol misuse is a leading global health concern, and its occurrence is rising among 

adolescents and young adults. Associations between different aspects of impulsivity and 

alcohol-related outcomes have been the focus of much research, yet precise relations 

remain elusive. Machine learning (ML) can harness large complex data by examining 

statistical relationships between variables that span across domains (brain, behaviour 

and traits) of impulsivity to predict different patterns of alcohol use. 

Chapter 2 explored the potential predictive utility of self-report and task-based 

impulsivity endophenotypes for identifying individual differences in two orthogonal 

latent factors of alcohol use - alcohol intoxication and consumption frequency. 

Machine-learning with penalised regression was used to generate the model, and out-of-

sample validation quantified model performance. Results indicated self-report and task-

based impulsivity significantly predicted alcohol intoxication frequency but not 

consumption frequency. Elevated trait impulsivity (attentional, non-planning, 

disinhibition, and experience seeking), choice impulsivity (delay discounting), and 

cognitive impulsivity (sustained attention), but not motor impulsivity (inhibitory 

control), supported a tendency toward more frequent intoxication. 

Extending these findings, Chapter 3 applied a novel machine-learning method 

with penalised regression to ERP data indexing inhibitory control, and with other risk 

factor variables, to predict alcohol use. Results showed that inhibitory control ERPs can 

robustly predict individual differences in alcohol use.  

One aspect of cognitive impulsivity – lapses in sustained attention – emerged as 

an important predictor of alcohol misuse. Although extensively examined in relation to 
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ADHD, the brain correlates of sustained attention in healthy adolescents had not yet 

been comprehensively characterised. Chapter 4 is the largest population-based 

functional imaging study to date, to examine both average fMRI activity and functional 

connectivity as it relates to sustained attention in healthy adolescents. The findings 

indicated that sustained attentional processes are facilitated by an array of neural 

networks, including cerebellar crus I/II with motor, prefrontal and occipital cortices. 

Atypically strong connectivity within motor network was a signature of poor sustained 

attention, a finding that was also observed in a separate sample of adolescents 

exhibiting elevated ADHD symptoms, compared to asymptomatic adolescents. No 

significant brain connectivity correlates of alcohol use were identified in this relatively 

substance-naïve young adolescent cohort.  

Overall, the findings support the view that different impulsivity endophenotypes 

contribute to different patterns of alcohol misuse. Machine learning is a useful method 

for analysing large amounts of data and it provides more nuanced insights into the 

relationship between alcohol use and psychological characteristics such as impulsivity. 

The EEG findings gleaned from Chapter 3 underscore the potential ERPs can offer for 

improving objective screening and assessment of alcohol misuse. Functional 

connections spanning an array of brain networks also appear to underlie cognitive 

impulsivity, via sustained attention. Combining neuroimaging with other data 

modalities offers a possibility to bridge levels of analysis, linking neural phenotype and 

behaviour in understanding alcohol misuse. Ultimately, a multivariate endophenotype, 

based on a weighted combination of diverse variables, including brain, personality and 

psychological factors, may provide an increased power and greater predictive accuracy 

than any single endophenotype.  
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Abstract 

Alcohol use is the most significant worldwide risk factor for mortality and morbidity 

among young people, with consumption rates peaking in college years and highest in 

student populations.  Impulsivity, broadly characterised as the tendency to act 

prematurely without foresight, is linked to alcohol misuse in college students. However, 

impulsivity is a multidimensional construct and different subdomains likely underlie 

different patterns of alcohol misuse. Furthermore, the relationship between certain 

impulsivity endophenotypes, such as cognitive impulsivity, i.e., lapses in sustained 

attention, and alcohol use is relatively unknown in young people, and the neural 

mappings underlying sustained attention in adolescents have yet to be identified. 

Machine learning methods can harness large complex data by examining statistical 

relationships between variables that span across domains (brain, behaviour and traits) of 

impulsivity to predict different patterns of alcohol use. Using this method, this thesis 

sought to quantify the association between different patterns of alcohol use and various 

impulsivity endophenotypes, including trait, motor, choice, and cognitive impulsivity, 

in student samples. A data-driven, multi-step analysis approach was also used to 

identify neural correlates of sustained attentional processes, an important aspect of 

cognitive impulsivity.  

 

Results indicated different impulsivity endophenotypes predicted different aspects of 

alcohol use, such as elevated scores on the Alcohol Use Disorders Identification Test 

and a tendency towards alcohol intoxication, but not consumption frequency. Impulsive 

personality traits of disinhibition and poorer planning skills, and behavioural indicators 

of difficulties sustaining attention, appear to be the most important markers across 

different alcohol use patterns. Results also showed that inhibitory control ERPs can 

robustly predict individual differences in alcohol use. Cognitive impulsivity emerged as 

an important predictor of alcohol misuse in student samples, but not for relatively low 

alcohol use in adolescents. Sustained attentional processes were facilitated by an array 

of neural networks, including cerebellar crus I/II with motor, prefrontal and occipital 

cortices. Atypically strong connectivity within motor network was a signature of poor 

sustained attention, a finding that was also observed in a separate sample of adolescents 

exhibiting elevated ADHD symptoms, compared to asymptomatic adolescents. 

However, no significant brain connectivity correlates of alcohol use were identified in 

this relatively substance-naïve young adolescent cohort.  

 

Overall, the findings support the view that different impulsivity endophenotypes 

contribute to different patterns of alcohol misuse. Machine learning is a useful method 

for analysing large amounts of data and it provides more nuanced insights into the 

relationship between alcohol use and psychological characteristics such as impulsivity. 

The EEG findings underscore the potential ERPs can offer for improving objective 

screening and assessment of alcohol misuse. Functional connections spanning an array 

of brain networks also appear to underlie cognitive impulsivity, via sustained attention. 

Combining neuroimaging with other data modalities offers a possibility to bridge levels 

of analysis, linking neural phenotype and behaviour in understanding alcohol misuse. 

Ultimately, a multivariate endophenotype, based on a weighted combination of diverse 

variables, including brain, personality and psychological factors, may provide an 
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increased power, greater predictive accuracy and more valuable clinical utility than any 

single endophenotype.
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1 Chapter 1: An Introduction to Impulsivity and Alcohol Use  

GENERAL OVERVIEW AND AIMS OF RESEARCH
1
 

  

                                                 

1
 Sections of Chapter 1 have been published in Addiction (2017) and Current Addiction Reports 

(2017) 
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1.1 Overview 

Alcohol use is a leading risk factor for disease burden worldwide, and it contributes to 

serious ramifications for population health across the lifespan, according to the Global 

Burden of Diseases (GBD; Adhikari, 2018). The pattern of alcohol misuse in the form of 

binge-drinking (BD) or heavy episodic drinking has increased, especially among adolescents 

and young adults in recent years (Kuntsch, Kuntsche, Thrul, & Gmel, 2017). Alcohol misuse 

is often used as an omnibus term for underage alcohol use, alcohol abuse, alcohol dependence 

or alcohol use disorder (AUD), and is operationalized according to a wide range of overt 

symptoms. For example, an individual can be deemed to have an alcohol use disorder (AUD) 

by having any 2 of 11 symptoms during a 12-month period, based on DSM-V diagnostic 

criteria (American Psychiatric Association, 2013). This approach to phenotyping may hinder 

the search for biological mechanisms underlying alcohol misuse because individuals with no 

symptom overlap can be classified together, despite heterogeneity in symptoms. Therefore, 

an enhanced approach for ultimately understanding the pathophysiology of alcohol misuse 

will require focusing on endophenotypes (also known as intermediate phenotypes; 

Gottesman, & Gould, 2003). 

Endophenotypes are neurocognitive, behavioural or cognitive processes associated 

with discrete deficits in defined neural systems (Robbins, Gillan, Smith, de Wit, & Ersche, 

2012). One endophenotype – impulsivity – is well-characterised for its association with 

alcohol use, abuse and dependence (Dick et al, 2010; Lejuez et al., 2010; Perry & Carroll, 

2008; Yip & Potenza, 2016).  Impulsivity is a multifaceted, multidimensional construct 

(Evenden, 1999a; 1999b), and can be characterised by disinhibited thoughts and behaviours, 

difficulty sustaining attention and delaying gratification, despite negative consequences 
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(Robbins & Dalley, 2017). Different aspects of impulsivity are likely to be derived from 

different neural systems that are, at least partially, independent (Bari & Robbins, 2013; 

Caswell, Bond, Duka, & Morgan, 2015a; Dalley & Robbins, 2017). As such, it is likely that 

different impulsivity endophenotypes underlie different patterns of alcohol misuse. However, 

the precise nature of those associations continues to remain unclear, elucidating upon this will 

be an important tenet of this thesis. Accurately characterising alcohol misusers in terms of 

impulsivity endophenotypes would identify target brain systems for future psychosocial or 

pharmacological intervention. This is important because alcohol misuse is associated with 

numerous adverse psychological and health-related outcomes, such as poorer health-related 

quality of life (Luquiens, Falissard, & Aubin, 2016) mental illness (Rehm, 2011), injuries, 

and even death (Hingson et al., 2005). Adolescents and young adults are particularly 

vulnerable to the adverse psychological effects of alcohol misuse, and a broad range of 

detrimental alcohol-related consequences (White & Hingson, 2013). Focusing on these 

populations is motivated by the particularly high levels of alcohol misuse among student 

populations (Lyvers, Duff, Basch, & Edwards, 2012), as well as the need to identify 

important neurocognitive brain networks prior to substance misuse in adolescents. 

The aetiology and trajectory of addiction is complex: caused and moderated by 

individual differences in cognition, and related to neurobiological and environmental factors. 

Neuroimaging has the potential to detect subtle predictors of alcohol-use, however, the 

identification of neural predictors of alcohol initiation and misuse are underrepresented in 

addiction literature to date. Alcohol research has generally been conducted using methods 

developed within the natural sciences; that is, hypothesis-driven research typically based on 

assays of single cognitive functions, and the use of statistical inference to quantify the 

likelihood of an observed effect occurring by chance. However, a multi-domain approach 
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could shed light on the precise correlates of alcohol misuse. A multi-domain approach is 

primarily data driven, using algorithms that search for patterns within data, with accurate 

prediction on previously unseen data as the metric of success. Basic principles and techniques 

developed within the field of machine learning are well suited for this approach. Later in this 

Chapter, some recent advances in neuroimaging will be outlined, with a focus on prediction 

of alcohol use through the use of machine-learning methods 

 

1.1.1 Alcohol consumption trends.  

Globally, 2.4 billion people are current drinkers; the global burden of alcohol use to 

date is substantial, and larger than previously estimated, in terms of its contribution to death, 

disability, and ill health, according to the GBD report (Adhikari, 2018). According to this 

comprehensive systematic analysis from the GBD for 195 countries and territories between 

1990–2016, alcohol ranks as the global leading cause of both deaths and disability-adjusted 

life-years (DALYs) among 15–49-year-olds, whilst Ireland ranks fourth among European 

countries. Global research focusing on alcohol consumption and the incidence of BD 

highlights that significant quantities of alcohol are consumed worldwide, particularly, in 

single episodes. The standard BD definition is the consumption of large amounts of alcohol 

in a short period of time, with blood alcohol concentrations reaching up to 0.08 g/dl (NIAAA, 

2004), often defined as greater than 5/4 drinks in men/women per occasion (Wechsler & 

Nelson, 2001; Wechsler et al., 1996). Prevalence rates of BD vary widely across countries; 

although, separating cultural variations from BD variations is difficult due to different 

measurements, time frames and restriction of age groups etc. (Kuntsche et al., 2017). In an 

effort to harmonise BD estimates (60 g on an occasion at least once in the past 30 days) the 

World Health Organization (WHO, 2014) has identified a different classification, which 
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estimated that 7.5% of the worldwide population of 15 years and older, binge drink at least 

weekly.  

In Ireland, 76% percent of the Irish population (15 years and older) identify as 

drinkers, and approximately 4 in 10 drinkers self-reported engaging in BD behaviour on a 

typical drinking occasion, according to the Healthy Ireland Survey (2015) conducted by the 

Irish Department of Health. This includes almost a quarter reporting BD at least once per 

week. The National Alcohol Diary Survey (2014) in Ireland reported that almost two thirds 

(64.3%) of young adult drinkers (18-24 years old) engaged in BD (6 or more standard drinks) 

in a typical drinking episode. In particular, higher levels of alcohol consumption and BD in 

Ireland have placed an increased burden on the health system, criminal justice system and 

society in general (O’Connell, Chin, & Lawlor, 2003). With recent estimates indicating that 

the prevalence of alcohol use is increasing at a relative rate (0.3% per year), as well as rates 

of BD (0.7% per year) in the United States, it is perhaps unsurprising that this reflects sharp 

increases in alcohol-related problems over the last decade (Grucza et al., 2018).   

 

1.1.2 Alcohol consumption among young people. 

  Alcohol use often begins during adolescence, a time when risk-taking behaviours such 

as substance use are coming to the fore (Bava & Tapert, 2010). Early alcohol initiation in 

adolescents has detrimental effects in terms of an increase in risk-taking behaviour, 

neurotoxic effects on brain development and on future mental health (Guerri & Pascual, 

2010; Zeigler et al., 2005). The social transitions and neuropsychological changes that occur 

during adolescence and continue into adulthood, make this a critical developmental period 

where adolescents are vulnerable to initiating alcohol misuse (Crews, He, & Hodge, 2007; 

Hall et al., 2016; Stone, et al., 2012). This vulnerability is characterised by 
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neuropsychological development underpinning cognitive functions implicated in social 

cognition and cognitive control (Blakemore & Choudhury, 2006). During puberty, young 

people experience significant increases in emotional arousal, impulsivity, and reward 

sensitivity (Steinberg, 2005), and this in turn can result in adolescents making choices that are 

oriented towards short-term outcomes, which potentially lead to adverse consequences 

(Ochsner & Gross, 2005; Todd, Cunningham, Anderson, & Thompson, 2012).  

Age-of-onset of alcohol consumption is considered one of the most influential risk 

factors of dependence later in adulthood (Hawkins, Catalano, & Miller, 1992; Hingson, 

Heeren & Winter, 2006; Behrendt, Wittchen, Hofler, Lieb, & Beesdo, 2009). Although BD 

often starts during late adolescence, a large proportion of students seem to acquire this 

unhealthy pattern of consumption during their first years at university. A study of 1,894 first-

year university students found that 1 in 4 first initiated BD at university in the United States 

(Weitzman, Nelson & Wechsler, 2003). Moreover, recent research has highlighted that BD 

that is evident at aged 18 in university students, is a significant predictor of whether young 

adults will continue to engage in problematic drinking behaviours at age 27 (Moure-

Rodriguez et al., 2018).  

Alcohol misuse among adult university students continues to be a significant health 

concern (Davoren, Dahly, Shiely, & Perry, 2017). University students are often classified as 

the most hazardous of drinkers (Lyvers, Duff, Basch, & Edwards, 2012), with students 

reporting to drink more than both adults and young adults who do not attend university 

(Balodis et al., 2009). Similarly, the prevalence of hazardous alcohol consumption in Ireland 

has been found to be considerably higher in students than that of the general population; 18–

29-year-old students report elevated levels of consumption, compared with the general 

population (Health Research Board, 2014). Similarly, research indicates that there has been 
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an increase in heavy episodic drinking and related problems among students in the United 

States (Hingson, Zha, & Smyth, 2017). Repeated misuse of alcohol in university students can 

contribute to numerous adverse consequences (Perkins, 2002), such as academic difficulties, 

unplanned and unprotected sexual activity, problems with authorities (Vik et al., 2000), 

injuries, and even death (Hingson et al., 2005). 

 

1.2 Phenotyping alcohol misuse   

One challenge in studying alcohol misuse is that there are many different methods of 

quantifying alcohol consumption (e.g. definitions of heavy versus light alcohol use) and 

alcohol-related consequences. Firstly, BD definitions have been difficult to unify; the 

definition of a standard drink (i.e., ethanol grams in a standard drink) is variable across 

different countries (Kalinowski & Humphreys, 2016), as are cut-off scores for BD 

(International Centre for Alcohol Policies, 2010). Indeed, research focusing on BD has been 

criticised for lacking “empirical cohesion and definitional precision” (Courtney & Polich, 

2009, p.142). Single consumption-based measures of alcohol use are particularly problematic 

and are argued to lack predictive validity, are susceptible to ecological biases and appropriate 

group dichotomisation (Havard, 2016; Pearson, Kirouac, & Witkiewitz, 2016). Such 

differences limit our ability to accurately identify the risk factors that are associated with 

alcohol misuse, as well as the severity or types of alcohol-related consequences (Kuntsche et 

al., 2017). Focusing on standardised measures of alcohol use in research is one way to 

overcome the issues associated with single-consumption cut-off scores. For example, the 

Alcohol Use Disorders Identification Test (AUDIT) is one of the most widely used self-

report instruments to assess alcohol-related risk, with a focus on hazardous alcohol 

consumption (Higgins-Biddle & Babor, 2018). 
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Secondly, different alcohol consumption behaviours may be attributable to individual 

differences. For example, with regards to the consequences of alcohol use, drunkenness in 

young adolescents, not drinking per se, is a stronger risk factor for later problems (Kuntsche 

et al., 2013). Sanchez-Roige and colleagues (2014) suggest that a “binge score” focusing on 

patterns of drinking (including drunkenness) rather than a typical quantity measurement 

“drinks in a row,” may provide better predictors of potential dependency on alcohol. 

However, memory heuristics can render the accuracy and validity of retrospective self-

reported alcohol consumption as unrealiable (Patrick & Lee, 2010). Indeed, high drinkers 

have been found to underestimate consumption and drinking behaviour, and despite 

intercorrelation among alcohol-related indices, no one particular measure or term may 

adequately capture or describe the risky drinking patterns that young people engage in 

(Townshend & Duka, 2002). This problem can be mitigated using similar questions relating 

to multiple time points as a memory cue, which increases recall accuracy (Eisenhower, 

Mathiowetz, & Morganstein, 1991). For example, the European School Survey Project on 

Alcohol and Other Drugs questionnaire (ESPAD; Hibell et al., 2009) assesses alcohol use 

across lifetime, past 12-months and past 30-days, as well as items regarding expected 

personal consequences of alcohol use. 

Thirdly, between-group comparison (e.g., heavy drinkers vs. controls), is common in 

the addiction literature, as will be evidenced later in this Chapter. Drawing control samples 

from groups with differing levels of substance use (SU) and failing to adequately control for 

possible variations in alcohol-use phenotypes may explain a sizeable portion of the 

differences in effects observed in the studies discussed below. It is likely that there are 

different phenotypes of alcohol-users, and the extent to which variation in processes 

associated with alcohol use represents dimensions versus homogenous groups has 
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implications for our understanding of the aetiology of addiction. Conceptualising the traits of 

alcohol users as existing along a continuum suggests a change in focus from particular 

diagnostic groups to community samples, and the inclusion of individuals with intermediate 

levels of substance use (SU). Therefore, by considering a range of usages, it is possible 

to harness the potential of population-based cohort studies that have already been 

collected and that contain phenotypic data on multiple quantitative dimensions.  

 

1.3 Measuring brain activity non-invasively 

Neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and 

electroencephalography (EEG), have enhanced researchers' prospects of linking discrete 

cognitive functions to specific brain regions and neuronal networks. Over the past three 

decades, researchers have utilised magnetic resonance imaging (MRI) as a non-invasive 

technique to characterise anatomical, physiological, and metabolic changes in the human 

brain in order to better understand the underlying mechanisms of impulsivity, as well as 

alcohol’s deleterious effects on the brain. 

MRI measures detectable radio signals emitted from hydrogen atoms, that are emitted 

when they are placed in a magnetic field and perturbed by radio waves. The signal can then 

be extrapolated to generate a structural image of the brain. In fMRI, a different method is 

utilised that measures the change in the relative concentration of oxygenated haemoglobin to 

deoxygenated haemoglobin in the blood, otherwise known as the blood-oxygen-level-

dependent (BOLD) signal. fMRI allows us to observe functional brain activity in vivo during 

performance of a given cognitive task and has proven highly valuable in mapping higher 

order cognitive processes.  
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fMRI has the capacity to detect hemodynamic responses evoked by single events, 

based on block design tasks, as well as transient hemodynamic responses evoked by changing 

stimuli or task conditions during event-related tasks (i.e., stimulus randomisation). In event-

related experiments, long inter-stimulus interval (ISI) enables recovery of the hemodynamic 

response, however this can be fatiguing and time-inefficient. Separation of signals from rapid 

event-related designs assumes that the hemodynamic responds to sequential events summate 

in a roughly linear fashion (Boynton et al., 1996; Dale and Buckner, 1997), although 

unwanted variance associated with the lower limit of the average response elicited by 

conditions of interest must be accounted for. There are two widely-used approaches to 

analyse spatiotemporal information of fMRI data. The first approach includes model-based 

methods, such as general linear model (GLM; Friston et al., 1994), which indicates how well 

a certain model fits to the fMRI data. The second approach includes data-driven methods, 

which are based on feature extraction from fMRI data (Calhoun et al., 2003, Shen et al., 

2017). Using the GLM, neurophysiological responses can be partitioned into components of 

interest, as well as confounds and errors; evoked hemodynamic responses corresponding to 

the timing of the stimulus presentation are convolved with a canonical hemodynamic 

response function for each participant, to determine the activated brain areas. Data-driven 

methods, on the other hand, are more flexible and are useful for identifying features from the 

data, including unanticipated unexpected regional activation, which can later be used in 

model-based approaches.  

Data-driven methods have emerged as being particularly useful for examining task-

based functional connectivity – associations of synchronous fluctuations in brain signals – 

improving our understanding of how task-evoked regions fit within large-scale neural 

networks.  For example, Rosenberg and colleagues (2016) highlighted the importance of 
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data-driven fMRI analyses in their research, finding that sustained attentional processes 

emerged from an array of large-scale functional connectivity across different brain networks.  

The temporal resolution (i.e., the precision of measurement with respect to time) for 

fMRI is typically in the order of seconds, whereas its spatial resolution is in the order of 

millimetres. Under most conditions there is a trade-off between temporal and spatial 

resolution, and harnessing measures with higher temporal resolution to identify exact timings 

of cognitive processes may outweigh the benefits associated with using fMRI.  For example, 

due to its high temporal resolution, electroencephalography (EEG) is well-suited to study 

dynamic changes and the connectivity of brain networks underlying response inhibition 

(Huster, Plis, Lavallee, Calhoun, & Herrmann, 2014). EEG measures are typically used to 

examine event-related potentials (ERPs). ERPs provide an instantaneous, continuous, 

millisecond-resolution measure of cognitive processes, which can be used to isolate 

inhibitory control mechanisms. ERPs are voltage fluctuations that occur as a consequence of 

an external or internal event (e.g., presentation of a stimulus (sensory), or preparation of a 

movement (motor); arising from postsynaptic potentials in cortical neurons. This produces 

opposite polarities on either side of the active tissue, with polarity depending on whether the 

postsynaptic potential is excitatory or inhibitory (Buzsáki, Anastassiou, & Koch, 2012). If 

many neurons (in the order of thousands to millions) are active simultaneously and are 

spatially aligned, their electric fields summate, and the summed voltage can be recorded on 

the surface of scalp (Kappenman & Luck, 2016).  

Although it is evident that these neuroimaging techniques come with a set of specific 

advantages, as well as limitations (e.g., Henson, 2005; Dietrich & Kanso, 2010), the use of 

each of them separately to infer functional brain organisation and human cognition so far has 

failed to provide a complete picture, as will be explored in this Chapter. Therefore, not 
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surprisingly a multi-domain approach combining brain, behaviour and trait domains are 

increasingly gaining popularity among neuroscientists and psychologists striving to 

understand the neuropsychosocial profiles of alcohol misuse. 

 

1.4 Defining Impulsivity 

Impulsivity has long been recognised for its importance both in everyday life. 

Impulsivity is considered to exist along a continuum, with individual variation in impulsive 

tendencies contributing to alcohol use, as well as more severe behaviours, characterised by an 

impulsive urge towards alcohol consumption and an inability to inhibit consumption, 

regardless of negative consequences (Holmes, Hollinshead, Roffman, Smoller, & Buckner, 

2016). Although the construct of impulsivity has been described as a “a useful heuristic” 

(Dalley et al., 2011), there are many definitions of this construct (Evenden, 1999a, 1999b; 

Moeller, Barratt, Dougherty, Schmitz, & Swann, 2001). Impulsivity can be defined as a 

predisposition for rapid, unplanned actions in response to internal or external stimuli without 

consideration for the negative consequences of these actions (Moeller et al., 2001). By this 

definition, impulsivity is an automatic process, driven by quick decision-making and a lack of 

foresight, thus impeding appropriate evaluation of the consequences. Similarly, Eysenck 

(Eysenck & Eysenck, 1978) disassociates impulsiveness and “venturesomeness”, which is 

related to conscious risk-taking. 

The above definitions characterise impulsivity as a maladaptive and a pathological 

feature; however, it is widely accepted that impulsivity is part of human nature, and 

individual differences can be adaptive in different contexts. Indeed, every person can be 

characterised on their impulsive tendencies and as such, impulsivity can be perceived as a 

personality trait (Herman, Critchley, & Duka, 2018). Eysenck and Eysenck (1978) first 
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theorised that personality consists of two dimensions of higher-order traits; that is, 

extraversion vs introversion and neuroticism vs emotional stability, whereby impulsivity was 

a combination of high Extraversion and Neuroticism and Psychoticism. In a revised model, 

however, impulsivity is regarded as a part of third dimension items, i.e. psychoticism vs 

impulse control, whereby impulsivity is related to risk-taking and lack of planning and 

Extraversion is primarily defined by its sociability content (Eysenck & Eysenck, 1985). 

Although discriminating impulsivity from sociability helped to clarify the current 

conceptualisation of Extraversion, aspects of sociability from Eysenck’s original proposal 

remain intertwined with the concept of impulsivity.  For example, the Barratt Impulsiveness 

Scale (BIS; Barratt, 1959), a commonly used self-report measure of trait impulsivity, 

measures content related to extraversion (Sharma et al., 2014). Other ways to conceptualise 

impulsivity also emerged, including Zuckerman’s (1984) concept of “sensation seeking”, 

describing high sensation seekers as individuals who show a need for stimulation and novel 

experiences, regardless of the risks (Zuckerman, 1984).  

Difficulties in establishing an unequivocal definition of impulsivity and situating it 

within personality models gave rise to conceptualising impulsivity as a multidimensional 

construct, where facets can be both distinct and overlapping, and reflect different aspects of 

behaviour (Congdon & Canli, 2008; Evenden, 1999a; Moeller et al., 2001). For example, the 

Barratt Impulsiveness Scale 11
th

 version (BIS-11; Patton & Stanford, 1995) a questionnaire 

that is often used in both clinical and research settings, assesses three factors of impulsivity, 

including: Motor (inability to withhold responses or acting on the spur of the moment); and 

Non-planning (lack of consideration or not planning tasks carefully); and Inattention 

(difficulty focusing on the task at hand). Zuckerman’s Sensation Seeking Scale (SSS; 

Zuckerman, Eysenck, & Eysenck, 1978), consists of four factors: Thrill and Adventure 
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Seeking (engaging in risky and exciting activities), Disinhibition (a desire for social 

stimulation and disinhibited behaviour), experience seeking (a desire for experience a non-

conforming lifestyle through unplanned activities or drugs), and boredom susceptibility (an 

aversion to repetition and routine). 

The behavioural approach to impulsivity predominantly comprises at least two major 

dimensions. The first is motor impulsivity (or impulsive action) and reflects disinhibition, and 

can be divided into action cancellation and action restraint. The second, labelled choice 

impulsivity by some (e.g., Paloyelis, Asherson, Mehta, Faraone, & Kuntsi, 2010), reflects 

impulsive decision-making, and can be separated into risk or uncertainty-based choice and 

delay-based choice (Winstanley, Olausson, Taylor, & Jentsch, 2010).  De Wit (2009) 

suggested a third dimension of impulsivity, such as attention lapses on a simple reaction time 

task, proposing that sustained attention is crucial for tempering drug-seeking behaviours in 

addicts. Furthermore, subtypes within impulsive action have been distinguished, at different 

stages of the process (Caswell et al., 2015a; Evenden, 1999a): impulsive preparation (i.e. 

reflection—responding before all necessary information is obtained; Kagan, 1965); motor 

impulsivity (failure to follow instruction and inhibit motor responses); and an outcome stage 

of impulsivity (failure to delay gratification). Other notable definitions have arisen, for 

example, temporal impulsivity encompasses both delay gratification and decision-making 

under conditions of risk or uncertainty (Fineberg et al., 2010; 2014; Winstanley et al., 2010). 

Here, a review of the literature on endophenotypes of impulsivity in the context of 

alcohol misuse will be outlined, including: trait, choice impulsivity (delay discounting) and 

motor and cognitive impulsivity (sustained attention).  
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1.4.1 Trait impulsivity and alcohol. 

 Increased trait impulsivity is sensitive to different patterns of use among adolescents and 

young adults (Adan, Forero, & Navarro, 2017; Stautz & Cooper, 2013). Across various 

studies, binge-drinkers show higher scores for both impulsivity (Adan, Navarro & Forero, 

2016; Leeman, Hoff, Krishnan-Sarin, Patock-Peckham, & Potenza, 2014; Mackie, 

Castellanos‐Ryan, & Conrod, 2011; Motos Sellés, Cortés Tomás, Giménez Costa, & 

Cadaveira Mahía, 2015) and sensation seeking (Bø, Billieux, & Landrø,  2016;  Lac, & 

Donaldson, 2016; Leeman, Fenton, & Volpicelli, 2006; Leeman, Hoff, Krishnan-Sarin, 

Patock-Peckham, & Potenza, 2014; Shin, Hong & Jeon, 2012), compared to non-binge-

drinkers. Higher trait impulsivity and sensation seeking scores are also associated with 

increased numbers of drinks consumed per episode (Balodis, Potenza, & Olmstead, 2009; 

Doumas, Miller, & Esp, 2017; Lang et al., 2012) and the frequency of BD (Carlson & 

Johnson, 2012; Castellanos‐Ryan, Rubia, & Conrod, 2011; Lang et al., 2012). 

The BIS-11 is one of the most widely used measures of trait impulsivity to be 

examined in relation to alcohol use. BIS-11 total scores have been linked to alcohol use and 

alcohol status (Henges, & Marczinski, 2012; Papachristou, Nederkoorn, Havermans, van der 

Horst & Jansen, 2012), alcohol-related problems (Bjork et al., 2004; Rubio et al., 2008), and 

early-onset AUD symptomatology (Dom, Hulstijn, & Sabbe, 2006). Group differences 

between heavy and lighter drinkers are also reported. For example, heavier drinkers (AUDIT 

scores ≥11) have reported significantly higher BIS-11 total scores than light drinkers (AUDIT 

scores <11; Papachristou et al. 2012). However, BIS-11 total scores are associated with 

different patterns of alcohol use. For example, in 109 undergraduate students (Henges, & 

Marczinski, 2012), BIS-11 scores predicted number of drunk days, but not the number of 

drinking days or the highest number of drinks consumed on one occasion in a month. 
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Differentiation between BIS-11 subscales and various aspects of alcohol misuse have also 

been found. Using a binge score of alcohol consumption, Sanchez-Roige and colleagues 

(2014) found that binge-drinkers displayed significantly higher scores for Motor and Non-

planning subscales of the BIS-11, compared to non-binge drinkers. Unlike the BIS-11, 

researchers typically report facet-level scores of the UPPS and UPPS-P, rather than total 

scores (Stevens, Blanchard & Littlefield, 2018). Despite a strength of the BIS-11 

measurement tool being its ability to assess different aspects of impulsive traits, researchers 

often report a total score when using the BIS-11 (Stevens, Blanchard & Littlefield, 2018), 

which assumes impulsivity to be a unidimensional construct (Stanford et al., 2009). Given 

that different aspects of alcohol use (e.g. drunkenness vs. frequency) appear to be related to 

total BIS-11 scores, it will be important to examine this further using the subscales.  

Some researchers have combined self-report impulsivity measures to generate higher-

order factors that may better explain alcohol-use behaviour. For example, Wardell and 

colleagues (2016) combined UPPS-P and BIS-11 scores in order to assess self-reported 

control over alcohol (Impaired Control Scale) in 300 18–25-year-old heavy drinkers, using a 

Timeline Follow-back measure (Sobell & Sobell, 1992) for alcohol frequency and RAPI for 

alcohol-related problems. The first higher-order factor – response impulsivity – describes 

difficulties inhibiting thoughts and behaviours, especially in the context of reinforcement. 

The second – reflection impulsivity – is the tendency to make quick decisions without 

sufficiently gathering or evaluating relevant information. Response impulsivity accounted for 

unique variance in impaired control over alcohol and in alcohol problems, whereas reflection 

impulsivity accounted for unique variance in heavy drinking frequency only. Further, indirect 

associations were observed from response and reflection impulsivity to alcohol problems, 

mediated via impaired control and heavy drinking frequency, respectively. The results 
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suggest that impaired control may play a specific role in the pathway to alcohol problems 

from response impulsivity, but not from reflection impulsivity. 

The Substance Use Risk Profile Scale (SURPS; Woicik, Stewart, Pihl & Conrod, 

2009) was developed to examines impulsive traits that are directly related to substance 

misuse risk, including Sensation seeking, Impulsivity, Anxiety sensitivity, and Hopelessness. 

An examination of the SURPS in approximately 2000 14-year-olds found that Impulsivity 

and Sensation seeking dimensions predicted alcohol use two years later (Jurk et al. 2015). 

Other studies using the SURPS also showed that binge-drinkers had higher Sensation 

seeking, Impulsivity and Hopelessness scores than non-binging adolescents (Mackie, 

Castellanos‐Ryan & Conrod, 2011; Whelan et al., 2014).   

Examining which specific aspects of trait impulsivity are most closely related to 

alcohol misuse, as well as which measures can be used to asses personality, is difficult (Adan 

et al., 2017). Furthermore, other broad personality traits not directly related to impulsivity, 

such as the Big Five model (Extraversion, Neuroticism/Emotional stability, 

Conscientiousness, Openness (to new experiences)/Intellect, and Agreeableness) are 

considered to be important variables in determining BD trajectories (Sharma et al., 2014; 

Whelan et al., 2014; Zhang, Bray, Zhang & Lanza, 2015). However, cross-sectional studies 

using the Big Five model to examine the relationship between personality and BD have been 

inconclusive, and trait impulsivity in conjunction with more broader personality measures 

have rarely been examined (Adan et al., 2017). 

 

1.4.2 Choice impulsivity and alcohol  

Choice impulsivity (also referred to as temporal impulsivity), encompasses decision making 

based on evaluations of delayed consequences of behaviour. That is, an impulsive choice can 
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be characterised by the tendency to choose a smaller immediate reward rather than waiting 

for a larger, but delayed, reward. Choice impulsivity can be measured via a questionnaire, 

such as the Delay Discounting Questionnaire (DDQ) and Monetary Incentive Questionnaire 

(MCQ; Kirby, Petry & Bickel, 1999), or via a task, such as the Two-Choice Impulsivity 

paradigm (TCIP Dougherty, Mathias, Marsh & Jagar, 2005) or the Delay Discounting Task 

(DDT; Kirby & Maraković, 1996; Kirby, Petry & Bickel, 1999). 

The DDT is an established behavioural forced-choice measure of impulsive choice, 

quantifying the decline in the subjective value of a reward as the delay to its receipt increases 

(e.g., “Would you prefer €5 now or €10 in one month?”). Steeper discounting rates indicate 

increased choice impulsivity (Bickel, Odum & Madden, 1999). Steeper discounting is 

robustly associated with addictive behaviours in general, including nicotine (Reynolds et al., 

2007), cocaine (Petry, 2003; Heil, Johnson, Higgins, & Bickel, 2006) and heroin (Petry, 

2003), as well as severity and quantity-frequency of substance misuse (Amlung, Vedelago, 

Acker, Balodis & MacKillop, 2017). Studies have used other tasks to assess impulsive 

choices in the context of reward and punishment, such as the Iowa Gambling Task (IGT; 

Bechara, Damasio, Damasio, & Anderson, 1994), which assesses an individual’s preference 

for disadvantageous deck cards (yield greater immediate gains but greater long-term losses) 

over advantageous decks (yield lower gains but lower long-term losses). During an IGT, 16-

18-year-old binge-drinkers displayed poorer decision-making (a tendency to consistently 

select disadvantageous decks), as well as increased emotion-related brain activation in the 

amygdala and insula, compared to matched never-drinkers (Xiao et al., 2013). However, 

there is relatively less literature on the DDT in non-dependent samples in relation to alcohol 

misuse. Further exploration of task-based versus questionnaire-based measures of choice 

impulsivity and how they relate to different aspects of alcohol use is also required.  
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1.4.3 Motor impulsivity and alcohol  

Motor impulsivity, otherwise known as response inhibition, refers to the inability to 

inhibit certain unwanted behaviours or to quickly cancel an already-initiated response, and 

relies on effective and rapid inhibitory control in the brain. Various behavioural tasks have 

been developed to measure motor impulsivity. In both the Stop Signal Task (SST; Logan, 

1994) and Go/No Go (GNG) task (Hogg, Evans, & Adrian, 1975) participants are required to 

respond to go-signals, and to inhibit their responses to stop signals. Evidence indicates that 

these tasks are not equivalent and probe distinct processes–the SST assesses ‘action 

cancellation’ (i.e., inhibition of an already initiated response), while the GNG assesses ‘action 

selection and restraint’ (i.e., inhibition of a response before it has started; Dalley, Everitt, & 

Robbins, 2011; Eagle, Bari, & Robbins, 2008). fMRI studies implicate dominant “stopping” 

brain activation patterns for both tasks, including the inferior and right MFG, ACC, pre-

supplementary motor area, right inferior parietal lobe, and left middle temporal cortex (Rubia 

et al., 2001). However, the SST primarily shows activation in the right hemisphere, while the 

GNG task shows bilateral, but more left-hemisphere activation (D’Alberto, Funnell, Potter, & 

Garavan, 2017; Nikolaou, Critchley, & Duka, 2013; Rubia et al., 2001). Yet, these tasks are 

often used indiscriminately under the assumption that both measures are very similar at 

“stopping” abilities (Robinson et al., 2009; Dalley et al., 2011). Nevertheless, several studies 

have shown that both action cancellation and restraint are impaired in substance misusers, 

including alcohol misusers (Petit, Kornreich, Noël, Verbanck & Campanella, 2012; Czapla et 

al., 2017).  

The SST can assay inhibitory control by requiring participants to respond as quickly as 

possible to frequent ‘Go’ cues, but to inhibit their ongoing motor response following 
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intermittent and unexpected ‘Stop’ cues (Verbruggen & Logan, 2008). On trials with a stop 

stimulus, the ‘horse race model’ (Band, Van Der Molen & Logan, 2003) posits a race 

between two separate processes that are each triggered by the Go and Stop signal. If the stop 

process is completed before the Go process, subjects will successfully inhibit their responses 

(Verbruggen & Logan, 2008) and vice-versa. The stop-signal reaction time (SSRT) indexes 

the time needed to successfully inhibit a response during the SST (Congdon et al., 2012), and 

is a reliable measure of deficits in inhibitory control. The SSRT is a measure of a covert 

mental process, and can be calculated by subtracting the average stop signal delay from the 

participant’s Go reaction time. Shorter SSRTs indicate better inhibitory control. In 

neurologically healthy adults, SSRTs are approximately 200 ms (Dimoska et al., 2006; 

Hoptman et al., 2018; van Boxtel et al., 2001; Wessel & Aron, 2015; Wessel et al., 2016), but 

longer in adults with ADHD (Lijffijt et al., 2005) and in individuals with addictions (Luijten 

et al., 2011).  

 

1.4.3.1 Behavioural correlates of motor impulsivity.   

Longer SSRTs have been observed for disordered alcohol-use (Mole et al., 2015) and 

acute alcohol dosages (Caswell et al., 2013a). However, SSRT differences are not always 

found when comparing non-dependent drinkers to controls. For example, 19-year-old binge-

drinkers (mean of 6.18 drinks on the last drinking episode) showed no SSRT differences 

compared to both cannabis-using and non-drug-using groups (Moreno et al., 2012). Similarly, 

SSRTs were not found to be related to the number of weekly alcohol units in heavy drinking 

18-45-year-old students (Caswell et al., 2015b), or to binge drinking scores in 18-25-year-old 

drinkers (Sanchez-Roige et al., 2014). It is possible that non-dependent alcohol users have not 

yet experienced the neurotoxic effects of repeated alcohol abuse, which is thought to weaken 
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top-down cognitive control (Robbins & Dalley, 2017; López-Caneda et al., 2013). However, 

differences in brain activity related to response inhibition have been observed in young 

adolescent drinkers, even in the absence of behavioural differences (Whelan et al., 2012; 

Wetherill, Squeglia, Yang & Tapert, 2013b; Worhunsky et al., 2016). This suggests that 

neural measures of inhibitory control have some potential to better characterise individual 

differences in alcohol misuse than behavioural metrics alone.    

 

1.4.3.2 fMRI: Brain correlates of motor impulsivity.   

Tasks assaying motor impulsivity, combined with neuroimaging, have the potential to 

detect subtle neurobehavioural vulnerabilities and predictive factors associated with alcohol-

use (Heitzeg, Cope, Martz & Hardee, 2015).  For example, a cross-sectional study of 1,896 

healthy 14-year-olds (Whelan et al., 2012), found no SSRT differences between adolescent 

alcohol misusers (with only 1-4 lifetime uses of alcohol) and non-drinkers.  However, 

Whelan and colleagues (2012) identified seven stop success and six stop-fail brain networks 

on an SST (see Figure 1.1), and found that the alcohol misusers had reduced lateral 

orbitofrontal cortex activity during response inhibition, as well as differences in orbito-frontal 

and pre-SMA networks, compared to the non-drinkers. Furthermore, the right frontal network 

was also associated with severity of substance use (Whelan et al., 2012). The findings 

indicated that the lateral orbitofrontal cortex may underlie impulsivity associated with alcohol 

initiation in young adolescents. Importantly, and given the low volume alcohol intake, these 

neural markers are less likely to be a consequence of alcohol use. 
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Figure 1.1. Stop success and stop fail networks characterised using factor analysis of the 

brain activation during the SSRT in 1896 14-year-olds from the IMAGEN sample (Whelan et 

al., 2012). Left side —seven stop success networks including: Basal Ganglia network (red); 

right Inferior frontal network (yellow); bilateral substantia nigra/subthalamic nucleus (STN) 

network (grey); Orbital network (dark blue); pre-supplementary motor/ precentral gyrus 

(cyan), parietal network (dark green) and the medial orbital network (magenta). Right side —

six stop failure networks. The anterior cingulate network (yellow); the substantia nigra/STN 

network (grey); basal ganglia network (red), the parietal network (dark green); the 

PCC/medial orbital network (magenta) and the orbital network (dark blue). A: anterior; P: 

posterior; L: left; R: right. 

 

Hypoactivation in frontoparietal, temporal and subcortical brain regions was also 

observed in college drinkers who binged in over 50% of the weeks in the past 6 months, 

when compared to light drinkers who binged fewer than 50% of weeks in the past 6 months, 

on a GNG task (Ahmadi et al., 2013), with longer reaction times (RTs) reported for heavy 

drinkers.  Another study (Ames et al., 2014), however, has found increased activity in the 

right dorsolateral prefrontal cortex and cingulate cortex, as well as significantly longer RTs, 

during a GNG task in 18–22-year-olds classified as very heavy drinkers (≥15 drinks/week for 

males and ≥8 drinks/week for females when compared to light drinkers (<3 drinks/week and 

≤2drinks during any drinking episode). The disparity between the findings may be related to 
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alcohol use differences; it is possible that in the latter study, the amount of alcohol consumed 

regularly was sufficient to impair brain function, leading the drinking group to recruit 

additional brain resources in response to cognitive demands.  

Turning to prospective studies, a series of longitudinal fMRI studies have tracked 

individuals’ neural changes underlying motor impulsivity over time, along with their drinking 

patterns, in order to determine consequences of alcohol-use. Two studies have shown that 

frontoparietal hypoactivation during response inhibition on GNG tasks predicted subsequent 

heavy drinking in 11-16-year-old drinkers (1-2 drinks daily or >4 drinks/month) versus 

continuous non-drinkers 3 years later (Wetherill, Squeglia, Yang & Tapert, 2013b) and 18-

year-old college student heavy drinkers (number of drinks >4 on an occasion; mean drinks = 

10.3), versus lighter drinkers (maximum of 3 drinks per occasion) 1 year later (Worhunsky et 

al., 2016), respectively. In both studies, behavioural differences between groups were absent 

at baseline. Supporting evidence for hyperactivation as a compensatory mechanism comes 

from an fMRI GNG task with alcoholic and non-alcoholic drinks as response cues (Beltz et 

al., 2013), in which 18-19-year-olds whose alcohol exposure increased during college had 

greater connectivity between prefrontal and anterior cingulate regions one year later. 

Behaviourally, participants’ performance improved over time, showing faster reaction times 

and improved response accuracy from baseline for the alcohol condition one year later. A 

pattern of hypoactivation prior to very alcohol heavy use is, however, not uniform across 

studies. For example, a 5-year prospective study (Wetherill et al., 2013a) compared non-

drinkers to 12-14-year-olds who were substance-naive at baseline but transitioned to 

problematic drinking at aged 18 (subdivided into adolescent who experience alcohol-induced 

blackouts and those that did not experience blackouts). At baseline, hypoactivation in parietal 

regions remained a significant predictor of future heavy alcohol-use for both groups, but 
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adolescents who would subsequently experience blackouts had increased frontal 

hyperactivation at baseline. 

 

1.4.3.3 EEG: brain correlates of motor impulsivity. 

ERPs obtained using EEG are modulated by performance during the SST (e.g. 

Kenemans, 2015). Two ERPs, the P3 and N2, are predominately associated with response 

inhibition. The N2 is a fronto-lateral negative component peaking around 200-250ms. The N2 

is thought to reflect conflict monitoring and effortful processing, predominantly through 

activity of the anterior cingulate cortex (ACC; Pandey et al., 2012). The P3 is a fronto-central 

positive component peaking around 300-350ms. Larger N2 amplitudes are sometimes 

observed for failed versus successful stop trials (Kok et al., 2004), while larger P3 amplitudes 

have been consistently observed for successful versus failed stop trials in healthy participants 

(Kok et al., 2004; Lansbergen et al., 2007).   

A reduction in P3 amplitude during response inhibition is considered a vulnerability 

marker for alcoholism (Campanella et al., 2018; Luijten et al., 2014; Mumtaz et el., 2017a). 

However, ERP findings in non-dependent alcohol users are not always consistent. For 

example, no P3 or N2 amplitude differences were found between 48 young adult heavy 

drinkers and 49 lighter drinkers during successful response inhibition on a GNG task 

(Franken et al., 2017). Conversely, in a sample of 40 student drinkers performing the same 

task, heavy drinkers had reduced N2 and P3 amplitudes, compared to light drinkers on 

successful trials (Oddy & Barry, 2009). In a longitudinal study (López‐Caneda et al., 2012) of 

48 18-19-year-old light (n=25) and heavy (n=23) drinking students, no P3 amplitude 

differences were observed at baseline during a GNG task. However, those who binged (at 

least 6 drinks per occasion once per month) for 2 years exhibited larger P3 amplitudes during 
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a GNG task at follow-up. There is also some evidence that alterations in earlier ERP 

components (e.g., P1) are linked to alcohol misuse, as has been found among an alcoholic 

dependent sample (Maurage et al., 2007; 2012). Yet, these early components have 

surprisingly received little attention. It is important to establish whether the link between 

ERPs and alcohol misuse is specific to later N2/P3 components, or if deficits are already 

present earlier in the cognitive processing stream.  

Mixed findings, such as potential ERP correlates of alcohol use, are common in cognitive 

neuroscience. Firstly, as outlined earlier in this Chapter, studies typically test the statistical 

significance of between-group comparison (e.g., heavy drinkers vs. controls), and cut-off 

scores used to define alcohol misusers are varied. Secondly, the discrepancies in the 

neuroimaging findings are likely to be related to methodological challenges that are 

associated with examining highly dimensional data, a point which will be discussed in more 

detail later in this Chapter. Notably, these EEG studies, as well as the aforementioned 

neuroimaging studies, used GNG tasks to examine the relationship between inhibitory control 

and alcohol use, with one exception (Whelan et al., 2012). However, these tasks are 

dissociable (Littman & Takács, 2017), and although the SST has not been widely used to 

determine the ERP-alcohol relationship, the SST may be sensitive to detecting alcohol-

induced changes in the P3 during inhibition control (Plawecki et al., 2018).  

 

1.4.4 Cognitive impulsivity and alcohol  

The ability to efficiently and consistently maintain attentional resources on a moment-

to-moment basis is central to our navigation of everyday life. Cognitive impulsivity, i.e., 

lapses in sustained attention, is linked with risky behaviours, such as drug-taking (Sharma et 

al., 2014). Attentional impairments have been observed in 18-25-year-old binge-drinkers, in 
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the form of higher response omissions and lower accuracy during variable trials on a human 

version of the Five-Choice Serial Reaction Time Task (Sx-5CSRTT), compared to non-

bingers (Sanchez-Roige et al., 2014). Attentional impairment has also been found for 

abstinent alcohol-dependent patients, in the form of increased commission errors during a 

Continuous Performance Test (CPT), compared to healthy controls (Bjork, Hommer, Grant & 

Danube, 2004; Rodriguez-Jimenez et al., 2006). However, the relationship between 

attentional abilities and alcohol is not straightforward. For example, some studies have found 

that the Attentional subscale on the BIS-11 (e.g., “I don’t “pay attention”) predicts BD 

trajectories (Carbia et al., 2018) and is associated with higher alcohol use (Mackillop et al., 

2016), while others have not found this association (Caswell et al., 2015b; Sanchez-Roige et 

al., 2014). In a meta-analytic study that used principal-component analysis (PCA) to generate 

factors of impulsivity, Sharma and colleagues (2014) posited that inattention (based on the 

Stroop and a version of the CPT) may not be significantly associated with problematic 

alcohol use.  

Sustained attention can also be assessed by examining trial-to-trial intra-individual 

response variability (IRV) on a given cognitive task (Hultsch, MacDonald & Dixon, 2002). 

The IRV can be examined using the SST and calculated using the intra-individual coefficient 

of variation formula (dividing the standard deviation of Go RTs by mean Go RTs), which 

controls for differences in an individual’s overall speed of responding (Bellgrove et al., 

2004). The IRV may yield insights into deficits associated with sustaining attention to top-

down cognitive control demands (Bellgrove et al., 2004; Hervey et al., 2006), additional to 

those afforded by standardised cognitive or psychomotor tasks (Balota et al., 2010; Cherbuin, 

Sachdev & Anstey, 2010; Haynes, Bauermeister & Bunce, 2017) or simple RT (Dixon et al., 

2007). For instance, higher IRV (i.e., worse sustained attention) is commonly reported in 
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ADHD (Bellgrove, Hawi, Kirley, Gill & Robertson, 2005; Castellanos et al., 2005; 

Castellanos, Sonuga-Barke, Milham & Tannock, 2006; Kofler et al., 2013; Kuntsi & Klein, 

2011; Mullins, Bellgrove, Gill & Robertson, 2005; Vaurio, Simmonds & Mostofsky, 2009). 

Yet, despite associations between BD and impaired attentional function and executive 

function (Scaife & Duka, 2009; Townshend & Duka, 2005), the IRV measure has yet to be 

examined in relation alcohol use.   

 

1.4.4.1 Brain correlates of IRV. 

Several fMRI studies have examined the relationship between IRV and whole brain 

task-related activation during response inhibition tasks. In healthy adults, higher IRV on 

GNG task has been associated with increased stop-related activation in prefrontal regions 

[middle frontal gyrus (MFG), inferior frontal gyrus (IFG)], motor-related regions (precentral 

gyrus and pre-SMA), the anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and 

thalamus (Hervey et al., 2006). Similar brain activation patterns have been observed in 

healthy children, with higher IRV associated with increased activation in the MFG and 

thalamus, while lower IRV was associated with activation in postcentral gyrus, medial frontal 

gyrus, culmen, IPL and cerebellum (Simmonds et al., 2007). However, there are conflicting 

findings within the literature. For example, in healthy adults, lower IRV was found to be 

associated with greater activation of ACC (Esterman, Noonan, Rosenberg & DeGutis, 2012), 

and in the left pregenual anterior cingulate in healthy male adults (Johnson et al., 2015). 

Discrepancies in findings relating to frontal lobe activation patterns and IRV remain 

unresolved (Tamm et al., 2012), and there is growing interest into the characterisation of 

sustained attention within large-scale neural networks (Fortenbaugh, DeGutis & Esterman, 

2017).  
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Research posits that sustained attentional processes may emerge from an array of 

large-scale functional connectivity networks (Castellanos, Kelly & Milham, 2009; Kessler, 

Angstadt & Sripada, 2016), rather than single brain regions (Rosenberg, Finn, Scheinost, 

Constable & Chun, 2017). Although BOLD activation can yield insight into brain activity 

associated with IRV, functional connectivity – associations of synchronous fluctuations in 

brain signals – can identify brain regions that are engaged at the same time during a cognitive 

task. Sustained attention has been shown to involve the dorsal attention network (DAN; 

comprising intraparietal sulcus (IPS), superior parietal lobule; primate frontal eye fields, and 

inferior pre-central sulcus) and frontoparietal networks (Petersen & Posner, 2012; 

Szczepanski, Konen & Kastner, 2010). Lower IRV (i.e., better sustained attention) is 

associated with stronger anticorrelations between the default mode network (DMN; including 

medial prefrontal cortex, posterior cingulate, anterior temporal and precuneus) and task-

positive networks (Kelly, Uddin, Biswal, Castellanos & Milham, 2008). The extent to which 

other networks outside these attentional networks contribute to sustaining attention is less 

well understood (Fortenbaugh et al., 2017; Glickstein, 2007), although studies examining a 

broader range of network connectivity have identified connectivity in regions such as the 

cerebellum, as being important for sustaining attention (Rosenberg et al., 2016). To date, 

however, the brain correlates of sustained attention in healthy adolescents, as indexed by 

IRV, have not been comprehensively characterised. 

  

1.4.4.2 ADHD and IRV. 

Neurodevelopmental disorders of impulsivity such as childhood attention-

deficit/hyperactivity disorder (ADHD; American Psychiatric Association. 2013) are 

associated with increased risk for heavy alcohol use (Vogel et al., 2016) and the development 
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of alcohol use disorders (Lee, Humphreys, Flory, Liu, & Glass, 2011; Wilens & Morrison, 

2011) in adulthood. ADHD, characterised by an early onset of persistent and impairing levels 

of inattention-disorganisation and hyperactivity-impulsivity (APA, 2000), is one of the most 

frequently encountered disorders during childhood and adolescence in the U.S. (Barkley, 

1998), with high prevalence rates (5-10%) in children (Scahill & Schwab-Stone, 2000). 

ADHD during childhood or adolescence increases the risk for developing AUD or other 

SUDs (Lee, Humphreys, Flory, Liu, & Glass, 2011; Wilens & Morrison, 2011), and is also a 

risk factor for heavy alcohol use and illicit drug-use initiation in young adults (Vogel et al., 

2016). Neuroimaging studies have also implicated similar neural circuits and pathways in the 

pathophysiology of both ADHD and SUD. For example, one review found that the 

comorbidity between ADHD and SUD aetiologically overlapped in relation to impairment in 

motivational system and inhibitory control, indicated by blunted striatal dopamine (DA) 

release, as well as disturbance of neural circuits between the striatum and prefrontal cortex 

(Frodl, 2010). Furthermore, the functional connections between brain regions that are 

implicated in inattention for healthy adults may also be disrupted in individuals with ADHD 

(Rosenberg et al., 2016).  

Numerous studies have demonstrated behavioural and neural deficits in sustained 

attentional processes in ADHD (Kofler et al., 2013). Children with ADHD have shown 

greater IRV-related activation in parietal and posterior frontal lobes during Go trials and in 

prefrontal and parietal regions during No-go trials on a GNG task, compared to controls 

(Suskauer et al., 2008). In adults with ADHD, greater inattention (high IRV) associated with 

impaired cerebellar DMN coupling with widespread cortical networks has been evidenced, in 

comparison to healthy controls (Kucyi, Hove, Biederman, Van Dijk, & Valera, 2015). 

However, neurological and psychopathological research is increasingly revealing a 
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dimensionality aspect to developmental disorders such as ADHD (Hudziak, Achenbach, 

Althoff & Pine, 2007). For example, in adolescents with just symptoms of ADHD (i.e., no 

diagnosis), structural differences in the brain were found to be associated with increased IRV 

(Albaugh et al., 2017). It is possible that similar patterns of functional impairment related to 

IRV that have been observed in ADHD patients, may also be found for individuals with 

attentional difficulties. However, this has yet to be examined. Furthermore, given the 

comorbidity of early ADHD and substance abuse in later life, examining neural pathways 

associated with attention in young adolescent samples who are relatively substance-naïve, 

may be important for delineating future risk. 

 

1.4.5 Multiple measures of impulsivity 

Given that impulsivity is multifaceted (Sharma, Markon & Clark, 2014), the within-

subject recording of multiple behavioural and self-report measures can potentially disentangle 

the overlap between alcohol-use and impulsivity endophenotypes. Generally, parallel 

measures have shown that increased trait and choice impulsivity tend to be consistently 

associated with alcohol misuse, whereas the relationship between action impulsivity and 

alcohol misuse is mixed. For example, 19-year-old binge-drinkers (mean of 6.18 drinks on 

the last drinking episode) made poorer decisions on an IGT and had higher trait impulsivity 

(BIS-11), compared to both cannabis-using and non-drug-using groups, but the binge 

drinkers did not show behavioural differences on an SST relative to controls (Moreno et al., 

2012). A broadly similar result was reported in 44 18-25-year-old bingers (a binge score 

calculated using the Alcohol Use Questionnaire (AUQ; Horn, Skinner, Wanberg, & Foster, 

1984), based on average of drinks consumed per hour, number of times being drunk in 6 

months and percentage of times getting drunk while drinking) when compared to non-binge 
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drinkers (Sanchez-Roige et al., 2014). Trait impulsivity (BIS-11) and waiting impulsivity (5-

choice serial reaction time task) were associated with binging, whereas neither action 

impulsivity (SST) nor choice impulsivity (DD) differences were observed between groups. 

Similarly, Caswell and colleagues (2015b) examined different aspects of trait, choice and 

motor impulsivity in 18-25-year-old student drinkers, and found that in heavier drinkers, the 

number of weekly alcohol units was characterised by higher trait impulsivity (Non-planning; 

BIS-11), but not by motor (SST) or choice impulsivity (MCQ).  

As an alternative to comparing drinking and non-drinking groups on individual 

measures of impulsivity, factor analysis of multiple impulsivity measures in 1,252 18-30-

year-olds with low levels of addiction (Mackillop et al., 2016) revealed three factors of 

impulsivity: trait (UPPS-P, BIS-11), choice (Monetary Choice Questionnaire, DD task), and 

action (GNG, SST, Conner’s Continuous Performance Test) impulsivity. Impulsive traits 

were not strongly related to choice (r = 0.10) or to action (r = 0.16), with choice and action 

unrelated (r = 0.01). Alcohol Use Disorder Identification Test (AUDIT; Saunders, Aasland, 

Babor, De la Fuente, & Grant, 1993) scores were significantly associated with trait and 

choice impulsivity, but not with action impulsivity. However, contrary findings have also 

been reported with respect to action impulsivity. In 109 18-21-year-old social drinkers, trait 

(BIS-11) and action (GNG) impulsivity predicted various aspects of drinking (Henges & 

Marczinski, 2012). Both trait and action impulsivity were significantly associated with total 

number of drinks consumed and number of heavy drinking days. However, trait impulsivity 

was only significant for number of drunk days whereas action impulsivity was significant 

only for highest number of drinks consumed on one occasion in a month. In a prospective 

design (Fernie et al., 2013), action impulsivity (SST) and choice impulsivity (DD and 

Balloon Analogue Risk Task: BART) each predicted frequency and severity of alcohol 
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problems 6 months later in 287 12-13-year-olds. The mixed findings across studies may 

reflect differences in the age range of the samples. Alcohol misuse in early adolescence often 

focuses on the initiation of alcohol consumption, and perhaps the willingness to experiment, 

whereas research on college-age alcohol misuse tends to orient towards episodic heavy use. It 

is likely that different impulsivity endophenotypes underlie different patterns of alcohol 

misuse.  

In general, increased trait impulsivity is consistently associated with alcohol-use, 

particularly in studies using the BIS-11 (Henges & Marczinski, 2012; Mackillop et al., 2016; 

Sanchez-Roige et al., 2014). However, it is difficult to reach firm conclusions on this 

conjecture, perhaps partly due to variations in measures used across studies and definitions of 

groups based on alcohol intake. Furthermore, debate continues as to how these particular 

endophenotypes are related to each other, and which precise domains are most relevant in 

generating a risk profile for alcohol misuse (Gullo et al., 2014). For example, the study from 

MacKillop et al. (2016) found that associations between the self-report and task-based 

measures were low-to-moderate, and assessment modality varied substantially across three 

structures. Furthermore, although sensation seeking was initially included in trait impulsivity, 

it did not load onto this impulsive domain (i.e., λ < .2) and its removal results in adequate fit 

for the three-factor model. Whether or not impulsivity and sensation seeking are dissociable 

constructs remains unclear, with some researchers labelling their joint presence as 

“disinhibited personality” (Castellanos‐Ryan, Rubia & Conrod, 2011). 

The ability to sustain attention could be considered as part of the first phase of 

response inhibition, given that important part of an individual’s capacity to inhibit a response 

is related to their capacity to attend to stimuli (Aragues, Jurado, Quinto & Rubio, 2011). 

Indeed, the SST requires sustained attention to monitor for the Stop signal in order to initiate 
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response inhibition, as well as engagement of attention for both correct go and stop responses 

(Li & Sinha, 2008). It is suggested that behavioural inhibition requires suppression of a rapid, 

prepotent response, in order to allow for slower top-down cognitive processes that guide 

decisions and behaviour to lead to successful inhibitory control (Barkley, 1997; Jentsch & 

Taylor, 1999). Others argue that these forms of impulsivity are not overlapping, and may be 

mutually exclusive both at a behavioural or neurobiological level (De Wit & Richards, 2004; 

Winstanley, Theobald, Cardinal, & Robbins, 2004). Furthermore, another study showed that 

increasing task difficulty by challenging inhibitory control had a negative effect on inhibitory 

control (i.e., longer SSRTs), however challenging inhibitory control on other aspects of 

impulsivity, including reflection (decision making under conditions of uncertainty) and 

choice (delay of gratification) impulsivity did not adversely impact task performance 

(Caswell, Morgan, & Duka, 2013b). These findings further emphasise the importance of 

including impulsivity endophenotypes and measurements in order to establish its relationship 

with alcohol use.  

Measures of inattention, such as the IRV and the Stroop, are often used to assess 

impulsivity, however inattention is sometimes (e.g., Barkley, Edwards, Laneri, Fletcher & 

Metevia, 2001) but not always (e.g., Miyake & Friedman, 2012) considered a part of 

executive functioning. In broad terms, executive functioning includes working memory, 

attention, and decision-making (Bechara et al., 2001; Koob & Volkow, 2016; Volkow, Wang, 

Fowler, Tomasi & Telang, 2011). Sharma and colleagues (2014) argue that attentional-related 

measures that are embedded in impulsivity-specific tasks may be considered more relevant to 

impulsivity than measures of intelligence or working memory (Sharma et al., 2014). Despite 

various impulsivity endophenotypes existing under one umbrella term, convergent validity 

between impulsivity domains (self-report and task-based measures) varies considerably, 
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ranging from moderate to no associations (Sharma et al., 2014; MacKillop et al., 2016). This 

may be attributable to the measures assessing slightly different constructs, or self-report 

measures providing a subjective interpretation of personal impulsive behaviours (Moeller et 

al., 2001). Indeed, it has been suggested that task-based measures of impulsivity may yield 

better predictors of state impulsivity than self-report questionnaires (Caswell et al., 2013a). 

Ideally, a multi-domain approach that includes multiple impulsivity endophenotypes as well 

different assessments of similar constructs (e.g., task-based DDT and self-report MCQ for 

choice impulsivity) would be beneficial for identifying the most pertinent predictors of 

alcohol misuse. 

An array of demographic, psychological and social functions subtend different alcohol-

related trajectories. Ultimately, a comprehensive understanding of the factors that contribute 

towards individual differences in alcohol use will require a broad scope that incorporates 

everything from brain, cognitive, social and individual determinants. The findings from 

Whelan et al. (2014) demonstrates the potential of brain data to generate intermediate 

endophenotypes of alcohol misuse, as well as highlighting the importance of combining brain 

and personality data to delineate biological processes underpinning alcohol misuse. 
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Table 1.1 

Summary of reviewed studies on impulsivity endophenotypes in alcohol misuse 

Author (year)  

Age (years) 

Mean (SD)/ 

Range (where 

available) 

N 
Sample 

Characteristics 

Substance-Use 

Measure 
Endophenotype 

measure 
Main Results  

Trait Impulsivity       

Papachristou et al. 

(2012) 
26 (9.66)  

29 Light Drinkers & 

13 Heavy drinkers  
AUDIT BIS-11 

Heavy drinkers had higher BIS-11 total 

scores than light drinkers 

Wardell et al. (2016)  
19.75(1.02)/18–

25 
300 Range of alcohol-users TLFB, RAPI 

 

BIS-11&  

UPPS-P  

Response & Reflection impulsivity 

predicted variance in impaired control over 

alcohol & heavy drinking frequency 

Motor Impulsivity        

fMRI       

Ahmadi et al. (2013)  18.9(0.7)/18–20 92 
36 Light Drinkers & 

56 Heavy drinkers 
DSM-IV, SCID GNG 

Heavy drinkers had ↑ RTs & ↓ motor, 

prefrontal, BOLD responses  

Ames et al. (2014)  
20.5 (1.2)/ 18-

22 
41  

21 heavy drinkers vs. 

20 light drinkers 
AUDIT 

GNG with alcohol 

cues 

Heavy drinkers had ↑ prefrontal, insula & 

cingulate activation, & poorer behavioural 

response inhibition  

Beltz et al., (2013) 

 

18-19 (first 

year students) 
11 

Range of Alcohol-

Related Behaviours 
YAAPST GNG 

Consequences of alcohol-use related to ↑ 

DLPFC & ACC connectivity 

Wetherill et al., 

(2013a)  
13.4(0.7)/12-14 60 

40 Heavy drinkers 

(20 blackout+ & 20 

blackout-)  

The Customary 

Drinking & Drug Use 

Record 

GNG 

Blackout+ had ↑ frontal & cerebellar brain 

activation during response inhibition. MFG 

activation predicted future blackouts 

experience 5 years later 
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Wetherill et al. 

(2013b)  

14.4(1.2)/11.7-

16.7 
40  

20 heavy drinkers vs. 

20 non-drinkers 
DSM-IV, CDDR, TLFB GNG 

Heavy drinkers had ↓ baseline 

frontoparietal, putamen, & cerebellar 

activation  

Worhunsky et al. 

(2016)  
18.4(0.5)/18-19 36  

18 escalating drinkers 

vs. 18 constant 

drinkers 

SCID, SSAGA, MINI GNG 
Escalating drinkers had ↑ impulsivity & 

frontoparietal activation  

Whelan et al. (2012)  14.5 (.45)   

 

1-4 lifetime uses of 

alcohol vs. non-

drinkers 

ESPAD SST 
↓lateral OFC activity during successful 

response inhibition 

EEG       

Franken et al., (2017)  23.2(9.3) 97  
48 Heavy drinkers vs. 

49 Light drinkers 
QFV GNG 

No behavioural or response inhibition ERP 

differences, with the exception of ↓ 

ERN/Pe amplitude in heavy drinkers   

 

López‐Caneda et al.  

(2012)  

 

18.7(0.5)/18-19  48  
23 Binge-drinkers & 

23 Controls 
AUDIT GNG 

Bingers had ↑ NoGo-P3 amplitude at 

follow-up 

Choice Impulsivity       

Schneider et al. (2014)  14.3(0.8)/13-15 48 Healthy adolescents 

ESPAD alcohol use 

questions (30 days, past 

year, lifetime) 

DD 

Steeper DD associated with ↑ alcohol-use 

& ↓reward-related activation in the nucleus 

accumbens & vmPFC. 

Multiple Impulsivity 

Endophenotypes 
      

Moreno et al. (2012)  20(1.8)18–24 66  

22 Binge-drinkers, 20 

Cannabis users, 26 

Non-drug users 

CAGE 

BIS-11, SSS-V, 

GNG, SST, IGT, 

2-choice task 

Bingers had ↑ trait impulsivity & sensation-

seeking & impulsive decision-making, but 

no SST difference 

Caswell et al. (2015b) 20.85 (3.79) 160 Range of alcohol- AUQ BIS-11, SST, In heavier drinkers, the number of weekly 
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students users: 17 units of 

alcohol/week (range 

0–72) 

GNG, MCQ, 

TCIP, SKIP 

alcohol units was characterised by higher 

trait impulsivity (Non-planning; BIS-11), 

but not by motor (SST) or choice 

impulsivity (MCQ),  

Sanchez-Roige et al. 

(2014)  

21.18(1.89)/18-

25 
44 

22 Binge-drinkers vs. 

22 Non-binge-drinkers 
AUQ 

BIS-11, Sx-

5CSRTT, SST, 

TCIP 

BIS-11 5x-5CSRTT ↑ associated with 

binging; no differences in SST & DD 

between groups 

Mackillop et al. (2016)  21.5/18-30 1,252 

Young adults with low 

levels of addictive 

behaviour 

AUDIT 

DD, MCQ, 

CCPT, GNG, 

SST, BIS-11, 

UPPS-P 

AUDIT scores ↑ associated with trait 

impulsivity & choice impulsivity, but not 

action impulsivity. 

Henges & Marczinski 

(2012)  
19.6(1.1)/18-21 109 Range of alcohol-users TLFB, PDHQ BIS-11, GNG 

↑ trait impulsivity significant for number of 

drunk days; ↑ action impulsivity was 

significant for highest number of drinks 

consumed on one occasion in a month 

Fernie et al. (2013)  13.3(0.3)/12-13  287  Range of alcohol-users AUQ, API DD, BART, SST 

All impulsivity tasks predicted alcohol 

involvement 6 months later, but not vice 

versa  

AU: Alcohol Use; API: Alcohol Problems Index; AUD: Alcohol Use Disorder; UPPS: Impulsive Behaviour Scale; TLFB: Alcohol Timeline Followback; DMQ: Drinking 

Motives Questionnaire; S-MAST: The Short-Form Michigan Alcoholism Screening Test; BIS-11: Barratt Impulsiveness Scale; AUDIT: Alcohol Use Disorders Identification 

Test; FrSBE: Frontal System Behaviour Scale; OFC: Orbitofrontal Cortex; VmPFC: Ventromedial Prefrontal Cortex; SPSRQ: Sensitivity of Punishment and Sensitivity of 

Reward Questionnaire; YAAPST: Young Adult Alcohol Problems Screening Test; GNG: Go/No Go Task; DLPFC: Dorsolateral Prefrontal Cortex; ACC: Anterior Cingulate 

Cortex; MFG: Middle Frontal Gyrus; DSM-IV: Diagnostic and Statistical Manual of Mental Disorders; SCID: Structured Clinical Interview for DSM-IV; RT: Reaction 

Time; SSAGA: Semi Structured Assessment for the Genetics of Alcoholism; MINI: Mini International Neuropsychiatric Interview; CDDR: Customary Drinking and Drug 

Use Record; BART: Balloon Analogue Risk Task; QFV: Quantity Frequency-Variability Index; SKIP: Single Key Impulsivity Paradigm; IMT; Immediate Memory Task; 

ERP: Event-Related Potentials; Pe: Evoked Potentials; RAPI: Rutgers Alcohol Problem Index; BD: Binge-drinkers; TRAILS: Tracking Adolescents' Individual Lives Survey; 

MID: Monetary Incentive Delay Task; DDHx: Drinking and Drug History Questionnaire; FH: Family History of Alcoholism; fMRI: Functional Magnetic Resonance 

Imaging; M: Mean; SST: Stop Signal Task; CAGE: CAGE Questionnaire; SU: Substance use; PDHQ: Personal Drinking Habits Questionnaire; IST: Information Sampling 
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Task; SSS-V: Sensation-Seeking Scale form V; ESPAD: European school survey project on alcohol and other drugs; Sx-5CRTT: Five-Choice Serial Reaction Time Task; 

TCIP: Two Choice Impulsivity Paradigm; IGT: Iowa Gambling Task; AUQ: Alcohol Use Questionnaire; MCQ: Monetary Choice Questionnaire; CCPT: Conners’ 

Continuous Performance Test; SURPS: Substance Use Risk Profile Scale; CANTAB: Cambridge Neuropsychological Test Automated Battery; WISC-IV: Wechsler 

Intelligence Scale for Children; SFG: Superior Frontal Gyrus; DD: Delay Discounting Task; TCI-R: Temperament and Character Inventory-Revised; ERN=Error-related 

Negativity (Pe amplitude reflects the perception of the error); ↑ = increase; ↓ = decrease; + = symptom present; - = symptom absent. *No study to date has examined the IRV 

on the SST in relation to cognitive impulsivity with alcohol use, and therefore it was not included in this table. 
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1.5 Other risk factors and alcohol 

1.5.1 Reward and punishment learning 

The choice impulsivity findings indicate that maladaptive decision-making process are 

related to increased alcohol misuse. The ability to update reward and punishment 

contingencies is another aspect of decision-making, which requires the ability to successfully 

adapt to a changing environment. The probabilistic selection task (PST; Frank, Seeberger, & 

O’Reilly, 2004) quantifies individual differences in learning from reinforcement relative to 

learning from punishment (i.e., from positive relative to negative feedback). The PST has 

demonstrated the ability to predict smoking status in students; with lower rates of learning 

from rewards associated with an increased likelihood of being a smoker or ex-smoker, 

compared with being a non-smoker, and higher rates of learning from punishment associated 

with an increased likelihood of being a smoker, compared to non-smokers (Rai et al., 2018). 

Substance misusers (e.g., alcohol, cannabis, and nicotine use) are poorer at learning both 

from rewards and from punishment relative to non-dependent groups (Baker, Stockwell, 

Barnes & Holroyd, 2011; Baker, Stockwell & Holroyd, 2013), supporting addiction models 

that involve desensitisation of reward circuits over time (Volkow, Koob, & McLellan, 2016). 

Examining reward and punishment learning in alcohol misusers would shed further light on 

addictive risk factors. 

 

1.5.2 Psychological health 

Alcohol abuse is implicated in a variety of physical health issues across the lifespan, 

for example, liver disease (Louvet & Mathurin, 2015); specific cancers (Bagnardi et al., 

2015); and cardiovascular disease (Roerecke & Rehm, 2014). However, the psychological 

impact of alcohol can occur from both acute and chronic abuse, with alcohol consumption 



   

 

40 

 

consistently linked to increased levels of depressive disorders (Boden & Fergusson, 2011; 

Schuckit, Smith & Kalmijn, 2013) and anxiety disorders, particularly, social anxiety (Gilles, 

Turk & Fresco, 2006; Ham, Zamboanga, Bacon & Garcia, 2009). Alcohol misuse is often 

associated with increased symptoms of depression, anxiety and stress in both the general 

population (Wiener et al., 2017) and among university students (Walters, Bulmer, Troiano, 

Obiaka & Bonhomme, 2018). The My World Survey (Dooley & Fitzgerald, 2012), the first 

Irish national study of youth mental health (12-25-year olds) found a strong relationship 

between problematic levels of alcohol consumption and psychological distress (stress, 

depression and anxiety, based on the DASS in adolescents and young adults. However, while 

some studies suggest anxiety is a risk factor for alcohol use in university students (DeMartini 

& Carey, 2011; Stewart, Zvolensky & Eifert, 2001), others have failed to identify a 

significant link (Armeli, Todd, Conner & Tennen, 2008; Ham et al., 2007; Novak et al., 

2003). It is possible that these inconsistencies are due to differences in anxiety measures or 

constructs (social anxiety versus anxiety sensitivity).   

 

1.5.3 Social Support 

Specific contextual factors promote, hinder, or intensify individual risk factors for 

alcohol misuse (e.g., peers, family, and cultural norms for drinking; Kaiser et al., 2016; 

Schneider et al., 2014).  Alcohol misuse is largely recognised as being influenced by multiple 

social factors, including family, peers and neighbourhoods. Social support, defined as an 

accessible social network that provides emotional and instrumental support (Cohen, 2004). is 

a risk factor for, and protective factor against, problematic behaviours. For example, college 

students with lower social support were found to have a higher tendency to engage in 

drinking after a negative event than their peers with higher levels of social support (Hussong, 
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Hicks, Levy & Curran, 2001).  In young adulthood, being in a committed romantic 

relationship has been found to be a protective factor against heavy and frequent drinking 

(Fischer & Wiersma, 2012; Fleming, White, & Catalano, 2010), while relationship 

dissolution is a risk factor (Fleming, White, Oesterle, Haggerty, & Catalano, 2010; Salvatore, 

Kendler, & Dick, 2014). 

Cumulative risk factors are associated with higher binge-drinking rates (Gowin et al., 

2017), and there are numerous other risk factors for alcohol misuse, such as gender, cannabis 

and nicotine (Squeglia et al., 2016; Whelan et al., 2014) and executive functioning (Peeters et 

al., 2015). Facilitating the inclusion of a large number of variables will provide a more 

nuanced insight into the relationship between impulsivity endophenotypes, as well as other 

pertinent psychological constructs, and alcohol use.  

 

1.6 Multi-domain analyses 

There are likely to be thousands of potentially informative predictors of alcohol-related 

outcomes, such as demographic, personality, behavioural, neurobiological, and genetic 

variables. One of the challenges this presents is how best to utilise methods that can 

interrogate large, multivariable datasets. Firstly, acquiring neuroimaging data is expensive, 

and neuroimaging studies often use small sample sizes (typically less than 50 participants), 

which increases the probability of false positive findings –Type I errors (Button et al., 2013). 

Secondly, neuroimaging data are highly dimensional and highly collinear by nature. In the 

case of fMRI data, there are usually hundreds or thousands of voxels, whilst for EEG, there 

are typically more than 64 channels, acquired at a sampling rate of over 256 Hz. When 

generating predictive models using neuroimaging data using standard methods, the high ratio 

of predictors to participants will result in ‘overfitting’ even in relatively large samples (see 
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Whelan & Garavan, 2014). Overfitting occurs because a model derived from a sample will 

partly reflect the unique data structure of that particular sample—including noise in the data. 

In other words, the model fits to the idiosyncrasies of the sample, as opposed to factors that 

are common to the population from which the sample is drawn. Overfitting leads to models 

producing seemingly very good prediction, however, they then generalise poorly to other 

samples from the same population. Fortunately, principles and techniques developed within 

the field of machine learning are well suited for neuroimaging data.  

 

1.7 Interrogating large, multi-domain data 

Addiction research has traditionally been conducted using methods developed within 

the natural sciences; that is, hypothesis-driven research typically based on assays of single 

cognitive functions and the use of statistical inference to quantify the likelihood of the 

observed effect occurring by chance. However, data driven approaches, using algorithms that 

search for patterns in data are gaining increasing traction in the field of psychology and 

neuroscience.  In contrast to traditional approaches (Bzdok, Altman & Krzywinski, 2018), 

many different types of data can be included in a model and there are usually more data 

points than there are participants. This is borne out of the arrival of the ‘Big Data’ era, which 

typically denotes datasets that cannot be acquired or processed in a reasonable time frame on 

standard computers (Chen, Mao, & Liu, 2014; Cheung & Jak, 2016). Rather than statistical 

inference, accurate prediction on previously unseen data is the metric of success. Statistical 

significance between groups is quantified based on group means and within-group variance, 

and differences are strengthened by higher within-group homogeneity (Lo, Chernoff, Zheng, 

& Lo, 2015). Good predictors, conversely, harness individual differences (i.e. heterogeneity 

within the entire sample) to generate an outcome estimate (Jollans & Whelan, 2018). 
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Therefore, variables that significantly differ between groups may (or may not) be good 

predictors, and vice versa ((Dubois & Adolphs, 2016; Westfall & Yarkoni, 2017). Machine 

learning methods can offer a substantially different perspective on addiction. 

 

1.7.1 Machine Learning 

Machine learning (ML) is a useful method for interrogating complex datasets, 

particularly when the number of variables exceeds the number of participants (Bzdok, 

Krzywinski & Altman, 2018). ML searches for patterns in the data and selects the most 

important variables, termed ‘feature selection’, in a principled way that also attenuates 

overfitting. Unlike null hypothesis significance testing, from a machine-learning perspective 

the ability of a model to accurately predict previously unseen data quantifies success (Bzdok, 

Krzywinski & Altman, 2018): often termed ‘out-of-sample’ validation. Using a separate 

dataset is the gold standard in terms of assessing out-of-sample validation. However, a more 

cost-effective method can be implemented by resampling the data— cross-validation (CV), 

which involves the division of a dataset into multiple training and test sets. The training set is 

used to generate a model, which is subsequently applied to the test data. The test set can be 

comprised of one observation (leave-one-out cross-validation, LOOCV), or of one of k equal 

partitions of the dataset (k-fold cross-validation), which will be discussed below. 

Different methods for feature selection exist (e.g., random forests, support vector 

machines), or some form of linear or logistic regression. Not every method is suitable for data 

that are inherently multicollinear (e.g., timings for ERPs in EEG data – often in the order of 

ms, or neighbouring voxels in neuroimaging data), and this needs to be accounted for when 

choosing a feature selection method. In regression methods, typically, the outcome variable is 

used to train an algorithm to identify some combination of features (e.g., brain, behavioural, 
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trait, environmental, and/or genetic) that are associated with that outcome. The outcome 

variable can be categorical measures (e.g., addicted versus non-addicted groups), wherein the 

objective is to identify the features that accurately classify the groups – a logistic analysis. 

Model performance can be evaluated using the area under the curve (AUC) of the receiver-

operating characteristic (ROC) curve (AROC), which quantifies the ability of the model to 

correctly classify groups by tracking the rate of true and false positive classification of the 

model. Alternatively, the outcome being predicted can be dimensional measures (e.g. SU 

severity across a group of individuals), wherein the outcome is a weighted linear combination 

of predictive features – a linear regression analysis.  

In traditional multiple-linear regression models (i.e., ordinary least squares for linear 

regression) the estimates are optimised for the sample of data in which the model is fitted. 

Therefore, the model fit statistics will increase as the number of estimated parameters 

increases, and/or the number of participants decreases. This results in an overfit, and leads to 

overoptimistic interpretations of the results (Whelan & Garavan, 2014). A consequence of 

this overfitting, however, is that the model will poorly predict the outcome of new, previously 

unseen observations. Crucially, the goal for predictive modelling is to ensure that a model can 

accurately make predictions about novel observations. The tendency to overfit (whilst 

retaining the variables to participants ratio) can be attenuated using two methods in tandem: 

cross-validation, and regularisation. 

Penalised regression is a regularization method that involves adding a penalty on the 

complexity of the model. Three types of penalized regression (LASSO, ridge or elastic nets) 

vary in their variance/bias trade-offs, depending on the characteristics of a given dataset. 

LASSO (Least Absolute Shrinkage And Selection Operator; Tibshirani, 1996) regulariation 

imposes an L1 penalty, which constrains the sum of absolute values of coefficients and 
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encourages parameters to be 0. This ensures a parsimonious solution; selecting only variables 

that are important and eliminating coefficients of unimportant variables. This solution may 

not be appropriate for a dataset of correlated variables, especially if the number of variables is 

small compared to the number of participants. On the other hand, ridge regularization (Hoerl 

& Kennard, 1970) encourages parameters to be small, avoiding overfitting (Murphy, 2012), 

but rather than excluding variables, ridge regression will keep all variables in the final. 

Machine learning using the Elastic Net (Zou & Hastie, 2005) is a regularization method for 

generalised linear models, which provides some balance between LASSO and the ridge 

regressions.   

The Elastic Net includes both L1 regularization (i.e., LASSO regularization - 

penalties on the absolute) and L2 regularization (i.e., ridge regularization – penalties on 

squared values of the β weights)). This allows relevant but correlated coefficients to coexist 

in a sparse model fit, by doing automatic variable selection and continuous shrinkage 

simultaneously (Jollans et al., 2016). The Elastic Net uses two parameters: λ and α. Alpha 

represents the weight of LASSO versus ridge regularization, and λ is the regularization 

coefficient.   

Cross-validation involves the partitioning of the original dataset into multiple training 

and test sets. A model is created with 90% of the data (training set), and the model is then 

evaluated on the remaining 10% of the data (test data). Importantly, the test set is not used 

during model estimation, which allows a researcher to establish how well the model 

generalises to out-of-sample data.  This is referred to as the outer CV stage, where feature 

selection occurs.  

Within the test set, an additional CV fold (nested CV) is created with the model 

building on 81% of the data and evaluated on the 9%, which is used to identify the optimal 
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Elastic Net parameters α and λ. k-fold cross-validation, where k=number of partitions (folds) 

from the original dataset.  Each fold contains an equal number of unique samples from the 

original dataset (i.e., when k= 10 and N=100, each k
th

 fold will have n=10 observations). k-

fold cross-validation then becomes an iterative process whereby a single fold is set aside as 

the test sample (“test fold”), and a model is estimated on the remaining k-1 folds. The model 

estimated on the k-1 folds is then evaluated on the set aside test fold, thereby insuring the 

independence of the final test sample. This process is repeated k times, resulting in k final 

models.  In doing so, each observation is tested exactly once, and used in model estimation k-

1 times. Ten-fold cross-validation with nested cross-validation for tuning and validating the 

model is recommended for datasets that include a large number of variables and have 

relatively smaller sample sizes (Jollans et al., 2015). See Figure 1.2. for an example of the 

procedure for nested cross-validation. 

 

 

Figure 1.2. Example of procedure for nested cross-validation. MSE=mean squared error. 
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Bootstrap aggregation can also be introduced as an additional level of stability 

(Breiman, 1996), whereby parameter optimisation is repeated a number of times (e.g. 25), 

using sampling with replacement. The results from all iterations within each training fold are 

then averaged. This analysis on the internal validation set can be repeated numerous times 

(e.g., 10 times) and the results (correlation coefficients and beta weights) can be averaged 

across the 10 iterations of the analysis procedure, which would yield 100 sets of beta weights, 

from 10 cross-validation folds across 10 analysis iterations, with beta weights averaged for 

each variable.  

Despite efforts made to guard against overfitting, there may nevertheless still be a 

degree of inherent optimism in any model. Ensuring that a model produces results that are 

significantly better than chance is not possible using traditional p-values (Jollans & Whelan, 

2016).  Instead, an empirical significance threshold should be established using a null model 

(i.e., a model against which the observed data can be compared to determine the likelihood 

that any observed effect could have occurred by chance). A commonly used approach to 

generating null model data is a simple randomisation of the dependent variable across 

participants (random label permutation). The level of accuracy achieved by the analysis 

framework using this null data is compared to the accuracy of the model with real data, and 

this acts as a measure of the optimism inherent in the analysis framework. The performance 

of the model can be quantified using typical model performance statistic, such as cross-

validated r, which is the best combination of parameters. 
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1.7.2 Machine learning studies examining alcohol 

Several studies of substance use have already applied machine learning methods to 

large neuroimaging datasets. For example, a 2-year prospective MRI study in the IMAGEN 

cohort (total n = 692; Whelan et al., 2014) showed that a combination of factors 

(demographic, life history, personality, cognitive, and brain data) could accurately predict BD 

at 16 years-old, based on data collected at 14 years-old, with 73% of abstainers and 66% of 

future binge-drinkers correctly classified. Predictors of future binge drinking included 

neuroimaging data from tasks assaying reward processing, behavioural inhibition and 

affective face processing. By iteratively omitting each domain (e.g., brain, personality, or life 

history) from the model and repeating the analysis, insights were gained into the relative 

contributions of different factors for binge drinking. Life history was most important 

predictor, followed by personality, with brain data ranking third. Similarly, Squeglia and 

colleagues (2016) collected neuroimaging data, both structural (cortical thickness) and 

functional (a visual working memory task) from 137 12–14-year-old substance-naive 

adolescents. A machine-learning approach, using a method called Random Forest, was able 

predict alcohol-use initiation by age 18, with 74% sensitivity and 73% specificity. 

Adolescents with lower performance on tests of executive functioning tests and who were 

faster on sustained attention tests were more likely to initiate alcohol use. One other 

longitudinal fMRI study from the IMAGEN project showed that decreased activity in the 

mesolimbic (ventral striatal and midbrain) and prefrontal cortical (dorsolateral prefrontal 

cortex) regions to anticipated rewards (measured using the Monetary Incentive Delay Task) 

predicted whether novelty-seeking adolescents (N = 144) would later develop problematic 

drug use (Büchel et al., 2017). Machine learning analysis revealed that out-of-sample 
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prediction accuracy was higher for a model including brain measures compared to a model 

with only behavioural measures (Büchel et al., 2017).  

Although the above studies show the potential utility of neuroimaging for predicting 

substance use, neuroimaging predictors of alcohol use have shown modest utility to date. It is 

worth noting that, first, a wide range of data were collected and second, that no single type of 

predictor was very accurate on its own. These findings underscore the need for a wide range 

of data to be obtained. Future research should use out-of-sample performance as a 

quantitative measure of a predictor’s utility. Neuroimaging data should be combined across 

multiple modalities, including structural information such as volumetrics and cortical 

thickness, in conjunction with white-matter tractography. A number of relevant 

neurocognitive systems should be assayed; particularly, inhibitory control, reward processing 

and executive functioning 

 

1.7.3 Predicting alcohol outcomes using EEG data 

Electroencephalography (EEG) measures may improve screening and assessment of 

alcohol misuse, as they offer high temporal resolution, are relatively convenient to use and 

are objective (Mumtaz, Vuong, Malik, & Rashid 2017a). In order to identify neural indicators 

of alcohol misuse, meaningful individual ERP parameters are needed (Campanella et al., 

2018). However, as described earlier, EEG datasets are highly dimensional. To reduce the 

likelihood of Type I errors, data from high density EEG arrays are reduced in dimension by 

selecting a specific time interval and a minimal set of channels to define ERPs. As a result, 

EEG studies examining alcohol use have typically focused on ‘single ERP components’ (i.e., 

P3, N2) for a specific brain region, and several neurofunctional components are still 

unexplored. 
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A multivariable approach, based on a weighted combination of diverse 

electrophysiological features, will likely be more useful for predicting outcomes than any 

single endophenotype. Machine learning may be particularly useful for finding new 

relationships among variables because analyses are not restricted to specific time intervals or 

electrodes, and nested cross-validation ensures that parameter optimisation is done 

automatically and is independent from the data upon which the model with selected 

parameters will be tested. EEG-based ML methods to predict alcohol-related outcomes show 

promising results (Kuncheva & Rodrıguez, 2013; Lopes et al., 2004; Mumtaz et al., 2017b). 

Mumtaz and colleagues (2017b) applied a ML approach to resting-state EEG data, and found 

that EEG features (spectral power and inter-hemispheric coherences) accurately classified 30 

patients with AUD from 15 healthy controls (Accuracy=89.3%, sensitivity=88.5%, 

specificity=91%). However, ML has been rarely used to interrogate ERPs (but cf Johannesen 

et al., 2016; Kiiski et al., 2018; Stock et al., 2015), although the use of a task probing specific 

cognitive systems markedly improves performance (Greene, Gao, Scheinost, & Constable, 

2018).  

This thesis will investigate this further, however, a better approach for ultimately 

understanding the pathophysiology of alcohol misuse is to focus on endophenotypes, such as 

impulsivity, to indicate markers of alcohol consumption, as well as evidence provided by 

neuroimaging data. 
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1.8 Specific aims of the research 

Based on the evidence compiled in Chapter 1, impulsivity endophenotypes are 

strongly related to different patterns of alcohol use, although the precise nature of these 

associations remains unclear. A multi-domain approach that includes impulsivity 

endophenotypes, as well other risk factors, would help identify the most pertinent predictors 

of alcohol use. Machine learning can harness large complex data with heterogeneous 

distributions, determine relationships from complex conditional dependencies between 

variables, and test the reliability of results through repeated cross-validation. Using this 

framework, an avenue for research is to investigate which impulsivity endophenotypes are 

most closely related to patterns of alcohol use. Secondly, neuroimaging indexing inhibitory 

control can characterise individual differences in alcohol use - yet, the potential for ERPs to 

predict alcohol use is relatively underexplored. Thirdly, cognitive impulsivity (i.e., lapses in 

sustained attention), has been relatively under--researched, compared to trait, motor and 

choice impulsivity, and the brain networks supporting cognitive impulsivity indexing 

sustained attention have yet to be mapped in healthy adolescents. 

Chapter 2 applied machine learning to test the hypothesis that different facets of 

impulsivity were related to different alcohol use patterns.  A factor analysis was conducted to 

generate two orthogonal latent factors of alcohol use. ML with penalized regression and 

feature selection was applied to impulsivity endophenotypes to predict different alcohol-

related outcomes. A second model combining impulsivity endophenotypes with other risk 

factors (gender, nicotine-, cannabis- and other drug-use, executive functioning and learning 

processes) was also tested with the alcohol use factors, and its performance was compared to 

the model comprising of impulsivity alone. Out-of-sample validation was used to quantify 

model performance. This Chapter identified neuroimaging as a useful tool for identifying 
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vulnerability markers of alcoholism. 

However, as introduced in Chapter 3, machine learning studies using event-related 

potentials (ERPs) to predict alcohol use remain scarce, and research on the relationship 

between alcohol use and SSRT, and between alcohol use and ERPs, is mixed. Chapter 3 

applies a ML method with penalised linear regression to ERPs indexing inhibitory control on 

an SST, in order to predict a wide range of scores on the Alcohol Use Disorders Identification 

Test. Extending the findings from Chapter 2, four separate models are also tested, including 

demographic, self-report and task-based measures of impulsivity, personality and 

psychological factors, with out-of-sample validation used to quantify performance.  

Based on the findings of Chapters 2 and 3, it became evident that cognitive 

impulsivity, i.e., lapses of attention, was an important predictor of different patterns of 

alcohol use. Despite important implications of individual variability in sustained attentional 

abilities, we know relatively little about its neurobiological underpinnings in healthy 

adolescents, as indexed by the intra-individual response variability (IRV) on an SST. Using 

fMRI, Chapter 4 examined the brain regions and functional connections underlying IRV in a 

large population-based sample of adolescents, as well as the relationship between IRV with 

alcohol use and with symptoms of ADHD. A data-driven, multi-step analysis approach was 

used to identify networks associated with low IRV (i.e., good sustained attention) and high 

IRV (i.e., poorer sustained attention). 

 In the final Chapter, Chapter 5, the main findings of this thesis were summarised and 

integrated into a wider context. This Chapter considered how the research informs theory, as 

well as potential directions for studying the relationship between impulsivity endophenotypes 

and alcohol-related outcomes, methodological limitations, and explored clinical implications.  
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2 Chapter 2: A Combination of Impulsivity Endophenotypes 
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2.1 Introduction 

As described in Chapter 1, impulsivity, broadly characterised as the tendency to act 

prematurely without foresight, is known to be related to alcohol misuse. However, 

impulsivity is a broad concept and has been subdivided into various domains by different 

researchers (Robbins & Dalley, 2017). One possible way to fractionate impulsivity is as 

follows. Trait impulsivity relates to traits such as non-planning or boredom susceptibility, and 

can be quantified using self-report scales. Choice impulsivity involves the tendency to choose 

immediate smaller rewards over larger delayed rewards – quantified by individual differences 

in delay discounting – and can be measured via a questionnaire or via a task. Motor 

impulsivity is the tendency towards prepotent, disinhibited motor responses and can be 

assayed using Go/No-Go (GNG) or Stop Signal (SST) tasks. Finally, cognitive impulsivity 

can refer to impaired sustained attention (Sharma et al., 2014), and it can also be measured 

using the SST by examining behavioural variability in task performance (i.e., greater variance 

in response times on Go response trials; Bellgrove et al., 2004). Other impulsivity domains 

have been proposed (e.g., reflection impulsivity – insufficient accumulation of information 

prior to making a decision), and some have suggested that sensation seeking represents a 

different construct from impulsivity (see MacKillop et al., 2016).  

Debate continues as to the precise domains that are most relevant to generating a risk 

profile for alcohol misuse (Gullo et al., 2014). Moreover, despite various facets of 

impulsivity existing under one umbrella term, convergent validity between impulsivity 

domains (self-report and task-based measures) varies considerably, ranging from moderate to 

no associations (Sharma et al., 2014; MacKillop et al., 2016). For example, in a cross-

sectional study of 1,252 light drinkers (MacKillop et al., 2016), associations between self-

report and task-based measures of impulsivity, including trait (UPPS-P and Barratt 
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Impulsiveness Scale 11th version; BIS-11), choice (delay discounting task; DDT) and action 

impulsivity (including GNG and SST), were low-to-moderate. 

Different impulsivity endophenotypes may be differentially related to patterns of 

alcohol consumption. Indeed, the lack of shared variance among impulsivity measures 

presents an opportunity to combine impulsivity endophenotypes into a single model to predict 

individual differences in alcohol use. Using structural equation modelling for impulsivity 

domains, Mackillop and colleagues (2016) found that trait (Attentional, Motor, and Non-

planning BIS-11 second-order factors) and choice impulsivity, but not action impulsivity, 

were significantly associated with lighter levels of alcohol use in student drinkers (mean of 4 

on the Alcohol Use Disorder Identification Test; AUDIT). In heavier drinking 18-25-year-old 

students (Caswell et al., 2015b), the number of weekly alcohol units was characterised by 

increased trait impulsivity (Non-planning; BIS-11), but not by action (SST) or choice 

impulsivity (measured using a Monetary Choice Questionnaire).  Similarly, binge drinking 

scores (Sanchez-Roige et al., 2014) were associated with higher trait impulsivity (Non-

planning and Motor; BIS-11), but not by action (SST) or choice impulsivity (DDT). 

The relationship between impulsivity and alcohol may also depend on the type of 

alcohol use measurements that are employed. For example, Henges and Marczinski  (2012) 

evaluated how trait (BIS-11) and action (Go/No-Go; GNG) impulsivity, as well as gender and 

drinking history, would predict various aspects of alcohol consumption (total number of 

drinks consumed; highest number of drinks consumed; number of heavy drinking days; 

number of drunk days in past 30 days on a Timeline Followback Interview) in 109 18–21-

year-old student drinkers using multiple regression. Although gender and history were 

significantly associated with all alcohol outcomes, only trait impulsivity was significant for 
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number of drunk days, and only action impulsivity was significant for highest number of 

drinks consumed. 

Given the variability in findings relating to alcohol use and impulsivity, incorporating 

several predictor variables to better characterise alcohol use patterns may be advantageous. 

However, including several highly correlated measures in regression models is challenging, 

due to multicollinearity and overfitting (see Whelan & Garavan, 2014). Penalized regression, 

often employed within machine-learning approaches, can overcome these difficulties (Gillan 

& Whelan, 2017; Yarkoni & Westfall, 2017). For example, a machine learning study that 

used a combination of neuroimaging, executive functioning, demographic and behavioural 

factors (e.g., sex, socioeconomic status, early dating, externalizing behaviours, and positive 

alcohol expectancies) from 12–14-year-olds, predicted alcohol-use initiation at age 18 with 

74% accuracy and 73% specificity (Squeglia et al., 2016). Similarly, a study of 14-year-olds 

(Whelan et al., 2014) also demonstrated the ability to predict binge-drinking two years later 

with approximately 70% accuracy, utilising measures of trait impulsivity, choice impulsivity 

(delay discounting) and cognitive impulsivity (standard deviation of go reaction time (RT) 

from the SST). It is plausible that trait impulsivity but not choice or action impulsivity predict 

alcohol use in middle adolescence, as some have previously suggested (Chapter 1). However, 

the self-report and task-based impulsivity measures that are associated with heavier college-

age drinking patterns remain to be delineated. Furthermore, including other risk factors 

associated with adolescent alcohol misuse, such as executive functioning and reward 

processing, may shed light into cumulative risk factors associated with higher binge-drinking 

rates (Gowin et al., 2017).  

Executive dysfunction (e.g., poor performance on the Stroop task; see Day et al., 

2015) and reward processing are closely related to impulse control and increased substance 
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use in young adults (Yip & Potenza, 2016). One aspect of reward processing – learning from 

reinforcement relative to learning from punishment (i.e., from positive relative to negative 

feedback) – can be examined using the Probabilistic Selection Task (PST; Frank et al., 2004). 

Learning from reward and from punishment during the PST was attenuated in a 

polysubstance-dependent sample (alcohol, cannabis, and nicotine use) compared to a non-

dependent group (Baker et al., 2013), supporting the theory that reward circuits become 

desensitised over time in addiction (e.g., Rose et al., 2012; Volkow et al., 2016). However, 

another study examining alcohol-dependent patients compared to healthy controls found no 

group differences in reward learning (Rustemeier et al., 2012). It therefore remains unclear 

how individual differences in reward and punishment learning are related to non-dependent 

alcohol use. 

Defining alcohol misuse in university students is difficult. Memory heuristics render 

the accuracy and validity of widely used self-reported alcohol consumption as questionable 

(Patrick & Lee, 2010). However, this problem can be mitigated by using similar questions 

relating to multiple time points as a memory cue, which increases recall accuracy 

(Eisenhower et al., 1991). Secondly, the standard binge drinking definition (i.e., Wechsler & 

Nelson, 2001) employs a single consumption-based measure, which may not necessarily 

reflect the effects of alcohol that contribute to severity and alcohol-related harm (Pearson et 

al., 2016). Some research indicates that alcohol cut-off scores do not provide particularly 

strong levels of sensitivity and specificity for predicting adverse consequences of alcohol use, 

and that model optimisation is also dependent on the measure used (e.g., number of drinks 

per drinking day or highest number of drinks consumed during a given time period; Pearson 

et al., 2017). Furthermore, countries differ in the average amount of alcohol per unit or 

standard drink (Kuntsche et al., 2017), limiting our understanding of the severity or types of 
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alcohol-related consequences and the development of effective treatments (Kuntsche et al., 

2017). In contrast, drunkenness in adolescence, rather than alcohol quantity per se, has been 

linked to persisting problem behaviours (e.g., smoking and cannabis use) by age 15 

(Kuntsche et al., 2013). Therefore, rather than solely focusing on quantity of alcohol, 

incorporating patterns of drinking (including intoxication frequency) may provide better 

predictors of problem behaviours. A composite alcohol-use score may also provide a better 

metric for examining alcohol-related consequences and underlying factors, including 

impulsivity. Here, alcohol-use patterns were examined, (i.e., alcohol composite scores based 

on frequency of alcohol use, binge-drinking frequency and perceived intoxication levels) in 

university student drinkers by applying machine-learning to trait, choice, motor and cognitive 

measures of impulsivity.  

 

2.2 Materials & Methods 

2.2.1 Sample 

Students (N=106) from two universities (age range 18-21-years-old; 47 females) 

participated and all reported alcohol use in the past 12 months. Exclusion criteria included 

having current substance dependence (other than nicotine), or a history of traumatic brain 

injury. As expected, the majority of the sample reported having tried cigarettes (90%), 

cannabis (79%) and other drugs (44%) at some time in their lives, and excluding these 

participants might have led to a non-representative sample.  

2.2.2 Procedure  

Participants were recruited at two universities via direct e-mail and campus flyers. 

Following completion of informed consent forms, participants began the experimental tasks 

alone in a sound-attenuated booth (see Measures for task order). Questionnaires were 
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completed immediately after the testing session, or at home via an online survey platform. 

Participants were provided with €10 (approximately $12) compensation, in addition to travel 

expenses up to the value of €10, or with course credit. The study procedure was approved by 

the University College Dublin School of Psychology Ethics Committee and the Trinity 

College Dublin School of Psychology Ethics Committee. 

 

2.2.3 Measures 

Substance Use. A portion of the European School Survey Project on Alcohol and 

Other Drugs questionnaire (ESPAD; Hibell et al., 2009) was used to assess personal use of 

alcohol, nicotine, cannabis, and other drug-use, as well as items regarding expected personal 

consequences of alcohol use (See Supplemental, Table S2.2 for items included). Frequency 

of alcohol use was assessed across lifetime, past 12-months and past 30-days (see Table 2.1). 

Nine adverse consequences (“Because of your own alcohol-use, how often during the last 12 

months have you experienced the following?”) and eleven expectations (“How likely is it that 

each of the following things would happen to you personally, if you drink alcohol?”) of 

alcohol-use were also assessed.  
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Table 2.1  

ESPAD Substance Use Sample Characteristics 

 

Note: Scoring of items are as follows: Age of first Drunkenness 1=Never, 2=16yrs, 3=15yrs, 

4=14yrs, 5=13yrs, 6=12yrs, 7=11yrs, 8=3-10yrs,  9=<9yrs); Frequency >5 Drinks per 

occasion in past 30 Days (1=0, 2=1, 3=2, 4=3-5, 5=6-9, 6=>10); Intoxication/Drinking / 

Cannabis/Drugs / Nicotine Frequency (1=0, 2=1-2, 3=3-5, 4=6-9 5=10-19, 6=20-39, 7=>40). 

*Significant differences between females and males, using Mann-Whitney U tests.  

Title Females 

(n=47) 

Males 

(n=59) 

Total Mean 

(SD) 

p 

Alcohol     

Age of first Drunkenness 

 

2.40 (1.03) 3.05(1.36) 2.76 (1.26) .26 

Frequency >5 Drinks per occasion 

in past 30 Days 

 

3.21 (1.67) 3.15 (1.57) 3.18 (1.61) .85 

Intoxication Frequency      

(1) lifetime 5.04 (1.98) 4.95 (1.68) 4.99 (1.81) .54 

(2) past 12 months 3.51 (2.04) 2.93 (1.86) 3.19 (1.96) .12 

(3) past 30 days 1.64 (0.87) 1.54 (.86) 2.58 (0.86) .43 

Drinking Frequency      

(1) lifetime 5.94 (1.01) 6.34 (0.58) 6.16 (0.82) .004* 

(2) past 12 months 5.49 (1.53) 6.00 (1.27) 5.77 (1.41) .01* 

(3) past 30 days 3.98 (2.05) 4.31 (1.72) 4.16 (1.87) .34 

Cannabis     

Cannabis Frequency      

(1) lifetime 3.66 (2.20)  4.93 (2.39) 4.37 (2.38) .005* 

(2) past 12 months 2.72 (2.14) 3.78 (2.69) 3.31 (2.51) .07 

(3) past 30 days 1.47 (1.28) 2.61 (2.17) 2.10 (1.91) .003* 

Drugs     

Drugs Frequency (amphetamines, 

tranquillizers / sedatives, ecstasy, 

LSD, crack, cocaine, heroin, magic 

mushrooms” GHB, anabolic-

steroids) 

    

(1) lifetime 2.19 (1.93) 3.19 (2.21) 2.75 (2.14) .01* 

(2) past 12 months 1.77 (1.49) 2.37 (1.76) 2.10 (1.67) .03* 

(3) past 30 days 1.30 (0.83) 1.34 (0.66) 1.32 (0.74) .32 

Nicotine      

Nicotine Frequency      

(1) lifetime 5.36 (2.34) 6.00 (1.88) 5.72 (2.11) .13 

(2) past 30 days 2.32 (1.71) 2.54 (1.86) 2.44 (1.79) .51 
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Self-reported Impulsivity. The Barratt Impulsiveness Scale 11th version (BIS-11; Patton & 

Stanford, 1995), a 30-item questionnaire measuring impulsivity on a five-point Likert scale 

(ranging from disagree strongly to agree strongly), yields three second-order factors – Motor, 

Attentional and Non-planning impulsivity. The scale has strong internal consistency and 

reliability (Stanford et al., 2009).  

Self-reported Sensation Seeking. The Sensation Seeking Scale Form V (SSS-V; Zuckerman et 

al., 1978) consists of 40 dichotomous questions probing individual differences in one’s 

tendency to pursue feelings and experiences that are more novel, diverse, complex and/or 

intense, which are divided into four 10-item subscales – Boredom Susceptibility, 

Disinhibition, Experience Seeking, and Thrill and Adventure Seeking. The SSS-V has good 

psychometric properties (Zuckerman, 2007). 

Choice Impulsivity. Delay discounting rates (K) were assessed using Mazur’s (1987) 

hyperbolic discounting model (See Supplemental for further details). The Monetary Choice 

Questionnaire (MCQ; Kirby et al., 1999) is a 27-item measure assessing choice impulsivity. 

Participants choose between a fixed sequence of sooner, immediate rewards (SIR; ranging 

from $11-$80) or later, delayed rewards (LDR; ranging from $20-$85, in delays from 7-186 

days). This scale has good internal reliability (Duckworth & Seligman, 2005). Kirby’s 

automatic scoring tool (Kaplan et al., 2014) was used to generate a geometric mean k score 

for each participant. In addition, an adaptive Delay-Discounting Task (DDT) was used (74 

trials in total in a 6-minute run). This required participants to choose between a series of 

choices between SIR and LDR, and adapted to the participant’s own k value. See 

Supplemental and Figure S2.1 for further task details. 
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Motor impulsivity. An adaptive Stop Signal Task (SST; 120 trials in total in a 9-minute run) 

assessed impulsive action, whereby a tracking algorithm was used to adjust task difficulty. 

The Stop Signal Reaction Time (SSRT), an index of inhibitory function, was calculated for 

each participant. Participants with an SSRT below 75 ms were excluded.  See Supplemental 

and Figure S2.2 for further task details. 

Cognitive impulsivity. Cognitive impulsivity, i.e., lapses in sustained attention, was assessed 

by examining trial-to-trial individual response variability (IRV) on the SST for each 

participant, and calculated using the intra-individual coefficient of variation formula 

(dividing the standard deviation of Go RTs by mean Go RTs), which controls for differences 

in an individual’s overall speed of responding. 

Executive Functioning. The Stroop Colour–Word Test assessed cognitive conflict (MacLeod, 

1991). Participants were presented with the name of a colour and were required to name the 

colour when the word name was printed in either a congruent (e.g., blue) or incongruent 

colour (e.g., the word red printed in blue ink). Reaction time on incongruent trials is typically 

slower than for congruent trials, known as the “Interference Effect” (MacLeod, 1991), which 

was calculated by subtracting incongruent from congruent trials. Lower Interference effect 

indicates better performance. 

Reinforcement and punishment learning. The Probabilistic Selection Task (PST; Frank et al., 

2004) was employed to measure individual differences in learning from reinforcement and 

from punishment. The PST included a training phase (120 trials) and a subsequent test phase 

(120 trials), in which ability to learn from positive feedback (reward sensitivity) and negative 

feedback learning (punishment sensitivity) was assessed for each participant. See 

Supplemental and Figure S2.3 for further task details. 
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2.2.4 Data Analysis 

Spearman’s Rho correlations among impulsivity domains were calculated. A factor 

analysis, with principal component analysis for extraction followed by VARIMAX Rotation, 

was conducted to generate orthogonal latent factors of alcohol use. The two groups were then 

compared (presence or absence of harmful consequences of alcohol-use) on these latent 

factors, in order to demonstrate validity of these factors. Non-significant results were further 

analysed by estimating the corresponding Bayes factor, with <0.3 indicating that the null 

hypothesis could be accepted, using the JASP software package (Version 0.8.5 Beta 1; 

https://jasp-stats.org).  

 

Machine-learning analysis. I employed the same method as that reported in Kiiski et 

al. (2018; see Appendix 1 for details). Alcohol composite scores, self-report and task-based 

composite scores were first z-transformed. Penalized linear regression with the Elastic Net 

(Zou & Hastie, 2005) was used to predict alcohol-use composite sores for: measures of 

impulsivity only; and measures of impulsivity, demographic, reinforcement vs. punishment 

learning and executive functioning. The dataset was then divided into 10 cross-validation 

(CV) folds.  Next, 90% of the dataset (the training set) was used to create a regression model 

that was then tested on the remaining 10% of the data (the out-of-sample test, or holdout, set). 

Within each CV fold I used nested CV to set the Elastic Net parameters: lambda, the degree 

of regularization applied, and alpha, the weight of ridge versus LASSO regression. All 

analysis steps up to this point were conducted using 25-fold bootstrap aggregation (i.e., 

bagging). The combination of model parameters that resulted in the model with the lowest 

https://jasp-stats.org/
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prediction error was identified for each nested CV partition. The optimal model parameters 

from each nested CV partition were used to determine the lambda and alpha parameters to 

create the final prediction model in the holdout set. This analysis was repeated 10 times, 

using different CV fold allocations each time (i.e., until each holdout test set had been used). 

See Supplemental and Figure S2.4 for a more detailed description of this analysis. 

The entire analysis was repeated 10 times in order to attenuate idiosyncrasies of any 

given partitioning of the dataset. Results are median values across all iterations of the 

analysis. The performance of each model was further validated by creating a null model, 

which was generated by a random-label permutation (i.e., randomly assigning the outcome 

variable across subjects). Using this permuted outcome variable, the entire analysis was 

performed again. The accuracy achieved using the null model was then compared to the 

accuracy of the model with real data (i.e., the actual model) by ranking the cross-validated r 

values from iterations of both actual and null models. The actual model was deemed to have 

performed better than the null model in 100% of iterations (i.e., 10/10 of the highest cross-

validated r values were from actual models). Cross-validated r is the most appropriate 

measure to use with linear regression conducted using machine learning (see for example 

Jollans & Whelan, 2016).  

To ensure that results of these models were not driven by factors influencing the 

outcome variable (i.e. intoxication frequency), a separate analysis with the same impulsivity 

variables for intoxication, excluding variables relating to alcohol or drug use from the SSS-V 

subscales was conducted (see Supplemental - Machine Learning Results). 
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2.3 Results 

2.3.1 Participants 

 Participants (N = 106) were 44% female (see Table 2.2 for descriptive statistics). The 

majority of the sample reported at least one episode of alcohol use in the past 30 days 

(90.6%; 56/59 males, 40/47 females), drinking 5 drinks or more at least once in the past 30 

days (75.5%; 45/59 males, 35/47 females). A minority of the sample and being intoxicated at 

least once in the past 30 days (39.6%; 21/59 males, 21/47 females), reported smoking at least 

one cigarette per day in the past 30 days (32.1%; 21/59 males, 13/47 females), at least one 

episode of cannabis use in the past 30 days (33%; 26/59 males, 9/47 females) and at least one 

episode of other drug use in the past 30 days (19.8%; 14/59 males, 7/47 females). 

Substance use varied by gender (Table 2.2): males had significantly increased 

frequency of past-year alcohol (p = 0.004), past-month alcohol (p = 0.01), past-year cannabis 

(p = 0.005) and past-month cannabis use (p = 0.003), compared to females. Gender 

differences were also observed for some aspects of impulsivity (Table 2.2): males showed 

significantly increased self-reported Thrill & Adventure Seeking (SSS-V; p = 0.01), Boredom 

Susceptibility (SSS-V; p = 0.003), Disinhibition (SSS-V; p = 0.02), Experience Seeking 

(SSS-V; p < 0.001), as well as task-based punishment sensitivity (PST; p = 0.05). 

 

2.3.2 Relationship among impulsivity domains 

There were no significant correlations between self-report and task-based impulsivity 

domains, with the exception of Non-planning (BIS-11) correlating with the Interference 

effect (Stoop; r = 0.22, p = 0.02), and MCQ correlating with DDT (r = 0.67, p<0.001), using 

Spearman’s Rho analysis. Supplemental Table S2.1 reports all correlations, including 
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significant correlations that did not survive Bonferroni correction (which is likely too 

conservative given non-independence of measures).  See Table 2.2 for sample characteristics 

on each measure.  

Table 2.2 

Self-report and Task-based Measures Sample Characteristics 

  Males  Females Total p 

     

Self-report Impulsivity         

BIS-11 Attentional 17.56 (3.63) 18.13 (3.66) 17.81 (3.64) .57 

BIS-11 Motor 23.80 (4.16) 24.00 (4.92) 23.89 (4.49) .89 

BIS-11 Non-planning 25.25 (4.38) 26.11 (4.68) 25.63 (4.52) .26 

SSS-V Thrill & Adventure Seeking 7.68 (2.29) 6.47 (2.54) 7.14 (2.47) .01 

SSS-V Boredom Susceptibility 3.42 (2.28) 2.17 (1.51) 2.87 (2.06) .003* 

SSS-V Disinhibition 6.53 (2.44) 5.45 (2.41) 6.05 (2.48) .02 

SSS-V Experience Seeking 7.24 (1.78) 5.91 (1.95) 6.65 (1.97) <.001* 

MCQ Kirby Geomean k 0.03 (0.05) 0.04 (0.06) 0.04 (0.05) .32 

         

Task-based Impulsivity (index)        

DD k (choice) -4.25 (2.91) -3.81.06 (1.66) -4.25 (2.91) .68 

Stop Signal Reaction Time (motor) 161.60 (46.44) 163.66 (44.79) 162.51 (45.51) .85 

Individual response variation (IRV; 

cognitive) 

0.211 (0.04) 0.21 (0.03) 0.21 (0.04) .77 

         

Other Variables        

Stroop (Interference) 166.18 (554.7) 401.95 (925.0) 270.72 (747.5) .38 

PST approach A (Reward sensitivity) 75.36 (21.38) 72.12 (22.69) 73.93 (22.25) .39 

PST avoid B (Punishment sensitivity) 70.58 (18.67) 63.28 (20.58) 67.34 (19.78) .05 

*Significant differences between females and males, using Mann-Whitney U tests (using p < 

0.003, which is the Bonferroni-corrected threshold for statistical significance). 

 

2.3.3 Factor analysis results 

 The participant-to-item ratio (106:9), KMO (.672) and Bartlett's test of sphericity 

(χ2 [36] = 341.081, p<.001) indicated that the data were suitable for factor analysis. Although 
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three components had Eigenvalues > 1 (see Figure S2.5 in Supplemental for scree plot), a 

two-factor solution produced a simple structure with only one cross-loading item. Two 

orthogonal factors were extracted, explaining 61% of the common variance (see Table 2.3). I 

labelled these factors Intoxication Frequency (Factor 1) and Alcohol Consumption Frequency 

(Factor 2). 

 

Table 2.3 

Varimax-Rotated Exploratory Principal Components Factor Analysis  

 

Alcohol-use Item 

Intoxication 

Frequency 

Consumption 

Frequency 

Intoxication (in past 12 months) 0.911  

Intoxication (in past 30 days) 0.875  

≥5 Drinks (in past 30 days) 0.745  

Intoxication (lifetime) 0.691  

Frequency of drinks (lifetime)  0.818 

Frequency of drinks (in last 12 months)  0.793 

First Drunkenness (age)  0.645 

Frequency of drinks (in last 30 days) .359 0.469 

Note. Loadings >.30 are shown.  

For subsequent analysis, I created dichotomous variables of zero experiences / 

expectations versus any experiences / expectations. Groups who experienced negative 

consequences of alcohol-use had higher intoxication frequency scores, whereas those who 

expected positive outcomes from alcohol-use had lower intoxication frequency scores (see 

Table 2.4). Group differences were not observed for consumption frequency scores, with the 

exception of physical fighting.   
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Table 2.4. Groups with and without experience of consequences & expectations of alcohol-use compared on each latent factor 

(intoxication frequency and consumption frequency) 

  Intoxication Frequency   Consumption Frequency 

 n       Median Mean Rank p Cohen’s d  Median Mean Rank  p 

Experience of consequences of alcohol-use (no/yes) (no/yes) (no/yes)    (no/yes) (no/yes)  

 Physical fight 96/10 -.24/.75 51.26/75.00 0.02   .10/.67 50.64/81.00 0.003 

 Accident/ injury 66/40 -.49/.56 42.80/71.15 <.001 .42  .12/.13 54.74/51.45 0.59 

 Serious problems with your parents 90/16 -.37/-.04 50.74/69.00 0.02   .12/20 54.26/49.25 0.58 

 Serious problems with your friends 78/28 -.44/.23 47.09/71.36 <.001 .35  .16/.01 54.90/49.61 0.47 

 Performed poorly as school/ work 58/48 -.42/.03 46.72/61.69 0.01 .23  .18/.10 56.43/49.96 0.28 

 Victimised by robbery/ theft
‡
 99/7 -.25/1.52 - -   .18/-.07 - - 

 Trouble with the police
‡
 100/6 -.24/1.79 - -   .12/25 - - 

 Hospitalized/admitted to ER 94/12 -.37/.31 50.55/76.58 <.006   .12/.20 54.98/41.92 0.16 

 Engaged in unprotected sex 66/40 -.38/-.05 46.77/64.60 0.004 .23  .12/.15 53.95/52.75 0.85 

 Engaged in sex you regretted 

 

75/31 -.44/.58 45.11/73.81 <.001 .38  .12/.13 53.73/52.93 0.90 

Experience of expectations of alcohol-use (no/yes) (no/yes) (no/yes)    (no/yes) (no/yes)  

 Feel relaxed 37/69 -.13/-.37 58.74/50.69 0.19   .11/.12 56.88/51.69 0.40 

 Get into trouble with police 84/22 -.33/-.10 51.79/60.05 0.26   .11/.21 52.63/56.82 0.57 
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 Harm my health 29/77 -.49/-.18 48.62/55.34 0.31   -.01/.19 48.28/55.47 0.28 

 Feel happy 30/70 .22/-.51 72.88/45.85 <.001 .37  .12/.13 51.88/54.14 0.73 

 Forget my problems 15/91 .58/-.31 69.27/50.90 0.03   -.04/.13 49.13/54.22 0.55 

 Not be able to stop drinking 40/66 -.65/-.02 39.10/62.23 <.001 .40  .20/.01 556.28/51.82 0.46 

 Get a hangover 8/98 -.77/-.20 - -   -.50/.12 - - 

 Feel friendlier and more outgoing 33/73 .24/-.44 68.77/46.60 0.001 .37  .11/.13 53.83/53.35 0.94 

 Do something I regret 9/97 -.80/-.18 22.89/56.34 0.002   .10/.13 38.56/54.89 0.12 

 Have a lot of fun 30/76 .59/-.45 73.12/45.76 <.001 .38  .06/.16 53.45/53.52 0.99 

 Feel sick 23/83 -.76/-.14 36.61/58.18 0.003 .29  .52/.11 61.52/51.28 0.15 

Table depicts groups who reported the presence or absence of consequences & expectation of alcohol-use were compared on the two factors of 

alcohol-use (i.e., intoxication frequency and consumption frequency). Mean rank and probability values are based on the intoxication frequency 

and consumption frequency scores, according to group allocation (i.e., presence/absence of each consequence & expectation of alcohol-use). 

Mann-Whitney U tests were used for group comparisons. Values are for drunkenness scores from factor 1 (PCA). ‡Only descriptive statistics 

presented because one group had n<12. 
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2.3.4 Machine Learning Results 

Intoxication frequency was significantly predicted by the impulsivity variables 

(Model 1; median cross-validated r=0.38, median p=.0003), including self-report trait 

Attentional (BIS-11), Non-planning (BIS-11), Disinhibition (SSS-V), Experience Seeking 

(SSS-V) and choice impulsivity (MCQ), and by task-based cognitive impulsivity (sustained 

attention operationalised as IRV on the SST). Intoxication frequency was also significantly 

predicted by the same impulsivity variables plus other, non-impulsivity, variables (Model 2; 

median cross-validated r=0.40, median p=.0004), including executive functioning (Stroop 

Interference), learning from punishment (PST), gender, and lifetime nicotine and cannabis.  

Consumption frequency was not significantly predicted by impulsivity variables 

(Model 3; median cross-validated r=0.15, median p=.14). However, consumption frequency 

was significantly predicted by impulsivity plus other, non-impulsivity, variables (Model 4; 

median cross-validated r=0.38, median p=.0002), including Disinhibition (SSS-V), steeper 

discounting (DDT), gender, and lifetime drugs and cannabis.  

Each actual model outperformed null models 100% of the time. Variables that passed 

the thresholds for absolute beta weights and frequency of occurrence across cross-validation 

folds determined using the null models are reported in Table 2.5.  
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Table 2.5 

Machine-learning results  

 Intoxication Frequency  Consumption Frequency 

 Impulsivity Only Impulsivity + Other Impulsivity + Other 

CV median r value (p value) 0.38 (0.0003) 0.40 (<0.001) 0.38 (<0.001) 

  
Beta 

Weight 

% of CV 

folds 

Beta 

Weight 

% of CV 

folds 

Beta 

Weight 

% of CV folds 

BIS-11 Attentional 0.05 88 0.07 95 - - 

BIS-11 Non-planning 0.09 89 0.08 92 - - 

BIS-11 Motor - - - - - - 

SSS-V Thrill & Adventure 

Seeking 

- - - - - - 

SSS-V Boredom Susceptibility - - - - - - 

SSS-V Disinhibition 0.23 100 0.20 100 0.06 89 

SSS-V Experience Seeking -0.12 85 -0.13 93 - - 

MCQ k 0.05 80 0.06 91 - - 

DDT k - - - - 0.09 82 

SST Stop signal reaction time  - - - - - - 

SST IRV 0.06 88 0.07 93 - - 

Stroop Interference   0.12 95 - - 

PST approach A    - - - - 

PST avoid B    -0.06 93 - - 

Gender   -0.04 89 0.08 87 

Drugs Lifetime   - - 0.07 92 

Smoking Lifetime   -0.07 87 - - 

Cannabis Lifetime    0.12 92 0.12 100 

CV: cross-validated; BIS-11: Barratt Impulsiveness Scale 11th version; SSS-V: Sensation 

Seeking Scale Form V; MCQ: Monetary Choice Questionnaire; DDT: Delay Discounting 

Task; SST: Stop Signal Task; PST: Probabilistic Selection Task. Higher beta values denote 

better accuracy in predicting intoxication scores. Predictors that were accurate in 100% of CV 

folds are reported.  
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2.4 Discussion 

Here, I created two orthogonal latent factor scores for alcohol use, which I labelled 

intoxication frequency and consumption frequency. Intoxication frequency was predicted by 

self-reported trait impulsivity (Attentional, Non-planning, Disinhibition and Experience 

Seeking), task-based choice impulsivity (delay discounting) and cognitive impulsivity 

(sustained attention). However, the impulsivity traits Boredom Susceptibility and Thrill and 

Adventure seeking, as well as Motor impulsivity were not significant predictors. In contrast, 

impulsivity endophenotypes did not predict alcohol consumption frequency. The finding that 

impulsivity domains predicted intoxication but not consumption frequency lends further 

support to the idea that different components of impulsivity contribute to different patterns of 

alcohol misuse (Henges & Marczinski, 2012), and is consistent with observations of 

increased impulsivity associated with heavier drinking for trait (Henges & Marczinski, 2012; 

Moreno et al., 2012; Sanchez-Roige  et al., 2014), motor (Ahmadi et al., 2013; Ames et al., 

2014; Henges & Marczinski, 2012), and choice impulsivity (Schneider et al., 2014).  

The current study was motivated by previous findings that impulsivity consists of 

non-overlapping and distinct constructs (Mackillop et al., 2016; Sharma et al., 2014). There 

was no significant relationship among different measures of impulsivity, yet distinct aspects 

of impulsivity combined to significantly predict intoxication frequency. Concordant with 

previous studies (Caswell et al., 2015b; Mackillop et al., 2016; Sanchez-Roige et al., 2014), 

some of the strongest predictors of intoxication frequency were trait impulsivity measures. 

However,  important distinctions between types of impulsive traits associated with alcohol 

use patterns were highlighted. Specifically, intoxication frequency was characterised by trait 
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Disinhibition (SSS-V), Attentional and Non-planning impulsivity (BIS-11) and steeper 

discounting (MCQ). However, Disinhibition was the only trait predictor of consumption 

frequency. Trait Disinhibition (SSS-V) underpins the loss of control component of 

impulsivity, and has been previously linked to student binge drinking (+6 drinks threshold; 

Moreno et al., 2012). However, sensation seeking may be conceptually different from 

impulsivity per se –Mackillop et al. (2016) showed that the exclusion of sensation seeking 

significantly improved impulsive trait loading coefficients and model fit. Here, although 

Experience Seeking was positively correlated with other impulsivity measures on the SSS-V, 

it was negatively associated with intoxication frequency. Experience Seeking is defined as 

the pursuit of an unconventional lifestyle (Zuckerman et al., 1978), and its associated 

behaviours (e.g., travelling, parachuting) may actually require foresight and careful planning, 

yet it is often grouped without distinction with other risky behaviours. Non-planning (BIS-

11), in contrast, was a predictor of higher intoxication frequency scores. One possibility is 

that Non-planning incorporates more short-term aspects of behavioural (dys)control (e.g., “I 

say things without thinking”), while Experience Seeking assesses more long-term behaviours 

that implicate impulsive tendencies (e.g., tasting new foods). Therefore, it is plausible that 

propensity for intoxication is inversely correlated with the ability to plan into the future. 

Choice impulsivity, operationalised here as delay discounting, has previously been 

found to be robustly associated with disordered alcohol use (Amlung et al., 2017), and to be 

steeper in young adolescent binge drinkers (Whelan et al., 2014). However, findings are 

mixed in student samples, with some studies reporting latent domains of choice impulsivity 

(MCQ and DDT) to be associated with alcohol use (Mackillop et al., 2016), and others 
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finding no association (MCQ - Caswell et al., 2015b; delay discounting questionnaire, 

Sanchez-Roige et al., 2014). Although Sanchez-Roige and colleagues (2014) did find 

increased impulsive choice in binge-drinkers on their behavioural task (the Two-Choice 

Impulsivity paradigm), task-based measures of delay discounting have not been extensively 

utilised to explore the relationship between choice impulsivity and student drinking. Here, 

DDT choice impulsivity was a weak-to-moderate predictor of intoxication frequency (70% of 

CV folds), and it was a significant predictor of consumption frequency when combined with 

other risk factors. Further exploration of various task-based measures of choice impulsivity, 

compared to questionnaire-based measures, and how they relate to various types of substance 

use will require further investigation. Importantly however, the findings indicate that 

different discounting paradigms may yield different results, but also that there are distinctions 

between choice impulsivity and patterns of alcohol use.  

Self-reported Motor impulsivity (a second order factor of the BIS-11) was not a 

predictor of either intoxication frequency or consumption frequency, despite previous 

findings linking self-reported motor impulsivity to increased alcohol use (Carlson et al., 

2010; Mackillop et al., 2016; Sanchez-Roige et al., 2014). However, a study that followed a 

cohort of 63 students during an eleven-year period (18–29 years old) found that while 

Attentional and Non-planning impulsivity factors significant predicted binge-drinking 

trajectories, self-reported Motor impulsivity did not (Carbia et al., 2018). Furthermore, task-

based motor impulsivity (operationalised here as the SSRT) was not a significant predictor of 

intoxication frequency. Previous studies have also failed to observe SSRT differences across 

samples of drinkers (Sanchez-Roige et al., 2014; Caswell et al., 2015b). However, longer 
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SSRTs have been associated with disordered alcohol-use (Mole et al., 2015) and acute 

alcohol dosages (Caswell et al., 2013a). One potential explanation for these results is that the 

neurotoxic effects of chronic alcohol exposure weakens top-down cognitive control, which in 

turn can lead to further risk for substance abuse (Robbins & Dalley, 2017; López-Caneda et 

al., 2013). Furthermore, SSRT findings among non-dependent alcohol users are less clear 

(Weafer et al., 2014), and it could be speculated that heavier drinkers in the current sample 

(consuming alcohol at least once a week on average, greater than 5 drinks at least twice a 

month, and being intoxicated at least once in the past 30 days) are at increased risk of 

developing disordered alcohol use. Therefore, this thesis tentatively suggests that aberrant 

SSRTs are more likely to be observed in chronic alcohol misusers.   

 Sustained attention, an aspect of cognitive impulsivity that was operationalised here 

by IRV, attentional trait impulsivity (BIS-11) and executive functioning (Stroop Interference) 

were strong predictors of intoxication frequency, but not consumption frequency. The 

findings are concordant with previous research describing binge drinkers with greater 

attentional deficits in tasks relating to cognitive impulsivity (Sanchez-Roige et al., 2014). 

Reaction time variability may be more strongly related to impulsivity than inattention 

(Epstein et al., 2003; Kofler et al., 2013). This study considered IRV an impulsivity-related 

measure, as it was embedded in an impulsivity-specific task (see Sharma et al., 2014 for a 

discussion). Sharma and colleagues (2014) who, in a hypothetical demonstration of results 

that might be obtained if a battery of impulsivity measures were administered jointly along 

with alcohol use, indicated that tasks assaying inattention alone would not significantly 

predict problematic alcohol use, but would when combined with other impulsive measures. 
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The current findings suggest that cognitive impulsivity predicts alcohol use via poorer 

sustained attention, and raises the question of the extent of overlap between aspects of 

impulsivity and executive functioning measures, which, at least originally, were considered 

separate constructs. 

Binge drinking thresholds (+4/5 drinks per occasion for females/males, respectively) 

have failed to optimally predict clinically meaningful outcomes (Pearson et al., 2017). The 

intoxication frequency scores were derived from several self-report items – including 

intoxication (lifetime, past 12 months and 30 days), excessive consumption (≥5 Drinks per 

occasion) and frequency of drinks in the past 30 days). These latent factors were associated 

with negative experiences due to alcohol use. Students who experienced injury, negative 

sexual experiences, as well as problems with friends and academic performance, had 

significantly higher intoxication frequency latent factor scores, compared to groups without 

these experiences. Conversely, groups who had positive expectations of alcohol-use had 

lower intoxication frequency scores. Moreover, alcohol consumption frequency scores did 

not differ between groups with or without experiences of negative consequences of alcohol 

use, or expectations of positive outcomes from alcohol use. This result lends support to 

previous findings that intoxication, rather than drinking frequency per se, is a risk factor for 

adverse consequences of alcohol use (Kuntsche et al., 2013; Prince et al., 2018). Endeavors to 

evaluate prevention and treatment efficacy may be better served using cut-offs relating to 

alcohol-related consequences. 

Cumulative risk factors are associated with higher binge-drinking rates (Gowin et al., 

2017), and I show that other risk factors observed in adolescents, such as gender, cannabis 
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and nicotine (Squeglia et al., 2016; Whelan et al., 2014) and executive functioning (Peeters et 

al., 2015), also hold for heavier college-age drinkers. The gender gap between male and 

female university students is narrowing with regard to excessive alcohol consumption 

(Davoren et al., 2016), and establishing which impulsivity predictors diverge or overlap 

according to gender will be an important future consideration for prevention and treatment. 

Early adolescent drunkenness was more predictive of problem behaviours, including cannabis 

and nicotine use, than frequency of alcohol use (Kuntsche et al., 2013). Here, cannabis use 

was a predictor of both intoxication frequency and consumption frequency, while smoking 

predicted intoxication frequency only. Impulsivity differences have been found between 

cannabis and alcohol users. For example, 19-year-old binge-drinkers had higher trait 

impulsivity (total BIS-11 scores), compared to both cannabis-using and non-drug-using 

groups, but  cannabis users had increased motor impulsivity (stop reaction times on SST; 

Moreno et al., 2012). Future studies could apply machine learning to identify the impulsivity 

variables that uniquely contribute to the prediction of different types of substance use.  

The PST (Frank et al., 2004) also showed that intoxication frequency was associated 

with a decrease in learning from punishment (negative feedback). To the author’s knowledge, 

no other study has examined the PST in non-dependent drinkers, and this finding suggests 

that alcohol users may be less sensitive to negative outcomes. This lends support to addiction 

models that suggest that outcome desensitisation (to punishment, in this case) occurs 

following repeated substance use (Baker et al., 2013; Volkow et al., 2016). Given that 

impulsivity is characterised by a disregard for future consequences, this finding warrants 

further exploration.  
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There are some other limitations to this study. Although a comprehensive battery of 

measures was employed, other impulsivity domains (e.g., reflection impulsivity) were not 

assessed. Secondly, despite moderate-to-high test-retest of impulsivity tasks, differential 

mood-related stability effects have been noted (Weafer et al., 2013), and previous studies 

show that affect underlying trait impulsivity is strongly related to heavy student drinking 

(Carlson et al., 2010). Given that higher intoxication was associated with negative alcohol-

related experiences, anxiety and/or stress could be included in future models to improve 

predictive value. Traditional personality measures, such as extraversion, are among the 

strongest predictors of binge-drinking in adolescents (Whelan et al., 2014). However, 

whether impulsivity-specific or broad traditional trait measures are the best predictors of 

alcohol use remains unclear. With respect to the measurement of alcohol use, self-reported 

alcohol consumption questions based on absolute quantities do not account for dose-specific 

variability in absorption and metabolism (Ramchandani et al., 1999). The current measures 

included questions about drunkenness (i.e., perceived intoxication, regardless of absolute 

alcohol consumed), which may account somewhat for individual differences in alcohol 

absorption rates, approximate alcohol absorption rates can be estimated from body weight 

and biological sex. Therefore, including measures such as body mass index and socio-

economic status would be beneficial for future research.  

Machine learning is a useful method for interrogating complex datasets and has 

previously been shown to produce high classification accuracy for binge-drinking versus non-

binge-drinking groups (e.g., Squeglia et al., 2016; Whelan et al., 2014). As has been 

demonstrated here, such methods have the potential to facilitate the inclusion of a large 
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number of variables and therefore can provide more nuanced insights into the relationship 

between alcohol use and psychological constructs, such as impulsivity.  However, findings 

for one endophenotype in particular – motor impulsivity – remain mixed. SSRT deficits were 

not always observed when comparing non-dependent alcohol-users to controls. For example, 

Sanchez-Roige et al., (2014) and Moreno et al. (2012) found comparable SSRT performances 

for binge-drinkers and non-binge-drinkers, and similarly here, SSRT was not a significant 

predictor of alcohol intoxication frequency. In contrast, however, differences in brain activity 

related to response inhibition have been observed in young adult drinkers, even in the 

absence of behavioural differences (Whelan et al., 2012). Thus, neural measures of inhibitory 

control have some potential to better characterise individual differences in alcohol misuse 

than behavioural metrics alone. Therefore, in Chapter 3, EEG in addition to behavioural 

measures were employed to examine the link between impulsivity and alcohol use.  
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3 Chapter 3: Inhibitory Control Event-Related Potential Predict 

Individual Differences in Alcohol Use
3
  

 

  

                                                 

3 Laura O’Halloran, Laura Rueda-Delgado, Lee Jollans, Zhipeng Cao, Christina Vaughan Phillip 

Coey, & Robert Whelan. Addiction Biology. 2018; Under Review 
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3.1 Introduction 

Chapter 2 demonstrated that impulsivity endophenotypes alone significantly predicted 

alcohol intoxication frequency in student drinkers, although this prediction was improved 

when other risk factors (e.g., demographics personality, smoking, reward sensitivity etc.) 

were incorporated. Furthermore, combining impulsivity endophenotypes with these risk 

factors significantly predicted individual differences in alcohol consumption frequency. Other 

studies have also demonstrated that combining various impulsivity endophenotypes, 

including neuroimaging data assaying inhibitory control, can effectively predict current and 

future alcohol misuse (e.g., Whelan et al., 2014).  

The ability to suppress unwanted behaviours or to quickly cancel an already-initiated 

response relies on effective and rapid inhibitory control in the brain. The Stop-Signal task 

(SST) assays inhibitory control, and requires participants to respond as quickly as possible to 

frequent ‘Go’ cues, but to inhibit their ongoing motor response following intermittent and 

unexpected ‘Stop’ cues. The stop-signal reaction time (SSRT) indexes the time needed to 

successfully inhibit this prepotent response and is a reliable measure of deficits in inhibitory 

control. In neurologically healthy adults, SSRTs are approximately 200 ms (Wessel & Aron, 

2015), and often longer in individuals with current addictions (e.g., Luijten et al., 2014).  

Electroencephalography (EEG) measures may improve screening and assessment of 

alcohol misuse, as they offer high temporal resolution, are relatively convenient to use and 

are objective (see Mumtaz, Vuong, Malik, & Rashid 2017a for a review on this topic). Event-

related potentials (ERPs), time-locked EEG, are modulated by performance during the SST. 
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Two ERP components, the N2 and P3b (hereafter P3), are predominantly associated with 

response inhibition: the former is a fronto-central negative component peaking around 200-

250 ms and the latter is a positive component peaking around 300-350 ms over central and 

parietal areas. Larger N2 amplitudes are often observed for failed vs. successful Stop trials 

(Kok et al., 2004), and larger P3 amplitudes are consistently observed for successful vs. failed 

Stop trials in healthy participants (Kok et al., 2004; Lansbergen et al., 2007). A reduction in 

P3 amplitude during response inhibition is considered a marker for alcoholism (see 

Campanella et al., 2018; Luijten et al., 2014; Mumtaz et el., 2017a). However, as with 

behavioural measures of inhibitory control, ERP findings in non-dependent alcohol users are 

inconsistent. For example, in a study with a relatively large sample size, no P3 or N2 

amplitude differences were found between 48 young adult heavy drinkers and 49 lighter 

drinkers during successful response inhibition on a Go No-Go task (GNG; Franken et al., 

2017). Conversely, in a sample of 40 student drinkers performing the same task, heavy 

drinkers had reduced NoGo P3 amplitudes on successful trials, compared to light drinkers, 

although N2 was relatively comparable for the groups (Oddy & Barry, 2009). A longitudinal 

study of student drinkers found no stop-related P3 amplitude differences between 23 heavy 

and 25 lighter drinkers, however at follow-up, students who engaged in binge drinking for at 

least two years showed larger P3 amplitudes during successful response inhibition (López-

Caneda et al., 2012). There is also some evidence that alterations in earlier ERP components 

(e.g., P1) are linked to alcohol misuse, as has been found among individuals with alcohol use 

disorder (AUD; Maurage et al., 2007), yet, these early components have received surprisingly 

little attention. It is important to establish whether the link between ERPs and alcohol misuse 
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is specific to later N2 and P3 components, or if deficits are already present earlier in the 

cognitive processing stream. 

Mixed findings, such as those related to ERP correlates of alcohol use, are common in 

cognitive neuroscience. One reason for this is that electrophysiological or neuroimaging 

studies have typically used small sample sizes, which increases the probability of false 

positive findings –Type I errors (Button et al., 2013). Secondly, neural data are high 

dimensional: in the case of EEG data, there are typically more than 64 channels, acquired at a 

sampling rate of over 256 Hz (i.e., >1,600 data points per 100 ms per subject). In order to 

decrease the likelihood of Type I errors, data from high density EEG arrays are usually 

reduced in dimension by selecting a specific time interval and a subset of channels in which 

to define the ERPs. As a result, EEG studies examining alcohol use have typically been 

restricted to single ERP components (i.e., N2, P3) over predefined scalp regions, raising the 

possibility of false negative (Type II) errors.  

In order to identify neural correlates of alcohol use and misuse, a multivariable 

approach, based on a weighted combination of diverse electrophysiological variables, will 

likely be more useful for predicting outcomes than single ERPs. However, when generating 

models, a high ratio of variables to participants will result in ‘overfitting’. That is, apparently 

accurate predictions actually reflect idiosyncrasies of the sample, and will thus fail to 

generalise to new samples (see Whelan & Garavan 2014 for a discussion of this issue in 

relation to neuroimaging). Machine learning methods, such as the Elastic Net (Zou & Hastie, 

2005), are well suited for data with high dimensionality and inherent multicollinearity. In 

contrast to null-hypothesis statistical testing, in machine learning, accurate prediction on 



   

 

84 

 

 

 

previously unobserved data indicates success (Yarkoni & Westfall, 2017). EEG-based 

machine learning methods to predict alcohol-related outcomes show promising results 

(Kuncheva & Rodrıguez, 2013; Mumtaz et al., 2017b). Mumtaz and colleagues (2017b) 

applied a machine learning approach to resting-state EEG data, and found that EEG features 

(spectral power and inter-hemispheric coherences) accurately classified 30 patients with 

AUD from 15 healthy controls (Accuracy=89.3%, sensitivity=88.5%, specificity=91%). 

However, machine learning has been rarely used to interrogate ERPs (but cf. Johannesen et 

al., 2016; Kiiski et al., 2018; Stock et al., 2015). Furthermore, the use of a task probing 

specific cognitive systems markedly improves performance over resting-state data (Greene, 

Gao, Scheinost, & Constable, 2018).  

Here, machine learning was applied to predict alcohol misuse from inhibitory control 

ERPs, collected from 79 participants with a range of alcohol use. In order to quantify the 

relative utility of other potential predictors, models were also tested that combined ERPs with 

other data (including demographic, personality, and behavioural measures of impulsivity) to 

predict alcohol use. It was hypothesized that P3 ERPs would significantly predict alcohol use, 

based on previous research with heavy drinkers. Due to mixed findings in previous research, 

there were no a priori hypotheses about early ERPs or the N2. It was predicted that 

behavioural measures of impulsivity, in particular trait impulsivity, would also predict 

alcohol use.   
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3.2 Materials & Methods 

3.2.1 Sample 

Seventy-nine student drinkers (40 female; mean age=23.59 years) participated. 

Exclusion criteria included being under 18-years-old, history of any head trauma (including 

concussion) or stroke, regular drug or cannabis use (greater twice a month), history of any 

major mental health illness (DSM axis I with the exception of depression), or any learning 

difficulties or physical disability that would impact task performance (e.g., motor 

impairment). 

 

3.2.2 Procedure  

Participants were recruited via posters displayed on university campuses, and those 

who expressed an interest were phone-screened to determine eligibility. Eligible participants 

were emailed a link to questionnaires via an online survey platform and requested to 

complete this in the week prior to attending a 2-hour laboratory session. After reading the 

information sheet and providing informed consent, participants then completed measures 

under EEG. Participants were provided with €20 compensation, in addition to travel expenses 

(maximum value €10) or course credit. The study procedure was approved by the University 

College Dublin School of Psychology Ethics Committee and the Trinity College Dublin 

School of Psychology Ethics Committee. 
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3.2.3 Measures 

Self-report measures 

The Alcohol Use Disorders Identification Test (AUDIT) is a 10-item alcohol 

screening questionnaire assessing alcohol consumption, alcohol-related problems and 

drinking behaviour and quantifying risk from low-level to hazardous drinking. Individual 

responses are scored from 0-4, with a maximum of 40 for total AUDIT score. Other self-

report measures included: the Barratt Impulsiveness Scale 11th version (BIS-11) to assess 

trait impulsivity–Motor, Attentional and Non-planning impulsivity; the Drug Abuse 

Screening Test (DAST-20) to assess illegal drug use; the Depression, Anxiety and Stress 

Scale (DASS) to assess stress, depression and anxiety symptoms; the Neuroticism-

Extraversion-Openness Five Factor Inventory (NEO-FFI) to assess personality traits of 

Neuroticism, Extraversion, Openness, Agreeableness and Conscientiousness; the Perceived 

Stress Scale (PSS) to assess stress appraisal related to common life situations within the last 

month; and the Multidimensional Scale of Perceived Social Support (MSPSS) to assess 

perceived support from family, friends and a significant other . See Supplemental (self-report 

measures) file for further details for each of these measures. 

 

Task-based measures 

An adaptive Stop Signal Task (SST) assessed inhibitory control, recorded under EEG 

in a 9-minute run. The task consisted of 135 Go trials interspersed with 45 Stop trials; with 

one randomized Stop trial appearing within four Go trials. The task was presented in 3 blocks 

of 60 trials. A tracking algorithm adjusted task difficulty by varying the stop-signal delay 



   

 

87 

 

 

 

(SSD; the time interval between Go signal and Stop signal onsets), in order to produce 50% 

successful and 50% unsuccessful inhibition trials.  The SSRT quantifies behavioural response 

inhibition (i.e., time taken to cancel a prepotent motor response after Stop stimulus 

presentation). According to the horse-race model (Logan and Cowan, 1984), the finish of the 

stop process can be estimated from a participants’ distribution of reaction times on Go trials 

(see Figure 3.1). Full task details are contained in the Supplemental (task-based measures) 

file. Cognitive impulsivity, i.e., lapses in sustained attention, was assessed by examining trial-

to-trial individual response variability (IRV) on the SST, and was calculated using the intra-

individual coefficient of variation formula (dividing the standard deviation of Go RTs by 

mean Go RTs), which controls for differences in an individual’s overall speed of responding.  

Other task-based measures included the following. The Stroop Colour–Word Test, in 

which participants were presented with a colour name and were required to identify the 

colour. The word name was printed in either a congruent or incongruent colour (e.g., the 

word ‘red’ printed in blue ink). Reaction time on incongruent trials is typically slower than 

for congruent trials, known as the “Interference Effect”, which was calculated by subtracting 

incongruent from congruent trials, with lower numbers indicating better performance. The 

Probabilistic Selection Task (PST) assessed individual differences in learning from positive 

feedback (reward sensitivity) versus negative feedback learning (punishment sensitivity). An 

adaptive delay discounting task (DDT) assessed choice impulsivity, with delay discounting 

rates (k) calculated using a hyperbolic discounting model. The DDT consisted of 149 trials in 

total in an 8-minute run and required participants to choose between a series of choices 

between sooner, immediate rewards (SIR; ranging from $11 to $80) or later, delayed rewards 
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(LDR; ranging from $20 to $85, in delays from 7 to 186 days). The task algorithm adapted to 

the participant’s own k value. See the Supplemental (task-based measures) file for further 

details for each of these measures. 

 

 

Figure 3.1. Illustration of the horse-race model of behavioural inhibition on the SST. The 

distribution reflects a particular subject’s distribution of reaction times on “go” trials, 

superimposed onto a timeline for “stop” trials. This particular subject had a successful  stop  

rate  of  40%,  such  that  the  upper  40%  of  the  distribution corresponds to slower “go” 

reaction  times  that  would  produce  successful  stop  trials  (SSTs)  and the lower 60% of 

the distribution corresponds to faster “go” reaction times that would produce unsuccessful 

stop trials (USSTs). 
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3.2.4 EEG recording and pre-processing 

EEG data during the SST were recorded using an ActiveTwo Biosemi™ system in a 

soundproofed, darkened room from 70 electrodes (64 scalp electrodes) organised according 

to the 10–5 system (Oostenveld and Praamstra, 2001). Activity related to eye movement was 

recorded bilaterally from approximately 2 cm below the eye and from the outer canthi. EEG 

data pre-processing was carried out using the EEGLAB toolbox (Delorme & Makeig, 2004; 

http://sccn.ucsd.edu/eeglab) in conjunction with the FASTER plug-in (Fully Automated 

Statistical Thresholding for EEG artefact Rejection; Nolan, Whelan, & Reilly, 2010, 

http://sourceforg e.net/projects/faster). The data were bandpass filtered between 0.1 and 95 

Hz, notch filtered at 50 Hz and average referenced across all scalp electrodes. Data were 

subsequently epoched from 500 ms pre-stimulus to 2000 ms post-stimulus, which 

corresponds to the Go cue in Go trials and the Stop cue in Stop trials (Go trials and Stop trials 

are defined separately). Artefactual (i.e. non-neural) independent components were identified 

and removed from the EEG data automatically using FASTER, as were epochs containing 

large artefacts (e.g., muscle twitches). Channels with poor signal quality were interpolated. 

The EEG data were then visually inspected to ensure good quality and that any remaining 

noisy data were removed. 

 

3.2.5 ERP calculation 

Three trial types from the SST were identified and epoched in the EEG: trials in 

which participants successfully responded after a Go cue; trials in which participants had to 

inhibit their response after a Stop cue (Successful Stop); and trials in which participants failed 
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to inhibit their response after a Stop cue (Failed Stop). Based on the “horse-race” model of 

inhibition in the SST, slower reaction times in Go trials are related to successful inhibition, 

and faster reaction times are related to failed inhibition (Kok et al., 2004; Logan & Cowan, 

1984). For this reason, “fast” and “slow” Go trials were defined based on the participant’s 

median reaction time on Go trials. The epoch for fast Go, slow GO, successful stop and failed 

stops were each defined as -100ms to 600ms. The resulting fast Go and slow GO ERPs were 

subtracted from the Failed and Successful Stop ERP, respectively (Palmwood, Krompinger & 

Simons, 2017). All ERPs were baseline-corrected with the mean value of the interval 

between -100ms to 0 s with respect to the Go/Stop cue prior to the subtraction of “fast” and 

“slow” Go trials. This procedure was applied per channel, per participant. 

 

3.2.6 Machine learning analysis 

Machine learning approach with penalised linear regression was used to conduct 

outcome prediction in this study (similar to Jollans et al., 2017 and Kiiski et al., 2018). The 

outcome measure used was total AUDIT score (range 0-40; see Table 3.1). Four models were 

tested in the machine-learning analysis, which are described below. 

Model 1: ERP-only. Successful and Failed Stop ERPs were downsampled to 256 Hz 

in the window from 0 to 600 ms after the Stop cue. Data from 26 channels were examined 

and are labelled here according to 5 regions of interest from Wessel & Aron (2015), namely: 

fronto-polar (Fpz, Fp1, Fp2, AF3, AF4); left fronto-lateral (AF7, F5, F7); right central (FC6, 

FT8, C6, T8); fronto-central (Fz, FCz, Cz, FC1, C1, FC2, C2); left central (FC5, FT7, C5, 

T7). Both Successful and Failed Stop trial types (after fast or slow Go trials were subtracted) 
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were included as input data, resulting in a matrix of 79 rows (participants) by 8008 columns 

(ERP data). Model 2: all non-ERP variables: self-report and behavioural measures of 

impulsivity, including, trait (BIS-11 –Attentional, Motor and Non-planning), motor (SSRT), 

cognitive (IRV), choice (DDT k) impulsivity, and Interference Effect (Stroop); demographics 

(relationship status, monthly income and years of education); drug use (DAST); broad 

personality traits (NEO-FFI –Neuroticism, Extraversion, Openness, Agreeableness and 

Conscientiousness); psychological variables, including stress, anxiety and depression 

(DASS), perceived stress (PSS), perceived social support from friends family and significant 

other (MSPSS); and learning reinforcement (PST—punishment sensitivity and reward 

sensitivity). Model 3: non-ERP (impulsivity-only): trait (BIS-11 –Attentional, Motor and 

Non-planning), motor (SSRT), cognitive (IRV), choice (DDT k) impulsivity, and Interference 

Effect (Stroop). Model 4: ERP plus all non-ERP (Model 1 and 2 combined). 

 

Data analysis 

A 10-fold nested cross-validation was applied on the data. In each main fold, 90% of 

the data were used for training and 10% for testing. In each subfold (inner cross-validation), 

the data were z-scored and extreme values were replaced with a value of 3 (i.e. Winsorizing; 

i.e., with a value 3 standard deviations from the mean). Penalized regression utilised the 

Elastic Net (Zou and Hastie, 2005), which includes L1 regularization (as in LASSO - least 

absolute shrinkage and selection operator, which allows parameters to equal 0, promoting 

parsimonious solutions) and L2 regularization (ridge or Tikhonov regression). Lasso 
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regularization; whereas ridge regularization encourages parameters to be small, avoiding 

overfitting. In this model, the objective is to minimize the following equation:  

   [
 

 
‖    ‖     ‖ ‖   

 (   )

 
‖ ‖  

 ] 

where Y is the continuous outcome variable (AUDIT total scores), X is the input data 

with the ERPs and covariates, β is the regression coefficients, λ is the penalisation for 

complexity and α is the weighting parameter between ridge and LASSO regression. The 

complexity and weighting parameters (λ and α, respectively) are not known a priori. 

Therefore, a range of values was explored: 15 linearly-spaced values of both parameters in 

the range of 0.01 to 1 and all their possible combinations (i.e., a search grid of 225 parameter-

pair values). The prediction accuracy of each parameter combination was assessed using the 

mean squared error. The parameter combination that yielded the lowest error was selected per 

sub-fold. The mode of α and the median of λ across sub-folds were selected as parameters per 

main fold. These optimal parameters from the nested cross validation were used to fit a model 

using the test set of the main fold (outer cross-validation). The prediction of the model on the 

test set of each main fold was saved and pooled across main folds.  

The analysis on the original set was performed 100 times where the training and test 

sets were randomly assigned. In order to quantify model performance further, I repeated the 

entire procedure using random-label permutation (i.e., each participant was randomly 

assigned to an AUDIT score from a different participant). The accuracy achieved using this 

null model was then compared to the accuracy of the model with real data by performing a t-

test. Results reported for the original set are mean values across all 100 iterations of the 
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analysis. The real data model was deemed to be successful if its Pearson’s r was statistically 

significantly higher than those of the null model (p<0.05). 

3.3 Results 

3.3.1 Behavioural results 

Seventy percent of participants had AUDIT total scores ≥8, indicating alcohol-risk (see 

Table 3.1). Participants with SSRT < 75ms were excluded from the analysis (nine were 

excluded from an original sample of 88 participants). Participants’ anxiety symptoms, stress 

and depression (DASS) were in the normal range, and drug-use risk (DAST) was low (see 

Table 3.2). Sex differences were not observed, with the exception of females scoring 

significantly higher for Agreeableness (NEO-FFI; p = 0.02), and for perceived social support 

from family, friends and significant other (MSPSS; p = 0.008, p = 0.001, p = 0.003, 

respectively; see Table 3.2). See Appendix 3.1 (Table S3.1) for correlations among variables.   

 

Table 3.1 

AUDIT sample characteristics  

  Sample (N=79) 

AUDIT Total Score Risk Level Frequency Percent 

0-7 Low-risk 23 29.1% 

8 -15 Risky or hazardous  41 51.9% 

16 - 19 High-risk or harmful level 10 12.7% 

20 or more High-risk / dependent 5 6.3% 
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Table 3.2 

Self-report and Task-based Measures Sample Characteristics 

  Females (n=40)  Males (n=39) Total   p 

 M SD M SD M SD  

Outcome        

AUDIT Total 10.10 4.41 11.31 5.62 10.70 5.05 .29 

Demographic        

Age 24.02 5.95 22.23 4.78 23.59 5.39 .47 

Relationship Status 1.25 0.49 1.15 0.49 1.20 0.49 .38 

Monthly Income 1.53 1.09 1.69 1.42 1.61 1.25 .55 

Yrs. of Education 16.08 3.02 15.69 4.04 15.89 3.54 .65 

DAST Drug-use Total 2.13 4.06 3.00 4.42 2.56 4.24 .36 

Smoker / Non-smoker 15/25 - 25/14 - 29/50 - .88 

Personality        

NEO-FFI Extraversion 30.58 7.13 29.59 7.14 30.09 7.11 .54 

NEO-FFI Openness 31.45 5.94 31.56 6.48 31.51 6.17 .93 

NEO-FFI Agreeableness 33.00 5.98 29.87 5.79 31.46 6.06 .02
 a
 

NEO-FFI Conscientiousness 30.45 9.69 27.56 7.41 29.03 8.71 .14 

NEO-FFI Neuroticism 25.93 7.91 23.90 8.60 24.92 8.27 .27 

Psychological        

DASS Stress 12.83 9.60 12.87 7.71 12.85 8.66 .98 

DASS Anxiety 6.88 5.95 7.72 6.37 7.29 6.14 .54 

DASS Depression 8.93 7.75 8.72 7.38 8.82 7.52 .90 

MSPSS Significant other 6.23 0.98 5.36 1.76 5.80 1.48 .008
 a
 

MSPSS Family 5.89 1.05 4.80 1.67 5.35 1.49 .001
 a
 

MSPSS Friends 6.22 0.82 5.36 1.55 5.79 1.30 .003
 a
 

PSS Total 21.78 6.89 19.95 7.06 20.87 6.99 .24 

Impulsivity         

BIS-11 Attentional 16.73 4.04 17.44 3.57 17.08 3.81 .41 

BIS-11 Motor 24.60 4.78 24.54 4.06 24.57 4.41 .95 

BIS-11 Non-planning 24.50 5.57 25.15 4.49 24.82 5.05 .56 

DDT (k)
b
 -1.77 1.28 -1.81 1.72 -1.79 1.50 .90 

SST SSRT 181.30 42.34 171.01 34.86 0.22 0.04 .24 

SST IRV 0.23 0.03 0.22 0.04 104.22 105.73 .44 

Stroop (Interference) 100.80 107.43 107.72 105.25 17.08 3.81 .77 

Learning        

PST Approach A (Reward) 71.35 24.84 78.04 24.25 74.65 24.63 .22 

PST Avoid B (Punishment) 61.70 21.41 69.59 23.33 65.59 22.58 .12 
a Significant differences between females and males, using Mann-Whitney t-tests. b A 

logarithmic base 10) transformation of the geometric mean of k. Relationship status: 1=single, 

2=cohabiting, 3=civil partnership/marriage, 4=separated/divorced, 5=widowed; Monthly 

Income: 1=<€900, 2=€900-1350, 3=€350-1800, 4=€1800-2250, 5=€2250-2700, 6=€>2700.  
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3.3.2 Machine learning results 

Model 1, ERP-only, significantly predicted AUDIT scores, (mean cross-validated 

Pearson’s r = 0.28, p = 0.03; outperforming the null model on 92% of runs), see Figure 3.2. 

Table 3.3 displays results from Models 2 and 3. Model 2, all non-ERP variables, significantly 

predicted AUDIT scores (mean cross-validated Pearson’s r = 0.34, p = 0.004; outperforming 

the null model on 96% of runs). Model 3, impulsivity-only, significantly predicted AUDIT 

scores (mean cross-validated Pearson’s r = 0.37, p = 0.002; outperforming the null model on 

97% of runs). Model 4, ERP plus all non-ERP, also predicted AUDIT scores (mean cross-

validated Pearson’s r = 0.29, p = 0.02; outperforming the null model on 94% of runs). See the 

Supplemental Table S3.2 for each model and corresponding null model results, and Table 

S3.3 contains a spreadsheet of all model weights. 



   

 

96 

 

 

 

A) 

  

  

 

 

 

 

 

 

  

 

 

B)  

 

 

  

 

  

 

 

 

 

 

 

 

 

Figure 3.2. A) Map of beta values across main folds for the failed stop (left image) and 

successful stop (right image) conditions. ERP-based features that survived the 99th percentile 
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threshold from the null distribution. The colours indicate the direction of the relationship 

between ERP amplitude and AUDIT scores, based on the beta weight values (i.e. warm 

colours indicate a positive ERP-AUDIT relationship, and cool colours indicate negative ERP-

AUDIT relationship); B) Maps of the grand average ERP of the failed stop (left image) and 

successful stop (right image) conditions. Areas corresponding to the N2 and P3 components 

are highlighted in a purple box.  
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Table 3.3  

Machine-learning results for non-EEG models 

Non-EEG: All variables 

(CV r = 0.34, p = 0.004) 
Non-EEG: Impulsivity only 

(CV r = 0.37 p = 0.002) 

Features 
Mean 

Frequency  

Beta   

Weight 
Features 

Mean 

Frequency  

Beta   

Weight 

Relationship Status* 10 -0.87 BIS-11 Non-planning 10 1.12 

DASS Anxiety* 10 0.99 Stroop Interference 9.99 1.02 

Stroop Interference* 10 1.20 BIS-11 Motor 9.93 0.71 

BIS-11 Non-planning* 10 0.97 SST IRV 8.51 0.68 

BIS-11 Motor* 9.98 0.45 DDT k 7.63 0.30 

MSPSS Family 9.91 -1.14 BIS-11 Attentional 7.6 0.12 

MSPSS Friend 9.9 -1.25 SST SSRT  7.41 0.10 

Yrs. Of Education 9.88 0.68 - - - 

SST IRV 9.86 0.61 - - - 

NEO-FFI Neuroticism 9.85 -0.64 - - - 

NEO-FFI Agreeableness 9.79 0.41 - - - 

MSPSS Partner 9.78 -0.51 - - - 

NEO-FFI Openness 9.7 -0.26 - - - 

NEO-FFI 

Conscientiousness 
9.69 -0.33 - - - 

PSS Total 9.68 -0.30 - - - 

DDT k 9.61 0.22 - - - 

SST SSRT  9.54 0.13 - - - 

DAST Drug Total 9.48 -0.04 - - - 

BIS-11 Attentional 9.45 0.23 - - - 

NEO-FFI Extraversion 9.41 -0.22 - - - 

DASS Stress 9.37 -0.20 - - - 

Monthly Income 9.32 0.14 - - - 

Smoker / Non-smoker 9.28 -0.06 - - - 

PST Approach A 9.02 -0.05 - - - 

PST Avoid B 8.91 -0.87 - - - 

DASS Depression 8.85 0.07 - - - 
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Features ranked in order of highest mean frequency of being picked across main-folds and 

random set assignments. * Non-EEG features that were significant in 9/10 main-folds 

compared to null results, for the EEG + non-EEG model. Impulsiveness Scale 11th version; 

DDT: Delay Discounting Task; SST: Stop Signal Task; PST: Probabilistic Selection Task; 

DASS: Depression, Stress & Anxiety Scale. 
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3.4 Discussion 

Here, individual differences in alcohol use (AUDIT scores) from ERP time-courses 

derived from an assay of inhibitory control were predicted, with moderate accuracy. The use 

of machine learning facilitated the inclusion of 8,008 ERP variables per participant, and 

results were quantified using out-of-sample validation. Optimal variables for predicting 

alcohol use were widespread spatially and occurred early in the ERP, rather than being solely 

confined to the N2-P3 complex over medial scalp regions. Indeed, the model of ERP 

variables that best predicted alcohol use was not sparse, even when thresholding the variables 

based on the 99th percentile of a null distribution. Combining ERP data with non-ERP data 

improved prediction of AUDIT scores – the most important predictors included early ERPs 

from the Failed Stop condition, relationship status, trait impulsivity (Motor and Non-planning 

impulsivity), Stroop Interference Effect, and anxiety. The most accurate predictions were 

generated by a model that included a wide range of behavioural measures of impulsivity.  

 With respect to the N2 ERP component, more negative N2 ERPs were associated 

with higher alcohol use. Crego et al. (2009) found larger N2 amplitudes for student binge 

drinkers during a visual working memory task compared to non-bingers, with similar results 

also previously reported in adults with AUD (Olbrich et al., 2000). However, in contrast, 

Pandey and colleagues (2012) found lower No-Go N2 amplitude in males with alcohol 

dependence who had been detoxified for 30 days, compared to controls without AUD 

diagnosis. Franken and colleagues (2017) found no differences for both NoGo N2 and P3 

amplitudes when comparing young heavy drinkers to lighter drinkers during a GNG task. 

Comparable NoGo N2 amplitudes were also found for student heavy drinkers versus lighter 
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drinkers during a GNG task (Oddy & Barry, 2009). Reduced P3 amplitude during response 

inhibition is thought to represent a component of the alcoholic phenotype (see Campanella et 

al., 2018; Luijten et al., 2014; Mumtaz et el., 2017a for reviews). Here, reduced P3 amplitude 

was associated with higher alcohol use, particularly during successful stops. Some studies 

have also shown reduced P3 amplitudes on successful NoGo trials when comparing heavier 

drinkers to lighter drinkers (Oddy & Barry, 2009), whilst others have found no group 

differences (Franken et al., 2017). With respect to both N2 and P3 findings, there are some 

methodological differences between previous research and the present study. First, I used the 

SST, and not the GNG, to examine response inhibition. The former requires action 

cancelation, rather than the action restraint required in the GNG, and may therefore be a more 

sensitive measure of inhibitory control because it requires more effortful neural activity.  

Second, previous studies used a variety of cut-off scores from single consumption-based 

measures of alcohol use. For example, heavy drinkers were categorized by number of 

monthly alcohol units over a month (≥ 6 units and ≥ 9 drinking days; Franken et al., 2017) 

and number of standard drinks over a month (e.g., ≥ 10 drinks.; Oddy & Barry, 2009). Cut-

off scores may not always be appropriate for group dichotomisation ((Havard, 2016; Pearson, 

Kirouac, & Witkiewitz, 2016), and therefore the author tested the correlation with AUDIT 

scores. Third, previous ERP studies on alcohol use have typically focused on ERPs during 

successful stop trials (López-Caneda et al., 2012; Oddy & Barry, 2009). However, here 

increased P3 amplitude during failed stops was found to be associated with higher alcohol 

use, suggesting that the Stop Fail condition is perhaps more relevant to high risk drinking.  



   

 

102 

 

 

 

Although some evidence of N2 and P3 involvement was found, the best prediction of 

alcohol use was achieved by including early ERP activity (before the N2) across the scalp. 

This is a novel finding, although there is some, limited, precedence for this. For example, 

deficits have been reported in early pre-attentive sensory processing (P50: Freedman et al., 

1987; Marco et al., 2005) and visuo-perceptual processing (P1: Maurage et al., 2007) in 

alcohol-dependent samples. The P50 reflects a predominantly preattentional (Freedman et al., 

1987) inhibitory filter mechanism that could protect the integrity of higher-order functions 

(Lijffijt et al., 2009), suggesting that impaired P50 associated with increased alcohol use 

could relate to diminished inhibition. The P1 ‘attention effect’ is thought to reflect a top-

down inhibitory process, whereby P1 enhancement indicates inhibitory processes that blocks 

competing information of task-irrelevant stimuli (Slagter et al., 2016). Wessel and Aron 

(2015) observed significant P1 amplitude onset (i.e., statistically significant deviation 

between stop- and matched go-trial ERPs during an SST) for some participants that preceded 

the N2/P3 complex on Stop trial, however, in order to focus solely on the P3, they defined a 

minimum latency (120 ms) that excluded the P1. The fact that early components, predicted 

AUDIT scores lend support to a dual-process theory of alcohol misuse, whereby a lack of a 

cognitive control mechanism to inhibit drinking (i.e., deficits in later ERP components) is 

exacerbated by early attentional biases (i.e., deficits in early ERP components; see 

Campanella et al., 2018). Thus, neural deficits seen with alcohol misuse may not be exclusive 

to inhibitory control impairments per se – early processing impairments could underlie 

failures of later higher-level processing. As well as the findings for early attention-related 

components, the behavioural measure of sustained attention, IRV, was also a significant 
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predictor of alcohol use. Given that top-down, goal-driven attentional biases for alcohol have 

been observed in social drinkers (Brown, Duka, & Forster, 2018), it would be useful to 

further examine how goal-directed and involuntary aspects of attention are related to alcohol-

outcomes. 

Evidence for the utility of impulsivity-specific (e.g. BIS-11) versus broad trait 

personality measures (e.g., NEO-FFI) for prediction of alcohol is mixed. Adan and colleagues 

(2017) reviewed personality correlates of binge-drinking across studies and found that high 

impulsivity, as well as anxiety sensitivity, neuroticism, extraversion and low 

conscientiousness across studies were most strongly related to binge-drinking. This was 

examined in Model 2 (all non-ERP variables) and found that high anxiety symptoms, 

followed by high impulsivity (Stroop Interference Effect; BIS-11 Non-planning and Motor 

subscales; IRV), high Agreeableness and lower Neuroticism were most robustly linked to 

AUDIT scores. In Model 2, the most important variable was relationship status. Interestingly, 

dating in early adolescence (by age 14) is an important predictor of alcohol-use initiation 

(Squeglia et al., 2016), and of subsequent binge-drinking (Whelan et al., 2014). In young 

adulthood, romantic relationships are associated with heavier drinking (Fleming et al., 2018; 

Salvatore et al., 2014), and being in a stable relationship is associated with less drinking 

(Fleming et al., 2018). The stability of relationships also interacts with personality traits, such 

as lower neuroticism (Mund, Finn, Hagemeyer & Neyer, 2016). Therefore, dating in early 

adolescence may be considered a risky-behaviour (i.e., a risk-factor for alcohol misuse), 

being in a relationship in adulthood may be a protective factor. Given that young adult 
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romantic relationships and alcohol-use experiences are formative life choices, understanding 

how these experiences are related is an important task.  

Model 3, the non-ERP impulsivity-only model, predicted alcohol use, as similarly 

demonstrated with drunkenness as the outcome variable in a different sample (Chapter 2). 

Trait impulsivity measures, including BIS-11 Non-planning and Attentional (but not Motor) 

subscales were among the strongest predictors of intoxication frequency (Chapter 2).  Here, 

Non-planning and Motor (but not Attentional) subscales were the strongest predictors of 

alcohol use.  Studies examining group differences have also found significantly increased 

scores for Non-planning and Motor subscales in alcohol users, compared to controls (Moreno 

et al., 2012; Sanchez-Roige et al., 2014). These findings provide further evidence that 

different impulsivity endophenotypes underlie different patterns of alcohol use. As well as 

AUDIT scores here, Non-planning is also related to increased number of weekly alcohol units 

(Caswell, Celio, Morgan, & Duka, 2015a) and binge drinking scores (Sanchez-Roige et al., 

2014), indicating that this trait may be particularly salient for alcohol use in young adults, 

regardless of alcohol phenotyping.  

SSRTs were the weakest variable in the model, similar to previous findings (Chapter 

2), and no SSRT differences have been found in other drinking samples (Caswell, Celio, 

Morgan, & Duka, 2015., 2015; Sanchez-Roige   et al., 2014). There is, therefore, growing 

evidence that SSRT – the behavioural metric of response inhibition – is less sensitive to 

individual differences in alcohol use than ERPs or measures of trait impulsivity. In contrast to 

the SSRT, the Interference Effect on the Stroop was an important predictor of alcohol misuse. 

Despite the ostensible similarity in the underlying processes of inhibitory control, it is 
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unlikely that these tasks measure the same effect (Bartholow et al., 2018). The Stroop has 

also been categorised as a measure of cognitive impulsivity in the form of inattention (i.e., 

longer Interference times indicate less resistance to distracting/conflicting stimuli; Sharma et 

al., 2014). Although various measurements of behaviour are rarely included in the same 

study, a meta-analysis by Sharma and colleagues (2014) examined impulsivity measures 

across studies and generated latent factors of impulsivity in order to obtain task-independent 

estimates of ability. They indicated that the Stroop was an important impulsivity-based factor 

that overlaps with executive functioning via inattentiveness, and is strongly linked to alcohol 

use, consistent with previous findings (O’ Halloran et al., 2018a). Here, the importance of 

including measures that assay different aspects of impulsivity in determining factors that are 

most closely related to alcohol misuse is clearly demonstrated. 

Despite the well‐established links between impulsivity and alcohol misuse, 

neuroimaging predictors of alcohol use have only shown modest utility to date (Chapter 1). 

The advantages of machine learning approaches are that the most important variables can be 

identified from a large search space, and that correlated variables can be accommodated in 

the same model. Nevertheless, not all channels could be included – which would produce 

more than 20,000 data points for each of 79 participants – in my analysis. This was because 

simulated data (Jollans et al., 2015) indicated that detecting relevant variables given low-

moderate effect sizes is not possible if the ratio of variables to cases is very large, across a 

variety of machine learning methods. Therefore, several regions based on prior work in this 

area were defined (Wessel & Aron, 2015), that included 26 channels. This generated over 

8,000 variables per participant, many of which were highly correlated. Machine learning may 
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be particularly useful for finding new relationships among variables because analyses are not 

restricted to specific time intervals or electrodes. It is suggested that ERPs have potential to 

be a valuable clinical tool for assessing alcohol misuse. However, the generalisability of this 

model should be tested on other populations with inhibitory deficits, particularly alcohol-

dependent samples. Future research may also explore the ability of ERP data to accurately 

classify those with AUD from controls, using machine learning methods that classify 

individuals into groups.  

Conclusion 

Individual differences in alcohol use were predicted by ERPs. Model performance and 

variable relevance was elucidated by comparing the original model with a model created 

from random-label permuted data. SSRT was not a predictor of alcohol use for either of the 

young adult samples in Chapters 2 and 3, with similar findings reported in relatively 

substance naïve adolescents (Whelan et al., 2012). On the other hand, brain data, including 

EEG measures in this Chapter and fMRI functional activation in (Whelan et al., 2012) are 

sensitive to the detection of alcohol use. Interestingly, unlike the behavioural SSRT, IRV was 

a significant predictor of alcohol use in adult student samples for both Chapters so far. 

However, the relationship between IRV and alcohol use in adolescents is relatively unknown 

and the related neural mappings underlying IRV have yet to be identified. Given that a 

previous task-based fMRI study identified disrupted attention-relevant functional networks in 

healthy adults, and these networks predicted ADHD symptoms in a separate sample of 

children (Rosenberg et al., 2016), it is possible that IRV may also be sensitive to early 

alcohol use in adolescents.  Therefore, in Chapter, 4 a data-driven fMRI analysis was 
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employed to examine the link between IRV and functional connectivity patterns in 

adolescents, as well as their relationship with alcohol use. 

 

4 Chapter 4: Neural Circuitry Underlying Cognitive Impulsivity: 

An Examination of Sustained Attention in Healthy 

Adolescents
4
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 Laura O’Halloran, Robert Whelan & IMAGEN Consortium. Neuroimage. 2018; Published 
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4.1 Introduction 

Chapters 2 and 3 indicated that behavioural cognitive impulsivity, i.e., lapses in 

sustained attention measured using IRV on an SST, was an important predictor of alcohol-

related outcomes. Chapter 2 also evidenced a relationship between disruption in attentional 

processes early in the ERP and higher levels of alcohol use. Yet, the relationship between 

IRV and alcohol use in adolescents has not been previously examined. IRV may provide a 

better metric of cognitive impairment than other neuropsychological test measures, such as 

standardized cognitive or psychomotor tasks (Balota et al., 2010; Cherbuin, Sachdev & 

Anstey, 2010; Haynes, Bauermeister & Bunce, 2017) or simple RT (Dixon et al., 2007), and 

higher IRV is commonly reported in ADHD (Bellgrove, Hawi, Kirley, Gill & Robertson, 

2005; Castellanos et al., 2005; Castellanos, Sonuga-Barke, Milham & Tannock, 2006; Kofler 

et al., 2013; Kuntsi & Klein, 2011; Mullins, Bellgrove, Gill & Robertson, 2005; Vaurio, 

Simmonds & Mostofsky, 2009).  

 

4.1.1 Brain Correlates of Sustained Attention. 

Neuroimaging studies have identified brain regions involved in sustained attention. 

For example, task-based fMRI analysis in 42 adults showed that high IRV (i.e., poorer 

sustained attention) was associated with activation in the middle frontal gyrus (MFG), motor 

(precentral gyrus and pre-supplementary area; SMA), parietal, thalamic and insula regions 

(Bellgrove, Hester & Garavan, 2004). In healthy adults, low IRV (i.e., better sustained 

attention) was associated with stronger activation of anterior cingulate cortex (ACC) during a 

response inhibition task (Go/no-go task; Johnson et al., 2015), and during a gradual onset 
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continuous performance task (Esterman, Noonan, Rosenberg & DeGutis, 2012). In children 

(thirty 8-12-year-olds), low IRV (i.e., better sustained attention) on a Go-No/Go task was 

associated with stronger Go activation in anterior cerebellum (culmen) and stronger No-Go 

activation in motor, frontoparietal (medial frontal gyrus; inferior parietal lobe, IPL) and 

cerebellar networks, while high IRV associated with stronger Go and No-Go activation in 

MFG, caudate and thalamus (Simmonds et al., 2007). To date, however, the brain correlates 

of sustained attention in healthy adolescents, as indexed by IRV, have not been 

comprehensively characterised. Furthermore, there has been a surge of interest not only in 

characterizing task-evoked regional activity, but also in discovering how such regions fit 

within large-scale neural networks in supporting sustained attention (Fortenbaugh, DeGutis & 

Esterman, 2017). 

 Recent research has posited that sustained attentional processes may emerge from an 

array of large-scale functional connectivity networks (Castellanos, Kelly & Milham, 2009; 

Kessler, Angstadt & Sripada, 2016), rather than from single brain regions (Chun, Golomb & 

Turk-Browne, 2011; Rosenberg, Finn, Scheinost, Constable & Chun, 2017). Functional 

connectivity – synchronous fluctuations in neural activity across the brain – can be measured 

by correlating the blood oxygenation level-dependent (BOLD) signal time course between 

two brain regions. The dorsal attention network (DAN; comprising intraparietal sulcus (IPS), 

superior parietal lobule; primate frontal eye fields, and inferior pre-central sulcus) and 

frontoparietal network have been established for their involvement in sustained attention 

(Petersen & Posner, 2012; Szczepanski, Konen & Kastner, 2010). Stronger anticorrelations 

between task-positive networks and the default mode network (DMN; including medial 
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prefrontal cortex, posterior cingulate, anterior temporal and precuneus) is associated lower 

IRV (Kelly, Uddin, Biswal, Castellanos & Milham, 2008). However, the extent to which 

other networks outside classic vigilance networks (e.g., cerebellum) contribute to sustaining 

attention is less well understood (Fortenbaugh et al., 2017; Glickstein, 2007). One study in 

particular (Rosenberg et al., 2016) examined the relationship between task-based functional 

connectivity and sustained attention (a measure of sensitivity called d′on a gradual-onset 

continuous performance task) in 25 healthy adults. They identified a low sustained attention 

network whose connectivity was associated with poorer sustained attention (low d′), and a 

high sustained attention network whose connectivity was associated with better sustained 

attention (high d′). The authors also tested the generalisability of these networks in 

comparison to separate resting-state data. Stronger connectivity between cerebellum with 

motor and occipital networks, and occipital with motor networks predicted better sustained 

attention. In contrast, stronger connectivity between temporal and parietal regions, and within 

the temporal lobe and cerebellum predicted poorer sustained attention, and also largely 

predicted ADHD symptom severity when applied to an independent sample of 113 8-16-year-

olds with and without a diagnosis of ADHD. However, the d′ measure used to assess 

sustained attention in this case likely captures a different facet of sustained attention than 

IRV. Moreover, examining commonalities in the brain networks implicated in sustained 

attention across different behavioural measures and datasets is an important step in 

elucidating the neural underpinning of individual differences in response variability.  
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4.1.2 The Present Study 

Firstly, this study sought to examine the relationship between fMRI activation and 

sustained attention, as measured by IRV on trials requiring a speeded response, in a large, 

normative sample of adolescents (N=758). Next, given that sustained attention may be better 

characterised by the dynamic interactions of large-scale brain networks than the degree of 

neural activation within single brain regions (Castellanos et al., 2005; Glickstein, 2007; Kelly 

et al., 2008; Kuntsi & Klein, 2011; Mullins et al., 2005), the relationship between functional 

connectivity patterns and IRV was examined in the normative sample. A task-based 

functional connectivity matrix was computed by correlating the BOLD signal time courses of 

every pair of regions in a 268-node brain atlas (Shen, Tokoglu, Papademetris & Constable, 

2013). This connectivity matrix was then correlated with each individual’s IRV score, in 

order to identify networks associated with high and low IRV. Rosenberg et al. (2016) applied 

the functional networks that indexed sustained attention in healthy adults, to an external 

sample of children with ADHD to validate their model. Therefore, significant clusters 

associated with fMRI activation, as well as the IRV-linked networks identified in the 

normative sample, were validated on a separate sample of adolescents with ADHD symptoms 

and were compared to a matched asymptomatic control group. Lastly, the IRV-linked 

networks identified in the normative sample in high alcohol use and non-alcohol using groups 

within the sample.   
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4.2 Materials & Method 

4.2.1 Participants 

Fourteen-year-olds were recruited at eight sites, and completed two fMRI sessions, 

psychiatric and neuropsychological assessments. Details of the full study protocol and data 

acquisition have been provided previously (Schumann et al., 2010; (http://www.imagen-

europe.com/en/Publications_and_SOP.php). Here, participants were allocated to three groups. 

The first was designated as the normative sample (n=758; Table 4.1). The second, the ADHD 

symptom sample, (n=30; Table 4.2) were selected according to the total score of ADHD 

parent ratings on the Development and Well Being Assessment (DAWBA; description 

below), with a threshold of two standard deviations higher than the mean ADHD score of the 

Imagen sample. A third group, the asymptomatic control sample (n=30; Table 4.2), had 

scores of 0 on the DAWBA for ADHD symptoms, and were matched for age, sex, 

recruitment sites, handedness, pubertal development, performance IQ and verbal IQ to the 

ADHD symptom group. 

 

4.2.2 Measures 

The Alcohol Use Disorders Identification Test (AUDIT). The AUDIT (Babor, 

Higgins-Biddle, Saunders, & Monteiro, 2001) is a 10-item alcohol screening questionnaire 

that assessed alcohol consumption, alcohol-related problems and drinking behaviour and 

quantifying risk from low-level to hazardous drinking. The AUDIT has demonstrated a high 

degree of internal consistency (Cronbach’s a between 0.75 to 0.97; Reinert & Allen, 2007).  

Responses are scored from 0-4, with a maximum of 40 for total AUDIT scores.  
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Development and WellBeing Assessment (DAWBA) Interview. The DAWBA 

(Goodman, Ford, Richards, Gatward & Meltzer, 2000) is a structured set of questions 

designed to generate DSM-IV psychiatric diagnoses for children and adolescents aged 5–17 

years. The ADHD subscale of the DAWBA consists of 31 questions, and includes specific 

ADHD subscales: hyperactive-impulsive, inattentive and combined. The DAWBA was 

administered to parents of the adolescents by questionnaire, under the supervision of a 

research assistant. Groups were constructed based on similar symptom cut-offs suggested by 

previous studies examining sub-clinical ADHD (Langley, Heron, Smith & Thapar, 2012; 

Salum et al., 2014). The three subscales were added together to form an ADHD total score 

and the cut-off score for ADHD symptoms was calculated as two standard deviations from 

the mean total score, while a score of zero was required in order to classify a participant as a 

member of the control group (i.e. asymptomatic with respect to ADHD).  

Wechsler Intelligence Scale for Children. Participants completed a version of the 

Wechsler Intelligence Scale for Children (WISC-IV; Wechsler, 2003), which included the 

following subscales: Perceptual Reasoning, consisting of Block Design (arranging bi-

coloured blocks to duplicate a printed image) and Matrix Reasoning (the participant is 

presented with a series of coloured matrices and must select the consistent pattern from a 

range of options); and Verbal Comprehension, consisting of Similarities (two similar but 

different objects or concepts are presented to the participant and they must explain how they 

are alike or different) and Vocabulary (a picture is presented or a word is spoken aloud by the 

experimenter and the participant is asked to provide the name of the depicted object or to 

define the word). 
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Puberty Development Scale (PDS). The PDS scale (Petersen, Crockett, Richards, & 

Boxer, 1988) assessed the pubertal status of the adolescent sample, by means of an eight-item 

self-report measure of physical development based on the Tanner stages, with separate forms 

for males and females. For this scale, there are five categories of pubertal status: (1) 

prepubertal, (2) beginning pubertal, (3) mid-pubertal, (4) advanced pubertal, (5) post-

pubertal. Participants answered questions about their growth in stature and pubic hair, as well 

as menarche in females and voice changes in males. 

Stop Signal Task. Participants performed an adaptive event-related Stop Signal Task 

(SST; Rubia, Noorloos, Smith, Gunning, & Sergeant, 2003; Rubia, Smith, Taylor, & 

Brammer, 2007), which took approximately 16 minutes to complete. The task consisted of 

400 Go trials intermingled with 80 Stop trials; with between 3 and 7 Go trials between 

successive Stop trials. During Go trials participants were presented with arrows pointing 

either to the left or right, shown centrally on a screen for 1000 ms. During Go trials 

participants were required to make a single button-press   response with their left or right 

index finger corresponding to the direction of the arrow. In the unpredictable Stop trials, the 

arrows pointing left or right were followed (on average 300 ms later) by arrows pointing 

upwards (i.e. the Stop signal, shown for for 100–300 ms), which required participants to 

inhibit their motor responses during these trials. A tracking algorithm (Rubia et al., 2003; 

2007) adjusted task difficulty by varying the stop-signal delay (SSD; the time interval 

between Go signal and Stop signal onsets; 250–900 ms in 50-ms increments), in accordance 

with each participant’s performance on previous trials (average percentage of inhibition over 

previous Stop trials, recalculated after each Stop trial). The aim of this was to produce 50% 
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successful and 50% unsuccessful inhibition trials. The inter-trial interval was jittered between 

1.6 and 2.0 s (mean: 1.8 s) to enhance statistical efficiency (Dale, 1999). If the participant 

responded to the Go stimulus before Stop stimulus presentation (i.e. stop too early; STE), 

then the trial was repeated (up to a maximum of seven trials).  

We calculated each participants’ Stop Signal RT (SSRT), an index of inhibitory 

function, by subtracting the mean stop-signal delay (SSD) from the Go RT at the percentile 

corresponding to the proportion of unsuccessful stop trials. In other words, the SSRT refers to 

the time taken to cancel a prepotent motor response after Stop stimulus presentation. IRV was 

calculated by dividing each individual’s standard deviation of mean Go RT scores by their 

mean Go RT scores. 

 

4.2.3 MRI acquisition and analysis 

Functional MRI data were collected at eight IMAGEN sites (London, Nottingham, 

Dublin, Mannheim, Dresden, Berlin, Hamburg, and Paris) with 3T MRI systems made by 

various manufacturers (Siemens: 4 sites, Philips: 2 sites, General Electric: 1 site, and Bruker: 

1 site). Standardised hardware for visual stimulus presentation (Nordic Neurolab, Bergen, 

Norway) was used at all sites. The MR scanning protocols, cross-site standardisation and 

quality checks are further described in (Schumann et al., 2010).  Functional runs included 444 

whole-brain volumes acquired for each participant using echo-planar imaging (EPI) 

sequence. Each volume contained 40 axial slices aligned to the anterior commissure–

posterior commissure (AC–PC) line (2.4-mm slice thickness, 1-mm slice gap). The echo time 
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(TE) was optimized (TE = 30 ms, repetition time 2200 ms; flip angle = 75°; acquisition 

matrix= 64 × 64)   to provide reliable imaging  of  subcortical  areas. 

 

4.2.3.1 Preprocessing.  

 Preprocessing of the fMRI imaging data from IMAGEN was performed centrally 

using an automated pipeline with SPM8 (Statistical Parametric Mapping, 

(http://www.fil.ion.ucl.ac.uk/spm/). fMRI BOLD images were co-registered with the T1W 

structural image (MPRAGE). Functional images were then realigned to correct for head 

motion and slice-time corrected using the first slice (top-down scanning) as reference for 

interpolation. T1W images were spatially normalized and non-linearly warped on Montreal 

Neurological Institute Coordinate System (MNI) space, using a custom EPI template. The 

custom template (53 × 63 × 46 voxels) was based on a subset of 240 participants’ (30 from 

each of IMAGEN’s eight sites) mean 480 EPI images that showed good spatial 

normalization, as measured by the overlap quality between individual EPI masks and the 

MNI mask (EPI images were spatially-realigned and their temporal-mean image was rigidly 

co-registered to their respective anatomical image). This normalization was applied to the 

EPI, and EPIs were then averaged to form an EPI template that was subsequently applied to 

all T1W data. Voxels were resampled at a resolution of 3 × 3 × 3 mm. The functional data 

was then smoothed with a 4-mm full width half maximum Gaussian isotropic kernel. The 

contrast images were subsequently analyzed using SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12) and custom Matlab scripts (Mathworks). 
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4.2.3.2 fMRI Activation.  

First-level activation maps were computed for go-trials, stop-success trials, and stop-

fail trials versus baseline in individually specified general linear models (GLM). Design 

matrices included regressors for stop-success trials, stop-failure trials, Go too-late response 

trials, Go wrong response trials (i.e. wrong button press), movement parameters, and 

nuisance covariates (age, sex, pubertal status, handedness, performance IQ, verbal IQ, and 

data collection sites). On the second level, average fMRI activation for go-trials, stop-success 

trials, and stop-fail contrasts were each correlated with IRV for the normative sample using 

SPM12. Uncorrected p-values of .001 (recommended as the minimum lower limit; Eklund, 

Nichols & Knutsson, 2016; Woo, Krishnan, & Wager, 2014), and a cluster extent of 32 

contiguous voxels were used to provide a corrected family-wise error rate of p < .05. 

Significant clusters from each statistical parametric maps for the three contrasts were 

anatomically labelled by examining the MNI coordinates to xjview 

(http://www.alivelearn.net/xjview). Mean beta values from the significant clusters derived 

from the normative samples were extracted for the ADHD symptom group and asymptomatic 

control group.  Between-group two-sample t-tests were performed to compare regions of 

interest (ROI) between groups. Bonferroni correction was applied based on the total number 

of ROIs. 

 

4.2.3.3 Task-based Functional Connectivity.   

Whole-brain task-based functional connectivity was calculated using the following 

approach: I first removed the effect of Stop trials from the fMRI time series (using a similar 
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principle to that described in Fair et al., 2007). Specifically, I generated a general linear 

model (GLM) that included Stop-fail and stop-success trials and movement parameters. The 

Go condition (83% of trials) was not explicitly modelled. The residuals from this GLM, with 

stop-related activity and movement removed, were used in the task-based connectivity 

analysis. ROIs were derived from a 268-node functional brain atlas (referred to as the ‘Shen 

atlas’) that encompasses fine-grained, spatially homogeneous functional parcellations of the 

entire brain, including cortex, subcortical areas, and cerebellum, which serve as nodes for 

network analysis (Shen et al., 2013). Network labels, Brodmann areas (BA), and Montreal 

Neurological Institute (MNI) coordinates were automatically generated, and comprises ROIs 

with more coherent time courses than those defined by other atlases (e.g. automatic anatomic 

labelling atlas; Shen et al., 2013). For each participant, the ROI time-course was calculated 

by averaging the BOLD signal of all of its constituent voxels. This yielded 444 x 268 data 

points for each participant. 

Since head motion occurs at low frequencies as intrinsic blood-oxygen level-

dependent (BOLD) signal fluctuations, it can generate discrete neural artifacts that cannot be 

subjugated by increasing sample size or scan duration (Castellanos & Aoki, 2016). In order to 

further control for head motion artifacts, framewise displacement was included as a nuisance 

covariate in all connectivity analyses when computing partial correlations between functional 

connections and IRV (see below). Framewise displacement was defined as the sum of 

absolute scan to scan difference of the six translational and rotational realignment parameters 

(Power et al., 2014). Additional analyses were also conducted to exclude head motion as a 

cause of spurious results: these analyses are described in Supplemental Information. The 



   

 

119 

 

 

 

global signal (GS; average value across all gray-matter voxels) was included as a nuisance 

covariate once when computing the partial correlation between ROIs for each group (see 

below). The GS mitigates against between-subject effects of head motion (see Fox, Zhang, 

Snyder & Raichle, 2009; Yan et al., 2013). Although GS regression can bias group 

differences by enhancing anti-correlated connections, and some caution should be taken when 

interpreting results (Saad et al., 2012), much of the variance in the global signal can be 

explained by head motion, respiratory noise, and scanner hardware-related artifacts (Power, 

Plitt, Laumann & Martin, 2017).   

A partial Pearson’s correlation score was calculated among the 268 ROIs to determine 

their pairwise functional connectivity strength, with GS regressed as a nuisance covariate at 

this point. This yielded a connectivity matrix of size 268 × 268, with 35,778 unique 

connections between ROIs for each individual. Data file Supplemental_data_1.mat contains 

all pairwise correlations for all subjects. Matrices were not thresholded based on raw 

connection strength, allowing us to consider both low-variance connections (i.e., those that 

are consistently strongly positive or strongly negative across participants) and high-variance 

connections (i.e., those that are positive in some participants and negative in others); the 

latter, especially, may contain signal related to individual differences in IRV (see Garrison, 

Scheinost, Finn, Shen, & Constable, 2015; Scheinost et al., 2012). 

   

4.2.3.4 Functional connectivity correlated with behaviour.  

 To assess the relevance of functional connections to behaviour the following analysis 

was performed: The 268 x 268 matrix of connections between ROIs was correlated with each 
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participant’s IRV across the normative sample. Framewise displacement, age, sex, pubertal 

status, handedness, performance IQ, verbal IQ, and data collection site were nuisance 

covariate regressors. Type 1 error was estimated via random-label permutation by randomly 

shuffling IRV across participants and re-running the correlation analysis 1000 times in order 

to obtain an empirical null distribution. This analysis quantifies the probability of obtaining a 

particular r value between IRV and functional connectivity by chance. The observed r values 

between IRV and functional connectivity were considered significant if their associated p 

value exceeded a particular percentile of the random-label permutation. The resulting 

thresholded matrix consisted of connections between ROIs that were negatively correlated 

with IRV (i.e., indexing good sustained attention) and connections between ROIs that were 

positively correlated with IRV (i.e., indexing poor sustained attention). This thresholding was 

repeated using a series of significance thresholds (p < 0.001, and p < 0.0001) to identify 

networks associated with the task. Regional and network labels for the significant results 

were obtained from the previously available Shen atlas.  

Alcohol. This method was repeated for the normative sample, however, rather than 

using their IRV scores, the 268 x 268 matrix of connections were correlated each 

participant’s total AUDIT scores, and two thresholds (p < 0.001, p < 0.05) were used to 

identify networks associated with alcohol use.  

Validation of IRV-linked networks. Having identified connections between ROIs that 

were significantly positively and negatively related to IRV using the p < 0.001 cut-off, (for 

comparison to similar research, see Rosenberg et al., 2065), the same connections for the 

ADHD symptom and asymptomatic control groups were extracted and computed. For each 
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functional connection, the r-values were Fisher-normalized and then averaged across 

participants, within the ADHD symptom and asymptomatic control groups. This yielded two 

matrices for each group 1): connections positively correlated with IRV and 2) connections 

negatively correlated with IRV. Between-group two-sample t-tests were then conducted to 

examine group differences for each of these two connection types. 
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4.3 Results 

Table 4.1 displays the summary characteristics of the normative sample and Table 4.2 

displays the summary characteristics for the ADHD and control groups. 

 

Table 4.1 

Summary statistics for the normative sample 

 Normative (n=758)
‡
 

 Age (years) 14.55 (0.45)  

 Sex 425 Females 

 Handedness 664 Right 

 Pubertal Development 3 (0.69) 

 Performance IQ 110 (14) 

 Verbal IQ 113 (13) 

AUDIT Total  1.33 (4.24) 

 IRV 0.235 (.038) 

 ‘Go’ trial RT St. Dev. (ms) 101 (24) 

 ‘Go’ trial mean RT (ms) 429 (61) 

 SSRT 217(37)  

 Head Motion  

 (Framewise displacement) 

0.212 (.139) 

 Head Motion/IRV correlation  .22
†
 

‡
 Mean (standard deviation), unless otherwise indicated 

†
 Spearman correlation, p < .0001. 
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Table 4.2 

Summary statistics for ADHD symptom and asymptomatic control groups 

†
 Two-sample two-tailed t test 

††
 Chi-square test 

†††
Non-parametric Mann-Whitney U test 

†
Spearman correlation, p>.05 

 

4.3.1 Behavioural Results 

The standard deviation of Go trial RT significantly correlated with the mean Go trial 

RT for the normative sample (r = 0.77, p < .001), the ADHD symptom group (r = 0.67, p < 

.001) and asymptomatic control group (r = 0.72, p < .001). The ADHD symptom group had 

significantly greater IRV (M = 0.258) than the matched asymptomatic control group (M = 

.228, t(58)= -2.951, p = .005), and significantly greater IRV than the normative sample (M = 

.235,  t(786)= -3.216, p = .001), while there was no significant difference in IRV between the 

 ADHD 

(n=30) 

Control 

(n=30) 

p 

ADHD Total Score (DAWBA) 43 (9.83) 0  

Age 14(0.38) 14(0.41) .16
†
 

Sex 26 Males 23 Males .32
††

 

Handedness 27 Right 24 Right .28
††

 

Pubertal Development 3 (0.50) 3 (0.71) .66
†††

 

Performance IQ 101 (13.06) 103 (15.11) .61
†
 

Verbal IQ 109 (17.20) 105 (17.97) .48
†
 

AUDIT Total 2.03 (4.04) 1.10 (1.82) .06
†††

 

IRV 0.258 (0.04) 0.228 (0.36) <.005
†
 

‘Go’ trial St. Dev. (ms) 115 (26.20) 90 (22.26) <.005
†
 

‘Go’ trial mean RT (ms) 446 (72) 391 (58.56) <.005
†
 

SSRT 231(39) 228(41) .76
†
 

Head Motion (Framewise displacement) 0.291 (0.218) 0.195 (0.100) .03
†
 

Head Motion/IRV correlation -.03
†
 .08

†
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normative sample and control group (t(786)= -1.026, p = .305). SSRT was not significantly 

correlated with IRV for the normative sample (r = .06, p = .09), the ADHD sample (r = .24, p 

= .19), or the control group (r = -.08, p = .66). 

Alcohol. AUDIT total scores for the normative sample did not significantly correlate 

with IRV (r = .06, p = .07). AUDIT total scores did not significantly correlate with IRV for 

the ADHD symptom (r = .20, p = .26) or control (r = - .07, p = .70) groups, and no 

statistically significant group differences were found (t(58)= 3.4526, p = .06).  

 

4.3.2 fMRI Activation Results 

Normative Sample. Whole-brain task activity (for Go trials, Stop Success and Stop 

Fail trials) significantly correlated with IRV in several brain areas in the normative sample 

(see Table 4.3 and Figure 4.1). During Go trials, IRV was positively correlated with 

activation in bilateral postcentral gyrus, fusiform gyrus, superior temporal gyrus (STG), and 

right insula and precuneus. During Stop Fail trials, IRV was positively correlated with 

activation in left postcentral gyrus, and was negatively correlated with activation in insula 

bilaterally and right anterior cingulate cortex (ACC). During Stop Success trials, IRV was 

positively correlated with activation in precentral gyrus bilaterally, left postcentral gyrus, 

right SMA, left medial orbitofrontal cortex (OFC), precuneus bilaterally, and left superior 

temporal gyrus (STG). During Stop Success trials, IRV was negatively correlated with 

activation in right MFG and insula bilaterally. 

ADHD Symptom & Control Groups. Compared to the control group, the ADHD 

symptom group had significantly greater activation in left postcentral gyrus during Stop Fail 
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trials (ADHD m = .30, control m = -.20, p = .03), during Stop Success trials (ADHD m = .12, 

control m = -.27, p = .03).  No other significant differences emerged (using p < 0.003 the 

Bonferroni-corrected threshold for statistical significance). 
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Table 4.3 

fMRI Activation correlated with IRV (Normative sample)  

Brain Region (direction of 

effect) 

Brodmann 

Area  

Cluster 

 

 

Z score 

 

  

Montreal Neurological Institute 

(MNI) Coordinates  

  Size  x y z 

Go trial (Positive)           

Postcentral Gyrus R  280 4.564 60 -28 46 

Postcentral Gyrus L 405 5.083 -45 -25 64 

Insula R  54 4.908 39 -7 1 

Fusiform Gyrus (Occipital) L 18 47 4.903 -21 -76 -14 

Fusiform Gyrus (Occipital) R   41 4.884 21 -34 -20 

Lingual Gyrus (Occipital) R   113 5.143 18 -85 -8 

Precuneus R  39 4.713 27 -70 37 

STG  L 22 50 4.368 -54 -10 7 

STG L 41 47 4.237 -45 -25 7 

Paracentral Lobule  43 3.866 -3 -19 64 

Stop Fail (Positive) 

 

  

   Postcentral Gyrus L 3 4 6 102 4.447 -15 -28 76 

Stop Fail (Negative) 

  

     

Insula L 13 47 105 5.062 -36 14 -2 

Insula R 13 47 96 4.827 42 17 -5 

ACC R 424 85 4.442 3 23 25 

Stop Success (Positive)   

   Precentral Gyrus R 4 6 98 5.418 27 -25 76 

Precentral Gyrus R 4 6 84 5.200 54 -7 52 

Postcentral Gyrus L 3 4 6 127 5.086 -24 -31 55 

SMA L 6 57 5.026 0 -22 61 

Medial Orbitofrontal L 10 45 4.698 -6 62 -5 

Precuneus  L 31 176 4.499 -12 -55 16 

Precuneus  R 23 46 4.465 18 -58 19 

Postcentral Gyrus L 3 4 6 52 4.222 -48 -13 49 

STG L 22 6 37 3.898 -60 -16 4 

Stop Success (Negative)   

   MFG R 8 9 39 4.699 48 11 43 

Insula R 13 47 52 4.675 45 17 -5 

Insula L 13 47 34 4.485 -36 14 -2 

*All regions survived corrections for multiple comparisons (FWE p < 0.05) at the whole brain cluster 

level. Abbreviations: L=Left, R=Right, PCC=Posterior Cingulate Cortex, MOG=Middle Occipital 
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Gyrus, ACC=Anterior Cingulate Cortex, SMA=Supplementary Motor Area, OFC=Orbitofrontal 

cortex, STG Superior Temporal Gyrus, MFG=Middle Frontal Gyrus  
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Figure 4.1. ROIs that positively correlated with IRV (yellow; poor sustained attention) and negatively 
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correlated with IRV (blue; good sustained attention) for the normative sample during (A) Go trials (B) 

Stop Fail and (C) Stop Success trials. Average fMRI activation images were created using MRIcroGL 

software (http://www.cabiatl.com/mricrogl/).  

 

4.3.3 Functional connectivity results 

  IRV. At the significance threshold of p < 0.001 (absolute r-value >.12 derived from 

null models), 1368 connections between ROIs were associated with IRV. Networks linked 

with high and low IRV were identified (Figure 4.2). The networks linked with high IRV (i.e., 

poor sustained attention) were primarily characterised by positive correlations between ROIs 

(610 connections between ROIs, 80% of which were positively correlated), while the 

networks linked with low IRV (i.e., good sustained attention) were primarily characterised by 

negative correlations between ROIs (758 connections between ROIs, 86.7% of which were 

anticorrelated). In order to aid the interpretation of the findings (Böttger, Schäfer, Lohmann, 

Villringer, & Margulies, 2014), the top connections between ROIs correlated with IRV are 

reported in Table 4.4 and Figure 4.2.  

 Alcohol. No significant results were observed for functional connections with alcohol 

use at thresholds of p < 0.001 (absolute r-value = 004, p = .93, derived from null models), or 

at a liberal threshold (p < 0.05 uncorrected, absolute r-value =.03, p = .79, derived from null 

models). 

 

4.3.3.1 Functional anatomy of attention networks. 

 Network anatomy was intricate. However, several trends emerged (see Figure 4.2). 

Connections positively correlated with IRV (i.e. poor sustained attention) were primarily 

located bilaterally within the motor network and between motor with parietal, prefrontal and 
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limbic networks. The top 10 nodes positively correlated with IRV comprised positively 

correlated connections between ROIs between and within bilateral precentral and postcentral 

gyri.  Connections negatively correlated with IRV (i.e. good sustained attention) were 

primarily negative (i.e., anti-correlated), indexing functional segregation between cerebellum 

with motor, prefrontal and parietal regions, and between occipital and motor networks.  The 

top 10 connections between ROIs negatively correlated with IRV consisted of anti-

correlations between left cerebellum crus I/II and right precentral/postcentral gyri. 

 

4.3.3.2 ADHD Symptom & Control Groups.  

With respect to connections associated with high IRV (i.e., poor sustained attention), 

the ADHD symptom exhibited significantly stronger positive connectivity between ROIs 

(Fisher-normalized r value = .207) than the control group (Fisher-normalized r value = .156 

t(1218) = 2.92,  p = .003). There were no significant group differences in mean correlation 

strength for connections associated with low IRV (ADHD group, Fisher-normalized r value 

m = -.132; control group, Fisher-normalized r value m = -.148, t(1514) = 1.34, p = .177) See 

Figure 4.3. 
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Table 4.4 

Top 30 Connections between ROIs Correlated with IRV 

Brain Region Brain Region Hem Hem BA BA   MNI     MNI     Normative   Control    ADHD  

1 2 1 2 1 2   1     2     FC & IRV FC     

            x y z x y z p r r r r 

High Sustained Attention                  

     Postcentral Gyrus Cerebellum Crus 1 R L 2 

 

42 -22 52 -25 -71 -30 .00 -0.219 -0.124 0.056 0.017 

Precentral Gyrus Cerebellum VI R L 6 

 

49 -3 49 -7 -68 -18 .00 -0.216 -0.373 -0.311 -0.548 

Precentral Gyrus Cerebellum Crus 1 R L 6 

 

49 -3 49 -25 -71 -30 .00 -0.21 -0.269 -0.199 -0.203 

Postcentral Gyrus Cerebellum Crus 2 R L 2 

 

42 -22 52 -9 -82 -32 .00 -0.205 -0.064 0.053 -0.144 

SMA Cerebellum Crus 1 R L 6 

 

27 -11 65 -25 -71 -30 .00 -0.204 -0.09 0.089 0.064 

Precentral Gyrus Cerebellum VI R L 6 38 49 -3 49 -20 -55 -22 .00 -0.2 -0.361 -0.244 -0.437 

Precentral Gyrus Cerebellum VI R R 6 

 

49 -3 49 7 -69 -20 .00 -0.198 -0.308 -0.217 -0.488 

Postcentral Gyrus Cerebellum Crus 1 R L 2 37 42 -22 52 -35 -55 -31 .00 -0.197 -0.163 -0.09 -0.017 

Postcentral Gyrus Cerebellum Crus 1 R L 2 

 

21 -32 67 -25 -71 -30 .00 -0.193 0.052 0.292 0.241 

Precentral Gyrus Cerebellum Crus 1 R L 6 37 49 -3 49 -35 -55 -31 .00 -0.193 -0.29 -0.274 -0.256 

Postcentral Gyrus Cerebellum Crus 1 R L 2 

 

42 -22 52 -25 -71 -30 .00 -0.191 0.000 0.202 -0.038 

Precentral Gyrus Cerebellum Crus 2 R L 6 

 

49 -3 49 -9 -82 -32 .00 -0.191 -0.217 -0.209 -0.275 

SMA Cerebellum Crus 2 R L 6 

 

27 -11 65 -9 -82 -32 .00 -0.189 -0.053 0.014 -0.08 

DLPFC MTG R R 46 37 47 35 19 59 -45 -15 .00 -0.188 -0.412 -0.617 -0.352 

Postcentral Gyrus Cerebellum VI  R L 2 

 

42 -22 52 -7 -68 -18 .00 -0.187 -0.269 -0.153 -0.386 

Precentral Gyrus Cerebellum V R L 6 

 

49 -3 49 -6 -56 -25 .00 -0.185 -0.359 -0.267 -0.506 
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Postcentral Gyrus Cerebellum Crus 2 R L 40 

 

53 -27 41 -9 -82 -32 .00 -0.183 -0.147 -0.071 -0.12 

Postcentral Gyrus Cerebellum VI R R 2 

 

42 -22 52 24 -73 -28 .00 -0.183 -0.018 0.153 -0.016 

Postcentral Gyrus Cerebellum Crus 1 R L 40 

 

53 -27 41 -25 -71 -30 .00 -0.181 -0.235 -0.09 0.000 

Postcentral Gyrus Cerebellum Crus 1 L L 1 

 

-36 -23 64 -25 -71 -30 .00 -0.179 -0.026 0.222 0.014 

SMA Cerebellum Crus 1 R L 6 37 27 -11 65 -35 -55 -31 .00 -0.179 -0.119 -0.052 -0.04 

SMA Cerebellum VI R L 6 

 

27 -11 65 -7 -68 -18 .00 -0.178 -0.287 -0.254 -0.398 

Postcentral Gyrus Cerebellum Crus 2 R L 2 

 

21 -32 67 -9 -82 -32 .00 -0.178 0.06 0.176 0.009 

IPL Cerebellum Crus 2 R L 2 

 

33 -39 48 -9 -82 -32 .00 -0.176 -0.02 0.003 -0.029 

SMA Cerebellum VI R R 6 

 

27 -11 65 24 -73 -28 .00 -0.176 -0.011 0.111 0.097 

MTG DLPFC R L 37 46 59 -45 -15 -42 41 14 .00 -0.174 -0.372 -0.573 -0.314 

IPL Cerebellum Crus 1 R L 2 

 

33 -39 48 -25 -71 -30 .00 -0.174 -0.091 0.067 0.101 

Postcentral Gyrus Cerebellum Crus 2 L L 1 

 

-36 -23 64 -9 -82 -32 .00 -0.172 -0.052 0.167 -0.248 

SFG MTG R R 10 37 37 36 35 59 -45 -15 .00 -0.172 -0.437 -0.545 -0.308 

Postcentral Gyrus Cerebellum VI R L 40 

 

53 -27 41 -7 -68 -18 .00 -0.171 -0.294 -0.165 -0.333 

Low Sustained Attention 

       

  

     Precentral Gyrus Postcentral Gyrus R L 2 1 42 -22 52 -24 -32 61 .00 0.243 0.307 0.318 0.579 

Postcentral Gyrus Postcentral Gyrus R L 2 4 42 -22 52 -41 -16 45 .00 0.227 0.206 0.02 0.047 

Postcentral Gyrus IPL R L 2 40 42 -22 52 -36 -39 46 .00 0.226 0.17 0.06 0.425 

Precentral Gyrus Postcentral Gyrus R L 4 1 57 -9 29 -24 -32 61 .00 0.223 -0.152 -0.261 -0.033 

Precentral Gyrus Claustrum R L 4 7 57 -9 29 -28 -9 55 .00 0.221 0.053 -0.132 -0.048 

Precentral Gyrus Postcentral Gyrus R L 4 1 57 -9 29 -36 -23 64 .00 0.216 -0.178 -0.441 0.002 

Precentral Gyrus IPL R L 4 40 57 -9 29 -36 -39 46 .00 0.215 -0.067 -0.318 0.026 

MFG IPL R L 6 40 27 -11 65 -36 -39 46 .00 0.212 0.19 0.22 0.393 
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Postcentral Gyrus Postcentral Gyrus R L 2 1 42 -22 52 -36 -23 64 .00 0.212 0.294 0.235 0.413 

Precentral Gyrus Precuneus R L 4 8 57 -9 29 -6 -34 64 .00 0.211 -0.073 -0.171 0.032 

Postcentral Gyrus SFG R L 2 7 42 -22 52 -16 -18 68 .00 0.21 0.338 0.52 0.591 

Precentral Gyrus Postcentral Gyrus R L 6 1 49 -3 49 -36 -23 64 .00 0.204 0.161 -0.004 0.379 

Precentral Gyrus Insula R L 4 6 57 -9 29 -45 -1 49 .00 0.204 -0.049 -0.276 -0.161 

Postcentral Gyrus Postcentral Gyrus R L 40 1 53 -27 41 -24 -32 61 .00 0.204 0.198 0.188 0.552 

Precentral Gyrus Postcentral Gyrus R L 6 1 49 -3 49 -24 -32 61 .00 0.201 0.108 0.012 0.407 

MFG Postcentral Gyrus R L 6 1 27 -11 65 -24 -32 61 .00 0.2 0.293 0.286 0.391 

Postcentral Gyrus SPL R L 2 1 42 -22 52 -51 -25 40 .00 0.198 0.084 -0.027 0.12 

Precentral Gyrus SMA R R 4 6 57 -9 29 6 -22 63 .00 0.198 -0.043 -0.117 0.013 

MFG Postcentral Gyrus R L 6 1 27 -11 65 -36 -23 64 .00 0.197 0.354 0.381 0.409 

MFG Postcentral Gyrus R L 6 4 27 -11 65 -41 -16 45 .00 0.196 0.281 0.228 0.151 

Postcentral Gyrus Precuneus R L 2 8 42 -22 52 -6 -34 64 .00 0.195 0.407 0.516 0.718 

Precentral Gyrus Postcentral Gyrus R R 4 2 57 -9 29 42 -22 52 .00 0.195 0.022 -0.346 -0.135 

MFG IPL R L 6 7 27 -11 65 -25 -55 59 .00 0.193 0.224 0.329 0.44 

Precentral Gyrus Postcentral Gyrus R L 4 4 57 -9 29 -41 -16 45 .00 0.192 -0.14 -0.453 -0.113 

IPL Postcentral Gyrus R L 2 1 33 -39 48 -24 -32 61 .00 0.189 0.309 0.389 0.466 

Postcentral Gyrus SFG R L 40 7 53 -27 41 -16 -18 68 .00 0.187 0.245 0.375 0.493 

MFG SPL R L 6 1 27 -11 65 -51 -25 40 .00 0.187 0.141 0.175 0.245 

Precentral Gyrus Insula R L 4 7 57 -9 29 -23 12 54 .00 0.184 0.27 0.155 -0.011 

Postcentral Gyrus Postcentral Gyrus R L 40 4 53 -27 41 -41 -16 45 .00 0.183 0.093 -0.174 -0.215 

Postcentral Gyrus Precuneus R L 40 8 53 -27 41 -6 -34 64 .00 0.182 0.347 0.428 0.722 



   

 

134 

 

 

 

Abbreviations: L=Left, R=Right, SMA= Supplementary Motor Area, DLPFC=dorsolateral prefrontal cortex, MTG=Middle Temporal Gyrus, 

IPL=Inferior Parietal Lobule, SFG=Superior Frontal Gyrus, MFG=Middle Frontal Gyrus, SPL=Superior Parietal Lobule
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Figure 4.2. (A) BrainNet was used to visualise network connectivity (Xia, Wang & He, 

2013), based on specific guidelines (see Shen et al., 2017), whereby nodes are grouped into 

localised regions. Good sustained attention denotes all connections between ROIs that 

negatively correlated with IRV (blue); poor sustained attention denotes all connections 

between ROIs that positively correlated with IRV (orange) for the normative sample. (B)  

Circle plots were generated using a custom-written Matlab function (based on 

http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph) to visualize 

good sustained attention (blue) and poor sustained attention (red) for the normative sample. 

The plots are arranged in two half circles reflecting left and right hemisphere brain anatomy 

from anterior (top of the circle) to posterior (bottom of the circle). Nodes are colour-coded 

according to the cortical lobes (Shen et al., 2017). (C)  The top 100 nodes and 10 nodes 

denoting good sustained attention (i.e. connections between ROIs that negatively correlated 

with IRV, where p<.001). (D) The top 100 nodes and 10 nodes denoting poor sustained 

attention (i.e. connections between ROIs that positively correlated with IRV where p<.001). 

Nodes were colour-coded according to network as identified in (Xia et al., 2013).   
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Figure 4.3. With respect to ROI connections associated with high IRV (i.e., poor sustained attention), 

the ADHD symptom exhibited significantly stronger connectivity between ROIs, compared to 

controls. 
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4.4 Discussion 

The current research is the first population-based functional imaging study to examine 

IRV with respect to both average fMRI activity and functional connectivity in a large cohort 

of adolescents. Sustained attentional processes are facilitated by an array of neural networks, 

particularly in connectivity between the cerebellum and motor networks, while atypically 

strong connectivity within motor networks characterises poor attentional capacity in both 

typically developing and ADHD symptomatic adolescents. 

 

4.4.1 Alcohol: sustained attention and the brain  

There were no significant findings for functional connectivity correlated with alcohol 

(even with a low, uncorrected, threshold, p<.05), nor was IRV associated with alcohol use for 

the normative sample, or for the ADHD symptom and control groups. The ADHD symptom 

group did have elevated AUDIT scores, relative to controls, however group differences did 

not reach significance. These results are likely due to relatively low levels of alcohol use at 

this age. On the other hand, the ADHD symptom adolescents had significantly higher IRV, 

relative to controls, as previously demonstrated (Albaugh et al., 2017; Rubia et al., 2003). 

Whelan and colleagues (2014), found no behavioural differences for motor impulsivity 

(SSRT) between 14-year-old alcohol misusers (<4 lifetime uses of alcohol) and non-drinkers, 

however, they did find group differences in neural networks underlying inhibitory control 

(note this study also used the IMAGEN sample). It is possible that inhibitory control is an 

early marker of vulnerability to alcohol misuse, whereas IRV may not be able to detect subtle 

differences underlying sustained attention deficits associated with low levels of alcohol use.  
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4.4.2 Brain correlates of sustained attention 

With respect to good sustained attention (i.e., low IRV) in the normative sample, 

fMRI Stop-related activation was found in the MFG, insula and ACC. The functional 

connectivity results indicated predominantly negative left cerebellar connections with right 

parietal (postcentral gyrus) and frontal areas (SMA and DLPFC), a finding that bears 

similarity sustained attention connectivity in adults (Rosenberg et al., 2016). The task-active 

frontoparietal network (including SMA and DLPFC) is typically activated during attention-

demanding tasks than during rest (Corbetta & Shulman, 2002; Konrad & Eickhoff, 2010; 

Langner & Eickhoff, 2013). Furthermore, the cerebellum is thought to have a critical role in 

sustained attention (Buckner, 2013; Brisenden et al., 2016; Habas et al., 2009; Stoodley, 

2012). In healthy adults, recent work has shown that enhancing cerebellar functional 

connectivity via transcranial magnetic stimulation decreases IRV (Esterman et al., 2017).  

Adding to this work, the current results also implicate distinct subregions of the cerebellum, 

i.e., left lateralized Crus I/II, in characterising good sustained attention. No significant 

differences in these networks were found between the ADHD symptom and asymptomatic 

control groups.  

With respect to poor sustained attention (i.e., high IRV) in the normative sample, 

fMRI activation was found in the precentral and postcentral gyri bilaterally on all trials, and 

in the left SMA during successful stop trials, a region responsible for successful stopping, 

monitoring and resolving task conflict (Verbruggen & Logan, 2008). Poor sustained attention 

was also associated with activation in the DMN (precuneus) during Go and Stop-Success 
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trials, a region that is typically deactivated for efficient sustained attentional processes (Broyd 

et al., 2009; Kelly et al., 2008), therefore, this positive IRV-DMN is unsurprising. However, 

DMN deactivation typically increases with maturation into young adulthood (Anderson et al., 

2011; Fair et al., 2007). The functional connectivity results for poor sustained attention 

showed robust positive interhemispheric connections within the motor network, as well as 

between motor with parietal and limbic networks. This bilateral motor activation likely 

reflected the task format (i.e., left- and right-hand responses). Consistent with these 

observations, the sample of adolescents with ADHD symptoms also had increased fMRI 

activation and stronger positive connectivity within the same motor network, compared to 

controls. The observed positive motor-motor coupling may reflect a snapshot of neural 

development in early adolescence. For example, age-related decreases in motor connectivity 

have been observed in a large sample of healthy children and young adults (Van 

Duijvenvoorde et al., 2016). Furthermore, adults with poor sustained attention show 

connections between temporal and parietal networks and within the cerebellum (Rosenberg et 

al., 2016). Nevertheless, the findings lend support for a more predominant functional 

segregation of neural networks in childhood and greater functional integration later on in 

adulthood (Konrad & Eickhoff, 2010). 

Alternatively, there is increasing agreement among fMRI studies that decreased pre-

SMA activation may lead to increased, compensatory prefrontal activity during response 

inhibition in ADHD individuals (Suskauer et al., 2008). In an fMRI study using the SST, 16 

children with ADHD (8-12-years-old) had higher BOLD responses for Stop Success over 

Stop Fail trials in the fronto-striatal network, ACC and cerebellum (Massat et al., 2016). 
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Furthermore, these ADHD children had higher activations in the striatum (caudate, putamen), 

right insula and cingulate cortex for Stop Success trials, relative to 16 typically developing 

children. Similar to the current findings, higher activation in inhibitory control-related 

networks in children with ADHD indicates reduced efficiency with compensatory neural 

efforts in situations in which most individuals could depend on less demanding processes to 

reach normal performance levels (Massat et al., 2016). This need for compensatory brain 

activation is potentially linked to a less mature response inhibition neural system (Braet et al. 

2009) in children with ADHD. However, in adulthood, diagnostic remission may actually 

arise from compensatory maturation of prefrontal, cerebellar, and thalamic circuitry (Proal, 

Reiss et al. 2011). 

4.4.3 Strengths and limitations 

The findings of Chapter 4 solidify the importance of data-driven functional connectivity 

analyses, rather than constraining ROIs a priori, in order to better characterise cognitive 

processes (Ernst, Torrisi, Balderston, Grillon & Hale, 2015; Turk-Browne, 2013).  Tamnes 

and colleagues (2012) suggested that the relationship between IRV and age may be a 

sensitive marker of neural development. Furthermore, adolescents with ADHD (Shaw et al., 

2007) and subclinical attention deficits (Ducharme et al., 2012; Shaw et al., 2011) display 

delays in cortical maturation, and this localized motor hyper-connectivity may subside as 

more global, specialized brain networks develop. Considering the major brain changes that 

occur during adolescence (Luciana, 2010), it is unclear if the observed functional trends 

reflect some sort of developmental delay or if they will persist as these adolescents develop. 

Secondly, the large normative sample was relatively substance naïve and their AUDIT scores 
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did not correlate with IRV. However, given that Chapters 2 and 3 found a positive association 

between IRV and alcohol use in students, the networks identified here provide a basis for 

examining later neural changes and their association with drinking trajectories. Thirdly, the 

ability to rigorously measure fluctuations in temporal resolution, combined with the 

corresponding physiological responses (head motion, respiration) remains a challenge (Kuntsi 

& Klein, 2011; Poldrack, 2015). Broadly speaking, nuisance regression is the dominant 

approach for removing signal confounds, although it increases the risk of reducing signals of 

interest (Caballero-Gaudes & Reynolds, 2017). Scrubbing procedures can alter the temporal 

structure of timeseries data (Yan et al., 2013), therefore it was not implemented in this case. 

Some previous work indicates functional connectivity patterns remain largely unchanged 

after scrubbing, and that including mean framewise displacement as a group-level covariate 

yields similar results to scrubbing (Yan et al., 2013; Di Martino et al., 2014; Fair et al., 2013). 

The issue of head motion was at least partially addressed here by considering motion 

parameters as covariates in the statistical analysis (Yan et al., 2013). Global signal regression 

was also used in the current analyses, given that several reports have indicated its merits in 

robustly handling in-scanner movement (Burgess et al., 2016; Ciric et al., 2017; Power, 

Laumann, Plitt, Martin & Petersen, 2017). Nevertheless, head motion (i.e., mean framewise 

displacement) significantly correlated with IRV in the large normative sample (n=758; r = 

.22), but not in the smaller ADHD symptom and control samples (each n=30) similar to 

previous research (Rosenberg et al., 2016). This further highlights the importance of large 

sample sizes in order to control for spurious effects on functional connectivity data. 
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Conclusion 

The current findings serve to advance our understanding of the brain networks 

associated with sustained attentional processes. Functional connectivity between a global 

array of networks, including the cerebellum, motor, and prefrontal cortices, serve as a robust 

indicator for sustained attention. The involvement of motor connectivity in both low and high 

attention networks highlights its significant role in adolescent attention and cognitive 

impulsivity. However, functional connectivity associated with IRV was not sensitive to 

alcohol use in 14-year-old adolescents, although one future direction could be to examine if 

these networks predict alcohol use trajectories into adulthood. 
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5 Overall Discussion 

5.1 Review of general aims and summary of main findings 

The aim of this thesis was three-fold: the first objective was to capture the relationship 

between impulsivity endophenotypes, and other important risk factors, including different 

alcohol-related outcomes. Using this framework, machine learning methods facilitated the 

inclusion of large datasets, whilst also safeguarding against overfitting (out-of-sample nested 

cross-validation) to help yield greater generalisability of results. Secondly, the ERP literature 

indicates that attentional and inhibitory control processes are impaired in individuals with 

AUD. Using a novel machine learning approach, the objective was to quantify the utility of 

ERPs, indexing inhibitory control on the SST, for predicting alcohol use. This approach 

capitalises on recent trends that use machine learning techniques to classify alcohol misusers 

based on their fMRI signatures. Thirdly, sustained attention, an important aspect of cognitive 

impulsivity, has been explored extensively in individuals with ADHD, however, a measure of 

sustained attention – IRV on the SST – had yet to be examined.  Using task-based fMRI, an 

objective here was to tackle the interesting and timely question of how average brain 

activation and functional connectivity patterns were related to individual differences in 

sustained attention, and if this may elucidate some of the nascent aetiological cognitive 

mechanisms that contribute to risks related to substance misuse in adolescents and beyond.   
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5.2 Impulsivity phenotypes and different patterns alcohol use  

The use of multiple alcohol measurements, as well as intermediate levels of alcohol 

use, may better capture the relationship between alcohol involvement and endophenotypic 

diversity. In Chapter 1 various challenges in quantifying alcohol consumption (e.g., 

definitions of heavy vs. light alcohol use) and alcohol-related consequences (e.g., single 

consumption-based measures of alcohol use) were highlighted. It was also suggested that the 

integration of different patterns of alcohol use, such as drunkenness, rather than solely 

focusing on alcohol quantity, would offer a more accomplished method to phenotype alcohol 

use. The findings in Chapter 2 lends support to this. Two orthogonal latent factors of alcohol 

use were generated (based on the frequency of alcohol use, binge drinking frequency, and 

perceived intoxication questions on the ESPAD; Hibell et al., 2009), and named ‘intoxication 

frequency’ and ‘consumption frequency’. Chapter 3 also applied machine learning to 

impulsivity endophenotypes to predict alcohol use, using a separate sample. Here, individual 

differences in AUDIT scores were also significantly predicted by impulsivity 

endophenotypes, but unlike Chapter 2, increased AUDIT scores were characterised by 

increased trait impulsivity (Motor and Non-planning BIS-11 subscales), increased cognitive 

impulsivity (IRV) and an increased Interference Effect on the Stroop. However, in Chapter 4, 

functional connectivity associated with IRV was not significantly associated with alcohol use, 

albeit in a sample of adolescents with low alcohol exposure.  Some of these distinctions and 

overlaps in individual variables may attributable to the alcohol-related outcomes measured, 

which will now be explored further.   
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5.2.1 Trait impulsivity 

Some of the strongest predictors of alcohol use in Chapters 2 and 3 (including 

intoxication frequency and AUDIT scores) were trait impulsivity measures, in line with 

previous studies (Caswell et al., 2015b; Mackillop et al., 2016; Sanchez-Roige et al., 2014). 

Increased Non-planning (BIS-11) was an important predictor of alcohol misuse, regardless of 

alcohol measure and sample differences, predicting both increased intoxication frequency 

(Chapter 2) and increased AUDIT scores (Chapter 3), as supported in by various other 

studies (Carbia et al., 2018; Mackillop et al., 2016; Moreno et al., 2012; Sanchez-Roige et al., 

2014). Furthermore, students with higher negative expectations of alcohol have also shown 

higher levels of Non-planning impulsivity (Balodis et al.,2009). However, distinctions 

between the studies did emerge on BIS-11 subscales, with higher Attentional (but not Motor) 

trait impulsivity predicting intoxication frequency (Chapter 2), whilst higher Motor (but not 

Attentional) was observed for AUDIT scores. (Chapter 3). These findings further highlight 

the importance of distinguishing subscales of the BIS-11 scale in relation to alcohol use 

(Stevens et al., 2018). 

Zuckerman’s Sensation Seeking Scale (SSS, Zuckerman, Eysenck, & Eysenck, 1978), 

posited another strand of impulsivity, derived from aspects of trait impulsivity, where high 

‘sensation seeking’ indicates a need for stimulation and novel experiences, regardless of the 

risks, and it is also a subscale of the SURPS. However, whether impulsivity and sensation 

seeking are dissociable constructs, or whether they converge, has been unclear. For instance, 

although MacKillop and colleagues (2016) initially included sensation seeking in their latent 

structures of trait impulsivity, the inclusion of sensation seeking to their overall factor model 
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did not improve the overall construct validity, whereas its removal did. In Chapter 2, trait 

Disinhibition (SSS-V) was the only trait predictor of consumption frequency, and has been 

previously linked to student binge drinking (+6 drinks threshold; Moreno et al., 2012). 

However, this thesis found that higher Experience Seeking indicated lower levels of 

intoxication frequency, and suggested that it is possible that this sub-trait is redolent of the 

pursuit of an unconventional lifestyle that actually requires a degree of planning and 

consideration (e.g., travelling, parachuting). This is discordant with previous definitions of 

impulsivity (i.e., rapid, unplanned actions, without consideration for the negative 

consequences Moeller et al., 2001), and has led to some (Castellanos-Ryan et al., 2011) 

suggesting that developing a joint construct of, impulsivity and sensation seeking, that is, 

“disinhibited personality”, may be more conceptually useful. Because findings in Chapter 2 

lent support to Mackillop and colleagues’ (2016) findings, SSS-V was not included in 

subsequent analysis in Chapter 3, however, it would be interesting to see whether impulsivity 

or sensation seeking traits best classify alcohol-using groups.  

 

5.2.2 Choice impulsivity 

When it came to choice impulsivity, Chapter 1 highlighted that youth alcohol users 

were more likely to demonstrate suboptimal choices, and in turn select a smaller more 

immediate reward over a larger delayed reward, as previously demonstrated in 13-15-year-

old adolescents on a DDT (Schneider, Peters, Peth, & Büchel, 2014), and in 16-18-year-old 

binge-drinkers on the IGT (Xiao et al., 2013). However, the empirical study in Chapter 2 did 

not fully support this, finding that choice impulsivity, as measured by the delay discounting 
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task (DDT), was a weak-to-moderate predictor for intoxication frequency, and it only became 

a significant predictor for consumption frequency when combined with other risk factors. In 

Chapter 3, the DDT was also a relatively weaker predictor of alcohol use, compared to other 

task-based impulsivity measures (e.g., Stroop and IRV). In contrast to the DDT, self-reported 

steeper discounting rates on the MCQ was a significant predictor for intoxication frequency 

in Chapter 2, but not consumption frequency. Although the MCQ measure was not included 

in the experimental design in Chapter 3, other studies have also found notable measurement-

related differences for questionnaire- and task-based choice impulsivity in student samples. 

For example, choice impulsivity, indexed by the MCQ, was not found to be related to the 

number of weekly alcohol units in a student sample (Caswell et al., 2015b). Similarly, 

another study found no differences between binge-drinkers and non-binge-drinkers for choice 

impulsivity, indexed by the DDQ (Sanchez-Roige et al, 2014), which is consistent with a 

number of studies using the DDQ (Fernie et al, 2010; MacKillop et al, 2007). However, 

Sanchez-Roige and colleagues (2014) did find that binge-drinkers had greater choice 

impulsivity on a behavioural task (TCIP). Moreover, MacKillop and colleagues (2016) found 

that a latent factor of choice impulsivity (DDT and MCQ) was associated with alcohol use in 

lighter drinkers (AUDIT mean = 4).  It is evident that different paradigms measuring 

discounting rates (choice impulsivity) produce varying results, but it might also indicate that 

there are perhaps important distinctions related to patterns of alcohol use. Designs for future 

research need to reflect such considerations in order to elucidate on these relationships. 

Moreover, despite strong associations between choice impulsivity on the DDT and disordered 

substance use (Amlung et al., 2017), there is little other examination of the DDT and how it 
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relates to non-disordered alcohol use. These findings provide a potentially interesting and 

important avenue for alcohol-related research, given that steeper discounting is also 

increasingly being linked to new addictive disorders that are particularly pertinent in young 

people, such as Internet Gaming Disorder (Tian et al., 2018).  

 

5.2.3 Motor impulsivity  

Poor inhibitory control, indexed by longer SSRTs on Stop Signal Tasks (SST) have 

been observed for disordered alcohol-use (Mole et al., 2015) and for acute alcohol dosages 

(Caswell et al., 2013a). Studies reviewed in Chapter 1 pointed to comparable behavioural 

performances for motor impulsivity indexing inhibitory control between alcohol misusers and 

controls (Caswell et al., 2015b; MacKillop et al., 2016; Moreno et al., 2012; Sanchez-Roige 

et al., 2014).  SSRT did not significantly predict any indices of alcohol use in Chapters 2 and 

3. Furthermore, in Chapter 4, the SSRT was not significantly correlated with the sustained 

attention (IRV) in a large normative sample of adolescents, or in the smaller sample of 

individuals with elevated symptoms of ADHD, or the asymptomatic control group. Given the 

young age of the participants sampled for this thesis, it is possible that non-dependent alcohol 

users have not yet experienced the cumulative neurotoxic effects of repeated alcohol abuse, 

which is thought to weaken top-down cognitive control (López-Caneda et al., 2013; Robbins 

& Dalley, 2017; Stephens & Duka, 2008).  

In contrast to the behavioural results however, there was some indication that 

differences in brain activation patterns underlying response inhibition could be detected, even 

in the absence of behavioural differences (Whelan et al., 2012).  In the longitudinal studies 
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reviewed in Chapter 1, measures of baseline brain activity tended to show hypoactivation in 

frontoparietal, temporal and orbitofrontal brain regions in low-moderate alcohol misusers, 

which predicted subsequent heavier drinking (Wetherill et al., 2013b; Worhunsky et al., 

2016). This suggested that neural measures of inhibitory control could have potential to better 

characterise alcohol misuse than behavioural metrics alone.  This thesis sought to investigate 

this further using EEG techniques.    

 

5.2.3.1 ERP correlates of alcohol use. 

It was hypothesised that a multivariable approach, based on a weighted combination of 

diverse electrophysiological variables, would be more useful for predicting outcomes than 

single ERPs. In Chapter 3, this assumption was tested. Results showed that individual 

differences in AUDIT scores were predicted from ERP time-courses derived from an assay of 

inhibitory control (stop success and stop fail conditions), with moderate accuracy. Over 8,000 

ERP variables per participant were included in the model, and out-of-sample validation was 

used to quantify generalisability of the results.  It was expected that the optimal parameters 

for predicting alcohol use would predominantly fall within the N2-P3 complex. Interestingly 

however, the optimal ERP variables for predicting alcohol use were widespread spatially and 

tended to occur early in the inhibitory control time course, over medial scalp regions. Indeed, 

the model of ERP variables that best predicted alcohol use was not sparse, even when 

utilising stringent thresholding approaches.  

Greater N2 amplitude (i.e., more negative N2) was associated with higher alcohol use, 

with similar findings in other student binge drinkers (Crego et al. (2009), and in adults with 
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AUD (Olbrich et al., 2000). However, findings for N2 abnormalities in alcohol misusers, 

compared to control, have been equivocal. For example, Pandey and colleagues (2012) found 

lower No-Go N2 amplitude in males with alcohol dependence, while no NoGo differences in 

N2 amplitude were found when comparing heavy drinkers to lighter drinkers (Franken et al., 

2017), as between student heavy drinkers and lighter drinkers (Oddy & Barry, 2009). With 

regards to the P3, reduced P3 amplitude was associated with higher alcohol use, particularly 

during successful stops, a finding that is also a marker of AUD (Campanella et al., 2018; 

Luijten et al., 2014; Mumtaz et el., 2017). Reduced P3 amplitude during response inhibition 

is also thought to represent a component of the alcoholic phenotype (Campanella et al., 2018; 

Luijten et al., 2014; Mumtaz et el., 2017a). However, similarly to the N2, findings for the P3 

are not consistent across studies. For example, Franken and colleagues (2017) found no group 

differences related to the P3. 

 Notably, the current study used the SST to index motor impulsivity, while the 

abovementioned studies used GNG tasks. This may account for, in part, some of the 

discrepancies between the findings, given that hemispheric activation differences have been 

observed for these tasks (D’Alberto, Funnell, Potter, & Garavan, 2017; Nikolaou, Critchley, 

& Duka, 2013; Rubia et al., 2001). Further still, evidence from Littman and Takács, (2017) 

distinguishes the SST from the GNG task by demonstrating that exposure to negative stimuli 

impaired performance on Go trials and improved inhibitory performance on Stop trials of the 

SST, while inhibitory performance on the GNG task was unaffected. Few other studies have 

examined ERPs and alcohol use using the SST, and comparisons drawn between current 

results and previous findings must be considered tentatively. Although out-of-sample 
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methods helped to substantiate the generalisability of the findings, replication studies 

examining the SST would be beneficial.  

Unexpectedly, a novel finding emerged from Chapter 3, with the best prediction of 

alcohol use in the ERP model indicated by early activity (before the N2) across the scalp. 

Some studies have examined earlier components in alcohol-dependent samples, with deficits 

found in the P50, an early predominantly preattentional component (Freedman et al., 1987; 

Marco et al., 2005) and in the P1, a visuo-perceptual processing component (Maurage et al., 

2007). It is possible the P50 observed here is linked to an inhibitory filter mechanism that 

could protect the integrity of higher-order functions (Lijffijt et al., 2009), suggesting that 

impaired P50 associated with increased alcohol use could relate to diminished inhibition. 

Furthermore, the significant finding for the P1 ‘attention effect’ may reflect a top-down 

inhibitory process, whereby P1 enhancement indicates inhibitory processes that blocks 

competing information of task-irrelevant stimuli (Slagter et al., 2016). The finding supports a 

dual-process theory of alcohol misuse, whereby a lack of a cognitive control mechanism to 

inhibit drinking (i.e., deficits in later ERP components) is exacerbated by early attentional 

biases (i.e., deficits in early ERP components; see Campanella et al., 2018). It has also 

previously been suggested, that the ability to sustain attention could be considered as part of 

the first phase of response inhibition, given that important components of an individual’s 

capacity to inhibit a response is related to their capacity to attend to stimuli (Aragues, Jurado, 

Quinto & Rubio, 2011). Indeed, the SST requires sustained attention to monitor for the Stop 

signal in order to initiate response inhibition, as well as engagement of attention for both 

correct go and stop responses (Li & Sinha, 2008). Thus, neural deficits seen with alcohol 
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misuse may not be exclusive to inhibitory control impairments per se – early processing 

impairments could underlie failures of later higher-level processing. Indeed, sustained 

attention appears to be an important aspect of alcohol misuse in this study. 

 

5.2.4 Cognitive impulsivity  

An interesting finding emerged from Chapters 2 and 3: cognitive impulsivity via 

sustained attention, was an important predictor of some of the alcohol-related outcomes. In 

both Chapters 2 and 3, IRV significantly predicted individual differences in alcohol 

intoxication frequency for the impulsivity-only model and for impulsivity combined with 

other risk factors, but it was not significant for models predicting alcohol consumption 

frequency. However, the IRV using the SST has received little attention in relation to alcohol 

use and its neural components had yet to be clearly mapped.  

In the final study, Chapter 4, task-based fMRI was used to tackle the interesting and 

timely question of how average brain activation and functional connectivity patterns are 

related to individual differences in sustained attention (i.e., IRV on the Go trials of the SST) 

in a large sample of healthy 14-year-old adolescents, which were subsequently validated in a 

separate sample of adolescents with ADHD symptoms and a matched asymptomatic control 

sample. Functional connectivity patterns underlying individual differences in alcohol use 

(AUDIT scores) were also explored for the large normative sample, however the findings 

were not significant. Furthermore, despite the IRV-alcohol relationships observed in Chapters 

2 and 3 for student samples, IRV was not associated with AUDIT for any of the adolescent 

samples in Chapter 4. However, these adolescents were relatively substance naïve, and 
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Whelan and colleagues (2014) also found behavioural difference for motor impulsivity 

(SSRT) in the IMAGEN cohort. Nevertheless, sustained attentional processes were facilitated 

by an array of neural networks, and provide an empirical account of how the functional role 

of specific cerebellar subregions Crus I/II extends to cognition in adolescents. This work also 

highlights the involvement of motor cortex in the integrity of sustained attention, and 

suggests that atypically strong connectivity within motor networks characterises poor 

attentional capacity in both typically developing and ADHD symptomatic adolescents. 

Moreover, a previous task-based fMRI study identified similar disrupted attention-relevant 

functional networks in healthy adults, and these networks predicted ADHD symptoms in 

childhood (Rosenberg et al., 2016). At the time of writing this thesis, this was the largest 

population-based functional imaging study to examine both average fMRI activity and 

functional connectivity as it related to sustained attention in adolescents. Given that top-

down, goal-driven attentional biases for alcohol have been observed in social drinkers 

(Brown, Duka, & Forster, 2018), it would be useful to further examine how goal-directed and 

involuntary aspects of attention are related to alcohol-outcomes. 

 

5.3 The role of other risk factors  

An accumulation of different risk factors is linked to higher binge-drinking rates 

(Gowin et al., 2017). Risk factors that were associated with adolescent alcohol-use-initiation, 

including gender, cannabis and nicotine (Squeglia et al., 2016; Whelan et al., 2014) and 

executive functioning (Peeters et al., 2015), also held for heavier college-age drinkers in 

Chapter 2. Furthermore, gender and lifetime cannabis use were significant for both 



   

 

155 

 

 

 

intoxication and consumption frequency. Gender has been shown to predict various aspects 

of alcohol consumption. For example, Henges and Marczinski (2012) found that gender was 

related to total number of drinks consumed, highest number of drinks consumed, number of 

heavy drinking days and number of drunk days in past 30 days (assessed using a Timeline 

Follow-back Interview) in 109 18–21-year-old student drinkers. In Chapter 2, being male was 

associated with higher consumption frequency scores. A previous study also found that being 

male was a contributing factor for heavier alcohol-use by age 18 (Squeglia et al., 2016). 

Indeed, numerous studies indicate that males consume more alcohol than females (WHO, 

2014) and are at a higher risk of BD (Gmel, Rehm, & Kuntsche, 2003), and perhaps this 

result is unsurprising, and embedded in sociocultural norms.  Interestingly however, Chapter 

2 showed that females were more likely to become intoxicated. There is indication that the 

gender gap between male and female university students is narrowing with regard to 

excessive alcohol consumption (Davoren et al., 2016), and establishing which impulsivity 

predictors diverge or overlap according to gender will be an important future consideration 

for prevention and treatment.  

Alcohol use and cigarette smoking commonly co-occur (Dawson, 2000). Among 217 

university students, smokers reported higher expectation for increased nicotine use while 

under the influence of alcohol, and for increased  alcohol  effects  as  a  result  of  concurrent 

alcohol and nicotine use (McKee et al., 2004). The combination of smoking and drinking 

may also be associated with higher levels of impulsivity. For example, a study (Moallem & 

Ray, 2012) examining heavy drinkers only (N =107), smokers only (N=67), and heavy 

drinking smokers (N=213) found that heavy drinking smokers displayed steeper delay 
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discounting (DDT) than smokers only and heavy drinkers only, indicating that those who 

both drink heavily and smoke cigarettes daily had increased choice impulsivity. Cannabis use 

predicted both intoxication frequency and consumption frequency, while smoking predicted 

intoxication frequency only in Chapter 2, which supports previous findings that early 

adolescent drunkenness is associated with cannabis and nicotine use (Kuntsche et al., 2013). 

However, debate is ongoing as to whether individuals use alcohol and cannabis as either 

complements or substitutes for one another. There is some indication that alcohol use 

positively predicts the likelihood of cannabis use among university students, indicating 

complementary use (O'Hara, Armeli & Tennen, 2016), with evidence that students primarily 

drink and use cannabis for social reasons (Beck et al., 2009; Christiansen et al., 2002; Lee et 

al., 2007). However, students were also more likely to use one substance (i.e., the more they 

drank on a given evening, the less likely they were to use cannabis) in order to cope with 

stress (O'Hara, Armeli & Tennen, 2016). Variables related to stress were not included in 

Chapter 2, and this was remedied in Chapter 3.  

In Chapter 3, the some of the most important predictors of alcohol use included 

anxiety on the DASS, while stress and depression were weakly linked to alcohol use. Alcohol 

misuse is often associated with increased symptoms of depression, anxiety and stress in both 

the general population (Wiener et al., 2018) and among university students (Walters, Bulmer, 

Troiana, Obiaka & Bonhomme, 2018). Although general psychological distress has 

consistently been associated with alcohol use among college students (Obasi et al., 2016), 

differential effects of anxiety and depression on alcohol use have been observed among 

college students. For example, although depression (Linden & Lau-Barraco, 2013) and 
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anxiety (Magrys & Olmstead, 2015) independently predict increased alcohol use among 

college students, only anxiety is associated with more alcohol use when looking at both 

anxiety and depression simultaneously (Armeli et al., 2014). Some other studies have also 

indicated that there is a differential association of anxiety and depression with alcohol use 

that needs to be considered when studying affect-drinking relationships. For example, 

differentiating between drinking to cope with anxiety versus depression improves fit for 

models examining mood-drinking relationships (e.g., Grant, Stewart, & Mohr, 2009) and 

motivation to cope with depression versus anxiety is related to different patterns of alcohol 

use and problems (Grant, Stewart, O’Connor, Blackwell, & Conrod, 2007). Furthermore, 

college students reporting higher motivation to use alcohol to cope had reduced alcohol use 

on days they reported symptoms more closely related to depression (i.e., sadness) and 

increased alcohol use on days they reported symptoms more closely related to anxiety (i.e., 

fear; Hussong, Galloway, & Feagans, 2005). Neurobiological studies show that alcohol use 

appears to selectively reduce anxiety but not fear (Moberg & Curtin, 2009). Collectively, 

these findings indicate that affective states more closely related to anxiety may increase 

likelihood of more problematic alcohol use, yet few studies make the distinction between 

symptoms of depression and anxiety when examining such affect-drinking relationships. 

Depression and anxiety are typically overlapping two constructs that may have resulted in 

multicollinearity even after accounting for shared variance in the model. Therefore, 

examining depression and anxiety as distinct constructs in separate models (or using machine 

learning techniques) may yield distinct results. However, issues relating to causation are 

important to acknowledge, and it is not clear whether people with mental health issues seek 
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out alcohol as a coping mechanism, or whether alcohol abuse contributes to the aetiology of 

mental health issues. This relationship is likely to be quite nuanced, dynamic and interactive, 

with individuals who experience mental health issues and substance abuse problems 

possessing common underlying traits that make them vulnerable to experiencing such 

difficulties (Hawkins, 2009). On the other hand, Prince et al. (2007), argue that factors that 

adversely impact physical health, such as alcohol abuse, will ultimately lead to an increased 

risk of mental illness, and in fact the relationship is likely to be bi-directional. Previous 

studies show that affect underlying trait impulsivity is strongly related to heavy student 

drinking (Carlson et al., 2010), and a growing body of literature indicates emotional and 

physiological states, such as anxiety and stress, may play an important role in exerting a 

significant influence on behavioural impulsivity (Herman, Critchley & Duka, 2018). Yet, it is 

not clear whether symptoms of psychological distress or impulsivity have better predictive 

utility when accounting for alcohol use/misuse.  

Relationship status was the strongest predictor of alcohol use in Chapter 3; being in a 

relationship was associated with lower levels of alcohol use. This is important when 

considering adolescent and young adult developmental trajectories, as previous research has 

shown that early dating in adolescence is associated with early onset of alcohol-use (Squeglia 

et al., 2016) and binge drinking (Whelan et al., 2014). On the other hand, in young adults 

being in healthy romantic relationship is associated with lower levels of alcohol consumption 

(Fleming et al., 2018). Although research has shown that the presence of an intimate 

relationship is associated with less problematic alcohol use among university students 

(Braithwaite, Delevi, & Fincham, 2010; Simon & Barrett, 2010; Whitton, Weitbrecht, 
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Kuryluk, & Bruner, 2013), few studies have examined the effects of relationship quality on 

alcohol use among young adults. One study examined the associations between relationship 

satisfaction and hazardous drinking in 219 college students (aged 18–25) in current dating 

relationship (Khaddouma et al., 2016). The authors found that high relationship satisfaction 

was related to lower alcohol consumption and a greater willingness to decrease alcohol 

consumption among hazardous drinkers (Khaddoumaet al., 2016). However, lower 

relationship satisfaction among hazardous drinkers was not associated with a desire to 

decrease consumption. The findings support previous research demonstrating the beneficial 

impact of supportive, healthy romantic relationships on unhealthy behavior patterns (Lewis et 

al., 2006). However, the links between heavy alcohol consumption and marital quality are 

mixed. Increased binge-drinking among older adults bi-directionally linked to poorer marital 

quality for women, but, for men, only poor marital quality was unidirectionally linked to 

increased binge-drinking (Roberson et al., 2018). Although it is clear that there is a 

relationship between relationship quality and drinking, the direction of this association and 

the type of relational influences (emotional vs functional) is still unclear. It is possible that 

the same behaviours that influence risk-taking behaviour in early adolescence influence the 

behaviours that lead to the initiation of early romantic relationships and early alcohol-use 

onset and binge-drinking. Studies like the My World Survey in Ireland have shown that 

having one stable adult relationship can be an important protective factor and reduce the use 

of maladaptive coping mechanisms like alcohol use (Dooley & Fitzgerald, 2012). 

At the time of composing this thesis, no known study had examined the PST in non-

dependent drinkers. Intoxication frequency was associated with a decrease in learning from 
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punishment (negative feedback) on the PST, and this finding suggests that alcohol users may 

be less sensitive to negative outcomes. This lends support to addiction models that suggest 

that outcome desensitisation (to punishment, in this case) occurs following repeated 

substance use (Baker et al., 2013; Volkow et al., 2016). Recently, the PST also demonstrated 

the ability to predict smoking status in students (Rai et al., 2018). Given that impulsivity is 

characterised by a disregard for future consequences, this finding certainly warrants further 

exploration.  

 

5.4 Implications for alcohol use among adolescents and young adults and 

emergence of alcohol-use disorders 

In Chapter 2, patterns of alcohol use were found to be directly related to negative 

consequences, with students who experienced injury, negative sexual experiences, as well as 

problems with friends and academic performance, reporting significantly higher intoxication 

frequency, compared to groups without these experiences. Conversely, groups who had 

positive expectations of alcohol-use had lower intoxication frequency scores. In other words, 

increased alcohol intoxication frequency rather than increased consumption frequency was 

associated with individuals reporting adverse consequences of alcohol use (and less likely to 

attribute positive consequence of alcohol use). The finding underscores drunkenness as a 

crucial risk factor for adverse consequences of alcohol use (Kuntsche et al., 2013; Prince et 

al., 2018). This has important clinical implications, and future research and 

prevention/treatment programmes may benefit from incorporating cut-offs that reflect the 

number or severity of alcohol-related consequences, in conjunction with self-reported 
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intoxication frequency or consumption frequency. Such an approach may help to improve the 

clinical effectiveness of treatments as well as identifying findings that are clinically 

significant and have strong clinical utility. In terms of public health, policies which aim to 

reduce harmful patterns of alcohol consumption such as intoxication frequency, should be 

introduced rather than focusing exclusively on the quantity of consumption. For instance, in 

Ireland, where there are strict laws relating to times where alcohol can be sold, levels of pre-

drinking are still the highest (based on a comparison of 25 international countries; Labhart, 

Ferris, Winstock, & Kuntsche, 2017), which also coincides with the 2nd highest level of 

binge-drinking globally (WHO, 2014). It is possible that these factors are interrelated and 

altering laws relating to the time at which alcohol can be sold may help to ameliorate pre-

drinking and this harmful pattern of alcohol consumption.  

A focus on endophenotypes may help to inform prevention strategies. Understanding the 

aetiology of addiction may involve demarcating people according to impulsivity 

endophenotypes, rather than using symptom clustering consistent with DSM/ICD-based 

diagnostic criteria or methods of differentiation (e.g., heavy versus light alcohol use). This is 

in keeping with newly proposed classifications for research on mental disorders, put forward 

by the National Institute of Mental Health (Insel et al., 2010).   

 

5.4.1 Limitations 

Despite the well‐established links between impulsivity and alcohol misuse, neuroimaging 

predictors of alcohol use have only shown modest utility to date. The advantages of a 

machine learning approach, like the Elastic Net used here, is that key features can be 
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identified from a large search space, and correlated variables can be accommodated. The 

sample size in Chapter 2 was relatively large (N=79) compared to other EEG studies. ERPs 

across the whole-scalp could not be examined because of the ratio of variables (over 20,000 

in the case of 64-channel) to cases, detecting important variables would not have been 

possible, given low-moderate effect sizes, as has been previously shown (Jollans et al., 2015). 

However, several regions believed to be important for indexing ERPs that are typically of 

interest (e.g., N2-P3) were defined, based on prior work in this area (Wessel & Aron, 2015), 

although future studies with large sample sizes could replicate these methods and incorporate 

electrophysiological activity recorded across the entire scalp.  

There are other impulsivity endophenotypes, as well as other measures, that were not 

investigated in this research but are worth outlining for future integration. For example, 

“reflection impulsivity” (i.e., a tendency to make decisions in situations of uncertainty; 

Kagan, 1965) can be measured on the Information Sampling Task and Matching Familiar 

Figures Task (Clark et al., 2006) and “waiting impulsivity” (i.e., anticipatory premature 

responding before the onset of a target stimulus; Robinson et al., 2009) can be measured on 

the Continuous Performance Task (CPT; Rosvold, Mirsky, Sarason, Bransome, & Beck, 

1956) and is associated with higher BD levels (Sanchez-Roige et al., 2014). The 5-Choice 

Serial Reaction Time Task (5-CSRTT, Carli, Robbins, Evenden, & Everitt, 1983) developed 

to study waiting impulsivity in rodents, was also recently adapted to be used in humans 

(Sanchez-Roige et al., 2014; Voon et al., 2014) and successfully distinguished drinking 

groups. Future studies should strive to expand the impulsivity battery. Moreover, Sharma et 

al. (2014) proposed the term “cognitive impulsivity” as the inability to sustain attention 
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assessed using impulsivity-specific measures, which was subsequently used in this thesis. 

However, cognitive impulsivity by definition also implicates aspects of decision-making that 

are associated with impulsive behaviors (i.e., choice impulsivity). Perhaps ‘Impulsive 

Inattention’ may be a more appropriate term to denote this dimension of impulsivity 

. Furthermore, there are other constructs that were not included in this thesis. 

Compulsivity, which refers to maladaptive perseveration of behaviour, partially overlaps with 

aspects of impulsivity (response disinhibition, e.g., SSRT). Both constructs are implicated in 

addiction, in the devolution of voluntary impulsive substance use to compulsive repeated 

abuse (Robbins, Gillan, Smith, de Wit & Ersche, 2012). However, studies have yet to 

integrate these dimensions to inform alcohol-related research, as well as how their relative 

neural underpinnings inform different patterns of alcohol use (Chamberlain, Stochl, Redden, 

& Grant, 2018).  A putative reward processing endophenotype is also considered to play a 

critical role in youth alcohol use and misuse (Luijten, Schellekens, Kühn, Machielse & 

Sescousse, 2017; Lyvers et al., 2012; Nees et al., 2012; van Hemel-Ruiter, de Jong, Ostafin & 

Wiers, 2015). Future studies could attempt to include these constructs in a model to 

investigate whether compulsivity/reward endophenotypes observed in SUD patients also exist 

on continuum, with similar traits observed in healthy populations. 

Executive functioning is a broad term that includes working memory, attention, and 

decision-making, and often invokes activity in the dorsolateral PFC and anterior cingulate 

cortex (Bechara et al., 2001; Koob & Volkow, 2016; Volkow, Wang, Fowler, Tomasi & 

Telang 2011; Whelan, 2012). Several studies have indicated that poorer performance on 

executive functioning tasks (Squeglia et al., 2016), as well as reduced brain activation during 
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tasks measuring response inhibition, reward processing, and working memory are predictors 

of early adolescent alcohol-use (Norman et al., 2011; Wetherill et al., 2013a; Whelan et al., 

2014) and influence alcohol-use initiation (Whelan et al., 2014). Future studies of impulsivity 

endophenotypes and how the relate to alcohol use, may benefit from examining the potential 

moderating role of executive functioning. 

Although standardised alcohol measures were used (e.g., AUDIT), and memory biases 

were alleviated by using similar questions at multiple timepoints (e.g., ESPAD), all alcohol 

measures in these studies were questionnaire-based and self-reported. Chapter 2 used self-

report measures of drunkenness, which can only account for an individual’s perceptions of 

their level of intoxication, and may have indirectly acted as a proxy for measuring individual 

differences in absorption and metabolism rates. Some studies have directly accounted for this. 

For example, Gowin and colleagues (2017) designed a carefully controlled experimental 

paradigm, in which 159 young social drinkers self-administered alcohol intravenously. Their 

findings showed that drinkers at risk for AUD had higher rates of binging throughout the 

session and greater overall exposure to alcohol than low-risk drinkers, despite similar AUDIT 

scores between the both groups. Future studies should look to include variables which may 

help to indirectly account for and approximate alcohol absorption rates and metabolic rate, 

such as BMI, and sex. 

Adopting a prospective, longitudinal approach will better characterise the relative 

contribution of risk factors in the transition from alcohol use onset, to misuse, dependence, 

and finally to individual differences in vulnerability to relapse (Thompson et al., 2014). 

Alcohol-use typically begins in adolescence, with early use predictive of dependence in 
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adulthood (Behrendt et al., 2009; Hawkins, Catalano & Miller, 1992; Hingson, Heeren & 

Winter, 2006). Despite broad exposure to early substance use, many individuals remain 

resilient to addiction or problematic use in later life (Ostaszewski & Zimmerman, 2006). In 

the adult literature, the progression form substance use to disordered use is interpreted as the 

shift from goal-directed, voluntary use to compulsive, uncontrolled use, despite the adverse 

consequences. However, once initiated early substance use can have a wide-ranging 

detrimental impact on cognition, brain structure and function, as well as psychological well-

being. Abnormal brain function in areas underpinning impulse control, reward processing and 

executive function, have been implicated in problematic adolescent drinking behaviours 

(Verdejo-García et al. 2008; Galavan et al., 2006; Squeglia et al., 2016). The challenge has 

been to separate predisposing neurobiological risk factors out from alterations that occur as a 

result of early alcohol-consumption.  

 In order to better understand root causes leading to addiction, individuals need to be 

examined in early adolescence before alcohol misuse, and to then track any changes that 

occur across later development. Uncovering risk factors early will help understand the 

aetiology of early alcohol initiation, which is important as the odds of alcohol dependence 

decrease by 14% with each increasing year of age at onset of alcohol-use in adolescents 

(Grant & Dawson, 1997). However, the identification of neural predictors for alcohol 

initiation is under-represented in the addiction literature. Although beyond the scope of this 

research, a collaborative effort and a large amount of research is currently being conducted, 

tracking the neurobiological and behavioural changes that occurs across adolescent 

development. 
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5.5 Future directions 

5.5.1 The role of neuroimaging for identifying predictors of alcohol use 

Neuroimaging studies have the potential to answer important clinical questions about the 

risk factors underpinning adolescent alcohol misuse, however, predictive models emerging 

from neuroimaging research are not routinely incorporated in clinical practice (Pencina & 

Peterson, 2016). The use of large data sets (Volkow et al., 2011) provides a partial solution to 

this problem. Comprehensive and rich datasets, such as IMAGEN, and ABCD 

(https://abcdstudy.org/) will help to advance the understanding of alcohol use initiation and 

the neurobiological pathways that lead to alcohol abuse.  

The IMAGEN project is a European multi-centre study with a baseline cohort of 2,000 

14-year-olds, with neuroimaging follow-up assessments at 19 and 23 years-old. As well as 

gathering demographic, genetic and neuroimaging data, the test battery also includes several 

self-report measures of substance misuse, including any harmful prenatal exposures to 

tobacco or alcohol. Behavioural and cognitive assessments include broad personality 

measures, such as the NEO-FFI (Costa & McCrea, 1992), and those specific to addiction 

such as the SURPS (Woicik, Stewart, Pihl & Conrod, 2009). This database has facilitated 

studies which focus on neuroimaging measures assaying impulsivity via the SST (Whelan et 

al., 2012) reward processing via the Monetary Incentive Delay task (MID; Peters et al., 

2011), and emotional reactivity via the Faces Task (Tahmasebi et al., 2012). In Chapter 4, a 

data-driven analysis was used to identify the functional connections underlying sustained 

attention from an IMAGEN sample, however, data-driven methods are particularly useful 

https://abcdstudy.org/
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when combined within a statistical testing framework or for tasks such as prediction or 

classification (Calhoun & Adali, 2012; Rosenberg et al., 2016). Therefore, using the networks 

identified in Chapter 4, a follow-up study with same cohort at aged 18 would be beneficial. 

 The ABCD study is an American multisite longitudinal study, with the goal of following 

10,000 individuals, including twin cohorts, for 10 years, beginning from the age of 9 years-

old. ABCD is examining risk and resilience factors influencing substance use trajectories, as 

well as the impact of substance use on neurocognitive, health and psychosocial development 

and outcomes (Morris, Squeglia, Jacobus, & Silk, 2018; Lisdahl et al., 2018). The baseline 

ABCD sample is largely substance-naïve, however measures sensitive to low-level exposures 

are included (e.g., iSay Sip Inventory; Jackson, Barnett, Colby & Rogers, 2015) because 

children as young as 9 may initiate or try substances (e.g., sipping alcohol, first puffs of 

cannabis and nicotine; Lisdahl et al., 2018). The ABCD imaging protocol measures brain 

structure and function, including resting state and task-based fMRI. Neuroimaging assays six 

behavioural domains – reward processing, motivation, impulsivity, impulse control, working 

memory and emotion regulation. (SST, MID and an emotional version of the n-back task; see 

Casey et al., 2018). An important aspect of the ABCD study is the intentional recruitment of 

an American community sample that accounts for sociodemographic variation (Garavan et 

al., 2018). Large longitudinal databases like IMAGEN and ABCD will offer researchers a 

chance to further current knowledge, and answer questions that have been methodologically 

challenging to date.   

Given the open-access nature of some datasets and increased availability of machine 

learning tools, addiction researchers have greater opportunity to engage in Big Data research. 
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Big Data can help set the foundation for developing alcohol risk indices or risk scores. As 

such developing a neuroimaging risk score which combines a multitude of data including 

structural information (volumetric and cortical thickness), and white matter tractography, as 

well as mapping pertinent neurocognitive systems may be used to generate neuroimaging risk 

scores which may contribute greater predictive utility of neuroimaging data.  

Larger sample sizes also facilitate the examination of important moderators and 

mediators of risk. For example, the role of puberty (with males typically developing two 

years later than females) is relatively underexamined. For example, some research has 

examined interactions between genetic, neurobiological, and environmental factors in 

predicting resilience in children (Cicchetti & Rogosch, 2007), as well as identifying specific 

neurobiological correlates of resilience (e.g., stress hormone changes; Curtis & Cicchetti, 

2007; Heitzeg et al., 2010). A recent MRI study of 1,870 adolescents (Burt et al., 2016) 

examining the structural brain correlates of adolescent resilience found that within the group 

of more resilient adolescents, grey matter volume in the middle frontal gyrus correlated with 

risk of problems with alcohol-use. Identifying why some individuals, despite clearly 

disadvantageous environmental circumstances, do not misuse alcohol is important, yet little is 

known about the neurobiological and brain correlates of resilient functioning and how that 

ties into adolescent alcohol initiation.  

Increasing the utility of neuroimaging for prediction of future alcohol-use will also 

require a broader array of imaging sequences and analysis methods than have been employed 

to date. For example, the vast majority of studies have focused on gray matter, either 

structural or functional; however, it is well known that white matter changes substantially 
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during adolescence. Advances have been made with respect to in vivo estimations of neuronal 

morphology, including advanced diffusion MRI techniques that measure tissue 

microstructure features directly (e.g., NODDI; Zhang, Schneider, Wheeler-Kingshott & 

Alexander, 2012). Augmenting better metrics of white matter, in future functional activity 

will likely be described in terms of the connectivity among brain regions, rather than average 

activity per condition. Connectivity metrics have the potential to provide a more nuanced 

picture of vulnerability to alcohol misuse, perhaps by examining changing patterns of 

connectivity or by changing network strengths (Ernst, Torrisi, Balderston, Grillon & Hale, 

2015). In sum, more sophisticated methods with better resolution will help researchers 

identify better predictors of substance misuse. The next step is to integrate this innovative 

technology with genetics, epigenetics, neuroimaging, and developmental and environmental 

factors in order to provide a picture of the layered interactions associated with adolescent 

substance use trajectories and alcohol misuse. 

 

5.5.2 Online datasets  

Chapter 4 utilised a large population-based sample, based on multiple European 

locations, which helps ensures sociodemographic variation (Garavan et al., 2018). Two out of 

three of the Chapters examined student samples, which was motivated by the large body of 

work indicating particularly high levels of alcohol misuse in this cohort (Balodis et al., 2009; 

Davoren et al., 2017; Lyvers et al., 2012; Moure-Rodriguez, et al., 2018). However, the need 

to acquire data in a laboratory setting, has led to psychology and cognitive neuroscience to 

over-rely on student samples (Henrich et al., 2010), reducing generalisability. Broad claims 
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about human psychology are often based on samples drawn from Western, Educated, 

Industrialised, Rich, and Democratic (WEIRD) societies (Henrich et al., 2010), whereas 

individuals with addiction are predominately from lower socioeconomic backgrounds and 

have lower education (Henkel & Zemlin, 2016).  

Online recruitment methods can successfully target participants with addiction 

(Nosek, Banaji, & Greenwald, 2002), whereas in-laboratory participant recruitment can be 

both costly and difficult (Ramo & Prochaska, 2012; Thornton et al., 2016), Furthermore, 

online research provides a level of anonymity for people hindered by embarrassment and 

stigma (Chebli, Blaszczynski, & Gainsbury, 2016; Gainsbury, Hing, & Suhonen, 2014), 

physical disability and geographical remoteness (Proudfoot et al., 2011). Strickland and 

Stoops (2018) demonstrated the feasibility, acceptability and validity of collecting 

longitudinal alcohol use data using Mechanical Turk, finding expected associations between 

heavier drinking and higher AUDIT scores. Given the robustness of trait and behavioural 

impulsivity endophenotypes for predicting alcohol use in this thesis, availing of platforms, 

such as public social networking sites (e.g., Twitter, Facebook), and general crowdsourcing 

(e.g., Amazon’s Mechanical Turk) will significantly change this field of research, although 

there are significant ethical ramifications that need to be considered first. 

 

5.5.3 Intervention 

Early adolescent alcohol use including binge drinking remains a critical public health 

issue (see Jang et al., 2017), despite public health initiatives to curtail adolescent alcohol 

misuse (Kieling et al., 2011). Moving away from generic prevention approaches and towards 
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the targeting of particular endophenotypes (e.g., specific impulsive personality traits) may be 

more effective. Personality-targeted approaches have been shown to have a moderate effect 

size in reducing various substance use outcomes (Conrod, 2016). The application of Big Data 

methods may further aid implementation of tailored treatment interventions (Gillan & 

Whelan, 2017). Mindfulness may play a positive role in reducing youth alcohol use, with trait 

mindfulness linked to lower levels of alcohol consumption (Brett, Leffingwell, & Leavens, 

2017) and lower levels of self-reported trait impulsivity (Peters et al., 2011). A recent 

randomised controlled trial found that mindfulness training implemented in schools lead to 

decreased levels of self-reported impulsivity (BIS-11) and aggressive behaviours (Franco, 

Amutio, López-González, Oriol & Martínez-Taboada 2016), other research has shown that 

school-based yoga (which incorporates mindfulness) lead to decreased reports of substance 

use (Butzer, LoRusso, Shin & Khalsa, 2017). Future research should look to examine the role 

of mindfulness on alcohol use in school/college-based populations.  

 

5.6 Concluding remarks 

This thesis illuminates some of the nuances underpinning the relationship between 

impulsivity endophenotypes and alcohol use patterns. A multi-domain approach, combining 

EEG with trait and task-based behavioural data predicted alcohol use. This approach 

therefore adds to a comprehensive, and more holistic profile of alcohol users and misusers. 

Impulsive personality traits of disinhibition and poorer planning skills, and behavioural 

indicators of difficulties sustaining attention, appear to be the most important markers across 

different alcohol use patterns in young adults. In particular, compelling results were found for 
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predicting alcohol use from inhibitory control ERPs – a finding that may lead to the 

improvement of objective screening and assessment of alcohol misuse. In this thesis, a range 

of measures – behaviour, EEG and fMRI – were used to investigate impulsivity and alcohol 

use. Furthermore, analytic methods such as machine learning, factor analysis and data-driving 

neuroimaging approaches were employed. By combining these measures and methods, this 

thesis has shed new light on the complex relationship between impulsivity and addiction. 

These findings will ultimately pave the way for refining future methodologies and have 

important clinical utility and implications for health policy. 
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7 Appendices  

7.1 Supplemental 2.1 

Methods 

Task-based Measures 

All computerized tasks were presented, and responses recorded by the Presentation® 

software package (Neurobehavioral Systems). Each task began with on-screen instructions 

that were also read out to participants by the experimenter.  The experimenter checked that 

the participant understood the instructions and participants were given time to read over the 

instructions again themselves before commencing the task in their own time by pressing the 

‘1’ key on the keyboard. Task responses were made via an Xbox 360 game controller. 

The adapting delay discounting task (DDT). Participants were presented with a series 

of dichotomous choices between immediate versus relatively larger but delayed hypothetical 

monetary rewards. The adapting DDT was designed to estimate an individual’s rate of delay 

discounting progressively more accurately from trial to trial by adapting the hypothetical 

magnitude and timing of the delayed rewards it offered participants on each trial based upon 

their preceding responses (Ortiz et al., 2015). The rate at which the DDT modified the value 

of the delayed reward it offered participants was governed by an adaptive algorithm using a 

double-limit procedure that modified the model parameter k based on two sets of boundaries 

designed to adjust to the point at which the participant would choose the immediate and 

delayed outcome with equal probability. The model parameter k characterises an individual’s 

rate of delay discounting such that higher values of k indicate a higher rate of delay 
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discounting. The delayed reward was presented at a randomly chosen delay of between 1 and 

180 days (phrased in days, weeks or months as appropriate), and a randomly chosen 

immediate reward of between $10-50 (see Figure S2.1). When participants chose the 

immediate reward on a given DDT trial the obtained estimate of k was decreased and then 

used to calculate the value of the delayed choice being offered on the next DDT trial, and 

vice-versa if the delayed reward was chosen. The DDT’s adaptive algorithm is designed to 

converge upon a participant’s individual k value. Following 10 initial practice trials, a single 

block of 74 DDT test trials commenced with initial k = 0.018. Each trial began with a fixation 

cross positioned centre screen for 700ms. If participants did not respond within five seconds 

of the choice they were prompted with the message “Please respond” directly underneath. 

Failure to respond within two further seconds resulted in the trial completing without 

recording any response or thus updating the value of k.  

 

Figure S2.1. Visual representation of DDT 
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The Stop Signal Task (SST): consisted of two phases, a practice phase followed by the 

test phase of 119 trials in a 12-minute run. Each trial of the task began with the fixation sign 

(a "+" sign) which remained on screen for 750ms before being replaced by the primary 

stimulus, which remained on the screen for 1000ms (see Figure S2.2). Participants were 

instructed to distinguish between left and right pointing arrows (‘Go’ stimulus), and respond 

as quickly as possible to the orientation of the stimulus with a left or right- button press. 

There duration of trials was fixed and independent of reaction time (RT). On 25% of the 

trials, after the ‘go’ stimulus, an upward pointing arrow (‘Stop Signal’ stimulus) was 

presented at variable delays (Stop Signal Delay), during which participants were instructed to 

withhold responding. The initial SSD was presented at 250ms, but was adjusted according to 

a participant’s performance, according to an adaptive algorithm using a double-limit 

procedure. The first set of limits ensures that the SSD is never shorter than 50ms and never 

longer than 450ms. These limits remain constant and act as a buffer within which the second 

set of limits is adapted. The second set of limits is used to define the length of the SSD. These 

limits are adjusted depending on task performance, making the average SSD shorter (i.e. the 

task easier) after an unsuccessful stop trial, and the average SSD longer (i.e. the task more 

difficult) after a successful stop trial. Participants were presented with a “Speed up!” prompt 

for 2s if they failed to respond to 2 out of 5 Go trials, or response to the last trial was too slow 

(i.e. if their last RT was longer than 1.5 times their average RT while the proportion of 

successful stops remained within 40-60%, or if their last RT exceeded their average RT and 

the proportion of successful stops was >60%). The rolling average RT monitoring began on 
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the 10
th

 trial.  The algorithm aimed to find the point at which participants had 50% successful 

inhibition responses and 50% unsuccessful inhibition responses. 

The Stop Signal Reaction Time (SSRT), an index of inhibitory function, was 

calculated for each participant by subtracting the mean SSD from the Go RT at the percentile 

corresponding to the proportion of unsuccessful stop trials. The SSRT refers to the time taken 

to cancel a prepotent motor response after Stop stimulus presentation.   

 

Figure S2.2. Visual representation of the SST 

Probabilistic Selection Task (PST): Participants completed a version of the 

Probabilistic Selection Task (Frank, Seeberger & O'Reilly, 2004) to assess reward and 

punishment learning. The PST comprised of a training and test phase, each 120 trials in 

length. During the training phase, participants were randomly presented with three stimulus 



   

 

236 

 

 

 

pairs (AB, CD, EF), and required to select the ‘correct’ stimulus in each pair based on 

probabilistic feedback. The stimulus reward probabilities were predetermined (A: 80%; B: 

20%; C: 70%; D: 30%; E: 60%; F: 40%). The position of each stimulus on screen was 

randomly varied across trials (e.g. AB, or BA). Stimulus pairs were presented on screen until 

a response was made. Feedback was presented for 750ms in the form of a green tick “✓” 

signalling correct responses or red ‘X’ for incorrect responses respectively (see Figure S2.3).  

There was no criterion to reach in the training phase. 

 In the Test phase, novel combinations of the six stimuli were presented, and participants 

were again required to select the correct stimulus in each pair. No feedback was provided in 

the Test phase of the PST.  As in previous research, performance in the Test phase was 

measured by comparing how often participants selected the A stimulus versus how often they 

avoided the B stimulus in novel pairs. If participants have correctly learned the relative 

values of symbols during the learning phase, positive stimulus (A) choices over all other 

symbols indicated that the participant learned from positive feedback (reward sensitivity), 

while avoidance of the negative stimulus (B) over other symbols indicated negative feedback 

learning (punishment sensitivity). Stimuli were presented on screen until a response was 

made, and a fixation cross was presented for 500ms between trials. 
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Figure S2.3. Visual representation of the PST 
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Machine Learning 

We conducted a logistic regression with elastic net regularization for feature selection 

(Zou & Hastie, 2005). All predictor variables were first feature scaled (z-score transformed). 

I then implemented ten-fold cross-validation with nested cross-validation for tuning and 

validating the model. A detailed description of the machine learning is contained in Kiiski et 

al. (2018; Appendix 1). Here I provide a short description.  

The dataset was initially divided into 10 cross-validation (CV) folds.  The entire 

analysis was performed 10 times, using 90% of the dataset (the training set) to create a 

regression model which was then tested on the remaining 10% of the data (the out-of-sample 

test, or holdout, set). Within each CV fold I used nested cross-validation to set the Elastic Net 

parameters. All analysis steps up to this point were conducted using 25-fold bootstrap 

aggregation (i.e., bagging). The combination of model parameters that resulted in the model 

with the lowest prediction error was identified for each nested CV partition. The optimal 

model parameters from each nested CV partition were used to identify the parameters to 

create the final prediction model in each main CV fold. This analysis was carried out 10 

times, using different CV fold allocations each time (i.e., a different out-of-sample test set). 

The entire analysis was repeated 10 times in order to attenuate idiosyncrasies of any given 

model. Results are mean values across all iterations of the analysis. The performance of each 

model was further validated by creating a null model. The null models were generated by a 

random-label permutation (i.e., randomly assigning the outcome variable across subjects). 

Using this permuted outcome variable, the entire analysis was performed again. The accuracy 

achieved using the null model was then compared to the accuracy of the model with real data 
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(i.e. actual model) by ranking the cross-validated r values from iterations of both actual and 

null models, giving an estimate of the level of optimism inherent in the model. The actual 

model was deemed to have performed better than the null model in 100% of iterations (i.e., 

10/10 of the highest cross-validated r values were from actual models). Cross-validated r is 

the most appropriate measure to use with linear regression conducted using machine learning 

(see for example Jollans et al. 2016). 
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Figure S2.4. Schematic description of the RAFT algorithm.  
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Table S2.1 

Relationship among impulsivity variables  

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Self-report 

              1.      BIS-11 Attention 1 

             2.      BIS-11 Motor 0.48 1 

            3.      BIS-11 Non-planning 0.48 0.43 1 

           4.      SSS adventure seeking 0.12 0.26 0.15 1 

          5.      SSS Boredom  0.23 0.19 0.21 0.28 1 

         6.      SSS Disinhibition 0.39 0.38 0.38 0.21 0.41 1 

        7.      SSS Experience seeking 0.08 0.15 0.12 0.31 0.28 0.23 1 

       
8.      MCQ k 0.22 0.29 0.28 -0.2 0.11 0.20 0.03 1 

      Task-based (index) 

              9.     DD k (choice) 0.07 0.14 0.16 -0.1 0.04 0.1 -0.1 0.67 1 

     10.   SST SSRT (motor) -0.05 0.05 -0.05 -0.09 -0.09 -0.08 -0.08 0.16 0.19 1 

    11.   SST IRV (cognitive) 0.16 0.09 0.11 0.17 0.05 0.15 0.07 0.08 0.00 -0.31 1 

   12.   Stroop (interference) 0.01 0.05 0.22 -0.1 -0.1 0.1 -0.1 0.15 0.31 0.09 -0.1 1 

  13.   PST Approach A (reward) -0.09 0.00 0.00 0.16 0.11 0.05 0.02 0.00 -0.10 -0.12 0.16 0 1 

 14.   PST Avoid B (punishment) -0.07 0.05 0.01 0.01 0.05 0.05 0.10 0.12 0.11 0.00 0.11 0.10 0.56 1 

Note: Bold correlations are weakly correlated, or are >0.03 Bayes factor (i.e. not considered null).  Bolded and italicized correlations are 

significant at p<0.0037, Bonferroni corrected for multiple comparisons. 
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Figure S2.5. Scree plot of eigenvalues for principal components analysis of alcohol-use questions. 
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Figure S2.6. Machine learning results for predicting intoxication frequency. Significant predictors are in warm colours (left) and non-significant 

variables are in grey colour (right). 
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Machine Learning Results 

Two of the SSS-V subscales contained questions regarding alcohol and drug use – for 

Disinhibition “Keeping the drinks full is the key to a good party; I feel best after taking a couple of 

drinks” and for Experience Seeking “I have tried marijuana or would like to; I would like to try some 

of the new drugs that produce hallucination”. To ensure that results of these models were not driven 

by factors influencing the outcome variable (i.e. intoxication frequency), I ran a separate analysis, 

excluding these variables from the SSS-V subscales. I then ran a model with the same impulsivity 

variables for intoxication frequency. The results indicated that these questions did not alter the beta 

weight values for the predictor variables, and the model remained significant (median r=0.31, 

p=0.002). Therefore, I concluded that the inclusion of these questions in the final analysis was 

appropriate. 
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Table S2.2  

Items included from the ESPAD 

On how many occasions (if any) have you had any alcoholic beverage to drink? 

a. In your lifetime 

b. During the last 12 months 

c. During the last 30 days 

Think back again over the LAST 30 DAYS. How many times (if any) have you had five or more 

drinks on one occasion? 

On how many occasions (if any) have you been intoxicated from drinking alcoholic beverages, for 

example staggered when walking, not being able to speak properly, throwing up or not 

remembering what happened? 

a. In your lifetime 

b. During the last 12 months 

c. During the last 30 days 

How likely is it that each of the following things would happen to you personally, if you drink 

alcohol?  

a. Feel relaxed 

b. Get into trouble with police 

c. Harm my health 

d. Feel happy 

e. Forget my problems 

f. Not be able to stop drinking 

g. Get a hangover 

h. Feel friendlier and more outgoing 

i. Do something I regret 

j. Have a lot of fun 

k. Feel sick 

WHILE UNDER THE INFLUENCE OF ALCOHOL, how often during the LAST 12 MONTHS 

have you experienced the following? 

a. Physical fight 

b. Accident/ injury 

c. Serious problems with your parents 

d. Serious problems with your friends 

e. Performed poorly as school/ work 

f. Victimised by robbery/ theft 

g. Trouble with the police 

h. Hospitalized/ admitted to an emergency room 

i. Engaged in sexual intercourse without a condom 
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j. Engaged in sexual intercourse you regretted the next day 

On how many occasions (if any) during your lifetime have you smoked cigarettes? 

On how many occasions (if any) have you used marijuana or hashish (cannabis)?         

a. In your lifetime 

b. During the last 12 months 

c. During the last 30 days 

On how many occasions (if any) have you used any of the following drugs (amphetamines, 

tranquilizers or sedatives, ecstasy, cocaine, crack, other drugs)? 

a. In your lifetime 

b. During the last 12 months 

c. During the last 30 days 
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7.2 Supplemental 3.1 

 

Self-report measures 

The Alcohol Use Disorders Identification Test (AUDIT; Babor, Higgins-Biddle, Saunders & 

Monteiro, 2001) is a 10-item alcohol screening questionnaire that assessed alcohol consumption, 

alcohol-related problems and drinking behaviour and quantifying risk from low-level to hazardous 

drinking. The AUDIT has demonstrated a high degree of internal consistency (Cronbach’s a between 

0.75 to 0.97; Reinert & Allen, 2007).  Responses are scored from 0-4, with a maximum of 40 for 

total AUDIT scores. 

The Drug Abuse Screening Test (DAST-20; Skinner, 1982) is a 20-item questionnaire that 

assessed illegal drug use in the past 12 months, and has shown moderate to high levels of internal 

consistency (α’s between 0.74 to 0.94) (Yudko, Lozhkina & Fouts, 2007).  

The Depression, Anxiety and Stress Scale (DASS; (Henry & Crawford, 2005) is a 21-item 

questionnaire that assessed cognitive and behavioural distress symptoms experienced within the past 

week. This measure utilised three subscales: Anxiety (7 items; “I felt I was close to panic”), Stress (7 

items; “I found it difficult to relax”) and Depression (7 items; e.g., “I felt that life was meaningless”). 

Participants rated items on a 4-point Likert-scale (1=did not apply to me at all, 4=applied to me very 

much or most of the time), and higher scores indicated higher levels of depression, anxiety, or stress 

(Henry & Crawford, 2005). Antony and colleagues (1998) assessed internal consistency of the 

DASS-21 using a total of 307 individuals with panic disorder (n= 67), obsessive compulsive disorder 

(n= 54), social phobia (n= 74), specific phobia (n= 17), or major depressive disorder (n= 46) and a 

group of nonclinical volunteers for comparison (n= 49). Internal consistency using Cronbach’s alpha 



   

 

249 

 

 

 

for the DASS-21 Depression, Anxiety, and Stress subscales were .94, .87, and .91, respectively, in 

both clinical and nonclinical samples.   

The Neuroticism-Extraversion-Openness Five Factor Inventory (NEO-FFI; Costa & McCrae, 

1992) assessed personality traits, including individual differences on 5 subscales for Neuroticism, 

Extraversion, Openness, Agreeableness and Conscientiousness.  Each subscale comprised 12 items 

on a 5-point Likert scale, (0=strongly disagree; 4=strongly agree). Internal consistency for each of 

the five domains has been shown to be adequate (α = .68 to .86; Costa & McCrae, 1992) 

The Perceived Stress Scale (PSS; Cohen, Kamarck, & Mermelstein, 1983) assessed stress appraisal 

related to common life situations within the last month. The scale comprised 10 items on a 5-point 

scale (0=never; 4=very often), and has shown high internal reliability (α = .85; Lavoie & Douglas, 

2012). 

The Multidimensional Scale of Perceived Social Support (MSPSS; Zimet et al., 1988) is a 12-

item scale that assessed perceived support from family, friends and a significant other, measured on a 

7-point Likert scale (1 =very strongly disagree; 7=very strongly agree). Internal consistency has been 

shown to be strong (α’s between 0.85 to 0.91) (Dahlem, Zimet, & Walker, 1991). 

The Barratt Impulsiveness Scale 11th version (BIS-11; Patton and Stanford, 1995) assessed 

trait impulsivity with 30 items on a 5-point Likert scale (ranging from disagree strongly to agree 

strongly), yielding three second-order factors—Motor, Attentional and Non-planning impulsivity. 

The scale has shown strong internal consistency and reliability (Stanford et al., 2009).  

 

Task-based measures 
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All computerized tasks were presented and responses recorded by the Presentation® software 

package (Neurobehavioural Systems). Each task began with on-screen instructions that were also 

read out to participants by the experimenter.  The experimenter checked that the participant 

understood the instructions and participants were given time to read over the instructions again 

themselves before commencing the task in their own time by pressing the ‘1’ key on the keyboard. 

Task responses were made via an Xbox 360 game controller. Participants were seated in front of a 

cathode ray tube computer monitor with a screen resolution of 1024 x 768 pixels at a refresh rate of 

75 Hz.  The distance from the position of the chair to the monitor (screen size 32 x 24 cm) was 

standardized (screen to back of chair = 108 cm). Participants were asked to maintain their focus on 

the stimuli on the screen during the experiment. 

The Stroop Colour–Word Test (MacLeod, 1991) assessed cognitive conflict. Participants 

were presented with the name of a colour and were required to name the colour when the word name 

was printed in either a congruent (e.g., blue) or incongruent colour (e.g., the word red printed in blue 

ink). Following 12 initial practice trials, participants completed a single block of 96 test trials in total. 

Reaction time on incongruent trials is typically slower than for congruent trials, known as the 

“interference effect” (MacLeod, 1991), which was calculated by subtracting incongruent from 

congruent trials. Lower interference effect indicates better performance. 

The Probabilistic Selection Task (PST; Frank, Seeberger & O'Reilly, 2004) assessed reward 

and punishment learning. The PST comprised of a training and test phase, each 120 trials in length. 

During the training phase, participants were randomly presented with three stimulus pairs (AB, CD, 

EF), and required to select the ‘correct’ stimulus in each pair based on probabilistic feedback. The 

stimulus reward probabilities were predetermined (A: 80%; B: 20%; C: 70%; D: 30%; E: 60%; F: 
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40%). The position of each stimulus on screen was randomly varied across trials (e.g. AB, or BA). 

Stimulus pairs were presented on screen until a response was made. Feedback was presented for 

750ms in the form of a green tick “✓” signalling correct responses or red ‘X’ for incorrect responses 

respectively. There was no criterion to reach in the training phase. In the Test phase, novel 

combinations of the six stimuli were presented, and participants were again required to select the 

correct stimulus in each pair. No feedback was provided in the Test phase of the PST. As in previous 

research, performance in the Test phase was measured by comparing how often participants selected 

the A stimulus versus how often they avoided the B stimulus in novel pairs. If participants have 

correctly learned the relative values of symbols during the learning phase, positive stimulus (A) 

choices over all other symbols indicated that the participant learned from positive feedback (reward 

sensitivity), while avoidance of the negative stimulus (B) over other symbols indicated negative 

feedback learning (punishment sensitivity). Stimuli were presented on screen until a response was 

made, and a fixation cross was presented for 500ms between trials. 

The adaptive delay discounting task (DDT) assessed choice impulsivity. Participants were 

presented with a series of dichotomous choices between immediate versus relatively larger but 

delayed hypothetical monetary rewards. The adapting DDT was designed to estimate an individual’s 

rate of delay discounting progressively more accurately from trial to trial by adapting the 

hypothetical magnitude and timing of the delayed rewards it offered participants on each trial based 

upon their preceding responses (Ortiz et al., 2015). The rate at which the DDT modified the value of 

the delayed reward it offered participants was governed by an adaptive algorithm using a double-

limit procedure that modified the model parameter k based on two sets of boundaries designed to 

adjust to the point at which the participant would choose the immediate and delayed outcome with 
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equal probability. The model parameter k characterises an individual’s rate of delay discounting such 

that higher values of k indicate a higher rate of delay discounting. The delayed reward was presented 

at a randomly chosen delay of between 1 and 180 days (phrased in days, weeks or months as 

appropriate), and a randomly chosen immediate reward of between $10-50. When participants chose 

the immediate reward on a given DDT trial the obtained estimate of k was decreased and then used 

to calculate the value of the delayed choice being offered on the next DDT trial, and vice-versa if the 

delayed reward was chosen. The DDT’s adaptive algorithm was designed to converge upon a 

participant’s individual k value. Following 10 initial practice trials, a single block of 149 DDT test 

trials commenced with initial k = 0.018. Each trial began with a fixation cross positioned centre 

screen for 700 ms. If participants did not respond within five seconds of the choice they were 

prompted with the message “Please respond” directly underneath. Failure to respond within two 

further seconds resulted in the trial completing without recording any response or thus updating the 

value of k.  

An adaptive Stop Signal Task (SST) assessed inhibitory control. Participants performed an 

adaptive event-related Stop Signal Task (SST), which took approximately 9 min to complete. 

Following 10 initial practice trials, the task consisted of 135 Go trials interspersed with 45 Stop 

trials; with one randomized Stop trial appearing within four Go trials.  The task was presented in 3 

blocks of 60 trials. Each trial began with a central fixation cross for 1000 ms and the total duration of 

a trial was always 1000ms. On every trial, participants were presented with arrows pointing either to 

the left or right (stimuli size 122 x 108 mm), shown centrally on the screen for 750 ms. During Go 

trials, participants were required to make a single button-press response on the keyboard with their 

left or right index finger corresponding to the direction of the arrow as fast as possible. In Stop trials, 
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the Go stimulus was followed by an arrow pointing upwards (i.e., the Stop signal, shown between 

550-950 ms; stimuli size 113x126 mm), which required participants to inhibit their motor responses. 

A tracking algorithm adjusted task difficulty by varying the stop-signal delay (SSD; the time interval 

between Go signal and Stop signal onsets). The initial SSD was 250 ms, but was adjusted according 

to a participant’s performance, to between 50 ms and 450 ms. These limits were adjusted depending 

on task performance, making the SSD shorter (i.e., the task easier) after an unsuccessful stop trial, 

and the SSD longer (i.e., the task more difficult) after a successful stop trial. A moving average of go 

reaction times (RTs) began on the 10th trial. Participants were presented with a “Speed up!” prompt 

for 2 s if they failed to respond to 2 out of 5 Go trials, or if their last RT was longer than 1.5 times 

their average RT. The aim was to produce 50% successful and 50% unsuccessful inhibition trials. If 

the participant responded to the Go stimulus before Stop stimulus presentation (i.e. responded during 

the SSD) then this was recorded as a stop too early (STE). STEs were considered to be an 

unsuccessful stop trial and as a result, the SSD was adjusted accordingly (i.e. shorted delays 

following STE trials).  

The SSRT refers to the time taken to cancel a prepotent motor response after Stop stimulus 

presentation. Under the horse-race model, the Go and Stop responses are considered to be 

independent processes, with successful inhibition determined by the ability to complete the stop 

process before the go process (Band et al., 2003; Verbruggen & Logan, 2008). According to the 

horse-race model (Logan and Cowan, 1984), the finish of the stop process can be estimated from a 

subject’s distribution of RTs on Go trials. The left side of the distribution of the RTs on Go trials 

represents faster responses that indicate failure to inhibit a response, whereas the right side represents 

slower responses that indicate successful inhibition. If a subject failed to inhibit on n% of Stop trials, 
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the finishing time of the stop process will approximately be equal to the nth percentile of the go RT 

distribution. The mean SSD was then subtracted from the nth percentile of the go RT distribution, 

resulting in an estimate of SSRT. The average successful stop rate was 54.6% on the SST, indicating 

that the tracking procedure was successful in making performance-based dynamic adjustments. 

Participants with SSRT < 75 ms were excluded from the analysis. 
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Table S3.1 Spearman’s Rho correlations among variables 

*Correlation is significant at p < 0.05 level (2-tailed), ** p < 0.01 level (2-tailed)

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1.NEO extraversion 1.00 

                    2.NEO openness .02 1.00 

                   3.NEO agreeableness .35** .22 1.00 

                  4.NEO conscientiousness -.22* .00 .11 1.00 

                 5.NEO neuroticism .12 -.25* -.03 -.18 1.00 

                6.DASS stress .05 -.02 -.21 -.23* .43** 1.00 

               7.DASS anxiety .03 -.20 -.24* -.14 .58** .61** 1.00 

              8.DASS depression .14 -.19 -.13 -.44** .59** .50** .70** 1.00 

             9.MSPSS significant other -.06 .07 .24* .01 -.04 -.09 .00 -.14 1.00 

            10.MSPSS family .04 .06 .26* .19 .02 -.16 -.14 -.24* .53** 1.00 

           11.MSPSS friends .05 .18 .25* .08 .01 -.04 -.07 -.11 .58** .53** 1.00 

          12.PSS total .01 -.05 -.17 -.10 .59** .48** .49** .47** -.01 .05 -.04 1.00 

         13.BIS-11 attentional .13 .18 -.23* -.61** .42** .41** .40** .42** .02 -.14 -.16 .33** 1.00 

        14.BIS-11 motor .16 .45** -.12 -.49** .04 .28* .19 .34** .00 -.12 -.02 .17 .58** 1.00 

       15.BIS-11 non-planning -.03 .32** .02 -.54** .06 .00 .05 .24* -.01 -.11 -.08 -.07 .45** .43** 1.00 

      16.DDT (k) .05 .02 .08 .03 -.20 -.03 -.14 -.10 -.05 .04 -.02 -.05 -.06 -.03 .10 1.00 

     17.SST SSRT -.02 .00 -.13 .14 -.06 .05 .10 .04 .09 .04 .16 -.08 -.12 .01 -.23* -.06 1.00 

    18.SST IRV -.05 .07 -.05 .23* .11 .21 .19 -.04 .27* .15 .27* .23* .04 -.07 -.12 .12 -.07 1.00 

   19.Stroop (Interference) -.16 -.04 -.33** .12 .15 .08 .16 .09 -.02 -.04 -.11 .13 .12 .04 .02 -.13 .05 .14 1.00 

  20.PST approach A .00 .36** .01 .05 -.04 -.02 .02 -.05 -.05 -.01 -.04 .17 .01 .10 -.07 -.02 -.04 -.03 .17 1.00 

 21.PST avoid B  -.08 .17 -.11 .04 .06 -.05 .12 -.01 -.11 -.14 -.05 .13 -.04 -.07 -.03 .00 .05 -.03 -.04 .76** 1.00 
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Figure S3.1. ERP grand-average across participants, based on all non-artifact independent 

components, time-locked to the stop-signal for four fronto-central channels. 

 

 

Table S3.2 Results of machine learning models 

  Model type   

Model Measure Original Null Two-sample t-test p-value 

EEG only MSE -147.37 -152.95 t(198)=1.58 e+01 5.78 e-37 

 Pearson's correlation 0.28 -0.01 t(198)=1.89 e+01 3.18 e-46 

Non-EEG  MSE -138.68 -146.05 t(198)= 1.83 e+01 1.06 e-44 

All variables Pearson's correlation 0.34 0.00 t(198)= 2.19 e+01 7.54 e-55 

Non-EEG  MSE -22.48 -27.63 t(198)= 2.66 e+01, 2.22 e-67 

Impulsivity only Pearson's correlation 0.37 -0.03 t(198)= 2.47 e+01 1.79 e-62 

EEG + Non-EEG MSE -146.04 -151.93 t(198)= 1.60 e+01 8.26 e-38 

 Pearson's correlation 0.28 -0.02 t(198)= 1.89 e+01 2.31 e-46 

Averaged mean-squared error (MSE) and Pearson’s correlation across set assignments for the 

original and null models. The t-test between the accuracy measures for the original and null 

models shows a strong difference. 
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Table S3.3. Machine-learning results for all models 

 

EEG only 

(CV r = 0.28, p = 0.03) 
Non-EEG: All variables 

(CV r = 0.34, p = 0.004) 
Non-EEG: Impulsivity only 

(CV r = 0.37 p = 0.002) 
EEG + Non-EEG 

(CV r = 0.28, p = 0.02) 

Features 
Mean 

Frequency  

Beta   

Weight 
Features 

Mean 

Frequency  

Beta   

Weight 
Features 

Mean 

Frequency  

Beta   

Weight 
Features 

Mean 

Frequency  

Beta   

Weight 

Fail AF7 [541 ms] 9.91 0.17 Relationship Status 10 -0.87 BIS-11 Non-planning 10 1.12 Fail AF7 [541 ms] 9.89 0.19 

Fail T7 [190 ms] 9.79 -0.11 DASS Anxiety 10 0.99 Stroop Interference 9.99 1.02 Fail T7 [190 ms] 9.67 -0.12 

Success Fz [92 ms] 9.37 -0.10 Stroop Interference  10 1.20 BIS-11 Motor 9.93 0.71 Success Fz [92 ms] 9.22 -0.11 

Fail Fpz [41 ms] 9.29 -0.10 BIS-11 Non-planning 10 0.97 SST IRV 8.51 0.68 Fail F5 [221 ms] 9.11 -0.07 

Fail F5 [220 ms] 9.21 -0.06 BIS-11 Motor 9.98 0.45 DDT k 7.63 0.30 BIS-11 Non-planning* 9.09 0.12 

Fail T7 [147 ms] 9.21 -0.06 MSPSS Family 9.91 -1.14 BIS-11 Attentional 7.6 0.12 Fail Fpz [41 ms] 9.03 -0.11 

Fail FT7 [225 ms] 9.16 -0.05 MSPSS Friend 9.9 1.25 SST SSRT  7.41 0.10 Fail C6 [135 ms] 9.01 -0.04 

Fail FC5 [412 ms] 9.09 -0.07 Yrs. Of Education 9.88 0.68 - - - BIS-11 Motor* 8.98 0.07 

Fail F5 [61 ms] 9.07 -0.05 SST IRV 9.86 0.61 - - - Fail FC5 [443 ms] 8.89 -0.08 

Fail C6 [135 ms] 8.96 -0.03 NEO Neuroticism 9.85 -0.64 - - - Fail F5 [61 ms] 8.87 -0.06 

Fail FC5 [443 ms] 8.95 -0.06 NEO Agreeableness 9.79 0.41 - - - Stroop Interference* 8.78 0.07 

Fail Cz [123 ms] 8.93 0.04 MSPSS Partner 9.78 -0.51 - - - Relationship Status* 8.69 -0.09 

Success Fpz [279 ms] 8.92 -0.08 NEO Openness 9.7 -0.26 - - - Fail FT7 [225 ms] 8.65 -0.04 

Success C5 [271 ms] 8.89 0.09 NEO Conscientiousnes 9.69 -0.33 - - - Success Fpz [84 ms] 8.62 -0.06 

Fail FCz [529 ms] 8.85 -0.04 PSS Total 9.68 -0.30 - - - DASS Anxiety* 8.6 0.08 

Success Fpz [84 ms] 8.83 -0.05 DDT k 9.61 0.22 - - - Fail T7 [147 ms] 8.53 -0.06 
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Top 30 features ranked in order of highest mean frequency of being picked across mainfolds and random set assignments, for each model 

respectively. For EEG results, each time sample ranges within ~4ms. * Non-EEG variables that were combined with EEG variables. 

Impulsiveness Scale 11th version; DDT: Delay Discounting Task; SST: Stop Signal Task; PST: Probabilistic Selection Task; DASS: 

Depression, Stress & Anxiety Scale. 

Fail T7 [342 ms] 8.82 -0.04 SST SSRT  9.54 0.13 - - - Success C5 [272 ms] 8.52 0.10 

Fail FP1 [221 ms] 8.79 -0.03 DAST Drug Total 9.48 -0.04 - - - Fail FC5 [412 ms] 8.52 -0.09 

Fail F8 [76 ms] 8.78 0.08 BIS-11 Attentional 9.45 0.23 - - - Fail FT8 [6 ms] 8.52 0.09 

Success AF3 [88 ms] 8.77 -0.06 NEO Extraversion 9.41 -0.22 - - - Fail FCz [529 ms] 8.5 -0.04 

Fail F6 [264 ms] 8.77 0.06 DASS Stress 9.37 -0.20 - - - Fail T8 [475 ms] 8.49 -0.06 

Fail T8 [475 ms] 8.76 -0.05 Monthly Income 9.32 0.14 - - - Fail FP1 [221 ms] 8.48 -0.04 

Fail Cz [115 ms] 8.76 0.03 Smoker / Non-smoker 9.28 -0.06 - - - Fail F6 [263 ms] 8.45 0.06 

Fail F6 [115 ms] 8.74 0.07 PST Approach A 9.02 -0.05 - - - Fail Cz [123 ms] 8.41 0.04 

Success FP1 [4 ms] 8.73 -0.04 PST Avoid B 8.91 -0.87 - - - Success FP1 [3.9 ms] 8.37 -0.04 

Fail AF3 [60 ms] 8.73 -0.06 DASS Depression 8.85 0.07 - - - Fail F8 [76 ms] 8.37 0.08 
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Figure S3.2. Map of 64-channel set-up across the scalp during EEG recording.   
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7.3 Supplemental 4.1 

Controlling for Motion Artifacts 

Ideally, motion correction should eliminate any statistical relationship between functional 

connectivity and in-scanner motion artifacts, although a trade-off inevitably arises among the 

possible methods for motion regression (Caballero-Gaudes & Reynolds, 2017; Ciric et al., 

2017) (note that the examination of motion confounds have generally been carried out using 

resting-state data). Therefore, I conducted additional analyses to demonstrate that the FC-IRV 

relationships hold, regardless of head motion. I used the summary statistic of mean framewise 

displacement (mFWD; Power 2014) to quantify the degree of head motion for each subject.  

 

Motion Analysis 1. Progressive elimination of higher motion subjects from the normative 

sample. I separated the normative sample into groups according to the amount of motion: 

(mFWD <0.2 mm, n=457; <0.3 mm, n=621; <0.4 mm, n=692; <0.5 mm, n=726) and a group 

consisting only of subjects with higher motion (i.e., all participants with mFWD>0.2 mm, 

n=301). Separately for each group, timeseries data were extracted and a Pearson’s correlation 

score was calculated among the 268 ROIs. This yielded a connectivity matrix (268 × 268) 

with 35,778 unique connections between ROIs for each group. I then correlated these 

connections with individual IRV scores within each group. Although each group contained 

different numbers of participants, for consistency a significance threshold of p <0.001 was 

applied to each set of results. Due to the computational expense, I did not run the permutation 

analysis, but simply applied the significance threshold (p<0.001) to the FC-IRV matrices for 
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each motion group. Figure S4.1 displays these results, with additional information in Table 

S4.1. Note the high motion subgroup was relatively underpowered to detect FC-IRV effects 

at p<.001 (Figure S4.1, Panel I) and therefore I include a figure with p<.005 threshold to this 

group’s FC-IRV to better show the strongest FC-IRV connections (Figure S4.1, Panel J).  

 

Motion Analysis 2. Examination of subgroup without mFWD-IRV correlation. Head motion 

and IRV were correlated in the normative sample (Spearman’s Rho = .22). Therefore, in 

order to examine if the FC-IRV relationship resulted from the mFWD-IRV relationship, I 

examined a subset of subjects (n=360) excluding particularly high-motion/high-IRV subjects 

with no correlation between mFWD and IRV (Spearman’s Rho = .09, p>.05; mFWD<.17; 

IRV<.3). Similar to Motion Analysis 1, I recalculated the ROI connectivity matrix and then 

correlated this matrix with IRV (Figure S4.1, Panel F). Note that the sample size is smaller 

and, by examining only a subset of values within a particular range, the correlations will be 

inherently weaker (i.e., due to range restriction; see additional information in Table S4.1).  As 

a result, we also include a figure with p<.005 threshold to this group’s FC-IRV (Figure S4.1, 

Panel G).  
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Figure S4.1. Examination of distributions of FC-IRV correlations for various motion-

determined subgroups. Good sustained attention (i.e. functional connections positively 

correlated with IRV) is denoted by the colour red (top images); poor sustained attention (i.e. 

functional connections negatively correlated with IRV) is denoted by the colour blue (bottom 

images).  

 

Motion Analysis 3. Network overlap between motion groups: It is important to demonstrate 

that the most important connections within the normative sample are preserved, regardless of 

the motion characteristics of the subjects. the top 100 FC-IRV connections (absolute r 

values) from the normative sample were identified, and extracted and computed the same 

connections for a low motion group mFWD<.2), a higher motion group (mFWD>.2), and the 

mFWD-IRV uncorrelated group (see Table S4.1 below). These FC-IRV connections 

remained significant within each group, with similar absolute r values and broadly similar p 

values (note that sample sizes were different across groups). 
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Table S4.1 

r values of the top 100 FC-IRV connections identified from the normative sample. That is, 

the mean r values for the Low Motion, High Motion and Uncorrelated Groups were 

calculated based on connections identified in the normative sample.  

 
Normative 

Group (N=758) 

Low Motion 

Group 

(N=457) 

High Motion 

Group 

(N=301) 

Uncorrelated 

Group 

(N=360) 

Mean FC-

IRV absolute 

r 

0.187 0.181 0.156 0.150 

Standard 

error of mean 

absolute r 

0.002 0.004 0.003 0.004 

Mean p  <0.001 <0.001 0.022 <0.001 

 

 

In summary, the most important FC-IRV connections are present in various subsamples of 

the data, regardless of head motion.  
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7.4 Experimental Information 

   

Alcohol Study  
Alcohol drinkers Welcome! 

 
 

You receive €20 for participating + €10 max receipted travel! 

This study involves a non-invasive EEG & questionnaires  

 

How to participate: Text/Ring 0852851333  

Email laohallo@tcd.ie  
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Trinity College Institute of Neuroscience, Lloyd Building, Trinity College 

Dublin 
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Consent Form 

 

I confirm that I have read the information sheet and understand: 

 

 Please tick 

What my participation involves  

That my privacy will be respected by anonymous data storage  

That I am free to withdraw from the study before and during data 

collection 

 

That once my data is collected, I cannot withdraw my data  

That I must be between 18-30 years of age to participate   

 

I consent to: 

Completing the questionnaires outlined in the attached information sheet  

Taking part in a battery of computer-based tasks outlined in the attached  

information sheet 

 

Taking part in the EEG component of the study  

Having my physiological responses measured  

Having my anonymised data archived indefinitely and used for future 

research and 

publications 

 

 

I also confirm that any questions I had about the research have been 

answered 

 

 

For UCD students: 

That my studies in TCD will not be affected by my participation/non-

participation 

 

 

Name (PLEASE PRINT):  _______________________________________ 

Signature: _________________________   Date: _____________ 
Information Sheet 
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Study Title: Identifying risk and resilience factors for patterns of alcohol misuse in young 

adulthood 

Thank you for expressing interest in participating in this research being conducted by Dr. 

Robert Whelan (Principal Investigator) and Laura O'Halloran (PhD candidate). 

 

What is this research about? This study aims to identify risk and protective factors for 

particular patterns of problematic alcohol use, such as binge drinking, in young adulthood. This 

will allow us to examine factors that might either constitute a risk for developing alcohol 

dependence, or might protect people from becoming addicted to alcohol. 

 

Am I eligible to participate in this research? You are eligible to participate in this study if you 

are between 18 and 30 years old. However, we may not use your data under the following 

circumstances: 

 History of traumatic brain injury and/or stroke. 

 Dependence on substances other than nicotine. 

 Diagnosis of a mental health disorder 

 Receptive language difficulties 

 Learning disability  

 General and/or specific intellectual disability 

 Physical disability, which you feel might negatively affect performance in this 

study (e.g. motor impairment). 

If the experimenter becomes aware of such circumstances during the assessment, your 

participation in the study will unfortunately no longer be possible.  

 

What are the benefits of taking part in this research study? Your willingness to participate in 

the study would represent an important contribution to the study of alcohol consumption patterns 

in young adults. You would help the researchers gain a better understanding of the characteristics 

of individuals who binge drink and the psychological changes that occur when people binge 

drink. Furthermore, a benefit of participating in this research is gaining insight into your own 

drinking levels and gaining awareness of health and safety in terms of alcohol use. 

 

What is involved if I agree? You will arrange a time with the researcher to participate in the 
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study in a psychology lab room in Trinity College Institute of Neuroscience (see map provided). 

You will be asked to provide some background information, carry out some psychological 

questionnaires, and tell us about your experience with alcohol, nicotine and other drug use. 

Following this, you will complete computer-based tasks while having your brain activity recorded 

using electroencephalography (EEG). EEG is a safe method of measuring electrical activity in the 

brain, and poses no risk to you as a participant. Your physiological arousal will also be measured 

through use of two electrodes placed on your fingers to measure skin conductance, and a heart 

rate monitor. Participation in this study will take about 2 hours 30 mins, with a break in between. 

What are the risks of taking part in this research study? If you decide to volunteer in the 

study, you will participate in a wide range of assessments. There is a possibility that you may 

experience feelings of fatigue, frustration, anxiety or distress. However, the risks you will 

encounter during the study will not exceed ordinary day-to-day risks. In addition, we will 

minimize any social or an emotional risk to you by ensuring your data is confidential and stored 

anonymously. Should something in the study upset you, please take note of the following 

supportive listening services:  

Samaritans provide immediate support for anyone. 

Free phone: 116 123 

Website: www.samaritans.org     

Niteline is a listening, support and information service run by and for the students of UCD, TCD, 

DCU, NUIM, NCAD, RCSI and their affiliate colleges. It is open during term from 

9:00pm – 2:30am.  

Free phone: 1800 793 793 

Online Listening: http://www.niteline.ie/onlinelistening.php 

AWARE is a support services for people who are affected by stress and depression. 

           Telephone 01-661 7211. 

           Email: info@aware.ie 

Alcoholics Anonymous is a support service for people with alcohol issues.  

              Telephone 01-8420700 

               Email: gso@alcoholicsanonymous.ie 

 

How will my data be used? The data generated from this study will be used to learn more about 

the risk and resilience factors associated with alcohol consumption. The data collected will be 

used for presentations conferences and published in peer reviewed journals, however all data used 

will be anonymous.  

Can I withdraw from the study? You have the right to withdraw from the study at any time 

during testing and also have the right to request a break. However, once your data has been 

collected you will no longer be able to withdraw your data from the study because the file 

connecting your name and the code assigned to you will be destroyed two weeks following data 

collection. Therefore, following this initial two-week period, your data will be unidentifiable. 

 You may withdraw from the study before or during the assessment by informing the 

experimenter that you no longer wish to take part. Once your data is collected (i.e. anytime after 

the assessment is completed), you will not we will not be able to withdraw you data from the 
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study. Your data will remain identifiable for a two week period following your participation in 

order to contact you if mental health issues arise in your data and following this period, your data 

will be de-identified. If you exhibit severe levels of depression, anxiety or stress, indicate serious 

alcohol issues or indicate mental health issues following your data collection, you will be 

contacted by email in the first week after testing and advised to contact your G.P.  You can also 

contact an alternative free option, St. Patrick’s Support & Information Service, which is a 

telephone and email service staffed by experienced mental health nurses 9-5 Monday to Friday 

with an answering and call-back facility outside hours. You can contact the Support & 

Information service by calling 01 249 3333, or emailing your query to info@stpatsmail.com.  

How will my privacy be protected? Your data will remain identifiable for a two week period 

following your participation in order to contact you if any mental health issues arise in your data. 

A unique, random code will be assigned your data. This code will be connected your name and 

dated in a locked electronic file, separate from the test data. This data will be stored on a 

password-protected computer. The file connecting your name and the code assigned to you will 

be destroyed two weeks following data collection. Therefore, following this two week period, 

your data will be unidentifiable. 

 

However, if the researcher strongly believes that there is a serious risk of harm or danger to either 

the participant or another individual, or if a serious crime has been committed, it may be 

necessary for them to reveal some of what you tell them to third parties even without your 

permission. 

How Can I find out what happens with this research? If you would like to find out what 

happens with this research, you can contact the researcher listed below. 

If Any Issues arise for you during the Study: Just in case that did bring up anything you might 

want to talk about further we have some contact numbers for support services here. We give them 

out to everyone. Feel free to use them as you see fit. You are also advised to contact your G.P. if 

you feel that any serious issues arise. You can also contact an alternative free option, St. Patrick’s 

Support & Information Service, which is a telephone and email service staffed by experienced 

mental health nurses 9-5 Monday to Friday with an answering and call-back facility outside 

hours. You can contact the Support & Information service by calling 01 249 3333, or emailing 

your query to info@stpatsmail.com. 

depression, anxiety and/or stress). 

Payment: You will receive €10 for your participation, as well as up to  €10 maximum for travel 

expenss (with a receipt) for coming into Trinity College on the day of participation will be 

reimbursed to you by the experimenter.  

Contact Details: 

If you have any further questions about the study, you can contact:   

mailto:info@stpatsmail.com
mailto:info@stpatsmail.com
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Dr. Robert Whelan: Robert.whelan@gmail.com  

Trinity School of Psychology 

Scoil na Síceolaíochta 
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Debrief 

 Your participation may help researchers gain a better understanding of the characteristics 

of individuals who binge drink. As well as gaining insight into your own drinking levels 

and gaining awareness of health and safety in terms of alcohol use. 

 Your data will remain identifiable for a two week period following your participation in 

order to contact you if any mental health issues arise in your data. 

 
 

free phone the Samaritans on: 116 123 

healthp@tcd.ie

http://www.niteline.ie/
http://www.niteline.ie/onlinelistening.php
http://www.aware.ie/
mailto:wecanhelp@aware.ie
http://www.samaritans.org/
mailto:gso@alcoholicsanonymous.ie
mailto:info@stpatsmail.com
mailto:healthp@tcd.ie

