FNR is a Regulator of *Salmonella* Pathogenicity Island 2 in *Salmonella* Typhimurium

A thesis submitted to the University of Dublin in fulfillment of the requirements for the degree Doctor of Philosophy by

Stefani Christine Kary

2019

The Moyne Institute of Preventive Medicine Department of Microbiology Trinity College University of Dublin

Declaration

I hereby declare that this thesis has not previously been submitted for a degree at this or any other University and that it represents my own unaided work, except where duly acknowledged in the text.

I agree that this thesis may be lent or copied at the discretion of the librarian, Trinity College Dublin.

Stefani Christine Kary

Summary

During infection, S. Typhimurium employs Salmonella pathogenicity island (SPI)-encoded type three secretion systems (T3SS) 1 and 2 to invade and survive in host cells. However, expression of SPI-2 is seen at the epithelial border prior to host cell invasion in response to an unknown signal. A zone of relative oxygenation adjacent to the gastrointestinal tract mucosa, caused by diffusion of oxygen from the capillary network has been shown to cause priming of Shigella and Enterotoxigenic E. coli for entry into host cells through the oxygen sensing capabilities of the anaerobic metabolism regulator FNR. However, regulation of SPI-2 by FNR has not been established in S. Typhimurium. Here we show using a combination of RNA-seq and ChIP-seq that SPI-2 is highly expressed in an Δfnr mutant under microaerobic conditions, and that FNR is a direct repressor of SPI-2 genes. Our particular focus on FNR regulation of SPI-2 under microaerobic growth in a glycerol/trimethylamine N-oxide/fumarate minimal medium has revealed that, not only does FNR repress the expression of the SPI-2 encoded type three secretion system apparatus proteins, effectors and chaperones through direct regulation of the SPI-2 response regulator SsrB, but it is also involved in the direct repression of a great number of effectors and virulence relevant sRNAs encoded throughout the chromosome and on the Salmonella virulence plasmid and that growth under aerobic conditions relieved repression. Furthermore, we have shown that the accurate spatiotemporal expression of SPI-2 is integral for maintenance of bacterial fitness, provided additional evidence that oxygen is an important signalling molecule for the control of bacterial motility and demonstrated that FNR is an important regular in both intra- and extracellular environments. Our results demonstrate that S. Typhimurium regulates expression of virulence genes in response to changing oxygen concentrations to prepare for the harsh intracellular environment of host cells using the regulator of anaerobic metabolism FNR. Importantly, analysis of our Δfnr RNA-seq-based transcriptomic data in conjunction with previously published datasets, will provide a more complete picture of mixed regulatory interactions within the cell. We hope that the addition of this data will help in the development of the full understanding of all regulatory interactions and inputs involved in the establishment of S. Typhimurium infection.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Carsten Kröger for providing me with the opportunity of a lifetime, for his continuous support, patience, motivation, immense knowledge, and abundant supply of chocolate and donuts that never failed to brighten any mood. His guidance, encouragement and generousity helped me immensely throughout the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D.

I would also like to thank my postgraduate thesis committee Prof. Charles Dorman, Prof. Joan Geoghegan and Prof. Marta Martins, for the useful discussions, advice and help during the last three years. A huge thank you to the postdocs who taught me so much, Dr. Aoife Colgan, Dr. Aalap Mogre, and Dr. Aleksandra Miranda Caso Luengo. Without you, I would not have been able to complete this work.

Thank you to Prof. Andrew Cameron who encouraged me to pursue a Ph.D. after my M.Sc., introduced me to Carsten all those years ago, and who welcomed me back into the lab when I was visiting home. I cannot thank Dr. Keith Mackenzie enough for all of his help and encouragement and for doing an amazing job with the ChIP-seq samples. Thank you to Dr. Tzu-Chiao Chao and Dr. Nicole Hansmeier for their outstanding work that contributed immensely to this thesis. Thank you to Dr. Ciaran Finn for his insight, helpful chats and strains, and to Dr. Daniel Ryan for the beautiful anaerobic growth curves at the 11th hour. Thank you to Dr. Karsten Hokamp for computational support, and to Prof. Jay Hinton for the trip to Liverpool and helpful comments. Thank you to Prof. Alastair Fleming for his generousity with lab equipment and friendly chats when we were the last people in the department at the end of the day. Thank you to Dr. Marta Zapotoczna for all of her help discussions and our late night office rants that really helped to blow off some steam. Thank you to Aisling Towell for her help with protein purification and always providing the best of Disney music. Thank you to the members of the Dorman Lab past and present for always lending a helping hand, or incubator, or enzyme in a time of need. Thank you to Michelle and Amy for wonderful chats, laughs, and encouragment. How can I begin to thank Daniela and Niamh? You kept my spirits high, were a shoulder to cry on, and you truly kept me sane these last three years. Thank you to the rest of the folks in the Moyne past and present; Thaina, Marty, Roberto, Isa, Orquidia, Elaine, Brenda, Mohamed, Chandie, Kieran, Leanne, Joana and Orla for always lending an ear and thank you to the undergraduate students who, although trying at times, always gave us something to giggle about and especially thank you to Naoise, Vivian, and Marina who helped so much in the lab.

I cannot thank Jane enough for keeping the lab stocked, always finding what was needed and providing numerous goodies throughout the years. Thank you to Deirdre for all of the protocols, advice and lots of laughs. Thank you to Jayne and Caroline who helped keep this place organized and for help with all of my shipping debacles. I have to thank of course Stephen and Ronan for all of the wonderful conversation and for always making sure I had all the flasks a girl could dream of, and sorry about the smell from all of my experiments, MMA is really the worst. Thank you to Connie and Miriam (and Jane again!) for sharing their space in my final 6 months in the lab. Thank you to Dave and Margaret for keeping me stocked up with media and to Gerry for all of his problem solving.

Thank you to Dara & Laura who opened their home to me from my first day in Dublin, and to Joanna for helping me find an apartment so quickly! Thank you to Fitzy and his family for the wonderful Christmases that felt like a home away from home. Thank you to Niamh and all the ladies at TropicalPopical who kept me fabulous throughout this endeavour. Thank you to all my friends back home especially the dance girls and Becca for their unwavering support from afar.

Thank you to Zewdi for all of your love and faith. A special thank you to my mom and dad who always helped me keep everything organized back home, and for your support and love. And of course to Niko, who despite being a dog makes pretty good FaceTime calls.

And finally, to Mesel, for always believing in me, giving continuous love, support, laughter, help, and taking my call no matter the hour. Thank you for your patience, for waiting three years, and for never taking anything for granted.

Publications and Conferences

Publications

Kröger, C., Rothhardt, J. E., Brokatzky, D., Felsl, A., Kary, S. C., Heermann, R. & Fuchs,
T. M. (2018). The small RNA RssR regulates myo-inositol degradation by *Salmonella* enterica. Scientific Reports 8, 17739. Nature Publishing Group. DOI:10.1038/s41598-018-35784-8

Colgan, A. M., Quinn, H. J., Kary, S. C., Mitchenall, L. A., Maxwell, A., Cameron, A. D.
S. & Dorman, C. J. (2018). Negative supercoiling of DNA by gyrase is inhibited in *Salmonella enterica* serovar Typhimurium during adaptation to acid stress. *Molecular Microbiology* 169, 4499–3. DOI:10.1111/mmi.13911

Miranda-CasoLuengo, A. A., Kary, S. C., Erhardt, M. & Kröger, C. (2017). Small RNA, big effect: Control of flagellin production. *Trends in Microbiology* 1–2. Elsevier Ltd. DOI:10.1016/j.tim.2017.10.003

Kary, S. C., Yoneda, J. R. K., Olshefsky, S. C., Stewart, L. A., West, S. B. & Cameron, A. D. S. (2017). The global regulatory cyclic AMP receptor protein (CRP) controls multifactorial fluoroquinolone susceptibility in *Salmonella enterica* Serovar Typhimurium. *Antimicrobial Agents and Chemotherapy* **61**, 010401–14. DOI:10.1128/AAC.01666-17

Kröger, C., **Kary, S. C.**, Schauer, K. & Cameron, A. (2016). Genetic regulation of virulence and antibiotic resistance in *Acinetobacter baumannii*. *Genes* **8**, 12–19. DOI:10.3390/genes8010012

Conferences

Kary, S. C., Colgan, A. M., Mogre, A., Hansmeier, N., MacKenzie, K. D., Chao, T. C., Hokamp, K., Dorman, C. J., Hinton, J. C. D., Cameron, A. D. S., and Kröger, C. FNR is a regulator of SPI-2 in *Salmonella* Typhimurium (2018), Oral Presentation at the Canadian Society of Microbiologists (CSM) Student Symposium Competition, Winnipeg, Manitoba, Canada.

Kary, S. C., Colgan, A. M., Mogre, A., Hansmeier, N., MacKenzie, K. D., Chao, T. C., Hokamp, K., Dorman, C. J., Hinton, J. C. D., Cameron, A. D. S., and Kröger, C. FNR is a regulator of SPI-2 in *Salmonella* Typhimurium (2018), Oral Presentation at the Dublin Academy of Pathogenomics and Infection Biology Meeting, Dublin, Ireland.

Kary, S. C., Colgan, A. M., Mogre, A., Hansmeier, N., MacKenzie, K. D., Chao, T. C., Hokamp, K., Dorman, C. J., Hinton, J. C. D., Cameron, A. D. S., and Kröger, C. FNR is a regulator of SPI-2 in *Salmonella* Typhimurium (2018) Poster Presentation at the Dublin Academy of Pathogenomics and Infection Biology Meeting, Dublin, Ireland.

Kary, S. C., Colgan, A. M., Mogre, A., Hansmeier, N., MacKenzie, K. D., Chao, T. C., Hokamp, K., Dorman, C. J., Hinton, J. C. D., Cameron, A. D. S., and Kröger, C. FNR is a regulator of SPI-2 in *Salmonella* Typhimurium (2017) Poster Presentation at the Microbiology Society Annual Conference, Edinburgh, Scotland, UK.

Table of Contents

De	eclarati	ion	I
Sı	ımmary	y	II
Ac	cknowl	edgements	III
Pı	ublicati	ions and Conferences	V
Ta	uble of	Contents	<i>VII</i>
Li	st of Fi	igures	XII
Li	st of Ta	ables	XIV
Li	st of F	ormulas	XV
Li	st of Al	bbreviations	XV
1	Cha	pter 1 General Introduction	1
	1.1	Salmonella	2
	1.1.1	Overview of the Salmonella genus	2
	1.1.2	Pathogenesis of S. Typhimurium	
	1.1.3	Flagella	
	1.1.4	Salmonella pathogenicity islands	9
	1.2	Metabolism in the gut	20
	1.2.1	Oxygen in the gut	
	1.2.2	Anaerobic respiration in the gut	
	1.3	Regulation of the aerobic to anaerobic switch	26
	1.3.1	FNR	
	1.3.2	Regulation of FNR	
	1.3.3	Mechanisms of transcriptional regulation by FNR	
	1.3.4	The FNR regulon	
	1.4	Aims of the Study	
2	Cha	pter 2 Material & Methods	
	2.1	Chemicals and Reagents	
	2.2	General Microbiological Techniques	
	2.2.1	Media	
	2.2.2	Maintenance of Bacterial Stocks	
	2.2.3	Culture Conditions	
	2.2.4	Monitoring Bacterial Growth	

2.2.5	5 Antibiotics	
2.2.6	6 Motility Assays	
2.2.7	Growth curves and kinetic gene expression assay	
2.2.8	Oxygen gradient gene expression assay	
2.2.9	Relative Fitness Assay	
2.3	General molecular techniques	
2.3.1	Isolation of chromosomal S. Typhimurium 4/74 DNA for use in PCR	47
2.3.2	2 Isolation of plasmid DNA	47
2.3.3	Polymerase chain reaction (PCR)	47
2.3.4	Agarose gel electrophoresis	
2.3.5	Restriction digestion	48
2.3.6	Purification of PCR products	
2.3.7	Precipitation of DNA	49
2.3.8	Extraction of DNA from agarose gels	49
2.4	Preparation and transformation of competent bacteria	
2.4.1	Preparation of electro-competent S. Typhimurium and electroporation	49
2.4.2	Preparation and transformation of chemically competent <i>E. coli</i>	50
2.5	Genetic manipulations	55
2.5.1	P22 Phage transduction	55
252	Removal of antibiotic resistance cassettes	56
2.3.2		
2.5.3	Modular Tn7-based plasmid system	
2.5.2 2.5.3 2.6	Modular Tn7-based plasmid system	
2.5.3 2.6 2.6.1	Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74	
2.5.2 2.5.3 2.6 2.6.1 2.6.2	 Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion 	
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3	Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion Reverse transcription	
2.5.2 2.6 2.6.1 2.6.2 2.6.3 2.6.4	 Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from <i>S</i>. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR 	
2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5	 Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from <i>S</i>. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes 	56 58 58 59 59 59 59 59 59
2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6	 Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from <i>S</i>. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting 	56 58 58 59 59 59 59 59 59 59 59
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7	 Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from <i>S</i>. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq 	56 58 58 59 59 59 59 59 59 59 59 59 59 59 59 59
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.7	 Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from <i>S</i>. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq 	56 58 58 59 59 59 59 59 59 59 59 59 59 59 59 59
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.7 2.7.1	Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq Analysis of proteins Preparation of whole cell lysates for analysis of cellular proteins	56 58 58 59 59 59 59 60 61 61 61 63 63
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.7 2.7.1 2.7.2	Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq Preparation of whole cell lysates for analysis of cellular proteins Preparation of culture supernatants for analysis of secreted proteins	56 58 58 59 59 59 59 60 60 61 61 61 63 63 63
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.7 2.7.1 2.7.2 2.7.3	 Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq Analysis of proteins Preparation of whole cell lysates for analysis of cellular proteins Preparation of culture supernatants for analysis of secreted proteins SDS polyacrylamide gel electrophoresis (SDS-PAGE) 	56 58 58 59 59 59 59 59 59 60 61 61 61 61 63 63 63 63 63
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.7 2.7.1 2.7.2 2.7.3 2.7.4	 Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from <i>S</i>. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq Analysis of proteins Preparation of whole cell lysates for analysis of cellular proteins Preparation of culture supernatants for analysis of secreted proteins SDS polyacrylamide gel electrophoresis (SDS-PAGE) Coomassie staining of polyacrylamide gels 	56 58 58 59 59 59 59 60 60 61 61 61 61 63 63 63 63 63 63 63 63
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5	Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq Analysis of proteins Preparation of whole cell lysates for analysis of secreted proteins SDS polyacrylamide gel electrophoresis (SDS-PAGE) Western Immunoblotting	56 58 58 59 59 59 59 60 61 61 61 61 63 63 63 63 63 63 63 64 64
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.6.7 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6	Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq Preparation of whole cell lysates for analysis of secreted proteins Preparation of culture supernatants for analysis of secreted proteins SDS polyacrylamide gel electrophoresis (SDS-PAGE) Coomassie staining of polyacrylamide gels Western Immunoblotting Proteomic analysis by mass spectrometry	56 58 58 59 59 59 59 60 61 61 61 61 63 63 63 63 63 63 63 63 63 63 63 59
2.5.2 2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.4 2.6.5 2.6.6 2.6.7 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.8	Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq Analysis of proteins Preparation of culture supernatants for analysis of secreted proteins SDS polyacrylamide gel electrophoresis (SDS-PAGE) Coomassie staining of polyacrylamide gels Western Immunoblotting Proteomic analysis by mass spectrometry	56 58 58 59 59 59 59 60 61 61 61 63 63 63 63 63 63 63 63 63 63 63 63 63
2.5.3 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.4 2.6.5 2.6.4 2.6.5 2.6.4 2.6.5 2.6.4 2.6.7 2.7.1 2.7.2 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.5 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.6 2.7.7 2.	Modular Tn7-based plasmid system Analysis of RNA Extraction of RNA from S. Typhimurium 4/74 DNase I digestion Reverse transcription Real-time quantitative PCR Generation of Digoxigenin-labelled riboprobes Northern blotting cDNA preparation of RNA and RNA-seq Preparation of whole cell lysates for analysis of cellular proteins Preparation of culture supernatants for analysis of secreted proteins SDS polyacrylamide gel electrophoresis (SDS-PAGE) Coomassie staining of polyacrylamide gels Western Immunoblotting Proteomic analysis by mass spectrometry Preparation of cross-linked lysates	56 58 58 59 59 59 59 60 61 61 61 61 63 63 63 63 63 63 63 63 63 63 63 63 63

2.	.8.3	Washing the Protein-G agarose beads and elution of DNA	68
2.	.8.4	Reversal of cross-links and DNA extraction	68
2.9	Ι	DNA sequencing	70
2.	.9.1	Preparation of DNA libraries	
2.	.9.2	Sequencing with Illumina MiSeq	70
2.10) E	Bioinformatic analysis	70
2.	.10.1	Mapping of RNA-seq data and differential expression analysis	70
2.	.10.2	ChIP-seq analysis	71
2.11	Г	DNA hinding analysis	76
2.11	.11.1	Large scale induction of protein production	
2.	.11.2	6×His-Tag protein purification	
2.	.11.3	Electrophoretic mobility shift assay	77
2 12	, ,	Atomic force microscopy imaging	77
2,12		Atomic force microscopy magnig	
2.13	I I	nfection of murine macrophages	
3 C	Chapt	ter 3 Transcriptional regulation in Δfnr	
31	Т	ntroduction	80
3.1	11	Overview of the Study	
3.	.1.2	Bacterial transcriptome analysis using RNA-seq	
2.2	г		02
3.2	F	Strategy for everytal design	83 02
). 3	.2.1	Perroducibility of PNA-see data	
3	2.2	Absence of polar effects in Afar	
3.	.2.4	Complementation of the Δfnr mutant	
3.	.2.5	RNA-seq determines differentially expressed genes in Δfnr	
3.	.2.6	SPI-2 is derepressed in Δfnr under microaerobic conditions in MMA	
3.	.2.7	Expression and secretion of effector proteins	
3.	.2.8	Repression of motility in Δfnr	107
3.	.2.9	Regulation of small RNAs	112
3.3	Ι	Discussion	
3.	.3.1	SPI-2 expression in MMA	118
3.	.3.2	Motility and chemotaxis	119
3.	.3.3	Regulation of sRNAs by FNR	119
3.	.3.4	Comparison of FNR regulons	
3.	.3.5	The benefits and limitations of an RNA-seq-based approach for the investigati	on of bacterial
		regulons	
3.	.3.6	Summary	

4	Cha	pter 4 Promoter occupancy of FNR	127
4.1	l	Introduction	128
	4.1.1	Identification of global FNR binding through ChIP-seq	
4.2	2	Results	131
	4.2.1	Verification of 3×FLAG-FNR	131
	4.2.2	Overview of FNR binding using ChIP-seq	
	4.2.3	FNR consensus binding motif	
	4.2.4	Verification of FNR binding	
	4.2.5	FNR binding to control regions	
	4.2.6	FNR binding to SPI-2 promoters	
	4.2.7	FNR binding to the <i>ydgT</i> promoter	
	4.2.8	Expression from SPI-2 promoters	149
4.3	3	Discussion	152
	4.3.1	Low binding affinity at SPI-2	
	4.3.2	The role of <i>ydgT</i>	
	4.3.3	The benefits and limitations of ChIP-seq for investigations of in vivo protein-DNA	
		interactions	
	4.3.4	Summary	
5.1	l 5.1.1	Introduction	159
5 2	,	Results	161
5.2	521	SPL 2 expression in vitro	161
	522	Intramacronhage survival of S. Tynhimurium	101
	522	Contribution of alternative electron accentors to growth and SPL2 expression	169
	5.2.5	Relative fitness in vitro	109
	5.2.5	Proteomic study of $\Delta finr$	
53	Ł	Discussion	179
5.5	, 5 2 1	SDI 2 regulation by END in with and in viva	170
	537	Attenuation of A far in murine macronhages	179
	533	Fitness of A far	179
	<i>5.5.5</i>		101
6	Cha	pter 6 General Discussion	181
6.1	l	Importance of this study	182
	6.1.1	Context of the study	
	6.1.2	Global analysis of FNR-mediated regulation in S. Typhimurium	
6.2	2	Future prospects	186
	6.2.1	Signals for expression of virulence	

6.2.2	sRNAs, the missing link?	
6.2.3	Regulation of motility	
6.2.4	Differences in virulence gene expression in Δfnr based on strain	
6.2.5	Limitations of our approach and existing technologies	
6.3	Concluding remarks	
Reference	S	
Appendix	<i>I</i>	
Appendix	<i>II</i>	
Appendix	<i>III</i>	
Appendix	IV	

List of Figures

Chapter 1		Page
Figure 1.1	S. Typhimurium must circumvent stressful conditions during	7
	infection.	
Figure 1.2	The SPI-2 type III secretion system.	12
Figure 1.3	Regulation at Salmonella pathogenicity island 2 involves many	19
	transcription factors.	
Figure 1.4	The oxygen gradient in the gut.	22
Figure 1.5	FNR activity is directly regulated by oxygen.	28
Figure 1.6	Activation of simple class I and class II FNR-dependent promoters.	30
Chapter 2		
Figure 2.1	Experimental set-up for aerobic and microaerobic growth	37
Figure 2.2	Construction of the fnr^+ complementing strain.	57
Chapter 3		
Figure 3.1	Workflow of general experimental procedures for investigating the regulation of SPI-2.	81
Figure 3.2	Growth of <i>S</i> . Typhimurium and isogenic mutants under microaerobic conditions in MMA.	84
Figure 3.3	High correlations of RNA-seq data from independent biological replicates.	86
Figure 3.4	Confirmation of <i>fnr</i> chromosomal deletion by RNA-seq.	88
Figure 3.5	pfnr overexpresses fnr but recues FnrS expression in Δfnr .	90
Figure 3.6	fnr^+ rescues $FnrS$ and fnr expression under microaerobic & anaerobic	91
	conditions.	
Figure 3.7	Relative gene expression across the <i>S</i> . Typhimurium chromosome and plasmids.	95
Figure 3.8	Classification of FNR-regulated genes according to COGs.	96
Figure 3.9	SPI-2 expression is highly up-regulated in the absence of FNR.	97
Figure 3.10	Low level absolute and relative expression in SPI-1, 3, 4 and 5.	98
Figure 3.11	SPI-2 apparatus and effector expression is up-regulated in Δfnr under	101
	microaerobic conditions in MMA.	
Figure 3.12	FNR blocks <i>ssaG</i> expression under low O ₂ conditions.	102
Figure 3.13	SPI-2 expression is increased in WT under aerobiosis.	103
Figure 3.14	Expression of SPI-2 effector proteins.	105
Figure 3.15	Secretion of SPI-1 and SPI-2 effector proteins.	106
Figure 3.16	Down regulation of genes at major chemotaxis and flagellar loci.	109
Figure 3.17	Chemotaxis regulatory pathways and flagellar assembly genes activated by FNR.	110
Figure 3.18	Motility is repressed and flagella are absent in Δfnr .	111
Figure 3.19	Regulatory network of FNR regulated sRNAs.	116
Figure 3.20	Comparison of FNR regulons.	123

Chapter 4		Page
Figure 4.1	Workflow of chromatin immunoprecipitation sequencing to identify	130
	FNR binding sites.	
Figure 4.2	FnrS is expressed in FNR-3×FLAG and the <i>fnrS</i> gene is bound by	132
	FNR-3×FLAG.	
Figure 4.3	FNR ChIP peaks across 2 replicates on the 4/74 chromosome and	136
	plasmids.	
Figure 4.4	Overview of 2 independent ChIP-seq replicates.	138
Figure 4.5	FNR binding motifs.	139
Figure 4.6	FNRD154A is active under microaerobic conditions.	141
Figure 4.7	Alignment of S. Typhimurium and E. coli FNR protein sequences.	141
Figure 4.8	(FNRD154A) ₂ is active and can be purified under aerobic conditions.	142
Figure 4.9	The genes encoding SsrA and SsrB are the most differentially expressed of SPI-2 regulators.	143
Figure 4.10	FNR binding at the P_{fnr} and P_{fnrS} promoters and a negative control.	144
Figure 4.11	FNR binding at the P_{ssrB} , P_{ssrA} and P_{ssaB} promoters.	147
Figure 4.12	FNR binding at the P_{ydgT} promoter.	150
Figure 4.13	Promoter expression from SPI-2 promoters.	151
Figure 4.14	Putative FNR binding sites overlap with TF binding at the <i>ssrB/ssrA/ssaB</i> locus.	157

Chapter 5

Figure 5.1	Workflow of general experimental procedures for investigating	160
Figure 5.2	Growth of 4/74 and isogenic mutants in SPI-2 inducing media.	162
Figure 5.3	Aerobic and microaerobic growth and <i>ssaG</i> expression in 4/74 and isogenic mutants over time in LB, inSPI2 and NonSPI.	163
Figure 5.4	The Δfnr mutant is attenuated in murine macrophages at early time points.	166
Figure 5.5	Plasmid carriage reduced intramacrophage replication and SPI-2 expression was elevated at early time points in Δfnr during infection.	167
Figure 5.6	Growth in MMA prior to infection reduces bacterial uptake, but increases fold replication.	168
Figure 5.7	Growth and $ssaG$ expression in MMA with and without alternative electron acceptors.	170
Figure 5.8	The Δfnr mutant has reduced fitness in microaerobic MMA.	172
Figure 5.9	In SPI-2 inducing conditions the $\Delta ssrAB$ mutant outcompetes WT.	173
Figure 5.10	The Δfnr mutant has reduced fitness and WT and the $\Delta ssrAB$ are the same in microaerobic LB.	174
Figure 5.11	Venn diagram representing proteins detected by mass spectrometry in WT and Δfnr .	177
Figure 5.12	Classification of abundant proteins from WT and Δfnr into COG categories.	178

Chapter 6

Figure 6.1	Model of SPI-2 rep	ression by FNR und	er changing oxyg	en conditions. 18	35
------------	--------------------	--------------------	------------------	-------------------	----

List of Tables

Chapter 1		Page
Table 1.1	Salmonella pathogenicity islands 1 through 5.	18
Table 1.2	Electron acceptors used by Salmonella during anaerobic	24
	respiration.	
Chapter 2		
Table 2.1	Media recipes.	41
Table 2.2	Bacterial strains used in this study.	43
Table 2.3	Plasmids used in this study.	45
Table 2.4	Table of oligonucleotides.	52
Table 2.5	Buffers and solutions for Northern blotting.	62
Table 2.6	Buffers for ChIP.	69
Table 2.7	Table of programs and online tools for bioinformatic analysis in	73
	this study.	
Chapter 3		
Table 3.1	sRNAs down-regulated in Δfnr .	114
Table 3.2	sRNAs up-regulated in Δfnr .	115
Appendix I		
Table S1	RNA-seq data: Absolute and relative expression.	222
Appendix II	l	
Table S2	COG categories.	321
Table S3	COG organized DE genes.	330
Appendix II	П	
Table S4	ChIP-seq peaks: FNR binding.	335
Table S5	ChIP-seq peaks associated with up-regulated DE genes.	340
Table S6	ChIP-seq peaks associated with down-regulated DE genes.	341
Table S7	Letter-probability matrix of FNR binding motif	3/11
	(TTGATNTRSATCAA)	541
Table S8	Top 100 FNR Motif Hits.	342
Appendix F	V	
Table S9	Proteomics: Proteins in WT.	344
Table S10	Proteomics: Proteins in Δfnr .	358

List of Formulas

Formula	Page
Competitive Index	40
Quantity of Immunoprecipitated DNA	68
Transcripts per Million	71
Bound Ratio	77
	Formula Competitive Index Quantity of Immunoprecipitated DNA Transcripts per Million Bound Ratio

List of Abbreviations

3'UTR	Three prime untranslated region
4/74	Salmonella enterica serovar Typhimurium strain 4/74
5′UTR	Five prime untranslated region
Amp	Ampicillin
APS	Ammonium persulfate
B _{max}	Maximum bound ratio
bp	Base pair
cDNA	Complementary DNA
CDS	Coding sequence
CFU	Colony forming unit
ChIP	Chromatin Immunoprecipitation
CI	Competitive index
Cm	Chloramphenicol
dH ₂ O	Distilled water
Dig	Digoxigenin
DNA	Deoxyribonucleic acid
dNTP	Deoxyribonucleotide
EDTA	Ethylenediaminetetraacetic acid
EMSA	Electrophoretic mobility shift assay
ESP	Early stationary phase
FLP	Flippase recombinase
FRT	Flippase recognition site
GFP	Green fluorescent protein
GI	Gastrointestinal
HRP	Horseradish peroxidase
IGB	Integrated Genome Browser
InSPI2	SPI-2 inducing PCN medium
iNTS	Invasive Non Typhoisal Salmonella
Kan	Kanamycin
kb	Kilobase pair
K_D	Dissociation constant
LA	Lennox agar

LB	Lennox broth
LEP	Late exponential phase
LSP	Late stationary phase
MCS	Multiple cloning site
MEP	Mid exponential phase
MES	2-(N-morpholino)ethanesulfonic acid
MMA	Minimal medium A
MOPS	3-(N-morpholino)propanesulfonic acid
mRNA	Messenger RNA
NAP	Nucleoid associated protein
NonSPI2	Non-SPI-2 inducing PCN medium
nt	Nucleotide
OD600	Optical density at 600 nm
ORF	Open reading frame
PBS	Phosphate buffered saline
PCN	Phosphate, Carbon, Nitrogen medium
PCR	Polymerase chain reaction
PES	Polyethersulfone
PIPES	Piperazie-N'N'bis(2-ethanesulfonic acid)
qPCR	Quantitative real-time PCR
RBS	Ribosome binding site
RNA	Ribonucleic acid
RNA-seq	High-throughput cDNA sequencing
RNAP	RNA polymerase
RNase	Ribonuclease
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
rpm	Revolutions per minute
rRNA	Ribosomal RNA
RT	Reverse transcriptase/transcription
SCV	Salmonella containing vacuole
SDS	Sodium dodecyl sulphate
SDS-PAGE	Sodium dodecyl sulphate poly-acrylamide electrophoresis
SOB	Super optimal broth
SOC	Super optimal broth with catabolite repression
SPI	Salmonella Pathogenicity Island
sRNA	Small RNA
SSC	Saline-sodium citrate
STncXXX	Salmonella Typhimurium non-coding
Str	Streptomycin
T3SS	Type three secretion system
TAE	Tris acetate ethylenediaminetetraacetic acid
TBE	Tris borate ethylenediaminetetraacetic acid
TCA	Trichloroacetic acid
TCS	Two component system

TE	Tris Ethylenediaminetetraacetic acid
TEMED	Tetramethylethylenediamine
Tet	Tetracycline
TF	Transcription factor
TMAO	Trimethylamine N-oxide
TPM	Transcripts per million
tRNA	Transfer RNA
TSS	Transcription start site
UV	Ultra violet
v/v	Volume per volume
w/v	Weight per volume
WT	wild-type
Х	xylose

Chapter 1 General Introduction

1.1 Salmonella

1.1.1 Overview of the Salmonella genus

Members of the genus Salmonella belong to the Enterobacteriaceae family (Ibarra & Steele-Mortimer, 2009; Rhen & Dorman, 2005). They diverged from a common ancestor with Escherichia coli (E. coli) between 100 and 150 million years ago (Fookes et al., 2011; Sabbagh et al., 2010). Salmonella are Gram-negative, rod-shaped, motile flagellates, facultative anaerobes and facultative intracellular pathogens (Fàbrega & Vila, 2013). The nomenclature of Salmonella is complex, contentious and still evolving. The current recommended system of nomenclature by the World Health Organization (WHO) Collaborating Centre (Issenhuth-Jeanjean et al., 2014) subdivides the genus by differences in their 16S ribosomal RNA (rRNA) into two species: Salmonella bongori (S. bongori) and Salmonella enterica (S. enterica) (Popoff et al., 2004). The type species, S. enterica, can be further divided into six subspecies, enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV) and indica (VI), based on their genomic relatedness and biochemical properties (Reeves et al., 1999). S. enterica subsp. enterica is found predominantly in mammals and contributes to the vast majority of Salmonella infections in humans and warmblooded animals. S. bongori and the remaining S. enterica subspecies are commonly associated with commensalism of cold-blooded vertebrates and isolation from environmental sources, with only a limited number of human infections reported (Desai et al., 2013; Fookes et al., 2011; Sabbagh et al., 2010). Salmonella is further subdivided into serovars (serotypes) based on serologic identification of O (lipopolysaccharide) and H (flagellar) antigens with over 2,500 in total, and the enterica subspecies encompassing over 1,500 serovars (Grimont & Weill, 2007; Issenhuth-Jeanjean et al., 2014). For simplicity, the species and subspecies of S. enterica subsp. enterica serovars are commonly omitted, for example Salmonella enterica subsp. enterica sv. Typhimurium is shortened to S. Typhimurium (Brenner et al., 2000).

S. enterica infections, or salmonellosis, result in two major clinical manifestations: gastroenteritis and enteric fever. Enteric fever, also called Typhoid fever is human host-restricted systemic febrile infection caused by *S.* Typhi. A clinically similar but, often less severe disease, Paratyphoid fever, is caused by *S.* Paratyphi A, B and C (Crump & Mintz, 2010; McClelland *et al.*, 2004). *S.* Typhi is a relatively recently evolved serovar of *Salmonella*, as its divergence from a common ancestor is estimated to be only 50,000 years

ago and it has adapted to exclusively infect humans (Kidgell *et al.*, 2002). *S.* Typhi remains relevant today as it causes an estimated 21 million infections annually, resulting in approximately 200,000 - 600,000 deaths primarily in regions with poor economic development in children, adolescents, and the elderly (Buckle *et al.*, 2012; Crump & Mintz, 2010). *S.* Typhi is spread through fecal-oral transmission via contaminated food or water. After exposure, signs and symptoms may initially be absent, as the bacteria can disseminate systemically without triggering a pro-inflammatory response or diarrheal disease. Infected individuals carry *S.* Typhi in their bloodstream and intestinal tract, and they shed bacteria in their stool. After the incubation period, some people may remain asymptomatic. Asymptomatic carriers of *S.* Typhi harbour the bacteria in their gallbladder and, as was demonstrated by the infamous case of Mary Mallon or "Typhoid Mary" in the early 1900s, go on to spread enteric fever through person-to-person transmission (Basnyat & Baker, 2015; Gonzalez-Escobedo *et al.*, 2010). Others will go on to exhibit extreme fatigue, high fever (>39°C), coughing, vomiting, headache and rapid pulse (Dougan & Baker, 2014).

Strains of non-typhoidal Salmonella (NTS) are the second most common causative agent of gastroenteritis after Campylobacter species, responsible for an estimated 93 million cases of gastroenteritis annually, as well as more than 155,000 deaths (Majowicz et al., 2010; Murray et al., 2015). The majority of human infections are caused by two S. enterica serovars, Typhimurium and Enteritidis. NTS infection begins with an inflammatory response upon invasion of host epithelial cells, with 80% of cases leading to a self-limiting gastroenteritis with symptoms including diarrhea with or without blood, abdominal cramps, nausea and fever (Dougan & Baker, 2014). NTS is typically non-fatal in healthy adults however, infants, young children, elderly people and immunocompromised patients are highly susceptible to NTS infections (Scallan et al., 2011). Invasive NTS (iNTS) has recently emerged as a new pathogenic clade with a distinct genotype in sub-Saharan Africa. This emerging pathogen may have adapted to occupy an ecological and immunological niche provided by HIV, malaria, and malnutrition in Africa (Feasey et al., 2012). iNTS strains of S. Typhimurium lead to an estimated 2 to 3 million infections and up to 700,000 deaths per year, with a mortality rate between 20-25% (Ao et al., 2015; Feasey et al., 2012; Gordon, 2008). Unlike Typhoidal serovars, NTS are zoonotic pathogens and have a broad spectrum of warm- and cold-blooded hosts. Thus, NTS are easily disseminated through agriculture resulting in contamination of food such as beef, poultry, eggs, and fresh produce (Stevens et al., 2009). In mice, infection by S. Typhimurium results in a typhoid-like systemic fever similar to that of the human host-restricted serovars Typhi and Paratyphi. Therefore, S. Typhimurium is

used in murine systemic infections for the study of typhoid fever pathogenesis (Coburn *et al.*, 2006; Hurley *et al.*, 2014; Sabbagh *et al.*, 2010).

In this study *S*. Typhimurium strain 4/74 (GenBank accession numbers CP002487-CP002490) was used for all experiments. Strain 4/74 was originally isolated from a calf with salmonellosis in the UK, it is a virulent isolate and the parent strain of the commonly used lab strain and histidine (*hisG*) auxotroph SL1344. Strain 4/74 differs from SL1344 by only 8 single nucleotide polymorphisms (SNPs) including in *hisG* (Hoiseth & Stocker, 1981; Kröger *et al.*, 2012; Richardson *et al.*, 2011). Strain 4/74 is a prototroph for histidine production that possesses a functional histidine biosynthetic pathway that is important for replication in the vacuolar environment of certain mammalian cells including macrophages (Henry *et al.*, 2005) and is more invasive than another commonly used lab strain ATCC 14028S due to heterogeneity in expression of *Salmonella* pathogenicity island 1 (Clark *et al.*, 2011).

1.1.2 Pathogenesis of S. Typhimurium

Consumption of contaminated food and water is the primary route of infection for S. Typhimurium (Ohl & Miller, 2001; Thompson et al., 2006). Following ingestion, S. Typhimurium must pass through the gastrointestinal (GI) tract from the mouth, through the esophagus, and through the stomach to reach the small intestine where it encounters a variety of stressful conditions meant to protect the host from infection (Figure 1.1). First, there is an upshift in temperature from that of the outside environment to approximately 37°C in humans. As S. Typhimurium reaches the stomach, it must also survive the extreme acidic pH. Response to acid shock and survival in the stomach is facilitated by the acidtolerance response (ATR) (Álvarez-Ordóñez et al., 2011; Haraga et al., 2008; Ohl & Miller, 2001). The ATR is also responsible for preparing bacterial cells for the acidic intracellular environment later in infection (Foster, 1991; Foster & Hall, 1990). As S. Typhimurium travels through the duodenum and jejunum of the small intestine to reach the ileum, its preferred site for invasion, the bacterium encounters increased osmolarity and anaerobiosis, as well as the host intestinal microbiota (Hébrard et al., 2011). To reach the intestinal epithelium, S. Typhimurium requires a functional motility and chemotaxis system (Jones et al., 1981). While crossing the intestinal mucosal layer, the bacterium must resist the host innate immune system including such elements as bile salts and antimicrobial peptides in order to access and adhere to the underlying epithelium (Haraga et al., 2008).

Once at the intestinal epithelium, S. Typhimurium invades epithelial cells. It preferentially targets microfold (M) cells for translocation and can induce transformation of epithelial cells into M cells to promote host colonization and invasion (Jepson & Clark, 2001; Tahoun et al., 2012). M-cell-mediated uptake of S. Typhimurium also allows bacterial cells to invade adjacent epithelial cells from their apical and basolateral surfaces (Haraga et al., 2008). Adherence of bacterial cells to the apical surface of epithelial cells is necessary for the induction of invasion associated genes (Jones et al., 1981) and is accomplished by Salmonella surface appendages such as fimbriae and non-fimbrial adhesins (Wagner & Hensel, 2011). Following attachment, Salmonella Pathogenicity Island 1 (SPI-1) encoded type III secretion system (T3SS)-dependent translocation of effector proteins into the cytosol of non-phagocytic cells actively induces host cell cytoskeletal rearrangement, membrane ruffling and ultimately uptake of the bacterium into a membrane-derived vacuole (Finlay et al., 1991; Lhocine et al., 2015; Srikanth et al., 2011). Detection of the invading bacteria by components of the host immune system and active translocation of additional bacterial effectors into epithelial cells by S. Typhimurium leads to a pro-inflammatory immune response, resulting in the inflammation of the gut, fluid secretion and the symptoms of gastroenteritis (Haraga et al., 2008; Hurley et al., 2014; Thiennimitr et al., 2012). Inflammation promotes shedding of epithelial cells into the lumen of the intestine, depositing bacteria back into the lumen. Bacteria that remain in the intestinal lumen can benefit from the by-products inflammation of the intestine to use as electron acceptors for anaerobic metabolism to outcompete the resident microbiota who rely on fermentation (Thiennimitr et al., 2012; Winter et al., 2013). Enhanced growth in the intestinal lumen promotes transmission of S. Typhimurium to new hosts by the fecal-oral route (Lawley et al., 2007).

S. Typhimurium cells that successfully invade host epithelial cells are enclosed in a membrane-derived vesicle termed the spacious phagosome (SP). The SP later fuses with lysosomes, acidifies and shrinks to become adherent around one or more bacteria creating the *Salmonella*-containing vacuole (SCV) (Steele-Mortimer, 2008). Maturation of the SCV and survival of bacterial cells is dependent upon proteins encoded on *Salmonella* pathogenicity island 2 (SPI-2). The SPI-2 T3SS translocates effector proteins across the phagosomal membrane to allow intracellular survival and replication. Formation of the SCV requires altering the host cell endocytic trafficking pathway to avoid normal phagosome maturation and fusion with lysosomes (Rathman *et al.*, 1997). As the SCV matures, *S*. Typhimurium encounters additional stressors including starvation of magnesium, phosphate and iron and a further reduction in pH (Hébrard *et al.*, 2011). The mature SCV migrates to

the Golgi-apparatus and simultaneously *Salmonella*-induced filaments (SIFs) are formed. SIFs are tubular filamentous structures which extend from the SCV and form complex networks throughout the cell to facilitate interactions with host organelles (Knuff & Finlay, 2017; Krieger *et al.*, 2014). *S.* Typhimurium can also proliferate in epithelial cells outside of their SCV. A significant subpopulation damages the SCV membrane, leading to escape from the SCV and extensive proliferation in the cytosol. These bacteria use SPI-1 encoded proteins to evade destruction by autophagic mechanisms of the host epithelial cell and survive to hyper-replicate in the epithelial cytosol (Knodler *et al.*, 2014).

Infection with NTS in healthy human adults, is usually limited to the intestine, however in cases of susceptible hosts and in murine infections, *S*. Typhimurium can go on to persist in the SCV of macrophages. SCVs transcytose to the basolateral membrane of epithelial cells and are subsequently engulfed by phagocytic cells, primarily macrophages. This bacterial internalization ultimately results in an intra-macrophage SCV. The intra-macrophage SCV is similar to the intra-epithelial SCV, and similar host cell pathways are triggered, allowing *S*. Typhimurium to proliferate by preventing phagosome maturation (Fàbrega & Vila, 2013). There are some differences between the SCVs of the epithelial cells and macrophages. While nutrient starvation and acidic pH is a feature of both intracellular vacuoles, the intra-macrophage is more bactericidal in nature (Hautefort *et al.*, 2008). Remodelling of the protein, carbohydrate and membrane components of the bacterial envelope confer resistance to antimicrobial peptides and reactive oxygen and nitrogen species (ROS, RNS) that can damage the bacterial cell (Haraga *et al.*, 2008). Infected macrophages can go on to cause systemic infection by disseminating through the bloodstream to organs such as the spleen and liver (Haraga *et al.*, 2008).

~

Figure 1.1 S. Typhimurium must circumvent stressful conditions during infection.

S. Typhimurium is ingested via contaminated food or water and passes through gastrointestinal (GI) tract from the mouth, esophagus, and stomach to the small intestine. *S.* Typhimurium encounters several deleterious stress conditions in the GI tract as part of the hosts first line of defense. Magnified panel: Environmental signals within the intestinal lumen induce expression of the *Salmonella* Pathogenicity Island 1 (SPI-1) Type 3 Secretion System (T3SS), which injects effector proteins into the host epithelial cell (in red). These effector proteins trigger intestinal inflammation and bacterial endocytosis of the bacteria and invasion of the intestinal epithelial cells. The intracellular environment of host cells provides the necessary signals for expression of the SPI-2 T3SS and effector proteins (in blue). *S.* Typhimurium survives and proliferates intracellularly within the *Salmonella* containing vacuole (SCV). In susceptible hosts, *S.* Typhimurium becomes engulfed by macrophages and survives and replicates within the SCV, leading to bacterial dissemination and systemic infection. Conditions encountered by *S.* Typhimurium within the macrophage SCV induce expression of SPI-2 genes necessary for survival and proliferation.

1.1.3 Flagella

Flagella are complex motility structures that allow rotational propulsion of bacteria and chemotaxis towards nutrients (Stecher et al., 2008). Salmonellae are peritrichously flagellated, meaning they have multiple flagella at random positions on cell. They express between 5-10 flagella at a time (Parker & Guard-Petter, 2001; van Asten & van Dijk, 2005). The synthesis and function of the flagellar and chemotaxis systems involves over 50 genes from at least 17 operons (flh, flg, fli, flj, mot, che, tar, tsr, and aer) that constitute the flagellar regulon (Chilcott & Hughes, 2000). The individual flagella are composed of three distinct substructures: the basal body, a transmembrane motor, a hook that links the motor and the filament, and the filament that acts as a propeller (Aizawa, 1996). The major structural component of the filament is flagellin, a monomeric protein encoded by two different genes, fljB and fliC. S. Typhimurium exhibits phase variation via alternate expression of the two antigenically distinct flagellins (Bonifield & Hughes, 2003). Cytosolic delivery of flagellin by bacterial secretion systems has been shown to cause activation of the host inflammasome and subsequent pro-inflammatory cell death of infected macrophages, thus repression of flagellin in the macrophage is important for intracellular survival. Recently, a trans-acting leader mRNA was discovered to post-transcriptionally regulate *fljB* from the same operon as a virulence protein, mgtCBR during infection (Choi et al., 2017; Miranda-CasoLuengo et al., 2017). Additionally, bacteria expressing FliC-flagella were advantaged in identifying target sites on host cell surfaces and invading epithelial cells and, FliC-expressing S. Typhimurium outcompeted FljB-expressing bacteria for intestinal tissue colonisation in gastroenteritis and typhoid murine infection models (Horstmann et al., 2017). Bacterial flagella are required for both bacterial movement and immune detection, therefore production of flagella must be tightly regulated during infection. As previously discussed, flagella play a role in S. Typhimurium virulence as motility is necessary for bacterial approach to the epithelial cells in the host ileum, which is a prerequisite for bacterial adhesion and invasion of host cells. Flagella also play a role in providing a competitive advantage to S. Typhimurium as mutations affecting flagellar assembly and chemotaxis impaired the fitness of the pathogen in the inflamed intestine, but not in the normal gut. Thus, motility allows S. Typhimurium to move towards high energy nutrients and utilize them for enhanced growth in the inflamed gut (Stecher et al., 2008). Aflagellated Salmonella were deficient in their ability to upregulate the pro-inflammatory response in a murine enteritis model and caused increased epithelial apoptosis. Therefore, it can be suggested that flagella are involved in the induction of the pro-inflammatory response and inhibition of apoptosis in epithelial cells (Vijay-Kumar & Gewirtz, 2009). Recently a link has been made between SPI-2 and flagellar regulation. The study shows that SsrB, the SPI-2 response regulator, alters a transcriptional network controlling bacterial motility through an SsrB binding site upstream of *flhDC*. This repression through SsrB limits inflammasome activation during host cell infection (Ilyas et al., 2018). Thus, flagella are important virulence factors for S. Typhimurium, as the bacterium must move toward nutrients to obtain food, and it simultaneously must evade the host immune system.

1.1.4 Salmonella pathogenicity islands

The ability of *Salmonella* to cause disease is largely dependent on the expression of genes found in the *Salmonella* pathogenicity islands (SPIs). The SPIs are large clusters of genes encoding various virulence factors with low GC content and different codon usage compared to the rest of the chromosome (Groisman & Ochman, 1997). The pathogenicity islands were acquired by horizontal gene transfer and are therefore not found in non-pathogenic relatives (Jacobsen *et al.*, 2011). To date 23 pathogenicity islands have been identified across the *Salmonella* genus (Fookes *et al.*, 2011; Hayward *et al.*, 2014; Sabbagh *et al.*, 2010), and *S*. Typhimurium carries 13 SPIs (Kröger *et al.*, 2012). However, only 5 SPIs are of particular importance and have been clearly shown to play a role in *S*. Typhimurium virulence (Fabrega & Vila, 2013) (**Table 1.1**). Coordinated regulation of SPI encoded genes involves loci situated both within and outside the islands on the chromosome, and a virulence plasmid (Ellermeier & Slauch, 2007; Fabrega & Vila, 2013). SPI-1 and SPI-2 are the best studied pathogenicity islands, both encoding T3SSs that translocate effector molecules into host cells and are required for invasion of epithelial cells and intracellular survival, respectively (Haraga *et al.*, 2008).

1.1.4.1 Salmonella Pathogenicity Island-1

The SPI-1 pathogenicity island is approximately 40 kb and has been shown to be required for invasion of non-phagocytic epithelial cells, induction of intestinal inflammatory responses and diarrhea, as well as colonization of the intestine. Genes encoding the structural components of the SPI-1 T3SS and effector proteins are organised into three operons: *prg/org, inv/spa* and *sic/sip* (Ellermeier & Slauch, 2007). The *prg/org* and *inv/spa* operons encode a needle complex while the *sic/sip* operon encodes a translocon which embeds in the host cell membrane for translocation of effector proteins (Haraga *et al.*, 2008; Srikanth *et al.*, 2011). Upon contact with epithelial cells, *S.* Typhimurium initiates the translocation of several effector proteins in a highly co-ordinated fashion to mediate its uptake by endocytosis (Srikanth *et al.*, 2011). SopE, SopE2 and SopB are essential for invasion of *S.* Typhimurium as mutants defective in any of these effectors are incapable of inducing actin cytoskeleton rearrangements (Haraga *et al.*, 2008; Srikanth *et al.*, 2011). The effectors SipA and SipC are responsible for membrane ruffling and engulfment (Srikanth *et al.*, 2011).

Signals integrated by a multitude of SPI-1 encoded and global regulators constitute a complex regulatory network to control the expression of SPI-1. HilA (<u>hyperinvasion locus</u>), encoded by *hilA*, is the master regulator of SPI-1 and ultimately, all forms of regulation act via modulating its expression. Mutants of *hilA* are incapable of invasion and are phenotypically equivalent to SPI-1 mutants (Lee *et al.*, 1992). HilA binds to and activates the promoters of the needle complex operons *prg/org* and *inv/spa*. Three positive regulators, SPI-1 encoded HilC and HilD, and RtsA control the expression of *hilA* through a feed forward loop. Additionally, whether by direct regulation of *hilA* or indirect regulation via regulation of *hilC*, *hilD* or *rtsA*, SPI-1 expression is controlled by environmental cues which are sensed and integrated by two component regulatory systems such as SirA/BarA, OmpR/EnvZ and PhoP/PhoQ (Ellermeier *et al.*, 2005; Ellermeier & Slauch, 2007).

Furthermore, SPI-1 is regulated by changes in DNA supercoiling and by several global regulators including the nucleoid-associated proteins (NAPs) FIS, H-NS, IHF, Hha and HU (Baños *et al.*, 2009; Cameron *et al.*, 2011; Mangan *et al.*, 2006; 2011; Ono *et al.*, 2005; Troxell *et al.*, 2011).

1.1.4.2 Salmonella Pathogenicity Island-2

The SPI-2 pathogenicity island is in its entirety 40 kb however, it can be separated into two distinct sections. The first section is a 15 kb region that encodes genes necessary for anaerobic respiration using tetrathionate as a terminal electron acceptor (discussed in detail in Section 1.2.2) and other genes of unknown function. The second 25 kb region encodes the T3SS and accessory proteins. These genes have been annotated according to their function: the secretion system regulators are named *ssr*, components of the secretion system apparatus are named *ssa*, secretion system effectors are named *sse*, and secretion system chaperones are named *ssc* (Hensel, 2000). It should be noted that 2 proteins of SPI-2, *ssrA* and *ssaB*, are sometimes called *spiR* and *spiC*, respectively. However, the contemporary literature most frequently refers to them as the former, and so they shall be referred to as *ssrA* and *ssaB* in the remainder of this study. The function of the SPI-2-encoded T3SS and effectors is to mediate the survival of *S*. Typhimurium within the intracellular compartment. SPI-2 secreted effector proteins are translocated into the host cell cytoplasm across the membrane of the SCV to manipulate host cell function and to allow intracellular survival and replication (Abrahams *et al.*, 2006).

The SPI-2 T3SS is essential for the systemic phase of infection and intracellular replication of *S*. Typhimurium. It is activated within the SCV and translocates a complex set of effector proteins into the host cell cytoplasm (Kuhle & Hensel, 2004). The requirement of *S*. Typhimurium to detect the near neutral pH of the host cytosol for effector translocation to occur is debated in the literature as some groups argue that only acidification of the bacterial cytosol is required (Kenney, 2018; Yu *et al.*, 2010; 2018). Regardless, secretion occurs through a hollow needle-like filament that extends from the bacterial cell surface and a translocon pore that is formed in the host cell membrane (**Figure 1.2**). The T3SS is comprised of SsaRSTUV which form the basal body and span the inner membrane to form an export gate that is connected to two additional inner membrane proteins, SsaDJ, and an outer membrane ring, SsaC. SsaV is an essential component of the export gate and interacts in the cytoplasm with a sorting platform consisting of SsaKOQX and an ATPase SsaN. A

cytoplasmic "gatekeeper" complex comprised of SsaBLM is required for translocon protein secretion and to prevent premature secretion of effectors. After assembly of the secretion apparatus, subunits of the needle filament SsaG, inner rod protein SsaI and a molecular "ruler" protein SsaP are secreted. When the filament reaches a defined length, translocon proteins are secreted (Kuhle & Hensel, 2004; Yu *et al.*, 2018).

Figure 1.2 The SPI-2 type III secretion system.

Schematic drawing of the SPI-2 T3SS representing the secretion state of translocon proteins. Cytoplasmic sorting platforms are shaded in green, export gates in orange, gatekeepers in yellow, basal bodies in brown, needles and inner rods in light blue, translocon proteins in blue, and molecular "ruler" in purple. Adapted from Yu *et al.*, 2018.

SPI-2 regulation, although studied extensively, is still not completely understood and the signals for expression under certain conditions have not been elucidated. The indispensable master regulator of SPI-2, SsrA/SsrB is encoded on the island by two adjacent genes, ssrA and ssrB (Cirillo et al., 1998). Transcription of ssrA and ssrB occurs from divergent promoters. The promoter of ssrA lies in an extremely AT rich (69.03%) intergenic region and includes 2 transcriptional start sites (TSS) where the primary (1°) TSS is located closest to the ssrA open reading frame (ORF), and the 2° is located upstream. The ssrB promoter has one TSS internal to the 3' end of the ssrA ORF (Feng et al., 2003; Kröger et al., 2012; Ochman et al., 1996). SsrA/SsrB is a two-component system (TCS) where SsrA is the membrane-bound sensor kinase that phosphorylates the response regulator SsrB upon detection of an exogenous signal. SsrA is reported to respond to extracellular acidification, but no other signals have been identified (Fass & Groisman, 2009; Mulder et al., 2015). Phosphorylated SsrB binds to the promoters and activates the transcription of SPI-2 encoded virulence gene operons and many effectors found outside of the gene island (Fass & Groisman, 2009; Worley et al., 2000). SsrB binds to and regulates transcription from its both its own promoter and of ssrA. This is particularly unusual because TCSs with proteins encoded from adjacent genes are typically co-regulated resulting in a polycistronic mRNA from the same promoter. The use of separate promoters has been hypothesized to allow differential regulation of the genes according to the growth conditions, indeed in the absence of SsrA, the unphosphorylated SsrB protein controls expression of genes involved in biofilm biosynthesis (Desai et al., 2016). Additionally, differential RNA-seq analysis has revealed that the ssrB promoter is 3.5-fold more active than the ssrA promoter within murine macrophages (Srikumar et al., 2015). However, others have reported that a single promoter upstream of ssrA can drive transcription of both genes (Bustamante et al., 2008; Fass & Groisman, 2009).

Many transcription factors (TFs) and NAPs have been established as regulators of SPI-2 genes as either repressors or activators in a complex regulatory network (**Figure 1.3**). The NAP H-NS is an important repressor of horizontally acquired genes and is involved in gene silencing at the *ssrAB* locus in accordance with its role in binding to AT-rich sequences (Lucchini *et al.*, 2006; Navarre *et al.*, 2006; Walthers *et al.*, 2007). H-NS binding to DNA leads to the formation of a stiff nucleoprotein filament through oligomerization of H-NS monomers which silences genes by restricting access of RNA polymerase to promoters (Lim *et al.*, 2006; Liu *et al.*, 2010; Winardhi *et al.*, 2015). Repression of SPI-2 promoters can also occur through direct repression by H-NS paralogs Hha and YdgT (Silphaduang *et al.*, 2007).

H-NS can form repressive complexes on SPI-2 promoters with both YdgT and Hha that interfere with SsrB binding and transcriptional activation (Ali et al., 2013; Coombes et al., 2005; Silphaduang et al., 2007). Hha can also repress transcription of SPI-2 genes in an H-NS-independent manner (Solórzano et al., 2015). Interestingly, YdgT is required for full virulence in infected macrophages. Coombes et al., postulate that the presence of YdgT might cause dampening of SPI-2 activation and the intracellular growth rate required for sustained infection and persistence, whereas the absence of YdgT ultimately leads to attenuation possibly caused by alterations in intracellular growth and/or fitness (Coombes et al., 2005). Fur, a central regulator of iron utilization, causes repression of SPI-2 genes via direct binding of the ssrB promoter in acidic media. Within macrophages, S. Typhimurium lacking the Fur protein has earlier induction and ultimately higher expression of SPI-2 (Choi et al., 2014). The Lrp global regulator of metabolism also plays a role in SPI-2 repression. It binds directly to a consensus motif at the ssrA promoter which results in down-regulation of SPI-2 genes (Baek et al., 2009). The phosphorelay system RcsCDB plays a dual role in SPI-2 regulation. Microarray data has shown that the RcsCDB system normally functions as a positive regulator of SPI-2, although when highly activated, the system completely represses SPI-2 virulence (Wang et al., 2007). Finally, under invasion-inducing conditions, the SPI-1 activator HilA was found to repress expression of genes encoding a SPI-2 apparatus protein, ssaH, and a SPI-2 effector protein, sseL (Thijs et al., 2007).

Known signals of SPI-2 induction are acidic pH, limitation of inorganic phosphate (P_i), Mg²⁺ deprivation, high osmolarity, and the presence of antimicrobial peptides. These signals are thought to mimic the environmental cues found in the SCV (Cirillo *et al.*, 1998; Deiwick *et al.*, 1999; Löber *et al.*, 2006). Under SPI-2-inducing conditions, SsrB has a dual function in relieving the H-NS-mediated silencing of *ssrA* expression, as well as classical transcription initiation at SPI-2 genes including at the *ssaB*, *sseA*, *ssaG* and *ssaM* promoters (Walthers *et al.*, 2007; 2011). After SsrB, OmpR is arguably the most important activator of SPI-2. In the EnvZ-OmpR TCS, EnvZ is the sensor kinase and OmpR is the response regulator. OmpR has binding sites at both the *ssrA* and *ssrB* promoters, and directly activates transcription in response to low pH and osmotic stress (Feng *et al.*, 2003). Furthermore, an *ompR* mutant was severely attenuated *in vivo* (Dorman *et al.*, 1989) and the acidification of the *Salmonella* cytoplasm in the macrophage vacuole and subsequent SPI-2 T3SS effector secretion was found to be OmpR dependent (Chakraborty *et al.*, 2015). Additionally, expression of SPI-2 genes does not occur in an *ompR/envZ* mutant under SPI-2 regulation is PhoQ-PhoP. Low

extracellular cation concentrations, such as those detected within the SCV, and low pH have been reported to activate the sensor kinase PhoQ, which, in turn, activates the response regulator PhoP (Choi & Groisman, 2016). Experiments have shown that PhoP controls SsrA post-transcriptionally and directly activates the ssrB gene by binding to its promoter (Bijlsma & Groisman, 2005). However, in the macrophage and under SPI-2 inducing conditions phoP mutants still express SPI-2 genes at low levels (Colgan et al., 2016; Fass & Groisman, 2009), furthermore a *phoP* mutant was observed to have severely delayed SPI-2 expression in SPI-2 inducing conditions (Xu & Hensel, 2010), implying that PhoQ-PhoP activation may be necessary for full expression and correct timing of SPI-2 expression. SlyA is required for virulence and survival within macrophages so not surprisingly the *slyA* gene is highly expressed during macrophage infection, and absence of the SlyA protein renders S. Typhimurium extremely susceptible to oxidative stress and antimicrobial peptides (Buchmeier et al., 1997; Shi et al., 2004). Additionally, in SPI-2 inducing conditions a slyA mutant shows a 2- to 3-fold reduction and delay of SPI-2 expression in vitro (Xu & Hensel, 2010). Transcription of *slyA* is activated by PhoP (Norte *et al.*, 2003; Stapleton *et al.*, 2002) which promotes SlyA binding to and directly regulating expression from the ssrA promoter (Navarre et al., 2005; Okada et al., 2007). A number of these regulators work together to remove repressive HNS complexes from the ssrA promoter. Under inducing conditions, SlyA and HilD or in nutrient limited conditions only SlyA, displace the H-NS complex bound to the promoter upstream of ssrA. This allows binding of OmpR that recruits the RNA polymerase on this promoter, which induces the transcription of *ssrAB* (Banda *et al.*, 2019). HilD also mediates cross-talk between SPI-1 and SPI-2 via counter-silencing of H-NS at the ssrB promoter (Bustamante et al., 2008; Martinez et al., 2014). Xu & Hensel also observed that a sirA mutant had reduced SPI-2 expression (Xu & Hensel, 2010). SirA is the response regulator of the TCS SirA/BarA, which also induces expression of SPI-1 genes. SirA/BarA induction of SPI-2 gene works through HilD. A global regulatory RNA binding protein, CsrA post-transcriptionally regulates hilD mRNA; negative regulation of HilD is counteracted by SirA/BarA, which directly activates the expression of the sRNAs CsrB and CsrC that sequester CsrA (Martínez et al., 2011).

A number of NAPs are also important for induction of SPI-2 genes. FIS is a global regulator of gene expression and chromosome structure. FIS binds directly to the promoters of *ssrA* and *ssaG* and overall expression of SPI-2 genes is downregulated in a Δfis mutant (Cameron *et al.*, 2011; Fass & Groisman, 2009; Kelly *et al.*, 2004). Additionally, low level SPI-2 expression activated by OmpR and FIS has been observed prior to epithelial invasion in the intestinal lumen, but the signal for induction remains unclear (Brown *et al.*, 2005; Osborne & Coombes, 2011). HU and IHF are homologous histone-like proteins. Several SPI-2 genes, including the *ssrAB* genes, are downregulated in a HU double mutant, similarly loss of IHF causes a down regulation in all SPI-2 genes (Mangan *et al.*, 2006; Mangan *et al.*, 2011).

1.1.4.3 Salmonella Pathogenicity Islands 3 through 5

Salmonella pathogenicity islands 3 through 5 play a smaller but still important role in Salmonella pathogenesis. SPI-3 encodes 10 open reading frames organized into 6 operons. These include the *mgtCB* operon encoding the macrophage survival protein MgtC and the Mg^{2+} transporter MgtB. The 5' leader mRNA of mgtC is also involved in regulation of the fljB flagellin as previously discussed (Choi et al., 2017; Miranda-CasoLuengo et al., 2017). SPI-3 also encodes *misL* and *marT*, where MisL is a fibronectin binding protein important for oral colonization of mice and chicks, and MarT is its positive regulator (Blanc-Potard et al., 2005; Tukel et al., 2007). SPI-4 encodes 6 genes, siiABCDEF, termed the Salmonella intestinal infection genes which are important for interaction of S. Typhimurium with the host intestinal mucosa and help facilitate membrane ruffling and entry of polarized epithelial cells in conjunction with SPI-1 (Gerlach et al., 2008). SPI-4 encodes a 595 kDa non-fimbrial giant adhesin, SiiE, which is secreted by a type I secretory system encoded by *siiC*, *siiD*, and siiF (Barlag & Hensel, 2015). SiiE mediates primary contact with host cells, allowing positioning of the SPI-1 T3SS to initiate the translocation of SPI-1 effectors (Barlag & Hensel, 2015). Expression of SPI-4 genes corresponds with that of SPI-1 genes, and the activators and repressors of SPI-1 are involved in its regulation (Main-Hester et al., 2008). SPI-5 encodes SPI-1 T3SS secreted effector protein SopB which modulates host cell exocytosis and its chaperone PipC, and the SPI-2 T3SS secreted effectors PipA and PipB, thought be important in development of systemic infection and PipD a hypothetical secreted peptidase (Perrett & Zhou, 2013; Knodler et al., 2002; Marcus et al., 2000; Morgan et al., 2004).

Overall pathogenicity islands and other horizontally acquired genes are critical for cultivating a niche for *S*. Typhimurium in the host. SPI-1, SPI-4 and SPI-5 all play a role in niche creation as they induce inflammation in the host. That niche can then be colonized with the help of anaerobic metabolism genes found on SPI-2 and a bacteriophage acquired effector, SopE which is secreted through the SPI-1 T3SS to make nitrate available for respiration (Winter *et al.*, 2013). Genes encoded on SPI-2 and SPI-3 are also important for
intracellular survival (Blanc-Potard *et al.*, 1999; Figueira & Holden, 2012). Finally, SPI-2 optimizes the niche by prolonging intestinal inflammation, and thereby making more nutrients available for this pathogen (Winter *et al.*, 2013).

THORE IN SUMMERSION P	farme Porrier		ů,
Pathogenicity	Size	Secretion	
Island	(kb)	System	Description
SPI-1	40	T3SS	T3SS-dependent invasion of intestinal epithelium Encodes effector proteins important for actin cytoskeleton rearrangements & membrane ruffling
SPI-2	40	T3SS	Encodes tetrathionate metabolism proteins T3SS-dependent survival within SCVs of epithelial cells and macrophages Inhibits fusions between lysosomes and SCVs Encodes effector & chaperone proteins
SPI-3	17	I	Intramacrophage survival and persistence Oral colonization of mice and chicks Trans-acting sRNA post-transcriptional repression of FljB flagellin in macrophages
SPI-4	24	TISS	<u>Salmonella</u> intestinal infection genes mediate adhesion to epithelial cells siiCDF encode components of a T1SS SiiE, 595 kDa non-fimbrial adhesion protein involved in oral virulence
SPI-5	6.6		SPI-1 T3SS effector SopB and its chaperone PipC SPI-2 T3SS effectors PipA and PipB; PipD
^a Table adapted/updated from	om Hurley <i>et c</i>	<i>u</i> l., 2014; Wisner <i>e</i>	<i>et al.</i> , 2012.
I apric anapricu upuaren II	JIII I I I I I I I I I I I I I I I I I	u , $\Delta 0$ i T, w isince c	51 41., 2012.

Table 1.1 Salmonella pathogenicity islands 1 through 5^a

Figure 1.3 Regulation at *Salmonella* pathogenicity island 2 involves many transcription factors.

There are many proteins that influence expression of SPI-2 genes. Sensory kinases respond to environmental factors and in turn activate their response regulators. PhoQ-PhoP, EnvZ-OmpR, FIS, HU, IHF, SlyA and HilD cause activation and H-NS, Hha, YdgT, Lrp, HilA and Fur cause repression. The phosphorelay system RcsCDB represses SPI-2 genes when highly induced, but low induction causes activation. SsrA and SsrB the master regulators of SPI-2 are encoded upstream of the SPI-2 T3SS, effector and chaperone genes. SsrA is a sensory kinase and SsrB is a response regulator. SsrB autoregulates at its own promoter and activates the T3SS, chaperones and effector proteins on SPI-2 by relieving repression by H-NS and direct activation. HilD and SlyA also activate SPI-2 by relieving repression of H-NS.

1.2 Metabolism in the gut

1.2.1 Oxygen in the gut

When the concentration of oxygen is lower than the atmospheric concentration ($\sim 21\%$), the environment is referred to microaerobic or hypoxic. In bacteria, aerobic respiration occurs at oxygen concentrations above 0.5%, while anaerobic respiration occurs between 0.1 -0.5%, and fermentation is initiated at concentrations lower than 0.1% (Unden & Bongaerts, 1997). The lumen of the ileum is a fairly anaerobic environment, and any trace amount of oxygen is readily consumed by facultative anaerobic bacteria, such as members of the Enterobacteriaceae family, that constitute approximately 0.1% of the microbiota (Eckburg et al., 2005). The limited availability of oxygen in the lumen limits growth of Enterobacteriaceae populations as increasing the level of oxygen increases their relative abundance (Rigottier-Gois, 2013; Winter et al., 2013). For example, under inflammatory conditions, gut luminal oxygen levels rise partly due to elevated blood flow and hemoglobin and the increase of oxygen causes a disruption in anaerobiosis which confers a selective advantage to facultative anaerobes, allowing them to out-compete anaerobes and overgrow (Rigottier-Gois, 2013; Zeng et al., 2016). The ability to proliferate in the lumen is an important part of transmission in Salmonella infection (Santos et al., 2009). Salmonella can survive in anaerobic environments as well by way of anaerobic respiration but will preferentially choose an aerobic environment when given the choice. Conveniently, within the GI tract in close proximity to the mucosal surface, there is a 70 mm zone of increased oxygen concentration (Marteyn et al., 2010). This creates a steep oxygen gradient from the lumen to the intestinal epithelium that is reliant on blood flow and is caused by diffusion of oxygen from the capillary network at the villi (Figure 1.4) (Marteyn et al., 2010). Oxygen concentration also increases substantially from the tips of the villi to the crypts (Zheng et al., 2015). Oxygen concentrations inside of host tissues also vary dependent on the state of infection, for example in the murine gut oxygen concentrations decreased from ~11% to 2% after Salmonella infection (Jennewein et al., 2015). The anti-Salmonella activity of macrophages is also dependent on available oxygen as antimicrobial molecules such as phagocyte oxidase and nitric oxide synthase require oxygen molecules, however this leaves little free dioxygen inside of cells (Vazquez-Torres & Fang, 2001). Furthermore, low oxygen concentrations found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence (Jennewein et al., 2015). In general the tissues of the gut including intestinal epithelial cells have a lower oxygen concentration than atmospheric oxygen and are described as microaerobic or hypoxic (Zheng et al., 2015; Zeitouni et al., 2016). The flagella of Salmonella play a role in movement from the hypoxic lumen to the intestinal epithelium through the mucus layer. Chemotaxis towards host derived electron acceptors is described however, aerotaxis towards the oxygen gradient could also be involved (Marteyn et al., 2010; 2011; Rivera-Chávez et al., 2013; Stecher et al., 2008). The anaerobic state of the lumen is due to the high rates of respiration by host and commensal cells. Therefore, pathogens like Salmonella must employ an alternative metabolism to survive the hypoxic environment (Cook et al., 2014).

Figure 1.4 The oxygen gradient in the gut.

The intestinal lumen is an anaerobic environment (blue) however, there is a zone of relative oxygenation adjacent to the gastrointestinal tract mucosa (red), caused by diffusion of O_2 (arrows) from the capillary network at the tips of villi. Aerotaxis may occur at this site. Figure adapted from Marteyn *et al.*, 2010.

1.2.2 Anaerobic respiration in the gut

To survive in the lumen, facultative anaerobes such as *Salmonella* may employ anaerobic respiration (Rivera-Chávez & Bäumler, 2015). Cellular respiration utilizes highly reduced electron donors such as NADH to establish an electrochemical gradient across a membrane. In aerobic respiration electrons are shuttled along the electron transport chain (ETC) from primary dehydrogenases to the terminal respiratory oxidase and the final electron acceptor oxygen and simultaneously creating a proton gradient across the cytoplasmic membrane (Ingledew & Poole, 1984). The proton motive force drives protons down the gradient through the proton channel of ATP synthase, driving ATP synthesis from ADP and inorganic phosphate (Berg *et al.*, 2002). Simply, anaerobic respiration is respiration using terminal respiratory reductases and electron acceptors other than oxygen as the final electron acceptor

in the ETC. In organisms undergoing anaerobic respiration, oxygen is unavailable, therefore less-oxidizing substances are used as terminal electron acceptors (Neidhart, 1996). These alternative electron acceptors have smaller redox potentials than O₂, meaning that less energy is released per oxidized molecule. Thus, anaerobic respiration is less efficient than aerobic respiration (Ingledew & Poole, 1984; Neidhart, 1996). S. Typhimurium have evolved the capability to use a range of alternative electron acceptors and the expression of the terminal reductases is regulated by availability of electron acceptors (Bumann, 2009). As oxygen is the preferred electron acceptor, the presence of O₂ represses expression of the terminal reductases of anaerobic respiration. In the absence of oxygen, nitrate (NO_3^{-}) or nitrite (NO₂⁻) are the preferred terminal electron acceptors (Richardson *et al.*, 2001). The presence of NO₃⁻/NO₂⁻ therefore results in repression of other alternative terminal reductases, followed by the terminal electron acceptors, in order of oxidation/reduction (redox) potential: dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), fumarate, and tetrathionate (Table 1.2). This regulatory pathway favours high ATP yields, resulting in the most efficient production of energy possible in the given environment (Cook et al., 2014).

Electron	Redox Couple	Redox	Terminal	Operon ^e
acceptor ^a		Potential ^d	respiratory enzyme	
Nitrate	NO3 ⁻ /NO2 ⁻	+430 mV	Nitrate reductase	narGHJI
			Nitrate reductase	narZYWV
			Nitrate reductase	napFDAGHBC
Nitrite	NO_2^-/NH_4^+	+350 mV	Nitrite reductase	nfrABCDEFG
			Nitrite reductase	nirBDC
DMSO	DMSO/DMS ^b	+160 mV	DMSO/TMAO	dmsABC
			reductase	
TMAO	TMAO/TMA ^c	+130 mV	TMAO reductase	torCAD
Fumarate	fumarate/succinate	+33 mV	Fumarate reductase	frdABCD
Tetrathionate	$S_4 O_6{}^{2-}\!/\ S_2 O_3{}^{2-}$	+24 mV	Tetrathionate	<i>ttrBCA</i>
			reductase	

Table 1.2 Electron acceptors used by *Salmonella* during anaerobic respiration

^aElectron acceptors are listed in descending order of their redox potential.

^bDimethyl sulfoxide/Dimethyl sulfide

°Trimethylamine N-oxide/Trimethylamine

^dData from Thauer *et al.*, 1977

^eData from Cook et al., 2014; Hensel et al., 1999; Unden & Bongaerts, 1997

Terminal reductases are repressed by multiple TFs that regulate according to availability of terminal electron acceptors with the highest redox potential. Nitrate regulation is controlled by the TCSs NarXL and NarQP while oxygen regulates by the TCS ArcAB and FNR (Gilberthorpe & Poole, 2008; Stewart *et al.*, 2003).

ArcAB is the regulator of aerobic metabolism and represses the genes of aerobic metabolism under anaerobiosis (Unden & Bongaerts, 1997). FNR is the regulator of genes required for anaerobic metabolism, and it is discussed in detail in Section 1.3. Most of the genes involved in aerobic and anaerobic metabolism are regulated by more than one of the regulatory proteins, which act in many different combinations and activate or repress as necessary (Constantinidou et al., 2006; Myers et al., 2013). FNR and ArcA regulatory proteins play different roles under microaerobic conditions; FNR functions as an aerobic/anaerobic switch in the range of 0 to 10% air saturation, while ArcA exerts control in the 10 to 20% oxygen range. These two transcriptional regulators coordinate the hierarchial control of respiratory pathway gene expression to ensure the optimal use of oxygen in the cell environment (Tseng et al., 1996) and in response to the availability of electron acceptors (Unden & Bongaerts, 1997). ArcA serves as a transcriptional regulator coordinating aerobic cellular metabolism, flagella biosynthesis, and motility in S. Typhimurium. Moreover, ArcA and FNR share regulation of at least 120 genes (Evans et al., 2011). Recently the ArcA response regulator was found to promote intracellular survival in macrophages and neutrophils by promoting resistance to ROS, enabling S. Typhimurium to successfully establish a systemic infection (Pardo-Esté et al., 2018).

To outgrow the resident microbiota of the gut, *Salmonella* must defend against host defenses and find nutrients. *S.* Typhimurium use virulence factors to induce intestinal inflammation (Section 1.1.2), which releases specific nutrients not usable by the microbiota (Thiennimitr *et al.*, 2012). One way in which *S.* Typhimurium can take advantage of host defenses by converting nitric oxide (NO) to NO_3^- inside macrophages. This results in a two-pronged advantage to the pathogen, as it eliminates toxic NO and provides *S.* Typhimurium with a favourable terminal electron acceptor for anaerobic respiration (Mills *et al.*, 2008). Host production of ROS and RNS creates a hostile environment in close proximity to the mucosal surface, but as these molecules diffuse towards the gut lumen they contact and oxidize organic sulfides, such as methionine, or tertiary amines, such as trimethylamine, to form Soxides (DMSO) and N-oxides (TMAO), respectively. DMSO and TMAO can then be used by *S.* Typhimurium as terminal electron acceptors which are reduced by terminal reductases encoded by *dmsABC* and *torCAD* (Winter *et al.*, 2010; Winter *et al.*, 2013). Additionally, when *Salmonella*-induced enteritis causes diarrhea to flush the intestines, epithelial cells shed into the lumen and become a source of membrane lipids. These lipids include phosphatidylcholine and sphingomyelin from which choline can be derived. Degradation of choline to TMA plus oxidation by ROS leads to further availability of TMAO (Winter *et al.*, 2013). Similar to the genes encoding specific virulence factors, horizontal acquisition of genes encoding metabolic functions are advantageous for surviving in the host. The genes encoding tetrathionate reductase, *ttrCBA* and their regulating TCS TtrSR, are found on SPI-2. Tetrathionate is generated when inflammation derived ROS react with endogenous thiosulphate. In contrast to the gut microbiota, *Salmonella* can use tetrathionate as a respiratory electron acceptor providing a unique advantage to the pathogen allowing for anaerobic respiration. As anaerobic respiration is more energy efficient than fermentation, *Salmonella* outcompetes strains of the microbiota in the inflamed gut (Winter *et al.*, 2010).

1.3 Regulation of the aerobic to anaerobic switch

1.3.1 FNR

Facultative anaerobic bacteria prefer an oxygenated environment however, when oxygen concentrations decrease they can reprogram their gene expression to facilitate anaerobic metabolism. That switch is regulated by an oxygen-sensing transcription factor called FNR, named for a mutant defective in "fumarate and nitrate reduction" (Lambden & Guest, 1976). FNR operates the master switch between aerobic and anaerobic metabolism by ensuring that oxygen is used in preference to alternative electron acceptors (Guest *et al.*, 1996). When E. coli moves from an aerobic to anaerobic environment, a third of its genes undergo transcriptional change. FNR is responsible for the regulation of half of those either directly or indirectly (Salmon et al., 2003). FNR facilitates adaptation to anoxia by providing alternative pathways for energy generation and is a well-studied global transcriptional regulator in enteric bacteria (Constantinidou et al., 2006; Fink et al., 2007; Myers et al., 2013; Wang et al., 2019). FNR is a homologous protein to the cAMP receptor protein (CRP) (Shaw et al., 1983), and belongs to the CRP-FNR superfamily of transcriptional regulators (Körner et al., 2003). These proteins have an N-terminal sensory domain, a dimerization motif, and a C-terminal helix-turn-helix DNA-binding domain (Körner et al., 2003). FNR primarily works as an activator of anaerobic metabolism genes during oxygen deprivation, however it is known to repress at a limited number of promoters (Green & Marshall, 1999).

1.3.2 Regulation of FNR

Expression of the *fnr* gene occurs under both aerobic and anaerobic conditions, and negative autoregulation and repression by glucose occurs during anaerobiosis (Mettert & Kiley, 2007a; Spiro & Guest, 1987). The concentration of FNR protein stays relatively constant regardless of the presence or absence of oxygen (Sutton et al., 2004). When oxygen concentrations are as low as 0 to 5 mbar (0-0.5%) the FNR protein is active, with DNA binding capabilities (Jervis et al., 2009; Sawers, 1999) (Figure 1.5A). Under oxygen limiting conditions, FNR binds an [4Fe-4S] cluster to four cysteine residues in the sensory domain (Green & Guest, 1993). FNR bound by [4Fe-4S] undergoes a conformational change allowing dimerization. In the presence of adequate oxygen concentrations, the [4Fe-4S] cluster is oxidized, and FNR becomes an inactive monomer (Beinert & Kiley, 1999; Green et al., 2014) (Figure 1.5B). Importantly, FNR is highly functional over a small range of oxygen concentrations with approximately 95% activity at 0.3 µM O₂ and 50% activity at 6 µM O₂. Surprisingly, an FNR-dependent reporter gene suggests that a chromosomally encoded FNR is 2.5% active under fully aerobic conditions (Jervis et al., 2009). The functional state of FNR during the switch from aerobic to anaerobic environments is not regulated by iron content as only severely Fe²⁺ limiting conditions has any effect on FNR dependent gene expression (Niehaus et al., 1991).

Figure 1.5 FNR activity is directly regulated by oxygen.

A. The *fnr* gene is transcribed, then translated. Cellular concentration of FNR is similar under both anaerobic and aerobic growth, but its activity is regulated directly by oxygen. Under anaerobiosis, the FNR monomer (red oval) acquires a [4Fe-4S] cluster (yellow circles) that causes a conformational change and dimerization of the protein, and it autoregulates at its own promoter. B. Under anaerobic conditions the active FNR dimer can bind to DNA causing activation and repression of many genes, however when oxygen is introduced the dimer dissociates and is no longer able to bind DNA.

1.3.3 Mechanisms of transcriptional regulation by FNR

During anaerobiosis the active FNR homodimer can bind to DNA to regulate transcription either by activation or repression. The active FNR homodimer preferably binds a specific 14 bp palindromic sequence of DNA with the consensus sequence **TTGATN**₁N₂N₃N₄**ATCAA** (Eiglmeier *et al.*, 1989; Gerasimova *et al.*, 2001). Interestingly, it has been shown experimentally that FNR can recognize a consensus CRP-binding site *in vivo* (Sawers *et al.*, 1997).

1.3.3.1 FNR-dependent activation

For activation to occur, FNR interacts directly with RNA polymerase (RNAP) in two ways depending on the architecture of the promoter (Blake *et al.*, 2002). FNR activates the transcription from class I and class II promoters. In class I promoters N₂ and in class II promoters N₃ of the consensus FNR site tend to be an A or T (Scott *et al.*, 2003). At class I promoters, FNR binds to a site centered at -61.5 or further upstream (-71, -82, or -92), then the activating region 1 (AR1) of the downstream subunit of the FNR homodimer directly contacts C-terminal domain of the alpha subunit (α CTD) of RNAP (**Figure 1.6A**) (Blake *et al.*, 2002; Wing *et al.*, 1995). At class II promoters, multiple interactions with RNAP are possible as FNR binds to a site centered at or near -41.5, causing the homodimer to be embedded in the polymerase. Here the α CTD makes contact with the AR1 surface of the upstream subunit of the FNR. The AR3 surface of the downstream subunit (α NTD), the same interaction that CRP uses with RNAP (**Figure 1.6B**) (Blake *et al.*, 2002). These direct interactions allow proper positioning of the RNAP for transcription initiation.

It has also been suggested that at some promoters FNR acts as a co-activator with other transcription factors such as CRP, NarP and NarL. A number of promoters have distinct FNR and CRP binding sites and are only activated when the conditions of both TFs are met, i.e. under anaerobiosis without glucose (Myers *et al.*, 2013). NarP and NarL are response regulators that respond to the presence of NO_3^- and/or NO_2^- . The operon encoding periplasmic nitrate reductase, *napFDAGHBC*, is maximally expressed only in response to anaerobiosis and nitrate or nitrite and thus, co-activated by FNR and NarP and/or NarL (Myers *et al.*, 2013; Stewart *et al.*, 2009). Co-activation by two TFs is important for precise control of genes under specific conditions.

Figure 1.6 Activation of simple class I and class II FNR-dependent promoters. A. At class I promoters, FNR binds to a site centered at -61.5 or further upstream. AR1 of the downstream subunit of the FNR dimer contacts α CTD of RNAP (**■**). B. At class II promoters, FNR binds to a site centered at or near -41.5 and is thus embedded within RNAP. The AR1 surface of the upstream subunit of the FNR dimer contacts α CTD (**■**), the AR3 surface of the downstream subunit of FNR contacts σ^{70} (**▲**), and the AR2 surface makes contact with α NTD (**♦**). Figure taken from Blake *et al.*, 2002.

1.3.3.2 FNR-dependent repression

FNR-dependent repression can be complex and is not fully understood. Because FNR autoregulates at the *fnr* gene, and has 2 FNR binding sites, one centered on the *fnr* TSS (+1.5) and one centered farther upstream centered at -103.5, it is an ideal candidate to examine for a repressive mechanism. Early experiments suggested both FNR binding sites needed to be present for repression of *fnr* under anaerobic conditions (Spiro & Guest, 1987) however, later *in vitro* experiments suggest the downstream binding site alone is sufficient for repression (Mettert & Kiley, 2007b). This suggests that promoter occlusion may be one way in which FNR can cause repression. However, repression by FNR at the *cydAB* (Cytochrome d terminal oxidase) promoter requires binding at both FNR binding sites, one site at the TSS and a second at -53.5 (Cotter *et al.*, 1997). Bernard *et al.* investigated repression by FNR by adding FNR consensus sites to several regions upstream of a semi-synthetic class II promoter based on that of *melR*. Binding of FNR at the -41.5 site activates expression of the promoter, however when an additional consensus site was added -85 and

-95 bp upstream, a sharp repression was observed. Similarly, a class I promoter with a binding site at -61.5 showed strong repression by FNR when a consensus site was placed at -100.5, indicating that upstream binding sites play an important role in FNR repression at some sites and that FNR can cause repression when bound in tandem spaced 44 or 53 bp apart (Barnard et al., 2004). Indeed, repression of the gene encoding respiratory NADH dehydrogenase, ndh requires two FNR binding sites, found centered at -50.5 and -94.5 but not at the TSS. Both of binding sites appear to be required for full repression, and in a DNase footprinting assay both FNR and RNAP were able to bind simultaneously, suggesting promoter occlusion is not the mechanism for repression. Instead, FNR may jam the progression of RNAP by forming a complex and may disrupt productive RNAP interactions with other regulators (Meng et al., 1997). Importantly, Williams et al. have shown that introducing a semi-synthetic FNR binding site to the -35 region of a promoter can simply block progress of RNAP, suggesting that a single FNR binding site is capable of causing efficient repression (Williams et al., 1998). Finally, it seems that the full 14 bp palindromic binding does not need to be present for FNR binding; Several promoters only have half of the palindromic sequence at their promoters. For example, the glutamyl-tRNA reductase gene *hemA* is modestly repressed by FNR and has only a TTGAT site around -30. This halfsite was protected by FNR in a DNase footprinting assay, thus suggesting that FNR can repress when only a half-site is present (Melville & Gunsalus, 1996). Additional transcriptional repression by FNR with only a half-site includes the promoters of *moeAB*, nrdAB and sodA (Constantinidou et al., 2006). In summary, it appears FNR can cause repression in a multitude of ways including promoter occlusion by binding at the TSS, by blocking RNAP access by binding near the RBS, with interactions between tandem-bound FNR molecules, by jamming RNAP by forming inactive complexes and by disrupting productive RNAP interactions with other regulators.

1.3.4 The FNR regulon

The FNR regulon has previously been examined by microarray analysis in non-pathogenic *E. coli* (Constantinidou *et al.*, 2006; Grainger *et al.*, 2007; Kang *et al.*, 2005; Salmon *et al.*, 2003) and *S.* Typhimurium (Fink *et al.*, 2007) and more recently by RNA-seq in *Shigella flexneri* and Enterotoxigenic *E. coli* (ETEC) (Crofts *et al.*, 2018; Vergara-Irigaray *et al.*, 2014), and proteomic analysis in *S.* Typhimurium (Wang *et al.*, 2019). These studies find that FNR is a regulator either directly or indirectly of approximately 50% of genes that undergo transcriptional change during the switch between aerobic and anaerobic

metabolism. FNR directly regulates a subset of genes while others are affected through FNR regulation of TFs (Myers *et al.*, 2013). Also, many genes originally thought to be directly regulated by FNR but lacked FNR binding have been found to be regulated post-transcriptionally through the FNR-dependent sRNA FnrS (Durand & Storz, 2010).

Regulation of Salmonella gene expression is often similar to E. coli, and findings from a study of the S. Typhimurium FNR regulon were consistent with findings from E. coli. FNR regulates of genes involved in aerobic metabolism, NO• detoxification, flagellar biosynthesis, motility, chemotaxis, and anaerobic carbon utilization under anaerobic growth found in both species. However, some genes and operons found in both species were found only to be regulated by FNR in S. Typhimurium include those coding for ethanolamine utilization, a universal stress protein, a ferritin-like protein, and a phosphotransacetylase. Salmonella-specific genes and operons regulated by FNR were all found to be activated by FNR and were of virulence and motility genes not found in E. coli including numerous SPI-1 encoded genes, flagellar genes mcpAC, cheV, and the virulence/motility operon srfABC (Fink et al., 2007). Stecher et al. described the role of the Salmonella flagella in moving towards the intestinal epithelium through the mucus layer in response to readily available metabolites (Stecher et al., 2008). However, Marteyn et al. suggest aerotaxis towards the oxygen gradient of the gut epithelium may also occur, and upregulation of motility and chemotaxis genes under anaerobic conditions fits with this model (Fink et al., 2007; Marteyn et al., 2011). Furthermore, the role of FNR as a positive regulator of motility and flagellar biosynthesis was confirmed by showing that Δfnr is nonmotile and lacks flagella (Fink et al., 2007).

FNR is essential to the enteritis model of infection, plays a weak role in typhoid fever and *fnr* mutants are attenuated in calf and chicken infections (Chaudhuri *et al.*, 2013; Rollenhagen & Bumann, 2006). The anaerobic regulator has been identified as an important regulator of virulence of other pathogens such as *Neisseria meningitides* (Bartolini *et al.*, 2006), ETEC (Crofts *et al.*, 2018), *Shigella flexneri* (Marteyn *et al.*, 2010), and in *Pseudomonas aeruginosa* by an FNR orthologue (Filiatrault *et al.*, 2006). Deletion of *fnr* in ETEC caused a significant increase in expression of all classical virulence factors, including an adhesin operon and enterotoxins, indicating FNR represses these genes under anaerobic conditions (Crofts *et al.*, 2018). Similarly, *Shigella flexneri* undergoes FNR-mediated priming for invasion by expressing extended T3SS needles while reducing effector secretion anaerobically through FNR repression of virulence gene regulators (Marteyn *et al.*, 2010).

Both groups describe a model where virulence gene expression is coordinated with pathogen proximity to the epithelium. In *Salmonella*, FNR has been shown to be positive regulator of pathogenesis. An Δfnr mutant showed a decrease in expression of invasion genes, indicating that FNR can activate the SPI-1 genes *prgKJIH*, *iagB*, *sicA*, *spaPO*, and *invJICBAEGF* and the *srfABC* virulence genes under anaerobiosis. Interestingly, the Δfnr mutant was attenuated in mice and could not survive in macrophages, although no differentially regulated SPI-2 genes were identified (Fink *et al.*, 2007).

1.4 Aims of the Study

The aim of this study is to determine the regulatory role of FNR in the expression *Salmonella* Pathogenicity Island 2 in *S*. Typhimurium.

There is increasing evidence that changes in environmental oxygen play a critical role in the timing and deployment of bacterial virulence factors, and that regulators of metabolism control the expression of genes imperative for causing infection and disease. Oxygen levels have already been shown to be important for interactions between Salmonella and host cells. S. Typhimurium grown in microaerobic environments have increased adhesive and invasive capacity compared to their aerobically grown counterparts (Lee & Falkow, 1990). Additionally, anaerobically grown S. Typhimurium had increased binding to murine enterocytes and intestinal mucus, and increased survival in macrophages (Singh et al., 2000). FNR, the regulator of anaerobic metabolism that responds directly to oxygen concentration, has been established as an activator of genes involved in host-cell invasion such as components of the T3SS and chaperones encoded on SPI-1 (Fink et al., 2007). Furthermore, FNR is required for full virulence in the murine model, and a mutant lacking this transcription factor is rapidly killed by macrophages (Fink et al., 2007). The SPI-2 T3SS and an intact SCV are required for evasion of ROS in macrophages (van der Heijden et al., 2015), and FNR helps to promote resistance against oxidative stress although the mechanism has not been described. Importantly, low-level invasion-independent transcriptional activity of the SPI-2 T3SS in the lumen of the gut was observed in an oral mouse model (Osborne & Coombes, 2011). Thus, FNR regulation of SPI-2 is heavily implied. Moreover, the influence of an oxygen gradient at the point of S. Typhimurium infection has not been considered. The effect of oxygen on invasion in S. Typhimurium and therefore on regulation of SPI-1 has been investigated, however SPI-2 expression and oxygen have not been linked.

Activity of FNR as a transcriptional regulator directly corresponds to the absence of oxygen, and during infection *Salmonella* encounters a steep oxygen gradient from the anaerobic lumen to a zone of relative oxygenation at the epithelial border, therefore molecular oxygen can be considered a major signal for virulence factors. We propose that direct repression of SPI-2 by FNR occurs in anaerobic and microaerobic environments, and that upon detection of increased oxygen, like at the host epithelial border, repression is lifted. Expression of SPI-2 prior to epithelial invasion could prime cells for the challenges of the intracellular environment. FNR regulation of virulence factors, especially those found within the SPIs is important as it shows the capacity of regulators of metabolism located on the core genome to evolve to regulate horizontally acquired pathogenicity genes.

The major aim of this study is to determine the regulatory role of FNR in the expression SPI-2 in *S*. Typhimurium. More specifically, we aim to determine the mechanism of SPI-2 repression by FNR, and the input for the repression. Additionally, we intend to confirm that FNR, as a regulator of anaerobic metabolism, can control SPI-2 genes in response to oxygen and alternative electron acceptors.

Chapter 2 Material & Methods

2.1 Chemicals and Reagents

Unless otherwise stated, all chemicals and reagents were purchased from Acros Organics, Agilent, Ambion, Applied Biosystems, Bioline, Fisher Scientific, Illumina, Invitrogen, New England Biolabs, Promega, Roche, Sigma-Aldrich, and Thermo Scientific.

2.2 General Microbiological Techniques

2.2.1 Media

Media recipes are shown in **Table 2.1**. All media were made using analytical grade, deionised water (Analar, BDH). Media were sterilized by autoclaving or filtration using 0.2 µm polyethersulfone (PES) membrane filters (Fisher Scientific). To prepare agar plates, Lennox agar (LA) was melted at 95°C, then cooled to 50°C before addition of appropriate antibiotics prior to pouring. Agar plates were stored at 4°C prior to use.

2.2.2 Maintenance of Bacterial Stocks

All strains and plasmids used in this study are listed in **Tables 2.2** and **2.3** respectively. Bacterial strains were prepared for long term storage by combination of overnight cultures in Lennox broth (LB, **Table 2.1**) in 30% (v/v) sterile glycerol and frozen at -80°C. When required, strains were streaked for single colonies onto LA plates with the appropriate antibiotics and grown at 30°C or 37°C. Plates were stored at 4°C and kept for a maximum of 1 week.

2.2.3 Culture Conditions

2.2.3.1 Growth in Lennox Broth

Bacterial strains were routinely grown on LA plates and incubated at 37°C. Bacterial cultures were routinely grown from single colonies in 5 mL of LB in glass test tubes at 37°C in an Innova 40 air-incubator (New Brunswick Scientific) at 200 rpm for 16 h (overnight). For further growth in LB, bacterial cultures were sub-inoculated 1:1000 in 25 mL of LB in a 250 mL Erlenmeyer flask with appropriate antibiotics and grown without agitation or with

agitation at 200 rpm at 37°C in an Innova 3100 water-bath shaker (New Brunswick Scientific).

2.2.3.2 Growth in Minimal Media

For growth in minimal media (MMA or PCN, **Table 2.1**), overnight cultures were grown as previously described. One mL of culture was harvested by centrifugation at $6,500 \times g$, washed 3 times in minimal media by centrifugation at $6,500 \times g$, and sub-inoculated 1:500 in 25 mL of minimal media in a 250 mL Erlenmeyer flask with appropriate antibiotics, and grown without agitation or with agitation at 200 rpm (**Figure 2.1**) at 37°C in an Innova 3100 water-bath shaker (New Brunswick Scientific).

Figure 2.1 Experimental set-up for aerobic and microaerobic growth.

Cultures were grown in 25 mL of media in 250 mL and left static (0 rpm) for microaerobic growth and agitated at 200 rpm for aerobic growth. Under the "microaerobic" condition, bacteria in the initial inoculum quickly deplete the medium of oxygen below the surface, and further oxygen diffusion is limited as the flasks are not aerated.

2.2.4 Monitoring Bacterial Growth

Growth of bacterial cultures was monitored by measuring optical density at a wavelength of 600 nm (OD₆₀₀) with a Biomate 3S spectrophotometer (Thermo Scientific). Cultures with an OD₆₀₀ of greater than approximately 0.5 were first diluted 10-fold in the appropriate medium before taking a measurement. To calculate viable cell counts, overnight cultures were serially diluted 10-fold in sterile PBS and plated on LA. Cell numbers were calculated as colony forming units per mL (CFU/mL).

2.2.5 Antibiotics

Antibiotic stocks were made at $1000 \times$ concentration and stored in aliquots at -20°C. Stocks were made in dH₂O and filter sterilized with 0.2 µm PES membrane filters (Fisher Scientific), or in 70% ethanol. The following antibiotics were used in this study; Kanamycin (Kan, 50 µg/mL, dH₂O), ampicillin (Amp, 150 µg/mL, dH₂O), and chloramphenicol (Cm, 35 µg/mL, EtOH).

2.2.6 Motility Assays

Swimming motility assays were performed to measure the swimming capacity of bacterial strains under aerobic and anaerobic conditions. Swimming motility assays were performed by stab inoculation with 1 μ L of 1 OD unit bacterial culture into swimming agar (**Table 2.1**) and incubated for 6 h at 37°C in an anaerobic jar with an OxoidTM AnaeroGenTM 2.5 L Sachet (Thermo Scientific) to remove O₂ for anaerobic assays. Plates for anaerobic assays were left in anaerobic jars with an anaerobic gas sachet overnight prior to inoculation to remove any oxygen from the media. Diameter of swim colonies were measured with a ruler, and plates were photographed.

2.2.7 Growth curves and kinetic gene expression assay

2.2.7.1 Microaerobic and aerobic growth curves

Growth curves were used to measure growth rate of bacterial strains. Bacterial cultures for growth curves were inoculated as previously described (Section 2.2.3) in LB or minimal media as appropriate. Absorbance measurements (OD_{600}) were taken every 1 - 2 h depending on the growth rate of the culture with a Biomate 3S spectrophotometer (Thermo Scientific). Best-fit growth rate and lag time of each strain was determined using GrowthRates (Hall *et al.*, 2014).

2.2.7.2 Anaerobic growth curves

Anaerobic growth curves were performed by Daniel Ryan at The Helmholtz Institute for RNA-based Infection Research, Würzurg, Germany. Overnight cultures were grown as previously described (Section 2.2.3) and subcultured anaerobically with a 1:100 dilution into

LB media which had been kept in a Coy Anaerobic chamber with a gas mix containing 10% H₂, 5% CO₂ and 85% N₂ overnight. Bacterial cultures were grown and absorbance was measured every 20 min in a Synergy HT Microplate reader (Biotek) in the anaerobic chamber.

2.2.7.3 Kinetic gene expression

Gene expression was measured across growth or at OD_{600} of 0.3 to determine expression of *ssaG*, *ssrA*, *ssrB*, *ssaB*, and *ydgT* at different growth phases in different media. Bacteria transformed with plasmids with transcriptional promoter fusions to *luxCDABE* (**Table 2.3**) were inoculated as previously described (Section 2.2.3) in LB or minimal media as appropriate. Absorbance measurements (OD_{600}) were taken every 1 - 2 h depending on the growth rate of the culture using a Biomate 3S spectrophotometer (Thermo Scientific). At the same time points, 200 µL of culture was used to measure luminescence in white-walled 96-well plates (Sarstedt) in a Synergy HT Microplate reader (Biotek). All luminescence values were normalized to the corresponding optical density (at 600 nm) of the culture.

2.2.8 Oxygen gradient gene expression assay

Oxygen gradient gene expression assays were used to assess the repression of SPI-2 by FNR at various oxygen concentrations. Oxygen gradient gene expression assays were carried out by mixing 2 mL liquid MMA soft agar (**Table 2.1**), cooled to 50°C, with 200 μ L of overnight culture in small glass test tubes. The tubes were left to solidify at room temperature, and subsequently incubated at 37°C for 72 h. Within the test tube there is O₂ above the agar and at the surface, O₂ concentration decreases down through the agar. GFP expression was detected via a blue epi-illuminator (460 nm) using the ImageQuant LAS4000 (GE). Photos of the tubes were also taken in natural light to observe regions of turbidity indicating growth of each of the strains.

2.2.9 Relative Fitness Assay

Relative fitness assays were used to determine if bacterial strains with genotypic alterations such as deleted genes, would incur a fitness advantage or disadvantage in mixed populations. Strains used in these assays were used as their original versions or were transduced with the Δ SL1483::*cat* mutation as a selective marker. Strains were competed against themselves

with the selective marker to assess that there was no phenotypic disadvantage to addition of the marker. Cultures were prepared as previously described for sub-culture into minimal media, and flasks were inoculated with 10^7 cells of each strain. Inoculums were plated at 0 h and after 24 h of co-culture. CFU/mL of co-cultures was determined using the exclusion method. Briefly, co-cultures were diluted appropriately onto LA plates and LA plates containing Cm (25 µg/mL) to assess total number of colonies, and number of Cm resistant colonies. Subtraction of Cm resistant CFU from total CFU gives the number of Cm susceptible CFU. The relative fitness was determined by calculating the competitive index (C.I.) by the following formula:

$$C.I. = \frac{\ln\left(\frac{A_f}{A_i}\right)}{\ln\left(\frac{B_f}{B_i}\right)}$$

Where C.I. is competitive fitness, A and B are the population sizes of the two competitors in CFU/mL, and subscripts i and f indicate the initial and final time points in the assay, 0 h and 24 h respectively. The natural logarithm, ln, reflects population growth (Wiser & Lenski, 2015). Relative fitness assays were performed by Stefani Kary and Naoise McGarry at Trinity College Dublin, Dublin, Ireland, and data analysis completed by Stefani Kary.

Medium	Reagent	Concentration	Reference
Lennox Broth (LB)	Bacto-Tryptone	10 g/L	(Lennox, 1955)
	NaCl	5 g/L	
	Bacto-Yeast extract	5 g/L	
Lennox Agar (LA)	Lennox broth		(Lennox, 1955)
- (<i>'</i>	Bacto-Agar	1.5% (w/v)	
Swimming Agar	Lennox broth		
	Bacto-Agar	0.3% (w/v)	
Minimal Medium A	K ₂ HPO ₄	60 mM	(Constantinidou
(MMA) ^{ab}	KH ₂ PO ₄	33 mM	et al., 2006)
	$(NH_4)_2SO_4$	7 mM	. ,
	Sodium citrate dihydrate	1.7 mM	
	MgSO ₄	1 mM	
	Glycerol	0.4% (v/v)	
	Fumarate	40 mM	
	ТМАО	20 mM	
MMA Soft Agar	MMA		
-	Bacto-Agar	1% (w/v)	
PCN	MES (pH 5.8)	80 mM	(Löber et al.,
(SPI-2-inducing,	Tricine	4 mM	2006)
InSPI2)	FeCl ₃	100 µM	
	K_2SO_4	376 µm	
	NaCl	50 mM	
	K ₂ HPO ₄ /KH ₂ PO ₄ (pH 5.8)	0.4 mM	
	Glucose	0.4 % (w/v)	
	NH ₄ Cl	15 mM	
	MgSO ₄	1 mM	
	CaCl ₂	0.01 mM	
	Na ₂ MoO ₄	10 nM	
	Na ₂ SeO ₃	10 nM	
	H_3BO_3	4 nM	
	CoCl ₂	300 nM	
	CuSO ₄	100 nM	
	MnCl ₂	800 nM	
	ZnSO ₄	1 nM	

Table 2.1 Media recipes

^avariations of this medium without fumarate and/or TMAO were used in some experiments, unless otherwise stated MMA refers to the medium containing both fumarate and TMAO.

^bvariations of this medium with different concentrations of K_2 HPO₄ and KH₂PO₄ and pH were used for some experiments, unless otherwise stated MMA refers to the medium with the above recipe and pH of ~7.4.

Medium	Reagent	Concentration	Reference
PCN	PCN w/o MES & K ₂ HPO ₄ /KH ₂ PO ₄		(Löber et al.,
(SPI-2-Non-	MOPS (pH 7.4)	80 mM	2006)
inducing, NonSPI2)	K ₂ HPO ₄ /KH ₂ PO ₄ (pH 7.4)	25 mM	
Green Agar	Bacto-Tryptone	8 g/L	(Smith &
-	NaCl	5 g/L	Levine, 1967)
	Bacto-Yeast extract	1 g/L	
	Alizarin yellow	0.625 g/L	
	Aniline blue	0.006% (w/v)	
	Glucose	0.8% (w/v)	
	Bacto-Agar	1.5% (w/v)	
Super Optimal	Bacto-Tryptone	20 g/L	(Hanahan,
Broth (SOB)	NaCl	5 g/L	1983)
	Bacto-Yeast extract	5 g/L	
	KC1	2.5 mM	
	MgCl ₂	10 mM	
	MgSO ₄	10 mM	
SOB with	SOB		(Hanahan,
Catabolite	Glucose	20 mM	1983)
Repression			
(SOC)			

Table 2.1 Media recipes (continued)

Strain Name	Relevant Genotype	Resistance	Original Source/Reference
S. Typhimurium 4/74	wild-type	Str ^R	Mark Stevens
	∆fnr::FRT		Jay Hinton, JH3307
	∆fnr::FRT attTn7::fnr::kan	$\operatorname{Kan}^{\mathrm{R}}$	This Study
	$\Delta ssrAB$::FRT		Aoife Colgan
	∆fnr::FRT, ∆ssrAB::FRT		OS: Aoife Colgan, kan removal: This Study
	ΔrpoE::cat	Cm^{R}	Aoife Colgan
	$\Delta hilA$::FRT		OS: Jörg Vogal, JVS-1195, transduction, kan removal: This Study
	ΔhilD::FRT		Aoife Colgan
	hns-1::kan	Kan^{R}	Jay Hinton, JH3863
	fnr-3×FLAG::kan	$\operatorname{Kan}^{\operatorname{R}}$	C. Kröger
	steC-3×FLAG::kan	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	<i>dfnr</i> ::FRT steC-3×FLAG::kan	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	<pre>\Delta SteC-3\text{steC-3\text{steC-3}</pre>	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	<pre>\Delta::FRT steC-3 FLAG::kan</pre>	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	<pre>\Delta SteC-3xFLAG::kan</pre>	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	sopE-3×FLAG::kan	Kan^{R}	OS: A. Westermann, transduction: This Study
	∆fnr::FRT sopE-3×FLAG::kan	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	<pre>\Delta SopE-3\text{sopE-3\text{sopE-3}</pre>	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	<pre>\Delta AnilA::FRT sopE-3\timesFLAG::kan</pre>	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	<pre>\Delta SopE-3sopE-3:kan</pre>	$\operatorname{Kan}^{\operatorname{R}}$	OS: A. Westermann, transduction: This Study
	pipB2-3×FLAG::kan	$\operatorname{Kan}^{\operatorname{R}}$	OS: O. Steele-Mortimer, transduction: This Study
	∆fnr::FRT pipB2-3×FLAG::kan	$\operatorname{Kan}^{\operatorname{R}}$	OS: O. Steele-Mortimer, transduction: This Study
	<pre>\DeltassrAB::FRT pipB2-3\text{stran}</pre>	$\operatorname{Kan}^{\operatorname{R}}$	OS: O. Steele-Mortimer, transduction: This Study
	\Delta AhilD::FRT pipB2-3\text{FLAG}::kan	$\operatorname{Kan}^{\operatorname{R}}$	OS: O. Steele-Mortimer, transduction: This Study
Table 2.2 Bacterial str	ains used in this study (continued).		

Table 2.2 Bacterial strains used in this study.

43

Strain Name	Relevant Genotype	Resistance	Original Source/Reference
S. Typhimurium	∆SL1483:: <i>cat</i>	Cm ^R	C. Kröger
4/74	Δfnr::FRT ΔSL1483::cat	Cm ^R	OS: C. Kröger, transduction: This Study
	ΔssrAB::FRT ΔSL1483::cat	Cm ^R	OS: C. Kröger, transduction: This Study
	Δfnr::FRT ΔssrAB::FRT ΔSL1483::cat	Cm ^R	OS: C. Kröger, transduction: This Study
	$\Phi(ssaG'-gfp^+)1, cat$	Cm ^R	Jay Hinton, JH3009
	$\Delta fnr::kan \Phi(ssaG'-gfp^+)1, cat$	Kan ^R , Cm ^R	OS: Jay Hinton, JH3009, C. Kröger
	$\Delta ssrAB$::kan $\Phi(ssaG'-gfp^+)1$, cat	Kan ^R , Cm ^R	OS: Jay Hinton, JH3009, C. Kröger
E. coli TOP10	F ⁻ mcrA Δ (mrr-hsdRMS-mcrBC) (φ 80lacZ Δ M15 Δ lacX74 nupG recA1 araD139 Δ (ara-leu)7697 galE15 galK16 rpsL(Str ^R) endA1 λ ⁻	Str ^R	Invitrogen
<i>E. coli</i> DH5α	F ⁻ endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20 φ 80dlacZ Δ M15 Δ (lacZYA-argF)U169, hsdR17(r _K ⁻ m _K ⁺), λ ⁻		Charles Dorman
E. coli DH5apir ⁺	endA1 hsdR17 glnV44 (=supE44) thi-1 recA1 gyrA96 relA1 φ80dlacΔ(lacZ)M15 Δ(lacZYA-argF)U169 zdg-232::Tn10 uidA::pir ⁺		Jörg Vogel
<i>E. coli</i> BL21(DE3) (PK22)	fhuA2 [lon] ompT gal (λ DE3) [dcm] Δ hsdS λ DE3 = λ sBamHlo Δ EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 Δ nin5 Δ fnr Δ crp		(Shan <i>et al.</i> , 2012b)
OS: Original Strain			

OS: Original Strain

Plasmid Name	Description	Resistance	Reference
pBR322	Low copy number cloning vector	Tet^{R}, Amp^{R}	(Bolivar <i>et al.</i> , 1977)
pfnr	fur with 215 bp upstream cloned in pBR322	$\mathrm{Amp}^{\mathrm{R}}$	This Study
pfnrD154A	Oxygen insensitive <i>fnr</i> (D154A) with native promoter cloned in pBR322	Amp ^R	This Study
$p(fnrDI54A)_2$	Oxygen insensitive <i>fnr</i> (D154A) ₂ from <i>E. coli</i> with 6xHistag in pET28a	Kan ^R	(Shan <i>et al.</i> , 2012b)
pCP20	Plasmid with yeast Flp recombinase gene, FLP, and	Cm^{R} , $\mathrm{Amp}^{\mathrm{R}}$	(Cherepanov & Wackernagel,
pDIGc	Constitutive expression of GFP in bacteria	Amp ^R	(Helaine <i>et al.</i> , 2010)
pDEW201	Moderate copy number with a promoterless <i>luxCDABE</i>	$\operatorname{Amp}^{\mathrm{R}}$	(Van Dyk & Rosson, 1998)
$pDEW201-P_{ssaG}$	P_{ssaG} cloned into pDEW201	$\mathrm{Amp}^{\mathrm{R}}$	This Study
pUC18R6K-miniTn7T-PacI	Delivery plasmid for chromosomal integration at attTn7	Amp^{R}	(Shivak et al., 2016)
	downstream of glmS	ţ	
pHSG415- <i>tnsABCD</i>	Replication-proficient helper plasmid with temperature- sensitive origin	Amp ^R	(Shivak <i>et al.</i> , 2016)
pCS26-Kn ^R - <i>luxCDABE</i> -PacI	Low copy number modular cloning vector with a promoterless <i>luxCDABE</i>	Kan ^R	(Shivak <i>et al.</i> , 2016)
pCS26-Kn ^R -PacI	Low copy number modular cloning vector without reporter	Kan ^R	This Study
pCS26-Kn ^R -fnr-PacI	fur and native promoter cloned into pCS26-Kn ^R -PacI	Kan ^R	This Study
pCS26-Kn ^R - <i>fnr</i> -pUC18R6K- miniTn7T	pCS26-Kn ^R -fnr-PacI cloned into pUC18R6K-miniTn7T- PacI	Kan ^R , Amp ^R	This Study
pCS26-Cm ^R -luxCDABE-PacI	Low copy number modular cloning vector with a promoterless <i>luxCDABE</i>	Cm ^R	(Shivak <i>et al.</i> , 2016)

Table 2.3 Plasmids used in this study.

45

Plasmid Name	Description	Resistance	Reference
pCS26-Cm ^R - <i>luxCDABE</i> -PacI-P _{ssrA1°}	P _{ssr4} 1° cloned into pCS26-Cm ^R - <i>luxCDABE</i> -PacI	Cm ^R	This Study
pCS26-Cm ^R - <i>luxCDABE</i> -PacI-P _{ssrA}	P _{ssrA} cloned into pCS26-Cm ^R - <i>luxCDABE</i> -PacI	Cm ^R	This Study
pCS26-Cm ^R - <i>luxCDABE</i> -PacI-P _{ssrB}	P _{ssrB} cloned into pCS26-Cm ^R - <i>luxCDABE</i> -PacI	Cm ^R	This Study
pCS26-Cm ^R - <i>luxCDABE</i> -PacI-P _{ssaB}	P _{ssaB} cloned into pCS26-Cm ^R - <i>luxCDABE</i> -PacI	Cm ^R	This Study
pCS26-Cm ^R - <i>luxCDABE</i> -PacI- <i>dbpA</i>	dbpA cloned into pCS26-Cm ^R -luxCDABE-PacI	Cm ^R	This Study

Table 2.3 Plasmids used in this study (continued).

2.3 General molecular techniques

2.3.1 Isolation of chromosomal S. Typhimurium 4/74 DNA for use in PCR

Overnight cultures were prepared as previously described (Section 2.2.3). 400 μ L of the culture was harvested by centrifugation at 8,000 × g for 1 minute at room temperature. The cell pellet was resuspended in 200 μ L of sterile nuclease free H₂O and boiled at 100°C for 5 min, and subsequently vortexed for 30 s to ensure complete lysis. Cell debris was pelleted by centrifugation at 8,000 × g for 5 min, and supernatants were added to 1 volume chloroform and vortexed for 30 s. Organic and aqueous phases of the solution were separated by centrifugation at 8,000 × g for 10 min at 4°C. 75% of the aqueous layer was transferred to a new 1.5 mL tube to eliminate chloroform contamination. DNA contained in the aqueous phase was measured with the NanoDrop ND-1000 Spectrophotometer (Thermo Scientific) and the concentration was adjusted to 100 ng/mL.

2.3.2 Isolation of plasmid DNA

Plasmid DNA was extracted and purified using the GeneJet Plasmid Miniprep Kit (Thermo Scientific) according to the manufacturers' instructions except plasmids were eluted into dH_2O . For extremely low copy plasmids, such as pCS26 derivatives, up to 50 mL of culture was harvested and multiple minipreps were combined into 50 μ L of dH_2O .

2.3.3 Polymerase chain reaction (PCR)

PCR amplifications were carried out in a SimpliAmp Thermal Cycler (Applied Biosystems, Thermo Scientific). Routine PCR and colony screening were carried out using Taq polymerase (New England Biolabs) according to the manufacturers' specifications. Q5 polymerase (New England Biolabs) was used for applications requiring high fidelity amplification and RANGER Mix (Bioline) was used for products larger than 10 kbp according to the manufacturers' specifications. As a template for PCR, 100 ng chromosomal DNA, 1-10 ng of plasmid DNA, or single colony resuspended in 200 μ L of H₂O was used.

2.3.4 Agarose gel electrophoresis

Agarose gel electrophoresis was used for size separation of DNA and RNA molecules. DNA samples were mixed with DNA loading dye (40% (v/v) glycerol, 60 mM EDTA, 10 mM Tris-HCl pH 7.6, 0.25% (w/v) bromophenol blue pH 8.0, 0.25% (w/v) xylene cyanol FF, 0.25% (w/v) orange G) to a final concentration of $1 \times$ DNA loading dye and routinely electrophoresed in a 1% to 2.5% (w/v) agarose gel in $1 \times$ Tris Acetate Ethylenediaminetetraacetic acid (TAE) buffer at 90 V. RNA samples were mixed with RNA loading dye (0.025% (w/v) xylene cyanol FF, 0.025% (w/v) bromophenol blue, 18 mM EDTA pH 8.0, 0.025% (w/v) SDS, 95% (v/v) formamide) to a final concentration of $1 \times$ RNA loading dye and heat denatured at 65°C for 5 min. RNA was routinely electrophoresed in a 2.5% (w/v) agarose gel in $1 \times$ Tris Borate EDTA (TBE) buffer at 90 V. Gels were stained with SafeView Nucleic Acid Stain (NBS Biologicals) prior to visualization under ultra violet light in the ImageQuantTM LAS 4000 (GE Healthcare Life Sciences). The molecular size of electrophoresed DNA fragments was estimated by comparison with HyperLadderTM I (Bioline) or O'GeneRulerTM 1 kb DNA Ladder (Thermo Scientific).

2.3.5 Restriction digestion

All enzymes were purchased from Thermo Scientific (FastDigest enzymes), New England Biolabs, or Roche and used according to the manufacturers' specifications. Restriction digestions were carried out in a SimpliAmp Thermal Cycler (Applied Biosystems, Thermo Scientific) and digestion products were analyzed by agarose gel electrophoresis as previously described.

2.3.6 Purification of PCR products

If required for downstream applications, PCR products were purified to remove primers, enzymes, and other impurities using the Monarch[®] PCR & DNA Cleanup Kit (New England Biolabs) or the High Pure PCR Product Purification Kit (Roche) according to the manufacturers' specifications. In order to concentrate samples, multiple PCR reaction products were combined and spun through a single spin column.

2.3.7 Precipitation of DNA

In order to increase the concentration of low concentration DNA samples Pellet Paint[®] Co-Precipitant (Millipore) was used to facilitate alcohol precipitation of nucleic acids. 1 μ L of Pellet Paint[®] and 1 volume of 3 M sodium acetate were added to the sample and mixed briefly. 2 volumes of ethanol were then added followed by briefly vortexing the sample, and a 2 min incubation at room temperature. Sample was centrifuged at 8,000 × g for 5 min and washed in 70% ethanol. DNA pellet was then resuspended in desired volume of H₂O.

2.3.8 Extraction of DNA from agarose gels

DNA digests or PCR products that required precise purification of a product of interest were electrophoresed as previously described. DNA fragments were visualized briefly under ultra violet light and the specific DNA band was excised with a scalpel. The excised DNA in agarose was weighed and dissolved in gel dissolving buffer at 55°C with occasional vortexing. Once dissolved, 3 M sodium acetate pH 5.2 was added to lower the pH of the sample to increase binding to the column membrane. Monarch[®] DNA Gel Extraction Kit or High Pure PCR Product Purification Kit (Roche) were used to spin column purify the DNA according to the manufactures' specifications.

2.4 Preparation and transformation of competent bacteria

2.4.1 Preparation of electro-competent S. Typhimurium and electroporation

Overnight cultures of *S*. Typhimurium were subcultured 1:100 in 50 mL LB with appropriate antibiotics and grown with agitation at 200 rpm at 30°C or 37°C to exponential phase (OD₆₀₀ 0.5). Cultures were then incubated on ice for 20 min. Cells were harvested by centrifugation at 2,880 × g at 4°C for 10 min and resuspended in 40 mL ice-cold sterile 10% (v/v) glycerol and incubated on ice for 20 min. The glycerol wash was repeated two additional times with resuspensions in 25 mL, then 10 mL of ice-cold 10% (v/v) glycerol. After a final centrifugation at 2,880 × g and 4°C, the pellet was resuspended in 300 µL of ice-cold 10% (v/v) glycerol. Cells were either stored at -80°C or immediately electroporated. 40 µL of electro-competent cells were added to 2 mm electroporation cuvettes with up to 5 µL of plasmid DNA and electroporated with the GenePulser Xcell electroporator (Biorad) at 2.5 kV, 200 Ω , 25 µF. 1 mL of SOC (**Table 2.1**) was added to cells, and the cells were recovered

at 37°C for 1 h or at 30°C for 2 h with agitation at 200 rpm. For small and high copy plasmids 150 μ L of cells was plated on LA plates with appropriate antibiotics and incubated at 30°C or 37°C overnight. For large and low copy plasmids, cells were harvested by centrifugation at 6,500 × g and resuspended in 150 μ L of SOC. The entire resuspension was plated on LA plates with appropriate antibiotics and incubated at 30°C or 37°C overnight.

2.4.2 Preparation and transformation of chemically competent E. coli

2.4.2.1 CaCl₂ chemically competent E. coli

Overnight cultures of *E. coli* were diluted 1:100 in 50 mL LB with appropriate antibiotics with agitation at 200 rpm to exponential phase ($OD_{600} 0.4 - 0.8$). Cells were then incubated on ice for 20 min. Cells were harvested by centrifugation at 2,880 × g and 4°C and resuspended in 40 mL sterile ice-cold 100 mM CaCl₂ and incubated on ice for 20 min. Cells were harvested as before and resuspended in 10 mL sterile ice-cold 100 mM CaCl₂. Sterile glycerol was added to a final concentration of 10%, and cells were incubated on ice for an additional 20 min. Cells were either stored at -80°C in 300 µL aliquots or immediately transformed. CaCl₂ competent cells were used for the transformation of small plasmids.

2.4.2.2 PIPES chemically competent E. coli

Overnight cultures of *E. coli* were diluted 1:100 in 100 mL LB with appropriate antibiotics with agitation at 200 rpm to exponential phase ($OD_{600} 0.4 - 0.8$). Cells were then incubated on ice for 20 min. Cells were harvested by centrifugation at 2,880 × g and 4°C and resuspended in 30 mL sterile ice-cold 100 mM MgCl₂ and incubated on ice for 20 min. Cells were harvested as before and resuspended in 30 mL sterile ice-cold PIPES buffer (60 mM CaCl₂, 10 mM PIPES pH 7.6, 15% (v/v) glycerol). Cells were harvested as before and resuspended in 5 mL PIPES buffer. Cells were either stored at -80°C in 300 µL aliquots or immediately transformed. PIPES competent cells were used for the transformation of large (>10 kb) plasmids.

2.4.2.3 Chemical transformation of E. coli

 $100 - 300 \ \mu$ L of chemically competent cells was mixed with up 20 μ L of plasmid DNA or ligation mixture and incubated on ice for 20 min. The cells were then heat shocked in a 42°C

water-bath for 90 – 120 s, followed by a 2 min incubation on ice. 1 mL of SOC was added to each transformation, and cells were recovered at 37°C with agitation at 200 rpm for 1 h. Cells were harvested by centrifugation at $6,500 \times g$ and resuspended in 150 µL of SOC. The entire resuspension was plated on LA plates with appropriate antibiotics and incubated at 37°C overnight.

Primer	Sequence (5' – 3')	Description
FNR_com_F215	TTT <u>AAGCTT</u> AAGGCTATCTTTATTATG	To amplify <i>fnr</i> with 215 bp upstream, adds HindIII restriction site
FNR_com_R	TTT <u>GTCGAC</u> AGTTTGTAACTAAAGAGTAACTC	To amplify <i>fnr</i> , adds Sall
D145A_FNR_F	*ATTAAAGGCG <u>C</u> TCAGGATATGA	To introduce D154A mutation to <i>fnr</i> on a plasmid
D145A_FNR_R	TTCACCGCTCATCAGACGCAT	To introduce D154A mutation to <i>fnr</i> on a plasmid
pBR_seq_4	TGCCACCTGACGTCTAAG	Sequencing primer for pBR322
pDEW201_PssaG_F	CCG <u>GAATTC</u> TTACTCGCTTCGGTATGG	To amplify P _{ssaG} , adds EcoRI restriction site
pDEW201_PssaG_R	TTCC <u>GGATCC</u> AATATCCATAATGCTTTTCC	To amplify P _{ssaG} , adds BamHI restriction site
luxC_R	CCAGTACTATCAGCGC	Verify insertion in pDEW201
qPCR_sseA_F	TCACCAAATCCGGGCTAAG	To amplify <i>sseA</i> for qPCR
qPCR_sseA_R	GCAACGCCTTGTGGAAATAG	To amplify <i>sseA</i> for qPCR
qPCR_ssaH_F	GCGTTAACCATAGCCTGATTTC	To amplify <i>ssaH</i> for qPCR
$qPCR_ssaH_R$	CCAACAATAATGCCAGACATACC	To amplify <i>ssaH</i> for qPCR
$qPCR_fnr_F$	ATTGGCAGCGGTCATCAT	To amplify <i>fnr</i> for qPCR
qPCR_fnr_R	TGACGCAGGTTAGGCATTT	To amplify <i>fnr</i> for qPCR
hemX_RT_F	CGCCTGACGGTATGTTTCTT	To amplify <i>hemX</i> for qPCR, control
hemX_RT_R	CCCAACCAGGACGTCTATTTAC	To amplify <i>hemX</i> for qPCR, control
fnr_EMSA_F	AGGCTATCTTTTATTATG	To amplify P _{fnr} for EMSA
fnr_EMSA_R	CAAAGCTGGCTGATACTGC	To amplify P _{fnr} for EMSA
FnrS_EMSA_F	ATAATAAGGTCAAAAGACAGCTC	To amplify P _{FmS} for EMSA
FnrS_EMSA_R	CAAAAGCGCTTTTCAGACC	To amplify P _{Furs} for EMSA
$ydgT_EMSA_F$	ATTAAATATAATGCCAACGGAG	To amplify P_{ydgT} for EMSA
$ydgT_EMSA_R$	TCCGTCCAGAAGAAGTAAGC	To amplify P_{ydgT} for EMSA
ssrA_EMSA_F	TATATAACCCAGTCGATGAC	To amplify P _{SSFA} for EMSA
ssrA_EMSA_R	ATTCACAATTACATTTTCAGC	To amplify P _{SSFA} for EMSA
ssrA2_EMSA_F	CTGATTACTAAAGATGTTTGCAG	To amplify P _{SSFA} for EMSA
ssaB_EMSA_F	GGCTTTTTACGGATGTGG	To amplify P _{ssaB} for EMSA

Table 2.4 Table of oligonucleotides
Primer	Sequence (5' – 3')	Description
ssaB_EMSA_R	AGAAATAGAAAATGCTTCTGAG	To amplify P _{ssab} for EMSA
ssrB_EMSA_F	CCGTTAATGATGATTTCATGATCGTCT	To amplify P _{ssrB} for EMSA
ssrB_EMSA_R	AAATGCCGTATCGGCTGGA	To amplify P _{ssrB} for EMSA
dbpA_EMSA_F	CGATCATTTTAATAGCCGTACC	To amplify <i>dbpA</i> for EMSA
dbpA_EMSA_R	CTCAAGCTGAACTGGCTGAA	To amplify <i>dbpA</i> for EMSA
FnrS_P1	GCAGGTGAATGCAACGTCA	To amplify DNA template for FnrS riboprobe
FnrS_P2	GAATTAATACGACTCACTATAGCCGACTAATCTAAGTCGG	To amplify DNA template for FnrS riboprobe
5S_P1	GCGGCACTAGCGCGGTGGTC	To amplify DNA template for 5S riboprobe
5S_P2	GAATTAATACGACTCACTATAGCATGGGGGGGGGACCCCACACT	To amplify DNA template for 5S riboprobe
pZE.05	AATCATCACTTTCGGGAA	Verify insert insertion in pCS26
pCS26-For	TAGCAACACCAGAACAGCC	Amplify pCS26 without origin of replication
pCS26-Rev	ATCACTATACCAATTGAGATGGGC	Amplify pCS26 without origin of replication
pUC18R6K-checkF	ATCCGCCGCTAGGAGCTTG	Verify insertion of pUC18R6K-miniTn7T
pUC18R6K-checkR	TTGGCCTGCAAGGCCTTCG	Verify insertion of pUC18R6K-miniTn7T
lux-check60	TATATGCGCGAGCGCTTGATCC	Verify lux insertion
cm-check60	TGTGACCGTGTGCTTCTCAAATGC	Verify Cm ^R insertion
kn-check60	TACCCGTGATATTGCTGAAGAGCTTGG	Verify Kn ^R insertion
glmSdetectFor	AACCACCCGTTCAGGCTGGCTA	Verify insertion downstream of glmS
glmSdetectRev	ACGTTGACCAGCCGCGTAAC	Verify insertion downstream of glmS
fnrcom_Xhol_F	TTT <u>CTCGAG</u> AGTTTGTAACTAAAGAGTAACTC	To amplify <i>fnr</i> with promoter, adds XhoI site
fnrcom_BamHI_R	TTT <u>GGATCC</u> AAGGCTATCTTTATTATG	To amplify <i>fnr</i> with promoter, adds BamHI site
PssrA_Xhol_F	TTT <u>CTCGAG</u> ATTCACAATTACATTTTCAGC	To amplify primary <i>ssrA</i> TSS, adds XhoI site
PssrA2_Xhol_F	TTT <u>CTCGAG</u> GAATCCCTCCAGACATAAA	To amplify entire <i>ssrA</i> promoter, adds XhoI site
PssrA_BamHI_R	TTT <u>GGATCC</u> CTTTGGCACTTGATCACTA	To amplify P _{ssr4} promoter, adds BamHI site
PssrB_Xhol_F	TTT <u>CTCGAG</u> GCTGGCTGATATTGAAAATGC	To amplify P _{ssrB} , adds XhoI site
PssrB_BamHI_R	TTT <u>GGATCC</u> GCCGTTAATGATGATTTCATG	To amplify P _{ssrB} , adds BamHI site
PssaB_Xhol_F	TTT <u>CTCGAG</u> TTATCGGAAAATCCGAATGATAG	To amplify P_{ssab} , adds Xhol site

Table 2.4 Table of oligonucleotides (continued)

53

	Table 2.4	
	Table of o	
a	oligonucleotides	
	(continued)	

Primer	Sequence (5' – 3')	Description
PssaB_BamHI_R	TTT <u>GGATCC</u> AGAAATAGAAAATGCTTCTGAG	To amplify P _{ssaB} , adds BamHI site
dbpA_XhoI_F	TTT <u>CTCGAG</u> CGATCATTTTAATAGCCGTACC	To amplify <i>dbpA</i> , adds XhoI site
dbpA_BamHI_R	TTT <u>GGATCC</u> CTCAAGCTGAACTGGCTGAA	To amplify <i>dbpA</i> , adds BamHI site
$sopE_check$	ATCAGGAAGAGGCTCCGC	Verify insertion of 3×FLAG with Kan ^R at <i>sopE</i>
steC_check	ATCTGTAGCGAATGTGCCC	Verify insertion of 3×FLAG with Kan ^R at steC
* represents a 5' phosph	orylation modification	

Restrictions sites are <u>underlined</u>

SNPs are double underlined

2.5 Genetic manipulations

2.5.1 P22 Phage transduction

2.5.1.1 Preparation of bacteriophage lysates

Bacteriophage P22 HT 105/1 *int-201* was used introduce desired mutations linked to antibiotic markers for all transductions. To generate P22 phage lysates, first a donor strain was subcultured 1:1000 in 10 mL of LB with appropriate antibiotics and grown to an OD₆₀₀ of 0.1. The culture was then inoculated with 20 μ L of P22 phage from wild-type 4/74 cells and incubated with agitation at 200 rpm for 4 h. All remaining bacterial cells were killed with the addition of 500 μ L of chloroform, gentle mixing, and incubation at room temperature for 10 min. Cellular debris was removed by collecting supernatants after centrifugation at 2,880 × g for 20 min at room temperature. Supernatants were filtered using 0.2 μ m PES membrane filters (Fisher Scientific). Stocks of bacteriophage P22 were stored in 5 mL volumes supplemented with 10 μ L chloroform at 4°C.

2.5.1.2 Transduction by bacteriophage P22

Recipient strains were grown overnight as previously described (2.2.3.1). Transductions were performed by combination of 100 μ L of stationary phase recipient strain with 100 μ L of neat, 10⁻¹, and 10⁻² dilutions of phage, and stationary incubation at 37°C for 1 h. Negative controls of recipient strain alone and phage alone samples were also incubated at 37°C. The entire transduction reaction was plated onto appropriate antibiotic LA plates and incubated at 37°C overnight. If possible, colonies were chosen from plates with the highest phage dilution to prevent the occurrence of double transductants. Green agar contains a low pH indicator whereby reduction in pH of lysed cells is detected by the presence of dark green colonies containing unstable pseudolysogens. To eliminate the possibility of phage contamination or the presence of pseudolysogens, pale colonies were passaged twice on green agar containing the relevant antibiotic (**Table 2.1**). Finally, a pale colony was chosen, verified by colony PCR and custom sequencing, and stored as a glycerol stock.

2.5.2 Removal of antibiotic resistance cassettes

To ensure that the presence of antibiotic resistance cassettes did not have polar effects on surrounding genes, and to facilitate additional genetic manipulations, resistance genes were removed from mutant *S*. Typhimurium strains using the pCP20 plasmid (Cherepanov & Wackernagel, 1995; Datsenko & Wanner, 2000). The pCP20 plasmid encodes the yeast FLP recombinase and has a temperature sensitive origin of replication. FLP targets FLP recombinase target sites (FRT sites) found flanking antibiotic resistance cassettes amplified from pKD3, pKD4 and pSUB11. FLP mediated site-specific recombination of FRT sites causes removal of the antibiotic resistance cassette, leaving a scar sequence of 82 – 85 nt. Finally, cells were cured of the pCP20 plasmid were lost, cells were streaked on LA plates, and LA plates containing appropriate antibiotics. Colonies that grew only on LA plates without antibiotics were verified by PCR and stored in glycerol stocks.

2.5.3 Modular Tn7-based plasmid system

A modular Tn7-based system (Shivak *et al.*, 2016) was used for construction of the *fnr*⁺ complementation (**Figure 2.2**). First, a kanamycin resistant pCS26 plasmid (pCS26-Kn^R*luxCDABE*) was digested with NotI to remove the *luxCDABE* operon. The digested fragment was gel extracted and re-circularized with T4 DNA Ligase (Thermo Scientific). The new pCS26-Kn^R and a PCR amplified *fnr* with its promoter were digested with BamHI and XhoI and ligated with T4 DNA Ligase. The resulting pCS26-*fnr*-Kn^R plasmid and pUC18R6KminiTn7T-PacI plasmid were digested with PacI and ligated with T4 DNA Ligase. The resulting pCS26-*fnr*-Kn^R-pUC18R6K-miniTn7T plasmid was electroporated into Δfnr cells already containing the pHSG415-*tnsABCD* plasmid, cells were recovered at 30°C for 2 h to allow for transposition of *fnr* and plated on LA plates containing kanamycin and grown overnight at 37°C. Colonies were then streaked on kanamycin and ampicillin containing plates to ensure acquisition of *fnr* and loss of both plasmids. Colonies with growth on only kanamycin-containing LA were then verified by PCR and sequencing.

Figure 2.2 Construction of the *fnr*⁺ complementing strain.

A. A pCS26-PacI reporter plasmid with an kanamycin resistance cassette was digested with NotI, BamHI and XhoI and ligated to a XhoI and BamHI digested PCR product containing *fnr* with its native promoter to create pCS26-*fnr*-PacI. B. pCS26-*fnr*-PacI amplified to remove the pSC101origin of replication and was SLiCE cloned into the pUC18R6K-miniTn7T-*PacI* plasmid between the Tn7L and Tn7R sites to create C. pCS26-*fnr*-pUC18R6K-miniTn7T. This plasmid was then transformed into Δfnr ::FRT containing the pHSG-*tnsABCD* plasmid. D. Cells were recovered at 30°C to allow transposition at the *att*::Tn7 site upstream of *glmS*. Figure adapted from Shivak *et al.*, 2016.

2.6 Analysis of RNA

2.6.1 Extraction of RNA from S. Typhimurium 4/74

Cultures were grown as previously described. Transcription was stopped, and RNA was stabilized by addition of 2/5 volume "stop solution" (5% phenol pH 4.3, 95% ETOH) and incubation on ice for 30 min. Cells were harvested by centrifugation at $2,880 \times g$ and 4°C for 10 min. Pellets were either stored at -80°C or RNA was immediately extracted.

Total RNA was extracted from bacterial cultures using TRIzol[®] (Ambion) for Northern Blots and RNA sequencing (RNA-seq). For TRIzol[®] RNA extraction, extracted pellets were resuspended on ice in 1 mL TRIzol[®]. Samples were then transferred to 2 mL Heavy Phase-Lock tubes (5PRIME), 400 μ L chloroform was added, samples were mixed by inversion for 10 s, and incubated at room temperature for no longer than 5 min. Aqueous and organic phases were separated by centrifugation at 20,000 × g for 15 min at room temperature. The aqueous phase was then transferred to a new 1.5 mL tube containing 300 μ L isopropanol, and RNA was precipitated for 30 min at room temperature. Samples were subsequently centrifuged at 20,000 × g for 30 min at room temperature, and RNA pellets were washed with 350 μ L of 70% ethanol and centrifuged for a further 10 min at 20,000 × g. The supernatant was discarded, and RNA pellets were air dried to remove residual ethanol, then resuspended in DEPC treated H₂O. Samples were intermittently vortexed and mixed at 65°C, 900 rpm on a ThermoMixer[®] (Eppendorf) for 5 minutes. RNA samples were then quantified using the NanoDrop ND-1000 Spectrophotometer (Thermo Scientific), and quality was assessed using agarose gel electrophoresis or with the 2100 Bioanalyzer using the RNA 6000 Nano Kit (Agilent), and stored at -80°C.

Total RNA extracted using the SV Total RNA Isolation System (Promega) for RT-qPCR according to the manufactures' specifications. RNA samples were then quantified using the NanoDrop ND-1000 Spectrophotometer (Thermo Scientific), and quality was assessed using agarose gel electrophoresis, and stored at -80°C.

2.6.2 DNase I digestion

Total RNA samples were DNase I digested with the TURBO DNA-*free*TM Kit (Ambion) according to the manufacturers' instructions. DNase I digested samples were quantified with the NanoDrop ND-1000 Spectrophotometer (Thermo Scientific) and stored at -80°C.

2.6.3 Reverse transcription

Reverse transcription (RT), or cDNA synthesis, of DNase I digested total RNA was completed using the GoScriptTM Reverse Transcription System (Promega) according to the manufacturers' specifications. 400 ng of each RNA sample was processed in a 5 μ L reaction volume, and following RT, was added to 100 μ L of nuclease free H₂O for a final concentration of 3.33 ng/ μ L. For each sample a "No RT" control was also included that contained no RT enzyme to confirm the absence of genomic DNA in real-time quantitative PCR. All cDNA samples were stored at -80°C.

2.6.4 Real-time quantitative PCR

Real-time quantitative PCR (RT-qPCR) was used to quantify gene expression of *S*. Typhimurium cells. The PowerUpTM SYBRTM Green Master Mix (Applied Biosystems) was used for all RT-qPCR reactions in 20 µL volumes including 8 µL of cDNA, "No Reverse Transcriptase" RNA or genomic DNA as template. cDNA and "No Reverse Transcriptase" templates were diluted 5-fold to a final concentration of 0.67 ng/µL. Standard curves were generated with six 10-fold serial dilutions of wild-type *S*. Typhimurium 4/74 genomic DNA. RT-qPCR reactions were set up in duplicate in MicroAmp Fast Optical 96-well reaction plates (Applied Biosystems) and run on the ABI StepOnePlusTM Real-Time PCR System (Applied Biosystems). Default RT-qPCR settings were used for each run as well as for melt

curves for each new primer set. All primers used for RT-qPCR are listed in **Table 2.4**. Data analysis was done using the StepOneTM software and Prism 6 GraphPad. PCR products were quantified relative to *hemX*. The *hemX* gene encodes a putative uroporphyrinogen III C-methyltransferase and was used as a reference gene as it showed low variation in gene expression across RNA-seq transcripts from the wild-type and Δfnr mutant.

2.6.5 Generation of Digoxigenin-labelled riboprobes

Digoxigenin (DIG)-labelled single-strand RNA molecules ("riboprobes") were generated for Northern Blotting by *in vitro* transcription using T7 RNA polymerase and the DIG Northern Starter Kit (Roche). A linear DNA template including the T7 promoter sequence (GAATTAATACGACTCACTATA) was generated through PCR with Q5 polymerase (New England Biolabs) and primers found in **Table 2.4**. DNA templates were purified through gel extraction as previously described, and 200 ng of DNA was used as template in each 20 µL reaction (1 × labelling mix, 1 × transcription buffer, 40 U T7 RNA polymerase). Labelling transcription reactions were incubated at 42°C for 1 h in a SimpliAmp Thermal Cycler (Applied Biosystems, Thermo Scientific). Template DNA was removed by incubation with DNase I at 37°C for 15 min, and reactions were stopped by addition of 400 mM EDTA pH 8.0. Riboprobes were stored at -20°C.

Labelling efficiency of labelled riboprobes was tested by a dot-blot of 10-fold serial dilutions of riboprobes on a positively charged nylon membrane. Membranes were UV-crosslinked at 120 mJ (Peqlab crosslinker), rinsed with washing buffer, incubated at room temperature in 1 × blocking buffer for 30 min, and subsequently incubated with a 1:10,000 dilution of the Anti-digoxigenin-AP, Fab fragments in 1 × blocking buffer for 30 min. The membrane was washed two times in washing buffer, equilibrated in detection buffer for 5 min, then covered with CDP-star (Applied Biosystems). CDP-star acts as the chemiluminescent substrate, where enzymatic dephosphorylation of CDP-star by the alkaline phosphatase conjugated anti-DIG produces light which was detected using the ImageQuantTM LAS 4000 (GE Healthcare Life Sciences). All buffer and solution recipes are listed in **Table 2.5**.

2.6.6 Northern blotting

Total DNaseI treated RNA was electrophoresed through 7% acrylamide, 8.3 M urea, $1 \times$ TBE gels. 5 μ g of RNA was mixed with 2 × RNA loading dye and heat denatured at 65°C for 10 min prior to loading into gels. Gels were electrophoresed at 90 V in 1 × TBE for 1 h and 15 min. RNA-containing gels, positively charged nylon membranes (Roche), and filter paper were equilibrated in ice-cold $1 \times TBE$. RNA was transferred to the membrane using the Biometra Fastblot B43 semi-dry blotting apparatus at 125 mA for 30 min at 4°C. RNA was UV-crosslinked to membrane at 120 mJ (Peglab crosslinker). The membrane was then pre-hybridized in pre-warmed DIG Easy Hyb buffer (Roche) in a rotating oven at 62°C for 1 h. Approximately 1.25 µg (5 µL) of riboprobe was boiled at 95°C for 5 min, then incubated on ice for 5 min before being added to pre-hybridization buffer. Hybridization of RNA with the riboprobe of interest was incubated in a rotating oven at 62°C overnight. Membranes were washed twice for 10 min in Stringency Wash Buffer I pre-warmed to 62°C, then washed twice for 30 min in Stringency Wash Buffer II at room temperature on a rocker. The membranes were blocked for non-specific sites with 1 × blocking buffer at room temperature for 30 min, and subsequently incubated with a 1:10,000 dilution of the Anti-digoxigenin-AP, Fab fragments in 1 × blocking buffer for 30 min. The membrane was washed two times in washing buffer for a total of 10 min, equilibrated in detection buffer for 5 min, then covered with CDP-star (Applied Biosystems). Chemiluminescence was detected as previously described using the ImageQuantTM LAS 4000 (GE Healthcare Life Sciences). To determine if RNA samples were equally loaded onto gels, membranes were re-probed as previously described with a 1:1000 diluted 5S riboprobe. All buffer and solution recipes are listed in Table 2.5.

2.6.7 cDNA preparation of RNA and RNA-seq

Total non-depleted RNA was sent to Vertis Biotechnologie AG (Freising Germany) for cDNA library preparation and RNA-seq.

Name	Reagent	Concentration
RNA loading dye	xylene cyanol FF	0.025% (w/v)
	bromophenol blue	0.025% (w/v)
	EDTA pH 8.0	18 mM
	SDS	0.025% (w/v)
	formamide	95% (v/v)
$20 \times SSC$	NaCl	3 M
	Sodium Citrate	0.3 M
Stringency wash I	SSC	$2 \times$
2 1	SDS	0.1% (w/v)
	H ₂ O	
Stringency wash II	SSC	0.5 ×
	SDS	0.1% (w/v)
	H ₂ O	
Maleic acid buffer pH 7.5	Maleic acid	0.1 M
	NaCl	0.15 M
	*adjust pH with NaOH pellets	
Washing buffer	Maleic acid buffer	$1 \times$
	Tween-20	0.3% (v/v)
1 × Blocking buffer	Casein Blocking Solution (Roche)	1 ×
C	Maleic acid buffer	$1 \times$
Detection buffer pH 9.5	Tris-HCl	0.1 M
1	NaCl	0.1 M

Table 2.5 Buffers and solutions for Northern blotting

2.7 Analysis of proteins

2.7.1 Preparation of whole cell lysates for analysis of cellular proteins

Cultures were grown as previously described. 1 OD₆₀₀ unit of cells were harvested for PCN and LB cultures, while MMA cultures required 5 OD₆₀₀ units. Cells were harvested by centrifugation at 4°C for 8 min at 2,880 × g. Cell pellets were washed once in 1 mL PBS then resuspended in 20 mL nuclease free H₂O and 20 mL 2 × Laemmli buffer (0.1 M Tris-HCl pH 6.8, 6% (w/v) SDS, 20% (v/v) glycerol, 10% (v/v) β-mercaptoethanol, 0.1% (w/v) bromophenol blue). Samples were boiled for 5 min at 100°C, then centrifuged for 3 min at $6,500 \times g$ at 4°C. Supernatants were moved to new 1.5 mL tubes and stored at -20°C.

2.7.2 Preparation of culture supernatants for analysis of secreted proteins

Cultures were grown as previously described (Section 2.2.3). 10 OD_{600} units of cells were harvested for PCN and LB cultures, while MMA cultures required 50 OD_{600} units. Cells were centrifuged at 4°C for 40 min at 2,880 × g, and supernatants were filtered through 0.2 µm PES membrane filters (Fisher Scientific) into sterile tubes. Ice-cold trichloroacetic acid (TCA) was added to a final concentration of 10% (v/v) to precipitate proteins, and proteins were harvested by centrifugation at 4°C for 40 min at 2,880 × g. Protein pellet were washed in 1 mL ice-cold acetone, transferred to new 1.5 mL tubes and centrifuged at 4°C for 10 min at 6,500 × g. Pellets were resuspended in 20 µL nuclease free H₂O and 20 µL 2 × Laemmli buffer. Samples were boiled at 99°C for 5 min prior to storing at -20°C.

2.7.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE)

SDS polyacrylamide gels (SDS-PAGE) were used for size separation of denatured proteins based on molecular weight using a discontinuous gel system. Resolving gels were made to a final concentration of 10 to 12.5% from a 40% acrylamide/bis-acrylamide (37:5:1) stock, with 0.375 M Tris-Cl (pH 8.8), 0.1% (w/v) SDS, and were polymerized by 0.1% (w/v) ammonium persulfate (APS) and 0.01% (v/v) tetramethylethylenediamine (TEMED). Once poured, resolving gels were overlaid with isopropanol until polymerization was complete. Isopropanol was removed before overlaying the resolving gel with the stacking gel. Stacking gels were comprised of 5% from a 40% acrylamide/bis-acrylamide (37:5:1) stock, with

0.082 M Tris-Cl (pH 6.8), 0.1% (w/v) SDS, and were polymerized with 0.1% (w/v) APS and 0.01% (v/v) TEMED. Samples were electrophoresed alongside the PageRulerTM Plus Prestained Protein Ladder (Thermo Scientific) to help monitor progress of the gel and estimate protein band sizes. Gels were run in 1 × running buffer (25 mM Tris, 0.19 M glycine, 0.1% (w/v) SDS) at 90 V until the dye front surpassed the stacking gel, then the voltage was increased to 180 V until the dye front reached the bottom of the gel. Gels were either analyzed by Coomassie staining or 108 immunoblotting.

2.7.4 Coomassie staining of polyacrylamide gels

SDS-PAGE gels were Coomassie stained using InstantBlueTM (Expedeon). Gels were rinsed with dH₂O then submerged in InstantBlueTM for 15 min on a rocker. Gels were then washed in dH₂O overnight and proteins were visualized using white light using the ImageQuant LAS4000 (GE).

2.7.5 Western Immunoblotting

Western immunoblotting was used to detect specific proteins from whole extracts or culture supernatants separated by size on SDS-PAGE gels. Proteins were transferred from gels to nitrocellulose membranes using a Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad). Gels were rinsed with dH₂O then equilibrated in 1 × transfer buffer (25 mM Tris, 0.19 M glycine). Transfer "sandwiches" were assembled in gel holder cassettes in a dish containing 1 × transfer buffer as follows: a fiber pad, 3 pieces of 3 mm filter paper (Whatman), the polyacrylamide gel, a 0.45 μ m PROTRAN nitrocellulose membrane (Whatman), and 3 additional pieces of 3 mm filter paper and fiber pad. Cassettes were loaded into transfer tanks with membranes towards the anode, filled with 1 × transfer buffer and an ice-pack. Proteins were transferred at 300 mA for 90 min on ice.

To verify that proteins had efficiently transferred, membranes were briefly incubated in Ponceau S solution (Sigma) until bands were visible. Membranes were imaged under white light using the ImageQuant LAS4000 (GE), then rinsed with water until staining was no longer visible.

To reduce non-specific protein binding, membranes were blocked for 90 min at room temperature in blocking buffer (5% skimmed milk powder, PBS, 0.05% Tween-20). The

primary antibodies, monoclonal anti-FLAG M2 (Sigma) and monoclonal anti-DnaK (*E. coli*, Enzo Life Sciences) derived from mice, were diluted in blocking buffer 1:10,000 and 1:30,000 respectively, and incubated with membranes at 4°C overnight on a rocker. DnaK served as a loading control for whole cell extracts and as a cell lysis control for supernatants. DnaK was used as a control for protein levels as a cytosolic control for Western blotting. This allowed us to determine if general protein levels were expressed evenly between different samples. Membranes were washed in PBST (PBS, 0.05% Tween-20) four times for a total of 40 min before incubation with the secondary antibody, anti-mouse IgG horseradish peroxidase (HRP, Santa Cruz Biotechnology), diluted 1:6,000 in blocking buffer for 90 min at room temperature on a rocker. Membranes were washed an additional 3 times in PBST for a total of 30 min and once in PBS for 15 min. ECL chemiluminescent HRP substrate (Pierce) was used to detect chemiluminescent signal. A 1:1 ratio of luminol and peroxide were mixed and used to flood the membrane. Membranes were sealed in plastic and incubated in the dark for 5 min. Light emission occurs as a by-product of the oxidation of luminol by HRP and was detected using the ImageQuant LAS4000 (GE).

2.7.6 Proteomic analysis by mass spectrometry

Protein sample preparation was done by Dr. Nicole Hansmeier and all subsequent processing and analysis as described here were completed by Dr. Tzu-Chiao Chao at the University of Regina, Regina, Saskatchewan, Canada. Cultures were grown in MMA as previously described. Protein isolation was conducted according to the manufacturers' instructions for TRIzol protein extraction (Life Technologies) with minor modifications. Approximately 10^{10} bacterial cells were harvested and washed 4 × with PBS, the resulting cell pellet was resuspended in 750 µL of TRIzol and incubated for 5 min on ice. Subsequently, 200 µL chloroform was added and incubated for 3 min on ice. The samples were centrifuged for 15 min at 12,000 × g at 4°C. The phenolic phase was transferred into a new tube and the proteins were precipitated with isopropanol. The protein pellet was collected by centrifugation at $12,000 \times g$ at 4°C and washed twice with 70% ethanol, followed by 100% ethanol incubation for 20 min before air drying. Protein pellets were resolubilized in 50 mM ammonium bicarbonate buffer containing 0.1% SDS. The resulting protein samples were reduced and alkylated with 5 mM DTT and 20 mM iodoacetamide (45 min incubation at RT each) and rebuffered into 50 mM ammonium bicarbonate buffer on filter columns (MWCO 10 kDa, Amicon, Millipore). Protein concentration of the resulting protein solution was determined by Pierce BCA protein assay kit (Thermo Fisher Scientific) and 50 µg protein was

subsequently digested with trypsin gold (protein/enzyme ratio 50:1) according to the manufacturers' instructions (Promega). Digested proteins were acidified with 0.1% formic acid and dried. Dried digested samples were resuspended in running solution (0.1% formic acid, 3% acetonitrile) and centrifuged at $12,000 \times g$ for 10 min to remove insoluble material. The supernatant (0.5 µg/µl protein) was spiked with Phos B standard (Waters) for quantitation before LC-MS analyses. Each analysis injection contained 40 fmol/µl of Hi3 Ecoli standard (Waters).

Each sample was analyzed on a NanoAcquity system (Waters) coupled to a Synapt G2 HDMS (Waters). 0.5 μ g spiked digests were loaded onto a NanoAcquity UPLC Symmetry C18 trap column (180 μ m × 20 mm, dp: 5 μ m, Waters) to desalt and chromatographically focus peptides for 3 min (5 μ L/min flow rate) prior to elution onto an Acquity UPLC M-class HSS T3 analytical column (75 μ m × 200 mm, dp:1.8 μ m, Waters). The separation was conducted with a 120 min gradient from 3% acetonitrile/0.1% formic acid to 45% acetonitrile/0.1% formic acid at a flow rate of 0.35 μ L/min. The eluted peptides were analyzed in a Synapt G2 HDMS QTof (Waters) in positive MS^E resolution mode with a 1 s scan time. In low energy MS mode, data were collected at constant collision energy of 4 eV. High energy collision energy was ramped between 18 and 42 V. Leucine enkephaline was measured as lock mass every 30 s to maintain mass accuracy throughout the run.

The resulting raw spectral data were processed with the ProteinLynx Global Server (PLGS) v. 3.02 with Identity (Waters). Data were extracted and searched against a protein sequence database built with the UniProt *Salmonella enterica* sv. Typhimurium strain LT2 reference proteome (accessed January 2016), appended with the sequences of the Hi3 Ecoli standard (Waters) for quantitation. The following settings were used as search parameters: mass tolerance of 8 ppm, trypsin specificity, 1 missed cleavage; stable modification carbamidomethyl(C); variable modification methionine oxidation, false discovery rate: 4%.

2.8 Chromatin Immunoprecipitation

2.8.1 Preparation of cross-linked lysates

Chromatin immunoprecipitation (ChIP) was carried out as previously described (Dillon *et al.*, 2010) with some modifications. All ChIP buffer recipes are listed in **Table 2.6**. Cultures of *fnr*::3×FLAG were grown in MMA as previously described. 40 OD units were harvested

by room temperature centrifugation at 2,880 × g for 8 min. Cells were resuspended in 50 mL of 37°C PBS. Crosslinking of protein-DNA complexes was done by slowly adding molecular grade formaldehyde (Sigma) to a final concentration of 1% with gentle mixing on a Belly Dancer[®] for 30 min. Cross-linking was stopped by addition of ice-cold glycine to a final concentration of 0.125 M, and incubation for 5 min with gentle mixing. Cross-linked cells were centrifuged at 4°C, at 2,880 × g for 8 min. Cell pellets were resuspended in 600 µL of lysis buffer and incubated on ice for 30 min. Cells were further diluted in 1.4 mL of dilution buffer before sonication. Chromatin was sonicated to achieve an average fragment length of 500 bp using the MSE Soniprep sonicator (Sanyo). Sonication was performed in 10 to 15, 30 s bursts at an amplitude of 10 µM with 1 min of incubation on ice between bursts. A sample of sonicated chromatin was verified for sonication efficiency by agarose gel electrophoresis as previously described (Section 2.3.4). Cellular debris was removed by centrifugation of samples at 4°C, at 8,000 × g for 10 min. Supernatants containing sheared chromatin were added to 1 mL of dilution buffer and stored at -80°C.

2.8.2 Immunoprecipitation

To eliminate non-specific binding of the antibody, chromatin was pre-cleared using 50 μ g of normal rabbit IgG (Santa Cruz Biotechnology). Chromatin was incubated at 4°C on a rotating wheel for 1 h, followed by addition of 100 μ L of homogeneous protein G-agarose bead suspension (Roche), and incubated as before for an additional 3 h. Beads were pelleted by centrifugation at 4°C, at 2,880 × g for 4 min. Chromatin-containing supernatants were carefully transferred to new 2 mL tubes to avoid disruption of beads. The "Input" sample, 200 μ L of pre-cleared chromatin, was stored at -20°C for later analysis. The remaining pre-cleared chromatin was split into 1350 μ L aliquots for Immunoprecipitation (IP) reactions. The "Mock" IP reaction was carried out using 10 μ g of normal mouse IgG (Santa Cruz Biotechnology). Mock IP reactions were used to measure the background levels of DNA binding. The experimental IP reaction, referred to hereafter as "FLAG," was carried out using 10 μ g of monoclonal mouse anti-FLAG M2 antibody (Sigma). Both IP reactions were incubated overnight at 4°C on a rotating wheel, followed by addition of 50 μ L of homogeneous protein G-agarose bead suspension and a further 3 h of incubation.

2.8.3 Washing the Protein-G agarose beads and elution of DNA

The protein-G agarose beads were bound to antibody-protein-DNA complexes and were carefully washed in several steps. First, beads were pelleted by centrifugation at 6,000 × g at 4°C for 2 min, beads were incubated on ice for 1 min before discarding supernatants. For each wash, 750 μ L of the appropriate pre-chilled wash buffer was added, followed by vortexing and centrifugation at 6,000 × g at 4°C for 2 min and a 1 min incubation on ice. Beads were washed in Wash Buffer I, transferred to new 1.5 mL tubes and washed again in Wash Buffer I. Beads were then washed once in Wash Buffer II and twice in TE Buffer. Finally, beads were resuspended in 225 μ L of room temperature Elution Buffer, vortexed and pelleted to elute antibody-protein-DNA complexes from the beads. The elution step was performed twice, and both eluates were combined into a new 1.5 mL tube.

2.8.4 Reversal of cross-links and DNA extraction

To reverse crosslinking, Input, Mock and FLAG samples were treated with $5ng/\mu L$ RNase A (Sigma) and 0.3 M NaCl and incubated at 65°C for a minimum of 6 h. Samples were then treated with 9 µg of Proteinase K and incubated at 45°C for a minimum of 3 h.

DNA extraction of all samples was accomplished using standard phenol-chloroform extraction followed by ethanol precipitation. Input samples were co-precipitated with glycogen, and both Mock and FLAG samples were co-precipitated with yeast tRNA and glycogen. Input DNA was ultimately resuspended in 100 μ L nuclease free H₂O and Mock and FLAG DNA was resuspended in 50 μ L nuclease free H₂O at 37°C and 900 rpm on a ThermoMixer[®] (Eppendorf) for 1 h.

Input and IP DNA were diluted 1:50 and 1:5 respectively for RT-qPCR analysis as previously described (section 2.6.4). The quantity of immunoprecipitated DNA is relative to specific protein binding of that region and was calculated as a fraction of the starting amount of DNA (Input). The mock IP DNA was subtracted from the experimental IP DNA and compared to a control region which was negative for specific transcription factor binding according to the following formula:

 $\frac{Experimental IP of promoter X}{Experimental Input of promoter X} - \frac{Mock IP of promoter X}{Mock Input of promoter X}$

Name	Reagent	Concentration
Lysis Buffer	Tris-HCl, pH 8.1	50 mM
-	EDTA	10 mM
	SDS	1% (w/v)
	Protease inhibitor tablet stock	1 ×
Dilution Buffer	Tris-HCl, pH 8.1	20 mM
	NaCl	150 mM
	EDTA	2 mM
	Triton X-100	1% (v/v)
	SDS	0.01% (w/v)
IP Wash Buffer I	Tris-HCl, pH 8.1	20 mM
	NaCl	50 mM
	EDTA	2 mM
	Triton X-100	1% (v/v)
	SDS	0.1% (w/v)
IP Wash Buffer II	Tris-HCl, pH 8.1	10 mM
	LiCl	250 mM
	EDTA	1 mM
	NP-40	1% (v/v)
	Deoxycholic acid	1% (w/v)
TE Buffer, pH 8.0	Tris	10 mM
	EDTA	1 mM
	*adjust pH with HCl	
Elution Buffer	NaHCO ₃	100 mM
	SDS	1% (w/v)

Table 2.6 Buffers for ChIP

2.9 DNA sequencing

2.9.1 Preparation of DNA libraries

DNA was quantified using the QubitTM dsDNA HS Assay Kit and a QubitTM Fluorometer (Thermo Scientific). Sequencing libraries were constructed using the NEBNext[®] UltraTM II DNA Library Prep Kit (New England Biolabs) according to the manufacturers' specifications. Libraries were prepared without additional DNA fragmentation as DNA is already fragmented through the chromatin immunoprecipitation protocol and the 400 – 500 bp size selection step was used. TruSeq[®] DNA Adaptors (Illumina) were ligated to DNA fragments using 6 amplification cycles for Input samples, and 10 cycles for Mock and FLAG samples according to the manufacturers' specifications. Samples verified for quality using the 2100 Bioanalyzer and High Sensitivity DNA Kit (Agilent).

2.9.2 Sequencing with Illumina MiSeq

DNA libraries were prepared for sequencing with the MiSeq Reagent Kit v3 (Illumina) and run on a MiSeq System (Illumina) according to the manufacturers' specifications. The first libraries and sequencing runs were constructed and performed by Stefani Kary, with additional replicates by Dr. Keith MacKenzie at the University of Regina, Regina, Saskatchewan, Canada.

2.10 Bioinformatic analysis

2.10.1 Mapping of RNA-seq data and differential expression analysis

Data from RNA-seq was analyzed by Karsten Hokampf and Carsten Kröger at Trinity College Dublin, Dublin, Ireland. READemption (Forstner *et al.*, 2014) was used for computational evaluation of the RNA-seq data. Reads obtained from RNA-seq experiments were mapped to the 4/74 reference genome using the Segemehl mapping software (Hoffmann *et al.*, 2009). Reads that do not map in a single chromosomal location (uniquely mapped reads) were truncated from the 3' end in stepwise manner by removing one nucleotide at a time until the read is mapped uniquely or until the read length reaches 20 nucleotides. Remaining reads were discarded. Data were normalised using the transcripts per million (TPM) method (Wagner *et al.*, 2012). This method of measuring transcript

abundance from high throughput sequencing data is closely-related to the widely used reads per kilobase per million method (RPKM) (Mortazavi *et al.*, 2008), but removes the bias, of normalisation to the total number of reads mapped in each sequencing run, that the RPKM method introduces. Instead the TPM method measures transcript abundance by calculating the number of transcripts of a particular gene by dividing the number of nucleotides mapped to that gene by the length of the gene (t_g). All of these numbers are summed to get the total number of transcripts represented by all the mapped reads (T). The transcript abundance for each gene is then calculated as number of transcripts per million transcripts according to the following formula:

$$TPM = \frac{t_g}{T} 10^6$$

A TPM value of 2 is the suggested cut-off value for determining if a gene is expressed or not (Wagner *et al.*, 2013), however a more conservative cut-off of TPM = 10 was chosen for this study based on TPM values of indicator genes which were previously shown not to be expressed under a particular condition, as previously described (Kröger *et al.*, 2013). Differential expression of genes between WT and Δfnr was calculated from TPM values.

2.10.2 ChIP-seq analysis

Data from ChIP-seq was analyzed by Aalap Mogre and myself, at Trinity College Dublin, Dublin, Ireland. Qualities of sequenced reads were assessed using FastQC (Andrews, 2010). Reads were mapped to the *S. enterica* subsp. *enterica* serovar Typhimurium str. 4/74 chromosome and plasmids combined reference sequences (chromsome: NC_016857.1, TY474p1: NC_016858.1, TY474p2: NC_017675.1, TY474p3: NC_016859.1) using the Burrows-Wheeler Aligner (Li & Durbin, 2009). SAMtools was used to sort aligned reads by the reference sequence and remove unmapped and low mapping quality reads (mapping quality < 30) (Li *et al.*, 2009). Some samples had large numbers of unmapped reads that were found to map to the *S. cerevisiae* genome. Using qPCR with primers specific to *S. cerevisiae* we identified that these came from yeast gDNA contamination in the yeast tRNA used as a co-precipitant intended to increase DNA yields in the ChIP protocol. Since this contaminant gDNA was introduced in the final stages of the experiment, they do not affect the outcome of the ChIP experiment apart from reducing the coverage of the sample. We decided to not remove duplicate reads as the coverage of some of the samples was low and peak calling was less effective after removal of duplicate reads. Model-based analysis of ChIP-Seq 2 (MACS2) (Zhang et al., 2008) was used to call FNR peaks from the sorted BAM files using the mock as control. Due to differing fragment sizes among the replicates, different mock replicates were used as control for different sample replicates: mock replicate 1 was used as control for ChIP replicate 1 (fragment size ~250 nt), mock replicate 3 was used as control for ChIP replicates 2 and 3 (fragment sizes ~300 nt). Peak lists thus generated by MACS2 were roughly annotated with the names of neighbouring genes and sRNAs using a R script (R Core Team, 2013) and are available as both Excel and .gff files. Overlaps of peaks between different samples were analysed using DiffBind (Stark & Brown, 2011). Most peaks in replicate 1 overlapped with peaks in replicate 2. This list of high confidence peaks annotated roughly using a R script are available as both Excel and .gff files. Sequences of peaks from this list were used to generate the FNR motif using MEME-ChIP (Machanick & Bailey, 2011). This resulting motif was used to find all possible motifs in the genome, bound or not according to our experiment, using Find Individual Motif Occurrences (FIMO) (Grant et al., 2011). deepTools was used to create bigWig (.bw) files, for display of dense, continuous data, from sorted BAM (binary SAM files) files containing coverage information scaled to the library size and multiplied by a factor (1×10^6) for each sample that could be viewed using Integrated Genome Browser (IGB) (Nicol et al., 2009) along with the .gff peak scripts in the analysis can be accessed GitLab lists. All used from (https://gitlab.com/aalap.mogre/fnr-chip-seq).

Table 2.7 Table of program	as and online tools for bioinformatic analysis in this study	
Name of Program/Tool	Description	Reference or URL
BLAST	Basic Local Alignment Search Tool, for local sequence alignment and identification of regions of sequence similarity.	(Altschul et al., 1990)
Benchling	Online tool for in silico manipulation of DNA sequences.	http://benchling.com
BWA	Burrows-Wheeler Aligner, a software package for mapping low-divergent sequences against a large reference genome.	(Li & Durbin, 2009)
Cytoscape	An open source software platform for visualizing molecular interaction networks and biological pathways and integrating these networks with annotations, gene expression profiles and other state data.	www.cytoscape.org
deepTools	A suite of python tools particularly developed for the efficient analysis of high-throughput sequencing data, such as ChIP-seq.	(Ramírez et al., 2016)
DiffBind	For differential binding analysis of ChIP-seq peak data.	(Stark & Brown, 2011)
FastQC	A quality control tool for high throughout sequence data.	(Andrews, 2010)
FIMO	Find Individual Motif Occurrences, for scanning for occurrences of a given motif.	(Grant <i>et al.</i> , 2011)
GenBank	The NIH genetic sequence database, an annotated collection of all publicly available DNA sequences.	(Benson <i>et al.</i> , 2012)
GrowthRates	For calculating the best-fit growth rates, the lag times and the maximum OD from growth curves.	(Hall <i>et al</i> ., 2014)
ImageJ	Densitometry analysis of EMSA, Northern blot, and Western blot signals.	(Schneider et al., 2012)

-		
Name of Program/Tool	Description	Reference or URL
Inkscape	An open source professional vector graphics editor.	www.inkscape.org
IGB	Integrated Genome Browser, for visualization of RNA-seq and ChIP-seq reads, and other genomic features.	(Nicol <i>et al.</i> , 2009)
JBrowse	Visualisation of RNA-seq reads and other genome features.	(Skinner et al., 2009)
Ligation Calculator	For calculation of amount of required insert DNA for a given molar ratio for ligation reactions.	http://www.insilico.uni- duesseldorf.de/Lig_Input.html
MEME-ChIP	Multiple Em for Motif Elicitation, for ChIP a motif analysis of large DNA datasets.	(Machanick & Bailey, 2011)
MACS2	Model-based analysis of ChIP-seq 2, for improved spatial resolution of predicted binding sites of ChIP-seq data.	(Zhang et al., 2008)
Multiple Primer Analyzer	For analyzing and comparing multiple primer sequences simultaneously.	ThermoFisher
NEB Tm Calculator	For estimating the optimal annealing temperature for PCR.	https://tmcalculator.neb.com/
Prism GraphPad v6.0h	Statistical analysis and graphing software.	https://www.graphpad.com/
R	A language and environment for statistical computing.	(R Core Team, 2013)
READemption	An RNA-Seq analysis pipeline.	(Forstner et al., 2014)

Table 2.7 Table of programs and online tools for bioinformatic analysis in this study (continued)

Name of Program/Tool	Description	Reference or URL
SalCom	<i>S.</i> Typhimurium mRNA and sRNA expression profiles based on RNA-seq data from 20 environmental conditions.	(Kröger et al., 2013)
SalComMac	S. Typhimurium mRNA and sRNA expression profiles based on RNA-seq data within	(Srikumar <i>et al.</i> , 2015)
SalComRegulon	S. Typhimurium mRNA and sRNA expression profiles based on RNA-seq data from 18 regulatory systems.	(Colgan <i>et al</i> ., 2016)
Segemehl	For mapping sequencer reads to a reference genome.	(Hoffmann <i>et al.</i> , 2009)
SAMTools	Sequence Alignment/Map format and tool for implementing various utilities for post- processing alignments in the SAM format, such as indexing, variant caller and alignment viewer.	(Li <i>et al.</i> , 2009)
Venny v2.1	An interactive tool for comparing lists with Venn's diagrams	http://bioinfogp.cnb.csic.es/ tools/venny/index.html

- 1		۱.
	9	
	Clippedia)
	-	i
		9
1		
	Ξ	1
	Ξ	1
	-	
	-	1
	2)
`	Ĺ	-
	_	
	5	~
		۰
	C	5
		1
		2
	+-	2
	v,	2
	v,	2
	-	t.
1	1.1	
	-	ſ
	_	í.
	1	i.
	-	١.
	0	2
•	-	
	Ø,	2
	5	~
		ſ
	-	5
	5	•
	-	1
	-	
		ł.,
	0)	1
	<u> </u>	
	Ξ	
	5	5
	-	i.
	1	ŧ.
	<u> </u>	
	<u> </u>	1
	-	
	<u> </u>	
	+	
		9
		5
	-	
)
	Ē	t.
	-	١.
	÷	¢,
	-	
	1	(
	E	5
	5	
ę	to.	
ç	for	
,	s for	
,	o stor	
, ,	olstor	
,	ools for	
,	cools for	
, ,	tools for	
,	e tools for	
,	e tools for	
•	ne tools for	
,	ine tools for	
,	line tools for	
;	nline tools for	
•	nline tools for	
	online tools for	
	online tools for	
;	online tools for	
;	d online tools for	
	nd online tools for	
;	nd online tools for	
	and online tools for	
;	and online tools for	
;	s and online tools for	
;	is and online tools for	
	ns and online tools for	
, ,	ms and online tools for	
, ,	ams and online tools for	
, ,	ams and online tools for	
, ,	rams and online tools for	
, ,	yrams and online tools for	
(, ,	prams and online tools for	
;	ograms and online tools for	
;	oprams and online tools for	
;	rograms and online tools for	
;	programs and online tools for	
, , , , , , , , , , , , , , , , , , ,	programs and online tools for	
;	t programs and online tools for	
· · · · · · · · · · · · · · · · · · ·	of programs and online tools for	
; ,	of programs and online tools for	
;	of programs and online tools for	
;	e of programs and online tools for	
;	le of programs and online tools for	
· · · · · · · · · · · · · · · · · · ·	ole of programs and online tools for	
	ble of programs and online tools for	
	able of programs and online tools for	
	able of programs and online tools for	
	Lable of programs and online tools for	
	Table of programs and online tools for	
	7 Table of programs and online tools for	
	7 Table of programs and online tools for	
	7. Table of programs and online tools for	
	2.7 Table of programs and online tools for	
	2.7 Table of programs and online tools for	
	e 2.7 Table of programs and online tools for	
	le 2.7 Table of programs and online tools for	
	ole 2.7 Table of programs and online tools for	
	ble 2.7 Table of programs and online tools for	

2.11 DNA binding analysis

2.11.1 Large scale induction of protein production

Overnight cultures were set up in 50 mL of LB with kanamycin of PK22 cells with the $p(fnrD154A)_2$ plasmid. Strains were subcultured 1:50 in 1 L LB with kanamycin in a 2 L baffled flask, and grown at 37°C, 200 rpm to between OD₆₀₀ 0.4-1.0. Cultures were induced with 1 mM IPTG and grown at 16°C, 200 rpm overnight. Cells were harvested by centrifugation at 8,000 × g for 10 min at 4°C. Pellets were transferred to 50 mL falcon tubes with an EDTA-free protease inhibitor tablet and stored at -20°C.

2.11.2 6×His-Tag protein purification

Bacterial pellets were thawed in an ice-water slurry, resuspended in ice-cold PBS, and lysed using a French pressure cell press at 1000 psi. Lysates were centrifuged at $15,000 \times g$ for 20 min at 4°C. DNase was added to a final concentration of 5 µg/mL gently mixed and lysates were filtered through a 0.2 µm PES membrane filter. A 5 mL HiTrap affinity column was used with a peristaltic pump. The column was washed with dH₂O, followed by 3 to 5 column volumes of Nickel Buffer A (4 mM Tris, 0.1 M NaCl, pH 7.9). The filtered lysate was then loaded onto the column and collected for downstream analysis as the "Unbound" fraction. Nickel Buffer B (4 mM Tris, 0.1 M NaCl, 0.2 M Imidazole, pH >7.9) was diluted with Nickel Buffer A using a gradient of concentrations from 10% to 100%. The column was then washed with 10 column volumes of 10% Nickel Buffer B in Nickel Buffer A to remove further unbound protein and collected as the "Wash" fraction for downstream analysis. The protein was then eluted from the column using the gradient of Nickel Buffer B concentrations collecting each fraction. The imidazole in Nickel Buffer B competes with the 6×His-tagged (FNRD154A)₂ protein for binding to the metal-charged resin in the column, thus eluting the recombinant protein. The fractions were analyzed by SDS-PAGE and Coomassie staining as described previously. Fractions containing the (FNRD154A)₂ protein were pooled and dialyzed against PBS at 4°C overnight. Proteins were then concentrated using an Amicon[®] Ultra-15 Centrifugal Filter (Sigma). Protein concentration was determined using a PierceTM BCA Protein Assay Kit (Thermo Scientific) according to the manufacturers' specifications.

2.11.3 Electrophoretic mobility shift assay

Electrophoretic mobility shift assays (EMSA) were used to investigate *in vitro* binding of FNR at promoters of interest. Varying concentrations of (FNRD154A)₂ were combined with 0.5 pmol of probe DNA (**Table 2.7**) in EMSA Binding Buffer (20 mM Tris, 50 mM NaCl, 10 mM EDTA, 4 mM DTT, 5% (v/v) glycerol, 0.5 mg/mL BSA, 1 μ g/mL poly-d[I-C], pH 7.2) in a 15 μ L reaction volume, and incubated at 37°C for 1 h. Binding reactions were electrophoresed using 7% acrylamide, 2% glycerol, 1 × TBE gels in 1 × TBE at 150 V for 75 min on ice and at 4°C. Gels were stained with SafeView Nucleic Acid Stain (NBS Biologicals) prior to visualization under ultra violet light in the ImageQuantTM LAS 4000 (GE Healthcare Life Sciences). The molecular size of electrophoresed DNA fragments was estimated by comparison with O'GeneRulerTM 1 kb DNA Ladder (Thermo Scientific). Band shifts were quantified using ImageJ and the bound ratio was calculated using the following formula:

$$B_R = \frac{D_b}{(D_b + D_u)}$$

Where B_R is the bound ratio, D is the band intensity of DNA in pixels, and the subscripts b and u represent the bound (DNA bound by protein) and unbound (DNA only) bands. Equilibrium DNA binding curves were fitted by nonlinear regression and the dissociation constant and maximum bound ratio, K_D and B_{max} , respectively, were determined by one site specific binding with Hill slope analysis.

2.12 Atomic force microscopy imaging

For Atomic force microscopy (AFM) analysis, 20 mL of bacterial culture grown in LB as previously described, were spotted onto coverslips (Hartenstein) and incubated at room temperature for 1 h before rinsed with ultrapure water and subsequently mounted onto glass microscope slides for immediate AFM imaging. Measurements were taken using the NanoWizard II AFM system (JPK Instruments AG). To visualize the sample, the AFM was driven in soft contact mode using silicon nitride AFM probes with a nominal force constant of 0.06 N/m (SiNi, Budget Sensors). Scan rates were set to 1 Hz and images were acquired with a resolution of 512×512 pixel. For each sample, topographic overview images were taken before magnification was performed. Representative images are XY tilt corrected,

polynomial fitted, and unsharpened mask filtered to remove noise using JPK data processing software (JPK Instruments AG). All images are displayed in false-color. Atomic force microscopy imaging was completed by Nicole Hansmeier at Universität Osnabrück, Osnabrück, Germany.

2.13 Infection of murine macrophages

RAW 264.7 murine macrophages were grown in Dulbecco's Modified Eagle Medium (DMEM, Sigma) with fetal bovine serum (FBS, Sigma) and seeded into 24 well plates at a concentration of 4 x 10^5 cells per well. Macrophages were inoculated with *S*. Typhimurium strains that had been grown overnight in LB or MMA, at a multiplicity of infection (MOI) of 10:1 in DMEM. Macrophages were left to phagocytose bacterial cells for 30 min at 37°C in 5% CO₂ before treatment with 100 µg/mL gentamycin (Sigma) for 1 h at 37°C in 5% CO₂. The macrophages were washed with sterile PBS, lysed with ice-cold nuclease free water, and plated at appropriate dilutions on LA. In the remaining wells, media was replaced with DMEM with FBS and 10 µg/mL gentamycin and incubated at 37°C in 5% CO₂ for the remainder of the infection. Cells were routinely sampled at 1 h, 4 h, 8 h, and 16 h post-infection.

Chapter 3 Transcriptional regulation in Δfnr

3.1 Introduction

3.1.1 Overview of the Study

To establish and maintain a successful infection in the host. Salmonella must integrate a multitude of environmental inputs by co-ordinating regulatory proteins in a complex transcriptional network (Osborne et al., 2009; Yoon et al., 2009). S. Typhimurium host cell invasion, survival and proliferation inside of host cells has been thoroughly studied (Ellermeier & Slauch, 2007; Fass & Groisman, 2009; Haraga et al., 2008) however, priming of cells prior to invasion is relatively underexplored (Brown et al., 2005; Osborne & Coombes, 2011). Anaerobic and microaerobic growth of Salmonella has long been known to increase adherence and invasion of mammalian cells (Lee & Falkow, 1990; Schiemann & Shope, 1991). More recently, the regulator of anaerobic metabolism, FNR has been shown to be important for priming cells prior to host cell invasion as a regulator of virulence in response to changing oxygen concentrations in other species including E. coli and Shigella flexneri (Crofts et al., 2018; Marteyn et al., 2010) and has been shown to activate SPI-1 and motility/chemotaxis genes in S. Typhimurium (Fink et al., 2007). Fink et al. also showed that FNR was necessary for full virulence in murine macrophages but were unable to link FNR and SPI-2. With the observation that low-level SPI-2 expression occurs at the intestinal epithelial border prior to invasion (Brown et al., 2005; Osborne & Coombes, 2011) and that an oxygen gradient is present in the same location (Marteyn et al., 2010), it follows that a transcription factor (TF) that responds directly to changes in oxygen, FNR, would be the prime candidate as a regulator of SPI-2 under these conditions. To our knowledge, there have been no large-scale investigations identifying the involvement of FNR in controlling SPI-2 expression in S. Typhimurium.

The aim of this chapter is to investigate the global changes in gene expression in an Δfnr mutant with a focus on *Salmonella* Pathogenicity Island 2, flagella and motility in *S*. Typhimurium. We have used RNA-seq to investigate the FNR regulon under microaerobic growth in MMA, a minimal medium with a glycerol carbon source and the alternative electron acceptors fumarate and TMAO and verified these results with additional molecular techniques. A general workflow of the main experimental procedure is outlined in **Figure 3.1**.

Validation and downstream analysis

Figure 3.1 Workflow of general experimental procedures for investigating the regulation of SPI-2.

Wild-type (WT) and Δfnr cells were grown under microaerobic conditions to OD₆₀₀ 0.3 in MMA and total RNA was extracted by Dr. Aoife Colgan for replicate 1 and by me for replicate 2. cDNA library preparation and sequencing were performed by Vertis Biotechnologie AG. Mapping of sequence reads to the reference 4/74 genome and calculation of TPM values were performed by Dr. Karsten Hokamp and Dr. Carsten Kröger (Trinity College Dublin). Differential gene expression analysis, validation and downstream analyses were performed by me.

3.1.2 Bacterial transcriptome analysis using RNA-seq

RNA sequencing uses next-generation sequencing (NGS) to reveal the presence and quantity of RNA in a given condition using high-throughput sequencing of cDNA libraries. Although direct sequencing of yeast RNA on an array of nanopores has recently been demonstrated (Garalde et al., 2018), cDNA sequencing or RNA-seq has been shown to generate highly reproducible and reliable data for identifying and quantifying which genes are being actively transcribed within Salmonella on a global scale (Colgan et al., 2016; Kröger et al., 2012; 2013). This technology provides a highly sensitive and dynamic method of transcriptome profiling at single nucleotide resolution (Ozsolak & Milos, 2010). The cDNA libraries used for RNA-seq in this study were generated from total RNA samples by Vertis Biotechnologie AG, Freising, Germany and RNA-seq was performed using an Illumina Hiseq 2000 platform. No methods of RNA depletion were used in this study, but analysis was limited to the sequencing reads that mapped to a single location on the chromosome (uniquely mapped reads) and reads mapping to many rRNA genes or other paralogous genes were removed. A systematic analysis of the effects of sequencing depth on discovery of rare transcripts demonstrated that sequencing of 5-10 million reads of non-rRNA fragments provides sufficient coverage of a bacterial transcriptome and is adequate to detect most expressed genes (Haas et al., 2012). RNA-seq analysis pipelines and the use of TPM values to quantify gene expression (Section 2.10.1) allowed identification of differentially expressed genes in Δfnr (Forstner *et al.*, 2014; Wagner *et al.*, 2012).

The use of RNA-seq to investigate the transcriptome of Δfnr is helping to expand our knowledge of the FNR regulan and how this regulator of anaerobic metabolism can also play a role in regulation of *Salmonella* virulence-associated genes. Absolute expression values (in TPM) for every chromosomal *S*. Typhimurium 4/74 gene in Δfnr and wild-type comparator strain, sequenced in this study, are available in **Table S1** in Appendix I.

3.2 Results

3.2.1 Strategy for experimental design

Mutants in *fnr* are either unable to grow anaerobically or grow far slower than the parental strain in the presence of nonfermentable carbon sources and most terminal electron acceptors (Lambden & Guest, 1976). This presents a problem when comparing the Δfnr mutant to the WT strain, as differences are due to direct effects of FNR and of growth rate. Past studies have used glucose as a carbon source (Kang et al., 2005; Salmon et al., 2003), however glucose represses expression from some FNR-activated genes due to catabolite repression, (Browning et al., 2005; Lambden & Guest, 1976) and replacement of glucose by a less repressing fermentable carbohydrate would decrease these effects but to an unknown extent. To alleviate these problems Fink et al. used MOPS buffered LB with xylose (Fink et al., 2007). LB is known to induce SPI-1 expression from late exponential phase (OD₆₀₀ 1.0, LEP) to early stationary phase (OD₆₀₀ 2.0, ESP) and by oxygen shock (Kröger *et al.*, 2013), but it can be problematic in physiological studies due to intrinsic differences in complex components (Sridhar & Steele-Mortimer, 2016), and xylose is a fermentable carbon source for Salmonella species (Rosenberg, 1980). Constantinidou et al. found that using MMA with fumarate and TMAO as alternative electron acceptors and glycerol as a non-fermentable non-repressing carbon source allowed WT and an Δfnr mutant in E. coli to have similar growth rates (Constantinidou et al., 2006). We chose to use the same medium and growth conditions, MMA and static growth, as Constantinidou et al. but, found that in S. Typhimurium, growth rates of the WT and an isogenic Δfnr mutant were not the same (Figure 3.2A & B). The Δfnr mutant grew significantly slower than the WT and a $\Delta ssrAB$ mutant. The growth rate of a mutant missing the ssrAB and fnr ORFs, $\Delta ssrAB/fnr$, was not significantly different than WT. In a $\Delta ssrAB$ mutant, all SPI-2 expression is turned off (Colgan et al., 2016; Xu & Hensel, 2010) thus, the difference in growth between the WT and Δfnr could be due to expression of SPI-2 genes. These differences in growth and fitness will be explored further in Chapter 5. Unless otherwise indicated, samples for all subsequent experiments were taken when cultures reached an OD₆₀₀ of 0.3. A Northern blot was used to show that our microaerobic growth condition was sufficiently oxygen limited for active FNR protein to be present. WT and Δfnr cultures were grown in MMA under aerobic (aerated flasks) and microaerobic (static flasks) conditions; the FNR-dependent sRNA FnrS (Durand & Storz, 2010) was induced in the WT under microaerobic growth, but not aerated conditions or in Δfnr (Figure 3.2 C).

Figure 3.2 Growth of 4/74 and isogenic mutants and expression of *FnrS* under microaerobic conditions in MMA.

A. Growth curve of WT, Δfnr , $\Delta ssrAB$ and $\Delta ssrAB/fnr$. Strains were grown and sampled as previously described (Section 2.2.3.2). The dotted line indicates OD₆₀₀ 0.3, where samples were taken for all subsequent experiments. B. Best-fit growth rate determined from growth curves in A. Statistical significance was determined by an Ordinary One-Way ANOVA with Tukey's multiple comparisons test, only significant differences are labeled, $* = p \le 0.05$, $** = p \le 0.01$, $*** = p \le 0.001$, the error bars represent standard deviation. C. Northern blot showing *FnrS* expression in MMA under aerobic and microaerobic conditions. 5S RNA was probed as loading control.

3.2.2 Reproducibility of RNA-seq data

Inherent biological variability and random variation, such as that introduced during sample preparation, are features of any assay used in microbiology. Replication of experiments is necessary to identify and minimise the variation in experimental systems (Quackenbush, 2002), and to provide statistical significance for the acquired data. RNA-seq data has been previously shown to be highly reproducible, even for independent samples (Colgan et al., 2016; Kröger et al., 2013). The sequencing data used in this study were acquired in two separate sequencing runs using independent RNA samples. Additionally, it was important to show that our microaerobic growth condition was reproducible. It was, therefore, important to quantify the reproducibility of the results between sequencing runs to compare gene expression across both replicates. Independent biological replicates of WT and Δfnr grown to OD_{600} 0.3 in microaerobic MMA were generated by Dr. Aoife Colgan and myself. The reproducibility and robust nature of the RNA-seq-based transcriptomic data set and the reproducibility of the microaerobic environment were confirmed using correlative analysis of the independent biological replicates. WT and Δfnr replicates had high values coefficient of determination or R² of 0.9209 and 0.8844, respectively (Figure 3.3). During downstream analyses, independently extracted RNA was used to validate many RNA-seq-based findings by northern blot and RT-qPCR.

RNA-seq-based transcriptomic data comparing log2 transcripts per million (TPM) values from (A) wild-type and (B) Δfnr cells grown to OD₆₀₀ 0.3 in MMA in microaerobic conditions show a high level of correlation with an independent biological replicate sequenced in a separate sequencing run. Media preparation, culture growth and RNA isolation for replicate 1 was performed by Dr. Aoife Colgan, media preparation, culture growth and RNA isolation for replicate 2 was performed by me.

3.2.3 Absence of polar effects in Δfnr

A polar mutation affects expression of downstream genes or operons and it is not desirable in a strain to be used for determining differences in gene expression. The isogenic *fnr* mutant used in this study was constructed by Dr. Aoife Colgan using the Datsenko and Wanner method of gene deletion (Datsenko & Wanner, 2000). This method involves replacing the gene of interest with an antibiotic resistance cassette by homologous recombination. The recombination event is mediated by the plasmid-encoded recombinase system of Bacteriophage λ (Murphy, 1998). The resistance cassette is amplified from a plasmid using oligonucleotides which also contain sequences homologous to the DNA on either side of the gene to be deleted. FLP recombinase target (FRT) sites flank the plasmid-encoded resistance gene to allow for removal of the antibiotic resistance gene from the resultant mutant strain using the pCP20 plasmid which encodes the yeast FLP recombinase (Cherepanov & Wackernagel, 1995). Removal of the antibiotic resistance gene leaves an 82-85 bp scar which contains an idealised ribosome binding site and a start codon to allow for expression from the downstream gene. To avoid polar effects, the mutant was transduced into a clean genetic background and then the kanamycin resistance cassette was removed. Figure 3.4 shows RNA-seq data from the region surrounding *fnr* in the WT and Δfnr (visualised using the Integrated Genome Browser IGB) (Nicol et al., 2009). In the WT, fnr is expressed under our growth condition, while no reads have mapped to the ORF of *fnr* in the Δfnr mutant, indicating that the deletion was successful. The genes immediately up- and downstream of fnr are ogt and ydaA. Expression of ogt was only 1.34 fold up-regulated in Δfnr , and it is expressed from its own promoter and lies upstream of the deletion, indicating the small difference is unlikely a polar effect. The *ydaA* gene is also encoded from its own promoter but, lies downstream of the fnr gene. Expression of ydaA was reduced 2.18-fold in the absence of FNR. The ydaA gene encodes for the universal stress protein UspE in S. Typhimurium, and expression of ydaA is highest under anaerobic shock and during anaerobic growth in WT cells (Kröger et al., 2013). It is possible that the ydaA gene is regulated by FNR under microaerobic and/or anaerobic conditions, resulting in the decrease in *ydaA* expression in the Δfnr mutant. In *E. coli* there is a regulatory link between FNR and ydaA via GadX (Constantinidou et al., 2006; Hodges et al., 2010). There is no gadX orthologue in S. Typhimurium but, it may be possible that an alternative regulatory link exists between FNR and ydaA in Salmonella. Therefore, there were no polar effects from the deletion of the *fnr* gene. Additionly, an *fnr*⁺ complementation was created to corroborate the absence of polar effects of the Δfnr mutant.

Figure 3.4 Confirmation of *fnr* chromosomal deletion by RNA-seq.

Visualization of sequenced reads in the surrounding region of the deleted *fnr* open reading frame in the mutant strain and WT, grown under microaerobic conditions in MMA, in the Integrated Genome Browser. The tracks for the WT and Δfnr mutant are blue and red, respectively. The colours of each track represent the sequencing reads which map to that locus and the height of the normalised reads is directly proportional to the level of expression at that locus, the scale is 0–100 normalized reads for each sample. The tracks demonstrate that *fnr* was expressed in the WT strain, and that no sequencing reads mapped to the deleted region in Δfnr . Neighbouring genes were generally not affected by polar mutations. White arrows with a black outline denote protein-coding genes. Black bent arrows indicate TSS. All arrows indicate the direction of transcription. The Δfnr deletion mutant was constructed by Dr. Aoife Colgan.

3.2.4 Complementation of the Δ fnr mutant

Complementation of a mutant strain is important to show that any observed phenotype can be rescued and therefore, that the observed phenotype is due to the mutation in question and not a polar effect or additional unintended mutation. The Δfnr mutant was complemented both by cloning of *fnr* and its native promoter (215 nt upstream) onto the pBR322 plasmid, *pfnr*, and by introducing the same cloned fragment onto the chromosome downstream of *glmS* to create *fnr*⁺. The plasmid *pfnr* overexpressed *fnr* 36.8-fold over WT levels, but rescued *FnrS* expression to approximately normal levels in the mutant (**Figure 3.5**). However, in later experiments including motility assays and macrophage infections, *pfnr* performed poorly, therefore the chromosomal complementation was constructed (See **Figure 2.1** in section 2.5.3). The advantage of a chromosomal complementation is that there
is only a single copy of the gene, compared to plasmid complementation where multiple copies are present in the cell, even when low-copy plasmids have been used. The chromosomal complementation fnr^+ , expressed fnr to levels slightly lower but not significantly different from WT when examined by RT-qPCR, and rescued *FnrS* expression on a Northern blot. A growth curve was performed in a microplate reader under anaerobic conditions which showed fnr^+ was able to restore WT growth (**Figure 3.6**).

Interestingly, Baek *et al.* discovered a 66 nt unannotated ORF, named *mia*-44, in the *fnr* promoter region beginning with a start codon 218 bp from the *fnr* start codon in *S*. Typhimurium 14028s (Baek *et al.*, 2017). After many failed attempts at cloning *fnr* with 400 bp upstream of the *fnr* start codon new oligonucleotides were designed that eliminated the putative ribosome binding site and ATG, leaving 215 bp of sequence upstream of the *fnr* start codon. A cloning attempt with the shorter sequence was immediately successful. This finding indicates that overexpression of *mia*-44 may be toxic in *E. coli*, as cloning was attempted in *E. coli* TOP10.

Figure 3.5 pfnr overexpresses fnr but recues FnrS expression in Δfnr .

RNA was extracted from cells grown to OD_{600} 0.3 in microaerobic MMA. A. RT-qPCR data showing *fnr* expression relative to *hemX*. Statistical significance was determined by an Ordinary One-Way ANOVA with Tukey's multiple comparisons test, only significant differences are labeled, *** = p ≤ 0.001, the error bars represent standard deviation. B. Northern blot showing *FnrS* expression is rescued by p*fnr* in the Δfnr mutant. 5S RNA was probed as loading control.

Figure 3.6 *fnr*⁺ rescues *FnrS* and *fnr* expression under microaerobic & anaerobic conditions.

RNA was extracted from cells grown to OD_{600} 0.3 in microaerobic MMA for A and B. A. RT-qPCR data showing *fnr* expression is shown relative to *hemX*. Statistical significance was determined by an Ordinary One-Way ANOVA with Tukey's multiple comparisons test, only significant differences are labeled, ** = p ≤ 0.01, *** = p ≤ 0.001, the error bars represent standard deviation. B. Northern blot showing *FnrS* expression is partially recovered by the complementing strain *fnr*⁺ under microaerobic conditions in MMA. 5S RNA was probed as loading control. C. Growth curve showing *fnr*⁺ rescues growth rate of the mutant in LB under anaerobic conditions performed by Dr. Daniel Ryan.

3.2.5 RNA-seq determines differentially expressed genes in Δfnr

The relative expression levels during microaerobic growth of all genes found in S. Typhimurium 4/74 on the chromosome and its three plasmids, pCollb9, pRSF1010 and pSLT can be observed in Figure 3.7. The log2 ratios of Δfnr mutant TPM over WT TPM were plotted against their location on the chromosome or plasmid. Genes which were below the 2-fold cut-off (or between log2 of -1 to 1) were not considered to be differentially expressed (DE). DE genes in the Δfnr mutant when compared to WT were organized into clusters of orthologous groups (COGs) according to the gene list in **Table S2** in Appendix II with the addition of virulence genes, sRNAs and unknown genes (Figure 3.8). In total, 482 genes and sRNAs were regulated directly or indirectly by FNR under microaerobic conditions in MMA. 286 genes were activated by FNR and 196 were repressed. Not surprisingly, FNR activated many genes categorized into anaerobic metabolism. Additionally, many genes from energy production and conversion were FNR activated. Approximately 2/5 of these genes overlap with genes of anaerobic metabolism, and the majority of the remaining genes in this category encoded NADH dehydrogenase subunits. The vast majority of genes activated by FNR fell into the chemotaxis and motility, surface structures, and cell motility and secretion categories which have a high degree of redundancy. There were no genes categorized into drug analogues and resistance, protein transport, or translation, ribosomal structure and biogenesis. Many unknown genes could not be categorized as they had either unknown function, were poorly characterized or had only a general predicted function. In total 56 unknown genes were activated by FNR and 86 were repressed. The majority of genes found to be repressed by FNR did not fall into the typical COG categories; These were virulence associated genes and sRNAs. The virulence genes up-regulated in the Δfnr mutant were predominantly SPI-2 encoded or associated genes.

The most interesting feature of this data set is the up-regulation of genes encoding SPI-2 regulators, T3SS apparatus proteins, effector proteins, and chaperones (**Figure 3.9**). The 15 kb portion of the pathogenicity island with genes for tetrathionate reductase and of unknown function (Hensel, 2000) was not differentially expressed in Δfnr due to the lack of tetrathionate in the growth medium. Notably, many genes which are not encoded in SPI-2, but that are induced in SPI-2 inducing conditions (Kröger *et al.*, 2013) and many of which are effectors that are secreted through the SPI-2 T3SS were also up-regulated in the Δfnr mutant. These included effectors such as *pipB2*, *sifA*, *sifB*, *sopD2*, *sseJ*, *sseK2*, *sseL*, *steA*, and *steC*.

Also up-regulated in Δfnr were the genes from the *spv* (*Salmonella* plasmid virulence) locus found on the low-copy *Salmonella* virulence plasmid pSLT. The *spv* locus encodes the *spvABCD* operon and a positive regulator *spvR*. SpvA is an outer membrane protein that can dampen the expression of the operon, while SpvB, SpvC and SpvD are translocated into the host cell by the SPI-2 T3SS. Genes from this locus are required for full virulence in mice (Grabe *et al.*, 2016; Guiney & Fierer, 2011; Passaris *et al.*, 2018). Five PhoP-activated genes (*pag*) were up-regulated in Δfnr including the SPI-11 encoded outer membrane virulence proteins *pagC* and *pagD* which are involved in intramacrophage survival (Gunn *et al.*, 2000; Sabbagh *et al.*, 2010), the bacteriophage encoded virulence protein *pagK*, flagellaindependent surface motility genes *pagM*, and inner membrane protein *pagO* (Gunn *et al.*, 2000; Park *et al.*, 2015). All of these genes are upregulated under SPI-2 inducing conditions and in macrophages (Kröger *et al.*, 2013; Srikumar *et al.*, 2015).

Genes from SPI-1, SPI-3 and SPI-4 were not DE in Δfnr and had low absolute expression in both the WT and Δfnr (Figure 3.10A, B, & C). The most down-regulated locus in our data set was the SPI-5 encoded gene *orfX* which was 62-fold down-regulated in Δfnr (Figure 3.10D). Very little is known about the specific function of *orfX* however it appears to be important for infection of chicken, pigs and calves, but not in mice (Chaudhuri *et al.*, 2013). Also encoded in SPI-5, the effector protein *pipB* was up-regulated 8.5-fold in Δfnr (Figure 3.10D). Similar to *orfX*, very little is known about the function of *pipB* however it is secreted via the SPI-2 T3SS (Jennings *et al.*, 2017).

DE genes which were down-regulated in Δfnr included metabolism operons that were likely upregulated in the WT because of the nutrients that were either available or missing in the growth medium. These genes included proteins for cobalamin (vitamin B₁₂) biosynthesis (*cbiFJKLMQT*) and propanediol degradation (*pduBDEGHJKMNQSV*). Previously, CRP and ArcAB were shown to regulate these operons when cells were provided a poor carbon source under aerobic conditions and anaerobic conditions (Ailion *et al.*, 1993). This data suggested that FNR may also play a role in the activation of these operons, and that since there is no added propanediol in MMA, that *S*. Typhimurium could be converting glycerol to propanediol. Interestingly, a recent proteomic study of Δfnr in SL1344 showed that under anaerobic growth in MOPS buffered LB with xylose, the propanediol utilization proteins were up-regulated (Wang *et al.*, 2019), suggesting a dual role for FNR in the regulation of propanediol utilization dependent on available nutrients. We also saw down-regulation of the glycerol metabolism operon *glpABC*, which has previously been described to be under

the indirect control of Fur, but Fur binding sites were not found in the promoter (Troxell et al., 2011). Expectedly, anaerobic metabolism genes necessary for nitrate, TMAO and fumarate reduction, narJ, dmsABC and frdABCD, respectively were also down-regulated. Genes encoding proteins for hydrogenase maturation hypBCDEO and hybABCDEFG encoding a hydrogenase, HYD2, that is responsible for uptake of hydrogen as an electron donor during anaerobic respiration, with fumarate serving as an electron acceptor were both down regulated in the absence of FNR. NADH hydrogenase I (NDH-I) catalyzes the first step of electron transport by the oxidation of NADH and is the preferred NADH hydrogenase under oxygen limited conditions as it is "energy conserving" (Price & Driessen, 2010). NDH-I subunits are encoded by *nuoABCEFGHIJKLMN* and were downregulated in Δfnr . Finally, two outer membrane porins (OMPs) *ompD* and *ompW* were down-regulated in the mutant. These OMPs are required for the efflux of methyl viologen, a charged quaternary ammonium compound that generates ROS under aerobic growth conditions (Gil et al., 2007). OmpW was also down-regulated in an Δfnr mutant recent study grown under anerobic conditions in MOPS-buffered LB with xylose (Wang et al., 2019). The gene encoding OmpW was highly down-regulated approximately 21.5-fold. These results suggest that FNR is involved either indirectly or directly in the regulation of many different categories of genes.

Figure 3.7 Relative gene expression across the S. Typhimurium chromosome and plasmids.

Comparing the transcriptome of Δfnr over WT shows genes that are activated and repressed by FNR under microaerobic conditions in MMA. The first panel shows transcripts from the chromosome followed by the three plasmids present in S. Typhimurium 4/74: pCollb, pRSF1010, and pSLT. Circles with a grey outline were less than 2-fold (log2 ratio between 1 to -1) different, circles with a red outline were upregulated in Δfnr and circles with blue outline were down-regulated in Δfnr , implying that FNR is a repressor or activator, respectively. Circles filled with green belong to SPI-1, dark red-filled circles belong to SPI-2, pink-filled circles represent SPI-2 associated genes and dark blue-filled circles belong to motility and chemotaxis genes/operons. A log2 value of 0 indicates no change in expression, and we used a cut-off of 1 to -1, denoted by dotted lines, to indicate differential expression.

Figure 3.8 Classification of FNR-regulated genes according to COGs.

virulence associated genes and transcripts encoding sRNAs, and (dark grey panel) unknown categories. Red and orange bars indicate FNR repressed and Genes which were ≥ 2 -fold differentiated were organized into COG categories according to (white panel) Table S2 in Appendix II, (light grey panel) activated genes, respectively. The complete list of genes in each category can be found in Table S3 in Appendix II.

Visualization of relative gene expression and sequenced reads at SPI-2 in the Afnr mutant and WT, grown under microaerobic conditions in MMA. Each arrow represents a gene and the colour represents the relative gene expression according to the scale bar. The IGB tracks for the WT and Δfnr mutant are blue and red, respectively. The colours of each track represent the sequencing reads which map to that locus and the height of the normalised reads is directly proportional to the level of expression at that locus, the scale is 0-100 normalized reads for each sample.

arrow represents a gene and the colour the normalised reads which map to that locus and the height of represents the relative gene expression relative expression in SPI-1, 3, 4 and 5. normalized reads for each sample. proportional to the level of expression at red, respectively. The colours of each according to the scale bar. The IGB tracks mutant and 3, C. SPI-4 and D. SPI-5 in the Afnr and sequenced reads at A. SPI-1, B. SPIthat locus track represent the sequencing reads for the WT and Δfnr mutant are blue and microaerobic conditions in MMA. Each Visualization of relative gene expression Figure 3.10 Low level absolute and and the scale is 0-100 WT, grown under 1s directly

86

3.2.6 SPI-2 is derepressed in Δ fnr under microaerobic conditions in MMA

SPI-2 genes were some of the most up-regulated genes in the Δfnr mutant according to RNAseq. Recently, the SPI-2 protein SsaH, encoded by ssaH, was found to regulate the secretion of an inner rod and early substrate, SsaI, and to form a heterodimer with the chaperone protein SseA, to switch to secretion of the needle protein SsaG (Takaya et al., 2019). SseA, encoded by sseA, is essential for SPI-2-mediated translocation of effector proteins (Coombes et al., 2003). The ssaH and sseA genes were 9.6- and 9.4-fold up-regulated in Δfnr according to RNA-seq; These data were validated by RT-qPCR of independent biological replicates. Expression of *ssaH* in Δfnr showed a 3.5-fold increase over WT (P < 0.01) (Figure 3.11A), and expression of *sseA* increased 2-fold in Δfnr over WT (P < 0.01) (Figure 3.11B). Expression of ssaH and sseA in fnr^+ was not significantly different from WT, expression of ssaH in WT was not significantly different from the negative control ssrAB, and expression of *sseA* in WT was significantly higher than in $\Delta ssrAB$ (Figure 3.11A & B). When WT, Δfnr and $\Delta ssrAB$ were grown in microaerobic LB there was little expression of ssaH or sseA, and these values were not significantly different (Figure 3.11C & D). Gene expression was normalized to expression of the gene hemX, that has the same level of expression in WT and Δfnr in MMA FT according to RNA-seq data. These RT-qPCR data confirm that FNR represses expression of SPI-2 in WT and fnr^+ S. Typhimurium cells grown in MMA under microaerobic conditions.

To demonstrate the ability of FNR to block SPI-2 expression at decreasing O₂ concentrations, we developed an assay using a soft MMA agar (1% agar w/v) that creates an oxygen gradient within a test tube and strains with transcriptional fusion of the *ssaG* promoter with *gfp* (Hautefort *et al.*, 2003). Encoded by *ssaG*, SsaG proteins make up the needle structure of the SPI-2 T3SS (Diepold & Wagner, 2014). Because FNR is only active in oxygen-limited environments, cells growing at the surface of the agar would have inactive or apo-FNR proteins, while cells growing deeper in the agar experience microaerobic and anaerobic environments where FNR would form active homodimers (**Figure 3.12A**). WT, *fnr*⁺ and $\Delta ssrAB$ cells grown in the MMA soft agar could proliferate throughout the media, while Δfnr cells could only grow near the surface due to the lack of O₂ deep in the agar and the absence of FNR in the cell preventing anaerobic respiration. The point at which Δfnr cells stopped growing is indicated with an arrow (**Figure 3.12B**). In WT and *fnr*⁺ cells, *ssaG-gfp*⁺ was expressed only at the surface of the agar, while in Δfnr cells *ssaG-gfp*⁺ expression

was observed deeper into the agar, to the boundary of cell growth (Figure 3.12B). Active FNR protein homodimers in WT and fnr^+ repressed SPI-2 expression in the microaerobic and anaerobic portions of the media; In Δfnr , The FNR protein is absent therefore, SPI-2 was not repressed. The $\Delta ssrAB$ mutant was used as a negative control for $ssaG-gfp^+$ expression, and WT transformed with the pDIGc plasmid, which expresses GFP from a strong promoter driving the expression of the ribosomal protein RpsM, was used as a positive control for GFP expression to show how deep into the media GFP fluoresces (Figure 3.12B).

Because cells can differ phenotypically when grown in agar versus in broth cultures, it was important to verify that SPI-2 expression was derepressed in WT cells in aerobically grown MMA broth cultures. WT, Δfnr and $\Delta ssrAB$ strains transformed with pDEW201-P_{ssaG}, which express *luxCDABE* from the *ssaG* promoter, were grown in MMA to OD₆₀₀ 0.3 under aerobic and microaerobic conditions. Expression of *ssaG* was significantly higher in aerated WT samples than in static growth (p < 0.001): expression was 1.8 fold higher (**Figure 3.13A** & B). In the Δfnr mutant, microaerobic cultures had significantly higher expression than in aerated samples (p < 0.05) however, they were less than 1-fold different, and there was no expression in $\Delta ssrAB$ under either growth condition (**Figure 3.13A** & B). Interestingly, expression of *ssaG* in aerated WT cultures was not as high when compared to aerated Δfnr cultures, indicating there may be another factor involved.

Figure 3.11 SPI-2 apparatus and effector expression is up-regulated in Δfnr under microaerobic conditions in MMA.

RT-qPCR data showing that cells grown under microaerobic conditions in MMA had A. *ssaH* and B. *sseA* expression relative to *hemX* that was significantly higher in Δfnr than WT and fnr^+ . RT-qPCR data showing that cells grown under microaerobic conditions in LB did not have significantly different expression relative to *hemX* of C. *ssaH* and D. *sseA*. Statistical significance determined by Ordinary one-way ANOVA with Tukey's multiple comparisons test compared to WT, ns = p > 0.05, * = p ≤ 0.05, *** = p ≤ 0.001, error bars represent standard deviation.

Figure 3.12 FNR blocks *ssaG* expression under low O₂ conditions.

A. Schematic explaining the presence or absence of active FNR dimers according to an oxygen gradient formed by 1% agar in MMA. B. Oxygen gradient gene expression assay demonstrating the ability of FNR to block ssaG-gfp⁺ expression under low O₂ concentrations after 72 h. The top panel shows GFP expression in cells grown in MMA. The bottom panel shows bacterial growth of the same cultures in the 1% agar. The white arrow indicates the point at which the Δfnr mutant can no longer grow due to low O₂ concentration.

Figure 3.13 SPI-2 expression is increased in WT under aerobiosis.

Cells were grown in MMA under aerobic and microaerobic conditions to $OD_{600} \ 0.3$; A. P_{ssaG} expression is shown in relative luminescence units over absorbance (RLU/OD₆₀₀) for WT, Δfnr and $\Delta ssrAB$. Statistical significance was determined between aerobic and anaerobic cultures using a two way ANOVA and Sidak's multiple comparisons test, only significant differences are shown; * = p ≤ 0.05, *** = p ≤ 0.001, error bars represent standard deviation. B. log2 fold change in average aerobic over microaerobic P_{ssaG} expression.

3.2.7 Expression and secretion of effector proteins

The S. Typhimurium chromosome encodes for two type III secretion systems, T3SS-1 and T3SS-2, encoded on the pathogenicity islands SPI-1 and SPI-2, respectively. Several effector proteins are secreted through these systems into host cells. The cellular location of effectors examined by Western blot in this study are SPI-2 effectors PipB2 and SteC, and SPI-1 effector SopE. PipB2 is described as a "core" effector of SPI-2 although it is encoded outside of the SPI-2 locus (Jennings et al., 2017). PipB2 is responsible for recruiting the host protein kinesin-1, a heterotetrameric, plus-end-directed microtubule motor protein, to the SCV as part of the process of Salmonella-induced tubule formation (Henry et al., 2005; Jennings et al., 2017). PipB2 is typically expressed in conjunction with SPI-2 encoded effector proteins although, it is secreted through both the T3SS-1 and T3SS-2 at different time points during infection (Baisón-Olmo et al., 2012). The effector SteC is not encoded within the SPI-2 locus, but it is exclusively expressed under SPI-2 inducing conditions, inside epithelial cells and macrophages, and is secreted through T3SS-2 (Jennings et al., 2017). SteC is found within the majority of intestinal serovars of S. Typhimurium; it is a kinase that manipulates the actin cytoskeleton by inducing assembly of the F-actin meshwork around the SCV inside of host cells (Jennings et al., 2017). SopE is a guanidyl exchange factor, is translocated by the T3SS-1 upon host cell contact and promotes entry through triggering of actin-dependent ruffles (Galan & Zhou, 2000). Following host cell entry, SopE undergoes proteasomal degradation however, a subset of SopE may be important for replication in the early SCV (Vonaesch et al., 2014).

Strains with 3×FLAG-tagged PipB2 and SteC proteins were grown in microaerobic MMA and aerobic SPI-2 inducing PCN (InSPI2) as a control. PipB2 levels were indistinguishable between WT, Δfnr and *hilD* mutants in MMA, while there was no expression in $\Delta ssrAB$ (**Figure 3.14A**). Surprisingly, there was higher PipB2 expression in Δfnr when grown in aerated InSPI2, and a small amount of expression in $\Delta ssrAB$ (**Figure 3.14A**). When grown in microaerobic MMA, SteC expression was clearly higher in Δfnr than the other strains, but showed similar levels between WT, Δfnr and $\Delta hilD$ when aerobically grown in InSPI2 (**Figure 3.14B**).

T3SS delivery is a contact-dependent process characterized by the formation of a pore, or translocon, at the point of contact with the eukaryotic membrane and through which effectors are delivered into the host cell. Effector secretion into broth during *in vitro* culturing has

been observed, usually under acidic conditions which mimic the acidification of the SCV (Beuzón et al., 2002). We hypothesized that effectors would not be secreted in MMA due to the neutral pH of the media. We attempted to see if SPI-2 effectors were secreted in MMA media. Whole cell lysates and culture supernatants were loaded on the same gel and probed with antibody on the same membrane. Figure 3.15A and B show that although there was high levels of PipB2 expression in both MMA and inSPI-2 cultures, we were unable to detect secreted protein by ponceau staining or Western blotting despite loading 50 OD units of culture supernatant. It is not clear if this was due to this protein not being secreted under these culturing conditions or if precipitation of the protein was not effificient. We did confirm, in agreement with RNA-seq data, that SPI-1 effector SopE was not expressed and therefore not secreted in microaerobic MMA (Figure 3.15C & E). As expected SopE was highly expressed in WT, Δfnr and $\Delta ssrAB$ and not expressed in $\Delta hilD$ in aerated LB Miller and secreted from the strains in which it was expressed (Figure 3.15D). To verify that there was no expression of SopE in microaerobic MMA, whole cell lysates from MMA cultures and aerated LB Miller cultures were loaded onto the same gel and probed on the same membrane for the 3×FLAG and DnaK as a control. Interestingly, $\Delta hilA$ strains with 3×FLAG-tagged steC and sopE were constructed for these experiments as controls under SPI-1 and SPI-2 inducing conditions; However, the $\Delta hilA$ strains did not increase in OD₆₀₀ over 48 h in microaerobic MMA. Therefore, $\Delta hilD$ strains were constructed and used as a substitute.

Figure 3.14 Expression of SPI-2 effector proteins.

Cells with a A. pipB2-3×FLAG::kan and B. steC-3×FLAG::kan were grown to OD₆₀₀ 0.3 in microaerobic MMA or to OD₆₀₀ 1.0 in aerated inSPI-2. 1 and 5 OD unit of lysed cells from inSPI-2 and MMA cultures, respectively, were loaded into each lane of the SDS-PAGE gel. Membranes were probed with anti-FLAG M2 and anti-DnaK antibodies.

Figure 3.15 Secretion of SPI-1 and SPI-2 effector proteins.

Cells with *pipB2*-3×FLAG::kan were grown in A. MMA and B. InSPI2 media, and cells with *sopE*-3×FLAG::kan were grown in C. MMA and D. LB Miller to OD₆₀₀ 0.3 in microaerobic MMA or to OD₆₀₀ 1.0 in aerated InSPI2 and LB Miller. From MMA cultures 5 and 50 OD units were loaded for whole cell lysates and supernatants respectively; From rich media cultures 1 OD unit was loaded for whole cell lysates, and from inSPI-2 and LB Miller supernatants 50 and 10 OD units were loaded, respectively. An arrow indicates the would be location of SopE-3×FLAG in C. E. Show strains with *sopE*-3×FLAG::kan whole cell lysates only of MMA and LB Miller cultures. Membranes were probed with anti-FLAG M2 and anti-DnaK antibodies.

3.2.8 Repression of motility in Δfnr

The ability of S. Typhimurium to thrive in the gut is critical for transmission to new hosts. Using chemotaxis and flagella, they seek out nutrients and host cells. Flagellated subpopulations of S. Typhimurium accumulate proximal to the gut mucosa, the location of an oxygen gradient (Marteyn et al., 2010; 2011; Stecher et al., 2008). Fink et al. have shown under anaerobic growth conditions in MOPS-LB-X that chemotaxis, motility and flagellar genes were down-regulated (Fink et al., 2007). Our RNA-seq data show that motility, chemotaxis and flagellar gene expression is also repressed in the Δfnr mutant under microaerobic conditions in MMA (Figure 3.16). All genes encoding proponents of the bacterial chemotaxis pathway were down-regulated ≥ 2 -fold except *cheC*, *cheD* and *cheV*. Four of the methylaccepting chemotaxis proteins (MCPs) aer, cheM, trg and tsr were also down regulated ≥2-fold in Δfnr (Figure 3.17A). MCPs are the receptors at the beginning of the chemotaxis signal transduction cascade that process environmental and intracellular sensory (input) signals and alter the activity of the CheAY TCS (Wuichet et al., 2007). All genes encoding components of the flagellum were down-regulated \geq 2-fold including the motor, the C- and MS-ring of the cytoplasmic membrane, proximal and distal rods, the P- and L-rings, the hook, filament and hook-filament junction, as well as the filament cap (Figure 3.17B).

Therefore, strains were compared for swimming motility. Under aerobic conditions WT and Δfnr were equally motile (**Figure 3.18A**). Under anaerobic conditions, WT was motile while Δfnr exhibited limited motility. The *pfnr* and *fnr*⁺ strains complemented motility under anaerobic conditions in the mutant approximately 69% and 94%, respectively (**Figure 3.18A & B**). Thus,

the activating activity of FNR only motility only occurs under microaerobic and anaerobic conditions, as expected. The *hns-1* mutant is known to be non-motile but not deficient in growth, as H-NS is positive regulator of *flhDC* (Donato & Kawula, 1999) and was used as a negative control for swimming motility. To determine whether the reduced motility of the Δfnr strain was due to lack of flagella, WT and Δfnr cells were examined by AFM for the presence of flagella. The distinction between the WT and mutant was clear, WT cells had abundant peritrichous flagella, while Δfnr had very few flagella present (**Figure 3.18C**). The atomic force microscopy (AFM) images also allowed us to examine the cell morphology; WT and Δfnr cell were found to not be significantly different in size (**Figure 3.18D**). When cells grown microaerobically in MMA where examined using the hanging drop method, WT cells were motile while Δfnr cells exhibited only Brownian movement. Under anaerobic conditions, Δfnr had reduced motility on swimming plates and in microaerobic MMA broth.

Figure 3.16 Down regulation of genes at major chemotaxis and flagellar loci.

Visualization of relative gene expression and sequenced reads at 3 chemotaxis, motility and flagellar gene loci in the Δfnr mutant and WT, grown under microaerobic conditions in MMA. Each arrow represents a gene and the colour represents the relative gene expression according to the scale bar. The IGB tracks for the WT and Δfnr mutant are blue and red, respectively. The colours of each track represent the sequencing reads which map to that locus and the height of the normalised reads is directly proportional to the level of expression at that locus.

Figure 3.18 Motility is repressed and flagella are absent in Δfnr .

A. Diameters of swimming plates under aerobic and anaerobic conditions. An hns-1 mutant was used as a negative control. Significance determined by nonparametric one-way ANOVA with Dunnet's multiple comparison test to WT of aerobiosis and anaerobiosis, respectively; only significant differences are labeled, $** = p \le 0.01$. B. Representative photos of anaerobic swimming plates. The scale bar represents 5 mm. C. AFM images of WT and Δfnr cells taken after growth in LB to OD₆₀₀ 2.0. The scale bar represents 5 µm. D. Cell lengths in µm of WT and Δfnr cells measured from AFM images. Significance was determined by a two-tailed t test, ns = p > 0.05. Error bars represent standard deviation.

3.2.9 Regulation of small RNAs

Gene expression is carefully co-ordinated in response to environmental, spatial and temporal stimuli for the survival and successful infection inside the host. This must all occur without incurring fitness costs as a result of inappropriate gene expression. Gene expression is controlled at all levels from transcription initiation to translation. Post-transcriptional control of gene expression is important and often overlooked; This gene regulation is often mediated by small, regulatory non-coding RNAs (sRNAs). In our RNA-seq data set 42 sRNAs were identified as DE: 35 were up-regulated and 7 were down-regulated in the Δfnr mutant (**Table 3.1 & 3.2**).

The 7 down-regulated sRNAs from our dataset can be seen in **Table 3.1**. Not surprisingly, *FnrS*, the FNR dependent sRNA was the most down regulated, and this decrease in expression was consistent with data from cells under oxygen shock. The FNR dependency of FnrS had previously only been shown in *E. coli* (Boysen *et al.*, 2010; Durand & Storz, 2010); the regulation appears to be conserved in our study. Another sRNA both down regulated under oxygen shock and in Δfnr was STnc1340, an uncharacterized 82 nt sRNA. All but 1 of the down-regulated RNAs had unsuccessful transposon insertion from TraDIS data. STnc1560 is also an uncharacterized sRNA and is activated by RpoS (Lévi-Meyrueis *et al.*, 2014). Surprisingly, 2 sRNAs which were downregulated in Δfnr , STnc070 and STnc4180, are up-regulated when there is an oxygen shock (Kröger *et al.*, 2013).

Of the 35 up-regulated sRNAs in the FNR regulon, 3 have previously been reported to have a SPI-2 like pattern of expression (**Table 3.2**) (Colgan *et al.*, 2016). *IsrH_1_2*, *PinT* and STnc1480 had a high degree of correlation (>0.8) with the *ssaG* pattern of expression (Colgan *et al.*, 2016). *IsrH_1_2* is comprised of two overlapping sRNAs, *IsrH-1* and *IsrH-*2, which are 480 nt and 250 nt, respectively. *IsrH-1* shares an overlapping sequence at the 5' end of *sseL* and is expressed inversely to the SPI-2 effector, and *IsrH-2* overlaps the 3' end of *glpC*, (encoding the Glycerol-3-phosphate dehydrogenase small subunit) of the *glpABC* operon and is induced under anaerobic conditions (Padalon-Brauch *et al.*, 2008). *PinT* is a 80 nt PhoP-activated sRNA, which upon bacterial internalization temporally controls the transition from invasion (SPI-1) to intracellular survival (SPI-2) (Westermann *et al.*, 2016). STncl480 is a 400 nt intergenic sRNA which, in a similar fashion to *ssrAB* promoters, is silenced by H-NS, and repression of the sRNA is countered by SlyA and PhoP (Colgan *et al.*, 2016). All three sRNAs are highly upregulated in SPI-2 inducing conditions as well as in macrophage and activated by important regulators of SPI-2: SsrB, OmpR, PhoP and SlyA (Colgan *et al.*, 2016; Kröger *et al.*, 2013; Srikumar *et al.*, 2015). The most highly upregulated sRNA was *GcvB*. *GcvB* is a globally acting sRNA that regulates a posttranscriptional that influences approximately 1% of the *Salmonella* genome including the global regulator Lrp (Sharma *et al.*, 2007; 2011). Interestingly, the *GcvB* regulon overlaps with the *DapZ* regulon (Chao *et al.*, 2012), another sRNA that was up-regulated in Δfnr . These riboregulators transiently downregulate amino acid and peptide transporters, which may be important for efficient host cell invasion (Miyakoshi, 2019).

To investigate if any of the up-regulated sRNAs play an important role during *S*. Typhimurium infection, published data from a transposon-directed insertion site sequencing (TraDIS) study was interrogated. In the study, high-throughput sequencing of insertion sites of pools of *S*. Typhimurium 4/74 transposon mutants, following oral infections of chicken, pigs and calves were compared to an input inoculum (Chaudhuri *et al.*, 2013). The ratio of input to output reads was used to calculate the fitness score of each mutant. Transposon insertions that result in significant attenuation of the mutant strain were located in the three SPI2-like sRNAs as well as three others: STnc1330, STnc1920 and *tpke70* (**Table 3.2**). STnc1330 is a 141 nt sRNA regulated by RpoS and PhoPQ (Perez-Sepulveda & Hinton, 2018), STnc1920 is a 98 nt uncharacterized sRNA, and *tpke70* is predicted to regulated nitrate reductase genes *napG* and *napD* in *E. coli* (Ishchukov *et al.*, 2014).

3.2.9.1 FNR regulation of sRNAs in the context of a transcriptional network

Many sRNAs are still uncharacterized therefore, it is difficult to gain insight to their importance from a single RNA-seq experiment. For this reason, the sRNAs from our data were compared with those found in the regulons of 18 regulatory proteins in *S*. Typhimurium. Relative expression values of sRNAs found in the FNR regulon were taken from SalComRegulon, and DE sRNAs with fold-change of ≥ 2 were plotted (**Figure 3.19**). Of the 42 sRNAs found to be DE in Δfnr , only 4 were regulated by FNR alone: *tpke70*, *IsrM*, *IsrN* and STnc350. All four of these sRNAs were found to be putatively repressed. *IsrM* is important for invasion of epithelial cells, intracellular replication inside macrophages, virulence and colonisation in mice (Padalon-Brauch *et al.*, 2008). It targets the SopA and HilE mRNAs, virulence factors essential for bacterial invasion (Gong *et al.*, 2011). *IsrN* has been shown to be important for the early stages of intracellular survival (Padalon-Brauch *et al.*, 2008). As described previously, *tpke70* is also important for virulence in pigs and calves

(Chaudhuri *et al.*, 2013). STnc350 is an uncharacterized sRNA. Many of the sRNAs regulated by FNR are also regulated by other TFs including 24 sRNAs in common with Fur, 23 with RpoS, 20 with Hfq, 18 with SlyA, 16 with SsrA/B and 15 in common with both OmpR/EnvZ and HilD. This substantial overlap with important regulators of *S*. Typhimurium virulence regulators provides support that FNR is also intrinsically embedded in the complicated regulatory network controlling virulence (**Figure 3.19**).

cDN A	Strand	Start	End	A fan/WT	Oxygen	TraDIS
SINIVA			LIIQ		Shock ^a	attenuation ^b
STnc400	+	4072457	4072530	0.498	0.64	-
STnc070	+	669642	669793	0.424	2.36	-
STnc4180	-	109243	109322	0.358	1.95	-
STnc1340	-	2319956	2320037	0.353	0.18	-
STnc840	+	1224244	1224316	0.219	0.69	-
STnc1560	+	2449075	2449183	0.181	0.54	No
FnrS	-	1706784	1706905	0.029	0.01	_

Table 3.1 sRNAs down-regulated in △fnr

^aData from Kröger *et al.* 2013

^bData from Chaudhuri et al., 2013

sRNA	Strand	Start	End	∆ <i>fnr/</i> WT	InSPI2 ^a	Macrophage^b	SPI-2 like ^c	TraDIS attenuation ^d
IsrH_1_2	-	2392019	2392469	3.44	8.15	5.2	Yes	Yes
PinT	+	4580486	4580566	3.58	24.48	8.31	Yes	Yes ^e
STnc1480	+	1316874	1317268	2.54	28.07	11.26	Yes	Yes
STnc150	-	1282521	1282677	2.21	2.91	5.97	No	_
STnc3150	-	3273499	3273824	2.07	2.45	2.09	No	No
STnc3750	-	2503726	2503803	2.36	6.29	2.93	No	—
STnc980	-	889558	889714	2.46	1.77	2.21	No	_
GcvB	+	3156779	3156979	12.85	0.95	0.09	No	_
IsrI	-	2759018	2759265	2.38	1.63	1.66	No	_
<i>IsrM</i>	+	2927616	2927944	2.4	1	1	No	_
IsrN	+	2929501	2929643	2.35	1	-	No	—
<i>RprA</i>	-	1401682	1401790	2.58	0.4	0.08	No	_
RyeB	-	1925621	1925723	2.48	3.2	0.28	No	_
RyhB-2	-	1309727	1309937	2.31	0.06	85.5	No	_
SraL	-	4526163	4526303	2.18	13.18	0.87	No	_
sRNA12	-	3755045	3755125	2.78	1.37	1.39	No	_
STnc1150	+	2222979	2223134	2.79	0.98	0.54	No	_
STnc1220	-	1448718	1448790	2.75	1.68	0.29	No	_
STnc1330	+	2268274	2268414	2.05	2.3	0.58	No	Yes ^e
STnc1700	+	386381	386476	2.5	2.47	0.72	No	_
STnc1870	+	617317	617426	2.54	1.62	1	No	_
STnc1920	+	2756549	2756646	2.08	0.74	0.77	No	Yes
STnc2030	+	1784673	1784725	8.65	1	0.33	No	_
STnc3000	+	4591419	4591506	2.02	0.74	0.27	No	_
STnc310	-	3413972	3414032	2.26	1.63	0.41	No	_
STnc3120	+	4249943	4250101	2.03	1.68	0.17	No	_
STnc3210	+	17025	17111	2.38	3.52	1.42	No	_
DapZ	+	74847	74924	2.28	2.4	0.18	No	_
STnc3440	+	1303294	1303380	2.11	4.55	0.48	No	_
STnc350	-	3782696	3782857	3.91	1.92	0.21	No	No
STnc380	-	3906945	3907052	2.48	3.51	1.92	No	_
STnc4000	+	3619657	3619755	3.47	0.3	2.9	No	_
STnc4010	+	3729767	3729899	2.77	1	0.72	No	_
STnc890	+	14720	14783	2	1.26	0.27	No	No
tpke70	-	2513324	2513722	2.25	1	1	No	Yes ^e

Table 3.2 sRNAs up-regulated in Δfnr

^aData from Kröger *et al.* 2013 ^bData from Srikumar *et al.*, 2014 ^cData from Colgan *et al.*, 2016 ^dData from Chaudhuri *et al.*, 2013 ^eAttenuated in pig and calf only

Figure 3.19 Regulatory network of FNR regulated sRNAs.

Regulatory network was generated using software from www.cytoscape.org. Regulatory interactions are based on mutant RNA-seq data from this study and Colgan *et al.*, 2016. DE sRNA genes that are down-regulated in a mutant strain lacking a TF or σ -factor (regulatory protein) are putatively activated by that regulatory protein, and the interaction is represented using a red arrow from the source node (regulatory protein) to the target node (sRNA). DE sRNA genes that are up-regulated in a mutant lacking a certain regulatory protein are putatively repressed by that regulatory protein, and the interaction is represented using a blue T-shaped line from the source to the target node. The length of each line is representative of the strength of the putative interaction: nodes representing sRNAs which show higher fold-increase or decrease in a mutant strain are located closer to that regulatory protein. Regulatory proteins are hexagonal in shape and white except FNR which is black, sRNAs are circular and grey.

3.3 Discussion

To our knowledge, the work presented here is the first large scale transcriptomic study that has been carried out in an Δfnr mutant of *S*. Typhimurium using high throughput next generation sequencing. We were able to corroborate existing data associating FNR as an activator of anaerobic metabolism, cell motility and chemotaxis, and reveal FNR as a newly identified repressor of *Salmonella* pathogenicity island 2. The use of RNA-seq rather than microarray-based technology has also allowed us to identify differentially expressed small non-coding RNAs in an Δfnr background.

3.3.1 SPI-2 expression in MMA

It was unusual to see SPI-2 expression in the MMA media as it possesses nearly the opposite signals that are typically necessary for SPI-2 induction (Deiwick et al., 1999; Löber et al., 2006; Xu & Hensel, 2010). The medium contains high concentrations of Mg^{2+} and P_i compared to the SPI-2 inducing media that has been used in the past, as well as neutral pH. However, we see minimal SPI-2 expression in the WT under microaerobic conditions, and those level increase nearly 2-fold when the media is aerated; in the absence of FNR we see very high induction of SPI-2 regardless of the aeration (Figure 3.13). This indicates that there may be another factor involved as we expected SPI-2 expression in aerated WT cultures to reach the same level of expression. However, it is unclear if OD_{600} of 0.3 in the WT and Δfnr are the same stage of growth as in microaerobic cultures therefore, a growth curve should be completed under aerated conditions in MMA. Perhaps a more informative experiment would be to grow cultures microaerobically to an OD₆₀₀ of 0.3 and then perform an oxygen shock whilst measuring gene expression throughout. Also, it is apparent that another metabolic signal, in addition to oxygen, is important for regulation of SPI-1 or SPI-2 as expression of these genes are differentially expressed in Δfnr in different growth media (Figure 3.9, Figure 3.10A) (Fink et al., 2007). We may also see expression of SPI-2 in microaerobic MMA, as the expression we measured is from across the gradient in the flasks as the samples taken are a mixture of the culture. It would be informative to be able to measure the concentration of oxygen precisely of our cultures. Although the measurements that have been taken were consistent over different biological replicates (Figure 3.3) it would be ideal to have a more homogeneous culture from which to take measurements. The oxygen gradient gene expression assay (Figure 3.12) could also be improved to eliminate the confounding factor of differences in density of cell growth throughout the medium.

Because of the nature of GFP, it folds more slowly under low oxygen conditions, therefore to have adequate growth in the medium the assays were left to incubate for 72 h. If the assays were redone with our luminescent pDEW201-P_{*ssaG*} containing strains we could likely measure P_{ssaG} expression much earlier as the *lux* operon requires less posttranslational modifications and luminescences earlier than GFP fluoresces under low oxygen conditions. This would reduce the accumulation of cells at the surface of the agar and allow us to more easily visualize which cells are expressing SPI-2. The other problem with this assay is that again we cannot measure the exact concentration of oxygen throughout the medium, but it still provides a simple visualization of expression under a gradient of oxygen concentrations.

3.3.2 Motility and chemotaxis

Although there are some major differences between the Fink *et al.* FNR regulon and the one reported here, these are almost certainly due to the difference in growth conditions between the studies, and differences between the *S.* Typhimurium strains 4/74 (used in this study) and 14028S (Clark *et al.*, 2011; Hoiseth & Stocker, 1981; Kröger *et al.*, 2012; Richardson *et al.*, 2011). Here we have grown cells in microaerobic conditions in a minimal medium (MMA) with a glycerol carbon source, whereas the Fink et al. study grew cells anaerobically in MOPS buffered LB with added xylose (Fink *et al.*, 2007). Core anaerobic metabolism genes were found to be DE in both studies because their expression is more dependent on the availability of oxygen than other nutrients. Interestingly, flagellar, motility and chemotaxis genes were also found to be highly down-regulated in both studies. This may indicate that for expression at these loci, the availability of oxygen is more important than other nutrients or environmental signals.

3.3.3 Regulation of sRNAs by FNR

Many of sRNAs regulated by FNR are also regulated by Fur (**Figure 3.19**). Although the functional state of FNR during aerobic/anaerobic switch is not regulated by iron content and reversible binding of Fe^{2+} under physiological conditions, and FNR does not communicate with the iron pool regulating the Fur protein (Niehaus *et al.*, 1991), they share many genes in their regulons including flagellar genes and SPI-1 genes (Colgan *et al.*, 2016). In the Colgan *et al.* study the Fur regulon was investigated under ESP growth in LB, which is closer to the growth conditions found in the Fink *et al.* microarray study (Colgan *et al.*, 2016; Fink

et al., 2007). If grown in MMA medium, it is possible that absence of Fur may result in upregulation of SPI-2 genes, based on the similarities of the regulons.

There were 3 sRNAs upregulated in Δfnr that have been previously described as SPI-2-like as well as may other which are upregulated in SPI-2 inducing conditions and macrophages, and 6 sRNAs that have been linked to attenuation of virulence in food animals (Table 3.2); additionally, important virulence sRNAs IsrM and IsrN were found to be regulated by only FNR. Furthermore, IsrM is differentially expressed in vivo, with higher expression in the ileum than in the spleen (Gong et al., 2011), the site where we propose FNR exerts control over virulence genes. In a recent study, deletion of *FnrS* led to increased HilD production under low aeration conditions, and *FnrS* could bind to the *hilD* mRNA 5' UTR, resulting in translational repression (Kim et al., 2018). The authors discuss the importance of FnrS on SPI-1 expression however fail to mention the potential impact of HilD-mediated crosstalk between SPI-1 and SPI-2 (Bustamante et al., 2008). Our data reveal that FnrS expression is dramatically decreased in Δfnr and in aerated WT cultures (Figure 3.2C), and SPI-2 expression is increased under these conditions (Figure 3.13); in the absence of FnrS, HilD levels may be increased, contributing to the SPI-2 induction phenotype that we have observed. These data confirm that FNR is an important regulator of sRNAs involved in virulence.

3.3.4 Comparison of FNR regulons

While comparisons to the FNR regulon in *E. coli* can be useful for widely conserved genes, *Salmonella* specific genes are obviously missed. The only existing study identifying the FNR regulon in *S.* Typhimurium through transcriptomic data was published in 2007 and was accomplished using a DNA microarray (Fink *et al.*, 2007). The drawbacks to using microarrays for transcriptomic analysis include low resolution with high background due to non-specific hybridisation between cDNA and probes (Aikawa *et al.*, 2010) and the dynamic range of microarrays is limited by the use of fluorescently-labelled DNA, detection of which can be saturated and subtle changes in gene expression may not be detected. RNA-seq allows all transcription to be studied without bias and without prior knowledge of the DNA sequences that are being transcribed, and with no limits on the dynamic range (Croucher & Thomson, 2010). The use of RNA-seq in this study as well as a different growth condition allows us to expand the existing FNR regulon to include new genes as well as not previously identified sRNAs.

In this study, the FNR regulon was examined under microaerobic conditions in MMA and analysed by RNA-seq. In **Figure 3.20** the FNR regulon as determined by this study was compared to the FNR regulon under anaerobic conditions in MOPs buffered LB with xylose as determined by microarray analysis (Fink *et al.*, 2007). Only genes with \geq 2.5-fold change in expression in the Δfnr mutant compared to WT were included in the comparison between the two studies. In total 75 genes were found in common in both regulons (**Figure 3.20A**). Sixty-nine genes in common were down-regulated in both studies (**Figure 3.20B**). These comprised mostly of genes which encode components of flagella biosynthesis, motility and chemotaxis regulons (discussed in more detail in Section 3.2.8) and genes involved in anaerobic systems, including *aer*, *dmsABC*, *dmsA1*, *dmsA2*, *nrdD*, *nrfA*, STM2530, and STM4305 – 4307. The *Salmonella* specific virulence proteins encoded by *srfABC* were also found to be down regulated in both studies. These <u>S</u>srB-<u>r</u>egulated <u>f</u>actors are horizontally acquired genes and as the name would indicate, regulated by the SPI-2 encoded SsrB protein, but are expressed in SPI-1 inducing conditions and have been found to be repressed by PhoP and RcsB (Garcia-Calderon *et al.*, 2007; Worley *et al.*, 2000).

Interestingly, 3 genes found to be up-regulated in the microarray study, were down-regulated in our data set: *dcuB*, *fumB* and *nuoJ*. DcuB functions primarily as a fumarate:succinate antiporter during anaerobic fumarate respiration (Six *et al.*, 1994) and FumB is one of three fumarase isozymes participating in the TCA cycle (Woods *et al.*, 1988). These two proteins are involved in anaerobic metabolism and are induced under anaerobic conditions in *E. coli*, consistent with our data. NuoJ is part of the inner membrane component of NADH dehydrogenase I and is typically repressed by FNR (Leif *et al.*, 1995), which is consistent with data from Fink et al. Additionally, one gene that was down-regulated in Fink et al. was upregulated in our study. This was the *osmY* gene, that encodes for the periplasmic chaperone protein OsmY, that is induced under conditions of hyperosmotic stress (Yim & Villarejo, 1992). These discrepancies between the regulons indicate FNR can activate and repress expression of genes depending on the growth conditions.

Also identified in this study were 42 sRNAs which were DE in Δfnr . None of these sRNA genes could be detected by the microarray analysis. Included in this group is the sRNA *FnrS*, which is an anaerobically-inducible, FNR-dependent sRNA conserved in *E. coli* (Boysen *et al.*, 2010; Durand & Storz, 2010). Recently, *FnrS* was found to regulate SPI-1 expression by

repression of *hilD* translation (Kim *et al.*, 2018). These will be discussed further in Section 3.2.9.

Many of the genes which are only DE in the microarray-based study included genes encoding SPI-l regulators, components of the T3SS and effector proteins. In our data set, expression of SPI-1 genes in Δfnr generally trended downward however their differential expression was less than 2.5-fold and the genes were either not or only lowly expressed in the WT and Δfnr under microaerobic growth in MMA (Figure 3.10A). It is unclear from the Fink et al. study whether SPI-l-associated genes are directly regulated by FNR or if the FNRdependence of these genes is due to FNR-mediated down-regulation of the genes encoding FliZ and FliA, which play roles in the regulation of SPI-1 (Lucas & Lee, 2001). Another explanation may be that the disruption in anaerobic metabolism in the absence of FNR leads to induction of hilA via BarA/SirA, due to accumulation of fatty acid metabolites, such as acetate (Lawhon et al., 2002). As mentioned previously, FnrS which was not identified in the Fink *et al.* study has recently been implicated in repression of *hilD* translation (Kim *et* al., 2018), and thus may have played a role down-regulation of SPI-1 under the growth conditions in Fink et al. (Fink et al., 2007). The differences in oxygen levels and thus in differential anaerobic metabolism gene expression may account for the variation in SPI-l gene expression between the two studies. Another difference in the data sets were the significant number of genes encoding proteins for ethanolamine utilization in Fink et al. study that were not identified in our dataset. Ethanolamine is available in the host and can be used by S. Typhimurium as a source of carbon, nitrogen, and energy to outcompete host microbiota but, is not necessary for virulence in mice (Thiennimitr et al., 2011). The lack of expression at this operon could be explained by the absence of ethanolamine in MMA, or the expression may have to do with a component of LB as eut genes are upregulated in LB in anaerobic growth (Kröger et al., 2013).

The most striking difference between the two datasets is the increased expression of genes encoding SPI-2 regulators, components of the T3SS apparatus and effector proteins in this study (**Figure 3.7 & Figure 3.9**). These genes are not up-regulated in Δfnr in the study by Fink *et al*, except for *sopD2* and *sseL*, which are common to both datasets (**Figure 3.20C**). In the microarray study *sopD2* and *sseL* were up-regulated in Δfnr 3.0- and 3.5-fold respectively, in this study, they were up-regulated 7.9- and 6.4-fold. These effectors proteins are expressed in SPI-2 inducing conditions and in macrophages but, are not encoded within SPI-2 (Kröger *et al.*, 2013; Srikumar *et al.*, 2015). SopD2 is important for formation of Salmonella-induced filaments and interference with endosome to lysosome trafficking, while SseL induces late macrophage cell death (Jennings *et al.*, 2017). Fink *et al.* did not detect differential gene expression of any other of SPI-2 genes, however they found that the Δfnr mutant is attenuated for survival and replication within murine macrophages. This result would be consistent with FNR regulation of SPI-2 gene expression but was not detected under the conditions used in the microarray-based study.

Figure 3.20 Comparison of FNR regulons.

FNR regulon under micro-aerobic conditions, as analysed by RNA-seq (this study, blue circles), compared to the FNR regulon under anaerobic conditions as determined by microarray (Fink *et al.*, 2007, yellow circles). Comparisons were made between genes that were >2.5-fold DE in an Δfnr mutant where A. compares the entire regulon, B. compares down-regulated genes, and C. compares up-regulated genes.

3.3.5 The benefits and limitations of an RNA-seq-based approach for the investigation of bacterial regulons

RNA-seq provides convenient and precise method for studying gene expression at single nucleotide resolution. Large amounts of data can be generated rapidly and simply, relative to more laborious protocols such as DNA microarrays, RT-qPCR or transcriptional fusions. Extraction of good quality total or depleted RNA is important, and conveniently most sequencing facilities offer cDNA library preparation services to ensure consistent highquality samples for sequencing. Sequencing technologies themselves are improving and advancing regularly, resulting in the generation of large amounts of good quality data, within a short timescale. RNA-seq technology is more accessible than ever to researchers, meaning that high throughput next generation sequencing and RNA-seq are contributing to the expansion of our knowledge base. The development of tools for bioinformatics and data handling programs permit rapid and convenient downstream analyses, allowing us to distil the important information from the massive data sets that are produced using RNA-seq. We have shown that the use of RNA-seq to determine the FNR regulon provides accurate information that agrees with what has been previously shown using transcriptional fusions and microarrays in E. coli and S. Typhimurium, but the increased sensitivity and dynamic range of RNA-seq allowed identification more subtle changes in gene expression, as well as to detect expression of non-coding sRNA species, thereby increasing our understanding of complex regulatory pathways.

However, there are some limitations to the approach used in this study. RNA is extracted from a population of bacteria for use in RNA-seq; this provides an average view of the transcriptomes of millions of cells. Additionally, our growth condition is heterogenous in nature, meaning we likely have very different expression in subpopulations throughout the oxygen gradient of the cultures. Genetically identical cells can often be phenotypically different and subpopulations of cells or outlier cells play important roles in disease outcome or antibiotic tolerance (Diard *et al.*, 2013; Helaine *et al.*, 2014). Single-cell RNA sequencing can reveal complex and rare cell populations, uncover regulatory relationships between genes. Single-cell transcriptomic analysis will allow the detection of even more subtle, and often biologically significant, changes in gene expression that could be masked at the level of whole bacterial populations (Hwang *et al.*, 2018).
RNA-seq of strains and their isogenic mutants can reveal a multitude of changes in gene expression however, it cannot distinguish between direct and indirect regulation. The complexity of bacterial regulatory networks and the interplay between different regulators means that many of the putative interactions that are detected in the absence of a TF are as a result of perturbations in regulatory cascades rather than direct control of gene expression. Therefore, it is important to combine RNA-seq with techniques which uncover direct regulation of genes such as chromatin immunoprecipitation sequencing and will be covered in detail in Chapter 4.

RNA-seq provides important clues about gene expression and regulatory interactions but important findings must be validated using additional molecular biological approaches. To provide a better understanding of the inherent complexity of biological systems, complete descriptions of biological molecular networks, including important environmental stimuli, transcription factors, regulatory proteins, sRNAs, and all other components (Golubeva et al., 2012; Hébrard et al., 2011). Complete descriptions of biological systems can be achieved through the integration of information from a combination of datasets, including transcriptomics, epigenomics, proteomics, global ChIP studies, and others. Great resources are available for E. coli including RegulonDB, EcoCyc, GenExpDB and UniProt which provide curated information on E. coli gene and protein expression from thousands of transcriptomic experiments (Hébrard et al., 2011; The UniProt Consortium, 2017), and much information from S. Typhimurium is available through SalCom, SalComMac and SalComRegulon (Colgan et al., 2016; Kröger et al., 2013; Srikumar et al., 2015). Despite decades of research, the complexities of the E. coli and S. Typhimurium genomes are only becoming realized in recent times thanks to NGS technologies. Our hope is that this transcriptomic analysis of S. Typhimurium FNR regulon and its role in regulation of virulence will contribute to the overall understanding of S. Typhimurium infection.

3.3.6 Summary

The aim of this chapter was to investigate the global changes in gene expression in an Δfnr mutant with a focus on *Salmonella* Pathogenicity Island 2, flagella and motility in *S*. Typhimurium. We have shown using a wide variety of techniques that under microaerobic conditions in MMA that the absence of the FNR protein causes SPI-2 encoded and associated genes and sRNAs to have increased expression and flagellar and motility genes to have decreased expression when compared to the WT. These results indicate that when *S*.

Typhimuirum cells are exposed to oxygen (like at the epithelial border in the gut), and FNR dimers are no longer active in the cell, that SPI-2 expression increases and motility and flagellar gene expression decreases, likely in preparation for the harsh intracellar environment of host epithelial cells.

Chapter 4

Promoter occupancy of FNR

4.1 Introduction

4.1.1 Identification of global FNR binding through ChIP-seq

Transcription factors that bind to specific DNA sequences are essential for the correct regulation of gene expression and identification of the specific DNA sequences that each factor binds helps to elucidate regulatory networks within bacteria (Browning & Busby, 2004; Myers et al., 2015). Traditional methods for determining the specificity of DNAbinding proteins such as electrophoretic mobility shift assays (EMSA) are important for showing direct binding but are performed under *in vitro* conditions and thus disregard any other factors which may be important for binding in vivo. They are also too slow and laborious to investigate an entire genome. In contrast, a high-throughput method such as chromatin immunoprecipitation sequencing (ChIP-seq) can provide global in vivo binding information rapidly (Stormo & Zhao, 2010). Regulatory mutants can be used to investigate bacterial regulons using RNA-seq, and the technique is able to provide candidate genes that a transcription factor is likely to regulate however, it is unable to discriminate whether regulation is direct or indirect. In Chapter 3, we identified FNR as a repressor of SPI-2 genes under microaerobic conditions in MMA, using RNA-seq, and here we used another largescale investigative technique, ChIP-seq, to identify whether FNR repression of SPI-2 genes is direct or indirect. A general workflow of the main experimental procedure is outlined in Figure 4.1.

DNA-protein binding experiments, such as EMSA, were traditionally used to demonstrate that a protein could directly bind a specific fragment of DNA, but more recently ChIP has become the method of choice to provide evidence of direct protein binding *in vivo*. Originally, ChIP experiments were followed by RT-qPCR to determine protein binding within particular sequences of interest by examining enrichment of DNA from the immunoprecipitated sample, or by ChIP-chip where protein-associated DNA is hybridized to a tiling microarray to determine all DNA binding sites of a particular protein. Within the last decade, ChIP-chip has been replaced with ChIP-seq which has a much higher resolution and signal-to-noise ratio than ChIP-chip and involves the use of deep sequencing technology to determine all DNA molecules bound by DNA-associated proteins (Cai & Huang, 2012; Myers *et al.*, 2015). Sequencing-based approaches have increased sensitivity and reduced bias compared to microarray-based technology. ChIP-seq also allows for the identification of transcription factor binding site sequences at the level of the individual nucleotide and

can be used to accurately determine transcription factor binding motifs. Motif analysis can predict direct protein binding sites and provide focused data on highly likely candidate gene targets. The combination of transcriptomic data from WT and Δfnr , with FNR occupancy data obtained under the same growth conditions can associate the changes in gene expression to binding and direct regulation by FNR. To our knowledge, this study provides the first large scale investigation into DNA-protein interactions of the oxygen sensitive transcription factor FNR in *S*. Typhimurium.

The aim of this chapter is to use the global approach of ChIP-seq to identify candidate regulators of SPI-2 in the case of indirect regulation of SPI-2 through FNR or to identify FNR as a direct regulator of genes encoded on the pathogenicity island, and to verify those results with other molecular techniques.

3xFLAG-FNR strain grown in microaerobic MMA to OD₆₀₀ 0.3

Figure 4.1 Workflow of chromatin immunoprecipitation sequencing to identify FNR binding sites.

A $3 \times$ FLAG-FNR strain was grown under microaerobic conditions to OD₆₀₀ 0.3 in MMA. Proteins were crosslinked to DNA, chromatin was sheared then immunoprecipitated by and anti-FLAG antibody to identify specific FNR binding and by a mouse IgG antibody for background non-specific binding. Crosslinks were reversed, and DNA was extracted and prepared for sequencing. Library preparation and sequencing for replicate 1 was performed by me and replicate 2 was performed by Dr. Keith MacKenzie at the University of Regina, Regina, Saskatchewan, Canada. Bioinformatic analyses were performed by Dr. Aalap Mogre at Trinity College Dublin, Dublin, Ireland.

4.2 Results

4.2.1 Verification of 3×FLAG-FNR

For ChIP-seq experiments a strain with a 3×FLAG-tagged FNR was used (originally constructed by Dr. Aoife Colgan). To ensure that the 3×FLAG-tag did not interfere with the binding capability of the FNR protein a northern blot was performed looking at expression of the FNR dependent small RNA *FnrS* (Figure 4.2A). There was high expression of *FnrS* in the 3×FLAG-tagged strain although slightly lower than WT levels, it was higher than in the Δfnr mutant. A preliminary ChIP-RTqPCR experiment was performed to determine enrichment of the ChIP DNA of a positive control and a negative control, the *fnrS* promoter and *hemX* respectively (Figure 4.2B & C). The amplified ChIP DNA was normalized to the amplified Input DNA, which was extracted prior to immunoprecipitation. Normalised ChlP-RTqPCR data from two independent biological replicate experiments and demonstrates that there is strong enrichment (approximately 16-fold) of the fnrS promoter region in the experimental ChIP DNA, compared to the background "Mock" ChIP DNA. The negative control gene, hemX, showed negligible enrichment (approximately 1-fold) in the experimental ChIP DNA sample, compared to the mock ChIP DNA sample (Figure 4.2B). Following subtraction of the Mock ChIP DNA, the *fnrS* promoter DNA was approximately 31-fold enriched for FNR binding, compared to the negative control region, hemX (Figure **4.2C**). These data show that FNR specifically binds within the *fnrS* promoter region, FNR is a direct activator of *FnrS* transcription, and the 3×FLAG-tagged FNR can be confidently used for ChIP-seq experiments.

Figure 4.2 FnrS is expressed in FNR-3×FLAG and the *fnrS* gene is bound by FNR-3×FLAG.

A. Northern blot showing FnrS expression is not affected in a strain expressing FLAGtagged FNR under microaerobic conditions in MMA. 5S rRNA was probed as loading control. B. qPCR data of a representative ChIP assay from 2 independent experiments demonstrating direct binding of FNR to the *fnrS* gene under microaerobic conditions in MMA. Experimental (FLAG) and mock ChIP DNA from *fnrS* and the negative control *hemX*, was normalised to the starting amount of DNA (IP/Input). Statistical significance determined by t-test, $\alpha = 5\%$ C. qPCR data of a representative ChIP assay from 2 independent experiments shows enrichment for FNR binding of *fnrS*, compared to the negative control region *hemX* following subtraction of background mock ChIP DNA (as described in section 2.8.4). Statistical significance determined by Unpaired two-tailed t-test, $\alpha = 5\%$. * = P \leq 0.05, ** = P \leq 0.01, *** = P \leq 0.001, error bars represent standard deviation.

4.2.2 Overview of FNR binding using ChIP-seq

Chromatin Immunoprecipitation is the method of choice to provide evidence for direct protein binding in vivo. ChlP-seq involves the use of deep sequencing technology to determine all DNA molecules bound by DNA-associated proteins (Cai & Huang, 2012). Here, we have used ChIP-seq to determine FNR binding under microaerobic conditions in MMA with a strain containing 3×FLAG-tagged FNR. Figure 4.3 provides an overview of all the predicted FNR binding sites (blue lines and boxes) and FNR binding motifs (red lines) across the S. Typhimurium chromosome and two plasmids, pSLT and pColIB9 from two independent ChIP-seq experiments. There were no FNR binding sites on the pRSF1010 plasmid which was anticipated as there were no DE genes found on the plasmid (see Section 3.2.5). Binding of the global transcription factor FNR was uniform across the chromosome. Due to contamination of S. cerevisiae yeast genomic DNA from the tRNA used as a coprecipitant intended to increase DNA yields in the ChIP protocol the coverage of ChIP (FLAG and Mock) samples were reduced. Additionally, coverage of the FLAG 1 sample was lower than of FLAG 2 (Figure 4.4A) However, the coverage was sufficient to recover a similar number of peaks from both samples, and there was a large of overlap of 288 peak locations (Figure 4.4B).

Approximately 19% of differentially expressed genes in this study were associated with peaks from ChIP-seq (Figure 4.4C). As anticipated, the *fnr* promoter was bound by FNR. Also, *fnrS* was associated with FNR binding, as were promoters of *nrdD*, the anaerobic ribonucleoside-triphosphate reductase, *nirB*, the large nitrite reductase subunit, and *nuoA*, NADH dehydrogenase I chain A. The extremely downregulated SPI-5 encoded gene orfXand the minor curli fimbrae subunit csgB were also associated with FNR binding. These genes are therefore directly activated by FNR under microaerobic growth in MMA. Notable up-regulated genes with FNR binding sites included the sRNA GcvB, which was highly upregulated in Δfnr and controls approximately 1% of the Salmonella genome (Hébrard et al., 2012; Sharma et al., 2007; 2011), and PhoP activated genes pagC, pagD and pagO. FNR occupancy was also observed at the promoter of the plasmid encoded virulence gene and regulator, spvR. Many effector proteins which are secreted by the SPI-2 T3SS were associated with peaks including sseK2, sifB, SPI-5 encoded pipB, effectors important for SCV maturation sifA, sseJ and sopD2, and Salmonella translocated effectors steA, steB and steC. The important virulence sRNA IsrM was also found to be bound by FNR. Within the SPI-2 locus, specific T3SS apparatus genes associated with FNR binding included ssaH,

ssaI, ssaJ and *ssaU*, but most importantly an FNR binding peak was found near the promoter of the SPI-2 response regulator *ssrB*. Additionally, a long binding region was identified in one replicate at the *ssrA/ssaB* promoter region. These results indicate that FNR may repress SPI-2 under microaerobic conditions by direct repression of several effectors and other virulence associated genes, and especially through *ssrB*.

Approximately 81% of DE genes were not associated with FNR occupancy (**Figure 4.4C**) and, therefore, indirectly regulated by FNR under these conditions. DE genes not associated with FNR binding included the majority of flagellar and chemotaxis genes. However, *fliC* and *fliD* were associated with a peak, as well as *aer*, the gene encoding Aer the signal transducer for aerotaxis. FNR therefore, may indirectly activate certain chemotaxis and flagellar motility through direct activation of *aer*. Additionally, a recent study found that SsrB can repress *S*. Typhimurium motility through direct binding to a region upstream of *flhDC* (Ilyas *et al.*, 2018). Thus, much of the down-regulation of motility, especially of early gene products can be explained by FNR activation of *ssrB*, leading to SsrB repression of motility. Other genes which seem to be indirectly regulated by FNR include the propanediol degradation and cobalamin (vitamin B12) biosynthesis operons, SPI-1 genes *sipB* and *invJ*, and many of the T3SS apparatus and effector genes encoded within SPI-2.

Interestingly, many peaks were identified at genes not found to be DE in our study. This was also the case in an *E. coli* ChIP-seq from a previous study (Myers *et al.*, 2013). Genes of particular interest were all six SPI-4 encoded *sii* Salmonella intestinal invasion genes and SPI-1 encoded genes *avrA*, *sprB*, *hilC*, *prgH*, *hilD*, *hilA*, *iagB*, *sptP*, *sicP*, *invB*, *invA*, *invH*, *InvR*, STM2902, and STM2903. Regulation by FNR may be masked by other more significant factors that also regulate transcription at these loci positively or negatively. The full list of ChIP-seq peaks and ChIP peaks associated to DE genes can be found in **Tables S4**, **S5**, and **S6** in Appendix III.

4.2.3 FNR consensus binding motif

Peak sequences from ChIP-seq revealed a palindromic FNR binding motif with a length of 14 bp (**Figure 4.5**). The consensus motif was, TTGATNTRSATCAA, where A is adenine, C is cytosine, G is guanine, T is thymine, N is any nucleotide, R is a purine, and S is guanine or cytosine. This consensus motif is almost identical to the FNR consensus binding motifs found in *E. coli* (Myers *et al.*, 2013; Spiro & Guest, 1990) and similar to the previously

described S. Typhimurium FNR binding motif. The letter-probability matrix generated by MEME-ChIP was used to find all possible FNR binding sites in the S. Typhimurium chromosome using FIMO. The letter-probability matrix of the S. Typhimurum FNR binding motif and the top 100 FNR binding motifs found in the S. Typhimurium 4/74 chromosome can be found in Tables S7 and S8 in Appendix III. A conserved and experimentally confirmed FNR binding site can be found in the *ndh* (NADH dehydrogenase) promoter region in E. coli, whereby binding of FNR leads to activation (Green & Guest, 1994). We searched for this site as a positive control for our FNR motif and FIMO found an FNR binding site in the S. Typhimurium *ndh* promoter region centered around -48 from the *ndh* TSS (Figure 4.5). The two sites with the closest to consensus binding motifs were found in the promoters of *nirB* and *orf70* centered around -44 and -41, respectively. The large subunit of the NADH nitrite reductase is encoded by *nirB*, and FNR is known to activate at this site. Indeed, in our dataset *nirB* is down-regulated in Δfnr and a ChIP peak was observed for FNR binding at this site. Interestingly, orf70 is a gene found in the non-T3SS section of SPI-2. A BLAST search revealed that orf70 shares 99% identity with a fumarase encoding gene, fumD (Kronen & Berg, 2015). Under our growth condition, orf70 was not differentially expressed but the promoter region was enriched in ChIP-seq. As expected, the fnr and fnrS promoter regions contained FNR binding motifs at +1 and -42, respectively.

Although there was enrichment for FNR binding across most of SPI-2 in our FLAG 2 sample and peaks called in both replicates at the *ssrB* promoter, no full 14 bp motifs were detected. However, when half of the consensus motif was used as a search query many putative sites were detected in the SPI-2 promoters. FNR half-sites have previously been confirmed to be sufficient for FNR binding and regulation (Constantinidou *et al.*, 2006; Melville & Gunsalus, 1996). The most likely candidate half sites for the *ssrB* and *ssrA/ssaB* promoter regions, based on their location are shown (**Figure 4.5**). Interestingly, both a full FNR binding motif and a half binding motif were found at the promoter of *ydgT*. As previously described, YdgT is a known repressor of SPI-2 (Coombes *et al.*, 2005). Again, the *ydgT* gene was not found to be differentially expressed in our data set, however, an enrichment for FNR binding was found in the ChIP data. These half-sites represent putative binding sites for FNR which may explain regulation of SPI-2 under microaerobic conditions.

Figure 4.3 FNR ChIP peaks across 2 replicates on the 4/74 chromosome and plasmids.

Peaks representing putative FNR binding sites were determined by MACS2 across two independent replicates on the *S*. Typhimurium chromosome and pSLT and pCoIIB9 plasmids. From outside to inside: coordinates are denoted, on the chromosome SPIs 1 through 5 are labeled; plus strand genes are dark grey; minus strand genes are light grey; replicate 1 peaks are blue, represented by lines on the chromosome and coverage trace for the plasmids; replicate 2 peaks are blue; on plasmids only, mock coverage trace is in blue; FIMO predicted FNR binding sites based on the consensus motif on plus strand are in red; and the minus strand in red. There were no peaks on the pRSF1010 plasmid.

Figure 4.4 Overview of two independent ChIP-seq replicates.

expressed genes in Δfnr from transcriptomic data associated with peaks from ChIP-seq analysis. in each of the ChIP FLAG replicates 1 and 2 and the number of peaks that were common between the two replicates. C. Number of differentially A. Sequencing coverage for each ChIP FLAG and mock replicates divided between the 4/74 chromosome and plasmids. B. Total number of peaks found

Figure 4.5 FNR binding motifs.

FNR position weight matrix was constructed from the FNR ChIP-seq peak sequences from 288 peaks common to 2 independent ChIP-seq replicates. The height (y-axis) of the letters represents the degree of conservation at that position within the aligned sequence set (in bits), with perfect conservation being 2 bits. The x-axis shows the position of each base (1–14) starting at the 5' end of the motif. Under the consensus motif, a sample of full motifs and half sites were found using the 14 bp and 7 bp of the MEME-ChIP generated motif matrix in FIMO, respectively. Only statistically significant binding sites with p < 0.0001 for full motifs and < 0.01 for half sites were interrogated. ^aThis half motif overlaps the 2° *ssrA* TSS. ^bThis motif is found overlapping a TSS of an antisense transcript found in the *ydgT* promoter region.

4.2.4 Verification of FNR binding

To verify putative FNR binding sites binding experiments, such as electrophoretic mobility shift assays (EMSA), have been used to demonstrate that a protein can directly bind a specific fragment of DNA. However, the native FNR protein cannot be easily used for *in*

vitro experiments, as atmospheric oxygen levels render the protein inactive (Beinert & Kiley, 1999; Green et al., 2014); therefore, a modified FNR must be used. Bates et al. originally showed that a mutation resulting in a switch from aspartic acid to alanine at position 154 (D154A) in the dimerization domain of the FNR monomer, resulted in a mutant FNR protein which could be purified as a dimer at atmospheric oxygen levels in E. coli (Bates et al., 1995). We introduced the same mutation into our plasmid-borne S. Typhimurium fnr to create pfnrD154A. The WT and Δfnr mutant were transformed with both pfnr and pfnrD154A, grown in MMA under aerobic and microaerobic conditions, and FnrS expression was used to determine the activity of the FNR or FNRD154A protein. We saw similar levels of FnrS expression in cells with an FNR or FNR154A protein under microaerobic conditions, while there was a very limited expression of *FnrS* under aerobic conditions in pfnr cells, expression of FnrS was near WT microaerobic levels in the presence of FNRD154A (Figure 4.6). The expression in pfnr under aerobic conditions might be explained by the high copy number of the plasmid. Shan et al. were able to construct a more oxygen tolerant FNR variant by covalently linking two FNRD154A monomers in E. coli (Shan et al., 2012a). (FNRD154A)₂ recognizes an FNR-dependent promoter under aerobic conditions and maintains its promoter specificity and conformational stability (Shan et al., 2012a). Conveniently, the FNR protein is extremely well conserved at the amino acid level with the Enterobacteriaceae family. The amino acid sequences of FNR in S. Typhimurium and E. coli share 99.2% identity and 99.6% similarity (Figure 4.7). Serine (S) and asparagine (N) are neutral polar amino acids, and this substitution has no effect. Alanine (A) is a small non-reactive amino acid, a change to glutamine (Q) is significant as glutamine is much larger and polar neutral amino acid (Betts & Russell, 2003) however, the 2 amino acid differences are found near the C-terminus outside of the DNA binding region. Dr. Aixin Yan from the Shan et al. study provided us with a plasmid containing the (FNRD154A)₂ protein; this was used for subsequent binding experiments. To test that the E. coli (FNRD154A)₂ protein was active under aerobic conditions, Δfnr was transformed with the plasmids, and we carried out the same experiment using *FnrS* expression to determine activity of the protein. Figure 4.8A shows that Δfnr cells containing p(fnrD154A)₂ had higher expression of FnrS under aerobic than microaerobic conditions. Subsequently, we His-tag purified the protein as a dimer (Figure 4.8B) and concentrated the sample (Figure 4.8C) for use in EMSA. The same protein was recently used with success in an EMSA analysis on DNA promoters from SL1344 (Wang et al., 2019).

Figure 4.6 FNRD154A is active under aerobic conditions.

Northern blot showing *FnrS* was expressed under aerobic conditions in an Δfnr mutant expressing the FNRD154A protein from the pBR322 plasmid.

S.	1	MIPEKRIIRRIQSGGCAIHCQDCSISQLCIPFTLNEHELDQLDNIIERKK	50
Ε.	1	MIPEKRIIRRIQSGGCAIH <u>C</u> QD <u>C</u> SISQL <u>C</u> IPFTLNEHELDQLDNIIERKK	50
ς.	51	PIQKGQTLFKAGDELKSLYAIRSGTIKSYTITEQGDEQITGFHLAGDLVG	100
Ε.	51	PIQKGQTLFKAGDELKSLYAIRSGTIKSYTITEQGDEQITGFHLAGDLVG	100
ς.	101	FDAIGSGHHPSFAQALETSMV <u>C</u> EIPFETLDDLSGKMPNL <u>RQQMMRLMSGE</u>	150
Ε.	101	FDAIGSGHHPSFAQALETSMVCEIPFETLDDLSGKMPNLRQQMMRLMSGE	150
S.	151	IKGDQDMILLLSKKNAEERLAAFIYNLSRRFAQRGFSPREFRLTMT RGDI	200
Ε.	151	IKGDQDMILLLSKKNAEERLAAFIYNLSRRFAQRGFSPREFRLTMT RGDI	200
S.	201	GNYLGLTVETISRLLGRFQKSGMLAVKGKYITIENSDALAALAGHTRNVA	250
Ε.	201	GNYLGLTVETISRLLG RFQKSGMLAVKGKYITIEN N DALAQ LAGHTRNVA	250

Figure 4.7 Alignment of S. Typhimurium and E. coli FNR protein sequences.

FNR amino acid (aa) sequences of *S*. Typhimurium 4/74 (*S*.) and *E. coli* K-12 MG1655 (*E*.) were aligned using the BLOSUM62 matrix with a gap penalty of 10 and extend penalty of 0.5. The sequences are both 250 aa in length and have 99.2% identity and 99.6% similarity. The 4 cystine residues important for binding 4Fe-4S clusters are underlined, the dimerization region is underlined with a dash line, the DNA binding region is in bold. Identical aa are connected with a |, differences in amino acids are labeled in red with a : and blue with a . indicating changes in aa which are strongly similar and weakly similar in their properties, respectively.

Figure 4.8 (FNRD154A)₂ is active and can be purified under aerobic conditions.

A. Northern blot showing *FnrS* was expressed under aerobic conditions in an Δfnr mutant expressing the *E. coli* (FNRD154A)₂ protein. B. Coomassie stained SDS-PAGE of protein fractions from His-Tag purification of (FNRD154A)₂ showing that the protein was isolated in its dimeric form (Approximately 57 kDa with 6His-Tag). C. BCA assay of (FNRD154A)₂ sample after purification and concentration of protein samples, the dotted lines represent a 95% confidence interval of the linear regression of the standard curve.

4.2.5 FNR binding to control regions

Based on the expression of SPI-2 regulators, either SsrA and/or SsrB were the most likely candidates to explain the increased SPI-2 expression seen in Δfnr grown in MMA under microaerobic conditions, as they were the most differentially expressed of SPI-2 regulators in Δfnr (Figure 4.9). ChIP-seq data also revealed enrichment for FNR binding in 2 independent replicates and motif analysis uncovered 3 potential FNR half-sites at the ssrB promoter. Peaks at the ssrA/ssaB promoter region were only identified in the second replicate. To verify these findings, we used electrophoretic mobility shift assays. First, as positive controls, the fnr and fnrS promoters were assayed. A site down stream of fnrS in the ORF of *dbpA* was chosen as a negative control as there was no FNR binding as determined by ChIP-seq and FNR would be unlikely to bind at the 3' end of an ORF that did not contain a TSS. The peaks called in ChIP-seq analysis and the coverage trace is shown in Figure 4.10 A & B and is accompanied by a schematic showing the location of sequence used for the EMSAs. As expected, P_{fnr} and P_{fnrS} EMSAs showed a band shift with a dissociation constant (*K_D*) of approximately 9.3×10^{-7} M and 1.5×10^{-6} M confirming that (FNRD154A)₂ binds to the fnr and fnrS promoters (Figure 4.10 C, D, F & G). The smaller the K_D, the more tightly bound the ligand (in this case DNA) is, or the higher the affinity between DNA and protein. The B_{max} is the maximum ratio of bound to unbound DNA; (FNRD154A)₂ bound to 84.9% and 92.9% of Pfnr and PfnrS, respectively. (FNRD154A)2 did not bind to dbpA DNA (Figure 4.10 E & H).

Figure 4.9 The genes encoding SsrA and SsrB are the most differentially expressed of SPI-2 regulators.

RNA-seq data showing log2 fold-change of important SPI-2 regulators. All regulators in grey were not differentially expressed (>-1 and < 1) in Δfnr . The *ssrA* and *ssrB* genes (in red) had the highest fold-change of all regulators with known involvement in SPI-2 regulation.

Figure 4.10 FNR binding at the P_{fnr} and P_{fnrS} promoters and a negative control.

A, B. ChIP-seq coverage (y-axis) for FLAG 1 and 2 replicates in red and Mock in light red. Boxes indicate putative FNR binding sites called by MACS2. Schematic shows location of *fnr* and *fnrS* as grey arrows and surrounding genes including *dbpA* as white as arrows and shows the location (red lines) of the sequence used for EMSA relative to the respective TSSs (black bent arrows). C – E. Representative EMSAs using purified (FNRD154A)₂ with the P_{*fnr*} and P_{*fnrS*} promoters and *dbpA*, respectively; "P + D" is protein bound to DNA, and "D" is unbound DNA. F – H. Equilibrium DNA binding curves for the P_{*fnr*} and P_{*fnrS*} promoters and *dbpA*, respectively; fitted by nonlinear regression and K_D and B_{*max*} were determined by one site specific binding with Hill slope analysis. Promoters P_{*fnr*} and P_{*fnrS*} were used as positive controls, and *dbpA* as a negative control for EMSAs.

4.2.6 FNR binding to SPI-2 promoters

Next, we investigated the promoters of ssrB, ssrA and ssaB. The P_{ssrB} is comprised of the intergenic region between ssrB and ssrA ORFs and extends to overlap a portion of the 3' end of ssrA (Figure 4.11A). (FNR154A)₂ had a weaker binding affinity to P_{ssrB} than positive controls ($K_D \sim 2.1 \times 10^{-6}$ M, Figure 4.11B & G). The intergenic region between the ssrA and ssaB genes is extremely AT rich (69.0% AT content) compared to the rest of the chromosome (47.8% AT content) (Papanikolaou et al., 2009) and contains two TSSs for ssrA and one for ssaB (Figure 4.11A) and the ssrA mRNA is transcribed from the 1° TSS. (FNR154A)₂ was unable to cause a band shift in the region surrounding (49 bp downstream and 82 bp upstream) the 1° TSS of *ssrA*; the unbound probe appears to reduce in intensity at 16 µM of (FNR154A)₂ however, there is no clear shifted band (Figure 4.11C & H). (FNR154A)₂ had a stronger binding affinity to the *ssaB* promoter ($K_D \sim 1.3 \times 10^{-6}$ M) than to PssrB, but nearly the same affinity when the DNA probe was extended to also include the 2° ssrA TSS ($K_D \sim 2.0 \times 10^{-6}$ M) (Figure 4.11D, E, I, & J). EMSA with the entire intergenic region between *ssrA* and *ssaB*, $P_{ssrA}1^{\circ}2^{\circ}_{ssaB}$, showed a higher binding affinity than any of the smaller fragments ($K_D \sim 6.2 \times 10^{-7}$ M) as DNA started shifting at a lower concentration of (FNR154A)₂ however, similarly to the $P_{ssrA}1^{\circ}$ EMSA, the binding at 16 μ M becomes unclear; this larger DNA probe contains the P_{ssrA}1° sequence, and so this result indicates there may be non-specific binding at the highest concentration of (FNR154A)₂ used in these assays (Figure 4.11 F & K). Non-specific binding by FNR at this site could be due to the extremely high AT concentration found at this locus. A higher concentration of the

(FNRD154A)₂ protein may be required shift a higher proportion of the DNA of these promoters, as 16 μ M of the protein resulted in B_{max} values below 50% (**Figure 4.11G–K**). These results indicate that FNR binds with low affinity to P_{ssrB} and P_{ssaB} likely due to the presence of FNR half sites at these locations, and FNR may also bind non-specifically in near the P_{ssrA} due to the high AT content of this region (~69%) and high AT content of the FNR consensus binding motif (~64%).

Figure 4.11 FNR binding at the P_{ssrB}, P_{ssrA} and P_{ssaB} promoters

black numbers are bp relative to the ssrA 1° TSS. B – F. Representative EMSAs using purified (FNRD154A)₂ with the P_{ssrB}, P_{ssrA}1°, P_{ssrB}, P_{ssrA}2°_{ssaB} and binding with Hill slope analysis to the respective TSSs (blue and red bent arrows); in the ssrA/ssaB intergenic region of the schematic, grey numbers are bp relative to the ssaB TSS and Schematic shows location of the *ssrB*, *ssrA* and *ssaB* genes in white as arrows, and shows the location (red lines) of the sequence used for EMSA relative P_{ssrA1° , P_{ssaB} , $P_{ssrA2^\circ}_{ssaB}$ and $P_{ssrA1^\circ2^\circ}_{ssaB}$ promoters, respectively; fitted by nonlinear regression and K_D and B_{max} were determined by one site specific P_{ssrA}1°2°_{ssaB} promoters, respectively; "P + D" is protein bound to DNA, and "D" is unbound DNA. G - K. Equilibrium DNA binding curves for the P_{ssrB} A. ChIP-seq coverage (y-axis) for FLAG 1 and 2 replicates in red and Mock in light red. Boxes indicate putative FNR binding sites called by MACS2

4.2.7 FNR binding to the ydgT promoter

Finally, we examined binding at the *ydgT* promoter region. As previously discussed, YdgT is a known repressor of SPI-2. Although there was little difference in expression of *ydgT* between WT and Δfnr (**Figure 4.9**), ChIP-seq showed binding near the P_{ydgT}. However, the peaks have the highest coverage at the TSS of an unannotated antisense transcript found in the *ydgT* promoter region (**Figure 4.12A**). The EMSA sequence does contain 5 bp of the 14 bp binding motif found at the antisense TSS at the edge of the DNA probe as well as the half motif centered at -87 from the *ydgT* TSS. While binding of (FNRD154A)₂ caused a shift beginning at 0.25 μ M, higher concentrations do not reveal a clear shifted band (**Figure 4.12B** & C); this could be due to transient binding affinities specifically for each of the antisense TSS and the P_{ydgT} half-site. Nevertheless, *ydgT* was not differentially expressed in Δfnr , indicating it likely does not play a role in FNR control over SPI-2 expression under these conditions.

4.2.8 Expression from SPI-2 promoters

To investigate the effect of Δfnr on individual promoters, the promoters of ssrB, ssrA (partial promoter, $P_{ssrA}1^{\circ}$, and full promoter) and ssaB and a negative control sequence from dbpAwere cloned into the pCS26-luxCDABE low copy plasmid. Figure 4.13A shows the locations of promoter sequences taken from ssrB, ssrA and ssaB promoter regions relative to the TSS; the ssrA locations are shown relative to the primary TSS. Expression from P_{ssrB} was significantly higher (approximately 1.8-fold) in Δfnr than WT which was consistent with RNA-seq data; P_{ssrB} expression in WT was also significantly higher than in $\Delta ssrAB$ (Figure 4.13B). Neither P_{ssrA} or P_{ssrA} expression was significantly different in any strain (Figure 4.13C & D). The result from $P_{ssrA}1^{\circ}$ is consistent with our data showing that FNR is unlikely to cause repression at this location however, the expression from the full ssrA promoter was very low. We had expected to see higher expression, especially in the Δfnr mutant. The strains carrying this plasmid were also grown in SPI-2 inducing PCN medium as a control and showed the same low expression therefore, thus there is an unknown problem with this plasmid. As anticipated, expression from P_{ssaB} was significantly higher (approximately 18-fold) in Δfnr than WT (Figure 4.13E). There was no expression detected in the *dbpA* negative control (Figure 4.13F). These results, especially the invariable expression from $P_{ssrA}1^\circ$, highlight *ssrB* as the major target for FNR for regulation of SPI-2 expression.

Figure 4.12 FNR binding at the P_{ydgT} promoter.

A. ChIP-seq coverage (y-axis) for FLAG 1 and 2 replicates in red and Mock in light red. Boxes indicate putative FNR binding sites called by MACS2. Schematic shows location of the *ydgT* gene in grey and surrounding genes in white as arrows and shows the location (red line) of the sequence used for EMSA relative to the *ydgT* TSS (black bent arrow). B. Representative EMSA using purified (FNRD154A)₂ with the P_{ydgT} probe; "P + D" is protein bound to DNA, and "D" is unbound DNA. C. Equilibrium DNA binding curve fitted by nonlinear regression and K_D and B_{max} determined by one site specific binding with Hill slope analysis.

A. Schematic showing the locations of promoter sequences cloned into the pCS26-luxCDABE plasmid (orange arrows); in the ssrAlssaB intergenic region grey numbers are bp relative to the ssaB TSS and black numbers are bp relative to the ssrA 1° TSS. Relative promoter expression of the B. ssrB promoter, C. truncated ssrA promoter, D. full ssrA promoter, E. ssaB promoter, and F. a section of the dbpA gene (as in Figure 4.10) as a negative "no promoter" control. Significance determined by nonparametric one-way ANOVA with Dunnet's multiple comparison test to WT for each promoter; only significant differences are labeled, $* = p \le 0.05$, $*^* = p \le 0.01$, $*^{**} = p \le 0.001$, error bars represent standard deviation.

4.3 Discussion

To our knowledge, the work presented here is the first large scale DNA-protein binding study that has been carried out for the FNR protein in *S*. Typhimurium using high throughput next generation sequencing. The use of ChIP-seq has allowed us to identify 288 putative FNR binding sites across the entire *S*. Typhimurium chromosome and plasmids. We were able to validate through ChIP-seq and EMSA that FNR acts as a direct repressor of *Salmonella* pathogenicity island 2 through direct repression of the response regulator *ssrB* and the apparatus gene *ssaB*. Consequently, FNR indirectly represses the remainder of SPI-2 genes through the repression of *ssrB*. ChIP-seq also revealed FNR binding sites at SPI-2 associated genes encoded outside of the island, which could be validated in the future.

4.3.1 Low binding affinity at SPI-2

ChIP-seq revealed occupancy of FNR in long binding regions at SPI-2 promoters, and in a low coverage sample, binding was difficult to distinguish from background (Figure 4.11A). However, we were able to show that FNR binds to these sequences, albeit weakly, in vitro using EMSA (Figure 4.11 B-K). The weak binding affinity found at these sites is likely due to the presence of FNR half-sites as opposed to full binding motifs (Figure 4.5). The quality of the binding site in a given promoter may govern the degree of anoxia required to induce that promoter (Spiro & Guest, 1990). Additionally, because our microaerobic growth condition is heterogeneous, there are likely different subpopulations of cells in the flask where binding occurs (at the bottom), and another where it cannot occur due to higher oxygen concentrations (at the surface). An experiment that would provide insight to binding of FNR to SPI-2 promoters is DNase I footprinting. DNase I footprinting is advantageous because it determines the boundaries of a transcription factor binding site and is informative for evaluating or optimizing binding motif analysis (Myers et al., 2015). Although, the drawback is that DNase I footprinting is performed in vitro. Weak binding or failure to observe binding in vitro does not rule out binding in vivo and could signify an interesting regulatory mechanism. For example, some binding events require cooperative interactions with other TFs (Lee & Groisman, 2012; Melville & Gunsalus, 1996; Park et al., 2013) and may require specific cellular conditions that are difficult to replicate *in vitro* (Myers *et al.*, 2015).

4.3.2 The role of ydgT

Although ydgT was not differentially expressed in the Δfnr mutant, FNR was found to bind at this promoter (**Figure 4.12**). Motif analysis revealed a full binding motif as well as a half motif in the ydgT promoter region. While FNR may regulate ydgT through binding at the half motif, the full FNR motif is positioned at the TSS of an unannotated antisense transcript in the ydgT promoter region, and not in a position relative to the ydgT TSS that is compatible with either activation or repression of the gene. Further investigation into this antisense transcript is required but, we can speculate that it is directly regulated by FNR due to the presence of the near consensus FNR binding motif and up-regulation in Δfnr , and its position relative to ydgT makes it a prime candidate as a cis-acting sRNA which may posttranscriptionally repress ydgT under aerobic conditions.

4.3.3 The benefits and limitations of ChIP-seq for investigations of in vivo protein-DNA interactions

ChIP-seq technology is becoming more accessible to researchers and producing more largescale *in vivo* DNA-protein interaction studies which contribute to the expansion of our knowledge base. The development of tools to analyze ChIP-seq data in bacteria is an evolving pipeline and, as such, new approaches and algorithms are being introduced frequently. These bioinformatic tools allow us to distil the important information from the massive data sets that are produced using ChIP-seq. We have shown that the use of ChIPseq provides accurate information that agrees with existing FNR binding and motif data from *E. coli*, and here in combination with RNA-seq has helped to determine the direct and indirect control exerted by the FNR regulon, particularly as it relates to SPI-2 expression.

Like other high throughput sequencing techniques such as RNA-seq, ChIP-seq also comes with limitations. As discussed in Chapter 3, examination of populations of cells gives an average view of gene regulatory events. Currently there are no studies using single-cell ChIP-seq in bacteria or eukaryotic cells (Nakato & Shirahige, 2017), and bacteria present an even larger barrier to single-cell ChIP as the small size of individual bacterial cells means they contain far less DNA and protein than eukaryotic cells. DNA sequencing coverage is a major limitation of single-cell ChIP-seq, as the analysis requires large amounts of starting material (Nakato & Shirahige, 2017).

DNA sequencing coverage can also pose a problem to existing ChIP-seq methods. In this study, the first replicate had lower sequencing coverage than replicate 2 (Figure 4.4A). This made peak calling more difficult, especially in the low copy replicate and in regions where FNR is suspected to bind but, at lower affinity due to the quality of FNR binding sites present (Figure 4.5). Peak calling algorithms, such as MACS2 (used in this study) are important because they remove the subjective bias from visual peak calling and provide a statistical basis for determining areas of enrichment (Myers et al., 2015), but had problems identifying peaks in the lower coverage sample, especially in AT rich regions where FNR occupancy occurred as a long binding region. The ChIP protocol used for this study was originally designed for use with ChIP-chip and not sequencing (Dillon & Dorman, 2010). Yeast tRNA is used in the protocol as a co-precipitant intended to increase DNA yields during immunoprecipitation. However, some samples had large numbers of reads which did not map to the S. Typhimurium genome but, were found to map to the S. cerevisiae genome. Dr. Aoife Colgan who was performing similar ChIP experiments during the analysis of ChIP data in this study, used qPCR with primers specific to S. cerevisiae and identified that the reads came from yeast gDNA contamination in the tRNA. Since this contaminant gDNA was introduced in the final stages of the experiment, they do not affect the outcome of the ChIP experiment apart from reducing the coverage of the sample. Therefore, if the FNR-ChIP were to be repeated, eliminating yeast tRNA as a co-precipitant is advised.

Successful chromatin immunoprecipitation requires that proteins be crosslinked with DNA to trap interactions inside actively growing cells. Formaldehyde fixation is the method of choice as it allows captures of weaker and transient protein-DNA interactions (Davis *et al.*, 2011; Myers *et al.*, 2015; Schmidt *et al.*, 2009). However, more recent studies have shown that variation in ChIP signal can be attributed to cross-linking efficiency and that extended cross-linking time may introduce false positives (Baranello *et al.*, 2016; Myers *et al.*, 2013). It may be desirable to repeat the ChIP experiment in this study and reduce cross-linking time to help eliminate any binding artifacts. However, when considering FNR binding at SPI-2 promoters, we were able to show that FNR is able to bind *in vitro* to these sequences using EMSA (**Figure 4.11**).

Correlation of FNR ChIP-seq peaks with transcriptomic data showed that the minority of FNR-regulated operons could be attributed to direct FNR binding, the same as in *E. coli* (Myers *et al.*, 2013). Conversely, FNR bound some promoters, such as at SPI-1 and SPI-4

without regulating expression. These genes likely require additional regulatory input by other condition-specific transcription factors, especially given the fact it has been shown that FNR leads to differential expression of SPI-1 genes in MOPS buffered LB with xylose (Fink *et al.*, 2007; Wang *et al.*, 2019). Nuanced regulation by multiple transcription factors may allow *S*. Typhimurium to respond rapidly to environmental changes and confer an advantage in the gut which fluctuates in availability of nutrients and oxygen concentration. However, binding of a TF to a specific DNA sequence does not necessarily result in control of gene expression of nearby genes (Stormo & Zhao, 2010). Many FNR binding sites are also occupied by nucleoid associated proteins (NAPs) such as H-NS, IHF and Fis in *E. coli*, which restrict access of FNR to the genome (Myers *et al.*, 2013). This is important for this study as many NAPs also occupy the AT rich promoter regions of SPI-2 genes (**Figure 4.14**). However, SPI-2 repression by TFs such as H-NS appears not to occur in MMA under microaerobic or aerobic conditions (**Figure 3.14**), further experimentation is required to determine exactly which transcription factors bind to SPI-2 promoters under these growth conditions.

An additional control which may add confidence to our results would be to perform ChIP with either a control strain lacking FNR (Δfnr) or containing an untagged version of FNR to reveal any non-specific enrichment due to aberrant binding of the monoclonal anti-FLAG M2 antibody used in this study, thus allowing removal of any false positive areas of enrichment (Myers *et al.*, 2015). Furthermore, studies using two biological replicates have shown to be sufficient for identification of highly enriched DNA binding locations (Myers *et al.*, 2013; Park *et al.*, 2013) however, three biological replicates can aid in identifying less enriched regions and also provide greater statistical power (Myers *et al.*, 2015). Mutational analysis of putative FNR binding sites could also give greater insight into binding at SPI-2 promoters. The rearrangement of half motifs followed by either ChIP-RTqPCR or EMSA could determine if loss of the FNR motif abolished FNR binding.

Nevertheless, the combination of transcriptomic analysis, occupancy data and DNA-protein binding analysis of the *S*. Typhimurium FNR regulon and its role in regulation of virulence through direct repression of *ssrB* and SPI-2 effectors presented here, will contribute to the overall understanding of *S*. Typhimurium infection.

4.3.4 Summary

The aim of this chapter was to use the global approach of ChIP-seq to identify candidate regulators of SPI-2 under microaerobic conditions. Here we have shown that FNR binds weakly to SPI-2 promoters, particularily to the promoters of *ssrB* and *ssaB*. This may partially explain the repression of SPI-2 genes in WT under microaerobic conditions in MMA as SsrB is a necessary activator of all SPI-2 genes including those encoded outside of the genomic island. We have also shown that FNR binds strongly at the *FnrS* promoter under these conditions, and we know from transcriptomic data that *FnrS* expression is drastically decreased when FNR is absent. In a recent study, deletion of *FnrS* led to increased HilD production under low aeration conditions, and *FnrS* could bind to the *hilD* mRNA 5' UTR, resulting in translational repression (Kim *et al.*, 2018). As HilD is an important activator of SPI-2 and thus FNR could indirectly repress HilD through *FnrS* post-transcriptional repression. Overall, oxygen is an important signalling molecule for low level induction of SPI-2 genes and this induction works directly and possibly indirectly through FNR.

Figure 4.14 Putative FNR binding sites overlap with TF binding at the ssrB/ssrA/ssaB locus.

Putative binding sites are FNR half-sites (Figure 4.9) present in locations where there was a positive band shift (Figure 4.11) SPI-2 encoded genes are represented by white arrows, TSSs are represented by bent black arrows, and transcription factor binding sites are represented by boxes filled according to the binding sites legend. Activation sites are green and repression sites are red. Numbers represent bp in the ssrAlssaB intergenic region and are relative to the ssrA 1° TSS. Schematic including putative FNR binding sites adapted from Banda et al., 2018.

Chapter 5 Effects of *∆fnr* on virulence in macrophages and bacterial fitness

5.1 Introduction

5.1.1 Investigation of virulence and bacterial fitness in Δfnr

Virulence factors enhance the fitness of a pathogen under specific conditions such as in the host and genes involved in metabolism can provide a niche for bacteria during infection which allows them to out compete resident microbiota (Thiennimitr et al., 2012; Winter et al., 2013). After entering the gastrointestinal tract on the way to the site of infection, S. Typhimurium encounters a remarkable diversity in environmental conditions between the stomach, small intestine and large intestine. Moreover, even within the small intestine, there are differences in the microenvironments of the lumen, mucous layer and epithelial surface. Surviving passage through the vastly different environments encountered in the host is accomplished through appropriate coordination of virulence gene expression in response to environmental cues at different stages of infection. Both under and over-expression of virulence factors can be detrimental to bacterial fitness (Coombes et al., 2005). Through previous work and this study, it is clear that FNR is an important regulator of virulence in S. Typhimurium (Fink et al., 2007; Wang et al., 2019). Here we investigate the effect of the fnr mutation in different media to attempt to elucidate what signals besides oxygen might be important for SPI-2 regulation in an Δfnr mutant. We also wanted to investigate the role of FNR during macrophage infection, as previous studies have revealed that Δfnr mutants are attenuated *in vivo*. Additionally, we looked at the relative bacterial fitness of Δfnr compared to WT and other isogenic mutant of strain 4/74 under different conditions in an attempt to tease apart if SPI-2 expression was a burden to cell fitness. Finally, we used a proteomic approach (Figure 5.1) to investigate the energetics of WT and Δfnr during growth in microaerobic MMA.

The aim of this chapter is to investigate the role of FNR during intracellular replication in murine macrophages and to investigate the bacterial fitness of the Δfnr mutant in MMA and other *in vitro* growth conditions.

Cells grown in microaerobic MMA to OD₆₀₀ 0.3

Downstream analysis

Figure 5.1 Workflow of general experimental procedures for investigating expressed proteins.

Wild-type (WT), Δfnr strains were grown under microaerobic conditions to OD₆₀₀ 0.3 in MMA and protein was extracted. Protein was digested and prepared for processing by mass spectrometry. Protein sample preparation was done by Dr. Nicole Hansmeier and all subsequent processing and analysis was completed by Dr. Tzu-Chiao Chao at the University of Regina, Regina, Saskatchewan, Canada. Downstream analysis was performed by Dr. Tzu-Chiao Chao and me.
5.2 Results

5.2.1 SPI-2 expression in vitro

Although SPI-2 expression has not previously been directly linked to FNR, previous studies have shown that an Δfnr mutant is attenuated during infection. The mutant was recently shown to be attenuated in a C. elegans infection model (Wang et al., 2019), and FNR was found to be essential during an enteritis model of infection and to play a weak role during a typhoid model of infection in BALB/c mice (Rollenhagen & Bumann, 2006). Fink et al. have also shown that the Δfnr mutant was 100% attenuated after both oral and intraperitoneal infection of C57BL/6 mice, and that the mutant was attenuated in an ex vivo infection of peritoneal macrophages from C57BL/6 mice (Fink et al., 2007). They have also shown that Δfnr was attenuated in mice and macrophages deficient in production of reactive nitrogen species (RNS) but not in mice and macrophages deficient in production of reactive oxygen species (ROS). They explain that the reason for attenuation of the mutant is due to the inability of the Δfnr mutant to mount a defense against ROS. However, during growth in PCN SPI-2 inducing medium (InSPI2), we observed that the Δfnr mutant had reduced growth rate compared to WT (Figure 5.2), similar to what we had previously seen in MMA (Figure 3.2), except that in InSPI2 WT growth was also slowed when compared to strains deficient in SPI-2 expression, $\Delta ssrAB$ and $\Delta ssrAB/fnr$. Also, PipB2 and SteC were were slightly higher in Δfnr than WT in InSPI2 at OD₆₀₀ 1.0 (Figure 3.15). Curiously, these cultures were all grown under aerated conditions therefore, we would not expect FNR to have an effect. We reasoned that intracellular and growth attenuation of Δfnr may have to do with unrestrained expression of SPI-2 due to a lack of repression by FNR-a phenotype that can be observed in Δhns mutants where the absence of the NAP leads to uncontrolled expression of SPIs and a loss in fitness (Ali et al., 2014; Lucchini et al., 2006; Martinez et al., 2014; Navarre et al., 2006; Sturm et al., 2011). WT, *Afnr* and *AssrAB* strains transformed with pDEW201-P_{ssaG}, which expresses *luxCDABE* from the *ssaG* promoter, were grown in LB, InSPI2 and Non-Inducing PCN (NonSPI2) under aerobic and microaerobic conditions and growth and ssaG expression where measured until stationary phase was reached (Figure **5.3**). Throughout these assays, $\Delta ssrAB$ pDEW201-P_{ssaG} was used as a negative control for SPI-2 expression. There was little to no *ssaG* expression in any strain in LB regardless of oxygen concentration (Figure 5.3A & D) which is consistent with previously published data (Fink et al., 2007; Wang et al., 2019). Aerobic growth in InSPI2 showed that ssaG expression was marginally higher in WT than Δfnr , and there was no expression in $\Delta ssrAB$

(Figure 5.3B). Surprisingly, expression of *ssaG* in microaerobic InSPI2 was much higher in WT than Δfnr during late exponential to early stationary phase (Figure 5.3E). This suggests that under *in vitro* microaerobic SPI-2 inducing conditions FNR is involved in activating SPI-2 genes, the opposite of what we have previously obserbed in MMA. This suggests that FNR may play a dual role in the control of SPI-2 which is dependent on environmental signals other than oxygen. Cells were also grown in NonSPI2 as a control, and regardless of aeration, there was minimal *ssaG* expression in both WT and Δfnr from lag phase to early exponential (Figure 5.3C & F), which could be partially explained by low level SPI-2 expression carry over from overnight growth in LB (Kröger *et al.*, 2013; Rice *et al.*, 2015).

Figure 5.2 Growth of 4/74 and isogenic mutants in SPI-2 inducing media (InSPI2). Growth curve of WT, Δfnr , $\Delta ssrAB$ and $\Delta ssrAB/fnr$ in aerobic InSPI2. Strains were grown as described in Section 2.2.3.2. The dotted line indicates OD₆₀₀ 1.0.

5.2.2 Intramacrophage survival of S. Typhimurium

As previously described, Δfnr has been found to be attenuated in mice, murine macrophages and in *C. elegans* (Fink *et al.*, 2007; Rollenhagen & Bumann, 2006; Wang *et al.*, 2019). In this study we infected RAW 264.7 murine macrophages at a multiplicity of infection of 10:1 with *S*. Typhimurium 4/74 and isogenic mutants. The $\Delta rpoE$ mutant was used as a negative control for intramacrophage replication for all infection experiments (Helaine *et al.*, 2010). Bacterial uptake between strains was not significantly different at 1 h post infection (**Figure 5.4A** & C), Δfnr was attenuated at 4 h and 8 h post infection, and WT and fnr^+ were not significantly different (**Figure 5.4 B** & D). Interestingly, there were fewer total CFU/mL in the Δfnr mutant at 16 h post infection, but the fold replication for WT and Δfnr was not significantly different (**Figure 5.4D**). This was interesting when compared to the result obtained by Fink et al., as they saw attenuation of the mutant to 20 h post infection (Fink *et al.*, 2007). However, they used primary murine macrophages and the *S*. Typhimurium strain 14028s while we used RAW 264.7 murine macrophages and strain 4/74. These differences may account for the differences seen here.

Next, we measured intramacrophage *ssaG* expression from cells infected with WT and Δfnr cells transformed with the pDEW201-P_{ssaG} plasmid (Figure 5.5). While cells harbouring plasmids were taken up by macrophages at the same level as non-transformed cells and showed similar levels of replication at 4 h post infection (Figure 5.5A), replication of the pDEW201-P_{ssaG}-harbouring cells was significantly lower at 8 and 16 h post infection (Figure 5.5A & B). The WT strain with the pDEW201 empty vector had significantly lower replication only at 16 h post infection, and not nearly to the extent of the pDEW201-P_{ssaG} harbouring cells (Figure 5.5B). This is due to the inherent fitness cost associated with maintaining plasmids and high levels of luminescent proteins in the cell (Knodler et al., 2005). While there was very little detectable signal due to low cell concentration at 1 and 4 h post infection, Δfnr had significantly higher ssaG expression at 8 h post infection. Interestingly, although there were the most cells present at 16 post infection, there was very little signal detected (Figure 5.5C). These results indicate that at 8 h post infection, while Δfnr is attenuated, there is also increased SPI-2 expression. Interestingly, this does not agree with in vitro results where SPI-2 was more highly expressed in WT cells (Figure 5.3). Possibly, over expression of SPI-2 in murine macrophages is energetically disadvantageous for cells.

Finally, we were interested to see what effect growth of cells in microaerobic MMA prior to infection would have on intramacrophage survival. Firstly, the macrophage uptake of WT and Δfnr were approximately 22- and 15-fold lower, respectively in cells grown in microaerobic MMA (Figure 5.6A & C). Cells grown in MMA were unable to reach the number of CFU/mL attained by those grown in LB by 16 h post infection (Figure 5.6A), however the Δfnr mutant was attenuated (Figure 5.6B & E). Interestingly, although starting from smaller numbers, the fold replication of MMA grown cells was significantly higher in WT and was similar in Δfnr by 16 h post infection (Figure 5.6D). Although macrophages phagocytose bacterial cells, up-regulated SPI-1 probably increases the number of infected cells (Drecktrah et al., 2005). The most substantial difference between the LB and MMA grown cells is that LB grown cells have increased SPI-1 expression, which we have seen was at similar levels in WT and Δfnr from Western blots of SopE (Figure 3.16). Additionally, cells are stressed after growth in a minimal medium as compared to a rich growth medium such as LB which may have initially impaired their ability to replicate in vivo. Overall, we see that the Δfnr is attenuated in vivo which could be attributed to previously reported inability to protect against ROS (Fink et al., 2007) but also overexpression of SPI-2 resulting in a reduction of fitness.

Figure 5.4 The Δfnr mutant is attenuated in murine macrophages at early time points. Survival of WT, Δfnr , fnr^+ and $\Delta rpoE$ up to 8 h post infection. A. Total viable cells post infection and B. the number of viable cells expressed as fold replication over 1 h post infection. Survival of WT, Δfnr and $\Delta rpoE$ up to 16 h post infection. C. Total viable cells post infection and D. the number of viable cells expressed as fold replication over 1 h post infection. RAW 264.7 macrophages were infection with stationary phase *S*. Typhimurium cells with an MOI of 10:1. Statistical significance determined by Two-way ANOVA with Dunnett's multiple comparisons test to WT; Only statistically significant differences are shown; $* = p \le 0.05$, $** = p \le 0.01$, and $*** = p \le 0.001$; Error bars represent standard deviation.

Figure 5.5 Plasmid carriage reduced intramacrophage replication and SPI-2 expression was elevated at early time points in Δfnr during infection.

Survival of WT, Δfnr , $\Delta rpoE$, WT pDEW201, WT P_{ssaG}::lux and Δfnr P_{ssaG}::lux up to 16 h post infection. A. Total viable cells post infection and B. the number of viable cells expressed as fold replication over 1 h post infection. C. Intramacrophage expression of *ssaG*. Statistical significance determined for A & B by Two-way ANOVA with Dunnett's multiple comparison's test to WT, and for C by Two-way ANOVA with Tukey's multiple comparisons test; Only statistically significant differences are shown; * = p ≤ 0.05, ** = p ≤ 0.01, and *** = p ≤ 0.001; Error bars represent standard deviation.

Figure 5.6 Growth in MMA prior to infection reduces bacterial uptake but increases fold replication in WT.

significant differences are shown; $* = p \le 0.05$, $** = p \le 0.01$, and $*** = p \le 0.001$; Error bars represent standard deviation. number of viable cells expressed as fold replication over 1 h post infection, E. the number of viable cells expressed as fold replication over 1 h post viable cells post infection, MMA inoculum only, C. fold change in bacterial uptake in WT and Δfnr from cells grown in LB compared to MMA, D. the infection, MMA inoculum only. Statistical significance determined by Two-way ANOVA with Sidak's multiple comparisons test; Only statistically Survival of WT, Δfnr , $\Delta rpoE$ up to 16 h post infection when inoculum was grown in LB compared to MMA. A. Total viable cells post infection, B. Total

5.2.3 Contribution of alternative electron acceptors to growth and SPI-2 expression

In this study we primarily examined expression of SPI-2 when cells reached an OD_{600} of 0.3. To determine if expression was present throughout growth, kinetic gene expression assays were conducted over 28 h. Cells were transformed with pDEW201-PssaG, a low copy plasmid that produces luciferase upon activation of the ssaG promoter. Throughout these assays, $\Delta ssrAB$ pDEW201-P_{ssaG} was used as a negative control for SPI-2 expression. When grown under microaerobic conditions in MMA, *ssaG* expression in Δfnr was >2-fold higher than WT over 28 h, with the highest expression (>1 \times 10⁶ RLU) at 6 h, decreasing to approximately 5.5×10^5 RLU in mid-exponential growth, and the lowest in stationary phase, 3.5×10^5 RLU (Figure 5.7A). The growth of WT and $\Delta ssrAB$ was the same, while Δfnr grew considerably slower (Figure 5.7A). To test whether addition of alternative electron acceptors had an influence on SPI-2 expression we grew cells in MMA without fumarate and TMAO (MMA⁻), with only fumarate (MMA^{+F}), and only TMAO (MMA^{+T}). In MMA⁻, ssaG expression in WT was comparable when grown in MMA, however, in Δfnr , ssaG expression remained higher than WT but less than 5×10^5 RLU for 28 h (Figure 5.7B), and the lack of electron acceptors slowed the growth of all strains. When supplemented with only fumarate (MMA^{+F}), cells had similar growth to that of MMA, however *ssaG* expression in Δfnr remained much lower (Figure 5.7C). Growth in MMA^{+T} yielded increased expression of *ssaG* in WT and a small increase in Δfnr compared to MMA, with the highest expression for both strains in early exponential phase (Figure 5.7D). However, when grown in MMA^{+T} all strains grew slower than in MMA. The MMA experiments showed that expression of SPI-2 in Δfnr is aided by addition of TMAO as an alternative electron acceptor, while fumarate may act as an electron acceptor and as an additional carbon source. Overall, the growth of Δfnr was always slower in MMA regardless of the addition of alternative electron acceptors, which is correlated with increased SPI-2 expression.

Figure 5.7 Growth and *ssaG* expression in MMA with and without alternative electron acceptors.

Cultures were grown as previously described (Section 2.2.3.2) and sampled every 1 to 2 h depending on the growth rate of the culture. Samples were measured for growth and luminescence. Cultures were grown in A. MMA with both electron acceptors fumarate and TMAO, B. MMA without alternative electron acceptors, C. MMA with only fumarate added and D. MMA with only TMAO added. For all graphs growth is shown by connected points bright colours) and correspond to values on the left y-axis and *ssaG* expression is shown by filled areas (light colours) and correspond to values on the right y-axis. Error bars represent standard deviation.

5.2.4 Relative fitness in vitro

The correct spatial and temporal programming for gene expression is necessary to avoid incurring fitness costs. This is especially important during pathogenesis, when S. Typhimurium encounters a series of stressful environments and must out-compete the host microbiota to establish successful infection. By removal of specific regulatory proteins gene expression is altered under certain growth conditions. In the following experiments isogenic mutants of S. Typhimurium 4/74 were grown in co-culture to determine which strain

possessed a fitness advantage. The strains WT, Δfnr , $\Delta ssrAB$ and $\Delta ssrAB/fnr$ were transduced with a chloramphenicol resistance cassette (Cm^R) replacing the SL1483 gene, a transposase pseudogene which was unlikely to cause a reduction in fitness by removal. These strains will be referred to as WT-Cm^R, Δfnr -Cm^R, $\Delta ssrAB$ -Cm^R and $\Delta ssrAB/fnr$ -Cm^R for brevity. The competitive index (CI) was determined as described in Section 2.2.9, but briefly a CI of 1 indicates there was no difference between strains, while a CI above 1 indicates a fitness advantage and below 1 a disadvantage. Strains were competed against themselves (e.g. WT versus WT-Cm^R) to determine if the introduction of the Δ SL1483::Cm^R was detrimental to fitness. In the graphs below the y-axis shows the log2 CI value, but data points are labeled with non-log adjusted average CI values.

First, we compete Δfnr against each of $\Delta ssrAB$, WT and $\Delta fnr/ssrAB$ in microaerobic MMA and the introduction of Δ SL1483::Cm^R did not seem to be detrimental to strains under this condition (Figure 5.8). As expected, due to the serious growth defect in Δfnr in microaerobic MMA it was outcompeted by all strains. In Δfnr versus $\Delta fnr/ssrAB$ we see that the abolishment of SPI-2 expression resulted in a fitness advantage to $\Delta fnr/ssrAB$, suggesting that the expression of SPI-2 is detrimental under these growth conditions (Figure 5.8C). Next we performed a competition between WT and $\Delta ssrAB$ in SPI-2 inducing media. Unfortunately, under these conditions the ΔSL1483::Cm^R mutation in WT was detrimental to fitness (Figure 5.9). However, we could still gain insight from the WT versus $\Delta ssrAB$ - Cm^{R} , as the mutation had no effect on the fitness of $\Delta ssrAB$ under these conditions. Here we see a similar result as the Δfnr versus $\Delta fnr/ssrAB$ MMA competition, where the WT strain expressing SPI-2 was outcompeted by the non-expressing $\Delta ssrAB$ strain (Figure 5.9). Finally, we performed competitions in microaerobic LB, a condition in which there is little SPI-2 expression and no growth defects between the mutants (Figure 5.3D). Interestingly, the WT and $\Delta ssrAB$ both outcompeted Δfnr (Figure 5.10A & B). This is likely due to the ability of WT and $\Delta ssrAB$ to express anaerobic metabolism genes, however $\Delta fnr/ssrAB$, also outcompeted Δfnr (Figure 5.10C), suggesting that the small amount of SPI-2 expression seen at late stationary phase may be sufficient to cause a detriment to fitness of Δfnr in microaerobic LB. When we competed WT against $\Delta ssrAB$, neither strain was more fit (Figure 5.10D). These results provide insight into the energetic burden caused by expression of SPI-2 genes. Previously it has been shown that expression of SPI-1 genes imposed a growth penalty in vitro (Sturm et al., 2011), and in an Δhns mutant, deletion of SPI-1 particularly, and SPI-2 to a lesser extent restored growth (Ali et al., 2014). These data

suggest that expression of SPI-2 can also impose a fitness disadvantage under *in vitro* conditions where it is not necessary for expression of the virulence genes.

Figure 5.8 The Δfnr mutant has reduced fitness in microaerobic MMA.

Relative fitness assays showing *in vitro* co-culture competitions in microaerobic MMA between A. Δfnr and $\Delta ssrAB$, B. Δfnr and WT, and C. Δfnr and $\Delta fnr/ssrAB$. The y-axis shows log2 transformed competitive indices, and each competition is labeled with the CI (non-log transformed). The dotted grey line indicates a CI of 1, where there is no difference between strains. Error bars represent standard deviation.

Figure 5.9 In SPI-2 inducing conditions the $\triangle ssrAB$ mutant outcompetes WT.

Relative fitness assays showing *in vitro* co-culture competition in aerobic inSPI2 between WT $\Delta fnr/ssrAB$. The y-axis shows log2 transformed competitive indices, and each competition is labeled with the CI (non-log transformed). The dotted grey line indicates a CI of 1, where there is no difference between strains. Error bars represent standard deviation.

Figure 5.10 The Δfnr mutant has reduced fitness and WT and the $\Delta ssrAB$ are equally "fit" in microaerobic LB.

Relative fitness assays showing *in vitro* co-culture competitions in aerobic LB between A. Δfnr and WT, B. Δfnr and $\Delta ssrAB$, C. Δfnr and $\Delta fnr/ssrAB$, and D. WT vs $\Delta ssrAB$. The yaxis shows log2 transformed competitive indices, and each competition is labeled with the CI (non-log transformed). The dotted grey line indicates a CI of 1, where there is no difference between strains. Error bars represent standard deviation.

5.2.5 Proteomic study of Δfnr

The Δfnr mutant has been studied primarily from a transcriptomic point of view. Only one very recent study has attempted to elucidate the FNR regulon at a proteomic level (Wang *et al.*, 2019), however they have grown cells in anaerobic MOPS buffered LB with xylose, a medium shown not to allow expression of SPI-2 in Δfnr (Fink *et al.*, 2007). In this study, we have used mass spectrometry to investigate the energy metabolism of WT and Δfnr in microaerobic MMA and to identify abundant proteins which may occur only in the mutant. In the WT, 841 proteins were detected and in the Δfnr , mutant 617 proteins were detected, and 524 proteins were common between the two (Figure 5.11). All detected proteins and absolute and relative quantities can be found in Tables S9 and S10 in Appendix IV.

The proteomic data identify abundant proteins found in the cytoplasm, however, proteins missing from the data set are not necessarily absent from cells, instead their abundance may be too low to be detected. Detected proteins included highly abundant proteins such as ribosomal subunits (Rpl, Rpm, Rps), RNA polymerase subunits (RpoA, RpoB, RpoC, and RpoZ), sigma factor RpoE. RpoE is a sigma factor typically associated with membrane stress but has been shown to be involved in upregulation of genes when transiting from aerobic to microaerobic environments in E. coli, which might explain its presence here (Partridge et *al.*, 2007). RpoD was only found in the Δfnr mutant, however this is likely due to an issue in relative abundance of proteins in the WT. Proteins detected in both WT and Δfnr also included a wide variety of nucleotide and amino acid biosynthesis proteins, which was expected as minimal media does not provide these nutrients. Nucleoid associated proteins and transcriptional regulators are highly abundant proteins in the cell cytoplasm (Cai & Inouye, 2002; Dillon & Dorman, 2010). Found in both the WT and Δfnr proteomes were proteins including H-NS, both IHF subunits, HU alpha subunit, LRP, Dps and OmpR. Curiously, the HU beta subunit and CRP were only found in the WT. Indeed, hupB and crp were downregulated 0.73 and 0.80-fold in Δfnr respectively according to RNA-seq data, therefore their abundance may have been too low to be detected. Fis was not present in either strain which is likely due to the poor nutrient content of the minimal medium. Although cells were taken at an OD₆₀₀ of 0.3, in MMA FT, cells would not be considered to be at early exponential growth. WT and Δfnr cultures inoculated at a starting OD₆₀₀ of 0.005 take approximately 12 h and 20 h to reach OD₆₀₀ 0.3 respectively. This may explain the presence of Dps and absence of Fis. This finding is contradictory with the literature which finds that Fis is required for ssaG expression or full SPI-2 expression in S. Typhimurium (Fass & Groisman, 2009; Lim *et al.*, 2006) as there is highly induced expression of *ssaG* and 37 other SPI-2 encoded genes and effectors in this condition. Other highly abundant proteins found in both WT and Δfnr included outer membrane proteins (OmpA, OmpC, OmpD, OmpF, OmpS, and OmpX), and chaperonin proteins GroEL/GroES, and DnaK. FNR was not detected in WT cells, and ArcA and ArcB were not at detectable concentrations in either strain.

We categorized the detected proteins into clusters of orthologous groups (COGs) according to the COGs as defined at http://www.ncbi.nlm.nih.gov/COG (Figure 5.12). They are presented as percentage of detected protein. In general, the growth of both the WT and Δfnr were comparable to stationary phase cultures even though samples were taken at OD_{600} 0.3, and the *fnr* mutation did not seem to have any major effects when compared to WT. Energy production and conversion, cell wall and to a lesser extent post-translational modification were the most differentially detected protein categories. Under energy metabolism, as expected anaerobic proteins were produced less in Δfnr . This includes expected candidates, such as fumarate reductase, pyruvate lyase, but also a number of propanediol utilization genes, which are expressed in the intestine (Faber et al., 2017; Jakobson & Tullman-Ercek, 2016). Interestingly, the Wang et al., study found that FNR directly repressed propanediol degradation (Wang et al., 2019) however, our results suggest that it indirectly activates these genes thus resulting in increased protein in the WT. This suggests that FNR plays a dual role in the regulation of propanediol degradation depending on available nutrients. The slower growth of the mutant may be due to decreased anaerobic metabolism proteins as Δfnr struggles to produce energy efficiently. Slower growth of the mutant may also be due to the increased proportion of chaperones and proteases, since this can result in depleted protein synthesis under energy deficiency. Although, the *fnr* mutation generates an energy shortage under these conditions the WT is also already disadvantaged due to the poor growth conditions provided by MMA and low oxygen concentration, so the effects in Δfnr are moderate.

While this proteomics study provides valuable information into the energetics of the Δfnr mutant compared to WT, because of the number and abundance of metabolic proteins we were unable to detect many SPI-2 encoded proteins. We were able to detect the highly expressed SPI-2 effector proteins proteins SseA and SifB in the Δfnr mutant and not the WT. Transcriptomic data previously revealed that *sseA* and *sifB* were upregulated 9.4-fold and 7.5-fold above WT, respectively. The presence of abundant SseA and SifB effector proteins

potentially indicates that the remaining upregulated genes identified by RNA-seq may also be translated and present in Δfnr cells. Many of the other most highly upregulated SPI-2 genes are SPI-2 T3SS apparatus proteins and would likely be localized at the cell envelope, meaning they would be excluded from the cytoplasmic preparation for this experiment. In addition to SPI-2 effectors, SopB, a SPI-5 encoded, SPI-1 regulated effector was also detected in only the Δfnr mutant. However, there is no difference in transcription of *sopB* between the WT and Δfnr mutant, and the absolute expression was low.

Figure 5.11 Venn diagram representing proteins detected by mass spectrometry in WT and Δfnr .

The blue circle represents the total number of proteins detected in the WT and the red circle represents the total number of proteins detected in the Δfnr mutant. The overlapping region indicates the number of proteins that were the same between both samples.

Figure 5.12 Classification of abundant proteins from WT and *Afnr* into COG categories.

percentage of detected proteins which fit into each COG category. Proteins detected in WT and Δfnr cells were sorted into COG categories as defined by http://www.ncbi.nlm.nih.gov/COG. This graph represents the

5.3 Discussion

5.3.1 SPI-2 regulation by FNR in vitro and in vivo

We have shown that in microaerobic MMA SPI-2 is directly repressed by FNR in response to changes in oxygen concentration. Evidently, the addition of alternative electron acceptors fumarate and TMAO enhance that expression (**Figure 5.7**). Previous studies show that SPI-2 expression is not regulated by FNR in MOPS buffered LB with xylose under anaerobic conditions (Fink *et al.*, 2007; Wang *et al.*, 2019), and we see minimal expression of SPI-2 in microaerobic LB (**Figure 5.3D**). Surprisingly, in microaerobic InSPI2 media, FNR acted as an activator of SPI-2. This suggests that FNR may play a dual role in the regulation of SPI-2 in accordance with exogenous environmental signals besides oxygen. However, when we measured SPI-2 expression in infected macrophages, SPI-2 expression was significantly higher in Δfnr (**Figure 5.5C**). This exposes a fundamental difference between *in vitro* and *in vivo* conditions. Further work is certainly required to elucidate the role of FNR in *vivo*, and to eliminate the problems of plasmid carriage and expression vectors it would be favourable to use a technique such as dual RNA-seq (Westermann & Vogel, 2018).

5.3.2 Attenuation of Δfnr in murine macrophages

Findings from Fink *et al.* and in this study suggest that FNR is important inside the phagosome of murine macrophages (Fink *et al.*, 2007). While this environment is not completely anaerobic, we have shown that FNR is active under low oxygen conditions, not only anaerobiosis, *in vitro*. Additionally, in *E. coli*, expression of FNR activated operons such as *frd* and *dms* are expressed at up to 10% O₂ saturation (Shalel Levanon *et al.*, 2005; Tseng *et al.*, 1996). The partial pressure of oxygen (pO_2) of the macrophage phagosome of *ex vivo* murine macrophages has also been observed at levels as high as 79.8 ± 1.6 to $32.6 \pm 1.7 \mu$ M, depending on the density of the macrophages (James *et al.*, 1995). Furthermore, the production of reactive oxygen species (ROS) and oxygen consumption by macrophages and phagocytosed *S*. Typhimurium are expected to further decrease the pO_2 in the phagosome. Moreover, the pO_2 inside *ex vivo* macrophages almost certainly different from the pO_2 of *in vivo* macrophages (Atkuri *et al.*, 2005). A decrease in oxygen concentration in the murine gut from ~11% to ~2% upon infection with *S*. Typhimurium has been observed, and hypoxia enhanced SPI-2 transcription, translocation of SPI-2-encoded virulence proteins and intramacrophage replication *in vivo* (Jennewein *et al.*, 2015). More investigation into the

exact oxygen concentrations of macrophages both *ex vivo* and *in vivo* is required to elucidate the exact mechanism of FNR inside of host cells.

Despite the lack of information concerning the exact oxygen concentrations and mechanisms of intramacrophage FNR activity, it is certain that SPI-2 is necessary for the survival and intracellular replication of *S*. Typhimurium. YdgT has been previously identified as a repressor of SPI-2 expression, and negative control over this virulence system is central to systemic pathogenesis because ydgT mutants overexpressing virulence genes are ultimately attenuated during infection (Coombes *et al.*, 2005). As we have shown earlier, FNR binds to the promoter of ydgT and to a probable cis-acting sRNA. Potentially, FNR is able to indirectly modulate SPI-2 expression *in vivo* through control of YdgT. Another possibility of FNR influence on macrophage survival is through regulation of ethanolamine genes. In the Fink et al. study, FNR activated ethanolamine utilization genes (Fink *et al.*, 2007). A recent study found that EutH, an ethanolamine permease, is required for ethanolamine utilization at low pH and vacuole adaptation during macrophage infection (Anderson *et al.*, 2018). Thus, FNR activation of *eutH* during infection may also explain the attenuation of Δfnr in macrophages.

5.3.3 Fitness of Δfnr

While the proteomics investigation in this study provides valuable information into the energetics of the Δfnr mutant compared to WT and helps us to understand the growth defects in Δfnr , because of the number and abundance of metabolic proteins in both WT and Δfnr we were unable to detect many SPI-2 encoded proteins. A more recent proteomics study used the approach of fractionation of proteins by SDS-PAGE prior to in-gel protein digestion and mass spectrometry which allowed them to identify more than just the most abundant protein in the cell (Wang *et al.*, 2019). Another useful approach might be to use two-dimensional difference gel electrophoresis (2D DIGE) to recognize differentially expressed proteins with the most difference between samples (Joshi & Patil, 2017; Marouga *et al.*, 2005). This would add another layer of information to our data sets and help identify where there may be post-translational differences in regulation from what is seen in transcriptomic data.

Chapter 6 General Discussion

6.1 Importance of this study

6.1.1 Context of the study

Salmonella enterica is a medically important zoonotic pathogen that causes a range of diseases from gastroenteritis to Typhoid fever. Non-host adapted serovars of *Salmonella enterica*, such as *S*. Typhimurium, are considered successful pathogens as these serovars can colonize a wide range of hosts, survive a series of stressful events during the infection process, find nutritionally compatible niches inside the host, avoid, subvert, and/or evade the host innate and adaptive immune responses, replicate using resources found in the host, exit and transmit to new hosts and, in susceptible hosts, disseminate and cause systemic infection (Fabrega & Vila, 2013) (Figure 1.1).

S. Typhimurium establishes infection through the integration of a multitude of environmental signals through regulatory molecules including transcription factors and small RNAs. This allows the coordination of gene expression at the transcriptional and posttranscriptional levels in a precise spatiotemporal manner. The careful coordination of gene expression by regulatory molecules ensures that S. Typhimurium expresses only the genes and proteins necessary for survival and proliferation under each specific environmental condition, while avoiding loss of bacterial fitness due to inappropriate or wasteful gene expression (Groisman & Mouslim, 2006; Sengupta & Bhadauria, 2014). An understanding of the complex signals, regulatory inputs and pathways that result in the transcriptional activation or repression of virulence-associated genes provides insight into the steps necessary to establish an infection. Many studies have focussed on the signals which control the expression of virulence factors through transcriptional regulators particularly as they relate to the intracellular environment or media which mimic intracellular conditions in vitro (Colgan et al., 2016; Cirillo et al., 1998; Fass & Groisman, 2009; Hébrard et al., 2011; Knuff & Finlay, 2017; Kröger et al., 2013; Lee et al., 1999; Löber et al., 2006; Martínez et al., 2011; Srikumar et al., 2015; Xu & Hensel, 2010; Yoon et al., 2009) (Figure 1.3). But no studies have determined the signals or regulation which lead to low level SPI-2 gene expression prior to invasion of epithelial cells (Osborne & Coombes, 2011). There is increasing evidence that changes in environmental oxygen play a critical role in the timing and deployment of bacterial virulence factors, and that regulators of metabolism control the expression of genes imperative for causing infection and disease (Crofts et al., 2018;

Marteyn *et al.*, 2010). The transcription factor FNR is a global regulator of anaerobic metabolism and responds directly to oxygen concentration (**Figure 1.4**). FNR has been established as a regulator of genes involved in host-cell invasion such as components of the T3SS and chaperones encoded on SPI-1 (Fink *et al.*, 2007; Wang *et al.*, 2019). Furthermore, FNR is required for full virulence in the murine model, and a mutant lacking this transcription factor is rapidly killed by macrophages (Fink *et al.*, 2007; Rollenhagen & Bumann, 2006). The SPI-2 T3SS and an intact SCV are required for evasion of ROS in macrophages (van der Heijden *et al.*, 2015), and FNR helps to promote resistance against oxidative stress although the mechanism has not been described (Fink *et al.*, 2007).

In this study, we used an RNA-seq-based transcriptomic approach combined with ChIP-seq to expand the regulon of FNR, under microaerobic conditions in a glycerol/trimethylamine N-oxide/fumarate minimal medium (MMA) (Constantinidou *et al.*, 2006), in *S.* Typhimurium. The use of this medium and RNA-seq has allowed identification of SPI-2 and other virulence-associated genes and sRNAs as targets for FNR gene regulation. RNA-seq provides an unbiased picture of all genes which are being actively transcribed, with no requirement for previous knowledge of the sequence which is being transcribed (Croucher & Thomson, 2010; Ozsolak & Milos, 2010), while ChIP-seq enabled mapping of FNR binding sites in a global and high-throughput fashion (Bonocora & Wade, 2015; Galagan *et al.*, 2012; Myers *et al.*, 2015). We also investigated the role of FNR in murine macrophages and the relative bacterial fitness of the Δfnr mutant.

6.1.2 Global analysis of FNR-mediated regulation in S. Typhimurium

To our knowledge, the work presented here is the first large scale study to combine transcriptomic and global protein-DNA binding that has been carried out in an Δfnr mutant of *S*. Typhimurium using high throughput next generation sequencing. In total, 482 genes and sRNAs were regulated directly or indirectly by FNR under microaerobic conditions in MMA. 286 genes were activated by FNR and 196 were repressed (**Figure 3.7**). We were able to corroborate existing data associating FNR as an activator of anaerobic metabolism (**Figure 3.8**), cell motility and chemotaxis (**Figure 3.17**, **3.18** & **3.19**), and reveal FNR as a newly identified repressor of *Salmonella* pathogenicity island 2 (**Figure 3.9** & **4.11**). The use of RNA-seq rather than microarray-based technology has also allowed us to identify 42 differentially expressed small non-coding RNAs in an Δfnr background (**Table 3.1**, **3.2**, & **Figure 3.20**). ChIP-seq allowed identification of 288 putative FNR binding sites across the

entire *S*. Typhimurium chromosome and plasmids under microaerobic growth conditions in MMA (**Figure 4.4B**). Approximately 19% of differentially expressed genes in this study were associated with peaks from ChIP-seq (**Figure 4.4C**). We were able to validate through ChIP-seq and EMSA that FNR acts as a direct repressor of *Salmonella* pathogenicity island 2 through direct repression of the response regulator *ssrB* and the apparatus gene *ssaB*. Consequently, FNR indirectly represses the remainder of SPI-2 genes through the repression of *ssrB*. ChIP-seq also revealed FNR binding sites at SPI-2 associated genes encoded outside of the island, which could be validated in the future.

Under oxygenated conditions, we see moderate levels of SPI-2 expression in WT and Δfnr (Figure 3.13 & 3.14). Furthermore, it is apparent that an additional metabolic signal, other than oxygen, is important for regulation of SPI-1 or SPI-2, as expression of these loci in Δfnr is different dependent on growth media and conditions (Figure 3.9, 3.10A, 5.3, 5.5C) (Fink *et al.*, 2007; Wang *et al.*, 2019). However, this was not the case for expression of motility and chemotaxis genes, which are universally down-regulated in Δfnr regardless of media composition (Figure 3.17 & 3.19) (Fink *et al.*, 2007). What this study highlights, is that the control of virulence expression is more complex and nuanced than originally conceived, and expression can vary dependant on numerous environmental factors which are integrated by multiple transcriptional and post-transcriptional regulators, many of which have not yet been identified.

In the context of *S*. Typhimurium infection, oxygen has previously been shown to be an important signalling molecule, but primarily for adhesion, invasion and SPI-1 expression (Ernst *et al.*, 1990; Lee & Falkow, 1990; Schiemann & Shope, 1991; Fink *et al.*, 2007). Our results show that the SPI-2 priming of *S*. Typhimurium cells *in vivo* (Brown *et al.*, 2005, Osborne & Coombes, 2011) could be a result of cells detecting oxygen at the epithelial border of the intestine through a mechanism involving FNR. Here we describe how can FNR act directly as a transcriptional repressor at SPI-2 promoters, especially *ssrB* and *ssaB*, to cause repression under oxygen-limited conditions, and for that repression to be lifted when oxygen concentrations are increased and allow expression of SPI-2 encoded and associated genes (**Figure 6.1**).

Figure 6.1 Model of SPI-2 repression by FNR under changing oxygen conditions.

The intestinal lumen is an anaerobic environment (blue) however, there is a zone of relative oxygenation adjacent to the gastrointestinal tract mucosa (red), caused by diffusion of O_2 (arrows) from the capillary network at the tips of villi. Under anaerobic and microaerobic conditions the active FNR dimer can bind to DNA, however when sufficient oxygen is detected by iron-sulphur clusters bound to FNR, the dimer dissociates to form apo-FNR and is no longer able to bind DNA. Under low oxygen conditions FNR binds directly to and represses expression from the promoter of the SPI-2 response regulator *ssrB*, *ssaB* and promoters of SPI-2 genes. Under aerobic conditions the virulence genes are derepressed allowing preemptive synthesis of important virulence factors in preparation for the harsh intracellular environment of host cells.

6.2 Future prospects

There are many possibilities for the development of this work in the future. The long term aim for this study is that the data presented here will contribute to the complete description of molecular biological networks within *S*. Typhimurium. Below, several avenues for future research are discussed using this work as a starting point.

6.2.1 Signals for expression of virulence

As previously discussed, it is unclear what component in MMA allows for SPI-2 expression as the medium does not incorporate signals which have typically been required for SPI-2 expression (Deiwick *et al.*, 1999; Löber *et al.*, 2006; Xu & Hensel, 2010). However, it may be in part due to the presence of alternative electron acceptors such as fumarate and TMAO (**Figure 5.7**). We identified a near consensus FNR binding motif in the promoter region of a potential class I fumarase homologue *orf70 (fumD)* also encoded within SPI-2 (**Figure 4.5**). This mesaconase/fumarase enzyme has not been studied in *S*. Typhimurium, however the location of *orf70* would suggest that mesaconate or fumarate may be important signalling molecules for SPI-2 (Kronen & Berg, 2015). Further investigation into other alternative electron acceptors, such as tetrathionate, nitrate or thiosulphate, as signals for virulence regulation is also warranted. These molecules are found in the gut in response to bacteriainduced inflammation (Thiennimitr *et al.*, 2012; Winter *et al.*, 2010; 2013) and interestingly, it has been demonstrated that FNR is involved in regulation of tetrathionate and nitrate metabolism (Prince-Carter et al., 2001). Moreover, the genes encoding tetrathionate respiration proteins, *ttrRSBCA*, are encoded within SPI-2 (Hensel *et al.*, 1999). Tetrathionate also shares another link with FNR as the molecule supports B12-dependent anaerobic growth of *S*. Typhimurium on ethanolamine or 1,2-propanediol (Price-Carter *et al.*, 2001). Fink et al., showed that FNR activates expression of ethanolamine utilization genes and a recent study found that EutH, an ethanolamine permease, is required for ethanolamine utilization at low pH and vacuole adaptation during macrophage infection (Anderson *et al.*, 2018; Fink *et al.*, 2007). Thus, FNR activation of *eutH* during infection may also explain attenuation of Δfnr in macrophages. In another recent study, propanediol degradation proteins were upregulated in Δfnr under anaerobic growth in MOPS buffered LB with xylose (Wang *et al.*, 2019), and our study revealed that the *pdu* and *cbi* operons were down-regulated in Δfnr , and Pdu proteins were more abundant in WT. These links between the metabolism of molecules commonly found in the gut and virulence should certainly be investigated further.

6.2.2 sRNAs, the missing link?

Through our transcriptomic investigation we found that there were multiple virulenceassociated sRNAs which were differentially expressed in Δfnr (**Table 3.1**, **3.2**, & **Figure 3.20**). Previously, sRNAs had been overlooked in large-scale investigations into the regulatory pathways involved in controlling gene expression in bacteria (Altuvia & Wagner, 2000). The discovery of vast numbers of sRNAs, with diverse mechanisms of action and physiological functions, in many studied bacterial species, highlight the integral role played by sRNAs in bacterial gene regulation, usually at the post-transcriptional level (Kröger *et al.*, 2013; Ryan *et al.*, 2017; Vogel, 2009). While more work is still required to determine the roles of the majority of sRNAs in *S*. Typhimurium, there are a few specific links with FNR which warrant more investigation.

The largest sRNA regulon belongs to *GcvB*, a sRNA which controls expression of ~1% of the *S*. Typhimurium genome (Hébrard *et al.*, 2012; Sharma *et al.*, 2007; 2011). Noteably, in our data set *GcvB* was the most highly upregulated transcript (approximately 13-fold) in Δfnr (**Table 3.2**). While the role of *GcvB* seems to be involved primarily in the downregulation of amino acid and peptide transporters (Sharma *et al.*, 2011), these processes have recently been suggested to be important for efficient host cell invasion (Miyakoshi, 2019). Additionally, *GcvB* negatively regulates the global regulator Lrp (Sharma *et al.*, 2011). This is of particular interest as Lrp is a known repressor of SPI-2. It binds directly to a consensus

motif at the *ssrA* promoter which results in down-regulation of SPI-2 genes (Baek *et al.*, 2009). Thus, there may be additional control of SPI-2 through a regulatory pathway where under low oxygen conditions FNR represses *GcvB*, which then allows repression of SPI-2 through Lrp, and conversely under aerobic conditions, repression of *GcvB* is lifted causing a downregulation in *lrp* mRNA and expression of SPI-2.

Another potential link of FNR to virulence genes expression through an sRNA exists within *FnrS*. In our study, *fnrS* was the most down regulated (approximately 35-fold) sRNA in Δfnr (**Table 3.1**). In a recent study, deletion of *FnrS* led to increased HilD production under low aeration conditions, and *FnrS* could bind to the *hilD* mRNA 5' UTR, resulting in translational repression (Kim *et al.*, 2018). The authors discuss the importance of *FnrS* on SPI-1 expression however fail to mention the potential impact of HilD-mediated crosstalk between SPI-1 and SPI-2 (Bustamante *et al.*, 2008). Our data reveal that *FnrS* expression is dramatically decreased in Δfnr and in aerated WT cultures (**Figure 3.2C**), and SPI-2 expression is increased under these conditions (**Figure 3.14**). Thus, in the absence of *FnrS*, HilD levels may be increased, contributing to the SPI-2 induction phenotype that we have observed.

When we examined the binding of FNR at the *ydgT* promoter region, ChIP-seq data showed a putative binding site near the P_{ydgT} . However, the peaks had the highest coverage at the TSS of an unannotated antisense transcript found in the *ydgT* promoter region (**Figure 4.12A**). A motif search also revealed a near consensus FNR binding motif at the 5' end of the antisense transcript (**Figure 4.5**). Further investigation into this antisense transcript is required but, we can speculate that it is directly regulated by FNR due to the presence of the near consensus FNR binding motif and up-regulation in Δfnr , and its position relative to *ydgT* makes it a prime candidate as a cis-acting sRNA which may post-transcriptionally repress *ydgT* under aerobic conditions.

There were no SPI-1 like RNAs found in the FNR regulon under microaerobic conditions in MMA. This is not surprising as SPI-1 genes in general were not highly expressed under these conditions (**Figure 3.10A**). The Fink et al. and Wang et al. studies used conditions conducive to SPI-1 expression however their approaches to FNR regulon identification left them unable to detect sRNAs (Fink *et al.*, 2007; Wang *et al.*, 2019). However, if the growth conditions used in the aforementioned studies were used and the regulon were assessed by RNA-seq, it is possible that SPI-1 like sRNAs may emerge as targets for FNR control.

6.2.3 Regulation of motility

It has been demonstrated that under very different growth conditions, FNR was an activator of motility and chemotaxis under low oxygen and anaerobic conditions (**Figure 3.17, 3.18** & **3.19**) (Fink *et al.*, 2007). However, we have shown that the regulation by FNR is indirect for genes with the exception of *fliC*, *fliD*, and *aer*, the gene encoding Aer the signal transducer for aerotaxis. Interestingly, a recent study demonstrated that SsrB can repress *S*. Typhimurium motility through direct binding to a region upstream of *flhDC* (Ilyas *et al.*, 2018). Thus, much of the down-regulation of motility, especially of early gene products can be explained by FNR activation of *ssrB*, leading to SsrB repression of motility. This link makes sense as FNR is intracellularly active, possibly leading to increased expression of *ssrB*, and thus down regulation of flagella which, has been observed in macrophage as a mechanism to hide from host defenses (**Figure 5.4, 5.6**) (Ibarra & Steele-Mortimer, 2009). Information on the intracellular role of FNR is lacking, and further investigation of this and of a possible link through SsrB to flagellar regulation is required.

6.2.4 Differences in virulence gene expression in Δ fnr based on strain

During the preparation of this thesis, a new study emerged with the goal of investigating the FNR regulon through a proteomics approach (Wang et al., 2019). The same growth conditions as the Fink et al. study were used (anaerobic growth in MOPS buffered LB with xylose), but surprisingly Wang et al., found contrasting results (Fink et al., 2007; Wang et al., 2019). In the microarray study SPI-1 was activated by FNR while in the proteomic study SPI-1 was found to be repressed by FNR. These results were explained by the difference in strain used in the studies. In the microarray study S. Typhimurium strain 14028S was used while strain SL1344 was used for the proteomic study. Interestingly, SL1344 is more invasive than 14028S due to heterogeneity in expression of Salmonella pathogenicity island 1 and the absence of the SPI-1 effector SopE in 14028S (Clark et al., 2011). While the growth condition in our study is quite different, we found that expression of SPI-1 was minimally activated by FNR, in agreement with the Fink et al study (Fink et al., 2007). In this study we have used strain 4/74, a strain which harbours *sopE* and differes from SL1344 by only 8 SNPs. Therefore, there may be another difference between the Fink et al. and Wang et al. studies which has not been accounted for. Strain 4/74 is a prototroph for histidine production that possesses a functional histidine biosynthetic pathway missing from SL1344 that is important for replication in the vacuolar environment of certain mammalian cells including macrophages (Henry *et al.*, 2005) which may help to explain differences in SPI-2 expression but not SPI-1. Clearly more work is needed on elucidating the specific difference between commonly used lab strains of *S*. Typhimurium especially as it pertains to mechanisms of virulence.

6.2.5 Limitations of our approach and existing technologies

As previously discussed, there are some limitations to the approach used in this study. Samples for RNA- and ChIP-seq are taken from a population of bacteria, which provide an average view of the transcriptomes of millions of cells. Genetically identical cells can often be phenotypically different and subpopulations of cells or outlier cells play important roles in disease outcome or antibiotic tolerance (Diard et al., 2013; Helaine et al., 2014). Additionally, our growth condition is heterogenous in nature, meaning we likely have very different expression in subpopulations throughout the oxygen gradient of the cultures. Single-cell RNA sequencing can reveal complex and rare cell populations, uncover regulatory relationships between genes and single-cell transcriptomic analysis will allow the detection of even more subtle, and often biologically significant, changes in gene expression that could be masked at the level of whole bacterial populations (Hwang et al., 2018). For ChIP-seq, there are currently no studies using single-cell ChIP-seq in bacteria or eukaryotic cells (Nakato & Shirahige, 2017) and bacteria present an even larger barrier to single-cell ChIP as the small size of individual bacterial cells means they contain far less DNA and protein than eukaryotic cells. DNA sequencing coverage is a major limitation of single-cell ChIP-seq, as the analysis requires large amounts of starting material (Nakato & Shirahige 2017).

Additionally, to provide proof of principle it would be ideal to sequence RNA extracted from an *in vivo* infection where we specifically look at transcription of cells in the gut lumen and at the epithelial border prior to host cell invasion, however, this is not yet possible. Recombinase-based *in vivo* expression technology (RIVET) is a sensitive reporter of gene expression which involves the construction of a transcriptional fusion to a site-specific recombinase, which mediates the loss of a selectable genetic marker. This technique was fundamental for finding SPI-2 expression at the epithelial border (Brown *et al.*, 2005) however, it can only detect expression of individual genes. Nonetheless, other interesting experiments can be done while new technologies and technique develop which could be very informative. The plasmids that were constructed in this study for examining promoters of SPI-2 genes (**Figure 4.13**) where constructed on a pCS26 plasmid which can be incorporated onto the chromosome in the same method used to build our *fnr*⁺ complementation strain (**Figure 2.1**) (Shivak *et al.*, 2016). In this way, we could measure kinetic *in vivo* expression from SPI-2 promoters with the problems associated with plasmid carriage. We are also interested in performing *in vivo* competitive fitness assays in mice with WT, Δfnr and with strain constructed with an oxygen insensitive FNR. These assays would help to further elucidate the role of FNR in *Salmonella* virulence and determine if Δfnr mutant is attenuated in various tissues of the gut and to see what effect an oxygen insensitive FNR has on virulence.

Furthermore, as can be observed from the Colgan *et al.* study, the targets of transcription factors may change depending on the growth condition, indeed the HilD regulon changes depending on the growth condition (Colgan *et al.*, 2016). Similarly, we see that the growth condition in the Fink *et al.* study is extremely different, and thus yielded a different FNR regulon from the current study (Fink *et al.*, 2007). Therefore, it is important to investigate regulons of TFs under more than one condition, especially in reference to TFs who play a role in virulence. Westermann *et al.* have recently shown that dual-RNA-seq can give important insight into the *ex vivo* transcriptome (Westermann *et al.*, 2016), and the group have recently made advances in toward cell type-specific *in vivo* dual-RNA-Seq (Frönicke *et al.*, 2018) which will be very useful techniques for precisely understanding *in vivo* transcriptional regulation and expression in the future.

6.3 Concluding remarks

Overall, we have used a combination of NGS techniques to expand the scope of the FNR regulon in *S*. Typhimurium and have established FNR as a direct repressor of SPI-2. This study demonstrates that oxygen is an important environmental signal and plays a critical role in the timing and deployment of *S*. Typhimurium virulence factors, and that FNR as a regulator of anaerobic metabolism, can also control the expression of genes critical for causing infection and disease. We have also shown that it is imperative to investigate bacterial regulator. Our particular focus on FNR regulation of SPI-2 under microaerobic conditions has revealed that, not only does FNR repress the expression of the SPI-2 encoded type three secretion system apparatus proteins, effectors and chaperones through direct regulation of the SPI-2 response regulator SsrB, but it also involved in the

direct repression of a great number of effectors and virulence relevant sRNAs encoded throughout the chromosome and on the *Salmonella* virulence plasmid. Furthermore, aerobic conditions relieved repression allowing for expression of virulence factors likely in preparation for the harsh intracellular environment of host cells (**Figure 6.1**). Moreover, we have provided additional evidence that oxygen is an important signalling molecule for the control of bacterial motility and that FNR is an important regular in both intra- and extracellular environments. Additionally, we have shown that the accurate spatiotemporal expression of SPI-2 is integral for maintenance of bacterial fitness. Importantly, analysis of our Δfnr RNA-seq-based transcriptomic data in conjunction with previously published datasets (Colgan *et al.*, 2016), will provide a more complete picture of mixed regulatory interactions within the cell. We hope that the addition of this data will help in the development of the full picture of all regulatory interactions and inputs involved in establishment of *S*. Typhimurium infection.

References

- Abrahams, G. L., Müller, P. & Hensel, M. (2006). Functional dissection of SseF, a type III effector protein involved in positioning the *Salmonella*-containing vacuole. *Traffic* 7, 950–965.
- Aikawa, C., Maruyama, F. & Nakagawa, I. (2010). The dawning era of comprehensive transcriptome analysis in cellular microbiology. *Front Microbiol* 1, 1–10.
- Ailion, M., Bobik, T. A. & Roth, J. R. (1993). Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of *Salmonella* Typhimurium. J Bacteriol 175, 7200–7208.
- Aizawa, S. I. (1996). Flagellar assembly in *Salmonella* Typhimurium. *Mol Microbiol* 19, 1–5.
- Ali, S. S., Soo, J., Rao, C., Leung, A. S., Ngai, D. H.-M., Ensminger, A. W. & Navarre,
 W. W. (2014). Silencing by H-NS potentiated the evolution of *Salmonella*. *PLoS Pathog* 10, e1004500–22.
- Ali, S. S., Whitney, J. C., Stevenson, J., Robinson, H., Howell, P. L. & Navarre, W. W. (2013). structural insights into the regulation of foreign genes in *Salmonella* by the Hha/H-NS complex. *J Biol Chem* 288, 13356–13369.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol 215, 403–410.
- Altuvia, S. & Wagner, E. G. (2000). Switching on and off with RNA. *PNAS* 97, 9824–9826.
- Anderson, C. J., Satkovich, J., Köseoğlu, V. K., Agaisse, H. & Kendall, M. M. (2018). The ethanolamine permease EutH promotes vacuole adaptation of *Salmonella enterica* and *Listeria monocytogenes* during macrophage infection. *Infect Immun* 86, 7195–12.
- Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.
- Ao, T. T., Feasey, N. A., Gordon, M. A., Keddy, K. H., Angulo, F. J. & Crump, J. A. (2015). Global burden of invasive nontyphoidal *Salmonella* disease, 2010¹. *Emerging Infect Dis* 21, 941–949.
- Atkuri, K. R., Herzenberg, L. A. & Herzenberg, L. A. (2005). Culturing at atmospheric oxygen levels impacts lymphocyte function. *PNAS* 102, 3756–3759.
- Álvarez-Ordóñez, A., Begley, M., Prieto, M., Messens, W., López, M., Bernardo, A. & Hill, C. (2011). Salmonella spp. survival strategies within the host gastrointestinal tract. *Microbiology* 157, 3268–3281.

- Baek, C. H., Wang, S., Roland, K. L. & Curtiss, R. (2009). Leucine-responsive regulatory protein (Lrp) acts as a virulence repressor in *Salmonella enterica* serovar Typhimurium. *J Bacteriol* 191, 1278–1292.
- Baek, J., Lee, J., Yoon, K. & Lee, H. (2017). Identification of unannotated small genes in *Salmonella*. *G3* 7, 983–989.
- Baisón-Olmo, F., Cardenal-Muñoz, E. & Ramos-Morales, F. (2012). PipB2 is a substrate of the Salmonella pathogenicity island 1-encoded type III secretion system. Biochemical and Biophysical Research Communications 423, 240–246.
- Banda, M. M., Zavala-Alvarado, C., Pérez-Morales, D. & Bustamante, V. H. (2019). SlyA and HilD counteract H-NS-mediated repression on the *ssrAB* virulence operon of *Salmonella* Typhimurium and thus promote its activation by OmpR. *J Bacteriol* 1–45.
- Baños, R. C., Vivero, A., Aznar, S., García, J., Pons, M., Madrid, C. & Juárez, A. (2009). Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS. *PLoS Genet* 5, e1000513–8.
- Baranello, L., Kouzine, F., Sanford, S. & Levens, D. (2016). ChIP bias as a function of cross-linking time. *Chromosome Res* 24, 175–181.
- Barlag, B. & Hensel, M. (2015). The giant adhesin SiiE of Salmonella enterica. Molecules 20, 1134–1150.
- Barnard, A., Wolfe, A. & Busby, S. (2004). Regulation at complex bacterial promoters: how bacteria use different promoter organizations to produce different regulatory outcomes. *Curr Opin Microbiol* 7, 102–108.
- Bartolini, E., Frigimelica, E., Giovinazzi, S., Galli, G., Shaik, Y., Genco, C., Welsch, J.
 A., Granoff, D. M., Grandi, G. & Grifantini, R. (2006). Role of FNR and FNR-regulated, sugar fermentation genes in *Neisseria meningitidis* infection. *Mol Microbiol* 60, 963–972.
- Basnyat, B. & Baker, S. (2015). Typhoid carriage in the gallbladder. The Lancet.
- Bates, D. M., Lazazzera, B. A. & Kiley, P. J. (1995). Characterization of FNR* mutant proteins indicates two distinct mechanisms for altering oxygen regulation of the *Escherichia coli* transcription factor FNR. *J Bacteriol* 177, 3972–3978.
- Beinert, H. & Kiley, P. J. (1999). Fe-S proteins in sensing and regulatory functions. *Curr* Opin Chem Biol 3, 152–157.
- Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. (2012). GenBank. Nucleic Acids Res 41, D36–D42.
- Berg, J. M., Tymoczko, J. L. & Stryer, L. (2002). A proton gradient powers the synthesis of ATP. In *Biochemistry 5th edition*, W H Freeman.

- Betts, M. J. & Russell, R. B. (2003). Amino Acid Properties and Consequences of Substitutions. Chichester, UK: John Wiley & Sons, Ltd.
- Beuzón, C. R., Salcedo, S. P. & Holden, D. W. (2002). Growth and killing of a Salmonella enterica serovar Typhimurium sifA mutant strain in the cytosol of different host cell lines. Microbiology 148, 2705–2715.
- Bijlsma, J. J. E. & Groisman, E. A. (2005). The PhoP/PhoQ system controls the intramacrophage type three secretion system of *Salmonella enterica*. *Mol Microbiol* 57, 85–96.
- Blake, T., Barnard, A., Busby, S. J. W. & Green, J. (2002). Transcription activation by FNR: Evidence for a functional activating region 2 184, 5855–5861.
- Blanc-Potard, A. B., Labesse, G., Figueroa-Bossi, N. & Bossi, L. (2005). Mutation at the 'exit gate' of the *Salmonella* gyrase a subunit suppresses a defect in the gyrase b subunit. *J Bacteriol* 187, 6841–6844.
- Blanc-Potard, A. B., Solomon, F., Kayser, J. & Groisman, E. A. (1999). The SPI-3 pathogenicity island of *Salmonella enterica*. *J Bacteriol* 181, 998–1004.
- Bolivar, F., Rodriguez, R. L., Greene, P. J., Betlach, M. C., Heyneker, H. L., Boyer, H.
 W., Crosa, J. H. & Falkow, S. (1977). Construction and characterization of new cloning vehicle. II. A multipurpose cloning system. *Gene* 2, 95–113.
- Bonifield, H. R. & Hughes, K. T. (2003). Flagellar phase variation in *Salmonella enterica* is mediated by a posttranscriptional control mechanism. *J Bacteriol* **185**, 3567–3574.
- Bonocora, R. P. & Wade, J. T. (2015). ChIP-Seq for genome-scale analysis of bacterial DNA-binding proteins. In *Bacterial Regulatory RNA*, Methods in Molecular Biology, pp. 327–340. Edited by V. Arluison & C. Valverde. New York, NY: Springer New York.
- Boysen, A., Møller-Jensen, J., Kallipolitis, B., Valentin-Hansen, P. & Overgaard, M. (2010). Translational regulation of gene expression by an anaerobically induced small non-coding RNA in *Escherichia coli*. J Biol Chem 285, 10690–10702.
- Brenner, F. W., Villar, R. G., Angulo, F. J., Tauxe, R. & Swaminathan, B. (2000). Salmonella nomenclature. Journal of Clinical Microbiology 38, 2465–2467.
- Brown, N. F., Vallance, B. A., Coombes, B. K., Valdez, Y., Coburn, B. A. & Finlay, B.
 B. (2005). *Salmonella* pathogenicity island 2 is expressed prior to penetrating the intestine. *PLoS Pathog* 1, e32–7.
- Browning, D. F. & Busby, S. J. W. (2004). The regulation of bacterial transcription initiation. *Nat Rev Microbiol* 2, 57–65.

- Browning, D. F., Grainger, D. C., Beatty, C. M., Wolfe, A. J., Cole, J. A. & Busby, S. J.
 W. (2005). Integration of three signals at the *Escherichia coli nrf* promoter: a role for Fis protein in catabolite repression. *Mol Microbiol* 57, 496–510.
- Buchmeier, N., Bossie, S., Chen, C. Y., Fang, F. C., Guiney, D. G. & Libby, S. J. (1997). SlyA, a transcriptional regulator of *Salmonella* typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. *Infect Immun* 65, 3725–3730.
- Buckle, G. C., Walker, C. L. F. & Black, R. E. (2012). Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010. *J Glob Health* 2, 010401.
- Bumann, D. (2009). System-level analysis of *Salmonella* metabolism during infection. *Curr Opin Microbiol* 12, 559–567.
- Bustamante, V. H., Martínez, L. C., Santana, F. J., Knodler, L. A., Steele-Mortimer,
 O. & Puente, J. L. (2008). HilD-mediated transcriptional cross-talk between SPI-1 and
 SPI-2. *PNAS* 105, 14591–14596.
- Cai, S. J. & Inouye, M. (2002). EnvZ-OmpR interaction and osmoregulation in *Escherichia coli*. *J Biol Chem* 277, 24155–24161.
- Cai, Y.-H. & Huang, H. (2012). Advances in the study of protein–DNA interaction. *Amino Acids* 43, 1141–1146.
- Cameron, A. D. S., Stoebel, D. M. & Dorman, C. J. (2011). DNA supercoiling is differentially regulated by environmental factors and FIS in *Escherichia coli* and *Salmonella enterica*. *Mol Microbiol* 80, 85–101.
- Chakraborty, S., Mizusaki, H. & Kenney, L. J. (2015). A FRET-based DNA biosensor tracks OmpR-dependent acidification of *Salmonella* during macrophage infection. *PLoS Biol* 13, e1002116.
- Chao, Y., Papenfort, K., Reinhardt, R., Sharma, C. M. & Vogel, J. O. R. (2012). An atlas of Hfq-bound transcripts reveals 3 prime UTRs as a genomic reservoir of regulatory small RNAs. *EMBO J* 31, 4005–4019.
- Chaudhuri, R. R., Morgan, E., Peters, S. E., Pleasance, S. J., Hudson, D. L., Davies, H.
 M., Wang, J., van Diemen, P. M., Buckley, A. M. & other authors. (2013).
 Comprehensive assignment of roles for *Salmonella* Typhimurium genes in intestinal colonization of food-producing animals. *PLoS Genet* 9, e1003456.
- Cherepanov, P. P. & Wackernagel, W. (1995). Gene disruption in *Escherichia coli*: Tc^R and Km^R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. *Gene* 158, 9–14.
- Chilcott, G. S. & Hughes, K. T. (2000). Coupling of flagellar gene expression to flagellar assembly in *Salmonella enterica* serovar Typhimurium and *Escherichia coli*. *Microbiol Mol Biol R* 64, 694–708.
- Choi, E., Kim, H., Lee, H., Nam, D., Choi, J. & Shin, D. (2014). The iron-sensing fur regulator controls expression timing and levels of *Salmonella* pathogenicity island 2 genes in the course of environmental acidification. *Infect Immun* 82, 2203–2210.
- Choi, E., Han, Y., Cho, Y.-J., Nam, D. & Lee, E.-J. (2017). A trans-acting leader RNA from a *Salmonella* virulence gene. *PNAS*. 114, 10232–10237.
- Choi, J. & Groisman, E. A. (2016). Acidic pH sensing in the bacterial cytoplasm is required for *Salmonella*virulence. *Mol Microbiol* 101, 1024–1038.
- Cirillo, D. M., Valdivia, R. H., Monack, D. M. & Falkow, S. (1998). Macrophagedependent induction of the *Salmonella* pathogenicity island 2 type III secretion system and its role in intracellular survival. *Mol Microbiol* 30, 175–188.
- Clark, L., Perrett, C. A., Malt, L., Harward, C., Humphrey, S., Jepson, K. A., Martinez-Argudo, I., Carney, L. J., La Ragione, R. M. & other authors. (2011). Differences in *Salmonella enterica* serovar Typhimurium strain invasiveness are associated with heterogeneity in SPI-1 gene expression. *Microbiology* 157, 2072–2083.
- Coburn, B., Grassl, G. A. & Finlay, B. B. (2006). *Salmonella*, the host and disease: a brief review. *Immunol Cell Biol* 85, 112–118.
- Colgan, A.M., Kröger, C., Diard, M., Hardt, W.-D., Puente, J. L., Sivasankaran, S. K., Hokamp, K., Hinton, J. C. D. (2016). The impact of 18 ancestral and horizontallyacquired regulatory proteins upon the transcriptome and sRNA landscape of *Salmonella enterica* serovar Typhimurium. *PLoS Genet* 12,1–42.
- Constantinidou, C., Hobman, J. L., Griffiths, L., Patel, M. D., Penn, C. W., Cole, J. A.
 & Overton, T. W. (2006). A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as *Escherichia coli* K12 adapts from aerobic to anaerobic growth. *J Biol Chem* 281, 4802–4815.
- Cook, G. M., Greening, C., Hards, K. & Berney, M. (2014). Energetics of Pathogenic Bacteria and Opportunities for Drug Development. In Advances in Bacterial Pathogen Biology, 1st edn. Elsevier Ltd.
- Coombes, B. K., Brown, N. F., Kujat-Choy, S., Vallance, B. A. & Finlay, B. B. (2003). SseA is required for translocation of *Salmonella* pathogenicity island-2 effectors into host cells. *Microbes and Infection* 5, 561–570.

- Coombes, B. K., Wickham, M. E., Lowden, M. J., Brown, N. F. & Finlay, B. B. (2005). Negative regulation of *Salmonella* pathogenicity island 2 is required for contextual control of virulence during typhoid. *PNAS* **102**, 17460–17465.
- Cotter, P. A., Melville, S. B., Albrecht, J. A. & Gunsalus, R. P. (1997). Aerobic regulation of cytochrome d oxidase (*cydAB*) operon expression in *Escherichia coli*: roles of Fnr and ArcA in repression and activation. *Mol Microbiol* **25**, 605–615.
- Crofts, A. A., Giovanetti, S. M., Rubin, E. J., Poly, F. M., Gutiérrez, R. L., Talaat, K. R., Porter, C. K., Riddle, M. S., DeNearing, B. & other authors. (2018). Enterotoxigenic *E. coli* virulence gene regulation in human infections. *PNAS* 12, 201808982–9.
- Croucher, N. J. & Thomson, N. R. (2010). Studying bacterial transcriptomes using RNAseq. *Curr Opin Microbiol* 13, 619–624.
- Crump, J. A. & Mintz, E. D. (2010). Global trends in Typhoid and Paratyphoid Fever. Clin Infect Dis 50, 241–246.
- Datsenko, K. A. & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS 97, 6640–6645.
- Davis, S. E., Mooney, R. A., Kanin, E. I., Grass, J., Landick, R. & Ansari, A. Z. (2011). Chapter 20 - Mapping E. coli RNA Polymerase and Associated Transcription Factors and Identifying Promoters Genome-Wide. In High-Density Sequencing Applications in Microbial Molecular Genetics, 1st edn. Elsevier Inc.
- Deiwick, J., Nikolaus, T., Erdogan, S. & Hensel, M. (1999). Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol Microbiol 31, 1759–1773.
- Desai, P. T., Porwollik, S., Long, F., Cheng, P., Wollam, A., Clifton, S. W., Weinstock,
 G. M. & McClelland, M. (2013). Evolutionary Genomics of Salmonella enterica Subspecies. mBio 4, e00579–12.
- Desai, S. K., Winardhi, R. S., Periasamy, S., Dykas, M. M. & Elife, Y. J. (2016). The horizontally-acquired response regulator SsrB drives a *Salmonella* lifestyle switch by relieving biofilm silencing. *eLIFE* 5, e10747.
- Diard, M., Garcia, V., Maier, L., Remus-Emsermann, M. N. P., Regoes, R. R., Ackermann, M. & Hardt, W.-D. (2013). Stabilization of cooperative virulence by the expression of an avirulent phenotype. *Nature* 494, 353–356.
- Diepold, A. & Wagner, S. (2014). Assembly of the bacterial type III secretion machinery. *FEMS Microbiol Rev* 38, 802–822.

- Dillon, S. C., Cameron, A. D. S., Hokamp, K., Lucchini, S., Hinton, J. C. D. & Dorman, C. J. (2010). Genome-wide analysis of the H-NS and Sfh regulatory networks in *Salmonella* Typhimurium identifies a plasmid-encoded transcription silencing mechanism. *Mol Microbiol* 76, 1250–1265.
- Dillon, S. C. & Dorman, C. J. (2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. *Nat Rev Microbiol* 8, 185–195.
- Donato, G. M. & Kawula, T. H. (1999). Phenotypic analysis of random *hns* mutations differentiate DNA-binding activity from properties of *fimA* promoter inversion modulation and bacterial motility. *J Bacteriol* 181, 941–948.
- **Dorman, C. J., Chatfield, S., Higgins, C. F., Hayward, C. & Dougan, G. (1989).** Characterization of porin and *ompR* mutants of a virulent strain of *Salmonella* Typhimurium: *ompR* mutants are attenuated *in vivo*. *Infect Immun* **57**, 2136–2140.
- **Dougan, G. & Baker, S. (2014).** Salmonella enterica serovar Typhi and the pathogenesis of Typhoid fever. Annu Rev Microbiol **68**, 317–336.
- Drecktrah, D., Knodler, L. A., Ireland, R. & Steele-Mortimer, O. (2005). The mechanism of *Salmonella* entry determines the vacuolar environment and intracellular gene expression. *Traffic* 7, 39–51.
- **Durand, S. & Storz, G. (2010).** Reprogramming of anaerobic metabolism by the *FnrS* small RNA. *Mol Microbiol* **75**, 1215–1231.
- Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E. & Relman, D. A. (2005). Diversity of the human intestinal microbial flora. *Science* 308, 1635–1638.
- Eiglmeier, K., Honoré, N., Iuchi, S., Lin, E. C. & Cole, S. T. (1989). Molecular genetic analysis of FNR-dependent promoters. *Mol Microbiol* **3**, 869–878.
- Ellermeier, C. D., Ellermeier, J. R. & Slauch, J. M. (2005). HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator *hilA* in *Salmonella enterica* serovar Typhimurium. *Mol Microbiol* 57, 691–705.
- Ellermeier, J. R. & Slauch, J. M. (2007). Adaptation to the host environment: regulation of the SPI-1 type III secretion system in *Salmonella enterica* serovar Typhimurium. *Curr Opin Microbiol* 10, 24–29.
- Ernst, R. K., D. M. Dombroski, and J. M. Merrick. (1990). Anaerobiosis, type-1 fimbriae, and growth phase are factors that affect invasion of Hep-2 cells by *Salmonella* typhimurium. *Infect Immun* 58,2014-2016.

- Evans, M. R., Fink, R. C., Vazquez-Torres, A., Porwollik, S., Jones-Carson, J., McClelland, M. & Hassan, H. M. (2011). Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiology 11, 58.
- Faber, F., Thiennimitr, P., Spiga, L., Byndloss, M. X., Litvak, Y., Lawhon, S., Andrews-Polymenis, H. L., Winter, S. E. & Bäumler, A. J. (2017). Respiration of microbiotaderived 1,2-propanediol drives *Salmonella* expansion during *coli*tis. *PLoS Pathog* 13, e1006129.
- Fabrega, A. & Vila, J. (2013). *Salmonella enterica* serovar Typhimurium skills to succeed in the host: virulence and regulation. *Clin Microbiol Rev* 26, 308–341.
- Fass, E. & Groisman, E. A. (2009). Control of Salmonella pathogenicity island-2 gene expression. Curr Opin Microbiol 12, 199–204.
- Fàbrega, A. & Vila, J. (2013). Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26, 308–341. American Society for Microbiology.
- Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S. & Gordon, M. A. (2012). Invasive non-typhoidal *Salmonella* disease: an emerging and neglected tropical disease in Africa. *The Lancet* **379**, 2489–2499.
- Feng, X., Oropeza, R. & Kenney, L. J. (2003). Dual regulation by phospho-OmpR of *ssrA/B* gene expression in *Salmonella* pathogenicity island 2. *Mol Microbiol* 48, 1131– 1143.
- Figueira, R. & Holden, D. W. (2012). Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. *Microbiology* 158, 1147–1161.
- Filiatrault, M. J., Picardo, K. F., Ngai, H., Passador, L. & Iglewski, B. H. (2006). Identification of *Pseudomonas aeruginosa* genes involved in virulence and anaerobic growth. *Infect Immun* 74, 4237–4245.
- Fink, R. C., Evans, M. R., Porwollik, S., Vazquez-Torres, A., Jones-Carson, J., Troxell, B., Libby, S. J., McClelland, M. & Hassan, H. M. (2007). FNR is a global regulator of virulence and anaerobic metabolism in *Salmonella enterica* serovar Typhimurium (ATCC 14028s). *J Bacteriol* 189, 2262–2273.
- Finlay, B. B., Ruschkowski, S. & Dedhar, S. (1991). Cytoskeletal rearrangements accompanying *Salmonella* entry into epithelial cells. *J Cell Sci* 99 (Pt 2), 283–296.
- Fookes, M., Schroeder, G. N., Langridge, G. C., Blondel, C. J., Mammina, C., Connor, T. R., Seth-Smith, H., Vernikos, G. S., Robinson, K. S. & other authors. (2011). Salmonella bongori provides insights into the evolution of the Salmonellae. PLoS Pathog 7, e1002191.

- Forstner, K. U., Vogel, J., Sharma, C. (2014). READemption—a tool for the computational analysis of deep-sequencing–based transcriptome data. *academicoupcom*
- Foster, J. W. & Hall, H. K. (1990). Adaptive acidification tolerance response of Salmonella Typhimurium. J Bacteriol 172, 771–778.
- Foster, J. (1991). *Salmonella* acid shock proteins are required for the adaptive acid tolerance response. *J Bacteriol* 173, 6896-6902.
- Frönicke, L., Bronner, D. N., Byndloss, M. X., McLaughlin, B., Bäumler, A. J. & Westermann, A. J. (2018). Toward Cell Type-Specific in vivo Dual RNA-Seq. In High-Density Sequencing Applications in Microbial Molecular Genetics, 1st edn. Elsevier Inc.
- Galagan, J., Lyubetskaya, A. & Gomes, A. (2012). ChIP-Seq and the Complexity of Bacterial Transcriptional Regulation. In Systems Biology, Current Topics in Microbiology and Immunology, pp. 43–68. Berlin, Heidelberg: Springer Berlin Heidelberg.
- Galan, J. E. & Zhou, D. (2000). Striking a balance: modulation of the actin cytoskeleton by *Salmonella*. *PNAS* 97, 8754–8761.
- Garalde, D. R., Snell, E. A., Jachimowicz, D., Sipos, B., Lloyd, J. H., Bruce, M., Pantic, N., Admassu, T., James, P. & other authors. (2018). Highly parallel direct RNA sequencing on an array of nanopores. *Nature Methods* 15, 201–206.
- Garcia-Calderon, C. B., Casadesus, J. & Ramos-Morales, F. (2007). Rcs and PhoPQ regulatory overlap in the control of *Salmonella enterica* Virulence. *J Bacteriol* 189, 6635–6644.
- Gerasimova, A. V., Rodionov, D. A., Mironov, A. A. & Gelfand, M. S. (2001). Computer analysis of regulatory signals in bacterial genomes. FNR binding sites. *Molecular Biology* 35, 853–861.
- Gerlach, R. G., Cláudio, N., Rohde, M., Jäckel, D., Wagner, C. & Hensel, M. (2008). Cooperation of *Salmonella* pathogenicity islands 1 and 4 is required to breach epithelial barriers. *Cell Microbiol* 10, 2364–2376.
- Gil, F., Ipinza, F., Fuentes, J., Fumeron, R., Villarreal, J. M., Aspée, A., Mora, G. C., Vásquez, C. C. & Saavedra, C. (2007). The *ompW* (porin) gene mediates methyl viologen (paraquat) efflux in *Salmonella enterica* serovar Typhimurium. *Research in Microbiology* 158, 529–536.
- Gilberthorpe, N. J. & Poole, R. K. (2008). Nitric oxide homeostasis in Salmonella Typhimurium: roles of respiratory nitrate reductase and flavohemoglobin. J Biol Chem 283, 11146–11154.

- Golubeva, Y. A., Sadik, A. Y., Ellermeier, J. R. & Slauch, J. M. (2012). Integrating global regulatory input into the *Salmonella* pathogenicity island 1 type III secretion system. *Genetics* 190, 79–90.
- Gong, H., Vu, G.-P., Bai, Y., Chan, E., Wu, R., Yang, E., Liu, F. & Lu, S. (2011). A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. *PLoS Pathog* 7, e1002120–16.
- Gonzalez-Escobedo, G., Marshall, J. M. & Gunn, J. S. (2010). Chronic and acute infection of the gall bladder by *Salmonella* Typhi: understanding the carrier state. *Nat Rev Microbiol* 9, 9–14.
- Gordon, M. A. (2008). Salmonella infections in immunocompromised adults. J Infect 56, 413–422.
- Grabe, G. J., Zhang, Y., Przydacz, M., Rolhion, N., Yang, Y., Pruneda, J. N., Komander, D., Holden, D. W. & Hare, S. A. (2016). The Salmonella effector SpvD is a cysteine hydrolase with a serovar-specific polymorphism influencing catalytic activity, suppression of immune responses, and bacterial virulence. J Biol Chem 291, 25853–25863.
- Grainger, D. C., Aiba, H., Hurd, D., Browning, D. F. & Busby, S. J. W. (2007). Transcription factor distribution in *Escherichia coli*: studies with FNR protein. *Nucleic Acids Res* 35, 269–278.
- Grant, C. E., Bailey, T. L. & Noble, W. S. (2011). FIMO: scanning for occurrences of a given motif. *Bioinformatics* 27, 1017–1018.
- Green, J. & Guest, J. R. (1993). Activation of FNR-dependent transcription by iron: an *in vitro* switch for FNR. *FEMS Microbiology Letters* **113**, 219–222.
- Green, J. & Guest, J. R. (1994). Regulation of transcription at the *ndh* promoter of *Escherichia coli* by FNR and novel factors. *Mol Microbiol* 12, 433–444.
- Green, J. & Marshall, F. A. (1999). Identification of a surface of FNR overlapping activating region 1 that is required for repression of gene expression. *J Biol Chem* 274, 10244–10248.
- Green, J., Rolfe, M. D. & Smith, L. J. (2014). Transcriptional regulation of bacterial virulence gene expression by molecular oxygen and nitric oxide. *Virulence* 5, 794–809.
- Grimont, P. & Weill, F. (2007). Antigenic formulae of the Salmonella serovars. WHO Collaborating Centre for Reference and Research on Salmonella. Institut Pasteur, Paris.
- Groisman, E. A. & Ochman, H. (1997). How Salmonella became a pathogen. Trends in Microbiology 5, 343–349.

- Groisman, E. A. & Mouslim, C. (2006). Sensing by bacterial regulatory systems in host and non-host environments. *Nat Rev Microbiol* 4, 705–709.
- Guest, J. R., Green, J., Irvine, A. S. & Spiro, S. (1996). Chapter 16 The FNR modulon and FNR-regulated gene expression. In Regulation of Gene Expression in Escherichia coli, pp. 317–342.
- Guiney, D. G. & Fierer, J. (2011). The role of the *spv* genes in *Salmonella* pathogenesis. *Front Microbiol* 2, 1–10.
- Gunn, J. S., Ryan, S. S., Van Velkinburgh, J. C., Ernst, R. K. & Miller, S. I. (2000). Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of *Salmonella enterica* serovar typhimurium. *Infect Immun* 68, 6139–6146.
- Haas, B. J., Chin, M., Nusbaum, C., Birren, B. W. & Livny, J. (2012). How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? *BMC Genomics* 13, 734.
- Hall, B. G., Acar, H., Nandipati, A. & Barlow, M. (2014). Growth Rates Made Easy. Mol Biol Evol 31, 232–238.
- Hanahan, D. (1983). Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol 166, 557–580.
- Haraga, A., Ohlson, M. B. & Miller, S. I. (2008). *Salmonellae* interplay with host cells. *Nat Rev Microbiol* 6, 53–66.
- Hautefort, I., Thompson, A., Eriksson-Ygberg, S., Parker, M. L., Lucchini, S., Danino, V., Bongaerts, R. J. M., Ahmad, N., Rhen, M. & Hinton, J. C. D. (2008). During infection of epithelial cells *Salmonella enterica* serovar Typhimurium undergoes a timedependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. *Cell Microbiol* 10, 958–984.
- Hautefort, I., Proença, M. J. & Hinton, J. C. D. (2003). Single-copy green fluorescent protein gene fusions allow accurate measurement of *Salmonella* gene expression *in vitro* and during infection of mammalian cells. *Appl Environ Microb* 69, 7480–7491.
- Hayward, M. R., AbuOun, M., La Ragione, R. M., Tchórzewska, M. A., Cooley, W. A., Everest, D. J., Petrovska, L., Jansen, V. A. A. & Woodward, M. J. (2014). SPI-23 of S. Derby: Role in adherence and invasion of porcine tissues. *PLoS ONE* 9, e107857–8.
- Helaine, S., Cheverton, A. M., Watson, K. G., Faure, L. M., Matthews, S. A. & Holden,
 D. W. (2014). Internalization of *Salmonella* by macrophages induces formation of nonreplicating persisters. *Science* 343, 204–208.

- Helaine, S., Thompson, J. A., Watson, K. G., Liu, M., Boyle, C. & Holden, D. W. (2010). Dynamics of intracellular bacterial replication at the single cell level. *PNAS* 107, 3746– 3751.
- Henry, T., García-del Portillo, F. & Gorvel, J. P. (2005). Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells. *Mol Microbiol* 56, 252–267.
- Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. & Berks, B. C. (1999). The genetic basis of tetrathionate respiration in *Salmonella* typhimurium. *Mol Microbiol* 32, 275– 287.
- Hensel, M. (2000). Salmonella Pathogenicity Island 2. Mol Microbiol 36, 1015–1023.
- Hébrard, M., Kröger, C., Sivasankaran, S. K., Händler, K. & Hinton, J. C. D. (2011). The challenge of relating gene expression to the virulence of *Salmonella enterica* serovar Typhimurium. *Curr Opin Biotechnol* 22, 200–210.
- Hébrard, M., Kröger, C., Srikumar, S., Colgan, A., Händler, K. & Hinton, J. C. D. (2012). sRNAs and the virulence of *Salmonella enterica* serovar Typhimurium. *RNA Biology* 9, 437–445.
- Hodges, A. P., Dai, D., Xiang, Z., Woolf, P., Xi, C. & He, Y. (2010). Bayesian Network Expansion Identifies New ROS and Biofilm Regulators. *PLoS ONE* 5, e9513–9.
- Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., Stadler, P.
 F. & Hackermüller, J. (2009). Fast mapping of short sequences with mismatches, insertions and deletions using index structures. *PLoS Comput Biol* 5, e1000502–10.
- Hoiseth, S. K. & Stocker, B. A. (1981). Aromatic-dependent *Salmonella* Typhimurium are non-virulent and effective as live vaccines. *Nature* **291**, 238–239.
- Horstmann, J. A., Zschieschang, E., Truschel, T., de Diego, J., Lunelli, M., Rohde, M., May, T., Strowig, T., Stradal, T. & other authors. (2017). Flagellin phase-dependent swimming on epithelial cell surfaces contributes to productive *Salmonella* gut colonisation. *Cell Microbiol* 19, e12739–43.
- Hurley, D., McCusker, M. P., Fanning, S. & Martins, M. (2014). Salmonella-host interactions modulation of the host innate immune system. *Front Immunol* 5, 481.
- Hwang, B., Lee, J. H. & Bang, D. (2018). Single-cell RNA sequencing technologies and bioinformatics pipelines. *Exp Mol Med* 50,1–14.
- **Ibarra, J. A. & Steele-Mortimer, O. (2009).** *Salmonella*—the ultimate insider. *Salmonella* virulence factors that modulate intracellular survival. *Cell Microbiol* **11**, 1579–1586.

- Ilyas, B., Mulder, D. T., Little, D. J., Elhenawy, W., Banda, M. M., Pérez-Morales, D., Tsai, C. N., Chau, N. Y. E., Bustamante, V. H. & Coombes, B. K. (2018). Regulatory evolution drives evasion of host inflammasomes by *Salmonella* Typhimurium. *Cell Rep* 25, 825–832.
- Ingledew, W. J. & Poole, R. K. (1984). The respiratory chains of *Escherichia coli*. *Microbiol Rev* 48, 222–271.
- Ishchukov, I., Wu, Y., Van Puyvelde, S., Vanderleyden, J. & Marchal, K. (2014). Inferring the relation between transcriptional and posttranscriptional regulation from expression compendia. *BMC Microbiology* 14, 1–14.
- Issenhuth-Jeanjean, S., Roggentin, P., Mikoleit, M., Guibourdenche, M., de Pinna, E., Nair, S., Fields, P. I. & Weill, F.-X. (2014). Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme. *Res Microbiol* 165, 526–530.
- Jacobsen, A., Hendriksen, R. S., Aaresturp, F. M., Ussery, D. W. & Friis, C. (2011). The *Salmonella enterica* Pan-genome. *Microb Ecol* 62, 487–504.
- Jakobson, C. M. & Tullman-Ercek, D. (2016). Dumpster diving in the gut: Bacterial microcompartments as part of a host-associated lifestyle. *PLoS Pathog* 12, e1005558.
- James, P. E., Grinberg, O. Y., cellular, G. M. J. O.1995. (1995). Intraphagosomal oxygen in stimulated macrophages. *J Cell Physiol* 163, 241–247.
- Jennewein, J., Matuszak, J., Walter, S., Felmy, B., Gendera, K., Schatz, V., Nowottny, M., Liebsch, G., Hensel, M. & other authors. (2015). Low-oxygen tensions found in *Salmonella*-infected gut tissue boost *Salmonella* replication in macrophages by impairing antimicrobial activity and augmenting *Salmonella* virulence. *Cell Microbiol* 17, 1833–1847.
- Jennings, E., Thurston, T. L. M. & Holden, D. W. (2017). Salmonella SPI-2 type III secretion system effectors: Molecular mechanisms and physiological consequences. *Cell Host Microbe* 22, 217–231.
- Jepson, M. A. & Clark, M. A. (2001). The role of M cells in *Salmonella* infection. *Microbes* and *Infection* 3, 1183–1190.
- Jervis, A. J., Crack, J. C., White, G., Artymiuk, P. J., Cheesman, M. R., Thomson, A. J., Le Brun, N. E. & Green, J. (2009). The O₂ sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion. *PNAS* 106, 4659–4664.
- Jones, G. W., Richardson, L. A. & Uhlman, D. (1981). The invasion of HeLa cells by Salmonella Typhimurium: reversible and irreversible bacterial attachment and the role of bacterial motility. J Gen Microbiol 127, 351–360.

- Joshi, K. & Patil, D. (2017). Proteomics. In *Innovative Approaches in Drug Discovery*, pp. 273–294. Elsevier.
- Kang, Y., Weber, K. D., Qiu, Y., Kiley, P. J. & Blattner, F. R. (2005). Genome-wide expression analysis indicates that FNR of *Escherichia coli* K-12 regulates a large number of genes of unknown function. *J Bacteriol* 187, 1135–1160.
- Kelly, A., Goldberg, M. D., Carroll, R. K., Danino, V., Hinton, J. C. D. & Dorman, C. J. (2004). A global role for Fis in the transcriptional control of metabolism and type III secretion in *Salmonella enterica* serovar Typhimurium. *Microbiology* 150, 2037–2053.
- Kenney, L. J. (2018). The role of acid stress in *Salmonella* pathogenesis. *Curr Opin Microbiol* 47, 45–51.
- Kidgell, C., Reichard, U., Wain, J., Linz, B., Torpdahl, M., Dougan, G. & Achtman, M. (2002). Salmonella Typhi, the causative agent of Typhoid fever, is approximately 50,000 years old. Infect Genet Evol 2, 39–45.
- Kim, K., Golubeva, Y. A., Vanderpool, C. K. & Slauch, J. M. (2018). Oxygen-dependent regulation of SPI1 type three secretion system by small RNAs in *Salmonella enterica*serovar Typhimurium. *Mol Microbiol* 147, e1058–49.
- Knodler, L. A., Bestor, A., Ma, C., Hansen-Wester, I., Hensel, M., Vallance, B. A. & Steele-Mortimer, O. (2005). Cloning vectors and fluorescent proteins can significantly inhibit *Salmonella enterica* virulence in both epithelial cells and macrophages: implications for bacterial pathogenesis studies. *Infect Immun* 73, 7027–7031.
- Knodler, L. A., Celli, J., Hardt, W.-D., Vallance, B. A., Yip, C. & Finlay, B. B. (2002). Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. *Mol Microbiol* 43, 1089–1103.
- Knodler, L. A., Nair, V. & Steele-Mortimer, O. (2014). Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS ONE 9, e84681.
- Knuff, K. & Finlay, B. B. (2017). What the SIF is happening—The role of intracellular *Salmonella*-induced filaments 7, 3235–3238.
- Körner, H., Sofia, H. J. & Zumft, W. G. (2003). Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. *FEMS Microbiology Reviews* 27, 559–592.
- Krieger, V., Liebl, D., Zhang, Y., Rajashekar, R., Chlanda, P., Giesker, K., Chikkaballi, D. & Hensel, M. (2014). Reorganization of the endosomal system in *Salmonella*-infected cells: the ultrastructure of *Salmonella*-induced tubular compartments. *PLoS Pathog* 10, e1004374.

- Kronen, M. & Berg, I. A. (2015). Mesaconase/fumarase FumD in *Escherichia coli* O157:H7 and promiscuity of *Escherichia coli* class I fumarases FumA and FumB. *PLoS ONE* 10, e0145098–18.
- Kröger, C., Colgan, A., Srikumar, S., Händler, K., Sivasankaran, S. K., Hammarlöf,
 D. L., Canals, R., Grissom, J. E., Conway, T. & other authors. (2013). An infectionrelevant transcriptomic compendium for *Salmonella enterica* serovar Typhimurium. *Cell Host Microbe* 14, 683–695.
- Kröger, C., Dillon, S. C., Cameron, A. D. S., Papenfort, K., Sivasankaran, S. K., Hokamp, K., Chao, Y., Sittka, A., Hébrard, M. & other authors. (2012). The transcriptional landscape and small RNAs of *Salmonella enterica* serovar Typhimurium. *PNAS* 109, e1277–86.
- Kuhle, V. & Hensel, M. (2004). Cellular microbiology of intracellular *Salmonella enterica*: functions of the type III secretion system encoded by *Salmonella* pathogenicity island 2. *CMLS, Cell Mol Life Sci* 61, 2812–2826.
- Lambden, P. R. & Guest, J. R. (1976). Mutants of *Escherichia coli* K12 unable to use fumarate as an anaerobic electron acceptor. *J Gen Microbiol* 97, 145–160.
- Lawhon, S. D., Maurer, R., Suyemoto, M. & Altier, C. (2002). Intestinal short-chain fatty acids alter *Salmonella* typhimurium invasion gene expression and virulence through BarA/SirA. *Mol Microbiol* 46, 1451–1464.
- Lawley, T. D., Bouley, D. M., Hoy, Y. E., Gerke, C., Relman, D. A. & Monack, D. M. (2007). Host transmission of *Salmonella enterica* serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. *Infect Immun* 76, 403–416.
- Lee, A. K., Detweiler, C. S. & Falkow, S. (1999). OmpR regulates the two-component system SsrA-SsrB in *Salmonella* pathogenicity island 2. *J Bacteriol* 182, 771–781.
- Lee, C. A. & Falkow, S. (1990). The ability of *Salmonella* to enter mammalian cells is affected by bacterial growth state. *PNAS* 87, 4304–4308.
- Lee, C. A., Jones, B. D. & Falkow, S. (1992). Identification of a *Salmonella* typhimurium invasion locus by selection for hyperinvasive mutants. *PNAS* **89**, 1847–1851.
- Lee, E.-J. & Groisman, E. A. (2012). Control of a *Salmonella* virulence locus by an ATPsensing leader messenger RNA. *Nature* **486**, 271–275.
- Leif, H., Sled, V. D., Ohnishi, T., Weiss, H. & Friedrich, T. (1995). Isolation and characterization of the proton-translocating NADH:ubiquinone oxidoreductase from *Escherichia coli*. Eur J Biochem 230, 538–548.
- Lennox, E. S. (1955). Transduction of linked genetic characters of the host by bacteriophage P1. *Virology* 1, 190–206.

- Lévi-Meyrueis, C., Monteil, V., Sismeiro, O., Dillies, M.-A., Monot, M., Jagla, B., Coppée, J.-Y., Dupuy, B. & Norel, F. (2014). Expanding the RpoS/σS-network by RNA sequencing and identification of σS-controlled small RNAs in *Salmonella*. *PLoS ONE* 9, e96918–12 (R. Manganelli, Ed.).
- Lhocine, N., Arena, E. T., Bomme, P., Ubelmann, F., Prévost, M.-C., Robine, S. & Sansonetti, P. J. (2015). Apical invasion of intestinal epithelial cells by *Salmonella* Typhimurium requires villin to remodel the brush border actin cytoskeleton 17, 164– 177.
- Li, H. & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25, 1754–1760.
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.1000 Genome Project Data Processing Subgroup. (2009). The sequence alignment/map format and SAMtools. *Bioinformatics* 25, 2078–2079.
- Lim, S., Kim, B., Choi, H.-S., Lee, Y. & Ryu, S. (2006). Fis is required for proper regulation of *ssaG* expression in *Salmonella enterica* serovar Typhimurium. *Microb Pathog* 41, 33–42.
- Liu, Y., Chen, H., Kenney, L. J. & Yan, J. (2010). A divalent switch drives H-NS/DNAbinding conformations between stiffening and bridging modes. *Genes Dev* 24, 339–344.
- Löber, S., Jäckel, D., Kaiser, N. & Hensel, M. (2006). Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. *Int J Med Microbiol* 296, 435–447.
- Lucas, R. L. & Lee, C. A. (2001). Roles of *hilC* and *hilD* in regulation of *hilA* expression in *Salmonella enterica* serovar Typhimurium. *J Bacteriol* 183, 2733–2745.
- Lucchini, S., Rowley, G., Goldberg, M. D., Hurd, D., Harrison, M. & Hinton, J. C. D. (2006). H-NS mediates the silencing of laterally acquired genes in bacteria. *PLoS Pathog* 2, e81.
- Machanick, P. & Bailey, T. L. (2011). MEME-ChIP: motif analysis of large DNA datasets. *Bioinformatics* 27, 1696–1697.
- Main-Hester, K. L., Colpitts, K. M., Thomas, G. A., Fang, F. C. & Libby, S. J. (2008). Coordinate regulation of *Salmonella* pathogenicity island 1 (SPI1) and SPI4 in *Salmonella enterica* serovar Typhimurium. *Infect Immun* 76, 1024–1035.
- Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'Brien, S. J., Jones, T.
 F., Fazil, A., Hoekstra, R. M.International Collaboration on Enteric Disease
 'Burden of Illness' Studies. (2010). The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50, 882–889.

- Mangan, M. W., Lucchini, S., Ó Cróinín, T., Fitzgerald, S., Hinton, J. C. D. & Dorman,
 C. J. (2011). Nucleoid-associated protein HU controls three regulons that coordinate virulence, response to stress and general physiology in *Salmonella enterica* serovar Typhimurium. *Microbiology* 157, 1075–1087.
- Mangan, M. W., Lucchini, S., Danino, V., Ó Cróinín, T., Hinton, J. C. D. & Dorman, C. J. (2006). The integration host factor (IHF) integrates stationary-phase and virulence gene expression in *Salmonella enterica* serovar Typhimurium. *Mol Microbiol* 59, 1831– 1847.
- Marcus, S. L., Brumell, J. H., Pfeifer, C. G. & Finlay, B. B. (2000). Salmonella pathogenicity islands: big virulence in small packages. *Microbes and Infection* 2, 145– 156.
- Marouga, R., David, S. & Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. *Anal Bioanal Chem* **382**, 669–678.
- Marteyn, B., Scorza, F. B., Sansonetti, P. J. & Tang, C. (2011). Breathing life into pathogens: the influence of oxygen on bacterial virulence and host responses in the gastrointestinal tract. *Cell Microbiol* 13, 171–176.
- Marteyn, B., West, N. P., Browning, D. F., Cole, J. A., Shaw, J. G., Palm, F., Mounier, J., Prévost, M.-C., Sansonetti, P. & Tang, C. M. (2010). Modulation of *Shigella* virulence in response to available oxygen *in vivo*. *Nature* 465, 355–358.
- Martinez, L. C., Banda, M. M., Fernandez-Mora, M., Santana, F. J. & Bustamante, V.
 H. (2014). HilD induces expression of *Salmonella* pathogenicity island 2 genes by displacing the global negative regulator H-NS from *ssrAB*. *J Bacteriol* 196, 3746–3755.
- Martínez, L. C., Yakhnin, H., Camacho, M. I., Georgellis, D., Babitzke, P., Puente, J.
 L. & Bustamante, V. H. (2011). Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the *Salmonella* SPI-1 and SPI-2 virulence regulons through HilD 80, 1637–1656.
- McClelland, M., Sanderson, K. E., Clifton, S. W., Latreille, P., Porwollik, S., Sabo, A., Meyer, R., Bieri, T., Ozersky, P. & other authors. (2004). Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of *Salmonella enterica* that cause typhoid. *Nat Genet* 36, 1268–1274.
- Melville, S. B. & Gunsalus, R. P. (1996). Isolation of an oxygen-sensitive FNR protein of *Escherichia coli*: interaction at activator and repressor sites of FNR-controlled genes. *PNAS* 93, 1226–1231.
- Meng, W., Green, J. & Guest, J. R. (1997). FNR-dependent repression of *ndh* gene expression requires two upstream FNR-binding sites. *Microbiology* 143, 1521–1532.

- Mettert, E. L. & Kiley, P. J. (2007a). Contributions of [4Fe-4S]-FNR and Integration Host Factor to *fnr* Transcriptional Regulation. *J Bacteriol* 189, 3036–3043.
- Mettert, E. L. & Kiley, P. J. (2007b). Contributions of [4Fe-4S]-FNR and Integration Host Factor to fnr Transcriptional Regulation. *J Bacteriol* 189, 3036–3043.
- Mills, P. C., Rowley, G., Spiro, S., Hinton, J. C. D. & Richardson, D. J. (2008). A combination of cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorV) protects *Salmonella enterica* serovar Typhimurium against killing by NO in anoxic environments. *Microbiology* 154, 1218–1228.
- Miranda-CasoLuengo, A. A., Kary, S. C., Erhardt, M. & Kröger, C. (2017). Small RNA, big effect: Control of flagellin production. *Trends in Microbiology* 1–2.
- Miyakoshi, M. (2019). RNA-mediated crosstalk between bacterial core genome and foreign genetic elements. In *DNA Traffic in the Environment*, pp. 77–94.
- Morgan, E., Campbell, J. D., Rowe, S. C., Bispham, J., Stevens, M. P., Bowen, A. J., Barrow, P. A., Maskell, D. J. & Wallis, T. S. (2004). Identification of host-specific colonization factors of *Salmonella enterica* serovar Typhimurium. *Mol Microbiol* 54, 994–1010.
- Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. *Nature Publishing Group* 5, 621–628.
- Mulder, D. T., McPhee, J. B., Reid-Yu, S. A., Stogios, P. J., Savchenko, A. & Coombes,
 B. K. (2015). Multiple histidines in the periplasmic domain of the *Salmonella enterica*sensor kinase SsrA enhance signaling in response to extracellular acidification. *Mol Microbiol* 95, 678–691.
- **Murphy, K. C. (1998).** Use of bacteriophage λ recombination functions to promote gene replacement in *Escherichia coli*. *J Bacteriol* **180**, 2063–2071.
- Murray, P. R., Rosenthal, K. S. & Pfaller, M. A. (2015). Medical Microbiology.
- Myers, K. S., Park, D. M., Beauchene, N. A. & Kiley, P. J. (2015). Defining bacterial regulons using ChIP-seq. *Methods* 86, 80-88.
- Myers, K. S., Yan, H., Ong, I. M., Chung, D., Liang, K., Tran, F., Keleş, S., Landick,
 R. & Kiley, P. J. (2013). Genome-scale analysis of *Escherichia coli* FNR reveals complex features of transcription factor binding 9, e1003565–24.
- Nakato, R. & Shirahige, K. (2017). Recent advances in ChIP-seq analysis: from quality management to whole-genome annotation. *Brief Bioinformatics* 18, 279–290.
- Navarre, W. W., Halsey, T. A., Walthers, D., Frye, J., McClelland, M., Potter, J. L., Kenney, L. J., Gunn, J. S., Fang, F. C. & Libby, S. J. (2005). Co-regulation of

Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. *Mol Microbiol* **56**, 492–508.

- Navarre, W. W., Porwollik, S., Wang, Y., McClelland, M., Rosen, H., Libby, S. J. & Fang, F. C. (2006). Selective silencing of foreign DNA with low GC content by the H-NS protein in *Salmonella*. *Science* 313, 236–238.
- Neidhart, F. C. E. (1996). *Escherchia coli and Salmonella*, 2nd edn. Oxford, UK: Blackwell Science Ltd.
- Nicol, J. W., Helt, G. A., Blanchard, S. G., Raja, A. & Loraine, A. E. (2009). The Integrated Genome Browser: free software for distribution and exploration of genomescale datasets. *Bioinformatics* 25, 2730–2731.
- Niehaus, F., Hantke, K. & Unden, G. (1991). Iron content and FNR-dependent gene regulation in *Escherichia coli*. *FEMS Microbiology Letters* **68**, 319–323.
- Norte, V. A., Stapleton, M. R. & Green, J. (2003). PhoP-responsive expression of the *Salmonella enterica* serovar Typhimurium *slyA* Gene. *J Bacteriol* 185, 3508–3514.
- Ochman, H., Soncini, F. C., Solomon, F. & Groisman, E. A. (1996). Identification of a pathogenicity island required for *Salmonella* survival in host cells. *PNAS* 93, 7800– 7804. National Academy of Sciences.
- Ohl, M. E. & Miller, S. I. (2001). Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52, 259–274.
- Okada, N., Oi, Y., Takeda-Shitaka, M., Kanou, K., Umeyama, H., Haneda, T., Miki, T., Hosoya, S. & Danbara, H. (2007). Identification of amino acid residues of *Salmonella* SlyA that are critical for transcriptional regulation. *Microbiology* 153, 548–560.
- Ono, S., Goldberg, M. D., Olsson, T., Esposito, D., Hinton, J. C. D. & Ladbury, J. E. (2005). H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. *Biochem J* 391, 203.
- Osborne, S. E. & Coombes, B. K. (2011). Transcriptional priming of *Salmonella* pathogenicity island-2 precedes cellular invasion. *PLoS ONE* 6, e21648–8. Public Library of Science.
- Osborne, S. E., Walthers, D., Tomljenovic, A. M., Mulder, D. T., Silphaduang, U., Duong, N., Lowden, M. J., Wickham, M. E., Waller, R. F. & other authors. (2009). Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function. *PNAS* 106, 3982–3987. National Academy of Sciences.
- Ozsolak, F. & Milos, P. M. (2010). RNA sequencing: advances, challenges and opportunities. *Nature Rev* 12, 87–98.

- Padalon-Brauch, G., Hershberg, R., Elgrably-Weiss, M., Baruch, K., Rosenshine, I., Margalit, H. & Altuvia, S. (2008). Small RNAs encoded within genetic islands of *Salmonella* typhimurium show host-induced expression and role in virulence. *Nucleic Acids Res* 36, 1913–1927.
- Papanikolaou, N., Trachana, K., Theodosiou, T., Promponas, V. J. & Iliopoulos, I. (2009). Gene socialization: gene order, GC content and gene silencing in Salmonella. BMC Genomics 10, 597.
- Pardo-Esté, C., Hidalgo, A. A., Aguirre, C., Briones, A. C., Cabezas, C. E., Castro-Severyn, J., Fuentes, J. A., Opazo, C. M., Riedel, C. A. & other authors. (2018). The ArcAB two-component regulatory system promotes resistance to reactive oxygen species and systemic infection by *Salmonella* Typhimurium. *PLoS ONE* 13, e0203497– 20
- Park, D. M., Akhtar, M. S., Ansari, A. Z., Landick, R. & Kiley, P. J. (2013). The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. *PLoS Genet* 9, e1003839.
- Park, S.-Y., Pontes, M. H. & Groisman, E. A. (2015). Flagella-independent surface motility in *Salmonella enterica* serovar Typhimurium. *PNAS* 112, 1850–1855.
- Parker, C. T. & Guard-Petter, J. (2001). Contribution of flagella and invasion proteins to pathogenesis of *Salmonella enterica* serovar enteritidis in chicks. *FEMS Microbiology Letters* 204, 287–291.
- Partridge, J. D., Sanguinetti, G., Dibden, D. P., Roberts, R. E., Poole, R. K. & Green, J. (2007). Transition of *Escherichia coli* from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. *J Biol Chem* 282, 11230–11237.
- Passaris, I., Cambré, A., Govers, S. K. & Aertsen, A. (2018). Bimodal expression of the Salmonella Typhimurium spv operon. Genetics 210, 621–635.
- Perez-Sepulveda, B. M. & Hinton, J. C. D. (2018). Functional transcriptomics for bacterial gene detectives. *Microbiology Spectrum* 6, 1–13.
- Perrett, C. A. & Zhou, D. (2013). Salmonella type III effector SopB modulates host cell exocytosis. Emerg Microbes Infect 2, e32.
- Popoff, M. Y., Bockemühl, J. & Gheesling, L. L. (2004). Supplement 2002 (no. 46) to the Kauffmann–White scheme. *Research in Microbiology* 155, 568–570.
- Price, C. E. & Driessen, A. J. M. (2010). Conserved negative charges in the transmembrane segments of subunit K of the NADH:Ubiquinone oxidoreductase determine its dependence on YidC for membrane insertion. *J Biol Chem* 285, 3575–3581.

- Price-Carter, M., Tingey, J., Bobik, T. A. & Roth, J. R. (2001). The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of *Salmonella enterica* serovar Typhimurium on ethanolamine or 1,2-propanediol. *J Bacteriol* 183, 2463–2475.
- Quackenbush, J. (2002). Microarray data normalization and transformation. *Nat Genet* **32**, 496–501.
- **R Core Team**. **(2013).** R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
- Ramírez, F., Ryan, D. P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne,
 S., Dündar, F. & Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res* 44, W160–W165.
- Rathman, M., Barker, L. P. & Falkow, S. (1997). The unique trafficking pattern of *Salmonella* typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry. *Infect Immun* 65, 1475–1485.
- Reeves, M. W., Evins, G. M., clinical, A. H. J. O.1989. (1999). Clonal nature of Salmonella typhi and its genetic relatedness to other Salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Bacteriol. 27, 313– 320
- Rhen, M. & Dorman, C. J. (2005). Hierarchical gene regulators adapt *Salmonella enterica* to its host milieus. *Int J Med Microbiol* 294, 487–502.
- Rice, C. J., Ramachandran, V. K., Shearer, N. & Thompson, A. (2015). Transcriptional and post-transcriptional modulation of SPI1 and SPI2 expression by ppGpp, RpoS and DksA in *Salmonella enterica* sv Typhimurium. *PLoS ONE* 10, e0127523.
- Richardson, D. J., Berks, B. C., Russell, D. A., Spiro, S. & Taylor, C. J. (2001). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. *CMLS*, *Cell Mol Life Sci* 58, 165–178.
- Richardson, E. J., Limaye, B., Inamdar, H., Datta, A., Manjari, K. S., Pullinger, G. D., Thomson, N. R., Joshi, R. R., Watson, M. & Stevens, M. P. (2011). Genome sequences of *Salmonella enterica* serovar Typhimurium, Choleraesuis, Dublin, and Gallinarum strains of well-defined virulence in food-producing animals. *J Bacteriol* 193, 3162–3163.
- **Rigottier-Gois, L. (2013).** Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. *The ISME Journal* **7**, 1256–1261.
- Rivera-Chávez, F. & Bäumler, A. J. (2015). The pyromaniac inside you: *Salmonella* metabolism in the host gut. *Annu Rev Microbiol* 69, 31–48.

- Rivera-Chávez, F., Winter, S. E., Lopez, C. A., Xavier, M. N., Winter, M. G., Nuccio, S.-P., Russell, J. M., Laughlin, R. C., Lawhon, S. D. & other authors. (2013). *Salmonella* uses energy taxis to benefit from intestinal inflammation. *PLoS Pathog* 9, e1003267.
- Rollenhagen, C. & Bumann, D. (2006). *Salmonella enterica* highly expressed genes are disease specific. *Infect Immun* 74, 1649–1660.
- Rosenberg, S. L. (1980). Fermentation of pentose sugars to ethanol and other neutral products by microorganisms. *Enzyme and Microbial Technology* **2**, 185–193.
- Ryan, D., Mukherjee, M. & Suar, M. (2017). The expanding targetome of small RNAs in *Salmonella* Typhimurium. *Biochimie* 1–38.
- Sabbagh, S. C., Forest, C. G., Lepage, C., Leclerc, J.-M. & Daigle, F. (2010). So similar, yet so different: uncovering distinctive features in the genomes of *Salmonella enterica* serovars Typhimurium and Typhi. *FEMS Microbiology Letters* 305, 1–13.
- Salmon, K., Hung, S.-P., Mekjian, K., Baldi, P., Hatfield, G. W. & Gunsalus, R. P. (2003). Global gene expression profiling in *Escherichia coli* K12. The effects of oxygen availability and FNR. *J Biol Chem* 278, 29837–29855.
- Santos, R. L., Raffatellu, M., Bevins, C. L., Adams, L. G., Tükel, Ç., Tsolis, R. M. & Bäumler, A. J. (2009). Life in the inflamed intestine, *Salmonella* style. *Trends in Microbiology* 17, 498–506.
- Sawers, G. (1999). The aerobic/anaerobic interface. Curr Opin Microbiol 2, 181–187.
- Sawers, G., Kaiser, M., Sirko, A. & Freundlich, M. (1997). Transcriptional activation by FNR and CRP: reciprocity of binding-site recognition. *Mol Microbiol* 23, 835–845.
- Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., Jones, J. L. & Griffin, P. M. (2011). Foodborne illness acquired in the United States—Major pathogens. *Emerging Infect Dis* 17, 7–15.
- Schiemann, D. A. & Shope, S. R. (1991). Anaerobic growth of Salmonella typhimurium results in increased uptake by Henle 407 epithelial and mouse peritoneal cells in vitro and repression of a major outer membrane protein. Infect Immun 59, 437–440.
- Schmidt, D., Wilson, M. D., Spyrou, C., Brown, G. D., Hadfield, J. & Odom, D. T. (2009). ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. *Methods* 48, 240–248.
- Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. *Nat Meth* 9, 671–675.
- Scott, C., Partridge, J. D., Stephenson, J. R. & Green, J. (2003). DNA target sequence and FNR-dependent gene expression. *FEBS Lett* 541, 97–101.

- Sengupta, A. & Bhadauria, S. (2014). Exploration of multi-objective tradeoff during high level synthesis using bacterial chemotaxis and dispersal. *Procedia - Procedia Computer Science* 35, 63–72.
- Shalel Levanon, S., San, K.-Y. & Bennett, G. N. (2005). Effect of oxygen on the *Escherichia coli* ArcA and FNR regulation systems and metabolic responses. *Biotechnol Bioeng* 89, 556–564.
- Shan, Y., Lai, Y. & Yan, A. (2012a). Metabolic reprogramming under microaerobic and anaerobic conditions in bacteria. In *Reprogramming Microbial Metabolic Pathways*, Subcellular Biochemistry, pp. 159–179. Edited by X. Wang, J. Chen & P. Quinn. Dordrecht: Springer Netherlands.
- Shan, Y., Pan, Q., Liu, J., Huang, F., Sun, H., Nishino, K. & Yan, A. (2012b). Covalently linking the *Escherichia coli* global anaerobic regulator FNR in tandem allows it to function as an oxygen stable dimer. *Biochemical and Biophysical Research Communications* 419, 43–48.
- Sharma, C. M., Darfeuille, F., Plantinga, T. H. & Vogel, J. (2007). A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. *Genes & Development* 21, 2804–2817.
- Sharma, C. M., Papenfort, K., Pernitzsch, S. R., Mollenkopf, H.-J., Hinton, J. C. D. & Vogel, J. (2011). Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. *Mol Microbiol* 81, 1144–1165.
- Shaw, D. J., Rice, D. W. & Guest, J. R. (1983). Homology between CAP and Fnr, a regulator of anaerobic respiration in *Escherichia coli*. 166, 241–247.
- Shi, Y., Latifi, T., Cromie, M. J. & Groisman, E. A. (2004). Transcriptional control of the antimicrobial peptide resistance *ugtL* gene by the *Salmonella* PhoP and SlyA regulatory proteins. *J Biol Chem* 279, 38618–38625.
- Shivak, D. J., MacKenzie, K. D., Watson, N. L., Pasternak, J. A., Jones, B. D., Wang, Y., DeVinney, R., Wilson, H. L., Surette, M. G. & White, A. P. (2016). A modular, Tn 7-based system for making bioluminescent or fluorescent *Salmonella* and *Escherichia coli* strains. *Appl Environ Microb* 82, 4931–4943.
- Silphaduang, U., Mascarenhas, M., Karmali, M. & Coombes, B. K. (2007). Repression of intracellular virulence factors in *Salmonella* by the Hha and YdgT nucleoidassociated proteins. *J Bacteriol* 189, 3669–3673.
- Singh, R. D., Khullar, M. & Ganguly, N. K. (2000). Role of anaerobiosis in virulence of Salmonella Typhimurium. Mol Cell Biochem 215, 39–46.

- Six, S., Andrews, S. C., Unden, G. & Guest, J. R. (1994). Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J Bacteriol 176, 6470– 6478.
- Skinner, M. E., Uzilov, A. V., Stein, L. D., Mungall, C. J. & Holmes, I. H. (2009). JBrowse: A next-generation genome browser. *Genome Research* 19, 1630–1638.
- Smith, H. O. & Levine, M. (1967). A phage P22 gene controlling integration of prophage. Virology 31, 207–216.
- Solórzano, C., Srikumar, S., Canals, R., Juárez, A., Paytubi, S. & Madrid, C. (2015). Hha has a defined regulatory role that is not dependent upon H-NS or StpA 6, 13356– 13314.
- Spiro, S. & Guest, J. R. (1987). Regulation and over-expression of the *fnr* gene of *Escherichia coli*. *Microbiology* 133, 3279–3288.
- Spiro, S. & Guest, J. R. (1990). FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiology Reviews 6, 399–428.
- Sridhar, S. & Steele-Mortimer, O. (2016). Inherent variability of growth media impacts the ability of *Salmonella* Typhimurium to interact with host cells. *PLoS ONE* 11, e0157043–14.
- Srikanth, C. V., Mercado-Lubo, R., Hallstrom, K. & McCormick, B. A. (2011). Salmonella effector proteins and host-cell responses. CMLS, Cell Mol Life Sci 68, 3687– 3697.
- Srikumar, S., Kröger, C., Hébrard, M., Colgan, A., Owen, S. V., Sivasankaran, S. K., Cameron, A. D. S., Hokamp, K. & Hinton, J. C. D. (2015). RNA-seq brings new insights to the intra-macrophage transcriptome of *Salmonella* Typhimurium. *PLoS Pathog* 11, e1005262–26.
- Stapleton, M. R., Norte, V. A., Read, R. C. & Green, J. (2002). Interaction of the Salmonella Typhimurium transcription and virulence factor SlyA with target DNA and identification of members of the SlyA regulon. J Biol Chem 277, 17630–17637.
- Stark, R. & Brown, G. (2011). DiffBind: differential binding analysis of ChIP-Seq peak data. *bioconductorstatistiktu-dortmundde*.
- Stecher, B., Barthel, M., Schlumberger, M. C., Haberli, L., Rabsch, W., Kremer, M. & Hardt, W.-D. (2008). Motility allows S. Typhimurium to benefit from the mucosal defence. *Cell Microbiol* 10, 1166–1180.
- Steele-Mortimer, O. (2008). The Salmonella-containing vacuole—Moving with the times 11, 38–45.

- Stevens, M. P., Humphrey, T. J. & Maskell, D. J. (2009). Molecular insights into farm animal and zoonotic *Salmonella* infections. *Phil Trans R Soc B* 364, 2709–2723.
- Stewart, V., Bledsoe, P. J., Chen, L.-L. & Cai, A. (2009). Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J Bacteriol 191, 996–1005.
- Stewart, V., Chen, L.-L. & Wu, H.-C. (2003). Response to culture aeration mediated by the nitrate and nitrite sensor NarQ of *Escherichia coli* K-12. *Mol Microbiol* 50, 1391– 1399. John Wiley & Sons, Ltd (10.1111).
- Stormo, G. D. & Zhao, Y. (2010). Determining the specificity of protein–DNA interactions. *Nature Rev Genet* 11, 751–760.
- Sturm, A., Heinemann, M., Arnoldini, M., Benecke, A., Ackermann, M., Benz, M., Dormann, J. & Hardt, W.-D. (2011). The cost of virulence: retarded growth of *Salmonella* Typhimurium cells expressing type III secretion system 1. *PLoS Pathog* 7, e1002143.
- Sutton, V. R., Stubna, A., Patschkowski, T., Münck, E., Beinert, H. & Kiley, P. J. (2004). Superoxide destroys the [2Fe-2S] 2⁺ cluster of FNR from *Escherichia coli*. *Biochemistry* 43, 791–798.
- Tahoun, A., Mahajan, S., Paxton, E., Malterer, G., Donaldson, D. S., Wang, D., Tan, A., Gillespie, T. L., O'Shea, M. & other authors. (2012). Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host Microbe 12, 645–656.
- Takaya, A., Takeda, H., Tashiro, S., Kawashima, H. & Yamamoto, T. (2019). Chaperone-mediated secretion switching from early to middle substrates in the type III secretion system encoded by *Salmonella* pathogenicity island 2. *J Biol Chem* 294, 3783– 3793.
- Thauer, R. K., Jungermann, K. & Decker, K. (1977). Energy conservation in chemotrophic anaerobic bacteria. *Bacteriol Rev* 41, 100–180.
- The UniProt Consortium. (2017). UniProt: the universal protein knowledgebase. *Nucleic Acids Res* 45, D158–D169.
- Thiennimitr, P., Winter, S. E., Winter, M. G., Xavier, M. N., Tolstikov, V., Huseby, D. L., Sterzenbach, T., Tsolis, R. M., Roth, J. R. & Bäumler, A. J. (2011). Intestinal inflammation allows *Salmonella* to use ethanolamine to compete with the microbiota. *PNAS* 108, 17480–17485.
- Thiennimitr, P., Winter, S. E. & Bäumler, A. J. (2012). *Salmonella*, the host and its microbiota 15, 108–114.

- Thijs, I. M. V., De Keersmaecker, S. C. J., Fadda, A., Engelen, K., Zhao, H., McClelland, M., Marchal, K. & Vanderleyden, J. (2007). Delineation of the *Salmonella enterica* serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. J Bacteriol 189, 4587–4596.
- Thompson, A., Rowley, G., Alston, M., Danino, V. & Hinton, J. C. (2006). Salmonella transcriptomics: relating regulons, stimulons and regulatory networks to the process of infection. Curr Opin Microbiol 9, 109–116.
- Troxell, B., Fink, R. C., Porwollik, S., McClelland, M. & Hassan, H. M. (2011). The Fur regulon in anaerobically grown *Salmonella enterica* sv. Typhimurium: identification of new Fur targets. *BMC Microbiology* 11, 236. BioMed Central Ltd.
- Tseng, C. P., Albrecht, J. & Gunsalus, R. P. (1996). Effect of microaerophilic cell growth conditions on expression of the aerobic (*cyoABCDE* and *cydAB*) and anaerobic (*narGHJI*, *frdABCD*, and *dmsABC*) respiratory pathway genes in *Escherichia coli*. J Bacteriol 178, 1094–1098.
- Tukel, C., Akcelik, M., de Jong, M. F., Simsek, O., Tsolis, R. M. & Bäumler, A. J. (2007). MarT Activates Expression of the MisL Autotransporter Protein of Salmonella enterica Serotype Typhimurium. J Bacteriol 189, 3922–3926.
- Unden, G. & Bongaerts, J. (1997). Alternative respiratory pathways of *Escherichia coli*: energetics and transcriptional regulation in response to electron acceptors. *Biochim Biophys Acta* 1320, 217–234.
- van Asten, A. J. A. M. & van Dijk, J. E. (2005). Distribution of 'classic' virulence factors among *Salmonella* spp. *FEMS Immunol Med Microbiol* 44, 251–259.
- van der Heijden, J., Bosman, E. S., Reynolds, L. A. & Finlay, B. B. (2015). Direct measurement of oxidative and nitrosative stress dynamics in *Salmonella* inside macrophages. *PNAS* 112, 560–565.
- Van Dyk, T. K. & Rosson, R. A. (1998). Photorhabdus luminescens luxCDABE promoter probe vectors. In Bioluminescence Methods and Protocols, pp. 85–95. New Jersey: Humana Press.
- Vazquez-Torres, A & Fang, F. C. (2001). Oxygen-dependent anti-Salmonella activity of macrophages. *Trends Microbiol* 9, 29–33.
- Vergara-Irigaray, M., Fookes, M. C., Thomson, N. R. & Tang, C. M. (2014). RNA-seq analysis of the influence of anaerobiosis and FNR on *Shigella flexneri*. *BMC Genomics* 15, 438–22.
- Vijay-Kumar, M. & Gewirtz, A. T. (2009). Flagellin: key target of mucosal innate immunity. *Mucosal Immunol* 2, 197–205.

- Vogel, J. (2009). A rough guide to the non-coding RNA world of *Salmonella*. *Mol Microbiol* 71, 1–11.
- Vonaesch, P., Sellin, M. E., Cardini, S., Singh, V., Barthel, M. & Hardt, W.-D. (2014). The *Salmonella* Typhimurium effector protein SopE transiently localizes to the early SCV and contributes to intracellular replication. *Cell Microbiol* 16, 1723–1735.
- Wagner, C. & Hensel, M. (2011). Adhesive mechanisms of Salmonella enterica. In Bacterial Adhesion, Advances in Experimental Medicine and Biology, pp. 17–34. Edited by D. Linke & A. Goldman. Dordrecht: Springer Netherlands.
- Wagner, G. P., Kin, K. & Lynch, V. J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. *Theory Biosci* 131, 281– 285.
- Wagner, G. P., Kin, K. & Lynch, V. J. (2013). A model based criterion for gene expression calls using RNA-seq data. *Theory Biosci* 132, 159–164.
- Walthers, D., Carroll, R. K., Navarre, W. W., Libby, S. J., Fang, F. C. & Kenney, L. J. (2007). The response regulator SsrB activates expression of diverse *Salmonella* pathogenicity island 2 promoters and counters silencing by the nucleoid-associated protein H-NS. *Mol Microbiol* 65, 477–493.
- Walthers, D., Li, Y., Liu, Y., Anand, G., Yan, J. & Kenney, L. J. (2011). Salmonella enterica response regulator SsrB relieves H-NS silencing by displacing H-NS bound in polymerization mode and directly activates transcription. Journal of Biol Chem 286, 1895–1902.
- Wang, Q., Zhao, Y., McClelland, M. & Harshey, R. M. (2007). The RcsCDB signaling system and swarming motility in *Salmonella enterica* serovar Typhimurium: Dual regulation of flagellar and SPI-2 virulence genes. *J Bacteriol* 189, 8447–8457.
- Wang, Z., Sun, J., Tian, M., Xu, Z., Liu, Y., Fu, J., Yan, A. & Liu, X. (2019). Proteomic analysis of FNR-regulated anaerobiosis in *Salmonella* Typhimurium. *J Am Soc Mass Spectrom*.
- Westermann, A. J., Förstner, K. U., Amman, F., Barquist, L., Chao, Y., Schulte, L. N., Müller, L., Reinhardt, R., Stadler, P. F. & Vogel, J. (2016). Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. *Nature* 529, 496–501.
- Westermann, A. J. & Vogel, J. (2018). Host-pathogen transcriptomics by dual RNA-seq. In *Bacterial Regulatory RNA*, Methods in Molecular Biology, pp. 59–75. Edited by V. Arluison & C. Valverde. New York, NY: Springer New York.

- Williams, S. M., Wing, H. J. & Busby, S. J. (1998). Repression of transcription initiation by *Escherichia coli* FNR protein: repression by FNR can be simple. *FEMS Microbiology Letters* 163, 203–208.
- Winardhi, R. S., Yan, J. & Kenney, L. J. (2015). H-NS regulates gene expression and compacts the nucleoid: Insights from single-molecule experiments. *Biophysj* 109, 1321– 1329.
- Wing, H. J., Williams, S. M. & Busby, S. J. (1995). Spacing requirements for transcription activation by *Escherichia coli* FNR protein. *J Bacteriol* 177, 6704–6710.
- Winter, S. E., Lopez, C. A. & Bäumler, A. J. (2013). The dynamics of gut-associated microbial communities during inflammation. *EMBO Rep* 14, 319–327.
- Winter, S. E., Thiennimitr, P., Winter, M. G., Butler, B. P., Huseby, D. L., Crawford,
 R. W., Russell, J. M., Bevins, C. L., Adams, L. G. & other authors. (2010). Gut inflammation provides a respiratory electron acceptor for *Salmonella*. *Nature* 467, 426–429.
- Wiser, M. J. & Lenski, R. E. (2015). A comparison of methods to measure fitness in *Escherichia coli*. *PLoS ONE* 10, e0126210–11.
- Wisner, A., Desin, T., White, A., Potter, A. & Kster, W. (2012). The Salmonella pathogenicity island-1 and -2 encoded type III secretion systems. In Salmonella A Diversified Superbug. InTechOpen.
- Woods, S. A., Schwartzbach, S. D. & Guest, J. R. (1988). Two biochemically distinct classes of fumarase in *Escherichia coli*. *Biochim Biophys Acta* 954, 14–26.
- Worley, M. J., Ching, K. H. & Heffron, F. (2000). Salmonella SsrB activates a global regulon of horizontally acquired genes. Mol Microbiol 36, 749–761.
- Wuichet, K., Alexander, R. P. & Zhulin, I. B. (2007). Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. In *Two-Component Signaling Systems, Part A*, Methods in Enzymology, pp. 3–31.
- Xu, X. & Hensel, M. (2010). Systematic analysis of the SsrAB virulon of Salmonella enterica. Infect. Immun. 78, 49–58.
- Yim, H. H. & Villarejo, M. (1992). osmY, a new hyperosmotically inducible gene, encodes a periplasmic protein in *Escherichia coli*. J Bacteriol 174, 3637–3644.
- Yoon, H., McDermott, J. E., Porwollik, S., McClelland, M. & Heffron, F. (2009). Coordinated regulation of virulence during systemic infection of *Salmonella enterica* Serovar Typhimurium. *PLoS Pathog* 5, e1000306–16.

- Yu, X.-J., Grabe, G. J., Liu, M., Mota, L. J. & Holden, D. W. (2018). SsaV Interacts with SsaL to control the translocon-to-effector switch in the *Salmonella* SPI-2 type three secretion system. *mBio* 9, 379–16.
- Yu, X.-J., McGourty, K., Liu, M., Unsworth, K. E. & Holden, D. W. (2010). pH sensing by intracellular *Salmonella* induces effector translocation. *Science* 328, 1040–1043.
- Zeitouni, N. E., Chotikatum, S., Köckritz-Blickwede, von, M. & Naim, H. Y. (2016). The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens. *Mol Cell Pediatr* 14, 1–9.
- Zeng, M. Y., Inohara, N. & ez, G. N. N. (2016). Mechanisms of inflammation-driven bacterial dysbiosis in the gut. *Nature* 10, 18–26.
- Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M. & other authors. (2008). Model-based analysis of ChIP-Seq (MACS). *Genome Biol* 9, R137.
- Zheng, L., Kelly, C. J. & Colgan, S. P. (2015). Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. *American Journal of Physiology-Cell Physiology* **309**, C350–C360.

Appendix I

Table S1. RNA-seq data:	Absolute and relative	expression.
-------------------------	-----------------------	-------------

Name	∆fnr TPM	WT TPM	∆fnr/WT	Chr ^a	Start	End	Strand
repY	440	520	0.85	ST4-74_pColIb	378	467	+
repZ	41	49	0.85	ST4-74_pColIb	455	1486	+
yacA	88	72	1.23	ST4-74_pColIb	2395	2664	+
yacB	24	19	1.24	ST4-74_pColIb	2661	2942	+
yacC	31	28	1.12	ST4-74_pColIb	2982	3830	+
yadA	69	63	1.08	ST4-74_pColIb	3971	4420	+
yaeA	274	189	1.45	ST4-74_pColIb	4555	4788	+
yaeB	19	19	1.03	ST4-74_pColIb	4897	5166	-
yafA	29	30	0.99	ST4-74_pColIb	5163	5657	-
yafB	39	35	1.11	ST4-74_pColIb	5713	6315	-
yagA	23	24	0.95	ST4-74_pColIb	6669	8015	+
cib	38	27	1.38	ST4-74_pColIb	8294	10174	+
imm	75	43	1.76	ST4-74_pColIb	10192	10539	-
ybaA	44	25	1.77	ST4-74_pColIb	10658	10977	+
ybbA	4	3	1.52	ST4-74_pColIb	11076	11759	+
ybfA	12	13	0.95	ST4-74_pColIb	12400	12852	+
resA	5	5	1.02	ST4-74_pColIb	12854	13639	+
SLP2_0018	14	14	1.05	ST4-74_pColIb	13893	14096	+
parA	34	37	0.92	ST4-74_pColIb	14223	14855	+
SLP2_0020	44	39	1.15	ST4-74_pColIb	14855	15229	+
stbA	53	52	1.01	ST4-74_pColIb	15468	16442	+
stbB	29	31	0.95	ST4-74_pColIb	16446	16838	+
impC	36	43	0.84	ST4-74_pColIb	16979	17101	-
yccA	8	6	1.34	ST4-74_pColIb	17236	17481	+
уссВ	9	6	1.56	ST4-74_pColIb	17495	18421	+
ycdA	3	4	0.81	ST4-74_pColIb	18418	18730	+
ycdB	3	2	1.24	ST4-74_pColIb	18806	19489	+
yceA	2	1	1.48	ST4-74_pColIb	19490	19711	+
усеВ	2	2	0.77	ST4-74_pColIb	19725	20159	+
ycfA	4	4	1.19	ST4-74_pColIb	20205	20981	+
ycgA	8	9	0.88	ST4-74_pColIb	20956	21426	+
ycgB	4	2	1.68	ST4-74_pColIb	21399	21824	+
ycgC	8	4	1.99	ST4-74_pColIb	21871	22293	+
ychA	5	6	0.93	ST4-74_pColIb	22606	22898	+
ssb	6	3	2.09	ST4-74_pColIb	23250	23777	+
ycjA	6	4	1.45	ST4-74_pColIb	24121	26085	+
psiB	10	9	1.09	ST4-74_pColIb	26140	26574	+
psiA	10	8	1.29	ST4-74_pColIb	26625	27290	+
SLP2_0039	9	7	1.24	ST4-74_pCollb	27290	27883	+
yddA	62	66	0.93	ST4-74_pColIb	27955	28425	+
ard	8	3	2.41	ST4-74_pCollb	28331	28846	+
ydfA	4	2	1.69	ST4-74_pCollb	29575	30009	+
ydfB	4	4	1.02	ST4-74_pCollb	30103	30369	+
ydgA	305	195	1.57	ST4-74_pCollb	30311	31360	+
ydhA	6	6	1.03	ST4-74_pColIb	32007	32342	+
<i>ydiA</i>	8	6	1.37	ST4-74_pColIb	32467	33315	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
SLP2_0047A	219	203	1.08	ST4-74_pColIb	33401	33736	-
nikA	39	46	0.84	ST4-74_pColIb	33969	34301	+
nikB	14	15	0.91	ST4-74_pColIb	34312	37011	+
trbC	13	10	1.27	ST4-74_pColIb	37048	39339	-
trbB	12	9	1.27	ST4-74 pCollb	39332	40402	-
trbA	8	7	1.18	ST4-74_pColIb	40421	41629	-
pndC	3086	3748	0.82	ST4-74 pCollb	41782	42066	+
pndA	5309	6352	0.84	ST4-74 pCollb	41942	42073	+
SLP2 0054A	14106	14363	0.98	ST4-74 pCollb	42696	42992	+
exc _	426	425	1.00	ST4-74 pCollb	43906	44568	-
traY	15	13	1.22	ST4-74 pCollb	44633	46864	-
traX	7	6	1.03	ST4-74 pCollb	46892	47476	-
traW	4	4	0.97	ST4-74 pCollb	47505	48707	-
traV	7	7	1.04	ST4-74 pCollb	48674	49288	-
traU	8	7	1.12	ST4-74 pCollb	49288	52332	-
traT	6	5	1.14	ST4-74 pCollb	52422	53222	-
traS	3	3	1.12	ST4-74 pCollb	53206	53394	-
traR	13	17	0.77	ST4-74 pCollb	53458	53862	-
traQ	7	8	0.88	ST4-74 pCollb	53913	54440	-
traP	16	17	0.91	ST4-74 pCollb	54440	55144	-
traO	9	10	0.93	ST4-74 pCollb	55144	56433	-
traN	6	7	0.87	ST4-74 pCollb	56436	57419	-
traM	6	7	0.87	ST4-74 pCollb	57430	58122	-
traL	5	8	0.67	ST4-74 pCollb	58119	58466	-
sogL	6	6	1.02	ST4-74 pCollb	58484	62251	-
nuc	5	7	0.67	ST4-74 pCollb	62341	62892	-
traK	6	10	0.60	ST4-74 pCollb	62907	63197	-
traJ	5	6	0.92	ST4-74 pCollb	63194	64342	-
traI	5	5	0.95	ST4-74 pCollb	64339	65157	-
traH	8	8	1.04	ST4-74 pCollb	65154	65612	-
traG	9	8	1.11	ST4-74 pCollb	66007	66591	-
traF	21	29	0.71	ST4-74 pCollb	66651	67853	-
traE	13	17	0.77	ST4-74 pCollb	67938	68762	-
rci	15	13	1.19	ST4-74 pCollb	68913	70067	-
shfB	8	6	1.33	ST4-74 pCollb	70132	70383	+
shfB	39	22	1.79	ST4-74 pCollb	70385	70630	-
shfC	21	17	1.22	ST4-74 pCollb	70653	71006	+
pilV	10	10	0.97	ST4-74 pCollb	71003	72295	-
pilU	5	5	0.95	ST4-74 pCollb	72295	72951	-
pilT	8	11	0.77	ST4-74 pCollb	72936	73496	-
pilS	22	27	0.83	ST4-74 pCollb	73506	74120	-
pilR	9	10	0.90	ST4-74 pCollb	74138	75235	-
pilQ	7	9	0.84	ST4-74 pCollb	75248	76801	-
pilP	6	10	0.58	ST4-74_pColIb	76812	77264	-
pilO	6	8	0.75	ST4-74 pCollb	77251	78546	-
pilN	6	8	0.79	ST4-74_pColIb	78539	80221	-
pilM	4	7	0.64	ST4-74 pCollb	80235	80672	-
pilL	5	7	0.82	ST4-74_pColIb	80672	81739	-
pilK	4	4	0.94	ST4-74 pCollb	81773	82363	-
pilJ	2	2	0.70	ST4-74_pColIb	82413	82865	-
pilI	6	7	0.89	ST4-74_pCollb	82908	83162	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
trcD	34	36	0.95	ST4-74_pColIb	83430	83996	-
traC	38	35	1.08	ST4-74_pColIb	84010	84693	-
traB	27	22	1.19	ST4-74_pColIb	84947	85480	-
traA	41	47	0.86	ST4-74_pColIb	85922	86209	-
sulII	332	402	0.83	ST4-74_pRSF1010	30	842	-
SLP3_0002	1171	1080	1.08	ST4-74_pRSF1010	854	1075	-
repC	17	17	1.03	ST4-74_pRSF1010	1153	1998	-
repA	29	29	0.99	ST4-74_pRSF1010	1991	2827	-
SLP3_0005	133	109	1.21	ST4-74_pRSF1010	2860	3063	-
SLP3_0006	271	221	1.23	ST4-74_pRSF1010	3068	3277	-
mobA	14	13	1.07	ST4-74_pRSF1010	3341	5467	-
mobB	17	16	1.13	ST4-74_pRSF1010	4309	4719	-
mobC	66	73	0.91	ST4-74_pRSF1010	5666	5947	+
SLP3_0012	71	57	1.25	ST4-74_pRSF1010	6504	7040	+
strB	102	104	0.98	ST4-74_pRSF1010	7018	7860	-
aph(3'')-	219	250	0.87	ST4-74_pRSF1010	7854	8654	-
finO	33	28	1.19	ST4-74_pSLT	21	584	-
traX	9	8	1.15	ST4-74 pSLT	639	1334	-
traI	8	7	1.03	ST4-74 pSLT	1399	6657	-
trbH	8	8	1.04	ST4-74 pSLT	6654	7373	-
traD	7	6	1.22	ST4-74 pSLT	7373	9535	-
traT	312	373	0.84	ST4-74 pSLT	9912	10643	-
traS	521	488	1.07	ST4-74 pSLT	10679	11173	-
traG	85	68	1.26	ST4-74 pSLT	11189	14011	-
traH	6	6	0.90	ST4-74 pSLT	14008	15390	-
trbB	6	4	1.75	ST4-74 pSLT	15380	15928	-
traO	14	12	1.14	ST4-74 pSLT	15915	16208	-
<i>traF</i>	7	5	1.31	ST4-74 pSLT	16422	17171	-
trbE	9	8	1.14	ST4-74 pSLT	17183	17398	-
traN	6	6	1.04	ST4-74 pSLT	17409	19235	-
trbC	4	3	1.18	ST4-74 pSLT	19688	20326	-
PSLT093	6	8	0.79	ST4-74 pSLT	20311	20619	_
traU	5	5	0.89	ST4-74 pSLT	20638	21630	_
traW	2	3	0.73	ST4-74 pSLT	21627	22259	_
trhI	4	3	1.31	ST4-74 pSLT	22256	22642	_
traC	5	3	1.45	ST4-74 pSLT	22617	25265	_
PSLT087	9	8	1.16	ST4-74 pSLT	25661	26128	_
traR	2	1	1.81	ST4-74 pSLT	26121	26342	-
traV	5	6	0.90	ST4-74 pSLT	26477	26992	-
trhD	6	7	0.79	ST4-74 pSLT	26989	27234	-
traP	6	7	0.94	ST4-74 pSLT	27212	27808	_
traR	6	4	1.28	ST4-74 pSLT	27212	29219	_
traK	4	5	0.80	ST4_74_pSET ST4_74_pSET	29219	29959	_
traE	3	3 4	0.00	ST4-74_pSLT ST4-74_pSLT	29219	30512	_
tral	5 7	10	0.50	$ST4_74_pSLT$	20534	30845	
tra A	16	22	0.07	ST4_74 nSI T	30860	31222	-
traV	10	22 82	1 22	ST4-74 pSL1	31264	31584	-
irui tra I	101 Q	60 6	1.22	ST4_74_PSL1 ST4_74 nSI T	31204	31304	-
uw traM	0 26	26	1.55	STA-74 STT	37767	322/1	-
ir uivi fin D	20 40	20 40	1.37	514-74_PSL1 STA 74 SST T	32404	32044 32720	- -
junr ngi 4	49	49	0.99 1 <i>22</i>	514-74_PSL1	25229 25260	26105	т
psiA nsiB	3 10	12	1.00	514-74_p5L1 STA 7A SSI T	35308	36526	-
psid	12	15	0.93	S14-74_pSL1	30102	30330	-

Name ∆fnr TPM WT TPM ∆fnr/WT Chr ^a Start E	End Strand
PSLT068 3 2 1.17 ST4-74_pSLT 36576 38	- 3573
PSLT067 4 3 1.61 ST4-74_pSLT 38642 38	- 3884
ssbB 2 1 2.07 ST4-74 pSLT 38939 39	9457 -
PSLT064 24 18 1.34 ST4-74 pSLT 40158 40	- 481
PSLT063 3 4 0.78 ST4-74 pSLT 40717 41	- 151 -
PSLT062 5 5 1.05 ST4-74_pSLT 41218 41	
SLP1 0044A 4 3 1.58 ST4-74 pSLT 41666 42	- 2115 -
PSLT061 2 1 1.39 ST4-74 pSLT 42148 42	- 2885
SLP1 0047 4 2 1.92 ST4-74 pSLT 42984 43	- 3397
PSLT060 2 1 2.51 ST4-74 pSLT 43453 43	674 -
PSLT059 3 2 1.44 ST4-74 pSLT 43674 44	
PSLT057 4 5 0.90 ST4-74 pSLT 44736 45	- 5092
PSLT056 5 4 1.19 ST4-74 pSLT 45085 45	5555 -
samA 25 25 1.02 ST4-74 pSLT 46066 46	6488 +
samB 7 5 1.42 ST4-74 pSLT 46488 47	762 +
parB 63 66 0.96 ST4-74 pSLT 47844 48	- 8821
parA 53 54 0.97 ST4-74 pSLT 48818 50	- 0023
samB 151 142 1.06 ST4-74 pSLT 50438 51	379 +
PSLT049 11 12 0.88 ST4-74 pSLT 52553 52	.969 -
<i>tlpA</i> 10 13 0.82 ST4-74 pSLT 53055 54	
PSLT047 62 43 1.43 ST4-74 pSLT 54429 54	917 +
PSLT046 534 374 1.43 ST4-74 pSLT 55572 56	5312 +
<i>rlgA</i> 249 245 1.01 ST4-74 pSLT 56519 57	/079 +
rlgA 42 48 0.86 ST4-74 pSLT 57063 58	3727 +
PSLT043 44 49 0.91 ST4-74 pSLT 58660 59	9685 +
PSLT042 5 4 1.21 ST4-74 pSLT 59874 60)869 -
<i>spvR</i> 12 3 3.50 ST4-74 pSLT 61520 62	2413 +
<i>spvA</i> 51 13 3.88 ST4-74 pSLT 62925 63	692 +
<i>spvB</i> 28 10 2.81 ST4-74 pSLT 63874 65	5649 +
<i>spvC</i> 34 8 4.11 ST4-74 pSLT 66047 66	655 +
<i>spyD</i> 24 6 3.88 ST4-74 pSLT 66916 67	7566 +
PSLT036 43 52 0.82 ST4-74 pSLT 67693 67	1956 -
PSLT035 1046 1203 0.87 ST4-74 pSLT 68174 68	3524 +
PSLT034 1 2 0.77 ST4-74 pSLT 68591 69	9151 -
SLP1 0073A 2 2 0.89 ST4-74 pSLT 69028 69	0687 -
PSLT033 3 5 0.62 ST4-74 pSLT 69880 70)365 -
PSLT032 17 16 1.05 ST4-74 pSLT 71034 71	585 -
<i>rsdB</i> 19 18 1.04 ST4-74 pSLT 71594 72	2376 -
PSLT030 16 17 0.91 ST4-74 pSLT 72411 72	
PSLT029 20 23 0.87 ST4-74 pSLT 72929 73	5219 -
<i>ccdB</i> 29 37 0.79 ST4-74 pSLT 73221 73	
ccdA 72 79 0.90 ST4-74 pSLT 73528 73	5746 -
PSLT026 186 183 1.02 ST4-74 pSLT 74422 74	943 +
PSLT025 28 18 1.50 ST4-74 pSLT 75427 75	5723 +
repA2 112 101 1.11 ST4-74 pSLT 76217 77	/206 +
PSLT020 32 28 1.14 ST4-74 pSLT 78078 78	3287 -
pefB 7 11 0.62 ST4-74 pSLT 79178 79	9480 +
pefA 5 6 0.90 ST4-74 pSLT 79755 80)273 +
pefC 4 3 1.09 ST4-74 pSLT 80612 82	2909 +
<i>pefD</i> 3 4 0.78 ST4-74 pSLT 82902 83	

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
orf5	9	8	1.22	ST4-74_pSLT	83648	84166	+
orf6	151	124	1.22	ST4-74_pSLT	84419	85294	+
pefI	44	36	1.21	ST4-74_pSLT	85726	85938	+
orf7	8	5	1.75	ST4-74_pSLT	85923	86273	+
srgA	12	8	1.56	ST4-74_pSLT	86518	87171	+
srgB	5	5	1.10	ST4-74_pSLT	87304	88203	+
rcK	13	11	1.17	ST4-74_pSLT	88293	88850	+
srgC	33	22	1.54	ST4-74_pSLT	89117	89875	+
PSLT007	10	8	1.23	ST4-74_pSLT	89972	90112	-
repA	72	78	0.92	ST4-74_pSLT	91053	91934	-
tap	283	306	0.93	ST4-74_pSLT	91915	91992	-
repA3	5625	4088	1.38	ST4-74_pSLT	91997	92119	-
repC	825	742	1.11	ST4-74_pSLT	92242	92487	-
PSLT002	35	30	1.17	ST4-74_pSLT	92687	93130	-
PSLT001	36	35	1.03	ST4-74_pSLT	93464	93748	-
thrL	5855	4483	1.31	ST4-74	169	255	+
thrA	50	51	0.99	ST4-74	337	2799	+
thrB	72	57	1.26	ST4-74	2801	3730	+
thrC	63	65	0.97	ST4-74	3734	5020	+
yaaA	32	32	0.99	ST4-74	5114	5887	-
yaaJ	36	23	1.58	ST4-74	5966	7396	-
talB	105	126	0.84	ST4-74	7665	8618	+
mog	33	30	1.09	ST4-74	8729	9319	+
yaaH	7	9	0.74	ST4-74	9376	9942	-
htgA	3	2	1.21	ST4-74	10092	10805	-
yaaI	11	8	1.36	ST4-74	10841	11245	-
dnaK	102	105	0.98	ST4-74	11593	13509	+
tpkel l	80	68	1.18	ST4-74	13507	13591	+
dnaJ	61	49	1.24	ST4-74	13595	14734	+
STnc890	402	201	2.00	ST4-74	14720	14783	+
STM0014	9	7	1.32	ST4-74	15014	15961	+
STM0015	6	4	1.44	ST4-74	16088	16432	+
STnc3200	15	9	1.69	ST4-74	16445	16493	-
STM0016	1	2	0.78	ST4-74	16493	17026	-
STnc3210	89	37	2.38	ST4-74	17025	17111	+
STM0017	1	1	1.24	ST4-74	17043	17486	-
chiA	5	5	1.10	ST4-74	18083	19966	+
STM0019	4	3	1.35	ST4-74	20058	23054	+
STM0020	8	8	0.99	ST4-74	23335	24039	+
<i>bcfA</i>	5	4	1.40	ST4-74	24469	25011	+
bcfB	1	1	1.44	ST4-74	25112	25798	+
bcfC	4	4	0.92	ST4-74	25803	28424	+
<i>bcfD</i>	3	2	1.30	ST4-74	28425	29432	+
bcfE	1	1	1.01	ST4-74	29433	29978	+
bcfF	2	1	1.28	ST4-74	29994	30512	+
bcfG	2	3	0.91	ST4-74	30505	31209	+
<i>bcfH</i>	10	11	0.94	ST4-74	31274	32119	+
SL1344_0029	9	7	1.39	ST4-74	32116	32445	+
STM0029	1	1	1.13	ST4-74	32545	32994	-
STM0030	4	3	1.25	ST4-74	33364	34368	+
STM0031	2	2	0.84	ST4-74	34376	34816	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM0032	6	5	1.27	ST4-74	35339	37057	+
STM0033	12	12	1.06	ST4-74	37103	38674	-
STM0034	4	3	1.18	ST4-74	38773	39534	-
STM0035	8	7	1.21	ST4-74	40131	41624	+
STnc1010	53	52	1.03	ST4-74	41629	41708	+
STM0036	5	5	0.96	ST4-74	41723	42913	+
STM0037	3	2	1.25	ST4-74	42932	44185	+
STM0038	13	9	1.44	ST4-74	44312	46027	+
nhaA	54	49	1.11	ST4-74	46190	47356	+
nhaR	31	30	1.05	ST4-74	47418	48317	+
STM0041	4	4	1.00	ST4-74	48372	50411	-
STM0042	3	4	0.88	ST4-74	50451	51824	-
<i>rpsT</i>	2329	2073	1.12	ST4-74	52280	52543	-
vaaY	43	33	1.29	ST4-74	52649	52864	+
, ribF	35	41	0.85	ST4-74	52872	53810	+
ileS	29	36	0.81	ST4-74	53855	56689	+
lspA	65	69	0.94	ST4-74	56689	57189	+
fkpB	27	37	0.72	ST4-74	57344	57793	+
ispH	24	30	0.78	ST4-74	57796	58746	+
STM0050	12	14	0.85	ST4-74	58946	60148	+
rihC	10	13	0.76	ST4-74	60164	61084	+
citB2	6	6	0.89	ST4-74	61106	61792	-
citA2	16	11	1.47	ST4-74	61794	63413	-
STnc3220	102	76	1.35	ST4-74	61807	62034	+
STM0054	3	3	1.24	ST4-74	63548	64849	-
STM0055	2	2	1.00	ST4-74	64862	66637	-
oadG	2	2	1.01	ST4-74	66654	66893	_
STnc4160	131	254	0.51	ST4-74	66912	67051	-
STnc3090	48	37	1.29	ST4-74	66916	67048	+
STM0057	4	4	0.93	ST4-74	67052	68392	-
citC2	3	4	0.79	ST4-74	68637	69683	+
citD2	4	4	1.17	ST4-74	69713	70006	+
citE2	2	3	0.73	ST4-74	70003	70872	+
citF2	5	5	0.87	ST4-74	70883	72403	+
citX2	2	3	0.72	ST4-74	72403	72954	+
citG2	4	3	1.46	ST4-74	72947	73840	+
<i>dapB</i>	219	276	0.79	ST4-74	74020	74841	+
DapZ	3249	2929	1.11	ST4-74	74847	74924	+
STnc3230	194	85	2.28	ST4-74	74894	75015	-
STM0065	4	4	1.05	ST4-74	75091	75438	+
carA	78	121	0.64	ST4-74	75883	77031	+
carB	30	59	0.52	ST4-74	77050	80277	+
caiF	134	160	0.84	ST4-74	80551	80946	+
caiE	3	3	1.20	ST4-74	81023	81619	-
caiD	2	2	0.93	ST4-74	81728	82513	-
caiC	- 4	-3	1.46	ST4-74	82567	84120	-
caiB	3	4	0.82	ST4-74	84183	85454	-
caiA	7	8	0.87	ST4-74	85512	86654	-
caiT	2	3	0.66	ST4-74	86689	88206	-
fixA	3	4	0.78	ST4-74	88687	89457	+
fixB	2	2	0.76	ST4-74	89473	90414	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
fixC	2	2	0.97	ST4-74	90464	91750	+
fixX	3	3	0.93	ST4-74	91747	92034	+
yaaU	10	9	1.12	ST4-74	92181	93521	+
STM0080	90	35	2.55	ST4-74	93610	93840	+
STM0081	85	52	1.61	ST4-74	94134	94550	+
STnc470	1034	633	1.63	ST4-74	94653	94741	-
STM0082	82	70	1.17	ST4-74	94774	95064	-
STnc4170	100	104	0.97	ST4-74	95102	95188	+
SL1344 0083A	50	33	1.50	ST4-74	95134	95226	-
STM0084	5	5	1.01	ST4-74	95962	97851	+
SL1344 0085	16	7	2.22	ST4-74	98056	98121	-
vabF _	30	17	1.78	ST4-74	98258	98788	+
, kefC	12	9	1.30	ST4-74	98781	100643	+
folA	43	37	1.16	ST4-74	100842	101321	+
STnc3240	34	23	1.44	ST4-74	101322	101483	_
anaH	37	27	1.41	ST4-74	101427	102275	_
apaG	24	33	0.73	ST4-74	102286	102663	_
ksøA	46	44	1.05	ST4-74	102666	103487	_
ndxAa	114	80	1.00	ST4-74	103484	104473	-
sur A	79	87	0.90	ST4-74	104473	105759	_
imn	63	66	0.96	ST4-74	105813	108173	_
dil A	40	39	1.04	ST4-74	108427	100175	+
STnc4180	10	27	0.36	ST4-74	100727	109322	_
rluA	10	12	0.94	ST4-74	109245	109993	_
hen A	6	7	0.24	ST4-74	110005	112911	_
nolR	10	7	1.28	ST4_74	113085	115436	_
5TM0098	18	16	1.20	ST4-74 ST4-74	115480	116100	_
ST 13// 0000	10	10	0.92	ST4-74	116105	116254	_
STM0100	10	5	1 10	ST4-74	116810	117238	+
araD	13	19	0.70	ST4-74	117244	117030	1
ara A	3	3	1.02	ST4-74	118080	110582	
araR	3	1	1.02	ST4-74	110503	121202	-
araC	10	1	0.60	ST4-74	121643	121302	-
uruC wahI	10	13	1.18	ST4-74	121045	122400	+
yu01 thi0	11	10	0.88	ST4-74	122007	123374	I
thiQ thiD	11	21	1.01	ST4-74	123413	124120	-
thu thu A	22	21	0.97	ST4-74	125600	126673	
Sro A	517	666	0.97	ST4-74	125090	126802	-
NghN	517	5	0.78	ST4-74	126951	120602	-
yaon SarS	4	226	0.65	ST4-74	120651	120309	-
SgrS sgrT	518	220	1.41	ST4-74	128577	120000	, T
sgr I lauD	21	0 35	0.00	ST4-74	120002	120/24	Т
leuD	15	33	0.90	ST4-74	129000	123003	-
leuC	13	22	0.09	S14-74	129070	122170	-
leub	19	23	0.74	S14-/4	122170	132170	-
leuA	20 2772	20 12011	0.73	S14-/4 ST4 74	132170	122015	-
ieuL	8//2	13911	0.05	S14-/4	122629	133913	-
ieuO	Э 24	4	1.43	514-/4 ST4 74	1343/2	133310	+
11VI ;h.11	∠4	32 51	0.73	S14-/4	133901	13/302	+
<i>ил</i> СТис1500	42	51	0.82	514-/4	13/303	128020	+
SINCIDUU	119	121	0.99	S14-74	138100	138274	-
fruK	46	59	0.78	ST4-74	138340	139344	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
mraZ	235	184	1.28	ST4-74	139950	140408	+
mraW	119	83	1.44	ST4-74	140410	141351	+
ftsL	158	126	1.26	ST4-74	141348	141713	+
ftsI	290	205	1.42	ST4-74	141729	143495	+
murE	36	36	1.01	ST4-74	143482	144969	+
murF	32	30	1.09	ST4-74	144966	146324	+
mraY	54	48	1.11	ST4-74	146318	147400	+
murD	48	44	1.09	ST4-74	147403	148719	+
ftsW	45	44	1.03	ST4-74	148806	149963	+
murG	36	39	0.94	ST4-74	149960	151027	+
murC	37	38	0.96	ST4-74	151146	152621	+
ddl	74	78	0.95	ST4-74	152614	153534	+
ftsQ	82	77	1.07	ST4-74	153536	154366	+
ftsA	78	76	1.03	ST4-74	154363	155625	+
ftsZ	73	85	0.86	ST4-74	155686	156837	+
lpxC	222	262	0.85	ST4-74	156938	157855	+
yacA	28	31	0.90	ST4-74	158203	158631	+
secA	25	30	0.81	ST4-74	158693	161398	+
mutT	17	13	1.26	ST4-74	161550	161945	+
vacG	27	29	0.93	ST4-74	162267	162458	-
vacF	18	19	0.93	ST4-74	162468	163211	-
coaE	35	39	0.91	ST4-74	163211	163831	-
guaC	74	72	1.03	ST4-74	164057	165100	+
pilC	2	1	1.34	ST4-74	165131	166333	-
pilB	1	1	1.27	ST4-74	166323	167708	-
pilA	3	2	1.12	ST4-74	167718	168155	-
nadC	7	8	0.87	ST4-74	168377	169123	-
ampD	29	28	1.03	ST4-74	169358	169921	+
ampE	26	28	0.93	ST4-74	169918	170772	+
STM0148	7	6	1.14	ST4-74	170864	171814	-
STM0149	6	6	0.98	ST4-74	171814	173220	-
aroP	69	100	0.69	ST4-74	173384	174757	-
pdhR	64	78	0.82	ST4-74	175320	176084	+
tp2	4	5	0.82	ST4-74	176086	176242	-
aceE	35	54	0.64	ST4-74	176244	178907	+
aceF	29	45	0.65	ST4-74	178922	180811	+
lpdA	86	106	0.81	ST4-74	181011	182435	+
STM0155	2	3	0.79	ST4-74	182724	183008	+
STM0156	2	2	1.20	ST4-74	183046	183837	-
yacH	3	2	1.33	ST4-74	183850	185464	-
acnB	42	48	0.87	ST4-74	185853	188450	+
STM0159	118	75	1.57	ST4-74	188511	189353	-
yacL	74	68	1.08	ST4-74	189599	189961	+
kdgT	5	5	0.96	ST4-74	190196	191149	+
STM0162	4	4	0.99	ST4-74	191146	192417	+
pdxAb	33	33	1.01	ST4-74	192407	193390	+
STM0164	32	36	0.89	ST4-74	193400	194167	+
speD	27	29	0.94	ST4-74	194197	194991	-
speE	20	24	0.85	ST4-74	195012	195872	-
yacC	118	100	1.18	ST4-74	195979	196326	-
cueO	10	14	0.70	ST4-74	196528	198138	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
gcd	27	14	1.92	ST4-74	198216	200606	-
hpt	61	61	1.00	ST4-74	200812	201348	+
yadF	140	115	1.21	ST4-74	201406	202068	-
yadG	11	10	1.03	ST4-74	202177	203103	+
yadH	13	12	1.06	ST4-74	203100	203870	+
stiH	3	3	1.16	ST4-74	203987	205066	-
stiC	1	1	1.38	ST4-74	205075	207621	-
stiB	1	1	0.90	ST4-74	207648	208331	-
stiA	2	2	1.25	ST4-74	208379	208918	-
yadI	9	68	0.13	ST4-74	209289	209729	+
yadE	21	20	1.01	ST4-74	209791	211020	+
STnc4190	28	36	0.79	ST4-74	209868	209971	-
panD	151	172	0.88	ST4-74	211027	211407	-
panC	11	21	0.51	ST4-74	211502	212356	-
panB	14	21	0.65	ST4-74	212482	213273	-
folK	9	9	0.96	ST4-74	213394	213873	-
pcnB	33	36	0.92	ST4-74	213870	215288	-
yadB	10	11	0.99	ST4-74	215429	216370	-
dksA	337	356	0.95	ST4-74	216394	216849	-
sfsA	75	44	1.70	ST4-74	217026	217730	-
ligT	56	47	1.19	ST4-74	217747	218277	-
hrpB	16	16	0.97	ST4-74	218305	220779	+
mrcB	33	37	0.88	ST4-74	220920	223442	+
STnc3250	88	48	1.81	ST4-74	223451	223676	-
fhuA	34	16	2.10	ST4-74	223735	225924	+
fhuC	6	4	1.52	ST4-74	225973	226770	+
fhuD	10	5	1.86	ST4-74	226770	227660	+
fhuB	9	5	1.65	ST4-74	227657	229714	+
stfA	3	2	1.17	ST4-74	230653	231213	+
stfC	3	3	1.01	ST4-74	231299	233956	+
stfD	1	0	1.42	ST4-74	233974	234726	+
stfE	3	3	0.99	ST4-74	234790	235257	+
stfF	2	2	1.06	ST4-74	235254	235730	+
stfG	3	1	2.08	ST4-74	235730	236260	+
STM0201	15	10	1.47	ST4-74	236260	237099	+
STnc1510	79	56	1.41	ST4-74	237091	237187	+
hemL	34	35	0.96	ST4-74	237207	238487	-
clcA	30	24	1.24	ST4-74	238657	240078	+
yadR	229	267	0.86	ST4-74	240160	240504	+
yadS	10	10	1.00	ST4-74	240605	241228	-
btuF	8	10	0.81	ST4-74	241265	242065	-
mtn	30	32	0.93	ST4-74	242058	242756	-
dgt	22	18	1.22	ST4-74	243051	244358	+
htrA	30	38	0.79	ST4-74	244488	245915	+
STnc3100	91	86	1.06	ST4-74	245838	245954	+
cdaR	16	11	1.43	ST4-74	246068	247225	+
yaeH	364	526	0.69	ST4-74	247314	247700	-
STM0212	49	34	1.42	ST4-74	248223	249248	+
STnc3110	159	107	1.48	ST4-74	249153	249274	+
dapD	129	180	0.71	ST4-74	249285	250109	-
glnD	8	10	0.85	ST4-74	250139	252811	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
тар	54	53	1.02	ST4-74	253048	253842	-
t44	465	619	0.75	ST4-74	254126	254264	+
rpsB	251	345	0.73	ST4-74	254293	255018	+
tsf	174	234	0.74	ST4-74	255276	256127	+
pyrH	39	51	0.76	ST4-74	256272	256997	+
frr	185	172	1.07	ST4-74	257144	257701	+
sRNA1	228	325	0.70	ST4-74	257725	257790	+
dxr	18	18	0.97	ST4-74	257842	259038	+
STnc920	257	281	0.92	ST4-74	259116	259164	+
uppS	57	67	0.85	ST4-74	259351	260109	+
cdsA	63	67	0.94	ST4-74	260122	260979	+
yaeL	103	105	0.98	ST4-74	260991	262343	+
yaeT	98	109	0.90	ST4-74	262375	264789	+
hlpA	202	200	1.01	ST4-74	264912	265397	+
<i>lpxD</i>	128	151	0.85	ST4-74	265401	266426	+
fabZ	99	109	0.91	ST4-74	266532	266987	+
lpxA	62	71	0.88	ST4-74	266991	267779	+
lpxB	19	24	0.80	ST4-74	267779	268927	+
rnhB	24	29	0.83	ST4-74	268924	269520	+
dnaE	26	32	0.82	ST4-74	269544	273026	+
accA	41	52	0.79	ST4-74	273039	273998	+
STM0233	8	7	1.12	ST4-74	274178	275941	+
ldcC	16	13	1.20	ST4-74	276017	278158	+
yaeR	28	20	1.42	ST4-74	278214	278603	+
mesJ	10	10	1.05	ST4-74	278747	279958	+
rof	205	197	1.04	ST4-74	280042	280296	-
yaeP	577	493	1.17	ST4-74	280289	280507	-
yaeQ	23	21	1.08	ST4-74	280687	281232	+
yaeJ	70	50	1.38	ST4-74	281229	281651	+
cutF	37	28	1.31	ST4-74	281683	282384	+
proS	24	30	0.81	ST4-74	282458	284176	-
yaeB	15	17	0.86	ST4-74	284287	284994	-
rcsF	67	75	0.90	ST4-74	284991	285395	-
metQ	167	227	0.74	ST4-74	285514	286329	-
yaeE	101	135	0.75	ST4-74	286368	287021	-
abc	86	94	0.92	ST4-74	287014	288045	-
yaeD	35	31	1.14	ST4-74	288235	288801	+
dkgB	11	9	1.15	ST4-74	295060	295863	+
yafC	6	5	1.14	ST4-74	295884	296798	-
STM0257	5	5	1.11	ST4-74	296903	298078	+
yafD	38	43	0.89	ST4-74	298231	299010	+
yafE	12	11	1.14	ST4-74	299088	299858	+
dniR	224	296	0.76	ST4-74	299914	301281	-
gloB	8	10	0.79	ST4-74	301353	302108	-
yafS	19	18	1.07	ST4-74	302143	302865	+
rnhA	35	28	1.27	ST4-74	302862	303329	-
dnaQ	49	43	1.13	ST4-74	303393	304124	+
sciA	3	2	1.20	ST4-74	304656	305711	-
sciB	2	1	1.30	ST4-74	305722	306717	-
sciC	2	2	1.22	ST4-74	306714	308597	-
sciD	3	3	1.06	ST4-74	308613	309107	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
sciE	3	3	0.90	ST4-74	309104	309928	-
sciF	4	3	1.24	ST4-74	309915	310817	-
sciG	2	2	0.98	ST4-74	311185	313824	+
sciH	1	1	0.85	ST4-74	313924	314466	+
sciI	2	2	1.15	ST4-74	314490	315983	+
sciJ	4	4	1.25	ST4-74	316169	316615	+
sciK	1	1	0.89	ST4-74	316869	317354	+
STM0277	5	5	1.02	ST4-74	317659	318144	+
STM0278	1	1	1.11	ST4-74	318129	318512	+
sciK1	2	2	1.03	ST4-74	318655	319140	+
sciN	1	0	2.68	ST4-74	319207	319743	+
sciO	2	1	1.19	ST4-74	319747	321090	+
sciP	2	2	0.95	ST4-74	321087	322391	+
sciQ	3	3	1.22	ST4-74	322396	323169	+
sciR	3	2	1.62	ST4-74	323372	323803	+
sciS	3	3	1.05	ST4-74	323837	327706	+
sciT	4	4	1.05	ST4-74	327706	328494	+
sciU	4	5	0.85	ST4-74	328491	328907	+
sciV	9	9	0.99	ST4-74	328931	329452	+
vgrS	2	2	1.27	ST4-74	329849	332038	+
sciW	1	1	0.60	ST4-74	332062	332508	+
STM0291	26	19	1.39	ST4-74	332521	336123	+
SL1344 0286A	71	45	1.56	ST4-74	336117	336380	+
STM0292	101	84	1.20	ST4-74	336396	337313	+
sciX	33	29	1.14	ST4-74	337307	337753	+
sciY	5	3	1.46	ST4-74	338265	338753	+
IsrA	3	2	1.16	ST4-74	338816	339238	+
STM0295	12	12	0.96	ST4-74	339522	339830	+
STM0296	5	4	1.19	ST4-74	339867	340180	-
STM0297	6	7	0.83	ST4-74	340233	340373	+
STM0298	1	2	0.80	ST4-74	340510	340975	+
safA	39	31	1.25	ST4-74	341687	342199	+
safB	5	5	1.03	ST4-74	342307	343020	+
safC	9	8	1.16	ST4-74	343044	345554	+
safD	11	11	1.00	ST4-74	345576	346046	+
ybeJ	6	6	0.99	ST4-74	346452	347273	+
sinR	26	24	1.06	ST4-74	348088	349035	+
STM0305	8	6	1.33	ST4-74	349152	349367	+
pagN	213	139	1.53	ST4-74	349371	350090	-
sciZ	15	18	0.84	ST4-74	350421	350828	-
STnc1030	470	673	0.70	ST4-74	350892	351095	+
STnc1040	480	633	0.76	ST4-74	351053	351100	-
yafV	21	20	1.06	ST4-74	351199	351966	-
fadE	18	17	1.05	ST4-74	352075	354519	-
gmhA	56	54	1.04	ST4-74	354759	355337	+
yafJ	23	24	0.92	ST4-74	355550	356317	+
yafK	51	52	0.98	ST4-74	356288	357028	-
dbh	15	13	1.20	ST4-74	357278	358333	+
STM0314	8	7	1.07	ST4-74	358540	359684	+
prfH	5	5	0.94	ST4-74	359681	360295	+
pepD	47	53	0.89	ST4-74	360451	361908	-
Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
----------	------------------	--------	---------	------------------------	--------	--------	--------
gpt	84	88	0.95	ST4-74	362157	362615	+
frsA	32	25	1.27	ST4-74	362704	363948	+
crl	185	165	1.12	ST4-74	364006	364407	+
phoE	6	5	1.14	ST4-74	364458	365510	-
proB	35	42	0.83	ST4-74	365793	366896	+
proA	22	24	0.90	ST4-74	366908	368158	+
STM0325	5	4	1.27	ST4-74	368675	369475	-
dhaF	2	2	0.85	ST4-74	369393	370107	+
STM0327	330	397	0.83	ST4-74	370217	370540	+
STM0328	4	3	1.44	ST4-74	370836	372119	+
leuC2	2	2	1.07	ST4-74	372251	373465	+
leuD2	2	1	1.46	ST4-74	373674	374300	+
STM0331	8	6	1.29	ST4-74	374315	375193	+
STM0332	8	7	1.15	ST4-74	375193	376107	+
STnc3270	69	50	1.39	ST4-74	376115	376194	+
STM0333	14	11	1.21	ST4-74	376141	377106	+
STM0334	13	13	0.94	ST4-74	377051	377323	-
STM0335	8	6	1.38	ST4-74	378014	378412	+
stbE	9	8	1.10	ST4-74	378459	379217	-
stbD	9	7	1.32	ST4-74	379183	380508	-
stbC	5	5	1.07	ST4-74	380513	383080	-
stbB	1	1	0.81	ST4-74	383064	383825	-
stbA	1	0	4.83	ST4-74	383887	384423	-
STM0341	17	11	1.50	ST4-74	385057	385821	+
STM0342	16	11	1.44	ST4-74	385794	386294	+
STnc1700	46	19	2.50	ST4-74	386381	386476	+
STM0343	11	9	1.19	ST4-74	386594	388168	+
STM0344	40	38	1.04	ST4-74	388268	389011	+
STM0345	23	21	1.07	ST4-74	388984	389472	+
STM0346	4	4	1.06	ST4-74	389874	390398	+
STM0347	3	1	1.78	ST4-74	390542	391183	+
STM0348	3	4	0.92	ST4-74	391194	391418	+
STM0349	7	7	1.05	ST4-74	391476	391835	+
STM0350	2	2	1.10	ST4-74	391905	393362	-
STM0351	2	2	1.40	ST4-74	393379	396546	-
STM0352	1	1	1.28	ST4-74	396543	397553	-
STM0353	3	3	1.03	ST4-74	398046	400334	+
STM0354	4	4	1.02	ST4-74	400346	400810	+
STM0355	23	29	0.78	ST4-74	400888	401082	+
STM0356	8	9	0.89	ST4-74	401375	402628	+
mod	20	20	1.01	ST4-74	402817	404775	+
res	12	11	1.06	ST4-74	404782	407757	+
STM0359	450	169	2.66	ST4-74	408034	408135	+
STM0360	38	22	1.70	ST4-74	408252	409655	+
STM0361	43	29	1.48	ST4-74	409652	410662	+
STM0362	15	10	1.52	ST4-74	410679	410903	+
STM0363	14	11	1.22	ST4-74	410999	412003	+
foxA	6	5	1.24	ST4-74	412149	414257	+
yahN	99	90	1.10	ST4-74	414298	414930	-
yahO	263	201	1.31	ST4-74	415162	415437	+
prpR	7	7	0.97	ST4-74	415573	417198	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
prpB	2	1	1.74	ST4-74	417463	418350	+
STnc3280	42	37	1.14	ST4-74	418391	418463	-
prpC	2	2	1.14	ST4-74	418473	419642	+
prpD	2	2	1.09	ST4-74	419682	421133	+
prpE	2	3	0.88	ST4-74	421174	423060	+
hemB	21	23	0.93	ST4-74	423164	424138	-
yaiU	21	19	1.13	ST4-74	424651	427587	+
yaiV	17	13	1.27	ST4-74	427673	428296	+
ampH	21	20	1.03	ST4-74	428341	429471	-
sbmA	17	14	1.16	ST4-74	429947	431065	+
yaiW	9	9	1.07	ST4-74	431080	432174	+
yaiY	14	7	1.91	ST4-74	432212	432520	-
yaiZ	273	252	1.09	ST4-74	432788	433003	+
ddlA	41	38	1.09	ST4-74	433029	434123	-
STM0381	18	9	2.06	ST4-74	434201	434914	+
STM0382	9	6	1.43	ST4-74	435083	436294	+
vaiB	761	542	1.40	ST4-74	436585	436851	+
STnc4150	43	27	1.61	ST4-74	436953	437082	-
psiF	112	53	2.14	ST4-74	437203	437523	+
adrA	20	14	1.41	ST4-74	437615	438727	+
proC	22	21	1.02	ST4-74	438742	439551	-
vaiI	16	16	1.04	ST4-74	439691	440146	+
aroL	54	78	0.68	ST4-74	440331	440876	+
vaiA	325	301	1.08	ST4-74	440903	441094	+
aroM	56	54	1.03	ST4-74	441345	442022	+
vaiE	113	133	0.85	ST4-74	442093	442377	+
rdgC	24	24	0.99	ST4-74	442415	443326	-
vajF	21	17	1.22	ST4-74	443452	444360	+
araJ	11	11	1.00	ST4-74	444382	445554	-
sbcC	4	5	0.79	ST4-74	445727	448867	-
sbcD	7	8	0.86	ST4-74	448864	450066	-
phoB	67	58	1.14	ST4-74	450281	450970	+
phoR	21	18	1.15	ST4-74	451040	452335	+
brnQ	71	73	0.97	ST4-74	452744	454063	+
\tilde{proY}	22	19	1.16	ST4-74	454138	455508	+
malZ	7	7	1.07	ST4-74	455670	457487	+
tsaA	154	249	0.62	ST4-74	457559	458161	-
vajB	48	50	0.96	ST4-74	458371	458952	-
gueA	19	18	1.06	ST4-74	459046	460110	+
tgt	76	91	0.83	ST4-74	460307	461434	+
vajC	206	306	0.67	ST4-74	461457	461789	+
secD	80	100	0.80	ST4-74	461817	463664	+
secF	77	102	0.75	ST4-74	463675	464646	+
STM0409	19	20	0.95	ST4-74	464794	465159	+
STM0410	9	14	0.65	ST4-74	465185	465877	+
vaiD	57	67	0.84	ST4-74	466047	466394	+
STnc1060	1413	1468	0.96	ST4-74	466718	466783	-
tsx	19	31	0.62	ST4-74	467023	467886	-
vaiI	9	5	1.67	ST4-74	468186	468725	-
nrdR	170	115	1.49	ST4-74	468877	469326	+
ribD	36	32	1.13	ST4-74	469330	470433	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ribH	136	135	1.01	ST4-74	470522	470992	+
nusB	136	143	0.95	ST4-74	471013	471432	+
thiL	16	17	0.91	ST4-74	471511	472488	+
pgpA	20	19	1.03	ST4-74	472466	472981	+
yajO	23	16	1.40	ST4-74	473085	474059	-
dxs	17	21	0.82	ST4-74	474116	475978	-
ispA	26	28	0.95	ST4-74	476002	476901	-
xseB	102	103	0.99	ST4-74	476902	477144	-
thiI	21	19	1.06	ST4-74	477354	478802	+
phnV	5	5	0.99	ST4-74	478846	479643	-
phnU	3	3	0.85	ST4-74	479646	480506	-
phnT	3	3	1.23	ST4-74	480509	481618	-
phnS	3	3	0.92	ST4-74	481624	482568	-
phnR	10	10	0.98	ST4-74	482835	483554	-
phnW	2	2	0.98	ST4-74	483694	484797	+
phnX	2	2	0.76	ST4-74	484804	485616	+
thiJ	13	12	1.06	ST4-74	485713	486303	-
apbA	30	22	1.36	ST4-74	486266	487177	-
yajQ	182	185	0.99	ST4-74	487285	487794	+
yajR	22	19	1.13	ST4-74	487841	489205	-
SL1344 0430A	35	23	1.52	ST4-74	489507	489698	-
STM0437	12	10	1.22	ST4-74	489742	491253	+
STM0438	10	8	1.29	ST4-74	491475	492758	+
суоЕ	93	70	1.32	ST4-74	492840	493730	-
cyoD	116	86	1.35	ST4-74	493742	494071	-
cyoC	97	67	1.43	ST4-74	494071	494586	-
cvoB	83	67	1.24	ST4-74	494675	496666	-
cyoA	165	122	1.36	ST4-74	496677	497633	-
ampG	12	13	0.91	ST4-74	498086	499561	-
yajG	41	46	0.88	ST4-74	499605	500237	-
bolA	351	238	1.48	ST4-74	500487	500804	+
tig	129	142	0.91	ST4-74	501151	502449	+
clpP	133	149	0.89	ST4-74	502696	503319	+
clpX	226	207	1.09	ST4-74	503571	504842	+
SraA	13	11	1.20	ST4-74	504870	504976	-
lon	88	80	1.11	ST4-74	505028	507382	+
hupB	1743	2379	0.73	ST4-74	507591	507863	+
cypD	58	64	0.90	ST4-74	508154	510025	+
comE1	12	13	0.87	ST4-74	510175	510549	+
ybaW	12	9	1.25	ST4-74	510653	511051	+
ybaX	44	41	1.06	ST4-74	511157	511852	-
ybaE	5	6	0.89	ST4-74	511917	513617	-
cof	8	6	1.48	ST4-74	513718	514536	+
STnc930	78	59	1.32	ST4-74	514484	514578	+
STM0458	7	6	1.15	ST4-74	514586	515641	-
ybaO	35	32	1.11	ST4-74	515754	516212	+
mdlA	10	9	1.05	ST4-74	516253	518025	+
mdlB	8	10	0.82	ST4-74	518018	519799	+
glnK	17	10	1.68	ST4-74	520012	520350	+
amtB	19	12	1.54	ST4-74	520382	521668	+
tesB	19	16	1.21	ST4-74	521768	522628	-

pbqY 108 44 2.24 ST4-74 523415 S23412 + ybaZ 153 129 11.9 ST4-74 523445 523756 - rpmL2 114 63 1.81 ST4-74 523605 526161 + rpmL2 114 63 1.81 ST4-74 526163 526246 + rpmLa 215 145 1.48 ST4-74 52680 527440 - maa 99 86 1.16 ST4-74 527855 528239 - acrB 42 51 0.82 ST4-74 531007 53184 - acrA 29 32 0.90 ST4-74 533012 - acrA - - acrA - 29 32 0.90 ST4-74 533014 533100 - acrA - - acrA - 33100 - acrA - - - 34351976 53385	Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ybaZ 153 129 1.19 ST4-74 S23445 S23756 - ylaB 25 22 1.14 ST4-74 S24065 S26100 + rpmL2 114 63 1.81 ST4-74 S26103 S26100 + rpmLa 215 145 1.48 ST4-74 S26102 S26772 - maa 99 86 1.16 ST4-74 S2689 S27440 - hha 114 92 1.24 ST4-74 S27865 S28239 - acrA 29 32 0.90 ST4-74 S31884 - acrA 29 32 0.90 ST4-74 S33401 S33353 - ybaM 24 16 1.55 S14-74 S34014 S3353 - ybaM 24 16 1.55 S14-74 S3423 S38530 - pbMOT 21 15 1.42 ST4-74	ybaY	108	48	2.24	ST4-74	522843	523412	+
ylab 25 22 1.14 ST4-74 S24665 S25615 - rpmE2 114 63 1.81 ST4-74 S25840 S26100 + rpmLa 215 145 1.48 ST4-74 S26163 S26246 + ylaC 102 92 1.11 ST4-74 S26802 S26772 - maa 99 86 1.16 ST4-74 S26895 S72440 - hha 114 92 1.24 ST4-74 S27655 S28239 - acrB 42 51 0.82 ST4-74 S31907 S3100 - acrA 29 32 0.90 ST4-74 S34214 S33853 - stMad 21 0.16 IST4-74 S38423 S38530 - stMad 21 15 1.42 ST4-74 S38646 S39119 - apt 43 45 0.94 S14-74	ybaZ	153	129	1.19	ST4-74	523445	523756	-
rpmE2114631.81ST4-7452840526100+rpmLa2151451.48ST4-74526103526772-maa99861.16ST4-74526302526772-maa99861.16ST4-74526305528273-acrB42510.82ST4-74527619527837-acrA29320.90ST4-7453100-acrA29320.90ST4-7453100-acrA29320.90ST4-7453100-acrA21201.08ST4-74534014537376+STM047923221.04ST4-74538433538590-priC21151.42ST4-74538423538590-apr43450.94ST4-74543014537376+dnaX39391.00ST4-74543035542231+ybaB36490.73ST4-7454303554238+rcR20310.62ST4-74542698543303+trgG35470.74ST4-745430454288-adk76850.89ST4-745430454338-adk76850.89ST4-745430454338-adk76850.89ST4-7454304	ylaB	25	22	1.14	ST4-74	524065	525615	-
rpmJa2151451.48ST4-74S26163S26246+ylaC102921.11ST4-74S26302S26772-hha114921.24ST4-74S2688S27440-hha114921.24ST4-74S27817-ybJ1621101.47ST4-74S27855S28239-acrB42510.82ST4-74S27855S31884-acrA29320.90ST4-74S31907S33100-acrA1201.08ST4-74S34242S33895+acfA21201.08ST4-74S3444S37376+STM047923221.04ST4-74S3444S33350-priC21151.42ST4-74S38040S3919-apt43450.94ST4-74S3930S40281+dmaX39391.00ST4-74S4302S42298+recR20310.62ST4-74S42698S43303+hpG35470.74ST4-74S43414S4288+STnc31301201750.69ST4-74S43302S4323-adk76850.89ST4-74S43464+aes-adk76850.89ST4-74S4485S49789+ybaB1918 <td>rpmE2</td> <td>114</td> <td>63</td> <td>1.81</td> <td>ST4-74</td> <td>525840</td> <td>526100</td> <td>+</td>	rpmE2	114	63	1.81	ST4-74	525840	526100	+
ylaC 102 92 1.11 ST4-74 526302 526772 - maa 99 86 1.16 ST4-74 526889 527440 - hha 114 92 1.24 ST4-74 527837 - ybaJ 162 110 1.47 ST4-74 528375 53184 - acrB 42 51 0.82 ST4-74 533245 533895 + acrA 29 32 0.90 ST4-74 534014 537376 + STM0479 23 22 1.04 ST4-74 538433 53859 - priC 21 15 1.42 ST4-74 538433 53859 - pirC 21 15 1.42 ST4-74 538433 540281 + dmax 39 39 1.00 ST4-74 54302 542323 + ybaB 36 49 0.73 ST4-74 <t< td=""><td>rpmJa</td><td>215</td><td>145</td><td>1.48</td><td>ST4-74</td><td>526163</td><td>526246</td><td>+</td></t<>	rpmJa	215	145	1.48	ST4-74	526163	526246	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ylaC	102	92	1.11	ST4-74	526302	526772	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	maa	99	86	1.16	ST4-74	526889	527440	-
ybaJ1621101.47ST4-74S27865S28239-acrB42510.82ST4-74S28735S31884-acrA29320.90ST4-74S33242S33895+acrA21201.08ST4-74S3414S37376+STM047923221.04ST4-74S3418S3853-pbaM24161.55ST4-74S38604S39119-apt43450.94ST4-74S39730540281+dnaX39391.00ST4-74S43605542698+recR20310.62ST4-74542695542698+recR20310.62ST4-74542698543303+htpG35470.74ST4-7454364542698+recR20310.62ST4-74542698543303+htpG35470.74ST4-7454364++acs330.99ST4-7454364547364+aes330.99ST4-74543645547364+ybaL40381.03ST4-74548352ck19181.04ST4-74554891555370-fr9110.85ST4-74554891555370-ckA34350.	hha	114	92	1.24	ST4-74	527619	527837	-
acrB42510.82ST4-74528735531884-acrA29320.90ST4-74531907533100-acrR41450.92ST4-74533242533895+aefA21201.08ST4-74534041537376+STM047923221.04ST4-74538423538500-priC21151.42ST4-74538604539119-apt43450.94ST4-7453070540281+dnaX39391.00ST4-74540395542323+ybaB36490.73ST4-74542369545385-mereR20310.62ST4-74542698+recR20310.62ST4-7454529545385-adk76850.89ST4-7454529545385-adk76850.89ST4-74546402547364+aes330.99ST4-74548485549789+ybaL40381.03ST4-74554891555570-fsr9110.85ST4-74554891555570-cuA39460.85ST4-7455489155570-cuA39460.85ST4-7455489155570-cuA39460.85<	vbaJ	162	110	1.47	ST4-74	527865	528239	-
acrA29320.90ST4-74531907533100-acrR41450.92ST4-74533242533895+aefA21201.08ST4-74534014537376+STM047923221.04ST4-74537418538353-prbM24161.55ST4-74538014538919-apt43450.94ST4-74539730540281+dnaX39391.00ST4-7454369542323+ybaB36490.73ST4-74542698542388+recR20310.62ST4-74542698542388+sTnc31301201750.69ST4-7454302545385-adk76850.89ST4-7454529546173+eas330.99ST4-7454529546173+eas330.99ST4-74545402547364+aes330.99ST4-74548485549789+ybaL40381.03ST4-745542954232-gsk19181.04ST4-74548485549789+ybaL39460.85ST4-745512255370-ChiX42639305551.40ST4-7455451555572-STM049712<	acrB	42	51	0.82	ST4-74	528735	531884	-
acrR41450.92ST4-74533242533895+ $acfA$ 21201.08ST4-74534014537376+STM047923221.04ST4-74538401537376+ $priC$ 21151.42ST4-74538604539119- apr 43450.94ST4-74539730540281+ $dnaX$ 39391.00ST4-74539730540281+ $dnaX$ 39391.00ST4-7454395542323+ $ybaB$ 36490.73ST4-7454369542698+ $recR$ 20310.62ST4-7454369542588+STnc31301201750.69ST4-74543512546173+ adk 76850.89ST4-7454529546173+ aes 330.99ST4-74545385- gsk 19181.04ST4-7454832- $ybaL$ 40381.03ST4-7454838551514- fsr 9110.85ST4-7455450555566+ $ybaR$ 34350.99ST4-745545956661- $srff$ 91.90.96ST4-7455450555566+ $ybaR$ 19190.96ST4-7455450555566+ $ybaR$ 19 <td>acrA</td> <td>29</td> <td>32</td> <td>0.90</td> <td>ST4-74</td> <td>531907</td> <td>533100</td> <td>-</td>	acrA	29	32	0.90	ST4-74	531907	533100	-
aefA21201.08ST4-74534014537376+STM047923221.04ST4-7453418538533-ybaM24161.55ST4-74538043538590-apt43450.94ST4-74538604539119-apt43450.94ST4-74540395540281+dnaX39391.00ST4-74540395542323+ybaB36490.73ST4-74542698543303+htpG35470.74ST4-74542698543303+htpG35470.74ST4-7454302546173+adk76850.89ST4-7454529546173+aes330.99ST4-7454402547364+aes330.99ST4-745488351514-fsr9110.85ST4-74548485549789+ybaK34350.99ST4-7455491555370-ChiX42639305551.40ST4-7455491555370-copA26330.79ST4-745645255727-copA26330.79ST4-7456451ybb/16131.21ST4-7456451560913-ybb/1613<	acrR	41	45	0.92	ST4-74	533242	533895	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	aefA	21	20	1.08	ST4-74	534014	537376	+
ybaM 24 16 1.55 ST4-74 538423 538590 - priC 21 15 1.42 ST4-74 538604 539119 - apt 43 45 0.94 ST4-74 539730 540281 + dnaX 39 39 1.00 ST4-74 540395 542233 + ybaB 36 49 0.73 ST4-74 543149 542698 + recR 20 31 0.62 ST4-74 54314 54528 + STnc3130 120 175 0.69 ST4-74 544529 546173 + hemH 27 24 1.14 ST4-74 548402 547364 + aes 3 3 0.99 ST4-74 548432 - fr 9 18 1.04 ST4-74 548438 55154 - gsk 19 18 0.46 0.85	sTM0479	23	22	1.04	ST4-74	537418	538353	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vbaM	24	16	1.55	ST4-74	538423	538590	-
apt43450.94ST4-74539730540281+dnaX39391.00ST4-74540395542323+ybaB36490.73ST4-74542369542698+recR20310.62ST4-7454269854303+htpG35470.74ST4-74543414545288+STnc31301201750.69ST4-74545302545385-adk76850.89ST4-7454529546173+hemH27241.14ST4-74546402547364+aes330.99ST4-74547361548332-gsk19181.04ST4-74548455549789+ybaL40381.03ST4-74548485549789+ybaK39460.85ST4-74551729552949-ushA39460.85ST4-745545055566+ybaP19190.96ST4-74554525557256366-STM04971291.39ST4-74560452557279-copA26330.79ST4-74560451++ybbL991.09ST4-74560910561827-ybbL991.09ST4-74560910561827-ybbN <td< td=""><td>priC</td><td>21</td><td>15</td><td>1.42</td><td>ST4-74</td><td>538604</td><td>539119</td><td>-</td></td<>	priC	21	15	1.42	ST4-74	538604	539119	-
	apt	43	45	0.94	ST4-74	539730	540281	+
ybaB36490.73ST4-74542369542698+recR20310.62ST4-74542698543303+htpG35470.74ST4-74543414545288+STnc31301201750.69ST4-74545302545385-adk76850.89ST4-74545529546173+hemH27241.14ST4-74546402547364+aes330.99ST4-74547361548332-gsk19181.04ST4-74548485549789+ybaL40381.03ST4-74551729552949-ushA39460.85ST4-7455122554774+ybaK34350.99ST4-74554891555370-ChiX42639305551.40ST4-745545055566+ybaP19190.96ST4-7455572556366-STM04971291.39ST4-74560452557279-cueR88841.05ST4-74560451560913-ybbL991.09ST4-74560461560913-ybbK37321.16ST4-74560461560913-ybbM16131.21ST4-7456187-ybbN3540	dnaX	39	39	1.00	ST4-74	540395	542323	+
recR20310.62ST4-74542698543303+htpG35470.74ST4-74543414545288+STnc31301201750.69ST4-74545302545385-adk76850.89ST4-74545529546173+hemH27241.14ST4-74546402547364+aes330.99ST4-74547361548332-gsk19181.04ST4-74548485549789+ybaL40381.03ST4-74549838551514-fsr9110.85ST4-74553122554774+ybaK34350.99ST4-7455450555566+ybaP19190.96ST4-7455452557279-copA26330.79ST4-7456452557279-copA26330.79ST4-74560044560460+ybbJ16141.11ST4-74560461560913-ybbK37321.16ST4-74562638563417+ybbN35400.87ST4-7456532565767-ybbN35400.87ST4-74562638563417+ybbN35400.87ST4-74562638563417+ybbN35 <td>vbaB</td> <td>36</td> <td>49</td> <td>0.73</td> <td>ST4-74</td> <td>542369</td> <td>542698</td> <td>+</td>	vbaB	36	49	0.73	ST4-74	542369	542698	+
htpG35470.74ST4-74543414545288+STnc31301201750.69ST4-74545302545385-adk76850.89ST4-74545529546173+hemH27241.14ST4-74546402547364+aes330.99ST4-74548485549789+ybaL40381.03ST4-74548485549789+ybaL40381.03ST4-74548485549789+ybaL40381.03ST4-74554891555714+f\$r9110.85ST4-74551512554774+ybaK34350.99ST4-7455489155570-ChiX42639305551.40ST4-74555572556366+ybaP19190.96ST4-7455572355566+ybaP19190.96ST4-7455743355934-cueR88841.05ST4-74560441560460+ybbJ16141.11ST4-74560461560913-ybbK37321.16ST4-74561974562631+ybbN35400.87ST4-745619745626151+ybbN35400.87ST4-74565342565956-ybbN	recR	20	31	0.62	ST4-74	542698	543303	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	htpG	35	47	0.74	ST4-74	543414	545288	+
adk7685 0.89 ST4.7454529546173+hemH2724 1.14 ST4.74546402547364+aes33 0.99 ST4.74547361548332-gsk1918 1.04 ST4.74548485549789+ybaL4038 1.03 ST4.74548485549789+ybaL4038 1.03 ST4.74551729552949-ushA3946 0.85 ST4.74551729552949-ushA3946 0.85 ST4.74553122554774+ybaK3435 0.99 ST4.74554891555370-ChiX4263930555 1.40 ST4.7455545055566+ybaP1919 0.96 ST4.7455572556366-STM0497129 1.39 ST4.74556452557279-copA2633 0.79 ST4.74560461560913-ybbL99 1.09 ST4.74560910561827-ybbL99 1.09 ST4.74560910561827-ybbN3540 0.87 ST4.7456303564357-ybbN3540 0.87 ST4.7456303564357-ybbN3540 0.87 ST4.7456303564357- </td <td>STnc3130</td> <td>120</td> <td>175</td> <td>0.69</td> <td>ST4-74</td> <td>545302</td> <td>545385</td> <td>_</td>	STnc3130	120	175	0.69	ST4-74	545302	545385	_
hem27241.14ST4-74546402547364+aes330.99ST4-74547361548332-gsk19181.04ST4-74548485549789+ybaL40381.03ST4-74549838551514-fsr9110.85ST4-74551729552949-ushA39460.85ST4-745513122554774+ybaK34350.99ST4-74554891555370-ChiX42639305551.40ST4-745545055566+ybaP19190.96ST4-74556452557279-copA26330.79ST4-74550452557279-copA26330.79ST4-74560460+ybbJ16141.11ST4-74560461560913-ybbK37321.16ST4-74560910561827-ybbM16131.21ST4-74561974562651+ybbN35400.87ST4-74563303564357-ybbN35400.87ST4-74565927566613+ybbN35400.87ST4-7456927566613+ybbA13170.78ST4-7456921570343+ybbP2321<	adk	76	85	0.89	ST4-74	545529	546173	+
aes330.99ST4.74547361548332 aes 19181.04ST4.74547361548332 gsk 19181.04ST4.74548485549789 $ybaL$ 40381.03ST4.74548485549789 fsr 9110.85ST4.74551729552949 $ushA$ 39460.85ST4.74553122554774 $ybaK$ 34350.99ST4.74554891555370 $ChiX$ 42639305551.40ST4.74555450555566 $ybaP$ 19190.96ST4.74555572556366STM04971291.39ST4.74556452557279 $copA$ 26330.79ST4.74556452557279 $cueR$ 88841.05ST4.74560461560913 $ybbJ$ 16141.11ST4.74560461560913 $ybbK$ 37321.16ST4.74561974562651 $ybbN$ 35400.87ST4.7456330564357 $ybbN$ 35400.87ST4.74565927566613 $ybbA$ 13170.78ST4.7456927566613 $ybbA$ 13170.78ST4.7456921570343 $ybbP$ 23211.11ST4.7456902356974 $ybbA$ 13170.78ST4.74 <td>hemH</td> <td>2.7</td> <td>24</td> <td>1.14</td> <td>ST4-74</td> <td>546402</td> <td>547364</td> <td>+</td>	hemH	2.7	24	1.14	ST4-74	546402	547364	+
andbbbbbbbbbbbbb gsk 19181.04ST4-74548485549789+ $ybaL$ 40381.03ST4-74549838551514- fsr 9110.85ST4-74551729552949- $ushA$ 39460.85ST4-74553122554774+ $ybaK$ 34350.99ST4-74554891555370-ChiX42639305551.40ST4-74555450555566+ $ybaP$ 19190.96ST4-74555372556366-STM04971291.39ST4-74556452557279- $copA$ 26330.79ST4-7455044560460+ $ybbJ$ 16141.11ST4-74560461560913- $ybbK$ 37321.16ST4-74560910561827- $ybbL$ 991.09ST4-74560910561827- $ybbN$ 35400.87ST4-74565333564357- $ybbN$ 35400.87ST4-74565187- $ybbA$ 13170.78ST4-74565927566613+ $ybbA$ 13170.78ST4-74569023569074+STmc95014190.77ST4-7456921	aes	3	3	0.99	ST4-74	547361	548332	-
gam10101011110111101011110101010ybaL40381.03ST4-74549838551514-fsr9110.85ST4-74551729552949-ushA39460.85ST4-74553122554774+ybaK34350.99ST4-74554891555370-ChiX42639305551.40ST4-74555450555566+ybaP19190.96ST4-74555572556366-STM04971291.39ST4-74556452557279-copA26330.79ST4-74560441560460+ybbJ16141.11ST4-74560461560913-ybbK37321.16ST4-74561974562651+ybbM16131.21ST4-7456638563417+ybbN35400.87ST4-74563503564357-ybbO16180.91ST4-74565927566613+ybbN35211.11ST4-74569210570434+ybbP23211.11ST4-74569210570434+ybbP23211.11ST4-7456661056924+STM050913111.13ST4-74569210570434<	esk	19	18	1.04	ST4-74	548485	549789	+
for9110.85ST4.74551729552949- $dshA$ 39460.85ST4.74551129552949- $ushA$ 39460.85ST4.74553122554774+ $ybaK$ 34350.99ST4.74554891555370- $ChiX$ 42639305551.40ST4.74555450555566+ $ybaP$ 19190.96ST4.74555572556366-STM04971291.39ST4.74556452557279- $copA$ 26330.79ST4.74550444560460+ $ybbJ$ 16141.11ST4.74560044560460+ $ybbK$ 37321.16ST4.74560910561827- $ybbL$ 991.09ST4.74561974562651+ $ybbN$ 35400.87ST4.74563503564357- $ybbN$ 35400.87ST4.74563542565956- $ybbA$ 13170.78ST4.74565927566613+ $ybbP$ 23211.11ST4.74569023569074+STnc95014190.77ST4.74569210570343+ $sfbA$ 83771.08ST4.74570600571430+ $sfbB$ 41440.95ST4.74571467572483 <td>vhaL</td> <td>40</td> <td>38</td> <td>1.03</td> <td>ST4-74</td> <td>549838</td> <td>551514</td> <td>-</td>	vhaL	40	38	1.03	ST4-74	549838	551514	-
ybA39460.85ST4-745511255277+ ybK 34350.99ST4-74554891555370- $ChiX$ 42639305551.40ST4-7455450555566+ ybP 19190.96ST4-74555572556366-STM04971291.39ST4-74556452557279- $copA$ 26330.79ST4-7456044560460+ $ybbJ$ 16141.11ST4-74560461560913- $ybbK$ 37321.16ST4-74560461560913- $ybbL$ 991.09ST4-7456197456651+ $ybbM$ 16131.21ST4-74560303564357- $ybbN$ 35400.87ST4-74565303564357- $ybbN$ 35400.87ST4-7456542565956- $ybbA$ 13170.78ST4-7456542565956- $ybbA$ 13170.78ST4-74566610569024+STme95014190.77ST4-74569210570343+ $sfbA$ 83771.08ST4-74570600571430+ $sfbB$ 41440.95ST4-74572476572483+	fsr	9	11	0.85	ST4-74	551729	552949	-
JamJo </td <td>ushA</td> <td>39</td> <td>46</td> <td>0.85</td> <td>ST4-74</td> <td>553122</td> <td>554774</td> <td>+</td>	ushA	39	46	0.85	ST4-74	553122	554774	+
ChiX42639305551.40ST4.74505071505071 $ybaP$ 19190.96ST4.74555572556366-STM04971291.39ST4.74556452557279- $copA$ 26330.79ST4.74556452557279- $cueR$ 88841.05ST4.74560044560460+ $ybbJ$ 16141.11ST4.74560461560913- $ybbK$ 37321.16ST4.74560910561827- $ybbL$ 991.09ST4.74561974562651+ $ybbM$ 16131.21ST4.74562638563417+ $ybbN$ 35400.87ST4.74563503564357- $ybbO$ 16180.91ST4.74565342565956- $ybbA$ 13170.78ST4.74566610569024+ $ybbP$ 23211.11ST4.7456902356974+STmc95014190.77ST4.74569210570343+ $sfbA$ 83771.08ST4.74570600571430+ $sfbB$ 41440.95ST4.74571467572483+	vhaK	34	35	0.99	ST4-74	554891	555370	-
ybaP19190.96ST4-74555572556366STM04971291.39ST4-74556452557279copA26330.79ST4-74557433559934cueR88841.05ST4-74560044560460ybbJ16141.11ST4-74560461560913ybbK37321.16ST4-74560910561827ybbL991.09ST4-74561974562651ybbN35400.87ST4-74563503564357ybbO16180.91ST4-74565187-ybbA13170.78ST4-74565927566613ybbA13111.13ST4-74569023569074ybbP23211.11ST4-7456910570343ybbA13170.78ST4-7456910570343ybbP23211.11ST4-7456910570343ybbA13170.78ST4-7456910570343ybbA13111.13ST4-74570600571430ybbA13111.13ST4-74570600571430ybbA13111.13ST4-74570600571430ybbA13111.13ST4-74570600571430ybbA13111.13ST4-74570600571430 <t< td=""><td>ChiX</td><td>42639</td><td>30555</td><td>1.40</td><td>ST4-74</td><td>555450</td><td>555566</td><td>+</td></t<>	ChiX	42639	30555	1.40	ST4-74	555450	555566	+
STM04971291.39ST4-74556452557279- $copA$ 26330.79ST4-74557433559934- $cueR$ 88841.05ST4-74560044560460+ $ybbJ$ 16141.11ST4-74560461560913- $ybbK$ 37321.16ST4-74560910561827- $ybbL$ 991.09ST4-74561974562651+ $ybbN$ 35400.87ST4-74563503564357- $ybbO$ 16180.91ST4-74565187- $ybbA$ 13170.78ST4-74565342565956- $ybbA$ 13170.78ST4-74566610569024+STnc95014190.77ST4-74569210570343+ $sfbA$ 83771.08ST4-74570600571430+ $sfbB$ 41440.95ST4-74572483+	vhaP	19	19	0.96	ST4-74	555572	556366	-
copA 26 33 0.79 $ST4.74$ 557433 559934 $ cueR$ 88 84 1.05 $ST4.74$ 560044 560460 $+$ $ybbJ$ 16 14 1.11 $ST4.74$ 560044 560460 $+$ $ybbK$ 37 32 1.16 $ST4.74$ 560044 560461 560913 $ ybbK$ 37 32 1.16 $ST4.74$ 560910 561827 $ ybbL$ 9 9 1.09 $ST4.74$ 561974 562651 $+$ $ybbM$ 16 13 1.21 $ST4.74$ 562638 563417 $+$ $ybbN$ 35 40 0.87 $ST4.74$ 563503 564357 $ ybbO$ 16 18 0.91 $ST4.74$ 565342 565956 $ ybbA$ 13 17 0.78 $ST4.74$ 566610 56924 $+$ $ybbP$ 23 21 1.11 $ST4.74$ 566610 56924 $+$ $STnc950$ 14 19 0.77 $ST4.74$ 569210 570343 $+$ $sfbA$ 83 77 1.08 $ST4.74$ 570600 571430 $+$ $sfbB$ 41 44 0.95 $ST4.74$ 572476 572483 $+$	STM0497	12	9	1.39	ST4-74	556452	557279	-
cueR88841.05ST4-74560044560460+ybbJ16141.11ST4-74560041560913-ybbK37321.16ST4-74560910561827-ybbL991.09ST4-74561974562651+ybbN35400.87ST4-74563503564357-ybbO16180.91ST4-74565187-ybbA131.70.78ST4-74565342565956-ybbA13170.78ST4-74566610569024+STnc95014190.77ST4-7456923569074+STM050913111.13ST4-74569210570343+sfbA83771.08ST4-74570600571430+sfbB41440.95ST4-74572476572483+	conA	26	33	0.79	ST4-74	557433	559934	_
ybbJ16141.11ST4-74560461560913ybbK37321.16ST4-74560910561827ybbL991.09ST4-74561974562651ybbM16131.21ST4-74562638563417ybbN35400.87ST4-74563503564357ybbO16180.91ST4-74565187ybbA35400.87ST4-74565342565956ybbA13170.78ST4-74565927566613ybbP23211.11ST4-74566610569024STnc95014190.77ST4-74569210570343sfbA83771.08ST4-74570600571430sfbB41440.95ST4-74572476572483	cueR	88	84	1.05	ST4-74	560044	560460	+
ybbk37321.16ST4-74560910561827-ybbL991.09ST4-74561974562651+ybbM16131.21ST4-74562638563417+ybbN35400.87ST4-74563503564357-ybbO16180.91ST4-74565187-ybbA13170.78ST4-74565342565956ybbA13170.78ST4-74566610569024ybbP23211.11ST4-74566610569024STnc95014190.77ST4-74569210570343sfbA83771.08ST4-74570600571430sfbB41440.95ST4-74571467572476572125	vhh.J	16	14	1.11	ST4-74	560461	560913	_
ybbl991.09ST4-74561974562651+ybbM16131.21ST4-74562638563417+ybbN35400.87ST4-74563503564357-ybbO16180.91ST4-74564417565187-ybbA13170.78ST4-74565342565956-ybbA13170.78ST4-74566610569024+STnc95014190.77ST4-74569023569074+STM050913111.13ST4-74569210570343+sfbA83771.08ST4-74570600571430+sfbB41440.95ST4-74571467572476572476572476	vhhK	37	32	1.16	ST4-74	560910	561827	-
ybbh16131.21ST4-74562638563417+ybbN35400.87ST4-74563503564357-ybbO16180.91ST4-74565187-tesA28261.07ST4-74565342565956-ybbA13170.78ST4-745665927566613+ybP23211.11ST4-74566610569024+STnc95014190.77ST4-74569023569074+STM050913111.13ST4-74569210570343+sfbA83771.08ST4-74570600571430+sfbB41440.95ST4-74571467572483+	vbhL	9	9	1.09	ST4-74	561974	562651	+
ybbN3540 0.87 ST4-74 50200 50011 10 ybbO1618 0.91 ST4-74 563503 564357 $-$ ybbO1618 0.91 ST4-74 564417 565187 $-$ tesA2826 1.07 ST4-74 565342 565956 $-$ ybbA1317 0.78 ST4-74 565927 566613 $+$ ybbP2321 1.11 ST4-74 566610 569024 $+$ STnc9501419 0.77 ST4-74 569023 569074 $+$ STM05091311 1.13 ST4-74 569210 570343 $+$ sfbA8377 1.08 ST4-74 570600 571430 $+$ sfbB4144 0.95 ST4-74 572476 572476 572125 $+$	vhhM	16	13	1 21	ST4-74	562638	563417	+
ybb016180.91ST4-74564417565187-tesA28261.07ST4-74565342565956-ybbA13170.78ST4-74565927566613+ybP23211.11ST4-74566610569024+STnc95014190.77ST4-74569023569074+STM050913111.13ST4-74569210570343+sfbA83771.08ST4-74570600571430+sfbB41440.95ST4-74571467572483+	vbbN	35	40	0.87	ST4-74	563503	564357	_
tesA 28 26 1.07 $ST4-74$ 565342 565956 $ ybbA$ 13 17 0.78 $ST4-74$ 565342 565956 $ ybbP$ 23 21 1.11 $ST4-74$ 566610 569024 $+$ $STnc950$ 14 19 0.77 $ST4-74$ 569023 569074 $+$ $STM0509$ 13 11 1.13 $ST4-74$ 569210 570343 $+$ $sfbA$ 83 77 1.08 $ST4-74$ 570600 571430 $+$ $sfbB$ 41 44 0.95 $ST4-74$ 572476 572483 $+$	vhhQ	16	18	0.91	ST4-74	564417	565187	_
ybbA1317 0.78 ST4-74 565927 566613 +ybbP23211.11ST4-74 566610 569024 +STnc9501419 0.77 ST4-74 569023 569074 +STM050913111.13ST4-74 569210 570343 +sfbA83771.08ST4-74 570600 571430 +sfbB4144 0.95 ST4-74 572476 572476 572125 +	tesA	28	26	1.07	ST4-74	565342	565956	-
ybbP23211.11ST4-74566610569024+STnc95014190.77ST4-74569023569074+STM050913111.13ST4-74569210570343+sfbA83771.08ST4-74570600571430+sfbB41440.95ST4-74571467572483+	vhhA	13	17	0.78	ST4-74	565927	566613	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	vhhP	23	21	1 11	ST4-74	566610	569024	+
STM0509 13 11 1.13 ST4-74 569210 570343 + sfbA 83 77 1.08 ST4-74 570600 571430 + sfbB 41 44 0.95 ST4-74 571467 572483 +	STnc950	14	19	0.77	ST4-74	569023	569074	+
sfbA 83 77 1.08 ST4-74 570600 571430 + sfbB 41 44 0.95 ST4-74 571467 572483 + sfbC 72 61 1.17 ST4-74 572476 572125 +	STM0509	13	11	1 13	ST4-74	569210	570343	+
$sfbB = 41 \qquad 44 \qquad 0.95 \qquad \text{ST4-74} \qquad 570407 \qquad 571457 \qquad +$	sfh A	83	77	1.15	ST4-74	570600	571430	+
af_{LC} 70 61 117 $cTA 7A 570A72 570125$	sfbB	41	44	0.95	ST4_74	571467	572483	+
1/1 D1 11/ N14-14 $1/14$ D 11/3 +	sfbC	72	61	1 17	ST4-74	572476	573135	+
<i>vbbB</i> 18 21 0.86 ST4-74 573174 574268 -	vhhR	18	21	0.86	ST4_74	573174	574268	-
<i>vbbS</i> 5 5 1.12 ST4-74 574338 575264 -	vbbS	5	5	1.12	ST4-74	574338	575264	_

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
allA	25	21	1.19	ST4-74	575491	575973	+
allR	40	45	0.88	ST4-74	576052	576870	+
gcl	2	2	0.85	ST4-74	576955	578736	+
gip	4	3	1.11	ST4-74	578749	579525	+
garRa	1	2	0.46	ST4-74	579626	580504	+
STM0520	3	2	1.21	ST4-74	580570	581817	+
allP	2	1	1.44	ST4-74	581913	583367	+
allB	3	2	1.36	ST4-74	583446	584807	+
ybbY	3	3	1.06	ST4-74	584866	586164	+
glxK	3	2	1.15	ST4-74	586187	587335	+
STnc480	137	82	1.68	ST4-74	587347	587412	-
ylbA	13	12	1.10	ST4-74	587415	588200	-
allC	3	3	0.84	ST4-74	588211	589446	-
allD	2	3	0.53	ST4-74	589468	590517	-
fdrA	3	4	0.83	ST4-74	590848	592512	+
ylbE	1	1	1.13	ST4-74	592522	593781	+
ylbF	2	2	1.12	ST4-74	593793	594602	+
arcC	3	3	1.12	ST4-74	594606	595499	+
purK	28	38	0.73	ST4-74	595540	596607	-
purE	43	72	0.59	ST4-74	596604	597113	-
lpxH	6	8	0.83	ST4-74	597231	597953	-
ppiB	216	291	0.74	ST4-74	597956	598450	-
cysS	62	54	1.15	ST4-74	598623	600008	+
STM0538	5	4	1.06	ST4-74	600052	600876	-
STM0539	4	6	0.68	ST4-74	600873	601310	-
vbcI	6	6	1.03	ST4-74	601303	601848	-
ybcJ	28	30	0.93	ST4-74	601976	602188	-
, folD	42	45	0.93	ST4-74	602190	603056	-
, fimA	11	15	0.72	ST4-74	603618	604160	+
fimI	2	4	0.67	ST4-74	604236	604769	+
fimC	1	2	0.34	ST4-74	604813	605505	+
fimD	2	2	1.17	ST4-74	605536	608148	+
fimH	4	4	0.94	ST4-74	608163	609170	+
fimF	10	7	1.47	ST4-74	609180	609698	+
fimZ	8	7	1.16	ST4-74	609744	610376	-
fimY	1	2	0.69	ST4-74	610980	611702	-
STM0551	3	3	0.94	ST4-74	611721	612032	-
fimW	11	11	0.97	ST4-74	612194	612790	-
STM0555	9	7	1.21	ST4-74	613262	613552	-
STM0557	29	10	2.82	ST4-74	614292	615944	-
gtrBa	17	7	2.44	ST4-74	615925	616851	-
gtrAa	73	23	3.25	ST4-74	616848	617210	-
STnc1870	32	13	2.54	ST4-74	617317	617426	+
STM0561	7	7	1.03	ST4-74	618078	618407	-
cusA	14	16	0.85	ST4-74	618456	618692	+
ykgD	6	5	1.21	ST4-74	618746	619600	-
ykgC	7	6	1.15	ST4-74	619816	621141	+
STM0565	4	3	1.28	ST4-74	621298	621534	+
ykgB	4	3	1.51	ST4-74	621547	622107	+
STM0567	16	24	0.66	ST4-74	622186	623361	-
pheP	40	38	1.05	ST4-74	623687	625081	+

ybdG13180.74ST4-74625123626253-apeE14150.90ST4-74626681626681626651+STM057120220.93ST4-74626818631547+STM0572220.68ST4-74631675632661-STM0573110.77ST4-74632728633771-manZ111.00ST4-74635404634658-manY221.48ST4-74635419635889-STM0577112.31ST4-7463566763616-ybdF990.98ST4-74637636637634-ramR39371.05ST4-74637634638845+ybdJ24171.36ST4-74638616640284-entD1152.11ST4-74638815639099-ybdZ321.31ST4-74643400644704+ybdZ321.31ST4-74640266641000-fepA851.65ST4-74643400644704+ybdZ321.31ST4-74640266640284-entD1152.11ST4-74640266640284-fepE45431.04ST4-74640266640284-fepE	Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
apeE14150.90ST4-74626681628651+STM057120220.93ST4-74631675632661-STM0573110.77ST4-74632728633771-manZ111.00ST4-74633804634658-manY221.48ST4-74633804634568-manY101.75ST4-74635419635889-STM0577112.31ST4-74635616637169-ybdF'990.98ST4-7463766663764-ramR39371.05ST4-7463766463845+ybdJ24171.36ST4-74638516639099-ybdK755.22ST4-74638516640284-enD1152.11ST4-74643906644004+ybdZ321.31ST4-74643490644704+ybdZ321.31ST4-74643490644704+ybdZ321.31ST4-7465027365020+fep431.04ST4-7465027365060-ybdZ321.31ST4-7465027365060-fepB741.65ST4-74651064652053-fepG431.	ybdG	13	18	0.74	ST4-74	625123	626253	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	apeE	14	15	0.90	ST4-74	626681	628651	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STM0571	20	22	0.93	ST4-74	628818	631547	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STM0572	2	2	0.68	ST4-74	631675	632661	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM0573	1	1	0.77	ST4-74	632728	633771	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	manZ	1	1	1.00	ST4-74	633804	634658	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	manY	2	2	1.48	ST4-74	634661	635335	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	manX	1	0	1.75	ST4-74	635419	635889	-
nfnB26290.91ST4-74636516637169- $ybdF$ 990.98ST4-74637266637634- $ramR$ 39371.05ST4-74637634638215- $ramA$ 13121.06ST4-74638504638845+ $ybdJ$ 24171.36ST4-7463851639099- $ybdK$ 751.52ST4-74639166640284- $entD$ 1152.11ST4-74641046643301- fes 842.15ST4-74641046643301- fes 842.15ST4-74644735644953+ $ybdZ$ 321.31ST4-74644953+ $ybdZ$ 321.31ST4-74650273651067- $fepE$ 45431.04ST4-74650273651067- $fepG$ 431.26ST4-74651064652053- $fepB$ 741.65ST4-7465171654415+ $fepB$ 741.65ST4-74650273651067- $fepB$ 741.65ST4-74654783656918+ $entC$ 431.24ST4-74655285659409+ $entE$ 321.51ST4-74655434- $entE$ 31.21 <t< td=""><td>STM0577</td><td>1</td><td>1</td><td>2.31</td><td>ST4-74</td><td>635867</td><td>636316</td><td>-</td></t<>	STM0577	1	1	2.31	ST4-74	635867	636316	-
ybdF990.98ST4-74 637266 637634 -ramR39371.05ST4-74 637634 638215 -ramA13121.06ST4-74 638504 638845 +ybdJ24171.36ST4-74 638504 638845 +ybdK751.52ST4-74 6389166 640284 -emD1152.11ST4-74 6440296 641000 -fepA851.65ST4-74 6443490 644704 +ybdZ321.31ST4-74 644735 644953 +emtF441.26ST4-74 644950 648834 +fepE45431.04ST4-74 650273 651067 -fepG431.26ST4-74 651064 652053 -fepB741.65ST4-74 651064 652053 -fepB741.65ST4-74 651064 652053 -fepB741.65ST4-74 651711 654115 +fepB741.65ST4-74 650283 65838 +emtC431.24ST4-74 65928 658338 +emtB321.51ST4-74 659409 660164 +ybdB531.98ST4-74 660167 660	nfnB	26	29	0.91	ST4-74	636516	637169	-
ramR39371.05ST4-74 637634 638215 -ramA13121.06ST4-74 638504 638845 +ybdJ24171.36ST4-74 638851 639099 -ybdK751.52ST4-74 638851 639099 -entD1152.11ST4-74 640296 6400284 -entD1152.11ST4-74 641046 643301 -fes842.15ST4-74 641046 643301 -fex842.15ST4-74 644735 644953 +entF441.26ST4-74 644950 648834 +fepE45431.04ST4-74 650273 651067 -fepC431.26ST4-74 650263 653060 -ybdA761.19ST4-74 652053 653060 -ybdA761.19ST4-74 652053 653060 -ybdA761.19ST4-74 654478 655434 -entC431.24ST4-74 65928 658538 +entB321.51ST4-74 660167 660167 660164 +ybdB531.98ST4-74 660167 660580 +entA431.07ST4-74 6601	vbdF	9	9	0.98	ST4-74	637266	637634	-
ram.A13121.06ST4-74 638504 638845 +ybdJ24171.36ST4-74 638511 639099 -ybdK751.52ST4-74 639166 640284 -emID1152.11ST4-74 640296 641000 -fepA851.65ST4-74 641046 643301 -fes842.15ST4-74 644704 +ybdZ321.31ST4-74 644755 +entF441.26ST4-74 644750 648834 +fepE45431.04ST4-74 650220 +fepC431.14ST4-74 650253 651067 -fepG431.26ST4-74 651064 652053 -fepD841.94ST4-74 652053 653060 -ybdA761.19ST4-74 654145 +fepB741.65ST4-74 654145 +entC431.24ST4-74 65928 65838 +entE321.51ST4-74 661617 660167 +ybdB531.98ST4-74 661616 660580 +ybdH90781.15ST4-74 661616 662867 +ybdH90781.15ST4-74<	ramR	39	37	1.05	ST4-74	637634	638215	-
ybdJ24171.36ST4-74 638851 639099 -ybdK751.52ST4-74 639166 640284 -entD1152.11ST4-74 640296 641000 -fepA851.65ST4-74 641046 643301 -fes842.15ST4-74 644940 644704 +ybdZ321.31ST4-74 644735 644953 +entF441.26ST4-74 64950 648834 +fepE45431.04ST4-74 650273 651067 -fepG431.26ST4-74 651064 652053 -fepD841.94ST4-74 650253 653060 -ybdA761.19ST4-74 65171 654415 +fepB741.65ST4-74 65928 65533 +entE321.41ST4-74 65928 658538 +entB321.51ST4-74 660167 600580 +extAa851210.70ST4-74 660167 660164 +ybdH90781.15ST4-74 661316 664252 -ybdN14131.08ST4-74 66131 66433 -ybdN14130.99ST4-74 666130 66736	ramA	13	12	1.06	ST4-74	638504	638845	+
ybdK751.52ST4-74639166640284-entD1152.11ST4-74640296641000-fepA851.65ST4-74641046643301-fes842.15ST4-74643490644704+ybdZ321.31ST4-74644953644953+entF441.26ST4-74644950648834+fepE45431.04ST4-74649084650220+fepC431.26ST4-74651064652053-fepD841.94ST4-74650273651067-fepB761.19ST4-74651064652053-ybdA761.19ST4-7465171654415+fepB741.65ST4-7465473656918+entC431.24ST4-74655743656918+entB321.51ST4-74658552659409+entA431.07ST4-74660167660580+cstAa851210.70ST4-74660167660580+cstAa851210.70ST4-74661616664252-ybdH90781.15ST4-74663164664252-ybdH10100.99	vbdJ	24	17	1.36	ST4-74	638851	639099	-
entD1152.11ST4-74 640296 641000 -fepA851.65ST4-74 641046 643301 -fes842.15ST4-74 644704 +ybdZ321.31ST4-74 644735 644953 +entF441.26ST4-74 644735 644953 +entF441.26ST4-74 649084 650220 +fepE45431.04ST4-74 650273 651067 -fepG431.26ST4-74 651064 652053 -fepD841.94ST4-74 652053 653060 -ybdA761.19ST4-74 651171 654115 +fepB741.65ST4-74 656918 +entC431.24ST4-74 656928 658538 +entB321.51ST4-74 659209 660164 +ybdB531.98ST4-74 660167 660580 +cstAa851210.70ST4-74 660167 66128 +ybdH90781.15ST4-74 660167 66130 667365 -ybdN14131.08ST4-74 666130 667365 -ybdO20201.01ST4-74 668750 666137 - </td <td>vbdK</td> <td>7</td> <td>5</td> <td>1.52</td> <td>ST4-74</td> <td>639166</td> <td>640284</td> <td>-</td>	vbdK	7	5	1.52	ST4-74	639166	640284	-
fepA851.65ST4-74 641046 643301 - fes 842.15ST4-74 643490 644704 + $ybdZ$ 321.31ST4-74 644735 644953 + $entF$ 441.26ST4-74 644950 648834 + $fepE$ 45431.04ST4-74 649084 650220 + $fepC$ 431.14ST4-74 650273 651067 - $fepG$ 431.26ST4-74 651064 652053 - $fepD$ 841.94ST4-74 650273 653060 - $ybdA$ 761.19ST4-74 650415 + $fepB$ 741.65ST4-74 656918 + $entC$ 431.24ST4-74 656928 658538 + $entB$ 321.51ST4-74 659409 ++ $entA$ 431.07ST4-74 660167 660580 + $extAa$ 851210.70ST4-74 660167 660580 + $ybdH$ 90781.15ST4-74 661616 664379 665127 - $ybdM$ 10100.99ST4-74 666130 667365 - $ybdN$ 14131.08ST4-74 666130 667365 - $ybdO$ 20201.01ST4-74 6667	entD	11	5	2.11	ST4-74	640296	641000	-
fes842.15ST4-74 643490 644704 + $ybdZ$ 321.31ST4-74 644735 644953 + $entF$ 441.26ST4-74 644950 648834 + $fepE$ 45431.04ST4-74 649084 650220 + $fepG$ 431.14ST4-74 650273 651067 - $fepG$ 431.26ST4-74 651064 652053 - $fepD$ 841.94ST4-74 652053 653060 - $ybdA$ 761.19ST4-74 651711 654415 + $fepB$ 741.65ST4-74 656928 65838 + $entC$ 431.24ST4-74 656928 658538 + $entB$ 321.51ST4-74 659409 + $entA$ 431.07ST4-74 660167 660580 + $entA$ 431.98ST4-74 660167 <td>fepA</td> <td>8</td> <td>5</td> <td>1.65</td> <td>ST4-74</td> <td>641046</td> <td>643301</td> <td>-</td>	fepA	8	5	1.65	ST4-74	641046	643301	-
ybdZ321.31ST4-74 644735 644953 +entF441.26ST4-74 644950 648834 +fepE45431.04ST4-74 649984 650220 +fepC431.14ST4-74 650273 651067 -fepG431.26ST4-74 651064 652053 -fepD841.94ST4-74 652053 653060 -ybdA761.19ST4-74 653171 654415 +fepB741.65ST4-74 655743 656918 +entC431.24ST4-74 656928 658538 +entB321.51ST4-74 660167 660580 +ybdB531.98ST4-74 660167 660580 +ybdB531.98ST4-74 660167 660580 +ybdH90781.15ST4-74 663164 664252 -ybdN14131.08ST4-74 663164 666157 -ybdN14131.08ST4-74 666130 666157 -ybdN14131.08ST4-74 66811 668719 +dcfG14150.90ST4-74 668710 668719 +	fes	8	4	2.15	ST4-74	643490	644704	+
entF441.26ST4-74 644950 648834 +fepE45431.04ST4-74 649084 650220 +fepC431.14ST4-74 650273 651067 -fepG431.26ST4-74 651064 652053 -fepD841.94ST4-74 652053 653060 -ybdA761.19ST4-74 653171 654415 +fepB741.65ST4-74 655434 -entC431.24ST4-74 655743 656918 +entB321.51ST4-74 658552 659409 +entB321.51ST4-74 660167 660580 +ybdB531.98ST4-74 660167 660580 +ybdD1091220.89ST4-74 663128 +ybdH90781.15ST4-74 663164 664252 -ybdM10100.99ST4-74 66330 667365 -ybdN14131.08ST4-74 666130 667365 -ybdQ2020201.01ST4-74 666130 667365 -ybdN14131.08ST4-74 666130 667365 -ybdQ2020201.01ST4-74 666130 667365	vbdZ	3	2	1.31	ST4-74	644735	644953	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>entF</i>	4	4	1.26	ST4-74	644950	648834	+
fepC431.14ST4-74650273651067- $fepG$ 431.26ST4-74651064652053- $fepD$ 841.94ST4-74652053653060- $ybdA$ 761.19ST4-74653171654415+ $fepB$ 741.65ST4-74655743656918+ $entC$ 431.24ST4-74655743656918+ $entE$ 321.51ST4-74658552659409+ $entB$ 321.51ST4-74660167660580+ $entA$ 431.07ST4-74660167660580+ $extAa$ 851210.70ST4-74660167660580+ $ybdB$ 531.98ST4-74660167660580+ $ybdH$ 90781.15ST4-74663164664252- $ybdH$ 90781.15ST4-74663164664252- $ybdM$ 10100.99ST4-74666130667365- $ybdN$ 14131.08ST4-74666130667365- $ybdO$ 2020201.01ST4-74668611668719+ $dsbG$ 14150.90ST4-74668750669496-	fepE	45	43	1.04	ST4-74	649084	650220	+
fepG431.26ST4-74651064652053- $fepD$ 841.94ST4-74652053653060- $ybdA$ 761.19ST4-74653171654415+ $fepB$ 741.65ST4-74654778655434- $entC$ 431.24ST4-74655743656918+ $entE$ 321.41ST4-74656928658538+ $entB$ 321.51ST4-74659409660164+ $ybdB$ 531.98ST4-74660167660580+ $cstAa$ 851210.70ST4-74660167660128+ $ybdH$ 90781.15ST4-74663164664252- $ybdM$ 10100.99ST4-74666130667365- $ybdN$ 14131.08ST4-74666130667365- $ybdO$ 20201.01ST4-746668611668719+ dsG 14150.90ST4-74668611668719+	fepC	4	3	1.14	ST4-74	650273	651067	-
fepD841.94ST4-74 652053 653060 - $ybdA$ 761.19ST4-74 653171 654415 + $fepB$ 741.65ST4-74 653171 654415 + $entC$ 431.24ST4-74 655743 656918 + $entE$ 321.41ST4-74 656928 658538 + $entB$ 321.51ST4-74 659409 660164 + $ybdB$ 531.98ST4-74 660167 660580 + $cstAa$ 851210.70ST4-74 660762 662867 + $ybdH$ 90781.15ST4-74 663164 664252 - $ybdH$ 90781.15ST4-74 663164 664252 - $ybdH$ 90781.15ST4-74 663164 664252 - $ybdN$ 14131.08ST4-74 666130 667365 - $ybdO$ 2020101ST4-74 666130 667365 - $ybdO$ 2020101ST4-74 666130 667365 - $ybdO$ 14131.08ST4-74 666130 667365 - $ybdO$ 202020101ST4-74 668611 668719 + $dsbG$ 14150.90ST4-74 668750 669496 -	fepG	4	3	1.26	ST4-74	651064	652053	-
ybdA761.19ST4-74 653171 654415 +fepB741.65ST4-74 653171 654415 +entC431.24ST4-74 655743 656918 +entE321.41ST4-74 656928 658338 +entB321.51ST4-74 656928 658552 659409 +entA431.07ST4-74 659409 660164 +ybdB531.98ST4-74 660167 660580 +cstAa851210.70ST4-74 660762 662867 +ybdH90781.15ST4-74 663164 664252 -ybdH90781.15ST4-74 663164 664252 -ybdH90781.15ST4-74 663164 664252 -ybdN14131.08ST4-74 666130 667365 -ybdO20201.01ST4-74 666130 667365 -ybdO20201.01ST4-74 668611 668719 +dsbG14150.90ST4-74 668750 669496 -	fepD	8	4	1.94	ST4-74	652053	653060	-
fepB741.65ST4-74 654478 655434 -entC431.24ST4-74 655743 656918 +entE321.41ST4-74 656928 658538 +entB321.51ST4-74 656928 658552 659409 +entA431.07ST4-74 659409 660164 +ybdB531.98ST4-74 660167 660580 +cstAa851210.70ST4-74 660762 662867 +ybdD1091220.89ST4-74 660164 664252 -ybdH90781.15ST4-74 663164 664252 -ybdM10100.99ST4-74 666130 667365 -ybdN14131.08ST4-74 666130 667365 -ybdO2020101ST4-74 668611 668719 +dsbG14150.90ST4-74 668750 669496 -	vbdA	7	6	1.19	ST4-74	653171	654415	+
entC43 1.24 $ST4-74$ 655743 656918 +entE32 1.41 $ST4-74$ 656928 658538 +entB32 1.51 $ST4-74$ 656928 658538 +entA43 1.07 $ST4-74$ 659409 +ybdB53 1.98 $ST4-74$ 660167 660580 +cstAa85 121 0.70 $ST4-74$ 660762 662867 +ybdD109 122 0.89 $ST4-74$ 660762 662867 +ybdH9078 1.15 $ST4-74$ 663164 664252 -ybdH9078 1.15 $ST4-74$ 664379 665539 +ybdM1010 0.99 $ST4-74$ 666130 667365 -ybdN1413 1.08 $ST4-74$ 666130 667365 -ybdO2020101 $ST4-74$ 668611 668719 +dsbG1415 0.90 $ST4-74$ 668750 669496 -	fepB	7	4	1.65	ST4-74	654478	655434	-
entE321.41ST4-74656928658538+entB321.51ST4-74658552659409+entA431.07ST4-74659409660164+ybdB531.98ST4-74660167660580+cstAa851210.70ST4-74660762662867+ybdD1091220.89ST4-74662931663128+ybdH90781.15ST4-74663364664252-ybdL49510.95ST4-74666330666157-ybdN14131.08ST4-74666130667365-ybdO20201.01ST4-74668611668433-stnc318027221.19ST4-74668611668719+dsbG14150.90ST4-74668750669496-	entC	4	3	1.24	ST4-74	655743	656918	+
entB321.51ST4-74658552659409+entA431.07ST4-74659409660164+ybdB531.98ST4-74660167660580+cstAa851210.70ST4-74660762662867+ybdD1091220.89ST4-74662931663128+ybdH90781.15ST4-74663164664252-ybdL49510.95ST4-74666379665539+ybdN10100.99ST4-74666130667365-ybdN14131.08ST4-74666130667365-ybdO20201.01ST4-74668611668719+dsbG14150.90ST4-74668611668719+	entE	3	2	1.41	ST4-74	656928	658538	+
entA43 1.07 $ST4-74$ 659409 660164 +ybdB53 1.98 $ST4-74$ 660167 660580 +cstAa85121 0.70 $ST4-74$ 660762 662867 +ybdD109122 0.89 $ST4-74$ 660762 663128 +ybdH9078 1.15 $ST4-74$ 663164 664252 -ybdL4951 0.95 $ST4-74$ 663164 664252 -ybdM1010 0.99 $ST4-74$ 666130 667365 -ybdN1413 1.08 $ST4-74$ 666130 667365 -ybdO20201.01 $ST4-74$ 668611 668719 +dsbG1415 0.90 $ST4-74$ 668750 669496 -	entB	3	2	1.51	ST4-74	658552	659409	+
ybdB531.98ST4-74660167660580+cstAa851210.70ST4-74660762662867+ybdD1091220.89ST4-74662931663128+ybdH90781.15ST4-74663164664252-ybdL49510.95ST4-74664379665539+ybdM10100.99ST4-74666130667365-ybdN14131.08ST4-74666130667365-ybdO20201.01ST4-74668611668433-STnc318027221.19ST4-74668611668719+dsbG14150.90ST4-74668750669496-	entA	4	3	1.07	ST4-74	659409	660164	+
cstAa851210.70ST4-74660762662867+ybdD1091220.89ST4-74662931663128+ybdH90781.15ST4-74663164664252-ybdL49510.95ST4-74664379665539+ybdM10100.99ST4-74666130667365-ybdN14131.08ST4-74666130667365-ybdO20201.01ST4-74668611668433-STnc318027221.19ST4-74668611668719+dsbG14150.90ST4-74668750669496-	vhdB	5	3	1.98	ST4-74	660167	660580	+
ybdD1091220.89ST4-74662931663128+ybdH90781.15ST4-74663164664252-ybdL49510.95ST4-74664379665539+ybdN10100.99ST4-74666130666157-ybdO20201.01ST4-74666130667365-ybdO20201.01ST4-74668611668433-STnc318027221.19ST4-74668611668719+dsbG14150.90ST4-74668750669496-	cstAa	85	121	0.70	ST4-74	660762	662867	+
ybdh90781.15ST4-74663164664252-ybdL49510.95ST4-74664379665539+ybdM10100.99ST4-74666540666157-ybdN14131.08ST4-74666130667365-ybdO20201.01ST4-746666131668433-STnc318027221.19ST4-74668611668719+dsbG14150.90ST4-74668750669496-	vhdD	109	122	0.89	ST4-74	662931	663128	+
ybdL4951 0.95 ST4-74 664379 665539 +ybdM1010 0.99 ST4-74 666370 666157 -ybdN1413 1.08 ST4-74 666130 667365 -ybdO20201.01ST4-74 667531 668433 -STnc318027221.19ST4-74 668611 668719 +dsbG1415 0.90 ST4-74 668750 669496 -	vbdH	90	78	1.15	ST4-74	663164	664252	_
ybdM10100.99ST4-74665540666157-ybdN14131.08ST4-74666130667365-ybdO20201.01ST4-74667531668433-STnc318027221.19ST4-74668611668719+dsbG14150.90ST4-74668750669496-	vbdL	49	51	0.95	ST4-74	664379	665539	+
ybdN14131.08ST4-74666130667365-ybdO20201.01ST4-74667531668433-STnc318027221.19ST4-74668611668719+ $dsbG$ 14150.90ST4-74668750669496-	vbdM	10	10	0.99	ST4-74	665540	666157	_
ybdO20201.01ST4-74667531668433-STnc318027221.19ST4-74668611668719+ $dsbG$ 14150.90ST4-74668750669496-	vbdN	14	13	1.08	ST4-74	666130	667365	_
STnc3180 27 22 1.19 ST4-74 668611 668719 + $dsbG$ 14 15 0.90 ST4-74 668750 669496 -	vbdQ	20	20	1.01	ST4-74	667531	668433	-
dsbG 14 15 0.90 ST4-74 668750 669496 -	STnc3180	27	22	1.19	ST4-74	668611	668719	+
	dshG	14	15	0.90	ST4-74	668750	669496	-
STnc070 831 1959 0.42 ST4-74 669642 669793 +	STnc070	831	1959	0.42	ST4-74	669642	669793	+
ahpC 208 299 0.70 ST4-74 669937 670500 +	ahnC	208	299	0.70	ST4-74	669937	670500	+
ahpE 24 33 0.75 ST4-74 670742 672307 +	ahpF	24	33	0.75	ST4-74	670742	672307	+
STM0610 2 2 1 22 ST4-74 672639 673199 +	STM0610	2	2	1 22	ST4-74	672639	673199	+
STM0611 3 3 1 20 ST4-74 673192 675471 +	STM0611	3	23	1.22	ST4-74	673192	675471	+
STM0612 6 4 1 42 ST4-74 675468 676025 +	STM0612	6	4	1.20	ST4-74	675468	676025	+
STM0613 22 20 1.08 ST4-74 676025 676792 +	STM0613	22	20	1.42	ST4-74	676025	676792	+
vbdQ 697 505 1 38 ST4-74 676860 677288 -	vhdO	697	505	1 38	ST4-74	676860	677288	-
<i>vbdR</i> 12 7 1.83 ST4-74 677511 678749 +	vhdR	12	7	1.50	ST4-74	677511	678749	+
rnk 43 42 1.03 ST4-74 678832 670242	rnk	43	Δ [']	1.03	ST4_74	678832	679747	-
sRNA10 240 160 1.50 ST4-74 679315 679410 -	sRNA10	240	160	1.50	ST4-74	679315	679410	_

Name	$\Delta fnr TPM$	WT TPM	$\Delta fnr/WT$	<i>Chr^a</i>	Start	End	Strand
rna	187	132	1.42	ST4-74	679477	680283	-
citT	12	40	0.30	ST4-74	680393	681856	-
citG	4	16	0.25	ST4-74	681894	682790	-
citX	5	26	0.19	ST4-74	682762	683313	-
citF	4	17	0.25	ST4-74	683317	684846	-
citE	3	10	0.27	ST4-74	684856	685764	-
citD	4	14	0.30	ST4-74	685761	686057	-
citC	20	39	0.50	ST4-74	686054	687130	-
citA	27	26	1.04	ST4-74	687515	689176	+
citB	13	19	0.71	ST4-74	689145	689825	+
STnc3550	37	42	0.88	ST4-74	689844	689990	-
dcuC	5	14	0.33	ST4-74	689879	691132	-
pagP	540	424	1.28	ST4-74	691643	692215	+
cspE	9609	8771	1.10	ST4-74	692400	692612	+
ccrB	114	86	1.33	ST4-74	692670	693053	-
STM0631	13	12	1.08	ST4-74	693144	693932	+
tatE	232	316	0.73	ST4-74	694061	694264	+
lipA	31	31	0.99	ST4-74	694350	695315	-
vbeF	55	36	1.55	ST4-74	695521	696474	-
ipB	27	25	1.10	ST4-74	696776	697417	-
vbeD	273	297	0.92	ST4-74	697517	697711	-
dacA	54	49	1.12	ST4-74	697889	699100	-
rlpA	22	25	0.87	ST4-74	699240	700307	-
mrdB	36	34	1.05	ST4-74	700318	701430	-
mrdA	21	23	0.92	ST4-74	701433	703334	-
vbeA	12	17	0.71	ST4-74	703365	703832	-
vbeB	28	34	0.83	ST4-74	703836	704153	-
cobC	14	12	1.16	ST4-74	704482	705090	-
cobD	7	11	0.64	ST4-74	705187	706281	+
nadD	10	12	0.83	ST4-74	706256	706897	-
holA	21	24	0.86	ST4-74	706899	707930	-
rlpB	66	64	1.03	ST4-74	707930	708520	-
leuS	50	48	1.03	ST4-74	708535	711117	-
STM0649	3	2	1.39	ST4-74	711405	711695	+
STM0650	4	4	1.08	ST4-74	711712	712884	+
STM0651	20	21	0.93	ST4-74	713003	713887	+
STM0652	19	20	0.95	ST4-74	713955	715883	+
vbeL	161	123	1.31	ST4-74	715976	716449	+
vbeQ	12	9	1.36	ST4-74	716488	717483	-
vbeR	4	4	1.08	ST4-74	717608	718315	+
vbeS	3	2	1.41	ST4-74	718312	719745	+
vbeU	5	4	1.30	ST4-74	719757	720453	+
vbeV	7	4	1.51	ST4-74	720450	721922	+
hscC	4	8	0.52	ST4-74	721944	723623	-
STM0660	6	6	0.93	ST4-74	723699	724937	_
rihA	9	11	0.84	ST4-74	724969	725904	-
gltL	15	19	0.75	ST4-74	726021	726746	-
gltK	20	24	0.86	ST4-74	726746	727420	-
gltJ	16	18	0.87	ST4-74	727420	728160	-
SroC	228	158	1.44	ST4-74	728172	728324	-
gltI	127	95	1.34	ST4-74	728320	729246	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
lnt	29	29	1.00	ST4-74	729583	731121	-
ybeX	75	69	1.09	ST4-74	731141	732019	-
ybeY	92	81	1.13	ST4-74	732177	732650	-
phoL	63	56	1.12	ST4-74	732647	733732	-
miaB	25	24	1.05	ST4-74	733898	735322	-
ubiF	24	23	1.04	ST4-74	735466	736641	+
STM0672	24	16	1.56	ST4-74	736708	737283	-
STnc3290	108	99	1.10	ST4-74	738320	738476	+
asnB	19	21	0.92	ST4-74	738350	740014	-
nagD	21	21	1.00	ST4-74	740304	741056	-
nagC	12	14	0.86	ST4-74	741103	742323	-
nagA	27	27	0.99	ST4-74	742328	743482	-
nagB	28	32	0.87	ST4-74	743542	744342	-
nagE	17	30	0.58	ST4-74	744669	746621	+
glnS	50	51	0.98	ST4-74	746832	748499	+
STnc3300	109	77	1.42	ST4-74	748530	748639	-
<i>ybfM</i>	29	39	0.75	ST4-74	748945	750351	+
vbfN	25	41	0.61	ST4-74	750401	750733	+
STM0689	11	8	1.37	ST4-74	750782	752086	-
STM0690	2	2	1.02	ST4-74	752137	753276	-
STM0691	3	3	1.21	ST4-74	753263	754666	-
STM0692	12	13	0.96	ST4-74	754764	755690	-
fur	295	280	1.05	ST4-74	755805	756257	-
sRNA9	337	284	1.19	ST4-74	756377	756436	-
fldA	187	179	1.04	ST4-74	756539	757069	-
vbfE	45	43	1.05	ST4-74	757232	757513	-
vbfF	23	24	0.94	ST4-74	757647	758417	-
segA	76	77	0.99	ST4-74	758602	759144	+
pgm	40	46	0.86	ST4-74	759169	760809	+
STM0699	6	4	1.32	ST4-74	760924	761409	-
potE	4	4	1.09	ST4-74	761474	762793	-
speF	3	2	1.70	ST4-74	762790	764988	-
kdpE	10	8	1.23	ST4-74	765750	766427	-
<i>kdpD</i>	11	9	1.26	ST4-74	766424	769108	-
kdpC	7	6	1.05	ST4-74	769105	769689	-
kdpB	2	2	1.08	ST4-74	769698	771746	-
kdpA	3	3	1.19	ST4-74	771767	773446	-
kdpF	3	2	1.88	ST4-74	773446	773535	-
vbfA	333	227	1.47	ST4-74	773872	774078	+
phrB	13	8	1.70	ST4-74	774189	775610	+
vbgH	14	17	0.83	ST4-74	775649	777130	-
vbgI	41	41	1.01	ST4-74	777459	778202	+
vbgJ	12	14	0.87	ST4-74	778218	778874	+
vbgK	11	9	1.18	ST4-74	778868	779800	+
vhgL	17	17	0.99	ST4-74	779790	780524	+
STM0715	12	9	1.27	ST4-74	780848	780979	+
fimB	29	22	1.30	ST4-74	781039	781605	+
STM0717	5	5	0.97	ST4-74	782065	782400	+
STM0718	4	2	1.84	ST4-74	782402	783142	+
STM0719	2	2	1.27	ST4-74	783428	784579	+
STM0720	-3	- 1	2.12	ST4-74	784576	785472	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM0721	3	2	1.62	ST4-74	785485	786618	+
STM0722	5	4	1.33	ST4-74	786747	787517	+
STM0723	3	2	1.43	ST4-74	787521	788231	+
STM0724	3	3	1.31	ST4-74	788325	790103	+
STM0725	3	2	1.30	ST4-74	790296	791129	+
STM0726	3	3	1.22	ST4-74	791187	793082	+
STM0727	59	54	1.09	ST4-74	793150	793287	+
nei	15	18	0.86	ST4-74	793336	794127	+
abrB	9	7	1.33	ST4-74	794182	795144	-
gltA	65	78	0.83	ST4-74	795365	796648	-
STM0731	6	5	1.08	ST4-74	796623	796994	+
sdhC	101	118	0.86	ST4-74	797403	797792	+
sdhD	69	81	0.85	ST4-74	797786	798133	+
sdhA	30	40	0.75	ST4-74	798133	799899	+
sdhB	60	74	0.81	ST4-74	799913	800632	+
<i>sucA</i>	33	42	0.80	ST4-74	801156	803957	+
sucB	39	55	0.70	ST4-74	803972	805180	+
<i>sucC</i>	37	44	0.84	ST4-74	805322	806488	+
sucD	60	69	0.87	ST4-74	806488	807357	+
RybD	122	185	0.66	ST4-74	807346	807429	+
cydA	152	125	1.22	ST4-74	808940	810508	+
cydB	131	102	1.29	ST4-74	810524	811663	+
vbgT	362	226	1.60	ST4-74	811678	811791	+
vbgE	269	209	1.29	ST4-74	811928	812209	+
vbgC	68	60	1.15	ST4-74	812438	812842	+
tolQ	28	33	0.83	ST4-74	812839	813531	+
tolR	25	29	0.86	ST4-74	813535	813963	+
tolA	30	32	0.94	ST4-74	814028	815251	+
tolB	113	123	0.92	ST4-74	815375	816667	+
pal	206	289	0.71	ST4-74	816702	817226	+
ybgF	86	101	0.85	ST4-74	817236	818024	+
nadA	22	24	0.91	ST4-74	819489	820532	+
pnuC	36	39	0.92	ST4-74	820557	821276	+
ybgR	20	17	1.19	ST4-74	821273	822211	-
ybgS	114	53	2.14	ST4-74	822322	822708	-
aroG	127	105	1.21	ST4-74	823028	824080	+
STM0761	29	42	0.70	ST4-74	824174	824719	-
STM0762	22	38	0.58	ST4-74	824734	825579	-
STM0763	27	32	0.84	ST4-74	825709	826599	+
STM0764	10	11	0.93	ST4-74	826600	827526	-
STM0765	3	1	2.10	ST4-74	827806	829074	+
dcoC	4	4	1.16	ST4-74	829124	829369	+
dcoA	2	1	1.07	ST4-74	829385	831160	+
dcoB	3	3	1.04	ST4-74	831173	832474	+
STM0769	5	5	1.00	ST4-74	832593	833291	+
STM0770	6	6	1.13	ST4-74	833671	834750	+
STM0771	7	7	1.00	ST4-74	834750	835526	+
gpmA	309	243	1.27	ST4-74	835617	836369	-
galM	12	13	0.92	ST4-74	836593	837633	-
galK	14	15	0.94	ST4-74	837627	838775	-
galT	5	5	1.18	ST4-74	838778	839824	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
galE	19	15	1.26	ST4-74	839835	840851	-
STM0777	4	5	0.88	ST4-74	841074	841982	-
modF	30	33	0.92	ST4-74	842153	843628	-
modE	18	16	1.09	ST4-74	843696	844484	-
ybhT	813	567	1.43	ST4-74	844613	844762	+
modA	50	105	0.47	ST4-74	844929	845702	+
modB	13	42	0.31	ST4-74	845702	846391	+
modC	10	28	0.37	ST4-74	846394	847452	+
ybhA	20	16	1.21	ST4-74	847453	848271	-
ybhE	26	21	1.22	ST4-74	848435	849430	+
ybhC	22	24	0.93	ST4-74	849574	850857	-
hutI	16	17	0.94	ST4-74	851095	852318	+
hutG	8	10	0.82	ST4-74	852315	853256	+
hutC	11	12	0.84	ST4-74	853349	854026	+
hutU	4	3	1.24	ST4-74	854223	855908	+
hutH	3	3	0.88	ST4-74	855910	857430	+
ybhB	87	67	1.30	ST4-74	857515	857991	-
<i>bioA</i>	69	45	1.52	ST4-74	858049	859338	-
bioB	110	81	1.36	ST4-74	859425	860465	+
bioF	45	41	1.10	ST4-74	860462	861619	+
bioC	31	31	0.99	ST4-74	861603	862358	+
bioDa	29	27	1.06	ST4-74	862351	863037	+
STnc3340	72	63	1.15	ST4-74	863329	863391	-
uvrB	21	21	1.03	ST4-74	863688	865709	+
slrP	23	15	1.49	ST4-74	866199	868496	+
ybhK	13	27	0.49	ST4-74	868588	869496	-
moaA	18	65	0.28	ST4-74	869893	870882	+
moaB	14	30	0.46	ST4-74	870904	871416	+
moaC	8	18	0.47	ST4-74	871419	871904	+
moaD	13	27	0.48	ST4-74	871891	872142	+
moaE	11	21	0.50	ST4-74	872144	872596	+
ybhL	176	164	1.07	ST4-74	872644	873348	+
ybhM	4	3	1.42	ST4-74	873495	874202	+
STM0809	4	6	0.69	ST4-74	874226	874834	+
STM0810	4	2	1.80	ST4-74	874842	875402	+
ybhN	18	11	1.61	ST4-74	875405	876367	-
ybhO	7	5	1.46	ST4-74	876367	877608	-
ybhP	20	8	2.53	ST4-74	877605	878363	-
ybhQ	403	358	1.13	ST4-74	878496	878906	+
ybhR	16	14	1.17	ST4-74	878868	879974	-
ybhS	14	11	1.29	ST4-74	880090	881220	-
ybhF	7	7	1.05	ST4-74	881213	882949	-
STM0818	8	8	0.99	ST4-74	882942	883937	-
ybiH	19	16	1.20	ST4-74	883937	884611	-
rhlE	7	5	1.23	ST4-74	884841	886205	+
dinG	13	11	1.11	ST4-74	886512	888557	+
ybiB	12	12	0.98	ST4-74	888587	889561	+
STnc980	44	18	2.46	ST4-74	889558	889714	-
ybiJ	12	8	1.45	ST4-74	889717	889977	-
ybiI	110	58	1.89	ST4-74	890262	890528	-
ybiN	9	10	0.86	ST4-74	890733	891665	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ybiO	11	8	1.29	ST4-74	891662	893884	-
glnQ	36	37	0.96	ST4-74	894003	894725	-
glnP	34	40	0.84	ST4-74	894722	895381	-
glnH	126	134	0.94	ST4-74	895525	896271	-
dps	1063	692	1.54	ST4-74	896748	897251	-
ybiF	11	10	1.05	ST4-74	897554	898441	-
ompX	975	596	1.64	ST4-74	898795	899310	+
ybiP	10	10	0.99	ST4-74	899373	900953	-
RybA	597	429	1.39	ST4-74	901301	901397	-
STM0835	51	49	1.04	ST4-74	901532	902005	+
ybiR	13	12	1.10	ST4-74	902002	903114	+
ybiS	40	35	1.14	ST4-74	903158	904078	-
ybiT	39	33	1.16	ST4-74	904297	905889	+
STM0839	7	6	1.20	ST4-74	906498	907241	+
ybiV(2)	1	1	0.93	ST4-74	907270	907800	-
ybiU	3	2	1.37	ST4-74	908194	909459	-
ybiV(1)	31	22	1.41	ST4-74	909721	910530	+
pflF	1	2	0.79	ST4-74	910608	913040	-
pflE	2	3	0.52	ST4-74	913046	913945	-
moeB	8	10	0.83	ST4-74	914223	914972	-
moeA	12	13	0.96	ST4-74	914972	916213	-
vbiK	65	71	0.91	ST4-74	916410	917351	+
y vliA	22	25	0.87	ST4-74	917362	919233	+
vliB	22	27	0.82	ST4-74	919266	920804	+
vliC	18	20	0.89	ST4-74	920865	921785	+
vliD	20	17	1.18	ST4-74	921788	922699	+
rimO	21	20	1.04	ST4-74	922790	924115	-
bssR	531	543	0.98	ST4-74	924346	924729	+
STnc1200	1244	1655	0.75	ST4-74	924769	924838	-
STM0854	3	2	1.42	ST4-74	925442	925957	+
STM0855	5	4	1.25	ST4-74	925875	926729	+
STM0856	3	3	0.92	ST4-74	926740	927687	+
STM0857	19	19	0.98	ST4-74	927981	929144	+
STM0858	6	5	1.24	ST4-74	929593	931278	+
STM0859	18	12	1.53	ST4-74	931284	932174	-
STnc1710	178	117	1.52	ST4-74	932197	932336	+
STM0860	41	28	1.45	ST4-74	932439	932864	-
yliI	5	4	1.17	ST4-74	933211	933891	+
yliJ	27	29	0.93	ST4-74	933888	934514	-
dacC	68	47	1.42	ST4-74	934758	935960	+
deoR	52	50	1.04	ST4-74	936005	936763	-
ybjG	66	71	0.93	ST4-74	936835	937443	-
mdfA	14	15	0.90	ST4-74	937756	938988	+
STM0867	9	12	0.76	ST4-74	939042	939857	-
STM0868	9	9	0.94	ST4-74	939854	941065	-
STM0869	6	5	1.28	ST4-74	941233	941853	+
RybB	1751	1341	1.31	ST4-74	941815	941893	-
STM0870	22	20	1.12	ST4-74	941970	943655	-
ybjM	28	29	0.98	ST4-74	943926	944303	+
grxA	768	870	0.88	ST4-74	944335	944598	-
ybjC	33	25	1.32	ST4-74	944768	945058	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
mdaA	16	14	1.16	ST4-74	945105	945763	+
rimK	53	55	0.97	ST4-74	945821	946723	+
ybjN	35	30	1.19	ST4-74	946820	947296	+
potF	28	32	0.88	ST4-74	947645	948757	+
potG	20	24	0.84	ST4-74	948845	949978	+
potH	21	23	0.91	ST4-74	949988	950941	+
potI	32	36	0.90	ST4-74	950938	951783	+
ybjO	81	70	1.15	ST4-74	951857	952330	+
rumB	10	7	1.37	ST4-74	952373	953503	+
STM0884	5	4	1.19	ST4-74	953786	955129	+
STM0885	9	8	1.14	ST4-74	955159	955479	+
STM0886	7	5	1.33	ST4-74	955489	956976	+
artJ	115	302	0.38	ST4-74	957195	957926	-
artM	79	80	1.00	ST4-74	958163	958831	-
artO	52	70	0.75	ST4-74	958831	959547	-
artI	65	80	0.81	ST4-74	959554	960285	-
artP	185	178	1.04	ST4-74	960303	961031	-
vbiP	64	57	1.12	ST4-74	961261	961776	_
STM0930	114	87	1.31	ST4-74	961904	962227	+
vhiR	31	29	1.09	ST4-74	962224	963054	+
STM0932	19	19	1.00	ST4-74	963051	964064	_
vhiT	10	11	0.94	ST4-74	964160	965593	-
lta A	53	45	1 17	ST4-74	965604	966605	_
norB	15	10	1.17	ST4-74	966644	968362	_
hcr	8	8	1.00	ST4-74	968520	969491	_
hcn	5	6	0.78	ST4-74	969500	971152	-
vhiF	26	35	0.76	ST4-74	971296	972087	_
ybj£ vhiD	14	14	0.99	ST4-74	972397	974055	+
ybj£ vhiX	362	307	1 18	ST4-74	974052	975020	_
ybjX vhiY	51	43	1.10	ST4-74	975148	976266	+
ybj7 vhiZ	37	33	1.15	ST4-74	976263	978209	+
ςsnD	952	1539	0.62	ST4-74	978339	978560	_
clnS	244	248	0.92	ST4-74	978884	979204	+
clp3	54	66	0.98	ST4-74	979235	981511	+
STnc490	24696	33984	0.02	ST4-74	981622	981711	_
tun	24090	250	0.75	ST4-74	981703	982161	+
STM0947	6	5	1.26	ST4-74	982624	983307	_
STM0948	17	9	1.20	ST4-74	983478	983879	_
STM0950	9	8	1.52	ST4-74	984216	984893	_
STM0950	5	8 4	1.18	ST4-74 ST4-74	984913	985773	_
STM0951	5	7	0.90	ST4-74	085887	986793	+
inf4	298	337	0.90	ST4-74 ST4-74	986884	987102	_
иуд STM0054	604	520	1.14	ST4-74	087030	987102	-
31110934	22	52) 26	1.14	ST4-74	987030	088118	-
audC	33	20	0.76	ST4-74	000162	980118	-
cyuc cydD	23	3 I 2 A	0.70	S14-/4 STA 7A	900103 000005	70700 4 001651	-
cyuD trr B	20	24 96	0.70	ST4-/4 ST4 74	20200J 001765	002722	-
irxD Irm	00 222	200	1.02	S14-/4 STA 7A	002770	002772	- +
up ftaV	333 110	30U 126	0.00	S14-/4 ST4 74	773217 002000	772//3 007002	-r -
jisk lold	119	130	0.88	S14-/4	7737Uð 000122	77/773 000717	т ,
	8∠ 22	90	0.91	S14-/4	990133 000757	990/4/ 1000100	т ,
усал	55	51	0.88	514-/4	998/3/	1000100	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
serS	48	70	0.69	ST4-74	1000359	1001651	+
dmsA	3	52	0.06	ST4-74	1001888	1004332	+
dmsB	3	46	0.06	ST4-74	1004343	1004960	+
dmsC	10	57	0.18	ST4-74	1004962	1005825	+
ycaD	22	19	1.14	ST4-74	1006175	1007323	+
усаM	16	14	1.14	ST4-74	1007541	1008962	+
STnc3310	108	94	1.15	ST4-74	1009199	1009379	-
pflA	34	31	1.07	ST4-74	1009255	1010079	-
STM0971	109	102	1.07	ST4-74	1010171	1010497	-
sopD2	752	96	7.86	ST4-74	1010628	1011587	+
pflB	76	143	0.53	ST4-74	1011663	1013945	-
focA	126	194	0.65	ST4-74	1014005	1014862	-
ycaO	13	11	1.13	ST4-74	1015267	1017027	-
ycaP	25	16	1.59	ST4-74	1017164	1017856	+
serC	133	126	1.05	ST4-74	1018042	1019130	+
aroA	28	34	0.83	ST4-74	1019201	1020484	+
ycaL	19	19	1.04	ST4-74	1020627	1021388	+
cmk	119	103	1.15	ST4-74	1021561	1022244	+
rpsA	297	358	0.83	ST4-74	1022358	1024031	+
himD	267	272	0.98	ST4-74	1024187	1024471	+
STnc3330	13	11	1.22	ST4-74	1024493	1024591	-
rec2	6	5	1.21	ST4-74	1024701	1026965	+
msbA	48	50	0.95	ST4-74	1027002	1028750	+
lpxK	24	31	0.78	ST4-74	1028747	1029724	+
ycaQ	6	8	0.76	ST4-74	1029768	1031000	+
ycaR	122	111	1.11	ST4-74	1031052	1031234	+
kdsB	13	16	0.79	ST4-74	1031231	1031977	+
STM0989	15	38	0.39	ST4-74	1032188	1033081	+
ycbC	6	7	0.83	ST4-74	1033061	1033837	-
smtA	24	27	0.89	ST4-74	1033973	1034776	+
mukF	14	20	0.73	ST4-74	1034769	1036091	+
mukE	21	28	0.74	ST4-74	1036072	1036776	+
mukB	28	31	0.89	ST4-74	1036776	1041242	+
ycbB	38	34	1.12	ST4-74	1041587	1043428	+
ycbK	87	113	0.77	ST4-74	1043688	1044236	+
ycbL	68	95	0.72	ST4-74	1044264	1044911	+
aspC	72	79	0.92	ST4-74	1044973	1046163	-
ompF	299	372	0.81	ST4-74	1046348	1047439	-
STnc3350	92	48	1.92	ST4-74	1047936	1048028	+
asnCa	99	122	0.81	ST4-74	1048046	1049446	-
STM1001	27	36	0.76	ST4-74	1049647	1050108	-
dpaL	4	4	1.12	ST4-74	1050425	1051639	+
STM1003	3	3	0.95	ST4-74	1051884	1053320	+
pncB	30	29	1.03	ST4-74	1053398	1054600	-
STM1005	53	52	1.03	ST4-74	1054795	1056087	-
STnc4200	308	199	1.55	ST4-74	1055773	1055892	+
STM1006	1	1	0.99	ST4-74	1056132	1056380	-
STM1007	3	2	1.69	ST4-74	1056421	1056660	-
STM1008	3	3	0.82	ST4-74	1056703	1057812	-
recEa	1	1	1.26	ST4-74	1057823	1060708	-
IsrB-2	0	0	_	ST4-74	1060740	1060833	-

hr#-I 663 1160 0.57 ST474 1060735 + STM1010 0 1 0.46 ST4-74 1060835 1061134 - STM1011 0 1 0.22 ST4-74 1061370 106157 - STM1012 211 178 1.18 ST4-74 1062352 106276 - STM2626 2 1 1.35 ST4-74 1062811 106276 - STM2626 2 1 1.35 ST4-74 1062811 1063794 + STM2623 22 00 1.06 ST4-74 1065872 1064904 + STM1019 80 85 0.94 ST4-74 1065872 1067123 + STM1020 28 25 1.10 ST4-74 1066521 06793 + STM102 9 7 1.29 ST4-74 1066941 1069431 + STM102 9 7 1.29	Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM1010 0 1 0.46 ST4-74 1060135 1061134 - STM0101 0 1 0.22 ST4-74 1061156 106137 - STM1012 211 178 1.18 ST4-74 1062352 1062352 - - STM1015 2 2 0.84 ST4-74 1062352 10662866 - STM2626 2 1 1.35 ST4-74 1062375 1064346 + STM2624 1 2 0.79 ST4-74 1064557 1064904 + STM2623 22 20 1.06 ST4-74 1065270 0.64904 + STM2623 22 20 1.06 ST4-74 106546 + STM1019 80 85 0.94 ST4-74 1065271 1067123 + STM1020 28 25 1.00 ST4-74 1066921 1067123 + STM1023 135 125 1.07 ST4-74 1068940 1068927 + STM1024	IsrB-1	663	1160	0.57	ST4-74	1060741	1060835	+
STM2630 0 0 0.00 ST4-74 1061156 1061314 - STM1012 211 178 1.18 ST4-74 1061617 1061958 - CI 2 2 0.84 ST4-74 1062745 1062766 + STM2626 2 1 1.35 ST4-74 1064577 1064546 + STM2623 22 20 1.06 ST4-74 1064577 1064904 + STM2623 22 20 1.06 ST4-74 1064571 1064504 + STM2623 22 20 1.06 ST4-74 1064571 1066105 + STM1020 28 25 1.10 ST4-74 1065821 1067123 + sTM102 9 7 1.29 ST4-74 1069404 + STM1023 135 125 107 ST4-74 1066921 1067123 + STM102 9 7 1.29 ST4-74 1068940 1069257 + STM1023 135 125 <	STM1010	0	1	0.46	ST4-74	1060835	1061134	-
STM1011 0 1 0.22 ST4-74 1061307 1061567 - STM1012 211 178 1.18 ST4-74 1061617 1061958 - C1 2 0.84 ST4-74 1062352 1062366 - STM2626 2 1 1.35 ST4-74 1062375 1064904 + STM2624 1 2 0.96 ST4-74 1065290 1064546 + STM2622 388 315 1.23 ST4-74 1066521 0166512 + STM1020 28 25 1.10 ST4-74 1065201 1066123 + STM1020 28 25 1.00 ST4-74 1066921 + + STM1021 9 7 1.29 ST4-74 1066921 066803 + STM1022 9 7 1.29 ST4-74 1066940 1069257 + STM1023 135 125 1.07 ST4-74 1068040 1069257 + STM1024 3 <	STM2630	0	0	0.00	ST4-74	1061156	1061314	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STM1011	0	1	0.22	ST4-74	1061307	1061567	-
C/ 2 0.84 ST4-74 1062352 1062266 + STM2626 2 1 1.35 ST4-74 1062745 1062806 - STM2626 2 1 1.35 ST4-74 10643797 1064346 + STM2623 22 20 1.06 ST4-74 1064577 1064946 + STM2623 22 20 1.06 ST4-74 1065290 1065380 + STM1020 28 25 1.10 ST4-74 1065921 1067123 + nmG 1 2 0.83 ST4-74 1067332 1067943 + STM1020 28 25 1.07 ST4-74 1068940 1069257 + STM1021 3 2 1.27 ST4-74 1069431 1069556 + STM1023 135 125 1.07 ST4-74 1070502 107118 + STM203 6 0.97 ST4-	STM1012	211	178	1.18	ST4-74	1061617	1061958	-
SThe 1080 2025 2577 0.79 ST4-74 1062745 1063794 + STM2626 2 1 1.35 ST4-74 1062811 1063794 + STM2624 1 2 0.96 ST4-74 1064557 1064964 + STM2623 22 20 1.06 ST4-74 1064557 1064964 + STM2622 388 315 1.23 ST4-74 1065872 1066105 + STM1019 80 85 0.94 ST4-74 1065872 1066105 + STM1020 28 25 1.10 ST4-74 1067940 1068886 + STM1023 135 125 1.07 ST4-74 1066907 1008873 + STM1023 135 125 1.07 ST4-74 1069431 1069556 + STM2613 6 6 0.97 ST4-74 107148 - STM1025 14 29	Cl	2	2	0.84	ST4-74	1062352	1062726	+
STM2626 2 1 1.33 ST4-74 1063811 1063797 1064546 + STM2624 1 2 0.96 ST4-74 1064570 + STM2623 22 20 1.06 ST4-74 1064591 + STM2623 22 20 1.06 ST4-74 1065210 1065518 + STM1019 80 85 0.94 ST4-74 1065211 1067123 + sTM1020 28 25 1.10 ST4-74 1066806 + STM1023 135 125 1.07 ST4-74 1068940 1069257 + STM1023 135 125 1.07 ST4-74 1069431 1069556 + STM1025 14 29 0.48 ST4-74 1070502 1071141 - stM2613 6 6 0.97 ST4-74 1070502 107118 - STM202 1 1 0.93 ST4-74 1071751 107226 + STM102 + STM102 1 13 <	STnc1080	2025	2577	0.79	ST4-74	1062745	1062806	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STM2626	2	1	1.35	ST4-74	1062811	1063794	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STM1015	1	2	0.96	ST4-74	1063797	1064546	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STM2624	1	2	0.79	ST4-74	1064557	1064904	+
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	STM2623	22	20	1.06	ST4-74	1064901	1065212	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STM2622	388	315	1.23	ST4-74	1065290	1065580	+
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	STM1019	80	85	0.94	ST4-74	1065872	1066105	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1020	28	25	1.10	ST4-74	1066521	1067123	+
SL1344_0960 0 1 0.00 ST4-74 1067940 1068086 + STM1022 9 7 1.29 ST4-74 1068940 1069257 + STM1024 3 2 1.27 ST4-74 1069431 1069556 + STM1025 14 29 0.48 ST4-74 1071452 1071141 - gtgA 31 25 1.24 ST4-74 1071502 1071148 - STM2613 6 6 0.79 ST4-74 1071777 107229 + STM1029 1 1 0.93 ST4-74 107226 1072726 + STM1030 4 5 0.81 ST4-74 1073508 107562 + STM1031 4 3 1.18 ST4-74 1077233 1079314 + STM1033 3 0.83 ST4-74 1079721 1079728 + STM1034 2 1.23 ST4-	ninG	1	2	0.83	ST4-74	1067332	1067943	+
STM1022 9 7 1.29 ST4.74 1068076 1068873 + STM1023 135 125 1.07 ST4.74 10689431 1069556 + STM1025 14 29 0.48 ST4.74 1069692 1070141 - grgA 31 25 1.24 ST4.74 1070502 1071188 - STM2613 6 6 0.97 ST4.74 107177 1072229 + STM1029 1 1 0.93 ST4.74 107177 1073467 + STM1030 4 5 0.81 ST4.74 1077234 1073467 + STM1031 4 3 1.18 ST4.74 107562 1073709 + STM1032 3 4 0.93 ST4.74 1079726 + STM1032 1073467 + STM1033 3 0.83 ST4.74 1077233 107314 + STM1035 2 2 0.98 ST4.74 1079721 108020 + STM1035	SL1344 0960	0	1	0.00	ST4-74	1067940	1068086	+
STM1023 135 125 1.07 ST4-74 1068940 1069257 + STM1024 3 2 1.27 ST4-74 1069431 1069556 + STM1025 14 29 0.48 ST4-74 1070502 1070141 - gtgA 31 25 1.24 ST4-74 107158 1071793 + nucD 8 6 1.39 ST4-74 1071220 107226 + STM1030 4 5 0.81 ST4-74 10723508 1075562 + STM1031 4 3 1.18 ST4-74 10793508 1075562 + STM1033 3 3 0.83 ST4-74 1079405 1079728 + STM1034 2 1 1.93 ST4-74 1079405 1079728 + STM1035 2 2 0.98 ST4-74 1080001 1080567 + STM1036 3 2 1.23 ST4-74 1080001 108020 + STM1037	STM1022	9	7	1.29	ST4-74	1068076	1068873	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1023	135	125	1.07	ST4-74	1068940	1069257	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1024	3	2	1.27	ST4-74	1069431	1069556	+
grg431251.24ST4-7410705021071188-STM2613660.97ST4-7410714581071793+nucD861.39ST4-7410717771072229+STM1029110.93ST4-741072261072726+STM1030450.81ST4-7410723341073667+STM1031431.18ST4-7410723341073562+STM1032340.93ST4-7410772331079314+STM1034211.93ST4-7410797211080020+STM1035220.98ST4-7410800011080567+STM1036321.23ST4-7410800641080965+STM1037330.92ST4-7410810401081726+STM1038321.12ST4-7410823101082466+STM1040321.12ST4-7410822331082496+STM104323191.23ST4-7410825101085563+STM1045890.81ST4-741085601085892+STM1045890.81ST4-741082281087923+STM1045890.81ST4-7410825101085660+STM1045890.81ST4-74108560	STM1025	14	29	0.48	ST4-74	1069692	1070141	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	gtgA	31	25	1.24	ST4-74	1070502	1071188	-
nucD861.39ST4-7410717771072229+STM1029110.93ST4-741072261072726+STM1030450.81ST4-741073081073467+STM1031431.18ST4-741075621077309+STM1032340.93ST4-7410757621077309+STM103330.83ST4-7410792131079314+STM1035220.98ST4-7410797211080020+STM1036321.23ST4-7410806641080567+STM1037330.92ST4-741080641080765+STM103830.87ST4-741081702+STM1039220.80ST4-741081721082170+STM1040321.12ST4-7410822331082496+STM1041441.04ST4-741085563+STM104323191.23ST4-7410866051085832+STM1045890.81ST4-7410866051087138-STM1045890.81ST4-7410822811087923+STM1046230.93ST4-741083441092694+STM1046321.10ST4-741083211095236+STM10484 </td <td>STM2613</td> <td>6</td> <td>6</td> <td>0.97</td> <td>ST4-74</td> <td>1071458</td> <td>1071793</td> <td>+</td>	STM2613	6	6	0.97	ST4-74	1071458	1071793	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nucD	8	6	1.39	ST4-74	1071777	1072229	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1029	1	1	0.93	ST4-74	1072226	1072726	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1030	4	5	0.81	ST4-74	1072934	1073467	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1031	4	3	1.18	ST4-74	1073508	1075562	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1032	3	4	0.93	ST4-74	1075762	1077309	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1033	3	3	0.83	ST4-74	1077233	1079314	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1034	2	1	1.93	ST4-74	1079405	1079728	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1035	2	2	0.98	ST4-74	1079721	1080020	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1036	3	2	1.23	ST4-74	1080001	1080567	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1037	3	3	0.92	ST4-74	1080564	1080965	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1038	3	3	0.87	ST4-74	1081040	1081726	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1039	2	2	0.80	ST4-74	1081772	1082170	+
STM1041 4 4 1.04 ST4.74 1082510 1085563 + STM1042 5 5 1.05 ST4.74 1085560 1085892 + STM1043 23 19 1.23 ST4.74 1085991 1086488 + sodCa 222 183 1.22 ST4.74 1086605 1087138 - STM1045 8 9 0.81 ST4.74 1087228 1087923 + STM1046 2 3 0.93 ST4.74 108733 1088670 + STM1047 3 2 1.10 ST4.74 1089344 1092694 + STM1048 4 3 1.23 ST4.74 1089344 1092694 + STM1049 3 2 1.25 ST4.74 1093029 1095236 + STM1050 4 5 0.93 ST4.74 1095236 1095817 + SL1344_0990 8 6 1.42 ST4.74 1095236 1097261 + STM1052	STM1040	3	2	1.12	ST4-74	1082233	1082496	+
STM1042 5 5 1.05 ST4-74 1085560 1085892 + STM1043 23 19 1.23 ST4-74 1085560 1085892 + sodCa 222 183 1.22 ST4-74 1086605 1087138 - STM1045 8 9 0.81 ST4-74 1087933 1086605 1087138 - STM1046 2 3 0.93 ST4-74 1087933 1088670 + STM1047 3 2 1.10 ST4-74 1087933 1088670 + STM1047 3 2 1.10 ST4-74 1087933 1088670 + STM1048 4 3 1.23 ST4-74 1087933 1088670 + STM1049 3 2 1.25 ST4-74 1089344 1092694 + STM1050 4 5 0.93 ST4-74 1095236 1095817 + SL1344_0990 8 6 1.42 ST4-74 1095821 1096036 -	STM1041	4	4	1.04	ST4-74	1082510	1085563	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1042	5	5	1.05	ST4-74	1085560	1085892	+
sodCa2221831.22ST4-7410866051087138-STM1045890.81ST4-7410872281087923+STM1046230.93ST4-7410879331088670+STM1047321.10ST4-7410885681089272+STM1048431.23ST4-7410893441092694+STM1049321.25ST4-7410930291095236+STM1050450.93ST4-7410952361095817+SL1344_0990861.42ST4-7410958211096036-ssel1481.83ST4-7410962931097261+STM1051421.76ST4-7410973591097777+STM1053421.76ST4-7410970991098535-STM10543463760.92ST4-7410986041098903-	STM1043	23	19	1.23	ST4-74	1085991	1086488	+
STM1045 8 9 0.81 ST4-74 1087228 1087923 + STM1046 2 3 0.93 ST4-74 1087933 1088670 + STM1047 3 2 1.10 ST4-74 1087933 1088670 + STM1048 4 3 1.23 ST4-74 1089344 1092694 + STM1049 3 2 1.25 ST4-74 1089344 1092694 + STM1050 4 5 0.93 ST4-74 1093029 1095236 + STM1050 4 5 0.93 ST4-74 1095236 1095817 + SL1344_0990 8 6 1.42 ST4-74 1095821 1096036 - sseI 14 8 1.83 ST4-74 1096293 1097261 + STM1052 14 11 1.31 ST4-74 1097359 1097777 + STM1053 4 2 1.76 ST4-74 1097099 1098535 - STM1054 <	sodCa	222	183	1.22	ST4-74	1086605	1087138	-
STM1046 2 3 0.93 ST4-74 1087933 1088670 + STM1047 3 2 1.10 ST4-74 1087933 1088670 + STM1047 3 2 1.10 ST4-74 1088568 1089272 + STM1048 4 3 1.23 ST4-74 1089344 1092694 + STM1049 3 2 1.25 ST4-74 1093029 1095236 + STM1050 4 5 0.93 ST4-74 1095236 1095817 + SL1344_0990 8 6 1.42 ST4-74 1095236 1095817 + SL1344_0990 8 6 1.42 ST4-74 1095236 1096036 - sseI 14 8 1.83 ST4-74 1096293 1097261 + STM1052 14 11 1.31 ST4-74 1097359 1097777 + STM1053 4 2 1.76 ST4-74 1097909 1098535 - STM1054	STM1045	8	9	0.81	ST4-74	1087228	1087923	+
STM1047 3 2 1.10 ST4-74 1088568 1089272 + STM1047 3 2 1.10 ST4-74 1088568 1089272 + STM1048 4 3 1.23 ST4-74 1089344 1092694 + STM1049 3 2 1.25 ST4-74 1093029 1095236 + STM1050 4 5 0.93 ST4-74 1095236 1095817 + SL1344_0990 8 6 1.42 ST4-74 1095231 1096036 - ssel 14 8 1.83 ST4-74 1096293 1097261 + STM1052 14 11 1.31 ST4-74 1097359 1097777 + STM1053 4 2 1.76 ST4-74 1097909 1098535 - STM1054 346 376 0.92 ST4-74 1098604 1098903 -	STM1046	2	3	0.93	ST4-74	1087933	1088670	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1047	3	2	1.10	ST4-74	1088568	1089272	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STM1048	4	- 3	1 23	ST4-74	1089344	1092694	+
STM1019 S Z M25 STM174 1095029 1095250 4 STM1050 4 5 0.93 ST4-74 1095236 1095817 + SL1344_0990 8 6 1.42 ST4-74 1095231 1096036 - ssel 14 8 1.83 ST4-74 1096293 1097261 + STM1052 14 11 1.31 ST4-74 1097359 1097777 + STM1053 4 2 1.76 ST4-74 1097909 1098535 - STM1054 346 376 0.92 ST4-74 1098604 1098903 -	STM1049	3	2	1.25	ST4-74	1093029	1095236	+
SL1344_0990 8 6 1.42 ST4-74 1095256 1096036 - ssel 14 8 1.83 ST4-74 1096293 1097261 + STM1052 14 11 1.31 ST4-74 1097359 1097777 + STM1053 4 2 1.76 ST4-74 1097909 1098535 - STM1054 346 376 0.92 ST4-74 1098604 1098903 -	STM1050	4	5	0.93	ST4-74	1095236	1095817	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SL1344_0990	8	6	1 42	ST4-74	1095821	1096036	_
STM1052 14 11 1.31 ST4-74 1097359 1097777 + STM1053 4 2 1.76 ST4-74 1097909 1098535 - STM1054 346 376 0.92 ST4-74 1098604 1098903 -	ssel	14	8	1.42	ST4_74	1096293	1097261	+
STM1052 11 11 11.51 ST4 74 1097509 1097777 STM1053 4 2 1.76 ST4-74 1097909 1098535 - STM1054 346 376 0.92 ST4-74 1098604 1098903 - staff 109 148 ST4-74 1098888 1090574	STM1052	14	11	1 31	ST4-74	1097359	1097777	+
STM1055 1 2 1.76 ST4-74 1097909 1098535 - STM1054 346 376 0.92 ST4-74 1098604 1098903 - staF 160 108 1.48 ST4.74 1098888 1090574	STM1052	4	2	1.51	ST4_74	1097909	1098535	-
T_{111051} T_{10}	STM1055	т 346	376	0.92	ST4_74	1098604	1098903	_
9/9/2 IDU IUA 148 ST4-74 IU988888 IU99574 -	otoE	160	108	1 48	ST4-74	1098888	1099574	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
gtgF	10	7	1.35	ST4-74	1099845	1100036	-
pepN	23	20	1.13	ST4-74	1100463	1103075	+
pyrD	15	20	0.71	ST4-74	1103256	1104293	+
ycbW	93	92	1.01	ST4-74	1104459	1105001	+
STM1060	15	16	0.94	ST4-74	1104998	1106107	-
rlmL	18	18	1.02	ST4-74	1106206	1108314	+
иир	16	17	0.98	ST4-74	1108327	1110234	+
pqiA	23	22	1.04	ST4-74	1110249	1111502	+
pqiB	21	21	0.99	ST4-74	1111507	1113147	+
ymbA	39	29	1.36	ST4-74	1113144	1113707	+
STnc3390	15	18	0.84	ST4-74	1113731	1113815	-
rmf	4912	6233	0.79	ST4-74	1113963	1114130	+
fabA	149	155	0.96	ST4-74	1114230	1114748	-
lonH	18	18	1.03	ST4-74	1114817	1116403	-
<i>ycbG</i>	78	89	0.88	ST4-74	1116763	1117215	+
ompA	523	496	1.05	ST4-74	1117287	1118339	-
sulA	25	24	1.02	ST4-74	1118696	1119205	-
sxy	11	13	0.81	ST4-74	1119422	1120027	+
vccS	17	19	0.89	ST4-74	1120014	1122167	-
vccF	19	18	1.06	ST4-74	1122186	1122632	-
helD	25	24	1.02	ST4-74	1122756	1124810	+
mgsA	51	87	0.59	ST4-74	1124846	1125304	-
vccT	20	11	1.81	ST4-74	1125399	1126061	-
STM1078	47	43	1.09	ST4-74	1126232	1126648	+
vccV	81	83	0.98	ST4-74	1126693	1127010	-
vccW	15	12	1.21	ST4-74	1127068	1128279	-
STM1081	9	10	0.83	ST4-74	1128494	1129042	+
STM1082	17	16	1.06	ST4-74	1129068	1129847	+
vccX	9	10	0.96	ST4-74	1129896	1130177	+
yccK	63	61	1.04	ST4-74	1130174	1130503	-
yccA	260	288	0.90	ST4-74	1130590	1131168	-
, pipA	46	33	1.39	ST4-74	1131870	1132550	-
pipB	89	10	8.47	ST4-74	1132772	1133647	-
STM1089	1	0	3.21	ST4-74	1133859	1134185	+
pipC	56	75	0.75	ST4-74	1134195	1134536	-
sopB	14	18	0.77	ST4-74	1134553	1136238	-
orfX	18	1109	0.02	ST4-74	1136570	1136740	+
STM1093	40	31	1.29	ST4-74	1136741	1136851	-
pipD	66	52	1.27	ST4-74	1136960	1138429	-
copS	6	7	0.93	ST4-74	1138602	1139966	-
copR	28	21	1.33	ST4-74	1139959	1140705	-
STM1097	76	79	0.96	ST4-74	1140775	1141185	+
hpaC	5	4	1.11	ST4-74	1141518	1142030	-
hpaB	4	3	1.05	ST4-74	1142048	1143610	-
hpaR	6	6	1.09	ST4-74	1143828	1144268	-
hpaG	2	2	0.92	ST4-74	1144543	1145832	+
hpaE	2	2	1.14	ST4-74	1145829	1147295	+
hpaD	1	2	0.49	ST4-74	1147297	1148148	+
hpaF	1	3	0.29	ST4-74	1148158	1148538	+
hpaH	1	2	0.77	ST4-74	1148681	1149484	+
hpaI	2	2	0.92	ST4-74	1149495	1150286	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
hpaX	4	4	1.08	ST4-74	1150358	1151734	+
hpaA	2	2	0.98	ST4-74	1151744	1152640	+
STM1109	9	8	1.16	ST4-74	1152675	1153592	+
STnc1880	169	115	1.46	ST4-74	1153745	1153841	+
STM1110	20	7	3.04	ST4-74	1154000	1154362	-
STnc3400	40	31	1.29	ST4-74	1154915	1154976	+
yccD	58	50	1.15	ST4-74	1155016	1155321	-
cbpA	32	36	0.90	ST4-74	1155321	1156241	-
scsA	232	189	1.22	ST4-74	1156476	1156838	+
scsB	3	3	0.92	ST4-74	1156887	1158773	+
scsC	3	3	1.23	ST4-74	1158770	1159393	+
scsD	3	3	1.12	ST4-74	1159383	1159889	+
agp	24	27	0.89	ST4-74	1160022	1161263	+
<i>yccJ</i>	218	229	0.95	ST4-74	1161297	1161524	-
wrbA	128	133	0.96	ST4-74	1161545	1162141	-
ymdF	1005	953	1.05	ST4-74	1162526	1162693	+
vcdC	19	20	0.92	ST4-74	1162830	1163468	+
STM1123	70	63	1.11	ST4-74	1163465	1163860	-
putA	6	12	0.49	ST4-74	1163919	1167881	-
putP	15	23	0.65	ST4-74	1168303	1169811	+
phoH	23	18	1.32	ST4-74	1170638	1171492	+
STM1127	33	31	1.07	ST4-74	1171598	1172479	-
STnc500	724	611	1.19	ST4-74	1172561	1172641	-
STM1128	6	7	0.84	ST4-74	1172764	1174260	-
STM1129	4	6	0.66	ST4-74	1174597	1175277	-
STM1130	6	8	0.75	ST4-74	1175783	1176943	+
STM1131	9	11	0.77	ST4-74	1176989	1177681	+
STM1132	11	10	1.05	ST4-74	1177964	1179244	+
STM1133	22	22	1.00	ST4-74	1179255	1180361	+
vcdW	19	21	0.89	ST4-74	1181205	1182143	+
vcdX	77	71	1.10	ST4-74	1182228	1182965	+
vcdY	21	21	1.00	ST4-74	1182989	1183543	+
vcdZ	31	36	0.87	ST4-74	1183653	1184126	+
csgG	12	8	1.46	ST4-74	1184165	1184911	-
csgF	2	2	1.22	ST4-74	1185025	1185441	-
csgE	5	5	1.06	ST4-74	1185468	1185863	-
csgD	9	8	1.05	ST4-74	1185868	1186518	-
csgB	2	8	0.29	ST4-74	1187273	1187728	+
csgA	3	5	0.50	ST4-74	1187770	1188225	+
csgC	33	57	0.57	ST4-74	1188287	1188613	+
vmdA	10	27	0.37	ST4-74	1188744	1189064	+
STM1147	34	30	1.12	ST4-74	1189154	1189693	+
vmdC	27	22	1.23	ST4-74	1189629	1191116	+
, mdoC	16	13	1.24	ST4-74	1191133	1192287	-
mdoG	52	48	1.07	ST4-74	1192559	1194094	+
mdoH	42	45	0.93	ST4-74	1194087	1196630	+
vceK	12	10	1.20	ST4-74	1196704	1196931	+
msvB	180	112	1.61	ST4-74	1196932	1197306	-
vceE	7	6	1.16	ST4-74	1197388	1198602	-
STnc3040	12	13	0.95	ST4-74	1198646	1198752	+
htrB	39	36	1.11	ST4-74	1198757	1199677	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yceA	21	15	1.41	ST4-74	1199897	1200949	+
yceI	19	10	1.84	ST4-74	1201001	1201576	-
yceJ	24	14	1.76	ST4-74	1201573	1202145	-
yceO	24	18	1.34	ST4-74	1202408	1202521	-
solA	17	21	0.85	ST4-74	1202562	1203680	-
bssS	265	233	1.14	ST4-74	1203793	1204050	-
dinI	69	92	0.75	ST4-74	1204337	1204582	-
pyrC	34	44	0.78	ST4-74	1204656	1205702	-
усеВ	191	157	1.22	ST4-74	1205807	1206367	-
grxB	167	139	1.20	ST4-74	1206492	1207139	-
yceL	40	41	0.99	ST4-74	1207203	1208411	-
rimJ	72	87	0.83	ST4-74	1208648	1209232	+
усеН	33	46	0.70	ST4-74	1209268	1209915	+
<i>mviM</i>	17	23	0.72	ST4-74	1209917	1210840	+
mviN	17	18	0.95	ST4-74	1211105	1212679	+
flgN	53	236	0.22	ST4-74	1212761	1213183	-
flgM	162	713	0.23	ST4-74	1213188	1213481	-
flgA	21	84	0.24	ST4-74	1213573	1214232	-
flgB	59	251	0.23	ST4-74	1214389	1214805	+
flgC	14	75	0.18	ST4-74	1214809	1215213	+
flgD	15	83	0.18	ST4-74	1215225	1215923	+
flgE	13	71	0.18	ST4-74	1215950	1217161	+
flgF	12	72	0.16	ST4-74	1217182	1217937	+
flgG	12	64	0.19	ST4-74	1217951	1218733	+
flgH	12	57	0.22	ST4-74	1218788	1219486	+
flgI	9	42	0.22	ST4-74	1219498	1220595	+
flgJ	8	35	0.23	ST4-74	1220595	1221545	+
flgK	41	162	0.25	ST4-74	1221610	1223271	+
flgL	37	157	0.24	ST4-74	1223286	1224239	+
STnc840	145	661	0.22	ST4-74	1224244	1224316	+
rne	26	40	0.66	ST4-74	1224496	1227699	-
rluC	29	23	1.25	ST4-74	1228273	1229232	+
STM1188	24	23	1.03	ST4-74	1229388	1230131	+
SL1344 1125	21	25	0.84	ST4-74	1230337	1230561	+
maf-a	30	32	0.93	ST4-74	1230633	1231217	-
SraB	287	251	1.14	ST4-74	1231270	1231378	+
yceD	668	790	0.85	ST4-74	1231415	1231936	+
rpl32	581	802	0.72	ST4-74	1231988	1232161	+
plsX	67	87	0.77	ST4-74	1232295	1233374	+
fabH	35	39	0.89	ST4-74	1233454	1234407	+
fabD	75	71	1.06	ST4-74	1234423	1235352	+
fabG	206	223	0.92	ST4-74	1235365	1236099	+
acpP	5755	6292	0.91	ST4-74	1236255	1236491	+
fabF	54	77	0.71	ST4-74	1236577	1237818	+
pabC	21	20	1.05	ST4-74	1237942	1238751	+
yceG	27	26	1.05	ST4-74	1238820	1239776	+
tmk	18	19	0.98	ST4-74	1239766	1240407	+
holB	12	14	0.85	ST4-74	1240404	1241408	+
<i>ycfH</i>	70	38	1.82	ST4-74	1241419	1242216	+
ptsG	53	61	0.86	ST4-74	1242511	1243944	+
fhuE	4	3	1.59	ST4-74	1244029	1246203	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ycfF	152	132	1.15	ST4-74	1246545	1246904	+
ycfL	46	52	0.90	ST4-74	1246907	1247281	+
<i>ycfM</i>	39	39	1.01	ST4-74	1247295	1247933	+
thiK	26	22	1.17	ST4-74	1247914	1248738	+
nagZ	30	48	0.63	ST4-74	1248749	1249774	+
ycfP	56	78	0.72	ST4-74	1249799	1250341	+
ndh	49	27	1.77	ST4-74	1250596	1251900	+
ycfJ	35	18	1.92	ST4-74	1252079	1252618	+
STnc1090	141	103	1.38	ST4-74	1252560	1252626	-
STnc850	123	78	1.58	ST4-74	1252598	1252673	+
<i>ycfQ</i>	83	63	1.33	ST4-74	1252693	1253328	-
ycfR	27	25	1.09	ST4-74	1253570	1253827	+
ycfS	29	35	0.83	ST4-74	1253924	1254889	-
STnc3410	92	115	0.80	ST4-74	1254996	1255077	-
mfd	16	15	1.10	ST4-74	1255037	1258483	-
<i>vcfU</i>	56	55	1.00	ST4-74	1258821	1260020	+
lolD	18	20	0.90	ST4-74	1260013	1260714	+
<i>vcfW</i>	23	28	0.83	ST4-74	1260714	1261958	+
<i>vcfX</i>	35	38	0.92	ST4-74	1261987	1262898	+
cobB	44	49	0.90	ST4-74	1262917	1263738	+
potD	37	42	0.89	ST4-74	1263820	1264866	-
potC	35	35	1.00	ST4-74	1264891	1265670	-
sifA	36	15	2.42	ST4-74	1265986	1266996	-
potB	19	15	1.25	ST4-74	1267325	1268188	-
potA	33	31	1.05	ST4-74	1268172	1269308	-
pepT	18	72	0.25	ST4-74	1269559	1270788	+
STM1228	21	32	0.65	ST4-74	1270792	1272837	+
STM3032	217	230	0.94	ST4-74	1270948	1271457	+
vcfD	39	37	1.05	ST4-74	1272877	1273998	-
phoQ	151	143	1.06	ST4-74	1274079	1275542	-
phoP	618	491	1.26	ST4-74	1275542	1276216	-
purB	22	27	0.81	ST4-74	1276340	1277710	-
vcfC	33	39	0.84	ST4-74	1277714	1278361	-
mnmA	71	66	1.07	ST4-74	1278442	1279548	-
ymfB	8	10	0.81	ST4-74	1279602	1280063	-
STM1236	9	10	0.98	ST4-74	1280075	1280404	-
rluB	53	34	1.55	ST4-74	1280401	1281066	-
icdA	176	194	0.91	ST4-74	1281238	1282488	+
STnc150	235	106	2.21	ST4-74	1282521	1282677	-
STM1239	37	21	1.77	ST4-74	1282936	1284060	+
envF	7	4	1.74	ST4-74	1285042	1285830	-
IsrC	11	12	0.94	ST4-74	1285998	1286285	+
msgA	152	142	1.07	ST4-74	1286319	1286558	-
envE	78	51	1.55	ST4-74	1286749	1287270	-
cspH	102	50	2.05	ST4-74	1287685	1287897	-
pagD	180	42	4.26	ST4-74	1288029	1288292	-
pagC	2814	701	4.02	ST4-74	1289191	1289661	+
STnc3420	37	25	1.49	ST4-74	1289667	1289799	-
STnc520	320	368	0.87	ST4-74	1290590	1290674	-
pliC	945	489	1.93	ST4-74	1290898	1291242	-
STM1250	40	29	1.41	ST4-74	1291945	1292217	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM1251	334	215	1.55	ST4-74	1292369	1292836	+
STnc1760	76	52	1.48	ST4-74	1292835	1292935	-
STnc1210	296	516	0.57	ST4-74	1292956	1293014	+
STM1252	24	16	1.47	ST4-74	1293175	1294218	+
STM1253	60	68	0.88	ST4-74	1294301	1294831	-
STnc1990	228	156	1.46	ST4-74	1294841	1294974	+
STnc3430	38	37	1.03	ST4-74	1294946	1295057	-
STM1254	102	103	0.99	ST4-74	1294980	1295294	-
STM1255	10	115	0.08	ST4-74	1295976	1297610	+
STM1256	6	48	0.12	ST4-74	1297610	1298584	+
STM1257	5	34	0.16	ST4-74	1298574	1299386	+
STM1258	3	21	0.15	ST4-74	1299380	1300177	+
STM1259	3	28	0.09	ST4-74	1300171	1300761	+
STM1260	32	18	1.76	ST4-74	1300843	1301976	-
STM1261	53	33	1.59	ST4-74	1302170	1302496	+
IsrD	2	2	1.08	ST4-74	1302591	1302641	-
STM1263	58	29	2.01	ST4-74	1302693	1303340	+
STnc3440	22	10	2.11	ST4-74	1303294	1303380	+
aadA	20	21	0.99	ST4-74	1303449	1304237	+
STM1265	25	11	2.27	ST4-74	1304382	1304975	+
STM1266	41	36	1.17	ST4-74	1305044	1305892	+
STM1267	956	311	3.07	ST4-74	1306147	1306395	-
STM1268	80	84	0.96	ST4-74	1306474	1306623	-
aroQ	305	225	1.35	ST4-74	1306706	1307251	+
yeaS	153	130	1.18	ST4-74	1307448	1308086	+
yeaR	29	22	1.30	ST4-74	1308259	1308620	+
yoaG	64	37	1.73	ST4-74	1308623	1308805	+
STM1273	12	9	1.41	ST4-74	1309035	1309676	+
RyhB-2	118	51	2.31	ST4-74	1309727	1309937	-
SL1344 1209	358	219	1.64	ST4-74	1309798	1309983	+
yeaQ	421	268	1.57	ST4-74	1309991	1310239	+
yaoF	135	82	1.65	ST4-74	1310672	1310923	+
STM1276	130	113	1.15	ST4-74	1310992	1311303	+
yeaO	40	38	1.05	ST4-74	1311289	1311636	-
yeaN	5	4	1.15	ST4-74	1311755	1312939	-
yeaM	18	15	1.14	ST4-74	1313040	1313834	+
yeaL	11	12	0.90	ST4-74	1313814	1314260	-
yeaK	14	13	1.05	ST4-74	1314570	1315088	-
yeaJ	28	23	1.25	ST4-74	1315138	1316631	-
STnc1480	833	328	2.54	ST4-74	1316874	1317268	+
yeaH	60	41	1.44	ST4-74	1317272	1318558	-
yeaG	61	33	1.85	ST4-74	1318681	1320465	-
mipA	179	174	1.03	ST4-74	1321042	1321788	+
STM1287	5	4	1.12	ST4-74	1322078	1323274	+
STM1288	16	16	0.99	ST4-74	1323371	1324228	+
yeaD	10	13	0.73	ST4-74	1324327	1325211	-
SL1344 1224A	10	18	0.54	ST4-74	1325211	1325465	-
gapA –	223	404	0.55	ST4-74	1325546	1326541	-
yeaA	142	145	0.98	ST4-74	1326853	1327296	+
veaC	133	153	0.87	ST4-74	1327338	1327616	+
nam	11	11	1.05	ST4-74	1327968	1328624	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ansA	14	33	0.43	ST4-74	1328651	1329667	-
sppA	22	21	1.02	ST4-74	1329763	1331619	-
ydjA	31	36	0.87	ST4-74	1331793	1332344	+
selD	14	16	0.91	ST4-74	1332462	1333505	+
topB	9	12	0.81	ST4-74	1333510	1335459	+
gdhA	26	62	0.41	ST4-74	1335489	1336832	-
STM1300	122	370	0.33	ST4-74	1337071	1337346	+
STM1301	4	3	1.40	ST4-74	1337306	1337722	-
xthA	20	24	0.84	ST4-74	1337795	1338601	-
argDa	2	2	0.94	ST4-74	1339047	1340273	+
astA	2	2	0.95	ST4-74	1340264	1341298	+
astD	3	2	1.54	ST4-74	1341295	1342773	+
astB	5	3	1.37	ST4-74	1342770	1344113	+
astE	4	3	1.25	ST4-74	1344106	1345074	+
STM1308	42	47	0.89	ST4-74	1345410	1345895	+
STnc1640	358	527	0.68	ST4-74	1345883	1345970	+
STM1309	22	18	1.22	ST4-74	1345970	1346851	-
nadE	43	38	1.12	ST4-74	1346972	1347799	-
osmE	1377	979	1.41	ST4-74	1348018	1348359	+
celA	31	32	0.99	ST4-74	1348660	1348980	+
celB	17	14	1.29	ST4-74	1349063	1350421	+
celC	19	21	0.92	ST4-74	1350472	1350819	+
celD	10	10	0.97	ST4-74	1350908	1351672	+
celF	8	9	0.94	ST4-74	1351797	1353152	+
celG	17	17	1.03	ST4-74	1353165	1353923	+
STnc2010	62	45	1.40	ST4-74	1353832	1353959	+
katE	22	18	1.23	ST4-74	1353967	1356219	-
cedA	56	47	1.20	ST4-74	1356584	1356826	+
vdiN	170	170	1.00	ST4-74	1356928	1358319	-
<i>vdjM</i>	3	2	1.13	ST4-74	1358456	1359055	-
STnc3570	158	130	1.21	ST4-74	1359017	1359183	-
vniC	35	30	1.17	ST4-74	1359193	1359861	-
yniB	77	57	1.34	ST4-74	1360010	1360546	+
STM1324	39	35	1.12	ST4-74	1360589	1361449	-
vdiZ	28	24	1.18	ST4-74	1361556	1361846	-
pfkB	16	20	0.84	ST4-74	1361943	1362875	-
<i>vdiY</i>	37	24	1.54	ST4-74	1363164	1363922	+
STnc3460	236	158	1.50	ST4-74	1363846	1363967	+
STnc4210	175	106	1.65	ST4-74	1363925	1363997	-
STM1328	26	22	1.19	ST4-74	1363971	1364930	-
STM1329	120	58	2.09	ST4-74	1365073	1365387	+
STM1330	80	48	1.67	ST4-74	1365483	1366238	+
STM1331	57	50	1.14	ST4-74	1366411	1366617	+
rfc	41	41	1.00	ST4-74	1366940	1368163	-
thrS	163	176	0.92	ST4-74	1369055	1370983	+
infC	2776	3225	0.86	ST4-74	1370987	1371529	+
rpl35	2531	3010	0.84	ST4-74	1371625	1371822	+
rpl20	1423	1708	0.83	ST4-74	1371873	1372229	+
pheS	26	33	0.81	ST4-74	1372531	1373514	+
pheT	158	131	1.20	ST4-74	1373530	1375917	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
himA	716	577	1.24	ST4-74	1375910	1376221	+
STnc540	178	180	0.99	ST4-74	1376271	1376364	+
btuC	15	15	1.02	ST4-74	1376424	1377404	+
btuE	35	26	1.35	ST4-74	1377496	1378047	+
btuD	10	9	1.00	ST4-74	1378047	1378796	+
nlpC	102	64	1.58	ST4-74	1378873	1379337	+
ydiV	40	21	1.89	ST4-74	1379651	1380364	+
y di U	22	16	1.35	ST4-74	1380426	1381868	+
ydiE	98	46	2.16	ST4-74	1381903	1382094	-
aroH	25	25	1.00	ST4-74	1382251	1383297	-
ydiA	20	16	1.26	ST4-74	1383453	1384286	-
pps	84	85	1.00	ST4-74	1384581	1387001	+
ydiD	7	7	1.05	ST4-74	1387043	1388683	-
ydiT	2	2	0.87	ST4-74	1388773	1389066	-
ydiS	3	3	0.96	ST4-74	1389063	1390349	-
ydiR	47	31	1.51	ST4-74	1390406	1391341	-
<i>vdiQ</i>	1	1	0.95	ST4-74	1391363	1392127	-
ydiP	2	2	1.26	ST4-74	1392590	1393480	+
ydiO	22	21	1.02	ST4-74	1393556	1394707	-
, vdiF	2	2	1.18	ST4-74	1394721	1396316	-
, aroD	11	14	0.81	ST4-74	1396470	1397228	-
aroE	10	8	1.22	ST4-74	1397273	1398139	-
vdiN	1	2	0.79	ST4-74	1398221	1399440	-
, vdiM	5	3	1.71	ST4-74	1399804	1401015	-
y vdiL	8	10	0.80	ST4-74	1401156	1401515	-
, RprA	2345	909	2.58	ST4-74	1401682	1401790	-
vdiK	27	23	1.14	ST4-74	1401973	1403091	-
ydiJ	15	20	0.77	ST4-74	1403356	1406412	+
STM1366	18	26	0.68	ST4-74	1406409	1406819	+
ydiH	351	1003	0.35	ST4-74	1406918	1407106	+
RydB	490	769	0.64	ST4-74	1407278	1407371	+
STM1368	14	17	0.82	ST4-74	1407394	1408740	-
sufA	20	10	1.96	ST4-74	1409167	1409535	+
sufB	11	5	2.12	ST4-74	1409544	1411031	+
sufC	11	7	1.57	ST4-74	1411048	1411794	+
sufD	12	7	1.61	ST4-74	1411769	1413040	+
sufS	10	7	1.42	ST4-74	1413037	1414257	+
ynhA	13	9	1.43	ST4-74	1414270	1414686	+
ynhG	35	26	1.37	ST4-74	1414841	1415842	+
lppB	64	51	1.26	ST4-74	1415909	1416148	-
lpp	27604	27516	1.00	ST4-74	1416231	1416467	-
pykF	39	41	0.96	ST4-74	1416778	1418136	-
orf48	5	7	0.81	ST4-74	1418592	1419935	-
orf32	3	4	0.76	ST4-74	1419957	1420850	-
orf245	10	12	0.84	ST4-74	1420909	1421646	-
orf408	10	10	1.05	ST4-74	1421658	1422884	-
ttrA	2	2	1.11	ST4-74	1423207	1426269	-
ttrC	2	2	0.99	ST4-74	1426262	1427284	-
ttrB	1	2	0.69	ST4-74	1427285	1428037	-
ttrS	20	25	0.79	ST4-74	1428201	1429979	+
ttrR	13	15	0.88	ST4-74	1429936	1430574	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
orf70	133	116	1.15	ST4-74	1430672	1430884	+
orf319	57	45	1.26	ST4-74	1430980	1431939	-
orf242	23	22	1.05	ST4-74	1432112	1432840	-
ssrB	86	44	1.94	ST4-74	1433019	1433657	-
spiR	52	23	2.22	ST4-74	1433688	1436450	-
ssaB	99	11	8.79	ST4-74	1436851	1437252	+
ssaC	37	7	5.61	ST4-74	1437254	1438747	+
ssaD	34	9	3.75	ST4-74	1438728	1439939	+
ssaE	867	84	10.32	ST4-74	1439947	1440189	+
sseA	405	43	9.40	ST4-74	1440510	1440779	+
sseBa	348	50	7.00	ST4-74	1440786	1441376	+
sscA	129	21	6.15	ST4-74	1441373	1441846	+
sseC	211	34	6.13	ST4-74	1441849	1443303	+
sseD	74	14	5.23	ST4-74	1443319	1443906	+
sseE	50	11	4.39	ST4-74	1443909	1444325	+
sscB	75	18	4.20	ST4-74	1444377	1444811	+
sseF	20	7	2.95	ST4-74	1444827	1445609	+
sseG	20	12	1.74	ST4-74	1445606	1446295	+
ssaG	816	93	8.78	ST4-74	1446389	1446604	+
ssaH	500	52	9.57	ST4-74	1446645	1446872	+
ssaI	487	50	9.84	ST4-74	1446884	1447132	+
ssaJ	377	44	8.55	ST4-74	1447129	1447878	+
STM1410	156	29	5.41	ST4-74	1447896	1448444	+
ssaK	112	17	6.61	ST4-74	1448441	1449115	+
STnc1220	50	18	2.75	ST4-74	1448718	1448790	-
ssaL	93	22	4.20	ST4-74	1449081	1450097	+
ssaM	192	26	7.24	ST4-74	1450155	1450523	+
ssaV	54	12	4.33	ST4-74	1450508	1452553	+
ssaN	45	11	4.09	ST4-74	1452543	1453844	+
ssaO	35	12	3.01	ST4-74	1453847	1454224	+
ssaP	46	17	2.69	ST4-74	1454205	1454579	+
ssaQ	36	17	2.09	ST4-74	1454560	1455528	+
ssaR	224	33	6.83	ST4-74	1455596	1456243	+
ssaS	58	10	5.96	ST4-74	1456240	1456506	+
ssaT	67	11	5.84	ST4-74	1456507	1457286	+
ssaU	32	11	2.97	ST4-74	1457283	1458341	+
norM	28	22	1.24	ST4-74	1458814	1460187	-
ribE	64	59	1.09	ST4-74	1460404	1461045	+
cfa	79	60	1.31	ST4-74	1461087	1462235	-
ydhC	6	5	1.15	ST4-74	1462525	1463730	-
ydhB	9	9	1.12	ST4-74	1463843	1464775	+
purR	28	37	0.78	ST4-74	1464772	1465797	-
STnc4220	279	315	0.89	ST4-74	1464776	1464870	-
ynhF	6877	5047	1.36	ST4-74	1466093	1466182	+
sodB	384	547	0.70	ST4-74	1466265	1466846	-
ydhO	51	39	1.31	ST4-74	1466973	1467827	-
ydhD	479	462	1.04	ST4-74	1468129	1468476	+
rnt	51	48	1.06	ST4-74	1468554	1469201	-
gloA	107	118	0.91	ST4-74	1469302	1469709	-
nemA	5	18	0.26	ST4-74	1469778	1470875	-
ydhM	15	36	0.41	ST4-74	1470934	1471533	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ydhL	94	49	1.92	ST4-74	1471636	1471875	+
ydhF	22	24	0.91	ST4-74	1471926	1472822	+
sodCb	68	58	1.18	ST4-74	1472902	1473423	+
STM1441	23	25	0.89	ST4-74	1473399	1475438	-
ydhJ	9	10	0.89	ST4-74	1475438	1476334	-
ydhI	40	33	1.21	ST4-74	1476301	1476537	-
slyA	304	249	1.22	ST4-74	1476732	1477172	+
slyB	646	611	1.06	ST4-74	1477220	1477687	-
anmK	10	11	0.99	ST4-74	1477959	1479080	+
mliC	48	47	1.03	ST4-74	1479168	1479497	+
pdxH	33	40	0.82	ST4-74	1479556	1480212	+
tyrS	85	98	0.87	ST4-74	1480339	1481613	+
pdxY	9	15	0.64	ST4-74	1481673	1482533	+
gst	56	67	0.84	ST4-74	1482592	1483197	-
tppB	38	20	1.93	ST4-74	1483302	1484807	-
nth	21	18	1.15	ST4-74	1485409	1486044	-
rnfE	17	23	0.73	ST4-74	1486044	1486736	-
rnfG	17	16	1.09	ST4-74	1486739	1487359	-
rnfD	13	15	0.91	ST4-74	1487363	1488421	-
rnfC	12	15	0.80	ST4-74	1488422	1490629	-
rnfB	20	26	0.75	ST4-74	1490622	1491200	-
rnfA	50	47	1.08	ST4-74	1491200	1491781	-
vdgK	132	127	1.04	ST4-74	1491858	1492298	-
ydgT	185	148	1.25	ST4-74	1492387	1492617	-
blr	277	229	1.21	ST4-74	1492900	1493025	-
ydgJ	29	28	1.04	ST4-74	1493233	1494273	+
add	26	28	0.93	ST4-74	1494348	1495349	-
STnc3500	47	49	0.96	ST4-74	1495398	1495512	+
ydgA	41	37	1.13	ST4-74	1496053	1497561	-
manA	21	23	0.90	ST4-74	1497664	1498839	-
fumA	25	31	0.81	ST4-74	1499039	1500685	+
fumC	26	28	0.92	ST4-74	1500853	1502256	+
tus	8	8	1.07	ST4-74	1502253	1503182	-
rstB	17	15	1.11	ST4-74	1503258	1504559	-
STM1472	3	2	1.10	ST4-74	1504670	1506376	-
STnc3510	31	20	1.50	ST4-74	1506482	1506596	-
ompN	6	4	1.32	ST4-74	1506529	1507662	-
rstA	355	292	1.22	ST4-74	1508142	1508873	-
ydgC	17	18	0.95	ST4-74	1509000	1509335	+
ydgI	16	10	1.55	ST4-74	1509397	1510779	-
ydgH	53	62	0.85	ST4-74	1511078	1512022	-
pntA	31	57	0.55	ST4-74	1512549	1514078	+
pntB	42	77	0.54	ST4-74	1514089	1515477	+
tqsA	14	17	0.81	ST4-74	1515652	1516686	-
ydgF	19	15	1.28	ST4-74	1517104	1517466	+
ydgE	4	5	0.98	ST4-74	1517453	1517782	+
STM1484	15	12	1.29	ST4-74	1517822	1518643	-
ydgU	16	4	3.52	ST4-74	1518743	1518826	-
asr	119	41	2.87	ST4-74	1518912	1519196	-
STnc3480	18	21	0.86	ST4-74	1519287	1519547	+
ynfM	21	18	1.18	ST4-74	1519555	1520808	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ynfL	3	4	0.83	ST4-74	1520928	1521827	+
mlc	36	38	0.93	ST4-74	1521955	1523175	+
bioDb	29	199	0.14	ST4-74	1523301	1523996	+
clcB	13	10	1.26	ST4-74	1523952	1525241	-
STM1491	18	8	2.31	ST4-74	1525377	1526525	-
STM1492	17	11	1.52	ST4-74	1526525	1527172	-
STM1493	11	4	2.90	ST4-74	1527182	1528084	-
STM1494	21	7	2.81	ST4-74	1528113	1528823	-
ynfI	26	37	0.70	ST4-74	1529128	1529742	-
STM1496	16	24	0.66	ST4-74	1529785	1530642	-
STM1497	2	14	0.12	ST4-74	1530644	1531261	-
dmsA2	2	8	0.22	ST4-74	1531272	1533707	-
dmsA1	3	21	0.13	ST4-74	1533806	1536247	-
ynfD	67	65	1.03	ST4-74	1536401	1536709	-
ynfC	33	34	0.99	ST4-74	1536804	1537523	+
speG	46	57	0.81	ST4-74	1537564	1538124	-
ynfB	82	84	0.98	ST4-74	1538160	1538501	-
ynfA	16	14	1.11	ST4-74	1538654	1538980	+
rspA	2	3	0.87	ST4-74	1539102	1540316	+
rspB	2	3	0.87	ST4-74	1540327	1541346	+
vdfJ	5	5	0.84	ST4-74	1541400	1542779	+
vdfI	9	10	0.94	ST4-74	1542923	1544389	+
vdfZ	19	386	0.05	ST4-74	1544456	1544659	-
<i>vdfH</i>	37	33	1.11	ST4-74	1544840	1545526	-
vdfG	108	103	1.05	ST4-74	1545656	1546402	-
dcp	11	12	0.89	ST4-74	1546541	1548583	+
STM1513	818	279	2.93	ST4-74	1548928	1549110	+
vdeJ	15	9	1.78	ST4-74	1549230	1549757	-
vdeI	46	29	1.62	ST4-74	1550184	1550576	+
MgrR	10450	8584	1.22	ST4-74	1550746	1550844	+
ydeE	12	11	1.12	ST4-74	1551267	1552454	-
vdeD	15	14	1.08	ST4-74	1552682	1553584	+
STnc2170	24	16	1.48	ST4-74	1553669	1553737	-
marB	8	8	0.99	ST4-74	1553703	1553918	-
marA	6	6	0.93	ST4-74	1553947	1554336	-
marR	6	5	1.09	ST4-74	1554350	1554784	-
marC	78	49	1.60	ST4-74	1555043	1555708	+
sotB	20	16	1.24	ST4-74	1555755	1556945	-
yneJ	5	6	0.78	ST4-74	1557061	1557933	-
yneI	3	4	0.89	ST4-74	1558036	1559424	+
yneH	10	10	1.02	ST4-74	1559497	1560423	+
yneG	17	16	1.07	ST4-74	1560423	1560782	+
STM1527	29	19	1.53	ST4-74	1561039	1561953	+
STM1528	7	5	1.27	ST4-74	1562009	1562551	-
STM1530	14	10	1.48	ST4-74	1563370	1564386	+
STnc3530	132	80	1.64	ST4-74	1564332	1564503	+
hypA	4	4	0.81	ST4-74	1564527	1564868	-
STM1532	4	4	1.07	ST4-74	1564881	1565768	-
hyaF2	10	9	1.14	ST4-74	1565756	1566817	-
hyaE2	4	7	0.66	ST4-74	1566835	1567245	-
STM1535	6	5	1.25	ST4-74	1567242	1567541	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
hyaD2	11	12	0.97	ST4-74	1567541	1568149	-
hyaC2	14	13	1.11	ST4-74	1568155	1568898	-
hyaB2	8	9	0.98	ST4-74	1568849	1570651	-
hyaA2	14	13	1.05	ST4-74	1570654	1571757	-
STM1540	17	14	1.21	ST4-74	1572186	1573277	+
STM1541	60	62	0.98	ST4-74	1573443	1574114	+
STM1542	6	4	1.45	ST4-74	1574173	1575198	-
STM1543	8	7	1.21	ST4-74	1575173	1576459	-
pqaA	31	20	1.55	ST4-74	1576636	1578192	-
STM1545	8	6	1.46	ST4-74	1578262	1579503	-
STM1546	2	1	1.33	ST4-74	1579493	1581001	-
STM1547	25	24	1.01	ST4-74	1581046	1581534	+
STM1548	68	34	1.98	ST4-74	1581727	1582806	+
STM1549	18	23	0.77	ST4-74	1582858	1583247	-
STM1550	37	44	0.84	ST4-74	1583418	1583702	-
STM1551	167	142	1.18	ST4-74	1583692	1583940	-
SL1344 1481	11	11	1.03	ST4-74	1584297	1584629	+
STM1552	15	13	1.21	ST4-74	1584772	1585680	+
STM1553	2	2	1.12	ST4-74	1585908	1586495	-
IsrF	21	22	0.98	ST4-74	1586724	1587013	-
STM1554	23	27	0.86	ST4-74	1587258	1588724	-
STM1555	9	9	1.01	ST4-74	1588983	1589990	+
STM1556	7	5	1.21	ST4-74	1590134	1591585	+
STM1557	5	5	1.00	ST4-74	1591598	1592800	+
STM1558	24	15	1.57	ST4-74	1592913	1594988	-
STM1559	10	6	1.63	ST4-74	1595045	1597573	-
STM1560	11	6	1.70	ST4-74	1597570	1599354	-
STM1561	14	8	1.82	ST4-74	1599483	1600268	-
hdeB	33	26	1.27	ST4-74	1600411	1600740	-
osmC	184	117	1.57	ST4-74	1601090	1601521	-
yddX	153	65	2.36	ST4-74	1602034	1602249	+
rpsV	1662	1406	1.18	ST4-74	1602344	1602487	+
sfcA	24	25	0.97	ST4-74	1602664	1604361	+
adhP	26	13	2.07	ST4-74	1604728	1605657	+
STnc3540	161	142	1.14	ST4-74	1605727	1605912	-
fdnI	16	12	1.27	ST4-74	1605748	1606389	-
fdnH	4	7	0.56	ST4-74	1606397	1607281	-
fdnG	4	8	0.51	ST4-74	1607295	1610342	-
yddG	9	11	0.77	ST4-74	1610677	1611501	+
, ompD	825	1868	0.44	ST4-74	1611987	1613114	+
STM1573	15	22	0.69	ST4-74	1613198	1613638	+
smvA	8	8	0.92	ST4-74	1613663	1615150	-
STM1575	63	70	0.90	ST4-74	1615267	1615845	+
narU	8	4	1.90	ST4-74	1616060	1617448	+
narZ	4	3	1.24	ST4-74	1617540	1621280	+
narY	3	3	0.89	ST4-74	1621277	1622821	+
narW	4	4	1.08	ST4-74	1622821	1623516	+
narV	13	10	1.30	ST4-74	1623513	1624193	+
yddE	13	12	1.06	ST4-74	1624299	1625192	+
nhoA	12	10	1.17	ST4-74	1625228	1626073	-
steA	326	111	2.93	ST4-74	1626357	1626989	_

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ansP	13	14	0.96	ST4-74	1627502	1628995	+
STM1585	9	7	1.30	ST4-74	1629072	1629293	-
STM1586	25	16	1.50	ST4-74	1629438	1630499	-
yncD	7	6	1.27	ST4-74	1630763	1632883	+
yncC	12	5	2.53	ST4-74	1632950	1633615	-
yncB	78	47	1.67	ST4-74	1633949	1634986	-
yncA	20	28	0.71	ST4-74	1635198	1635713	+
ydcZ	27	35	0.78	ST4-74	1635713	1636162	+
ydcY	113	111	1.02	ST4-74	1636167	1636400	-
srfA	13	38	0.34	ST4-74	1636624	1637943	+
srfB	4	13	0.34	ST4-74	1637948	1640929	+
srfC	6	15	0.43	ST4-74	1640926	1643070	+
<i>ydcX</i>	38	36	1.07	ST4-74	1643115	1643378	-
STnc1110	744	648	1.15	ST4-74	1643465	1643658	+
<i>ydcW</i>	38	23	1.62	ST4-74	1643687	1645132	-
<i>ydcR</i>	29	20	1.46	ST4-74	1645247	1646671	-
pdgL	70	41	1.71	ST4-74	1646807	1647577	-
STM1600	486	115	4.23	ST4-74	1647836	1648066	-
ugtL	1149	231	4.97	ST4-74	1648099	1648497	-
sifB	268	36	7.54	ST4-74	1649034	1649984	+
vncJ	148	52	2.85	ST4-74	1650258	1650488	+
vdcP	16	14	1.10	ST4-74	1650489	1652453	-
vdcN	19	15	1.27	ST4-74	1652532	1653068	-
STM1606	11	13	0.81	ST4-74	1653159	1654337	+
STM1607	59	69	0.86	ST4-74	1654391	1655059	-
tehB	32	37	0.87	ST4-74	1655215	1655811	-
tehA	29	33	0.86	ST4-74	1655798	1656811	-
vdcK	14	11	1.31	ST4-74	1656918	1657898	+
rimL	17	16	1.04	ST4-74	1657895	1658434	-
STM1612	5	7	0.72	ST4-74	1658651	1659769	+
STM1613	2	5	0.34	ST4-74	1659766	1660047	+
STM1614	5	6	0.96	ST4-74	1660058	1661371	+
STM1615	2	2	0.99	ST4-74	1661385	1662191	+
RvjB	2386	3233	0.74	ST4-74	1662190	1662282	-
STM1616	7	9	0.74	ST4-74	1662323	1662760	+
STM1617	2	4	0.51	ST4-74	1662772	1663404	+
STM1618	9	8	1.13	ST4-74	1663420	1664211	+
aac	25	21	1.18	ST4-74	1664211	1664648	+
STM1620	4	3	1.13	ST4-74	1664695	1665897	-
STM1621	4	4	1.17	ST4-74	1665909	1666484	-
vdcG	15	15	1.03	ST4-74	1666680	1668335	-
STM1623	20	15	1.32	ST4-74	1668555	1670063	-
STM1624	42	27	1.57	ST4-74	1670112	1671455	-
<i>ydcI</i>	33	25	1.34	ST4-74	1671748	1672671	+
trg	14	84	0.17	ST4-74	1672732	1674357	-
adhC	17	22	0.76	ST4-74	1674526	1675644	-
STM1628	21	32	0.65	ST4-74	1675676	1675951	-
steB	45	24	1.92	ST4-74	1676474	1676875	+
STM1630	18	4	4.20	ST4-74	1677004	1677720	-
sseJ	83	8	10.48	ST4-74	1678146	1679372	+
STM1632	17	9	1.97	ST4-74	1679493	1679837	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM1633	88	34	2.57	ST4-74	1680744	1681505	+
STM1634	25	14	1.76	ST4-74	1681512	1682159	+
STM1635	7	3	2.15	ST4-74	1682184	1682915	+
STM1636	8	5	1.53	ST4-74	1682912	1683592	+
STM1637	30	19	1.59	ST4-74	1683729	1685279	+
STM1638	135	155	0.87	ST4-74	1685743	1686405	+
RydC	5516	4812	1.15	ST4-74	1686526	1686591	+
cybB	53	52	1.02	ST4-74	1686676	1687206	-
ydcF	12	16	0.76	ST4-74	1687323	1688123	-
hrpA	11	12	0.95	ST4-74	1688187	1692089	-
acpD	10	8	1.27	ST4-74	1692290	1692895	+
STM1643	43	32	1.34	ST4-74	1692892	1693341	-
ydbL	14	12	1.15	ST4-74	1693484	1693807	-
ynbE	19	17	1.14	ST4-74	1693815	1694006	-
ydbH	18	15	1.21	ST4-74	1694006	1696642	-
ldhA	38	31	1.24	ST4-74	1696882	1697871	+
hslJ	17	11	1.58	ST4-74	1697982	1698392	+
STM1649	104	114	0.91	ST4-74	1698436	1698591	-
STM1650	36	16	2.22	ST4-74	1698618	1698917	+
nifJ	10	7	1.44	ST4-74	1698978	1702502	+
MicC	119	111	1.07	ST4-74	1702531	1702639	-
ynaF	418	421	0.99	ST4-74	1702984	1703418	+
STM1653	238	183	1.30	ST4-74	1703468	1703806	-
SL1344 1584	43	35	1.23	ST4-74	1703907	1704110	+
ydaO _	20	17	1.14	ST4-74	1704162	1705097	+
dbpA	16	13	1.20	ST4-74	1705141	1706514	-
FnrS	130	4527	0.03	ST4-74	1706784	1706905	-
zntB	33	24	1.35	ST4-74	1707001	1707984	-
STM1657	17	44	0.39	ST4-74	1708130	1709284	-
ydaL	27	35	0.78	ST4-74	1709695	1710258	-
ogt	79	59	1.34	ST4-74	1710516	1711031	+
fnr	1	245	0.00	ST4-74	1711227	1711979	+
ydaA	80	173	0.46	ST4-74	1712130	1713077	+
ynaJ	382	356	1.07	ST4-74	1713132	1713386	-
ynaI	20	20	1.01	ST4-74	1713625	1714656	+
STM1664	20	21	0.94	ST4-74	1714742	1715344	-
STM1665	5	5	0.97	ST4-74	1715388	1716074	+
STM1667	3	2	1.16	ST4-74	1716546	1717103	-
STM1668	4	3	1.50	ST4-74	1717202	1718032	-
STM1669	2	2	1.13	ST4-74	1718053	1720035	-
STM1670	2	2	1.37	ST4-74	1720110	1720955	-
STM1671	4	3	1.48	ST4-74	1721249	1722107	+
STM1672	444	414	1.07	ST4-74	1722495	1723607	+
STM1673	17	17	1.03	ST4-74	1723821	1724075	-
STM1674	7	7	0.91	ST4-74	1724186	1724776	-
STM1675	8	10	0.85	ST4-74	1724854	1725567	+
STM1676	47	39	1.18	ST4-74	1725658	1726527	-
STM1677	9	8	1.05	ST4-74	1726801	1727706	-
STM1678	3	2	1.40	ST4-74	1727825	1728754	+
mppA	32	43	0.74	ST4-74	1728851	1730464	-
ycjI	16	19	0.83	ST4-74	1730654	1731382	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ycjG	29	21	1.40	ST4-74	1731357	1732322	-
tpx	198	212	0.93	ST4-74	1732438	1732944	+
tyrR	27	24	1.12	ST4-74	1733034	1734575	-
ycjF	11	12	0.90	ST4-74	1734723	1735784	-
усјХ	10	12	0.87	ST4-74	1735781	1737184	-
pspE	179	155	1.15	ST4-74	1737327	1737641	-
pspD	17	17	0.98	ST4-74	1737717	1737935	-
pspC	17	13	1.30	ST4-74	1737958	1738317	-
pspB	26	26	0.99	ST4-74	1738317	1738541	-
pspA	33	38	0.86	ST4-74	1738601	1739269	-
pspF	7	7	0.99	ST4-74	1739440	1740420	+
sapA	23	20	1.11	ST4-74	1740532	1742181	+
sapB	12	15	0.85	ST4-74	1742349	1743143	+
sapC	15	16	0.90	ST4-74	1743130	1744020	+
sapD	12	12	1.00	ST4-74	1744020	1745012	+
sapF	8	9	0.92	ST4-74	1745014	1745820	+
STM1697	48	28	1.70	ST4-74	1745836	1746543	-
steC	88	19	4.71	ST4-74	1747010	1748383	-
STM1698A	64	5	13.29	ST4-74	1748418	1748597	+
vcjE	59	31	1.89	ST4-74	1748572	1748871	+
fabI	146	142	1.03	ST4-74	1748989	1749777	+
vciW	50	49	1.00	ST4-74	1749977	1751110	+
rnb	44	42	1.05	ST4-74	1751199	1753133	+
vciR	13	12	1.10	ST4-74	1753395	1755377	+
SL1344 1635	83	90	0.93	ST4-74	1755466	1755678	+
vciT –	21	24	0.87	ST4-74	1755765	1756517	+
osmB	75	58	1.30	ST4-74	1756776	1756994	+
vciH	15	13	1.14	ST4-74	1757114	1757440	-
pvrF	21	19	1.11	ST4-74	1757440	1758177	-
vciM	57	52	1.10	ST4-74	1758368	1759483	-
vciS	179	141	1.27	ST4-74	1759544	1759852	-
pgpB	39	28	1.38	ST4-74	1760002	1760766	-
ribA	42	40	1.05	ST4-74	1760962	1761552	+
acnA	18	14	1.31	ST4-74	1761608	1764283	-
vmiA	730	768	0.95	ST4-74	1764839	1764967	-
cysB	36	38	0.94	ST4-74	1765260	1766234	-
topA	31	34	0.91	ST4-74	1766645	1769242	-
vciN	257	309	0.83	ST4-74	1769645	1769896	+
sohB	54	51	1.07	ST4-74	1769938	1770984	-
vciK	40	58	0.68	ST4-74	1771222	1771983	+
btuR	25	29	0.87	ST4-74	1771980	1772570	+
vciL	31	30	1.03	ST4-74	1772657	1773532	-
vciO	17	20	0.89	ST4-74	1773633	1774253	-
trpH	30	26	1.16	ST4-74	1774261	1775142	-
trpE	12	18	0.65	ST4-74	1775403	1776965	+
trpD	14	18	0.75	ST4-74	1776965	1778560	+
trpC	19	22	0.86	ST4-74	1778564	1779922	+
trpB	17	23	0.76	ST4-74	1779932	1781125	+
trpA	17	20	0.85	ST4-74	1781125	1781931	+
vciG	1187	274	4.34	ST4-74	1782411	1782593	+
yciF	73	21	3.53	ST4-74	1782683	1783186	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yciE	44	11	3.94	ST4-74	1783260	1783766	+
<i>katN</i>	37	16	2.37	ST4-74	1783786	1784664	+
STnc2030	47	5	8.65	ST4-74	1784673	1784725	+
ompW	28	612	0.05	ST4-74	1784746	1785384	-
STM1733	55	59	0.94	ST4-74	1785722	1786126	+
yciC	110	84	1.31	ST4-74	1786152	1786895	+
<i>ispZ</i>	67	62	1.08	ST4-74	1786952	1787491	+
yciA	59	51	1.17	ST4-74	1787652	1788053	+
tonB	32	19	1.69	ST4-74	1788113	1788841	-
yciI	115	160	0.72	ST4-74	1789065	1789361	+
STnc1270	568	481	1.18	ST4-74	1789368	1789691	-
cls	14	15	0.91	ST4-74	1789721	1791181	+
yciU	106	110	0.97	ST4-74	1791215	1791544	+
STM1741	18	15	1.17	ST4-74	1791592	1792374	-
oppF	32	42	0.75	ST4-74	1792476	1793480	-
oppD	13	20	0.63	ST4-74	1793477	1794484	-
oppC	17	25	0.68	ST4-74	1794496	1795404	-
oppB	15	26	0.57	ST4-74	1795419	1796339	-
oppA	50	70	0.72	ST4-74	1796461	1798092	-
STM1747	11	4	2.56	ST4-74	1798160	1798474	+
STnc3580	33	32	1.04	ST4-74	1798747	1798826	+
vchE	17	16	1.07	ST4-74	1798857	1799504	-
adh	65	74	0.88	ST4-74	1799981	1802659	+
tdk	50	51	0.96	ST4-74	1802856	1803473	-
hns	4183	4711	0.89	ST4-74	1804136	1804549	+
galU	71	57	1.26	ST4-74	1804681	1805589	-
hnr	34	28	1.21	ST4-74	1805792	1806805	-
vchK	60	48	1.23	ST4-74	1806896	1807801	-
ychJ	42	47	0.88	ST4-74	1807912	1808370	+
purU	36	38	0.94	ST4-74	1808421	1809263	+
STM1760	18	14	1.29	ST4-74	1810579	1812054	-
STnc3600	43	46	0.93	ST4-74	1812121	1812328	+
narI	7	7	1.09	ST4-74	1812350	1813027	-
narJ	1	3	0.41	ST4-74	1813027	1813737	-
narH	2	2	0.70	ST4-74	1813734	1815269	-
narG	2	2	0.64	ST4-74	1815266	1819009	-
STnc2040	2	3	0.65	ST4-74	1819352	1819414	-
narK	3	3	0.85	ST4-74	1819397	1820794	-
narX	13	11	1.10	ST4-74	1821135	1822931	+
narL	11	10	1.04	ST4-74	1822924	1823574	+
vchP	28	18	1.54	ST4-74	1823575	1824999	-
<i>vchN</i>	88	93	0.95	ST4-74	1825176	1825529	+
chaB	443	279	1.59	ST4-74	1825609	1825839	-
chaA	61	58	1.06	ST4-74	1826106	1827206	+
kdsA	33	48	0.69	ST4-74	1827260	1828114	-
<i>ychA</i>	27	33	0.82	ST4-74	1828152	1828961	-
sirC	38	38	1.00	ST4-74	1828965	1829354	-
hemK	12	12	0.97	ST4-74	1829351	1830184	-
prfA	16	18	0.93	ST4-74	1830184	1831266	-
hemA	52	55	0.95	ST4-74	1831307	1832563	-
hemM	17	18	0.96	ST4-74	1832877	1833500	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ipk	78	105	0.74	ST4-74	1833497	1834348	+
prs	67	95	0.70	ST4-74	1834614	1835561	+
ychM	6	8	0.76	ST4-74	1835710	1837371	+
ychH	245	166	1.48	ST4-74	1837416	1837694	-
pth	22	25	0.87	ST4-74	1837970	1838554	+
ychF	44	53	0.83	ST4-74	1838671	1839762	+
STM1785	18	20	0.90	ST4-74	1839921	1841186	-
hyaA	1	1	1.54	ST4-74	1841681	1842799	+
STM1787	2	2	1.14	ST4-74	1842796	1844589	+
hyaC	3	3	1.05	ST4-74	1844608	1845339	+
hyaD	1	1	1.63	ST4-74	1845336	1845932	+
hyaE	2	1	2.45	ST4-74	1845922	1846326	+
hyaF	1	1	0.75	ST4-74	1846323	1847171	+
appC	3	2	1.30	ST4-74	1847246	1848790	+
appB	5	3	1.83	ST4-74	1848802	1849938	+
STM1794	34	27	1.26	ST4-74	1849951	1850040	+
STnc3610	88	82	1.08	ST4-74	1850045	1850400	-
STM1795	9	6	1.59	ST4-74	1850384	1851709	+
treA	33	30	1.11	ST4-74	1851923	1853635	+
ymgE	158	87	1.80	ST4-74	1853698	1853952	-
ycgR	22	67	0.32	ST4-74	1854121	1854855	+
emtA	18	16	1.16	ST4-74	1854869	1855480	-
<i>ldcA</i>	20	15	1.31	ST4-74	1855651	1856565	+
cvrA	59	64	0.93	ST4-74	1856662	1858395	+
alr-a	7	5	1.26	ST4-74	1858458	1859528	-
dadA	11	8	1.32	ST4-74	1859542	1860840	-
<i>ycgB</i>	62	34	1.84	ST4-74	1861169	1862695	+
fadR	143	126	1.14	ST4-74	1862742	1863461	-
nhaB	23	25	0.93	ST4-74	1863681	1865225	+
dsbB	119	126	0.95	ST4-74	1865367	1865897	+
STM1808	3	2	1.15	ST4-74	1866006	1866347	+
STM1809	825	484	1.70	ST4-74	1866419	1866592	-
STnc3620	42	30	1.41	ST4-74	1866668	1866747	+
STM1810	141	90	1.57	ST4-74	1866784	1866921	-
ycgN	82	62	1.32	ST4-74	1867273	1867734	-
ycgM	24	30	0.79	ST4-74	1867812	1868471	-
ycgL	124	94	1.32	ST4-74	1868521	1868853	-
minC	102	114	0.90	ST4-74	1868940	1869647	+
minD	124	131	0.95	ST4-74	1869671	1870483	+
minE	179	182	0.99	ST4-74	1870487	1870753	+
rnd	6	5	1.17	ST4-74	1870875	1872002	-
tnpA 1a	244	250	0.97	ST4-74	1872138	1872596	-
fadD	14	15	0.96	ST4-74	1872787	1874472	-
yeaY	29	27	1.05	ST4-74	1874677	1875258	-
yeaZ	36	34	1.05	ST4-74	1875330	1876025	-
yoaA	10	9	1.07	ST4-74	1876083	1877993	-
yoaB	343	365	0.94	ST4-74	1878124	1878468	+
yoaH	146	125	1.16	ST4-74	1878474	1878653	-
pabB	22	18	1.25	ST4-74	1878734	1880098	+
yeaB	9	8	1.18	ST4-74	1880102	1880680	+
sdaA	17	12	1.40	ST4-74	1880944	1882308	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM1827	11	8	1.41	ST4-74	1882446	1884047	+
yoaE	9	8	1.15	ST4-74	1884069	1885628	-
STM1830	69	104	0.66	ST4-74	1886101	1887069	+
STM1831	47	104	0.45	ST4-74	1887122	1887922	+
STM1832	85	120	0.71	ST4-74	1887926	1888786	+
STM1833	11	10	1.14	ST4-74	1888844	1889302	+
yebN	30	32	0.93	ST4-74	1889712	1890278	+
rrmA	16	15	1.09	ST4-74	1890275	1891084	-
ftsI2	7	6	1.21	ST4-74	1891150	1892895	-
cspC	1851	1986	0.93	ST4-74	1893115	1893324	-
yobF	5281	5123	1.03	ST4-74	1893337	1893480	-
STnc3630	302	325	0.93	ST4-74	1894039	1894125	+
STM1839	502	323	1.56	ST4-74	1894129	1894416	-
yobG	4475	2172	2.06	ST4-74	1894487	1894630	-
STM1841	28	15	1.85	ST4-74	1894788	1895027	+
kdgR	96	87	1.11	ST4-74	1895239	1896030	-
STM1843	11	9	1.19	ST4-74	1896206	1897579	+
htpX	125	147	0.85	ST4-74	1897627	1898508	-
prc	60	59	1.02	ST4-74	1898702	1900750	-
proQ	102	117	0.87	ST4-74	1900770	1901456	-
yebR	162	123	1.32	ST4-74	1901554	1902138	-
yebS	58	35	1.65	ST4-74	1902180	1903463	+
STM1849	25	21	1.15	ST4-74	1903426	1906065	+
yebU	10	9	1.08	ST4-74	1906143	1907582	+
STM1851	443	276	1.61	ST4-74	1907697	1907936	+
yebW	126	64	1.98	ST4-74	1908047	1908238	+
pphA	20	10	2.03	ST4-74	1908257	1908907	-
STM1854	897	395	2.27	ST4-74	1909131	1909295	-
sopE2	32	34	0.93	ST4-74	1909580	1910302	-
STM1856	16	19	0.86	ST4-74	1910986	1911381	+
SL1344 1786	89	66	1.34	ST4-74	1911711	1912187	+
STM1857	92	55	1.66	ST4-74	1912575	1912994	-
STM1858	40	26	1.49	ST4-74	1913364	1913633	+
STnc1130	190	104	1.81	ST4-74	1913615	1913755	-
STM1859	93	85	1.09	ST4-74	1913799	1914048	+
STM1860	4	3	1.29	ST4-74	1914085	1915279	-
STM1861	3	3	1.06	ST4-74	1915403	1915771	+
STnc3640	45	27	1.68	ST4-74	1915824	1916082	+
SL1344 1792	7	7	1.05	ST4-74	1916257	1916457	-
pag0 –	130	49	2.68	ST4-74	1917075	1917989	+
STM1863	222	99	2.25	ST4-74	1918122	1918280	+
STM1864	92	36	2.53	ST4-74	1918290	1918904	+
STM1865	34	18	1.91	ST4-74	1919231	1919377	-
pagM	406	113	3.61	ST4-74	1919657	1919839	-
SL1344 1798	12	6	1.99	ST4-74	1920177	1920299	+
pagK –	4535	1482	3.06	ST4-74	1920747	1920947	+
mig-3	3	3	1.04	ST4-74	1921044	1921925	-
SL1344 1801	7	6	1.29	ST4-74	1922080	1922343	-
STM1868A	66	51	1.28	ST4-74	1922651	1922818	+
STM1869	1	1	0.89	ST4-74	1923075	1923608	-
STM1869A	2	1	1.13	ST4-74	1923662	1923892	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM1870	3	4	0.77	ST4-74	1923923	1924576	+
STM1871	6	5	1.07	ST4-74	1924594	1925490	+
SraC	434	268	1.62	ST4-74	1925543	1925853	+
SdsR	11807	4767	2.48	ST4-74	1925621	1925723	-
STM1873	26	25	1.02	ST4-74	1925864	1926217	-
STM1874	29	32	0.91	ST4-74	1926234	1927109	-
yobA	48	55	0.86	ST4-74	1927110	1927490	-
holE	69	56	1.25	ST4-74	1927622	1927852	+
STM1877	61	51	1.20	ST4-74	1927960	1928616	+
exoX	82	75	1.09	ST4-74	1928640	1929338	+
opdB	25	22	1.15	ST4-74	1929373	1931424	-
STnc1690	678	966	0.70	ST4-74	1931455	1931546	+
yebE	64	93	0.69	ST4-74	1931637	1932296	-
<i>yebF</i>	198	123	1.62	ST4-74	1932390	1932743	-
<i>yebG</i>	74	73	1.02	ST4-74	1932811	1933101	-
purT	17	29	0.61	ST4-74	1933232	1934410	+
eda	15	20	0.74	ST4-74	1934510	1935151	-
edd	6	10	0.65	ST4-74	1935189	1937000	-
STnc200	23	22	1.04	ST4-74	1937130	1937244	-
zwf	29	32	0.90	ST4-74	1937235	1938710	-
hexR	27	66	0.42	ST4-74	1939052	1939921	+
pvkA	29	71	0.40	ST4-74	1940045	1941487	+
msbB	39	31	1.26	ST4-74	1941560	1942531	-
vebA	40	49	0.82	ST4-74	1942648	1943967	-
znuA	85	98	0.86	ST4-74	1943983	1944984	-
znuC	24	18	1.32	ST4-74	1945006	1945761	+
znuB	13	14	0.90	ST4-74	1945758	1946543	+
ruvB	20	18	1.09	ST4-74	1946622	1947551	-
ruvA	41	40	1.01	ST4-74	1947641	1948252	-
STM1896	9	6	1.54	ST4-74	1948585	1949567	+
SL1344 1830A	3	3	1.07	ST4-74	1949628	1950061	-
vebB _	8	7	1.20	ST4-74	1950194	1950793	+
ruvC	29	40	0.73	ST4-74	1950795	1951316	-
vebC	54	62	0.88	ST4-74	1951353	1952093	-
ntpA	87	90	0.96	ST4-74	1952123	1952575	-
aspS	49	50	1.00	ST4-74	1952678	1954450	-
<i>yecD</i>	26	21	1.26	ST4-74	1954775	1955341	+
vecE	6	6	0.99	ST4-74	1955338	1956156	+
vecN	101	86	1.17	ST4-74	1956209	1956604	+
yecO	40	34	1.18	ST4-74	1956645	1957388	+
vecP	11	15	0.76	ST4-74	1957385	1958356	+
RyeF	231	188	1.23	ST4-74	1958513	1958819	-
cutC	9	8	1.09	ST4-74	1958592	1959338	-
vecM	27	23	1.19	ST4-74	1959358	1959927	-
argS	27	25	1.06	ST4-74	1960164	1961897	+
STM1910	3	3	1.11	ST4-74	1962086	1963957	+
STM1911	7	9	0.86	ST4-74	1964011	1965150	-
flhE	10	12	0.82	ST4-74	1965387	1965779	-
flhAa	9	30	0.29	ST4-74	1965779	1967857	-
flhB	18	66	0.27	ST4-74	1967850	1969001	-
cheZ	17	71	0.24	ST4-74	1969195	1969839	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
cheY	31	117	0.27	ST4-74	1969850	1970239	-
cheB	13	69	0.19	ST4-74	1970257	1971306	-
cheR	17	72	0.23	ST4-74	1971303	1972169	-
cheM	49	204	0.24	ST4-74	1972323	1973984	-
cheW	67	279	0.24	ST4-74	1974221	1974724	-
cheA	28	130	0.21	ST4-74	1974745	1976760	-
motB	49	178	0.28	ST4-74	1976765	1977694	-
motA	53	203	0.26	ST4-74	1977691	1978521	-
flhC	94	189	0.49	ST4-74	1978703	1979281	-
flhD	114	198	0.58	ST4-74	1979284	1979634	-
yecG	53	49	1.08	ST4-74	1980421	1980849	+
otsA	24	16	1.57	ST4-74	1980867	1982288	-
otsB	58	26	2.23	ST4-74	1982263	1983066	-
araH	9	8	1.11	ST4-74	1983700	1984257	-
ftnB	21	40	0.52	ST4-74	1984808	1985311	+
STM1933	8	9	0.98	ST4-74	1985490	1986128	-
STM1934	21	61	0.34	ST4-74	1986384	1986719	+
ftn	158	238	0.66	ST4-74	1986959	1987456	+
yecH	5	110	0.04	ST4-74	1987502	1987741	-
tyrP	11	12	0.91	ST4-74	1987968	1989179	+
<i>vecA</i>	57	59	0.96	ST4-74	1989254	1989919	-
STM1939	201	138	1.45	ST4-74	1990157	1990462	-
STM1940	40	27	1.47	ST4-74	1990696	1992135	-
STM1941	511	221	2.32	ST4-74	1992348	1992680	-
SL1344 1874A	9	7	1.38	ST4-74	1992726	1992853	-
STnc2180	604	643	0.94	ST4-74	1992863	1992913	-
pgsA	97	111	0.87	ST4-74	1993381	1993929	-
uvrC	16	20	0.77	ST4-74	1993986	1995818	-
sirA	154	141	1.09	ST4-74	1995815	1996471	-
yecF	177	179	0.99	ST4-74	1996935	1997159	+
sdiA	25	41	0.62	ST4-74	1997226	1997948	-
<i>yecC</i>	18	23	0.76	ST4-74	1998180	1998932	-
vecS	13	16	0.79	ST4-74	1998929	1999597	-
dcyD	15	19	0.81	ST4-74	1999618	2000604	-
fliY	65	99	0.66	ST4-74	2000758	2001558	-
fliZ	32	124	0.26	ST4-74	2001705	2002256	-
fliA	67	280	0.24	ST4-74	2002315	2003034	-
tnpA 2b	249	288	0.86	ST4-74	2003303	2003812	-
fliB	10	26	0.37	ST4-74	2003942	2005147	-
fliC	279	1324	0.21	ST4-74	2005226	2006713	-
fliD	92	406	0.23	ST4-74	2006970	2008373	+
fliS	39	205	0.19	ST4-74	2008388	2008795	+
fliT	30	153	0.20	ST4-74	2008795	2009163	+
amyA	8	8	0.97	ST4-74	2009235	2010719	+
yedD	42	33	1.26	ST4-74	2010759	2011184	-
yedE	8	11	0.75	ST4-74	2011310	2012575	+
yedF	11	20	0.56	ST4-74	2012572	2012805	+
STM1967	5	7	0.69	ST4-74	2013070	2013456	+
fliE	57	223	0.25	ST4-74	2013576	2013890	-
fliF	15	71	0.21	ST4-74	2014107	2015789	+
fliG	12	60	0.21	ST4-74	2015782	2016777	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
fliH	12	53	0.22	ST4-74	2016770	2017477	+
fliI	7	32	0.23	ST4-74	2017477	2018847	+
fliJ	8	48	0.17	ST4-74	2018869	2019312	+
fliK	5	27	0.19	ST4-74	2019309	2020526	+
fliL	23	88	0.26	ST4-74	2020631	2021098	+
fliM	12	55	0.22	ST4-74	2021103	2022107	+
fliN	11	54	0.20	ST4-74	2022104	2022517	+
fliO	10	50	0.20	ST4-74	2022517	2022894	+
fliP	9	34	0.28	ST4-74	2022894	2023631	+
fliQ	5	24	0.20	ST4-74	2023641	2023910	+
fliR	4	9	0.44	ST4-74	2023919	2024713	+
rcsA	9	6	1.60	ST4-74	2024995	2025618	+
dsrB	421	246	1.71	ST4-74	2025657	2025851	-
yodD	199	83	2.39	ST4-74	2025980	2026207	+
DsrA	283	213	1.33	ST4-74	2026216	2026302	-
mngB	8	5	1.52	ST4-74	2026517	2027332	+
gcpA	14	12	1.23	ST4-74	2027311	2029023	-
STM1988	645	427	1.51	ST4-74	2029188	2029373	-
yedI	30	26	1.15	ST4-74	2029450	2030361	-
<i>yedA</i>	5	4	1.03	ST4-74	2030537	2031457	+
vsr	8	10	0.80	ST4-74	2031446	2031916	-
dcm	18	19	0.95	ST4-74	2031897	2033327	-
<i>yedJ</i>	7	7	1.05	ST4-74	2033401	2034096	-
STM1994	9	6	1.40	ST4-74	2034188	2034487	-
RseX	25	19	1.35	ST4-74	2034743	2034837	+
ompS	9	9	1.00	ST4-74	2035137	2036333	+
cspB	40	34	1.15	ST4-74	2036793	2037005	-
umuC	7	5	1.35	ST4-74	2037460	2038728	-
umuD	5	5	1.01	ST4-74	2038731	2039150	-
STM1999	1	1	1.57	ST4-74	2039277	2039438	-
SL1344_1927A	57	32	1.78	ST4-74	2039416	2039658	-
STnc1280	8973	8432	1.06	ST4-74	2039984	2040056	+
SL1344_1927B	197	60	3.31	ST4-74	2040072	2040263	-
SL1344_1928	197	30	6.52	ST4-74	2040503	2041510	+
STM2705	9	9	1.03	ST4-74	2041795	2042394	-
SL1344_1930	3	4	0.80	ST4-74	2042364	2043959	-
SL1344_1931	2	3	0.68	ST4-74	2043913	2044500	-
SL1344_1932	3	2	1.59	ST4-74	2044503	2045024	-
SL1344 1933	4	5	0.82	ST4-74	2045059	2045604	-
SL1344 1934	4	3	1.46	ST4-74	2045576	2045989	-
SL1344 1935	3	4	0.89	ST4-74	2045994	2046527	-
SL1344 1936	4	4	0.93	ST4-74	2046527	2047585	-
SL1344 1937	3	3	0.87	ST4-74	2047582	2048922	-
SL1344 1938	5	5	1.09	ST4-74	2048956	2050884	-
SL1344 1939	5	5	0.89	ST4-74	2050969	2051295	-
SL1344 ¹⁹⁴⁰	10	10	0.95	ST4-74	2051292	2051648	-
SL1344 1941	3	3	0.78	ST4-74	2051648	2053144	-
SL1344 1942	2	2	1.16	ST4-74	2053302	2053862	-
SL1344 1943	1	1	0.77	ST4-74	2053859	2054377	-
SL1344 1944	1	2	0.64	ST4-74	2054343	2054747	-
SL1344 1945	2	2	0.72	ST4-74	2054744	2055067	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
SL1344_1946	4	4	0.94	ST4-74	2055070	2055270	-
SL1344_1947	3	4	0.67	ST4-74	2055321	2056526	-
SL1344_1948	2	3	0.61	ST4-74	2056541	2057227	-
SL1344_1949	3	3	0.99	ST4-74	2057169	2058410	-
SL1344_1950	3	3	1.01	ST4-74	2058604	2060337	-
SL1344 1951	5	7	0.68	ST4-74	2060334	2060837	-
SL1344 1952	3	4	0.75	ST4-74	2060954	2061304	-
SL1344 1953	30	25	1.22	ST4-74	2061365	2061667	-
SL1344 1954	4	5	0.73	ST4-74	2061887	2062306	-
rzpR –	1	2	0.93	ST4-74	2062519	2063004	-
STM0907	2	2	1.00	ST4-74	2063001	2063615	-
STM0906	4	4	0.93	ST4-74	2063618	2063962	-
SL1344 1958	54	51	1.07	ST4-74	2064488	2064847	-
SL1344_1959	4	5	0.78	ST4-74	2064878	2065501	_
SL1344_1960	4	4	0.98	ST4-74	2065512	2066507	_
SL1344_1961	4	4	1.06	ST4-74	2066509	2067414	_
SL1344_1962	2	2	1 13	ST4-74	2067772	2068665	_
SL1344_1963	1	2	0.74	ST4-74	2068665	2069282	_
SI 1344_1964	1	1	1 41	ST4_74	2060149	2069262	_
SI 1344_1965	1	1	1.41	ST4_74	2009149	2005507	_
SE1344_1903	17163	18820	0.01	ST4-74	2070103	2071393	-
SThe1290	5045	8257	0.91	ST4-74	2070801	2070988	- +
STICT500	3943	8237	0.72	ST4-74	2071271	2071409	I
SL1344_1900	222	215	1.03	ST4-74	2071333	2072049	- +
STN0090	222 81	103	0.70	ST4-74	2072244	2072939	+
STIICISIU ST 1244 1069	01 24	103	0.79	ST4-74	2073203	2073336	т _
SL1344_1906	54	51	0.08	S14-74	2075555	2074123	- -
SL1344_1909	2	4	0.43	S14-74	2074183	2075010	+
SL1344_1970	2	2	1.10	S14-74	2075084	2075080	- -
SL1344_19/1	4	4	0.99	S14-74	2075984	2076499	+
SL1344_1972	1	3	0.48	S14-74	2076496	2077113	+
SL1344_1973	5	4	1.40	S14-74	2077110	207/943	+
SL1344_1974	3	3	0.93	S14-/4	207/947	2078516	+
SL1344_1975	3	4	0.65	S14-74	2078541	2078783	+
SL1344_1976	9	1	1.27	S14-74	2078785	2079774	+
yeel	53	60	0.88	ST4-74	2080066	2080863	+
SL1344_1978	4	4	0.99	ST4-74	2081235	2081525	+
STnc2050	297	299	0.99	ST4-74	2082064	2082105	+
STM2005	2	2	1.15	ST4-74	2082173	2082646	+
SL1344_1980	1	3	0.23	ST4-74	2082737	2083009	+
STM2006	3	3	1.32	ST4-74	2083094	2083819	+
STM2007	3	3	1.05	ST4-74	2084162	2086330	+
STM2008	5	4	1.24	ST4-74	2086387	2088117	+
STnc3680	96	98	0.97	ST4-74	2088048	2088167	+
SL1344_1985	11	10	1.03	ST4-74	2088651	2088905	-
amn	17	17	1.02	ST4-74	2089022	2090476	-
STM2011	42	31	1.37	ST4-74	2090672	2090998	-
SL1344_1988	71	55	1.29	ST4-74	2090992	2091378	-
SL1344_1989	115	109	1.05	ST4-74	2091704	2091871	+
yeeO	12	11	1.05	ST4-74	2092092	2093549	-
erfK	46	60	0.76	ST4-74	2094011	2094940	-
cohT	41	78	0.52	ST4-74	2095018	2096088	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
cobS	42	90	0.46	ST4-74	2096115	2096858	-
cobU	39	73	0.54	ST4-74	2096855	2097400	-
cbiP	53	92	0.58	ST4-74	2097397	2098917	-
cbiO	74	129	0.57	ST4-74	2098914	2099729	-
cbiQ	52	115	0.45	ST4-74	2099738	2100415	-
cbiN	55	109	0.50	ST4-74	2100402	2100683	-
cbiM	71	147	0.48	ST4-74	2100685	2101422	-
cbiL	48	113	0.42	ST4-74	2101419	2102132	-
STnc1530	49	27	1.85	ST4-74	2101640	2101718	+
cbiK	48	116	0.41	ST4-74	2102129	2102923	-
cbiJ	47	103	0.46	ST4-74	2102926	2103717	-
cbiH	103	165	0.63	ST4-74	2103714	2104439	-
cbiG	65	124	0.52	ST4-74	2104439	2105494	-
cbiF	44	97	0.45	ST4-74	2105475	2106248	-
cbiT	59	123	0.48	ST4-74	2106232	2106810	-
cbiE	72	126	0.57	ST4-74	2106800	2107405	-
cbiD	85	142	0.60	ST4-74	2107399	2108538	-
cbiC	82	145	0.57	ST4-74	2108538	2109170	-
cbiB	143	215	0.67	ST4-74	2109181	2110140	-
cbiA	94	150	0.63	ST4-74	2110137	2111516	-
pocR	154	195	0.79	ST4-74	2112114	2112878	-
pduF	426	718	0.59	ST4-74	2113242	2114036	-
pduA	566	1125	0.50	ST4-74	2114561	2114845	+
pduB	209	433	0.48	ST4-74	2114953	2115654	+
dhaB	132	257	0.52	ST4-74	2115673	2117337	+
pduD	122	265	0.46	ST4-74	2117348	2118022	+
pduE	158	383	0.41	ST4-74	2118037	2118558	+
pduG	114	243	0.47	ST4-74	2118568	2120400	+
pduH	306	612	0.50	ST4-74	2120390	2120740	+
pduJ	195	436	0.45	ST4-74	2120759	2121034	+
pduK	189	385	0.49	ST4-74	2121038	2121520	+
pduL	152	279	0.55	ST4-74	2121520	2122152	+
pduM	43	105	0.41	ST4-74	2122149	2122640	+
pduN	97	212	0.46	ST4-74	2122644	2122919	+
pduO	70	132	0.53	ST4-74	2122929	2123939	+
pduP	70	128	0.55	ST4-74	2123936	2125330	+
pduQ	48	105	0.45	ST4-74	2125342	2126454	+
pduS	58	119	0.48	ST4-74	2126451	2127806	+
pduT	53	98	0.54	ST4-74	2127809	2128363	+
pduU	58	92	0.62	ST4-74	2128363	2128713	+
pduV	31	67	0.46	ST4-74	2128718	2129170	+
pduW	207	312	0.66	ST4-74	2129155	2130369	+
pduX	87	167	0.52	ST4-74	2130427	2131329	+
yeeX	740	743	1.00	ST4-74	2131363	2131698	-
STnc3700	77	53	1.45	ST4-74	2131885	2131995	+
yeeA	31	30	1.05	ST4-74	2131943	2133001	-
STnc1650	78	49	1.60	ST4-74	2132959	2133102	+
gyrI	254	308	0.82	ST4-74	2133120	2133587	-
dacD	4	4	0.94	ST4-74	2133740	2134912	-
phsC	7	8	0.79	ST4-74	2135036	2135800	-
phsB	8	7	1.15	ST4-74	2135797	2136375	-
Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
-------------	----------	--------	---------	------------------------	---------	---------	--------
phsA	4	6	0.74	ST4-74	2136390	2138666	-
SL1344_2042	5	4	1.38	ST4-74	2138911	2139018	-
sopA	4	5	0.93	ST4-74	2139285	2141633	+
sbcB	18	17	1.06	ST4-74	2141976	2143406	+
yeeF	36	41	0.89	ST4-74	2143542	2144906	-
yoeI	94	115	0.82	ST4-74	2144890	2144952	-
yeeY	24	13	1.90	ST4-74	2145186	2146100	-
yeeZ	62	41	1.52	ST4-74	2146146	2146970	-
STnc700	3265	2733	1.19	ST4-74	2147102	2147280	+
hisG	50	48	1.03	ST4-74	2147330	2148229	+
hisD	33	28	1.17	ST4-74	2148332	2149636	+
hisC	25	22	1.13	ST4-74	2149633	2150712	+
hisB	30	22	1.35	ST4-74	2150709	2151776	+
hisH	20	19	1.04	ST4-74	2151773	2152366	+
hisA	22	23	0.96	ST4-74	2152366	2153103	+
hisF	44	38	1.16	ST4-74	2153085	2153861	+
hisI	55	42	1.31	ST4-74	2153855	2154466	+
wzzB	120	97	1.24	ST4-74	2154547	2155530	-
udg	163	129	1.27	ST4-74	2155673	2156839	-
gnd	66	60	1.10	ST4-74	2157076	2158482	-
rfbP	110	77	1.42	ST4-74	2158646	2160076	-
rfbK	74	60	1.24	ST4-74	2160148	2161581	-
cpsB2	90	65	1.38	ST4-74	2161568	2163007	-
rfbN	106	85	1.25	ST4-74	2163008	2163952	-
rfbU	111	78	1.42	ST4-74	2163953	2165014	-
rfbV	152	101	1.51	ST4-74	2165334	2166335	-
rfbX	143	97	1.48	ST4-74	2166340	2167632	-
rfbJ	123	99	1.25	ST4-74	2167714	2168613	-
rfbH	203	177	1.14	ST4-74	2168641	2169954	-
rfbG	172	150	1.15	ST4-74	2169981	2171060	-
rfbF	136	118	1.15	ST4-74	2171065	2171838	-
rfhI	143	113	1.27	ST4-74	2171835	2172827	-
rfbC	154	112	1.37	ST4-74	2172833	2173384	-
rfbA	81	61	1.33	ST4-74	2173385	2174263	-
rfbD	36	35	1.03	ST4-74	2174311	2175210	-
STnc1320	80	55	1.45	ST4-74	2174386	2174470	+
rfbB	63	55	1.13	ST4-74	2175210	2176295	-
galF	139	108	1.29	ST4-74	2176672	2177694	-
wcaM	3	2	1.29	ST4-74	2177743	2179146	-
wcaL	2	2	1.45	ST4-74	2179157	2180377	-
wcaK	-	- 1	1.09	ST4-74	2180374	2181654	-
wzx	3	2	1.36	ST4-74	2181676	2183154	-
wca.I	2	- 1	1 19	ST4-74	2183287	2184681	_
cnsG	- 1	1	0.69	ST4-74	2184735	2186105	_
cnsB	3	4	0.82	ST4-74	2186216	2187652	-
wcal	1	2	0.62	ST4-74	2187655	2188878	-
omm	1	2	0.00	ST4-74	2188875	2189348	_
fcl	2	1	1.66	ST4-74	2189351	2190316	-
omd	2	2	1.00	ST4-74	2190319	2191440	_
wcaF	- 1	1	1.02	ST4-74	2191464	2192018	-
	1	1	1.05	ST4 74	2102024	2102780	

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
wcaD	3	3	1.11	ST4-74	2192793	2194007	-
wcaC	2	2	1.22	ST4-74	2193982	2195199	-
wcaB	5	4	1.48	ST4-74	2195196	2195684	-
wcaA	2	2	1.07	ST4-74	2195687	2196529	-
WZC	2	1	1.36	ST4-74	2196616	2198775	-
wzb	2	1	1.84	ST4-74	2198772	2199221	-
wza	2	1	1.36	ST4-74	2199227	2200282	-
yegH	23	21	1.11	ST4-74	2201041	2202621	+
asmA	40	44	0.89	ST4-74	2202707	2204563	-
dcd	27	34	0.79	ST4-74	2204602	2205183	-
udk	34	37	0.92	ST4-74	2205274	2205915	-
yegE	12	11	1.16	ST4-74	2206246	2209236	+
alkA	8	7	1.22	ST4-74	2209204	2210073	-
yegD	5	5	1.00	ST4-74	2210207	2211559	+
RyeC	7136	10986	0.65	ST4-74	2211623	2211760	+
STM2126	4	4	1.04	ST4-74	2212000	2213241	+
yegN	4	3	1.16	ST4-74	2213241	2216363	+
yegO	5	4	1.27	ST4-74	2216364	2219444	+
yegB	11	9	1.24	ST4-74	2219441	2220853	+
baeS	11	10	1.10	ST4-74	2220853	2222256	+
baeR	12	10	1.22	ST4-74	2222253	2222975	+
STnc1150	2434	873	2.79	ST4-74	2222979	2223134	+
STM2133	1	1	1.46	ST4-74	2223562	2224446	+
STM2134	2	2	1.19	ST4-74	2224446	2225162	+
STM2135	4	4	1.16	ST4-74	2225173	2227284	+
yegQ	9	9	0.98	ST4-74	2227400	2228761	+
CyaR	35723	36420	0.98	ST4-74	2228847	2228932	+
sseK2	9	4	2.04	ST4-74	2229212	2230258	+
srcA	80	16	4.87	ST4-74	2230294	2230710	-
STM2139	116	38	3.09	ST4-74	2230832	2231167	-
SL1344_2116	12	12	0.96	ST4-74	2231529	2231645	-
yegS	24	14	1.71	ST4-74	2231729	2232628	+
fbaB	116	72	1.61	ST4-74	2232681	2233733	-
yegT	5	4	1.17	ST4-74	2233987	2235258	+
yegU	7	6	1.21	ST4-74	2235255	2236259	+
yegV	4	4	1.11	ST4-74	2236361	2237221	+
yegW	49	51	0.96	ST4-74	2237195	2237941	-
thiD	32	37	0.86	ST4-74	2237977	2238777	-
thiM	20	22	0.90	ST4-74	2238764	2239561	-
STM2148	34	42	0.81	ST4-74	2239971	2240285	+
STnc740	174	118	1.48	ST4-74	2240283	2240366	-
stcD	7	7	0.95	ST4-74	2240548	2241555	-
stcC	7	6	1.14	ST4-74	2241571	2244060	-
<i>stcB</i>	1	1	1.05	ST4-74	2244074	2244757	-
stcA	3	19	0.15	ST4-74	2244813	2245343	-
yehE	35	40	0.88	ST4-74	2245622	2245903	-
mrp	34	37	0.90	ST4-74	2246181	2247290	-
metG	40	46	0.87	ST4-74	2247455	2249488	+
yehR	11	8	1.32	ST4-74	2249729	2250187	+
STM2156A	13	9	1.48	ST4-74	2250359	2250889	+
STnc1890	26	23	1.12	ST4-74	2250891	2250938	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yehS	49	43	1.12	ST4-74	2250946	2251413	-
yehT	10	12	0.90	ST4-74	2251460	2252179	-
yehU	18	19	0.95	ST4-74	2252176	2253861	-
yehV	61	42	1.44	ST4-74	2254084	2254815	+
yohO	630	453	1.39	ST4-74	2254875	2254982	+
yehW	13	9	1.39	ST4-74	2254963	2255694	-
yehX	17	11	1.46	ST4-74	2255678	2256625	-
yehY	27	19	1.44	ST4-74	2256618	2257787	-
yehZ	48	36	1.33	ST4-74	2257791	2258708	-
bglX	11	11	0.98	ST4-74	2258889	2261186	-
dld	13	13	0.99	ST4-74	2261453	2263183	+
pbpG	16	15	1.07	ST4-74	2263241	2264149	-
STnc3720	82	58	1.42	ST4-74	2264259	2264328	+
yohC	45	21	2.11	ST4-74	2264354	2264941	-
yohD	15	13	1.18	ST4-74	2265073	2265669	+
yohF	11	8	1.43	ST4-74	2265718	2266479	-
yohG	5	3	1.39	ST4-74	2266545	2267981	-
STnc1330	1078	526	2.05	ST4-74	2268274	2268414	+
yohI	8	7	1.14	ST4-74	2268440	2269378	-
STM2175	11	9	1.16	ST4-74	2269487	2270680	-
STM2176	4	3	1.60	ST4-74	2270695	2271339	-
STM2177	2	2	1.21	ST4-74	2271348	2272049	-
STM2178	1	1	1.09	ST4-74	2272065	2273102	-
STM2179	2	2	0.92	ST4-74	2273114	2274472	-
STM2180	16	14	1.14	ST4-74	2274598	2275506	+
yohJ	60	41	1.48	ST4-74	2275638	2276036	+
yohK	9	9	1.10	ST4-74	2276033	2276728	+
cdd	7	8	0.85	ST4-74	2276882	2277766	+
sanA	62	60	1.03	ST4-74	2277943	2278662	+
<i>b2145</i>	20	18	1.09	ST4-74	2278659	2278904	+
STM2186	17	17	0.96	ST4-74	2279109	2280350	+
yeiA	10	13	0.79	ST4-74	2280344	2281579	+
mglC	10	14	0.74	ST4-74	2281654	2282664	-
mglA	8	12	0.67	ST4-74	2282680	2284200	-
mglB	13	21	0.60	ST4-74	2284334	2285332	-
galS	15	13	1.15	ST4-74	2285831	2286853	-
yeiB	16	17	0.96	ST4-74	2287003	2288145	-
folE	26	25	1.08	ST4-74	2288160	2288828	-
veiG	78	66	1.20	ST4-74	2289158	2290015	+
STM2195	20	24	0.82	ST4-74	2290004	2290393	-
STM2196	5	6	0.98	ST4-74	2290398	2291765	-
STM2197	1	1	0.77	ST4-74	2291982	2292869	+
STM2198	6	5	1.15	ST4-74	2292902	2294224	+
cirA	4	3	1.27	ST4-74	2294268	2296259	-
lysP	72	77	0.94	ST4-74	2296604	2298073	-
yeiE	25	25	0.98	ST4-74	2298263	2299126	-
yeiH	8	12	0.68	ST4-74	2299247	2300296	+
nfo	15	15	1.01	ST4-74	2300375	2301232	+
fruA	7	9	0.78	ST4-74	2301297	2302985	-
, fruK	6	7	0.91	ST4-74	2303002	2303859	-
fruB	5	7	0.64	ST4-74	2303940	2305070	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
setB	5	6	0.91	ST4-74	2305439	2306620	+
STM2208	10	7	1.40	ST4-74	2306685	2307350	-
STM2209	19	14	1.37	ST4-74	2307352	2307474	-
SL1344_2187	21	21	0.97	ST4-74	2307862	2308116	-
yeiP	38	42	0.92	ST4-74	2308440	2309012	+
yeiR	25	23	1.11	ST4-74	2309225	2310211	+
yeiU	146	138	1.06	ST4-74	2310241	2310960	+
STnc3010	176	177	1.00	ST4-74	2310959	2311126	-
spr	664	1075	0.62	ST4-74	2311374	2311946	+
rtn	30	29	1.06	ST4-74	2312272	2313828	+
yejA	21	22	0.94	ST4-74	2313935	2315740	+
yejB	25	25	1.00	ST4-74	2315750	2316844	+
yejE	10	12	0.90	ST4-74	2316844	2317869	+
<i>yejF</i>	9	10	0.96	ST4-74	2317871	2319460	+
yejG	162	100	1.62	ST4-74	2319464	2319808	-
STnc1340	126	356	0.35	ST4-74	2319956	2320037	-
bcr	15	16	0.91	ST4-74	2320199	2321389	-
STnc1540	316	530	0.60	ST4-74	2321042	2321137	-
rsuA	39	33	1.20	ST4-74	2321417	2322112	-
vejH	4	4	0.90	ST4-74	2322264	2324024	+
rplY	405	553	0.73	ST4-74	2324149	2324433	+
STM2225	51	46	1.11	ST4-74	2324542	2325162	-
vejK	22	23	0.92	ST4-74	2325190	2326197	-
vejL	209	187	1.12	ST4-74	2326377	2326604	+
vejM	36	35	1.02	ST4-74	2326636	2328396	+
STM2230	3	4	0.69	ST4-74	2328677	2329147	-
STM2231	3	2	1.18	ST4-74	2329208	2329498	+
oafA	69	58	1.20	ST4-74	2329846	2331675	+
STM2233	2	3	0.74	ST4-74	2331729	2332172	-
STM2234	4	4	1.13	ST4-74	2332550	2333077	-
STM2235	4	3	1.19	ST4-74	2333080	2334321	-
STM2236	2	2	1.04	ST4-74	2334382	2334900	-
STM2237	1	1	0.50	ST4-74	2334914	2335243	-
STM2238	54	46	1.17	ST4-74	2335540	2336871	+
STM2239	11	10	1.12	ST4-74	2336900	2337268	-
STM2240	6	5	1.15	ST4-74	2337283	2338272	-
sspH2	12	10	1.18	ST4-74	2338601	2340967	-
STM2242	4	2	1.68	ST4-74	2341136	2341339	-
STM2243	5	4	1.21	ST4-74	2341636	2342463	-
IsrG	6	6	0.98	ST4-74	2342448	2342729	+
STM2244	6	4	1.65	ST4-74	2342730	2342933	+
STM2245	125	17	7.30	ST4-74	2343125	2343688	-
narP	23	24	0.99	ST4-74	2344418	2345065	+
ccmH2	3	7	0.48	ST4-74	2345109	2346152	-
ccmG2	7	13	0.58	ST4-74	2346149	2346706	-
ccmF2	7	14	0.49	ST4-74	2346703	2348634	-
ccmE2	6	13	0.44	ST4-74	2348631	2349110	-
ccmD2	4	10	0.45	ST4-74	2349107	2349280	-
ccmC2	11	29	0.36	ST4-74	2349316	2350062	-
ccmB2	5	10	0.51	ST4-74	2350105	2350761	-
ccmA2	5	15	0.33	ST4-74	2350761	2351378	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
napC	5	8	0.70	ST4-74	2351399	2352001	-
napB	2	5	0.38	ST4-74	2352011	2352460	-
napH	5	7	0.72	ST4-74	2352576	2353445	-
napG	2	4	0.48	ST4-74	2353432	2354127	-
napA	3	5	0.70	ST4-74	2354134	2356620	-
napD	1	6	0.24	ST4-74	2356617	2356880	-
napF	2	12	0.19	ST4-74	2356870	2357361	-
есо	6	3	2.28	ST4-74	2357775	2358269	+
vojI	21	17	1.30	ST4-74	2358478	2360121	-
alkB	6	6	1.12	ST4-74	2360197	2360847	-
ada	21	11	1.90	ST4-74	2360850	2361911	-
apbE	7	8	0.81	ST4-74	2361992	2363044	-
ompC	328	443	0.74	ST4-74	2363159	2364127	-
MicF	295	201	1.47	ST4-74	2364629	2364721	+
voiN	35	36	0.99	ST4-74	2365024	2367693	+
rcsB	60	60	1.01	ST4-74	2367710	2368360	+
rcsC	25	23	1.08	ST4-74	2368463	2371309	-
gvrA	62	63	0.98	ST4-74	2371427	2374063	-
STM2273	11	9	1.20	ST4-74	2374473	2375675	-
STM2274	3	3	1.29	ST4-74	2375690	2377015	_
STM2275	9	11	0.78	ST4-74	2377254	2377949	+
uhiG	72	61	1.17	ST4-74	2378032	2378760	+
nrdA	29	25	1 15	ST4-74	2379116	2381401	+
nrdB	21	22	0.95	ST4-74	2381514	2382644	+
vfaE	15	20	0.72	ST4-74	2382644	2382898	+
STM2280	14	14	0.99	ST4-74	2382900	2384090	-
STM2281	10	10	1.05	ST4-74	2384252	2385130	+
glnQ	315	531	0.59	ST4-74	2385246	2386316	-
8Φ2 σInT	345	527	0.66	ST4-74	2386321	2387679	_
glp1 glnA	70	177	0.00	ST4-74	2387952	2389580	+
olnR	40	111	0.36	ST4-74	2389570	2390829	+
glpD glnC	64	144	0.50	ST4-74	2390826	2392016	+
SrP 1 2	19	6	3 44	ST4-74	2392019	2392469	_
ssel	276	43	6 41	ST4-74	2392511	2393464	+
STM2288	28	24	1 1 5	ST4-74	2393574	2393750	_
STM2289	20	7	1.13	ST4-74	2393756	2394559	_
vfaV	, 8	8	1.02	ST4-74	2394585	2395874	_
yfa. vfaW	8	6	1.02	ST4-74	2395930	2397147	_
yfarr vfa X	4	4	1.42	ST4_74	2395550	2397931	_
<i>yjuX</i> STM2293	- 21	19	1.07	ST4-74	2398181	2399377	_
vfa7	31	29	1.15	ST4_74	2390101	2400058	_
yfaQ	58	2) 70	0.83	ST4-74	2377472	2400038	+
yju0 ais	50	69	0.85	ST4_74	2400515	2400758	_
uis vfbF	162	201	0.85	ST4-74	2400785	2401388	-
yjon nmrF	70	100	0.00	ST4-74	2401009	2402020	, +
víhG	/9	7/	0.72	ST4-74 ST4-74	2402029	2405012	' +
<i>yju</i> u STM2200	49	14 67	0.05	SIH-/H ST/ 7/	2703009 2105700	2703/91 2106697	' +
31 W12300 armT	43	67	0.03	ST4-74 ST/ 7/	2403700	2400007	т +
STM2202	49	51	0.75	SIH-/H ST/ 7/	2700004	2700330	' +
STM2302	33 14	21	0.04	ST4-74	2400403	2400002	т _
511V123U3	10	23 1210	1.00	S14-/4 ST4 74	240002	2409039 2400201	Ŧ
piniD	1338	1210	1.29	514-/4	∠ + 07034	ム オ リアムア1	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
menE	8	13	0.61	ST4-74	2409389	2410756	-
menC	7	12	0.61	ST4-74	2410753	2411715	-
menB	9	18	0.50	ST4-74	2411715	2412572	-
yfbB	10	18	0.55	ST4-74	2412587	2413345	-
menD	6	19	0.33	ST4-74	2413342	2415012	-
menF	16	17	0.96	ST4-74	2415098	2416393	-
elaB	332	242	1.37	ST4-74	2416494	2416805	-
elaA	20	19	1.05	ST4-74	2416854	2417315	-
elaC	18	16	1.12	ST4-74	2417376	2418293	+
STM2314	41	119	0.35	ST4-74	2418359	2419360	+
yfbK	6	6	1.11	ST4-74	2419401	2421182	-
nuoN	29	72	0.41	ST4-74	2422070	2423527	-
nuoM	37	93	0.39	ST4-74	2423534	2425063	-
nuoL	43	97	0.44	ST4-74	2425377	2427218	-
nuoK	26	64	0.41	ST4-74	2427215	2427517	-
nuoJ	29	73	0.39	ST4-74	2427514	2428068	-
nuoI	45	100	0.45	ST4-74	2428079	2428621	-
nuoH	34	77	0.44	ST4-74	2428636	2429613	-
nuoG	33	71	0.46	ST4-74	2429610	2432336	-
nuoF	22	47	0.47	ST4-74	2432367	2433704	-
nuoE	31	74	0.43	ST4-74	2433701	2434201	-
nuoC	35	72	0.48	ST4-74	2434204	2436006	-
nuoB	37	74	0.50	ST4-74	2436093	2436755	_
nuoA	84	175	0.48	ST4-74	2436771	2437214	-
STM2329	20	15	1.30	ST4-74	2437609	2437761	-
STnc1550	142	223	0.64	ST4-74	2437665	2437806	+
lrhA	55	48	1.13	ST4-74	2437841	2438779	_
vfbO	15	19	0.77	ST4-74	2439711	2440925	+
STM2332	14	16	0.90	ST4-74	2441019	2441618	+
vfbS	20	25	0.79	ST4-74	2441710	2443536	_
vfbT	37	49	0.75	ST4-74	2443613	2444290	_
vfhU	85	122	0.69	ST4-74	2444283	2444777	-
STM2336	65	76	0.85	ST4-74	2444860	2445315	-
ackA	45	117	0.39	ST4-74	2445655	2446857	+
nta	14	44	0.33	ST4-74	2446934	2449078	+
STnc1560	69	381	0.18	ST4-74	2449075	2449183	+
STnc3730	122	63	1 93	ST4-74	2449087	2449281	-
vfcC	5	14	0.35	ST4-74	2449296	2450816	+
STM2340	11	12	0.87	ST4-74	2450865	2451818	_
STM2341	4	6	0.67	ST4-74	2451811	2452641	-
STM2342	7	11	0.67	ST4-74	2452638	2454029	_
STM2343	3	7	0.07	ST4-74	2454050	2454322	-
STM2344	19	20	0.93	ST4-74	2454403	2454846	_
STM2345	16	19	0.93	ST4-74	2455099	2456118	+
STM2346	68	66	1.04	ST4_74	2456124	2456678	-
vfcE	87	81	1.07	ST4_74	2456735	2457286	-
vfcF	34	29	1.07	ST4_74	2457342	2457986	_
vfcG	14	2) 7	2 00	ST4_74	2458129	2458776	+
vfcH	24	20	1 25	ST4_74	2458902	2459795	+
STnc3740	176	120	1.25	ST4_74	2459768	2459846	+
hisP	24	2.7	0.90	ST4-74	2459847	2460623	_

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
hisM	25	30	0.85	ST4-74	2460634	2461341	-
hisQ	34	42	0.82	ST4-74	2461338	2462024	-
hisJ	78	100	0.78	ST4-74	2462207	2462989	-
argT	20	19	1.05	ST4-74	2463227	2464009	-
ubiX	46	37	1.23	ST4-74	2464298	2464867	-
STM2357	22	22	1.00	ST4-74	2464894	2466300	-
STM2358	11	9	1.24	ST4-74	2466364	2467467	-
STM2359	6	6	0.94	ST4-74	2467469	2468890	-
STM2360	4	3	1.22	ST4-74	2468981	2470378	-
STM2361	11	10	1.06	ST4-74	2470589	2472016	+
purF	75	87	0.86	ST4-74	2472052	2473569	-
cvpA	196	270	0.72	ST4-74	2473607	2474095	-
dedD	71	73	0.97	ST4-74	2474406	2475080	-
folC	40	44	0.90	ST4-74	2475070	2476338	-
accD	118	117	1.01	ST4-74	2476406	2477320	-
dedA	33	31	1.06	ST4-74	2477470	2478129	-
truA	49	47	1.04	ST4-74	2478178	2478990	-
usg	20	22	0.90	ST4-74	2478990	2480003	-
pdxB	34	32	1.05	ST4-74	2480071	2481207	-
div	6	6	0.88	ST4-74	2481311	2482312	+
STM2372	16	19	0.81	ST4-74	2482309	2483487	-
STM2373	5	4	1.23	ST4-74	2483667	2484041	-
STM2374	5	4	1.34	ST4-74	2484214	2484462	+
STM2375	2	2	1.10	ST4-74	2484631	2484999	+
STM2376	1	1	0.54	ST4-74	2484999	2485517	+
STM2377	13	12	1.03	ST4-74	2485584	2486240	-
fabB	155	152	1.02	ST4-74	2486338	2487552	-
mnmC	27	30	0.90	ST4-74	2487652	2489712	+
vfcL	77	66	1.16	ST4-74	2489764	2490039	-
vfcM	20	20	1.03	ST4-74	2490072	2490620	-
vfcA	10	12	0.85	ST4-74	2490620	2491429	-
mepA	11	13	0.88	ST4-74	2491429	2492253	-
aroC	18	21	0.89	ST4-74	2492257	2493342	-
vfcB	31	30	1.02	ST4-74	2493378	2494310	-
vfcN	24	20	1.23	ST4-74	2494476	2495027	+
sixA	156	143	1.09	ST4-74	2495127	2495612	-
fadJ	29	20	1.44	ST4-74	2495821	2497968	-
fadI	5	5	0.91	ST4-74	2497968	2499278	-
vfcZ	78	185	0.42	ST4-74	2499456	2499740	-
fadL	22	24	0.93	ST4-74	2500105	2501418	+
vacJ	92	84	1.10	ST4-74	2501479	2502234	-
vfdC	24	13	1.82	ST4-74	2502523	2503464	+
STnc3750	128	54	2.36	ST4-74	2503726	2503803	-
pgtE	47	23	2.00	ST4-74	2503771	2504709	-
pgtA	9	10	0.87	ST4-74	2504977	2506224	-
pgtB	9	12	0.76	ST4-74	2506214	2508220	-
pgtC	12	9	1.30	ST4-74	2508217	2509410	-
pgtP	11	8	1.33	ST4-74	2509846	2511237	+
STM2400	93	85	1.09	ST4-74	2511513	2511755	-
lpxP	7	6	1.24	ST4-74	2512277	2513197	+
tpke70	6	3	2.25	ST4-74	2513324	2513722	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ypdK	106	85	1.25	ST4-74	2513600	2513671	+
yfdZ	45	36	1.27	ST4-74	2513721	2514959	-
STnc3760	57	55	1.03	ST4-74	2515508	2515633	+
glk	67	66	1.02	ST4-74	2515680	2516645	-
STM2404	8	8	1.04	ST4-74	2516849	2518084	+
STM2405	3	3	1.01	ST4-74	2518104	2519756	-
STM2406	9	6	1.52	ST4-74	2519936	2520934	+
vpeC	20	14	1.42	ST4-74	2521048	2521374	+
mntH	9	9	0.99	ST4-74	2521435	2522676	_
nupC	40	38	1.05	ST4-74	2523019	2524221	+
vfeA	15	17	0.93	ST4-74	2524274	2526463	_
vfeC	151	152	0.99	ST4-74	2527069	2527431	+
vfeD	39	55	0.71	ST4-74	2527433	2527825	+
olt X	40	40	1.00	ST4-74	2527879	2529294	_
yan R	8	6	1.00	ST4_74	2527079	2530994	_
SI 1344 2383	7	7	1.51	ST4-74	2531046	2531204	_
SL1344_2303	13	10	1.02	ST4-74	2531040	2532510	-
ларБ flbAb	13	10	0.47	ST4-74	2531205	2532519	-
JINAU	4	ל ד	1.21	ST4-74	2532574	2555407	-
yjen	0 5	/	1.21	S14-74	2353003	2534424	Ŧ
yjek	5	3	0.88	S14-74	2534480	2535412	-
yjeH	19	16	1.15	S14-74	2535502	2536500	+
S11V12426	14	13	1.05	S14-74	2536497	2536724	-
lig	13	13	0.95	S14-74	2536/17	2538732	-
zipA	148	151	0.98	ST4-74	2538804	2539790	-
cysZ	19	18	1.06	ST4-74	2540022	2540783	+
cysK	280	325	0.86	ST4-74	2540947	2541918	+
ptsH	248	389	0.64	ST4-74	2542302	2542559	+
ptsI	159	212	0.75	ST4-74	2542608	2544335	+
Crr	292	322	0.91	ST4-74	2544376	2544885	+
STM2434	5	7	0.79	ST4-74	2545034	2545273	-
pdxK	9	8	1.10	ST4-74	2545270	2546136	-
ptsJ	4	4	1.00	ST4-74	2546219	2547511	+
yfeJ	3	3	0.76	ST4-74	2547526	2548245	+
yfeK	7	9	0.81	ST4-74	2548304	2548684	+
yfeL	42	29	1.47	ST4-74	2548697	2549236	+
cysM	30	32	0.94	ST4-74	2549367	2550278	-
cysA	66	77	0.86	ST4-74	2550346	2551443	-
cysW	108	128	0.84	ST4-74	2551433	2552308	-
cysU	106	121	0.88	ST4-74	2552308	2553141	-
cysP	108	123	0.88	ST4-74	2553141	2554157	-
ucpA	67	82	0.81	ST4-74	2554315	2555106	-
STM2446	18	47	0.37	ST4-74	2555344	2556243	-
vfeY	16	19	0.86	ST4-74	2556338	2556913	-
vfeZ	20	17	1.17	ST4-74	2556975	2557424	_
STM2449	58	64	0.90	ST4-74	2557411	2557836	_
ami A	22	17	1 33	ST4-74	2558049	2558918	+
hemF	6	6	1.55	ST4_74	2558921	2559820	+
STM2452	11	9	1.04	ST4-74	2559841	2560170	+
STM2452	7	6	1.27	ST4-74	2555041	2561576	+
011112-155 011tR	77	6	1.10	ST4-74	2561776	2561570	-
outK	, Л	4	1.1/	STA 74	2567876	2562270	-
eutr	4	4	0.62	514-/4	23020/0	2303370	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
eutL	11	10	1.12	ST4-74	2563383	2564042	-
eutC	2	2	1.45	ST4-74	2564052	2564948	-
eutB	1	2	0.66	ST4-74	2564967	2566328	-
eutA	26	28	0.93	ST4-74	2566340	2567743	-
eutH	8	8	0.98	ST4-74	2567740	2568966	-
eutG	1	2	0.66	ST4-74	2569086	2570273	-
eutJ	2	1	1.10	ST4-74	2570263	2571102	-
eutE	2	2	1.43	ST4-74	2571113	2572516	-
eutN	3	3	0.97	ST4-74	2572528	2572827	-
eutM	4	2	2.17	ST4-74	2572928	2573218	-
eutD	1	1	0.63	ST4-74	2573259	2574275	-
eutT	1	1	1.50	ST4-74	2574272	2575075	-
eutO	4	5	0.72	ST4-74	2575072	2575761	_
eutP	1	1	0.49	ST4-74	2575739	2576218	-
eutS	2	- 1	1.04	ST4-74	2576231	2576566	-
tnnA 1h	244	250	0.97	ST4-74	2577047	2577505	-
maeR	17	26	0.66	ST4-74	2577695	2579974	-
tal	29	19	1 49	ST4-74	2580246	2581196	+
tktB	17	13	1 31	ST4-74	2581216	2583216	+
STM2475	101	108	0.94	ST4-74	2583279	2583509	_
vnfG	9	5	1 78	ST4-74	2583637	2584680	_
yfj0 vffH	25	20	1.70	ST4-74	2584805	2585380	-
STM2478	17	16	1.03	ST4-74	2585584	2586882	+
011112-170 apg 4	3	10	0.25	ST4_74	2587331	2589292	_
narO	5	7	0.25	ST4_74	2589478	2507272	+
acrD	6	6	1.04	ST4-74	2507470	2594476	+
vnfM	1269	780	1.04	ST4-74	2591505	2594637	-
vffR	21	24	0.86	ST4-74	2595050	2595406	+
yjj D danF	25	21	1.20	ST4-74	2595050	2596537	+
STM2484	50	36	1.20	ST4_74	2596565	2596765	+
vnfl	8	8	1.40	ST4_74	2596505	2598810	_
<i>ypj1</i> STM2486	30	31	1.00	ST4-74	2590792	2590610	-
burC	40	78	0.52	ST4-74	2590820	2600533	
purC nlnB	40	78 01	0.52	ST4-74 ST4-74	2599820	2600555	-
dan 4	168	178	0.91	ST4-74	2601759	2602637	-
acy P	108	05	0.94	ST4-74 ST4-74	2602783	2602037	- +
gcvn hen	85 70	95 87	0.90	ST4-74	2602783	2003333	т Т
<i>UCP</i> STM2402	/0	82 7	0.85	ST4-74	2603333	2603823	I
SIW12492	30	24	0.89	ST4-74	2003672	2605470	-
perm STM2404	30	34 27	0.00	ST4-74	2605687	2607150	- _
31112494	20	21	1.03	ST4-74	2607100	2607130	т Т
yjgD vfaF	52	48	1.00	ST4-74 ST4-74	2607576	2608301	I
yjgL	52	40	0.52	ST4-74	2608370	2600661	-
uruA	11 54	21	0.55	S14-74	2008572	2009001	-
upp murM	54 76	00 106	0.02	ST4-74	2009749	2010373	-
purM	70	100	0.72	S14-74 ST4 74	2010774	2611620	
puriv	25	75	0.72	S14-74	2011620	2012404	
ррк	55 15	52 15	1.10	ST4-74 ST4-74	2012033	2014/19	+ +
<i>ррл</i> STM2502	13	10	0.93	ST4-74	2014/24	2010203	Г
ST1V123U3	/	18	0.42	S14-/4	2010301	2010314	-
ST1V123U3	4) 160	0.82	S14-/4	2018819	20190/9 2610110	-
STM2500	3/8	409	0.81	514-/4 ST4 74	201892/	2019118 2610000	+
STM2308	23	20	1.23	514-/4	2019039	2019988	Ŧ

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM2509	3	3	0.81	ST4-74	2620008	2620364	-
guaA	23	30	0.76	ST4-74	2620521	2622098	-
guaB	34	36	0.94	ST4-74	2622168	2623634	-
xseA	32	20	1.62	ST4-74	2623795	2625144	+
shdA	4	3	1.16	ST4-74	2625306	2631425	-
ratB	6	5	1.04	ST4-74	2632119	2639425	-
ratA	10	7	1.39	ST4-74	2639591	2645188	-
sinI	3	3	1.18	ST4-74	2645308	2646267	-
sinH	2	2	1.02	ST4-74	2646325	2648517	-
yfgJ	23	25	0.92	ST4-74	2648863	2649084	-
engA	21	16	1.30	ST4-74	2649173	2650645	-
yfgL	110	96	1.14	ST4-74	2650764	2651942	-
yfgM	51	51	0.99	ST4-74	2651953	2652573	-
hisS	47	48	0.99	ST4-74	2652587	2653861	-
gcpE	40	42	0.94	ST4-74	2653972	2655090	-
yfgA	57	57	1.00	ST4-74	2655117	2656121	-
yfgB	18	20	0.92	ST4-74	2656413	2657579	-
ndk	98	103	0.95	ST4-74	2657786	2658217	-
STM2527	2	5	0.39	ST4-74	2658338	2659201	-
STM2528	5	11	0.43	ST4-74	2659201	2660010	-
STM2529	2	7	0.27	ST4-74	2660003	2660632	-
STM2530	2	8	0.30	ST4-74	2660629	2663007	-
pbpC	4	5	0.71	ST4-74	2663163	2665478	-
STM2532	20	24	0.85	ST4-74	2665479	2670413	-
STM2533	42	35	1.19	ST4-74	2670622	2671464	+
STM2534	12	9	1.26	ST4-74	2671711	2672379	+
STnc2070	1487	1725	0.86	ST4-74	2672469	2672567	-
RyfA	169	315	0.54	ST4-74	2672651	2672944	+
sseBb	7	10	0.65	ST4-74	2672948	2673733	-
рерВ	11	15	0.70	ST4-74	2673834	2675117	-
yfhJ	46	57	0.81	ST4-74	2675364	2675564	-
fdx	36	50	0.71	ST4-74	2675576	2675911	-
hscA	18	29	0.61	ST4-74	2675913	2677763	-
hscB	25	32	0.80	ST4-74	2677776	2678291	-
iscA	110	137	0.80	ST4-74	2678487	2678810	-
nifU	70	85	0.82	ST4-74	2678839	2679225	-
iscS	49	69	0.71	ST4-74	2679253	2680467	-
yfhP	72	86	0.84	ST4-74	2680648	2681142	-
STM2545	160	119	1.35	ST4-74	2681302	2682033	-
suhB	132	105	1.25	ST4-74	2682152	2682955	+
STM2547	5	5	1.08	ST4-74	2683100	2683978	+
asrA	4	6	0.67	ST4-74	2684160	2685203	+
asrB	3	3	0.99	ST4-74	2685207	2686025	+
asrC	4	4	0.99	ST4-74	2686036	2687049	+
STM2551	13	14	0.97	ST4-74	2687050	2688036	-
STM2552	13	11	1.21	ST4-74	2688027	2688665	-
csiE	30	19	1.62	ST4-74	2688791	2690068	+
hcaT	19	19	0.97	ST4-74	2690063	2691202	-
glyA	142	178	0.80	ST4-74	2691398	2692651	-
hmpA	6	6	1.06	ST4-74	2692976	2694166	+
cadC	39	28	1.37	ST4-74	2694348	2695892	+

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
cadA11111.04ST4-7426977302699811+yjdL771.05ST4-7426998672701327+glnB1401480.94ST4-7427013762701714-yfhA14180.79ST4-7427017912703128-yfhG26280.91ST4-7427031252703889-yfhK38341.11ST4-7427038912705333-
yjdL771.05ST4-7426998672701327+glnB1401480.94ST4-7427013762701714-yfhA14180.79ST4-7427017912703128-yfhG26280.91ST4-7427031252703889-yfhK38341.11ST4-7427038912705333-
glnB1401480.94ST4-7427013762701714-yfhA14180.79ST4-7427017912703128-yfhG26280.91ST4-7427031252703889-yfhK38341.11ST4-7427038912705333-
yfhA14180.79ST4-7427017912703128-yfhG26280.91ST4-7427031252703889-yfhK38341.11ST4-7427038912705333-
yfhG26280.91ST4-7427031252703889-yfhK38341.11ST4-7427038912705333-
yfhK 38 34 1.11 ST4-74 2703891 2705333 -
<i>GlmY</i> 8870 10575 0.84 ST4-74 2705381 2705564 -
purG 19 36 0.52 ST4-74 2705971 2709858 -
<i>yfhD</i> 34 22 1.55 ST4-74 2710114 2711658 +
<i>vfhC</i> 26 23 1.16 ST4-74 2711709 2712260 -
<i>yfhB</i> 25 22 1.11 ST4-74 2712285 2712920 -
STM2570 14 14 0.96 ST4-74 2712924 2714285 -
<i>murO</i> 6 8 0.77 ST4-74 2714296 2715189 -
vfhH 5 5 0.99 ST4-74 2715305 2716153 +
STM2573 11 11 0.97 ST4-74 2716192 2717058 -
STM2574 4 3 1.46 ST4-74 2717131 2718327 -
STM2575 7 6 1.19 ST4-74 2718443 2719369 +
<i>vfhL</i> 115 69 1.67 ST4-74 2719407 2719667 +
acpS 17 22 0.75 ST4-74 2719779 2720159 -
ndxJ 13 16 0.81 ST4-74 2720159 2720890 -
recQ 30 34 0.90 ST4-74 2720902 2721630 -
era 34 39 0.86 ST4-74 2721642 2722547 -
rnc 81 66 1.23 ST4-74 2722544 2723146 -
<i>lepB</i> 53 60 0.89 ST4-74 2723498 2724472 -
lenA 50 46 1.10 ST4-74 2724489 2726288 -
gogB 55 38 1.42 ST4-74 2726744 2728186 +
STM2585 357 85 4.21 ST4-74 2729142 2729588 +
STnc1380 538 842 0.64 ST4-74 2729634 2729701 -
SL1344 2548 28 15 1.85 ST4-74 2730253 2730318 -
STM2585A 1233 401 3.08 ST4-74 2730700 2730927 +
STM2586 1 1 0.63 ST4-74 2731024 2731602 -
STM2587 1 1 1.37 ST4-74 2731592 2732416 -
STM2588 3 3 0.91 ST4-74 2732413 2734785 -
SL1344 2552A 2 2 0.72 ST4-74 2734839 2735081 -
STM2589 3 3 0.96 ST4-74 2735120 2738482 -
STM2590 3 3 1.20 ST4-74 2738544 2739191 -
STM2591 3 3 1.00 ST4-74 2739089 2739826 -
STM2592 7 7 1.15 ST4-74 2739833 2740534 -
STM2593 9 9 1.02 ST4-74 2740541 2740870 -
STM2594 4 3 1.07 ST4-74 2740873 2743968 -
STnc3770 84 66 1.27 ST4-74 2743288 2743373 +
STM2595 3 1 2.05 ST4-74 2743940 2744257 -
STM2596 1 1 0.72 ST4-74 2744275 2744670 -
STM2597 5 5 1.06 ST4-74 2744721 2745467 -
STM2598 5 6 0.77 ST4-74 2745475 2745876 -
ginA 128 169 0.76 ST4-74 2745865 2747115 +
STM2600 3 3 0.91 ST4-74 2747164 2747742 -
STM2601 6 4 148 ST4-74 2747770 2748153 -
STM2602 5 6 0.95 ST4-74 2748164 2748523 -
STM2603 5 5 0.98 ST4-74 2748581 2749609 -

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM2604	2	2	0.91	ST4-74	2749664	2750011	-
STM2605	2	1	1.22	ST4-74	2750024	2751472	-
STM2606	3	3	1.11	ST4-74	2751510	2753090	-
STM2607	3	3	1.18	ST4-74	2753087	2753290	-
STM2608	2	2	1.01	ST4-74	2753274	2755205	-
STM2609	2	1	1.20	ST4-74	2755177	2755722	-
STM2610	41	35	1.18	ST4-74	2756009	2756410	+
STnc1920	362	175	2.08	ST4-74	2756549	2756646	+
STM2611	2	2	1.17	ST4-74	2756646	2757119	-
STM2612	8	6	1.47	ST4-74	2757116	2757568	-
STM2614	38	28	1.34	ST4-74	2758157	2758843	+
IsrI	84	36	2.38	ST4-74	2759018	2759265	-
STnc2080	1089	811	1.34	ST4-74	2759410	2759518	-
IsrJ	1020	860	1.19	ST4-74	2759646	2759717	-
STM2616	12	11	1.16	ST4-74	2759753	2760316	-
STnc1160	26385	28610	0.92	ST4-74	2760372	2760451	-
IsrK	604	775	0.78	ST4-74	2760480	2760556	-
STM2617	2	3	0.80	ST4-74	2760589	2761266	-
STM2618	1	1	1.25	ST4-74	2761263	2761403	-
STM2619	2	1	1.11	ST4-74	2761400	2762011	-
STM2620	23	28	0.84	ST4-74	2762220	2762822	_
SL1344 2583	60	53	1.12	ST4-74	2762857	2763105	_
STM2621	53	62	0.85	ST4-74	2763222	2763455	_
SL1344 2585	267	194	1.37	ST4-74	2763714	2763905	_
SL1344_2586	4	4	0.99	ST4-74	2764017	2764298	_
SL1344_2587	3	4	0.68	ST4-74	2764291	2764944	_
SL1344_2588	3	2	1.31	ST4-74	2764947	2765417	_
SL1344 2589	2	2	1.04	ST4-74	2765419	2766084	-
gnP	2	2	1.04	ST4-74	2766099	2766791	_
gn()	1	2	0.81	ST4-74	2766788	2767693	_
STnc1390	919	1156	0.80	ST4-74	2767704	2767767	+
clla	2	2	0.73	ST4-74	2767785	2768207	_
SL1344 2593	353	348	1.01	ST4-74	2768450	2768833	+
SL1344_2594	406	393	1.03	ST4-74	2768985	2770070	+
SL1344_2595	134	104	1.29	ST4-74	2770178	2770384	_
STM2629	2	2	0.92	ST4-74	2770636	2770791	+
STnc1400	536	866	0.62	ST4-74	2770951	2771060	_
recEb	2	2	0.93	ST4-74	2771095	2774295	+
STM2633	3	3	0.79	ST4-74	2774306	2775415	+
STM2634	3	2	1.40	ST4-74	2775458	2775697	+
STM2635	1	3	0.33	ST4-74	2775738	2776022	+
STM2636	7	6	1.20	ST4-74	2776000	2777229	_
rseC	17	19	0.89	ST4-74	2777727	2778206	_
rseB	39	39	1.00	ST4-74	2778203	2779159	-
rseA	128	124	1.03	ST4-74	2779159	2779809	-
rpoE	168	148	1.05	ST4-74	2779841	2780416	_
nadB	11	12	0.91	ST4-74	2780841	2782463	+
vfiC	23	22	1 04	ST4-74	2782448	2783185	_
srmB	31	27	1 12	ST4-74	2783316	2784650	+
vfiE	16	13	1.12	ST4-74	2784668	2785567	_
vfiK	10	6	1.75	ST4-74	2785670	2786257	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yfiD	26	905	0.03	ST4-74	2786319	2786702	-
ung	57	54	1.05	ST4-74	2787021	2787710	+
yfiF	13	14	0.91	ST4-74	2787826	2788863	-
trxC	97	90	1.09	ST4-74	2789067	2789486	+
yfiP	26	24	1.09	ST4-74	2789559	2790239	+
yfiQ	45	40	1.13	ST4-74	2790293	2792953	+
pssA	52	48	1.10	ST4-74	2793068	2794423	+
yfiM	12	12	0.96	ST4-74	2794468	2794791	+
kgtP	14	10	1.38	ST4-74	2794788	2796089	-
STM2655	24	11	2.06	ST4-74	2796193	2796648	-
clpB	425	447	0.95	ST4-74	2802529	2805102	-
yfiH	61	45	1.35	ST4-74	2805232	2805963	-
rluD	180	119	1.50	ST4-74	2805960	2806940	-
<i>yfiO</i>	131	123	1.07	ST4-74	2807072	2807809	+
STnc3160	112	133	0.84	ST4-74	2807810	2807900	-
yfiA	4097	4054	1.01	ST4-74	2808081	2808419	+
STnc2090	17527	9266	1.89	ST4-74	2808306	2808464	+
sRNA3	1428	1110	1.29	ST4-74	2808504	2808645	+
pheA	16	23	0.72	ST4-74	2808670	2809830	+
STM2668	14	10	1.39	ST4-74	2809791	2810699	-
STnc3790	53	30	1.80	ST4-74	2810663	2810737	+
tvrA	37	52	0.70	ST4-74	2810757	2811824	-
aroF	72	110	0.66	ST4-74	2811888	2812958	-
vfiR	30	23	1.29	ST4-74	2813398	2813916	+
vfiN	7	8	0.93	ST4-74	2813909	2815129	+
int	55	53	1.04	ST4-74	2815382	2816431	-
SL1344 2632	67	78	0.86	ST4-74	2816456	2816794	-
SL1344 2633	57	54	1.06	ST4-74	2816803	2817648	-
SL1344 2634	1	1	1.20	ST4-74	2817762	2818115	+
cIIb	1	1	1.60	ST4-74	2818166	2818675	+
STM2735	1	1	0.98	ST4-74	2818683	2818883	+
SL1344 2637	0	1	0.41	ST4-74	2818847	2819185	+
STM2732	1	0	2.18	ST4-74	2819253	2819480	+
SL1344 2639	1	2	0.65	ST4-74	2819480	2819704	+
SL1344 2640	1	0	2.00	ST4-74	2819701	2820222	+
SL1344 2641	2	2	1.31	ST4-74	2820291	2823074	+
 gpF	13	7	1.69	ST4-74	2823088	2823573	+
gpD	4	5	0.90	ST4-74	2823570	2824736	+
STnc3800	112	68	1.65	ST4-74	2824672	2825000	-
SL1344 2644	62	68	0.90	ST4-74	2824931	2825620	+
gpB	113	91	1.24	ST4-74	2825697	2825915	+
rpl19	351	404	0.87	ST4-74	2826061	2826408	-
trmD	155	227	0.69	ST4-74	2826449	2827216	_
rimM	173	2.52	0.69	ST4-74	2827261	2827809	-
rns16	964	1129	0.85	ST4-74	2827828	2828076	-
ffh	37	38	0.96	ST4-74	2828390	2829751	-
corE	57	49	1 16	ST4-74	2829917	2830708	+
corB	24	19	1.23	ST4-74	2830773	2832014	+
STnc4230	155	102	1.52	ST4-74	2831934	2832038	+
STM2680	17	17	1.02	ST4-74	2832135	2832740	+
grpE	242	259	0.93	ST4-74	2832775	2833365	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ppnK	19	18	1.09	ST4-74	2833488	2834366	+
recN	9	8	1.05	ST4-74	2834452	2836113	+
smpA	175	182	0.96	ST4-74	2836262	2836600	+
rnfH	52	44	1.18	ST4-74	2836766	2837056	-
yfjG	131	120	1.08	ST4-74	2837046	2837501	-
smpB	125	130	0.96	ST4-74	2837672	2838154	+
bapA	3	2	1.43	ST4-74	2838768	2850242	+
IsrL	31	29	1.07	ST4-74	2850244	2850588	-
STM2690	2	1	1.39	ST4-74	2850307	2851716	+
STnc3070	405	311	1.30	ST4-74	2851166	2851225	-
STM2691	3	2	1.76	ST4-74	2851713	2853893	+
STM2692	3	2	1.54	ST4-74	2853901	2855064	+
STM2694	12	11	1.05	ST4-74	2855616	2855834	-
STM2695	1	1	0.96	ST4-74	2855903	2857003	-
gpU	2	1	1.99	ST4-74	2857000	2857485	-
STM2697	2	2	0.97	ST4-74	2857482	2860289	-
gpE'	1	0	1.85	ST4-74	2860282	2860401	-
gpE	1	1	1.03	ST4-74	2860416	2860718	-
STM2700	2	2	1.21	ST4-74	2860773	2861288	-
STM2701	2	2	0.82	ST4-74	2861298	2862470	-
STM2702	6	5	1.15	ST4-74	2862587	2862790	-
sopE	49	72	0.67	ST4-74	2863004	2863726	+
STM2704	7	6	1.05	ST4-74	2863923	2864330	-
STM2706	3	2	1.14	ST4-74	2864337	2865956	-
gpI	1	2	0.51	ST4-74	2865953	2866558	-
gpJ	2	2	1.26	ST4-74	2866551	2867459	-
gpW	1	2	0.47	ST4-74	2867446	2867805	-
STM2710	3	2	1.21	ST4-74	2867802	2868380	-
STM2711	0	0	0.65	ST4-74	2868449	2868895	-
STM2712	1	1	1.15	ST4-74	2868888	2869319	-
STM2713	1	1	0.75	ST4-74	2869282	2869485	-
STM2714	1	0	1.09	ST4-74	2869415	2869843	-
SL1344 2685	4	3	1.31	ST4-74	2869840	2870214	-
nucD2	1	1	0.87	ST4-74	2870219	2870689	-
nucE2	3	3	0.99	ST4-74	2870709	2870924	-
STM2717	2	2	0.92	ST4-74	2870928	2871131	-
STM2718	2	1	1.54	ST4-74	2871131	2871595	-
STM2719	1	1	0.71	ST4-74	2871689	2872342	-
STM2720	2	1	1.07	ST4-74	2872346	2873428	-
STM2721	0	0	0.77	ST4-74	2873445	2874278	-
STM2722	1	1	1.51	ST4-74	2874421	2876187	+
STM2723	1	1	1.34	ST4-74	2876187	2877218	+
SL1344 2695	49	80	0.61	ST4-74	2877245	2878222	-
SL1344 2696	239	357	0.67	ST4-74	2878212	2878793	-
SL1344 2697	101	221	0.46	ST4-74	2879070	2879447	-
SL1344 2698	79	225	0.35	ST4-74	2879425	2880480	-
STM2727	10	12	0.82	ST4-74	2880640	2880873	-
STM2728	20	20	1.04	ST4-74	2880885	2881073	-
STM2729	3	3	1.11	ST4-74	2881397	2883640	-
STM2730	3	3	0.96	ST4-74	2883631	2884488	-
STM2731	1	1	1.06	ST4-74	2884485	2884712	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM2733	1	1	0.64	ST4-74	2885007	2885348	-
SL1344_2705	6	4	1.47	ST4-74	2885312	2885608	-
cIIc	1	1	1.25	ST4-74	2885953	2886462	-
apl	0	2	0.28	ST4-74	2886495	2886743	-
cI	27	28	0.97	ST4-74	2886920	2887495	+
STM2739	8	8	0.93	ST4-74	2887497	2888522	+
SL1344_2710	15	17	0.88	ST4-74	2888519	2889730	+
STM2740	9	8	1.15	ST4-74	2890073	2891269	+
SL1344_2713	35	56	0.63	ST4-74	2891273	2892970	-
SL1344_2714	61	102	0.60	ST4-74	2892957	2893190	-
SL1344_2715	65	92	0.70	ST4-74	2893177	2893725	-
SL1344_2716	0	1	0.56	ST4-74	2894442	2895008	-
SL1344_2717	3	2	1.43	ST4-74	2895025	2895267	-
SL1344_2718	2	2	0.95	ST4-74	2895264	2896067	-
SL1344 2719	3847	5429	0.71	ST4-74	2896802	2897353	+
SL1344_2720	1	2	0.62	ST4-74	2897350	2897577	+
SL1344 2721	1	1	1.36	ST4-74	2897574	2897894	+
SL1344_2722	3	3	0.90	ST4-74	2897858	2900242	+
STM2740	16	14	1.16	ST4-74	2900734	2901979	+
STM2741	8	7	1.14	ST4-74	2901981	2902619	+
STM2742	38	35	1.07	ST4-74	2903009	2904202	+
STM2743	50	48	1.03	ST4-74	2904537	2905364	-
STM2744	3	2	1.43	ST4-74	2905815	2906030	+
STM2745	1	1	1.12	ST4-74	2906066	2908135	+
STM2746	74	73	1.01	ST4-74	2908638	2909921	+
STM2747	28	34	0.81	ST4-74	2909966	2910784	+
STM2748	156	153	1.02	ST4-74	2910939	2911229	-
STM2749	4	4	0.82	ST4-74	2911390	2911674	+
STM2750	2	2	0.95	ST4-74	2911787	2912308	+
STM2751	2	3	0.93	ST4-74	2912305	2912679	+
STM2752	2	2	1.10	ST4-74	2912676	2913656	+
STM2753	3	5	0.56	ST4-74	2913667	2914680	+
STM2754	8	10	0.80	ST4-74	2914975	2916177	+
hxlA	3	3	0.96	ST4-74	2916251	2916886	-
hxlB	2	1	2.37	ST4-74	2916910	2917473	-
STM2757	2	2	0.99	ST4-74	2917473	2918315	-
STM2758	2	2	1.30	ST4-74	2918445	2919986	-
STM2759	3	2	1.16	ST4-74	2920209	2921888	+
STM2760	2	1	1.42	ST4-74	2923005	2923880	+
STM2761	7	5	1.38	ST4-74	2924046	2925920	+
STM2762	16	12	1.38	ST4-74	2926180	2927463	-
IsrM	8	3	2.40	ST4-74	2927616	2927944	+
STM2763	24	23	1.06	ST4-74	2928000	2928911	+
STM2764	7	8	0.87	ST4-74	2928907	2929495	-
IsrN	4	2	2.35	ST4-74	2929501	2929643	+
STM2765	15	18	0.84	ST4-74	2929642	2929908	-
STM2766	34	34	0.99	ST4-74	2930361	2930999	-
STM2767	79	77	1.03	ST4-74	2930996	2932978	-
STM2768	8	8	1.02	ST4-74	2933257	2933556	+
STM2769	11	9	1.20	ST4-74	2933553	2934419	+
fljA	7	7	1.08	ST4-74	2935199	2935738	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
fljB	54	218	0.25	ST4-74	2935806	2937326	-
hin	28	20	1.39	ST4-74	2937418	2937990	+
iroB	3	2	1.31	ST4-74	2938953	2940068	+
iroC	3	3	1.01	ST4-74	2940149	2943802	+
iroD	2	1	1.38	ST4-74	2943912	2945156	+
iroE	4	3	1.44	ST4-74	2945188	2946123	+
iroN	4	4	1.12	ST4-74	2946165	2948345	-
pipB2	343	78	4.40	ST4-74	2949378	2950430	-
virK	1248	691	1.81	ST4-74	2950949	2951878	+
mig-14	857	501	1.71	ST4-74	2952171	2953067	+
nixA	31	29	1.06	ST4-74	2953789	2954802	-
tctE	7	11	0.62	ST4-74	2954935	2956350	-
tctD	12	14	0.86	ST4-74	2956337	2957011	-
STM2786	18	25	0.73	ST4-74	2957166	2958143	+
STM2787	7	9	0.69	ST4-74	2958155	2958589	+
STM2788	11	16	0.67	ST4-74	2958600	2960114	+
csiD	8	5	1.77	ST4-74	2960408	2961394	+
vgaF	5	3	1.60	ST4-74	2961420	2962688	+
gabD	3	2	1.63	ST4-74	2962710	2964158	+
gabT	4	3	1.58	ST4-74	2964173	2965456	+
gabP	9	6	1.52	ST4-74	2965586	2966986	+
vgaE	8	7	1.15	ST4-74	2967028	2967705	+
vgaU	383	176	2.19	ST4-74	2967727	2968176	-
vgaE	749	330	2.27	ST4-74	2968276	2968434	-
STM2797	13	12	1.06	ST4-74	2968677	2968916	+
vgaP	8	9	0.91	ST4-74	2968926	2969453	+
stpA	295	336	0.88	ST4-74	2969801	2970202	-
STM2800	100	19	5.26	ST4-74	2970901	2971350	+
vgaC	35	19	1.80	ST4-74	2971385	2971735	-
vgaM	253	157	1.62	ST4-74	2971885	2972223	+
STM2803	9	7	1.24	ST4-74	2972307	2973641	-
STM2804	3	3	1.00	ST4-74	2973730	2974161	+
SL1344 2789	1	1	0.64	ST4-74	2974158	2974334	+
STnc3080	12	9	1.39	ST4-74	2974260	2974404	-
nrdH	16	11	1.48	ST4-74	2974433	2974678	+
nrdI	4	2	1.93	ST4-74	2974675	2975085	+
nrdE	4	2	1.80	ST4-74	2975058	2977202	+
nrdF	12	8	1.37	ST4-74	2977213	2978172	+
proV	67	91	0.73	ST4-74	2978527	2979729	+
proW	30	60	0.51	ST4-74	2979722	2980786	+
proX	28	59	0.48	ST4-74	2980856	2981851	+
STM2812	7	7	0.97	ST4-74	2982016	2983200	+
emrR	56	65	0.87	ST4-74	2983697	2984227	+
emrA	17	16	1.04	ST4-74	2984354	2985526	+
emrB	9	10	0.86	ST4-74	2985543	2987081	+
STM2816	5	5	1.02	ST4-74	2987130	2988500	-
luxS	84	85	0.98	ST4-74	2988846	2989361	-
MicA	6889	4862	1.42	ST4-74	2989429	2989502	+
gshA	2.6	23	1.14	ST4-74	2989511	2991067	-
vaaA	34	35	0.98	ST4-74	2991144	2991569	-
yqaB	73	79	0.92	ST4-74	2991566	2992132	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
csrA	1495	1166	1.28	ST4-74	2993527	2993712	-
alaS	53	63	0.84	ST4-74	2993947	2996577	-
oraA	21	15	1.36	ST4-74	2996813	2997313	-
recA	55	56	0.97	ST4-74	2997430	2998491	-
ygaD	33	33	0.99	ST4-74	2998576	2999073	-
mltB	30	25	1.21	ST4-74	2999551	3000630	-
srlA	3	4	0.64	ST4-74	3000884	3001447	+
srlE	2	3	0.68	ST4-74	3001444	3002415	+
slrB	1	2	0.66	ST4-74	3002427	3002789	+
gutD	4	5	0.78	ST4-74	3002801	3003580	+
gutM	30	25	1.22	ST4-74	3003656	3004015	+
srlR	15	21	0.74	ST4-74	3004213	3004986	+
gutQ	9	14	0.69	ST4-74	3004979	3005944	+
norR	5	4	1.17	ST4-74	3005941	3007461	-
norV	2	3	0.91	ST4-74	3007647	3009086	+
norW	2	2	1.08	ST4-74	3009083	3010216	+
C0664	2	3	0.74	ST4-74	3010214	3010321	+
hydA	6	7	0.80	ST4-74	3010313	3012553	-
hydN	3	5	0.61	ST4-74	3012699	3013244	-
STM2844	3	5	0.64	ST4-74	3013445	3014254	-
hycI	3	5	0.60	ST4-74	3014281	3014751	-
hycH	3	4	0.91	ST4-74	3014744	3015154	-
hycG	3	3	0.90	ST4-74	3015151	3015918	-
hycF	2	4	0.53	ST4-74	3015918	3016460	-
hycE	3	3	0.97	ST4-74	3016470	3018179	-
hycD	3	3	1.02	ST4-74	3018197	3019120	-
hycC	4	5	0.77	ST4-74	3019123	3020949	-
hycB	2	2	0.83	ST4-74	3020949	3021557	-
hycA	2	5	0.37	ST4-74	3021703	3022164	-
STM2854	20	85	0.23	ST4-74	3022374	3022730	+
hypB	8	26	0.31	ST4-74	3022799	3023671	+
hypC	10	26	0.39	ST4-74	3023662	3023934	+
hypD	4	17	0.22	ST4-74	3023934	3025055	+
hypE	7	24	0.30	ST4-74	3025052	3026062	+
fhlA	7	10	0.69	ST4-74	3026281	3028359	+
ygbA	8	9	0.92	ST4-74	3028421	3028765	-
sitA	11	9	1.30	ST4-74	3028947	3029864	+
sitB	9	6	1.54	ST4-74	3029861	3030682	+
sitC	8	6	1.36	ST4-74	3030679	3031539	+
sitD	15	13	1.13	ST4-74	3031530	3032378	+
avrA	53	46	1.14	ST4-74	3032477	3033382	-
sprB	8	12	0.66	ST4-74	3033543	3034298	-
hilC	35	39	0.91	ST4-74	3034683	3035570	-
orgC	84	69	1.22	ST4-74	3035915	3036367	-
orgB	116	90	1.29	ST4-74	3036364	3037044	-
orgA	67	53	1.27	ST4-74	3037001	3037600	-
STnc4240	192	177	1.08	ST4-74	3037101	3037394	+
prgK	20	38	0.53	ST4-74	3037572	3038330	-
prgJ	20	38	0.52	ST4-74	3038327	3038632	-
prgI	19	34	0.54	ST4-74	3038651	3038893	-
STnc3020	18	14	1.33	ST4-74	3038687	3038786	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
prgH	27	42	0.63	ST4-74	3038918	3040096	-
hilD	97	110	0.88	ST4-74	3040412	3041341	+
hilA	8	13	0.62	ST4-74	3042432	3044093	+
iagB	26	32	0.82	ST4-74	3044111	3044593	+
sptP	58	59	0.98	ST4-74	3044647	3046278	-
sicP	102	100	1.02	ST4-74	3046265	3046657	-
iacP	136	111	1.23	ST4-74	3046988	3047236	-
sipA	11	16	0.69	ST4-74	3047255	3049312	-
STnc1410	142	106	1.35	ST4-74	3048830	3049012	+
sipD	8	12	0.67	ST4-74	3049331	3050362	-
sipC	23	42	0.54	ST4-74	3050433	3051662	-
sipB	12	25	0.47	ST4-74	3051690	3053471	-
sicA	38	61	0.62	ST4-74	3053474	3053971	-
spaS	3	6	0.57	ST4-74	3054109	3055179	_
spa8	7	10	0.69	ST4-74	3055166	3055957	_
span	11	19	0.57	ST4-74	3055961	3056221	_
spag snaP	7	12	0.60	ST4-74	3056247	3056921	-
spar spa	6	11	0.57	ST4-74	3056911	3057822	_
inv I	3	7	0.57	ST4-74	3057822	3058832	_
invl	11	18	0.47	ST4_74	3058832	3059275	_
inví invC	5	10	0.56	ST4-74	3050253	3060548	
invC invB	16	27	0.50	ST4-74	3060545	3060952	_
invD	16	27	0.00	ST4-74	3060076	3063033	-
invA invF	10	20	0.03	ST4-74	3063058	3064176	-
invE invG	11	17	0.02	ST4-74	3064173	3065861	-
invG	11	10	0.58	ST4-74	2065858	3066508	-
INVF im II	17	27	0.01	S14-74	2066065	2067408	-
INVE Imr.D	14	1200	0.00	S14-74 ST4 74	2067500	2067570	
INVK GTM2001	1206	1290	0.94	S14-74	3067300	306/3/9	+
STM2901	102	109	0.94	S14-74	3067839	3008288	+
STM2902	21	23	0.91	S14-74	3068273	3068620	Ŧ
STM2903	61	32	1.92	S14-74	3068893	3069219	-
SL1344_2883	2	1	1.10	S14-/4	3069460	3069367	+
STM2904	98	83	1.19	S14-74	3069908	30/0198	+
STM2905	17	15	1.08	S14-74	3070195	3070722	+
STM2906	4	3	1.23	S14-74	30/0/98	30/1012	-
pphB	10	7	1.54	S14-74	30/134/	3072003	+
STM2908	5	3	1.79	ST4-74	30/21/5	3072696	-
mutS	11	14	0.80	ST4-74	3072897	3075422	+
STM2910	5	4	1.21	ST4-74	3075478	3075858	-
STM2911	3	2	1.34	ST4-74	3075855	3077063	-
STM2912	4	4	0.95	ST4-74	3077151	3078083	+
STM2913	6	6	0.97	ST4-74	3078125	3079621	-
STM2914	4	2	1.68	ST4-74	3079618	3080568	-
hyi	2	2	0.99	ST4-74	3080608	3081369	-
ygbL	2	2	1.02	ST4-74	3081374	3082012	-
ygbK	1	1	1.09	ST4-74	3082009	3083271	-
ygbJ	2	3	0.91	ST4-74	3083265	3084188	-
ygbI	15	15	1.03	ST4-74	3084385	3085149	+
STM2920	33	32	1.03	ST4-74	3085168	3085572	-
STM2921	3	2	1.17	ST4-74	3085743	3086336	+
STM2922	2	1	1.45	ST4-74	3086336	3087763	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM2923	2	3	0.89	ST4-74	3087774	3088010	+
rpoS	372	400	0.93	ST4-74	3088055	3089047	-
nlpD	587	602	0.97	ST4-74	3089110	3090243	-
рст	26	29	0.90	ST4-74	3090419	3091045	-
surE	28	30	0.94	ST4-74	3091039	3091800	-
truD	23	25	0.93	ST4-74	3091781	3092830	-
ispF	10	12	0.85	ST4-74	3092827	3093306	-
ispD	12	15	0.77	ST4-74	3093306	3094016	-
ftsB	82	77	1.05	ST4-74	3094035	3094346	-
ygbE	44	39	1.14	ST4-74	3094537	3094893	-
cysC	85	88	0.97	ST4-74	3094911	3095516	-
cysN	63	71	0.88	ST4-74	3095503	3096942	-
cysD	212	219	0.97	ST4-74	3096952	3097860	-
iap	8	6	1.31	ST4-74	3098111	3099157	+
ygbF	9	9	0.99	ST4-74	3100256	3100552	-
STM2938	7	6	1.16	ST4-74	3100549	3101469	-
уgcH	4	3	1.12	ST4-74	3101466	3102116	-
STM2940	3	3	0.82	ST4-74	3102098	3102844	-
yghJ	3	4	0.74	ST4-74	3102855	3103913	-
STM2942	3	4	0.75	ST4-74	3103927	3104487	-
STM2943	2	3	0.84	ST4-74	3104484	3106040	-
ygcB	5	6	0.87	ST4-74	3106052	3108715	-
sopD	9	9	1.00	ST4-74	3109160	3110113	+
STnc3140	679	560	1.21	ST4-74	3109885	3109981	-
cysH	52	59	0.89	ST4-74	3110201	3110935	-
cysI	74	84	0.88	ST4-74	3111011	3112723	-
cysJ	58	63	0.92	ST4-74	3112723	3114522	-
ptpS	15	15	0.99	ST4-74	3114946	3115308	+
STM2950	17	18	0.96	ST4-74	3115396	3116193	-
ygcF	86	68	1.28	ST4-74	3118020	3118691	-
eno	193	301	0.64	ST4-74	3118827	3120125	-
pyrG	122	134	0.91	ST4-74	3120208	3121845	-
mazG	21	20	1.08	ST4-74	3122073	3122873	-
SL1344_2934	1	1	1.24	ST4-74	3123527	3123631	+
SL1344 2935	47	35	1.34	ST4-74	3123641	3123898	-
STM2955	247	180	1.38	ST4-74	3123903	3124178	-
relA	53	57	0.93	ST4-74	3124343	3126577	-
rumA	93	74	1.27	ST4-74	3126629	3127924	-
<i>barA</i>	11	15	0.71	ST4-74	3127982	3130738	+
STM2959	9	7	1.32	ST4-74	3130782	3131924	-
gudD	6	5	1.18	ST4-74	3132002	3133342	-
ygcY	7	5	1.42	ST4-74	3133363	3134703	-
gudT	12	7	1.60	ST4-74	3134700	3136058	-
STM2963	50	57	0.88	ST4-74	3136539	3136988	-
yqcB	21	19	1.08	ST4-74	3137007	3137789	-
yqcC	15	19	0.78	ST4-74	3137789	3138118	-
CsrB	24986	23151	1.08	ST4-74	3138160	3138522	-
syd	76	71	1.07	ST4-74	3138730	3139275	-
queF	24	21	1.10	ST4-74	3139344	3140192	+
ygdH	55	64	0.87	ST4-74	3140305	3141669	+
sdaC	26	17	1.50	ST4-74	3142234	3143523	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
sdaB	13	10	1.37	ST4-74	3143582	3144949	+
exo	15	14	1.09	ST4-74	3145060	3145875	+
<i>fucO</i>	4	4	0.87	ST4-74	3145967	3147115	-
<i>fucA</i>	3	5	0.68	ST4-74	3147132	3147779	-
fucP	3	3	0.89	ST4-74	3148334	3149650	+
fucI	1	2	0.64	ST4-74	3149682	3151457	+
fucK	2	2	0.81	ST4-74	3151558	3152976	+
fucU	2	3	0.91	ST4-74	3152978	3153400	+
fucR	14	21	0.67	ST4-74	3153458	3154168	+
ygdE	34	37	0.90	ST4-74	3154227	3155327	-
ygdD	22	26	0.83	ST4-74	3155320	3155715	-
gcvA	43	34	1.27	ST4-74	3155734	3156651	-
GcvB	2629	204	12.85	ST4-74	3156779	3156979	+
ygdI	1573	801	1.96	ST4-74	3156998	3157225	-
csdA	12	13	0.87	ST4-74	3157418	3158623	+
ygdK	6	8	0.77	ST4-74	3158623	3159066	+
STM2986	4	30	0.13	ST4-74	3159339	3160253	+
ygdL	50	48	1.06	ST4-74	3160305	3161111	-
mltA	58	58	1.01	ST4-74	3161221	3162318	-
amiC	60	56	1.08	ST4-74	3162818	3164071	-
argA	88	139	0.63	ST4-74	3164304	3165635	+
recD	5	6	0.94	ST4-74	3165738	3167573	-
recB	9	11	0.80	ST4-74	3167570	3171115	-
ptr	12	13	0.91	ST4-74	3171108	3173996	-
recC	9	8	1.10	ST4-74	3174174	3177545	-
comQ	8	8	0.99	ST4-74	3177561	3177881	-
comP	4	3	1.11	ST4-74	3177866	3178273	-
comO	5	5	0.90	ST4-74	3178270	3178833	-
comN	4	5	0.89	ST4-74	3178824	3179294	-
thyA	23	21	1.10	ST4-74	3179479	3180273	-
lgt	42	42	1.01	ST4-74	3180280	3181155	-
<i>ptsP</i>	30	31	0.95	ST4-74	3181371	3183617	-
nudH	168	169	0.99	ST4-74	3183630	3184160	-
mutH	29	36	0.81	ST4-74	3184843	3185538	+
vgdQ	47	41	1.16	ST4-74	3185720	3186433	+
STnc3830	58	61	0.96	ST4-74	3186446	3186537	-
ygdR	260	314	0.83	ST4-74	3186603	3186821	+
tas	21	23	0.93	ST4-74	3187012	3188052	+
vgeD	16	17	0.90	ST4-74	3188139	3189341	-
aas	19	19	1.00	ST4-74	3189334	3191493	-
OmrA	192	109	1.77	ST4-74	3191584	3191670	-
OmrB	248	178	1.39	ST4-74	3191785	3191870	-
galR	30	33	0.91	ST4-74	3192086	3193114	+
STM3012	16	17	0.98	ST4-74	3193125	3194147	+
lvsA	27	30	0.90	ST4-74	3194157	3195419	-
lysR	4	5	0.84	ST4-74	3195537	3196472	+
ygeA	41	38	1.08	ST4-74	3196444	3197151	-
araE	6	7	0.78	ST4-74	3197264	3198682	-
kduD	9	10	0.86	ST4-74	3199036	3199797	-
kduI	3	4	0.70	ST4-74	3199854	3200690	-
yqeF	15	16	0.94	ST4-74	3201120	3202298	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM3020	17	21	0.81	ST4-74	3202421	3203284	-
STM3021	18	13	1.41	ST4-74	3203361	3203843	+
STM3022	13	11	1.15	ST4-74	3203985	3205214	+
yohL	49	130	0.38	ST4-74	3205245	3205517	-
yohM	5	28	0.20	ST4-74	3205639	3206475	+
STM3025	5	3	1.64	ST4-74	3206685	3207383	-
STM3025.1N	2	2	0.88	ST4-74	3207430	3207942	-
STM3026	4	4	0.91	ST4-74	3208086	3209162	-
stdC	2	1	1.66	ST4-74	3209159	3209902	-
stdB	2	2	1.01	ST4-74	3209943	3212432	-
stdA	3	2	1.28	ST4-74	3212552	3213262	-
STM3030	35	32	1.09	ST4-74	3213855	3214487	-
STM3031	4	3	1.27	ST4-74	3214534	3215070	-
STnc290	460	501	0.92	ST4-74	3215639	3215717	-
STM3033	84	84	1.01	ST4-74	3215876	3216274	-
STM3034	412	365	1.13	ST4-74	3216274	3216501	-
STM3036	21	9	2.28	ST4-74	3217204	3218010	+
STM3038	46	45	1.01	ST4-74	3218295	3219053	-
IsrO	81	48	1.69	ST4-74	3219100	3219300	+
idi	50	36	1.38	ST4-74	3219318	3219863	+
lysS	45	57	0.78	ST4-74	3219939	3221456	-
prfB	67	68	0.99	ST4-74	3221466	3222542	-
recJ	18	20	0.87	ST4-74	3222669	3224402	-
dsbC	29	31	0.92	ST4-74	3224408	3225082	-
xerD	33	33	1.01	ST4-74	3225145	3226041	-
fldB	25	27	0.93	ST4-74	3226154	3226675	+
vgfX	56	58	0.96	ST4-74	3226728	3227141	-
ygfY	110	114	0.96	ST4-74	3227122	3227388	-
ygfZ	29	33	0.89	ST4-74	3227638	3228618	+
yqfA	62	46	1.34	ST4-74	3228734	3229393	-
yqfB	74	98	0.75	ST4-74	3229557	3229868	-
bglA	12	13	0.95	ST4-74	3230027	3231460	+
STM3052	8	7	1.15	ST4-74	3231508	3232401	-
gcvP	10	9	1.13	ST4-74	3232857	3235730	-
gcvH	37	29	1.28	ST4-74	3235893	3236282	-
gcvT	16	12	1.37	ST4-74	3236308	3237402	-
visC	21	22	0.98	ST4-74	3237857	3239059	-
ubiH	23	21	1.09	ST4-74	3239185	3240363	-
pepP	34	32	1.08	ST4-74	3240360	3241502	-
ygfB	58	57	1.01	ST4-74	3241702	3242280	-
ygfE	106	101	1.05	ST4-74	3242447	3242776	+
SsrS	87372	116036	0.75	ST4-74	3242594	3243000	+
vgfA	11	10	1.02	ST4-74	3243142	3243618	+
RygC	7077	8117	0.87	ST4-74	3243669	3243813	+
serA	119	128	0.93	ST4-74	3243999	3245231	-
rpiA	92	99	0.92	ST4-74	3245497	3246156	-
iciA	9	11	0.83	ST4-74	3246310	3247203	+
yggE	59	37	1.60	ST4-74	3247469	3248215	-
yggA	13	8	1.54	ST4-74	3248309	3248944	-
yggB	90	75	1.20	ST4-74	3249144	3250004	-
STnc3030	94	115	0.82	ST4-74	3250106	3250210	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
fba	99	126	0.78	ST4-74	3250231	3251310	-
pgk	56	76	0.73	ST4-74	3251412	3252575	-
epd	74	83	0.88	ST4-74	3252597	3253643	-
STM3071	6	22	0.27	ST4-74	3254017	3254442	+
STM3072	4	15	0.28	ST4-74	3254468	3255046	+
STM3073	6	11	0.53	ST4-74	3255047	3255754	+
STM3074	3	7	0.41	ST4-74	3255742	3256419	+
STM3075	4	8	0.50	ST4-74	3256413	3257069	+
tktA	39	63	0.62	ST4-74	3257113	3259059	-
yggG	21	17	1.25	ST4-74	3259380	3260138	+
speB	11	12	0.89	ST4-74	3260239	3261159	-
STnc750	297	259	1.15	ST4-74	3261185	3261273	-
STM3079	7	6	1.20	ST4-74	3261364	3262254	-
STM3080	4	3	1.10	ST4-74	3262534	3263007	-
STM3081	6	6	1.13	ST4-74	3263046	3264053	-
STM3082	3	3	0.86	ST4-74	3264067	3265083	-
STM3083	2	1	1.35	ST4-74	3265086	3266558	-
STM3084	83	77	1.09	ST4-74	3267800	3268549	-
STM3085	5	5	1.14	ST4-74	3268754	3269485	-
speA	32	23	1.37	ST4-74	3269629	3271542	-
vqgB	239	148	1.62	ST4-74	3271614	3271745	-
y qgD	52	41	1.25	ST4-74	3272040	3272339	-
metK	150	194	0.77	ST4-74	3272395	3273549	+
STnc3150	27	13	2.07	ST4-74	3273499	3273824	-
galP	27	20	1.34	ST4-74	3274081	3275436	+
sprT	22	15	1.46	ST4-74	3275515	3276012	+
STnc3850	26	26	0.98	ST4-74	3275931	3276099	-
endA	9	7	1.19	ST4-74	3276107	3276814	+
yggJ	33	28	1.19	ST4-74	3276843	3277622	+
gshB	19	19	0.98	ST4-74	3277642	3278589	+
yqgE	37	32	1.16	ST4-74	3278805	3279368	+
yqgF	9	10	0.87	ST4-74	3279368	3279784	+
iclR	13	11	1.19	ST4-74	3279831	3280517	-
pilT	4	4	1.00	ST4-74	3280649	3281629	-
yggS	36	44	0.83	ST4-74	3281647	3282351	+
yggT	28	31	0.89	ST4-74	3282370	3282936	+
yggU	27	33	0.82	ST4-74	3282933	3283223	+
yggV	20	25	0.80	ST4-74	3283231	3283824	+
STnc3860	47	46	1.04	ST4-74	3283748	3283844	-
yggW	10	11	0.92	ST4-74	3283817	3284953	+
yggM	10	9	1.14	ST4-74	3285044	3286051	-
ansB	16	45	0.35	ST4-74	3286184	3287230	-
yggN	48	38	1.26	ST4-74	3287419	3288138	-
yggL	182	164	1.11	ST4-74	3288188	3288514	-
trmB	98	87	1.12	ST4-74	3288514	3289233	-
mutY	28	27	1.04	ST4-74	3289388	3290440	+
yggX	50	61	0.82	ST4-74	3290468	3290743	+
mltC	18	18	0.99	ST4-74	3290856	3291941	+
nupG	10	15	0.69	ST4-74	3292158	3293414	+
speC	8	10	0.78	ST4-74	3293476	3295611	-
yqgA	8	6	1.35	ST4-74	3296036	3296743	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STnc3870	146	125	1.17	ST4-74	3296886	3297024	-
STM3117	13	12	1.03	ST4-74	3297083	3297517	-
STM3118	3	3	1.06	ST4-74	3297528	3298853	-
STM3119	5	4	1.35	ST4-74	3298878	3299405	-
STM3120	9	9	1.07	ST4-74	3299429	3300271	-
STM3121	4	5	0.91	ST4-74	3300513	3301241	+
STM3122	13	9	1.39	ST4-74	3301289	3303028	-
STM3123	2	2	1.19	ST4-74	3303097	3304281	-
STM3124	9	9	0.98	ST4-74	3304793	3305476	+
STnc3880	14	8	1.71	ST4-74	3305410	3305515	+
STM3125	12	12	0.97	ST4-74	3305580	3306137	-
STM3126	12	11	1.11	ST4-74	3306115	3307614	-
STM3127	9	11	0.83	ST4-74	3307823	3308197	-
ordL	21	14	1.53	ST4-74	3308212	3309513	-
STM3129	9	7	1.20	ST4-74	3309675	3311159	+
iraD	5	8	0.65	ST4-74	3311295	3311675	-
STM3131	7	10	0.69	ST4-74	3311675	3312160	-
STnc1170	393	245	1.60	ST4-74	3312429	3312525	-
STM3132	86	33	2.58	ST4-74	3312886	3313809	-
STM3133	120	35	3.46	ST4-74	3313848	3314726	-
exuT	8	8	1.04	ST4-74	3315122	3316426	-
uxuA	8	9	0.82	ST4-74	3316831	3318015	+
uxuB	4	4	0.96	ST4-74	3318126	3319598	+
uxaC	13	10	1.27	ST4-74	3319610	3321022	+
STM3138	203	328	0.62	ST4-74	3321322	3322380	-
STnc3890	73	71	1.03	ST4-74	3322951	3323033	+
gsp	11	10	1.18	ST4-74	3323050	3324906	-
vghU	24	21	1.15	ST4-74	3325133	3325999	+
STM3141	8	9	0.94	ST4-74	3326067	3326777	-
STM3142	3	4	0.79	ST4-74	3326777	3327829	-
hybG	21	77	0.27	ST4-74	3327905	3328153	-
hybF	14	43	0.32	ST4-74	3328181	3328522	-
hvbE	11	34	0.34	ST4-74	3328515	3329003	-
hybD	20	58	0.34	ST4-74	3328996	3329490	-
hybC	17	45	0.39	ST4-74	3329490	3331193	-
hybB	19	57	0.33	ST4-74	3331190	3332368	-
hybA	13	44	0.29	ST4-74	3332358	3333344	-
hypO	26	61	0.42	ST4-74	3333347	3334465	-
vghW	5	18	0.26	ST4-74	3334655	3334942	-
STM3152	10	21	0.46	ST4-74	3335027	3336670	-
<i>vqhA</i>	48	65	0.74	ST4-74	3336977	3337471	-
STM3154	111	261	0.43	ST4-74	3337751	3338266	-
STM3155	58	124	0.46	ST4-74	3338358	3338768	+
STM3156	11	36	0.32	ST4-74	3338755	3339159	+
yghA	32	31	1.04	ST4-74	3339283	3340167	+
exbD	72	42	1.69	ST4-74	3340280	3340705	-
exbB	61	38	1.60	ST4-74	3340712	3341446	-
STM3160	139	76	1.84	ST4-74	3341439	3341588	-
metC	25	23	1.09	ST4-74	3341698	3342885	+
vghB	79	79	1.00	ST4-74	3343025	3343684	+
yqhC	22	23	0.93	ST4-74	3343748	3344665	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yqhD	9	12	0.74	ST4-74	3344840	3346003	+
dkgA	41	30	1.35	ST4-74	3346109	3346936	+
STM3166	7	8	0.91	ST4-74	3347286	3348587	+
STM3167	23	26	0.90	ST4-74	3348632	3349087	+
STnc1820	105	73	1.44	ST4-74	3349037	3349187	-
STnc3920	3	2	1.65	ST4-74	3349508	3349727	+
ygiR	20	15	1.26	ST4-74	3349642	3351813	-
STM3169	2	2	1.27	ST4-74	3352301	3353284	+
STM3170	4	4	0.99	ST4-74	3353326	3353808	+
ygiK	7	6	1.21	ST4-74	3353819	3355126	+
sufI	16	21	0.78	ST4-74	3355171	3356583	-
plsC	33	32	1.01	ST4-74	3356657	3357394	-
parC	27	31	0.88	ST4-74	3357651	3359909	-
STM3175	9	15	0.60	ST4-74	3360020	3360886	-
ygiW	34	52	0.64	ST4-74	3360958	3361350	-
ygiX	13	14	0.93	ST4-74	3361502	3362161	+
ygiY	6	6	0.93	ST4-74	3362158	3363507	+
mdaB	12	16	0.76	ST4-74	3363614	3364195	+
vgiN	60	68	0.89	ST4-74	3364227	3364541	+
parE	24	27	0.90	ST4-74	3364666	3366558	-
vqiA	42	41	1.02	ST4-74	3366586	3367167	-
cpdA	57	56	1.03	ST4-74	3367167	3367994	-
vqiB	145	127	1.14	ST4-74	3368019	3368441	-
nudF	17	20	0.83	ST4-74	3368438	3369070	-
tolC	64	63	1.01	ST4-74	3369271	3370746	+
vgiB	236	218	1.08	ST4-74	3370959	3371630	+
vgiC	58	67	0.87	ST4-74	3371636	3372799	+
ygiD	16	17	0.95	ST4-74	3372861	3373691	-
vgiE	22	22	1.04	ST4-74	3373790	3374563	+
assT	3	3	0.78	ST4-74	3375206	3377002	+
STM3193	4	6	0.71	ST4-74	3377022	3377693	+
STM3194	14	12	1.13	ST4-74	3377708	3378385	+
ribB	39	64	0.61	ST4-74	3378556	3379209	-
SroG	841	1383	0.61	ST4-74	3379312	3379412	-
vqiC	150	119	1.26	ST4-74	3379646	3379945	+
glgS	207	175	1.18	ST4-74	3380019	3380228	-
STM3198	5	5	0.96	ST4-74	3380486	3381106	+
vqiK	7	8	0.94	ST4-74	3381125	3382804	+
STnc1420	447	514	0.87	ST4-74	3382981	3383131	+
RvgD	4757	4738	1.00	ST4-74	3383000	3383144	-
ibsC	0	0	_	ST4-74	3383044	3383103	+
rfaE	22	27	0.81	ST4-74	3383264	3384697	-
glnE	14	15	0.93	ST4-74	3384745	3387588	-
vgiF	17	19	0.92	ST4-74	3387706	3389007	-
ygiM	44	48	0.91	ST4-74	3389249	3389863	+
cca	29	24	1.19	ST4-74	3389926	3391167	+
bacA	37	33	1.13	ST4-74	3391272	3392096	-
folB	56	41	1.36	ST4-74	3392191	3392553	-
ygiH	158	154	1.03	ST4-74	3392657	3393268	+
gcp	46	36	1.27	ST4-74	3393519	3394532	-
rpsU	4703	4126	1.14	ST4-74	3394760	3394975	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
dnaG	55	57	0.96	ST4-74	3395211	3396956	+
rpoD	50	60	0.83	ST4-74	3397106	3398953	+
mug	60	45	1.34	ST4-74	3399077	3399583	-
yqjH	15	12	1.24	ST4-74	3399864	3400631	-
yqjI	28	31	0.92	ST4-74	3400863	3401510	+
STM3216	20	65	0.30	ST4-74	3401507	3403072	-
aer	12	33	0.38	ST4-74	3403460	3404980	-
oat	16	7	2.39	ST4-74	3405500	3406789	+
fadH	7	6	1.31	ST4-74	3406960	3408978	+
ygjO	12	12	1.04	ST4-74	3409059	3410195	-
ygjP	13	12	1.07	ST4-74	3410419	3410778	+
ygjQ	4	3	1.23	ST4-74	3410930	3411622	+
ygjR	21	26	0.83	ST4-74	3411711	3412709	+
SraF	890	771	1.15	ST4-74	3412774	3412961	+
ygjT	28	20	1.35	ST4-74	3412982	3413950	+
STnc310	14	6	2.26	ST4-74	3413972	3414032	-
ygjU	64	86	0.75	ST4-74	3414205	3415449	+
yqjA	138	121	1.14	ST4-74	3415899	3416561	+
y gjB	79	63	1.26	ST4-74	3416565	3416948	+
vąjC	344	228	1.51	ST4-74	3417093	3417461	+
vgiE	141	133	1.06	ST4-74	3417811	3418209	+
vąjK	54	58	0.94	ST4-74	3418206	3418505	+
vaiF	2	3	0.86	ST4-74	3418650	3419135	+
vaiG	29	16	1.84	ST4-74	3419203	3420189	+
vhaH	59	49	1.22	ST4-74	3420313	3420678	+
vhaJ	22	21	1.06	ST4-74	3420717	3421613	-
vhaK	15	23	0.65	ST4-74	3421718	3422419	+
vhaL	44	71	0.62	ST4-74	3422476	3422607	+
vhaN	9	7	1.34	ST4-74	3422720	3424030	-
vhaO	5	5	1.02	ST4-74	3424056	3425387	-
tdcG	4	5	0.84	ST4-74	3425703	3427067	-
tdcE	2	3	0.88	ST4-74	3427137	3429431	-
tdcD	3	5	0.65	ST4-74	3429465	3430673	-
tdcC	6	7	0.91	ST4-74	3430739	3432070	-
tdcB	3	5	0.60	ST4-74	3432091	3433080	-
tdcA	15	13	1.10	ST4-74	3433178	3434116	-
garK	10	6	1.56	ST4-74	3435915	3437060	-
garRh	9	8	1.12	ST4-74	3437158	3438048	-
garL	49	15	3.29	ST4-74	3438074	3438790	_
garD	5	4	1.14	ST4-74	3439374	3440945	+
STM3251	12	12	0.97	ST4-74	3441185	3442132	_
agaR	35	29	1.19	ST4-74	3442143	3442976	-
gatY	3	2	1.21	ST4-74	3443310	3444164	+
STM3254	1	- 1	0.48	ST4-74	3444175	3445089	+
STM3255	2	3	0.77	ST4-74	3445116	3446543	+
STM3256	2	2	1.03	ST4-74	3446530	3447336	+
STM3257	2	- 1	1.05	ST4-74	3447534	3448805	+
2 1112 20 1 2atA	2	1	1.29	ST4-74	3448820	3449284	+
gatB	2	2	1.29	ST4-74	3449315	3449599	+
satC	5	5	0.90	ST4-74	3449603	3450976	+
gatD	2	1	1.53	ST4-74	3451020	3452063	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
gatR	22	25	0.86	ST4-74	3452174	3452947	+
yraL	18	16	1.13	ST4-74	3453105	3453968	-
yraM	31	32	0.96	ST4-74	3454032	3456074	+
yraN	50	54	0.93	ST4-74	3456032	3456427	+
yraO	87	70	1.25	ST4-74	3456449	3457039	+
yraP	37	39	0.94	ST4-74	3457049	3457624	+
yraR	11	7	1.59	ST4-74	3457691	3458359	-
yhbO	42	22	1.91	ST4-74	3458457	3458975	+
yhbP	5	9	0.54	ST4-74	3458955	3459398	-
yhbQ	37	28	1.32	ST4-74	3459436	3459753	+
yhbS	34	67	0.50	ST4-74	3459740	3460243	-
yhbT	76	166	0.46	ST4-74	3460237	3460761	-
yhbU	2	34	0.06	ST4-74	3460978	3461973	+
yhbV	2	12	0.16	ST4-74	3461982	3462860	+
yhbW	7	8	0.81	ST4-74	3463038	3464045	+
STM3277	5	3	1.67	ST4-74	3464023	3464742	-
STM3278	3	2	1.43	ST4-74	3464901	3465431	+
mtr	18	20	0.90	ST4-74	3465492	3466652	-
deaD	17	19	0.88	ST4-74	3466890	3468779	-
<i>yrbN</i>	73	76	0.97	ST4-74	3468772	3468852	-
, nlpI	475	478	0.99	ST4-74	3468958	3469842	-
pnp	53	68	0.79	ST4-74	3469952	3472087	-
SraG	562	639	0.88	ST4-74	3472142	3472312	-
rpsO	2177	2346	0.93	ST4-74	3472329	3472598	-
truB	35	35	1.01	ST4-74	3472749	3473693	-
rbfA	18	25	0.74	ST4-74	3473693	3474094	-
infB	46	58	0.80	ST4-74	3474315	3476993	-
nusA	39	49	0.80	ST4-74	3477018	3478520	-
vhbC	54	62	0.88	ST4-74	3478548	3478970	-
argG	37	76	0.49	ST4-74	3479628	3480971	+
STnc3950	28	21	1.34	ST4-74	3480987	3481116	-
STM3291	11	12	0.93	ST4-74	3481057	3482121	-
secG	1077	1119	0.96	ST4-74	3482557	3482889	-
glmM	16	17	0.95	ST4-74	3483112	3484449	-
folP	22	22	0.96	ST4-74	3484442	3485290	-
tnpA 1c	244	250	0.97	ST4-74	3485437	3485895	-
ftsH	212	247	0.86	ST4-74	3486106	3488040	-
ftsJ	250	236	1.06	ST4-74	3488144	3488770	-
vhbY	165	161	1.03	ST4-74	3488897	3489190	+
STnc1660	231	278	0.83	ST4-74	3489125	3489247	-
greA	87	90	0.97	ST4-74	3489346	3489822	-
dacB	26	25	1.04	ST4-74	3490070	3491503	+
STnc3960	12	10	1.28	ST4-74	3491490	3491592	+
obgE	25	24	1.05	ST4-74	3491635	3492807	-
vhbE	39	27	1.41	ST4-74	3492823	3493833	-
rpmA	481	559	0.86	ST4-74	3493918	3494175	-
rplU	1962	1797	1.09	ST4-74	3494195	3494506	-
ispB	69	63	1.11	ST4-74	3494764	3495735	+
nlp	7	5	1.36	ST4-74	3495967	3496254	+
murA	23	23	0.96	ST4-74	3496312	3497571	-
vrh A	46	49	0.94	ST4-74	3497625	3497918	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yrbB	41	52	0.78	ST4-74	3498067	3498363	-
yrbC	40	44	0.90	ST4-74	3498363	3498998	-
yrbD	29	31	0.94	ST4-74	3499017	3499568	-
yrbE	14	16	0.88	ST4-74	3499573	3500355	-
yrbF	29	31	0.95	ST4-74	3500363	3501175	-
yrbG	35	39	0.88	ST4-74	3501430	3502365	+
yrbH	34	38	0.89	ST4-74	3502379	3503365	+
yrbI	55	56	0.99	ST4-74	3503386	3503952	+
yrbK	37	38	0.97	ST4-74	3503949	3504524	+
yhbN	29	38	0.75	ST4-74	3504493	3505047	+
yhbG	26	31	0.83	ST4-74	3505054	3505779	+
rpoN	88	109	0.81	ST4-74	3505827	3507260	+
yhbH	365	495	0.74	ST4-74	3507283	3507570	+
STnc3970	160	90	1.78	ST4-74	3507628	3507677	-
ptsN	46	62	0.75	ST4-74	3507688	3508179	+
yhbJ	24	31	0.78	ST4-74	3508225	3509079	+
<i>ptsO</i>	11	13	0.81	ST4-74	3509076	3509348	+
yrbL	20	17	1.18	ST4-74	3509597	3510229	+
mtgA	19	26	0.73	ST4-74	3510304	3511032	-
yhbL	34	51	0.67	ST4-74	3511029	3511682	-
ArcZ	16269	16401	0.99	ST4-74	3511800	3511917	+
arcB	27	33	0.80	ST4-74	3511909	3514245	-
yhcC	5	12	0.40	ST4-74	3514339	3515268	-
gltB	29	54	0.54	ST4-74	3515940	3520400	+
gltD	33	60	0.55	ST4-74	3520410	3521828	+
yhcG	3	2	1.42	ST4-74	3522035	3523138	+
codB	30	41	0.75	ST4-74	3523255	3524508	+
codA	20	30	0.67	ST4-74	3524495	3525775	+
yhcH	11	10	1.06	ST4-74	3525858	3526325	-
nanK	12	9	1.29	ST4-74	3526322	3527197	-
nanE	4	6	0.73	ST4-74	3527194	3527883	-
nanT	12	11	1.10	ST4-74	3527930	3529420	-
nanA	3	4	0.92	ST4-74	3529536	3530429	-
yhcK	30	34	0.89	ST4-74	3530564	3531355	-
sspB	77	80	0.97	ST4-74	3531464	3531964	-
sspA	97	109	0.89	ST4-74	3531970	3532608	-
STM3343	12	12	1.02	ST4-74	3532871	3533623	-
STnc3060	42	40	1.05	ST4-74	3533708	3533783	+
rpsI	239	370	0.64	ST4-74	3533823	3534215	-
rplM	324	456	0.71	ST4-74	3534231	3534659	-
yhcM	16	19	0.89	ST4-74	3534962	3536086	-
yhcB	200	224	0.89	ST4-74	3536273	3536677	+
degQ	20	26	0.77	ST4-74	3536834	3538201	+
degS	28	27	1.02	ST4-74	3538294	3539364	+
STM3350	4	3	1.33	ST4-74	3539398	3540129	-
oadB2	3	2	1.39	ST4-74	3540149	3541450	-
oadA2	1	1	0.72	ST4-74	3541466	3543241	-
STM3353	3	4	0.87	ST4-74	3543257	3543511	-
STnc3050	154	171	0.90	ST4-74	3543529	3543654	-
ttdB	4	3	1.32	ST4-74	3543667	3544284	-
ttdA	4	2	1.54	ST4-74	3544284	3545183	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM3356	3	2	1.50	ST4-74	3545216	3546484	-
STM3357	17	18	0.97	ST4-74	3546695	3547360	-
STM3358	52	53	0.99	ST4-74	3547347	3547976	-
mdh	159	233	0.68	ST4-74	3548096	3549034	-
argR	344	300	1.15	ST4-74	3549448	3549918	+
yhcN	9	7	1.22	ST4-74	3550283	3550546	+
STM3362	8	6	1.35	ST4-74	3550650	3550916	+
STnc2100	14	12	1.15	ST4-74	3550903	3550965	+
yhcO	200	83	2.41	ST4-74	3550976	3551248	-
yhcP	7	7	1.11	ST4-74	3551420	3553387	-
yhcQ	6	5	1.22	ST4-74	3553393	3554325	-
yhcR	8	9	0.97	ST4-74	3554333	3554536	-
vhcS	9	10	0.92	ST4-74	3554718	3555647	+
tldD	27	23	1.14	ST4-74	3555770	3557215	-
yhdP	14	17	0.83	ST4-74	3557360	3561073	-
cafA	33	37	0.89	ST4-74	3561267	3562736	-
maf-b	35	34	1.03	ST4-74	3562726	3563319	-
mreD	43	37	1.17	ST4-74	3563328	3563819	-
mreC	28	31	0.93	ST4-74	3563819	3564871	-
mreB	52	63	0.83	ST4-74	3564936	3565979	-
vhdA	22	27	0.81	ST4-74	3566287	3568227	-
y vhdH	21	34	0.63	ST4-74	3568431	3569405	+
STM3377	14	20	0.69	ST4-74	3569518	3570522	+
STM3378	30	33	0.90	ST4-74	3570523	3571122	+
accB	70	87	0.80	ST4-74	3571515	3571985	+
accC	66	83	0.79	ST4-74	3572086	3573345	+
vhdT	16	20	0.80	ST4-74	3573454	3573696	+
panF	8	10	0.83	ST4-74	3573686	3575137	+
prmA	8	9	0.85	ST4-74	3575149	3576030	+
vhdG	124	144	0.86	ST4-74	3576691	3577656	+
fis	81	107	0.76	ST4-74	3577682	3577978	+
vhdJ	10	11	0.96	ST4-74	3578064	3578948	+
vhdU	87	78	1.13	ST4-74	3579031	3579195	+
STM3388	8	7	1.15	ST4-74	3579346	3581445	+
envR	2	2	0.82	ST4-74	3581448	3582110	-
acrE	1	1	0.98	ST4-74	3582524	3583681	+
acrF	5	4	1.13	ST4-74	3583693	3586806	+
vhdV	22	23	0.96	ST4-74	3587042	3587263	+
STnc3990	111	61	1.81	ST4-74	3587262	3587429	-
STnc1670	175	98	1.78	ST4-74	3593794	3593896	+
vrdA	43	32	1.32	ST4-74	3593964	3594518	+
yrdB	22	24	0.91	ST4-74	3594494	3594751	-
STM3401	20	18	1.12	ST4-74	3594748	3595566	-
vrdC	16	16	1.01	ST4-74	3595571	3596143	-
yrdD	124	99	1.25	ST4-74	3596148	3596690	-
smg	301	210	1.43	ST4-74	3596717	3597190	-
dprA	51	43	1.20	ST4-74	3597162	3598286	-
def	175	126	1.39	ST4-74	3598418	3598927	+
fmt	36	32	1.15	ST4-74	3598943	3599890	+
fmu	9	9	1.00	ST4-74	3599942	3601231	+
sapG	14	11	1.29	ST4-74	3601253	3602629	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
mscL	420	281	1.49	ST4-74	3602771	3603184	+
STM3411	392	266	1.47	ST4-74	3603120	3603389	-
zntR	54	52	1.03	ST4-74	3603447	3603872	-
yhdN	120	95	1.27	ST4-74	3603883	3604251	-
rplQ	412	549	0.75	ST4-74	3604359	3604742	-
pez	436	594	0.73	ST4-74	3604783	3605772	-
rpsD	498	611	0.81	ST4-74	3605798	3606418	-
rpsK	467	607	0.77	ST4-74	3606452	3606784	-
rpsM	951	1015	0.94	ST4-74	3606858	3607214	-
rpmJb	976	1148	0.85	ST4-74	3607361	3607477	-
prlA	605	774	0.78	ST4-74	3607509	3608840	-
rplO	389	540	0.72	ST4-74	3608848	3609282	-
rpmD	386	501	0.77	ST4-74	3609286	3609465	-
rpsE	341	475	0.72	ST4-74	3609469	3609972	-
rl18	362	478	0.76	ST4-74	3609987	3610340	-
rplF	312	421	0.74	ST4-74	3610350	3610883	-
rpsH	399	505	0.79	ST4-74	3610896	3611288	-
rpsN	324	395	0.82	ST4-74	3611322	3611612	-
rplE	553	671	0.82	ST4-74	3611642	3612181	-
rplX	851	999	0.85	ST4-74	3612196	3612510	-
rplN	1084	1337	0.81	ST4-74	3612521	3612892	-
rpsQ	410	543	0.76	ST4-74	3613056	3613310	-
rpmC	607	710	0.86	ST4-74	3613310	3613501	-
rplP	460	515	0.89	ST4-74	3613501	3613911	-
rpsC	330	438	0.75	ST4-74	3613924	3614625	-
rplV	294	365	0.80	ST4-74	3614643	3614975	-
rpsS	525	667	0.79	ST4-74	3614990	3615268	-
rplB	148	208	0.71	ST4-74	3615285	3616106	-
rplW	196	284	0.69	ST4-74	3616124	3616426	-
rplD	206	274	0.75	ST4-74	3616423	3617028	-
rplC	215	279	0.77	ST4-74	3617039	3617668	-
rpsJ	429	543	0.79	ST4-74	3617701	3618012	-
hopD	6	5	1.07	ST4-74	3618392	3618859	+
bfr	481	319	1.51	ST4-74	3618856	3619332	-
bfd	489	163	2.99	ST4-74	3619405	3619599	-
STnc4000	99	28	3.47	ST4-74	3619657	3619755	+
tufA	563	709	0.79	ST4-74	3619784	3620968	-
fusA	173	211	0.82	ST4-74	3621040	3623154	-
rpsG	269	328	0.82	ST4-74	3623251	3623721	-
rpsL	726	723	1.00	ST4-74	3623817	3624191	-
yheL	162	92	1.75	ST4-74	3624317	3624604	-
yheM	28	33	0.85	ST4-74	3624612	3624968	-
yheN	30	38	0.80	ST4-74	3624968	3625354	-
yheO	86	95	0.91	ST4-74	3625354	3626088	-
fkpA	100	111	0.90	ST4-74	3626353	3627171	-
slyX	73	80	0.91	ST4-74	3627391	3627609	+
slyD	119	132	0.90	ST4-74	3627797	3628387	-
yheV	18	17	1.06	ST4-74	3628482	3628682	-
kefB	19	15	1.27	ST4-74	3628693	3630498	-
yheR	17	12	1.40	ST4-74	3630498	3631049	-
yheS	14	16	0.93	ST4-74	3631315	3633222	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STnc1590	1627	2319	0.70	ST4-74	3633247	3633424	-
SL1344_3427	13	12	1.13	ST4-74	3633385	3633606	+
STM3461	78	97	0.80	ST4-74	3633608	3633919	-
yheT	26	23	1.10	ST4-74	3634117	3635184	+
yheU	25	28	0.91	ST4-74	3635181	3635399	+
prkB	23	21	1.07	ST4-74	3635451	3636320	+
yhfA	99	112	0.88	ST4-74	3636416	3636820	-
crp	111	138	0.80	ST4-74	3637128	3637760	+
yhfK	23	31	0.73	ST4-74	3637809	3639896	+
argDb	74	108	0.68	ST4-74	3639939	3641156	-
pabA	13	14	0.98	ST4-74	3641242	3641805	-
fic	19	13	1.53	ST4-74	3641837	3642439	-
yhfG	118	72	1.64	ST4-74	3642429	3642596	-
ppiA	124	129	0.96	ST4-74	3642705	3643277	-
yhfC	6	6	1.01	ST4-74	3643554	3644735	+
nirB	3	6	0.41	ST4-74	3644998	3647541	+
nirD	6	20	0.32	ST4-74	3647538	3647864	+
nirC	13	16	0.83	ST4-74	3648130	3648939	+
cysG	13	17	0.74	ST4-74	3648951	3650324	+
bigA	3	3	1.08	ST4-74	3650653	3656547	+
tnpA 1d	244	250	0.97	ST4-74	3656679	3657137	-
STnc340	10	14	0.73	ST4-74	3657275	3657403	-
vhfL	83	69	1.20	ST4-74	3657451	3657621	+
trpS	48	51	0.94	ST4-74	3657766	3658770	-
gph	40	39	1.03	ST4-74	3658763	3659521	-
rpe	21	21	1.00	ST4-74	3659514	3660191	-
dam	33	39	0.84	ST4-74	3660209	3661045	-
damX	58	73	0.79	ST4-74	3661226	3662503	-
aroB	56	63	0.88	ST4-74	3662601	3663689	-
aroK	135	149	0.91	ST4-74	3663746	3664267	-
comE	6	6	0.97	ST4-74	3664732	3665970	-
comD	6	4	1.52	ST4-74	3665885	3666286	-
comC	3	4	0.92	ST4-74	3666276	3666749	-
comB	3	2	1.28	ST4-74	3666733	3667272	-
comA	4	3	1.40	ST4-74	3667272	3668051	-
mrcA	22	22	1.00	ST4-74	3668148	3670724	+
nudE	37	32	1.16	ST4-74	3670820	3671383	-
igaA	29	36	0.82	ST4-74	3671706	3673838	+
yrfG	49	36	1.34	ST4-74	3673903	3674571	+
hslR	16	16	0.96	ST4-74	3674582	3674983	+
hslO	12	13	0.93	ST4-74	3675002	3675886	+
yhgE	11	11	1.02	ST4-74	3675996	3677705	-
pckA	116	135	0.86	ST4-74	3678085	3679704	+
envZ	20	29	0.69	ST4-74	3679779	3681014	-
ompR	45	50	0.89	ST4-74	3681128	3681847	-
greB	22	21	1.02	ST4-74	3682073	3682546	+
yhgF	13	13	0.96	ST4-74	3682648	3684975	+
STnc760	463	362	1.28	ST4-74	3684975	3685117	-
feoA	43	31	1.38	ST4-74	3685412	3685639	+
feoB	26	23	1.14	ST4-74	3685658	3687976	+
yhgG	58	46	1.26	ST4-74	3687989	3688225	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM3508	14	15	0.91	ST4-74	3688460	3689374	+
bioH	21	22	0.95	ST4-74	3689410	3690180	-
comF	35	28	1.25	ST4-74	3690218	3690901	+
yhgI	63	70	0.90	ST4-74	3690960	3691535	+
gntT	7	8	0.97	ST4-74	3691960	3693228	+
malQ	11	8	1.36	ST4-74	3693347	3695425	-
malP	11	8	1.27	ST4-74	3695435	3697828	-
malT	36	40	0.91	ST4-74	3698422	3701127	+
STM3516	51	42	1.23	ST4-74	3701215	3701490	-
STM3517	314	229	1.37	ST4-74	3701493	3701753	-
rtcA	5	6	0.83	ST4-74	3701862	3702881	-
<i>rtcB</i>	15	14	1.08	ST4-74	3702885	3704102	-
STM3521	2	2	1.00	ST4-74	3704447	3706000	-
rtcR	5	5	1.05	ST4-74	3706190	3707773	+
glpR	31	32	0.98	ST4-74	3707770	3708528	-
glpG	31	31	1.00	ST4-74	3708622	3709452	-
glpE	98	81	1.20	ST4-74	3709528	3709854	-
glpD	331	313	1.06	ST4-74	3710053	3711561	+
STM3527	7	5	1.37	ST4-74	3711608	3712153	-
STM3528	14	13	1.10	ST4-74	3712163	3713623	-
STM3529	6	5	1.16	ST4-74	3713816	3714925	-
STM3530	4	3	1.35	ST4-74	3715263	3716597	+
STM3531	3	4	0.72	ST4-74	3716594	3718309	+
STM3532	11	8	1.43	ST4-74	3718353	3719258	+
STM3533	37	52	0.72	ST4-74	3719302	3720057	-
glgP	32	33	0.96	ST4-74	3720235	3722682	-
glgA	28	25	1.11	ST4-74	3722702	3724135	-
glgC	27	34	0.78	ST4-74	3724135	3725430	-
glgX	29	24	1.21	ST4-74	3725445	3727421	-
glgB	41	35	1.20	ST4-74	3727418	3729604	-
STnc4010	44	16	2.77	ST4-74	3729766	3729898	+
asd	64	102	0.63	ST4-74	3729951	3731057	-
gntU	7	6	1.17	ST4-74	3731481	3732821	-
gntK	4	3	1.14	ST4-74	3732818	3733351	-
gntR	30	23	1.29	ST4-74	3733490	3734485	-
yhhW	6	6	1.06	ST4-74	3734615	3735310	-
yhhX	16	15	1.10	ST4-74	3735434	3736471	-
RyhB-1	41	31	1.35	ST4-74	3736722	3736817	-
yhhY	21	23	0.93	ST4-74	3736940	3737428	+
STM3547	2	2	0.75	ST4-74	3737960	3738907	+
STM3548	4	3	1.39	ST4-74	3738923	3739684	+
STnc1830	54	44	1.23	ST4-74	3739678	3739897	-
STM3549	3	2	1.19	ST4-74	3739738	3740709	+
STM3550	4	4	1.06	ST4-74	3740706	3741740	+
ggt	17	15	1.16	ST4-74	3741785	3743527	-
yhhA	75	43	1.75	ST4-74	3743653	3744069	+
ugpQ	14	15	0.97	ST4-74	3744082	3744822	-
ugpC	7	7	0.99	ST4-74	3744819	3745889	-
ugpE	7	5	1.39	ST4-74	3745891	3746736	-
ugpA	9	8	1.18	ST4-74	3746733	3747620	-
ugpB	33	27	1.22	ST4-74	3747684	3748976	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
kil	12	11	1.13	ST4-74	3749259	3749627	-
phd	61	63	0.96	ST4-74	3749624	3749851	-
livF	16	31	0.54	ST4-74	3749977	3750690	-
livG	14	27	0.52	ST4-74	3750692	3751459	-
livM	18	34	0.53	ST4-74	3751456	3752733	-
livH	20	33	0.59	ST4-74	3752730	3753656	-
livK	29	53	0.56	ST4-74	3753716	3754825	-
sRNA12	19	7	2.78	ST4-74	3755044	3755124	-
yhhK	26	23	1.11	ST4-74	3755247	3755630	+
livJ	37	74	0.50	ST4-74	3755825	3756928	-
rpoH	147	159	0.92	ST4-74	3757250	3758104	-
ftsX	36	37	0.97	ST4-74	3758350	3759405	-
ftsE	29	30	0.98	ST4-74	3759398	3760066	-
ftsY	35	36	0.97	ST4-74	3760069	3761544	-
rsmD	22	20	1.09	ST4-74	3761670	3762266	+
yhhL	16	15	1.05	ST4-74	3762253	3762525	+
yhhM	19	20	0.91	ST4-74	3762547	3762789	-
yhhN	38	31	1.20	ST4-74	3763060	3763686	+
zntA	4	5	0.82	ST4-74	3763767	3765965	+
tcp	21	97	0.21	ST4-74	3766165	3767808	+
vhhP	186	109	1.70	ST4-74	3767832	3768077	-
vhhQ	39	24	1.63	ST4-74	3768247	3768912	+
STM3580	98	83	1.19	ST4-74	3768985	3769542	+
vhhS	24	22	1.09	ST4-74	3769546	3770763	-
vhhT	16	10	1.57	ST4-74	3770895	3771944	+
acpT	24	20	1.23	ST4-74	3771996	3772574	+
nikR	30	33	0.91	ST4-74	3772666	3773067	+
vhhJ	11	14	0.78	ST4-74	3773157	3774281	-
vhiH	6	8	0.77	ST4-74	3774281	3777022	-
yhiI	15	18	0.83	ST4-74	3777019	3778086	-
STnc770	592	481	1.23	ST4-74	3778180	3778332	-
vhiN	16	17	0.97	ST4-74	3778392	3779588	-
pitA	30	48	0.64	ST4-74	3779942	3781315	+
uspB	162	112	1.45	ST4-74	3781455	3781790	-
uspA	308	341	0.90	ST4-74	3782178	3782612	+
STnc350	45	12	3.91	ST4-74	3782695	3782856	-
yhiP	7	6	1.32	ST4-74	3782937	3784409	+
yhiQ	7	9	0.86	ST4-74	3784501	3785259	-
prlC	16	19	0.82	ST4-74	3785266	3787308	-
STM3595	37	25	1.50	ST4-74	3787490	3788761	-
vhiR	27	25	1.10	ST4-74	3788972	3789814	+
gor	31	32	0.96	ST4-74	3789919	3791271	+
STM3598	10	11	0.92	ST4-74	3791318	3792361	-
STM3599	8	7	1.00	ST4-74	3792420	3793739	-
STM3600	2	3	0.61	ST4-74	3793793	3794638	-
STM3601	13	12	1.10	ST4-74	3794702	3795679	-
STM3602	20	17	1.21	ST4-74	3795855	3796574	-
treF	16	14	1.19	ST4-74	3796900	3798549	+
STM3604	38	72	0.52	ST4-74	3798562	3800151	-
STM3605	4	4	0.91	ST4-74	3800432	3800788	+
yhjB	4	3	1.18	ST4-74	3800794	3801396	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STnc4020	40	42	0.95	ST4-74	3801174	3801265	+
yhjC	9	8	1.03	ST4-74	3802027	3802926	+
yhjD	20	13	1.48	ST4-74	3802999	3804027	+
yhjE	56	74	0.75	ST4-74	3804378	3805700	+
yhjG	21	19	1.10	ST4-74	3805740	3807800	-
yhjH	27	101	0.26	ST4-74	3807910	3808677	-
kdgK	12	37	0.33	ST4-74	3808906	3809835	+
yhjJ	22	27	0.83	ST4-74	3809889	3811376	-
dctA	44	90	0.48	ST4-74	3811596	3812882	-
yhjK	14	13	1.08	ST4-74	3813040	3814959	-
yhjL	18	18	0.99	ST4-74	3815220	3818762	-
bcsC	20	21	0.95	ST4-74	3818744	3819853	-
yhjN	12	15	0.81	ST4-74	3819857	3822157	-
bcsA	15	17	0.92	ST4-74	3822168	3824792	-
yhjQ	13	14	0.92	ST4-74	3824789	3825541	-
yhjR	81	74	1.09	ST4-74	3825542	3825745	-
yhjS	30	21	1.40	ST4-74	3825990	3827561	+
yhjT	20	17	1.21	ST4-74	3827558	3827749	+
vhjU	20	18	1.14	ST4-74	3827746	3829425	+
STnc1430	648	927	0.70	ST4-74	3829427	3829796	-
STnc710	5219	4839	1.08	ST4-74	3829660	3829727	+
STM3624A	23	18	1.34	ST4-74	3829889	3830139	+
vhjV	11	10	1.12	ST4-74	3830257	3831555	+
dppF	15	34	0.44	ST4-74	3831656	3832669	-
dppD	22	44	0.49	ST4-74	3832666	3833649	-
dppC	26	52	0.49	ST4-74	3833660	3834562	-
dppB	36	68	0.52	ST4-74	3834572	3835591	-
dppA	124	244	0.51	ST4-74	3835748	3837304	-
STM3631	4	3	1.08	ST4-74	3837911	3839236	-
STM3632	4	4	1.04	ST4-74	3839294	3840418	-
STM3633	16	19	0.84	ST4-74	3840568	3841575	+
vhjW	21	24	0.88	ST4-74	3841902	3843593	-
lpfE	5	5	0.91	ST4-74	3843811	3844338	-
lpfD	8	8	0.99	ST4-74	3844344	3845413	-
lpfC	2	3	0.85	ST4-74	3845431	3847959	-
lpfB	2	2	1.09	ST4-74	3847982	3848680	-
lpfA	3	4	0.86	ST4-74	3848765	3849301	-
yhj Y	26	15	1.65	ST4-74	3849807	3850511	-
tag	16	21	0.78	ST4-74	3850668	3851249	+
yiaC	14	25	0.57	ST4-74	3851227	3851667	+
bisC	15	15	0.97	ST4-74	3851636	3853969	-
yiaD	8	9	0.91	ST4-74	3854155	3854784	+
yiaE	16	21	0.78	ST4-74	3855003	3855977	+
<i>yiaF</i>	129	110	1.17	ST4-74	3856027	3856737	-
yiaG	405	183	2.21	ST4-74	3857176	3857466	+
cspA	242	203	1.19	ST4-74	3857767	3857967	+
STM3650	48	92	0.52	ST4-74	3858264	3858680	+
STnc780	264	136	1.94	ST4-74	3858665	3858992	-
STM3651	17	19	0.88	ST4-74	3859052	3859537	-
STM3652	60	58	1.03	ST4-74	3859525	3859812	-
yafP	17	16	1.05	ST4-74	3859990	3860457	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
glyS	22	26	0.85	ST4-74	3861086	3863155	-
glyQ	30	35	0.85	ST4-74	3863165	3864076	-
STM3657	56	42	1.35	ST4-74	3864215	3864517	-
yiaH	13	10	1.31	ST4-74	3864683	3865678	+
yiaB	17	13	1.28	ST4-74	3865701	3866054	-
xylB	6	6	1.10	ST4-74	3866229	3867683	-
xylA	10	9	1.11	ST4-74	3867783	3869105	-
xylR	11	12	0.90	ST4-74	3869468	3870646	+
bax	225	301	0.75	ST4-74	3870707	3871531	-
malS	2	2	0.79	ST4-74	3871847	3873874	+
avtA	48	60	0.81	ST4-74	3874048	3875298	+
ysaA	16	61	0.26	ST4-74	3875335	3875808	-
yiaJ	31	26	1.20	ST4-74	3875925	3876725	-
yiaK	2	2	0.84	ST4-74	3876955	3877953	+
yiaL	3	2	1.26	ST4-74	3877965	3878429	+
STM3670	4	5	0.96	ST4-74	3878453	3879385	+
yiaM	3	2	1.73	ST4-74	3879524	3879997	+
yiaN	1	1	1.02	ST4-74	3880000	3881277	+
yiaO	1	0	3.16	ST4-74	3881289	3882275	+
lyxK	1	1	1.08	ST4-74	3882279	3883775	+
sgbH	1	1	1.06	ST4-74	3883772	3884434	+
sgbU	1	1	0.63	ST4-74	3884427	3885287	+
sgbE	3	2	1.30	ST4-74	3885305	3885976	+
STM3678	6	9	0.64	ST4-74	3886137	3886952	-
STM3679	3	3	0.97	ST4-74	3887216	3889171	+
aldB	62	63	0.98	ST4-74	3889289	3890827	-
STM3681	20	13	1.54	ST4-74	3890996	3891877	+
selB	10	14	0.73	ST4-74	3892162	3894012	-
selA	20	27	0.75	ST4-74	3894009	3895400	-
yibF	71	50	1.40	ST4-74	3895499	3896107	-
, mtlA	26	31	0.84	ST4-74	3896583	3898499	+
mtlD	27	28	0.98	ST4-74	3898720	3899868	+
mtlR	15	15	0.99	ST4-74	3899865	3900455	+
STM3688	64	32	1.97	ST4-74	3900465	3900674	-
yibL	41	43	0.94	ST4-74	3900965	3901327	+
STM3690	1	0	1.50	ST4-74	3901817	3902500	+
sadA	7	4	1.51	ST4-74	3902544	3906929	+
STnc380	55	22	2.48	ST4-74	3906944	3907051	-
lctP	5	5	0.97	ST4-74	3907228	3908883	+
lctR	3	3	1.04	ST4-74	3908880	3909656	+
lctD	3	2	1.28	ST4-74	3909653	3910843	+
yibK	15	16	0.95	ST4-74	3910907	3911380	+
STM3696	22	22	1.01	ST4-74	3911448	3912452	-
STM3697	3	2	1.60	ST4-74	3912771	3913967	+
STM3698	7	8	0.92	ST4-74	3914041	3915219	+
SL1344_3664	13	6	2.17	ST4-74	3915216	3915350	+
cysE _	25	39	0.65	ST4-74	3915433	3916254	-
gpsA	83	88	0.94	ST4-74	3916332	3917351	-
secB	253	256	0.99	ST4-74	3917351	3917818	-
grxC	179	196	0.91	ST4-74	3917862	3918113	-
yibN	187	189	0.99	ST4-74	3918200	3918631	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
pmgI	10	41	0.25	ST4-74	3918879	3920423	+
yibP	53	50	1.07	ST4-74	3920433	3921716	+
yigQ	7	8	0.94	ST4-74	3921720	3922682	+
yibD	12	13	0.90	ST4-74	3922669	3923703	-
SL1344_3673A	105	94	1.12	ST4-74	3923989	3924108	-
tdh	35	40	0.87	ST4-74	3924197	3925222	-
kbl	28	31	0.90	ST4-74	3925232	3926428	-
rfaD	70	69	1.01	ST4-74	3926631	3927563	+
rfaF	23	29	0.79	ST4-74	3927566	3928612	+
rfaC	19	20	0.94	ST4-74	3928612	3929565	+
rfaL	48	49	0.98	ST4-74	3929605	3930819	+
rfaK	40	32	1.24	ST4-74	3930876	3931739	-
rfaZ	117	72	1.62	ST4-74	3932122	3932931	-
rfaY	76	60	1.27	ST4-74	3933081	3933635	-
rfaJ	69	59	1.18	ST4-74	3933802	3934812	-
rfaI	83	62	1.33	ST4-74	3934830	3935843	-
rfaB	57	48	1.18	ST4-74	3935849	3936928	-
yibR	43	34	1.27	ST4-74	3936998	3937231	-
rfaP	34	27	1.26	ST4-74	3937263	3938060	-
rfaG	35	32	1.11	ST4-74	3938053	3939177	-
rfaQ	30	29	1.02	ST4-74	3939174	3940208	-
kdtA	38	36	1.04	ST4-74	3940719	3941930	+
coaD	25	34	0.75	ST4-74	3941939	3942418	+
mutM	8	7	1.08	ST4-74	3942446	3943255	-
rpmG	494	600	0.82	ST4-74	3943353	3943520	-
rpmB	1240	1350	0.92	ST4-74	3943541	3943777	-
radC	28	29	0.96	ST4-74	3943995	3944660	-
dfp	31	31	1.01	ST4-74	3944833	3946056	+
dut	28	27	1.01	ST4-74	3946037	3946492	+
slmA	18	24	0.78	ST4-74	3946600	3947196	+
pyrE	11	12	0.86	ST4-74	3947274	3947915	-
rph	50	46	1.09	ST4-74	3947994	3948710	-
vicC	43	38	1.14	ST4-74	3948836	3949699	+
STM3736	10	8	1.26	ST4-74	3949749	3950606	-
STM3737	4	3	1.53	ST4-74	3950725	3951606	+
STM3738	10	8	1.25	ST4-74	3951857	3952474	+
ligB	5	4	1.29	ST4-74	3952471	3954156	-
emk	101	97	1.04	ST4-74	3954413	3955036	+
rpoZ	175	184	0.95	ST4-74	3955091	3955366	+
spoT	41	46	0.89	ST4-74	3955385	3957496	+
spoU	29	29	1.00	ST4-74	3957501	3958190	+
recG	12	13	0.94	ST4-74	3958196	3960277	+
STM3745	24	30	0.79	ST4-74	3960280	3961131	-
gltS	28	35	0.79	ST4-74	3961134	3962339	-
vicE	35	51	0.68	ST4-74	3962567	3963958	+
vicH	40	44	0.93	ST4-74	3964079	3965788	+
vicI	3	2	1.31	ST4-74	3965891	3968209	-
vicJ	4	4	1.16	ST4-74	3968221	3969603	-
STM3752	23	16	1.42	ST4-74	3970302	3970670	-
sugR	20	20	0.98	ST4-74	3971324	3972861	+
rhuM	14	14	1.01	ST4-74	3973048	3974085	+

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
fìdL16121.28ST4-7439790383979520-marT851.47ST4-7439795133980301-slsA15131.09ST4-7439811543981834+cigR59800.74ST4-7439820633982542-mgtR14150.92ST4-7439827433982835-
marT851.47ST4-7439795133980301-slsA15131.09ST4-7439811543981834+cigR59800.74ST4-7439820633982542-mgtR14150.92ST4-7439827433982835-
slsA 15 13 1.09 ST4-74 3981154 3981834 + cigR 59 80 0.74 ST4-74 3982063 3982542 - mgtR 14 15 0.92 ST4-74 3982743 3982835 -
<i>cigR</i> 59 80 0.74 ST4-74 3982063 3982542 - <i>mgtR</i> 14 15 0.92 ST4-74 3982743 3982835 -
mgtR 14 15 0.92 ST4-74 3982743 3982835 -
mgtB 10 9 1.09 ST4-74 3982857 3985583 -
AmgR 6 4 1.66 ST4-74 3985659 3986858 +
mgtC 20 12 1.69 ST4-74 3985803 3986498 -
vicL 19 16 1.15 ST4-74 3987007 3987909 +
STM3766 10 9 1.14 ST4-74 3987952 3988893 -
STM3767 6 7 0.83 ST4-74 3989129 3989872 -
STM3768 3 3 0.91 ST4-74 3989859 3990968 -
STM3769 2 3 0.83 ST4-74 3990972 3991829 -
STM3770 4 4 0.97 ST4-74 3991829 3992578 -
STM3771 1 1.21 ST4-74 3992724 3993209 -
STM3772 1 1 1.04 ST4-74 3993220 3993645 -
STnc4040 91 62 1.46 ST4-74 3993821 3993944 -
STM3773 19 18 1.06 ST4-74 3993864 3996662 -
STM3774 33 23 1.45 ST4-74 3996859 3997152 +
STM3775 13 9 1.41 ST4-74 3997258 3998640 +
nepl 8 6 1.34 ST4-74 3998700 3999892 -
STM3777 30 26 1.15 ST4-74 4000108 4000467 +
STM3778 13 13 0.97 ST4-74 4000451 4000774 +
STM3779 23 18 1.32 ST4-74 4000865 4001134 -
STM3780 3 3 0.78 ST4-74 4001144 4002004 -
STM3781 6 6 0.97 ST4-74 4002067 4003551 -
STM3782 8 10 0.88 ST4-74 4003544 4004902 -
STM3783 14 16 0.87 ST4-74 4004978 4005265 -
STM3784 27 28 0.98 ST4-74 4005262 4005735 -
STM3785 46 34 1.35 ST4-74 4005753 4006496 -
vicN 36 34 1.05 ST4-74 4006849 4007301 -
uhpT 4 4 1.00 ST4-74 4007493 4008884 -
uhpC 6 6 1.04 ST4-74 4009027 4010355 -
uhpB 7 7 0.92 ST4-74 4010365 4011867 -
<i>uhpA</i> 20 15 1.36 ST4-74 4011867 4012457 -
STM3791 5 7 0.79 ST4-74 4012532 4013545 -
STM3792 4 8 0.50 ST4-74 4013557 4014873 -
STM3793 7 13 0.56 ST4-74 4014904 4015824 -
STM3794 9 9 0.94 ST4-74 4016149 4016934 +
<i>ilvN</i> 15 17 0.90 ST4-74 4016936 4017226 -
<i>ilvB</i> 13 13 0.95 ST4-74 4017230 4018918 -
<i>ivbL</i> 4003 3906 1.02 ST4-74 4019025 4019123 -
$I_{102} = 102 = 102 = 101923 = 1019123$ IstR-1.2 74 82 0.90 ST4-74 4019328 4019459 -
STM3796A 7 7 0.96 ST4-74 401920 401949 +
emrD 3 3 1 22 ST4-74 4021003 4022187 +
STM3799 19 16 1 21 ST4-74 4021005 4022107 -
dsdC 10 11 0.98 ST4-74 4023263 4024186 -
dsdX 6 5 1 12 ST4-74 4024412 4025749 +
dsdA 7 7 1.08 ST4-74 4025767 4027089 +
Name

yidF
yidG
yidH
yidE
STnc2110
hslS
hslT
yidQ
yidR
ccmH1
ccmG1
ccmF1
ccmE1
ccmD1
ccmC1
ccmB1
ccmA1
yhjA
torD
torA
torC
torR
torT
torS
dgoT
dgoD
dgoA
dgoK
dgoR
yidA
STM3832
STM3833
STM3834
gyrB
recF
dnaN
dnaA
rpmH
rnpA
STM3841
<i>yidC</i>
STnc4250
thdF
STnc3170
<i>intA</i>
STnc400
STM3845
STM3846
yidY
yidZ
yieE

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yieF	76	49	1.54	ST4-74	4078417	4079001	+
yieG	31	38	0.80	ST4-74	4079046	4080383	-
yieH	59	62	0.96	ST4-74	4080552	4081217	+
STnc1860	137	187	0.73	ST4-74	4081218	4081302	-
phoU	14	13	1.07	ST4-74	4081312	4082037	-
pstB	17	20	0.84	ST4-74	4082052	4082825	-
pstA	14	12	1.20	ST4-74	4082912	4083802	-
pstC	15	14	1.06	ST4-74	4083802	4084761	-
pstS	20	20	0.99	ST4-74	4084897	4085937	-
STM3858	7	7	1.02	ST4-74	4086104	4087477	-
STM3859	2	2	0.82	ST4-74	4087526	4088344	-
STM3860	6	7	0.88	ST4-74	4088439	4090196	+
glmS	43	56	0.77	ST4-74	4090347	4092176	-
glmU	119	124	0.96	ST4-74	4092365	4093735	-
STM3863	22	16	1.34	ST4-74	4094055	4094753	-
atpC	126	208	0.61	ST4-74	4094983	4095402	-
atpD	69	111	0.62	ST4-74	4095423	4096805	-
atpG	81	139	0.58	ST4-74	4096832	4097695	-
atpA	86	138	0.63	ST4-74	4097746	4099287	-
atpH	125	194	0.64	ST4-74	4099300	4099833	-
atpF	267	417	0.64	ST4-74	4099848	4100318	-
atpE	398	640	0.62	ST4-74	4100378	4100617	-
atpB	160	218	0.74	ST4-74	4100664	4101479	-
atpI	333	374	0.89	ST4-74	4101488	4101868	-
gidB	19	20	0.95	ST4-74	4102484	4103113	-
gidA	24	26	0.92	ST4-74	4103210	4105099	-
mioC	114	115	0.99	ST4-74	4105478	4105921	-
asnCb	23	20	1.14	ST4-74	4106011	4106469	-
asnA	67	78	0.86	ST4-74	4106620	4107612	+
vieM	8	10	0.83	ST4-74	4107617	4109017	-
vieN	25	23	1.09	ST4-74	4109062	4110558	-
, kup	19	21	0.89	ST4-74	4110906	4112774	+
rbsD	34	40	0.85	ST4-74	4112971	4113390	+
rbsA	4	5	0.86	ST4-74	4113398	4114903	+
rbsC	12	14	0.86	ST4-74	4114909	4115874	+
rbsB	337	283	1.19	ST4-74	4115899	4116789	+
rbsK	15	21	0.72	ST4-74	4116923	4117852	+
rbsR	11	17	0.70	ST4-74	4117856	4118854	+
vieO	11	9	1.21	ST4-74	4118820	4120243	-
yieP	16	18	0.93	ST4-74	4120255	4120959	-
vifA	24	27	0.88	ST4-74	4127091	4127939	-
y ifE	826	598	1.38	ST4-74	4128046	4128384	+
comM	3	3	1.04	ST4-74	4128409	4129929	-
ilvX	237	232	1.02	ST4-74	4130466	4130516	+
ilvG	32	35	0.92	ST4-74	4130519	4132165	+
ilvM	63	66	0.95	ST4-74	4132165	4132425	+
ilvE	43	47	0.90	ST4-74	4132443	4133372	+
ilvD	28	33	0.84	ST4-74	4133533	4135383	+
ilvA	65	78	0.83	ST4-74	4135386	4136930	+
STM3906	51	48	1.06	ST4-74	4137214	4137531	+
STM3907	48	41	1.16	ST4-74	4137528	4137869	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
ilvY	6	7	0.80	ST4-74	4137872	4138759	-
ilvC	200	239	0.84	ST4-74	4138923	4140398	+
ppiC	198	193	1.03	ST4-74	4140490	4140771	-
SL1344_3870A	20	22	0.91	ST4-74	4140776	4141081	+
SL1344_3871	17	17	0.99	ST4-74	4141099	4141209	+
rep	15	13	1.21	ST4-74	4141309	4143333	+
gppA	17	23	0.77	ST4-74	4143373	4144854	-
rhlB	55	63	0.87	ST4-74	4144973	4146238	-
trxA	589	654	0.90	ST4-74	4146382	4146711	+
rho	134	122	1.10	ST4-74	4147130	4148389	+
rfe	79	77	1.02	ST4-74	4148619	4149722	+
wzzE	91	83	1.11	ST4-74	4149734	4150780	+
rffE	26	28	0.93	ST4-74	4150836	4151966	+
rffD	24	27	0.88	ST4-74	4151963	4153225	+
rffG	18	18	0.99	ST4-74	4153240	4154292	+
rffH	21	23	0.92	ST4-74	4154325	4154549	+
rffC	15	16	0.91	ST4-74	4154656	4155204	+
rffA	17	18	0.96	ST4-74	4155209	4156339	+
wzxE	13	14	0.94	ST4-74	4156341	4157591	+
STM3927	9	9	0.94	ST4-74	4157588	4158667	+
rffT	17	18	0.95	ST4-74	4158664	4160022	+
rffM	11	12	0.88	ST4-74	4160019	4160759	+
<i>vifK</i>	48	32	1.51	ST4-74	4160966	4162351	+
GlmZ	3736	3416	1.09	ST4-74	4163192	4163399	+
hemY	34	38	0.90	ST4-74	4163468	4164607	-
hemX	31	35	0.88	ST4-74	4164667	4165836	-
hemD	27	37	0.72	ST4-74	4165858	4166598	-
hemC	73	74	0.99	ST4-74	4166595	4167551	-
суаА	51	45	1.14	ST4-74	4167913	4170459	+
STM3940	12	9	1.24	ST4-74	4170567	4170920	+
STM3941	5	3	1.82	ST4-74	4171106	4171648	+
STM3942	4	5	0.96	ST4-74	4171660	4172022	+
суаҮ	56	76	0.73	ST4-74	4172093	4172413	-
STM3944	3	2	1.26	ST4-74	4172483	4172872	-
STM3945	3	3	1.01	ST4-74	4172860	4173382	-
yifL	52	62	0.84	ST4-74	4173568	4173771	+
dapF	29	35	0.82	ST4-74	4173805	4174632	+
yigA	15	20	0.76	ST4-74	4174629	4175336	+
xerC	12	16	0.70	ST4-74	4175333	4176235	+
yigB	10	12	0.82	ST4-74	4176235	4176951	+
uvrD	18	18	0.98	ST4-74	4177087	4179249	+
corA	21	22	0.98	ST4-74	4179721	4180671	+
yigF	7	4	1.85	ST4-74	4180720	4181100	-
yigG	5	4	1.31	ST4-74	4181116	4181574	-
rarD	23	21	1.11	ST4-74	4181609	4182493	-
yigI	9	6	1.33	ST4-74	4182537	4183022	-
pldA	73	41	1.81	ST4-74	4183292	4184038	+
recQ	28	26	1.09	ST4-74	4184104	4185951	+
rhtC	15	16	0.94	ST4-74	4186015	4186635	+
rhtB	9	10	0.86	ST4-74	4186675	4187295	-
pldB	39	38	1.03	ST4-74	4187406	4188422	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yigL	20	16	1.21	ST4-74	4188438	4189238	+
yigM	62	64	0.98	ST4-74	4189319	4190218	+
metR	33	38	0.86	ST4-74	4190106	4191059	-
metE	91	115	0.79	ST4-74	4191308	4193572	+
STM3966	5	5	0.94	ST4-74	4193916	4195259	+
dlhH	43	39	1.11	ST4-74	4195339	4196151	-
udp	31	31	1.02	ST4-74	4196410	4197171	+
vigN	14	15	0.93	ST4-74	4197311	4198741	+
uhiE	100	86	1.17	ST4-74	4198837	4199592	+
vigP	34	34	1.00	ST4-74	4199602	4200207	+
aarF	59	54	1.10	ST4-74	4200204	4201844	+
tatA	614	636	0.97	ST4-74	4202050	4202304	+
tatB	109	137	0.80	ST4-74	4202308	4202856	+
tatC	69	77	0.90	ST4-74	4202859	4203638	+
tatD	6	6	0.91	ST4-74	4203668	4204462	+
rfaH	82	72	1.14	ST4-74	4204470	4204958	_
vigC	59	56	1.05	ST4-74	4205144	4206622	+
fre	54	44	1.05	ST4-74	4206708	4207409	+
STM3980	19	14	1 34	ST4-74	4207663	4209486	+
STnc790	44	33	1.31	ST4-74	4209485	4209680	_
fad A	7	55 7	1.52	ST4_74	4209483	4210846	_
fadR	5	, Д	1.12	ST4-74	4210856	4213045	_
juuD nenO	35	36	0.98	ST4-74 ST4-74	4210050	4213043	+
pepQ via7	33	33	1.05	ST4-74	4213235	4214500	+
yıg2 trkH	26	26	0.97	ST4-74	4214300	4215100	+
hamG	20	20	0.97	ST4-74	4215219	4210070	+
mohR	10	18	1.00	ST4-74	4210082	4217227	I
mob A	19	24	1.09	ST4-74 ST4-74	4223123	4223038	-
wihD	41	107	1.21	ST4-74	4223033	4224219	-
yinD rod4	171	197	0.87	ST4-74 ST4-74	4224289	4224558	+
dah A	110	101	0.98	ST4-74	4224033	4225021	- -
usbA wihC	110	110	1.22	ST4-74	4225058	4220201	1
	22	10	1.23	S14-74 ST4 74	4220274	422/162	-
polA Suf	20 1745	083	0.94	ST4-74	4227370	4230330	т
Spj ongP	1/43	903 50	1.//	S14-74 ST4 74	4230304	4230013	Т
engb CarC	56081	21105	1.01	ST4-74	4230091	4231290	- _
US/C	50981	51195	1.05	S14-74 ST4 74	4231393	4231636	т 1
yini hamN	90	19	1.25	S14-74 ST4 74	4231900	4232421	т 1
nemin	18	18	1.05	S14-74	4232010	4255985	Ŧ
ysnB ~luC	131	991	0.74	S14-74	4234073	4234183	-
ginG	6	0	1.03	S14-74	4234290	4233703	-
ginL ST-1900	9	8	1.02	S14-74	4235/14	4236/63	-
SInc800	559	331	1.69	S14-74	4236851	4237035	-
glnA	88	71	1.23	S14-74	4237038	4238447	-
typA	61	61	1.01	S14-74	4238823	4240646	+
STM4010	11	9	1.22	ST4-74	4240701	4241435	-
STM4011	6	5	1.18	ST4-74	4241420	4242298	-
STM4012	3	2	1.47	ST4-74	4242295	4243536	-
STM4013	10	6	1.77	ST4-74	4243538	4244401	-
STM4014	2	1	1.47	ST4-74	4244406	4245431	-
STM4015	4	4	0.85	ST4-74	4245444	4246292	-
ompL	2	2	1.00	ST4-74	4246449	4247141	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yihO	9	8	1.12	ST4-74	4247209	4248630	-
yihP	5	6	0.87	ST4-74	4248676	4250058	-
STnc3120	180	89	2.03	ST4-74	4249942	4250100	+
yihQ	4	4	1.19	ST4-74	4250104	4252140	-
yihR	2	1	1.40	ST4-74	4252184	4253035	-
yihS	1	1	1.08	ST4-74	4253045	4254286	-
yihT	1	1	1.25	ST4-74	4254302	4255180	-
yihU	1	1	2.07	ST4-74	4255203	4256099	-
yihV	4	4	0.91	ST4-74	4256258	4257160	+
yihW	23	24	0.94	ST4-74	4257194	4257997	+
yihX	68	58	1.16	ST4-74	4258188	4258787	+
rbn	58	48	1.23	ST4-74	4258781	4259653	+
yihZ	29	29	1.02	ST4-74	4259650	4260087	+
yiiD	21	19	1.13	ST4-74	4260084	4261073	+
STM4030	23	21	1.12	ST4-74	4261088	4261516	-
STM4031	65	55	1.19	ST4-74	4261531	4261842	-
STM4032	5	6	0.95	ST4-74	4261928	4262857	-
SL1344 3979	102	96	1.07	ST4-74	4263075	4263386	+
STM4033	33	27	1.20	ST4-74	4263387	4263677	+
fdhE	9	15	0.64	ST4-74	4263724	4264653	-
fdoI	36	36	1.00	ST4-74	4264650	4265285	-
fdoH	5	8	0.72	ST4-74	4265282	4266184	-
fdoG	15	20	0.74	ST4-74	4266197	4269247	-
fdhD	10	13	0.80	ST4-74	4269442	4270278	+
STM4039	13	11	1.18	ST4-74	4270546	4271523	-
yiiG	2	2	1.04	ST4-74	4271802	4272860	+
STM4041	14	15	0.93	ST4-74	4273215	4273538	-
STM4042	22	33	0.66	ST4-74	4273538	4274197	-
STM4042A	40	38	1.05	ST4-74	4274280	4274846	+
yiiL	16	18	0.89	ST4-74	4274935	4275249	-
STM4044	5	5	1.02	ST4-74	4275246	4276394	-
rhaD	6	4	1.50	ST4-74	4276521	4277348	-
rhaA	1	1	1.06	ST4-74	4277491	4278750	-
rhaB	1	1	1.23	ST4-74	4278747	4280216	-
rhaS	9	10	0.86	ST4-74	4280504	4281340	+
rhaR	12	13	0.91	ST4-74	4281493	4282341	+
rhaT	4	5	0.99	ST4-74	4282338	4283372	-
STM4051	4	3	1.11	ST4-74	4283991	4284674	+
STM4052	5	5	0.88	ST4-74	4284832	4286139	-
STM4053	2	3	0.79	ST4-74	4286132	4286647	-
STM4054	2	2	0.81	ST4-74	4286666	4287649	-
sodA	103	65	1.58	ST4-74	4287978	4288598	+
yiiM	11	16	0.66	ST4-74	4288668	4289357	+
STM4057	18	26	0.68	ST4-74	4289369	4289764	+
cpxA	23	35	0.67	ST4-74	4289815	4291188	-
cpxR	46	58	0.80	ST4-74	4291185	4291883	-
cpxP	2655	2314	1.15	ST4-74	4292034	4292534	+
STnc870	8576	11967	0.72	ST4-74	4292540	4292597	+
fieF	87	64	1.37	ST4-74	4292682	4293584	+
pfkA	49	72	0.68	ST4-74	4293769	4294731	+
sbp	62	113	0.55	ST4-74	4294935	4295924	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
cdh-a	159	130	1.23	ST4-74	4296025	4296780	+
STM4065	7	8	0.90	ST4-74	4297043	4298377	+
STM4066	5	5	1.02	ST4-74	4298388	4299347	+
STM4067	46	43	1.07	ST4-74	4299357	4300397	+
STM4068	30	35	0.88	ST4-74	4300460	4301182	+
STM4069	26	17	1.49	ST4-74	4301280	4301444	+
cdh-b	7	5	1.25	ST4-74	4301460	4301591	+
STM4071	12	16	0.75	ST4-74	4301681	4301947	-
ydeV	15	12	1.24	ST4-74	4302045	4303637	-
ydeW	22	20	1.10	ST4-74	4303725	4304684	-
ego	12	15	0.79	ST4-74	4304940	4306475	+
ydeY	11	14	0.79	ST4-74	4306469	4307512	+
ydeZ	16	19	0.87	ST4-74	4307509	4308510	+
yneA	11	18	0.63	ST4-74	4308539	4309561	+
yneB	26	29	0.90	ST4-74	4309590	4310465	+
yneC	26	28	0.91	ST4-74	4310545	4310838	+
STM4080	30	30	1.00	ST4-74	4310848	4311612	+
tpiA	117	169	0.69	ST4-74	4311704	4312471	-
viiQ	48	38	1.26	ST4-74	4312584	4313180	-
y z yiiR	35	25	1.37	ST4-74	4313281	4313709	+
fpr	17	18	0.95	ST4-74	4313816	4314562	-
glpX	11	24	0.44	ST4-74	4314659	4315669	-
glpK	161	287	0.56	ST4-74	4315781	4317289	-
glpF	226	417	0.54	ST4-74	4317310	4318155	-
viiU	1019	918	1.11	ST4-74	4318554	4318793	+
, menG	261	319	0.82	ST4-74	4319015	4319500	-
menA	18	17	1.06	ST4-74	4319593	4320522	-
hslU	122	69	1.77	ST4-74	4320589	4321920	-
hslV	53	63	0.84	ST4-74	4321930	4322460	-
ftsN	79	77	1.04	ST4-74	4322552	4323526	-
cvtR	18	24	0.74	ST4-74	4323620	4324645	-
priA	18	18	1.01	ST4-74	4324800	4326998	-
romE	221	329	0.67	ST4-74	4327202	4327414	+
STM4097	6	6	1.07	ST4-74	4327460	4328122	-
IsrP	55	33	1.66	ST4-74	4328157	4328304	+
STM4098	5	3	1.36	ST4-74	4328323	4330113	-
metJ	220	194	1.13	ST4-74	4330570	4330887	-
metB	59	71	0.83	ST4-74	4331152	4332312	+
metL	30	40	0.73	ST4-74	4332315	4334747	+
STnc4070	42	41	1.01	ST4-74	4334757	4334855	-
STM4102	2	3	0.83	ST4-74	4335001	4335720	-
SL1344 4052	2	2	1.24	ST4-74	4335723	4336721	-
STM4103	10	13	0.80	ST4-74	4336956	4338080	-
STM4104	7	6	1.16	ST4-74	4338216	4339772	+
STnc4080	45	33	1.39	ST4-74	4339805	4339929	-
metF	268	273	0.98	ST4-74	4339967	4340857	+
<i>katG</i>	24	33	0.71	ST4-74	4341022	4343202	+
viiF	12	10	1.17	ST4-74	4343260	4343883	-
gldA		28	0.40	ST4-74	4344142	4345245	-
talC	14	23	0.61	ST4-74	4345257	4345919	-
<i>ptsA</i>	6	6	1.03	ST4-74	4345930	4348431	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
frwC	13	9	1.40	ST4-74	4348740	4349819	+
frwB	37	25	1.49	ST4-74	4349834	4350154	+
pflD	15	10	1.52	ST4-74	4350253	4352550	+
pflC	25	18	1.42	ST4-74	4352516	4353394	+
frwD	12	8	1.46	ST4-74	4353396	4353749	+
yijO	38	36	1.07	ST4-74	4353736	4354587	-
yijP	48	52	0.91	ST4-74	4354748	4356481	-
STnc1600	285	256	1.12	ST4-74	4356616	4356686	+
ppc	35	49	0.71	ST4-74	4356692	4359343	-
argE	30	45	0.67	ST4-74	4359712	4360863	-
argC	119	184	0.65	ST4-74	4360952	4361956	+
argB	39	77	0.51	ST4-74	4361964	4362740	+
argH	50	89	0.56	ST4-74	4362858	4364234	+
OxyS	27	42	0.63	ST4-74	4364305	4364423	-
oxyR	25	35	0.71	ST4-74	4364519	4365436	+
udhA	24	24	0.98	ST4-74	4365419	4366819	-
yijC	74	79	0.94	ST4-74	4367018	4367653	+
yijD	41	46	0.89	ST4-74	4367669	4368028	+
trmA	18	16	1.11	ST4-74	4368075	4369175	-
<i>btuB</i>	19	23	0.84	ST4-74	4369507	4371393	+
murI	20	22	0.93	ST4-74	4371338	4372189	+
murB	24	20	1.20	ST4-74	4378004	4379032	+
<i>birA</i>	19	19	1.01	ST4-74	4379029	4379991	+
coaA	39	38	1.04	ST4-74	4380026	4380976	-
STM4141	18	11	1.69	ST4-74	4381185	4381358	-
tufB	545	788	0.69	ST4-74	4381935	4383119	+
secE	165	185	0.89	ST4-74	4383349	4383732	+
nusG	72	91	0.80	ST4-74	4383734	4384279	+
rplK	404	406	0.99	ST4-74	4384437	4384865	+
rplA	192	252	0.76	ST4-74	4384869	4385573	+
rplJ	580	731	0.79	ST4-74	4385993	4386490	+
rplL	690	935	0.74	ST4-74	4386557	4386922	+
rpoB	51	72	0.71	ST4-74	4387240	4391268	+
rpoC	53	76	0.69	ST4-74	4391345	4395568	+
STnc3490	21	15	1.40	ST4-74	4395603	4395691	-
STM4155	9	6	1.46	ST4-74	4395610	4395933	+
STM4156	6	5	1.13	ST4-74	4395939	4396283	-
sseK1	59	40	1.48	ST4-74	4396682	4397692	+
STM4158	186	136	1.37	ST4-74	4398015	4398203	+
thiH	32	37	0.85	ST4-74	4398354	4399487	-
thiG	21	27	0.80	ST4-74	4399484	4400254	-
thiS	30	39	0.77	ST4-74	4400256	4400456	-
thiF	23	30	0.76	ST4-74	4400437	4401195	-
thiE	19	23	0.81	ST4-74	4401188	4401823	-
thiC	29	34	0.85	ST4-74	4401823	4403718	-
STnc1460	5179	6313	0.82	ST4-74	4403810	4404049	-
rsd	38	26	1.47	ST4-74	4404082	4404570	-
nudC	13	9	1.33	ST4-74	4404663	4405436	+
hemE	26	20	1.28	ST4-74	4405477	4406541	+
nfi	23	19	1.23	ST4-74	4406551	4407222	+
yjaG	65	66	0.99	ST4-74	4407264	4407854	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
hupA	1467	2155	0.68	ST4-74	4408041	4408313	+
ујаН	17	22	0.75	ST4-74	4408325	4409017	+
zraP	6	7	0.93	ST4-74	4409059	4409514	-
hydH	14	15	0.90	ST4-74	4409768	4411165	+
hydG	11	12	0.95	ST4-74	4411171	4412496	+
purD	10	19	0.52	ST4-74	4412493	4413782	-
purH	16	27	0.61	ST4-74	4413794	4415383	-
yjaB	54	48	1.12	ST4-74	4421537	4421974	-
metA	115	104	1.11	ST4-74	4422131	4423060	+
aceB	5	4	1.15	ST4-74	4423329	4424930	+
aceA	6	5	1.19	ST4-74	4424962	4426266	+
aceK	10	8	1.29	ST4-74	4426368	4428119	+
STM4186	7	7	1.03	ST4-74	4428083	4428517	-
iclR	12	16	0.76	ST4-74	4428501	4429325	-
metH	25	25	1.03	ST4-74	4429629	4433312	+
vjbB	17	17	1.04	ST4-74	4433654	4435210	+
pepE	9	32	0.28	ST4-74	4435286	4435975	-
STM4191	30	24	1.27	ST4-74	4436047	4436148	+
STM4192	74	66	1.13	ST4-74	4436183	4436722	+
vjbC	25	26	0.96	ST4-74	4436769	4437638	+
vjbD	39	44	0.88	ST4-74	4437635	4437907	-
STM4195	16	27	0.60	ST4-74	4438005	4438946	-
STM4196	7	10	0.75	ST4-74	4439208	4439936	-
STM4197	2	3	0.82	ST4-74	4440133	4440423	-
STM4198	5	5	1.02	ST4-74	4440672	4441127	-
STM4199	4	4	0.83	ST4-74	4441124	4441729	-
STM4200	7	7	1.02	ST4-74	4441734	4443479	-
STM4201	1	1	1.06	ST4-74	4443482	4444114	-
STM4202	1	7	0.21	ST4-74	4444107	4445222	-
STM4203	1	0	3.26	ST4-74	4445213	4445572	-
STM4204	11	10	1.08	ST4-74	4445736	4447283	-
gtrBb	9	8	1.08	ST4-74	4447283	4448212	-
gtrAb	53	42	1.25	ST4-74	4448209	4448535	-
STnc4100	97	66	1.47	ST4-74	4448720	4448837	+
STM4207	4	3	1.10	ST4-74	4448899	4449621	-
STM4208	2	1	2.01	ST4-74	4449631	4450674	-
STM4209	5	2	2.53	ST4-74	4450662	4450871	-
STM4210	3	2	1.66	ST4-74	4450871	4451824	-
STM4211	1	1	1.14	ST4-74	4451824	4454178	-
SL1344 4147	3	4	0.83	ST4-74	4454363	4454680	-
STM4212	2	1	1.16	ST4-74	4454732	4455256	-
STM4213	2	2	0.97	ST4-74	4455256	4456683	-
STM4214	1	1	0.63	ST4-74	4456673	4456870	-
STM4215	1	1	1.24	ST4-74	4456867	4457322	-
STM4216	0	0	1.51	ST4-74	4457482	4457796	-
STM4217	1	1	0.64	ST4-74	4457809	4458414	-
STM4218	3	3	0.93	ST4-74	4458417	4458704	-
STM4219	47	43	1.10	ST4-74	4459280	4459627	+
lysC	85	186	0.46	ST4-74	4459760	4461109	-
pgi	52	52	1.00	ST4-74	4461454	4463103	+
yjbE	30	29	1.04	ST4-74	4463547	4463789	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yjbF	2	2	0.95	ST4-74	4463823	4464491	+
yjbG	1	1	1.28	ST4-74	4464488	4465225	+
yjbH	8	8	1.01	ST4-74	4465225	4467321	+
yjbA	169	91	1.87	ST4-74	4467464	4467874	+
STnc810	37	26	1.41	ST4-74	4467934	4467988	-
malG	3	3	1.06	ST4-74	4468040	4468930	-
malF	3	3	0.86	ST4-74	4468945	4470489	-
malE	3	3	0.83	ST4-74	4470621	4471820	-
malK	2	2	0.94	ST4-74	4472173	4473282	+
lamB	6	6	1.10	ST4-74	4473371	4474729	+
malM	8	7	1.13	ST4-74	4474893	4475810	+
STnc2130	96	105	0.91	ST4-74	4475777	4475867	+
ubiC	20	20	1.00	ST4-74	4475991	4476488	+
ubiA	16	17	0.92	ST4-74	4476502	4477374	+
plsB	30	34	0.88	ST4-74	4477473	4479893	-
dgkA	40	39	1.01	ST4-74	4480064	4480432	+
lexA	129	134	0.96	ST4-74	4480541	4481149	+
dinF	11	12	0.93	ST4-74	4481328	4482653	+
yjbJ	381	204	1.87	ST4-74	4482782	4482994	+
zur	34	29	1.15	ST4-74	4483093	4483608	-
STM4242	17	39	0.43	ST4-74	4483855	4485165	+
vjbN	41	37	1.11	ST4-74	4485253	4486251	+
pspG	24	25	0.96	ST4-74	4486464	4486661	+
STnc880	1381	2241	0.62	ST4-74	4486745	4486823	+
qor	22	19	1.18	ST4-74	4486836	4487819	-
dnaB	23	26	0.87	ST4-74	4487884	4489299	+
alr-b	13	14	0.90	ST4-74	4489331	4490410	+
tyrB	24	29	0.80	ST4-74	4490596	4491789	+
aphA	49	66	0.74	ST4-74	4491976	4492689	+
yjbQ	46	46	0.99	ST4-74	4492818	4493234	+
yjbR	19	17	1.12	ST4-74	4493237	4493593	+
STM4252	3	2	1.63	ST4-74	4493594	4493932	-
STM4253	1	1	1.21	ST4-74	4493919	4494374	-
uvrA	12	12	1.07	ST4-74	4494506	4497331	-
STM4255	8	11	0.76	ST4-74	4497296	4497412	+
ssb	93	85	1.09	ST4-74	4497579	4498109	+
siiA	20	12	1.60	ST4-74	4499150	4499782	+
siiB	13	9	1.48	ST4-74	4499779	4501167	+
siiC	12	9	1.45	ST4-74	4501157	4502476	+
siiD	12	8	1.51	ST4-74	4502473	4503750	+
siiE	10	8	1.17	ST4-74	4503767	4520446	+
siiF	11	8	1.48	ST4-74	4520486	4522552	+
ујсВ	12	14	0.87	ST4-74	4522830	4523111	-
yjcC	10	8	1.31	ST4-74	4523674	4525275	+
soxS	21	30	0.71	ST4-74	4525263	4525586	-
soxR	12	12	1.00	ST4-74	4525673	4526131	+
SraL	1784	818	2.18	ST4-74	4526162	4526302	-
STM4267	70	45	1.58	ST4-74	4526424	4527092	+
yjcD	30	40	0.74	ST4-74	4527439	4528788	+
ујсЕ	16	16	0.99	ST4-74	4528938	4530584	+
STM4270	29	24	1.20	ST4-74	4530679	4531566	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM4271	10	14	0.69	ST4-74	4531670	4532080	+
STM4272	7	7	1.02	ST4-74	4532073	4532762	+
actP	10	8	1.25	ST4-74	4532801	4534450	-
ујсН	5	5	1.12	ST4-74	4534447	4534761	-
acs	17	17	1.06	ST4-74	4535007	4536965	-
STM4276	89	88	1.01	ST4-74	4537152	4537298	+
nrfA	4	19	0.22	ST4-74	4537397	4538833	+
nrfB	6	11	0.51	ST4-74	4538945	4539511	+
nrfC	6	8	0.70	ST4-74	4539508	4540179	+
nrfD	3	5	0.67	ST4-74	4540176	4541132	+
nrfE	6	5	1.21	ST4-74	4541125	4543347	+
nrfG	1	2	0.54	ST4-74	4543344	4543964	+
gltP	37	39	0.97	ST4-74	4544309	4545619	+
yjcO	40	28	1.43	ST4-74	4545777	4546388	-
SC4B5.11c	7	19	0.39	ST4-74	4546643	4548790	-
<i>lpxO</i>	53	30	1.73	ST4-74	4549145	4550053	-
phnO	130	64	2.03	ST4-74	4550311	4550745	-
phnB	20	15	1.31	ST4-74	4550897	4551340	-
phnA	56	91	0.61	ST4-74	4551460	4551795	-
proP	55	41	1.33	ST4-74	4552263	4553765	+
STnc630	2260	1641	1.38	ST4-74	4553813	4553972	+
basS	33	42	0.77	ST4-74	4553932	4555002	-
basR	53	47	1.12	ST4-74	4555012	4555680	-
vidB	60	69	0.87	ST4-74	4555677	4557320	-
adiC	7	6	1.08	ST4-74	4557454	4558791	-
adiY	3	3	1.08	ST4-74	4558931	4559692	-
STnc1180	18	18	1.01	ST4-74	4559883	4559977	-
adi	4	3	1.20	ST4-74	4559990	4562260	-
STnc4110	29	24	1.22	ST4-74	4562397	4562461	+
melR	13	11	1.10	ST4-74	4562490	4563422	-
melA	3	3	1.22	ST4-74	4563691	4565046	+
melB	6	4	1.43	ST4-74	4565130	4566560	+
fumB	11	78	0.14	ST4-74	4566658	4568304	-
dcuB	15	104	0.15	ST4-74	4568400	4569740	-
STM4302	565	720	0.78	ST4-74	4569887	4570153	-
dcuR	24	42	0.58	ST4-74	4570470	4571189	-
dcuS	23	30	0.79	ST4-74	4571186	4572817	-
STM4305	8	62	0.13	ST4-74	4573173	4575602	+
STM4306	7	37	0.18	ST4-74	4575616	4576242	+
STM4307	8	39	0.20	ST4-74	4576235	4577008	+
STM4308	12	67	0.17	ST4-74	4577024	4577677	+
STM4309	2	3	0.80	ST4-74	4577761	4579161	-
STM4310	7	7	0.97	ST4-74	4579465	4580370	+
STnc440	16639	4653	3.58	ST4-74	4580485	4580565	+
STM4312	2	4	0.57	ST4-74	4580664	4580933	-
STM4313	16	17	0.95	ST4-74	4580941	4581156	-
rtsB	10	17	0.56	ST4-74	4581179	4581466	-
rtsA	29	50	0.58	ST4-74	4581463	4582338	-
STM4316	3	2	1.40	ST4-74	4582603	4582824	-
STM4317	52	57	0.91	ST4-74	4583141	4583434	+
STM4318	14	12	1.10	ST4-74	4583431	4583922	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
phoN	187	101	1.84	ST4-74	4584170	4584922	-
SL1344_4256	2	0	_	ST4-74	4584965	4585099	-
SL1344_4257	4	4	1.01	ST4-74	4586132	4586509	-
STM4320	27	18	1.48	ST4-74	4586581	4586913	+
yjdC	106	65	1.64	ST4-74	4587352	4587927	-
dipZ	13	16	0.77	ST4-74	4587964	4589667	-
cutA	22	22	0.99	ST4-74	4589643	4589990	-
dcuA	36	59	0.60	ST4-74	4590111	4591295	-
STnc3000	9	5	2.02	ST4-74	4591418	4591505	+
aspA	160	225	0.71	ST4-74	4591527	4592963	-
fxsA	76	87	0.88	ST4-74	4593265	4593780	+
ујеН	104	63	1.66	ST4-74	4593839	4595080	-
groES	647	861	0.75	ST4-74	4595356	4595649	+
groEL	150	208	0.72	ST4-74	4595693	4597339	+
yjeI	281	327	0.86	ST4-74	4597565	4597936	+
yjeJ	24	18	1.29	ST4-74	4597984	4598841	-
yjeK	27	21	1.29	ST4-74	4599123	4600151	-
efp	200	223	0.90	ST4-74	4600192	4600758	+
ecnA	22	20	1.09	ST4-74	4600777	4600953	+
ecnB	7018	2863	2.45	ST4-74	4601061	4601207	+
ecnR	16	24	0.69	ST4-74	4601238	4601825	-
sugE	91	72	1.26	ST4-74	4602082	4602399	+
blc	45	23	1.97	ST4-74	4602416	4602949	-
frdD	129	270	0.48	ST4-74	4603061	4603420	-
frdC	40	116	0.35	ST4-74	4603431	4603826	-
frdB	50	147	0.34	ST4-74	4603837	4604571	-
frdA	44	130	0.34	ST4-74	4604564	4606354	-
yjeA	21	17	1.22	ST4-74	4606677	4607654	+
vjeM	6	7	0.96	ST4-74	4607880	4609382	+
yjeO	79	70	1.12	ST4-74	4609434	4609748	+
vjeP	17	19	0.86	ST4-74	4609815	4613117	-
psd	39	44	0.89	ST4-74	4613160	4614128	-
vjeQ	46	40	1.16	ST4-74	4614220	4615296	-
orn	57	57	1.00	ST4-74	4615379	4615924	+
STM4351	14	15	0.91	ST4-74	4615986	4616726	-
vjeV	14	14	1.00	ST4-74	4617775	4617828	+
vjeS	17	14	1.22	ST4-74	4617811	4618950	-
vjeF	21	19	1.16	ST4-74	4618949	4620496	+
vjeE	24	24	0.99	ST4-74	4620468	4620929	+
amiB	31	34	0.92	ST4-74	4620946	4622265	+
mutL	24	30	0.82	ST4-74	4622275	4624131	+
miaA	251	262	0.96	ST4-74	4624124	4625074	+
hfq	680	761	0.89	ST4-74	4625157	4625465	+
hflX	115	132	0.87	ST4-74	4625537	4626817	+
hflK	103	114	0.90	ST4-74	4627032	4628291	+
hflC	119	138	0.87	ST4-74	4628294	4629298	+
purA	230	251	0.91	ST4-74	4629677	4630975	+
nsrR	116	98	1.18	ST4-74	4631182	4631607	+
rnr	28	27	1.02	ST4-74	4631645	4634083	+
vifH	29	38	0.77	ST4-74	4634174	4634905	+
yjfI	4	3	1.26	ST4-74	4635037	4635441	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
yjfJ	6	5	1.06	ST4-74	4635456	4636154	+
STM4372	3	2	1.30	ST4-74	4636154	4637224	+
yjfK	3	3	1.25	ST4-74	4637197	4637880	+
yjfL	10	9	1.22	ST4-74	4637898	4638296	+
yjfM	4	5	0.94	ST4-74	4638306	4638944	+
yjfC	6	5	1.14	ST4-74	4638947	4640110	+
aidB	13	12	1.13	ST4-74	4640195	4641817	+
yjfN	79	63	1.25	ST4-74	4641862	4642182	-
yjfO	294	222	1.33	ST4-74	4642268	4642570	-
yjfP	13	15	0.81	ST4-74	4642781	4643530	+
yjfQ	20	23	0.86	ST4-74	4643527	4644282	-
yjfR	3	3	0.96	ST4-74	4644387	4645451	-
sgaT	4	3	1.27	ST4-74	4645814	4647211	+
sgaB	1	4	0.34	ST4-74	4647227	4647532	+
ptxA	2	2	0.97	ST4-74	4647542	4648006	+
sgaH	3	3	1.08	ST4-74	4648020	4648670	+
sgaU	4	3	1.28	ST4-74	4648680	4649534	+
sgaE	6	5	1.33	ST4-74	4649534	4650220	+
STnc4120	143	74	1.94	ST4-74	4650287	4650410	-
vifY	56	30	1.83	ST4-74	4650349	4650624	-
STM4390	355	375	0.95	ST4-74	4650818	4651024	+
rpsF	199	289	0.69	ST4-74	4651095	4651490	+
priB	174	238	0.73	ST4-74	4651497	4651811	+
rpsR	177	262	0.67	ST4-74	4651816	4652043	+
rplI	168	229	0.74	ST4-74	4652085	4652534	+
vifZ	12	9	1.26	ST4-74	4652682	4653608	+
vtfB	62	47	1.33	ST4-74	4653658	4654293	-
fklB	32	34	0.93	ST4-74	4654471	4655133	+
cvcA	27	28	0.95	ST4-74	4655429	4656838	+
vtfE	6	5	1.29	ST4-74	4656950	4657612	-
vtfF	9	7	1.27	ST4-74	4657715	4658680	-
vtfG	3	2	1.33	ST4-74	4658761	4659609	-
vtfH	13	15	0.90	ST4-74	4659697	4660083	+
cpdB	7	10	0.74	ST4-74	4660141	4662084	-
cvsO	33	31	1.08	ST4-74	4662352	4663092	+
vtfJ	26	24	1.08	ST4-74	4663082	4663639	-
vtfK	2510	1102	2.28	ST4-74	4663966	4664172	+
vtfL	35	30	1.17	ST4-74	4664257	4665600	-
msrA	44	28	1.55	ST4-74	4665783	4666421	-
vtfM	45	34	1.34	ST4-74	4666634	4668367	+
vtfN	45	42	1.06	ST4-74	4668364	4672143	+
vtfP	100	101	0.99	ST4-74	4672146	4672490	+
STM4412	6	6	1.01	ST4-74	4672544	4673752	_
STM4413	3	4	0.80	ST4-74	4673749	4674912	_
nna	274	359	0.76	ST4-74	4675323	4675853	_
fbp	34	36	0.95	ST4-74	4676080	4677078	-
mpl	26	26	0.99	ST4-74	4677253	4678632	+
iolR	22	23	0.94	ST4-74	4679123	4679956	+
iolT1		13	1.04	ST4-74	4680007	4681377	-
iolT2	11	7	1.46	ST4-74	4681899	4683335	+
STnc1740	72	56	1.28	ST4-74	4683333	4683512	-

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STnc2160	50	38	1.31	ST4-74	4683636	4683699	-
iolB	8	7	1.05	ST4-74	4683688	4684497	-
iolA	6	5	1.19	ST4-74	4684522	4686027	-
STM4422	1	1	2.16	ST4-74	4686043	4686345	-
STM4423	3	3	1.04	ST4-74	4686467	4687291	+
iolE	2	2	1.36	ST4-74	4687566	4688471	+
iolG1	7	6	1.15	ST4-74	4688490	4689500	+
srfJ	4	4	1.08	ST4-74	4689597	4690940	+
iolI1	9	8	1.14	ST4-74	4690941	4691774	+
STM4428	4	4	1.11	ST4-74	4691771	4692937	-
iolC	4	4	1.18	ST4-74	4692998	4694935	-
iolD	4	3	1.24	ST4-74	4695343	4697292	+
iolG2	7	6	1.11	ST4-74	4697473	4698495	+
STM4434	8	7	1.17	ST4-74	4698568	4699794	+
iolI2	3	3	1.18	ST4-74	4699955	4700770	+
iolH	7	6	1.23	ST4-74	4700823	4701707	+
vjgA	54	47	1.15	ST4-74	4701763	4702314	-
pmbA	31	27	1.17	ST4-74	4702410	4703762	+
cvbC	215	160	1.34	ST4-74	4703861	4704247	+
SL1344 4369A	22	22	1.00	ST4-74	4704251	4704396	+
STM4440	4	5	0.72	ST4-74	4704525	4704863	+
STM4441	3	2	1.56	ST4-74	4704874	4705236	+
STM4442	1	3	0.45	ST4-74	4705236	4705538	+
STM4443	3	2	1.20	ST4-74	4705561	4706337	+
STM4444	4	4	0.97	ST4-74	4706349	4706993	+
STM4445	2	3	0.76	ST4-74	4707052	4708185	+
STM4446	2	3	0.74	ST4-74	4708169	4709287	+
STM4447	4	5	0.77	ST4-74	4709284	4710024	+
STM4448	8	7	1.02	ST4-74	4710041	4711954	+
relB	38	37	1.04	ST4-74	4712032	4712274	+
relE	33	24	1.40	ST4-74	4712264	4712548	+
nrdG	2	6	0.34	ST4-74	4712552	4713016	-
nrdD	9	37	0.24	ST4-74	4713137	4715275	_
SL1344 4383	3	7	0.42	ST4-74	4715480	4715650	+
treC	3	5	0.54	ST4-74	4715684	4717336	-
treB	15	25	0.61	ST4-74	4717386	4718803	-
treR	5	7	0.70	ST4-74	4718941	4719888	-
motA	14	14	1.06	ST4-74	4720272	4722980	+
STM4457	23	27	0.83	ST4-74	4723096	4723542	_
vigF	84	134	0.63	ST4-74	4723617	4724003	_
nvrI	4	7	0.55	ST4-74	4724080	4724541	_
pvrB	4	7	0.59	ST4-74	4724554	4725489	_
pyr= pyrL	339	416	0.82	ST4-74	4725525	4725626	_
STM4463	8	6	1.40	ST4-74	4725716	4726204	_
STM4464	4	3	1 20	ST4-74	4726391	4727794	-
STM4465	1	1	0.82	ST4-74	4727850	4728854	-
STM4466	1	1	0.02	ST4-74	4728966	4729898	-
STM4467	1	1	1 15	ST4-74	4729909	4731129	_
vigK	17	24	0.70	ST4-74	4731805	4732257	+
argl	108	236	0.46	ST4-74	4732331	4733335	_
vjgD	159	137	1.16	ST4-74	4733501	4733917	+

Name	∆fnr TPM	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
miaE	7	7	0.93	ST4-74	4733929	4734741	+
ytgA	11	9	1.20	ST4-74	4734975	4735463	-
ујgM	31	39	0.79	ST4-74	4735570	4736073	-
yjgN	16	16	1.01	ST4-74	4736268	4737455	+
valS	21	28	0.74	ST4-74	4737597	4740452	-
holC	90	96	0.94	ST4-74	4740452	4740895	-
pepA	29	38	0.78	ST4-74	4741032	4742543	-
STM4478	197	199	0.99	ST4-74	4742587	4742706	-
yjgP	50	51	0.99	ST4-74	4742959	4744038	+
yjgQ	36	37	0.98	ST4-74	4744038	4745120	+
idnR	5	5	0.96	ST4-74	4745315	4746313	-
idnT	16	15	1.09	ST4-74	4746377	4747597	-
idnO	3	3	0.92	ST4-74	4747758	4748522	-
idnD	3	2	1.13	ST4-74	4748547	4749578	-
idnK	12	12	0.93	ST4-74	4749795	4750325	+
<i>yjgB</i>	33	17	2.02	ST4-74	4750353	4751372	-
STM4488	2	1	1.94	ST4-74	4751898	4752167	+
STM4489	18	18	1.00	ST4-74	4752547	4756062	+
STM4490	42	40	1.07	ST4-74	4756159	4757148	+
STM4491	19	19	0.98	ST4-74	4757261	4759345	-
STM4492	13	18	0.71	ST4-74	4759356	4761818	-
STM4493	18	23	0.79	ST4-74	4761956	4762777	-
STM4494	26	30	0.87	ST4-74	4762755	4763846	-
STM4495	20	24	0.85	ST4-74	4763846	4767523	-
STM4496	12	16	0.75	ST4-74	4767569	4771210	-
STM4497	18	28	0.63	ST4-74	4771222	4771824	-
STM4498	31	47	0.66	ST4-74	4771821	4772423	-
SL1344 4427A	2	1	2.55	ST4-74	4772932	4773205	+
veeN	152	129	1.18	ST4-74	4773249	4773974	-
vihP	4	6	0.71	ST4-74	4774525	4776156	-
STM4501	87	100	0.87	ST4-74	4776161	4776418	-
STM4502	2	16	0.12	ST4-74	4776907	4777515	+
STM4503	142	132	1.07	ST4-74	4778025	4778762	+
STM4504	59	21	2.82	ST4-74	4779038	4779949	+
STM4505	17	14	1.19	ST4-74	4780154	4780615	+
STM4506	12	12	0.99	ST4-74	4780612	4781286	-
uxuR	19	20	0.92	ST4-74	4781636	4782409	+
trpS2	6	5	1.25	ST4-74	4782410	4783423	-
IsrO	3	2	1.30	ST4-74	4783574	4783741	+
SL1344 4439	4	14	0.26	ST4-74	4783720	4783872	+
STM4509	28	46	0.62	ST4-74	4784225	4784671	+
STM4510	12	17	0.68	ST4-74	4784910	4785644	+
viiE	9	8	1.05	ST4-74	4785650	4786558	_
iadA	4	6	0.65	ST4-74	4786677	4787849	_
viiG	4	5	0.78	ST4-74	4787862	4788323	_
yji e viiH	6	6	0.97	ST4-74	4788320	4788991	_
SL1344 4445A	29	12	2.41	ST4-74	4789349	4789724	_
viiJ	14	8	1.73	ST4-74	4789864	4791048	-
STnc4260	29	20	1.45	ST4-74	4791124	4791217	+
viiN	31	18	1 69	ST4-74	4791268	4792539	_
vjiO	7	11	0.62	ST4-74	4792626	4793867	-

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STM4518	17	18	0.98	ST4-74	4794346	4794861	+
STM4519	21	11	1.84	ST4-74	4795042	4796412	+
STM4520	29	14	2.14	ST4-74	4796507	4796650	-
yjiS	69	26	2.62	ST4-74	4796617	4796781	+
STnc4130	31	37	0.83	ST4-74	4796788	4796863	-
STM4522	18	15	1.20	ST4-74	4796856	4797557	-
symE	6	8	0.73	ST4-74	4797631	4797963	-
STnc1470	3885	6462	0.60	ST4-74	4797957	4798031	+
hsdS	8	11	0.68	ST4-74	4798190	4799599	-
hsdM	7	10	0.65	ST4-74	4799596	4801185	-
hsdR	5	13	0.36	ST4-74	4801343	4804852	-
mrr	12	10	1.23	ST4-74	4805050	4805964	+
STM4528	40	39	1.04	ST4-74	4806233	4806520	+
STM4529	10	9	1.19	ST4-74	4806507	4806809	+
yjiA	13	18	0.74	ST4-74	4806884	4807840	-
yjiX	42	43	0.97	ST4-74	4807851	4808054	-
cstAb	5	4	1.14	ST4-74	4808149	4810299	-
tsr	40	131	0.30	ST4-74	4810666	4812327	+
STM4534	14	13	1.04	ST4-74	4812651	4815416	+
STM4535	8	9	0.85	ST4-74	4815518	4815940	+
STM4536	2	3	0.78	ST4-74	4815955	4816416	+
STM4537	3	4	0.71	ST4-74	4816442	4817221	+
STM4538	2	3	0.78	ST4-74	4817211	4818047	+
STM4539	4	5	0.73	ST4-74	4818060	4819121	+
STM4540	8	8	0.99	ST4-74	4819139	4820149	+
mdoB	100	85	1.18	ST4-74	4820283	4822475	-
vjjA	10	14	0.75	ST4-74	4822857	4823318	-
dnaC	12	16	0.72	ST4-74	4823376	4824113	-
dnaT	42	42	1.01	ST4-74	4824116	4824655	-
STM4545	9	21	0.43	ST4-74	4824748	4825221	-
vjjP	15	46	0.32	ST4-74	4825212	4826123	-
viiO	0	1	0.40	ST4-74	4826701	4827426	+
bglJ	3	2	1.28	ST4-74	4827387	4828061	+
STM4549	43	40	1.08	ST4-74	4828112	4828570	-
fhuF	39	15	2.57	ST4-74	4828721	4829509	-
STM4551	22	21	1.04	ST4-74	4829630	4830694	-
STM4552	17	11	1.50	ST4-74	4830945	4831181	+
rsmC	13	12	1.14	ST4-74	4831722	4832750	-
holD	70	62	1.12	ST4-74	4832853	4833290	+
rimI	15	16	0.94	ST4-74	4833235	4833681	+
yjjG	12	14	0.90	ST4-74	4833703	4834380	+
prfC	17	18	0.93	ST4-74	4834472	4836061	+
osmY	348	132	2.63	ST4-74	4836463	4837080	+
vjjU	25	20	1.24	ST4-74	4837494	4838567	+
yjjV	7	7	0.97	ST4-74	4838564	4839337	+
yjjW	2	11	0.21	ST4-74	4839370	4840233	-
yjjI	2	16	0.12	ST4-74	4840205	4841752	-
deoC	10	9	1.12	ST4-74	4841994	4842791	+
deoA	10	9	1.13	ST4-74	4842915	4844237	+
deoB	28	25	1.12	ST4-74	4844289	4845512	+
deoD	28	29	0.97	ST4-74	4845722	4846441	+

Name	$\Delta fnr TPM$	WT TPM	∆fnr/WT	<i>Chr^a</i>	Start	End	Strand
STnc4140	85	54	1.57	ST4-74	4846458	4846540	-
<i>stjA</i>	28	19	1.51	ST4-74	4846479	4847051	-
<i>stjB</i>	9	7	1.35	ST4-74	4847048	4849456	-
stjC	3	1	2.49	ST4-74	4849470	4850090	-
STM4574	8	5	1.60	ST4-74	4850255	4850944	-
STM4575	5	3	1.62	ST4-74	4850992	4851681	-
lplA	10	10	1.01	ST4-74	4851994	4853010	-
smp	15	15	1.01	ST4-74	4853044	4853688	-
serB	19	18	1.04	ST4-74	4853805	4854773	+
radA	11	11	1.00	ST4-74	4854857	4856239	+
nadR	31	30	1.02	ST4-74	4856363	4857622	+
yjjK	44	47	0.94	ST4-74	4857740	4859407	-
slt	26	27	0.98	ST4-74	4859580	4861553	+
trpR	79	87	0.91	ST4-74	4861611	4861937	+
yjjX	19	17	1.09	ST4-74	4862039	4862554	-
gpmB	33	32	1.03	ST4-74	4862603	4863250	+
rob	147	118	1.25	ST4-74	4863247	4864116	-
creA	70	73	0.96	ST4-74	4864328	4864801	+
creB	23	26	0.87	ST4-74	4864814	4865503	+
creC	9	10	0.94	ST4-74	4865701	4866927	+
creD	8	8	1.12	ST4-74	4866985	4868334	+
sthE	4	3	1.24	ST4-74	4868392	4869477	-
sthD	2	2	1.33	ST4-74	4869518	4870075	-
sthB	5	4	1.30	ST4-74	4870093	4872630	-
sthA	2	1	1.20	ST4-74	4872676	4873359	-
STM4595	3	3	1.01	ST4-74	4873430	4873975	-
STM4596	54	45	1.20	ST4-74	4874314	4874985	-
STM4597	22	19	1.16	ST4-74	4875185	4875684	-
arcA	167	204	0.82	ST4-74	4875951	4876667	-
yjjY	18	14	1.30	ST4-74	4876763	4876903	+
lasT	7	7	1.07	ST4-74	4877303	4877989	+

^aChromosome or plasmid

Amino acid transport and metabolism	Carbohydrate transport and metabolism	Cell envelope biogenesis and outer membrane	Cell motility and secretion	Energy production and conversion	Inorganic iron transport and metabolism	Surface Structures	Transcription	Translation, ribosomal structure and biogenesis
yneH	Zwf	ytfM	yrfC	ysaA	zur	stjC	zntR	yth
yliD	ytfF	ytfG	tsr	yqhD	zunB	stjB	ytfH	yrdC
yliC	yraO	ytfB	trg	ynel	znuC	stiH	yqjI	yqcB
yliB	ynfM	yraR	stjC	yjeS	znuA	stiC	yqhC	Johl
yifC	yneB	yohK	stjB	yiaK	zntA	stiB	yqgE	yoaB
yjeM	yneA	yohG	stiH	yiaE	yrbG	stiA	yoaA	ymfC
yjeK	ylil	yncA	stiC	yhdH	yqjH	sthE	ynfL	yliG
yjeH	DijiO	ynal	stiB	yhbW	yncD	sthD	yneJ	yjgF
yjdL	yjiJ	yjeP	stiA	ygiR	yjcE	sthB	yncC	Hiliy
yifK	yjgK	yibD	sthE	$\delta h Q$	yjbB	sthA	yjiE	yjeA
yhjV	yihV	yiaD	sthD	yfhL	yiiP	stfG	yjgM	yjbN
yhiP	yihT	yhjG	sthA	yfaE	yibN	stfF	yifQ	yjbC
yhaO	yihS	yhiI	stfG	ydjA	yheN	stfE	yifJ	yihZ
ygjU	yihR	yggB	stfF	ydiT	yheM	stfD	yjeB	yibK
ygiC	yihQ	ygeA	stfE	ydiS	yheL	stfC	yjdC	yhdG
yfiK	yihP	ygcY	stfD	ydiR	ygiT	stfA	yjaB	yhbY
yfhB	yihO	DhD	stfC	ydiQ	ygiE	stdC	yijO	yhbH
yfdZ	yigM	yfeL	stfA	ydgQ	ygdQ	stdB	yijC	ygjO
yfbQ	yifZ	yfdH	stdC	ydgP	ygaP	stdA	yiiD	ygcA
yejA	yieO	yfbG	stdB	ydgO	yffD	stcD	yihW	yfiF
yehY	yidY	yfbE	stdA	ydgM	yfgD	stcC	yifA	yfiA
yehX	yicM	yfaW	stcC	ydcW	yffB	stcB	yieP	yfcB
yehW	yicL	yehZ	stcB	yccX	yfbS	stcA	yidZ	yeiP
yeeF	yicJ	yeeZ	stcA	yajO	y eaR	stbE	yiaJ	yebU
yedO	yiaO	yebA	stbE	ngpO	yeaN	stbD	yiaG	yciO
yecS	yiaN	ydiY	stbC	udhA	ydiE	stbC	yiaC	yciL
yecC	yiaM	ydhO	stbB	ttrA	ydgF	stbB	yhjC	yciH
yeaS	yiaL	ycjG	stbA	torC	ydgE	stbA	yhhY	ychF
ydiB	yhjE	ycfW	ssaN	torA	ydcG	safD	yhcS	ybjF
ydgR	yhhS	ycfU	ssaC	tdcE	ychN	safC	yhcO	yaeJ
ydgI	yhfC	ycfN	spaS	tdcD	ychM	safB	yhcK	yadB
ycjI	yhcH	ybjY	safC	tas	ycgO	safA	yhaJ	tyrS
ycdX	ygiK	ybjT	safB	sucD	yccK	lpfE	ygbl	tufB
ycdW	ygeD	ybiO	ppdD	sucC	ybiR	lpfD	ygaE	tufA
ycaM	ygbM	ybdG	ppdC	sucB	ybgR	lpfC	ygaA	tsf
ybiK	ygbL	yajG	ppdA	sfcA	ybeX	lpfB	y fi E	truB

Table S2 A. COG categories.

Appendix II

Amino acid transport and metabolism	Carbohydrate transport and metabolism	Cell envelope biogenesis and outer membrane	Cell motility and secretion	Energy production and conversion	Inorganic iron transport and	Surface Structures	Transcription	Translation, ribosomal structure and biogenesis
					metabolism			0
ybiB	y faV	yaiU	motB	sdhD	ybaL	lpfA	yfhP	truA
ybgK	yegV	yaeT	motA	sdhC	yaeE	glpF	yfhH	trpS2
ybgJ	yegT	yaeL	lrhA	sdhB	yaeC	fliT	yfeR	trpS
ybgH	yegB	yabC	lpfE	sdhA	yadF	fliS	yfaX	trmU
ybdR	yedA	WZZE	lpfD	qor	yabK	fliR	yejH	trmD
ybdL	yeaD	wzzB	lpfC	putA	trkH	ſliQ	yeiE	trmA
yahN	ydiN	WZC	lpfB	pta	trkA	fliP	yehV	thrS
yaeR	ydhC	wza	lpfA	prpC	thil	fliO	yehT	sun
yaeD	ydfJ	wecG	invC	prkB	tehA	fliN	yegW	spoU
yaaJ	ydfI	wecE	hopD	ppc	sugE	fliM	yebK	speG
wcaB	ydeZ	wecC	hofC	ppa	sseA	fliL	yeaM	smpA
gsn	ydeV	wecB	hofB	pntB	sodC	fliK	ydiP	serS
tyrP	ydeE	wcaL	fljB	pntA	sodB	fliJ	ydhM	selB
tyrB	ydeD	wcaJ	fliR	phsC	sodA	fiil	ydhB	rsuA
tyrA	ydeA	wcal	ſliQ	phsB	sitD	ſliH	ydfH	rsmC
trpE	yddG	wcaG	fliP	phsA	sitC	fliG	ydeW	rpsU
trpD	yciM	wcaC	fliO	pflF	sitB	fliF	ydcR	rpsT
trpC	yceL	wcaA	fliN	pflD	sitA	fliE	ydcN	rpsS
trpB	yceE	vacJ	fliM	pflB	sfbC	fliD	ydcl	rpsR
trpA	ycaD	udg	fliL	pduW	sfbB	fliC	yciT	\bar{Q}
thrB	ybhE	tsx	fliK	pduS	sfbA	fliA	ycfX	rpsP
thrA	ybhC	tonB	fliJ	$\bar{Q}npd$	des	flhD	ycfQ	rpsO
tesA	ybeJ	tolC	fiil	pduP	pstS	flhC	ycdC	rpsN
tdh	ybdA	tolA	fliH	pckA	pstC	flgN	yccR	rpsM
tdcG	yajR	spr	fliG	oadG	pstB	flgM	ybiH	rpsL
tdcC	yadI	slyB	fliF	nuoN	pstA	flgL	ybeF	rpsK
tdcB	yaaU	slt	fliE	nuoM	pspE	flgK	ybdO	rpsJ
StufS	xylB	slp	fliD	nuoL	ppk	flgJ	ybdM	rpsl
speF	xylA	rspA	fliC	nuoK	phoU	flgI	ybbS	rpsH
speE	xapB	rlpB	flgN	nuoJ	phnS	flgH	ybaO	rpsG
speD	uhp T	rffH	flgL	nuol	phnA	flgG	yafC	rpsF
speC	uhpC	rffG	flgK	nuoH	pgtC	flgF	xylR	rpsE
speB	ugpE	rfe	flgI	nuoG	nxiA	flgE	xapR	rpsD
solA	ugpC	rfbV	flgH	nuoF	nrfD	flgD	wecD	rpsC
serB	ugpB	rfbU	flgG	nuoE	nrfA	flgC	vacB	rpsB
serA	ugpA	rfbP	flgF	nuoC	nirD	flgB	uxuR	rpsA
selD	treF	rfbN	flgE	nuoB	nirC	flgA	umuD	rpmJ2
selA	treC	rfbM	flgD	nuoA	nhaB	fimZ	ttk	rpmJ
sdaC	treA	rfbJ	flgC	nrfC	nhaA	fimY	trpR	rpmI
sdaB	tpiA	rfbH	flgB	nirB	narK	fimW	treR	rpmH
sdaA	torT	rfbG	flgA	nifU	napD	fimI	tdcA	rpmG
sapA	tktB	rfbF	fimI	nifJ	modF	fimH	srlR	rpmF
rthB	tktA	rfbD	fimF	nfnB	modC	fimF	sprB	rpmE2

Translation, ribosomal structure and biogenesis	rnm F	rnm	Church	romB	rmar	r_{plY}	rplX	rplW	rplV	rplU	rplT	rplR	rplQ	rplP	rplO	rplN	rplM	rplL	rplK	rplJ	rplI	rplF	rplE	rplD	rplC	rplB	rplA	rph	rnpA	rne	rnd	rna	rmf	rluD	rluC	rluA	rimM	rimL	rimJ	rbfA	aueA
Transcription	S.or.	ann R	slvA	sinR	sdiA	rsd	rpoZ	rpoS	rpoN	rpoH	rpoE	rpoD	rpoA	rob	rnk	rnc	rmbA	rho	rhaS	rhaR	rfaH	rcsA	rbsR	purR	ptsJ	pspC	pspA	phnR	Duhd	pdhR	oxyR	orf408	orf242	nusG	nusB	nusA	dlu	nikR	nhaR	nanK	nagC
Surface Structures	fimD	Juni	fim A	dshC	dsbB	csgG	csgF	csgE	csgD	csgC	csgB	csgA	crl	bcfH	bcfG	bcfF	bcfE	bcfD	bcfC	bcfB	bcfA	à																			
Inorganic iron transport and metabolism	modR	anom d	mntH	metB	mdoG	kup	kefC	k e f B	kdpC	kdpB	kdpA	katG	katE	iroN	iroD	glpE	fur	ftnB	ftn	foxA	focA	fhuE	fhuD	fhuC	fhuB	fhuA	fes	fepG	fepD	fepC	fepB	fepA	feoB	feoA	dps	cysW	chs G	cysP	cysN	cysJ	Jan
Energy production and conversion	hamd	ndh	narZ	narW	narV	narJ	narl	narH	napF	napC	napB	mioC	mdaA	maeB	lpdA	lldP	DIID	IdhA	icdA	hypO	hydN	hycl	hycG	hycF	hycE	hycD	hycC	hycB	hybD	hybC	hybA	hmpA	hemG	hcr	hcp	gpsA	gor	gltP	gltA	glpQ	$\alpha ln D$
Cell motility and secretion	fimD	fime	fimA	cheZ	cheW	cheR	cheB	cheA	bcfG	bcfF	bcfE	bcfD	bcfC	bcfB	bcfA	STM3216	STM3152	STM3138	STM1657																						
Cell envelope biogenesis and outer membrane	rhC	rfhR	rfh4	rfaO	rfaL	rfaK	rfaJ	rfal	rfaG	rfaF	rfaE	rfaD	rfaC	rfaB	prc	p q a B	pmrF	PldA	phoE	pgtE	pdgL	phpG	pal	pagC	ompX	ompW	ompN	ompC	ompA	nmpC	nlpD	nlpC	nlpB	murG	murF	murE	murD	murC	murB	murA	mate d
Carbohydrate transport and metabolism	talC	talR	talA	suhB	srlE	SrlA	SmvA	strB	sgbU	sgaU	sgaH	sgaE	sgaB	setB	edu	rhaT	rhaD	rhaB	rhaA	rfbK	rbsK	rbsD	rbsC	rbsB	rbsA	pykF	pykA	ptxA	ptsO	ptsN	ptsI	ptsH	ptsG	ptsA	prpB	proP	sdd	Ignq	pgtP	ngm	
Amino acid transport and metabolism	renR	rht	nutP	nudB	ptrB	proY	proX	proW	proV	proC	proB	proA	prlC	poxB	potl	potH	potG	potF	potE	potD	potC	potB	potA	pipD	DhnW	Dund	phnT	pheP	pheA	pepT	pepQ	pepP	pepN	pepE	pepD	pepB	pepA	pdxB	DduV	DduU	Dabo

323

Inductional mathematical mathemat									
	Amino acid	Carbohvdrate	Cell envelope	Cell motility and	Energy production	Inorganic iron	Surface Structures	Transcription	Translation.
methodam	transport and	transport and	biogenesis and outer	secretion	and conversion	transport and	ţ		ribosomal structure
	metabolism	metabolism	membrane			metabolism			and biogenesis
	pabA	pfkB	msbB		glpA	cyaY		mtlR	proS
	orf48	pfkA	mreD		galT	cutC		mlc	prmA
	oppF	pduF	mrdA		gabD	cutA		metR	prfH
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Oddo	Ogod	mrcB		fumC	corA		melR	prfC
	oppC	otsB	mraY		fumB	citT		marT	prfB
	oppB	otsA	mpl		fumA	cirA		marR	prfA
	oppA	nupG	mltC		fuc0	chaA		marA	pnp
	oat	nanT	mltB		frdD	cboQ		malT	pheS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nifS	nanE	mltA		frdC	cbi0		lys R	miaB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nanA	nagZ	misL		frdB	cbiN		lrp	miaA
	mtr	nagE	mipA		frdA	cbiM		lrhA	metG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	mppA	nagD	mepA		fpr	btuF		lldR	map
	metJ	nagB	mdoH		fldB	bfr		lexA	lysS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	metH	nagA	mdoB		fldA	bfd		leu0	ligT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	metF	mtlD	lspA		fixX	apaG		kdgR	leuS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	metE	mtlA	lpxK		fixC	amtB		invF	ksgA
medl $ngcd$ $lpxC$ $lpxC$ $lpxd$ $lpxd$ $lpxd$ $lpxd$ $lpxd$ $lpxd$ $lpdd$ $lpxd$ $lpdd$	metC	mrsA	lpxD		fixB	abc		ilvY	infC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	metB	mgsA	lpxC		fixA	STM3820		idnR	infB
	metA	mglC	lpxB		fdx	STM3528		iclR	infA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lysP	mglB	lpxA		fdrA	STM3356		iciA	ileS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Jeri	ngu Augu	addi		51-11 1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tysA Ita A	melA	lolR		fdoff	STM3141		hpar.	olyla Cúlig
ink $mal Z$ int $jant$ $STM3075$ $hilC$ $ginS$ $inkl$ $man X$ kdd $jaht$ $STM3075$ $hilC$ $ginS$ $inkl$ $man X$ kdd $ginR$ $ginR$ $ginR$ $ginR$ $inkl$ $man X$ $kdsR$ $ginR$ $ginR$ $ginR$ $ginR$ $inkl$ $mal X$ $kdsR$ $ginR$ $ginR$ $ginR$ $ginR$ $inkl$ $mal X$ $int R$ $mal R$ $stM1240$ $ginR$ $ginR$ $inkl$ $mal R$ $int R$ $mal R$ $stM1240$ $ginR$ $ginR$ $inkl$ $mal R$ $ginR$ $ginR$ $ginR$ $ginR$ $ginR$ $inkl$ $ginR$ $ginR$ $ginR$ <td< td=""><td>livM</td><td>mdfA</td><td>lolA</td><td></td><td>fdnI</td><td>STM3122</td><td></td><td>hilD</td><td>gltX</td></td<>	livM	mdfA	lolA		fdnI	STM3122		hilD	gltX
	livK	manZ	lnt		fdnH	STM3075		hilC	glnS
	livJ	manY	lgt		fdnG	STM3074		hilA	fusA
	livH	manX	kdtA		fdhF	STM3073		greB	ftsJ
	livG	manA	kdsB		fdhD	STM2446		greA	frr
	livF	malZ	kdsA		eutE	STM2404		gntR	fmt
leuCmalKiagBdmsBstM1808gcvAdefleuBmalGhtrBhtrBdmsASTM1808galSgcvAdefibvNmalFhhpAdldSTM1741galSgalScysSibvNmalEgudDdcuCSTM1741galScysSibvlhyxKgmddcuSTM1741galScysSibvlhyxKgmddcuSTM1741galScysSibvlhyxKgmddcuSTM1653fuckcafAibvlkdulglmScyoDSTM1640fuckcafAibvBkdulglmScyoDSTM1044fgMasnSibvBkdulgalICcyoBSTM10710filAasnSibvBidnKgalEcydASTM0750filASTM4600ibvBidnKgalEcydBSTM055fulASTM450ibvAhpalfis1cydASTM055eutRSTM1549	leuD	malS	imp		eutD	STM1874		glpR	efp
leuBmalGhtrBdmsASTM1741galScysSlbcCmalFhlpAddSTM1731galScysSibNmalEgudDdcuCSTM1731galRccaibNmalEgudDdcuCSTM1656fucRcalAibHkgtPglmUcyoDSTM1650fucRcalAibCkdulglmScyoCSTM1490fucRcagAibCkdulglmScyoCSTM1044fgMaspSibCkdgKgidBcyoASTM0770fisMaspSibCianTgalFcyoASTM0770fisMaspSibAibAianKgalEcydASTM0765fbLAibAhpaXftsQcydASTM0552gadRSTM2545ibAhpaIfts1cydASTM084em/RSTM1549	leuC	malK	iagB		dmsB	STM1808		gcvA	def
	leuB	malG	htrB		dmsA	STM1741		galS	cysS
ibN $malE$ $gudD$ $dcuC$ $STM1656$ $fucR$ $cafA$ ibH $byxK$ gmd $dctA$ $STM1653$ $fucR$ $cafA$ ibH $byxK$ gmd $dctA$ $STM1653$ $fucR$ $aspS$ $ibVG$ $kdul$ $glmS$ $cyoD$ $STM1490$ $fitA$ $aspS$ $ibvE$ $kdgK$ $gidB$ $cyoD$ $STM1044$ fgM $argS$ $ibvD$ $iroB$ $galU$ $cyoA$ $STM0770$ $fitA$ $argS$ $ibvC$ $idnT$ $galF$ $cyodD$ $STM0765$ fnW $STM4600$ $ibvB$ $idnK$ $galE$ $cydD$ $STM0765$ $fnlA$ $STM450$ $ibrA$ $hpaX$ $fisQ$ $cydA$ $STM0562$ $fadR$ $STM12545$ $ibrA$ $hpal$ $fisl$ $cydA$ $STM084$ emR $STM1550$	ldcC	malF	hlpA		dld	STM1731		galR	cca
ibl $byxK$ gmd $dctA$ $STM1653$ fuR $aspS$ ibH kgP $ghnU$ $cyoD$ $STM1490$ $fliA$ $asnS$ ibe $kdul$ $ghnS$ $cyoD$ $STM1040$ $fliA$ $asnS$ ibe $kdgK$ $gidB$ $cyoR$ $STM1040$ $fliA$ $asnS$ ibe $kdgK$ $gidB$ $cyoA$ $STM0770$ $fliA$ $argS$ $ibeC$ $ianT$ $galF$ $cyoA$ $STM0765$ $fliA$ $sTM4600$ $ibeB$ $idnK$ $galE$ $cydC$ $STM0765$ $fliA$ $STM440$ $ibeA$ $hpaX$ $fisQ$ $cydA$ $STM0562$ $fadR$ $STM12545$ ibA $hpaI$ $fisI$ $cydA$ $STM084$ em/R $STM1550$	ilvN	malE	gudD		dcuC	STM1656		fucR	cafA
ibH $kgtP$ $glmU$ $cyoD$ $STM1490$ $fi.A$ $asnS$ ibG $kdul$ $glmS$ $cyoC$ $STM1044$ $figM$ $argS$ ibE $kdgK$ $gidB$ $cyoB$ $STM0771$ fis $alaS$ ibD $iroB$ $galU$ $cyoA$ $STM0770$ $fimW$ $STM4600$ ibC $idnT$ $galF$ $cydD$ $STM0765$ $fhlA$ $STM4450$ ibA $ibgA$ $fisQ$ $cydC$ $STM0562$ $fadR$ $STM2545$ ibA $hpaX$ $fisQ$ $cydA$ $STM0355$ $eutR$ $STM1550$ $idnD$ $hpal$ $fisl$ $cydA$ $STM084$ $emvR$ $STM1549$	ilvI	lyxK	gmd		dctA	STM1653		fruR	aspS
ibG $kdul$ $glmS$ $cyoC$ $STM1044$ $flgM$ $argS$ ibE $kdgK$ $gidB$ $cyoB$ $STM0771$ fis $alaS$ ibD $iroB$ $galU$ $cyoA$ $STM0770$ $fimW$ $STM4600$ ibC $idnT$ $galF$ $cydD$ $STM0765$ $fhlA$ $STM4450$ ibB $idnK$ $galE$ $cydC$ $STM0562$ $fadR$ $STM2545$ ibA $hpaX$ $fisQ$ $cydA$ $STM0355$ $eutR$ $STM1550$ $idnD$ $hpal$ $fisl$ $cydA$ $STM084$ $emvR$ $STM1549$	ilvH	kgtP	glmU		cyoD	STM1490		fliA	asnS
ibE $kdgK$ $gidB$ $cyoB$ $STM0771$ fs $alaS$ ibD $iroB$ $galU$ $cyoA$ $STM0770$ fmW $STM4600$ $ibVC$ $idnT$ $galF$ $cydD$ $STM0765$ $fhlA$ $STM4450$ ibB $idnK$ $galE$ $cydC$ $STM0562$ $fadR$ $STM2545$ ibA $hpaX$ $fisQ$ $cydB$ $STM0355$ $eutR$ $STM1550$ $idnD$ $hpal$ $fisl$ $cydA$ $STM084$ $emvR$ $STM1549$	ihvG	kduI	glmS		cyoC	STM1044		flgM	argS
ibD $iroB$ $galU$ $cyoA$ $STM0770$ $finW$ $STM4600$ ibC $idnT$ $galF$ $cydD$ $STM0765$ $fhlA$ $STM4450$ ibB $idnK$ $galE$ $cydC$ $STM0562$ $fadR$ $STM2545$ ibA $hpaX$ $fisQ$ $cydB$ $STM0355$ $eutR$ $STM1550$ $idnD$ $hpal$ $fisl$ $cydA$ $STM084$ $emvR$ $STM1549$	ihvE	kdgK	gidB		суоВ	STM0771		fis	alaS
ibC $idnT$ $galF$ $cydD$ $STM0765$ $fhlA$ $STM4450$ ibB $idnK$ $galE$ $cydC$ $STM0562$ $fadR$ $STM2545$ ibA $hpaX$ fsQ $cydB$ $STM0355$ $eutR$ $STM1550$ $idnD$ $hpaI$ fsI $cydA$ $STM084$ $emvR$ $STM1549$	ilvD	iroB	galU		cyoA	STM0770		fimW	STM4600
ibBidnKgalEcydCSTM0562fadRSTM2545ibAhpaXfsQcydBSTM0355eutRSTM1550idnDhpaIftsIcydASTM084emvRSTM1549	ilvC	idnT	galF		cydD	STM0765		fhlA	STM4450
ibAhpaXfsQcydBSTM0355euRSTM1550idnDhpaIftsIcydASTM084emvRSTM1549	ilvB	idnK	galE		cydC	STM0562		fadR	STM2545
idnD hpaI fisI cydA STM084 envR STM1549	ilvA	hpaX	fis Q		cydB	STM0355		eutR	STM1550
	idnD	hpaI	ftsI		cydA	STM0084		envR	STM1549

Interfactor								
(10) (10) (10) (10) (10) (11) (10) (11) <th< th=""><th>n ansport una metabolism</th><th>n etabolism m etabolism</th><th>ntogenesis unu outer membrane</th><th>accretion a</th><th>unu conversion</th><th>n etabolism metabolism</th><th></th><th>rivosomu structure and biogenesis</th></th<>	n ansport una metabolism	n etabolism m etabolism	ntogenesis unu outer membrane	accretion a	unu conversion	n etabolism metabolism		rivosomu structure and biogenesis
Model Back File Cold Cold <t< td=""><td>hutH</td><td>hcaT</td><td>flgJ</td><td></td><td>cybC</td><td>STM0035</td><td>emrR</td><td>STM1548</td></t<>	hutH	hcaT	flgJ		cybC	STM0035	emrR	STM1548
Polit Stit mutt Cut/2 Stit Stit Nov Stit Matt Cut/2 Stit	hutG	gudT	fepE		cybB		ecnR	
160 gand bit cut cut bit 161 gand bit cut bit cut bit 161 gant bit cut bit cut bit	hpaF	gsk	emtA		citF2		dsdC	
(iv) gam gam (iv) gam gam <thgam< th=""> <thgam< th=""> <thgam< th=""></thgam<></thgam<></thgam<>	hisQ	gpmB	dniR		citF		dpiA	
(6) (7) (6) (7) (6) (7) (6) (6) (7) (6) (7) (6) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	hisP	gpmA	dgoA		citD2		dinG	
No. Mill CiC2 Mill CiC3 Mill No. Birk Mill CiC3 Mill CiC3 Mill No. Birk Mill CiC3 Birk Birk <td>hisM</td> <td>gntU</td> <td>dgkA</td> <td></td> <td>citD</td> <td></td> <td>dgoR</td> <td></td>	hisM	gntU	dgkA		citD		dgoR	
bit pot did pot did bit bit bit bit bit bit bit bit bit bit bit bit bit bit	hisJ	gntT	ddlB		citC2		dcuR	
Moff pdd ddg bbC cold cold No gpf ddc mof cold	hisI	gntK	ddlA		caiB		cytR	
his ptk dadk ptk dadk ptk dadk ptk dadk ptk	hisH	gnd	ddg		bisC		cysB	
hof gp/l dec) op/l coc hor gp/l dec) op/l coc gp/l gb/l dec op/l coc gp/l gb/l dec op/l coc gp/l gb/l coc op/l coc gp/l gb/l coc op/l coc gp/l gb/l coc op/l coc gp/l gb/l gp/l cor coc gp/l gp/l cor op/l coc gp/l gp/l cor op/l coc gp/l gp/l cor op/l coc gp/l gp/l cor coc coc gp/l gp/l cor cor cor	hisG	glxK	dadX		atpI		cueR	
hot hot	hisF	glpX	dacD		atpH		cspE	
had gab dadb and kind gig dad and kind gig cond and gind gig cond and gind gig cond and gind gind and and gind gind and and gind and and and gind and and and gind and and and gind and and and gind gind	hisD	glpT	dacC		atpG		cspD	
hill glt decl opE cpB glt glc cgc opE cgB cgC cgB glt glgt cgG opE cgB cgA ccdC cgB ccdC ccdC <td>hisC</td> <td>glpF</td> <td>dacB</td> <td></td> <td>atpF</td> <td></td> <td>cspC</td> <td></td>	hisC	glpF	dacB		atpF		cspC	
879 870 637 640 636 641 636 641 636 641 636 641 636 641 636 641 636 641 636 <td>hisB</td> <td>glk</td> <td>dacA</td> <td></td> <td>atpE</td> <td></td> <td>cspB</td> <td></td>	hisB	glk	dacA		atpE		cspB	
(f) (f) <td>gsp</td> <td>glgX</td> <td>csgG</td> <td></td> <td>atpD</td> <td></td> <td>csiE</td> <td></td>	gsp	glgX	csgG		atpD		csiE	
gld gld bit gld bit gld gld bit and and and gld gld gld and and and and gld grd and and sth and and and and and	glyA	glgP	cfa		atpC		csgD	
glt glg4 blc apj gl1 glg4 blc and gl1 glad and and gl1 glad and and gl1 glad and and gl1 glad and and gl1 garb and and gl01 garb and and gl01 garb and and gln7 and and and gln7 and and and gln7 gu1 sthd417 and gln7 and and and gln7 gu1 sthd413 and gln7 gu1 sthd417 and gln8 fac/ sthd417 sthd417 gln8 fac/ sthd417 sthd138 gln8 sthd413 sthd138 sthd138 gln7 sthd418 sthd18 sthd138	gltS	glgB	caiT		atpB		cobB	
glkgipandandgligluatandandandgligatandandandgligatandandandgligatandandandgligatandandandgligatandandandgligatandandandgligutsuchandandgligutsuchandandgligutsuchandandgligutsuchandandgligutsuchandandglisuchandandandglisuchandandandgligutsthandandgligutsthandandgligutsthandandglifactsthandandglifactsthandandglifactsthsthandglifactsthsthandglifactsthsthandglifactsthsthandglifactsthsthsthglifactsthsthsthglifactsthsthsthglifactsthsthsthglifactsthsthsthglifact	gltL	glgA	blc		atpA		celD	
girlgindaniCasrCcadCgirlgadanidanidanidanidgirlgar/anidanidanidanidgirlgar/anidanidanidanidgirlgar/anidanidanidanidgirlgar/anidanidanidanidgirlgar/anidanidanidanidgirlgar/anidanidanidanidgirlgar/anidanidanidanidgirlgar/anidanidanidanidgirlgar/anidanidanidanidgirlgar/gr/strM4510anidanidgirlfactstrM4210athestrM421strM421girlfactstrM4210athestrM421strM421girlfactstrM4210strM421strM4310strM4310girlfactstrM4210strM421strM4310strM4310girlfactstrM4210strM4310strM4310strM4310girlfactstrM4310strM4310strM4310strM4310girlfactstrM4310strM4310strM4310strM4310girlfactstrM4310strM4310strM4310strM4310girlfactstrM4310strM4310strM4310strM4310girlfactstrM4310strM4310strM4310strM431	gltK	gip	asmA		astD		cdaR	
gld gcd anlb arrd a	gltJ	ghmA	amiC		asrC		cadC	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	gltI	gcd	amiB		asrA		asnC	
$\tilde{g}pB$ $\tilde{g}arK$ dr ddB ddB ddR $\tilde{g}arD$ $acrE$ adB adR agR $\tilde{g}arD$ $acrE$ adR agR $\tilde{g}arD$ $acrA$ $arrA$ agR $\tilde{g}arD$ $acrA$ $arrA$ adR $\tilde{g}arD$ $acrA$ $arrA$ adR $\tilde{g}arD$ $acrA$ $arrA$ adR $\tilde{g}arD$ $acrA$ $arrA$ $arrA$ $\tilde{g}arD$ $acrA$ $arrA$ $arrA$ $\tilde{g}arD$ μcr rrA $arrA$ $\tilde{g}arD$ μcr rrA $arrA$ $\tilde{g}arD$ μcr rrA rrA $\tilde{g}arD$ μrA rrA rrA $\tilde{g}arD$ <t< td=""><td>gltD</td><td>garL</td><td>amiA</td><td></td><td>allD</td><td></td><td>araC</td><td></td></t<>	gltD	garL	amiA		allD		araC	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	glpB	garK	alr		aldB		allR	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	gloA	garD	acrE		adhE		agaR	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	gln Q	gapA	acrA		acnB		adiY	
glik galM STM4539 acc/d STM4423 $ghiH$ $hucU$ STM4510 aceF STM4417 $ghiB$ $hucU$ STM4510 aceF STM4417 $ghiB$ $hucU$ STM4510 aceF STM4417 $ghiB$ $hucU$ STM4200 $aceF$ STM4320 ghA $hucH$ STM4200 $aceA$ $nucA$ $gur huc STM4210 aceA nucA gur huc STM4205 STM421 mcA gur fru< STM421 STM421 mcA gur fru< STM4205 STM421 mcA gur fru< STM4205 STM4206 mcA gur fru< STM4205 STM4206 sTM403 gur fru gr gr gr gr gur fru gr gr gr gr gur fru gr gr$	glnP	galP	STM4540		acnA		acrR	
ghh $facU$ STM4510 $aceF$ STM4417 ghh $facU$ STM4510 $aceF$ STM4412 ghh $facA$ STM4260 $aceE$ STM4320 ghh $facA$ STM4260 $aceE$ STM4320 ghh $facA$ STM4260 $aceB$ $TSM4320$ ghh fac STM4216 $aceA$ $TSM4320$ ghh far STM4216 $aceA$ $TSM4320$ ghh far STM4216 $aceA$ TSB $grvP$ far STM4305 STM4305 STM4305 $grvP$ far STM4305 STM4305 STM4305 $grvP$ far STM4305 STM4068 STM4305 $grvP$ far STM4305 STM4068 STM4305 $grvP$ far STM4305 STM4068 STM4305 $grvP$ far STM4044 STM4068 STM4305 $grVP$ far STM3034<	glnK	galM	STM4539		ackA		STM4423	
glnB fuck STM4272 aceE STM4320 gln1 fucl STM4260 aceE STM4318 gln1 fucl STM4260 aceE STM4318 gln2 fucl STM4260 aceB STM4318 gln4 fucl STM4260 aceB STM4318 gln4 fiv STM4205 STM4216 STM4318 gcv1 fiv STM4205 STM4216 STM4306 gcv7 fiv/C STM4205 STM440 STM4206 gcv7 fiv/C STM4306 STM4421 STM408 gcv7 fiv/C STM4306 STM4406 STM408 gcv7 fiv/C STM4306 STM403 STM403 gcv7 fiv/L STM4306 STM408 STM403 gcv8 fiv/L STM4305 STM403 STM403 gcv1 fiv/L STM333 STM403 STM403 gcv1 fiv/L STM3305 STM335 STM335 <td>glnH</td> <td>fucU</td> <td>STM4510</td> <td></td> <td>aceF</td> <td></td> <td>STM4417</td> <td></td>	glnH	fucU	STM4510		aceF		STM4417	
gind fucl STM4260 $aceB$ STM4318 $gird$ $fircl$ STM4260 $aceB$ STM4318 $gird$ $fircl$ STM4217 $stm4259$ $arsA$ $gird$ $fircl$ STM4216 $risA$ $risA$ $gird$ $fircl$ STM4216 $stm42205$ $stm4216$ $risA$ $gird$ $fircl$ STM4205 $stm4421$ $stm4205$ $stm4206$ $stm4206$ $gird$ $fircl$ STM4205 $stm4421$ $stm4206$ $stm4206$ $stm4206$ $gird$ $firule$ STM4205 $stm44206$ $stm4306$ $stm4068$ $stm4068$ $girl$ $firule$ $stm4305$ $stm4420$ $stm4033$ $stm40335$ $girl$ $firule$ $stm4305$ $stm4420$ $stm4033$ $stm40335$ $girl$ $firule$ $stm3033$ $stm3335$ $stm33735$ $stm3378$ $girl$ $firule$ $stm303129$ $stm33354$ $stm33735$ $stm33735$	glnB	fucK	STM4272		aceE		STM4320	
ggt fucd STM4259 aced risd gdhd fsr STM4217 TM4259 risd gdhd fsr STM4217 STM4219 risd gdhd fsr STM4217 STM4216 STM4219 gcvT frwD STM4205 STM4216 STM4206 gcvT frwD STM4205 STM4420 STM4206 gcvR frwD STM4205 STM4403 STM4305 gcvP frwD STM4305 STM4305 STM4068 gcvH frwD STM4305 STM4305 STM4033 gcvH frwZ STM4305 STM4305 STM4033 gcvH frwZ STM3305 STM4035 STM305 growP fbp STM3369 STM404 STM378 growP fbp STM378 STM378 STM378 growP fbp STM3334 STM378 STM378 growP fbp STM3031 STM378 STM378	glnA	fucI	STM4260		aceB		STM4318	
gdhA fsr STM4217STM4519 $rtsB$ $gcvT$ fwD STM4205STM4205STM4205STM4205 $gcvR$ $frwD$ STM4205STM4205STM4068STM4068 $gcvP$ $frwD$ STM4102STM4102STM4033STM4033 $gcvP$ $frwB$ STM4102STM4102STM4033STM4033 $gcvH$ $frwB$ STM3697STM4044STM3334STM3334 $grbP$ $frwB$ STM3601STM3529STM3785STM3785 $gabT$ $fruF$ STM3038STM3354STM3785STM3785 $gabP$ $fruB$ STM3031STM3354STM3785STM3785 $gabP$ $fruB$ STM3031STM3354STM3778STM3778 $gutT$ $frab$ STM3031STM3354STM3778STM3778 $gutT$ $frab$ STM3031STM3129STM3778STM3778 $gutT$ $frab$ STM3031STM3254STM3778STM3735 $eutS$ $entD$ STM2756STM3129STM3735 $eutD$ STM2756STM3081STM3666STM3666	ggt	fucA	STM4259		aceA		rtsA	
gcvT $frwD$ STM4205STM4210STM4270 $gcvR$ $frwC$ STM4102STM4236STM4068 $gcvP$ $frwC$ STM4102STM4102STM4033 $gcvP$ $frwC$ STM4102STM4033STM4033 $gcvH$ $frwR$ STM3697STM4044STM3334 $gcvH$ $frwR$ STM3601STM33601STM3785 $grbP$ fbp STM3601STM33529STM3785 $gabP$ fbp STM3038STM3354STM3785 $gabP$ fbp STM3038STM3354STM3785 $gabP$ fbp STM3031STM3354STM3785 $gabP$ fba STM3031STM3354STM3778 $gubC$ $fauR$ STM3031STM3758STM3778 $gubC$ $fauR$ STM3038STM3785STM3778 $gubC$ $fauR$ STM3031STM378STM3778 $gubC$ $fauR$ STM3129STM3735STM3735 euC STM2914STM3129STM3735STM3735 euC STM2916STM31081STM3736STM3735	gdhA	fsr	STM4217		STM4519		rtsB	
gcvR $frwC$ STM4102STM4102STM4068 $gcvP$ $frwB$ STM4102STM4033STM4033 $gcvP$ $frwB$ STM3833STM3335STM4033 $gcvH$ $frwB$ STM3601STM3601STM3794 $gabT$ $frwF$ STM3601STM376STM3794 $gabP$ fbp STM3038STM3355STM3785 $gabP$ fbp STM3038STM3354STM3785 $fitY$ $fbaB$ STM3031STM3354STM3778 $fitY$ fba STM3031STM3129STM3778 $eutS$ $entD$ STM216STM3129STM3735 $eutS$ $entD$ STM218STM3129STM3736 $eutO$ $entD$ STM2692STM318STM3766	gcvT	frwD	STM4205		STM4421		STM4270	
gcvP frwB STM403 STM403 gcvH frwK STM3697 STM4044 STM3834 gcvH frwK STM3697 STM3697 STM3834 gcvH frwK STM3697 STM3785 STM3785 gabP fbp STM3038 STM3785 STM3785 gabP fbp STM3031 STM3785 STM3785 gabP fbp STM3785 STM3785 STM3785 gabP fbp STM37354 STM3778 STM3778 eufT fba STM3129 STM3773 STM3773 eufD eufD STM3129 STM373 STM3736 eufD eufD STM2692 STM318 STM3736	gcvR	frwC	STM4102		STM4306		STM4068	
gcvH fruk STM3697 STM4044 STM3834 gabT fruk STM3601 STM3529 STM3794 gabP fbp STM3333 STM37529 STM3794 gabP fbp STM3038 STM33529 STM3785 fitY fbaB STM3031 STM3355 STM3785 fitY fbaB STM3031 STM3785 STM3778 eufT fba STM3031 STM3735 STM3778 eufT fba STM3776 STM3773 STM3773 eufD eno STM2756 STM3118 STM3773 eufO emrD STM2081 STM3081 STM3766	gcvP	frwB	STM3833		STM4305		STM4033	
gab fruf STM3601 STM3529 STM3794 gab fbp STM3038 STM3785 STM3785 gab fbp STM3038 STM3355 STM3785 fit fba STM3031 STM3785 STM3778 fit fba STM3031 STM3754 STM3778 eut fba STM3778 STM3773 STM3773 eutS eno STM2756 STM3118 STM3736 eutO emrD STM2692 STM3081 STM366	gcvH	fruK	STM3697		STM4044		STM3834	
gab fbp STM3785 STM3785 fitY fbaB STM3031 STM3785 STM3785 fitY fbaB STM3031 STM3785 STM3778 eutT fba STM3778 STM3778 STM3778 eutT fba STM3776 STM3773 STM3773 eutS eno STM3776 STM3718 STM3773 eutO envD STM2756 STM3118 STM3736 eutO emrD STM2692 STM3081 STM3666	gabT	fruF	STM3601		STM3529		STM3794	
fit fbaB STM373 STM378 STM378 eutT fba STM2914 STM373 STM373 eutT fba STM2756 STM3129 STM373 eutS eno STM2756 STM318 STM373 eutO emrD STM2692 STM3081 STM376	gabP	fbp	STM3038		STM3355		STM3785	
eut? fba STM3773 STM3773 eutS eno STM3756 STM3118 STM3736 eutO emrD STM2692 STM3081 STM3696	fliY	fbaB	STM3031		STM3354		STM3778	
euts eno STM3736 STM3118 STM3736 entr eutO emtD STM2692 STM3081 STM3696	eutT	fba	STM2914		STM3129		STM3773	
eut0 emrD STM3692 STM3081 STM3696	eutS	eno	STM2756		STM3118		STM3736	
	eutQ	emrD	STM2692		STM3081		STM3696	

Ap	
per	
ıdix	
Π	

	STM1618						iolB	artP
	STM1619						iolA	artQ
							10112	usu
							10101	usita
	STM1671						ialCl	1 cm 1
	STM1674						iolII	asnB
	STM1677			STM0056			STM4428	aspA
	STM1857			STM0057			iolC	aspC
	STM2180			STM0360			iolD	astA
	STM2230			STM0361			iolG2	astB
	STM2275			STM0564			ioll2	astC
	STM2281			S1M0611			IolH	astE
	STIML2343						S I M 4434	avlA
	0112J01			STM0612			STN114435	Sund
	STM3261			STM0601			STM4435	hrn0
	STM2374			STM0761			STM4436	cadA
	STM2575			STM0762			STM4448	cadB
	STM2738			STM0855			STM4535	carA
	STM2744			STM0856			STM4536	cobD
	STM2748			STM0858			STM4537	csdA
	STM2749			STM1253			STM4538	cycA
	STM2/97			STM1261			ampG	cysD
	S I M 2803			SIMI439		S 1 MI0292	amyA	CYSE
	CUEZIAI I C			STN 11490		ODCOINT I C	aruD	
	200CLATS			STIV11100		STAN206		e jan
	STM2912			STM1499		STM0346	araF	$c_{VS}K$
	STM2920			STM1533		STM0350	araJ	cvsM
	STM2955			STM1536		STM0352	bcr	cysZ
	STM3012			STM1537		STM0509	bcsC	dadA
	STM3020			STM1538		STM0572	bglA	dapA
	S1M3025			S1M1539		S I MUS /3	bglX	dapb
	STATES SOCIALIS						CelD	aape
	STM3084			STM1556		STM0710	colR	danF
	STM3098			STM1620		STM0721	celC	danF
	STM3121			STM1627		STM0725	celF	dcp
	STM3124			STM1786		STM0818	citA	dppA
	STM3175			STM1787		STM0932	citE	dppB
	STM3262			STM1788		STM1043	citE2	dppC
	STM3357			STM1789		STM1260	cobC	dppD
	STM3358			STM1792		STM1493	CVT	dsdA
	STM3533			STM1793		STM1530	deoB	eutA
	STM3602			STM2406		STM1540	dgoK	eutB
	STM3633			STM2527		STM1836	dgoT	eutC
	STM3651			STM2529		S1M1910	dsdX	eutH
	S I M 363 3			S 1 M 2 3 0		S I M I 940	eaa	eun
	STM36/8			SIM2840		STM72	ego	eutL
	I DOCIVI C						Chu D	сии Л
3	STM3681			STM2963		STM2690	emrR	eutP
and biogenesis			metabolism			membrane	metabolism	metabolism
ribosomal structure	I	,	transport and	and conversion	secretion	biogenesis and outer	transport and	transport and
Translation,	Transcription	Surface Structures	Inorganic iron	Energy production	Cell motility and	Cell envelope	Carbohydrate	Amino acid

Amino acid	Carbohvdrate	Cell envelone	Cell motility and	Energy production	Inorganic iron	Surface Structures	Transcription	Translation.
transport and	transport and	biogenesis and outer	secretion	and conversion	transport and			ribosomal structure
metabolism	metabolism	membrane			metabolism			and biogenesis
artM	iolT2						STM1575	
artI	iolTI						STM1555	
aroP	STM4412						STM1547	
aroL	STM4080						STM1541	
aroK	STM4066						STM1265	
aroH	STM4065						STM1243	
aroG	STM4054						STM1127	
aroF	STM4053						STM1082	
aroE	STM4052						STM1012	
aroD	STM3858						STM1001	
aroC	STM3832						STM0952	
aroB	STM3793						STM0900	
aroA	STM3792						STM0898A	
argT	STM3784						STM0898	
argR	STM3783						STM0859	
argl	STM3782						STM0835	
argG	STM3781						STM0764	
argE	STM3780						STM0763	
argD	STM3779						STM0692	
argC	STM3775						STM0652	
argB	STM3772						STM0581	
argA	STM3771						STM0580	
arcC	STM3770						STM0571	
ansP	STM3769						STM0410	
ansB	STM3698						STM0363	
ansA	STM3600						STM0354	
allC	STM3547						STM0347	
aegA	STM3260						STM0333	
adi	STM3259						STM0164	
STM4467	STM3258						STM0052	
STM4466	STM3257						STM0031	
STM4465	STM3256						STM0030	
STM4463	STM3255						STM0029	
STM4446	STM3254						STM0017	
STM4431	STM3253						STM0014	
STM4351	STM3251							
STM4042A	STM3170							
STM4042	STM3169							
STM3859	STM3137							
STM3796A	STM3136							
STM3768 STM2508	STM3134 STM2132							

							STM1122	
							STM1543	
							STM1545	
							STM1558	
							STM1560	
							STM1612	STM0329
							STM1613	STM0330
							STM1614	STM0458
							STM1616	STM1002
							STM1617	STM1003
							STM1843	STM1128
							STM1933	STM1255
							STM2179	STM1256
							STM2198	STM1257
							STM2274	STM1259
							STM2280	STM1269
							STM2289	STM1484
							STM2300	STM1491
							STM2302	STM1492
							STM2303	STM1494
							STM2340	STM1542
							STM2341	STM1557
							STM2343	STM1633
							STM2344	STM1634
							STM2372	STM1635
							STM2405	STM1636
							STM2492	STM1795
							STM2570	STM2186
							STM2574	STM2196
							STM2668	STM2197
							STM2750	STM2357
							STM2751	STM2358
							STM2752	STM2359
							STM2755	STM2360
							STM2757	STM3022
							STM2758	STM3082
							STM2911	STM3117
							STM2913	STM3126
							STM2959	STM3128
							STM3083	STM3261
							STM3120	STM3532
and biogenesis			metabolism			membrane	metabolism	netabolism
ribosomal stru			transport and	and conversion	secretion	biogenesis and outer	transport and	transport and
puon I ranstation,	1 ranscrip	Surface Structures	inorganic tron	Energy production	Ceu monity and	Ceu envelope	Caroonyarate	amino acia
The second	The second se				and an addition and			

ption Translation ribosomal s and biogen	
Transcri	
Surface Structures	
Inorganic iron transport and metabolism	
Energy production and conversion	
Cell motility and secretion	
Cell envelope biogenesis and outer membrane	
Carbohydrate transport and metabolism	STM1129 STM0885 STM0885 STM0866 STM0866 STM0723 STM0723 STM0723 STM0650 STM0650 STM0650 STM0650 STM0650 STM0575 STM0575 STM0575 STM0212 STM0212 STM0041 STM0041 STM0041 STM0041
Amino acid transport and metabolism	

Drag manufacture Ansaturation Table mathemation Container Partial mathemation Partial m	Table S2 B. CUG	categories.							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Drug analogue and resistance	Anaerobic metabolism	Flagella and chemotaxis	Lipid metabolism	Oxidative Phosphorylation	Protein Transport	Nucleotide metabolism	Regulators	Signal transduction
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	yggT	Jihi	yeaJ	yqeF	cyoC	secB	yicE	zur	yojN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ygeD	tdcD	tsr	ymdC	cyoB	secA	yggV	zntR	ynaF
	ygeA	tdcC	trg	yihU	cyoA	sec Y	yfhC	yiaJ	ylaB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ybbM	nrfG	tcp	yihG	cydA	secE	yfeJ	xapR	QIJQ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tehB	nrfE	motB	yhbT	cydB	secG	yeiA	WZZE	y_{JiY}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	tehA	nrfD	motA	ygbJ	ppk	secD	ybeK	wzzB	yjcC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sbmA	nrfC	lrhA	yfG	ppa	secF	ybbY	uxuR	yhjK
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sanA	nrfB	lppB	yfc Y	sdhC	yajC	xapA	uhpA	yhjH
	pmrD	nrfA	fliZ	yeiU	sdhD	yidC	uraA	trpR	yhjB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nfnB	nrdG	fliY	yegS	sdhA	lepB	ddn	treR	yhdA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	marR	nrdD	fliT	ydiO	sdhB	lspA	udp	torT	ygiY
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	marB	narX	fliS	ydiF	fiil	ffh	udk	torR	ygiX
	marA	narL	fliR	ydiD	nuoN	ftsY	tmk	tdcA	ygiM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ksgA	napH	fliQ	yciA	nuoM	ybeC	thyA	stpA	yfiN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	emrD	napG	fliP	ybjG	nuoL	tatA	thiG	sspA	yfhK
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	emrB	napF	fliO	ybhO	nuoK	tatB	tdk	Sxoz	yfhA
	emrA	napD	fliN	yafH	nuoJ	tatC	rihC	soxR	yfeA
	bcr	napC	fliM	ushB	nuol	tatE	pyrI	slyA	yehU
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	bacA	napB	fliL	Sddn	nuoH		pyrH	sfsA	yecG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ampG	napA	fliK	tesB	nuoG		pyrG	seqA	yebR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ampE	hybG	fiiJ	sseJ	nuoF		pyrF	rstA	yeaJ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	acrR	hybF	flil	sbmA	nuoE		pyrE	rsd	yeaG
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	acrF	hybE	fliH	pssA	nuoB		pyrD	rpoS	ydiV
	acrA	hybD	fliG	psd	nuoA		pyrB	rnk	ydaA
		hybC	fliF	prpE	atpC		purU	rhaR	yciR
		hybB	fliE	plsX	atpD		purT	rfaH	ybil
		hybA	Jup	plsC	atpG		purN	rcsF	ybdQ
gips $jurA$ $piab$ $auprpurAmexAmexAglpAflhEphoNaupFpurAmexAmexAfrdDflhCpgsAapEpurGpurGpurAmexAfrdDflhCpgBapBapEpurGpurGpurGpurAfrdDflhCpgBapBpurBpurGpurGpurGpurAupAfrdBflhAmenEfrdCpurDoxyRupAfuhAfgNiyBfrdBpurBoradurRfuhGflgKiykipFfrdApurBoradurRflnGflgKipkipKpurAnlporadurRflnGflgHigkRiacPprApurAnlporaddruBflgHgkRiacPpfXmaRiarRdruBflgGgcPEnrdImoEsrA$		gip	Juc		alpA		purM	rcsb	yai
		glpd	JUA	plab	atpri atp		purk	rCSA	WZD
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		gupa fumR	flhD	prouv	atnF.		purf	nurR	u en A
$ frdC \qquad frdB \qquad frdB \qquad oafA \qquad frdD \qquad purE \qquad phoP \qquad uhpA \\ frdB \qquad frdB \qquad frdB \qquad oafA \qquad menE \qquad frdC \qquad purD \qquad oxyR \qquad trpA \\ frdA \qquad flgN \qquad bytB \qquad frdB \qquad purD \qquad oxyR \qquad trpA \\ funI \qquad flgL \qquad ispF \qquad frdA \qquad purD \qquad oxyR \qquad trPA \\ funG \qquad flgL \qquad ispD \qquad frdA \qquad purB \qquad oraA \qquad trrR \\ dmsC \qquad flgJ \qquad idi \qquad prA \qquad pirA \qquad nib \\ dmsA \qquad flgH \qquad glxR \qquad pirA \qquad pirA \qquad nib \\ dmsA \qquad flgH \qquad glxR \qquad trR \qquad trR \\ dmsA \qquad flgG \qquad flgG \qquad gcpE \qquad nrdI \qquad modE \qquad ssrA \qquad $		frdD	flhC	Baba	atpB		purF	phoU	uhpB
frdBflhAmenEfrdCpurD $axyR$ yyA frdBflhAmenE $frdC$ $purD$ $axyR$ yyA fdnIflgN $bytB$ $frdB$ $purC$ $axyR$ $typA$ fdnHflgL $ispF$ $frdA$ $purB$ $oraA$ $ttrS$ fdnGflgK ipk $prdA$ $purB$ $oraA$ $ttrR$ fdnGflgIiacP $prsA$ $nikR$ $torS$ dmsAflgHgkxR px $nagC$ $tctD$ dcuBflgGgcpE $nrdI$ $modE$ $ssrA$		frdC	flhB	oafA	frdD		purE	phoP	uhpA
frdA fgN $bytB$ $frdB$ $purC$ $osmE$ $ttrS$ fdn1 fgM $ispF$ $frdA$ $purB$ $oraA$ $ttrR$ fdnH fgL $ispD$ $frdA$ $purB$ $oraA$ $ttrR$ fdnG fgK ipk prA nlp $torS$ fdnSC fgJ idi $prsA$ $nikR$ $torS$ dmsB fgI $iacP$ ppx $nagC$ $tctE$ dmsA fgH gkR mpC $mtlR$ $ssrB$ dcuB $flgG$ $gcpE$ $mrdI$ $modE$ $ssrA$		frdB	flhA	menE	frdC		purD	oxyR	typA
fdnlflgMispFfrdApurBoraAttrRfdnHflgLispDpurAnlptorSfdnGflgKipkprsAnikRtorSdmsCflgJidippxnagCtctEdmsBflg1iacPpfsnupCmtlRssrBdcuBflgGgcpEnrdImodEssrA		frdA	flgN	lytB	frdB		purC	osmE	ttrS
fdnHflgLispDpurAnlptorSfdnGflgKipkprs.4nikRtorRdmsCflgJidippxnagCtctEdmsBflg1iacPpfsnadRtctDdmsAflgHglxRnupCmtlRssrBdcuBflgGgcpEnrdImodEssrA		fdnl	flgM	ispF	frdA		purB	oraA	ttrR
fdnGflgKipkprs.AnikRtorRdmsCflgJidippxnagCtctEdmsBflg1iacPpfsnadRtctDdmsAflgHglxRnupCmtlRssrBdcuBflgGgcpEnrdImodEssrA		fdnH	flgL	ispD			purA	nlp	torS
dmsCflgJidippxnagCtctEdmsBflg1iacPpfsnadRtctDdmsAflgHglxRnupCmtlRssrBdcuBflgGgcpEnrdImodEssrA		fdnG	flgK	ipk			prsA	nikR	torR
dmsBflg1iacPpfsnadRtctDdmsAflgHglxRnupCmtlRssrBdcuBflgGgcpEnrdImodEssrA		dmsC	flgJ	idi			ppx	nagC	tctE
dmsA flgH glxR nupC mtlR ssrB dcuB flgG gcpE nrdI modE ssrA		dmsB	flgl	iacP			pfs	nadR	tctD
dcuB flgG gcpE nrdI modE ssrA		dmsA	flgH	glxR			nupC	mtlR	SSTB
		dcuB	flgG	gcpE			nrdI	modE	SSFA

'ug analogue and sistance	Anaerobic metabolism	Flagella and chemotaxis	Lipid metabolism	Oxidative Phosnhorvlation	Protein Transport	Nucleotide metabolism	Regulators	Signal transduction
	den 4	$\eta_{\alpha F}$	aarR	<i>c s s s s s s s s s s</i>		nrdE	motR	cnoT
	Upud	Jigr	guin			Upan	ment I	sport
		J180	juur j			Unia 	, mem	SLAA
	cadB	flgD	fadD			nrdB	marR	rtn
	cadA	flgC	fadB			nrdA	marA	rtcR
	asrC	flgB	fadA			ndk	lytB	rstB
	asrB	flgA	fabZ			miaE	lysR	rstA
	asrA	cheZ	fabl			hpt	luxS	rseC
	aer	cheY	fabH			guaC	lrp	rseB
	STM4307	cheW	fabF			guaA	lrhA	rseA
	STM4306	cheR	fabD			gpt	lexA	relA
	STM4305	cheM	fabB			gmk	ilvY	rcsC
	STM3599	cheB	fabA			dut	idnR	rcsB
	STM2530	cheA	dxr			dgt	iclR	ptsP
	STM2529	aer	cls			deoD	iciA	pspF
	STM2528	STM4258	cdsA			deoC	icc	prpR
	STM1497	STM4210	caiD			deoA	hycA	prpA
	STM0761	STM3670	caiC			dcd	hupB	proQ
	STM0612	STM3152	apeE			cyaA	hupA	pphB
		STM3138	aes			cpdB	htgA	phoR
		STM2314	acpS			cmk	hns	phoQ
		STM1657	acpD			cdd	himD	phoP
			accD			apt	himA	phoL
			accC			allP	hha	Hohd
			accB			allB	hfiK	phoB
			accA			allA	$h \eta C$	pgtB
			aas			adk	gutM	pgtA
			STM4032			add	gntR	ompR
			STM3595			STM4104	glpR	narX
			STM3119			STM3631	glnK	narQ
			STM1623			STM3334	glnB	narP
			STM0857			STM3333	gcvR	narL
			STM0055			STM3167	BCVA	Sxul
						STM1330	galS	kdpE
						STM0033	galR	kdpD
							fur	hydH
							fruR	hydG
							finr	hnr
							fliS	glnG
							fliA	fnr
							Ghlf	fimZ
							JIhC	envZ
							fis	dpiB
							fadR	dksA

331

	\geq
	0
۲	Ð
	en
	<u>a</u> .
	×
	Π

Drug analogue and Anaerobic metabolism . resistance																																	
Flagella and chemotaxis																																	
Lipid metabolism																																	
Oxidative Phosphorylation	•																																
Protein Transport																																	
Nucleotide metabolism																																	
Regulators	envR	emrR	eco	dsrB	dgoR	cytR	csrA	cspE	crp	crl	creB	cpxP	cheZ	cheY	 cheW	cheW cheR	cheW cheR chaB	cheW cheR chaB caiF	cheW cheR chaB caiF birA	cheW cheR chaB caiF birA bg[J	cheW cheR chaB caiF birA bgU basS	cheW cheR chaB caiF birA bgLJ basS basR	cheW cheR chaB caiF birA bgLJ basS basR baeR	cheW cheR chaB caiF birA bgLJ basS baeR baeR	cheW cheR chaB caiF birA bgLJ basR basR basR basR asnC	cheW cheR chaB caiF birA bg[J basR basR basR basR cargR angR allR	cheW cheR chaB caiF bir:4 bg[J basR basR baeR baeR argR argR agaR	cheW cheR chaB caiF bgLJ basR basR basR basR argR argR agaR agaR	cheW cheR chaB caiF bir:A bgLJ basS basR basR basR asRC asRC agRR agRR agRR	cheW cheR chaB caiF birA bgLJ basS basR basR basR asnC agRR agRR agRR agRR	cheW cheR chaB caiF bgLJ basS basR basR basR asnC aggR aggR aggR aggR	cheW cheR chaB caiF birA barA basR basR basR asnC argR allR agaR acrR	cheW cheR caiF birA bgLJ basS basR basR asnC argR agaR agaR
Signal t	dcuS	cstA	csrA	crp	creC	creB	cpxR	cpxA	copS	copR	cheY	bolA	bglJ	basS	basR	basR barA	basR barA baeS	basR barA baeS baeR	basR barA baeS baeR arcB	basR barA baeS baeR arcB arcA	basR barA baeS baeR arcB arcA aer	basR baeA baeS baeR arcB arcA aer aceK	basR barA baeS baeR arcB arcA aer aceK STM4551	basR barA baeS baeR arcB arcA aer STM4551 STM4551	basR barA baeS baeR arcB arcA aer STM455 STM453 STM338	basR barA baeS baeR arcA aer STM455 STM453 STM273	basR barA baeS baeR arcB arcA aceK STM455 STM453 STM273 STM273	basR barA baeS baeR arcB arcA aer aceK STM455 STM453 STM273 STM2731	basR barA baeS baeR arcB arcA arcA arcA STM455 STM453 STM231 STM231	basR baeA baeS baeR arcB arcA aceK STM455 STM453 STM273 STM273 STM231 STM198 STM182	basR baeS baeS baeR arcB arcA arcA arcK STM453 STM453 STM453 STM231 STM231 STM182 STM182	<i>basR</i> <i>barA</i> <i>baeS</i> <i>baeR</i> <i>arcB</i> <i>arcA</i> <i>arcA</i> <i>aceK</i> STM455 STM455 STM453 STM250 STM231 STM231 STM182 STM182 STM169	basR barA baeS baeS baeR arcA aer STM455 STM455 STM455 STM455 STM455 STM455 STM251 STM251 STM198 STM198 STM169 STM056

D	D					
Amino acid transport and	Anaerobic metabolism	Surface	Cell motility and secretion	Energy production and conversion	Flagella and	Inorganic iron transport and
metabolism		structures		1	chemotaxis	metabolism
STM1491	STM1497	StfG	StfG	STM4305	flgF	fhuA
STM1494	STM4305	stbA	stbA	fumB	trg	fes
STM1633	fumB	stjC	ssaC	STM4306	fliJ	STM0765
STM1635	dcuB	stcA	ssaN	napF	flgD	ydiE
oat	dmsC	flgF	stjC	citF	figE	ssea
STM1256	STM4306	fiiJ	stcA	nemA	figC	bfd
STM1257	napF	flgD	flgF	ysaA	flgG	nrfA
pepT	STM4307	flgE	trg	STM2529	fliS	napD
aegA	nrfA	figC	fliJ	hybA	cheB	citT
pepE	napD	flgG	flgD	citD	fliK	modB
hpaF	nrdD	flis	figE	STM2530	fiiO	nirD
ansB	hybG	flik	JIGC C	pta	fit	modC
glpB	STM2529	fiio	figG	dcuC	fiiQ	STM2446
gdhA	hybA	fliT	cheB	frdB	fliN	STM3074
ansA	ŠTM2530	fliQ	fliK	frdA	fliF	modA
argl	hybF	fliN	fiiO	hybD	fliG	cbiM
lysC	hybB	fliF	fliQ	frdC	fliC	
Juby	hybE	flig	fliN	napB	tcp	
proX	frdB	flic	fliF	STM2527	cheA	
eutP	frdA	flgH	ĥiG	ackA	flgH	
argG	ľwbD	figI	ĥiC	loun	figl	
dppC	nrdG	fiim	cheA	hybC	fiiM	
dppD	frdC	flgN	flgH	Moun	figN	
livJ	glpB	fliH	figi	glpA	fiiH	
	napB	fliD	JiM	Nom	fiiD	
	aer	MgM	$f_{\rm IgN}$	narJ	figM	
	hybC	fiil	fiiH	nuoK	fiil	
	glpA	flgJ	diff	nirB	cheR	
	STM2528	flgB	fit	hypO	flgJ	
	glpC	flgL	cheR	moE	flgB	
	frdD	fiiA	flgB	Houn	JgL	
	napG	flgA	flgL	nuoL	cheZ	
		flgK	cheZ	glpC	cheM	
		fiiE	cheW	Ioun	fliA	
		fiiL	flgA	Ddu	cheW	
		fliP	fljB	nuoG	η_{gA}	
		csgB	figK	nuoF	figK	
		fimC	fliE	frdD	fliE	
		fliR	fiiL	Mon	fliL	
		JINC	motA	Daus	motA a:T	
			Jur	And C	Juz	
			DIOM	actA	Chei	

Table S3 A. COG organized DE genes.

Appendix II

Amino acid transport a metabolism	nd Anaerob	ic metabolism	Surface structures	Cell motility and secretio	n Energy product	ion and conversion	Flagella and chemotaxis	i Inorgan metaboli	ic iron transport and sm
				STM3216	putA		flhB		
				tsr	nuoB		fliP		
				fimC			motB		
				STM1657			tsr		
				fliR			STM2314		
				STM3152			aer		
							STM1657		
							fliR		
							STM3152		
							flhC		
Table S3 B. COG o	rganized DE genes	•							
Oxidative	Regulators	Signal to	ransduction	Transcription	Lipid metabolism	Nucleotide metal	bolism Ce	ll envelope	Carbohydrate transport
phosphorylation							bic	ogenesis and outer	and metabolism
ł						i	me	embrane	
flil	eco	SSFA		STM1265	sseJ	nrdD	pa	gC	STM0577
frdB	fliS	yhjH		yncC	yihU		ST	M1493	pagO
frdA	cheR	cheY		yhcO	yhbT		pg	tE	otsB
frdC	cheZ	STM231	4	yiaG			fig	Ŀ	STM3132
nuoJ	fliA	aer		phnO					garL
nuoM	cheW	ŊijŲ		flgM					yia0
nuoN	cheY	STM250	33	fliA					yadI
nuoK	hycA	y daA		ydhM					Igmq
nuoE	flhC								citE
nuoH									kdgK
nuoL									STM1613
nuol									sgaB
nuoG									pykA
nuoF									<i>XdlB</i>
frdD									STM2343
nuoA									STM3254
пиов									STM3/92

Table S4. ChIP-seq peaks: FNR binding.

		Pe	eak
Genes associated with peak ^a	Chr. ^b	Start	End
repY, repZ	pCol1B9SL1344	0	484
yaeA, yaeB, yafA	pCol1B9SL1344	4321	5743
yafB, yagA	pCol1B9SL1344	6037	7620
cib	pCol1B9SL1344	7696	8638
imm, ybaA	pCol1B9SL1344	9141	10730
SLP2_0018, <i>parA</i> , SLP2_0020	pCol1B9SL1344	13879	14877
stbA	pCol1B9SL1344	15184	16230
trbA, pndC, pndA	pCol1B9SL1344	41332	41922
SLP2_0054A, exc	pCol1B9SL1344	42304	46277
traH, traG	pCol1B9SL1344	65594	66734
traF, traE	pCol1B9SL1344	67156	68931
rci, shfB, shfB, shfC	pCol1B9SL1344	69768	71125
pilV, pilU, pilT, pilS, pilR	pCol1B9SL1344	72184	75372
pilO, pilP	pCol1B9SL1344	76195	77489
pilÕ	pCol1B9SL1344	78047	78880
pilL, pilK, pilJ	pCol1B9SL1344	81610	82899
trcD	pCol1B9SL1344	83434	84254
traB. traA	pCol1B9SL1344	84936	86908
traT. traS	pSLTSL1344	10573	11429
traV. trbD	pSLTSL1344	26993	27311
traA $traY$ $traI$ $traM$	pSLTSL1344	31179	32898
finP	pSLTSL1344	33815	34895
parR parA samR	pSLTSL1344	47671	50469
PSLT042 snvR	pSLTSL1344	60927	62144
snvC snvD	pSLTSL1344	65036	67651
ccdA PSLT026 PSLT025 renA2	pSLTSL1344	73726	76279
PSI T020, nefB	pSLTSL1344	78271	79352
nefI	pSLTSL1344	85147	85786
ren 4 tan ren 43 ren C	pSLTSL1344	91908	92600
ST_{nc} STM0014 STM0015 ST_{nc} ST00	ST4-74	14781	16510
STM0017 chi4	ST4-74	17164	18037
STM0017, CHIA	ST4-74 ST4-74	23025	22/0/
bef4	ST4-74 ST4 74	23023	23494
UJA STM0020 STM0020 STM0021 STM0022	ST4-74 ST4-74	24008	25766
STM0027, STM0030, STM0031, STM0032	ST4-74 ST4-74	20272	40220
STM0034, STM0033	ST4-74 ST4-74	51862	52250
STIM0042	S14-/4 ST4 74	122806	124509
leuA, leuL, leuO	S14-/4 ST4 74	133800	13439.
yuen asiE asiC	S14-/4 ST4 74	24/323	24/95.
sciF, sciG	S14-/4	310/03	21(07
SCIN	S14-/4	316285	3109/4
S1M02//, S1M02/8, <i>sciK1</i>	S14-/4	31/558	31881
SL1344_0286A, S1M0292	S14-/4	333838	33636
SCIX, SCIY, ISTA	S14-74	337188	33879
STM0295	ST4-74	339416	33992.
safA, safB	ST4-74	341032	34239
ybeJ	ST4-74	346063	34650
sinR	ST4-74	347728	34903
pagN	ST4-74	349382	35049
STM0328	ST4-74	370613	37102.
STM0334, STM0335	ST4-74	377298	37862.
stbA, STM0341, STM0342, STnc1700, STM0343	ST4-74	384214	38652
STM0345, STM0346, STM0347, STM0348, STM0349	ST4-74	388882	391454

		Pe	ak
Genes associated with peak ^a	Chr. ^b	Start	End
vaiB STnc4150	ST4-74	436424	437097
tar	ST4 74	467672	468004
ISA STEM (0.4.2.9	ST4-74	407072	400094
S11M0438	514-74	490749	492/01
cyoA	S14-74	49/5/0	498023
rpmE2, rpmJa	ST4-74	525766	526197
maa, hha, ybaJ	ST4-74	527332	528700
STM0497	ST4-74	556592	557400
fimZ	ST4-74	609785	611037
STM0551, fimW	ST4-74	611852	612931
STM0557	ST4-74	614288	616208
$\sigma tr Ba \sigma tr Aa STnc1870$	ST4-74	616736	617335
yhdN yhdO	ST4-74	667293	668470
your, you	ST4-74	697002	6007710
	S14-74 ST4 74	602120	602617
CSPE	514-74	092120	092017
S1M0/19, S1M0/20, S1M0/21, S1M0/22, S1M0/23,	ST4-74	783417	793157
STM0724, STM0725, STM0726, STM0727	21171	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
gltA, STM0731, sdhC	ST4-74	796516	797389
cydA	ST4-74	807541	808981
STM0762, STM0763, STM0764, STM0765	ST4-74	825138	828930
slrP	ST4-74	865818	866532
olnH	ST4-74	896198	896612
STM0854 STM0855 STM0856 STM0857	ST4-74	925176	928619
STM0054, STM0055, STM0050, STM0057	ST4-74 ST4-74	020008	030178
ST 10050	ST4-74	929008	930178
S11W10859	514-74	931060	932097
pflA, S1M09/1, $sopD2$	S14-74	1010045	1011678
focA	ST4-74	1014575	1015326
ompF, STnc3350	ST4-74	1047357	1048016
STM1001, <i>dpaL</i>	ST4-74	1050149	1050717
STM1003	ST4-74	1051463	1051983
STM1003	ST4-74	1052815	1053283
STM2622, STM1019, STM1020	ST4-74	1065164	1066458
στσ Α	ST4-74	1070419	1071256
STM1054 ataF ataF	ST4_74	1098722	1100020
$rin \Lambda nin R$ STM1080 ninC	ST4-74 ST4-74	1132644	112/8/7
$p_{\mu}p_{\lambda}, p_{\mu}p_{\lambda}, SIW1009, p_{\mu}p_{\lambda}$	ST4-74	1126105	1127126
SOPB, OrjA, STW1095	514-74	1150105	115/150
SInc1880, SIMIII0	S14-74	11536/2	1154/10
phoH	ST4-74	1169962	1170414
STM1130	ST4-74	1175387	1175950
STM1131, STM1132	ST4-74	1176770	1178094
csgF, $csgE$, $csgD$, $csgB$	ST4-74	1185409	1187428
ndh	ST4-74	1250095	1250801
potC_sifA	ST4-74	1265767	1267189
STnc150 SL1344 misc feature 6 STM1239 envF IsrC	ST4-74	1282495	1286129
csnH nggD ngg(ST4-74	1287840	1280532
STra520 pliC	ST4-74	1207042	1207552
STM1265 STM1266	S14-74 ST4 74	1290432	1291031
S1M1203, S1M1200	514-74	1304334	1303232
S1M1267, S1M1268, <i>aroQ</i>	S14-74	1306242	1306852
gapA, yeaA	ST4-74	1326449	1326856
STM1331, <i>rfc</i>	ST4-74	1366420	1368646
ydiQ, ydiP	ST4-74	1392171	1392538
ydiN	ST4-74	1399195	1399768
orf408	ST4-74	1422650	1423124
orf70	ST4-74	1430434	1430778
orf242 ssrB	ST4-74	1432932	1434312
ssaH ssaI ssaI	ST4-74	1446407	1447701
ssur, ssur, ssur ssall	ST4-/4 ST4 74	1/57107	1/58200
ssu ()	S14-/4	143/10/	1405000
	514-/4 ST4-74	1484//5	1483430
yagn, yag1, bir	514-/4	1492369	1493116

		Pe	ak
Genes associated with peak ^a	Chr. ^b	Start	End
STM1527	ST4-74	1560687	1561385
STM1528	ST4-74	1562488	1563261
STM1550 STM1551 SL1344 1481 STM1552	ST4-74	1583358	1585430
STM1554 STM1555	ST4-74	1587253	1588927
sta4	ST4-74	1626466	160727
SICA	S14-74	1620400	1642599
	S14-74	1043034	1043388
pdgL, S1M1600, ugtL, sifB, yncJ	814-74	164/612	16502/1
STM1628, <i>steB</i> , STM1630, <i>sseJ</i> , STM1632, STM1633, STM1634	ST4-74	1676041	1681588
STnc580	ST4-74	1706706	1707160
STM1657	ST4-74	1709097	1709520
fnr	ST4-74	1710839	1711458
STM1670 STM1671 STM1672	ST4-74	1720903	1723651
staC STM1608A $vaiF$	ST4-74	1747101	1748641
SHEC, STWINOOR, YGE	ST4-74	1795227	1795902
Ompw, S1W1755	S14-74	1/0323/	1702209
STM1/41	514-74	1/91930	1792308
STM1747, STnc3580	ST4-74	1798223	1798850
ychE, adh	ST4-74	1799396	1800115
STM1785	ST4-74	1839808	1841186
STM1794, STnc3610, STM1795	ST4-74	1850017	1850547
ftsI2, cspC, yobF, STnc3630	ST4-74	1892956	1894056
STM1854	ST4-74	1909338	1909738
sonE2, STM1856, SL1344, 1786	ST4-74	1910085	1911622
$ST_{nc}3640$ SI 1344 1792 $nagO$ STM1863 STM1864	ST4-74	1915516	1919190
STM1969A	ST4 74	1022572	1022061
STWI1000A	ST4-74 ST4-74	1922372	1923001
urun, jud	514-74	1964290	1984804
S1M1940, S1M1941, SL1344_18/4A	S14-74	1991892	1992807
fliC, fliD	ST4-74	2006714	2007102
SL1344_1927A, STnc1280, SL1344_1927B, SL1344_1928	ST4-74	2039652	2041523
STM2007	ST4-74	2084789	2085479
cbiA, pocR	ST4-74	2111850	2112415
SL1344_2042, sopA	ST4-74	2138880	2140308
wzzB	ST4-74	2155528	2155962
udg	ST4-74	2156399	2157128
rfbP	ST4-74	2158655	2161291
rfhK_cnsR2_rfhN_rfhU_rfhV_rfhX_rfhI	ST4-74	2161611	2168990
rfbG rfbF rfbL rfbC	ST1-74	2170760	2173003
$r_{J}OG, r_{J}OI, r_{J}OC$	ST4-74	2170709	2173903
$SSER_2$, $STCA$	ST4-74	2229021	2230739
STIC/40, SICD	514-74	2240321	2241085
STCA	S14-74	2245041	2245645
S1M2186	ST4-74	2278779	22/9141
STM2208, STM2209	ST4-74	2306623	2307891
yejG, STnc1340	ST4-74	2319741	2320153
oafA	ST4-74	2329411	2331577
STM2238	ST4-74	2335480	2336899
MicF, yojN	ST4-74	2364341	2364931
STM2274, STM2275	ST4-74	2376859	2377793
vfbK	ST4-74	2421134	2421856
m_0A STM2329 STnc1550	ST4-74	2437181	2437897
vfb()	ST4-74	2438908	2439821
$\mathcal{Y}^{\mathcal{S}}\mathcal{E}$ STM2360 STM2361	STA 74	2450500	2437021
511v12500, 511v12501	S14-/4	24/0310	27/00/3 2500162
yjcz, juul	S14-/4	24990/8	2500162
upp, purm	514-/4	2610304	2010/23
S1M2503, STM2505, STM2506	ST4-74	2618396	2619025
STM2508	ST4-74	2619468	2620057
guaB, xseA	ST4-74	2623538	2623973
cadB	ST4-74	2695797	2696235
lepA, SL1344_misc_feature_12, gogB, STM2585	ST4-74	2726315	2729493

		Pe	rak 🛛 🖉
Genes associated with peak ^a	Chr. ^b	Start	End
STM2585A	ST4-74	2730527	2730972
SL1344 tRNA 44 STnc2080 IsrJ	ST4-74	2759387	2759721
SL1344 2583 STM2621 SL1344 2585	ST4-74	2763106	2764161
SL 1344 2504	ST4-74	2769100	2770001
wfD ama	ST4-74	2786426	2770071
yjiD, ung	S14-74	2760450	2/0/100
arof, yjik	514-74	2812917	2813/83
int, SL1344_2632	S14-74	2816377	2816889
STM2680	ST4-74	2832194	2832785
sopE	ST4-74	2863096	2863454
SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698	ST4-74	2877180	2880718
cIIc, apl, cI	ST4-74	2886539	2887382
SL1344_2710	ST4-74	2888412	2889786
SL1344 2713, SL1344 2714, SL1344 2715	ST4-74	2890959	2894228
STM2742, STM2743	ST4-74	2902737	2905634
STM2746, STM2747	ST4-74	2908404	2911125
STM2754	ST4-74	2914727	2916052
STM2761 STM2762 IsrM STM2763	ST4-74	2923895	2928171
STM2766 STM2767 STM2768	ST4-74	2920105	2923192
f; A	ST4-74	2025245	2025655
JUA hin incD	ST4-74	2933243	2933033
	S14-74	2957950	2936401
<i>stpA</i> , S1M2800	S14-74	29/0115	2970994
avrA	S14-74	3032892	3033544
sprB, hilC	S14-74	3034140	3036066
prgH, hilD, hilA	ST4-74	3040049	3042597
iagB	ST4-74	3043284	3044745
sptP, sicP	ST4-74	3045926	3047129
invB	ST4-74	3060826	3061358
invA	ST4-74	3062836	3063528
invH, InvR	ST4-74	3067025	3067478
STM2902, STM2903	ST4-74	3068163	3069232
vgcB. sopD. STnc3140	ST4-74	3108568	3110081
g_{CVA} , G_{CVB}	ST4-74	3156570	3157077
STM3026	ST4-74	3208296	3209101
STM3079 STM3080	ST4-74	3262296	3263205
STM3083	ST4-74	3266523	3267135
STnc3870 SI 1344 misc feature 126 STM3117	ST4-74	3206925	3207199
STM2122 $STM2124$	ST4-74	2204240	2204805
STM3123, STM3124 STma1170	S14-74 ST4 74	2212267	2212020
STRC1170 STR (2122	S14-74	2214254	3312920
S1M3133	S14-74	3314354	3314967
exuT, uxuA	S14-74	3316288	3316949
STM3138, STnc3890	ST4-74	3321791	3322853
assT	ST4-74	3374699	3375163
STM3193	ST4-74	3376907	3377336
yqjH, yqjI	ST4-74	3400564	3400921
STM3216	ST4-74	3402887	3403314
aer	ST4-74	3404904	3405320
garD	ST4-74	3438955	3439404
agaR. gatY	ST4-74	3442922	3443364
STM3257	ST4-74	3447341	3447711
vhbT vhbU	ST4-74	3460672	3461019
STM3343_STnc3060	ST4-74	3533405	3533758
mdh araR	ST4-74 ST/_7/	35/10/150	35/060/
what when the second seco	ST-74 ST/ 7/	2576205	2576769
yhu0 yhd1	S14-/4 STA 74	2570303	2570240
ynu () yma M ymyn Ib	S14-/4 ST4 74	33/8//2	331924U
грям, грто	514-74	360/149	300/368
bjr, bja	S14-/4	3618952	3619556
nirB	ST4-74	3644686	3645129
STnc760, feoA	ST4-74	3685056	3685447

		Pe	Peak	
Genes associated with peak ^a	Chr. ^b	Start	End	
STM3529, STM3530	ST4-74	3714927	3715274	
STM3547	ST4-74	3737573	3738211	
Inf4	ST4-74	3840010	3840621	
$s_{\rm Tp}^{21}$	ST4 74	3858684	3850241	
STM2652 mat	ST4-74	205004	2061142	
SIM3052, yajP	514-74	3839848	3801143	
S1M3690, sadA	S14-74	3901409	3902504	
rfaK, rfaZ, rfaY, rfaJ, rfaI	ST4-74	3931143	3936149	
rfaB, yibR	ST4-74	3936491	3937420	
rfaQ	ST4-74	3939834	3940571	
STM3752, <i>sugR</i>	ST4-74	3970142	3971395	
rmbA, misL	ST4-74	3974104	3976057	
marT, slsA	ST4-74	3980392	3981119	
STM3779, STM3780	ST4-74	4000762	4002180	
STM3782, STM3783, STM3784, STM3785	ST4-74	4004820	4006722	
vhi A	ST4-74	4041092	4041771	
STnc400 STM3845 STM3846	ST4-74	4072267	4074711	
atnI	ST4-74	41012207	4102667	
	S14-74	4101640	4102007	
yija, yije	514-74	412/850	4128195	
comM, ilvX, ilvG	S14-74	4129882	4130430	
rho	ST4-74	4146784	4147226	
tatA	ST4-74	4201127	4201684	
STM3980	ST4-74	4207528	4208405	
yihG, polA	ST4-74	4227132	4227581	
STM4015, <i>ompL</i>	ST4-74	4245984	4247419	
SL1344 3979, STM4033	ST4-74	4263008	4263452	
STM4051	ST4-74	4283485	4284359	
vdeW ego	ST4-74	4304575	4305108	
SI 1344 4052	ST4_74	4336272	4337013	
	ST4-74	4370005	4280282	
COUA SI 1244 "DNA 20	ST4-74	43/9993	4360363	
SLI344_IKNA_20	S14-74	4413463	4413924	
aceb	S14-74	4422971	4423548	
S1M4196, S1M4197	S14-/4	44391//	4440672	
STM4204	ST4-74	4446447	4447543	
STM4218, STM4219	ST4-74	4458715	4459369	
SL1344_misc_feature_129, <i>siiA, siiB, siiC, siiD, siiE</i>	ST4-74	4497954	4507001	
siiF	ST4-74	4520086	4522699	
yjcB, yjcC	ST4-74	4523191	4523870	
adiY, STnc1180	ST4-74	4558985	4559993	
STM4302	ST4-74	4569882	4570392	
STM4313 rtsB rtsA STM4316	ST4-74	4581119	4582756	
nhoN SI 1344 4256	ST4-74	4584700	4586042	
asn A frs A	ST4_74	4592849	4593368	
SI 1344 t RNA 82 $wieV$	ST4-74	4617550	4617807	
$SL1344_IKIVR_02, yjev$	ST4-74	4017550	401/09/	
51W14415	514-74	40/48/3	40/3300	
10111, 10112	S14-/4	4681329	4681883	
iolE, iolGI	S14-74	468/026	4688406	
<i>nrdD</i> , SL1344_4383	ST4-74	4715206	4715714	
STM4467, yjgK	ST4-74	4731066	4731723	
<i>ytgA</i>	ST4-74	4734869	4735507	
STM4489	ST4-74	4753746	4754156	
STM4495	ST4-74	4764531	4766043	
SL1344 4427A, <i>veeN</i>	ST4-74	4773008	4774261	
STM4503, STM4504, STM4505	ST4-74	4777524	4780154	
IsrO SL1344 4439 STM4509	ST4-74	4783586	4784317	
wiH	ST4-74	4780001	4789570	
5754518	STA 74	4702060	170/170	
SIIVIT J 10 STM 4500 STm 4120 STM 4500	514-/4 ST4-74	4/73707	4707610	
511V14520, 511104150, 511V14522	S14-/4	4/90/18	4/9/010	
nsaə	514-/4	4/98610	4/99330	

		Peak	
Genes associated with peak ^a	Chr. ^b	Start	End
yjjP, yjjQ	ST4-74	4826026	4827024
yjjI, deoC	ST4-74	4841777	4842074
sthB	ST4-74	4870732	4871229
sthB	ST4-74	4872247	4872645
STM4595, STM4596	ST4-74	4873908	4875191
arcA, yjjY, lasT	ST4-74	4876509	4877354
		0 44 44 4	

^aWhen multiple genes are listed a peak was present across the promoter region or TSS of all listed genes ^bChromosome or plasmid

Table S5. Ch	IP-seq peaks	associated with	up-regulated	DE genes.
--------------	--------------	-----------------	--------------	-----------

		Peak	
Genes associated with peak ^a	Chr. ^b	Start	End
stbA	pCol1B9SL1344	15184	16230
PSLT042, spvR	pSLTSL1344	60927	62144
spvC, spvD	pSLTSL1344	65036	67651
STnc890, STM0014, STM0015, STnc3200	ST4-74	14781	16510
stbA,STM0341,STM0342,STnc1700,STM0343	ST4-74	384214	386526
STM0557	ST4-74	614288	616208
gtrBa, gtrAa, STnc1870	ST4-74	616736	617335
STM0719, STM0720, STM0721, STM0722, STM0723,	ST4-74	783417	793157
STM0724, STM0725, STM0726, STM0727	514 /4	/0541/	///////////////////////////////////////
STM0762, STM0763, STM0764, STM0765	ST4-74	825138	828930
pflA, STM0971, sopD2	ST4-74	1010045	1011678
pipA, pipB, STM1089, pipC	ST4-74	1132644	1134847
STnc1880, STM1110	ST4-74	1153672	1154710
potC, sifA	ST4-74	1265767	1267189
STnc150, SL1344_misc_feature_6, STM1239, envF, IsrC	ST4-74	1282495	1286129
cspH, pagD, pagC	ST4-74	1287849	1289532
STM1265, STM1266	ST4-74	1304354	1305232
STM1267, STM1268, <i>aroQ</i>	ST4-74	1306242	1306852
STM1331, <i>rfc</i>	ST4-74	1366420	1368646
orf242, ssrB	ST4-74	1432932	1434312
ssaH, ssal, ssaJ	ST4-74	1446497	1447701
ssaU	ST4-74	1457107	1458308
steA	ST4-74	1626466	1627272
pdgL, STM1600, ugtL, sifB, yncJ	ST4-74	1647612	1650271
STM1628, <i>steB</i> , STM1630, <i>sseJ</i> , STM1632, STM1633,	ST4-74	1676041	1681588
S1M1634		1040101	1740641
steC,S1M1698A,ycjE	S14-74	1747101	1748641
S1M1/4/, STnc3580	ST4-74	1798223	1798850
STM1804	S14-74	1909338	1909/38
SINC5040, SL1344_1/92, pagO, SIM1863, SIM1864	S14-74	1915516	1919190
S1M1940, S1M1941, SL1344_18/4A	S14-74	1991892	1992807
SL1344_192/A, S1nc1280, SL1344_192/B, SL1344_1928	S14-74	2039652	2041523
ssek2, srcA	S14-74	2229021	2230739
<i>iepA</i> , SL1344_misc_teature_12, <i>gogB</i> , S1M2585	S14-74	2720515	2729493
511V12383A	S14-74	2730527	2/309/2
51M2/01, 51M2/02, ISTM, 51M2/03	S14-74	2923895	2928171
stpA, S1M2800	S14-74	29/0115	29/0994
<i>gcvA</i> , <i>ucvb</i>	S14-/4 ST4 74	21202/U	313/0// 2214067
511V15155 LC. LCJ	S14-/4	2619052	331490/ 2610556
DJ', DJa	S14-/4 ST4-74	3018932	3019336
5L1544_442/A, YEEN STM4502 STM4504 STM4505	514-74 ST4 74	4//3008	4//4201 4700154
51184303, 51184304, 51184303	514-/4 ST4-74	4///524	4/80154
S1M4520, $S1nc4130$, $S1M4522$	514-74	4/96/18	4/9/610

^aWhen multiple genes are listed a peak was present across the promoter region or TSS of all listed genes ^bChromosome or plasmid
Table S6. ChIP-seq peaks associated with down-regulated DE genes.

Genes associated with peak*Chr.*StartEndcitC, citAST4-74687093687718sopB, orfX, STM1093ST4-7411361051137136csgF, csgE, csgD, csgBST4-741184091187428STncS80ST4-7417067061707160STM1657ST4-7417090971709520fnrST4-741708391711458ompW, STM1733ST4-741708391711458off, fliDST4-741708391711458off, fliDST4-7420067142007102stcAST4-7422450412245045yejG, STnc1340ST4-7423197412320153nuoA, STM2329,STnc1550ST4-7424371812437897yfcZ, fadLST4-7424996782500162STM2505, STM2506ST4-742480482786436yfiD, ungST4-7424996782500162STM3216ST4-7424865392887382STM3216ST4-7434028873403314aerST4-7434028873403314aerST4-7434066723461019nirBST4-7434028873403314aerST4-7440410924041771STnc400, STM3845, STM3846ST4-744772674074711nrD, SL1344_4383ST4-744783564784317yjiP, yjiQST4-744783564784317yjiP, yjiQST4-744842074yjiP, yjiQST4-7448417774842074			Pe	ak
citC, citAST4-74 687093 687718 sopB, orfX, STM1093ST4-7411361051137136csgF, csgE, csgD, csgBST4-7411854091187428STnc580ST4-7417067061707160STM1657ST4-7417090971709520fnrST4-7417108391711458ompW, STM1733ST4-7417852371785803fliC, fliDST4-7417852371785803fliC, fliDST4-7420067142007102stcAST4-7423197412245645yejG, STnc1340ST4-7423197412230153nuoA, STM2329,STnc1550ST4-7424371812437897yfcZ, fadLST4-7426183962619025yfiD, ungST4-7427864362787186SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698ST4-742880718clic, apl, clST4-743402887340314aerST4-7434049043405320yhbT, yhbUST4-743646863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-744715206hirBST4-7447152064715714hirDSL1344_4383ST4-744782602hirDST4-7448260264827024yjlP, yjQST4-7448260264827024yjlP, yjQST4-7448417774842074	Genes associated with peak ^a	Chr. ^b	Start	End
sopB, orfX, STM1093ST4-7411361051137136 $csgF, csgE, csgD, csgB$ ST4-7411854091187428STnc580ST4-7417067061707160STM1657ST4-7417090971709520firST4-7417108391711458ompW, STM1733ST4-74171852371785803fliC, fliDST4-7420067142007102stcAST4-7422450412245645yejG, STnc1340ST4-7423197412320153nuoA, STM2329,STnc1550ST4-7424371812437897yfcZ, fadLST4-7426183962619025yfiD, ungST4-7427864362787186SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698ST4-742886539cllc, apl, clST4-743402887340314aerST4-7434606723461019yhbT, yhbUST4-7436446863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7447152064715714srQ, SL1344_4383ST4-7447835864784317yjP, yjQST4-7448260264827024yjP, yjQST4-7448260264827024yjP, yjQST4-7448417774842074	citC, citA	ST4-74	687093	687718
$csgF, csgE, csgD, csgB$ ST4-7411854091187428STnc580ST4-7417067061707160STM1657ST4-7417090971709520firST4-741708991711458ompW, STM1733ST4-7417852371785803fliC, fliDST4-7420067142007102stcAST4-7422450412245645yejG, STnc1340ST4-7423197412320153nuoA, STM2329,STnc1550ST4-7424371812437897yfcZ, fadLST4-7424996782500162STM2503, STM2505, STM2506ST4-7426183962619025yfD, ungST4-74286539288718SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698ST4-742886539288718cIIc, apl, cIST4-743402873403314aerST4-7434049043405320yhbT, yhbUST4-7436466723461019nirBST4-7436446863645129yhjAST4-7447152064715714Srnc400, STM3845, STM3846ST4-744722674074711nrdD, SL1344_4383ST4-744785864784317srQ, SL1344_439, STM4509ST4-7448802624827024yjIP, yijQST4-7448817774842074	sopB, orfX, STM1093	ST4-74	1136105	1137136
$\begin{array}{llllllllllllllllllllllllllllllllllll$	csgF, $csgE$, $csgD$, $csgB$	ST4-74	1185409	1187428
$\begin{array}{llllllllllllllllllllllllllllllllllll$	STnc580	ST4-74	1706706	1707160
fnrST4-7417108391711458ompW, STM1733ST4-7417852371785803fliC, fliDST4-7420067142007102stcAST4-7422450412245645yejG, STnc1340ST4-7422450412245645nuoA, STM2329,STnc1550ST4-7423197412320153nuoA, STM2505, STM2506ST4-7424371812437897yfCZ, fadLST4-7424996782500162STM2503, STM2505, STM2506ST4-7426183962619025yfD, ungST4-7427864362787186SL1344_2695, SL1344_2697, SL1344_2698ST4-7428865392887182cIIc, apl, cIST4-7434028873403314aerST4-7434060723461019nirBST4-7434646623645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7447152064715714IsrQ, SL1344_439, STM4509ST4-7448260264827024yjjI, deoCST4-7448417774842074	STM1657	ST4-74	1709097	1709520
$\begin{array}{llllllllllllllllllllllllllllllllllll$	fnr	ST4-74	1710839	1711458
fliC, fliDST4-7420067142007102stcAST4-7422450412245645yejG, STnc1340ST4-7423197412320153nuoA, STM2329,STnc1550ST4-7424371812437897yfcZ, fadLST4-7424996782500162STM2503, STM2505, STM2506ST4-7426183962619025yfD, ungST4-7427864362787186SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698ST4-7428865392880718cIIc, apl, cIST4-7424865392887382STM3216ST4-7434028873403114aerST4-7434049043405320yhbT, yhbUST4-743646863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjJI, deoCST4-7448417774842074	ompW, STM1733	ST4-74	1785237	1785803
stcAST4-7422450412245645yejG, STnc1340ST4-7423197412320153nuoA, STM2329,STnc1550ST4-7424371812437897yfcZ, fadLST4-7424371812437897STM2503, STM2505, STM2506ST4-7424996782500162yfD, ungST4-7426183962619025yfiD, ungST4-7427864362787186SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698ST4-7428865392880718cIIc, apl, cIST4-7424865392887382STM3216ST4-7434028873403114aerST4-7434049043405320yhbT, yhbUST4-743646863645129nirBST4-7436446863645129yhjAST4-744010924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_4439, STM4509ST4-7448260264827024yjjI, deoCST4-7448417774842074	fliĊ, fliD	ST4-74	2006714	2007102
yejG, STnc1340ST4-7423197412320153muoA, STM2329,STnc1550ST4-7424371812437897yfcZ, fadLST4-7424996782500162STM2503, STM2505, STM2506ST4-7426183962619025yfiD, ungST4-7427864362787186SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698ST4-7428771802880718cllc, apl, clST4-7428865392887382STM3216ST4-7434028873403314aerST4-7434049043405320yhbT, yhbUST4-7436446863645129nirBST4-7436446863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714lsrQ, SL1344_4439, STM4509ST4-7448260264827024yjjI, deoCST4-7448417774842074	stcA	ST4-74	2245041	2245645
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<i>yejG</i> , STnc1340	ST4-74	2319741	2320153
$\begin{array}{llllllllllllllllllllllllllllllllllll$	nuoA, STM2329,STnc1550	ST4-74	2437181	2437897
$\begin{array}{llllllllllllllllllllllllllllllllllll$	yfcZ, fadL	ST4-74	2499678	2500162
yfiD, ungST4-7427864362787186SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698ST4-7428771802880718cllc, apl, clST4-7428865392887382STM3216ST4-7434028873403314aerST4-7434049043405320yhbT, yhbUST4-7434606723461019nirBST4-7436446863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	STM2503, STM2505, STM2506	ST4-74	2618396	2619025
SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698ST4-7428771802880718cIIc, apl, cIST4.7428865392887382STM3216ST4-7434028873403314aerST4-7434049043405320yhbT, yhbUST4-7434606723461019nirBST4-7436446863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	yfiD, ung	ST4-74	2786436	2787186
cIIc, apl , cI ST4-7428865392887382STM3216ST4-7434028873403314 aer ST4-7434049043405320 $yhbT$, $yhbU$ ST4-7434606723461019 $nirB$ ST4-7436446863645129 $yhjA$ ST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711 $nrdD$, SL1344_4383ST4-7447152064715714 $IsrQ$, SL1344_439, STM4509ST4-7447835864784317 $yjjP$, $yjjQ$ ST4-7448260264827024 $yjjI$, $deoC$ ST4-7448417774842074	SL1344_2695, SL1344_2696, SL1344_2697, SL1344_2698	ST4-74	2877180	2880718
STM3216ST4-7434028873403314aerST4-7434049043405320yhbT, yhbUST4-7434606723461019nirBST4-7436446863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	cIIc, apl, cI	ST4-74	2886539	2887382
aerST4-7434049043405320yhbT, yhbUST4-7434606723461019nirBST4-7436446863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	STM3216	ST4-74	3402887	3403314
yhbT, yhbUST4-7434606723461019nirBST4-7436446863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	aer	ST4-74	3404904	3405320
nirBST4-7436446863645129yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	yhbT, yhbU	ST4-74	3460672	3461019
yhjAST4-7440410924041771STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_4439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	nirB	ST4-74	3644686	3645129
STnc400, STM3845, STM3846ST4-7440722674074711nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_4439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	yhjA	ST4-74	4041092	4041771
nrdD, SL1344_4383ST4-7447152064715714IsrQ, SL1344_4439, STM4509ST4-7447835864784317yjjP, yjjQST4-7448260264827024yjjI, deoCST4-7448417774842074	STnc400, STM3845, STM3846	ST4-74	4072267	4074711
IsrQ, SL1344_4439, STM4509 ST4-74 4783586 4784317 yjjP, yjjQ ST4-74 4826026 4827024 yjjI, deoC ST4-74 4841777 4842074	nrdD, SL1344 4383	ST4-74	4715206	4715714
yjjP, yjjQ ST4-74 4826026 4827024 yjjI, deoC ST4-74 4841777 4842074	IsrQ, SL1344 4439, STM4509	ST4-74	4783586	4784317
<i>yjjI, deoC</i> ST4-74 4841777 4842074	$y_{jj}\overline{P}, y_{jj}Q$	ST4-74	4826026	4827024
	yjjI, deoC	ST4-74	4841777	4842074

^aWhen multiple genes are listed a peak was present across the promoter region or TSS of all listed genes ^bChromosome or plasmid

Position	A	Č	G	Т
1	0.000000	0.000000	0.250000	0.750000
2	0.000000	0.041667	0.000000	0.958333
3	0.125000	0.000000	0.875000	0.000000
4	1.000000	0.000000	0.000000	0.000000
5	0.000000	0.041667	0.041667	0.916666
6	0.208333	0.250000	0.125000	0.416667
7	0.041667	0.041667	0.083333	0.833333
8	0.333333	0.000000	0.666667	0.000000
9	0.041667	0.458333	0.375000	0.125000
10	0.791666	0.041667	0.125000	0.041667
11	0.000000	0.000000	0.000000	1.000000
12	0.083333	0.916667	0.000000	0.000000
13	1.000000	0.000000	0.000000	0.000000
14	0.750000	0.208333	0.000000	0.041667

Table S7. Letter-probability matrix of FNR binding motif (TTGATNTRSATCAA)						(۱
	Position	A	С	G	T	

Table S8. Top 100 FNR Motif Hits.

Table S8. Top 1	l00 FNR Motif	Hits.			
Start	Stop	Strand	Score	p-value	Matched Sequence
1430596	1430609	+	22.2036	2.83E-09	TTGATTTGCATCAA
3312562	3312575	+	21.3772	1.13E-08	TTGATTTACATCAA
3644926	3644939	+	21.3772	1.13E-08	TTGATTTACATCAA
2536558	2536571	+	20.5928	2.84E-08	GTGATTTGCATCAA
4715480	4715493	+	20.5928	2.84E-08	GTGATTTGCATCAA
1250446	1250459	-	20.5329	3.43E-08	TTGATGTGCATCAA
2320090	2320103	+	20 4551	3 69E-08	TTGATATACATCAA
1820854	1820867	-	19 8024	5.98E-08	ΤΤGΑΤΤΤΑΤΑΤCΑΑ
1560987	1561000	+	19 2874	1 13E-07	TTGATCTGGATCAC
1799743	1799756	+	19 2575	1.15E-07	TTGATTTAGATCAC
2437400	2437413	+	18 9042	1.10E 07 1.47E-07	ΤΤΑΑΤΤΤΑCΑΤCΑΑ
3122008	3122021	-	18 8144	1.47E 07 $1.62E_07$	TTGATTTACGTCAA
2478446	2478450	-	18 6826	1.02E-07	TTGATGTGCATCAC
24/0440	1785501	Т	10.0020	1.65E-07	
1/03400	1785501	-	10.004/	1.80E-07	
2/86813	2786826	+	18.6168	2.00E-07	
2/86813	2786826	-	18.6168	2.00E-07	
1492609	1492622	-	18.5389	2.17E-07	TTAATATGGATCAA
2320090	2320103	-	18.1317	2.96E-07	TIGATGIATATCAA
2632223	2632236	+	18.0958	3.13E-07	TIGATITAGATAAA
914001	914014	+	17.9701	3.49E-07	TTGATGTGCGTCAA
1643343	1643356	-	17.9701	3.49E-07	TTGATGTGCGTCAA
1979902	1979915	-	17.9461	3.58E-07	GTGATCTGCATCAC
1183545	1183558	-	17.9162	3.64E-07	GTGATTTACATCAC
2808003	2808016	+	17.9162	3.64E-07	GTGATTTACATCAC
1820854	1820867	+	17.6946	4.34E-07	TTGATATAAATCAA
3439225	3439238	+	17.6766	4.41E-07	GTGATCTGGATCAC
4794134	4794147	-	17.6647	4.44E-07	TTGATTAACATCAA
3554685	3554698	-	17.6467	4.49E-07	GTGATTTAGATCAC
4041407	4041420	+	17.5329	4.96E-07	TTGATTGGTATCAA
2997911	2997924	-	17.4731	5.27E-07	TTGATTTTCATCAA
1808887	1808900	-	17.4371	5.43E-07	TTGATGGGCATCAA
3685208	3685221	-	17.2934	6.13E-07	TTGATATGGCTCAA
3316630	3316643	-	17.2695	6.19E-07	TTGATCTGTGTCAA
2932463	2932476	_	17 2216	643E-07	TTGATACGGATCAA
2610465	2610478	+	17 2156	6 53E-07	TTGACCTGGATCAA
12010405	12010470	-	17 2036	6.61E-07	GTGATTTACGTCAA
1291100	1291113	_	17 1856	6.79E-07	ATGATTTGCATCAA
4270771	4270784	_	17 1727	6 81E 07	TTGATATAGATAAA
3021722	3021746	-	17 1677	6 00E 07	TTAATTCCCTCAA
JUZI/JJ 1252/04	1252400	-	1/.10//	0.90E-07	GTGATCTACATCAC
1233460	1233499	- -	1/.1198 17 0000	7.07E-07	TTTATTTCCATCAA
1712202	13232		1/.U090 17 0000	/.29E-U/ 7 20E 07	TTATTCCATCAA
1/12203	1/12210	- -	17.0090	/.29E-U/ 2 00E 07	
2013/4	20138/	+	10.9041	0.00E-07	
3/13132	3/13143	-	10.9521	8.00E-07	
3312362	3312373	-	10.9401	8.09E-0/	
3644926	3644939	-	16.9461	8.09E-07	TIGAIGIAAATCAA
2692936	2692949	+	16.8922	8.46E-07	TIGATATACATCAT
4243812	4243825	+	16.8922	8.46E-07	TTGATATACATCAT
3224429	3224442	-	16.8204	8.94E-07	TTGATGAGCATCAA
510687	510700	-	16.7425	9.74E-07	TTGATAAACATCAA
527520	527533	-	16.7246	9.87E-07	GTGATATAGATCAC
1992348	1992361	+	16.7186	9.89E-07	TTAATTTGCATAAA
4189176	4189189	+	16.7006	1.01E-06	GTGATCGGCATCAA
2656423	2656436	-	16.6707	1.04E-06	GTGATTGACATCAA
1518635	1518648	-	16.6587	1.05E-06	GTGATATGCATAAA
1014923	1014936	+	16.6228	1.08E-06	TTGATATAGATCAT
4650494	4650507	-	16.497	1.20E-06	GTAATCTACATCAA

Start	Stop	Strand	Score	p-value	Matched Sequence
4639386	4639399	-	16.4611	1.23E-06	TTGATCGGCATCAC
4822711	4822724	+	16.4611	1.23E-06	TTGATCGGCATCAC
76793	76806	-	16.3892	1.31E-06	GTGATATGGATAAA
4876945	4876958	-	16.3174	1.37E-06	TTGATATATGTCAA
585659	585672	+	16.2934	1.39E-06	TTTATCTGCATCAA
3856862	3856875	+	16.2934	1.39E-06	TTTATCTGCATCAA
1799743	1799756	-	16.2096	1.47E-06	GTGATCTAAATCAA
975730	975743	-	16.1796	1.50E-06	GTGATTTGCGTCAC
3896424	3896437	-	16.1796	1.50E-06	GTGATTTGCGTCAC
495837	495850	+	16.1437	1.54E-06	TTGATGTACATCAT
1136494	1136507	-	16.0838	1.62E-06	TTGATCTGAGTCAA
2156517	2156530	-	16.0838	1.62E-06	GTGATCAGCATCAA
2618644	2618657	+	16.0539	1.65E-06	TTGATTTAAGTCAA
1428394	1428407	+	16.0479	1.66E-06	TGGATCTGCATCAA
2932463	2932476	+	16.0419	1.67E-06	TTGATCCGTATCAA
1253486	1253499	+	15.976	1.78E-06	GTGATGTAGATCAC
3147919	3147932	+	15.976	1.78E-06	GTGATTCACATCAA
2786866	2786879	+	15.9581	1.82E-06	TTGTTTTACATCAA
2891426	2891439	+	15.9581	1.82E-06	TTGATTTACATCGA
288281	288294	+	15.9401	1.83E-06	TTAATGTGGATCAC
3147919	3147932	-	15.9222	1.86E-06	TTGATGTGAATCAC
1250446	1250459	+	15.9162	1.87E-06	TTGATGCACATCAA
2165224	2165237	-	15.8683	1.94E-06	TTGATATATATAAA
780800	780813	+	15.8084	2.07E-06	TTGATTTACCTCAC
4241561	4241574	-	15.7186	2.23E-06	GTAATTTATATCAA
1428165	1428178	-	15.6886	2.28E-06	TTGTTTTAGATCAA
765537	765550	-	15.6467	2.33E-06	TTGATCTGGTTCAC
1316146	1316159	-	15.6048	2.40E-06	TTGATTTAAATAAA
4288995	4289008	-	15.6048	2.40E-06	GTGACCTGGATCAA
1486853	1486866	-	15.5928	2.44E-06	GTGATTTTGATCAA
2672110	2672123	-	15.5629	2.49E-06	GTGATATAGATAAA
527520	527533	+	15.5449	2.52E-06	GTGATCTATATCAC
1977320	1977333	-	15.5449	2.52E-06	GCGATCTGGATCAA
3605056	3605069	-	15.5329	2.55E-06	GTGATGTACGTCAA
4453798	4453811	+	15.521	2.56E-06	TTGATTGAAATCAA
4599472	4599485	+	15.521	2.56E-06	TTGATATGGTTCAC
947547	947560	+	15.515	2.58E-06	TTCATTTGTATCAA
4829078	4829091	-	15.515	2.58E-06	TTGATGTGCATCAG
869629	869642	-	15.3174	2.88E-06	TTGATATATATCAT
4722369	4722382	-	15.2395	3.03E-06	TTGATATATTTCAA
4593105	4593118	+	15.2036	3.12E-06	GTAATCTGGATCAC
2663061	2663074	-	15.1677	3.22E-06	TTGATAAATATCAA
4715511	4715524	-	15.1617	3.25E-06	TTGTTCTACATCAA

Appendix IV

Table S9. Proteomics: Proteins in WT.

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
accA	3.70E-02	3.65E-02
accB	7.81E-02	3.65E-02
accC	1.60E-01	2.22E-01
accD	3.43E-02	3.22E-02
aceA	8.66E-03	1.15E-02
aceE	2.29E-01	6.39E-01
aceF	9.10E-02	1.68E-01
ackA	1.09E-01	1.33E-01
acnA	1.88E-02	5.15E-02
acnB	2.16E-01	5 68E-01
acnP	2.67E-01	6 43E-02
acrA	7.20E-02	8.50E-02
acrB	4.91E-02	1.56E-01
acs	1 96E-02	3 96E-02
adhE	3 13E-01	8 47E-01
adhP	3.09E-02	3 10F-02
adk	1 45E-01	9 55E-02
aefA	4 58E-02	1.62E-01
aon	5 18E-02	6 64E-02
ahnC	1 88F-01	1 10E-01
ahpE	6.64E-02	1.04E-01
alaS	1 33E-01	3 57E-01
aldB	9 25 E-02	1 46E-01
allR	1 75E-02	1.45E-02
anmK	1.752 02	1.432.02
anhC	2 64E-02	2 97E-02
aph 4	2.04102 2.64E-02	$1.94E_{-0.02}$
arg A	6.08E-02	8 42F-02
argR	5.00E 02 5.42E-02	4 09E-02
aroC	2 46E-02	2 48E-02
argD	1 13E-01	1 39E-01
aroG	1 14E-01	1 59E-01
argH	1 19E-01	1 70E-01
arol	5 08E-02	5 25E-02
argS	3 16E-02	5 70E-02
argT	3 55E-02	2 80E-02
arnB	2.82E-02	3 31E-02
arnC	5 17E-02	5 31E-02
aroA	4 54E-02	5.93E-02
aroB	5 37E-02	5.83E-02
aroC	3.48E-02	3.85E-02
aroD	1 38E-02	1.05E-02
aroF	8 14E-02	8 86E-02
aroG	2 10E-02	2 24E-02
artI	8.07E-02	6.11E-02
art.I	6.69E-02	5.00E-02
asd	3.25E-01	3.68E-01
asnB	3.30E-02	5.79E-02
asnS	2.41E-01	3.56E-01
asnA	1.00E-01	1.48E-01
asnC	4.99E-02	6.11E-02
aspC	3.31E-02	6.10E-02
astC	3.88E-02	4.77E-02
atpA	3.93E-01	6.07E-01

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
atnC	1.92E-02	8.06E-03
atpD	5.40E-01	7.59E-01
atpF	4.11E-02	2.00E-02
atpG	7.96E-02	7.04E-02
atpH	9.15E-02	4.99E-02
bamA	8.13E-02	2.03E-01
bamB	8.66E-02	1.01E-01
bcp	1.04E-01	5.18E-02
bepA	1.14E-02	1.70E-02
bfd	4.92E-03	1.05E-03
bfr	7.73E-02	3.96E-02
bioA	2.08E-02	2.77E-02
bioB	5.10E-02	5.59E-02
bioD1	5.65E-02	3.84E-02
btuB	6.99E-03	1.33E-02
btuE	5.69E-02	3.27E-02
cafA	1.66E-02	2.58E-02
carA	1.54E-01	1.81E-01
carB	1.31E-01	4.34E-01
cbiD	2.60E-02	3.00E-02
<i>cbiF</i>	1.64E-01	1.30E-01
CDIG chiU	1.7/E-02 7.06E-02	1.89E-02
CDIH chi I	7.00E-02 2.40E_01	5.15E-02 1.02E-01
CDIJ objV	2.40E-01	1.93E-01
cDiK	2.11E-01 5 50E 02	1.74E-01 4.08E-02
cbiP	2 18E-02	4.08E-02
ccmH	1 23E-02	1.32E-02
cdh	5 70E-02	4 54E-02
celD	3.05E-02	2.82E-02
cheA	4.09E-02	8.38E-02
cheB	1.96E-02	2.06E-02
cheY	1.55E-02	6.10E-03
cheZ	4.17E-02	2.79E-02
citD1	2.08E-02	6.27E-03
citE	3.30E-02	3.04E-02
<i>clpA</i>	2.20E-02	5.15E-02
clpB	1.63E-01	4.34E-01
clpX	3.40E-02	4.45E-02
cmk	2.88E-02	1.99E-02
coaA	1.47E-02	1.48E-02
cobT	4.30E-02	4.43E-02
cpdB	2.04E-02	4.05E-02
cplA	2.38E-02	4.44E-02
cru	1.00E-02 2.60E-02	1.76E-02 1.70E-02
crp	2.09E-02 6.73E_01	1.79E-02 3.43E-01
csn4	2 995-01	6.19E-01
сspЛ	$6.04E_{-}01$	1.25E-01
cspC	4.83E-01	1.23E-01
cspE	2.63E-01	5.47E-02
csn.I	8.90E-02	1.93E-02
cueO	3.41E-02	5.57E-02
cvoA	3.87E-02	3.82E-02
cypD	1.30E-01	2.47E-01
cysA	6.20E-02	7.12E-02
cysE	3.32E-02	2.72E-02
cysH	5.61E-02	4.38E-02
cysI	4.07E-02	7.31E-02

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
cysJ	7.71E-02	1.43E-01
cysK	3.36E-01	3.24E-01
cysM	2.02E-02	1.84E-02
cysN	7.00E-02	1.04E-01
cysP	5.43E-02	5.69E-02
<i>dacA</i>	2.50E-02	3.10E-02
dacC	2.47E-02	3.01E-02
damX	8.83E-02	1.12E-01
<i>dapA</i>	3.52E-02	3.09E-02
dapB	1.14E-01	9.25E-02
dapD	1.14E-01	9.57E-02
dcp	1.95E-02	4.23E-02
degP	1.14E-01	1.57E-01
degQ	1.19E-02	1.57E-02
deoA	2.37E-02	3.12E-02
deoB	5.20E-02	6.45E-02
deoC	1.94E-02	1.50E-02
deoD	9.74E-02	7.13E-02
agoD	2.26E-02	2.68E-02
akgA dhaP	5.44E-02 1.04E-02	3.00E-02
dkgD	1.94E-02 0.24E-02	1.59E-02 4.62E-02
dlaD	9.54E-02 2.04E-02	4.03E-02 2 12E-02
dıgD dıns 4	3.64E-02	9.25E-02
dna I	3.68E-02	4 29E-02
dnaK	4 83F-01	9.35E-01
dnnA	1.06E-01	1 78E-01
dnnD	3.37E-02	3.38E-02
dnnF	2.02E-02	2.15E-02
dps	1.79E-01	9.38E-02
dsbA	4.84E-02	3.11E-02
dsbC	6.97E-02	5.11E-02
dut	8.88E-02	3.98E-02
ecnB	3.31E-01	4.49E-02
eda	1.58E-02	9.86E-03
elaA	4.49E-03	2.20E-03
elaB	9.08E-03	2.94E-03
emrR	2.51E-02	1.46E-02
engB	1.29E-02	8.46E-03
eno	1.38E+00	1.77E+00
entB	3.70E-02	3.35E-02
envF	1.91E-02	1.59E-02
erjK	2.78E-02	2.66E-02
erpA archP	3.20E-02 2.21E-02	1.60E-02 1.62E-02
exDD fab 4	2.21E-02 6.37E-02	1.03E-02
JUDA fabB	0.5/E-02 1.58E.01	5.41E-02 1 80E 01
Jubb fabD	5.58E-01	5.00E.02
fabE	4 76E-02	5.09E-02
fahG	9.48F-02	6 78F-02
fahH	2.13E-02	2.01E-02
fahl	1.27E-01	9.91E-02
fadL	7.27E-02	9.63E-02
fha	7.13E-02	7.83E-02
fbaB	5.85E-01	6.27E-01
fbp	7.30E-02	7.56E-02
fdx	5.76E-02	2.06E-02
, feoA	4.52E-03	1.05E-03
, fepA	1.41E-02	3.25E-02

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
ffh	3.74E-02	5.21E-02
fhuA	7.49E-02	1.69E-01
fimZ	8.31E-03	5.44E-03
fklB	8.33E-02	5.52E-02
fkpA	6.23E-02	5.04E-02
fldA	4.52E-02	2.50E-02
flgC	8.31E-03	3.25E-03
flgJ	1.22E-02	1.17E-02
flgK	3.74E-02	6.22E-02
fliB	1.82E-02	2.33E-02
fliC	5.88E-01	8.49E-01
fliD	2.88E-02	4.00E-02
fliY	3.80E-02	3.05E-02
fljB	9.04E-02	1.32E-01
folE	2.75E-02	1.90E-02
frdA	1.79E-01	3.31E-01
frdB	2.58E-01	2.01E-01
frr	9.02E-02	5.19E-02
fsa	1.84E-02	1.21E-02
ftn	5.23E-02	2.83E-02
ftsA	4.59E-02	5.85E-02
ftsH	5.29E-02	1.05E-01
ftsI	9.36E-03	1.68E-02
ftsN	1.31E-01	1.34E-01
ftsZ	1.49E-01	1.68E-01
fumA	3.11E-02	5.59E-02
fumB	1.20E-01	2.03E-01
fumC	5.35E-02	7.54E-02
fur	6.53E-02	3.13E-02
fusA	7.85E-01	1.70E+00
gabD	9.11E-03	1.32E-02
galF	3.30E-02	3.05E-02
galK	2.16E-02	2.51E-02
galM	2.55E-02	2.76E-02
galU	1.28E-01	1.19E-01
gapA	2.01E+00	2.01E+00
garR	4.35E-02	3.73E-02
gcvH	3.36E-02	1.30E-02
gcvP	2.89E-02	8.48E-02
gdhA	1.70E-01	2.33E-01
ggt	2.08E-02	3.61E-02
glgA	3.0/E-02	4.55E-02
glgP	3.64E-02	9.54E-02
gik ~lM	4.97E-02	4.87E-02
gimM złuce	2.14E-02	2.80E-02
gims	3.98E-02 2.21E-02	7.48E-02 2.07E-02
gim0 alm4	2.21E-02 1.01E-01	3.07E-02 2.79E-01
ginA	1.91E-01 6.05E.02	2.78E-01 5.28E-02
ginn almO	0.93E-02 2.65E 02	3.28E-02 2.72E-02
ginQ	3.05E-02 3.14E_02	2.72E-02 5.62E_02
gins aln 1	1 57E 01	2.02E-02
gipA alpP	1.52E-01 2 02E 02	2.34E-01 3.78E 02
gipb alnC	2.92E-02 5 Q/F_02	5.70E-02 7.48E-02
$g_{ip} C$	3.94E-02 8.45E-02	1.35E-02
ςιμD σlnK	4 29F-01	6 74F-01
sipn $\sigma ln O$	2 27F_01	2 56F-01
542 olnR	5.92E-02	4.61E-02
gltA	9.02E-02	1.22E-01

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
gltB	1.13E-01	5.20E-01
gltD	2.71E-02	4.02E-02
gltI	7.20E-02	6.72E-02
gltX	3.04E-02	4.59E-02
glyA	2.03E-01	2.59E-01
glyQ	7.27E-02	7.11E-02
glyS	3.84E-02	8.23E-02
gmhA	4.81E-02	2.82E-02
gnd	1.17E-01	1.68E-01
gns	8.42E-02	1.52E-02
gor	2.36E-02	3.26E-02
gpmA	4.40E-02	3.49E-02
gpmI	1.54E-01	2.42E-01
gppA	5.41E-03	8.41E-03
gpsA	2.25E-02	2.29E-02
grcA	1.55E-01	6.25E-02
greA	6.10E-02	3.01E-02
groL	1.90E+00	3.05E+00
groS	1.32E+00	3.82E-01
grpE	3.97E-02	2.42E-02
grxA	8.05E-02	2.27E-02
grxB	2.29E-01 5.77E-02	1.5/E-01 2.64E-02
gsi	5.77E-02 7.22E-02	3.04E-02
guaA awaP	7.22E-02 0.42E-02	1.19E-01 1.27E-01
guab mm 4	9.42E-02 2.24E 02	1.3/E-01
gyrA gyrB	3.54E-02 3.56E 02	9.09E-02 8.03E-02
gyr D hom F	6.83E.03	7.48E 02
homI	7.06E_02	$9.04E_{-02}$
hem Y	3 10E-02	3.66E-02
hemY	6 36 - 02	8.08E-02
hflC	9.23E-02	9.68E-02
hflK	1 40E-01	1 78E-01
hisA	2.00E-02	1.46E-02
hisB	6.11E-02	6.92E-02
hisC	3.80E-02	4.26E-02
hisD	4.76E-02	6.15E-02
hisF	2.82E-02	2.25E-02
hisG	4.61E-02	4.31E-02
hisH	1.78E-02	1.09E-02
hisJ	1.64E-01	1.30E-01
hldD	2.59E-02	2.52E-02
hldE	5.17E-02	7.43E-02
hns	8.54E-01	3.72E-01
holD	4.69E-03	2.14E-03
holE	0.00E+00	0.00E+00
hsdM	2.47E-02	4.10E-02
hslU	8.20E-02	1.14E-01
htpG	3.64E-01	7.26E-01
hupA	2.07E+00	5.52E-01
hupB	1.27E-01	3.27E-02
hybC	2.67E-02	4.68E-02
hypB	2.59E-02	2.32E-02
<i>iadA</i>	2.58E-02	2.94E-02
icdA	1.06E-01	1.36E-01
ihfA	2.69E-01	8.54E-02
ihfB	2.25E-02	6.65E-03
ileS	3.84E-02	1.14E-01
ilvA	5.57E-02	8.82E-02

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
ilvC	2.06E-01	3.12E-01
ilvD	1.10E-01	2.04E-01
ilvE	1.06E-01	1.01E-01
ilvH	2.49E-02	1.25E-02
infA	5.27E-02	1.21E-02
infB	9.92E-02	2.71E-01
infC	5.05E-02	2.90E-02
iraP	1.00E-01	2.76E-02
iscR	6.38E-02	3.13E-02
iscS	5.32E-02	6.72E-02
ispG	6.43E-02	7.34E-02
katE	6.90E-02	1.62E-01
katG	2.73E-02	6.09E-02
kbl	2.91E-02	3.51E-02
kdgR	2.96E-02	2.47E-02
kdsA	4.93E-02	4.27E-02
ldhA	7.08E-02	7.28E-02
<i>lepA</i>	2.76E-02	5.15E-02
leuB	8.61E-02	9.56E-02
leuC1	9.06E-02	1.27E-01
leuD1	1.45E-01	9.15E-02
leuS	1.02E-01	2.77E-01
ligA	3.62E-02	7.44E-02
livG	2.22E-02	1.78E-02
livJ	2.31E-01	2.51E-01
livK	2.72E-02	3.01E-02
lolA	2.03E-02	1.27E-02
lolB	3.64E-02	2.41E-02
lolD	6.45E-03	4.64E-03
lon	6.33E-02	1.55E-01
lpdA	8.57E-02	1.22E-01
lpfB	2.57E-02	1.84E-02
lpp l	3.23E-01	7.60E-02
lptD	4.52E-02	1.14E-01
lptE	6.22E-02	3.73E-02
lrp	6.72E-02	3.55E-02
lsrB	4.32E-02	4.45E-02
lsrF	4.49E-02	4.02E-02
ltaA	1.05E-02	1.07E-02
lysC	3.12E-02	4.27E-02
lysS	5.51E-02	8.89E-02
maeA	2.79E-02	4.92E-02
maeB malD	7.02E-02 2.07E_02	1.70E-01 7.49E-02
mair man 1	2.9/E-02 4.42E-02	7.40E-02 5.27E 02
manA manV	4.42E-02	3.27E-02
manN	2.94E-01 1 00F-01	2.87E-01 7.76E-02
mdh	6.80E-01	6.20E-01
man mdoD	$2.41E_{-0.02}$	4 21E-02
mdoG	3 31E-02	5 35E-02
met A	3.02E-02	3.01E-02
metE	2.89E-01	6.86E-01
metF	2.90E-02	2.70E-02
metG	7.43E-02	1.59E-01
metH	2.77E-02	1.06E-01
metJ	1.60E-02	5.43E-03
metK	5.16E-02	6.08E-02
metL	3.51E-02	8.79E-02
metN1	4.58E-02	4.84E-02

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
metQ	6.21E-01	5.11E-01
mglB	7.77E-02	7.75E-02
mgsA	4.51E-02	2.14E-02
miaB	6.90E-02	1.04E-01
mig-3	1.47E-02	1.30E-02
minC	4.38E-02	3.10E-02
minD	1.80E-01	1.48E-01
mipA	2.55E-01	1.99E-01
modB	1.01E-01	5.25E-02
modA modE	2.19E-01 1.01E-02	1.09E-01 1.55E.02
moal	6.48E.02	8.07E 02
mbeA mpp4	1.06E-02	$1.77E_{-02}$
mppA mrcA	1.00E-02	$3.77E_{-02}$
mrcR	1.04E-02	2 71E-02
mreB	3.97E-02	4 10E-02
mshA	2.95E-02	5.30E-02
msrA	4.18E-02	2.75E-02
mtlA	4.94E-02	9.43E-02
mtnN	2.77E-02	1.91E-02
mukB	2.60E-02	1.23E-01
murA	4.94E-02	6.23E-02
<i>mutM</i>	8.54E-03	7.34E-03
nadE	3.09E-02	2.63E-02
nagB	1.03E-01	8.54E-02
nanE2	1.86E-02	1.26E-02
ndh	3.03E-02	4.04E-02
ndk	5.99E-02	2.61E-02
nemA	4.74E-02	5.22E-02
nfuA	5.40E-02	3.18E-02
nlpB	9.51E-02	9.83E-02
nlpD	5.66E-02	6.28E-02
nrdA	6.38E-02	1.54E-01
nrjC	1.10E-02 2.62E-02	/.92E-03
nuoC	7.02E-02	0.90E-02 0.70E-02
nuor nus A	8.67E_02	9.79E-02 1 $34E-01$
nusA nusG	4 36E-02	2.50E-02
omnA	6 47E+00	6.80E+00
ompC	8.01E-01	9 22E-01
ompC	1.60E+00	1.77E+00
ompF	8.36E-01	9.35E-01
ompN	1.27E-02	1.47E-02
ompR	8.69E-02	6.65E-02
ompS	8.98E-02	1.09E-01
ompW	6.61E-02	4.22E-02
ompX	2.90E-01	1.50E-01
oppA	1.04E-01	1.78E-01
oppD	2.09E-02	2.17E-02
oppF	4.35E-02	4.56E-02
osmC	1.08E-01	4.60E-02
osmE	8.32E-02	2.86E-02
osmX	1.05E-02	9.87E-03
osmY	7.82E-01	4.68E-01
oxyR	3.54E-02	3.39E-02
pagC	1.99E-01	1.12E-01
pagN	8.37E-02	6.02E-02
pal	2.51E-01	1.33E-01
parB	2.63E-02	2.71E-02

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
phpG	4.41E-02	4.23E-02
nckA	1.07E-01	1 78E-01
ndoL	4 49E-02	3 67E-02
ndu A	5.05E-01	1 35E-01
nduR	1.49E+00	1.00E+00
puud puud	1.492+00	2.05E+00
paue nduD	$9.91E_{-0.01}$	6.71E_01
puuD nduE	9.912-01	$1.02E\pm00$
puuL nduC	1.30E+00	2 10E 01
pauo ndu I	7.02E.01	2.19E-01
paus ndul	1.05E.01	6 71E 02
puuL nduN	5.51E.02	1.41E.02
paul nduO	$2.54E_{-0.1}$	2.61E.01
pau0 nduP	5 20E 01	7.21E.01
puur nduO	7.27E 02	2.02E-01
puuQ nduS	1.03E.01	1 40E 01
paus nduT	2.61E.02	1.402-01
pau I ndu II	5.01E-02 4.75E_02	1.95E-02
pau0 nduW	4.73E-02 6.72E-02	1.00E-02 8.22E.02
pauw nduH	0.72E-02	6.55E-02 6.62E-02
рахп	9.55E-05 2.85E-02	0.03E-03 2 71E 02
рерБ	2.03E-02 1.20E_01	5./1E-02 1.00E_01
pepD pepD	1.29E-01	2 22 E 02
pepr	1.70E-02 2.07E_02	2.33E-02 5 50E 02
pepQ	0.26E.02	0.12E.02
pjkA nfkP	9.20E-02 6.41E-02	9.12E-02 5.87E-02
pjkD pfB	0.41E-02 2.28E 01	5.0/E-02 5.43E-01
pjiD nflC	3.42E-01	$3.18E_{-02}$
ngi	8 28 - 02	1.42F-01
psi ngk	6.09E-01	7.03E-01
pgn ngm	9.45E-02	1.54E-01
pheS	2.56E-02	2.65E-02
pheT	6.19E-02	1.51E-01
phnO	2.41E-02	1.22E-02
phoL	1.76E-02	2.02E-02
phoN	1.75E-01	1.39E-01
phoP	3.86E-01	2.76E-01
phsB	1.23E-02	7.66E-03
pmbA	2.99E-02	4.07E-02
pncB	2.75E-02	3.55E-02
pnp	1.18E-01	2.55E-01
pntA	3.79E-02	5.74E-02
pntB	4.18E-02	5.69E-02
polA	2.13E-02	6.12E-02
potD	4.37E-02	4.77E-02
potF	7.07E-02	8.10E-02
ppa	6.67E-02	3.68E-02
ppc	5.10E-02	1.41E-01
ppiB	2.81E-02	1.43E-02
pps	1.29E-01	3.15E-01
pqiB	2.56E-02	4.36E-02
prc	1.39E-02	5.01E-02
<i>prfA</i>	4.02E-02	4.54E-02
prfB	1.65E-02	1.89E-02
ргкв mrlC	3.83E-02 7.80E 02	3.43E-02 1.60E-01
pric	1.00E-02	1.07E-01 5.72E 02
proA proP	4.10E-02 2 12E 02	5.25E-02 2.32E-02
prob proC	2.12E-02 3.83E-02	2.52E-02 3.02E-02
pioc	J.0JL 04	J.04L 04

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
proQ	2.53E-02	1.80E-02
proS	3.93E-02	6.96E-02
proX	9.88E-02	1.01E-01
prr	2.03E-02	2.95E-02
prs	9.17E-02	8.81E-02
psd	8.08E-02	8.10E-02
PSLT034	3.92E-02	2.28E-02
PSLT046	2.46E-02	1.84E-02
pssA	3.52E-02	5.21E-02
pstS	7.24E-02	7.45E-02
pta	2.29E-01	4.97E-01
ptsG	6.04E-02	8.56E-02
ptsH	8.33E-01	2.12E-01
ptsI	3.33E-01	5.91E-01
ptsN	8.29E-02	4.19E-02
purA	4.23E-02	5.61E-02
purB	5.64E-02	8.13E-02
purC	1.13E-01	8.48E-02
purD	2.87E-02	3.67E-02
purE	6.41E-03	3.17E-03
purF	6.19E-02	9.81E-02
purH	8.53E-02	1.38E-01
purL	4.75E-02	1.88E-01
purN	6.50E-02	4.26E-02
purT	3.61E-02	4.28E-02
purU	3.90E-03	3.47E-03
putA	5.37E-02	2.18E-01
pvgM	1.01E-01	2.56E-01
pvkA	1.67E-01	2.41E-01
pvkF	1.90E-01	2.71E-01
pvrB	1.52E-02	1.48E-02
pvrC	2.31E-02	2.51E-02
pvrD	2.46E-02	2.53E-02
qor	7.76E-02	7.66E-02
rbfA	6.98E-02	2.95E-02
rbsB	8.67E-02	7.50E-02
rdgB	2.42E-02	1.42E-02
recA	6.85E-02	7.29E-02
recD	1.40E-02	2.61E-02
recG	1.59E-02	3.42E-02
res	1.46E-02	4.61E-02
<i>rfbC</i>	5.18E-02	3.00E-02
řfbН	3.49E-02	4.71E-02
rhlB	3.51E-02	4.62E-02
rho	1.30E-01	1.71E-01
ribB	1.88E-02	1.23E-02
ribD	2.21E-02	2.48E-02
ribE	6.93E-02	4.56E-02
<i>ridA</i>	2.08E-01	7.94E-02
rlmF	8.47E-03	8.24E-03
rlpA	2.96E-02	3.24E-02
rmuC	3.29E-02	5.02E-02
rnh	1.67E-02	3.38E-02
rne	7.05E-02	2.36E-01
rodZ	2.48E-02	2.47E-02
rniA	1.54E-01	9.89E-02
rnlA	1.44E+00	9.95E-01
rnlR	4 38E-01	3 66E-01
rplC	2.23E-01	1.39E-01
p_{i} C	2.2312-01	1.591-01

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
rvlD	4.16E-01	2.56E-01
rplE	6.44E-01	3.66E-01
rplF	6.99E-01	3.69E-01
rplI	8.68E-01	3.83E-01
rplJ	5.10E-01	2.54E-01
rplK	5.64E-01	2.35E-01
rplL	6.57E-01	2.26E-01
rplM	8.23E-02	3.68E-02
rplN	5.20E-01	1.99E-01
rplO	3.48E-01	1.45E-01
rplP	1.06E-01	4.47E-02
rplQ	2.05E-01	8.26E-02
rplR	2.01E-02	7.13E-03
rplS	2.39E-01	8.78E-02
rplT	3.27E-02	1.23E-02
rplU	3.63E-01	1.17E-01
rplV	1.50E-01	5.13E-02
rplW	8.33E-02	2.61E-02
rplX	9.71E-02	3.06E-02
rplY	2.32E-02	6.81E-03
rpmA	1.30E-01	3.33E-02
rpmB	8.40E-02	2.13E-02
rpmC	1.12E-01	2.27E-02
rpmD	5.11E-02	9.27E-03
rpmE2	1.06E-01	2.89E-02
rpmF	8.16E-02	1.46E-02
rpmH	2.82E-02	4.22E-03
rpoA	2.08E-01	2.13E-01
rpoB	2.37E-01	1.00E+00
rpoC	3.93E-01	1.71E+00
rpoE	4.40E-02	2.67E-02
rpoZ	6.42E-02	1.84E-02
rpsA	3.24E-01	5.54E-01
rpsB	6.7/E-01	5.0/E-01
rpsC	6.50E-01	4./IE-01
rpsD	3.10E-01	2.03E-01
rpsE	8.60E-01	4.23E-01
rpsF	1.34E-01 5.87E-02	5.70E-02
rpsG	3.87E-02	2.88E-02
rpsii	2.54E-01	9.20E-02 4.84E-02
rpsi rpsI	6.52E.01	4.04E-02 2.14E-01
rpsJ	$1.43E_{-01}$	2.14E-01 5.58E-02
rpsK	1.55E-01	5.58E-02 6.02E-02
rpsL rnsM	1.46F-01	5.39E-02
rpsin	5.03E-02	1 43E-02
rnsR	5 32E-02	1.15E-02
rnsT	1 74E-01	4 68E-02
rps1 rns1/	1 33E-02	3 17E-03
rraA	2.96E-02	1.45E-02
rseA	2.09E-02	1.41E-02
rsmH	1.07E-02	1.03E-02
rsxG	7.03E-02	4.37E-02
rtcB	1.93E-01	2.43E-01
sbp	1.68E-01	1.72E-01
sdĥA	5.47E-02	9.98E-02
secA	1.35E-01	3.84E-01
secB	3.22E-02	1.57E-02
secD	7.69E-02	1.43E-01

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
seqA	2.86E-02	1.61E-02
serA	8.59E-02	1.06E-01
serB	1.53E-02	1.50E-02
serC	1.24E-01	1.39E-01
serS	6.26E-02	8.53E-02
sfbA	3.17E-02	2.64E-02
sitA	1.44E-02	1.35E-02
skp	7.28E-02	3.63E-02
slt	7.55E-03	1.55E-02
slyA	6.32E-02	2.90E-02
slyB	6.54E-01	2.85E-01
smp	6.24E-02	4.22E-02
sodB	2.67E-01	1.60E-01
sodCl	4.90E-02	2.53E-02
solA	2.48E-02	2.83E-02
spy	3.98E-02	2.02E-02
sra	2.36E-01	3.54E-02
ssb	2.52E-02	1.34E-02
sspA	3.46E-02	2.34E-02
sthB	7.12E-03	1.84E-02
STM0032	9.74E-02	1.76E-01
STM0034	1.08E-02	8.82E-03
STM0080	5.08E-02	1.17E-02
S1M0164	9.50E-03	7.42E-03
STM0276	3.13E-03	1.55E-03
STM0285	3.49E-02	1.41E-01
STM0327	1.25E-02	4.14E-03
STM0303	/.04E-01	/.43E-01
STM0402	1.02E-01	6.38E-02
STM0504	1.08E-02	1.43E-02 0.11E-02
STM0009	2.19E-02	9.11E-03
STM0908	1.54E-02 2.80E_02	0.01E-03 1 24E 01
STM0918	0.03E-02	1.24E-01
STM1078	$2.44E_{-02}$	$1.01E_02$
STM11078	$1.61E_{-01}$	9.40E-02
STM113	2 58E-02	2 93E-02
STM1263	2.582-02	$1.73E_{-01}$
STM1203	4 73E-01	3.96F-03
STM1547	5.15E-03	2.62E-02
STM1558	1 36E-02	2.99E-02
STM1550	1.56E-02	2.55E 02 2.88E-02
STM1500	3 46E-02	2.00E 02 2.37E-02
STM1627	2 10E-02	2.34E-02
STM1633	1 13E-01	9.00E-02
STM1638	2.96E-02	1 30E-02
STM1672	2.63E-02	3.05E-02
STM1676	2.16E-02	1.96E-02
STM1731	9.66E-03	8.59E-03
STM1849	2.56E-02	6.79E-02
STM1857	1.48E-02	6.57E-03
STM1940	1.17E-02	1.78E-02
STM2008	1.22E-02	2.26E-02
STM2243	6.49E-02	5.12E-02
STM2341	1.95E-02	1.67E-02
STM2447	3.20E-02	1.85E-02
STM2475	3.57E-02	8.57E-03
STM2506	1.22E-02	2.54E-03

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
STM2605	9 36F-03	1 36F-02
STM2722	3 40 - 02	6 45 - 02
STM2740	5.40E 02 5.63E-03	6 58 - 03
STM2744	6 10 - 03	1 42 - 03
STM2744	8 20F-03	3.05E-03
STM2707	3.20E-03	1.00E.02
STM2/9/	7.03E_03	1.09E-02
STM2128	7.03E-03 2.76E_02	4.50E-05 2.09E-02
STM2150	2.70E-02 1.80E-02	2.06E-02
STM3132 STM2154	1.60E-02 2.62E_02	2.90E-02
STM2155	5.05E-02 5.79E-02	2.03E-02
STM2522	J.76E-02	2.49E-02
STM2590	1.20E-02	9.55E-05 5.66E-02
STM2766	1.02E-01	5.00E-02 4.60E-02
STM2200	4.50E-02 2.56E-02	4.00E-02 5.19E-02
STM3020	5.50E-02	J.16E-02
STM4208	1.83E-02	1.93E-02
STM4211	3.23E-02	7.66E-02
STM4212	3.4/E-02	1.89E-02
STM4255	8.06E-03	9.18E-04
STM4302	1.24E-02	3.61E-03
STM4423	5.25E-03	4.62E-03
STM4489	6.68E-02	2.46E-01
STM4519	3.93E-02	5.52E-02
stpA	1.62E-01	7.02E-02
sucA	3.61E-02	1.06E-01
sucB	7.79E-02	9.54E-02
sucC	7.11E-02	8.2/E-02
sucD	3.05E-02	2.56E-02
sunB	3.01E-02	2.45E-02
surA	8.65E-02	1.14E-01
surE	9.4/E-03	7.15E-03
talA	4.82E-02	4.81E-02
talB	3.75E-01	3.70E-01
tar	9.16E-02	1.53E-01
tatB	2.36E-02	1.29E-02
tbpA	4.94E-02	5.03E-02
tcp	9.32E-02	1.54E-01
tdcE	4.3/E-03	1.05E-02
tesA	1.31E-02	8.52E-03
lgt	1.70E-02	2.03E-02
	5.78E-02	1.15E-01
thiD	4.18E-02	3.36E-02
thiE	2./3E-02	1./5E-02
	1.8/E-02	1.41E-02 2.59E-02
thiM	4.62E-02	3.58E-02
thrA	2.36E-01	5.89E-01
thrC	2.32E-01	3.06E-01
thrs	1.01E-01	2.09E-01
tig	3.30E-01	4.43E-01
IKTA	/.08E-02	1.55E-01
<i>ІКІВ</i>	3.40E-02	0.94E-02
IMK	2.03E-02	1.54E-02
tolB	0.30E-02	8.3/E-U2
tolC	1.U/E-UI 2.52E-01	1.00E-01
tpx	3.33E-UI 2.17E-02	1.80E-01
traiv	5.1/E-02 2.52E-01	J.92E-02
irai tu-4	3.32E-U1 4.24E-02	2.38E-01 7.70E-02
treA	4.54E-02	/./UE-U2
trg	3.85E-02	0.2/E-02

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
trkA	8.08E-02	1.13E-01
trmJ	4.34E-02	3.25E-02
<i>trpA</i>	2.91E-02	2.35E-02
<i>trpB</i>	4.23E-02	5.08E-02
trpC	1.69E-02	2.33E-02
trxA	4.20E-01	1.40E-01
<i>trxB</i>	2.47E-01	2.41E-01
tsf	4.47E-01	3.80E-01
tsr	4.54E-02	7.63E-02
tufA	5.82E+00	7.07E+00
typA	7.68E-02	1.45E-01
tyrS	3.20E-02	4.26E-02
ubiE	2.57E-02	2.02E-02
ubiG	6.91E-02	5.22E-02
ucpA	3.74E-02	2.93E-02
udp	3.10E-02	2.36E-02
ugpB	3.11E-02	4.21E-02
ung	1.49E-02	1.06E-02
upp	6.60E-02	4.16E-02
uspA	5.76E-02	2.59E-02
uspE	2.17E-02	2.15E-02
uspF	3.25E-01	1.43E-01
uspG	6.03E-02	2.68E-02
uxaC	1.16E-02	1.75E-02
vacB	4.31E-02	1.12E-01
vacJ	2.18E-02	1.73E-02
valS	1.22E-02	3.72E-02
wzzB	3.29E-02	3.33E-02
WZZE	4.11E-02	4.53E-02
xseB	6.51E-02	1.63E-02
yaaA dE	2.68E-02	2.23E-02
yaaF	0.98E-02	4.80E-02 4.26E-02
yaen	$2.41E_{01}$	4.50E-02
yanO vaiG	2.41E-01 2.62E-02	0.08E-02 1.67E-02
yuj0 vai0	5.02E-02	2.69E-02
yu g Q y b a B	5.20E-02	1.75E-02
ybuD ybaY	1.52E-02	8.27E-02
ybd1 vbdH	2.84F-02	3.15E-02
vheL	1.96E-02	1.02E-02
vhal	6 77E-02	5 12E-02
ybg.I	3 31E-02	2.24E-02
ybg0 vbhB	4.54E-02	2.16E-02
vbhC	1.65E-02	2.11E-02
vbiS	1.27E-01	1.19E-01
vbiT	2.28E-02	3.82E-02
vbiP	8.78E-02	4.67E-02
vbjY	8.35E-03	9.58E-03
vcbL	4.25E-02	2.87E-02
, yceB	3.30E-02	1.92E-02
ycfF	6.89E-02	2.56E-02
ycgQ	3.25E-02	3.05E-02
ychF	6.19E-02	6.92E-02
yciE	4.06E-02	2.15E-02
yciF	4.60E-02	2.41E-02
yciK	6.16E-02	4.84E-02
ydbH	7.08E-03	1.93E-02
ydeI	1.95E-02	7.79E-03
ydfG	1.53E-01	1.16E-01

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
vdfZ	1.48E-02	3.03E-03
vdøA	6 25E-02	9 48E-02
vdøH	1 15E-01	1 10E-01
vdaH	3.95E-02	5 65E-02
vdal	1.89E-01	4 34E-02
yugi vda I	3.14E.02	3 60F 02
yugj vdhD	2.48E 02	0.02E.03
yunD wdh I	2.46E-02	2.48E 02
yan. ndi D	2.70E-02	2.46E-02 1.60E-02
yaiK vdi 4	1.70E-02 7.37E 02	1.00E-02 4 19E 02
yajA vdiN	7.57E-02 2.82E 02	4.16E-02 2.82E 02
yujiv vaaG	2.82E-02	5.05E-02
yeu0 vebC	1.84E 02	1 36E 02
yebC	1.04E-02 1 14E 01	6 80E 02
yecm vedD	1.14E-01 4.31E 02	1.86E.02
yeaD wadE	4.51E-02 8 80E 03	2.14E.02
year	4.25E.02	2.14E-03
yegs web7	4.23E-03 8 12E 02	5.02E-05 7.45E 02
yenZ weiD	0.12E-02 1 28E 02	7.43E-02 8.27E 02
yeir	1.36E-02	0.2/E-03 1 82E 01
yejK wfhU	1.72E-01 5.42E-02	1.02E-01 2.06E_02
yjbU vfaZ	5.42E-02	2.90E-02
yjcZ wfaD	0.90E-02 2.41E-02	2.0/E-02 1.27E_02
yjgD wfaM	5.41E-02 8.50E-02	1.2/E-02 5.26E_02
yjgM 	8.30E-02 8.24E-02	3.20E-02 2.01E-02
<i>yjlA</i>	8.24E-02 1.14E-01	2.91E-02
ygaM waaD	1.14E-01 5.25E 02	3.99E-02 2.72E_02
ygar	5.25E-02 1.05E.01	2.73E-02 9.79E-02
ygu0 vaf7	5 OOE O2	6.76E-02 5.14E-02
ygjZ	2.09E-02	2 20E 02
yggL vaaN	2.9912-02	2.20E-02 1.78E_02
yggN vaaY	2.41E-02 4.25E_02	1.78E-02
yggA vah A	9.68E-02	8 54E-02
vgiC	3.08E-02	3 88E-02
ygi@ vgiM	2.65E-02	1.69E-02
vgiR	3.86E-02	4.03E-02
vhbL	4.50E-02	2.90E-02
vhbN	5.43E-02	3.03E-02
vhbS	6.40E-02	3.31E-02
vhbW	6.71E-03	6.93E-03
vhcB	1.51E-01	6.44E-02
vhdH	3.77E-02	3.67E-02
vhgF	1.46E-02	3.50E-02
vhhA	4.11E-02	1.76E-02
vhiG	2.78E-02	5.81E-02
vhiJ	5.07E-02	7.81E-02
<i>yiaD</i>	1.54E-02	9.71E-03
yiaO	4.73E-03	4.82E-03
vibF	9.34E-02	5.95E-02
yibN	6.04E-02	2.65E-02
yicC	7.09E-02	6.60E-02
yidC	4.15E-02	7.14E-02
yihD	3.38E-02	9.80E-03
yihG	1.02E-02	1.03E-02
yiiG	7.41E-03	8.16E-03
yjeE	3.13E-02	1.48E-02
yjgM	6.29E-03	3.27E-03
yjjK	8.84E-02	1.54E-01
yliJ	1.21E-02	8.02E-03

Gene Name	Average of Norm. (fmol)	Average of Norm. (ng)
ymbA	1.42E-02	8.15E-03
yncB	3.47E-02	3.83E-02
yncE	3.66E-02	3.93E-02
ynhG	1.65E-02	1.66E-02

Table S10. Proteomics: Proteins in ∆fnr. Gene Name Average

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
accA	4.61E-02	4.85E-02
accB	8.77E-02	4.29E-02
accC	1.39E-01	2.04E-01
accD	2.90E-02	2.81E-02
aceE	2.06E-01	6.01E-01
aceF	1.26E-01	2.45E-01
ackA	1.37E-01	1.75E-01
acnA	3.98E-02	1.15E-01
acnB	4.46E-02	1.21E-01
acpP	3.34E-01	8.65E-02
acrA	2.04E-01	2.57E-01
acrB	8.67E-02	2.84E-01
acs	4.97E-02	1.08E-01
adhE	3.16E-01	8.94E-01
adhP	1.03E-01	1.09E-01
adk	9.74E-02	6.62E-02
ahpC	1.20E-01	7.32E-02
ahpF	4.51E-02	7.32E-02
alaS	1.65E-01	4.57E-01
aldB	7.27E-02	1.24E-01
apbC	5.07E-02	5.87E-02
argA	7.80E-02	1.12E-01
argB	7.00E-02	5.47E-02
argD	7.26E-02	9.42E-02
argG	7.42E-02	1.08E-01
argH	1.10E-01	1.62E-01
argI	2.66E-02	2.94E-02
argT	4.05E-02	3.39E-02
arnB	4.15E-02	5.03E-02
arnC	5.42E-02	5.86E-02
aroB	5.40E-02	6.32E-02
aroF	1.96E-02	2.21E-02
artI	5.86E-02	4.65E-02
artJ	2.98E-02	2.31E-02
asd	2.01E-01	2.36E-01
asnS	2.11E-01	3.28E-01
aspA	7.34E-02	1.12E-01
aspC	4.59E-02	5.90E-02
aspS	5.27E-02	1.00E-01
atpA	2.32E-01	3.75E-01
atpD	5.32E-01	7.85E-01
atpF	3.57E-02	1.85E-02
atpG	7.65E-02	6.99E-02
atpH	7.78E-02	4.48E-02
bamA	1.29E-01	3.40E-01
bamB	1.30E-01	1.61E-01
bcfG	3.67E-02	2.90E-02
bcp	2.03E-01	1.06E-01
bfr	1.30E-01	7.01E-02
bioA	3.48E-02	4.82E-02
bioB	4.99E-02	5.66E-02

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
bioD1	2.04E-01	1.47E-01
btuE	5.26E-02	3.16E-02
carA	9.47E-02	1.17E-01
carB	1.18E-01	4.14E-01
chiF	8.71E-02	7.16E-02
chiL	4.57E-02	3.45E-02
cdh	8.69E-02	7.33E-02
clnB	2.15E-01	6.04E-01
clpB clnX	6 65E-02	9 28E-02
coaE	1.31E-02	8.93E-03
conA	2.15E-02	5.49E-02
cra	2.76E-02	3.04E-02
crl	1.05E-02	5.02E-03
crr	9 20 - 01	4 96E-01
csnA	2.77E-01	6.04E-02
cspC	9.22E-01	2.02E-01
cspD	5 11E-02	1 22E-02
cspE	2.62E-01	5 74E-02
csp.I	1.08E-01	2.48E-02
cvnD	1 67E-01	3 35E-01
cvsA	4.34E-02	5.24E-02
cvsE	4.61E-02	4.06E-02
cvsI	3.89E-02	7.35E-02
cvsJ	4.74E-02	9.32E-02
cvsK	2.19E-01	2.21E-01
cvsM	1.17E-02	1.10E-02
cysN	5.84E-02	9.14E-02
cysP	5.24E-02	5.80E-02
dacC	2.75E-02	3.47E-02
damX	1.32E-01	1.77E-01
dapA	5.31E-02	4.85E-02
dapB	9.11E-01	7.90E-01
dapD	1.04E-01	9.16E-02
def	4.39E-02	2.55E-02
degP	1.79E-01	2.62E-01
degQ	8.45E-02	1.19E-01
deoA	3.28E-02	4.54E-02
deoB	3.62E-02	4.65E-02
deoD	6.41E-02	4.90E-02
dkgA	8.34E-02	7.71E-02
dkgB	2.20E-02	1.85E-02
dksA	1.29E-01	6.72E-02
dmsA	3.7/E-02	1.03E-01
anab da a I	4.9/E-02 4.28E-02	7.30E-02
anaj du a V	4.58E-02 6.40E-01	5.29E-02
dnaN	0.40E-01 2.26E.02	1.51E+00 2.06E.02
dnn 1	9.30E-02	1.68E.01
dppA dppD	9.44E-02 1.71E-02	1.00E-01 1.78E-02
dps	2.43 ± 01	1.76E-02 1.34E 01
aps dsh4	5.86E-02	3.94E-01
dshC	2 75F-02	2.07F-02
pcnR	9.84E-01	1 40E-01
eda	3 92E-02	2.62E-02
elaR	8.25E-02	2.86E-02
eno	9.55E-01	1.27E+00
entB	4.86E-02	4.61E-02
erfK	4.19E-02	4.29E-02
erpA	6.11E-02	2.25E-02

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
fabA	6.70E-02	3.76E-02
fabB	3.10E-01	3.93E-01
fabD	1.40E-01	1.32E-01
fabF	8.17E-02	1.05E-01
fabG	1.41E-01	1.04E-01
fabH	3.13E-02	3.11E-02
fabI	8.48E-02	6.92E-02
fadL	8.60E-02	1.18E-01
fba	7.39E-02	8.40E-02
fbaB	1.34E+00	1.52E+00
fbp	5.86E-02	6.38E-02
fdhE	8.16E-02	8.28E-02
fdx	6.93E-02	2.56E-02
ffh	4.81E-02	7.01E-02
fhuA	1.86E-01	4.45E-01
fklB	1.34E-01	9.35E-02
fkpA	6.10E-02	5.19E-02
fldA	5.65E-02	3.35E-02
flgE	1.71E-02	2.16E-02
flgK	7.18E-02	1.23E-01
flgL	5.44E-02	5.56E-02
fliC	8.4/E-02	1.29E-01
fliE	1.35E-02	4.47E-03
fliY	3.55E-02	3.01E-02
JIJB C. 14	3.76E-02	5.91E-02
JrdA 6.1D	6.13E-02 2.56E-02	1.1/E-01 2.85E-02
Jrab	3.36E-02	2.85E-02
Jrr fra	1.51E-01 5.52E-02	9.18E-02 2.08E-02
jin Hall	5.55E-02 0.28E-02	5.06E-02 1.05E-01
JISTI fts7	9.28E-02 1.94E-01	1.95E-01 2.32E-01
JISZ	7 48 5 02	1.00E 01
func fus A	7.482-02	1.09E-01 1.70E+00
gahT	2 59E-02	3 45F-02
galF	7 87E-02	7 53E-02
gall	2.57E-02	3.10E-02
gall	1.25E-01	1.21E-01
ganA	1.36E+00	1.44E+00
gatY	4.91E-02	4.58E-02
gcvH	9.80E-02	4.08E-02
gcvP	5.16E-02	1.60E-01
ggt	2.55E-02	4.54E-02
glgA	4.54E-02	7.09E-02
glk	3.99E-02	4.07E-02
glmM	8.26E-02	1.14E-01
glnA	1.70E-01	2.59E-01
glnH	7.54E-02	6.07E-02
glpA	5.71E-02	9.86E-02
glpD	9.08E-02	1.52E-01
glpK	1.58E-01	2.62E-01
glpQ	1.22E-01	1.47E-01
glpR	6.96E-02	5.62E-02
gltA	6.18E-02	8.78E-02
gltB	7.38E-02	3.50E-01
gltD	4.29E-02	6.79E-02
gltI	7.51E-02	7.54E-02
glyA	2.06E-01	2.77E-01
gly Q	9.50E-02	9.60E-02
glys	2.12E-01	4.8/E-01

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
gnd	1.05E-01	1.59E-01
gpmA	8.47E-02	7.09E-02
gppA	1.23E-01	1.97E-01
greA	8.22E-02	4.36E-02
groL	2.00E+00	3.38E+00
groS	1.77E+00	5.37E-01
grpE	7.57E-02	4.88E-02
grxA	4.20E-02	1.22E-02
grxB	3.00E-01	2.16E-01
grxC	3.20E-02	8.59E-03
gst	3.57E-02	2.36E-02
guaA	8.78E-02	1.53E-01
guaB	1.10E-01	1.69E-01
gyrB	4.06E-02	1.06E-01
hemL	5.83E-02	7.84E-02
hemX	1.07E-01	1.32E-01
hemY	7.41E-02	9.99E-02
hflC	1.22E-01	1.35E-01
hflK	1.73E-01	2.35E-01
hisA	2.86E-02	2.21E-02
hisB	6.82E-02	8.09E-02
hisC hisD	1.18E-01 5.71E-02	1.40E-01 7.82E-02
nisD hisC	3.71E-02 1 22E 01	7.82E-02 1.22E-01
hisH	5.48E.02	1.52E-01 3.47E-02
his I	2.35E-01	1.98E_01
hldD	1 46F-02	1.98E-01 1.48E-02
hldF	5.80E-02	8.75E-02
hns	5.00E 02	2.70E-01
hslU	4 45E-01	6.60E-01
htpG	2.78E-01	5.84E-01
hupA	1.33E+00	3.71E-01
icdA	1.30E-01	1.77E-01
ihfA	2.27E-01	7.54E-02
ileS	4.60E-02	1.41E-01
ilvC	1.55E-01	2.48E-01
ilvD	1.12E-01	2.18E-01
ilvE	1.37E-01	1.39E-01
infB	8.75E-02	2.50E-01
infC	4.98E-02	3.08E-02
iraP	3.61E-02	1.07E-02
iroN	5.06E-02	1.20E-01
iscR	1.24E-01 7.57E-02	6.39E-02
lspG katE	7.57E-02 8.77E-02	9.00E-02 2.12E-01
kai£ kdaP	6.77E-02 4 15E 02	2.12E-01 2.65E 02
kagn kds A	4.13E-02 9.04F-02	5.05E-02 8.30E-02
kdsD (vrbH)	2 30E-02	0.59E-02 2 35E-02
ldhA	5 42F-02	5.76E-02
leuR	4 80E-02	5.65E-02
leuC1	8.10E-02	1.20E-01
leuD1	1.07E-01	7.07E-02
leuS	6.02E-02	1.74E-01
livJ	2.38E-01	2.72E-01
lolB	3.41E-02	2.34E-02
lolD	6.02E-03	4.45E-03
lon	7.64E-02	1.97E-01
lpdA	8.13E-02	1.22E-01
lpfB	4.61E-02	3.52E-02

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
lpp1	8.13E-01	2.03E-01
lpp2	3.15E-03	8.07E-04
lptD	7.24E-02	1.92E-01
<i>lptE</i>	4.08E-02	2.53E-02
lsrB	4.26E-02	4.66E-02
lsrF	3.28E-02	3.03E-02
luxS	9.49E-02	5.54E-02
lysS	8.52E-02	1.44E-01
maeB	7.94E-02	1.90E-01
manA	3.16E-02	3.96E-02
manX	1.60E-01	1.65E-01
manY	2.96E-01	2.41E-01
mdh	6.23E-01	5.99E-01
mdoG	3.80E-02	6.35E-02
<i>metA</i>	4.42E-02	4.61E-02
metE	2.33E-01	5.86E-01
metG	1.02E-01	2.30E-01
metH	2.61E-02	1.03E-01
metK	3.85E-02	4.77E-02
metL	5.18E-02	1.39E-01
metNl	1.04E-01	1.18E-01
metQ	5.95E-01	5.17E-01
mglB	3.69E-02	3.81E-02
minD	1.91E-01	1.67E-01
mipA	2.62E-01	2.15E-01
mlc	2.36E-02	3.03E-02
тоаВ	4.//E-02	2.57E-02
modA	2.63E-02	2.09E-02
moeA	4.74E-02	6.35E-02
mppA	2.60E-02	4.49E-02
mreb mreb	4.90E-02	5.50E-02
msDA msn A	4.38E-02 7.15E-02	0.52E-02 4.07E-02
msrA matl 4	7.13E-02 5.02E.02	4.97E-02
mukR	3.63E-02	1.01E-01 1.79E-01
mur A	8.02E-02	1.75E-01 1.08E-01
murG	1.02E-02	1.002-01 1 12F-02
mutT	1.02E-02 1.03E-02	4.67E-02
nanE?	2 62E-02	1.84E-02
ndk	1.01E-01	4 64E-02
nfu A	5 30E-02	3 24E-02
nifU	1.98E-01	8.30E-02
nlpB	1.66E-01	1.81E-01
nlpD	1.00E-01	1.18E-01
nrdA	2.86E-02	7.14E-02
nrdB	2.99E-02	3.79E-02
nrdI	1.90E-02	8.77E-03
nusA	7.28E-02	1.18E-01
nusG	4.95E-02	3.05E-02
ompA	1.15E+01	1.27E+01
ompC	7.89E-01	9.61E-01
ompD	4.85E-01	5.65E-01
ompF	5.59E-01	6.55E-01
ompR	7.44E-02	5.89E-02
ompX	7.53E-01	4.11E-01
oppA	7.32E-02	1.32E-01
oppF	2.07E-02	2.25E-02
osmC	2.19E-01	9.72E-02
osmE	2.37E-01	8.71E-02

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
osmY	1.34E+00	8.45E-01
pagC	6.15E-01	3.67E-01
pagN	1.54E-01	1.16E-01
pal	3.70E-01	2.06E-01
parB	2.74E-02	2.97E-02
pckA	1.56E-01	2.76E-01
pdgL	8.70E-02	7.50E-02
pduA	2.02E-01	5.63E-02
pduB	4.05E-01	2.87E-01
pduC	2.88E-01	5.13E-01
pduD	2.99E-01	2.13E-01
pduE	3.55E-01	1.99E-01
pduJ	4.78E-01	1.28E-01
pduL	8.78E-02	5.88E-02
pduO	6.67E-02	7.38E-02
pduP	1.29E-01	1.87E-01
pduQ	3.16E-02	3.64E-02
pduS	2.60E-02	3.73E-02
pepA	3.30E-02	5.47E-02
pepD	7.78E-02	1.22E-01
pepQ	5.64E-02	8.50E-02
pfkA	1.67E-01	1.70E-01
pfkB	8.23E-02	7.94E-02
pflB	1.01E-01	2.54E-01
pgi	1.49E-02	2.74E-02
pgk	9.39E-01	1.14E+00
pgl	6.25E-02	6.85E-02
pgm	7.51E-02	1.28E-01
phoN	2.84E-01	2.39E-01
phoP	4.21E-01	3.19E-01
pnp	1.23E-01	2.80E-01
potD	6.69E-02	7.62E-02
potF	9.13E-02	1.10E-01
ppc	3.19E-02	9.15E-02
ррив	1.03E-01	7.78E-02 2.86E-01
pps	1.11E-01 2.51E-02	2.80E-01
prc wrfD	2.31E-02 2.91E-02	5.5/E-02 4.60E-02
prjb pra I	5.01E-02 4.49E-02	4.00E-02 1.47E-02
prg5 priB	7.03E.02	2.45E.02
prib prlC	8 30F-02	2.45E-02
pric prod	4.51E-02	6.08E-02
proA proC	3 54F-02	3.00E-02
proc	5.54E 02 5.51E-02	4 07E-02
prog	4 21E-02	7.86E-02
prog	4 82E-02	5.23E-02
nrr	4.23E-02	6.30E-02
prs	1.59E-01	1.62E-01
nsnA	3.20E-02	2.44E-02
psp11 pssA	3.80E-02	5.81E-02
pstS	1.40E-01	1.54E-01
pta	7.46E-02	1.67E-01
ptsG	6.63E-02	9.69E-02
ptsH	5.59E-01	1.50E-01
ptsI	2.16E-01	4.02E-01
ptsN	1.10E-01	5.90E-02
purA	5.70E-02	7.83E-02
purB	7.49E-02	1.12E-01
purE	2.42E-02	1.29E-02

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
purH	5.93E-02	9.90E-02
purT	4.90E-02	6.23E-02
purU	4.70E-02	4.50E-02
PYGM	1.91E-01	5.11E-01
pykA	1.21E-01	1.84E-01
pvkF	2.85E-01	4.26E-01
pyrC	7.04E-02	8.21E-02
pyrF	5.76E-03	4.57E-03
pyrI	3.67E-02	1.91E-02
qor	1.41E-01	1.45E-01
rbsB	5.16E-02	4.66E-02
rcsB	5.79E-02	4.11E-02
recA	1.17E-01	1.33E-01
rfaQ	2.40E-02	2.70E-02
rfbB	1.66E-02	2.03E-02
<i>rfbC</i>	4.46E-02	2.70E-02
rhaM	1.94E-02	7.18E-03
rho	1.53E-01	2.11E-01
ribE	1.09E-01	7.55E-02
ribH	5.11E-02	2.43E-02
ridA	1.31E-01	5.22E-02
rlmN (yfgB)	3.09E-02	3.92E-02
rne	5.41E-02	1.87E-01
rodZ	4.78E-02	5.04E-02
rof	1.41E-01	4.14E-02
rpiA	1.41E-01	9.49E-02
rplA	1.60E+00	1.1/E+00
rplB	5.08E-01	4.50E-01
rplC	3.46E-01	2.2/E-01
rplD	4.28E-01	2.77E-01
rpiE	7.2/E-01 7.70E_01	4.36E-01
rpir	7.70E-01 8.60E-01	4.29E-01
rpii mil I	3.52E.01	4.03E-01
rpiJ rplK	5.52E-01 4.76E_01	1.85E-01
rpiK	9.12E-01	$3.31E_{-01}$
rpiL rplM	1 15E-01	5.42E-02
rpiNi	3.83E-01	$1.54F_{-01}$
rpliv	4 47E-01	1.94E 01
rnlP	1 37E-01	6.09E-02
rnlO	1.70E-01	7.14E-02
rplg	2.53E-01	9.77E-02
rplU	4.09E-01	1.39E-01
rplV	1.52E-01	5.36E-02
rplW	1.59E-01	5.24E-02
rplX	3.77E-02	1.25E-02
rpmB	6.45E-02	1.70E-02
rpmD	5.29E-02	9.94E-03
rpmE2	5.99E-02	1.70E-02
rpmF	3.51E-02	6.77E-03
rpoA	2.05E-01	2.23E-01
rpoB	3.09E-01	1.37E+00
rpoC	3.67E-01	1.68E+00
rpoD	3.65E-02	7.74E-02
rpoE	5.98E-02	3.76E-02
rpoZ	8.91E-02	2.63E-02
rpsA	4.08E-01	7.36E-01
rpsB	9.60E-01	7.57E-01
rpsC	7.29E-01	5.57E-01

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
rpsD	3.49E-01	2.41E-01
rpsE	7.77E-01	4.00E-01
rpsF	1.19E-01	5.30E-02
rpsG	1.70E-01	8.85E-02
rpsH	4.23E-01	1.73E-01
rpsI	1.03E-01	4.51E-02
rpsJ	6.92E-01	2.40E-01
rpsK	2.02E-01	8.30E-02
rpsL	1.49E-01	6.24E-02
rpsM	1.12E-01	4.36E-02
rpsR	6.46E-02	1.70E-02
rpsU	2.78E-02	7.13E-03
rraA	5.12E-02	2.68E-02
rseB	1.38E-02	1.49E-02
rsmG (gidB)	2.71E-02	1.82E-02
<i>rtcB</i>	2.52E-02	3.29E-02
secB	9.37E-02	4.85E-02
secD	7.45E-02	1.43E-01
secG	4.50E-02	1.48E-02
serA	9.96E-02	1.30E-01
serC	1.02E-01	1.20E-01
serS	3.32E-02	4.69E-02
sifB	1.74E-02	1.84E-02
sitA	9.96E-02	9.95E-02
sitB	2.37E-02	2.05E-02
skp	7.27E-02	3.89E-02
slyB	1.14E+00	5.15E-01
sodA	7.35E-02	5.08E-02
sodB	2.30E-01	1.43E-01
sohB	4.89E-02	5.51E-02
sopB	2.07E-02	3.71E-02
spy	1.71E+00	9.02E-01
sra	1.05E-01	1.67E-02
ssb	1.20E-02	6.86E-03
sseA	3.64E-02	3.24E-02
sspA	1.88E-02	1.3/E-02
sspB	3.88E-02	2.12E-02
STM0080	8.74E-02	2.11E-02
STM0098	2.3/E-02	1.61E-02
STM0297	7.14E-02	1.54E-02
STM0402	/.84E-02	5.21E-02
STM0830	4.50E-02	4.34E-02
STM0908	2.07E-02	1.10E-02 1.70E-02
STM0931	1.00E-02	1.70E-02
STM1119	5.19E-01 0.40E-02	1.90E-01
STM1259 STM1263	9.49E-03	0.10E-02
STM1203	1.23E-01	5 72E 03
STM1207	2.02E-02 2.14E 02	3.72E-03
STM1622	0.86F_02	2.22D-02 8.26E-02
STM1672	3.42E-02	4 10F-02
STM1731	5.90F-02	5 55E-02
STM1252	1.57E-02	2.85E-02
STM2243	1.91F_02	1 55F-02
STM2447	6 14E-02	3 73E-02
STM2477	9.17E-02	2.36E-02
STM2506	7 75E-03	1.67E-03
STM2722	7.82E-02	1.57E-01
STM3256	3.58E-02	3.13E-02

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
STM3354 (ttdB)	1.62E-02	1.12E-02
STM3580	1.26E+00	7.42E-01
STM3754	7.31E-03	2.96E-03
STM4033	1.46E-02	4.01E-03
STM4057	4.23E-02	1.88E-02
STM4498	2.41E-02	1.58E-02
STM4519	1.01E-01	1.50E-01
STM4520	5.04E-01	7.91E-02
stpA	1.75E-01	7.92E-02
sucA	4.38E-02	1.33E-01
sucB	1.23E-01	1.59E-01
sucC	5.04E-02	6.23E-02
sucD	4.84E-02	4.20E-02
suhB	2.20E-02	1.86E-02
<i>surA</i>	9.40E-02	1.30E-01
surE	1.97E-02	1.54E-02
talA	1.04E-01	1.09E-01
talB	2.44E-01	2.53E-01
tar	2.44E-02	4.20E-02
tbpA	7.83E-02	8.36E-02
tcp	1.47E-02	2.60E-02
thiC	4.89E-02	1.01E-01
thiD	1.98E-02	1.70E-02
thiM	8.70E-02	7.00E-02
thrA	2.84E-01	7.47E-01
thrC	4.49E-01	6.26E-01
tig	4.04E-01	5.72E-01
tktA	1.57E-01	3.40E-01
tktB	9.05E-02	1.98E-01
tolB	1.30E-01	1.77E-01
tolC	1.31E-01	2.07E-01
topA	2.82E-02	7.99E-02
tpx	5.02E 02	1.81E-01 2.57E-02
traM traT	5.98E-02	2.57E-02
tra 1	2.28E-01	1.75E-01
treA	9.00E-02 2.18E-02	1.69E-01
trmJ	2.10E-02 4.59E-02	1.09E-02 2.81E-02
trpA	4.36E-02	5.61E-02 1.25E-01
llXA turcP	5.65E-01 2.16E_01	1.55E-01 2.21E-01
llXD tof	2.10E-01	2.21E-01 2.05E-01
isj tuf A	4.42D-01	5.73E-01 5.73E±00
iuj∧i tvn 4	1.01E+00	2.03E-00
typA tyrS	5.97F_02	2.03E-01 8 41F_02
uhiR (fro)	2.77E-02	4 98F_02
ubiG	7.93F_02	6 79F-07
udn	3 32E-02	2.61E-02
uup yonR	4.71F-02	6 71F-02
umuC	2.06F-02	2 88F-02
ynn	5.43F-02	3 59F-02
upp usnF	3 13E-01	1 44F-01
uspi	1.82E-01	8 57E-02
uspO	1.60E-02	2 49F-02
vacB	3 32E-02	8 88E-02
valS	3.25E-01	1.06E+00
wzzB	5.77E-02	6.15E-02
wzzE	5.89E-02	6.84E-02
vaaA	1.87E-02	1.61E-02
yadF	4.90E-02	3.61E-02

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
vaeH	9.51E-02	4.25E-02
vahO	3.24E-01	9.42E-02
vajG	4.65E-02	3.07E-02
vajO	1.08E-01	5.82E-02
vbaB	6.71E-02	2.34E-02
vbaY	5.13E-01	2.95E-01
vbgI	1.52E-01	1.19E-01
vbgJ	2.72E-02	1.90E-02
vbhB	4.56E-02	2.30E-02
vbhG	2.73E-02	2.87E-02
vbiS	4.82E-02	4.70E-02
ybiT	2.61E-02	4.50E-02
ybjP	1.01E-01	5.66E-02
yceI	4.23E-02	2.66E-02
ycfF	6.23E-02	2.42E-02
ycfP	1.21E-01	7.73E-02
ycgL	1.25E-02	4.72E-03
ycgQ	5.66E-02	5.48E-02
yciE	2.83E-02	1.55E-02
yciF	4.39E-01	2.43E-01
yciO	1.33E-02	9.29E-03
ydeI	1.40E-02	5.81E-03
ydfG	1.12E-01	8.85E-02
ydfI	1.07E-02	1.67E-02
ydgA	6.16E-02	9.87E-02
ydgH	8.30E-02	8.27E-02
ydgJ	1.79E-02	2.13E-02
ydhD	8.77E-02	3.31E-02
ydjA	9.25E-02	5.50E-02
ydjN	1.19E-01	1.67E-01
yeaG	5.85E-02	1.26E-01
yebE	5.56E-02	3.95E-02
yedD	3.25E-02	1.47E-02
yedF	6.74E-03	1.76E-03
yedJ	4.32E-02	3.28E-02
yehZ	6.70E-02	6.44E-02
yfcZ	9.33E-02	2.99E-02
yfeR	1.69E+00	1.66E+00
yfgD	5.92E-02	2.38E-02
yfgM	8.87E-02	5.80E-02
yfiA	9.84E-02	3.73E-02
yfiO	5.25E-02	4.38E-02
ygaM	1.41E-01 4.72E-01	5.14E-02
ygaU	4./3E-01	2.20E-01
ygal	2.31E-01	5.58E-02
ygjZ	6.04E-02 7.20E-02	6.41E-02
yggE	7.20E-02	5./1E-02
ygg/v	2.33E-02	1.94E-02
yggA	3.44E-02 2.02E_01	1.76E-02
ygnA waiC	2.03E-01 1 17E 02	1.90E-01 5 8/E 02
ygiC vaiM	7.4/E-02	J.0412-02 1 47日 02
ygiivi vhaV	2.22E-UZ 1.45E 02	1.4/E-U2 1.1/E 02
yna K	1.4JE-02 0.51E 02	1.14E-02 7 28E 02
yndG what	9.31E-03 7 AOE 02	1.30E-US 5 20E 02
yhoL	7.49E-02 8.64E-02	3.201-02 2 00F-02
vhbS	0.04E-02 0.60F 02	4.20E-02 5 20E 02
ynus wheP	7.07E-05 1 26E 01	5.57E-05 6 07E 02
yncD vhaF	1.30E-01	3.44F-01
yngr	1.JJL-01	J.TTL-VI

Gene Name	Average of Norm (fmol)	Average of Norm. (ng)
yhhA	3.80E-02	1.68E-02
yhjB	1.66E-02	1.08E-02
yhjG	4.57E-02	9.87E-02
yiaD	9.67E-03	6.47E-03
yibF	2.35E-02	1.54E-02
yibL	3.79E-02	1.51E-02
yibN	1.07E-01	4.84E-02
yicC	7.86E-02	7.60E-02
yidC	9.62E-02	1.76E-01
yieF	5.98E-02	3.74E-02
yigI	3.42E-02	1.69E-02
yjeE	3.57E-02	1.78E-02
yjeJ	2.77E-02	2.63E-02
yjgB	2.61E-02	2.87E-02
yjjK	1.26E-01	2.32E-01
ymbA	6.77E-03	4.18E-03
yncB	3.43E-02	3.95E-02
yncE	4.51E-02	5.10E-02
ynfD	4.72E-02	1.45E-02
yniC	3.75E-02	2.65E-02
yqhD	3.66E-02	4.45E-02
yqiC	5.57E-02	2.32E-02
yqiK	1.57E-01	2.79E-01
yqjC	6.64E-02	2.82E-02
yqjD	3.06E-01	1.02E-01
yraM	3.34E-02	7.01E-02
yraP	9.50E-02	5.65E-02
yrbC	6.66E-02	4.78E-02
yrbD	1.77E-02	1.02E-02
yrfE	1.57E-02	1.02E-02
ysgA	2.36E-02	2.06E-02
ytfM	1.27E-01	2.37E-01
ytfN	3.69E-02	1.45E-01
znuA	3.42E-01	3.66E-01
zwf	1.79E-02	2.90E-02