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ABSTRACT

The motivation for this work is the need for rigorous, efficient, accurate and ro

bust computational methods for implementing deterministic radio wave propaga

tion models to enable planners and operators make good use of UHF (Ultra High 

Frequency) wireless communication resources. The approach to propagation mod

elling is to abstract the real-world physical problem by a simpler physical problem 

containing those salient features judged to influence more strongly the behaviour 

of radio wave propagation. It is then argued that a physically exact surface inte

gral equation formulation is a particularly appropriate starting point for making 

further progress towards the construction of a model. The philosophy being that 

it is better to strip down extraneous detail from an exact solution than to try to 

shore up inadequacies in an approximate starting position.

This thesis is concerned with efficient computational methods for the surface in

tegral equations thus arising. The subject, then, of this thesis is time-harmonic 

electromagnetic wave scattering by very large (with respect to the wavelength of 

the incident field), piecewise-smooth perfect electrical conductors embedded in a 

homogeneous medium such as free space.

The early chapters establish the standard methods for handling such problems, 

including the Method of Moments (MoM). This is a technique used to discretise 

integral equations. For some illustrative problems numerical results are also pre

sented.

Much of the thesis is concerned with methods speeding up iterative solutions of 

integral equations. One such method is the Fast Multipole Method (FMM). The 

FMM, being the basis of majiy of the novel efficient algorithms proposed, is out

lined and its main principles are illustrated along with examples. It is compared



with standard numerical techniques used to solve discretised integral equations. In 

addition to the FMM, recently developed methods which have been applied to radio 

propagation modelling by the Trinity College group are reviewed. These include 

the Fast Far-Field Approximation (FAFFA) and the Tabulated Interaction Method 

(TIM).

The Tabulated Interaction Method is presented in more detail since one contribu

tion of this thesis is to extend this method somewhat. The TIM is an efficient 

scheme for the computation of electromagnetic (EM) wave scattering from massive 

smooth conductors. Specifically, interactions between pairs of large subdomains 

are transmitted by plane waves travelling along the line connecting the subdomain 

centre-points, and the surface current density on linear subdomains of the surface 

is represented by a superposition of reference currents.

A novel extension of the TIM, referred to in this thesis as the Analytical Interaction 

Method (ANIM), renders it flexible by replacing the table with an approximate 

formula. This significantly reduces the storage requirement associated with TIM 

particularly if multiple frequencies or multiple facet sizes are in use. Numerical 

results are presented to demonstrate the accuracy of the proposed scheme and the 

computational complexity of ANIM is also discussed.

The Tabulated Interaction Method is then developed in matrix form. It is demon

strated that the matrix produced is sparse and a significant reduction in storage 

requirements may be achieved. The Tabulated Interaction Method is also applied 

to the problem of electromagnetic scattering by periodic structures. Numerical re

sults are provided to demonstrate the possibility of tackling this class of problems 

with substantial storage and CPU time savings.

The remainder of the thesis is concerned with three-dimensional problems. The 

evaluation of the impedance matrix terms for the Electric Field Integral Equation 

when discretised using the Rao-Wilton-Glisson approach is considered in detail it 

being a key task in the work that follows. Specifically, the problem of the integration 

of the lineaj-shape functions times the three-dimensional Green’s function on a



plane triangle is investigated. A simple fully numerical technique is introduced as 

an alternative to the typical approach recommended in the literature. Numerical 

results are provided to illustrate the accuracy of the new method proposed.

A novel development of a three-dimensional Multi-Level Fast Far-Field (MLFAFFA) 

approximation method for electromagnetic scattering by electrically large conduc

tors is next presented. Its implementation is described in detail. Both the storage 

requirements and computational complexity of the new technique are carefully anal

ysed. Numerical results comparing the scattered field and surface current density 

computed using the 3D MLFAFFA with reference solutions computed using tradi

tional approaches axe also presented. The agreement achieved is highly satisfactory.

The open question of how to carry the very substantial savings of TIM and ANIM 

over to fully three-dimensional problems is the final topic to be addressed in the 

thesis. While more work is required before this question can be considered answered 

some useful insights have been gained and clear directions for further research have 

been identified.



ACKNOWLEDGEMENTS

First of all, I would like to thank Dr. Peter Cullen for providing me with supervision 

over the past three years and for all his help. I would also like to thank deeply my 

parents and Sabine, my companion, who have always, patiently, encouraged me.

Special acknowledgements go to my desk neighbours, who have supported me until 

the end of my unforgettable experience at the Comms Lab. I would mention Alex, 

Conor, Eamonn K., Eamonn O., Eugene, Liam, Max, Peter, Ronan, Sylvia, Joe 

from next door, Mohammed from downstairs and Marco for our coffee breaks and 

chats at Brewbaker’s.

Thanks are aJso due to Teltec Ireland for funding the three years of study and to 

the reviewers of this thesis for their suggestions.



CONTENTS

Declaration i

Dedication ii

Abstract ii

Acknowledgem ents v

1 Introduction 1

1.1 Organisation.............................................................................................  4

2 Integral Equation M ethods 8

2.1 Surface integral equations ....................................................................  9

2.2 The Method of M om ents.......................................................................  12

2.2.1 Point m a tch in g .......................................................................... 14

2.2.2 Subsectional (subdomain) b a se s ..............................................  14

2.3 Example: using the EFIE to estimate TM-wave scattering by PEC

cylinders in two dimensions ................................................................  15

2.3.1 Application of the Method of Moments (MoM).....................  16

2.4 MFIE for TM-wave scattered from PEC cy linders............................  19

2.5 CFIE for TM-wave scattered from PEC c y lin d e rs ............................  21

2.6 MoM solution of the EFIE in three-dimensions................................... 25



II

2.6.1 Development of basis functions ................................................  26

2.6.2 Testing the E F I E .......................................................................... 29

2.6.3 Derivation of the matrix e q u a tio n .............................................  30

2.7 The Conjugate Gradient (CG) m e th o d ................................................  31

2.8 The Conjugate Gradient-Fast Fourier Transform (CG-FFT) method 33

2.8.1 One-Iteration FFT algorithm ...................................................  35

2.9 Numerical r e s u l ts ....................................................................................... 37

2.9.1 Example of application of the CG-FFT m e th o d ...................  37

2.9.2 Three-dimensional case: EFIE results for simple geometries . 39

2.10 Summary ....................................................................................................  41

3 The Fast M ultipole M ethod ‘ 46

3.1 Rationale of the Fast Multipole Method (F M M )................................  46

3.2 Formulation of the F M M ..........................................................................  48

3.3 Some numerical re su lts .............................................................................  51

3.4 Recent developments of the F M M ..........................................................  54

3.4.1 Computational issues related to the F M M ............................. 54

3.4.2 FMM in the three-dimensional c a s e .......................................... 56

3.5 Summary ...................................................................................................  60

4 The Tabulated Interaction M ethod 62

4.1 The Fast Far-Field Approximation (FA FFA )......................................  62

4.2 The Tabulated Interaction Method (TIM) .......................................... 66



I l l

4.3 Electromagnetic scattering from large terrain profiles; an example of 

application of FAFFA and T I M .............................................................. 73

4.4 Summary ....................................................................................................  76

5 N ovel enhancem ents to  TIM  78

5.1 Motivation of the Analytical Interaction Method (A N IM )................  78

5.2 Formulation of A N IM .................................................................................  80

5.3 Numerical r e s u l ts .......................................................................................  87

5.3.1 Numerical results for Jerslev p ro file ..................................  87

5.3.2 Numerical results for Hjorringvei profile .................................  88

5.3.3 Comparison with measured data and reference results . . . .  89

5.4 Matrix formulation of TIM/ANIM .......................................................  90

5.5 Application of TIM/ANIM matrix formulation to electromagnetic 

scattering from periodic surfaces.............................................................. 95

5.6 Summary ....................................................................................................  98

6 Evaluation of EFIE m atrix term s in the RWG approach 111

6.1 Calculation of the impedance matrix elements: the typical approach 111

6.1.1 Numerical evaluation of integrals involving different triangles 112

6.1.2 Numerical evaluation of integrals involving the same triangle 114

6.2 Alternative approach to the numerical evaluation of integrals involv

ing the same tr ia n g le .....................................................................................122

6.3 Numerical r e s u l ts ........................................................................................... 127

6.4 Summary ....................................................................................................  129



IV

7 The M ulti-Level Fast Far-Field A lgorithm  131

7.1 Formulation of the M LFAFFA................................................................... 132

7.1.1 The far-field approximation applied to the RWG basis set . . 132

7.1.2 Choosing the far-field/near-field regions....................................... 135

7.1.3 Multi-level s c h e m e ...........................................................................137

7.2 Implementation of the M LFAFFA.............................................................138

7.2.1 Memory requirements .................................................................... 138

7.2.2 The algorithm .................................................................................... 139

7.2.3 Computational c o s t ...........................................................................144

7.3 Numerical r e s u l ts ......................................................................................... 145

7.4 Summary ...................................................................................................... 147

8 Conclusions 155

A R eview  of basic electrom agnetics 159

A.l Maxwell’s equations...................................................................................... 159

A. 2 Equivalence theorem and Induction th e o re m ...........................................162

A.2.1 Equivalence th e o re m ........................................................................163

A.2.2 Induction theorem ...........................................................................164

A. 3 Surface integral equations ......................................................................... 165

B High Frequency Techniques 170

B.l Geometric O p tic s ......................................................................................... 170

B.2 Physical O p t ic s .............................................................................................172

B.3 Geometrical Theory of D iffraction............................................................ 173



V

B.4 Uniform Theory of D iffraction.................................................................... 174

B.5 Method of Equivalent Currents ................................................................. 175

B.6 Physical Theory of D iffraction.................................................................... 175

B.7 The Incremental Length Diffraction Theory .......................................... 176

C Differential Equations Solvers 178

C.l Finite Diff"erence Time Domain ................................................................. 178

C.2 Finite Element M ethod ................................................................................. 180

D Mathematiccd formulae for ANIM  in three dimensions 183

D.l Extension of ANIM to the three-dimensional c a s e .................................183

D.2 Far-field scattered by a triangular patch illuminated by a plane wave

using the PO approxim ation........................................................................ 185

D.3 Plane wave expansion of the near-field ..................................................191

D.4 Conclusion....................................................................................................... 193

Bibliography 198



VI

LIST OF FIGURES

2.1 Illustration of the electromagnetic scattering problem formulated us

ing surface integral equations..................................................................... 10

2.2 Scattering from a PEC cylinder of radius a. The T e l e c t r i c  plane

wave illuminates the cylinder from x = —oo. The cylinder extends 

from z =  —CX3 to CX3...................................................................................... 15

2.3 EFIE results for the problem of Fig. 2.2: amplitude of current den

sity on the surface of the cylinder versus degrees. The number of

. unknowns is 81 and the radius of the cylinder is a =  3A.....................  20

2.4 EFIE results for the problem of Fig. 2.2 when the number of un

knowns is 300 and 900................................................................................. 21

2.5 Cylinder cross section and parameters used in the MFIE (2.55): k

is the unit vector associated with the plane wave illuminating the 

scatterer, 9 is the angle of incidence, Rm is the distance between the 

integration point {x', y') and the observation point (xm, ym)^ n  is the 

normal unit vector and 12  ̂ is the polar angle associated with n . . . 22

2.6 MFIE results for the problem of Fig. 2.2; amplitude of current

density on the surface of the cylinder versus degrees. The number of

unknowns is 81 and the radius of the cylinder is a =  3A.....................  23

2.7 MFIE results for the problem of Fig. 2.2: amplitude of current

density on the surface of the cylinder versus radians. The number of

unknowns is 900 and the radius of the cylinder is a =  3A...................  24



VII

2.8 EFIE/MFIE results for the problem of Fig. 2.2 when ka =  2.405.

The MFIE solution is not affected by non-uniqueness problem. The 

EFIE solution instead shows instability due to numerical errors caused

by non-uniqueness........................................................................................  25

2.9 CFIE results for the problem of Fig. 2.2 when ka =  2.405: The

CFIE given in (2.60) has been implemented with b =  0.7 and the 

number of unknowns is 81..........................................................................  26

2.10 A triangle pair over which the RWG basis function f„(r) is defined. 27

2.11 Plot of the amplitude of the truncated Hankel function. The interval

of interest, where the electric current is located, is x e  [0,L], with

L =  Im  =  32A...............................................................................................  37

2.12 Amplitude of the Fourier transform of the function illustrated in Fig.

2.11. This is the result of an FFT performed over the samples of the 

Hankel function (frequency of sampling: 8 samples per wavelength). 38

2.13 Amplitudes of the electric current density evaluated using an one 

step FFT algorithm and the usual MoM, discretising the integral 

equation and solving the resulting matrix equation. The two func

tions perfectly match over the interval of interest x E [0,L], with

L = I m ...........................................................................................................  39

2.14 Amplitudes of the electric fields obtained using two different calcula

tions. The dashed line represents the amplitude of the electric field 

returned by the convolution of the electric current and the Hankel 

function respectively illustrated in Fig. 2.14 and Fig. 2.11. The 

result is the known term of the equation in the /c-space, i.e. the in

cident field in the interval [0, L], with L — Im  and 0 elsewhere. The 

field due to the current, i.e. the scattered field, evaluated by numer

ical integration is the solid line: it equals the incident field over the 

interval [0, L] and decays outside the interval, but it is not zero. . . 40



VIII

2.15 Surface patch grid employed to model the electric current density 

over a square flat plate................................................................................... 41

2.16 Amplitude of the horizontal component of the electric current density 

over the square flat plate at a cut over the vertical direction in the 

middle of the square. The number of unknowns, i.e. the number of

non-boundary edges, is 176. The incident electric field is assumed to 

be directed along the horizontal direction and propagates normally 

to the plate. The side of the plate is A.....................................................  42

2.17 Surface patch grid employed to model the electric current density 

over a circular disk..........................................................................................  43

2.18 Amplitude of the electric current density over the radial direction on 

the disk. The circular disk is of radius a — 2X and a vertical electric 

dipole illuminates it from a point centred on the disk at a height of 

0.1a. The number of edges is 792................................................................  44

2.19 Amplitude of the horizontal component of the electric current density 

over the square flat plate at a cut over the vertical direction in the

middle of the square. The number of unknowns, i.e. the number of 

non-boundary edges is, 736. The incident electric field is assumed to 

be directed along the horizontal direction and propagates normally 

to the plate. The side of the plate is 2A long...........................................  45

2.20 Amplitude of the horizontal component of the electric current density 

over the square flat plate at a cut over the horizontal direction in the 

middle of the square. The number of unknowns, i.e. the number of 

non-boundaxy edges, is 225. The incident electric field is assumed to 

be directed along the horizontal direction and propagates normally 

to the plate. The side of the plate is 2A....................................................  45



IX

3.1 FMM main concepts: in (a) the field of two current elements of Gi, 

such as Ua and nj is evaluated at two current elements of Gii, rUa and 

TUb. The actions of the two elements and nj are first aggregated 

at the centre of the group Gi, then translated over the group Gf 

and disaggregated at the points ttIq and nif,. The term derived from 

the aggregation step may be reused for other interactions of Gi with 

different groups. The FMM main concepts may be illustrated using

a network representation as in (b).........................................................  48

3.2 The groups indexed by I scatters over the group indexed by I'. Each 

element of Gi, say n, is a line source of current amplitude /„ =  1. The 

sura Zmnlji is evaluated for the set of receiving points around 

the centre I'. The number of points is M =  AT =  72. The aggregation 

of elements of Gi at the centre I requires 0{N)  operations, so does 

the disaggregation of the field received at the point V. The tramslation

is performed using (3.8)..........................................................................  52

3.3 Amplitude of the sum (3.15) employing the FMM approximation and 

equation (3.8) with P  =  10 for the geometry illustrated in Fig. 3.2.

The dashed line represents the values of the sum (3.15) at M = 72 

points located at a radius A around the centre of the group Gi'. The 

result is affected by an evident instability due to the truncation of 

the series (3.8) at a too smaJl P  with respect to the theoretical limit

oo...............................................................................................................  53

3.4 Amplitude of the sum (3.15) employing the FMM approximation and 

equation (3.8) with F  =  20 for the geometry illustrated in Fig. 3.2.

The dashed line represents matches exactly the solid line. In this 

case the FMM approximation returns the exact result obtained by 

evaluating numerically the sum (3.15)....................................................  54



X

3.5 FMM results for the scattering by a PEC cylinder: the amplitude of

the current density matches perfectly the solution returned by the 

EFIE inverted using a CG algorithm. Both the solutions are affected

by the instability typical of the EFIE.............................................  55

3.6 Behaviour of the translation function ain{a) associated with the ge

ometry of Fig. 3.2. The function has maximum value at =  tt/4, 

i.e. over the direction I ^  I' and gradually decays outside a narrow 

interval centred at a  =  (f)i'i...............................................................  56

3.7 Geometry of the FMM in the three-dimensional case: the group Gi 

scatters over the group The electric current associated with 

the domains T+ and T~, i.e. radiates the electric field at T^, 

which is the triangle included in Gi>. The evaluation of the field 

scattered by Gj over Gi> requires the calculation of only a fraction of 

the impedance term (2.79), because domain T~ does not belong

to the group Gi>.................................................................................  58

4.1 Faj-field approximation in the two-dimensional case: the electric field

due to the group Gi at is evaluated using (4.8).......................  65

4.2 Geometry for the evaluation of the far-field scattered by a strip of

length L illuminated by a plane wave.............................................  71

4.3 Two collinear groups and geometric quantities used in FAFFA. . . 72

4.4 Line source illuminates an undulating terrain modelled by a two- 

dimensional surface, m and n are discretisation points where the 

current Jz is assumed to take the values and ............................ 74

4.5 Example of application of FAFFA and TIM to the numerical eval

uation of the field strength over a terrain profile which extends for 

several thousands of wavelengths..................................................... 76



XI

5.1 A half plane is illuminated by a TM^ plane wave at a low grazing 

angle 6i. The electric current residing on the half plane located at 

(s >  0, ^5 =  0, z =  0) is determined: point x, closed contour F in the 

neighbourhood of x,  surface S,  rectangular and cylindrical reference 

coordinate system s...............................................................................................  81

5.2 Amplitude of the scattered far-field due to a PEC strip of length 

L =  256A. The strip is impinged by a plane wave at an angle 

9i =  175/1807T and the field is evaluated at a far distance R q =  lOOL.

The results displayed are obtained applying the analytical expression 

given in (5.33) and the numerical results returned by a classical for

ward moment method (MoM)..........................................................................  85

5.3 Field strength over Jerslev profile. The terrain extension over the

X  direction is of the order of tens of thousands the incident wave

length: terrain profile, line source location and simulation results 

(field strength at 2 A m  above the terrain)........................................................ 100

5.4 Field strength over Jerslev profile. The terrain extension over the x

direction is of the order of tens of thousands the incident wavelength; 

simulation results (field strength at 2.4m above the terrain)....................101

5.5 Field strength over Hjorringvei profile. The terrain extension over

the X  direction is of the order of tens of thousands the incident wave

length; terrain profile, line source location and simulation results 

(field strength at 2.4m above the terrain)........................................................ 102

5.6 Field strength over Hjorringvei terrain profile.....................................103

5.7 Field strength over Jerslev terrain profile......................................... 104

5.8 Simple scatterer geometry for the application of matrix formulation

ofT IM /A N IM ............................................................................................................ 104

5.9 Sparse matrix obtained using TIM for the example of Fig. 5.8. . . 105



XII

5.10 TM^ plane wave incident on a periodic surface with period a. . . .  105

5.11 Physical meaning of the periodic Green’s function: the function 

describes the interaction between the observation point m  and all 

the periodic shifted versions of no, which are defined as Up, with

p = —o c  1,1,00...................................................................................106

5.12 Plane waves due to periodic shifted versions of Gy illuminating the

group Gi. In the example here illustrated, four different angles

of incidence are counted which, in turn, excite eight different ba

sis functions. These are the fields radiated by groups Gi>̂ , with 

p = - 2 , - l , l , 2 .................................................................................. 107

5.13 Unit cell of a periodic scatterer illuminated by a plane wave......108

5.14 Comparison of the fax-field patterns for the problem illustrated in 

Fig. 5.13: the TIM differs from the exact solution for its non

smoothness......................................................................................... 108

5.15 Comparison of the far-field patterns for the problem illustrated in 

Fig. 5.13: exact calculation of the near-field interaction renders the

TIM solution smoother with respect to the result shown in Fig. 5.14. 109

5.16 Introduction of the buffer zone to allow the use of FAFFA between

two near neighbours.......................................................................... 109

5.17 Far-field patterns obtained using a buffer-zone approach............ 110

6.1 Geometry of the impedance term calculation when m ^  n: the cur

rent associated with the edge radiates over the domain T+. In

the figure, only the interaction between the domains and is 

displayed. Each triangle is characterised by a local planar coordinate 

system, such as (a:„, ?/„) and {xm,ym)..............................................112



XIII

6.2 Geometry of the self term calculation for the triangle T.  The local 

coordinate systems (x, y) and (p, (j)) are displayed. Given the obser

vation point {xo,yo), three triangles are considered: Ti, T2 and T3

tices of T. The integral given in (6.17) may be considered as the sum 

of three integrals, each one computed over the triangular domain Tj, 

i = 1,2,3. More precisely, the integral over the whole domain T  is 

split into the sum of two integrals: one over a disk of radius e —> 0 

centred at (xo,j/o)j which evaluates to zero, and the other over the 

three triangles Tj, i = 1,2,3. Each integral over Tj may now be 

carried out referring to the polar coordinate system (p, (p), obtaining 

the final result (6.81)....................................................................................... 127

6.3 Behaviour of the function r((p) as given in (6.72) and the resulting

functions (6.75) and (6.76) employed in the evaluation of the integral 

using the alternative approach....................................................................... 130

7.1 The geometry of the far-field approximation: reference point O E S

and far points P  and Q ................................................................................... 133

7.2 Approximated and exact far-field patterns due to a given current 

distribution over a square flat plate of sides IX, I = 0.5,1.0,2.0 and

4.0....................................  136

7.3 Storage requirements (in MB) for the implementation of the ML-

FAFFA and the classical CG methods..........................................................139

7.4 Tree-structured grid of groups at all levels in the MLFAFFA. At each

level, a square contains triangular patches where current elements are 

defined.................................................................................................................149

7.5 Far-field interactions at different levels in the MLFAFFA........................ 150



XIV

7.6 MLFAFFA downward sweep at the final level A;: the near field in

teraction between n and m  is labelled as n / ...................................................151

7.7 Geometry of the scattering problem and triangular mesh associated 

with the scatterer...................................................................................................... 152

7.8 Amplitude of the scattered far-field due to the MLFAFFA and the

CG currents induced on the plate when 9i =  t t /4 ..........................................153

7.9 Amplitude of the MLFAFFA, the CG-FFT and the CG so

lutions along the cut at x =  L /2  153

7.10 Amplitude of the scattered far-field due to the MLFAFFA and the

CG currents induced on the plate when =  t t / 2 ......................................... 154

A .l Geometry for boundary conditions of electric and magnetic field: the 

interface between two different media (solid line) and its normal unit 

vector fi. Medium 1 has properties Ci, //i, medium 2 has properties 

£2 , A* 2 .............................................................................................................................. 160

A .2 Equivalence theorem geometry and transformation: (a) is the orig

inal problem, where 5  is a surface which encloses the sources, its 

exterior is free space; (b) is the equivalent geometry to determine 

the fields (Eext, ilext) outside S  due to the equivalent sources J 5  and 

M s ........................................   162

A.3 Induction theorem geometry and transformation: (a) is the original 

problem; (b) is the resulting problem to be solved to determine the 

scattered fields (E s,H s) outside the scatterer.................................................164

A.4 Illustration to explain the surface equivalence principle: two media 

of different properties are separated by 5 , Fi and F2 are the volumes 

enclosed by S  and Sao — S. Soo extends to infinity. The presence of 

a perfect electric conductor in F2 is also assumed......................................... 166



XV

B.l Geometrical optics reflection from a doubly curved surface...................171

B.2 Edge diffraction geom etry ...........................................................................174

C.l FDTD method .............................................................................................179

C.2 FEM p ro b lem ................................................................................................ 181

D.l Geometry of the discretisation (D.5) for the three-dimensional case. 186

D.2 Physical Optics approximation for the current on T. The vector n

points outwards the plane containing T ...................................................... 187

D.3 Geometry of the far-field evaluation for a planar triangular patch

illuminated by a plane wave incident at angles and In (a) the 

triangle T and the observation point {r, 9, (f)) axe illustrated, with 

the spherical coordinate system centred at the centroid of T  and

the rectangular coordinate system {xc,yc,Zc). In (b) the plane of 

the triangle is illustrated with the two different coordinate system 

{^c,yc) and {x',y'). For each point r ', its coordinate x  with respect 

to the centroid C of T is such that Xc + x  =  x'. Similar relation 

holds for j/c. The closed form integral It  given in (D.40) is evaluated 

referring to the coordinate system {x',y')................................................... 196

D.4 Geometry for the calculation of the near-field scattered by T. . . .  197



XVI

LIST OF TABLES

6.1 Numerical and reference results for five different observation points. 126



XVII

LIST OF SYMBOLS

EFIE Electric Field Integral Equation

MFIE Magnetic Field Integral Equation

MoM method of Moments

PEC Perfect Electric Conductor

CFIE Combined Field Integral Equation

RWG Rao-Wilton-Glisson

CG Conjugate Gradient

CG-FFT Conjugate Gradient-Fast Fourier Transform

FFT Fast Fourier Transform

FAFFA Fast Far-Field Approximation

TIM Tabulated Interaction Method

UHF Ultra High Frequency

ANIM Analytical Interaction Method

NBS Natural Basis Set

MLFAFFA Multi-Level Fast Far-Field Algorithm 

MLFMA Multi-Level Fast Multipole Algorithm



Chapter 1 1

INTRODUCTION

The subject of this thesis is electromagnetic scattering by large, piecewise smooth, 

perfect electric conductors (PEC), embedded in a homogeneous medium such as 

free space. The motivation for this work is the need for rigorous, efficient, accurate 

and robust numerical methods for Ultra High Frequency radio wave propagation 

for use in the wireless communication industry.

The problem of electromagnetic scattering will be formulated as an integral equa

tion. The approach to propagation modeling adopted in this thesis is to begin with 

a physically rigorous formulation and introduce approximations in a considered, 

careful and controlled manner. In this way a decreased generality of applicability is 

traded for computational efficiency in obtaining numerical solutions for a restricted 

class of problems. This is in contrast to the more popular approach of beginning 

with an approximate model and refining it to increase accuracy at the expense of 

adding complexity. It will become evident that the surface integral equation for

mulation of electromagnetic scattering problems lends itself well to this approach.

Mobile radio propagation presents us with a number of generic problems. The most 

familiar generic problem arising in land mobile propagation is the corrugated one

dimensional perfect electrical conducting (PEC) surface. Often this is associated 

with terrain propagation. It is a valid model if the terrain height variation in the 

directions perpendicular to vertical plane containing the transmitter and receiver 

is everywhere small in comparison to the width of the Fresnel ellipsoid [4] so that 

the terrain may be considered invariant in that direction. It also requires that the 

terrain height variations are such as to discount the possibilities of echoes from 

terrain features not cut by this vertical plane. In this case, if the propagation 

is either transverse magnetic TM^ or transverse electric TE  ̂ the electromagnetic
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problem is a scalar one. Moreover, if the surface is smooth and the angle of incidence 

low, forward propagation will predominate [56]. Considering the surface to be 

a homogeneous dielectric may enhajice this generic model, further enhancements 

can be achieved by considering a piecewise homogeneous dielectric. For grazing 

incidence neither approach is likely to be worth the extra computational effort. 

This kind of generic model has very wide application for the prediction attenuation 

of low-angle wave propagation over irregular terrain. The height profile (array of 

heights) associated with this generic problem is usually derived from a digital terrain 

model (DTM) stored in geographical database and accessed using a geographical 

information system (GIS). Unconnected one-dimensional surfaces arise when two- 

dimensional propagation in the horizontal plane is considered. When calculating 

fields around buildings in circumstances where the antenna heights are well below 

rooftop height and the terrain is reasonably level (simple micro-cell case) it can 

be sufficient to use multiple paraxial PEC cylinders (by cylinder it is meant a 

closed two-dimensional entity) to represent the buildings. The cross-section of the 

cylinders is taken to be the building plan outline or footprint. This abstraction is 

made by most of the popular two-dimensional deterministic micro-cell propagation 

models such as ray-tracing. Further enhancements include the use of homogeneous 

or piece-wise homogeneous (to allow the representation of internal and external 

structure) dielectric cylinders. An increasingly important generic problem is the two 

dimensional smooth surface. This surface, like its one-dimensional counterpart, may 

be assumed to be a homogeneous PEC, a dielectric or a piece-wise homogeneous 

dielectric. The most complex two-dimensional surfaces arise when propagation 

in and around buildings located on irregular terrain must be considered. The 

main differences between this case and the previous one is the abrupt changes in 

surface height which occur at the location of building walls and in the possibility 

of inhomogeneity (rooms, windows etc. in buildings). Typically, two-dimensional 

surface problems are solved in a piecewise manner using geometrical optics or GTD.

The development of numerical methods for the computation of electromagnetic 

wave scattering from large, smooth and piecewise linear-planar perfect electrically
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conductors using surface integral equations is the main subject of this thesis. By 

large surfaces it is meant that typical length scales are 0(10) — 0 {10 )̂ wavelengths. 

By smooth, it is meant that the effects of random roughness are not taken into 

account.

Traditional approaches to the solution of surface integral equations using general 

purpose methods can run into trouble for even quite modestly sized problems, even 

on the best available computer resources. Over recent years, however, exception

ally fast, accurate and robust schemes have emerged for tackling the problem of 

solving surface integral equations in two dimensions, achieving massive computa

tional savings over traditional approaches for the case of large, smooth and slowly 

varying surfaces without compromising accuracy. Results have been obtained by 

Trinity College Electromagnetic Scattering group ([57]-[58], [61]-[64], [66]-[67]) ajid 

by others ([47]-[49], [52]-[55]). Investigation of this class of problems and of the 

possibility of their extension from two to three dimensions has been carried out by 

the author with the following results.

• The Analytical Interaction Method has been developed. This fast numerical 

scheme may be applied to the problem of Ultra High Frequency wave propa

gation over irregular terrain. Numerical results are provided to demonstrate 

the excellent agreement of the new technique with typical and alternative fast 

methods.

• The matrix formulation of the Tabulated Interaction Method/Analytical In

teraction Method has been introduced and its application to the problem of 

electromagnetic scattering from periodic structures has been investigated.

• A fully numerical technique for the integration of linear shape functions times 

the three-dimensional Green’s function has been developed. The method 

applies to the discretisation of the Electric Field Integral Equation using the 

Rao-Wilton-Glisson approach. Numerical results demonstrate the accuracy 

of the approach proposed by comparing it with typical non-fully numerical
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techniques.

•  The Fast Far-Field Approximation has been extended to the three-dimensional 

case, for an arbitrarily shaped scatterer using the Rao-Wilton-Glisson ap

proach. A multi-level numerical technique is built upon the far-field approx

imation with reduced memory requirements and substantial computational 

savings with respect to the classical Method of Moments-Conjugate Gradient 

scheme. Numerical results show the accuracy of the technique proposed.

•  The possibility of extending the Analytical Interaction Method to three di

mensions using the Physical Optics approximation has been considered. The 

author hopes that future research will build upon his initial investigation.

1.1 O rganisation

The body of this thesis may be divided into three main parts. The first part in

cluding chapters 2 and 3 is devoted to the introduction of the Integral Equation 

formulation and fast numerical methods. Chapters 4 and 5 deal with electromag

netic wave scattering in two dimensions. Finally, chapters 6 and 7 deal with elec

tromagnetic wave scattering in three dimensions. This thesis consists hence of the 

following chapters:

Chapter 2 introduces the integral equation formulation for electromagnetic scat

tering problems. The Electric Field Integral Equation (EFIE) and the Mag

netic Field integral Equation (MFIE) are stated. The Method of Moments 

(MoM) is described for the discretisation of the EFIE/MFIE. A sample ap

plication of the method is presented for the two-dimensional case. The EFIE 

and MFIE are compared for the classical problem of electromagnetic scatter

ing from perfect electric conductors (PEC). It is noted that both solutions 

of the integral equations are non-unique for closed scatterers. The Combined 

Field Integral Equation (CFIE) overcomes this problem.
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The EFIE formulation in three dimensions is aJso presented. This equation is 

discretised using the Rao-Wilton-Glisson (RWG) approach. The RWG basis 

functions are introduced and the MoM matrix is obtained.

The Conjugate-Gradient (CG) method is reviewed. This method permits the 

solution of any matrix equation. The storage requirements of this algorithm 

are of 0{N'^). The computational complexity of the CG method is also of 

0 { N “̂). For the case of electromagnetic scattering from electrically large 

objects, the storage and computational complexity can rapidly become too 

large to allow the numerical solution of the discretised integral equation.

For planar scatterers, the Conjugate Gradient-Fast Fourier Transform (CG- 

FFT) method is presented. This scheme reduces the computational complex

ity of the solution of the MoM-CG matrix equation to 0(A^log Â ).

C h a p te r  3 describes the Fast Multipole Method (FMM). The basic concepts 

of this technique are introduced. The method is presented for the two- 

dimensional case and some numerical experiments are presented to demon

strate the accuracy of the FMM approximation. The computational com

plexity of the FMM implementation is reduced with respect to that of CG to 

The FMM is also introduced for the three-dimensional case, using 

RWG basis functions.

C h a p te r  4 presents the Fast Far-Field Approximation and the Tabulated Interac

tion Method (TIM), a relative of the Fast Far-Field Approximation (FAFFA). 

The latter is reviewed in two-dimensions. Then the formulation of TIM is de

rived. It is shown that TIM offers great computational savings, providing 

accurate UHF path loss predictions over many tens of thousands of wave

lengths. The computational time for the TIM is of the order of seconds for 

the solution of problems which require a time of the order of days when solved 

using a classical MoM-CG scheme.

C h a p te r  5 describes the Analytical Interaction Method (ANIM), a novel method



1.1. Organisation 6

conceived to render the TIM more flexible with respect to the frequency. 

TIM requires tabulation of certain quantities. ANIM does away with the 

need for tabulation by proposing using carefully derived analytical results. 

ANIM offers the same computational performance as TIM and is built upon a 

classical problem of electromagnetic scattering, namely plane wave scattering 

by a half plane. The analytical result for this problem may be integrated with 

success into the TIM framework. The final result is a numerical technique 

which preserves both the accuracy and the computational acceleration of TIM. 

Numerical results are provided to demonstrate the behaviour of ANIM with 

respect to reference solutions and measurements. Compaxative data on the 

computational savings achieved by ANIM is also provided.

A novel matrix formulation of the TIM/ANIM is also introduced in this chap

ter and is applied to the problem of electromagnetic scattering by periodic 

structures. Numerical results are provided and commented. The chapter may 

be seen as the end of the presentation of the work carried out by the author for 

two-dimensional electromagnetic scattering problems. The next two chapters 

axe devoted to the development of a fast and accurate numerical technique 

for the three-dimensional case.

Chapter 6 introduces the reader to a key numerical problem arising in the MoM 

discretisation of the EFIE in the three-dimensional case when applying RWG 

basis functions. The problem is the numerical integration of the lineax-shape 

function times the three-dimensional Green’s function. This operation must 

always be performed. The standard approach is reviewed, and simplified 

expressions are derived for some typical integrals employed in this approach. 

A novel alternative fully numerical integration scheme is proposed by the 

author. This technique allows the rapid and reliable numerical integration of 

the quantity of interest. It is simpler than the standard method. Numerical 

results are provided which compare the accuracy of the new method with the 

standard approach and with a set of reference results.
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C hap ter 7 introduces the Multi-level Fast Far-Field Algorithm (MLFAFFA) for 

the three-dimensional case. The novel implementation has been developed 

by the author and may be applied successfully to the general problem of 

electromagnetic scattering by arbitrarily shaped objects. MLFAFFA is an 

improvement of FAFFA. It has a multi-level structure and is formulated in 

three dimensions. The criterion for the selection of the far-field area is de

veloped and carefully described and the storage requirements are discussed. 

The technique requires less storage than the typical MoM-CG scheme. This 

is essentially because not all the impedance matrix need be computed and 

stored. Moreover, the computational complexity of the method is shown to 

be of 0{P{N)N)  where P{N) <C N  when N  ^  Nq. The author observed 

that Nq »  lO"*. Numerical results are provided to demonstrate the accuracy 

of MLFAFFA compared with reference solutions.

The surface integral equation formulation is one of the available ways of solving 

the problem of electromagnetic scattering. For sake of completeness, two chapters 

of the Appendix outline the principles of high frequency techniques and differential 

equation solvers.

The extension of ANIM to three dimensions is an interesting prospect. Some is

sues that arise in this extension are outlined in the last chapter of the Appendix. 

Specifically, some mathematical tools for an extension of the Analytical Interaction 

Method to three dimensions are provided using the Physical Optics approximation. 

While more work is required to accomplish this task, directions for further research 

are provided.



Chapter 2 8

INTEGRAL EQUATIONS IN ELECTROMAGNETIC SCATTERING

In this chapter, the problem of electromagnetic scattering is presented using the 

integral equation formulation. In section 2.1, the surface integral equations used 

throughout this thesis are stated following [21], Specifically, the Electric Field 

Integral Equation and the Magnetic Field Integral Equation (EFIE and MFIE) are 

stated for the case of electromagnetic scattering by homogeneous bodies embedded 

in free space.

In section 2.2, the Method of Moments (MoM) is introduced. A sample application 

of MoM is presented in section 2.3 for the discretisation of the EFIE and in section 

2.4 for the MFIE. The problem of the non-uniqueness of the solutions of both EFIE 

and MFIE is discussed in section 2.5 and the Combined Field Integral Equation is 

introduced to overcome this feature.

Section 2.6 outlines the application of the MoM to electromagnetic scattering in 

three dimensions. The popular Rao-Wilton-Glisson (RWG) [33] basis set is de

scribed. The Conjugate Gradient (CG) method is presented in section 2.7; this 

iterative algorithm provides a robust procedure for the solution of a system of lin- 

eaj equations and has been used by the author in carrying out all his numerical 

experiments.

For planar scatterers an elegant alternative to the usual MoM-CG is represented 

by the Conjugate Gradient-Fast Fourier Method (CG-FFT); this is described in 

section 2.8. Finally, some numerical results are presented in section 2.9 to help 

illustrate the salient features of the integral equation methods.
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2.1 Surface integral equations

In this section, the Electric Field Integral Equation (EFIE) and the Magnetic Field 

Integral Equation (MFIE) are stated following [21], In Fig. 2.1 a homogeneous, 

penetrable body is illuminated by an incident electromagnetic field (Ej, H j) radiated 

by a source located in region 1. Region 1 is free space and region 2 is characterised 

by constant magnetic permeability /ir and constant dielectric permittivity ê . The 

impedance of region 1 is

C l  =  , / ^  ( 2. 1)
V  C r C o

of region 2 (free space) is

C2 =  (2.2)
V ^0

Given the geometry of Fig. 2.1, the following coupled EFIEs may be obtained [21] 

nxEi(r) = - M i ( r ) - n x  ■ A  ̂+ - V x F i ^  r € 5+(2.3)

0 =  Mi(r) -  fi X (^VV • Aa + fca^Aa) -  V x F2 j  t  e S~ (2.4)

where the symbol S~^ (5“ ) denotes that the surface integral equations are enforced 

at infinitesimal distance outside (inside) the scatterer surface S. In addition, n 

is the unit normal vector illustrated in Fig. 2.1 tha t points outwaxds S. As an 

alternative, coupled MFIEs are obtained [21]

fi X Hi(r) =  Ji(r) -  n X f  V  x A i +  ^  ^ r G S'  ̂ (2.5)
V  J ^ i C i  /

0 =  -Ji(r)  -  n X ( v  X A 2 +   ̂ ^

The equivalent electric and magnetic sources J i  and M i are defined (following [21]) 

so that

Ji(r) =  n X Hi T G S (2.7)
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M 2

(homogeneous)

- r '

J l

M

X

El,Hi 

/iOi Co 

/
SOURCE
Ei,Hi

Figure 2.1: Illustration of the electromagnetic scattering problem formulated using sur
face integral equations.

M i(r) — —n X El r G S' (2.8)

and A i, F i, A 2  and F 2  are the magnetic (Aj) and electric (Fj) vector potentials 

given by [21]
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r p - i f c 2 | r - r ' |  p p-jk2\r-r'\
-  I M2(r')J- jrdS'.Is 47r|r —r'l (2 .12)

The functions

g-jfcl|r-r'|

4 7 r |r  — r ' l
(2.13)

and

g -jA ;2 |r - r '|

47r|r — r'l (2.14)

are the Green’s functions Gi and G2 (see also (A.27)) for medium 1 and 2, respec

tively. The operator V is defined aŝ

(2.15)

and VV may be represented as the matrix^

VV

/  ^  dx̂
?P-

dydx

dzdx

dxdx dxdz

W
dzdy

\
dydz

—  /dẑ  /

(2.16)

The coupled EFIEs (2.3-2.4) must be solved to obtain the unknowns Ji and Mi. 

The same holds true for the coupled MFIEs (2.5-2.6). The fields Ei and Hi at the 

exterior of S  may be expressed as [21]

Ei(r) = ( ^ ( v V - A i + A:i2Ai) -  V x F i ) (2.17)

Hi(r)= V x  Ai + VV- Fi  +fci"Fi (2.18)

4n  rectangular coordinates. For the expression of the operator V in cylindrical or spherical 

coordinates, see [13], appendix II.

În rectangular coordinates.
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The fields E -2 and H 2  at the interior of S may be expressed as [21]

E2(r) =  (V V  ■ A 2  +  A)2"A2) -  V X (2.19)

H , ( r ) = ( v x A , +  ^ ^ J ^ i * 5 ^ ^ ) .  (2.20)

In the case where the homogeneous region 2 is a perfect electric conductor (PEC), 

the EFIE becomes [21]

ri X Ei(r) =  - n  x ^VV • A +  a )  ̂  r  e  5+ (2.21)

and the MFIE is

n X Hi(r) =  Js(r )  -  n x ( v  x a )  r G 5+  (2.22)

where

Js(r) =  n X H i t g S  (2.23)

and

f  k i \ r - r ' \
=  (2.24)

2.2 The M ethod of Moments

In this section the method of Moments (MoM) is introduced. For an extended 

review of this method, the reader is referred to [7]. Any integral equation arising 

in electromagnetic wave scattering may be expressed as

i ( / )  =  s (2.25)
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where L is an operator, g is the source or excitation (known function) and /  is 

the field or response (unknown function to be determined). A problem of analysis 

involves the determination of /  when L  and g are given.

To introduce the Method of Moments, a definition of the inner product (•, •) of two 

functions is needed. The inner product is a scalar chosen to satisfy

{ f . g )  =  { g , f )  (2 .26)

{ f , n > 0  (2.27)

{ a f  +  I3g, h) = a{ f ,  h) +  /3(^, h) (2.28)

where a  and (3 are scalars and * denotes a complex conjugate. The Method of 

Moments is a general procedure for solving equations L { f )  =  g. Let /  be expanded 

in a series of functions { /i, /a , • • •} in the domain of L,  as

f  = ^ a n f n  . (2.29)
n

where the an are constants. The fn  are called basis functions. Hence the equation 

to be solved becomes

J2(^nL{ fn)=^g  (2.30)
n

It is assumed th a t a suitable inner product ( / ,  g) has been defined for the specific

problem. A set of testing fu n c tio n ^  {lOi, W2 , • • •} is now defined and the following

operation is performed

Y 2  L f n )  =  9 )  (2.31)
n

with m =  1, 2, • • •. This set of equations may be written in m atrix form as^

^   ̂Lmn^n 9m (2.32)

^The particular choice =  /„  is known as Galerkin’s method.

'‘Observe that the matrix may be either of infinite or finite order, depending on the definition 

of basis and testing functions.



2.2. The M ethod o f M om ents 14

or

La  =  g (2.33)

where^

L =  [Lmn] =  {Wm, Lfn)  (2.34)

9 =[9m] = {'Wm,g) (2.35)

The solution is then given by

a  =  L~^g (2.36)

provided that the matrix L is non-singular. The solution

f  =  Z ^ a n /n  (2.37)
n

may be exact or approximate depending upon the choice of the basis and testing 

functions.

2.2.1 Point m atching

The integration involved in evaluating (wm, Lfn)  of (2.34) is often difficult to per

form in problems of practical interest. A way to obtain an approximate solution 

of (2.30) is to force the equation to be satisfied at discrete points in the region of 

interest. This procedure is called point-matching method. It is equivalent to use 

Dirac delta functions (defined in section A.3) as testing functions.

2.2.2 Subsectional (subdom ain) bases

An approximation useful for practical problems involves the use of basis functions 

fn each of which exists only over subsections of the domain of / .  As a consequence,

“To express a vector v, the following notation is employed; v =  [w„] =  [ui,u2> • • •]■
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each q;„ of the expansion (2.29) affects the approximation of the domain of /  only

over a subsection of the region of interest. This technique usually simplifies the eval

uation of the matrix terms. Sometimes it is convenient to use the point-matching 

method in conjunction with subsectional bases.

2.3 Example: using the EFIE to estim ate TM-wave scat

tering by PEC cylinders in two dimensions

Figure 2.2: Scattering from a PEC cylinder of radius a. The TM^ electric plane wave 
illuminates the cylinder from x =  —oo. The cylinder extends from z  — —oo to oo.

Consider the case (illustrated in Fig. 2.2) where a - T M ^  plane wave is incident on a 

PEC cylinder with its axis along the z axis from —oo to oo. In this case, the current 

density on the surface of the cylinder does not depend on z. For the geometry of 

Fig. 2.2, the surface integro-differential equation is scalar and the vector notation 

may be abandoned, considering instead the z components of the electric field and 

current density, E i  and Jz, respectively. Hence, (2.21) becomes

y

X

(2.38)

where it is assumed that the homogeneous space exterior to the PEC cylinder is
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free space (A:̂  =  w^eo/io)- Moreover it follows from (2.24) that

^  = [  I  Jz{^',y')G{\r -  T^'\)dx'dy'dz' (2.39)
Jz '6 (—oo,co) JC

where C is the cross-section of the cylinder at any value z! and

g - jA : |r - r 'l

where r and r' G C. The integral can be further simplified to

A = [  J;,{x',y')dx'dy' f  G { \ t  -  r'\)dz' (2.41)
Jc J z'£(—oo,oo)

giving [18]

A =  f  Jz{x' ,y ')^ .Ho^\ky/[{x  -  x ' ^  + (y -  y'y])dx'dy' (2.42)
Jc  ^3

where is the zeroth order Hankel function of second kind. Thus, the following 

integral equation must be solved for

f  y ' ) H f \ k y / [ { x  -  x 'Y  +  (y -  y'y\)dx'dy'  (2.43) 
Jc

where {x,y) e  C  ajid {x',y') G C. (2.43) may now be discretised using the Method 

of Moments (MoM), introduced in section 2.2.

2.3.1 A pplication o f the M ethod o f M om ents (M oM )

The first step in the discretisation of (2.43) consists of replacing the actual contour 

C  with a piecewise linear approximation. C  is modeled using a set of connected 

flat strips, labelled as D^, i = 1 N.  Obviously, this approximation becomes more 

accurate as the size of the domains Dj reduces. The error introduced can be defined 

as the modeling error.
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The discretisation of may be achieved using pulse basis set, i.e.

N

J z { x , y ) - Y ^  JnPn{x,y) (2.44)
n = l

where the set of functions p n { x , y ) ,  n  =  1 ■ ■ ■ N ,  are defined

Pn(x,y) =
1 if {x, y) 6

(2.45)
0 otherwise

The functions p„(a:,y), n  =  are called pulse basis functions. The error

introduced in this step can be defined as the discretisation error. At some positions, 

depending on the geometry of the scatterer, a  given pulse basis function set may 

not be able to efficiently represent the true current. This is the case of a strip, 

for example, where an approximation produced using a set of pulses results in a 

poor agreement® with the expected behaviour of the current (which is singular, 

as described in [30]) at the edges of the strip. In such cases, [31] a hybrid basis 

set can be employed to provide a better accuracy. Near the edges of the scatterer 

triangular pulses or functions th a t possess a singular behaviour may be employed 

to approximate the current. Upon substitution of (2.44), (2.43) becomes

where tti =  1 ■ ■ • iV and 5(-) is the Dirac function, the following m atrix  equation is 

obtained

HQ^\k^y[{x -  x ' y  + { y -  y'y])pn{x', y')dx'dy'{2A6)

Choosing the set of testing function (see section 2.2)

(2.47)

Ei{xra,ym) = z  Jn /  H^^\ky/[{xm ~  x')‘̂ +  {y^ ~  y'^Ddx'dy' (2.48)
4o;eo ^  J n

®Unless, obviously, very short pulse functions are used.
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or

(2.49)

where Zmn is the impedance matrix defined as

J d^
[  -  x 'Y  +  (?/„j -  y’Y'\)dx'dy' (2.50)

Typically (2.50) must be evaluated numerically. Observe that there are two distinct 

cases: the first is when m  ^  n, then the function

can be integrated numerically without any difficulty, being continuous over the 

domain the second and more difficult case is when m  = n, then the integrand 

is singular and care must be taken in carrying out the numerical integration. It 

is important to point out here that the integral exists and is bounded^ although

quadrature method is not sufficient for an accurate evaluation of the self-terms 

Zmm of the matrix. The self-terms of an impedance matrix are relatively large 

(they take into account for electromagnetic self-interaction of the current residing 

on a surface domain) and their accurate evaluation is critical. This is also true in 

the three-dimensional case. This issue will be considered in chapter 6 . For the time 

being, it is sufficient to say that when m  = n  the impedance matrix self-term can 

be approximated by [13]

(2.51)

the function (2.51) is singular when {x',y') 6 D^. The application of an ordinary

4
(2.52)

where Wm is the length of the flat strip Dm and 7  =  1.78107. Another type of error 

has been introduced, which can be defined as approximation error associated with 

the evaluation of the integrals by quadrature techniques.
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Hence, the discretised integral equation

~  ^  ] ZjjinJji (2.53)
n — \

must be solved, where the incident field Ei{x, y) is a TM^  plane wave (see Fig. 2.2).

= (2.54)

and r =  xx +  yy,  k =  x  (the incident wave impinges the cylinder from —oo).

(2.53) was set up for the problem illustrated in Fig. 2.2 with a =  3A, where A is 

the wavelength of the incident radiation; A =  2'K/k. The number of unknowns was 

chosen to be AT =  81 for this example. This number corresponds to a density of 

about 4 cells (intervals where the current is assumed to be constant) per wavelength.

In [21], pp. 43-44, it is reported that an overall accuracy of 1% in the current 

density may be obtained for this case increasing the cell density up to 32 cells » 

per wavelength. The matrix equation was solved using the CG iterative scheme 

introduced in section 2.7. The number of iterations necessary to solve the matrix 

equation was 31. Fig. 2.3 illustrates the current density obtained using the MoM- 

CG procedure. The horizontal axis relates to the polar angle cj) of any point {x, y) 

on the cylinder surface: (a;, y) =  a(cos 0, sin ^), where a is the radius of the cylinder. 

The current density is illustrated as a function of (f).

The current behaviour is non-sniooth, in contrast to the exact solution reported in 

[21], the reason being that the number N  of samples employed in this case is small. 

Fig. 2.4 illustrates the current density behaviour (for 0 <  ^  < tt) when N  — 300 

and N  =  900. Smoothness is gradually achieved as the number of unknowns is 

increased.

2.4 MFIE for TM-wave scattered from PEC cylinders

It is obvious that also (2.22) may be discretised and solved numerically. The dis

cretisation procedure is derived in [21], pp. 240-243, here the final form of the
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Figure 2.3: EFIE results for the problem of Fig. 2.2: amplitude of current density on 
the surface of the cylinder versus degrees. The number of miknowns is 81 and the radius 
of the cylinder is a =  3A.

resulting matrix equation is reported and the results of its solution are shown for 

the same example geometry discussed in the EFIE case. The MFIE matrix equation 

for the T c a s e  is

N

( ^ m ;  2/771) —  ^  ^ ^ m n J n (2.55)

where

= -cos{9 -

^ T T L T l  -----

So
2 if m =  n

^ m H ' i \ k R m ) d x ' d y '  otherwise

(2.56)

(2.57)

and

^rn =  sin(fi^) +  COs(r^^)(^ " '^ ^  ^

(2.58)

(2.59)
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Figure 2.4: EFIE results for the problem of Fig. 2.2 when the number of imknowns is 
300 and 900.

Referring to Fig. 2.5, is the polar angle related to the unit vector normal to 

the surface of the scatterer at the point Um)'- n =  cos(nm)x + sin(Qm)y, Co is 

the free space impedance; Co =  \//^o7^-

The results obtained by solving (2.22) numerically are illustrated in Fig. 2.6. They 

are in good agreement with the results returned by the EFIE discussed in the 

previous section. The non-symmetry of the result of Fig. 2.6 is due to the small 

number N  employed for the discretisation of (2.22). Indeed, a better solution is 

illustrated in Fig. 2.7 for the case where N  =  900.

2.5 CFIE for TM-wave scattered from PEC cylinders

At this stage, it has been shown that the current density residing on the surface

of a PEC closed scatterer satisfies both the EFIE and MFIE. However [17], both

the EFIE and MFIE are affected by non-uniqueness. The uniqueness of EFIE fails

at those values of k for which there are interior modes of resonance^ for a closed

^As defined in [3], in the loss-free case, electromagnetic fields can exist within a source-free 

region enclosed by a perfect conductor. These fields can exist only at specific frequencies, called
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n

0

Figure 2.5: Cylinder cross section and parameters used in the MFIE (2.55): k is the 
unit vector associated with the plane wave illuminating the scatterer, 6 is the angle of 
incidence, Rm  is the distance between the integration point (x', y') and the observation 
point {xm ,ym ), n  is the normal miit vector and is the polar angle associated with n.

scatterer. Similarly, the uniqueness of MFIE fails a t those values of k for which 

there are interior modes of resonance. To illustrate the effects of non-uniqueness, 

refer to Fig. 2.8 where the current density amplitudes obtained either using the 

EFIE and the M FIE are illustrated, assuming the radius of the cylinder such tha t 

ka = 2.405. Here, the results returned by M FIE and EFIE differ substantially 

because while the EFIE renders a solution only the MFIE returns the correct one.

The question arises: what occurs numerically when the EFIE is solved a t a resonant 

value of k? At these frequencies the integral operator of the EFIE has a non-null 

set of eigenvectors (functions) for the eigenvalue 0. Thus, to each solution of the 

integral equation due to an external excitation (the incident wave) may be added 

the eigenfunction corresponding to the null eigenvalue and the resulting function 

is still a solution of the original problem. Numerically speaking, in the implemen

tation of the EFIE, the m atrix of the algebraic system is nearly singular and the 

solution becomes highly unstable as it is illustrated in Fig. 2.8. The same be

haviour is exhibited by the MFIE at magnetic resonant frequencies. Nevertheless,

resonant frequencies.
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Figure 2.6: MFIE results for the problem of Pig. 2.2; amplitude of current density on 
the siurface of the cyhnder versus degrees. The number of vmknowns is 81 and the radius 
of the cylinder is a =  3A.

as Jones points out [17], if a choice has to be made between EFIE and MFIE, the 

better gambit is the MFIE. In fact, the MFIE is classified as an integral equation 

of the second kind (i.e. the unknown function appears either inside and outside 

the integral operator), for which the theory has broader foundations. Moreover, in 

order to achieve a better accuracy, the size of the algebraic system usually is in

creased subdividing the scatterer in smaller flat strips. While this operation affects 

the whole matrix of the EFIE by decreasing all its elements, which are integrals 

evEiluated over the smaller domains, it does increase the diagonal dominance of the 

MFIE matrix which does not become ill-conditioned (see [17]), as may be verified 

referring to (2.57).

An alternative formulation that provides unique ajid stable solutions for all closed 

scatterers at all frequencies is the Combined Field Integral Equation (CFIE), which 

is a linear combination of the EFIE and MFIE:

C F I E  = {h)EFIE  +  (1 -  b )M F IE  (2.60)

where & is a real number between 0 and 1. The penalty is that (2.60) becomes more
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Figure 2.7: MFIE results for the problem of Fig. 2.2: amplitude of current density on 
the sxu-face of the cylinder versus radians. The number of imknowns is 900 and the radius 
of the cylinder is a =  3A.

complicated and requires a greater computational effort to calculate the impedance 

matrix entries. The proof of CFIE uniqueness is given in [21], pp. 241-242, and it 

is based on the fact that when the incident field is null, the flow of power into the 

scatterer interior must vanish and this implies, if & 7̂  0 and b ^  1, that the surface 

tangential fields evaluate to zero: the CFIE has no interior resonance solutions 

unless 6 =  0 (MFIE) or & =  1 (EFIE). Fig. 2.9 shows the results returned by 

the CFIE for a circular cylinder of radius a such that ka =  2.405. CFIE result 

obviously matches MFIE result, as expected, for b = 0.7 (the value 0.7 was chosen 

following the suggestions given by Jones [17]). It must be emphasised that the CFIE 

approach is not the only way to combat the defect of non-uniqueness of either the 

EFIE or MFIE. Another approach eliminates the resonant solutions by modifying 

the resultant matrix equations, for example using additional equations obtained by 

extending the boundary conditions into some interior points, as described in [32].
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Figure 2.8: EFIE/MFIE results for the problem of Fig. 2.2 when ka =  2.405. The MFIE 
solution is not affected by non-uniqueness problem. The EFIE solution instead shows 
instability due to numerical errors caused by non-miiqueness.

2.6 M oM  solution  of this EFIE in three-dim ensions

Recalling the integral equation (2.21) and the definition of scattered electric field 

Eg given in section A.2, it is readily found that the scattered field may be obtained 

in terms of the vector potential A  and the scalar potential $  [33]

E , =  - j i v A  -  (2.61)

where

and

-jkR1 r

It is assumed that the medium surrounding the scatterer is free space, R =  |r — r'] 

is the distance between an arbitrarily located observation point r and a source
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Figure 2.9: CFIE results for the problem of Fig. 2.2 when ka =  2.405: The CFIE given 
in (2.60) has been implemented with b = 0.7 and the nmnber of unknowns is 81.

point r' on 5. The function a  is the surface charge density, related to J 5 using the 

continuity equation

2,6.1 D evelopm ent of basis functions

To facilitate the discretisation of the integral equation (2.65), first the surface S  

may be represented as an aggregation of simple domains. This operation is often 

called surface patch modeling. Planar triangular patch models are particularly 

appropriate. They are able to approximate any surface or boundary and their 

density can be varied accordingly to the local resolution required. It is hence 

assumed that the surface S  is modeled in terms of an appropriate collection of

V' • J s  = (2.64)

The EFIE becomes then

(2.65)



2.6. M oM  solu tion  o f th e  E FIE  in th ree-d im en sion s 27

T+{A+)

Figure 2.10: A triangle pair over which the RWG basis function fn(r) is defined.

triangular facets, with edges, vertices and boundary edge^. Using this surface 

model, it is possible to introduce the Rao-Wilton-Glisson (RWG) basis set for the

everywhere else on S  except on the pair of triangles attached to the edge. Referring 

to Fig. 2.10, let the edge associated with the n-th basis function be the two

triangles where the basis function f„ does not vanish are referred to as and T ~ .

The plus or minus superscripts are determined by the choice of the positive current 

reference direction for the n-th edge: the current is assumed to flow across from 

to T ~ . The basis function associated with the edge n is defined as follows

where the position vector ^  is defined with reference to the vertex of T+ opposite 

In and lies within T^, as illustrated in Fig. 2.10. Similarly is defined is the

normal to the edge itself or not. For example, the edges on the perimeter of a triangular mesh 

associated with an open surface are boundary edges.

current. Each RWG basis function is associated with an interior edge and vanishes

otherwise

(2 .66)

*Given a triangiilar patch, three edges axe associated with it. Each edge can be an interior 

edge or a boundary edge whether if the surface electric current located on S  has a component
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area of the triangle T+ and A~ is the area of the triangle T ~ . Finally, as already 

pointed out, /„ is the length of the edge n. The basis function f„, used to represent 

the surface current Jg, has several important properties which are listed below.

it does not vanish* .̂

•  The component of current normal to the edge associated with it is constant 

and continuous across the edgê ^̂ .

•  The surface divergence of the basis function is constajit over each triangle:

where ^  is the value of ^  at the centroid of and a similar definition 

holds for ^ .

After having identified a suitable set of basis function for approximating the surface

the coefficients Each coefficient /„ may be interpreted as the normal component 

of current density flowing across the n-th edge. This is due to the fact that the 

three different basis functions will be defined over the ra-th edge, but only that one 

associated with it, i.e. f„, has a normal component across it, which is constant (see 

properties listed above).

®This property guarantees the non-existence of surface charge at the perimeter of an open 

surface, as physically expected.

Given the unit vector 1„ aligned along it is 1„ x f„ = 1.

•  The current has no component normal to the boundary of the domain where

otherwise

(2.67)

•  The moment of the basis function is given by (A+ +  A „)f“*'®, with

(2 .68)

current 3s,  i.e. J 5  it is useful to consider the physical significance of



2.6. MoM solution of the EFIE in three-dim ensions 29

2.6.2 Testing th e  EFIE

To carry out the MoM solution of (2.65), the next step is to select a testing pro

cedure, i.e. (2.65) is enforced at some points of S. A basis function set has been 

defined, now a testing function set must be chosen. The optimal approach is called 

Galerkin’s method and defines the testing functions to be identical to the basis 

functions f„. Then the integral equation (2.65) can be tested as

(n X Ei, im) =  (n X ( j u A  + V $ j , f^) (2.69)

where the inner product is defined as follows

(t ,g) =  f t  ■ gdS  (2.70)
Js

Thus, it is possible to write

(E i,f^) =  (jo;A ,f„) +  (V $ ,f^ ) ' (2.71)

MaJcing use of vector algebra identity and the properties of at the edges of 5  

[33], the equation is reduced to

(Ei, fm) = { ju A , fm) -  /  $V 5 • fmdS (2.72)
J s

where V 5  is the surface divergence operator^^. Now, note that the inner products 

{jwA, fjn) and (V #, f^) may be evaluated with a single-point numerical quadrature 

formula using the value of A and $  at the centroid of the domain. Specifically, for 

the integral involving $  it may be written

[  i Vs - f^dS  =  i j ^  [  i d S ~  / ' _ W s ) « i „ ( 4 ( 0 - 4 . ( C ) ) { 2 . 7 3 )
* ^ 3  \  771 ' ^ m  TTL J t -  /  ^  '

where is the position vector associated with the centroid of T+ and is the 

position vector associated with the centroid of (this means that the function $

^^For example if a rectangular coordinate system is defined in the plaaie of the triangular patch, 

i.e. dS — dxdy, then the V s operator may be expressed as +  ^ y .
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is evaluated at these points and it is assumed that does not vary substantially in 

the surface domain considered so that it may be considered constant) Similarly 

for A it can be written that

<A, f„) =  A . pidS + ^  A ■ Airfs) «
\  771 Jl 771 TTh L f j i  /

| ( A ( 0 - , f „ + + A ( r - ) - « - )  (2.74)

At this stage all the mathematical tools necessary to discretise the integral equation

(2.72) are provided. In the next section, the matrix equation is derived.

2.6.3 Derivation of the m atrix equation

Recalling that the current is approximated by the sum

N

J , ( r ) ^ ^ / „ f „ ( r ) .  (2.75)
n = I

and given the fact that the two potential fields A and $  depend on J* and a:

- j k R

J s -
's

1 r  p - j k R

(2.72) is discretised as

N

Vm = J2^rnnIn  (2.78)
n=l

where

‘̂•^Obviously this one-point qucidrature rule may be improved applying the usual numerical 

integration techniques, such as Romberg or Gauss rules, described in [21], pp. 525-530.
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and

=  (2.80)

with

4  + 
^ m n = » “ >

1 r

R i = 1C  -  r'l (2.83)

and

E+ =  B i ( 0  (2.84)

Similar definitions hold for and E “ with the obvious difference of

sign. Once all the necessary elements are evaluated, one may solve the resulting 

system of linear equations (2.78) for the unknown vector of coefficients n =  

I - - - A T .

2.7 The Conjugate Gradient (CG) m ethod

In this section, the matrix equation (2.78) is denoted as Z I  = V  and it is of interest 

to evaluate the vector of coefficients I  = [Ii- ■ -/iv]. The procedure here outlined is 

iterative and the number of the iteration will be indicated by a superscript. Hence, 

the estimate of the vector I  at the m-th iteration will be Z'". Also, Galerkin’s 

method is considered. As described in [33], this yields a symmetric impedance 

matrix Z.

To determine the surface current density distribution in terms of basis functions, 

the system of linear equations (2.78) must be solved. Among various techniques
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available, the most suitable appears to be the Conjugate Gradient (CG) method, 

developed independently by Stiefel and Hestenes and given in [34]. The CG method 

is an iterative method which terminates in at most N  steps (if N  is the size of the

of the solution I. Referring to (2.78), at each step the residual — V  ~  Zl'^ is 

computed and if no round-off error is encountered one will reach an estimate 

(m < N) at which = 0. This estimate is the desired solution I. Obviously, 

since round-off errors always occur, the estimate at step , will not be the

exact solution I  but will be a good approximation of it. One could restart with the 

estimate as the initial estimate /^, so as to diminish the effects of the round-off 

errors. In the CG method, the error vector /  — /* is diminished in length at each 

step k. However, the squared residual \V — — )r*p normally oscillates and

may even increase at each step (except for the last). The CG algorithm has a very 

simple structure and its implementation is straightforward. Referring to (2.78), 

starting with an initial guess , the two following quantities must be computed:

method, Z is symmetric). Then the iteration starts and for each i > 1, the following 

quantities must be evaluated sequentially:

unknown vector) if no round-off errors are encountered. Starting with an initial 

estimate of the solution, say one determines successively new estimates P  ■ ■ •

(2.85)

=  Z*r^ (2 .86)

where Z* is the transpose-conjugate of the matrix Z  (in the case of Galerkin’s

I  7 » ^ i | 2

a (2.87)

j(i+i) ^  j i  + (2.88)

(2.89)

(2.90)
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p(i+l)  ^  +  Jjipi (2.91)

The iteration is stopped when the residual error — V  — Zl'^ is less than a certain 

constant fixed a priori A detailed analysis of the CG theoretical foundations is 

beyond the scope of this section. At this stage, it is sufficient to briefly refer to [35] 

where an exhaustive survey of the most popular methods for the solution of large 

matrix equations is given. The most important features of the CG method are

•  The core storage required is iV̂  +  6N  +  2.

•  The number of arithmetic operations required is 2N'  ̂ -f 6N  per iteration.

By comparison with other popular methods, it is found that the application of 

the CG algorithm to the analysis of large bodies scattering by the moment method 

yields to stable, reliable, consistent and accurate results faster than any other meth

ods currently used. Convergence of the algorithm has been analysed and charac

terised in [36] aiid [37]. As an observation, it hcis been reported in [10] that roughly 

Pc{Z)  iterations are required to produce accuracy to P  decimal places, where c{Z)  

is the condition number*̂  ̂ of Z.

2.8 The Conjugate Gradient-Fast Fourier Transform (CG- 

FFT) m ethod

The MoM-CG is not the only technique available to solve the EFIE in the three- 

dimensional case. For planar scatterers, there exists an alternative approach to 

the solution of the EFIE, which is elegant, simple to implement and faster than 

the MoM-CG. This technique is based on the fact that the integro-differential op

erator which relates the electric current density to the electric scattered field is a 

convolution for the case of planar scatterers. Using this fact, it is possible to use

^^The condition number is a non-negative number used to estimate the amount by which small 

errors in the right hand side of the equation Z I  =  V,  i.e. F , or changes in Z  itself, can cheinge 

the solution I.  The condition number is defined in terms of a particular matrix norm.
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the Fourier Transforms of the fields to efficiently compute the integrals at each 

iteration of the CG algorithm. MaJcing use of the Fast Fourier Transform (FFT) 

[38] algorithm, this step is accomplished by N l o g N  operations instead of iV̂  oper

ations which characterises a matrix-vector multiplication CG-algorithm using the 

MoM-CG approach.

To elucidate the Conjugate Gradient-Fast Fourier Transform (CG-FFT) method, 

recall the integral equation (2.65); in the case of a planar^^ scatterer S,  located in 

the {x, y) plane, this becomes

E f ( x , y ) \  r {  J%{x',y')
f ^  n ' G{R)dx 'dy ' ^El{x,y)  J  J s \ J l [ x \ y ' )

where

Jt
dx
A
dy

g - j k R

/.(:
js  ^  (2.92)

G(R)  =  —  (2.93)

and

R  =  y/(x -  x ' y  + {y -  y 'Y  (2.94)

Now, each of the two surface integrals in (2.92) is a convolution; the first is a 

convolution of the the current density J s  and the Green’s function G and the 

second is a convolution of the derivative of the current density components and 

the Green’s function. The right-hand side of (2.92), if discretised by using a RWG 

basis set, returns the impedance matrix-vector multiplication of the MoM. Let Z  

be the integro-differential operator which relates the electric current to the incident 

electric field. Then, because of the convolutional property of Z,  it may be written

^^The X and y  components of the electric field and current axe indicated by the suitable 

superscripts.
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.  I  ~  I  CO/^O ^ x )  k x k y  \  f  J g { k x , k y )  . .
Z 3 s = = F F T - H G { k x . k y ) \  _  _  . (2 .

that

k x k y  ( lO 6q^ 0  J

where u  =  fc /̂eo/̂ o and where G{kx,ky) is the Fourier transform of G{x,y)

/ oo poo

/  (2.96)
OO J — o o

Similar definitions hold for the two components of the electric current density and 

the symbol FFT relates to the operation of evaluating the Fourier Transform of any 

function, using the fast algorithm [38]. The samples of the surface current density 

components may be thus determined by a CG scheme. At each iteration i of the 

CG algorithm the new Fourier Transform of is evaluated and each sample of the 

array FFT{J^g)  at a pair of coordinates { k x ,  k y )  in the transformed domain (using 

a popular terminology, the A:-space) is multiplied by the term F F T { Z )  which is a 

function of the pair { k x ,  k y )  and of the Fourier transform of the function G. The 

iterative process is halted when the residual error between the incident field and 

the field scattered by the estimate of the electric current is less than a threshold 

value. The author has experienced that the number of iterations needed to solve the 

EFIE by the CG-FFT is in general greater than that one needed by the MoM-CG 

procedure. However, a single iteration of the CG-FFT is much faster than in the 

MoM-CG case. The CG-FFT method is illustrated in detail in [21], pp. 170-175. 

Further insight can be derived referring to [39]-[42].

2.8.1 One-Iteration FFT algorithm

This section is dedicated to an important point which arises in the discussion of 

the CG-FFT method. Recalling (2.92), it may be written that

/  E f { k x , k y )
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Now, it may appear possible first to solve the equation in the /c-space, which is a 

linear m atrix equation for each pair { k x ,  k y )  and successively calculate the unknown 

functions using an inverse FFT. Thus only one step of the iterative scheme would 

be necessary. However, this reasoning is misleading because when the convolution 

of the Green’s function and the current or its derivatives is performed, the resulting 

function is defined over a domain of the plane {x, y) which is larger than the domain 

S. The value of the scattered field is known only on 5: it is equal to the incident 

field by boundary conditions. Thus, not all the necessary information is supplied 

for the solution of the integral equation in the A:-space. In other words, to carry out 

the calculation of the unknown current using a one-step scheme is possible only if  

the scattered field due to the current is known over a domain larger than the planar 

surface of the scatterer S. It is interesting to explore whether an approximation to 

the scattered field outside the domain S  can be suggested in order to evaluate the 

current in one step with sufficient accuracy.

Suppose to have a PEC strip of length L  located over the x  axis and of infinite 

size over the z direction, i.e. the domain S  is the set x  6  [0 , L], 2: G (—00,00) and a 

TMz plane wave is normally incident upon it. Thus, the integral equation becomes

1 = ^  f  J ,{x ')H S ^\k \x  -  x '\)dx' (2.98)
4 J o

for

x g [0,L] (2.99)

Hence, the approach to follow is first, truncate the Hankel function HQ^\k\x\), say 

between —L and L and evaluate the FFT of the function obtained; next, assuming 

th a t the scattered field given by the integral in (2.98) vanishes for x  outside the 

interval [0, L], perform an FF T  of the resulting field, i.e. the pulse function which 

is 1 for X G [0,L]. Finally the electric current density can be evaluated by an 

inverse FFT of the quotient between the two FFTs of the resulting field and the 

Hankel function respectively. Numerical result for this example are given in the 

next section.
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2.9 Numerical results

In this section, four sets of results are provided. The first set relates to the section 

2.8.1. The other three sets of results demonstrate the application of the EFIE to 

calculate the three-dimensional electromagnetic scattering by a square flat plate 

and a circular disk.

2.9.1 Exam ple o f application o f the CG -FFT m ethod

Truncated Hankel function
2.5

1.5

0.5

0.5 2.5- 0.5
M eters

Figure 2.11: Plot of the amplitude of the truncated Hankel function. The interval of 
interest, where the electric current is located, is x €  [0, L], with L =  Im =  32A.

Fig. 2.11 is the amplitude of a truncated Hankel function as used for the inversion 

of (2.98). A strip of length L  =  32A =  Im  is illuminated normally by a plane wave 

with wave-vector of amplitude k  — 27t/A. The frequency of sampling employed in 

the FFT is 8 samples per wavelength. The truncated Hankel function is defined over 

the interval x  G [—1,1] and zero elsewhere. The result of the computation of the 

FFT of the truncated Hankel function is illustrated in Fig. 2.12. Assume that the 

field scattered by the unknown current is equaJ to the incident field over the strip 

(this is exact by boundary conditions) and zero elsewhere. The FFT of this field is 

then divided by the FFT of the Hankel function. The result is an approximation
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Figiire 2.12: Amplitude of the Fourier transform of the function illustrated in Fig. 2.11. 
This is the result of an FFT performed over the samples of the Hankel function (frequency 
of sampling: 8 samples per wavelength).

of the FFT of the unknown electric current. By inverting this quotient, using an 

FFT operation, the electric current density over the strip is found. The result 

is illustrated in Fig. 2.13, where also the exact MoM solution, obtained using a 

discretisation of the integral equation (2.98), is given. It is evident that the result 

of the integral equation in /c-space is completely reliable and is produced using a 

procedure having complexity of 0 { N \ o g N ) ,  if N  is the number of current samples. 

The CG algorithm requires instead operations per iteration. It is now interesting 

to compare the field due to the current distribution evaluated by a CG algorithm 

and the approximated field that has been employed to calculate the current using 

an FFT algorithm. The result is given in Fig. 2.14, where it can be seen clearly how 

the scattered field due to the CG current equalises the incident field over the strip 

location and, as for the amplitude, decays rapidly to less than 10% of the incident 

field outside the interval [0,L]. The field of the FFT method is also illustrated: it 

has been assumed that it is zero outside the strip location. Obviously, the latter 

approximation permits to achieve the excellent agreement of Fig. 2.13 due to the 

fact that the actual field rapidly tends to zero outside [0, L].
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Figure 2.13: Amplitudes of the electric current density evaluated using an one step FFT  
algorithm and the usual MoM, discretising the integral equation and solving the resulting 
matrix equation. The two functions perfectly match over the interval of interest x € [0,Xj, 
with L — Irn.

2.9.2 Three-dim ensional case: EFIE results for sim ple geom etries

Fig. 2.15 illustrates the surface patch model for a square fiat plate of side equal to 

I m  = X. This scatterer is described in terms of triangular patches, and an integral 

equation analysis has been carried out to evaluate the electric current density on 

the surface of the plate when a plane wave is incident normally upon it. Referring 

to Fig. 2.15, the horizontal direction is the x  direction while the vertical direction 

is the y  direction hence the propagation vector is parallel to the 2: direction.

The amplitude of the x  component of the current density is presented in Fig. 2.16 

along the line x  =  L /2, where L is the length of the side of the plate and (x, y) G 

[0, L]. The number of unknowns in this case is 176.

Fig. 2.17 shows the surface patch model for a circular disk of radius a =  I m  — 2A. 

Again the scatterer is described in terms of triangular patches more refined at the 

centre of the disk. The incident electric field is due to a dipole located normally 

over the centre of the disk at a height 0.1a. In this case, 792 edges (unknowns) 

are sufficiently necessary to represent the surface current density over the scatterer.
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Com parison of fields
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Figure 2.14: Amplitudes of the electric fields obtained using two different calculations. 
The dashed line represents the amplitude of the electric field returned by the convolution 
of the electric current and the Hankel function respectively illustrated in Fig. 2.14 and 
Fig. 2.11. The result is the known term of the equation in the A:-space, i.e. the incident 
field in the interval [0, L], with L =  Im and 0 elsewhere. The field due to the current, 
i.e. the scattered field, evaluated by numerical integration is the solid line; it equals the 
incident field over the interval [0, L] and decays outside the interval, but it is not zero.

which is illustrated (its amplitude) in Fig. 2.18 against the radial length.

Finally, in Fig. 2.19 and Fig. 2.20 the current distributions along the cut over the 

vertical (y) direction and horizontal (a:) direction axe given for a square flat plate 

of side of length I m =  2A illuminated normally by a plane wave. The result in Fig. 

2.19 is the x component of such current along the y  direction in the middle of the 

square when the number of unknowns is 736. In Fig. 2.20, the upper graph is the x 

component of the current along th x direction in the middle of the plate when the 

number of unknowns is 225. The lower graph is the result of Fig. 2.19. Obviously 

the values of the functions are the same around the centre of the plate.

All the results of the last set have been evaluated using a CG algorithm for the 

solution of the MoM matrix equation. The self-terms of such matrix have been 

evaluated exploiting the fully numerical technique proposed in [76] and presented 

in section 6.2 of this thesis. The results for the square flat plate of side of length A 

(see Fig. 2.16) can be compared with [33], Fig. 6. The results given for the circular
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Figure 2.15: Surface patch grid employed to model the electric current density over a 
square flat plate.

disk (see Fig. 2.18) can be instead verified against those reported in [43], Fig. 3. 

Finally the result presented for the case of the square plate of side of length 2A can 

be compared with Fig. 10, [44].

2.10 Sum m ary

In this chapter, the integral equation formulation of electromagnetic scattering 

problems was presented. In the first section the mathematical derivation of the 

equivalence principle stated in section A.2 was first described by introducing the 

Green’s function. Specifically, at the end of section A.3, the expression of the EFIE 

and MFIE was derived in the case of electromagnetic scattering by perfectly con

ducting bodies. Application of the EFIE to the case of a T p l a n e  wave scattered 

by a two-dimensional (infinite) circular cylinder was then shown. The method of 

moments, a discretisation procedure of the continuous field integral equations was 

briefly illustrated. The application of this method produces a matrix equation 

which may be solved using standard matrix solution algorithms. For the EFIE 

arising in the case of electromagnetic scattering by a two-dimensional cylinder, the 

method of moments basis functions were chosen to be pulse functions and the inte-
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Figure 2.16: Amplitude of the horizontal component of the electric current density over 
the square flat plate at a cut over the vertical direction in the middle of the square. The 
number of unknowns, i.e. the number of non-boundary edges, is 176. The incident electric 
field is assumed to be directed along the horizontaJ direction and propagates normally to 
the plate. The side of the plate is A.

gral equation was forced at the centres of the domains of the pulse basis functions. 

This operation was defined as testing. As discussed in [7], practical issues must be 

addressed during the selection of basis functions:

• the desired accuracy of the approximate solution;

• the complexity of the matrix entries;

• computational requirements that place an upper limit to the size of the ma

trix.

After having solved the EFIE, the MFIE has been formulated for the same prob

lem, i.e. scattering by an infinite cylinder. Numerical results were presented to 

demonstrate the accuracy of the solution of both integral equations. For closed 

PEC scatterers, both the EFIE and the MFIE are affected by non-uniqueness. It 

was shown that when the radius of the cylinder satisfies a particular condition, the 

EFIE solution is highly unstable and inaccurate. To overcome this difficulty, the
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Figure 2.17: Surface patch grid employed to model the electric current density over a 
circular disk.

CFIE was introduced.

The EFIE for three-dimensional scatterer was presented. The RWG vector basis 

functions were introduced and the EFIE was discretised using the MoM approach. 

The resulting matrix was derived. The linear system of equations must be solved 

to determine the unknown coefficients of the basis functions. The CG algorithm 

is a well-known technique to solve matrix equations. It is an iterative method 

which require 0{PQ)  operations, where P  is the number of iterations and Q is 

the operation count per iteration. The direct methods to solve matrix equations, 

such as the Gaussian inversion,, given for example in [12], possess a complexity^® 

of 0{N^),  where N  is the number of unknowns. It was shown that a CG-FFT 

implementation, restricted to planar scatterer^® has a complexity of 0{PNlog N)  

which is attractive when N  is large.

In the final section of this chapter, some numerical results were presented to il

lustrate the CG-FFT in the two-dimensional case and demonstrate the validity of

function /(n ) is 0{g{n))  if there exists a constant C  where /(n ) < Cg{n). 0{g{n)) is the 

asymptotic complexity, or complexity, of f[n).

^®0r, in geneicii, to integral equations with convolutional kernels.
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Figure 2.18: Amplitude of the electric current density over the radiaJ direction on the 
disk. The circulcir disk is of radius a =  2A and a vertical electric dipole Uluminates it 
from a point centred on the disk at a height of 0.1a. The number of edges is 792.

the RWG vector basis functions approach for three-dimensional scatterer. Numer

ical results also showed the accuracy of a novel numerical integration technique 

proposed in section 6.2 of this thesis for the evaluation of the self-terms of the 

impedance matrix. It was illustrated that for simple geometries, such as a square 

flat plate and a circular flat disk of transverse dimensions of order of A, an accurate 

implementation of the MoM requires as much as 10  ̂ unknowns. It is evident that 

for electrically large scatterers (of transverse dimensions of order of thousands of A), 

the CG solution becomes prohibitive: storage constraints preclude the possibility to 

store the entire impedance matrix and the number of operations become enormous 

if the convergence rate of the algorithm is not fast. For electrically large bodies, 

iterative methods must be suitably enhanced. This is the subject of chapters 3 and
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Figure 2.19: Amplitude of the horizontal component of the electric current density over 
the square flat plate a t a cut over the vertical direction in the middle of the square. The 
number of unknowns, i.e. the number of non-boundary edges is, 736. The incident electric 
field is assmned to be directed along the horizontal direction and propagates normally to 
the plate. The side of the plate is 2A long.
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Figure 2.20: Amplitude of the horizontal component of the electric current density over 
the square flat plate at a cut over the horizontal direction in the middle of the square. 
The number of unknowns, i.e. the number of non-boimdary edges, is 225. The incident 
electric field is assiimed to be directed along the horizontal direction and propagates 
normally to the plate. The side of the plate is 2A.
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THE FAST MULTIPOLE METHOD

Chapter 2 presented the integral equation formulation of electromagnetic scatter

ing by arbitrarily shaped bodies. Once discretised by the method of moments, the 

resulting matrix equation may be then inverted using the CG method which re

quires about 0 { N ‘̂ ) operations for the matrix-vector multiplications necessary to 

caxry out the iterative method. Rokhlin [47] developed a Fast Multipole Method 

(FMM) for acoustic wave scattering problems. The FMM has been applied to elec

tromagnetic scattering computation by Lu and Chew [48]. By taking into account 

the interactions between current elements more efficiently, the number of floating 

point operations needed to compute a matrix-vector multiplication is reduced to 

in two dimensions. The storage requirements associated with the method 

in two dimensions are also This allows the solution of electromagnetic

scattering by electrically large bodies.

This chapter deals with the description of the FMM method. First a short sec

tion is presented to get acquainted with the FMM terminology. The formulation 

developed by Lu and Chew is then described where upon some relevant numerical 

experiments are provided to demonstrate the validity of the FMM approximation 

and its application to the solution of the EFIE in the case of a simple problem. 

The final section of this chapter is dedicated to the formulation of the FMM in the 

three-dimensional case and recent enhancements are also described and referenced.

3.1 Rationale of the Fast Multipole Method (FMM)

In this section, the basic concept of the Fast Multipole Method (FMM) is described. 

Referring to Fig. 3.1(a), suppose to deal with a two-dimensional scatterer for which 

an EFIE has been set up and discretised using the MoM described section 2.2.
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Consider two groups of discretisation points. Each point is defined as a current 

element and geometrically is the centre of the interval where the pulse basis 

functions (2.45) are defined. The evaluation of the field due to the group Gi over 

Gi' of Fig. 3.1(a) is required. According to the typical approach, this field is given 

by

^  ̂ ^ Gl> ( -̂l)

where nj, I =  1 ■ ■ ■ L, are the L points of Gi, mi, I — 1 ■ ■ ■ L, are the L points of 

Gii and Z(mi,ni) is the impedance matrix element given in (2.50). It is assumed, 

without loss of generality, that the two groups contain the same number of points. 

Hence, to evaluate the L fields at the points of it is necessary to perform 

operations.

Assume now that it is possible to express the field due to Gj as a sum of plane 

waves and that this expression is valid outside a circle of radius ai enclosing all the 

current elements of Gi, as illustrated in Fig. 3.1(a). Then, the field over Gi' may be 

evaluated simply shifting these plane waves from the centre of Gf to all points mi. 

The plane waves illuminating the group Gf are emanated by each group of current 

elements outside the circle of radius aj< illustrated in Fig. 3.1(a). This is the main 

computational advantage of FMM: to group current elements, with reference to the 

centre of the group, to reuse this field for all the group to group interactions, such 

as the one illustrated in Fig. 3.1(a) and for each receiving group, such as Gj/ in 

Fig. 3.1(a), to disaggregate the plane waves incoming from all the groups outside 

the circle of radius ai'.

To establish further the basic foundations of the FMM, refer to Fig. 3.1(b). The 

FMM consists of aggregating the effect of L current elements of a group, to translate 

it to another group and to disaggregate it to the L current elements of the receiving 

group. It is like in a telecommunication network, where L neighbour points are 

efficiently connected to other L points through two nodes and a link between the 

nodes, using 2L +  1 branches instead of the branches necessary to provide all
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Figure 3.1: FMM main concepts: in (a) the field of two current elements of Gi, such as 
Ua and rif) is evaluated at two current elements of Gi', ttIq and mj,. The actions of the two 
elements Ua and n j are first aggregated a t the centre of the group Gi, then translated over 
the group G;/ and disaggregated at the points rua and mb- The term derived from the 
aggregation step may be reused for other interactions of Gi with different groups. The 
FMM main concepts may be illustrated using a network representation as in (b).

possible point-to-point connections.

3.2 Formulation of the FMM

Consider the surface integral equation which governs the scattering of a TM^ plane 

wave by a metallic scatterer S:

u)fMi
4

T  -  r'|)dS' = B r(r ), (3.2)
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where t  e S, is the induced current on the scatterer and is the incident 

electric field. (3.2) may be discretised to give:

N

with

=  E r iT m )  (3.4)

In = U r n )  (3.5)

^ 1  -  ^ lo g  if m =  n
Z m n = {  '  V (3.6)

(A:r^„) A„ if m ^  n

where =  (r^—r„ | is the distance between the points which interact. The matrix- 

vector multiplication ^mn^n is the main computational task in the execution

of the CG algorithm. The FMM speeds up this multiplication and decreases the

storage requirements associated with the implementation of a CG algorithm.

The main idea of the FMM has been explained in section 3.1 and employs the 

concepts of aggregation, translation and disaggregation illustrated in Fig. 3.1. In 

the two-dimensional case, the FMM is based on the following identity [48]

Hoh^'^mn) = - ^  J  ^mi'{oc)ai>i{a)^in{a)da (3.7)

where

and

c o s ( a - ^ „ , , ) ^  c o s ( a - ^ i „ )  ( 3  9 ^
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where in general (f)ij is the angle that the line Tij makes with the x-axis, i.e. the 

polar angle associated with rjj =  Tj — Tj. The series (3.8) is truncated by retaining 

2F  +  1 (p = —P  P)  terms, where P  is a finite integer. This operation is possible 

because the series is convergent, as described in [48].

Assume that the whole scatterer is partitioned into L groups of current elements 

and each group contains N/L  current elements where N  is the total number of 

current coefficients to be determined. Then, the field scattered by all non-near 

groups Gi at a point m  of group Gi' may be written as

^  /  dafi^,(a) y ]  a,,,(a) V ]  A„(a)/„ =  (3.10)
“  •'« leFFf  n e o ,

where indicates that the contribution from the near groups must be added to 

get Vm and the symbol FFii refers to the set of groups which are located not near 

the group Gf. The integral can now be replaced with a (^-point summation yielding 

the final expression

I I  a,.,(a,) E  A„(a,)/„ =  v ;  (3,11)
^  9=1 leFFi, neGi

Equation (3.11) is the essence of the FMM code; to evaluate the contribution due 

to the current elements of the group Gi over the group G f , first the aggregation is 

accomplished evaluating the sum

5 ]  A „ (c)/„  =  C ,(c) (3.12)
n ^ G i

then the interaction is translated from the centre of Gi to the centre of Gf using 

the operation

aiti(a)Ci{a) = Ai'i{a). (3.13)

Finally the incident contribution is disaggregated from the centre of Gi> to the point 

m

(3.14)
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Now, it is readily observed that the final step of the FMM operation is a phase 

shift operation to evaluate the field of a plane wave at the point m  e  G;/ once the

for all possible values of the variable a  which is related to the angle of incidence of 

the plane wave on the group G f. Hence, the FMM permits to transform the non- 

near interactions between groups of current elements into a sum of plane waves. 

The non-near interactions are strictly occurring via cylindrical waves, but they 

can be replaced with a suitable sum of plane waves. Then the implementation 

of aggregation and dissemination is simply done via a phase shift which depends 

only on the location of the current element relative to the centre of the group to 

which it belongs. In [48] it is suggested that the number Q of samples necessary 

to numerically integrate (3.7) is proportional to L, the number of groups, from 

sampling theorem. Moreover, it is argued that L = \ / N  is an optimum value to 

minimise the computational complexity of the matrix-vector multiplication, which 

drops down to in the case of a further nested version of the algorithm. The

memory requirements are similar to the operation count, but no formal expression 

is reported for them.

3.3 Some numerical results

In this section, some numerical results are presented to validate the FMM approxi

mation using the algorithm proposed in [48]. The first result refers to the geometry 

illustrated in Fig. 3.2. A set of line current elements is distributed on a circle of 

radius A at equally spaced angles. For this example, N  =  72. The quantity

is evaluated, with /„  =  1, n =  1 - • • and Z^n  is the impedance matrix term given

value of this wave is known at the centre of Gv. This operation must be carried out

N

(3.15)

by

mn (3.16)
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m

n

Figure 3.2: The groups indexed by I scatters over the group indexed by Each element 
of Gi, say n, is a line source of current amplitude /„ =  1. The sum Zmnin is
evaluated for the set of receiving points aroimd the centre V. The number of points is 
M  — N  =  72. The aggregation of elements of G\ at the centre I requires 0 { N )  operations, 
so does the disaggregation of the field received at the point V. The translation is performed 
using (3.8).

where is the distance between the point m  and n. The set of M  = N  obser

vation points labelled by m  lying on a circle centred on r̂ / =  {xi>,yi') — (5A,5A) 

is considered. The Hankel function term in (3.16) is then replaced by the integral 

given in (3.7) and the accuracy of the approximation due to the truncation of the 

series (3.8) is tested. The integral (3.7) is evaluated numerically as in (3.11). The 

number Q is selected to be equal to M  and two experiments are carried out to 

verify the sensitivity of (3.11) with respect to the value of P  in the series (3.8). 

Fig. 3.3 illustrates the amplitude of the sum (3.15) when P  = 10, as a function 

of the angular position of the observation points around the receiving centre. As 

is evident, the accuracy of the FMM approximation is not satisfactory, because for 

P  =  10 the series (3.8) does not converge to the actual result. However, it suffices 

only to increase the value of P  up to 20 to get the excellent agreement illustrated 

in Fig. 3.4, where the two functions perfectly match.
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Comparison of the FMM with the exact calculation
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Figure 3.3: Amplitude of the sum (3.15) employing the FMM approximation and equa
tion (3.8) with P  =  10 for the geometry il lu s tra te  in Fig. 3.2. The dashed line represents 
the values of the sum (3.15) a t M  =  72 points located at a radius A around the centre 
of the group Git. The result is affected by an evident instability due to the tnm cation of 
the series (3.8) at a too small P  with respect to the theoretical limit oo.

Fig. 3.5 illustrates the amplitude of the electric current density on the surface of a 

cylinder of radius o =  12A illuminated by a T p l a n e  wave. The geometry of the 

problem is the same as that of Fig. 2.2. The EFIE associated with this scattering 

problem has been discretised via the moment method and the CG algorithm has 

been utilised to invert the discretised equation. The FMM has been applied to the 

CG algorithm and the results are provided in Fig. 3.5. The number of unknovras is 

N  = 961, the number of groups is L =  31 and P  — L for this numerical experiment. 

The EFIE solutions, either the exact and the FMM-based one, suffer of inaccuracy, 

due to the non-uniqueness problem already referred to in section 2.5. Although the 

CFIE solution is also included in the figure, the purpose of this numerical exercise 

has been to verify the validity of the FMM approximation and to demonstrate that 

the numerical solution of the matrix equation, although faster than in the exact 

case, still leads to unstable results for the unknown current. A solution is to extend 

the FMM algorithm to the CFIE, operation easily feasible and reported in detail 

in [48].
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Gompahson d  the FMM with the exact calcujation
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Figure 3.4: Amplitude of the sum (3.15) emploj' îng the FMM approximation and equa
tion (3.8) with F  =  20 for the geometry illustrate in Fig. 3.2. The dashed line represents 
matches exactly the solid line. In this Ccise the FMM approximation returns the exact 
result obtained by evaluating numerically the sum (3.15).

3.4 Recent developments of the FM M  

3.4.1 Com putational issues related to the FM M

In recent years, the FMM has been further improved to tackle the problem of 

electromagnetic scattering by much larger bodies of arbitrary shape. As for two- 

dimensional scatterers, it was recognised that the main computational burden of 

the FMM as given in [48] is the evaluation of the translation functions ai'i{aq) as 

described in (3.8) for each pair of groups {1,1') at each discretised angle ag of the 

interval (0,2?:). The cost of a matrix-vector multiplication depends now on the 

choice of P  and Q in the evaluation of the sum (3.11). The factor ain{ag) takes 

into account the interaction between two groups Gf and Gi of the scatterer, which 

one expects to be strongest along the line joining the transmitting and receiving 

group centres. The function ain{ag) is expected to have a maximum at a , =  

and to decrease rapidly away from the neighbourhood of Indeed, this is the 

case, as illustrated in Fig. 3.6, where the translation function resulting from the 

geometry of Fig. 3.2 is shown. In [49] a new technique is presented for accelerating
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Comparison between FMM and Exact CG

  EFIE (Exact), N« 961
—  CFIE (Exact)
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Figure 3.5; FMM results for the scattering by a PEC cylinder: the amplitude of the 
current density matches perfectly the solution returned by the EFIE inverted using a CG 
algorithm. Both the solutions are afiected by the instability typiczd.of the EFIE.

the FMM. The translation function is computed as a Fourier series with a window 

function which makes a smooth translation from zero to one. Basically the series 

becomes

p

ai-iia) =  lim V  (3.17)
P -foo  ^ ^  ^

p = - p

where Wp denotes the window function that has a broad flat middle section centred 

around p  =  0 and a cosine taper on both ends.

Another elegant approach to the fast calculation of the translation function ain has 

been described in [50]. It is shown that the translation function may be evaluated 

asjnmptotically in the high frequency limit, yielding a uniform result which is valid 

for all group separations. Specifically, this new technique makes use of the definition 

of the Hankel function:

(3.18)



3.4. Recent developments of the FMM 56

where the contour in the complex /? plane is given in [5]. Substituting this into 

(3.8) and interchanging summation and integration gives

1 r  ^
aviia) =  lim -  /  V  dp =

P->oo 7T J e m

lim -  [  7  ̂  dp  (3.19)
p-foo 7T J e m  sm[(^ - a  + (j)i'i)/2]

The integral may be evaluated asymptotically using the method of steepest descent 

[45]. The asymptotic form clearly defines a lit region inside of which the plane wave 

interaction is strongest. Outside of this region, the translation function consists of 

two terms associated with the two shadow boundaries of the lit region: in this 

shadow region the operator gradually decays and is highly oscillatory as illustrated 

in Fig. 3.6.

Angular dep en d en ce  of the  translation function

(O 10

100 150 200 250 300 3500 50
D egrees

Figure 3.6: Behaviour of the translation function ain{a) associated with the geometry 
of Fig. 3.2. The function has maximum value at (/>/'( =  tt/4, i.e. over the direction / —> /' 
and gradually decays outside a narrow interval centred at a = (pi'i-

3.4.2 FMM in the three-dimensional case

The FMM has also been applied to the solution of the electromagnetic scattering 

problem in three dimensions. Once again, as described in [52], the main task is
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to formulate an expression for the Green’s function which allows one to split the 

interaction between two current elements on the scatterer into three operations: 

aggregation, translation and disaggregation. As proposed in [52] Gegenbauer’s 

addition theorem may be used to accomplish this task:

-ifc|X+d| _•jk /■
|X +  d| 47t

I  (3.20)
Jn

where |dl < |X |. In (3.20), the surface integral is performed over fc-space, with 

k =  (sin 6 cos (j), sin 9 sin (f>, cos 6), basically over the spherical domain of unit radius, 

Q. The function a{k, k, X) is the translation function and may be approximated as

a {k , k , X)  ^  ' ^ { - j y { 2 l  + l ) h f { k X ) P i { k - ± )  (3.21)
i=o

where L —̂ oo for equality. To achieve convergence of the series the value of L is 

chosen to be

L(fc|d|) > k\d\ +  10 log(^|d| +  7t) (3.22)

as prescribed in [52]. The function is the l-th order spherical Hankel function 

of the second kind and Pi is the /-th degree Legendre polynomial. Referring to Fig. 

3.7, observe that

r+ -  r ' =  r+ -  r,/ +  Tj, -  r, +  r, -  r ' =  +  r, -  r ' (3.23)

then it readily follows that

g - J *  |r „ // + r ,/ , +Fi - r '  |
(3.24)

Recall now the expressions for the potentials given in (2.81) and (2.82) due to an 

element of the RWG set. Then the following identities hold

r  p - jk \r + -T '\  r p -3 k \r^ i,+ r i,i+ r i-r '\
/  — -rfS '=  /  J A (r ') , . dS' (3.25)

J T i ' -  P m  ~  ^  I  J t +’~ I  W  +  ^Vl  +  T ;  -  r  I
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T ~

Figure 3.7: Geometry of the FMM in the three-dimensional case: the group Gi  scatters. . . . . .  . , .  „
three-dimensional GithetheFMM scatters

over the group Gf .  The electric current associated with the domains and , i
radiates the electric field at T^, which is the triangle included in Gi>. The evaluation 

of the field scattered by Gi over G;/ requires the calculation of only a fraction of the 
impedance term Zmn (2.79), because domain T ~  does not belong to the group Gi‘.

r p - j k \ T + ~ T ' \  r
/  ~ d S '  =  / /„w<„(r'), dS-(3.26)
Jt *-- Jt *-  I w  +  r,., +  r, -  r'i

and using Gegenbauer’s identity (3.20) it may be w ritten that

L d S ' ^

- j k
47T

[  c fkVfmV Ck)aiu{k, k ,  r ,  -  V :,„(^)rf^' (3.27)
Jn
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- j k
A'k

[  cfkVfmv {k)avi{k, k, T, -  Ti)W:i,{k)dS' (3.28)
Jq

The terms (V*j„(fc), are the basic elements which are used to construct

the outer multipole expansion^ for the group Gj. They depend on the current /„ 

and on the location of the domain T ^ ~  with respect to the centre of the group Gi, 

ri,

y:in{k)= f  (3.29)
J  I 'n ’

:inCk) = f  I n V s  ■ (3.30)
JT+-~

Finally, the term Vfmi'{k) represents a contribution to the multipole expansion of 

the group Gii and consists of a phase shift operation which disseminates the field 

due to the current In at the centre of the group Gi>, rj-, to the point r+. This term 

is given by

(3.31)

On the basis of this rather cumbersome mathematical background, the FMM can be 

implemented to deal with electromagnetic scattering by three-dimensional objects 

of arbitrary shape. The differences between the three-dimensional and the two- 

dimensional case are evident and reside on the more complex formalism related 

to the formulation of the problem. Also, while in the two-dimensional case the 

non-near contributions of different groups is represented as a sum of plane waves 

having only one angular degree of freedom, for the three-dimensional case, the 

integral (3.20) over ^-space represents a further computational burden which cannot 

be efficiently tackled using a naive double integration. For each pair of samples

 ̂Multipole expansions about the reference point of a current distribution axe used to compute 

the effects of the current elements within a group on distant points. Distant points are those which 

are outside the sphere of convergence of the expansion. Multipole expansions are remarkably 

described in [46].
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[di,4>i)-, the translational operator must be evaluated and this task requires the 

execution of routines which return the desired value of the Legendre polynomial and 

spherical Bessel function at that particular value of {9i, (f)i). An efficient numerical 

integration scheme to deal with spherical domains is described in [51]. With an 

optimum choice of all parameters, it is reported in [52] that the FMM can be 

applied to the solution of electromagnetic scattering problems with an order of 

complexity equal to The FMM has been implemented on a multi-level

basis as reported in [53] and using this scheme a complexity of 0 { N  log N) can be 

reached. A detailed description of the multi-level FMM is not the main purpose 

of this chapter In chapter 7 a multi-level technique will be presented and in that 

context the philosophy of multi-level techniques will become more clear. A very 

good research paper on this subject is [54] which includes an exhaustive list of 

references and presents excellent results generated by the FMM on a multi-level 

basis. Another complex feature to be added to the implementation of the multi

level version of the FMM is the interpolation, necessary to deal with different sized 

groups of current element which are recursively generated in the algorithm. At the 

state of the art, to the knowledge of the reader, no contribution in the literature has 

been submitted to discuss about the complexity of the evaluation of the translation 

function in the FMM for three-dimensional problems.

3.5 Summ£iry

Chapter 3 described the Fast Multipole Method, an alternative iterative scheme 

which offers the possibility of achieving the complexity of operations for

the solution of the integral equations in electromagnetic scattering in the two di

mensional case. The basic concepts of the FMM were presented in an introductory 

section of the chapter. The formulation of FMM was then derived in section 3.2. 

Beginning with the discretised EFIE, it was shown that the interaction between 

two groups of current elements of the scatterer may be approximated efficiently 

using an integral expression for the Hankel function. To demonstrate the valid-
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ity of this approximation some numerical results have been provided in section 

3.3. Further enhancements to the FMM in the two-dimensional and the main 

mathematical derivation of the necessary quantities to implement the FMM in the 

three-dimensional case have been presented in section 3.4. The next chapter will 

present the Fast Far-Field Algorithm and the Tabulated Interaction Method which 

are strongly related to the FMM.
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THE TABULATED INTERACTION METHOD

In this chapter, two fast computational methods are described: the Fast Far-Field 

Approximation (FAFFA), in the form developed and proposed by Lu and Chew [55] 

and the Tabulated Interaction Method (TIM) developed by Brennan and Cullen 

[62]. The FAFFA is a less strict version of the FMM described in chapter 3. It 

accounts for the interaction between current elements in two ways, depending on 

the electrical distance between them. The TIM is based on the FAFFA and achieves 

substantial computational savings when applied to electrically massive bodies. The 

method is based on the rapid evaluation of interactions between subscatterers, as 

in the FAFFA, but with an additional fast feature which renders the technique 

superior to the FAFFA.

This chapter is divided in three parts; in section 4.1 the principles of the FAFFA 

are briefly outlined, in part 4.2 the TIM algorithm is presented mathematically and 

in section 4.3 numerical results are provided to reveal the behaviour of the algo

rithms and demonstrate their application to large-size objects. Before beginning 

the mathematical discussion, it is important to stress that the class of scatterers 

which is of interest is that of piecewise planar locally smooth large surfaces. This 

class of bodies allows the modelling of physical objects such as undulating terrain. 

The characterisation of their interaction with electromagnetic waves is nowadays 

very important in telecommunications application, mainly in cellular radio-coverage 

planning and propagation modelling.

4.1 The Fast Far-Field Approximation (FAFFA)

In this section, the mathematical essence of the FAFFA is discussed for the two- 

dimensional case. Consider, as described in chapter 2, Fig. 2.2, a plane wave
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incident on a two-dimensional PEC scatterer embedded in free space. The surface 

of the scatterer is defined as S. The integral equation satisfied by the induced 

current may be written as

^  ^  -  T\)dS' =  E i n c i r )  (4.1)

where dS' represents the element of surface of the scatterer. (4.1) may then be 

discretised as outlined in chapter 2 by applying the usual MoM procedure to give

N

V^ = Y ,Z ^ n I n  (4.2)
n = l

where V m  is the field £'j„c(r) evaluated at the point ( x m ,  Um) € 5, /„ is the value of 

the current Jziy) at the point (x„,y„) E S. is the impedance matrix element 

(2.50), i.e.

=  (/=w )A „ (4.3)

where A„ is the width of the interval in which the pulse basis function (2.45) 

associated with the coefficient /„ resides, =  l^m — r„| is the distance between 

the point (x ,̂ 2/m) G S  and the point (a:„, y„) G S. Now, as in the FMM algorithm, 

the N  unknowns are partitioned into L groups, each having M  unknowns. Thus, 

the contribution of the group Gi to the group Gj/ is given by

m e  Gv (4.4)
neGi

If the groups Gi and Gi> are relatively far apart then the argument of the Hankel 

function may be considered sufficiently large to allow the use of an asymptotic 

expression (see [2], chapter 4) for (4.4) which jdelds
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Referring to Fig. 4.1, the vector may be decomposed as

Tmn =  W  +  Ti-J +  r/„ (4.6)

and if Tin ^  fmi' and rin n„, i.e. if the separation between the groups is much

larger than the size of the groups, the Fast Far-Field Approximation (FAFFA) may

be obtained

Tmn ~ rvi + W • h ' l +  r,„ • iifi (4.7)

Hence

_ . irkr.

V  J T t r , , ,

where m  e  Gi’. (4.8) contains three factors, in just the same way as the FMM 

approximation:

an aggregation term, for the evaluation of the sum

^  =  bin (4 .9)
neGi

This term is evaluated to group the effects of the single current elements of 

the group Gi, In, with n =  1 • • • M.

A translation term, corresponding to

=  b'ln (4.10)
Trkr,VI

The term b̂ i is considered as a single current element located at the centre 

of Gi and radiating towards the group Gi>.
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•  Finally a disaggregation term, for each point m  G Gi>

(4.11)

b\n is the value at the centre of Gi> of a plane wave illuminating the group Gi>, 

incident from the direction Tin. It is straightforward to evaluate the electric 

field of the plane wave at the points m  e  by a phase-shift operation.

The FAFFA basic assumption is illustrated in Fig. 4.1. The point n is the location 

of the current element associated with (a;„, j/„) E S. Similar definition holds for 

m. The field radiated by the point n may be evaluated at the point m using (4.8) 

with the geometric quantities illustrated in the figure. The FAFFA procedure is

current 
element n

group

current 
element m

group

Figure 4.1; Far-field approximation in the two-dimensional case: the electric field due to 
the group Gi at Gi> is evaluated using (4.8).

now evident. For each group Gi two regions of groups Gi>, with I' ^  I are defined:
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a near-field region and a far-field region, depending on the distance between the 

two groups. The far-field interactions may be evaluated using (4.8), the near-field 

interactions must be evaluated directly, i.e. using the sum

Zmnln ^  ^ Gl' (4.12)

if Gi' is near G/. By using FAFFA, the impedance matrix terms Zmn need not be 

evaluated if m e  Gj* and n E Gi and the groups Gf  and Gi are far apart. This 

reduces dramatically the storage requirements and the computation time associated 

with the algorithm. In the original article by Lu and Chew [55], no mathematical 

expression is given to define the near-field/far-field boundary. Moreover, the size 

of the groups is chosen to be M =  \ /N  by formal optimisation. It is reported that 

this condition leads to a complexity of the CG algorithm of 0{N^'^). However, the 

relationship between the size of the groups and the size of their near-field region is 

not discussed. It seems evident that as a size of a group increases its near-field region 

increases, too. This results into a computationally heavier direct calculation of the 

terms (4.12) and a bigger allocation of storage resources for the implementation 

of FAFFA. In chapter 7 of this thesis the author describes an implementation of 

a FAFFA algorithm in the three-dimensional case and attempts to characterise 

mathematically the near-field far-field boundary as well as the computational cost 

of the numerical method.

4.2 The Tabulated Interaction M ethod (TIM)

In this section, the Tabulated Interaction Method is described mathematically. 

First of all, beginning with the FAFFA formulation the TIM is presented in terms 

of a set of basis functions. Specifically, assuming all interactions may be modelled 

35 far-field interactions (except those internal to a group), i.e. the FAFFA also 

holds for adjacent groups, it follows from (4.8) that for each group Gi

Z m n i n  — Kn ~  ^  TTl £ Gi (4.13)
n^Gi V ^ l  n^Git
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where gii> is the group centre-to-group centre impedance matrix element

gn, =  w (4.14)
V T^krw

and Wij (o') is defined for a  as

Wij{a) = (4.15)

for each pair of points indexed by (i, j) , with — Tj. The angle a  is such that

f  =  cos ax  +  sin a y  (4-16)

where x and y are the unit vectors associated with the {x, y) coordinate system. It 

is also assumed that the width of intervals where the pulse basis functions (2.45) 

are defined is A„ =  A for each n — l - ' - N .  At this stage (4.2) has been rearranged 

including the FAFFA and (4.13) may be seen as the discretised integral, equation 

for the group G/, when the incident field at each point m € G/ is

V m - Y .  Wrra{(!>lv)gU' Y .  ^nv{<t>U')In (4-17)
V^l neG ,/

Assume that the incident field of (4.1) is a plane wave of unit amplitude, with 

incident wave vector k  =  k{cos9y: + sin^y)- Thus

K n =  =  W rru {9 )e -^ '^ -^ ‘ =  W rra (e )V i (4.18)

Thus, for each group Gi

Y,z^i„ =  w ^ m Y .  (4.19)
nGG, n&Git

By introducing the term

Ea'=giv Y  ^ n v i M l n  (4.20)
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(4.19) becomes

Y ,  Zmnin =  WUO)Vl ~ Y ,  Ew (4-21)
neGi I '^ l

Now, the right-hand side of (4.21) is a superposition of plane waves all evaluated 

at each point m E Gi.

•  The term

Wrru{9)Vi = e-^^-^- (4.22)

is the field emanated from the source.

•  The term

(4.23)
I' jti f I'jti

is a sum of plane waves emanated from all groups Gi',V ^  I, with wave vectors

kilt — k{cos (j)ii>-k -I- sin (l)ii'y) (4.24)

By introducing a set of discretised angles a ,  =  qAa  for ^ =  1 • • • Q, it is possible to 

approximate the right hand side of (4.21) with the sum of plane waves of amplitude 

illuminating the group Gi at the angles a ,

Q
$ ] ^ ^ ( a , ) / f  (4.25)
9=1

A single term of the original sum, i.e.

Wmii<l>w)Ew (4.26)

may be approximated by the sum of two terms
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where the angle (j)̂  satisfies the condition

< «2 (4-28)

Thus, applying the approximation (4.27) to each term of the following sum

W^{9)Vi -  Wml((l>w)9U' (4.29)
V^l  n^G^/

it follows that the required amplitudes in (4.25) are given by

/<« = M e w  -  E  E  (4.30)
I'jtl neGi,

where ip{-) are interpolating factors, depending on the angle ag^i < 'j < aq and 

defined as

V’f c ( 7 ) = r " ^  iffc =  9 - l , g=1;0 otherwise

The set of QL {L is the number of groups) basis functions q — I - --Q, I =

1 ■ ■ ■ L, can now be introduced. The basis set consists of the solutions to the problem

described by the discretised integral equation

J 2 Z m n ^ ^ f  = Wrra{aq) (4.32)
TieG;

i.e. plane wave scattering by the group Gi. Thus, the unknown current at a point 

n e Gi may be expressed as a superposition of Q basis functions.

Q

= (4.33)
q = \

This is now reasonable since it was assumed that the group G; is illuminated by a 

superposition of plane waves

Q

E  (4.34)
9=1
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If all the groups are identical, for example if they are PEC segments of equal 

length, then it is possible to tabulate the set of basis functions at the points n  e  

Gi for one reference group and reuse these functions for all groups. This is the 

main computational advantage of the TIM over FAFFA as introduced in [62], The 

solution of the scattering problem is reduced to the calculation of the unknown 

basis coefficients for each group Gi  ̂ q =  1- • - Q and I =  1 • • • L. Inserting (4.33)

in (4.30) gives the expression for the coefficients

I ? M M s i v  x ;  / f  >4“'> (4.35)
I’^ l  q=l

where fq^  ̂ is defined to be

/ f ^ =  E  (4-36)

Now, referring to Fig 4.2, the geometry of the evaluation of the far-field scattered 

by a strip of length L is illustrated. It follows from [13] that the scattered electric 

field may be expressed as

p L / 2

1 =  /  (4.37)
J-L/2 V TT/sp

which may be rewritten as

^ ■

 ̂ ~  W Y ,  (4.38)
71=1

where p and 9s are the cylindrical coordinates of the observation point, J„ =  Jz{xn), 

An is the width of the intervals upon which the pulse basis functions used to 

represent the current are defined, Tni< is the vector connecting the centre V of the 

segment with the point n  and f  is the direction of scattering. Recalling (4.15), it 

follows that

f l = l
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Hence the far-field scattered by the segment is 

where the function

N

F{9i,6s) =  5 ]  J„A„W *,(0,) (4.41)
71=1

is the radiation pattern of the strip. In similar way, it follows that the coefficients 

fq^  ̂ of (4.36) represent the far-field patterns of the basis function over the 

directions Again, a table of fax-field patterns may be calculated a priori,

plane wave

L/2

Figure 4.2: Geometry for the evaluation of the far-field scattered by a strip of length L 
illuminated by a plane wave.

stored and reused in the implementation of TIM producing huge computational 

cost savings. In fact, this is the only table required if one is interested in the 

evaluation of the scattered field.

The TIM presented in this section relies upon two basic assumptions. The first is 

that the interactions between near-neighbour groups may be evaluated using the 

FAFFA. This approximation will be adequate only if the near-neighbour groups are
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almost collinear. In this case, the error introduced in the phase evaluation of the 

mutual interactions between current elements is null. To elucidate this, refer to

m

r
s

Figure 4.3: Two collinear groups and geometric quantities used in FAFFA.

Fig. 4.3, where two collinear groups {I and I') are illustrated. It is evident that, 

using FAFFA

where Zmn is the impedance matrix term obtained by discretising the EFIE using 

the moment method with pulse basis functions and m  and n are two discretisation 

points illustrated in Fig. 4.3. By elementary geometric considerations, it follows 

that

e -jw  =  (4 43)

(4.43) is basically

d =  r +  t -  r + s- f (4.44)
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which is the foundation of the FAFFA, as given in (4.7). In the case of non-collinear 

groups the equality sign of (4.44) must be replaced with the approximation sign. 

The FAFFA does not introduce any error in the evaluation of the phase of the field 

scattered by the group Gi to the group Gi> of Fig. 4.3 if they are collinear.

The second assumption is that the far-field impinging on a group of current elements 

is a superposition of plane waves at discretised angles of arrival. In general the 

scattered field by a one-dimensional current distribution, as a PEC strip, may be 

characterised with a number of angular samples proportional to the spatial samples 

needed to characterise the current itself. Details of this property may be found 

in [65]. However, in some cases, as scattering by large locally smooth domains, 

only a certain portion of the spectrum of incident angles is non-null. Hence a very 

accurate description of the incident field in terms of plane waves may be achieved 

retaining a relatively small number of samples.

The TIM algorithm is numerically more efficient than FAFFA. This efficiency is due 

to the fact that using TIM each group of current elements is a PEC linear segment 

of fixed length illuminated by a set of plane waves. Hence, the solution to each 

elementary problem may be read from a look-up table constructed a priori and 

stored, instead of being numerically evaluated for each group. Recently, the TIM 

has also been applied to the numerical solution of the MFIE, with excellent results

[66]. Moreover a multi-level version of TIM has been developed and proposed in

[67] again with very satisfactory final results.

4.3 Electromagnetic scattering from Izirge terrain profiles: 

an example of application of FAFFA and TIM

The main area of application of TIM and FAFFA presented in this chapter has 

been in the important field of UHF propagation over undulating terrain. This 

problem was addressed first in [56] and [57]-[58]. Application of FAFFA to terrain- 

propagation modelling was reported in [61] and [63]-[64], providing massive com-
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putational savings with respect to [56] and [60]. The formulation of TIM has found 

immediate application to the solution of terrain scattering problems, reducing fur

ther the computational time associated with the numerical solution, as explained in 

detail in [64]. An excellent resume of the main TIM foundations and its correlation 

to other fast numerical methods is given in [68].

The geometry of the problem is illustrated in Fig. 4.4, where a source illuminates 

an irregular terrain. The source is assumed to be an electric line source radiating

electric 
line source

m

Figure 4.4: Line source illuminates an undulating terrain modelled by a two-dimensional 
surface, m and n are discretisation points where the current is assumed to take the 
values Jm and J„.

TMz polarised waves. The scatterer is a one-dimensionaJ PEC surface (y =  h(x), 

where h is a function) modelling the terrain profile. Each terrain profile^ employed 

by the author in carrying out numerical experiments was modelled as a series of 

linear segments. A segment connects points sampled every 50m in the x direction. 

The source was located 10.4m above the leftmost terrain point.

The electric field integral equation was implemented postulating pulse basis func

tions defined as in (2.45) every quarter wavelength along the terrain surface. The

^The author wishes to thank Prof. Bach Andersen of University of Aalborg, Denmark for 

supplying the terrain profiles.
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EFIE

I  -  r |)dS ' =  E U r ) (4.45)

was discretised using the MoM, leading to

N

(4.46)
n=l

where N  is the number of unknowns, typically N  =  0(10^). The quantities r', r,

Jz(r') are illustrated in Fig. 4.4. (4.46) may be solved without explicitly storing the 

matrix Z  [59]. The current is estimated by a forward-backward iterative scheme

electromagnetic scattering at grazing incidence.

The fast far-field algorithm (FAFFA) was implemented as described in section 4.1. 

Each group of current elements was chosen to be a linear segment of the terrain 

profile. The tabulated interaction method (TIM) was used as described in section 

4.2, postulating linear segment groupings of 50t71 in length and an angular resolution 

of Q =  360. In implementing the TIM, the incident field over each linear segment 

group was approximated as being a plane wave. This approximation is reasonable 

for groups which are located far away from the source. However, for the groups 

near the line source the incident field is reflected away from the other groups of the 

scatterer and the approximation introduced does not affect the final result.

Fig. 4.5 illustrates the numericaJ results obtained applying both the TIM and 

the FAFFA to the problem of electromagnetic scattering from terrain. Fig. 4.5 

also shows the terrain profile which extends horizontally for thousands of meters. 

The incident frequency is 970MHz.  The field strength at 2.4m over the terrain is 

represented as a function of the horizontal distance. The author has observed that

until a certain error criterion is satisfied. In [56], it is assumed and verified numer

ically that a pure forward scheme is sufficient to tackle and solve the problem of

F A F F A (4.47)
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terrain profile
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Figure 4.5: Example of application of FAFFA and TIM to the numerical evaluation of the 
field strength over a terrain profile which extends for several thousands of wavelengths.

for this particular numerical experiment, where T p a f f a  is the computation time 

for the execution of the FAFFA and similar definition holds for Ttim- In [64] it is 

reported that

20000 (4.48)
Tt i m

where T^xact is the computation time associated with an exact solution of the EFIE. 

4.4 Summary

Chapter 4 presented two fast and efficient numerical methods: the FAFFA and 

the TIM. The FAFFA formulation was given and it was shown that the method is 

based on a simple geometric approximation. The FAFFA permits to evaluate the 

interactions between far apart subscatterers in a fast and accurate way employing 

the same concepts upon which relies the FMM presented in chapter 3: aggregation, 

translation and disaggregation. A question about the definition of far-field regions
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in the FAFFA was risen. This argument is treated in chapter 7 where the answer 

is presented mathematically. The TIM was then described. It was shown that the 

technique may be used to solve the EFIE in the two-dimensional case. The main 

assumptions of TIM were given;

•  The FAFFA may be applied to near-field interactions.

• The groups of current elements are identical: PEC segments of equal length.

•  The incident field over each group may be approximated as a sum of plane 

waves.

The essential speed-up feature of the TIM is due to the possibility of expressing the 

electric current residing on each subscatterer as the sum of reference currents. Each 

reference current is the solution of a standard problem, which is plane wave scat

tering by a PEC segment. It was shown that the far-field scattered by each group 

depends on a weighted sum of reference far-field patterns. These patterns may 

be evaluated una tantum and reused in many different cases. The assumptions of 

TIM were discussed and a numerical result was given to demonstrate the behaviour 

of the FAFFA and TIM in the case of electromagnetic scattering by undulating 

terrain. The computation time ratio between the two algorithms was reported.
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NOVEL ENHANCEMENTS TO TIM

Two novel enhancements to TIM are presented in this chapter: the Analytical Inter

action Method (ANIM) and the matrix formulation of TIM/ANIM. Both methods 

can be applied to the solution of two-dimensional EFIE, in the case of piecewise 

linear smooth scatterers. The ANIM replaces the TIM tables with two analytical 

results: an approximation of the current density induced on a PEC segment of 

fixed length by a plane wave incident at grazing angles and the expression of the 

electric far-field due to this distribution. Section 5.1 presents the motivation of 

ANIM. This method is formulated in section 5.2, by using Maxwell’s equations and 

a classical result of electromagnetic scattering theory: plane wave scattering by a 

PEC half-plane. The ANIM is tested and compared with TIM in section 5.3.

In part 5.4, the TIM is formulated in matrix form with the EFIE being discre- 

tised using the basis set of (4.32). The final result is a compact and rigorous 

formulation which achieves huge computational savings in storage allocation for 

the solution of the EFIE by TIM. Application of this compact formulation to the 

problem of electromagnetic scattering by periodic structures is also proposed.

5.1 Motivation of the Analytical Interaction Method (ANIM)

The TIM derives its computational savings from essentially two features, which axe 

now briefly recalled.

• The discretised integral equation (4.21)

Z m n i n  =  W m l{ Q )V l — ^  W jn i{ ( j) i i i )E iv  (5.1)
n6G ( V^l

has been derived in chapter 4. It has been shown that the right hand side
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Wmi{0)Vi +  is a sum of plane waves, which may be ap

proximated by a sum of plane waves illuminating the group Gi at discretised 

angles

where a , =  gAa G (0, 2'k] and m E Gi.

• For a certain class of scatterers, whose surface may be modeled with a set 

of flat PEC strips of equal length, the fact that each group Gi is illuminated 

by the sum (5.2) suggests an elegant way to speed up the solution of the 

discretised equation (5.1). Specifically, the current in each group G; may 

be evaluated by referring to a table which contains the samples where 

n & Gi and is the solution of (4.32)

Additionally, the far-field scattered by any group Gi is due to the sum of 

the fields scattered by the functions excited on that group. Again, it is 

possible to refer to a table of far-field radiation patterns, evaluated at discre

tised angles, read in the necessary values and manipulate them to evaluate 

the far-field scattered by the group Gj. In the original formulation [62], the 

standardised basis currents and the far-field patterns  ̂ of (4.36) were 

evaluated numerically.

It is evident that the TIM achieves enormous computational savings by reusing 

the information contained in the tables instead of solving (4.32) for each group Gj. 

However, it is obvious that different tables must be stored for different frequencies 

and different sizes of the groups Gi. This drawback has motivated the author to 

investigate the possibility of expressing the far-field patterns analytically, in order 

to avoid the numerical construction of the tables in TIM. First results were reported 

in [69]. Recently, the author has found [70] that it is possible to remove the look-up

Q

(5.2)

(5.3)
tiE G i
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tables in the TIM and calculate on the fly the necessary far-field patterns using an 

approximated closed form solution.

5.2 Form ulation o f A N IM

In this section, the incident electric field is assumed to be a TM^ plane wave with 

amplitude Eq. Referring to [14], p. 346, the total electric field due to an incident 

TMz  plane wave on a PEC half-plane may be expressed as

and the geometric parameters s,9i and 93 are illustrated in Fig. 5.1. According to 

Maxwell’s equation

dinate system displayed in Fig. 5.1. The scattered field is evaluated at the point 

(s, 3̂ , 2 ). Thus

V7T
(5.4)

with

A T - -  9i)f l l  =  — V Z K S C O S  — ----- (5.5)

and

/777~ (^s +  î)
0 2  =  —V2ks COS T----- (5.6)

The function F{a) is defined as

(5.7)

V X E = —jw/xH (5.8)

in cylindrical coordinates it follows that

(5.9)

where (s, 0 s,z) is the triplet of unit vectors associated with the cylindrical coor-
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X - A /2 x + A / 2

Figiire 5.1: A haJf plane is illuminated by a TM^ plane wave at a low gracing angle 
Oi- The electric current residing on the half plane located at (s > 0 , =  0, 2  =  0) is 
determined; point i ,  closed contour F in the neighbourhood of x, surface S, rectangular 
and cylindrical reference coordinate systems.

dE^ ^

— Eq—j=- OS V7T
 ̂ ( jkcosiOs -

^gjfcscos(9,-00e-ja? J  A  COS
V 25

{ 9 s  -  9 i )

~ j k c o s { 9 ,  +

(es +  9i)I'.DS_ ^ k s c o s { 9 s + 9 i ) ^ - j a l  _ (5.10)

dE,
d9s

=  E, ' -  j k s  sin(0, -

_  j k a c o s { 0 , - 0 i )  - j a \ Sin
{9, -  9i)

+3kssin{9,  +

{9s +  9i)
-sinc o 8 ((? .+ 0 .)g - ja i J  s i j i (5.11)

Referring to the geometry illustrated in Fig. 5.1 and using Maxwell’s equation

V x H  =  ja;D +  J (5.12)

by integrating over the surface S  and using of Stokes’ theorem (5.12) becomes 

j  J { V  x U ) z  =  ^ U - d l  =  J  J { j u ' D  +  3 ) z  (5.13)
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If e A and provided that A is relatively small the following limit holds

lim [(H 2 - H i ) - x ] A =  /  / j - z  (5.14)
^ ^ 0  J J s

where H i is the magnetic field just above the coordinate x,  i.e.

H i =  =  0+,^) (5.15)

and similarly H 2 is given by

H 2 = H{s = x,9s = 27T ~ , z )  (5.16)

with z € (—00, 00). Moreover, the integral in the right-hand of (5.14) side evaluates 

to [J^-zjA, where J5 is the surface current density existing on the boundary. Using 

the identity x =  —z x y  (5.14) becomes

J 5 = y  X (H 1 - H 2 ) (5.17)

To obtain a closed form for the current, the term y  x (Hi — H 2) must be evaluated. 

This is done by recalling (5.9)

fiK 1 f)F̂
- ~ { s x z )  +  - - ^ { d , x z )  =  - j u i J , l i  (5.18)

Thus H i and H 2 for z £ (—00, 00) may be expressed as

- j u n U i  =  = x,9s =  0“̂ , z) =
/'dE^\ / l d E z \(x X z) + ( )  y X z)
\  os )  (s=x.0,=O +.z) \ s  o9. J (s= x.e,= Q + .zV

(5.19)

and

t d E , \
-jijJliH.2  =  — ja ; / iH ( s  =  — 2-k , z)

( l d E , \
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Hence, it is possible to write that

J j  =  y  X (H . -  H j) =

_  X (y X z) I
ju )n  LVs d9s )  l(5=iA=o+,2) Vs d9s / {a=x,9,=2ir ,z)-

with

E,

/ 1 ^ \  
Vs ddg /S  dOg  /  I  ( s = i , 5 , = 0 + , ^ )  

kX . / 9 t \  (.Qg 0^

and

(5.21)

(5.22)

99g / \ {s=x,9,—2tt~ ,z)

E o ^ ^ ( 2 j k x s i n 9 i F ( a ) e ^ ' ‘̂ °̂̂ ' *̂ -  2e-^'“'- y ^ y  sin (w -  ^(5.23)

where

a == —V2kx  cos (5.24)

and

a  =  —y/2kx cos j . (5.25)

Recalling that F{a) — F{ct) — and — l/(ju ;/i)y  x (y x z) =  1 /{jkQ)z  with

Co equal to the free space impedance, the following expression for the current may 

be derived

Js(x) = i ‘̂ e ^ k x c o s e J  sin^. +V2e-2iMcos2(0,/2)g-jV/4^^g.j^ 1(5.26)
Co I V  7(kx V 2 /  J

At grazing incidence, i.e. 9i -> tt, at a first approximation, one may assume that 

the current on a perfectly electric conducting strip located in the interval x G [0,L]

^The result is a well known one which may be found, for example, in [19].
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has the expression (5.26) with x  G [0,L]. The scattered far-field is given by (see

[13])

fJTp- jkRo pL
(5.27)

where the integral over the strip may now be evaluated analytically. Specifically,

e>‘-* f  if ,  > 0
 ax =  ̂ ^

IJo ^ ’ v ^ { c ; ( y ^ )  -  j S { - ^ ) }  i f ,  < 0 

where the functions C(-) and S{-) are the Presnel integrals defined as follows

(5.28)

C{x) = J^ cos {^q^^dq  

S{x) = sm i^ q ^^ d q

(5.29)

(5.30)

Hence

Jo
kxcosO, j~d x  —

2 E q  f  r^jkL[cos0i+cos0,] _  
sin0i

Co ‘ jk[cosdi+cos0,]

where the function F(-) has been introduced:

n v ~ )
' c ( V ^ + j S ( v ^ )  if>/>0

(5.32)

Moreover, in the analytical evaluation of the integral over the strip, the coefficient 

77 =  cos &i +  cos 03 — cos^ j  has been defined.

The electric far-field scattered by the current J 5 is given by

2 E q \  sin0j
^gjfeL[cosfli+cosflj] — 1) / Q -

j  [cos 9i +  cos 9a]

Stt y/kRo

(5.33)
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where the limit of (5.32) for k L ^  1 has been calculated as

1( 1+ j )  i f 7 / > 0  

1 ( 1 - j )  i f r / < 0
(5.34)
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Figure 5.2: Amplitude of the scattered far-field due to a PEC strip of length L  =  
256A. The strip is impinged by a plane wave at an angle 6i =  175/1807r and the field 
is evaluated at a far distance R q =  lOOL. The results displayed are obtained applying 
the analytical expression given in (5.33) and the numericaJ results returned by a classical 
forward moment method (MoM).

The analytical expression of the scattered far-field has been compared with the 

numerical solution obtained through the typical method of moments (MoM) for a 

strip of length 256A illuminated by a. TM^. plane wave with 9i =  (175/180)7t, in 

accordance with the assumptions made in obtaining the closed form approximation, 

i.e. L A and —> tt (grazing incidence). Fig. 5.2 illustrates the absolute 

value of the scattered far-field evaluated by numerical integration of the current 

obtained solving a classical MoM and the analytical expression reported here, when 

9s e  (0, 2tt) and Ro = lOOL. The two results are slightly different for the interval 

of angles 9s close to 0, where the electromagnetic power scattered by the strip 

evaluated analytically results to be greater than the power evaluated numerically. 

The reason for this appears that, when [cos -(-cos 0, as is the case at grazing



5.2. Formulation of ANIM 86

incidence, and for —> 0, the scattered field can be approximated by

Eg(i?0) ^s) =  —z

which physically represents the effect of the edge of the half-plane. It is known 

that the current parallel to the edge is singular and the MoM solution obtained by 

approximating the current distribution with nonsingular pulses may be not very 

accurate in the subdomains near the edge itself (see [31]). An under-evaluation of 

such current may result then into a lower evaluation of the scattered fields at those 

angles 9^ for which the edge current is the dominant term. Moreover, the current 

assumed as the truncation of the haJf-plane current results to be affected by a 

slight backward scattering contribution which is not included in the MoM solution, 

evaluated in a pure forward scheme. Though, the latter difference is negligible, 

as the difference between tiie full MoM solution and the forward scattering MoM 

solution is negligible when —>■ tt. *

Given the satisfactory result illustrated in Fig. 5.2, it is of interest to apply (5.33) to 

the solution of two-dimensional EFIE to demonstrate the possibility of implement

ing the TIM without tables. Section 5.3 presents numerical results which justify 

the substitution of TIM tables by the closed form expressions (5.26) and (5.33). 

The main advantages of an analytical extension of TIM, which may be renamed as 

Analytical Interaction Method (ANIM), are

•  The numerical construction of the look-up tables is avoided: this results in a 

computational time and storage saving.

•  The groups of current elements are not necessarily equal in length, as they 

must be in TIM. This is due to the higher flexibility of the analytical expres

sion (5.33), which has the length of the PEC strip as an input parameter, 

when implemented as a routine.

•  It is not necessary to store different look-up tables at different frequencies as 

it is in TIM.

- jkfto

Stt \/kR i^
2En - j ) (5.35)
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The discretised integral equation (5.1) may hence be solved for each PEC segment 

Gi- Recalling (4.33), the unknown current at a point n E Gi may be expressed as

= (5.36)
q= l

where the generic basis function has the analytical expression given by (5.26). 

The coefficients Iq^ are determined as derived in (4.35), i.e.

Q
/(O =  E (5-37)

9=1

where the far-fields gn> \  for ^ach I' /  I, are now calculated analytically

as in (5.33).

5.3 Numerical results

In this section ANIM is compared with TIM, a reference numerical scheme and 

measurements. The numerical experiments carried out are the calculation of the 

field strength in dB at 2.4m over irregular terrains^ that have been modeled as a one 

dimensional PEC scatterers, as pointed out in section 4.3. Specifically, each profile 

was modelled as a series of linear segments. A segment connects points sampled 

every 50m in the x  direction (see Fig. 4.4). Each of these PEC segment was assumed 

to be a group of current elements in both TIM and ANIM. For all simulation 

examples, the author recorded an execution time of ANIM of the same order as 

TIM. This result demonstrates that ANIM preserves TIM speed-up features, as 

expected.

5.3.1 Numerical results for Jerslev profile

The first set of results is illustrated in Fig. 5.3. In part (a) of the figure, the 

geometry of the problem is described: a line source is placed 10.4m above the

^The author wishes to thank Prof. Bach Andersen of University of Aalborg, Denmark for 

supplying the terrain profiles and measured data.



5.3. Numerical results 88

leftmost terrain point and radiates at IQOOMi/z. The field strength over the terrain 

profile Jerslev was evaluated using three different fast numerical methods.

• The FAFFA described in section 4.1 was implemented using groups of current 

elements of 50m in length.

• The numerical version of TIM was implemented as described in section 4.2, 

with an angular resolution of Q — 360.

• The ANIM was implemented as described in section 5.2. Each subscatterer 

(PEC segment) was assumed to be illuminated by the set of plane waves (5.2) 

with a resolution oi Q = 720.

In comparing ANIM with FAFFA from a computational point of view, the ratio 

between execution times was evaluated. It was observed that

where T(.) is the execution time related to the numerical method employed. Fig. 

5.3(b) shows an overall excellent agreement between TIM and ANIM. FAFFA re

sults are also reported for comparison. Another numerical experiment was carried 

out at the frequency of 970MHz for the same terrain profile. The software im

plementing ANIM was not modified whereas the TIM code was provided with a 

different set of tables with respect to that one related to 1900Mi?^. The results 

are illustrated in Fig. 5.4. For this case, the ratio

FAFFA

ANTM
(5.38)

T f AFFA

T a n i m
(5.39)

was observed. An excellent overall level of agreement between the three methods 

was again obtained.

5.3.2 Num erical results for Hjorringvei profile

Fig. 5.5(a) illustrates the geometry of the second problem tackled. The terrain pro

file considered is Hjorringvei and the incident frequency was chosen to be l900MHz.
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Fig. 5.5(b) illustrates the field strength numerically evaluated using three different 

numerical schemes.

•  ANIM described in section 5.2 with each subscatterer assumed to be illumi

nated by the set of plane waves (5.2) with Q = 720.

•  TIM presented in section 4.2 with an angular resolution of Q =  360.

• NBS (Natural Basis Set), a method reported in [57].

For this case, the author recorded a ratio of execution times of

 ----------- 10. (5.40)
J  A N I M

For the same terrain profile at the same frequency, the comparison of ANIM with 

FAFFA yielded

^ F A F F A  f n  A-i \—-------- «  40: (5.41)
J - A N I M

Despite the substantial computational time savings achieved, ANIM results offer 

an excellent overall agreement with NBS and TIM results.

5.3.3 Comparison w ith  measured data and reference results

ANIM was compared also with a reference solution which requires a computation 

time of the order of a day, approximately 20000 times the computation time of 

ANIM. This reference solution was produced using the forward-backward scheme 

[59] referenced also in section 4.3. The results are shown in Fig. 5.6 for the terrain 

Hjorringvei at the frequency of 970MHz.  Note the excellent agreement between 

the reference and the ANIM solution and measured data except for the discrepancy 

over the last kilometre due to the presence of an urban area not included in the 

terrain model. Similar results were obtained for the profile Jerslev at the frequency 

of 970MHz.  They are illustrated in Fig. 5.7. An outstanding agreement between 

ANIM and reference solution was again obtained and a very good overall level of 

agreement with measurements was achieved.
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5.4 M atrix formulation of T IM /A N IM

In this section the matrix formulation of the TIM/ANIM is presented. Recall that 

the TIM employs the solution to the standard problem of the plane wave scattering 

by a fiat strip indexed by I at which resides the group of current elements labelled 

as Gi. The discretised integral equation (4.32) for the standard problem is

= W rruM  (5.42)
neG,

The set of plane waves incident on a group Gj is due to the source and the scattered 

field from subscatterers I', I' ^  I. Using the notation of section 4.2 and assuming 

that the incident electric field is a plane wave of complex amplitude Eq, for each 

point t E Gi it may be written that

q= l

E +  (5.43)

where represents the scattered far-field of the set of current elements represented 

by in group in the region of group Gi. Following Balanis in [13], p. 699, 

the scattered far-field may be expressed as

^ ---------------- (5.44)

where x  — Q a y / cos<̂ „,  ̂ jg distance between the centre of the 

group Gi and the centre of Gi', 4>u' is the angle subtended by the vector th' and 

the X axis and L is the length of the segment Gii. The evaluation of may be 

performed numerically or by using the ANIM approximations suggested in section
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5.2. Equation (5.43) may be expressed in more compact form making use of matrix 

notation:

r(0

V4'V 
( 0 \

V'mLc
+

/ o 0 • • 0 \

0 0 • • 0

* * *

♦ * *

0 0 • • 0

\ 0 0 • • o y

r(2')

(5.45)

v̂S'V
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r(0

/ O 0 

0 0 

* * 

* * 

0 0 

Vo 0

o \

0

*

*

0

oy

r(0

^EoVi

(  0 \

'P m in c
(5.46)

Thus

l(0 +  pii'iin  =  1,1' =  1- - - L
i ' / J

where

I(̂ ) =

r(0

(5.47)

(5.48)

is the vector of unknown basis coefficients for the group Gj. The ultimate task is 

to determine these coefficients for all groups, i.e. for i =  1 • • - L. (5.47) is a matrix 

equation with Q x L equations. Specifically, (5.47) leads to the matrix equation

J + FJ = Vi^ (5.49)
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where

1 (2)

J  = (5.50)

\ i “V

v^‘’ \*  inr.

V»  i t :

r(2)

(5.51)

\  tnc /

and F is the matrix made of blocks , where F “ =  0, Vi and the block associated 

with the mutual interaction {1,1') is given by the Q x Q matrix

F “' =

/ o 0 ■ • 0 \

0 0 • • 0

* *  ■ • *

* * •  *

0 0 ■ • 0

\ 0 0 • • 0 /

(5.52)

The symbols * represent elements of the rows of F̂ '̂ which are non-zero. The group 

Gv radiates a plane wave over the group Gi. With the aid of interpolating factors 

(4.31), this plane wave may be approximated with the sum of two plane waves, 

which, in turn, excite two basis functions on the group Gi'. and

This is the reason why only two out of Q rows of the matrix are non-null. Each
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element of these rows (mj// and mu' +1) represents mathematically the contribution

if the basis function is excited on Gj', otherwise — 0. Hence even the

rows may be non-dense in principle. The known vector is due to the incident field 

and is given by

Now, observe that the vector of unknown basis coefficients must be determined 

using the MoM-CG scheme. The number of these coefficients is Q for each group Gi, 

I =  I - ■ ■ L. It might appear that the problem has numerical complexity 0 { {Q xL)^). 

However, upon inspection of (5.52), it has been observed that each block (of size

two basis functions are excited on each group Gi by the set of basis functions excited 

in Gi'. In the implementation of the matrix form of TIM, it makes computational 

sense, therefore, to carry out a preprocessing step, identifjdng the basis currents that 

will be needed on each group and then one may work solely in terms of this reduced 

set. Many redundant calculations involving non-excited basis currents can thus be 

eliminated. The entire procedure is geometry-driven and delivers a compression 

of the operation which reduces complexity. To illustrate the complexity reduction

of each basis function excited on Gi> to the evaluation of the far-field scattered by 

Gi' over Gi. Thus, the n-th element {miii,n) of the row mu' is given by

(5.53)

(  0 \

0

^ t n c
(5.54)

0

Q X Q) of the matrix is highly sparse. Each block is sparse due to the fact that only
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achieved by the matrix formulation of TIM/ANIM, refer to Fig. 5.8, where a 

scatterer made of four PEC segments of equal length L =  lOOA is illuminated 

by a plane wave. By geometric inspection, it is evident that for each group, say 

Gi, I =  only a few basis functions are excited out of the postulated Q

functions. It is hence possible to set up the matrix equation (5.49) deleting a 

priori all the redundant equations (of the kind 0 =  0). For the example of Fig. 

5.8, applying the typical MoM procedure to dicretise the EFIE a dense matrix of 

N'^ ~  (3000)^ complex numbers is produced. Its solution by CG technique requires 

0{1SP) operations. By applying a matrix formulation of TIM/ANIM, the initial 

matrix of (5.49) is 0{{Q x L)^ =  (360 x 4)^), but after the preprocessing step one 

would obtain a sparse matrix of 0((30)^), as illustrated in Fig. 5.9. The storage 

complexity reduces by a factor of 10000.

5.5 Application of T IM /A N IM  matrix formulation to elec

tromagnetic scattering from periodic surfaces

The matrix formulation derived in the previous section may be extended to the 

problem of electromagnetic scattering from periodic surfaces [71]. Periodic scatter- 

ers find application as electromagnetic filters and polarisers. The problem tackled 

in this section is T scattering from a PEC half-space having a periodic surface. 

The geometry is illustrated in Fig. 5.10. The typical approach to this class of prob

lems is to restrict the computational domain to one period of the structure. As 

given in [21], chapter 7, the electric current density J^(a;, y) located on the periodic 

surface satisfies the so called Floquet’s condition:

scattering from periodic surfaces 95

+ a,y) = J^{x, y)e (5.55)

where a is the period of the structure and

kx = k cos 9 (5.56)



5.5. Application of T IM /A N IM  m atrix form ulation to electrom agnetic  

scattering from periodic surfaces 96

where 6 is the angle of incidence of the TM^ plane wave illustrated in Fig. 5.10. 

As a consequence of (5.55), it is possible to reduce the domain of the EFIE to 

a single period. The procedure is described in detail in [21], chapter 7. Here it 

suffices to say that to reduce the domain of the integral equation to a single period, 

the periodic Green’s function must be introduced. Given two current elements, m  

and no, the periodic Green’s function takes into account the interaction of element 

no and its periodically shifted versions, say Up {p =  —oo • • • — 1,1 ■ - ■ oo), and the 

element m. Referring to Fig. 5.11, the meaning of the periodic Green’s functions 

becomes clear. This function accounts for all interactions between Up and m,  with 

p =  —oo - • • oo. Specifically, the periodic Green’s function has the expression

OO

G(r, r') =  Y, (*l>- -  (5.57)
p = —oo

where a is the period of the structure. Each group of the unit cell is illuminated 

by the plane waves radiated by all the other groups of the unit cell itself and the 

other cells. Referring to Fig. 5.12 for example, the group Gi is illuminated by the 

fields emanating from the centres of groups Gi>̂ , with p = —2, —1,1,2 and from all 

other periodically shifted versions of G/<o, which are not illustrated for the sake of 

simplicity. These plane waves, in turn, excite basis functions over Gi, such as those 

described in the previous section, i.e. satisfying the discretised EFIE (4.32). 

The matrix equation for the unknown coefficients of the basis functions excited on 

each segment of the unit cell may be set up, following the approach described in 

the previous section.

To clarify the method here proposed, the periodic structure having the unit cell 

illustrated in Fig. 5.13 is now considered. The periodic surface has a period a = 

200A, and h — IX. A TM^  plane wave illuminates the scatterer with an angle of 

incidence 9 = 358 degrees. The unit cell, for this example, is made of two groups of 

current elements. Each of these groups is illuminated by the other group of the unit 

cell and all the periodic shifted versions of the unit cell itself. For this example, 

the number of shifted periods considered is P  =  32 in the directions a; < 0 and



5.5. Application of T IM /A N IM  m atrix form ulation to electrom agnetic  

scattering from periodic surfaces 97

X >  a.  The TIM matrix was set up for this problem and successively inverted 

by the CG algorithm. The current distribution on each cell was hence derived 

using (5.55). The far-field pattern at sampled angles lying on a circle located on 

the half-space y > 0 centred at the point {x,y) — (a/2 ,0) was evaluated and 

compared with a reference solution obtained using a moment method scheme with 

pulse basis functions with an interval width of A/8. Both results are illustrated in 

Fig. 5.14. A satisfactory agreement between the field amplitudes may be noted at 

the peaks of the patterns, specifically along the specular and backward scattering 

directions. It is evident, however, that the TIM results present a non-smooth 

behaviour in contrast to the exact solution. The reason of the presence of the error 

in the TIM results of Fig. 5.14 is found in the fact that the near-field calculations, 

using TIM, are evaluated in an approximated fashion, using FAFFA. This issue was 

discussed in section 4.2. Indeed, by evaluating the near-field interaction exactly, 

better results may be achieved. Fig. 5.15 shows the result obtained using a TIM 

procedure in which the near-field interactions are evaluated exactly, using a MoM 

scheme with pulse basis functions with interval width of A/8. The TIM solution 

is highly satisfactory and exhibits slightly non-smooth behaviour, due to the fact 

that only the near-neighbour interactions were evaluated exactly, i.e. a residual 

error is still introduced by FAFFA. The application of FAFFA to the neax-field 

is however necessary to retain the basis function approach presented in section 

5.4. It must be recalled that, using this approach, the current on each group is 

expressed as a superposition of reference currents excited by plane waves. If one 

evaluates the near-field related to a group exactly, one inevitably assumes that the 

field illuminating the group is not a set of plane waves, because the near-field is 

not a plane wave. A heuristic way of retaining the plane wave interaction model 

for near neighbours may be proposed referring to Fig. 5.16, where two near groups 

of current elements are illustrated. To evaluate the field due to G„ on Gm a buffer 

zone is introduced and the two groups G^- and Gm-ir are considered. Specifically, 

is the group minus the final part NF. Gjn-\- is the group Gm plus the buffer 

zone that substitutes the final part of (NF) for the field calculation. The electric
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current due to the field illuminating and radiated by is then evaluated using 

FAFFA. The current residing on Gm is the current due to the plane wave radiated 

from Gn~ to the enlarged group Gm+- The result of the introduction of the buffer 

zone in the TIM matrix method is shown in Fig. 5.17, where the far-field patterns 

discussed in Fig. 5.14 are illustrated. The TIM solution offers now a smoother 

behaviour when compared with the TIM solution of Fig. 5.14 and the agreement 

with the reference solution is now of the same order of the agreement obtained 

in the case of exact near-field calculations, illustrated in Fig. 5.15. The heuristic 

technique here proposed is only a first attempt to express near-field interactions in 

terms of plane waves. The author hopes that future research will be addressed to 

improve the technique introduced.

5.6 Sum m ary

• This chapter presented three enhancements to TIM. The first was the Analytical 

Interaction Method (ANIM), which derives from TIM. In chapter 4 it was shown 

that TIM achieves substantial computational savings allowing the interactions be

tween portions of the scatterer to be written in terms of tabulated calculations. 

These tables, however, depend on the frequency of the incident radiation and on 

the size of the portions of the scatterer, i.e. length of PEC segments. The ANIM 

was presented to overcome the necessity of storing TIM tables in order to render 

the original method more flexible with respect to frequency. Specifically, it was 

seen that the recurring problem of electromagnetic scattering by a PEC segment 

may be solved analytically introducing a reasonable approximation. It was verified 

that if a segment is many wavelengths long and the incidence is at grazing angles, 

the electric current density located on the segment may be approximated with the 

current induced on an half-plane illuminated by a plane wave. The approximated 

electric current was analytically integrated using Fresnel integrals. The result is 

the electric fax-field scattered by a PEC segment illuminated at grazing angles by 

a plane-wave. This expression was then used to replace the TIM tables. The
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advantages of this substitution were listed. Numerical results were presented to 

demonstrate the successful application of ANIM to the problem of UHF propaga

tion over irregular terrain. Specifically, the ANIM was compared with the FAFFA 

and the TIM both described in chapter 4 and it was shown that the final results are 

highly satisfactory Moreover, a comparison between ANIM ajid exact (reference) 

results was illustrated to emphasise the massive computational savings achieved by 

the new method. Also, it was shown that ANIM results agree with measurements 

for two specific examples. In chapter D of Appendix a mathematical extension of 

ANIM in three dimensions is proposed using the Physical Optics approximation.

The matrix formulation of TIM/ANIM was also presented. It was shown, by ge

ometric arguments, that the TIM matrix is very sparse and may be rearranged in 

order to reduce the storage of redundant (zero) elements. An example of storage 

allocation savings for a simple problem was given. Application of the TIM/ANIM 

matrix formulation to the problem of electromagnetic scattering by finite periodic 

structures was discussed. Numerical results were provided and commented for this 

case.
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(b)
Figure 5.3; Field strength over Jerslev profile. The terrain extension over the x direction 

is of the order of tens of thousands the incident wavelength; terrain profile, line source 
location and simulation results (field strength at 2.4m above the terrain).
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Com parison of field streng ths
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Figure 5.4; Field strength over Jeralev profile. The terrain extension over the x  direction 
is of the order of tens of thousands the incident wavelength: simulation results (field 
strength at 2.4m above the terrain).
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Hjorringvei profile
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Figure 5.5: Field strength over Hjorringvei profile. The terrain extension over the x 

direction is of the order of tens of thousands the incident wavelength: terrain profile, line 
source location and simulation results (field strength at 2.4m above the terrain).
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Comparison of simulation results with measurements: Hjorringvei -  970MHz
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Figure 5.6: Field strength over Hjorringvei terrain profile.
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Comparison of simulation results witti measurements: Jerslev -  970MHz
-50

—  Reference
 Measurements
- •  ANIM-60

-90

-110

-120

-130

-140

-150
60001000 3000 4000 500020000

Meters

Figure 5.7: Field strength over Jerslev terrain profile.

y

X

Figure 5.8: Simple scatterer geometry for the application of matrix formulation of
TIM/ANIM.
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TIM matrix

i
I

Figure 5.9: Sparse m atrix obtained using TIM for the example of Fig. 5.8.

y
plane wave

J z [ x  + o, y)

Figure 5.10: T M ^  plane wave incident on a periodic surface with period a.
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p =  - 1

n i

p =  - 2

u n it cell

Figure 5.11: PhysicaJ meajiiiig of the periodic Green’s function: the function describes 
the interaction between the observation point m  and all the periodic shifted versions of 
no, which are defined as rip, with p  =  —oo • • • — 1 ,1, cx).



5 .6 . Sum mciry 107

Gi

^ V - i

(a)

y

• Q l

Eight basis functions
are excited by 4 plane waves 
illuminating G;

(b)

Figure 5.12: Plane waves due to periodic shifted versions of G i '  illuminating the group 
G i -  In the example here illustrated, four different angles of incidence are coimted which, 
in turn, excite eight different basis functions. These aire the fields radiated by groups 
G i> ^ , with p =  - 2 , - 1 , 1 , 2 .
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y

plane wave

a

Figure 5.13: Unit cell of a periodic scatterer illuminated by a plane wave.

Comparison erf TIM with exact method

  Exact
-  TIM

Q. 4

100 160 18040 60 80 120 1400 20
Degrees

Figure 5.14: Comparison of the far-field patterns for the problem illustrated in Fig. 5.13: 
the TEM differs from the exact solution for its non-smoothness.
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Comparison of TiM (exact near-field) with exact method

  Exact
—  TIM {exact near-field)

0.4

100 120 1400 20 40 60 80 160 180
Degrees

Figure 5.15: Compaxison of the far-field patterns for the problem illustrated in Fig. 
5.13: exact calculation of the near-field interaction renders the TIM solution smoother 
with respect to the result shown in Fig. 5.14.

y

buffer zone

NF

Figure 5.16: Introduction of the buffer zone to allow the use of FAFFA between two near 
neighbours.
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Com parison of TIM (buffer zone) with ex act m ethod
7

  Exact
—  TIM (buffer z one  introduced)

6

5

4

3

2
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100 120 140 160 18020 40 60 800

D egrees

Figure 5.17; Far-field patterns obtained using a buffer-zone approach.
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VALUATION OF EFIE MATRIX TERMS IN THE RWG APPROACH

This chapter is related to  the discretisation of the EFIE as described in section 2.6, 

specifically the numerical evaluation of the self-terms of the impedance matrix. This 

operation is critical and must always be performed. Section 6.1 presents the typical 

approach to the evaluation of impedance m atrix terms of the discretised EFIE in 

the three-dimensional case, using the RWG basis functions defined in section 2.6.1. 

It is shown that the numerical evaluation of these terms involves surface integrals 

defined on the triangular domains of the RWG functions. The numerical evaluation 

of the integrals where the observation point belongs to the same domain as the basis 

functions is carried out in two steps, as described in section 6.1.2. In section 6.2 

the author presents a novel numerical technique which perm its the evaluation of 

the integrals referred to in section 6.1.2 in a fast and accurate fashion. The novel 

method represents an efficient alternative to the common approaches described in 

the literature. Numerical results are provided in section 6.3 to dem onstrate the 

validity of the new method.

6.1 Calculation of the impedance matrix elements: the typ

ical approach

In the RWG approach, the EFIE is discretised as discussed in 2.6.1. The resulting 

m atrix equation (2.78) has been derived in section 2.6. A typical element of the 

impedance m atrix Zmn (2.79) represents the field radiated by the basis function 

f„ over the domain where the basis function is defined. Specifically, the field 

radiated by the basis function f„ is an integral over the domain U T ~ . Testing

this field (see section 2.6.2) involves performing a surface integral of the field over 

the domain T+ U Basically, the evaluation of the m atrix term  involves four
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terms due to the possible combinations of the pairs: (T ^ ,T ~)  and (T ^ ,r~ ). It 

is evident that a correct evaluation of those elements is critical for the accurate 

solution of the integral equation. Consider a pair of triangles, say and T+. To

Figure 6.1: Geometry of the impedance term calculation when m ^  n: the current 
associated with the edge /„ radiates over the domain T+. In the figure, only the interaction 
between the domains T+ and T+ is displayed. Each triangle is characterised by a local 
planar coordinate system, such as (a;„,j/„) and {xm,ym)-

evaluate the field due to the n-th current source at the triangle T+, in order to 

compute the matrix element ^mn) the following integral must be calculated

■JW/io

j4a;7reo

6.1.1 Numerical evaluation o f integrals involving different triangles

Referring to Fig. 6.1, suppose now that m  ^  n, i.e. the two triangles axe different. 

Then it is possible to write (see [33])
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where

» l  p l - f )  „ - j k R

pi

Jo

n
l - V  p - j k R

- ^ d ^ d r j  (6.5)

with

2 " = 2 ^ + 2 ^ + 2 ^  (6.6)

and

r  1 p - j k R

/  3T -5-<i5' = '» ^  (6-7)Jt * A+ R  

Using (2.67), (6.1) can be expressed as

' » +  '■52? -  r ; i ")  d s  +47T ~ *m '
- 1

j4o;7reo i m  m

Now, the integrals in (6.3) - (6.6) can be evaluated numerically through an optimised 

quadrature rule given in [72] and hence (6.8) can be evaluated. For example, let

(6.9)v„ =  i„ +  r ; i ;  +  -  r ; r > )

then the first integral in (6.8) becomes

= ^ /  - P ^ - ' ^ r . d S  (6.10)
47t Jr+ 2A+

which can be performed by of a change of coordinate system on the plane of the 

triangle T ^ . Referring to the polaj system (pm,0m) illustrated in Fig. 6.1, if
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( ^ m , y m )  are the unit vectors associated with the rectangular coordinate system 

defined in the same plane as T^, then the vector can be w ritten as

Pm Pm  “ t "  Pm ^ m Y m (6 .11)

where and 4>m are the polar coordinates related to { ^ , y m ) -  Ini this way, the 

integral evaluates to

j U l i Q  I ,

where (f)^ and ( f)^  are the polar angles of the vertices r ^  and r ^ ,  l m { 4 > m )  is the 

equation of the segment l-m with respect to the angle (j). Such integral is now 

amenable to a double quadrature rule, as described in [11]. The same procedure 

can obviously be applied to the second integral of (6.8). Usually, however, the 

integration over the domain T+ is carried out using a single-point quadrature rule 

(with the average value of the function to be integrated assumed to be the value of 

the function at the centroid of T+).

6.1.2 Num erical evaluation of integrals involving the same triangle

In the case of identical triangular domains, i.e. =  T , the numerical

evaluation of the integrals (6.3) - (6.6) is a delicate task to accomplish because of 

the singular behaviour of the Green’s function on T. The integrals are, however, 

finite. The issue here encountered is the same as the one arising in the evaluation 

of the elementary one-dimensional integral

which is finite (its value being 2) although (1/-^^) —> oo as x —> 0. A numerical

(6.13)

evaluation of (6.13) can be highly unreliable. The usual approach to overcome the 

difficulty inherent the calculation of integrals (6.3) - (6.6) is to split the integrand
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into the sum of two functions: one singular part, which can be integrated ana

lytically, and the remaining part, non singular, which can be treated numerically 

without convergence problems. Thus, (6.3), for example, becomes 

'1 rl  r l - v  2
(6.14)

where is the integral evaluated numerically and is the integral evaluated an

alytically. This approach has been thoroughly described in [73] and by Graglia in 

[74], where kernels with singularity of order are also dealt with. Analytical

formulae for the singular field contributions of linear source distributions on trian

gular domains were presented in [75], too. Alternatively, a simpler expression of 

the integrals evaluated analytically may be obtained and is now presented.

Referring to (6.1), given a triangular patch T, the following integrals must be 

evaluated

a - j k R
-dS'

R
dS'

(6.15)

(6.16)

where the subscript related to the identity of the triangular patch has been omitted, 

without loss of generality. Hence, using a more compact expression, it is of interest 

to evaluate the integral

-L X

\ y ' J

- j k R

R
-dS' (6.17)

where R  is the distance between the integration point (x', y') and the observation 

point (xo, yo) For completeness, observe that the following series of inequalities 

holds

\ r /

- j k R

-dS' < L
( i \

x ‘

\ y ' J

1
d S ' < [

JCr,

f l \

P

\ P J

dpdcj) < oc (6.18)
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where Cmax is the circular domain centred at (xq, Vq) and having radius equal to the 

maximum distance between any of the three vertices of T  and the observation point 

itself (T C Cmax)- Hence, X exists and is finite, however care must be taken with 

its numerical evaluation, due to the presence of the singularity in the integrand. 

The triangular domain T  may be decomposed as the sum of three triangular do

mains: Ti, T2 and T3 as illustrated in Fig. 6.2. Thus the integral to be evaluated 

analytically becomes

ânl - LT\+T2+Ti

/ 1 \

X'

\ y ' J

R dx'dy' (6.19)

Referring to the polar coordinate system centred at the observation point (xo, yo) 

with the polar axis Xa parallel to the x  axis^ as illustrated in Fig. 6.2, the integral 

over a single sub-domain Tj, i =  1,2, 3, is given by

/  1 \

X

\ y ' J

which evaluates to

r  1 r<t>2
/ x' —dx'dy' =  d(j) 

JTi R  J(t>i Jo

( \
P  cos ^ -|- Xo

y  />sin0-Kj/o y

-pdp (6 .20)

r<t>2

J<t>i
2 cos^ -I- Xor{(j)) d4> (6 .21)

\  sin (j) + yor(0) /

The function t {4>) has been introduced. For each sub-triangle Tj, i  =  1,2,3, it 

represents the equation in polar coordinates satisfied by the side that the sub- 

triangle has in common with the triangle T. Generally the function r(^) has the 

expression

r[4>) -- -sin (/> — m cos (f)
(6.22)

^The relationships between the rectangular coordinates { x ' , y ' )  of a point with reference to the 

observation point (xo, 2/0 ) and the polar coordinates {p,  (p) axe x '  — Xo =  p cos <l> and y ' —yo  =  p sin0.
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where q and m  are real numbers. Hence the evaluation of (6.21) requires the 

quadrature of three different kinds of integrals:

/ —r— COS (j)d4> (6.23)
Jd>, 2

/ ~ — sin (j)d(p (6-24)

and

f</>2

/  r{(t>)d(l) (6.25)
Jd>,

which may be carried out analytically. Specifically one must evaluate the following 

items.

r<t>2 r<t>i „2
/ COS (j)d(t>= /  .  —  cos (j>d(t> (6.26)

J .  2  A , 2 (sm < /)-m co s (/>)2

•  Integral of the form

r<t>2 rH ^2

^ J<pi 2 (s in < /)-m co s (/>)2

may be reduced ([9], formula 2.558) to

<zV 1

2  {—m? — l)(sin(^ — mcos (f>) J
^2  1 /•<̂ >2
r  1 r  (e,27)

— — 1 ) 7 0 , (sm (j) — mcos(p)2 (

Integral of the form

"<^2 ^ 2 f ^ ^  r<j>2 q 2

^ 2 (s in < ^-m co si

may be reduced ([9], formula 2.558) to

/•0 2  ^ 2 ^ ^ \  r<t>2 2
/  sin (j)d(l)= /  .  ^  sin (j)d(l> (6.28)

2 2 ( s m < ^ - m c o s ( / ) ) 2
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Integral of the form

'4>1

which appears also in (6.27) and (6.29) may be evaluated in an elegant way.

r<t>2 2
/   (6.30)

y  A a COS 0 +  0 sin 0

It is

a cos (f) + b s in ^  = Va^ + b^( cos . -  - = + sin ^ —=^-  _ ) (6.31)
V +  6̂  V ^

which may be written as

a cos (f) + b sin (j) =

■\/â  + b‘̂(̂  cos 0  sin ( ta n   ̂(a/6)) +  sin cos ( tan ^(a/6))j (6.32)

By recalling the trigonometric identity

sin(Q; +  /3) =  sin O'cos ^  +  cos a  sin/3 (6.33)

(6.32) becomes

a cos (f) + bsincf) = +  6̂  sin (^ +  tan~'^(a/6)) (6.34)

/•02 2̂ 2 

A , 2y/a^ + sin (cf) +  tan~^(a/&))

thus the integral (6.30) may be expressed as

<t>2 I  2

01

By applying again (6.33) and by recalling the definition of the function tan(-), 

it follows th a t (6.30) is given by

r<t>2 I  I

/    -̂--------------T------- 7-------------------------^d(/>(6.36)
Jct,̂  2yja^  +  b^ tan +  tan“ '^(a/i))j cos^^|(0 +  tan“^(a/&))j

Observe that the function



6.1. Calculation of th e  im pedance m atrix elem ents: th e  typical 

approach 119

is the first derivative of the function

(5' (6.38)

thus the integral (6.30) becomes

r<t>2

J  d>i
 ̂ - d z

'0 1  y / a ^  +  b ^  Z

where 2  is the function

z{(l)) — tan ^̂ (</* +  tan“^(a/&))y 

By recalling that

J  - d z  =  lo g \z\

a closed form expression for (6.30) is obtained

log tan {a /b )) j

(6.39)

(6.40)

(6.41)

r<P2 I

/   d(f)-=
acos(j) +  bsiTKp \/a?

(6.42)

The typical approach [74] to the calculation of X  is to evaluate separately the 

integrals and

Xani

I  1 N

x'

v' J

(6.43)

Xfiv - ^ L
X '

\ y '  }

p - j k R  _  1

^- ^ d S '
R

(6.44)

where X =  Zani +  ^um- The task may be hence accomplished using the following 

procedure.
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Referring to the coordinate system (xq, ya) centred at (2:0 , yo) illustrated in Fig. 6.2 

for each side of T the characteristic coefficients m \  and c‘ of the line li containing 

the side itself are defined, so that either the equation

(6.45)

or the equation (in the case of a vertical line l̂ )

X  —  X q =  c (6.46)

is satisfied by the coordinate pairs of the endpoints of STj, which defines the i-th 

side of T. Furthermore, referring to Fig. 6.2, let ajid (f)[ be the angles associated 

with the endpoints of 6Ti. The reference axis for measuring the angles is chosen to 

be Xa with angles increasing in counterclockwise direction. As can be seen in Fig.

6.2,

^ <̂3}) ^6 £ {^1) ^ 3 } (6.47)

The subscripts a and b are related to the a and the b endpoint of 5Tj defined as 

follows 5Tjn connects the points \rn\3 +  1 (subscript a) and  |m +  l|a +  1 (subscript 

b), m  =  1,2,3 where |n|^ denotes the remainder of n / m ,  where n , m  are integers. 

By recalling the results (6.27), (6.29) and (6.42), it can be then obtained that

■'anl = E
1= 1

-  y ( f t )  ^

i fM) - (6.48)

where the following triplet of functions of the angle (j> has been introduced:

(6.49)

(6.50)

(6.51)
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with

^  2[(m*)^ +  l][m* cos (j) — sin 0] (6.52)

= (6-53)2[{rn^Y +  1] 
tan“ 

y/l +  (m‘)2

when (6.45) is satisfied, or

. lo g |ta n { |[ (^ - ta n
^  W  =  —   y  .NO----------

h\(!>) = (6.55)
(cT*>iW= ( ^  +  c‘i o ) c ‘W  (6-56)

'>i(« =  +  c's/oC^(« (6.57)

with

^(4,) =  log

COS (p

tan ^^ (^  +  7t/2)^ (6.59)

when (6.46) is satisfied. Notice that when (xo)2/o) ^ the i-th term of the sum 

given in (6.48) is zero, by definition. The results achieved using (6.48) are identical 

to those obtained using the formulae given in [74].

The integral (6.44), that is 2„uTn) can be evaluated numerically without difficulties, 

the integrand being bounded over the integration domain T.  As described in [74], 

the numerical multiple integration of a bounded function over a triangular domain 

T  can always be deduced from an integral of the following type

^  =  f  r  " F{i,ri)d^dr) (6.60)
Jo Jo

where (^, ry) are the triangle area coordinates, which are related to the coordinates 

{x, y) by a linear operator. The numerical integration of (6.60) can be performed
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by severed methods. For example, a generalised product rule (combination of two 

Gaussian rules, for instance) can be applied

or alternatively an L-point quadrature formula, as reported in [72], can be consid

ered

L

(6.62)
i=l

where Wk, Vjk and wi are the weights. Thus, the final result is given by

In summary then, to evaluate the integral I  it is first split into two parts. The first 

part lani is performed analytically using (6.48) and the second Znum is evaluated 

numerically.

6.2 Alternative approach to the numerical evaluation of in

tegrals involving the same trieingle

The typical procedure for the evaluation of I  was outlined in the previous section 

along with a modified formulation of the analytical part of that method which the 

author finds useful. In this section, an alternative approach for the evaluation of 

the X is developed. The new technique is both conceptually simpler and also easier 

to apply. The formulation begins by splitting the integral into two parts, but in 

this case the anaJytical part is zero. Observe that

N M

(6.61)

(6.63)

X — Xi X/i (6.64)
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with

=  lim [
e - f O

y /

, - j k R

R
~dS' (6.65)

and

=  lim [ X '

\ y '  I

o - j k R

R
-dS' (6 .66)

Ds is the intersection between a disk of radius e centred at the observation point 

(xo, j/o) T. It is straightforward to obtain that

C(xo,yo)Ii™ f  ^ =  0
7o

a:o 

V yo /

where the function C{xq, uq) is defined as {5T is the contour of T)

(6.67)

C{xQ,yo) =
27t {xQ,y(i) e T  -  5T 

7  if (xo, t/o) e  ST
(6.68)

and 7  =  7T if {xQ,yo) is not located at a vertex, otherwise 7  is the angle between 

the two sides of T  meeting at the vertex where (a;o,yo) falls.

(6 .6 0 ) may be expressed as

X\ — lim I
e->o ^  J r  n X

, —j k R

R
-dS' (6.69)

V y

where the sum over i extends to the three triangles formed by the observation 

point and the endpoints of 5Tj: T i + T 2 + Ts = T  (see Fig. 6.2). Dg. is the domain
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given by the intersection between Tj and D^. Now, it follows that

2 = 1

f'W   ̂
f 'M  

f ' M  )

d(j)

where

r w ''

f '.W

a w )

(

=  lim /
^^0 J e

\

pcos (j) + X o  

y p s in ^  + yo )

(6.70)

(6.71)

and p is the distance between the integration point and the observation point which 

is considered as the origin of a polar coordinate system [x^ is the reference axis, as 

already stated above), rj(^) is the distance of any point of 5Ti from the observation 

point and is a function of the characteristic coefficients and m ' in (6.45)

ri[4>) =  ŝin (j) — m ’’ cos <f>
(6.72)

or the coefficient c’ in (6.46)

c*
n{(t>) =  T, ( l > a < 4 > <  (f>l

C O S ( p
(6.73)

with and defined as in (6.47). Once again, observe that if {xo,yo) G STi then 

the terms associated with i in (6.71) are zero. The integrals in (6.71) are easily 

evaluated. The results are

f { c t > )  =  ^ [1  -

J K
(6.74)

(6.75)

(6.76)
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where

ax{(l)) = [cos (j) + jkxo l  (6.77)

+  1] cos 0 +  jkxo}  (6.78)

ay{(j)) = [sm(f> +jkyo]  (6.79)

= {{Jkn{(l)) +  1] sin ^  +  jkyo}  (6.80)

The final step in the solution of the original problem is the evaluation of the three 

integrals involving the functions / ’(^), /i(<^) and /̂ (</>) over the domains =  

{(f>a < (l> < 0ft}■ This can be achieved numerically employing, for example, a 

Gaussian quadrature formula

i=l
Ei (6.81)

where {wi};=i...L and {<l)i}i=h-L are, respectively, the sets of weights and abscissas 

considered for each $*.

The first remark about the alternative approach presented here relates to the in

tegrand functions / ’(</>), and We observe th a t the longer side of a

triangular patch, where a basis current function shall be defined, is smaller than 

X/x,  with a: >  4 for an accurate implementation of the moment method. Thus

0 < kri{(f)) < , (f)l<(i)<(j)\ (6.82)

which shows th a t the domains < (f> < (pl) correspond to a relatively

small portion of the period =  27t of the function. This guarantees a

sufficiently smooth behaviour of the functions to be integrated numerically, which 

in turns provides a closer approximation. Essentially, the alternative m ethod pre

sented in this section is fully numerical, since the analytical part X2 evaluates to
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( t t o . f o )  i (0.1. 0.1) (0 .2 , 0 .2) (0 .3 , 0.3)  ̂3 > 3 ^ (0 .4 , 0 .4 )

lG 8
1.89818 -  jO .309025 

0.434036 -  jO. 102436 

0.434035 - j O .  102436

2.24628 -  j 0 . 3 1 l l l  

0.601287 -  ; 0 . 103454  
0.601287 -> 0 .1 0 3 4 5 4

2.381 -> 0 .3 1 1 8 1 7  

0.745461 -> 0 .1 0 3 8 2 3  
0.745461 -> 0 .1 0 3 8 2 3

2 .37762 -  >0.31185  

0.780064  -  >0.103871  

0.780064 -> 0 .1 0 3 8 7 1

2.28374 -  >0.311502  

0 .813426 -  >0.10381  

0 .813426 -  >0.10381

j-GlO
1.89853 -  jO.309515 

0.43439 -  ; 0 . 102763 

0.43439 - j O .  102763

2 .24629 -  j0 .311141  

0.601306 -  jO .103483  

0.601306 - j O .  103483

2.381 -> 0 .3 1 1 8 2 6  

0.745462 -> 0 .1 0 3 8 2 8  

0.745462 -  >0.103828

2 .37763 -  >0.31187  

0 .780066 -  >0.103881  

0.780066  -  >0.103881

2.28386 -  >0.311661  

0.813479 -> 0 .1 0 3 8 8 4  

0.813479 -> 0 .1 0 3 8 8 4

1.89841 - j O . 309643  

0.433746 -  jO. 102774 

0.435156 - j O .  102972

2.24615 -  jO .311144  

0.60055 -  jO. 103387 

0.602054 -  jO .103586

2 .38177 - > 0 .3 1 1 8 2 6  

0 .745028 -  >0.103729  

0.746422 -  >0.103927

2.37916 -  >0.311872  

0 .779873 -> 0 -1 0 3 7 8 2  

0 .781247  -  >0 .10398

2.284 -  >0.311688  

0.812779 -  >0.103797  

0.814163 -  >0.103995

T 1■ ^ a n l  +  -^num

1.89861 -  jO.309643 

0.434471 -  jO. 102873 

0.434471 -  jO. 102873

2.2463 -> 0 .3 1 1 1 4 4  

0.601312 -  >0.10348  

0.601312 -  >0.10348

2.38097 -> 0 .3 1 1 8 2 6  

0.74545 -  >0.103828  

0.74545 -  >0.103828

2 .37759  -  >0.311872  

0 .780056 -> 0 .1 0 3 8 8 1  

0.780056  -  >0.103881

2.28391 -  >0.311688  

0.813602 -  >0.10389  

0.813502 -  >0.10389

M

1.89857 - j O . 309643 

0.434468 -  j0 .102873  

0.434468 -  jO. 102873

2 .24628 -  >0.311144  

0 .601305 -  >0.103487  

0 .601305 -  >0.103487

2 .38099 - > 0 .3 1 1 8 2 6  
0.745456 -  >0.103828  

0.745456 -  >0.103828

2.37762 -  >0.311872  

0.780063 -  >0.103881  

0.780063 -  >0.103881

2.28386 -  >0.311688  

0.813481 -  >0.103896  

0.813481 -  >0.103896

Table 6.1: Numerical and reference results for five different observation points.

zero. The problem of calculating X  is now reduced to the problem of evaluating 

three triplets of integrals (one triplet for each side of T) of functions of one variable 

(j). In the conventionaJ approach outlined in the previous section, X is evaluated as 

the sum of three triplets of integrals calculated analytically {X̂ ni) and one triplet 

of multiple integrals carried out numerically iX^um)- Thus, the alternative tech

nique is certainly simpler than the usual one (the difficulty in handling numerical 

integrations decreases in passing from two dimensions to one dimension). Another 

factor to be taken into account is the accuracy of the two methods. In the conven

tional approach, the evaluation of 2num can be done by employing a product rule 

(MAT points considered) or a simpler quadrature formula (L points sampled), with 

L < M N ,  which is obviously faster as well as less accurate than the product rule. 

However, with the alternative method, X  is calculated readily by an L-point Gaus

sian scheme, with satisfactory results. Finally, it is straightforward to generalise 

the method here exposed in the case of planar polygonal domains. In fact, a planar 

polygon P  having S  sides can always be represented as the union of S  disjointed 

plane triangles.
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XO

Figure 6.2: Geometry of the self term calculation for the triangle T.  The local coordi
nate systems (x,y)  and (/o, are displayed. Given the observation point {xQ,yo),  three 
triangles are considered: Ti, T2  and T3  obtained by a connection of the observation point 
with the three vertices of T. The integral given in (6.17) may be considered as the sum 
of three integrals, each one computed over the triangular domain Tj, i =  1, 2,3. More 
precisely, the integral over the whole domain T  is split into the sum of two integrals: one 
over a disk of radius e —)• 0  centred at (a;o, yo),  which evaluates to zero, and the other over 
the three triangles Tj, i — 1 ,2, 3. Each integral over Tj may now be carried out referring 
to the polar coordinate system (p, ^), obtciining the final result (6.81).

6.3 Numerical results

The novel numerical technique has been implemented and compaxed with the usual 

approach for a triangle T  as the one displayed in Fig. 6.2 with the points 2 and 

3 having coordinates (2:2 , ^2) =  (O.IA, 0) and =  (0 ,0 .lA), with k =  27t/A.

Table 6.1 displays five different sets of results obtained for five different observa

tion points (xo,2/o) belonging to the line x  = y. The first two rows refer to two 

different numerical evaluation of the integral (6.81), by a one-dimensional Gaussian 

quadrature rule with 8 and 10 abscissas and weights, indicated by 2^* and 

respectively. In the successive couple of rows, results returned implementing the
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usual method proposed by Graglia in [74] are reported. The term X^ni is the integral 

evaluated analytically, i.e.

L
/ i \

x ‘

\ y ’ J

(6.83)

Such term  may be evaluated by direct integration as described in [74] or [76]. The 

remaining term, i.e.

i
f l \

X '

\ y ' J

,-jkR  _  j

R dS' (6.84)

may be evaluated using a seven-point numerical quadrature rule described in [72], 

whose result has been indicated in the table by 2 ^ ^  or by a two-dimensional 

8 x 8  Gaussian rule, indicated by 2 ^ ^ .  Finally, the last row, labelled by A4 

shows the reference results returned by a specialised m athem atical software package, 

M athem atica 3.0. The results returned by M athem atica 3.0 have been generated 

by an accurate procedure which guarantees their reliability, although it requires an 

execution time of order of hours to achieve the desired final stable result. Among 

the two numerical techniques, the classical one based on [74] and the novel one [76], 

the author has registered a faster execution time for the latter. Both have been 

implemented using C-I-+.

Fig. 6.3 illustrates the smooth behaviour of the functions (6.75) and (6.76) in the 

case of (6.72) given by

r(<^) =  -
1

sin^ — (—1) cos(^ , 0 < </> < 1.5 (6.85)

where </> is given in radians and xq = yo = 0 (see (6.75) and (6.76)). The function 

r{(f)) is also illustrated.
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6.4 Summary

This chapter presented the problem of the numerical evaluation of surface integrals 

arising in the discretisation of the EFIE in the three-dimensional case using the 

RWG basis functions. The typical approach to the numerical evaluation of singular 

functions was described. This approach derives from splitting the integrand into two 

parts: one part is analytically integrable and the other, non-singular, is numerically 

integrable.

Instead of splitting the kernel, it was suggested to split the domain of integration 

into two subdomains: a disk of radius e (or a portion of disk, if the observation point 

{x o j Uq ) falls onto the contour of T )  and the remaining part of T. The advantage 

of this approach is tha t the integral over the disk evaluates to zero. By means of 

a limit operation it is was shown that the evaluation of (6.17) can be carried out 

fully numerically. The advantages of the fully numerical procedure proposed here 

and published in [76] are essentially:

•  The integrals are one-dimensional, while in the usual approach the non

singular functions to be integrated numerically depend on the pair of real 

variables

•  The functions /* (0 ),/* (^ ) and in (6.81) are smooth over the domains 

of integration, so th a t a simple quadrature rule, such as a Gaussian formula 

with a limited number of abscissas, can be implemented to  achieve the desired 

accuracy.

•  The integral (6.17) is evaluated through one single step, being the limit of the 

integral over the disk zero.

In summary, the technique is reliable, fast and simpler to implement than the usual 

method. Numerical results were provided to show the accuracy obtained by using 

the alternative approach.



(xj)fBeu

6.4. Summary 130

□agrees

1I

90
Degrees 

Behaviour of fy
0 |

0.02

0 0 4

0  06

-O.OS

0 1

-0 12

-0 14

-Q 16

t o 20 40 50 60 70 800 30 30
Degrees

Figure 6.3: Beliaviour of the function r(^ ) as given in (6.72) and the resulting functions 
(6.75) and (6.76) employed in the evaluation of the integral using the alternative approach.
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THE MULTI-LEVEL FAST FAR-FIELD ALGORITHM

Chapters 3-5 were dedicated to the description of both existing and novel accel

eration techniques to tackle the problem of electromagnetic scattering in two di

mensions. The general EFIE formulation for the three-dimensional case has been 

derived and sample numerical results were presented in chapter 2. The FMM has 

been described for the three-dimensional case at the end of chapter 3. In the 

two-dimensional case, both the FAFFA and the FMM are extensively described in 

literature. Although the FAFFA may be considered as a derivation of the FMM, 

its computational simplicity represents a significant advantage with respect to the 

FMM. This is due to, its less complicated translation step in the group-to-group 

interactions. However, the FAFFA formulation for the three-dimensional case had 

not been reported in the literature and no attempts to implement a multi-level 

version of this algorithm had never been made. The author has investigated the 

possibility of a multi-level version of the FAFFA method in the three-dimensional 

case and has experienced that again in this context the FAFFA algorithm possesses 

advantages against the more popular FMM due to its implementation simplicity. 

The result is the work reported in [80]-[81]. A description of the multi-level FAFFA 

algorithm is given in this chapter, with final results which confirm the applicability 

of this fast method to three-dimensional scattering problems. A similar technique, 

without the multi-level feature has been applied recently to the modeling of reflector 

antennas [79].



7.1. Form ulation o f th e  M LFAFFA 132

7.1 Formulation of the M ulti-Level Fast Far-Field Algo

rithm (MLFAFFA)

In this section, the implementation of a three-dimensional multi-level fast fax-field 

algorithm which accelerates the matrix-vector multiply of iterative techniques such 

as the CG method in three dimensional scattering problems is described. The 

approach is a multi-level three dimensional extension of the FAFFA described in 

section 4.1.

7.1.1 T he far-field app roxim ation  applied  to  th e  RW G  basis set

As pointed out in section 2.6 the terms Zmn represent the effect of the field on 

the domain T+ U T~ produced by the current 7„f„(r), defined by (2.66). The field 

generated by /„f„(r) at a point P  is

1 / f  I p-jkR}, r 1 p-jkRn V
+ - ^ 4 ( /  4 v p ™ d 5 ' + /  - ^ V p ^ - — dS') (7.1)

jo;47reo Jt+ Rn Jt- \  Rn '

where a  € {-I-, — is the distance between the point P  and the point r ' 6 

and Vp is the gradient operating on a function of the coordinates of P. For 

example, in a rectangular coordinate system, Vp =  d / d x p k  d / d y p y  +  d /dzpz ,  

if Tp =  xpk -r yp-y +  zpz.  Consider a set G  of currents {/„}„eG and assume that 

the distribution {/„f„(r)}„£Gi is located over a surface S  which may either enclose 

a volume V  or be open. The electric field produced by this set G at point P  is 

the sum of the fields {E„(P)}„£(j, associated with {Injn&G- Now, for some point O 

{O e V  OT O E S  depending on the geometry of the distribution) and the triangle 

with n e  G, referring to Fig. 7.1, it follows that

=  r p  —  r o  - i -  r o  — r ' =  Rq +  s  ̂ (7.2)

where

R o =  rp -  To (7.3)
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Figure 7.1: The geometry of the far-field approximation; reference point O G S  and far 
points P  and Q.

<  = To -  r' (7.4)

and r' e T^. If <  Rq , then

Rn ~  + R-o ■ s (7.5)

and

Q - j k U n  Q ~ j k R o
   (

Ro
- j k K o - s ^ (7.6)

where Rq is the unit vector ~Ro/Ro- Hence, the electric field given by the group 

G at P  may be written as

E g(P) ^  o y ^ 4 M , ( R o ) + - - ^ V p - ^ X ] W „ ( R o ) ( 7 . 7 )
47t R,o tiEG jujAireo Ro neG

where, for convenience, the following characteristic vector and scalar coefficients 

have been introduced;

m „(Ro) = m :(R o) + m ;;(r<,) (7.8)
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»'„{Ro) = W'+(Ro) +  W'-lRo) (7.9)

with

M ;(Ro) = f  (7.10)

W „'^(Ro)= [  (7.11)
JtS

where a  e { + ,—}• Referring again to Fig. 7.1, consider the point Q and define 

the vector s =  Tq — rp. If s -C R q , then the amplitude of the vector tq  — Tq ~ on 

which E(j(Q) depends -  can be approximated by

|rQ -  ro | ^  +  R o ■ s (7.12)

Defining EneG^nM „(Ro) -  M g(R o) and E n e G -^ « ^ n (^ )  =  W^g(R-o) the scat

tered electric field, caused by the currents in G at point Q, may be approximated 

as

with

V^g-i*Ro-s ^ (7. 14)

At this point it has been shown that the field due to the current In̂ n (j*0 at

a far point P  can be approximated as a function of the vector R o =  Tp — tq

E g ( - P )  ~  — i w A G ( R o )  — V p $ g ( R o )  ( ’̂ ■ 1 5 )

with

t i n  p ~ 3 ^ ^ 0  ^  p —jk R -O  — ^  ^

A g(Ro) =  ^ - ^ M g (R o) =  —  V /„ M „ (R o )  (7.16)
Atv R o  At t R o ^
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and

$a(Ro) =  -̂-------^
jo;47reo Ro

Q - j k R o

W g ( R o ) =
1

J ] W „ ( R o )  (7.17)
juAneo Ro

which are respectively the magnetic vector and the electric scalar potentials corre

sponding to the distribution G. Now, the evaluation of the field at a neighbouring 

point Q, one relatively close to P, only requires a simple phase-shift extension of 

the potentials A g(Ro) and specifically

Let the group G contains N q current elements and consider a set of Np = N q 

points with q = 1-- - No, located in the neighbourhood of P. These should

then, the computational cost of calculating the Np = Nq  electric field values at the 

points {Qq}  is made up of

is due to the calculation of the Nq fields of each /„f„(r'), with n 6 G, at each point 

{ Qg } .  The far-field algorithm approach allows one to evaluate the far interactions 

between pairs of parts of the surface through 0{Ng)  operations, where Ng is the 

number of unknowns located in each portion of the surface.

7.1.2 Choosing the far-field/near-field regions

The distance which defines the limit of the far-field zone (also called the Fraunhofer 

region) satisfies [20]

(7.18)

be all far from O the reference point for group G. Using the far-field approximation

•  0 { N q) operations to calculate M g(R o) and W g(Ro)

• 3 operations to evaluate E g(P);

•  0 { N g) operations to calculate the final results.

The overall cost is 0 { N g) compared to a direct evaluation cost of 0 { N g^), which

(7.19)



He
ld 

dm
pD

lti
ds

 
r>o

ld 
ai

np
ltt

uc
ie

7-1. Formulation of the MLFAFFA 136

where d is the maximum transverse dimension of the source group with respect 

to Ro- As an illustration of the level of accuracy achievable using the far-field 

approximation, consider a set of square planar patches or plates of side L  =  IX, 

with I — 0.5,1.0,2.0,4.0. The current on the plate is represented using a 2D 

triangular grid N  basis functions (refer to Fig. 7.7) and the result obtained using 

the far-field approximation to evaluate the electric field produced by a sample set 

of currents {/„ =  e^^}n=\-N is then examined. Fig. 7.2 illustrates the amplitude of 

the electric field calculated using both the approximate m ethod and a numerically 

exact method at a distance {2(f /X)mL,  rni  is a scaling factor which depends on L  

and takes the values 3, 2, 1, 1 for L =  0.5A, l.OA, 2.0A, 4.0A. The field points are 

in the same plane as the patch a t angles (f) =  0---27T. The agreement is within

Exact
Approximate

Exact
Approximate

400
degreesdegrees

Companson o( resufls for I = 2.D. rn > 1.0

Exact
Approximate

Exact
Approximate

I
■a.
%
s«

10' ’
400

degrees

Figure 7.2: Approximated and exact far-field patterns due to a given current distribution 
over a square flat plate of sides /A, I =  0.5,1.0,2.0 and 4.0.



7.1. Formulation of the MLFAFFA 137

less than 0.5 dB in the worst case. Note that the distance expressed by (7.19) has 

been modified by the introduction of the factor > 1. In fact, when applying the 

far-field approximation (see Fig. 7.1), for the purpose of computing the amplitude 

{not the phase), the distance between a triangular domain and any field point 

P  is approximated by R q , the distance between P  and the reference point O. This 

approximation holds well when the point P  is relatively far from the scatterer, i.e. 

from O, a condition that is not guaranteed by |rp — ro | > (2(f /X) when the size of 

the patch is comparable with the wavelength. It must be emphasised, then, that 

the far-field approximation as employed in (7.6) is more accurate for the phase than 

the amplitude. It is for these reasons that the inequality (7.19) is modified, by the 

introduction of the factor rriL > 1, such that R q > {2(f/ \)mL

7.1.3 M ulti-level schem e

The fast far-field (FAFFA) technique achieves its computational savings by grouping 

together current elements to evaluate (allowing certain calculations to be repeatedly 

reused) their mutual interaction with lesser complexity than the direct method.

As one moves further away from a given region containing current elements the 

group sizes can be made larger. One way of doing this is to regroup sets of adjacent 

smaller groups. This kind of multi-level strategy for the FMM method has been 

described by Greengard and Rokhlin in [78], and has been adopted also in [53] 

as well as in [77]. Consider a set of current elements Q (the parent) containing 

M (non-overlapping) adjacent sets m  =  1 • • • M (the children), for a point 

Og G G, it may be seen, for direction R o, that

M

M g(Ro) =  M G ^(R o)e-^*^-^- (7.20)
171=1

where =  Tog — is the vector representing the distance between the centre 

of the parent group Q and the centre of the child group Gm- The same relationship 

holds for the scalar W g(Ro) and can be used to regroup groups of the scatterer for 

evaluating their far-field at a given direction.
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7.2 Implementation of the MLFAFFA

In this section the implementation of the MLFAFFA is discussed. For simplicity 

a planar scatterer is considered to illustrate the features of the MLFAFFA. This 

formulation and the method can be applied to more complicated scatterers.

7.2.1 M emory requirem ents

Recall that the MLFAFFA aims to accelerate the matrix-vector multiplication 

T , n = l ^ m n l n  =  V^n, TU =  1 ■ • • N . For a given m , the sum Yln=l ^rnnln is split 

into two terms: the first, say is the contribution of the currents

belonging to the near field area MJ-m aJid it is evaluated exactly using the direct 

method; the second term is the scattered field at the element m  arising from the set 

of surface currents which have element m  in their far-field. This set of currents can 

be split up into groups (see Fig. 7.6). Group fields scattered towards the surface 

element m  may be calculated using (7.7). It is important to note that the field thus 

obtained is for a point. However, it caji be disseminated to calculate the field values 

at neighbouring points. As the distance between the groups and the observation 

point increases, it is somewhere convenient to aggregate the adjacent groups into a 

super groups, and so on. The storage and computation time for the evaluation of 

the matrix elements is reduced significantly, because not all elements need to 

be explicitly computed or stored. Only a small proportion of the impedance matrix 

elements is evaluated.

Fig. 7.3 illustrates the observed relation between the storage requirement ajid the 

number of unknowns for both an iterative CG method and the MLFAFFA, applied 

to a planar homogeneous scatterer. The storage requirements of the MLFAFFA 

become superior once the number of unknowns is greater than a threshold value. 

The reason for this will emerge in the next section.
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Storage required
10

CG
MLFAFFA

310^

,210 ‘

i o “

10'’

.-210' 1 10̂ ,3 4 .510’ 10' 10 10̂
unknowns

Figure 7.3: Storage requirements (in MB) for the implementation of the MLFAFFA and 
the classicaJ CG methods.

7.2.2 The algorithm

Having explored the building blocks, in this section, the main features of the ML

FAFFA are encountered: building the tree-structured grid, storage of necessary 

entities, evaluation of the matrix-vector product.

Building the tree-structured grid

Here the algorithm is presented by way of example. A rectangular planar scatterer 

is considered and is enclosed by a square boundary (level 0) upon which a recursive 

subdivision by 4 is performed up to the finest level (level Ni), at which point the 

side of a single square has length of order of A/2. Fig. 7.4 illustrates a planar 

scatterer, a square enclosing it and the recursive subdivision up to the finest level 

(3 in the figure). In this way a tree-structured collection of squares is built, which 

is organised in levels ranging from 0 to A'i. A square, at level > £ >  0, is said to 

be parent of four children. Note that some of the basis functions will end up split 

over two such adjacent squares, this is because the pair of triangles on which they 

are defined reside in adjacent squares at the finest level, i.e. the edge shared by
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the pair lies either on or across the border of two adjacent squares (see for example 

edges m  and n  in Fig. 7.6). After this grouping operation, a square (at any

level I) contains a group of current elements of the RWG basis set.

Evaluation and storage of coefficients M„ and

For each square at the finest level, say G^‘, i =  0 • • • 4^' — 1, the following coefficients

(which will be used to generate the potentials (7.16) and (7.17)) are evaluated and

stored

M„(Ro) =  C M J (Ro) +  i-M ;(R o )  (7.21)

»'„(R<,) =  5:W'+(R<,) +  i - i r - ( R o )  (7.22)

where S^, a E { + ,—}, is equal to 1 if the triangle belongs to G^‘ and 0 otherwise, 

with n = 0 • • • Nxi, and Nt  ̂ is the number of edges falling in G^‘. These coefficients 

are evaluated for the K  discrete directions: (f)k =  2nk/K,  k — 0 ■ ■ ■ K  — I, i.e. for 

the following Ro^

= cos f̂ci +  sin (7.23)

with {i, j} being the set of orthogonal unit vectors coplanar to the scatterer.

For each square G^‘ the characteristic coefficients Mn(Roj^) and W„(Ro^) of the 

basis currents in G^‘, at K  regularly discretised directions need be stored. Later, 

it will be necessary to interpolate these values to evaluate the vector and the scalar 

potentials A  ni and #  ,v, using (7.16) and (7.17). This step corresponds to the
t

construction of the outer multipole expansions (3.29) and (3.30) of the MLFMA 

method, when the RWG basis set is employed. To complete the set-up for the 

matrix-vector multiplication, the impedance matrix elements which correspond to 

the near-field interactions must be evaluated and stored. To evaluate the impedance 

matrix self-terms Zmm, the numerical procedure described in [76] may be applied.
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Implem entation of the m atrix-vector m ultiplication

The matrix-vector multiplication is carried out by first evaluating the near-field 

sums = 1 • ‘ ' iV, where M Tm  is the set of edges near m  and

thereafter evaluating the far-field interactions. For each square at the finest level 

Ni, for example in Fig. 7.6, the near-field squares are detected. In Fig. 7.6, 

for example, is near . For each edge belonging to the square currently 

observed, say m  6 G^‘, the contribution to other edges

contained in the near squares, such as n 6 G^‘ in Fig. 7.6, is evaluated. Some 

contributions may involve only subdomains of the domains where the m-th and the 

n-th current are defined.

The far-field evaluation is performed in two sweeps: the first sweep traverses from 

the finest level up to a coarsest level imin', then the second sweep traverses back 

down to the finest level. In the first sweep, starting at the finest level iVj, for each 

square G^‘, i = 0 • ■ - — I, the coefficients -^nM„(Ro) =  (Rq) and

) are evaluated using the new estimate {/„} for the 

current in the new iteration of the CG algorithm. This evaluation requires the 

quantities given in (7.21) and (7.22), which have been previously stored. Then the 

coefficients (R o )  arid (I^o ) for each square Gf, ? =  0 • • • 4̂  — 1, at each level 

i  < Ng are evaluated. A square Gf, z =  0 • • - 4̂  — 1, is now parent of four children 

and is sufficient to phase-shift the coefficients already calculated at the previous 

level, as described in (7.20).

A faj-field interaction at a given level £ involves squares which are suitably far 

apart, certainly not adjacent. Hence, it is evident that no far interaction exists 

at level 1 (the four squares are adjacent each other) and it is not necessary to 

evaluate the coefficients Mgi and Wqi for i = 0 • ■ ■ 4. Therefore, the upward sweep 

can. be halted at the minimum level imin at which is still possible to have far-field 

interactions between squares. Referring to Fig. 7.5, for example, r̂nin =  2. At this 

level imim the side of a square is L/2^"*’" where the edge of the square enclosing the 

scatterer has length L =  l \ .  To allow the possibility of far-field interactions, the
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far-field distance (7.19) (suitably multiplied by the factor must not exceed

the maximum transverse dimension of the scatterer, i.e.

squares at each level £ have been evaluated. These quantities are required to cal

culate the far-fields of each group of currents at each level Ni < £ <  imin in all 

discretised directions Ro* 2md will be used in the downward sweep.

In the second (downward) sweep, at a level for each square aJl far-field groups 

, are detected and their scattered fields in the direction of interaction i j ,  

identified by the angle ^ are evaluated. In doing this the following interpolation 

rule for the coefficients and W qi is used

between the far groups, as given in (7.16) and (7.17). Note that this step is con

ceptually equivalent to the translation operation of the MLFMA. However, there is 

the following difference: using (7.15), if P  is the centre of the receiving group , 

the electric field due to G\ over P  is

(7.24)

which yields

v/2
(7.2S)

Once this step is completed all the characteristic coeflicients associated with 4̂

(7.26)

with R o  =  cos (f)i +  sinc^j =  r^i — Tf î/\rQi — r^i | and ^ The coeffi

cients are then multiplied by terms involving the Green’s function of the distance

(7.27)
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where

t i n  —

Ac;,{Ro) =  (7-28)

and

1 p - j k R o  _

whereas, in the fast multipole approach, the field due to G\ would require the 

evaluation of the numerically more cumbersome term (3.21).

At this point one can distribute the far-field to the children of the square currently 

observed, i.e. Gj, through a phase-shifting operation, assuming the incoming far- 

field to be a plane wave impinging on The angle of arrival (j>inc is such that 

l înc ~~ jfefi} minimum. At the next level, the far interactions between the

children of the square observed (Gj) and the children of the far groups Gf, i ^  j ,  

will not be computed, because they have already been accounted for at the parent 

level. Referring to Fig. 7.5, for example, the group Gq at level 2 is illuminated 

by the plane waves emanated by the far groups as illustrated. These plane waves, 

hence, may be shifted to the centres of the four children of Gq. For the group Gq, at 

level 3, the near-field area is detected. Part of the far-fields contributions to the field 

incoming on G^, however, will not be evaluated, because it has been accounted for 

at the previous level (the gray region in the figure). At the finest level, the far-field 

incident on each square G^‘ from all of the registered directions is distributed to 

the triangular patches where the current basis functions reside. To help elucidate 

the last step of the downward sweep procedure, refer to Fig. 7.6 and consider the 

portion of the scatterer where G^‘ is located. The field, over that domain where 

the m-th current is (partially) defined is due to the contributions from the 

neaxby current elements, such as /„f„(r), and to the fax-field contributions arriving 

from far groups, such as G^‘ and Gf'~^ The far-field due to G^‘ is evaluated, 

with the aid of interpolation, using the quantities calculated and stored during the 

upward sweep and (f>̂ < (f)̂ ‘ < The field is then distributed to T^. The far- 

field due to G^^~^ has been evaluated simply using the plane wave which models
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the field scattered by G^‘ \  which was calculated at the previous level and then 

disseminated towards the four children of Gf‘.

The MLFAFFA, in common with all multi-level techniques, is most efficient when 

the scatterer is very large. In fact, in the upward pass a high number of entities 

is evaluated and stored. In regard to either the storage complexity or the com

putational complexity of the method, the savings will be made when a significant 

percentage of the stored quantities can be reused^. This occurs when the total 

number of far-field interactions (which decreases as the level decreases) is relatively 

high. When the number of unknowns is relatively large, say N  > 10 ,̂ the technique 

can be efficiently implemented with a storage that is 0{a{N)N),  with a{N) <C N, 

as illustrated in Fig. 7.3 and a decreased computational complexity, because all 

the far interactions at each level £ between groups of size Ng(£) are evaluated by 

0{Ng{1)) operations, as shown in the previous section.

7.2.3 Com putational cost

In this section, N  is the number of unknowns, i.e. the number of edges of the 

triangular mesh modelling the scatterer and Ni is the number of levels. An estimate 

of the computational cost of the MLFAFFA is sought. The upward pass requires, 

at each level, the evaluation of the characteristic coefficients. At the finest level, 

this requires

Cl =  0 (NK)  (7.30)

operations. In fact, the K  characteristic coefficients must be evaluated for each 

triangle of the mesh and the number of triangles is of the same order as the number 

of edges. For the upper levels, the children’s characteristic coefficients must be 

shifted and added for each parent square. Because at level £, there are 4̂  squares 

with each one having a majdmum of four children (depending on the shape of the

^This is the reason for the threshold mentioned in section 7.2.1
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scatterer) the number of operations to complete the upward pass may be written 

as

■mxn

(7.31)

with £min being the minimum level at which fax-field interactions can still be com

puted. For the downward pass, at each level £, for each square, the far-field incom

ing from the fax groups in all the discretised directions must be calculated and this 

operation requires

actions at level L To distribute the results at the finest level, following the same 

reasoning as for ci.

where is a constant related to the computation of the near-field interactions. 

Now, if N  is relatively very large, i.e. if N  ^  K  and N  »  the computational 

cost of the entire matrix-vector multiply is 0{P{N)N) ,  being /3{N) «C N.

7.3 Numerical results

Some numerical results are presented here for a flat square plate under plane wave 

incidence. The side of the square is L =  l.Om =  8.0A, its vertices are located at

(7.32)

operations, where 4^F(£) may be thought of as the average number of far inter-

C4 < 0 { N K ) (7.33)

operations are performed where in this case K  is the average number of plane wave 

far-fields impinging on each triangle of the mesh.

Thus, the total computational cost is given by

4

C  =  ' ^ C „  +  0{NaM 3r) (7.34)
71=1
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points (0,0,0), (L, 0,0), (0, L, 0), (L, L, 0). The electric field incident on the scat- 

terer is a plane wave of unit amplitude

E’(r) =  (7.35)

where

k =  — sin OiY +  cos 0,z. (7.36)

Referring to Fig. 7.7, 9i is the angle between the direction normal to the flat plate 

and the direction of incidence of the plane wave. The flat plate is modelled by a 

grid of triangular patches (see Fig. 7.7). In this case, the number of unknowns is 

N  — 3008. This is the coarsest discretisation which is likely to provide us with a 

sufficiently accurate solution of the EFIE. For a better approximation N  must be 

increased, say up to about 10000 for this particular example. One can appreciate 

now the huge storage complexity involved in numerically solving the EFIE using 

the ordinary CG method, for complex values of the impedance matrix must be 

stored.

The electric current J  induced on the plate radiates the electric scattered field, i.e 

E*(r). Fig. 7.8 shows the amplitudes of the vector E*(r) evaluated for the two 

current distributions obtained by the usual CG method and the MLFAFFA when 

9i = 7t/4. The observation point is chosen to be in the plane of the scatterer at 

angles (j)̂  =  0.5/c degrees. A: =  0 • • • 719, at a distance lOOOA from the centre of the 

plate.

Although the field results are satisfactory, they are related to far-field quantities, 

obtained by integrating the electric current and thereby possibly smoothing the 

effects of significant errors. Therefore to be fully convincing about the accuracy 

MLFAFFA results, another test result is presented out to reveal the quality of the 

MLFAFFA for the electric current. Fig. 7.9 shows the amplitude of the normalised 

component of the current along the cut at x =  L/2 on the square flat plate, 

when =  t t / 2, obtained applying the MLFAFFA, the usual CG method and the
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CG-FFT method as given in [40]. A very good agreement between the MLFAFFA 

solution and the CG-FFT and CG distributions is registered, especially around 

the edge y = L. Also, Fig. 7.10 compares the amplitudes of the vector E*(r) 

evaluated for the two current distributions obtained by the usual CG method and 

the MLFAFFA when =  tt/2.

7.4 Summziry

This chapter presented the Multi-Level Fast Far-Field Algorithm (MLFAFFA) for 

electromagnetic scattering in the three-dimensional case. The RWG basis function 

set was used to approximate the electric current density. The fast far-field approx

imation was derived in the three-dimensional case. It was shown that the electric 

field radiated at a far point by a distribution of electric current may be approxi

mated in an elegant fashion upon which builds the MLFAFFA. The definition of 

far-field region was recalled and the issue of the selection of the near-field area was 

investigated mathematically

The implementation of MLFAFFA was then presented. First of all, the necessary 

memory requirements were illustrated, reporting the observed behaviour of the 

storage required as a function of the number of unknowns related to the problem. 

It was shown that when the number of unknowns exceeds a given threshold, the 

MLFAFFA memory requirements are less cumbersome than in the typical MoM- 

CG case. The algorithm was presented, emphasising the multi-level feature of the 

FAFFA, introducing and illustrating the concept of levels. It was demonstrated that 

the translation step of the MLFAFFA is less complex than that of MLFMA. The 

computational cost of the MLFAFFA was then analysed and was shown that the 

computational complexity of the algorithm is less than the typical one of the MoM- 

CG algorithm. The MLFAFFA offers substantial memory and computational time 

savings when the number of unknowns is large. Numerical results were provided in 

the final part of the chapter to demonstrate the excellent agreement between the 

MoM-CG and the MLFAFFA algorithms for the numerical computation of scattered
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fields and surface current distributions using the EFIE.
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Level 0

Level 1

Figure 7.4: Tree-structiired grid of groups at all levels in the MLFAFFA. At each level, 
a square contains triangular patches where current elements axe defined.
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Level 0
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near-field 
area for G:

Level 3

Figure 7.5: Far-field interactions at different levels in the MLFAFFA.
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m

Nl

Figure 7.6: MLFAFFA downward sweep at the final level iVj: the near field interaction 
between n and m is labelled as nf .
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z

plate

Figure 7.7; Geometry of the scattering problem and triangular mesh associated with the 
scatterer.
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Comparison of scattered  fieids

CG
e — MLFAFFA

Figure 7.8: Amplitude of the scattered far-field due to the MLFAFFA and the CG 
currents induced on the plate when =  7t / 4 .
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Figure 7.9: Amplitude of the MLFAFFA, the CG-FFT and the CG J i / |H '|  solutions 

along the cut at x =  L/2.
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Comparison of scattered lleUs
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Figiire 7.10: Amplitude of the scattered far-field due to the MLFAFFA and the CG 
currents induced on the plate when 9i =  t t / 2.
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CONCLUSIONS

The contributions of this thesis are two novel extensions, to existing efficient com

putational methods for the analysis of high-frequency electromagnetic scattering 

from perfect electric conductors. The first, referred to by the acronym ANIM, is 

applicable to one-dimensional surfaces ajid extends the TIM method and the sec

ond, MLFAFFA, is applicable to two-dimensional surfaces and extends the FAFFA 

method. Also, a matrix formulation of TIM/ANIM and a novel numerical tech

nique to evaluate the impedance matrix terms for the discretised EFIE using RWG 

basis functions are included in this work.

The ANIM (Analytical Interaction Method) renders the TIM (Tabulated Interac

tion Method) [62] more flexible. Both methods enable the rapid solution of grazing 

incidence high frequency propagation over large scale piecewise linear smooth con

ductors such as those used to render the abstraction of rolling terrain. Problems 

which require computational times of many hours using standard methods may be 

solved without substantial loss of accuracy in a few seconds using TIM or ANIM. 

Both methods achieve their savings in the spirit of FAFFA by grouping and reuse. 

Specifically, interactions between pairs of large subdomains are transmitted by plane 

waves travelling along the line connecting the subdomain centre-points. In contrast 

to FAFFA, the surface current density on linear subdomains of the surface is repre

sented by a superposition of reference currents (FAFFA uses pulse functions). The 

reference currents are simply the currents excited by a discrete set of incident plane 

waves on a 2D planar strip of length equal to that of the subdomain. In the case 

of the TIM these reference currents are numerically evaluated and tabulated along 

with their far-field radiation patterns. The ANIM does away with the need for 

tabulation by proposing using carefully derived analytical results. The TIM tables
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depend on the frequency and on the size of the portions of scatterer. When these 

both vary ANIM offers considerable storage savings over TIM. ANIM approximates 

the reference currents using a truncated version of the current induced on a PEC 

half-plane, truncated at the length of linear subdomain. It was shown that after 

expressing the reference currents in this simple way, the far-field radiated by those 

currents may be evaluated analytically using Fresnel’s integrals. Numerical results 

were provided to demonstrate the accuracy of the scheme proposed.

The Multi-Level Fast Far-Field Algorithm was developed to speed up computation 

in large three-dimensional scattering problems. In contrast to TIM and ANIM 

which achieve their savings for a restricted, but important, class of scatterers, this 

method is general and may be applied to the numerical computation of electromag

netic wave scattering by objects of arbitrary shape and size. The integral equa

tion was discretised using the Rao-Wilton-Glisson approach. It was demonstrated 

that electromagnetic interactions between surface subdomains of a homogeneous 

three-dimensional scatterer may be efficiently evaluated using a simple geometric 

approximation for the distance between pairs of interacting current elements on 

the two subdomains upon which depends the three-dimensional Green’s function. 

This approximation is the essence of the three-dimensional extension of the FAFFA 

The three-dimensional version of FAFFA adds no new fundamental ideas to that 

were not already implicit in the two-dimensional case. However, the implemen

tation requires considerably more care and it was considered useful to investigate 

this extension using the Rao-Wilton-Glisson basis functions. The importance of 

pinpointing the near-field/far-field geometric threshold was also discussed and a 

novel recommendation was suggested. The Multi-Level Fast Far-Field Algorithm 

was then developed, implemented and tested. It was demonstrated that this tech

nique can give substantial computational savings over MoM-CG when applied to 

the problem of electromagnetic scattering by electrically large bodies. The storage 

requirements of the method were also evaluated. In summary, the implementation 

of the Multi-Level Fast Far-Field Algorithm possesses the following features.
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•  The method is applicable to scattering by bodies of axbitrary shape embedded 

in an homogeneous three-dimensional medium containing sources.

•  The algorithm has a computational complexity of 0{j3{N)N) with P{N) C  N  

when N  ^  Nq, where N  is the number of unknowns to be determined and 

Nq a threshold experimentally given by 10̂  < N  < 10 .̂ The complexity of 

the Moment Method-Conjugate Gradient scheme is 0{N^).

• The storage requirements of the method follow the same behaviour as the 

computational complexity. In contrast, the Moment Method-Conjugate Gra

dient scheme has a memory requirement of 0{N^).

• The algorithm is simple and may be implemented with lesser complexity than 

the Multi-Level Fast Multipole Algorithm (MLFMA). Specifically, there is 

no need to perform any operation involving Gegenbauer’s addition theorem, 

whose implementation is somewhat complex.

Numerical results were provided to demonstrate the accuracy of the scheme pro

posed compared with reference solutionsi

In addition to the aforementioned algorithms, two useful new results have been 

presented in this thesis. These are the matrix formulation of TIM/ANIM and a 

numerical method for evaluating the impedance matrix terms arising when the 3D 

EFIE is discretised using the Rao-Wilton-Glisson basis set. In order to obtain a 

full wave solution of the Electric Field Integral Equation, the Tabulated Interac

tion Method was developed in matrix form. It was demonstrated that the matrix 

produced is sparse. As a result, a significant reduction in storage requirements 

may be achieved. The Tabulated Interaction Method was also applied to the prob

lem of electromagnetic scattering by periodic structures. Numerical results were 

provided to demonstrate the possibility of tackling this class of problems with sub

stantial storage and CPU time savings. In solving the discretised EFIE using the 

new matrix formulation of TIM/ANIM a problem regarding the computations of
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near-field interactions using FAFFA arose. A first attempt to overcome this feature 

was outlined.

A novel numerical technique to evaluate the impedance matrix terms for the electric 

field integral equation discretised using the Rao-Wilton-Glisson approach was also 

presented. The problem of interest is the numerical integration of the lineax-shape 

functions times the three-dimensional Green’s function on a plane triangle. This 

issue is of critical importance for the moment method discretisation of electrical 

field integral equations in the three-dimensional case. The typical approach to the 

solution of this problem was presented. This approach is based on the possibility 

of expressing the integrand as a sum of two functions: one singular function, which 

may be integrated analytically and a non-singular part which may be evaluated 

numerically. For the analytical evaluation of the singular part, a simple integration 

procedure was proposed. This involved dividing the domain of integration into 

two subdomains. One of these domains was chosen to be of infinitesimal size. As 

a result of a rigorous limit procedure, the integral over the infinitesimaJ domain 

evaJuates to zero. The integral over the remaining domain was then evaluated 

using a simple numerical integration rule, after a change of coordinate system. It 

was shown that the final result converges in a faster way than that of the typical 

approach. Numerical results were provided to illustrate the accuracy of the fully 

numerical method proposed.

The extension of ANIM to three dimensions is an interesting prospect. Some is

sues that arise in this extension are outlined in the last chapter of the Appendix. 

Specifically, some mathematical tools for an extension of the Anal3d;icaJ Interaction 

Method to three dimensions are provided using the Physical Optics approximation. 

While more work is required to accomplish this task, directions for further research 

are provided.
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REVIEW OF BASIC ELECTROMAGNETICS

A .l Maxwell’s equations

Electromagnetic phenomena are governed by a set of equations, known as Maxwell’s 

equations. In differential form, Maxwell’s equations are

V x e ( r , t ) = - ^ 5 ^  (A.1)

V x h ( r , i )  =  5 ^ M + j ( r , ( )  (A.2)

V  ■ d{r,t) = p{T,t) (A.3)

V -b ( r , 0  =  0 (A.4)

where e is the electric field intensity (volts/metre), b the magnetic flux density

(webers/square metre), h the magnetic field intensity (amperes/metre), d the elec

tric flux density (coulombs/square metre), j is the electric current density (am

peres/square metre), which can include the conduction current density (due to 

charged particles moving over a certain direction) and the impressed electric cur

rent density (by a source), p represents the electric charge density (coulombs/cubic 

metre).

The fields b and d are not independent of the fields h and e: b = !Fh{h.) and 

d = ^e(e) where T  represents some operator. These relations are called constitu

tive relations. The operators ^nd depend on the material properties of the 

medium. The simplest case is: b =  /ih, d =  ee. This is the case for a linear, 

isotropic, causal, non dispersive, homogeneous, lossless medium, e is the dielectric
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permittivity (e =  8.854 x 10 for free space) and /i is the magnetic permeability 

of the medium (// = 47t x 10“  ̂ for free space).

By applying the divergence theorem and Stokes’ theorem, the set of differential 

equations can be transformed into a set of integro-differential equations where the 

derivative is performed with respect to t. Further details may be found in [13], pp. 

5-6.
n

Figure A.l: Geometry for boundary conditions of electric and magnetic field: the inter
face between two diflFerent media (solid line) and its normal unit vector n. Medium 1 has 
properties /ii, medium 2 has properties 62, H2-

Maxwell’s equations in integral form can be applied at an interface between two 

different media. The relations between the fields on either side of the interface are 

referred to as boundary conditions. Their derivation is straightforward and can be 

found in [13], pp. 13-19 and they are presented here for convenience. If n is the unit 

vector normal to the interface directed from medium 1 to medium 2, as illustrated 

in Fig. A.l, then the following conditions apply.

•  n X (62 -  ei) =  0 (A.o)

The tangential components of the electric field across an interface between two 

media are continuous.

n • (d2 — di) — ps (A.6)
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The difference between the normal components of the electric flux density 

across an interface between two media is equal to the surface electric charge 

density ps-

•  r i  X (h2 -  h i) =  js  (A.7)

The difference between the tangential components of the magnetic field across 

an interface between two media is equal to the linear electric current density 

j 5  residing on the surface.

•  n- (b2 —bi)  =  0 (A.8)

The normal components of the magnetic flux density across an interface be

tween two media are continuous.

The linear electric current density js  and the surface electric charge density ps may 

exist along the interface or may be induced if either of the two media is a perfect 

electric conductor. Similar entities may be introducki if either of the two media is 

a perfect magnetic conductor. Although magnetic charges and magnetic currents 

are not physically realizable, equivalent magnetic charges and currents may be used

to represent physical problems.

For time-harmonic fields v(r; t) such that

v (r;i) =  i?e{V(r)e-^“*} (A.9)

the set of Maxwell’s equations may be simplified

V X E(r) =  —ja;B(r) (A.10)

V X H(r) =  ja;D(r) +  J(r) (A. l l )

V - D ( r )  =  ^(r) (A. 12)

V - B ( r )  =  0 (A.13)

where E, B , J, D , g, H  are the time-harmonic forms of e, b, j, d, p, h.
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A .2 Equivalence theorem and Induction theorem

The equivalence theorem and the induction theorem are outlined in this section. 

They arise frequently and will be stated with precision since they play a crucial 

role in electromagnetics. Other fundamental principles and theorems are clearly 

explained in [3], chapter 3.

•  Equivalence theorem

The electric and magnetic fields due to sources bounded by a closed surface S 

may be expressed at the exterior of S  in terms of equivalent sources located 

on S.

•  Induction theorem

The electric and magnetic scattered fields outside a closed obstacle S  illumi

nated by sources located at the exterior of 5  may be evaluated by placing, 

along the boundary of the obstacle, equivalent sources tha t radiate in the 

presence of the obstacle.

^  ^  ^  ^  ^

(a) (b)
Figure A.2: Equivalence theorem geometry and transformation: (a) is the original prob

lem, where 5  is a surface which encloses the sources, its exterior is free space; (b) is the 
equivalent geometry to determine the fields (Ee^tiHeit) outside S due to the equivalent 
sources J 5  and M 5 .
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A .2.1 Equivalence th eorem

Referring to Fig. A.2(a) let the sources internal to S  produce the electromagnetic

fields (Ej„t, Hint) inside S  and Hext) outside S. Suppose that the space exter

nal to S  is free space. Now, the field 0 in the interior of S  and (Egit, Hga;t) outside 

S  is postulated. To support this field, which is discontinuous over S,  there must

where the fields Eg and H 5  are the values of E of the fields due to the sources eval

uated at S  and n is the unit normal vector pointing outward the surface S. Using 

theory of potentials, as described in [13], it can be shown that formal expressions 

may be employed to derive the electromagnetic fields due to the equivalent sources 

given in (A. 14), which radiate in an unbounded medium having the same properties 

as the exterior of S,  i.e. free space in this case. Specifically, the fields radiated by 

a set of sources J, M  in free space may be expressed in terms of the magnetic and 

vector potentials, A  and F, using

exist surface currents J 5  and M 5  such that (see boundary conditions introduced in 

section A.l)

(A  14)

jweo
(A. 15)

(A16)

where
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where S  is the surface that contains the sources, r  is the field point and r ' is the 

source point (or integration point) and =  ŵ eo/Xo- The field evaluated using 

the formal expressions (A.15) and (A.16) is the field postulated a priori, i.e. 0  

at the interior of S  and (Eext, Heit) outside S. Thus, it is possible to express the 

field external to a surface S  which contains sources as a function of the tangential 

components of the electromagnetic fields over S.

(a) sources (b)

Figure A.3: Induction theorem geometry and transformation: (a) is the origineil problem; 
(b) is the resulting problem to be solved to determine the scattered fields (Ej, Hg) outside 
the scatterer.

A .2.2 Induction theorem

The geometry displayed in Fig. A.3 is now considered: the sources are external to 

a surface S  which bounds the scatterer. Define the incident field as the field due to 

the sources when the scatterer is absent, say (Ej, Hj). Define the scattered field as 

the field external to the obstacle due to the currents (polarization and conduction) 

on the surface S. Now define the following electromagnetic fields (E, H) internal to 

the obstacle and (Eg,Hs) external to the scatterer. Again to support these fields, 

which are discontinuous across S  one must postulate the surface currents

J 5  =  n  X (H , -  H) M 5  =  - n  X (E, -  E) (A.19)
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and using the fact that E =  + Ej and H =  Hg +  Hj, it follows that

Js =  Hi X n M s =  n X Ej (A.20)

These currents produce the postulated fields when they radiate in the presence 

of the obstacle. It is useful to point out that the currents given by (A.20) do not 

radiate in an unbounded medium, as the equivalent currents given in the equivalence 

theorem. We cannot use, thus, the formal expressions derived using a classical 

potential theory approach as it is instead possible in the equivalence theorem.

The geometry represented in Fig. A.3 represents the scattering problem: the prob

lem is to determine the scattered fields due to the presence of the body illuminated 

by the external sources. Computational electromagnetics is that area of scientific 

research which develops, explores and implements numerical techniques to solve the 

scattering problem.

A.3 Surface integral equations

Consider the geometry illustrated in Fig. A.4, where two regions of space, defined 

as r  1 and F2 , are separated by a surface S. T2 contains a set of sources and one or 

more perfectly electrically conducting objects. Furthermore, the material properties 

(6 and /i) of the two spaces are different: F2  is inhomogeneous, while Fi is assumed 

to be perfectly homogeneous. It is assumed also that region Fi contains sources 

which, without loss of generality, will be taken to be electrical current sources. 

is any closed surface at infinity. Applying Maxwell’s equations (see [21], pp. 11-12) 

the following equation is obtained

J  y  [El • ( - n  X H 2  -  H i • ( - E 2  X n)]dS' =  J  J  (^-21)

In (A.21), El and Hi are the electric and magnetic fields due to the electric current 

source Ji radiating in F i, E 2  and H 2  are the fields in F 1 produced by the sources in 

the inhomogeneous space F2 . It is assumed that the electric current source is such
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Figure A.4: Illustration to explain the surface equivalence principle: two media of differ
ent properties are separated by 5 , Ti and T2  are the volumes enclosed by 5  and Soo — s. 
S o o  extends to infinity. The presence of a perfect electric conductor in F2  is also assumed.

that J i =  u5(r — r') where r is the source point and r' is the integration point in 

the integral of (A.21) and 5(r — r') is the Dirac delta function  ̂ of the difference 

r — r'. Then (A.21) can be written as

u • =  J  j jE r  • ( - n  x H 2  -  H i • ( - E 2  x n)]dS' (A.24)

^The Dirac delta function is a distribution function which may be defined as

J  <5(r -  r')(fV" =  1 (A.22)

j  5 { T - r ‘) f { T ' ) d V '  =  f { T )  (A.23)

where the integral is evaluated over a volume which contains both the points r and r'.
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The fields due to J i may be evaluated using potential theory, as pointed out in 

section A.2, specifically, it may be written

( u G ( | r - r ' | ) )  (A.25)

Hi =  V' X (uG (lr -  r 'l))  (A.26)

where use of dyadic notation is made (see chapter 2) and G (|r — r'|)  is the Green’s 

function. The properties of Green’s function are given in [5] and it is

"'■'I' -

where k is the wavenumber associated with the homogeneous medium. For the space 

Fi, A: =  u)y/iii€i, and €i and /ii are, respectively, the permittivity and permeability 

of the medium. Exploiting the symmetry of the Green’s function, one may write*

. . VV •
U • E 2  r  =  U  -̂--------- I  J^{-nxU.2)G{\T-T'\)dS'

- u - V x  J  J  { - E 2  X £l) G { \ t  -  T ' \ ) d S '  (A.28)

Equation (A.28) is a consequence of the equivalence theorem which is outlined in 

section A.2. The field due to the sources of the inhomogeneous medium T2 at a 

location r  e  Fi can be expressed as a function of the tangential fields on the sur

face S, using the equivalent surface currents J5 =  — n x H2 and M5 =  — E2 x n. 

Assume now that the normal vector points out the region F2 (Fig. A.4). Re

calling the equivalence theorem, the combination of the original sources and the 

equivalent surface currents defined in (A.28) give null fields into F2. Thus, the 

inhomogeneities in region F2 may be removed without perturbing the fields located 

in Fi and the original problem is replaced by the equivalent exterior (to S) problem 

in which the original sources are joined by a set of equivalent surface currents given 

by n  X H2 =  n  X Hi and E2 x n =  Ei x n. The advantage of this transformation 

is that although the original problem is not solved yet, since the equivalent surface
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currents axe not determined, all the sources (known and unknown) now radiate in 

a homogeneous space and the task of finding the electromagnetic fields in this envi

ronment is more straightforward than that one associated with the inhomogeneous 

space of the original problem.

Suppose now that region F2  is a PEC. In this case, because of the boundary con

ditions, the equivalent magnetic surface current is zero. In region Fi the electro

magnetic field (E, H) is the sum of the field due to the sources labelled as 1 in Fig. 

A.4, which radiates in the unbounded medium having the same material properties 

of Fi, and the field due to the equivalent (in this case physically residing on S) 

electric surface current located on S,

Since this current is unknown, it is necessary to set up an equation for it. Having 

defined the field due to the sources labelled with 1  in Fig. A.4 as (Ej, Hj), it follows 

from (A. 28) that

Imposing the boundary conditions on the surface 5, one obtains a pair of integro- 

difFerential equations, valid at any point on S ^

J 5  =  n X H. (A.29)

(A.30)

Hi =  H -  V X A (A.31)

with

(A.32)

(A.33)

^The notation (/(r ))^  means that the scalcir field /  is evaluated at r € S. Similar notation 

holds for vector fields.
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n X Hj =  J 5 -  n X (V X A)^+ (A.34)

where n is the unit vector normal to the surface S,  pointing outwards. Equation 

(A.33) is usually referred to as electric field integral equation (EFIE), while equation 

(A.34) is called magnetic field integral equation (MFIE). (A.34) is valid at an 

infinitesimal distance outside the surface of the scatterer (which is indicated by
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HIGH FREQUENCY TECHNIQUES

In a scattering problem, the term high frequency refers to the size of the scatterer 

compared with the incident wavelength. When the scatterer is more than ten 

wavelengths in size then the interaction can be considered in the high-frequency 

range. In this range, prediction techniques can be developed essentially assuming 

that each part of the body interacts with the incident field independently of all 

other parts. This approximation, however, is not valid when the scatterer is for 

example a reentrant structure in which case internal reflections must be taken into 

account. Furthermore, high-frequency techniques can be applied only to shapes 

that can be described mathematically. When the geometry of the body is complex, 

the scatterer must be approximated as a set of adjacent simple geometries, such as 

elementary surfaces and simple curves. W hat follows is a brief and by no means 

exhaustive historical description of high-frequency methods is outlined.

B .l Geometric Optics

The oldest and simplest high-frequency technique is the Geometric Optics (GO) 

method developed in the earliest stages of astronomy to build optical systems. The 

method assumes that the incident wavelength is infinitesimal and in this limit it is 

derived that the energy propagates along tubes, using the relation

=  (B.l)

where U is the energy and P  and S  are functions of the spatial coordinates {x, y, z). 

The GO method is essentially a ray tracing technique as it predicts the direction of 

ray-tubes in which the energy emanates from the scatterer when this is illuminated 

by an external source.
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point source

ray-tube

caustic
lines

Figiire B.l; Geometrical optics reflection from a doubly curved surface.

To illustrate the essence of GO method, refer to Fig. B .l: a point source illuminates 

a doubly curved surface patch. As a result of the principle of conservation of energy 

along a ray tube, it is found that:

P \ f h
(s +  P\){s + P2 )

(B.2)

where s is the distance between the two ends of the tube and p\ and p2 are the 

principal radii of curvature of the wavefront at the output of the tube. p \  and 

are functions of the radii of curvature of the incident wavefront and of the scatterer 

at the point of reflection, as given in [27]. The ratio A ^ / A q  is between the field 

intensities at the input and the output of the tube. Because of the differences in 

the surface curvature, the sides of the ray-tube do not intersect at a point, but 

at two different segments that lie on the caxistic lines. It is this the reason why 

the specular reflection of a point by a curved mirror is blurred and the effect is 

called astigmatism. Eq.(B.2) describes the decay of electromagnetic energy as we
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move further away from the surface of the scatterer. However, it fails to have any 

mathematical meaning when both and tend to oo, which is the case of planar 

scatterers.

B.2 Physical Optics

The mathematical catastrophe returned by the application of GO to planar scatter

ers can be avoided by means of the Physical Optics (PO) technique. The starting 

point is the well known Stratton-Chu formula, which is derived in detail in [14]. It

gives the scattered field in terms of a closed surface integral. The scattered far field

by a closed body can be expressed as follows

E, = jkG^ [  s X [n X E -  CoS X (n X (B.3)
Js

where k is the wavenumber, Gq is the Green’s function (A.27) evaluated form a 

fixed point O, included in the volume enclosed by S, s is the unit vector along the 

scattering direction, n is the unit vector normal to S  pointing outwards, E is the 

electric field on S, Co is the free space impedance, H is the magnetic field on S, 

r is the position vector from the fixed point O and i is the unit vector along the 

direction of incidence. Observe that although the Stratton-Chu formula is valid for 

closed surfaces, a generalisation of it to open surfaces by adding a line integral term 

is given in Stratton’s book [1], pp. 464-470.

The PO approximation consists of taking the tangential components of the fields in 

the integral in (B.3) as those that would be present if the body had been perfectly 

smooth and flat at the surface element of integration dS. Moreover, the tangential 

components are assumed to be zero in the shadowed region, i.e. the region of the 

scatterer which is not directly illuminated by the source. The PO method provides 

satisfactory results if the surface is not too small in size and if the scattering direc

tion does not differ too much fi-om the specular direction. Although PO overcomes 

g o ’s failures, it does not yield accurate results away from the specular direction, 

because the contributions from the edges of the finite structure axe ignored.
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B .3 Geometrical Theory of Diffraction

In on of his works, published in 1957 [23], Keller proposed a new general expression 

for the field scattered by an edge. Although Sommerfeld had already tackled the 

problem of scattering from an infinite half-plane in his book about Optics [6], 

Keller adjusted this solution to the three-dimensional case, introducing hence the 

Geometrical Theory of Diffraction (GTD). Keller also introduced the concept of 

cone of diffracted rays from an edge. Suppose to have an infinite edge and an 

electromagnetic wave illuminates it. The component of the electric field parallel to 

the edge will be reflected in one direction, because of the infinite dimension of the 

edge over that direction. Instead, the transverse component will propagates in all 

directions perpendicular to the edge, because the transverse dimension of the edge 

is null. The effect is that from a point on the infinite edge a cone of rays emanates. 

Keller gave an expression for the filed propagating in this cone-tube. The result is 

that the diffracted electric field by an edge is »

Ed = - r ^ 4 ^ [ ( t  • EO(X -  Y)s  X (s X t) + Co(t • Hi){X + F)(s x t)] (B.4) 
sm [p)

where F is a factor that depends on the type of excitation, j3 is the angle that the 

incident wave makes with the edge, t is the unit vector directed along the edge, § is 

the unit vector directed along the distance between the edge and the far field point 

r, X  and Y  are two coefficients, Keller’s coefficients, which depend on the angle of 

incidence and diffraction, tp i and ips

y  ^  (1/w) sin(7r/n)
cos(7r/n)-cos[('0s -  '

y = ■■ (B.6)
cosItvfn)  -  cos[{ips + V i ) / n \

Referring to Fig. B.2, there are two directions along which either X  or Y  become 

infinite. Specifically, when = ir ~ 'tpi then Y  ^  oc. This direction is usually 

defined as Reflection Boundary (RB) direction. When t / ; ,  =  tt - I -  tp i  then X — > c « .  

This direction is referred to as Shadow Boundary (SB) direction.
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Figure B.2: Edge diffraction geometry.

The drawbacks of Keller’s theory, which represented a breakthrough in the filed 

of high-frequency techniques, are essentially three. The scattered field becomes 

infinite when the observation point lies on one of the two boundaries, the reflection 

or the shadow. The expression for the scattered field is valid only for the points 

contained in Keller’s cone. Finally, the number of points which contribute to the 

scattered fields arising from a curved edge is infinite and an infinite result is then 

obtained.

B.4 Uniform Theory of Diffraction

Because of the failure of Keller’s theory at curved edges and because of the im

portance of achieving a sound theory to describe scattering from obstacles such as 

rings or tubes, a further breakthrough had to occur in the development of high- 

frequency methods. In 1974 an article [27] was published in which a Uniform Theory 

of Diffraction (UTD) was introduced to the electromagnetic research community.
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Essentially, a new expression for both Keller’s coefficients X  and Y  was given. The 

new equations were such that the problem of infinite vaJues of X  and Y  at RB and 

SB was overcome. However, UTD does not release Keller’s GTD from presenting 

mathematical catastrophes for cases of bodies of revolution. Thus, a new approach 

was to be developed.

B.5 M ethod of Equivalent Currents

The method of equivalent currents was introduced by Millar [22], Essentially, it 

employs equivalent fictitious currents to determine the scattered fields. Knott and 

Senior [25] proposed the following equivalent currents existing at aJl points on a 

ring illuminated by an incident field (Ei,Hj)

- 2 t ( E , . t ) ( J C - y )
jkCosm ^/i)  '  ■ ’

-2t(Hi • t)(Jf + y)c„
■‘ m  —  . 2 / o \  V ^ ' ° )j k s m {p)

In fact, these currents are postulated and their values depend on Keller’s coeffi

cients. The expressions of these currents was then further refined by Michaeli [28]. 

Here a rigorous derivation of the equivalent currents for a wedge is illustrated. The 

expressions are rather cumbersome, however they pose no problems for numerical 

calculation. Finally, although the scattering direction is not longer confined to a 

generator of Keller’s cone, the currents become singular in the transition regions 

SB and RB.

B.6 Physical Theory of Diffraction

Along with Keller, Ufimtsev developed a theoretical model which could overcome 

the limits of PO by a different approach [24]. His theory is referred to Physical 

Theory of Diffraction (PTD). Ufimtsev started from the expression of the diffracted 

field by a half-plane. The solution of this problem is well known and is given in
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terms of an integral performed on the complex plane along the Sommerfeld contour, 

given in [5]. Being interested to evaluate the contribution of the edge, Ufimtsev 

further subtracted the incident field and the PO approximation of the scattered 

field. In this process, he mathematically justified the truncation of the surface 

integral yielding the PO contribution. Finally, he expressed the edge diffracted field 

as function of diffraction coefficients which do not possess the singular behaviour 

as Keller’s X  and V.

GTD coefficients diverge to cx) over the direction RB and SB. The first phenomenon 

can be physically explained by the fact that Keller derived the coefficients referring 

to the infinite wedge solution. Thus in the specular direction there is an infinity of 

rays. Also, consider the shadow boundary. Just inside it, the incident field vanishes, 

just outside it, it is the full incident field. The diffraction coefficient must cancel 

completely the incident field over the entire half-space screened from the incident 

wave by the edge structure. Hence the coefficient raises to oo.

The PO contribution from an infinite surface must also rise to oo because of the 

size of the surface. Indeed, in Ufimtsev’s theory the PO contribution is subtracted 

from Keller’s coefficients and that is why what remains in the diffraction from the 

edge alone is finite. In order to deal with finite structure the approach hence can 

be: calculate the edge-diffracted fields by means of PTD and surface contribution 

(finite) by PO. However, as in Keller’s UTD, also in Ufimtsev’s PTD the results 

provided are valid only if the observation point belongs to the cone of diffracted 

rays.

B.7 The Incremental Length Diffraction Theory

As Michaeli proposed a set of equivalent current to compute the scattered field 

by a wedge at any angle of observation, hence extending Keller’s GTD, Mitzner 

introduced the concept of Incremental Length Diffraction Coefficient (ILDC) to 

extend PTD to any angle of observation. In his work [26], Mitzner expresses the 

far field diffracted by an element of the illuminated wedge dt in terms of a dyadic
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diffraction coefficient D

g j(fcK -7 T /4 )

Ed =  Ei D m  (B.9)
V 2 t:R

where e is a unit vector aligned along the incident electric field polarisation. The 

expression of the dyadic coefficient is a function of the angles of incidence and 

scattering, as well as the interior half-wedge half angle. In this brief section, it is 

important to emphasise that Mitzner’s results extended Ufimtsev’s PTD to arbi

trary directions, the same way Michaeli’s equivalent currents extend Keller’s theory.

Unfortunately, none of the four theories provides accurate results for the solution 

of scattering problems where long structures are illuminated at grazing incidence. 

The main point is that although high-frequency methods can describe accurately 

electromagnetic scattering by simple structures for which it is possible to recall 

classical results, they fail to be a satisfactory candidate to model a large set of 

geometries that often arise in reality, such ais long smooth objects.
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DIFFERENTIAL EQUATIONS SOLVERS

Differential equation methods numerically solve Maxwell’s equations or partial dif

ferential equations associated with the electromagnetic problem. These techniques 

can be subdivided into Finite Element Method (FEM) and Finite Difference Time 

Domain method (FDTD). They are simple as far their formulation is concerned, 

they are useful to model scattering from complex penetrable bodies and they are 

associated with sparse matrices, while integral equation methods lead to fully dense 

matrices. However, the differential equation solvers do not incorporate the Som- 

merfeld boundary condition that is essential to the solution of Maxwell’s equations. 

Sommerfeld’s boundary condition states that the electromagnetic fields due to a set 

of sources all contained into a finite volume V  and radiating in free space comply 

with the following relation at infinity

lim r(E  +  Cor X H) =  0 (C.l)
r->oo

Thus, to model the usual scattering problem, with a set of sources and a finite 

body radiating in an unbounded medium, Sommefeld’s condition, also known as 

radiation condition must be necessarily taken into account.

C .l Finite Difference Time Domain

The Finite Difference Time Domain (FDTD) method is a numerical technique which 

is applicable to a wide range of problems. One of the main advantages of using 

such technique is that FDTD method treats transients in time domain. The starting 

point is the set of the two Maxwell’s curl equations in the time domain. The problem 

is displayed in Fig. C.l, where the scatterer having material properties different
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Scatterer

Figure C.l: FDTD method

from free space is illuminated by the sources located outside it. By splitting the 

'total field into the two components incident and scattered fields, it can be shown 

(see [16], pp. 12-16) that the scattered field satisfies the following equations, either 

inside and outside V

„  d\Xs . . dhi
V X e ,  = - 1 ^ - ^  -  (/i -at at

„ , Se* . . d^iV X h, = e—  +  ere, + {e -  e o )-^  + aei 
at at

(C.2)

(C.3)

If the scatterer is a perfect electric conductor (PEC) then the equations for the 

electric scattered field are

5 e , 1 u—  = - V  X h, 
at 6o

(C.4)

outside the scatterer and

(C.5)

inside the scatterer.
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Replacing derivatives with finite differences, we obtain a set of equations, valid for 

the X component of the electric scattered field

„n _  g J i - l  1

Equation (C.6) is in essence the FDTD code: the x  component of the electric 

scattered field is updated from its prior value at (n — 1) and the curl of h  at the 

time (n — 1/2). The temporal interleaving between e and h  is called leap-frog in 

time approach. After eaxdi update of e and h  the process is repeated.

Constructing a FDTD code requires preliminary considerations, such as choosing 

the size of the cell of the grid where the discretisation of the differential equations 

is performed. It is obviously very difficult to provide a universal rule, being the 

accuracy of the numerical simulation varying with the type of problem analysed. 

In cases of very accurate radar cross section determination, the size of the side of a 

cell can be A/20 and in other cases reasonable results have been achieved for A/4. 

Intimately related to the size of the cell is the time step Af. Once the cell has been 

fixed in size, Ai must obey the Courant condition, given in [16] p. 32. Finally, 

when the problem one attem pts to solve is located in free space, as the case of a 

scatterer radiating towards infinity, the FDTD approach must be suitably modified 

by applying an outer radiation boundary condition which estimates the missing 

field components just outside the problem space. A typical technique is to assume 

that a locally plane wave is propagating out of the space and estimating the fields 

for the outward travelling plane wave on the boundary by looking at the fields just 

within the boundary.

C.2 Finite Element M ethod

In this section, we formulate the essence of the Finite Element Method (FEM) in 

one of its more popular hybridisation with the boundary integral methods, as given 

in [29].
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external
sources

internal
sources

Figure C.2: FEM problem

Referring to Fig. C.2, it is of interest to compute the fields due to the sources 

(external or internal) in the presence of three-dimensional structure immersed in 

an infinite homogeneous medium. The three-dimensional body is enclosed in a 

fictitious surface S. In the volume V,  the following vector equation holds

V X f — V X e )  -  = - jk C oJ in t  + V X ( — M in t )  (C.7)

In solving (C.7), a usual approach is considering a functional of the field E, F'(E), 

which is stationary with respect to the solution of (C.7). Following this reasoning, 

the vector E can be found by enforcing

5F(E) =  0 (C.8)
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where the symbol 6 denotes the first-order variation of F  about E. The fields outside 

S can be instead represented, using the equivalence theorem as the sum of the 

incident field, due to the sources external to S, and the field radiated outside 5  in an 

unbounded medium by the set of equivalent sources locates on the fictitious surface 

S and function of the unknown fields on S. Basically, these formal expressions are 

to be matched with the solution of the equation (C.7) at the boundary S.

The FEM discretisation is the subdivision of the volume V  into a finite number of 

small volume elements, such as rectangular bricks. Then, either the electric field 

and the magnetic field axe expressed as a superposition of suitably weighted vector 

basis functions which are defined in V.  The coefficients of the expansions are to be 

determined. The expressions of the fields are then substituted in (C.8) and applying 

the Rayleigh-Ritz procedure, a matrix equation is obtained. This procedure is 

described for example in [15]. To solve the matrix equation, a boundary condition 

on S  is required and this is provided by the equation which is satisfied by the fields 

outside S in terms of the tangential components of the fields over S itself. Once 

a complete system of equations for the coefficients of the basis expansions of the 

fields is obtained, it can be solved by means of various techniques as pointed out 

in [29]. The resultant matrix is sparse and can be efficiently solved and stored.
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VIATHEMATICAL FORMULAE FOR ANIM  IN THREE DIMENSIONS

Chapter 5 presented the ANIM, a numerical technique that achieves massive com

putational savings when compared to other numerical schemes, such as MoM-CG, 

FMM and FAFFA described, respectively, in chapters 2, 3 and 4. ANIM was de

veloped for the case of electromagnetic scattering from two-dimensional piecewise 

linear smooth electrically large surfaces. This chapter presents some mathematical 

tools that might be found useful in developing an extension of ANIM to three di

mensions, for the case of scattering from piecewise planar smooth surfaces. In three 

dimensions, a surface may be modeled as an aggregation of triangular patches. If 

the surface is large, the application of FMM or FAFFA becomes prohibitive, due 

to enormous storage requirements.

ANIM is based upon two main results: (i) the incident field on portions of scatterer 

may be expressed as a sum of plane waves arriving from a finite number of directions, 

(m) the far-field scattered by portions of scatterer may be expressed analytically. 

Section D.l and section D.2 present a possible extension of ANIM main results 

to three dimensions. Section D.3 is devoted to the plane wave expansion of the 

near-field due to the PO current induced on a triangular patch illuminated by a 

plane wave.

D .l Extension of ANIM to the three-dimensional Ccise

The subscatterers are PEC planar triangular patches. They correspond to the PEC 

segments for the two-dimensional case introduced aJong TIM in chapter 4. A plane 

wave incident on a planar triangular patch is illustrated in Fig. D.l. The incident
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electric field Ei„c> hence, may be expressed as

=  Eoe- *̂ "̂ (D.l)

where

k =  —A:(sin 6  cos ^x  +  sin 9 sin 0y + cos ( f)z) (D.2)

is the wave vector and 9 and (f) are related to the direction of incidence, as illustrated

in Fig. D .l and x is the unit vector related to the x  axis and similar definition holds

for y  and z. A discretisation of the angles of incidence may be now introduced, so 

that if (see Fig. D.l)

9 a < 9  < 9 b  (D.3)

and

(f>a< 4><4>b

then the following approximation holds

4 

i=l

which is the extension of (4.27) to the three-dimensional case. 

i assumes the values 1 ■ • • 4 and

k i  =  —/c(sin cos ^ „ x - I - sin 0Q sin 0 a y  +  c o S ( ^ q z )  ( D .6 )

k2 =  —A;(sin cos +  sin^a sin^(,y +  cos 0jz) (D.7)

k3 =  —  A:(sin (̂,cos<?!»aX- I - sin0(,sin^ay +  cos^flZ) (D.8)

k4 =  — A:(sin0e,cos^(,x +  sin06sin<?i6y+ cos^6z) (D.9)

(D.4)

(D.5)

In (D.5), the index

E q  — Eo?/’ao (D.IO)
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E q —

Eg Eo'06q 

E q  — E o'066

(D .ll)

(D.12)

(D.13)

where the interpolating factors ip are defined in a similar fashion as in (4.31). For 

example

with 00 06 illustrated in Fig. D .l. The electric current induced on T by

the plane wave illustrated in Fig. D .l is approximated using the PO approximation,

where H,„c(a;,y) is the incident magnetic field and h is the unit vector normal 

to T  illustrated in Fig. D.2. Next section presents the evaluation of the far-field 

scattered by the PO current.

D.2 Far-field scattered by a triangular patch illuminated  

by a plane wave using the PO approximation

(D.14)

where

~ (D.15)

and

^(j)  — 0 a (D.16)

introduced in section B.2. Hence, the current J{x, y)  residing on T lying on the 

plane x — y is approximated as

3{x,y)  «  2n X (D.17)

The far-field scattered by a triangular patch T  illuminated by a plane wave is 

evaluated in this section. The geometry is illustrated in Fig. D.3(a). The physical
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k2

Figure D.l: Geometry of the discretisation (D.5) for the three-dimensional case.

optics (PO) current is postulated (see (D.17)). The incident electric field is a plane 

wave, i.e.

where the propagation vector k is given by

k =  —A:(sin 9i cos (̂ jXc +  sin 9i sin (piYc +  cos 0jZc) (D.19)

with the angles 9i and (j)i illustrated in Fig. D.3(a). The unit vectors associated 

with the rectangular coordinate system (for convenience centred at the centroid of 

the triangle) are x,,, fc  and In (D.18) Eq is a vector of rectangular components

(D.18)
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plane wave

plajie containing T

Figure D.2: Physical Optics approximation for the current on T. The vector n points 
outwards the plane containing T.

, -E'oy and and r  is the vector

r  =  f  Xc +  yyc +  zzc (D.20)

It follows readily that

Eo =  ~Einc{x =  0,y =  0,z =  0) (D-21)

i.e. the vector Eq is the value of the incident electric field at the centroid of the 

triangular patch. T is assumed to be on the plane Zc =  0. Then the incident electric 

field on T  is

Ei„c|(.e=o) =  (5, y ) e T  (D.22)

where

O' =  — sin 9i cos (j)i (D.23)
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/3 =  — sin 6i sin (j)i (D.24)

and X and y  are the coordinates of any point r' in the plane of the triangle with 

respect to its centroid C , as illustrated in Fig. D.3(b). From the definition of plane 

wave ([13], chapter 4), the magnetic field is given by

Hjnc ~  X (D.25)
so

where k is the unit vector parallel to k and Co is the free space impedance (Co =  

yZ/xo/ co)- It follows that the PO current (D.17) over the triangle is

J p o  =  2Zc X Hjnc (D.26)

because ic  is the unit vector normal to the triangle. Developing the cross product

k X Ei^ =  aEo^( - y c )  +  l3Eo^kc +  'jEo^Yc +  T-E’o,( -^ c )  (D.27)

where a  is given in (D.23), (3 in (D.24) and

7 =  —cos0j, (D.28)

a compact expression for the PO current may be derived

Jpo =  (D.29)
Co

where the vector v has been defined as

V =  (/?-Eo, -  T-E’oJYc -  {lEo^ -  aEQ^)±^. (D.30)

To evaluate the field scattered by the PO current, it is necessary to calculate the 

vector potential A, that depends on the term ([13], chapter 6)
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where R  is the distance between the observation point (its spherical coordinates 

are {r,4>s,9s) illustrated in Fig. D.3(a)) and the integration point of rectangular 

coordinates (x,y, 0) illustrated in Fig. D.3(b). If the observation point is far then 

the vector potential may be approximated to ([13], chapter 6)

II
A ^ - ^ - --------

47t r

where f  is the unit vector parallel to r, that is the vector connecting the observation

point and the centroid of T  ajid r' = xxc +  yyc is the source or integration point

{dSc = dxdy). Recalling (D.29) and given that

r' •  r =  £ sin 9 n  cos 9 s  +  y sin 9 g  sin 9 ,  (D.33)

the vector potential may be written as

A «  +  V y jc )e ^ ' ^ ^ ^ ^ ^ ^ « ^ d x d y  ' (D.34)
47r r  J j ’ ^0

where, using (D.30) and (D.33), the following coefficients have been introduced 

Vx, = jEo, -  aEo^ (D.35)

Vyc = -  'yEoy (D.36)

a =  sin 9s cos 9s (D.37)

r  =  sin 9s sin 9̂  (D. 38)

with the coefficients a, /? and 7  given in (D.23), (D.24) and (D.28).

Hence, it is necessary to evaluate the integral

I t ^  J  (D.39)
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to have the vector potential 

a 2
A  ---------+  VycYcjh- (D.40)

47T r Co

Referring to the coordinate system {x',y') illustrated in Fig. D.3(b), it is

I t  = S  J  (D.41)

where the shifting factor S  is

^ jk { a- <j )x c  ̂ j k ( ^ - T ) y c (D.42)

It follows, hence, that /-r =  / i  +  h  where

h  = S  [  =
JTa

r{y3x')/x3
S  /  (D.43)

J o  J o  ‘

and

h  = S  [  =
J t„

rx2 r-{yzx')l{x2-xz)-^{y3x2)l(,xi-xz)
S  /  (D.44)

J  X 3  J o

where (xi,yi), with i = 1 ■ - - 3, are the coordinates of the points 1, 2 and 3 illustrated 

in Fig. D.3(b) and Ta and are the two subtriangles into which is subdivided T.

It is clear from the definition of I\ and I2 that the integral I t  may be evaluated in a

closed form, the integrand functions being exponential functions. The closed form 

for the expression of the scattered far-field radiated by a flat conducting polygon 

illuminated by a plane wave, is a direct consequence (see aJso [84]) of the Maggi- 

Rubinowicz representation, presented in [8], [82]-[83] and [85].

As reported in [13], p. 281, the electric far-held scattered by a current distribution 

may be approximated by

E Ri —jujA (D.45)
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where a; is the angular frequency of the incident plane wave (u = ky/eoHo). Hence, 

using (D.40), the electric field radiated by T is

H 2
E  ^  - ju ; - -----------— (t̂ icXc +  VyJc)lT (D.46)

47t r Co

and it follows from [13], pp. 287-288, that

(D.47)

Ee «  ------- CoNg (D.48)
47rr’

E ,  «  - ^ - ^ C o J V *  (D.49)

where

2
N q  =  — { v x c  COS 9s  COS (ps +  'Wye COS 9 s  s i n  9 s ) I t  (D.50)

Co

2
=  -{ -V x ^  sin 9s +  %  cos 6s)It  (D.51)

(,0

and Eg and E^ are the 9 and 4> component of the electric field at the observation 

point of spherical coordinates {r,9s,(f)s) illustrated in Fig. D.3(a). Hence, the far- 

field radiated by the triangular patch at a point (r, 9s, (t>s) may be approximated as 

a plane wave propagating along,the r  direction.

In summary, this section has presented the essential mathematical tool to express 

the far-field scattered by a PEC triangular patch illuminated by a plane wave, using 

the PO approximation. The result expressed in (D.48) and (D.49) may be seen as 

the extension of (5.33) to three dimensions.

D.3 Plane wave expansion of the near-field

In this section, a plane wave expansion of the near-field radiated by a triangular 

patch illuminated by a plane wave is obtained. This task is accomplished using the
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definition of multipole expansions given in [53] aind Gegenbauer’s addition theorem 

introduced in section 3.4.2.

To evaluate the electric field scattered by a triangular patch, the integral

-jkRJL
47T

J ^ J p o - ^ d S c  (D.52)

must be performed (see [13], chapter 6). In (D.52), R is the distance between the 

source point (i,y , 0) and the observation point of spherical coordinates {r,9s,(j)s) 

(see Fig. D.3), Jpo is the electric current density residing on T.

Referring to Fig. D.4, it is

R  =  Rc 4- dc. (D.53)

Hence, recalling (3.20) it follows that

Q-jkR g - j f c | R c + d c |  —j k

R =  I B - T T T  =  (D-54)|Rc +  del 47t

where the unit vector k has the spherical coordinates (sin^cos^, sin0sin</», cos9), 

as illustrated in Fig. D.4 and a{k, k, R,.) is the function

aik, k, Rc) =  lim V ( - j ) '( 2 /  + l)hf\kR^)Pi(ii ■ Re). (D.55)
Z = 0

Thus, (D.52) becomes

h  /  (D.56)

In (D.52), the function Jpo is expressed as in (D.29). Hence, one obtains the

following plane wave expansion

£  J^( fkaik ,k , 'R-c)Mj(k)  (D.57)
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where the multipole expansion M j(k) has been introduced

(D.58)
J t

Recalling (D.29), the multipole expansion becomes

M j { k )  =  - V  /
Co Jt

(D.59)

The last step is to express the scalar product k ■ dg as a function of the coordinates 

X and y. It is

and may be evaluated analytically. In implementing (D.55), for the case of Rc ~  dc, 

the number of terms needed for the series to converge may be very high. This 

could represent a slowing factor in the calculation of the plane wave expansion of 

the near-field due to the PO current. Nevertheless, the equality (D.54) is satisfied 

when Rc > dc-

D .4 C onclusion

A set of known results was presented in this chapter. Specifically, it was shown that 

the far-field scattered by the Physical Optics (PO) current induced on a triangular 

patch illuminated by a plane wave may be evaluated analytically in a simple way. 

Furthermore, a plane wave expansion of the near-field due to the PO current was 

derived using Gegenbauer’s theorem (3.20).

The two expressions derived may represent a set of key formulae to begin an in

vestigation on the possibility of an extension of ANIM, the method developed in

k • dc =  — sin 0 cos (j)x — sin 6 sin (f)y (D.60)

and M j(k) becomes

j k ( ax + ^y )  j k { —sin 0 cos sin $ sin (D.61)
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chapter 5, to three dimensions. The set of basis functions, for this case, may be 

chosen to be the PO currents excited on triangular patches by plane waves. It 

could appear that a PO approximation introduces considerable errors. It is true, 

however, that PO is a good approximation for modeling the current induced on a 

large surface whose radius of curvature is large compared with the wavelength, as 

discussed in [14], p. 356. Indeed, a very recent result [66] demonstrates that the 

PO current may be employed efficiently in modeling electromagnetic scattering by 

piecewise, large, smooth surfaces in two dimensions.

The incorporation of PO approximation into surface integral equations tackled us

ing TIM/ANIM would allow massive computational savings, because the MoM 

impedance matrix need not be stored in memory. The current induced on planar 

triangular patches could be evaluated directly applying (D.29) ajid the scattered 

fields due to the PO currents would be readily evaluated applying (D.46).

A simple problem is currently tackled by Trinity College group using the formulation 

suggested. Specifically, the problem of scattering by a square flat plate of side of 

length 500A illuminated by an electric dipole located vertically over its centre is 

being investigated. It is important to stress that such a problem would require a 

complexity of 0 (10^̂ ) using the MoM-CG scheme and a complexity of 0(10*) using 

a multi-level FMM or FAFFA. Neither of these methods could be implemented even 

on the best available workstation. A successful implementation of TIM/ANIM, 

on the contrary, would render this problem solvable in the order of a few hours. 

The results, obviously for the case of a planar surface, are expected to be highly 

satisfactory.

A second stage of research investigation would consist of applying the same method 

to a slowly corrugated version of the square flat plate, by modeling the near inter

actions using a single plane wave, as is done in TIM/ANIM. Results could be then 

compared with reference data. Should be found any disagreement, the plane wave 

expansion of the near-field developed in section D.3 would need be incorporated, in 

order to model the near-field interactions in a more accurate way, as is suggested



D.4. Conclusion 195

in [68].

In conclusion, it is proposed that a PO approximation of the electric current would 

be sufficiently adequate to embark an extension of TIM/ANIM to three dimensions. 

It is expected, however, that care must be taken in evaluating the near-field inter

actions, which may be modeled using the plane wave expansion discussed in section 

D.3. It is argued that an extension to three dimensions of the method proposed in 

[68] using the PO approximation may be developed in the future.



D .4. Conclusion 196

(a)

V3

Jy’

Vc

.11 X./ 2

(b)
Figure D.3: Geometry of the far-field evaluation for a planar triangular patch illuminated 
by a plane wave incident at angles 9i and (f>i. In (a) the triangle T  and the observation 
point (r, 0 ,4>) are illustrated, with the spherical coordinate system centred a t the centroid 
of T  and the rectangular coordinate system (xc, j/c,-Zc)- In (b) the plane of the triangle is 
illustrated with the two different coordinate system {xciUc) and (x',y'). For each point 
r ', its coordinate x  with respect to the centroid C  of T  is such that Xc + x = x'. Similar 
relation holds for j/c- The closed form integral It  given in (D.40) is evaluated referring 
to the coordinate system {x',y').
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Figure D.4: Geometry for the calculation of the near-field scattered by T.
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