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General Introduction

This tliosis is l)as('d on 4 pai)('rs rosulting from iny work during my stay in 

tho School of M athematics, Trinity College Dublin. Each of them  forms an 

individual part (jf the thesis. The relation between these parts  is emphasized 

throughout the thesis. The last, fifth, part is based on a somewhat exercise in 

operator formalism in Chern -Simons theory where I show, by analysis based 

on th e ta  functions, th a t  the co-efficient nuist be even.

In each part of the thesis the j^ublished work is the last section (the last two 

sections for part  III). All introductory material, together with some back­

ground and aspects of relations with other theories, is given in the sections 

prece('ding tlie final oru'. I have tried to be most concise, avoiding unnec­

essary details. For instance, the definition of a /;-form is given for the only 

purpose to s ta te  th a t  we will avoid the numerical normalization factor in it 

and to set up a notation. As I am a ])hysicist, whenever in the introductory 

sections a m athem atical text seems unavoidable, I have tried to alternate  it 

with i)hysical (sometimes more hand-waving than  necessary) arguments.

In the first part of the thesis I show tha t on three-dimensional Riemannian 

manifolds w ithout boundaries and with trivial first real de R ham  cohomology 

grouj) (and in no other dimensions) scalar field theory and Maxwell theory
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are eciuivalent: th e ratio o f the partition  functions is given  by th e R a y -S in g er  

torsion  o f the m anifold . In the presence o f interaction  w ith  external currents, 

th is ecjuivalence persists provided there is a fixed relation  betw een  the charges 

and tlie currents.

In the next i>art, w ith  ideology  based on the first one, I ex p lic itly  ob ta in , 

using  a grouj)-invariant version o f the F a d d eev -P 0j)0v m eth od , th e p arti­

tion  fu n ction s o f the Self D ual M odel and M axw ell-C h ern  S im ons theory. I 

show  th a t their ratio  coincides w ith  the partition  fun ction  o f A b elian  C h e n i-  

Sin ion s theory to  w ith in  a phase factor d epending on th e geom etrica l prop­

erties o f the m anifold .

S till in the sam e sp irit, in j)art three I give an a ltern ative  evalu ation  o f  the  

p artition  function  o f Schw arz’s toj)ological field theory w hich results in 1. 

(T h e standard  evalu ation  results in the Ray Singer an a ly tic  torsion .) M ath ­

em atica lly , th is am ou n ts to  a novel p erspective on an a ly tic  torsion: it can  be 

form aly w ritten  as a ratio  o f volum es o f spaces o f d ilferential form s w hich  is 

form ally  ecjual to  1 l)y H odge duality.

In part four I show  th a t w hen the induced parity breaking part o f th e ef­

fective action  for th e low m om entum  region o f U ( l )  x  . . .  x  U ( l )  M axw ell 

gauge field theory  w ith  m assive ferm ions in 2-1-1 d im en sion s is coup led  to  

a (j)'* scalar field theory, it is not possib le to  e lim in ate  th e screen ing o f the  

long-range C oulom b in teractions and get external charges confined in the
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l)roken Higgs plias('. This result is valid for non-zero tem peratu re  as well. 

This in(luc('(l term, a t zero temperature, is nothing else, but the eminent 

Chern Simons term.

The pap('rs which form this thesis are:

1. Emil M. Prodanov and S iddhartha Sen: Abelian Duality, 

hep-th/990C143, subm itted  to Physical Review D.

2. Emil M. Prodanov and Siddhartha Sen: Equivalence of the 

Self Dual Model and Maxwell Chern Simons Theory on Arbitrary Mani­

folds, hep-th/9801026, Physical Review D59, 065019 (1999).

3. Emil M. Prodanov and David H. Adams: A Rem,ark on 

Schwarz's Topological Field Theory, subm itted to Letters in M athem atical 

Physics.

4. Emil M. Prodanov and S iddhartha Sen: Absence of Cross-  

Confinement for Dynamically Generated Multi-Chern-Simons Theories, 

hep-th/9810044. Physics Letters B445, 112-116 (1998).
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I. Abelian D uality

1 Introduction

Thf'if' has rocent iiit('rest in relating different theories and establishing  

their eciuivalence. Common to all api)lications of the different aspects of the 

notion of duality is the observation that when two different theories are dual 

to each other, then either the manifolds are changed or the fields and the 

coui)ling constants are related.

In this part ot the thesis we re-examine two sim ple system s - scalar field the­

ory and Maxwell theory on three' dim ensional Riem annian m anifolds w ith­

out boundaries and with trivial hrst hom otopy group 7ri(M). We show the 

('(juivalence between these theories and we give the condition which m ust be 

satisfied by the charges and the external currents in order that the equiva­

lence persists at the level of interactions. This is done by a direct calculation  

of the {)artition function of each theory paying particular attention to the 

fine structure of the zero-m ode sector. In the spirit of Schwarz’s m ethod  

of invariant integration [1] we show that the ratio of the partition functions 

of the theories is equal to the square of the partition function of C hern- 

Sim ons theory (or the partition function of BF theory, that is, U ( l )  x  U ( l )  

Chern Simons theory with purely off-diagonal coupling). Such equivalence



l)('twe('u a scalar and v(*ctor theory is a novel form of duality which we call 

Abelian Duality. We show that when the coupling constants (overall scaling 

factors) are related as R <— 1/ R , then this Abelian Duality transforms 

into R — )• 1/R duality. In this case the ratio of the partition functions is 

given by a toi)ological invariant the Ray-Singer torsion of the manifold [2]. 

We show how our results can be obtained by Schwarz’s resolvent method [3] 

and we use a resolvent generated by the de Rham complex to comment on 

l)ossibilities of equivalence between the theories in other dimensions. In our 

considerations we use zeta rf'gularised determinants.

The ingredients of our theory are as follows:

In this part of the thesis we shall be interested in homology 3-spheres, that 

is, 3-dimensional compact oriented connected Riemannian manifolds, with­

out boundaries and with trivial first real de Rham cohomology group, e.g. 

S ’ or the lens sj)aces L { p ,  0), p =  0,1,  2 , . . . .  Let us now explain why.

For Riemannian manifolds the metric (which is a symmetric matrix, due 

to the fact that the scalar i^roduct is comnnitative, and therefore has real 

eigenvalues only) has only positive eigenvalues. By a suitable diagonaliza- 

tion with an orthogonal matrix and rescaling of the basis vectors we can 

obtain Euclidean metric S =  diag ( 1 , . . . ,  1). We need Euclidean actions in 

order to avoid problems with convergence in the path integral of the theories 

considered (convergence in Minkowski’s space depends on the fact that the



integrand in the partition function is oscillating) in Euclidean spaces the 

('xpon('nt in the intc'grand is negative definite and the integral converges. 

The manifold we need should also he without a boundary. We would like to 

avoid ])r()l)leuis with l('ftov('r after integration by i^arts. Our analysis would 

t)e applicable for the case when there are boundary terms present, bu t would 

also be more technical.

The reason for demanding non-trivial first real de Rham  cohomology group is 

th a t  we shall I>e dealing with Maxwell field theory and to be able to write the 

Maxwell tensor F  as d^A globally. The Maxwell ecjuation (I2 F  =  0 implies 

th a t  F  is an element in the second de Rhani cohomology group* H^,^(M). A  

is a one-form and therefore fi,.4 =  0 in H^,^(M), th a t  is, if F  — d^A then the 

equivalence class [F] is zero in H]^„(M) (i.e. [F] =  [F'] F  =  F' +  diA).  

When the second d(' Rham cohomology group is trivial, then F  =  d^A is 

valid globally. In three dimensions H^^(M) is isomorphic to Hjp^(M) due 

to Hodge duality and H^,j(M) being trivial means th a t  the first homotopy 

group 7Ti(M) is trivial (then F  =  diA  globally). If 7Ti(M) is non-trivial, then 

F =  diA  is valid only on contractible regions of the manifold. Our analysis is 

perfectly well suited to handle the case of manifolds with non-trivial homol­

ogy then Maxwell theory and scalar field theory would be patch by-patch

*A suimiiary of some l>asic notions of a manifold and of topological ideas are contained 

in the next section.
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e(|uivaleiit.

\V(' will show the eciuivalence bctwoeii Maxwell theory and scalar field the­

ory for homology 3-sph('res (the physically interesting m anifolds). For the 

gf'ueral case w(' would lik(' to refer the reader to [4] where W itten  has shown 

how to pass from scalar field theory to Maxwell theory and vice versa in 

two and three dimensions. As a com pensation, we would like to  offer m any 

additional features enu'rging from our analysis of the equivalence between 

these two theories.

Even though we are considering two simple system s -  scalar field theory and 

U (l) gauge field theory (Maxwell theory) which are free or have in teractions 

w ith external currents, the manifolds will be a rb itra ry  sim ply-connected and 

curv('d. The statem ent th a t the ratio  of the {)artition functions of the two 

theories is a to])ological object is probably a generic feature of m ost “field 

tlu'ory ('(juivalence” thc'orems. We (-ertainly come across th is feature in o ther 

examples. Scalar field theory and Maxwell theory play a fundam ental role in 

the contem jjorary understanding of interactions and sym m etries. We shall 

be dealing w ith systems w ith infinitely many degrees of freedom. Crucial role 

in such system  is played by the sym m etry of the model — either generating 

family of solutions by leaving the dynam ical ecjuations invariant, or leading 

to conservation of charges, energies, m om enta, etc. These sym m etries m ight 

be either geom etrical transform ations of space and tim e, or in ternal —* not
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(lepeiidiiig on space and time.

A nother ingredients are the Chern Simons theory [5] — a topological field 

theory of Schwarz type (to be introduced shortly) and the calculation of its 

partition  function (a priori a formal, nuitheniatically ill-defined quantity) by 

formal manipulations which in the end lead to a m athem atically  meaningful 

result the Ray Singer torsion [2] of the manifold. (This analytic torsion 

will ])lay a key role in the th ird  part of the thesis.) The formal m anipulations 

will be Shwarz’s method of invariant integration [1] and Schwarz’s resolvent 

m ethod [3]. They both generalize the Faddeev-Popov trick [6] for the case 

when the group of gauge transformations does not act freely, th a t  is, when 

ghcjsts for ghosts have to be included on the same basis as the ghosts them ­

selves - to restict the gauge freedom by picking up only one representative 

of each orbit of the grouj) of gauge transformations.

In the next few sections we give some background material.
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2 Elem ents of H odge-de Rham  Theory

All opera to rs  en ter ing  our theory  can be described by the  following d iagram :

1F(M) -----------

4: *

(/* .

i r -p (M ) (1)

where M is the  m anifold and  jri =  d im  M. T he  case of in terest will be a  

th ree-d im ensional manifold. Here or A ''T*(M ), is the  space of p-

forms ^T*(M) is the  dual space of the  tangen t  space T ,(M )  a t  po in t  q G 

Alj. (For an excellent in troduc tion  to geom etry  and  topology see [7].) Let us 

accept the  convention to ignore the  num erical factor ^  from the  definition of 

a p-form;

i F { M )  3  0;" =  ^  A d x '^ '^  A . . .  A (2)
p]

We will always w rite  a subscrip t  on the differential o p e ra to r  d  ( the  ex ter io r  

derivative) in o rder to  keep track  of the  order of the  forms it acts  on ( th is  is 

ex trem ely  im p o r ta n t  for our fu rther  analysis). In o th e r  words, we have;

1F(M) G (3)

where

d
=  d p U j ' ’ =  ^  A . . .  A dx'*'’ (4)

9



(tlie iiuinerical factor is suppressed).

Let us also sui)press tlu ' num erical factors from the  definition of the  Hodge 

s ta r  opera to r

*  u ) '‘ =  p A . . .  A (5)

and  the sign from the identity  m ap  (for R iem ann ian  m anifolds)

* * a;*’ = ( - l ) " ‘"'-^>w'’. (6)

T hus  the  ad jo in t ex terior derivative will be given, m odulo  possible sign, by:

, =  * d,, * . (7)m  — p — \ P V /

We will write  (note the  difference in the  notation):

3  ^  V'" e  ii^(M). (8)

W ith  this n o ta t ion , the  Laj)lacian ac ting  on /j-forms is given by:

A ,  =  d^d + d  (9)
P P P  p — 1  p — 1  ^  '

B oth  d and  d.̂  are  n ilpotent:

(ip+ifip =  0 =  fijrfj+i- (10)

T he p roduct  of two y^-forms is symm etric:

to A  *'ij> =  '(J) A  *L0 ( 1 1 )
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and thus the inner product, defined via

(w, '0) =  I  u.'A =  I  \f\fj\ dx  ̂ ■ ■ ■ dx"\ (12)
M M

is sym m etric: {uj, 'ij>) — (0, u)).

Not(' th a t uj A //(-form and its integral over the manifold is well

defined. For R iem annian manifolds the inner product is always positive def­

inite: V') ^  ( “= ” when if} =  0).

Let us now consider integration by parts for closed manifolds. Stokes theo­

rem yields: du) =  u>. Therefore, for closed manifolds, du) = 0 for all
M ;>M M

u) G 1^"~‘(M). If we now take u> =  a ’’ A/3‘‘ (with p + q + 1 =  7)i), we then get: 

j  id^a") A =  (-1 )"+ ' I  fv" A dJP .  (13)
M M

If M is not closed, this fornnila holds only if a '' A /i’ vanishes on c)M.

W ith the listed definitions and properties it is easy to ])rove th a t

(r4fv^ ( r )  =  {a”, d l , P ‘') (14)

(w ith p-|-q-j-l=m ).

Following [7], we would like to give some more theorem s and definitions: On 

R iem annian manifolds a p-form w'’ is harm onic, th a t is, ApCÛ  =  0, if, and 

only if, u;'' is closed (th a t is, d^u'' =  0) and co-closed (th a t is, dl^^co’' =  0). 

The set of harm onic ;;-forms is denoted by 7i^{M). The set of closed 7>form s 

is called the p"' cocycle group and is denoted by Z ''(M ). A p-form is exact



((•()-('xact) if it can be globally written as a;'' =  {to” =

The s('t of exact p-fornis is called the p"' coboundary group and is denoted 

by 5 ''(M ). Both Z?'(M) and D^{M)  are vector spaces with real co-efficients. 

Since £  = 0, Z»{M) D

Th(' (h'finition of the y/'' d(> Rhani cohomology group is [7]:

h ;»(M) =  Z ’' ( M ) / ^ , , „ )  (15)

(M is a differentiable manifold). Stokes’ theorem provides the duality be- 

tw('('n the cohomology group and the homology group. We would like to 

refer the reader to [7] for introduction to boundary operators, co-boundary 

operators, cycle grou])S, boundary groups, and homology grou])s.

An extremely imj^ortant theorem is the Hodge decomposition theorem [7]: 

Let (M, (j) be a compact orieutable Riemannian manifold without a bound­

ary. Then fF (M ) is uni(iuely decomposo^d as:

th a t  is, any p-form a;'' can be globally written as

u,” = +dlf3”̂  ̂+Y,  ( 17)

w'here G G IF ’̂ ^(M), and Y  is harrnmonic.

Any element in Hrfa(M) can be uniquely written as =  dp_] -I- Y -  

If u) ^  Z^‘{M),  then [a;] e  HdR,(M) is the equivalence class {a;' G Z''(M) |

12



i

i

u)' =  uj + dij), if! G (M)}. Two foi'iiis, which ditfer by an exact form, are 

calk'd cohomologous.

It should l)e clear by now why we need homology 3-spheres: The Maxwell 

ecjuation (LF = 0 implies th a t  F  is an element in Hj^(M). .4 is a one-form 

and therefore d^A = 0 in tha t is, if F  =  d iA  then the equivalence

class [F] is zero in H;^„(M) (i.e. [F] = [F'] ^  F  = F ' + d,A) .  W hen the 

second de Rham cohomology group is trivial, then F  = d̂  A  is valid globally. 

In three dimensions H^^„(M) is isomorphic to due to Hodge duality

i and H^„(M) Ix'iug trivial means tha t the first homotopy group* 7Tj(M) is
i  '  ’

I trivial (then F  =  ('/,.4 globally). If 7Ti(M)is non-trivial, then F  — d^A is
j

valid only on contractible regions of the manifold.

Finally, we would like to introduce another piece of the ingredients of our 

theory the Betti numbers. Hodge’s theorem states [7] th a t  on a compact 

orientable Riemannian manifold (M, g),  Hdft(M) is isomorphic to W ’{M):

H^^(M) ^  7^P(M). (18)

In particular, dim^HdR(M)) =  dim(^'H^(M)) =  If ,  where I f  is the p"* Betti 

number.

*()iice again, consult [7] for hoinotopy groups.
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3 Topological Quantum Field Theory and 

C hern-Sim ons Theory

Topological Qiiaiitiiin Field Theory is a way of formally constructing m etric -  

indei)endent (Quantum Field Theory on some manifold M. Using Topological 

(Quantum Field Theory it has been shown how new topologcal information 

regarding M or information of topological structures present in M can be 

obtained. For exampk^, new knot invariants have been discovered and the 

('(juivalence of Donaldson and Seiberg-VVitten invariants on four dimensional 

manifolds has been conjectured (for a review see [8] and the references there­

in).

The modern interaction between quantum  physics and geometry can be 

traced to the work of Chern [9]. He showed the im portance of the notion of 

a vector bundle with a connection over a manifold; the relation between the 

gauge potential and the connection form and between the Faraday tensor and 

the curvature form. The fornnilation of the fundamental theories of physics 

as “gauge theories” then had an immediate geometric interpretation. Even 

if all curvatures vanish, gauge theories have non-trivial global features (in 

contrast with classical field theories, like Einstein’s theory of relativity where 

the gravitational force is interi)reted in terms of curvature). This led to rapid 

developments a t (luantum level with electromagnetism as the prototype of

14



all gauge theories. Subse(iueiitly, this U( l )  gauge theory was replaced by 

uon-abelian gaug(' theory; the gauge suniiiietry was broken (Higgs model); 

niagn('tic monopoh's (introduced to “heal” the asymmetry in Maxwell equa­

tions) were studeied by means of topology; etc.

By definition, Topological Quantum Field Theory is a Quantum Field Theory 

in which the vacuum exj)ectation values of some set of operators are invariant 

under variation of the metric of the background Riemannian manifold, i.e. 

this is a theory which does not dejjend on any background geometry. There 

are two distinct tyi)('s [8] of Topological Quantum Field Theories (based on 

two different ways of achieving the ind('pendece of the vacuum expectation  

values on the metric variation) of Schwarz type and of W itten type. The 

former are based on a metric independent action and the observables are 

constructed out of gauge invariant oj)erators which do not contain the met­

ric. Witten type theory is based on a symmetry of the model which leaves 

invariant the action, the measure in the path integral and each of the oper­

ators in the above mentioned set. We will confine our attention to Schwarz 

ty])e theories.

The classical example for a theory of Schwarz type is the Chern-Simons the­

ory [5]. It is an intrinsically odd -dimensional theory and on m-dimensional 

manifolds (?n “ odd) it is given by the integral of the m"* Chern-Simons

form (for a review see [7] and the references therein). Chern-Simons forms

15



are:

Q. i A)  =  ~  tr.4,
Ztt

Q,{A)  =  ^  [ ^ y  tr  (.4 A clA + ‘̂ A a A a A ) ,

Qr.{A) = g ( ^ )  t r ( .4  A rU  Af/.4

3 3
+  -  ,4 A .4 A .4 A dA + -  A A A  A A  A A  A A ) ,  (19)

2 5 ^

and so on. Here .4 is the connection on the trivial (7-1)1111(110 over the inanifold 

M and G  is a compact Lie group.

In 1978 Schwarz showed [3] how to evaluate the partition  function of a the­

ory with a (juadratic action functional. In particular, Sclwarz introduced 

the resolvent method to detenniiu ' the partition function of Abelian Chern 

Simons theory. He showed tha t the partition function was related to the 

analytic torsion [2]: a w’ell known topological invariant of the manifold. This 

remarkable paper suggested th a t  by using Topological Q uantum  Field The­

ory, to])ological invariants of the manifold M could be discovered. The idea 

to probe to{)ology using Q uantum  Field Theory (with particular application 

to the non-abelian Chern-Simons theory) was resurrected by W itten. In 

1988 he constructed Topological (Quantum Field Theory [10] as Q uantum  

Field Theory representation of the Donaldson’s study [11] of the topolgy of 

low dimensional manifolds. He showed how such theory extracts numerical 

invariants from the l^ackgrouiid odd-dimensional closed manifolds. (Topo-
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logical invariants are not only numbers they can he algebraic structures 

(groups), compactness, connectedness, etc.) In 1989 Witten showed [12] how 

to calculate the partition function of non-abelian Chern Simons theory by 

using connections between three-manifolds and the closely associated with 

them vacuum ex])ectation values of Wilson loops. Witten used Hamiltonian 

quantization and exploited the method of surgery on three-manifolds.

Chern Simons theory has not a (luadratic kinetic term, but a term linear 

in momentum. Therefore tlie Hamiltonian is zero and this is a theory with 

no dynamical degrees of freedom. However, there are many physical situa­

tions in which Chern Simons theory is relevant. The degrees of freedom of 

Clunn Simons theory can be shown to be related to topology. A spectacular 

example of this was W itten’s work on knot theory unisng the non-abelian 

Chern Simons theory [12]. Even the abelian Chern Simons theory has in­

teresting and curious features. Adding it to the Maxwell term results in 

toi)ologically massive electrodynamics [13] which describes a new form of 

gauge held mass generation. It could also be coupled to other dynamical 

m atter fields (scalars or fermions) to describe anyons. It plays important 

role in gravity, e.g. r/ =  11, =  1 supergravity, where Chern-Simons terra

enters with a particular co-efficient dictated by the supersymmetry. 

Important for our further analysis is the fact that the Chern-Simons term 

has the same properties with respect to C, V and T  discrete symmetries as
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ta(' feniiioii mass term in 2+1 (limeiisions — invariant iinder charge conjuga- 

t .on and changing sign under parity transformation and time reversal. This 

loads to the idea to get the Chern Simons term as a dynamically generated 

t*'rm from the i)arity-breaking part of a theory with massive fermions we 

will investigate the aj)plication of this phenomenon to confinement a t finite 

tt'inperature in part  IV of the thesis.

4 Faddeev-Popov Ghosts

7h(‘ action of gauge field theories is invariant with respect to local gauge 

transformations. This huge synnnetry degenerates the Lagrangian [1] — the 

g-'ueralized v('locities cannot be unicjuely expressed in term s of the general­

ised momenta. To proceed, we will follow a method introduced by Faddeev 

a id  Po])ov [6]. This method is based on the development of a formal path  

iitegral approac-h which eliminates the infinite volume factors present in the 

pirtition function due to the fact th a t  we integrate over all gauge fileds 

e^en those, which are equivalent ( that is, related by a gauge transformation 

O', in other words, having the same action) with this resulting in overcount- 

iig. We have to somehow restrict the gauge freedom by passing from the 

s:>ace of all ])ossible gauge configurations to the moduli space of the gauge 

tieory, th a t  is, to the space of all i)ossible gauge configurations quotiened
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by the action of the group of gauge transforniations. The space of all possi­

ble' gauge configurations is partitioned nicely by the action of the group of 

gauge transforniations into a set of non-intersecting “strings” — the orbits 

of the group. Any two elements from a given orbit can be related together 

l)y the action of the group of gaug(> transforniations. Such elements belong 

to the same equivalence class and in this sense they do not contribute to the 

physics they only cause divergence of the i)artition function. A way to 

factor them out is to intersect each orbit by a hyperplane. This hyperplane, 

called a gauge fixing condition*, selects only one representative of each orbit 

of the group of gauge transforniations. The integration is then performed over 

this hyi)erplane. The final result must be strictly independent on the choice 

of this gauge fixing condition. Technically, it amounts to the appearance of 

a delta function of this gauge fixing condition and the Faddeev-Popov ghost 

determinant inside the j)ath integral. Strictly speaking, these arguments are 

for a finite- dimensional manifold with compact group of isometries, but they 

can easily be extended to the infinite-dimensional case with a non-compact 

group. However, when the grouj) of gauge transformations does not act 

freely, we run into difficulties: the intersection with a hyperplane would not 

be enough to guarantee that we select only one representative of each equiv­

alence class - the gauge fixing condition does not fix the gauge uniquely.

*We are ignoring the global difficulties related to gauge fixing.
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In t his case we have non-trivial stahihzers of the group of gauge transforma­

tions, f(n- example, gauge transformation of the j)otential by a constant 

function. After such gauge transformation each selected representative of 

tlu' group orbit will Ix' nux])pe(l into itself and thus the gauge freedom will 

be only partially restricted and still leading to divergence of the partition  

function. Therefore, ŵ e have to introduce an analogue of the gauge fixing  

condition this time for the ghosts them selves, not for the fields. This will 

result in the app(>aranc(' of an additional ghost-for-ghost determ inant with  

statistics opposite to that of the original ghosts. For higher dim ensional m an­

ifolds, it is likely to get (?ven mor(' ghost determ inants all of which with  

alternating statistics and each ghost “healing” the residual divergence left by 

th(‘ previous one. In princijjle, for theories with (luadratic action functionals, 

restriction of the gauge freedom by selection of only one representative of 

each equivah'nce class is eciuivalent to extraction of the zero m ode sector of 

the theory: the volume of the kernel of the action functional is exactly equal 

to the ghost determinant tim es the ghost for ghost determ inant, etc. The  

m ethod for extraction of the zero m ode sector of the theory was originally  

introduced by Schwarz [3] and it became an exrem ely powerful technique for 

calculation of the partition functions of theories with quadratic action func­

tionals. We will give details in one of the following sections and we shall be 

heavily using it in the remainder of the thesis. We would like to m ention here
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tliat Schwarz’s resolvent rnothod also breaks down when the cohomology of 

th(' space is not vanishing in this case the gauge fixing conditon does not 

fix the gauge unicpK'ly. We would like to refer the reader to [14] where the 

jjrobleni of non-vanishing cohomology groups is solved.

L('t us go l)ack to the cas(' when the gronj) of gauge transformations does not 

act freely. There are two ways of overcoming this difficulty. We can replace 

the group of all gauge transformation by the group of all gauge trasnsforma- 

tions arising from functions whi(-h are ecpial to 1 for any fixed point. We can 

tak(' this fixed j)oint at infinity for Euclidean path integrals and we will thus 

g('t a free action of the grouj). Alternatively, we can select a group-invariant 

version of the Faddeev Popov trick [1], This method is very powerful not 

only because it is able to si)ot the finer structure of the zero mode sector and 

overcome the i)roblem with the fn'e action of the group. It also works when 

the theory is quantized around a reducible classical solution (in that case 

tli(' Faddeev Popov procedure breaks down again). The problems associated 

with the reducible classical solutions are in the fact that the ghost propaga­

tor is ill-defined (the gauge is not fixed uniquely). The method of invariant 

integration is not dealing with intersection of the orbits with a hyperplane, 

but with the space of orbits itself. Exploiting the symmetry of the model we 

will reduce the int('gration from integration over the Riemannian manifold to 

integration over the space of the orbits. When doing this we have to include
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in t he path integral the volume of each orbit of the group with respect to  the 

Rieniannian metric of \I .  This is the subject of our next section.

5 M ethod of Invariant Integration

In this section we will review, following [3], the m ethod of reducing an inte­

gral of a function with some symmetries over some space to an integral over 

a lower-dimensional space.

Tak(' M to be a Riemannian manifold and G  a compact group. Let 

i r  =  ‘Ifiiote the space of orbits.

Using the Rieniannian metric, there are no problems in defining volume ele­

ments on i r  and M.

Let A(;r) b(> the volume of the orbit Gx  with respect to the Riemannian m et­

ric on M. A(.x) is G-invariant (since \ { gx)  =  A(.x) for (j e  G).  Therefore 

A(.t) is a function on 11’ =

Let f {x)  be G-invariant function on IT =

Hence:

f  f{x)(l4i =  f f {x)X{x)dv.  (20)
M M / ^

Define the linear operator Tx : Lie(G) — > Tj:(M), where Ta;(M) is the ta n ­

gent space to M at x and Lie(G) is the Lie algebra of the group G.
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Let Hr be the stabilizer of the group G at x, i.e.:

=  (21)

Therefore:

-W, =  L ie(H J =  ker(T.). (22)

Consider the linear operator 7^ :  ̂ T 2,(M).

The o])erator TjT^ is non-degenerate if, and only if, G acts with discrete sta­

bilizers. The operator TxTx is always non-degenerate. The quotient ^ /h ^ .  

honieoniorphic to the orbit Gx under the map g i—>■ gx for g £ G. The differ­

ential of this map at the identity coincides with the operator %■ Therefore:

yo\{Gx) =  klf't?;! =  vol(^9j^ )  det{TjTxy' '^. (23)

But

vol(G) =  j  Df, = /  D[.,] vol ( H J  =  v o l ( H J  v o l(G /^  ) .  (24)

«/n.
Take vol (G) to be normalized to 1.

Then the volume of the orbit of the group is:

We now assume tha t all stabilizers are conjugate and have the same volume 

vol(H). Then:

j f { x ) d f i .  =  I  f {x)  det {rjTxy^^ dv. (26)
M  ̂ ' uj^,
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W ith this fonniila w(' have restrict('(l the gauge freedom by picking up only 

one r('pr('sentativ(' from each orbit. Alternatively, we could have im posed  

a gauge fixing condition and inserted it in the action together w ith the 

Faddeen- Popov dc'terminant (this is the original Faddeev-Popov m ethod). 

This would l)ring a delta function of the gauge-fixing condition into the in­

tegrand and therefore would define a subspace in M. If this gauge-fixing  

condition is appropriat(', this subspace would intersect each orbit exactly  

once and therefore the integration would ])ick uj) one representative of each 

orbit. However, the m ethod of invariant integration is able, as we shall see 

later, t o si>ot the ghost for ghost determ inants (so far they are hidden in the 

volume of the stabilizer).

6 Schwarz’s Resolvent M ethod

We now turn to Schwarz’s m ethod for evaluation of the partition function  

of a theory with a degenerate cjuadratic (in the fields) action functional by 

extracting the zero m ode sector [1]. (Non-degenerate quadratic action func­

tionals ( / ,  S f )  are those, for which S f  =  0 if, and only if, /  =  0.) This 

m ethod is based on formal m anipulations with ill-defined quantities (infinite 

volumes of vector spaces), ending up with an expression in term s of determ i­

nants. It is therefore necessary to give m eaning to the determ inant of an op-
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orator acting in an in fin ite dimensional space (as an additional problem, this 

ojK'rator m ight as well have negative' eigenvahu'S which recjnire s])ecial sej)a- 

rate treatm ent). This is the topic o f our next section zeta-regularization 

of determinants -  , we now start w ith  the resolvent method.

Consider the following partition  function:

Here N  is a normalization factor, F is a real vector space, A is a positive 

c()U])ling constant and S{f)  is a real-valued degenerate (inadratic action func­

tional:

where T  is a self-adjoint ojjerator mapping F into itslef.

The inner-product (■, •) in F defines an orthogonal decomposition:

(27)
P

S{f) = if, T / ) , (28)

F =  k e r T ©  (ke rT )^ . (29)

Therefore the partition  function is given by:

Z(A) = i  I
k e rT  ©  (k e rT )

— vo l(ke rT ) 
N   ̂ ’

(ke rT )-L

(30)
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In this section we will evaluate vol(ker5'). Resolvent R{S)  for the action 

functional S{ f )  is the following chain of linear maps:

0 —^  r„  . . .  — > r ,  r ,  k e r 5 - k e r T  —  ̂ 0. (31)

The maps T/ are linear and invertible and this sequence is exact, i.e. the

imag(' of each maj) is ecjual to the kernel of the following one (next we will

deal with the case when the cohomology groups H*^^/?(5)j =  ker 

are not trivial).

This means th a t  kerT*. =  ImTj.+i. In i)articular; vol(kerTj.) =  

vo l(Im Tt+ i)  and vol(kerS) =  vol(kerT) =  vo l(In iT i) . We therefore need 

to evaluate vo l(Im T ,) .  Let T /  be the restriction of the oi)erator T̂  ̂ over 

the space of (kerTi,)-*-, tha t is, T /: (kerTj.)-*- — > ImT;,. It follows th a t

v o l( Im T ,)  =  IdetT 'J  v o l(k e rT ,)^  =  |d e t /T , |  v o l(k e rT ,)^ .  The orthogo­

nal decompositions F*. =  kerT*. © (kerT^^)^ imply th a t  vo^kerTjt)-'- =  

^ ' ' ' ( ^ ‘ V vol(kerT ,)-  Therefore

vol(IniT;.) =  |det'T^.| v o l( r t )  vol(kerT^.)"\ (32)

We thus get the recursion formula:

v o l(k e rT ,_ J  =  d e t / (T It J'^'^ v o l( r , )  v o l ( k e r T , ) - \  (33)

The partition  function is then given by:

Z W  =  4  n d e t ' ( T ; T . ) i l - ‘>‘- ‘ d e t / ( ^ T ) " ' ' ' .  (34)
k = l  ^
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If we now clioosc' the no rm aliza tion  N  as H roU r* .)] '  ' , th en  we will end
k = \

up  wdth:

Z(A) =  [ n < l r t ' ( T ; , T . , ) i l - " ‘- ' ] < l e t / ( - T ) " ' ’ . (35)
*■ =  1 ^

In the  next section we will no t only give m eaning  to  the  d e te rm in a n t  of an 

inhn ite-d im ensiona l opera to r ,  b u t  we will also show how to ex tra c t  num eri­

cal factors ou t of the  d e te rm inan t.

Now we would like to poin t o u t  the  s tru c tu re  of the  p ro d u c t  of de te rm in a n ts  

w ith  altt^rnating powers en te r ing  (35). Clearly, the  last d e te rm in a n t  in the  

p ro d u c t  is no th ing  else, b u t  the  Faddeev Popov ghost d e te rm in a n t  discussed 

earlier. It enters wilh a  positive power (opposite  to  the  power of the  d e te r ­

m in a n t  of the  oi>erator of the  theory). T he  second last d e te rm in a n t  in the  

l)roduc t is the  gh o s t- fo r-g h o s t  d e te rm inan t.  It has power opposite  to  the  

ghost de term inan t,  as the  ghost fo r  ghost fields serve the  sam e cause as the  

ghosts  tnemselves to  res tr ic t  residual gauge freedom  -- and  en te r  w ith  

“s ta t is t ic s” , o])posite to  the  “fields before th em ” . T h e  th ird  last d e te rm i­

n a n t  in  the p roduct is the  g hos t- fo r  gh o s t- fo r-g h o s t  d e te rm in a n t  and  so on. 

Physica l  theories involve the  differential ope ra to r  an d  thus  each m ap  T*, will 

also iiiv(‘lve a  differential o p e ra to r  (exterior derivative). I t  m eans t h a t  some 

of the  SI aces will be the  spaces of dift'erent p-forms and  so the  n u m b er  n  

will b e  l.mited by the  d im ension of the  manifold. We will i l lu s tra te  how th is
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method works in the last section of this part.

Consider now the case when the cohomology of the resolvent is not trivial. In 

this case Schwarz’s method fails it is for exact sequences only. We will de­

scribe the generalization of Schwarz’s method for manifolds with non-trivial 

homology [14], W(> have:

ker T , =  Im T,+, © [R{S]) (36)

and

vol(kerT ,) =  vol(Im T,+.) vol (37)

where n^[R{S))  is the space of “harmonic” A:-forms, associated with the 

resolvent, that is, these elements uj of F*., which are “closed” (T*,a; =  0) and 

“co-closed” (TJ. u; =  0). In the last section of this part the exact sequence will 

be the de Rhani complex, the operators T̂ . will be the exterior derivatives 

and the inverted commas will disap])ear. Equation (37) implies th a t we have 

to evaluate an additional factor: vol , which will appear in the

recursion fornmla (33). Everything else will be the same.

The projection map kerTt, —  ̂ iiifl^ces the

isomorphism:

A. : « ‘ (y?(S)) (38)
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Thoroforo:

Finally, tlio partition function will be given by:

2(A) =  n
i \  -1/2

(le t/(— t )  
V  7 T  '

Here we have already nornializt'd ])y:

N  = U
voi(r,)

■vo\ ( h ^[R{S))

(39)

Thus the recursion n'lation (33) gets modified:

vol(kerT„) =  -̂----- vol f e ( i ? ( 5 ) ) ) .
^  ^  \ , / 2  v n  Vp i - T .  . ' I  V ‘^ ' ^ v  ^  V /

(40)

(41)

(42)

7 Z eta-regu larization  o f D eterm inants

Assume that we have a non-negative operator (^{x, Ax)  > 0, acting

in some infinite-dimensional space. Assume also tha t this operator is self- 

adjoint with a discrete spectrum. The determinant of this operator is given 

by the product of its eigenvalues Â. (A; =  1 , . . . ,  oo; >  0, ^k):

(let .-1 =  J | (43)

Therefore



Recall that:

k  * (45 )

Thus:

(lot -4 =  exp — (46)

T he  function

oo

c(.5,-4 ) = i : v (47 )

is the  R ieniann zeta  function for the  ope ra to r  A. A,-, in (47) are the  eigen­

values all of  which strictly positive  - of the  o p e ra to r  A. It is obvious, 

t h a t  the  zero modes of the  o p e ra to r  should be p rom p tly  d iscarded  a t  first. It 

is anoth(>r m a t te r  w hat happens  if some of the  eigenvalues are negative (ŵ e 

will deal w ith  th is  case in a  while).

So, the  d e te rm in an t  of the  elliptic ope ra to r  .4 is given by;

Note th a t  if A is elliptic oi)erator of order n  on m -d im ensiona l com pac t  

manifold, the  (^-function of A converges for values of s g rea te r  th a n  m / n .  

We can analy tica lly  continue C('‘̂ i-^) [15] into a  m erom orph ic  function  of .s 

a t  s =  0 ( the only s ingularity  of the  (^-function is a sim ple pole a t  s =  

1). T hus  we will end uj) w ith  a  finite expression for the  infinite (formally

d e t .4  = (4 8 )
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(livpi'geiit) product of the eigenvalues of the operator .4. This technique is 

called zeta regularization of deterniinants. From now on we will assume th a t  

the determ inants of all (’lliptic oi)erators are regularized in this way.

An alternative definition of the Rieniannian (-function is:

OO ^  OO
1 OO „  ̂ r

a » )  =  pTT Z  / ( * ■ '  T r e - (49)
V '  A - = l  Q  V ’ )  •()

where F(5') is the G am m a function:

OO

r{s) = I  (-* dt. (50)
0

This altoniative (lefiiiition is based on the formula:

1

'  ’ ^ b

W itten [12] first showed how to take the imaginary unit i out of the determ i­

nant. Later, in [IG], this prec('dure was expanded for arb itrary  complex inmi- 

hers and the case when some of the eigenvalues of the inhnite dimensional 

ojjerator ,4 are negative is also addressed (from now on we will assume th a t  

all zero modes of all operators are discarded somehow before we write down 

the expression for a C-regularized determinant). Let us briefly outline this 

procedure.

As the order of the eigenvalues of the operator A  is of no im portance when 

w'e have to nniltiply them all to calculate the determinant, we can always 

asstime tha t first come the j)ositive ones, then the negative ones. It means

.3 1



tha t for our puri)oses wo ran write any oi)erator A  in the form:

.4 = (52)
V -I- ■

where .4̂  ̂ : F± — > F± and F± is the si)ace si)anned by eigenvectors of .4 

(■orresi)on(Hug to positive (negative) ('igenvahies.

The oi)('rator |.4|, formed by .4, has positive eigenvahies only:

1-41
( A

(53)
V - - - i -  ■

The C-regularization techni(iue makes sense for the operator |,4| only:

det|.4 | =  (54)

where

C(.s, |.4|) =  Q{s,A, )  + a s , - A _ ) .  (55)

The eta  function of the operator .4 is [16]:

>/(«..4) =  =  C(S,^+) -  C ( s . (56)
k =  l

The '//-function can be analytically continued in a similar way so th a t 77(0 ) is 

well-defined. This number formally represents the number of positive eigen­

values less the number of negative ones.

For any real positive number a. we have [16]:

det(o'.4) =  (57)
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For any coniplox nmnbcr l3 — \l3\e'^ w<‘ have [16];

(let(/14) =  (let (/i.4+) dot ( ( - /y ) ( - .4 _ ) )

^  , . T [ ( f  T ' )C ( 'M- - ' I )  ±  |^ |C(0, .4)

E(jiiipp('d more or less with everything we need, we now proceed to

8 Abelian Duality

We w'ill first calculate the partition  function of free Maxwell theory:

Z,(Ai) =  I  X)̂ 4 f.-■'i v/S f’"" =  J  ^ J d i AA* d , A  

n'\i\ i)  n ‘ { M )

=  j  p - A i  ( / i . t )  _  y  g - A i  ( A ,  d j d [ / l >

J 2 ‘ ( A / )  n' {M)

The integral is over the space of all one-forms We can decompose the

space of all one-forms as a direct sum of the kernel of the operator entering 

the partition function and its orthogonal complement:

12 (̂M) =  kerrfi © (kerfi?,)”̂ . (60)

Therefore

Z , { \ )  =  vol(kerdi) J e
(ker rfi)-*-

=  vol (kerri,) d e t / f - d | (61)
V 7T /
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The partition function is thus an ill-defined quantity — the determinant and 

the volume factor are infinite. Our calculations will be formal. With a zeta- 

r('gularization technique we can make the determinant finite. We can also 

asssume that an ap]>ropriate normalization is chosen in such way tha t the 

divergency of the volume factor is absorbed. This will make the partition 

function finite.

Note that vol(kerrfi) is nothing else but the Faddeev Popov ghost determi­

nant times the ghost for ghost determinant. To see that, let us calculate 

the sanu' partition function using the method of invariant integration: we 

will exploit the gauge symmetry of tlu; theory to restrict the integration over 

to integration over a lower-dimensional space the space of the or­

bits of the group of gauge transformation.

Th(' stabilizer of the group of gauge transformations A  — > A  +  c/qQ°(M) 

consists of those elements of Q^(M) for which =  0, tha t is, the

constant functions. In order to pick one representative of each equivalence 

class [.4], we impose a gauge condition, that is, we intersect the space of the 

orbits of the group of gauge transformations in the space of all one-forms by 

a hyperplane defined by those .4’s, for which = 0, i.e. d\A =  0. The 

integration is then performed over this hyperplane. We thus get:

Z,{K)  =  (62)
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Th(' stabilizer of the group of gauge traiisforiiiatioiis consists of the constant 

functions, th a t  is, the stal)ilizer is the real line. The real line can be canon­

ically identified with the zeroth de Rhani cohomology group H°„(M). The 

])rojection map kerri^ — > Hdn(M) induces the isomorphism [14];

^ H:'r(M) (63)

where is the space of harmonic f/-forms. Therefore:

v o l ( ? ^ " ( M ) )  =  | d e t 0 „ | - ‘ vo1 ( h L ( M ) ) .  (G4)

So the volume of the stabilizer is:

vol (kerrio) =  (let vol j . (65)

The volume of the orbit of the group is proportional to the ghost for- ghost 

determ inant det {4>l4>o) extracts the zero modes from the Faddeev-Popov 

ghost determ inant det((i|fij). The ghost-for-ghost determ inant is ecjual to 

the inverse of the volume of the manifold [14]:

det((/)J(/)o)“ ' =  vol(M). (66)

Now we will extract the scaling factor ^  from the functional determinant. 

Following [16] we can write:



Thus the partition function of Maxwell theory is given by:

VTry vol(-H”(M)) det/(rilrfi)‘ '̂

We now use the fact tha t on odd-dimensional and two-dimensional manifolds 

th('re are no poles in the C. function near s =  0. This can be seen using 

Seeley’s formula [15] for the (,-function of some Laplace-type operator L  on 

a (/-dimensional manifold without a boundary:

r(s) ^0 . s - n -  f r(s-)

where are tlu' heat kernel co-efficients and J{s)  is analytic. Then 

(((), =  —dimH[J,((M). Using the forunila [16]:

9 = 0
c(» .  <i'A,) =  ( - 1 ) "  ( ™ )

we finally get:

Z.(A.)  =  d e t ' ( d I d . ) - ' = .  (71)
v o i

Consider now the partition function of free scalar theory:

Z„(Ao) =  y  ^ - A o / r f - ' x v s  g - A o / r f o ¥ > A * d o ¥ >

S20(M) n°{ M)

=  I  T>if e -^0 (do¥’,rfo¥’> _  V(fi e-^o{>P,dldg<p) ^

UO{ M)  n»'(A/)

( 72 )
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VVe now deconipo.sp the space of all zero-fornis in a similar way:

j r (A / )  =  kerfio© (kerr/o)^- (73)

W ith this (leconi]K)sition the partition function becomes:

Z„(A„) =  vol(kerf/„) J  V ( p  g
(k e r  do)-^

vol(kerrio) det'(djrfg)
7T /

 ̂ xidimHO„(M) v o 1 ( - H 0 ( M ) )  

n )  vol(M)'
=  i i V  "  d e t ' i 4 d , r r .  (74)

Therefore:

z M  = aI' ".(«) d c ' (75)
vol(M)

The i)roduct of the partition functions of the theories is:

^ o(Ao)Z .(A J =  d e t '( d l r i , ) - ' /^  (76)

On the other hand we have:

Z,(A,) =  vol(kerri,) d e t ' { d \ d X ' ' '  d e t ' (77)

The Hodge star operator is invertible and on three-dimensional manifolds 

we have: det'{d\d^)^'^ = d e t ' { * d i ) .  (For these operators the multiplicative 

anomaly vanishes.) Thus (modulo a phase factor):

Z ,(A J  =  d e t ' ( f i j f 0 ” ‘ '̂
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Tho last two factors in this formula are exactly the partition function of 

Cli('ni Simons th('ory Zrs-  The partition function of Chern-Simons theory 

is a topological invariant (modulo a i)hase factor [16]), given by the Ray- 

Sing('r torsion of the manifold [3]:

Z , , { X r s )  =  <^^(M). (79)

Therefore:

^ Z c s i ^ c s )

Dividing (80) by (76) we get:

( 81)

R <— > 1 /R  duality means that if the coui)ling constants (overall scaling 

fac:tors) are related as Aq =  Â  ̂ then both partition functions will depend 

on the coupling constants in the same way (one has to be careful, because 

the coupling constants are not dimensionless). The ratio of the partition 

functions is a topological invariant the Ray-Singer torsion of the manifold. 

Therefore the two theories are equivalent. For manifolds for which the Ray- 

Singer torsion is one (S’̂ for instance), the partition functions are equal. 

Note tha t both scalar field theory and Maxwell theory are non-topological in 

three dimensions.
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Abelian  D uality

ZAK)
^o(Ao)

( 82 )

is strongor th a n  R <— > 1/R  dua lity

(83)

in the  sense th a t  if the coupling constan ts  are no t re la ted  as R  i— v 1 /R  , 

there  is still a  rela tion the  ra t io  of the  p a rt i t ion  functions is given by 

the  square  of the  p a r t i t io n  function of C hern  Simons theo ry  with coupling 

constan t  \ c s  =  \/A,A„, th a t  is, by the  p a rt i t ion  function of U ( l )  x  U ( l )  

Chern  Simons theory  w ith  purely  off-diagonal coupling (B F  theory).

We can show the  Abelian  D uality  by considering the  following resolvent gen­

era ted  by the de R ham  complex:

Here, for s im plic ity  only, we have assum ed th a t  the  first cohomology group  

of the  mainfold is trivial and  thus  we have:

If we deno te  by the res tr ic tion  of do over (kerfio)"*", then  the  m ap

0 ^  H  Q“(M) h u d , kerdi =  kerS"! 0. (84)

vo l(kerd i)  =  vol(Imdo)- (85)

f/o : (kerrfo) _L Im do ( 86)
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iinpli('s:

v()l(Iiiir/o) =  dot’{(lid J ' - v o l ( { k v r d o )  ) =  d o t ' — - ^ . ( 8 7 )
''  ̂ vol(kerao)

\V(‘ tlius get:

voKkei-rf.l =  v o l ( S ! » ( M l) d r f ( d X ) '«  (88)

Wv  hav(' already seen that

vol(kerf/„) =  d e t v o l  j . (89)

Therefore the i)artitiou function of Maxwell theory is given by the same 

exi)ression as (71).

To show that, the Abelian I3iiality is a property of three dimensions only, 

consider again the de Rham complex. Due to Hodge duality, =

*d„*.  Therefore det'fei^ ,d ,) =  det'(c/^ii ) and for even-dimensionalP \  in —p —1 m  —p —1 /  \  p  p /

manifolds all determinants involving the differential operator cancel each 

other. In higher odd dimensions, it is j)ossible to find a relation between 

scalar field theory and Maxwell theory, bu t there will be more determ inants 

coming in from the de Rham complex, thus non-physical theories should also 

be involved.

R •(— 1/R duality can be shown in a different manner - by a duality 

transformation. We will illustrate this by considering the following partition
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fiiiictioii:

Z =  j v A  ' =  j v A  (90)
kerrii ker f/i

Ove r the spacc' of tlu' kernel of the oj)erator di we can locally write .4 =  c/o^. 

Therefore Z  beconu's the partition function of free scalar field theory:

Z =  I  p/f/do<J>A,doK (91)

nO{M)

Alternatively, we can rei)lace the integral over the kernel of the operator di 

by an integral over Q‘(^ /) and include a Lagrange m ultiplier B 6  

to keep track of the fact that .4 is flat:

Z  =  J 'DA =  J  V A ' D B  (92)
ker(/] n'(A/)

If we integrate over .4 and absorb the resulting determ inant det (R I )  in the

norm alization, we end up with the partition function of M axwell theory with

coupling constant 1/i?:

Z =  I V D  (93)
S 2 ' { M )

The same can be seen if we make a change in the variables in (92) - dual- 

izat ion - -- A  — > .4' =  .4 +  * d^B.

W ith this dualization the partition function becomes:

Z =  I V A  y  (94)
n ‘(A/) Q ' { M )
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The iiitf'gral cm'r ,4 is Gaussian and can l)e absorliod in the normalization 

factor. The remaining integral is the partition function of Maxwell theory.

Let us now include external currents .1  ̂ in Maxwell theory and j  in scalar 

fif'ld theory:

=  y  =  j  ^ - { A ,  d \ d ^ A)  +  q { J , A ) ^

n>(A/) n̂ {M)

=  J  T>ip =  J  V i p  e “ <‘̂ ’'̂ o'̂ oV’) + eO.

n U ( A / )  S 2 « ( A / )

(95)

w'her(' q and e are sonu' charges.

Now extract perfect scpiares and perform the Gaussian integration to end up 

with:

ZoiJ) = Z„{J)  rRs(M) e x p ( e ( i ,  j ) )  e x p ( q{ J ,  (96)

If the charges and the currents are related as:

■i = (97)

then the Abelian duality will go through on the level of interactions with 

external currents.

Alternatively, if the condition for the cancelation of the terms, involving the 

currents, is not satisfied, then the ratio of the partition  functions of scalar
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tlieory, iiitp iacting with external current j ,  and M axwell theory, inter­

acting with ext('rnal current -/, would he given by the j)artition function of 

1 ( 1 )  X U( l )  Chern Simons theory interacting with some current k,  specified  

by y, .7 and th(' corresponding propagators of these two theories.

Using the definition of correlation function (as a functional derivative of the 

im rtition function with respect to the external current), we can easily relate 

the correlation functions of scalar field theory. M axwell theory and C hern- 

Sim ons theory.

We have recently shown [17] (see part II of the thesis) that the partition  

functions of Maxw(>ll Chern Simons theory and the self-dual m odel difler by 

th(' partition function of Chern Simons theory (thus the two theories being  

e(juivalent). Therefore, the ratio of the partition functions of scalar field the­

ory and Maxwell theory is equal (m odulo phase am biguities) to the square of 

the ratio of the partition functions of Maxwell C hern-Sim ons theory and the 

self-dual m odel. We can relate the correlation functions of these five m odels 

as well.

Finally we would like to m ention that Chern Simons theory can be dy­

nam ically generated from the parity-breaking part of a theory with m assive 

ferniions [18] as gauge-invariant regularization of the m assless fermionic

determ inant introduces parity anom aly given by the Chern Simons theory  

(see part IV of the thesis). In this sense, our result (81) im plies that a the-
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ory witli massive fermioiis (iuteracting with external currents) together with 

massless scalar helds (i)Ossii)ly iteracting with external currents) add up to 

Maxwell theory (with i)ossible interaction with external currents). Thus we 

hav(' a form of bosonization in three dimensions.

After this work was comi)l('ted, our attention was kindly drawn by A. Schwarz 

to [19] where the ratio (where m is the dimension of the m an­

ifold) is expressed as the Ray-Singer torsion. The difference between our 

work and [19] is in th(' following. In [19], the initial considerations are for 

t he case when 1 here an ' no z(>ro modes of the Laplace operators Â , (acting 

on k-forms). When thes(' zero modes are absent, it is rather obvious tha t the 

(luotient is the Hay Singer torsion of the manifold. The case of

interest ajjpears when tlu’se zero modes are no longer neglected. In [19] a 

very deep analysis is givc'u for this case: the theory of the measure of the path 

integrals involved is (h'veloped and certain general results are given in this 

direction. In our paper we have kept these zero modes all along and we have 

shown th a t even with them the quotient {ZJZ^ in our case) is still given by 

the Ray-Singer torsion. In addition we have studied the scaling dependence 

of the models and we have shown the relation to R <— > 1/R duality. We 

have also given treatm ent on the physically relevant case -  interaction with 

external currents and correlation functions.

44



II. Equivalence of the Self-D ual M odel and 

M axw ell-C hern-Sim ons Theory on Arbitrary

Manifolds

9 Introduction

In threo dim ensions it is possible to add a gauge-invariant C liern-Sim ons term  

to  tlie Maxwell gauge field action [13], [20], [21], The resulting Maxwell 

Chern Simons theory has been analyzed com pletely and in [13] the entire 

subject of topologically massive three dim ensional gauge theories has been 

set up. Further Maxwell Chern Simons theory has been used as an ef­

fective theory for different models, such as fractional flail effect and high- 

tem peratu re  superconductivity  [22], [23].

The Self Dual Model was first studied in detail by Deser et al. [13] and it 

was shown in [24] th a t the Self Dual Model is ec|uivalent, modulo global dif­

ferences, to  the Maxwell Chern- Simons theory.

Subsequently, this equivalence has been studied by many au thors using vari­

ety of teclmiciues: in the context of bosonisation and a t the quantum  level (us­

ing Legendre transform ation) in the al)elian and non-abelian case in [25], [26]; 

by constrain t analysis in [27] and [28]; by means of B a ta lin -F rad k in -T y u tin  

formalism [29]; in the context of duality [30], [31], [32] and m any others.
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We address the e(iiiival('iic(' with differential geometric tools. It allows us to 

rev('al global features of these models which, so far, have been overlooked. 

We pay |>articular attention to the zero modes present in the problem. These 

zero modes contain topological information regarding the manifold. By ne­

glecting them, i.e. absorbing the divergence due to the zero modes in the 

normalization constant, this information is lost. Schwarz’s method of invari­

ant integration [3], allows us to formally consider a key part  of the zero mode 

sector from the divergent term. This is enough, as we show, to get topologi­

cal information regarding the manifold.

We show tha t,  subject to choice of api)roi)riat(' normalizations, the ratio  of 

the parti tion  functions of the two theories in the presence of currents is given, 

modulo a ])liase factor, by the partition function of abelian Chern-Sim ons 

theory with currents. This phase factor captures the geometrical properties 

of the manifold. The partition function of Chern-Sirnons theory contains a 

phase factor which caj^tures the topological properties of the currents (their 

linking number) and niodido this phase factor it is a topological invariant 

(the Ray Singer torsion of the manifold). Therefore the Self Dual Model 

and Maxwell -Chern Simons theory are eciuivalent to within a phase fac­

tor which contains geometrical information about the manifold and another 

phase factor which contains information about the topological properties of 

the currents.
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10 Self-D ual M odel

The Self Dual M odel was introduced in [33] as a “square root” of the Proca  

(Hiuatiou for a m assive antisym m etric tensor field. Proca equation is;

d"F„^ -  tn^A^ =  i), (98)

where' =  <9̂ .4̂  — 5^.4,,. This ecjuation implies the Lorentz condition

d'‘A „ = { ) ,  (99)

from w'hich only two of the three com ponents of .4 survive.

In [33] a “scjuare root” is taken from Proca’s e(iuation in order to find a 

model in which not two, hut only one m ode is propagated. A self-duality  

condition is introduced:

A, = —  ( 100)
2rn  ̂ ’

This condition im plies Proca equation together with the Lorentz condition  

and is generated as an equation of m otion by the following Lagrangian:

2
111 ‘171

£  =  -  —  .4, . 4'‘ +  -  ( 101)

The term “self duality” is related only to the equations of m otion o f the 

model.
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11 M axw ell-C hern-Sim ons Theory

In throe (Unionsions we can add a metric independent scalar, the C hern- 

Sim ons t('rm, to Maxwell theory [13]. The Chern Sim ons term, violating V  

and T  discrete sym m etiies, serves as a topological m ass term for the U( l )  

gauge h('ld .4. In rc'sult the niassless spinless M axwell excitation acquires 

m ass and spin 1. It is the toi)ological non-triviality of the Chern -Simons 

term (invariant under sm all gauge transformations and changed by a discrete 

quantity the winding number of the transformation under large gauge 

transform ations) that generates masses for the gauge fields. The M axw ell- 

Ch('rn Simons Lagrangian

^ ^  ( 102 ) 

imi)lies equations of m otion

=  0, (103)

which describe the propagation of a single degree of freedom with m ass ke' .̂ 

The fact that here we also have a single degree of freedom m ight serve as a 

first naive indication of possible equivalence with the self-dual model.

That is an alternative way of providing m assless gauge fields w ith m asses and 

the theories, d('scribing this j^henomenon, are called topologically m assive  

gauge theories. This mechanism has nothing in comm on with the standard
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Higgs inechaiiisiii. We can even consider Maxwell Cliern Simons theory  in 

t he framework of the spontaneous sym m etry breaking mechanism. This will 

result in Maxwell Chern Simons Higgs theory w ith two independently  gen- 

('rated masses for the gauge fields (see [34] and the references therein):

Ajn'i
1 +  — 7^  ± 1

m i''M C S

( 1 04 )
2 h

where lilacs =  sta ted  above) is the topological mass and =  2e^v^

is the sciuare of the Higgs mass (v is the non-zero vacuum  expectation value 

of the Higgs field). Both ?/i± are })hysical mass poles of the p ropagator of 

Maxwell Chern Simons Higgs theory. In the broken phase we have one real 

massive scalar degree of freedom (the Higgs field) and two massive gauge 

degrees of freedom [34].

12 M ultiplicative Anom aly

Basic fornnilae from the linear algebra fail when we have operators acting 

in infinite dim ensional spaces. Of course, the m ost difficult question is w hat 

the  determ inant of such operator is. We hope th a t we already have a sa tis­

factory answer -- the (-regularised expression. The trace of such operators 

also causes problem s, as it is an infinite sum. Let us accept the following
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I

rof2;ularizat,i()ii (l('i)('ii<loiit convontion;

OO

tr .4  =  ^  A, =  C ( - l ,  -4). (105)
A  =  1

However, for such type of opera to rs  two basic foniiu lae  from the  finite- 

ffmeiisioiial case in general no longer hold:

i r { A  + B )  7  ̂ t r .4  +  t r B ,  (106)

de t( .4 i?)  /  ( d e t .4 ) (d e t5 ) .  (107)

In th(' expression for the  de te rn iinan ts  the  opera to rs  are  w ith  d iscarded  zero 

n.odes.

The ])r()perty t)-|n .4 =  h) t r .4  continues to hold in the  infinite d im ensional 

case.

Let us now (U'fine the mulltiplicative anomaly:

F { A , D )  =  In (let ( ,4 5 )  — ln d e t .4  — I n d e t B

=  C '(0,-4) +  C'(0, 5 ) - C ' ( 0 ,  .4B). (108)

T he (}uantity F { A , B )  need no t be zero for in fin ite-d im ensional opera to rs . 

\^e  will i l lu s tra te  the  confusion caused by the  m ultip lica tive  anom aly  in a 

very simple m odel of ca lcu la ting  the  functional d e te rm in a n t  of some in fin ite -  

d imensional opera to r.  We will show th a t  there  are two recipes, b o th  of which 

seem absolutely  acceptable, b u t  leading to  different answers. Dowker [35]
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pjses the following problem. Consider the classical action:

S„ = ^ fi,7;, (109)

where .4, =  and

S, = I  I ' ^ A ^ d x ,  ( 110)

where =
/

and .4 =
V</’2

/  V'  ̂ +  m'i

\  0 V'̂  +  7/i?
Even though — Si,, there are two different answers:

Z„ =  j  V<l),Vct>, =  (det.4,) (det.4,) (111)

Z, =  I  e~̂ >' = det(.4,.4,). (112)

Tlu' answers are different because of the nniltiplicative anomaly.

According to Dowker [35], the natural and usual way is to consider Z„. In a

reply to this choice, Elizalde et al. [36] give substantial arguments in favour

of Zi, that is, to take the algebraic determinant first and then the functional

determinant. We note that the nmltiplicative anomaly has been tested only

in terms of a C-i'^-g'ili^rization set up. It is obvious tha t all resluts depend

on the regularization scheme. If we consider the infinite dimensional block 
/  M  N \

matrix .4 =  it is true that in general det .4 ^  (det M )  (det
\ P  Q )

Q) — (detA^) (de tP ) .  The C-rcgularization technique justifies the formula



ni ()\
(l('t =  (d('t .^/) However, a different regularization will not

V 0 Q )
necesarilly give the ,sani(' answer. In this sense, taking algebraic determ inant 

and taking functional d('t('rniinant are not necessarily connnutative actions. 

Thus Z„ seem s to be the more natural choice. However, even though the 

resluts are different, the i)hysics is most likely the same.

13 Equivalence of the Self-D ual M odel and 

M axwell— C hern-Sim ons Theory on Ar­

bitrary M anifolds

We will consider a general Riem annian manifold.

The Self-Dual M odel is given by the action:

=  J { f j ' ‘ + ^ , . . r d \n (p x  = ( / , ( i  +  * r f j / ) ,  (113)
M

w'liere dp is the maj) from the space of all p-forms to the space of {p +  1)-

fbrnis, i.e. d„ : TF(M) — > 1F+^(M), and * is the Hodge star operator:

* : — > 52’̂”“^'(M) {'in =  diniM  =  3). The Hodge star operator

exi>licitly depends on the metric of the m anifold M.

Th(  ̂ })artition function of the m odel is:

Z s D  =  I  D /  (114)
n*(M)
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Th( ()])orator I  +  * r/, is solf-adjoiiit.

Nov/ w(' will ex trac t  tli(' zero-niodc' dependence from the  action functional. 

To ilo so, decompose Si!'(M):

iJ ' (M) = k e r ( I  +  *r i , )©ker(H  +  * r / J ^ .  (115)

Ther('fore;

Z s D  =  vol ^ke r( I  +  * fi, d e t ' +  * (i,)^ '  . ( H 6 )

W it te n  has shown [12] how to  deal w ith  i  in d e t ' ( iT )  for some o j)erator T,

using C-regnlarization tf'chniciue. He found th a t  i  leads to  a phase factor, 

dei)ending on the  //-function of the  ope ra to r  T  and  explicitly  involving the  

m etric  of the  manifold. For our  case we have;

det/(y:(Il +  det '(H  +  * (117)

Finally, the  pa rt i t ion  function of the  Self-Dual Model is:

vo l (k e r ( I  +  *rf,)) d e t / ( I  +  * o ! 0 - ' / ^  (118)

T h e  action of Maxwell C hern Simons T heory  is:

S u e s  =  +  =  (.4, +  (A, (119)
M

w here 4  : l^'^+^M) — > Q^(M).

In this case the  topological invariance is explicitly v io la ted  by the  Maxwell
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tenn .

On thro(' diniensioual manifolds we have: d\ =  * rf, * . Therefore we may 

w'rite th(' partition  function as:

Z„cs = I  (120)
S i > ( M )

The opc'rator *(l̂  +  is self-adjoint.

We i)roceed to exjilicitly calculate the partition  function. T he theory has a 

gauge invariance under gauge transform ations — > .4,, — d^X , i.e.:

. 4 — ^.4 + rioQ‘’(M). (121)

To proc(H'd w(' pick u]> on(' representative of each equivalence class [,4], where

[A] =  {,4 +  (Iq 17‘’(M )}. To do this we impose the gauge condition d ,̂A  ̂ =  0,

th a t is dl A =  0.

This ensures th a t the space of orbits of the gauge group in the space of all 

one-forms is orthogonal to the sj)ace of those .4’s, for which dlA  =  0 and so 

we w'ill pick up only one representative of each orbit.

Then the  operator plays the role of Tx of the Section 5, i.e. the stabilizer 

consists of those elements of J2°(M), for which doQ^{M) =  0 (the constant 

functions). Hence: H = IR.

Therefore:

Z„cs =  I  P-4 + d e t '( 4 r i J ^ /^  (122)
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Tli(' oix'iator in th(' ('xixMiont has zoro-niodes.

L('t .4 G i.e. =t=fi,.4 +  * d ,  * d ^ A  =  0. There are two

situations to consider. We can take =  0, that is; ,4 E ker(*ri,), or

.4 ^ ker(*f/i), i.e. *r/,.4 /  0 , hut *rii.4 =  — { * d t ) ' ^ A .  In the second

case * di  has inverse Therefore: .4 =  — * d ^ A ,  which means that

(I +  * fij.4  =: 0, i.e. .4 e  ker (I +  * rii).

By definition ker(*r/i) fl ker(]I +  *di )  =  0.

It is (>asy to see that ker(*cij and ker(I +  *<ii) are orthogonah 

Let /  G ker( l  +  * r/,) and g £  ker(*d,).

( / ,  f l )  = {.f, + =  (,f, i^ + * d , ) g )  =  { { l  + *d , ) f ,  g)  =  0 ,

since (I +  +f/i) is self adjoint and /  G ker(I +  * d i ) .

So, ker(=i' di )  is the orthogonal complement of ker(I  +  * d i ) .

Therefore we can write:

k e r  (*d^ +  {*d. i Y^  =  ker(*di) 0  ker (I +  * (123)

and

vol ^ker (*rfi +  =  vol ^ker(* ( i j j  vol ^ker(I +  * d j j .  (124)

On the other hand, since j V u )  =  vol(kerT) det'(T)"^^^, the parti­

tion function is given by:

e - T ' / ( o - , / x-i /2
Z m c s  =     de t/((ij(ij‘/ ' det'(*(i, +  (*(ii)')
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=  g - f  >)(o, *rf.+(.dO' )̂ vol(ker (*rij) vol (ker(I  +  * f i j )

' . (125)

Let us now consider (let'^*r/i +  ' •

In tli(' infinitc'-diniensional case we have to take into account the nuiltiplica- 

tiv(' anomaly, i.('. the fact that tlu' determinant of a product of operators is 

not always e(iual to the product of the determinants of the operators.

For our case we will show that:

dct '[*d,  + {*d , y )  =  det'(*ri,) d e t ' ( I  + * d , ) ,  (126)

where: 0 =  (( 0̂, +  (*fii)")_j -  C(o, -(*fA)_) -  C(o, - ( I  + *rfi)_).

The meaning of C(0, -4_) will become clear from the context of the proof. 

Take .4 to be some operator without zero-rnodes. We saw that we can write .4
( A,  \ ( A, \

in the form: .4 = , l-4| = , where v4± : P±
I A- ) \ 4-y

and r±  is the space s])ann('d by eigenvectors of A corresponding to positive 

(negative) eigenvalues. The oi)erator |.4| has positive eigenvalues only.

Let .4 =  *f/i, B = I  +  * f/i.

For the determinants:

oo oo

det|.4| =  n i A n | ,  det|B | =  n i l  +  An| (127)
n = l  n —1

we write formal expressions which are always to be C-regularized.
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Tho nniltiplicativo anomaly is:

( I

Th
d

C { S , \ A \ ) + C { S , \ B \ ) - C { s , \ m )

C,{s, .4+) +  +  (■(•&', B+) +  C(*S —B . )

( 128)

For all operators entering this expression we can apply the analysis of [15]. 

Tliis analysis holds for the case of a smooth and compact manifold. The

Seeley De Witt fornuila:

r(,s) E  — +  -Hs)^0 'S + n -  f
(129)

where A„ are the lieat-k('rnel co-efficients, D  is the dimension of the manifold 

and .7(.s*) is some analytic function, leads to the fact that the multiplicative 

anomaly will vanish wht'n D = 2 or D  is odd.

det'^*f/i +  =  (—1)'’̂ ’̂’ det'(*rfi) det'(I +  =i=fii), (130)

where: '0 =  (  (o, -  (*rii + {*(hY) -  c (o ,-(* o fi)-)  - C ( o , - ( I  +*rfi)_).  

Note that the appearance of the phase factor is not due to the multiplicative 

anomaly. We have used the fact that the multiplicative anomaly vanishes for 

the moduli of the operators. However, we are forced to include some phase 

ambiguity which is related to the “negative” parts of the oj)erators — other­

wise we would not be able to define a zeta-function regularized expressions



for ope ra to rs  which Imvc negative eigenvahies*.

It  follows t h a t  th(' pa r t i t i on  function of Maxwell Chern  Simons theory can 

bo writt(>n as:

Z m c s  =  ----------- (let/(*fii)-*/■' d e t / ( I  +

=  v o l (k e r (* r i j )  vol (ker ( I  +  * r / j )

det'(>K(/,)-‘/  ̂ d e t ' ( I  +  *f i , ) - ‘/ ^  (131)

T h e  ^-ope ra tor  is invertible, hence; ker(*f/i) =  kerrij.

As in the previous pa r t  of the  thesis, the  stabi lizer  is the  same ( the cons tan t  

func t ions ) . Therefore':

^ ^ t de t ' (*d .) - ' /=  d e t ' ( I  +  *o!.)-‘/'^
v o l (^ ' J (M ) )  de t(0 j0o)v^

=  *< h +i *< h f )+ i f> m  i + * i h )  vot( k e r ( * ( j j )  ^  ^
det / (*f/ , ) ‘/-̂   ̂ '

From  this expression follows t h a t  the  rat io  of  the  pa r t i t ion  funct ions of 

Maxw^ell Chern Simons theory  and  the  Se lf-Dual  Model  is equal,  m odu lo  

phase  factor,  to the  pa r t i t i on  function of  pure abe l ian C he rn -S im ons  theory.  

Thus :

Z m c s

=  e -  Ze.s , (133)
■‘ S D

*For other examples of phase ambiguities associated with C-regularised determinants 

see for instance [IG] and [37].
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where

+  ^7/(0, *fii) +  ^7/(0, I  +  =Kf/i) -  ^?/(o, *d, + {*d,yy (134)

The partition function of abelian Chern-Simons theory is equal [3], modulo 

a phase factor [16], to the s(iuare root of the Ray Singer torsion [2] which is 

a topological invariant of the manifold given by [14]:

,=0

This fornuila refers for the general case of non-trivial homology.

So the absolute vahu' of ratio of the partition functions of Maxwell-Chern 

Simons theory and the Self Dual Model is independent of the metric of the 

manifold and conseciuently these two theories are ecjuivalent to within a phase 

factor on arbitrary manifolds.

Consider now the partition function of Maxwell -Chern-Simons theory with 

an ext('rnal source J coupled to the fields .4:

(135)

M C S ( 136)

Q ‘ (M)

For consistency we re(juire that;

(137)

Decompose (M):

( 138)
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Thus:

=  vol(^ker(=i=r/i)j vol^ker(]I +  * cij)j

j  d a  e ~ ’ +*di )A) + {j, A)  ̂ ( 139)

ker(*(/i+(*(/i) )̂

T he  in tegral gives:

I  DA  f “ * ■'')

ker (*(/i +(+(ii )'̂ )

e  ̂ ' (140)=  clet'

VVe ob ta in :

Z m c s { J )  =  *rfi+(*fii)^) vol^^ker(=Kfl(i)j v o l^ k e r ( I  +

(let /(*fA)- ' /Met/(I +  *f i , ) - ‘/ ê* '̂ ’̂ (141)

Here we again identify the  Ray Singer torsion. Namely, w ith  a  su itab le  choice 

of no rm aliza tion  N :

^  vol(ker(*r/i)) det/(*f/i)“'/" =  r„s (M ) ' /^  (142)

Hence:

Z m c s { J )  =  e - f ^ - f ' / ( o - d e t / ( I + * d O - ^ ^ % o l ( k e r ( I  +  *(iO)

e (143)

T he  d e te rm in a n t  en tering  this expression can be w r i t ten  as:

d e t / ( I  +  * ( A ) - ' / ^  =  e T ' ' ( o ,  i + * d i )  f i e t ' [ - z  ( I +
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D++rfi ) (-A 1 +*,/, *̂ )

k e r { l l + *  (ii)-*'

In the integral \v<' now change the variables from .4 to iA.  The Jacobian of 

this change of variahles is det'( /I) which is a constant and we can absorb it 

in the normalization factor.

The product of this determinant with the volume element gives (modulo 

normalization factor) the partition function of the Self Dual Model with 

current J  =  —iJ.  Therefore:

The first exponent contains the geometrical information of the manifold via 

the //-function, wliilp the second one yields the linking number of the currents. 

The {)artition function of pure abelian Chern-Simons theory in the presence 

of a current ,7 is:

Therefore, at the level of currents, the ratio of the partition functions of 

Maxwell “Chern-Simons theory and Self-Dual Model is a topological invari­

ant to within a phase factor:

(146)

Z mCs {J) 6*" r«.,(M)'/^ =  e*“Zcs(J), (147)

where:

« — —̂ *cii -H (*cA)')_  ̂4-—C(0, —(*'■̂ 1) - ) + -^C(0, —(I +
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- ^ r / ( 0 ,  *r/, +  +  ^r/(0, *di) + jr}{0, I  +  (148)

l l i c  factor (V coutaiiis the geometrical information of the manifold.

Note that the correlation functions can he calcvilated in the usual way hy 

functionally diffen'ntiating the partition functions with respect to the exter­

nal current. Equation (147) allows us to relate the correlation functions of 

the models.

As an example, let us take the manifold to he (hence the Ray -Singer 

torsion is 1 [2]) and let us suppose that the currents do not link. Then we 

get Z(.,(./) =  1 and therefore Maxwell-Chern* Simons theory is equivalent to 

th(' Self-Dual Model to within a phase factor which captures the geometrical 

pro])erties of the manifold. If the currents link then the partition functions 

differ l)y an additional phase which captures the topological features of the 

currents.

The main differences between our results and those of earlier authors can he 

summarized as follows. We consider arbitrary manifolds and show, for the 

complete theories, the surprising result that the ratio of these two theories is 

itself a complete topological field theory (i.e. Chern-Simons theory). We also 

note that when the manifold is IRi’(5'' )̂ and, as considered hy earlier authors, 

with no topological entanglement of currents, then the partition function of 

the Chern Simons theory is 1. This result is in exact agreement with the
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results obtained by earlier authors.

After completion of this work our attention was drawn by P. J. Arias and J. 

S tephany to [27] and [32], The relationship between M axwell-Chern-Simons 

theor>- and the Self Dual Model, without the phase factor, w'as established 

in these works by different analyses.
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III. A Remark on Schwarz’s Topological Field

Theory

14 Introduction

111 this section, for tlie sake of completeness, we will review, following [38] 

Schwarz’s method of evaluation of the [)artition function of Schwarz’s Topo­

logical Field Theory [3], [38] in terms of the R.ay-Singer torsion [2]. As this 

pattern  is of ])araniouiit imi)ortaiice for the following section, we will have to 

rejK'at some things already discussed in this thesis.

Schwarz’s result has turned out to be a very im portant issue in Topolog­

ical C^uantum Field Theory; for example it is used to evaluate the semi- 

classical ai)proximation for the Chern Simons partition function [12], [39], 

which gives a QFT j)iedicted formula for an asymptotic limit of the W itten - 

Reshetikhin Turaev 3-manifold invariant [40] since this invariant arises as the 

partition function of the Chern- Simons gauge theory on the 3-manifold [12] 

(see also [41] for a review of Schwarz’s Topological Quantum  Field Theory in 

a general context, and [42] for some explicit results in the case of hyperbolic 

3-manifolds.)

The partition function Z  of Scwarz’s Topological Field theory is a priori a 

formal, mathematically ill-defined (}uantity and its evaluation [3], [38] is by
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fbniial niaiiipulations which in tho end lead to a mathematically meaningful 

r('siilt th(' Ray Singer torsion of the background manifold.

In this part of the thesis we will show that there is an alternative formal eval­

uation of the partition function which r('sults in the trivial answer Z =  1. 

This result amounts to a novel perspective on analytic torsion: we find that it 

can 1 ) 0  formally written as a certain ratio of volumes of spaces of differential 

forms which is formally equal to 1 by Hoflge duality.

We begin by recalling the evaluation of the partition function

of Schwarz’s Topological Field Theory [3], [38]. Here I ’ is a normalisation 

factor to l)e si)ecified below. The background manifold ( “spacetime” ) M is 

closed, oriented, riemannian, and has odd dimension n = 2 m + l .  For simplic­

ity we assume is odd; then the following variant of Schwarz’s topological 

field theory can be considered [38]: the field u> G 0™(M, E) is an m-form on M 

with values in some flat 0{N)  vectorbundle E over M. The action functional 

is

Here c/p : (iV =  fF (M ,E )j is the exterior derivative twisted by

a flat connection on E (which we surpress in the notation) and a sum over

(149)

(150)
M
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vector indices is inii)lied in the expression for the action*. A choice of metric 

on M determines an inner prochict in each iV’, giv('n in terms of the Hodge 

operator * by

{lo, to') =  lu > A * u j ' .  (151)
M

Let ker S' denote tlie radical of the cjuadratic functional S  and ker (ip the 

nullspace of d,,. Then kerS =  kerri„,, and after decomposing the integra­

tion si)ace as i V ‘ =  kerS © (ker5)'‘- the partition function can be formally 

evaluated to get

Z ( 152)

(we are ignoring certain phase and scaling factors see [16] for these). Here 

vol(kerS') denot(^s the formal volume of ker S'. The obvious normalisation 

choice, \ ’ = vol(ker S ), do( ŝ not j)r('serve a certain symmetry property which 

the partition function has when S  is non-degenerate [38]; therefore we do not 

use this but instead j)roceed, following Schwarz, by introducing a resolvent 

for S. For simplicity we assume that the cohomology of d vanishes, i.e. 

Inir/,, =  kerdp+i for all p. Then S  has the resolvent

0 — y q O ^  kerS — > 0, (153)

‘Note that the action vanishes if m is even.
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which wo us(' in tho following to formally rewrite v o l (k e r 5 ) .  A s before, the  

orthogonal d ecom positions

iV  =  kerf/,, © (kerrip)-*- (154)

give the formal n 'lations

\x ) l (k er lF )  =  vol(kerfi^) vol ^(ker . (155)

As we saw l>efore, the maj)s dj, restrict to isom orphism s : k e rd ^

kerf/,,+1 , g iv ing  the formal relations

vol(ker c/p+i) =  Idet'fi^l vol ^(ker (156)

C om bin ing  w hat we have so far we get a recursion relation, s imilar to  the  

one l)efore:

vol(ker fip+,) =  de l'  {d^d^Y '̂  ̂ vol(Q^) vol(ker o!p)“ \  (157)

Now with  a s im ple induction  argum ent and starting  w ith  vol(kerS') =  

vol(kerr /„) gives the formal relation:

v o l ( k e r 5 )  =  J ]  vol(fl'')] . (158)

A natural choice o f  norm alisation  is now*

m —1

\ ' = n  (159)
p = 0

’'This choice can be motivated by the fact that, in an analogous finite-dimensional 

setting, the partition function then continues to exhibit a certain symmetry property 

whicli it lias when S  is non-degenerate [38].



Tim s wo finally get:

m  —  1

Z ( 160)

These d e te rn iinan ts  can be given well-defined m ean ing  via  ze ta  regularisation  

[2], resu lting  in a  m athem a tica lly  m eaningful expression for the  p a r t i t io n  

function. As a sim ple conse(iuence of Hodge duality, we have det'((ijdp) =  

( l e t ' ( w i t h  71 =  d in iM ),  which allows us to  re-write  the  p a r t i ­

tion function  as:

is the  Ray Singer ana ly tic  torsion [2]. It is independen t of the  m etr ic  —  it 

depends  only on M and d. T h is  varian t  of Schwarz’s result  has the  advan tage  

t ha t  the  resolvent is relatively simple. T he  cases where m  need no t be odd , 

and  the  cohomology of d. need not vanish, are covered in [3] (see also [38] 

for th e  la t te r  case). E very th ing  we do in the  following has a  s tra igh tfo rw ard  

extension to  these more general settings, b u t  for the  sake of s im plic ity  and  

brev ity  we have o m it ted  this.

(161)

where

n - 1

r„ , (M )  = (162)
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15 The Partition Function of Schwarz’s

Topological Field Theory and the Ray — 

Singer Torsion as a Volume Ratio  

Anom aly

We now proceed to derive a different answer for Z  to the one above. Our 

starting point is (155) and (156) which we consider as a formal expression 

for Z, i.e. w(' do not carry out the z(>ta regularisation of the determinants. 

Instead, we formally write

VVe will also use th(' whole de Rham conii)lex instead of the resolvent (which 

is a de Rliain comjjlex, “truncated” at a suitable point for calculating the 

volume of the kernel of the action). Thus we will get information, related to 

the manifold in general and to the partition function of Schwarz’s topological 

field theory in particular (as it can be expressed in terms of the Ray-Singer 

torsion).

‘ T h is relation is oljtained without, any restriction on m , i.e. for arbitrary odd n.

vol(kerfi^+i)
(163)

Substituting (163) in (162) and using (157) we find*:

vol(Q i) vol(il^) . . .  vol(Q”)
( 164)

vol(QO) vol(Q‘̂ ) . . .  vol(Q "-i)'
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Form ally, the ratio  of volum es on the right hand side equals 1, due to

v o l( lF )  =  v o \ { i r - ^ ) .  (165)

I'his is a formal conseciuence o f th e H odge star operator b ein g  an orthogonal 

isom orphism  from i V  to  (R ecall th at {*lo, *lo') =  {lo, uj') for all

ll), uj' G Q^ )̂ T h is im j)lies Z  =  1 due to  (161), (164) and (165).

T he form al relation  (164) show s th a t an alytic  torsion  can be considered as a 

“volum e ratio an om aly” : T he ratio o f the volum es on the right hand side of  

(164) is form ally ecpial to 1, but when rRs(M) is given  w ell-defined m eaning  

via  zeta  regularisation  o f th e determ inants, a non-triv ia l value resu lts in 

general.

It is also in teresting  to  consider the case where n  is even in th is case, u sing

the sam e argum ents, we get in place o f (164) the form al relation

v,i l( ii“) vol(n^) . . . v o l ( n " )  ^  =  1 (166)
v o l ( S ! ' )  v<)l (SP)  . . .  v o l ( ! ! " - ' )

T he last 0 (}uality is an easy consequence o f H odge d u a lity  and continues  

to  hold after the d eterm in ants are given w ell-defined m eaning v ia  ze ta -  

regularisation . On the other hand, th e ratio o f volum es on the left hand  

side is no longer form ally  equal to  1 by H odge duality.

As a  conclusion  at th is stage o f th e  thesis, we w ould like to  s ta te  th e fo llow ­

ing. It is well know n th a t the R ay-S in ger invariants on ev en -d im en sio n a l 

m anifolds are all tr iv ia l. W e give an a lternative form o f th ese  invariants and
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show tliat they are trivial for odd dimensional manifolds as well, unless a 

well defined meaning is given via (,-regularization. In even dimensions using 

the fact that the Ray Singer invariants (expressed in this alternative form) 

are trivial, we end ui) with new trivial invariants, given by volume ratios. 

From here we can formally express volumes of spaces of different ;;-forms as 

functions of each other and use that to formally calculate determinants of 

Laplacians.

16 The Discrete Analogue

It is interesting to see how these resluts extend in a discrete set up. Given a 

simplicial comi)lex K triangulating M, a discrete version of Schwarz’s topo­

logical held theory can be constructed which cai)tures the topological quan­

tities of the continuum theory [14], [43]. The discrete theory uses K, the 

cell decomposition dual to K, as well as K itself. This necessitates a field 

doubling in the continuum theory prior to discretisation. An additional field 

!jj' is introduced and the original action S(cj) = (co, *d^uj) is replaced by the 

doul)led action

This theory (known as the abelian BF theory [41]) has the same topological 

content as the original one; in particular its partition function, Z,  can be
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[

i

evaluated in an analogous way to get Z = 2’̂  =  The discretisation

prescription is [14], [43]:

Here C^(K) =  C^'(K, E) is the space of p-cochains on K with values in the flat 

(){N)  vectorhundle E; d'  ̂ : C^{K) —> C^+^(K) is the coboundary operator

objects for K; : Cp(K) -> and ^  C'"-<'(K)

are the duality oi)erators, induced by the duality between p-cells of K and

are orthogonal niai)s. (The definitions and background can be found in [44]; 

see also [2] and [14].) As before, we are assuming that m. is odd and that the 

cohomology of the flat connection on E vanishes: H*(M, E) =  0. Then the 

partition function of the discrete theory, denoted by Zk, can be evaluated 

by formal manipulations analogous to those in before (see [14], [43]) and the 

resulting expression can be written as either

( w ,  u ; ' )  ^  (O',  a : ' )  e r™(K) X C"‘(K) (168)

(169)

twisted by a flat connection on E; C'^(K) and are the corresponding

(»-|;)-cells of k . The />-celIs of K and K determine canonical inner products in

C'’(K) and C''(K) for each p,  and with respect to these the duality operators

Zk = T{ K, d^)  or Zk =  r ( K , / ) (170)
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where

and is defined analogously. Here denotes the adjoint of (it

can be identified with tlu' boundary oi)erator on the (y;+l)-chains of K). The 

(juantities r (K ,  f/' )̂ and r(K ,r/ ' ')  coincide; in fact (171) is the Reidemeister 

conil)inatorial torsion (also called the R-torsion) of M determined l)y the 

given flat connection on E, and is the same for all cell decompositions K 

of M [2], [45]. (This is analogous to the metric independence of analytic 

torsion.) Moreover, th(' analytic and combinatorial torsions coincide [46], so 

the discrete partition  function in fact reproduces the continuum one:

(172)

We now present an analogue of the formal argument which led to Z  =  1 

earlier. Consider

T ( K , d “ ) r(K,,r) = (173)
p = 0

Using the analogues of (155) and (163) in the present setting,

vol(r^^(K)) =  vol(kerfi;^)vol((kero!;^)^) (174)

and
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and t he (•onesi)onding K relations, we hnd an analogue of the formal relation 

(164):

^  v o l(g '(K ))v o l(g » (K ))v o l(C -(K ))

v o l ( r ‘)(K)) v o l( r^ (K ))v o l(C "- i(K ))

vol(C '(K )) vol(C-^K)) vol((7"(K))

^ vol(C«(K)) vol(C^(K)) vol(C'«-i(K)) ’

(176)

Formally, the right hand side equals 1 due to

vol(C''(K)) =  vol(C"-?'(K)). (177)

This is a formal conseciuenee of the duality operator being an orthogonal 

isomori)hisiii from C'^(K) to (^““^(K) ^i.e. *o;') =  {a, o') for all

n, fv' e 0 ' ( K ) j .  This implies that, formally,

Zk =  [r(K,r/-<) = 1. (178)

Thus we see tha t combinatorial torsion can also be considered as a “volume 

ratio anomaly” in an analogous way to analytic torsion.

Finally, in the //, even case it is straightforward to find a combinatorial ana­

logue of the formal relation (166) we leave this to the reader.
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IV. Absence of C ross-C onfinem ent for 

Dynam ically G enerated M ulti—C hern-Sim ons

Theories

17 Introduction

In a recent pai)or Cornalba et al. [47] have propovseci a novel topological way 

of confining charged particles. The method uses the special properties of 

U( l )  X U(l )  Chern Simons gauge theory, interacting with external sources 

in two spatial dimensions, with a scalar Higgs field providing condensates. 

The idea of the approach is to note that, when charge/flux constraints of a 

c('rtain tyj>e are not satisfied, the fall off of the Higgs fields at infinity will 

not be fast enough and will lead to configurations with infinite energy; hence, 

such configurations are confined. The analysis is based on number-theoretic 

proj)erties of the couplings and charges and shows the intriguing possibility 

for confinement even for integral charge particles. The confinement mecha­

nism is topological in origin.

A Chern Simons term of the form considered in [47] can be dynamically gen­

erated as the parity-breaking part of the low-momentum region of the effec­

tive action of a three dimensional U ( l ) x . . . x U ( l )  Maxwell gauge filed the­

ory with fermions, after integrating out the fermionic degrees of freedom [18].



Indeed, we carry out this procedure for the system a t non-zero tem perature. 

Th(' effective action, oi)tained by us, following the approach of [18] has the 

correct tem perature  dependence for the multiple U (l)  Chern Simons term 

and yields in its zero-temi)erature limit a multiple Chern Simons term  of the 

form considered in [47], [48], [49].

Such nuiltiple U (l)  gauge theories have been considered before, for ex­

ample: in the study of spontaneously broken abelian Chern Simons theo­

ries [48], [49]; in the study of two dimensional superconductivity w ithout 

])arity violation [50].

O ur original motivation was to investigate if the mechanism for cross- 

confinement, proposed in [47], continues to hold for the system with a tem- 

])erature slightly dc'viated from zero and if confinement is lost for high tem ­

perature  with the systf'm still in the Higgs phase.

Surprisingly, with this dynamically generated parity-breaking term, the ar­

guments of Cornalba et al. [47] do not hold, namely, the proposed scheme 

of confinement is not possible. This result is valid, as we show, for zero 

and non- zero temjjeratures. In this model it is not possible to eliminate the 

screening of the long range Coulomb interactions. We claim tha t,  if confine­

ment occurs, it happens when the broken U (l)  x . . .  x U (l)  gauge sym m etry 

is restored in at least one of the directions of the gauge group.

By the s tandard  Higgs mechanism, the gauge group is spontaneously broken
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down to a i)ro(luct of the cyclic groups Zy x  . . .  x  Z^ .  This residual symme­

try rei)resents the uoii-trivial holonoiny of the Goldstoiie boson. The photon 

fields i =  now acquire masses by their coupling to the Gold-

stone l)osons. In the broken Higgs phase the Higgs currents are proportional 

in magnitude to the massive vector fields and screen the Coulomb interaction 

and we are left with purely (luantum Aharonov-Bohm interactions [48], [49]. 

In this jjhase, at temperature well below the critical, all conserved charges can 

reside in the zero momentum mode due to the bosonic character of the parti­

cles. When the temperature increases, some of the charges get excited out of 

the condensate and at sufficiently high temperature the condensate becomes 

thermally disordered and the synnnetry is restored. When this happens the 

charges introduced by tlû  matter currents will not be screened and the en­

ergy of tlu' Coulomb field will logarithmically diverge with distance (in two 

spatial dimensions) and this will lead to confinement.

18 Spontaneous Sym m etry Breaking

In this section we will briefly describe, following [51], the physics of a phe­

nomenon known as Spontaneous Symmetry Breaking. Consider a system, 

which has a certain stable symmetric configuration. Say, the temperature 

(this choice is motivated by our further analysis) is such a parameter in this



theory, that in a certain low temperature range this symmetric configuration 

persists. Above' sonu' critical value of the temi)erature, this symmetric con­

figuration becomes unstable and the new ground state is no longer symmetric 

(as it was for lower values of the temperature). In classical field theory this 

corresponds to a global symmetry of the Lagrangian (it is invariant under a 

symmetry group G'), with ground state not obeying this symetry (it is in­

variant under a subgroup H of the group G).  This leads to the appearance 

of massless particles (called Goldstone particles). These particles are not 

necessarily observable. The bigger the subroup H  (i.e. the less degenerate 

the vacuum), the smaller the number of the Goldstone particles. Actually, 

the number of the Goldstone particles is equal to the dimension of the coset 

G /  and does not depend on the repres(>ntation of G  and on the form of 

the potentail term. The Goldstone particles could be bosons or fermions (in 

certain supersymmetric theories). As the number of the degrees of freedom 

in the theory is preserved, the api)earance of Goldstone particles leads to 

disa])pearance of some of the original j)articles. If we start off with scalar 

fields (massless or massive — each have one degree of freedom), then the 

number of the surviving scalar fields together with the Goldstone particles 

ecpials the original number of scalar fields.

Upon quantization, there are some subtleties, but in general, the ideas ex­

tend easily from the classical case.
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It is very interesting to consider the case when the sym m etry is local (gauge 

synnu('try). This phenomenon is known as Higgs m echanism. W hen talk ing 

about scalar fields and local synnnetries, gauge fields .4,, should be introduced 

in order to guarantee' the invariance of the Lagrangian under this gauge sym ­

metry. These gauge fic'lds enter via the covariant derivatives of the scalar 

fields. A gauge invariant kinetic term  F'"'' does no harm  to  the gauge- 

invariance of the Lagrangian and can also be added. The photons, introduced 

by .4,,, have two degre('s of fn'edom (each) and are d priori massless. As a 

result of the Spontaneous Sym m etry Breaking, the G oldstone bosons “ea t” 

the massless i)hoton and this am ounts to the ap])earance of m assive  photon 

fields and disappearance of some of the original scalar fields, necessary to 

jM'oduce Goldston(> bosons, the G oldstone bosons themselves and some of 

the massless phot(jns. W hat counts in this mechanism is not the preserva­

tion of the num ber of particles, but the num ber of the degrees of freedom (a 

massive photon has three degrees of freedom).

As we have mentioned before, the Spontaneous Sym m etry Breaking mech­

anism  is another way of endowing particles w ith masses (cf. topologically 

n.assive gauge theories) and these two known mechanisms can work together.
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19 Finite Temperature Field Theory

7 h(' partition  function of a statistical system is:

Z{li) = ( 179 )

where /:/ is the invers<> of the equiUl)riuni tem perature  and H  is

th(’ enseml)le Hamiltonian. The trace is taken over some complete basis. 

Generally, this i)artition function cannot be evaluated exactly. M atsubara  

formalism [52] in Tem])erature Field Theory shows how to perturbatively 

calculate this partition function. We would like to  give, following [53], a 

short introduction to one of the reincarnations of M atsubara  formalism — 

the path  integral ap])roach. In 2+1 dimensions the action is:

where C{ip) is the Lagrangian density and ip is the quantum  field. Let us 

identify

tha t is, let us limit the time integration to integration over a finite inter­

val. The time dependence is called tem perature dependence. The partition  

function is then given by:

( 180)

-  t,  = i[3, ( 181)

( 182)
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where S e is the Eiichdeaii action. To make the propagator dei)endent non- 

trivially  on the temjjreature, one should introduce (anti) periodic boundary  

conditions for the fundamental fields of the theory. Since the fields are de­

fined only within a hnit(' time interval, we can Fourier exi>and them  over a

set o f discrete, or M atsubara, fre(|uencies tUn — where n  =  0, ± 1 , ± 2 , -----

For boson fields one should take only the even frequencies and for ferrnion 

fileds only the odd ones. Since the remaining spatial coordinates are still 

continuous, it is now (>asy to calculate the partition function using diagra- 

niatic m ethods, sim ilar to those in zero tem perature quantum  field theory  

(see [53] and tlu' reference's therein). The only difference would be in the fact 

that the propagator has all the tem perature dependence in it.

20 Induced Parity-Breaking Term at F inite  

Tem perature

Unless the co-efficient of the Chern Simons term is quantized, the C hern- 

Sinions term is not invariant under large gauge transform ations, that is, 

transform ations w ith non-zero winding number. At finite tem perature, when  

the euclidean tim e (tem perature) is conii)actified, we have non-trivial ge­

om etry and the (juantization law of the Chern-Sinions co-efficient plays an
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im portant roh'. Gauge fi('ld theories vvitli chargeci fermions can be made 

gauge invariant und('r both small and large gauge transform ations at any 

tem peratures (by (,'-regularizati(ju of the fermionic determ inant). The price 

for that is the appearanct' of parity anomaly, in the form of the Chern Simons 

term, after intc'grating out the fermionic degrees of freedom [18]. At zero 

tem perature the Chern Simons term enters with a (juantized co-efficient, so 

there are no problems with large gauge invariance. At non-zero tem perature 

it was firstly believed that the Chern Simons co-efficient remains unchanged 

(with this resulting in preservation of the gauge invariance). However, this 

co-efficient turns out to be a sm ooth function of the tem perature and thus 

one m ight expc'ct a gauge anom aly appearing (as this part of the action will 

no longer be invariant under large gauge transform ations). In [18] it is shown 

that, for both the abelian and non-abelian cases, although the perturbative 

exjjansion leads to a non-quantized tem perature-dependent Chern-Sim ons 

co-efhcient, the whole action is still invariant under large gauge transforma­

tions — there is no clash between tem perature dei)endence and gauge invari­

ance — the violation of the gauge invariance by the Chern-Sim ons term is 

com pensated by non-local higher order terms in the perturbative expansion. 

In the next section we will briefly describe a confinement m echanism , pro­

posed by Cornalba et al. [47], which involves a scalar field theory coupled  

to a Chern Simons term, and in the section following this one we will in-



corj:)()rate niassivo feriiiions instead of this Cherii-Siinoiis term in order to 

inv('stigate the possibilities for confinement at any tem perature, after dynam ­

ically  generating a Chern Simons term (when integrating out the fermionic 

(legn'es of freeedom).

21 Cross—Confinement in

M ulti—C hern-Sim ons Theories

Cornalba et al. [47] proposed a classical mechanism of confinement in 2 + 1  

dim ensions based on num ber-theoretic properties of the charges and the cur­

rents involved in the m odel. This jjossibility for conhnenient in two spatial di­

m ensions is the following [47]: the Coulomb field of a charged particle decays 

as i / r  and the field energy diverges logarithm ically at large distances. The 

pr(){)osed m echanism in its sim plest form goes as follows [47]; a U (l)^  x U ( 1 ) b 

gauge theory with off-diagonal C hern-Sim ons term is considered. As a re­

su lt, an electric charge w ith respect to one gauge group induces a m agnetic 

flux with respect to the other. If we have a condensed scalar field, charged 

w ith  respect to gauge group U ( l ) 4 , it will quantize the U (l)^  flux. If the 

values of this (luantized flux are not in accordance to the value, “desired” 

by the electric charge, then this electric charge will be confined. Otherwise,



tho Coulomb intoractiou will be screened and the electric charge will not be 

conhned. The general case of Chern Sionins coupling (as 2 x 2 and 3 x 3  

matrices with arl)itrary entries) is also considered and the conditions for con- 

hu('ment are given after similar (slightly more comjilicated) considerations. 

In the following section wc will show tha t this mechanism does not work 

if the Chern Simons term is dynamically generated in the sense discussed 

above.

22 Absence of C ross-C onfinem ent for 

Dynam ically G enerated  

M ulti-C hern-S im ons Theories

We will first determine the parity-breaking part of the effective action for 

U (l)  X . . .  X U(l )  Maxwell gauge field theory coui)led to massive fermions 

and (f)* scalar field theory in 3 dimensions a t finite tem perature. Contact with 

the multiple Chern Simons term, considered in [47], [48], [49], is made by tak ­

ing the zero-temperature limit. The effective action for the low -m om entum  

region of the theory is:

84



whore Ipl =  ^ +  are the fermioiiic covariant derivatives with

=  I, ■ ■ ■ , N  being the matrix of the fermionic charges with respect 

to the N  gauge groui)s, D„ =  +  iq^.Al^'\k =  are the covariant

derivatives for th(' scalar field witii q, being the charge of the scalar field 

with res])ect to the gauge grouj). In this action p  =  -̂  is the inverse 

tem perature and Dirac matrices are in the representation 7,, =  We have 

also introduced external cui rt'iits coupk'd to the gauge fields.

We shall consider first the ])arity-breaking part of the fermionic j)art of the 

action and at this stage the sc-alar field is only a si)ectator.

For this purpose we will follow the approach of Fosco et al. [18].

The ferm ionic fields obey antiperiodic boundary conditions, while the gauge 

fields are periodic. The considered class of configurations for the gauge fields 

is:

=  k =  l , . . . , N .  (184)

There is a fam ily of gauge transformation parameters, which allow us to 

gauge the tim e-com ponents .4 ’̂’(r) to the constants [18]. This makes the 

Dirac operator invariant under translations in the tim e coordinate (as the 

de{)endence on r  com es solely from the .4̂ '* fields) and therefore we could  

Fourier expand 4’, over the M atsubara m odes. As we m entioned



above, tlie fenuioii fields are exjiaiided over the odd frequencies:

= -j Y . (185)
/  n  =  — OG 

1
V'.(r,:-0 = J f Y .  (180)

7 l =  — C »

where u;„ =  (2n +  1)^. For a single U (l) theory w ith one ferniion field and 

w ithout scalars w(' hav(' [18]:

det( p  +  +  M )  =  J  Vil’Vif) exp ~  J J x p  { ^  + ie.^ + M )  'ip
0

/ OO 1  oo «

H  I>V^„(:/:)2?-0„(.x) « x p [ -  Y1 J
n ~  — oo ^  n =  — oo

X  (  ^  +  y \ f  +  1 :7 3 (0 ;  +  eA3 ))'ip„{x)]
00

=  n  d e t ( ^  +  /;„e*T'-’^’‘) , (187)
77, =  — 0 0

0

where .4,, =  j^jA-^{T)dT,  =  7j(3, + ieAj)  is the Dirac operato r in
0

the r('niaiuing spatial coordinates, p„ =  yjM'^ +  (cj +  eA^)'^ and =

arctg^^^^^t^^y It is shown in [18] tha t:

00

i \ e i {  P  +  ie.fi. +  M )  =  J J  d e t ( ^  ^  +  A / +  2 7 3 ( 0 ;  +  6 . 4 3 ) ^
n =  —00 

00

=  H  U A , M )  det{ 4 + p„), (188)
n =  —00

where J „ {A , M )  is the anom alous Fujikawa jacobian [54];

J „{A, M)  = e x p [ - ^  j  d ' x f j k d j A . y  (189)

The parity  odd part of the action is then given by [18]:

00 ie r
ii‘ -A.(.4,i\/) =  Y  J

u =  — oo n =  — oo
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In [18] the snniation was perfonnod in the following way:

^  ar cl g( — =
{2n +  1)7T +  X

y
( 192 )

whore x  =  and y — (i\M\ are diniensionless parameters. Then we

have:

~ /cj +  rA-A M  ^  r

M

tg
(2n +  1)7T +  u

{   nf:"oc y' +  [(2?i +  1)7T +  uY

The sunniiation is (lon(' [18] with the fornnila:

(193)

1 7r[cotg(7r2:J -  cotg(7r2'2)]

{n -  ) (n  -  x^) X ,  -  X.,
(194)

Following similar ste|)s, one finds th a t the parity-odd bit of the fermion part 

of our effective action is given l)y:

N  + 0 0  p

E  E  /  e^^QkAAl^d 'x,  (195)
k , j  =  \  n =  - o o

arctg^^"̂ " ) ^nd the M atsubara frequenies a;„ are givenwhere 0**'* 

above.



Performing the summation we get that for U( l )  x . . .  x U( l )  gauge group 

the parity-odd j)art of the action is:

As the temperature T  ai)]>roaches 0 (that is, /? oo) this reduces to 

U( l )  X . . . X  U(l )  Chern Simons gauge theory.

We will use now tlu; ('fleetiv(> parity odd temi)erature dependent action (with 

the induced U( l )  x . . .  x U(l )  parity breaking term) to re-examine the con­

finement argument of Cornalba et al. [47]. First of all, let us perform the 

integration (using Stokes’ theorem) of the gauge fields over the spatial co­

ordinates. This gives the relation with the magnetic fluxes

The e(}uations of motion, obtained by varying the action with respect to the 

magnetic fields, are:

0

(196)

0
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-  q, I  -  cP*D, (P)d-x +  j =  I

(198)

whei(' (/''' — j ‘' ’ are the  charge densities. Here we have inchided explicitely 

the  contril)u tion of the  Maxwell te rm  We ignore te m p e ra tu re

dei)endent te rm s  which come from 0 { .4 ‘*) te rm s in the  effective action. These 

are  of h igher order Q ')  in the  fermionic chagres. T h e  Coulom b charges 

on the  right hand  side vanish because all U ( l )  fields are  massive.

Denot(' by u  the  int('gral over the  th ird  com ponen t of the  conserved N o ther  

curren t:  u -- j  ((f)D-̂ (/)* — (j)*D:i(j))d'x and by =  j f / ‘\i^x th e  to ta l

ex te rnal  charge. So, we have:

fA) = C - u q ,  (199)

f ( h  \ /  \

w here $  =

\ ^ n )

, (1 =

V ([n )

, C = and:

th{^)QuQ,n
.(200)

4 7 r , ,_ .c o s -^ (^ i /Q , ,„4 ’"Virj +  t h ' ^ ( ^ )  sin^ (^i /

As in [47] there  is a n o th e r  cond ition  which m ust be satisfied by the  m agnetic  

fluxes. T he  Higgs field 4> should be com pletely  condensed, i.e. 4>{x) =
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where (7(:/:) is the Goldstoiie l)osoii field (the mass and the coupling constants

of the scalar field an ' teni])erature dei)endent). In order tha t this holds we

hav(> to recjuire that tli(' covariant derivative of the scalar field vanishes. After 

integration we gc't:

27tI =  +  . . .  +  =  ' 9 $ ,  (201)

where 2 t x I  is the non-trivial holonoiny of the Goldstone boson (reflecting a 

tojjological j^roperty of the Higgs field). Combining the two conditions (7) 

and (9) for the liuxes we get:

//,<]> =  (7 — uq,

2nl =  'q $ . (202)

Following the analysis of [47] we identify u as a continuous j)arameter, rep­

resenting the ability of the condensate to screen the electric charge.

The m atrix // can be written as //, =  ‘QF{[i)Q,  where F{(5) is a diagonal 

m atrix with entries:

5, t h ( ^ )
FkAH) =   r------------------------------------ r  .

c o s ^ ( i / Q , . 4 ”*’rfrj +  t h ^ ( ^ ) s i n ^ ( ^ i / Q , „ 4 ”‘*tirj

(203)

As F{(5) is diagonal we can always write // in the form:

=  ‘Q{T) Q{T),  (204)
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whore g„,„(T) =  F ; ,f ( / i )g „ , .

Lot us now try to oHniiiiate the screoniiig in (10) by inverting the matrix //,. 

We get tliat if the (i('terminant of //, is not zero and if

'y /rV y =  0, (205)

then the scn'oning would ho oUniinatod (the condition ‘q f^r\i — 0 is the

condition for confinement, i)roposod by Cornalba et al. [47]. According to 

their analysis, if the determinant of//, vanishes, then / / r ‘ should be interpreted 

I as th(' transposed matrix of co-factors).
i

Assuming that the deterniinant of // is not zero, we can re-write this as:

' '(g (T )r/)  Q{T)q =  0, (206)

where Q{T)  is the matrix of co-factors. This equation shows tha t the vec­

tor Q{T)q is orthogonal to itself ( “orthogonal” with respect to the matrix 

nuiltiplication of column vectors) and, therefore, this is the null vector:

Q{T)q = 0. (207)

This is an eciuation for the values of the boson field charges, which would

eliminate the screening mechanism. As we see, we can have a non-trivial so­

lution if, and only if, detQ  =  0, which contradicts to our initial assumption 

(dot// /  0). Therefore, we cannot eliminate the screening. Otherwise, this 

theory would be inconsistent with the induced parity-breaking term. This
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arguiueiit is valid ibr all values of the temperature.

Intuitively, one can expect th a t  if condition (201) is violated, after elimi­

nation of scn'ening, tlu're would be currents which would not fall off faster 

than  1 / r  a t infinity and the resulting long range forces will lead to diverging 

('nergi('s. We argu(' th a t  condition (201) can never be violated — this condi­

tion represents the fact th a t  we are left with a residual symmetry after the 

spontaneous symmetry breakdown. If this condition does not hold, it would 

mean th a t  the symmetry is restored. This, on its turn, will lead to diverging 

energy straight away, but not in the broken Higgs phase.

W(' conclude th a t  confinement is not i)ossible in the Higgs phase in the pres­

ence of the dynamically generated parity breaking term (which coincides 

with Chern Simons t('rm in zero tem perature limit). If there are configura­

tions with infinte energy, they nnist necessarily be outside the broken Higgs 

phase where the gauge symmetry is restored.
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V. Operator Formalism for C hern-Sim ons

Theories

23 Introduction

Take a tliree (limeiisioiial niaiiifold M, which is a connected sum of two pieces 

Ml and M2 . The boundaries of each of the pieces are the same, just the ori­

entations are opj^osite and tlie corresponding Hilbert spaces are canonically 

dual to each other. The i)ath integral in each of the ingredients determines 

vectors in the Hilbert spaces and, “according to the general ideas of quantum 

held tlK'ory” , Witten introduces [12] the ])artition function of the theory as 

the product

Z(M) =  (x, '0), (208)

where \  belongs to the Hilbert space associated with the boundary of Mj 

and '0 belongs to the Hilbert space associated with the boundary of Mj. The 

essential part is to construct the states x <ind ip.

We will show how this idea is applied to Chern Simons theory, following the 

work of Labastida and Ramallo [55] and of Bos and Nair [56].

We will start wdth an oriented compact three- dimensional surface without 

boundary M and a U(l )  bundle E with connection A^. Abelian Chern
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Simons theory is given hy:

Z(M) =  y '[D ,4j (209)

wh('re

S(_4„) =  1  / a  AHA.
M

( 210)

The path integral is over the gauge orbits and k is an arbitrary integer guar­

anteeing invariance with resiject to gauge transformations.

The choice of v(>ctors \  and i/' hi [55] is as follows:

Here a holoniorphic rei)resentation is chosen: Az =  |( .4 i — iA-i) is fixed on 

9M.2 and A^ = ^(.4i +  i.A-i) is fixed on 9Mi. Aq is taken to be orthogonal 

t(j the boundary and a are the local coordinates on the Riemann surface 

E = 5M. =

The partition function is then [55]:

-K.4.) =  jlVA,.] , - x p [ jS (A J  -  ~  I  d‘a A,A:], (211)

( 212 )

M

We have:

{̂A,) = $(,4,) (214)
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and [5C]:

[.4j(u;, L<;), w')] =  — 5{ijO — u j ' )  6 {uj — uj ' ) .  (215)

Tlieipforc

■K 6  , .

=  k Jm -

We will now (letcnuine the vectors ^'(.'Ij) and $ ( .4 2 ) using the sym m etries of

tlie m odel. Under a gauge transformation (say on M ,) — >■ .4,, +  g~^ g,

the vector 'I'(.4j) transforms as [55]:

'I'(.4j) —  ̂ <’XI)[-A:(7 (ry) +  (■«„, ry))] 'I'(.4j), (217)

where

l i f j )  =  ^  f  g ^ ' 0 , g  g - ' d ^ g  (218)

and

{<‘a, g)  =  -  I  d ' a A ^ d . g g - ^  (219)
7T JE

The gauge transformations are classified by the winding luimber around 

non-contractible loops in the manifold. In [55] it is assum ed that Mi is 

a solid ball with g handles for which a canonical set of closed contours 

{(V,, pj  I i , j  =  l , . . . , / y }  is chosen. Let u>, =  uJi{z)dz  be the basis for the 

space of holomorphic one-form s, defined via J  u)j =  5ij and let =  J
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We also have Jd ^ z  l o , { z )  U j { z )  =  — 2 t  Inir,^ (the period m atrix  r is a sym- 

m etric <j x f j  m atrix  witii positive dehnite im aginary part). We can therefore 

param etrize the gauge fields [55]:

.4,- =  (?/,„ h) ‘ d~{u„u), ( 2 2 0 )

where u  is single-valued m ap connected to the identity  m ap and

n„ =  exp 7T

z zj  u){z) (Imr)”' a — 7ra(Imr)“' J  u>{z) ( 2 21 )

We c-an therefore' choose [55]:

( 222 )

where ^ is some a-iiidependent constant, is defined above and the set of 

functions {V^ (̂«) | P =  1, • • ■, given by:

" 0  {ka\kT) (223)

Here < c ) [ ’ ^ ^ J ^ ] { k a \ k T )  is the Jacobi th e ta  function w ith characteristics (for a

deep analysis see [57]). As we see, we got not one, bu t a whole basis of vectors 

'I'p(-4^) these are the W ilson line operators around non-contractible cycles.
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24 On th e  C hern-S im ons Param eter k in

Z{M) = j[VA] exp{ikJA A cIA]

W'v will now show that the i)arani('ter k must be even.

It is enough to consider:

--I. =  (224)

Thus, under gauge transformation, we have:

.42 — > =  u~'dzu„  +  ( f ' dz f j .  (225)

1'herefore [55]:

q>(A,) =  (226)

vl'(.4|) =  c-' -̂2kWg) ̂  (227)

where 7 2 * ('«„) should be such that any single-valued map g nuist satisfy

72*.(w„,f/) =  7 2 a (« J  -  +  {Ua, (j))- (228)

Under large gauge transform ations with a map which winds n, tim es around

/̂ , and 77ij tim es around [55]:

g — exp 

we hav(':

2  Z

—7t(7i +  inf )(Imr)“* ^  io{z) J  (Imr)“  ̂ (n +  rm) (229)

U a + n + r m  =  «a .</ (230)
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and

exj) -7->A(̂ /'u+,.+r„,)] = exp[^(2'/?.(Inir) 'a  +  7?.(Imr) Vi +  n(Imr) 'm r

+ 2?»f (Inir)“‘« +  '/nf (Inir)“*'/i

+ 7/tr(Inir) S n r j  expj^— . (231)

As far as the behaviour of'0^(a) under large gauge transformations, we have:

ex])[^—  ri(Inir)“‘aj 

— >• exp[^—  ^r/)r(Inir)“‘a +  n)r(Im r)“*n +  m r(In ir)“V/tr^ (232)

and [57]:

(-)[|'J](a + 7i|r) =  B[J^](a|r), (233)

(-)[̂ ]̂ (a +  m,r|r) =  (?x\){̂ —mrnTm. — 2'nirna^ "̂̂ [q]

In order to match the transformation law (231) to the transformation laws 

(232), (233) and (234), we have to make sure that e x p ^ ^  irnnj matches to 

exp^—̂  . That is, we have to make sure that for arbitrary integers

and n we have:

m

ex\)(^k7iimn^ =  1. (235)

Thus the Chern Simons i)arameter nnist be even.
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