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General Introduction

This thesis is based on 4 papers resulting from my work during my stay in
the School of Mathematics, Trinity College Dublin. Each of them forms an
individual part of the thesis. The relation between these parts is emphasized
throughout the thesis. The last, fifth, part is based on a somewhat exercise in
operator formalism in Chern-Simons theory where I show, by analysis based
on theta-functions, that the co-efficient must be even.

In each part of the thesis the published work is the last section (the last two
sections for part II1). All introductory material, together with some back-
ground and aspects of relations with other theories, is given in the sections
preceeding the final one. I have tried to be most concise, avoiding unnec-
essary details. For instance, the definition of a p-form is given for the only
purpose to state that we will avoid the numerical normalization factor in it
and to set up a notation. As I am a physicist, whenever in the introductory
sections a mathematical text seems unavoidable, I have tried to alternate it
with physical (sometimes more hand-waving than necessary) arguments.

In the first part of the thesis I show that on three-dimensional Riemannian
manifolds without boundaries and with trivial first real de Rham cohomology

group (and in no other dimensions) scalar field theory and Maxwell theory



are equivalent: the ratio of the partition functions is given by the Ray—Singer
torsion of the manifold. In the presence of interaction with external currents,
this equivalence persists provided there is a fixed relation between the charges
and the currents.

In the next part, with ideology based on the first one, I explicitly obtain,
using a group-invariant version of the Faddeev-Popov method, the parti-
tion functions of the Self-Dual Model and Maxwell-Chern-Simons theory. I
show that their ratio coincides with the partition function of Abelian Chern-
Simons theory to within a phase factor depending on the geometrical prop-
erties of the manifold.

Still in the same spirit, in part three I give an alternative evaluation of the
partition function of Schwarz’s topological field theory which results in 1.
(The standard evaluation results in the Ray-Singer analytic torsion.) Math-
ematically, this amounts to a novel perspective on analytic torsion: it can be
formaly written as a ratio of volumes of spaces of differential forms which is
formally equal to 1 by Hodge duality.

In part four I show that when the induced parity breaking part of the ef-
fective action for the low-momentum region of U(1) x...x U(1) Maxwell
gauge field theory with massive fermions in 2+1 dimensions is coupled to
a ¢* scalar field theory, it is not possible to eliminate the screening of the

long-range Coulomb interactions and get external charges confined in the



broken Higgs phase. This result is valid for non-zero temperature as well.
This induced term, at zero temperature, is nothing else, but the eminent
Chern-Simons term.

The papers which form this thesis are:

1. Emil M. Prodanov and Siddhartha Sen: Abelian Duality,

hep-th/9906143, submitted to Physical Review D.

2. Emil M. Prodanov and Siddhartha Sen: Equivalence of the

Self-Dual Model and Mazwell-Chern-Simons Theory on Arbitrary Mani-

folds, hep-th/9801026, Physical Review D59, 065019 (1999).

3. Emil M. Prodanov and David H. Adams: A Remark on
Schwarz’s Topological Field Theory, submitted to Letters in Mathematical

Physics.

4. Emil M. Prodanov and Siddhartha Sen: Absence of Cross-
Confinement for Dynamically Generated Multi—-Chern-Simons Theories,

hep-th /9810044, Physics Letters B445, 112-116 (1998).



I. Abelian Duality

1 Introduction

There has been recent interest in relating different theories and establishing
their equivalence. Common to all applications of the different aspects of the
notion of duality is the observation that when two different theories are dual
to each other, then either the manifolds are changed or the fields and the
coupling constants are related.

In this part ot the thesis we re-examine two simple systems — scalar field the-
ory and Maxwell theory on three-dimensional Riemannian manifolds with-
out boundaries and with trivial first homotopy group m,(M). We show the
equivalence between these theories and we give the condition which must be
satisfied by the charges and the external currents in order that the equiva-
lence persists at the level of interactions. This is done by a direct calculation
of the partition function of each theory paying particular attention to the
fine structure of the zero-mode sector. In the spirit of Schwarz’s method
of invariant integration [1] we show that the ratio of the partition functions
of the theories is equal to the square of the partition function of Chern-
Simons theory (or the partition function of BF theory, that is, U(1) x U(1)

Chern-Simons theory with purely off-diagonal coupling). Such equivalence



between a scalar and vector theory is a novel form of duality which we call
Abelian Duality. We show that when the coupling constants (overall scaling
factors) are related as R <— 1/R | then this Abelian Duality transforms
into R «— 1/R duality. In this case the ratio of the partition functions is
given by a topological invariant — the Ray-Singer torsion of the manifold [2].
We show how our results can be obtained by Schwarz’s resolvent method [3]
and we use a resolvent generated by the de Rham complex to comment on
possibilities of equivalence between the theories in other dimensions. In our
considerations we use zeta regularised determinants.

The ingredients of our theory are as follows:

In this part of the thesis we shall be interested in homology 3-spheres, that
is, 3-dimensional compact oriented connected Riemannian manifolds, with-
out boundaries and with trivial first real de Rham cohomology group, e.g.
S? or the lens spaces L(p,0), p=0,1,2,.... Let us now explain why.

For Riemannian manifolds the metric (which is a symmetric matrix, due
to the fact that the scalar product is commutative, and therefore has real
eigenvalues only) has only positive eigenvalues. By a suitable diagonaliza-
tion with an orthogonal matrix and rescaling of the basis vectors we can
obtain Euclidean metric § = diag(1,...,1). We need Euclidean actions in
order to avoid problems with convergence in the path integral of the theories

considered (convergence in Minkowski’s space depends on the fact that the



integrand in the partition function is oscillating) — in Euclidean spaces the
exponent in the integrand is negative definite and the integral converges.
The manifold we need should also be without a boundary. We would like to
avoid problems with leftover after integration by parts. Our analysis would
be applicable for the case when there are boundary terms present, but would
also be more technical.

The reason for demanding non-trivial first real de Rham cohomology group is
that we shall be dealing with Maxwell field theory and to be able to write the
Maxwell tensor F' as d, A globally. The Maxwell equation d,F = 0 implies
that F is an element in the second de Rham cohomology group* H2.(M). A
is a one-form and therefore d, A = 0 in H? (M), that is, if F' = d, A then the

dR

equivalence class [F] is zero in H2, (M) (i.e. [F]=[F'] < F = F'+d,A).

When the second de Rham cohomology group is trivial, then F = d,A 1is

2
dR

valid globally. In three dimensions H2, (M) is isomorphic to H! (M) due

1

(M) being trivial means that the first homotopy

to Hodge duality and H
group 7, (M) is trivial (then F' = d, A globally). If 7, (M) is non-trivial, then
F = d, A is valid only on contractible regions of the manifold. Our analysis is

perfectly well suited to handle the case of manifolds with non-trivial homol-

ogy — then Maxwell theory and scalar field theory would be patch-by-patch

*A summary of some basic notions of a manifold and of topological ideas are contained

in the next section.



equivalent.

We will show the equivalence between Maxwell theory and scalar field the-
ory for homology 3-spheres (the physically interesting manifolds). For the
general case we would like to refer the reader to [4] where Witten has shown
how to pass from scalar field theory to Maxwell theory and vice versa in
two and three dimensions. As a compensation, we would like to offer many
additional features emerging from our analysis of the equivalence between
these two theories.

Even though we are considering two simple systems — scalar field theory and
U(1) gauge field theory (Maxwell theory) which are free or have interactions
with external currents, the manifolds will be arbitrary simply-connected and
curved. The statement that the ratio of the partition functions of the two
theories is a topological object is probably a generic feature of most “field
theory equivalence” theorems. We certainly come across this feature in other
examples. Scalar field theory and Maxwell theory play a fundamental role in
the contemporary understanding of interactions and symmetries. We shall
be dealing with systems with infinitely many degrees of freedom. Crucial role
in such system is played by the symmetry of the model — either generating
family of solutions by leaving the dynamical equations invariant, or leading
to conservation of charges, energies, momenta, etc. These symmetries might

be either geometrical transformations of space and time, or internal — not



depending on space and time.

Another ingredients are the Chern-Simons theory [5] — a topological field
theory of Schwarz type (to be introduced shortly) — and the calculation of its
partition function (& priori a formal, mathematically ill-defined quantity) by
formal manipulations which in the end lead to a mathematically meaningful
result — the Ray-Singer torsion [2] of the manifold. (This analytic torsion
will play a key role in the third part of the thesis.) The formal manipulations
will be Shwarz’s method of invariant integration [1] and Schwarz’s resolvent
method [3]. They both generalize the Faddeev-Popov trick [6] for the case
when the group of gauge transformations does not act freely, that is, when
ghosts-for-ghosts have to be included on the same basis as the ghosts them-
selves - to restict the gauge freedom by picking up only one representative
of each orbit of the group of gauge transformations.

In the next few sections we give some background material.



2 Elements of Hodge-de Rham Theory

All operators entering our theory can be described by the following diagram:

dp

Qr(M) QPHL(M)
dt o
P 1 Ry o o e 1) (1)

where M is the manifold and m = dim M. The case of interest will be a
three-dimensional manifold. Here QP(M), or AP T?(M), is the space of p-
forms <T:‘(M) is the dual space of the tangent space T, (M) at point g €
M). (For an excellent introduction to geometry and topology see [7].) Let us

accept the convention to ignore the numerical factor z% from the definition of

a p-form:

1
PM) 2w =—-w derlinde 2. A date, (2)

])! ISV
We will always write a subscript on the differential operator d (the exterior
derivative) in order to keep track of the order of the forms it acts on (this is

extremely important for our further analysis). In other words, we have:

P(M) 5 w” vy yrt e PH(M), (3)
where
e 0 ,
QP =g = <.—w‘,“,,,_““p> de® Ndet U A dei2A A de® (4)
oz” 5

<)



(the numerical factor is suppressed).
Let us also suppress the numerical factors from the definition of the Hodge
star operator

9]
' w[, ¥ ])'(7” i ]))' w}ll._.[l]) (“]m“pl»p+lml/m (Z:I:Vp+l /\ "G /\ d'/l"um (5)

and the sign from the identity map (for Riemannian manifolds)
s dil = (=1 )PP P, (6)
Thus the adjoint exterior derivative will be given, modulo possible sign, by:

il = Fill . (7)

m—p—1

We will write (note the difference in the notation):

(l,f,
QPFL(M) 3 WPt — YP € QP(M). (8)

With this notation, the Laplacian acting on p-forms is given by:

Ay =did +d, qdl . 9)

p—1"p—1

Both d and d' are nilpotent:

doprdy = O ==dlidh (10)

p+1

The product of two p-forms is symmetric:
I I )

WA *) =1 A *xw (11)

10



and thus the inner product, defined via

<w“ '(/'> — / w /\ *'l/’ — / /’(/| W;.,_._,L,, l/,l‘]ml‘p (L,Irl i d:I/_m’ (12)
M M

is symmetric: {(w, ¥) = (¢, w).

Note that w A *1 is an m-form and its integral over the manifold is well

defined. For Riemannian manifolds the inner product is always positive def-

inite: {&h, ) = 0 (“=" when 1p = 0).

Let us now consider integration by parts for closed manifolds. Stokes theo-

rem yields: / .(1u) = / w. Therefore, for closed manifolds, / dwi = 0Hor all
) M

M OM

w € Q™ 1(M). If we now take w = a” A 37 (with p+q+1 = m), we then get:

/(d,,(v") N = LR / o A8 (13)

M M

If M is not closed, this formula holds only if a” A 3* vanishes on OM.

With the listed definitions and properties it is easy to prove that

(d,ar, ) = (o7, di_,5) (14)

q—1

(with p+q+1=m).

Following [7], we would like to give some more theorems and definitions: On
Riemannian manifolds a p-form w” is harmonic, that is, A,w? =0, if, and
only if, w” is closed (that is, d,w” = 0) and co-closed (that is, d!_, w” = 0).
The set of harmonic p-forms is denoted by H?(M). The set of closed p-forms
is called the p™ cocycle group and is denoted by Z7(M). A p-form w? is exact

11



(co-exact) if it can be globally written as w” = d,_, ¥*™' (w? = df x**).

" coboundary group and is denoted

The set of exact p-forms is called the p
by BP(M). Both Z?(M) and BP(M) are vector spaces with real co-efficients.
Since d? =0, ZP(M) D BP(M).

The definition of the p” de Rham cohomology group is [7]:
H(M) = 27(M)/ gy (15)

(M is a differentiable manifold). Stokes’ theorem provides the duality be-
tween the cohomology group and the homology group. We would like to
refer the reader to [7] for introduction to boundary operators, co-boundary
operators, cycle groups, boundary groups, and homology groups.

An extremely important theorem is the Hodge decomposition theorem [7]:
Let (M, ¢) be a compact orientable Riemannian manifold without a bound-

ary. Then QP(M) is uniquely decomposed as:
P (M) =d, , " '(M) @ df @+1(M) @ HP(M), (16)
that is, any p-form w” can be globally written as
WP =d, , & +dl T+, (17)

where o' € QP71 (M), S+ € QPT1(M), and 4* is harmmonic.
Any element in H%; (M) can be uniquely written as w? = d,_, a?~' + 7".
If we ZP(M), then [w]e€ HEx(M) is the equivalence class {w' € Z7(M) |

12



W =wdyp, e QY (M)}, Two forms, which differ by an exact form, are
called cohomologous.

[t should be clear by now why we need homology 3-spheres: The Maxwell
(M). A is a one-form

equation d,F = 0 implies that F is an element in H?,

and therefore d;A =0 in H2 (M), that is, if F = d, A then the equivalence
class [F] is zero in H2 (M) (i.e. [F]=[F'|<= F = F' +d,A). When the
second de Rham cohomology group is trivial, then F' = d, A is valid globally.

In three dimensions H?, (M) is isomorphic to H!, (M) due to Hodge duality

dR

and H!

1x(M) being trivial means that the first homotopy group* =, (M) is

trivial (then F' = d, A globally). If m,(M)is non-trivial, then F' = d,A is
valid only on contractible regions of the manifold.

Finally, we would like to introduce another piece of the ingredients of our
theory — the Betti numbers. Hodge’s theorem states [7] that on a compact

orientable Riemannian manifold (M, g), Hiz(M) is isomorphic to H?(M):
Hix(M) = HP(M). (18)

In particular, dim (H’fR(M)) = idim (H”(M)) = b”, where bP is the p* Betti

number.

*Once again, consult [7] for homotopy groups.
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3 Topological Quantum Field Theory and

Chern—Simons Theory

Topological Quantum Field Theory is a way of formally constructing metric—
independent Quantum Field Theory on some manifold M. Using Topological
Quantum Field Theory it has been shown how new topologcal information
regarding M or information of topological structures present in M can be
obtained. For example, new knot invariants have been discovered and the
equivalence of Donaldson and Seiberg—Witten invariants on four-dimensional
manifolds has been conjectured (for a review see [8] and the references there-
in).

The modern interaction between quantum physics and geometry can be
traced to the work of Chern [9]. He showed the importance of the notion of
a vector bundle with a connection over a manifold: the relation between the
gauge potential and the connection form and between the Faraday tensor and
the curvature form. The formulation of the fundamental theories of physics
as “gauge theories” then had an immediate geometric interpretation. Even
if all curvatures vanish, gauge theories have non-trivial global features (in
contrast with classical field theories, like Einstein’s theory of relativity where
the gravitational force is interpreted in terms of curvature). This led to rapid

developments at quantum level with electromagnetism as the prototype of

14



all gauge theories. Subsequently, this U(1) gauge theory was replaced by
non-abelian gauge theory; the gauge summetry was broken (Higgs model);
magnetic monopoles (introduced to “heal” the asymmetry in Maxwell equa-
tions) were studeied by means of topology; etc.

By definition, Topological Quantum Field Theory is a Quantum Field Theory
in which the vacuum expectation values of some set of operators are invariant
under variation of the metric of the background Riemannian manifold. i.e.
this is a theory which does not depend on any background geometry. There
are two distinct types [8] of Topological Quantum Field Theories (based on
two different ways of achieving the independece of the vacuum expectation
values on the metric variation) — of Schwarz type and of Witten type. The
former are based on a metric-independent action and the observables are
constructed out of gauge invariant operators which do not contain the met-
ric. Witten type theory is based on a symmetry of the model which leaves
invariant the action, the measure in the path integral and each of the oper-
ators in the above mentioned set. We will confine our attention to Schwarz
type theories.

The classical example for a theory of Schwarz type is the Chern-Simons the-
ory [5]. It is an intrinsically odd-dimensional theory and on m-dimensional
manifolds (m — odd) it is given by the integral of the m" Chern-Simons

form (for a review see [7] and the references therein). Chern-Simons forms



are:

Q4) = 5 tr4,
Qi(4) = i (#) tr(AA(lA b 2A/\A/\A)
' 2 \Der 3 /
IAPE P
Gld) = 6 (%); tr(A/\(lA/\([A
VATIR
3 3
+ SANANANA + :A/\A/\A/\A/\A), (19)
J

and so on. Here A is the connection on the trivial G-bundle over the manifold
M and G is a compact Lie group.

In 1978 Schwarz showed [3] how to evaluate the partition function of a the-
ory with a quadratic action functional. In particular, Schwarz introduced
the resolvent method to determine the partition function of Abelian Chern—
Simons theory. He showed that the partition function was related to the
analytic torsion [2]: a well known topological invariant of the manifold. This
remarkable paper suggested that by using Topological Quantum Field The-
ory, topological invariants of the manifold M could be discovered. The idea
to probe topology using Quantum Field Theory (with particular application
to the non-abelian Chern-Simons theory) was resurrected by Witten. In
1988 he constructed Topological Quantum Field Theory [10] as Quantum
Field Theory representation of the Donaldson’s study [11] of the topolgy of
low dimensional manifolds. He showed how such theory extracts numerical
invariants from the background odd-dimensional closed manifolds. (Topo-

16



logical invariants are not only numbers — they can be algebraic structures
(groups), compactness, connectedness, etc.) In 1989 Witten showed [12] how
to calculate the partition function of non-abelian Chern-Simons theory by
using connections between three-manifolds and the closely associated with
them vacuum expectation values of Wilson loops. Witten used Hamiltonian
quantization and exploited the method of surgery on three-manifolds.
Chern-Simons theory has not a quadratic kinetic term, but a term linear
in momentum. Therefore the Hamiltonian is zero and this is a theory with
no dynamical degrees of freedom. However, there are many physical situa-
tions in which Chern-Simons theory is relevant. The degrees of freedom of
Chern-Simons theory can be shown to be related to topology. A spectacular
example of this was Witten’s work on knot theory unisng the non-abelian
Chern-Simons theory [12]. Even the abelian Chern-Simons theory has in-
teresting and curious features. Adding it to the Maxwell term results in
topologically massive electrodynamics [13] which describes a new form of
gauge field mass generation. It could also be coupled to other dynamical
matter fields (scalars or fermions) to describe anyons. It plays important
role in gravity, e.g. d = 11, N = 1 supergravity, where Chern—Simons term
enters with a particular co-efficient dictated by the supersymmetry.
Important for our further analysis is the fact that the Chern—Simons term
has the same properties with respect to C, P and T discrete symmetries as

] g4



tae fermion mass term in 241 dimensions — invariant under charge conjuga-
ton and changing sign under parity transformation and time reversal. This
leads to the idea to get the Chern-Simons term as a dynamically generated
term from the parity-breaking part of a theory with massive fermions — we
will investigate the application of this phenomenon to confinement at finite

temperature in part IV of the thesis.

4 Faddeev—Popov Ghosts

The action of gauge field theories is invariant with respect to local gauge
transformations. This huge symmetry degenerates the Lagrangian [1] — the
generalized velocities cannot be uniquely expressed in terms of the general-
ized momenta. To proceed, we will follow a method introduced by Faddeev
ard Popov [6]. This method is based on the development of a formal path
ittegral approach which eliminates the infinite volume factors present in the
partition function due to the fact that we integrate over all gauge fileds —
even those, which are equivalent (that is, related by a gauge transformation
o7, in other words, having the same action) with this resulting in overcount-
irg. We have to somehow restrict the gauge freedom by passing from the
srace of all possible gauge configurations to the moduli space of the gauge

tieory, that is, to the space of all possible gauge configurations quotiened

18



by the action of the group of gauge transformations. The space of all possi-
ble gauge configurations is partitioned nicely by the action of the group of
gauge transformations into a set of non-intersecting “strings” — the orbits
of the group. Any two elements from a given orbit can be related together
by the action of the group of gauge transformations. Such elements belong
to the same equivalence class and in this sense they do not contribute to the
physics —— they only cause divergence of the partition function. A way to
factor them out is to intersect each orbit by a hyperplane. This hyperplane,
called a gauge fixing condition*, selects only one representative of each orbit
of the group of gauge transformations. The integration is then performed over
this hyperplane. The final result must be strictly independent on the choice
of this gauge fixing condition. Technically, it amounts to the appearance of
a deltafunction of this gauge fixing condition and the Faddeev-Popov ghost
determinant inside the path integral. Strictly speaking, these arguments are
for a finite-dimensional manifold with compact group of isometries, but they
can easily be extended to the infinite-dimensional case with a non-compact
group. However, when the group of gauge transformations does not act
freely, we run into difficulties: the intersection with a hyperplane would not
be enough to guarantee that we select only one representative of each equiv-

alence class — the gauge fixing condition does not fix the gauge uniquely.

*We are ignoring the global difficulties related to gauge fixing.
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In this case we have non-trivial stabilizers of the group of gauge transforma-
tions, for example, gauge transformation of the potential A, by a constant
function. After such gauge transformation each selected representative of
the group orbit will be mapped into itself and thus the gauge freedom will
be only partially restricted and still leading to divergence of the partition
function. Therefore, we have to introduce an analogue of the gauge fixing
condition — this time for the ghosts themselves, not for the fields. This will
result in the appearance of an additional ghost-for-ghost determinant with
statistics opposite to that of the original ghosts. For higher dimensional man-
ifolds, it is likely to get even more ghost determinants — all of which with
alternating statistics and each ghost “healing” the residual divergence left by
the previous one. In principle, for theories with quadratic action functionals,
restriction of the gauge freedom by selection of only one representative of
each equivalence class is equivalent to extraction of the zero mode sector of
the theory: the volume of the kernel of the action functional is exactly equal
to the ghost determinant times the ghost—for-ghost determinant, etc. The
method for extraction of the zero mode sector of the theory was originally
introduced by Schwarz [3] and it became an exremely powerful technique for
calculation of the partition functions of theories with quadratic action func-
tionals. We will give details in one of the following sections and we shall be
heavily using it in the remainder of the thesis. We would like to mention here
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that Schwarz’s resolvent method also breaks down when the cohomology of
the space is not vanishing — in this case the gauge fixing conditon does not
fix the gauge uniquely. We would like to refer the reader to [14] where the
problem of non-vanishing cohomology groups is solved.

Let us go back to the case when the group of gauge transformations does not
act freely. There are two ways of overcoming this difficulty. We can replace
the group of all gauge transformation by the group of all gauge trasnsforma-
tions arising from functions which are equal to 1 for any fixed point. We can
take this fixed point at infinity for Euclidean path integrals and we will thus
get a free action of the group. Alternatively, we can select a group-invariant
version of the Faddeev-Popov trick [1]. This method is very powerful not
only because it is able to spot the finer structure of the zero mode sector and
overcome the problem with the free action of the group. It also works when
the theory is quantized around a reducible classical solution (in that case
the Faddeev-Popov procedure breaks down again). The problems associated
with the reducible classical solutions are in the fact that the ghost propaga-
tor is ill-defined (the gauge is not fixed uniquely). The method of invariant
integration is not dealing with intersection of the orbits with a hyperplane,
but with the space of orbits itself. Exploiting the symmetry of the model we
will reduce the integration from integration over the Riemannian manifold to
integration over the space of the orbits. When doing this we have to include
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in the path integral the volume of each orbit of the group with respect to the

Riemannian metric of M. This is the subject of our next section.

5 Method of Invariant Integration

In this section we will review, following [3], the method of reducing an inte-
gral of a function with some symmetries over some space to an integral over
a lower-dimensional space.

Take M to be a Riemannian manifold and G — a compact group. Let
W =M/ denote the space of orbits.

Using the Riemannian metric, there are no problems in defining volume ele-
ments on W and M.

Let A(x) be the volume of the orbit Gx with respect to the Riemannian met-
ric on M. A(z) is G-invariant (since A(gz) = A(z) for ¢ € G). Therefore
A(z) is a function on W =M/~

Let f(x) be G-invariant function on W = M/G

Hence:

[f@)du = [f@)r@)av. (20)

e M
Define the linear operator 7, : Lie(G) — T,(M), where T,(M) is the tan-

gent space to M at x and Lie(() is the Lie algebra of the group G.
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Let H, be the stabilizer of the group G at z, i.e.:
Hoa=06. (21)
Therefore:
He=LietH | —ler(F.). (22)

Consider the linear operator 7T, : Lie(G)/Lie(H — T (M).

)

The operator 7,/ 7, is non-degenerate if, and only if, G’ acts with discrete sta-
bilizers. The operator T 7. is always non-degenerate. The quotient G/HT is

homeomorphic to the orbit Gx under the map g — gx for g € GG. The differ-

ential of this map at the identity coincides with the operator T.. Therefore:

vol{Ge) = vol (G/H ) |det | = vol <G/H ) det (7?[73)1/2 (23)

T

But

vol (G) = / g "= / Dlg] vol (H,) = vol(H,) vol (G/Hz) (24)
i o

Take vol (G) to be normalized to 1.

Then the volume of the orbit of the group is:

Y e

1 "'T”" 1/2
oI det (/72 ) " . (25)

We now assume that all stabilizers are conjugate and have the same volume

vol (H). Then:

/ f(2)dp = VOII(H) / f(@)det (TIT:)"" do. (26)
e M/q
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With this formula we have restricted the gauge freedom by picking up only
one representative from each orbit. Alternatively, we could have imposed
a gauge-fixing condition and inserted it in the action together with the
Faddeev-Popov determinant (this is the original Faddeev—Popov method).
This would bring a delta-function of the gauge-fixing condition into the in-
tegrand and therefore would define a subspace in M. If this gauge-fixing
condition is appropriate, this subspace would intersect each orbit exactly
once and therefore the integration would pick up one representative of each
orbit. However, the method of invariant integration is able, as we shall see
later, to spot the ghost for-ghost determinants (so far they are hidden in the

volume of the stabilizer).

6 Schwarz’s Resolvent Method

We now turn to Schwarz’s method for evaluation of the partition function
of a theory with a degenerate quadratic (in the fields) action functional by
extracting the zero mode sector [1]. (Non-degenerate quadratic action func-
tionals (f, Sf) are those, for which Sf = 0 if, and only if, f = 0.) This
method is based on formal manipulations with ill-defined quantities (infinite
volumes of vector spaces), ending up with an expression in terms of determi-

nants. It is therefore necessary to give meaning to the determinant of an op-
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erator acting in an infinite dimensional space (as an additional problem, this
operator might as well have negative eigenvalues which require special sepa-
rate treatment). This is the topic of our next section — zeta-regularization
of determinants —, we now start with the resolvent method.

Consider the following partition function:
| L% STty 1
70 = % o =i (27)
J

Here N is a normalization factor, I' is a real vector space, A is a positive
coupling constant and S(f) is a real-valued degenerate quadratic action func-

tional:

Bl =g, Tk, (28)

where T is a self-adjoint operator mapping I" into itslef.

The inner-product (-, -) in ' defines an orthogonal decomposition:
= kep T (lter i), (29)
Therefore the partition function is given by:

200 = f DR

ker T & (kerT)+

1
N

= %Vol(kch) / D er el
(ke!:T)l
| 73 N T
=+ vol(ker ) det'([? g i (30)



In this section we will evaluate vol(ker S). Resolvent R(S) for the action
functional S(f) is the following chain of linear maps:

0 — T, l—> .. — T, - [ L > ker S =kerT — 0. (31)

The maps T; are linear and invertible and this sequence is exact, i.e. the
image of each map is equal to the kernel of the following one (next we will
deal with the case when the cohomology groups H"’(R(S)) = ker Tk/Im T,
are not trivial).

This, means <that vler L - =g Tnp 1 5 In  particulaes . vol (ker Lyl =
vol(ImT,,,) and vol(kerS) = vol(ker T) = vol(Im T,). We therefore need
to evaluate vol(ImT,). Let T be the restriction of the operator T, over
the space of (kerT,)*, that is, T/: (ker T,)* — ImT,. It follows that
vol(ImT,) = |det T%| vol(ker T,)* = |det' T,| vol(ker T,)-. The orthogo-
nal decompositions I', = ker T, @ (ker T,)* imply that vol(kerT,)t =

vol (T, )/vol (ker T,): Therefore
vol(Im T}) "= fdet’ Ty| vol(T',) voli{kerT,) 7" (32)
We thus get the recursion formula:
vol (ker T;_,) = det’ (TZTL,)‘/2 vol([',) vol(ker T,)~". (33)

The partition function is then given by:

Z(A):VH[V()MF@](‘”‘ [T det/(TIT, )30 det (== T)7 1 (34)
A e

™
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. ; n = k41 4
If we now choose the normalization N as [] [V’()I(FA,)]( " then we will end
k=1

up with:

— [I] det (Tim ] aat(=m) . (35)

In the next section we will not only give meaning to the determinant of an
infinite-dimensional operator, but we will also show how to extract numeri-
cal factors out of the determinant.

Now we would like to point out the structure of the product of determinants
with alternating powers entering (35). Clearly, the last determinant in the
product is nothing else, but the Faddeev-Popov ghost determinant discussed
earlier. It enters with a positive power (opposite to the power of the deter-
minant of the operator of the theory). The second last determinant in the
product is the ghost-for-ghost determinant. It has power opposite to the
ghost determinant, as the ghost-for-ghost fields serve the same cause as the
ghosts themselves — to restrict residual gauge freedom — and enter with
“statistics”, opposite to the “fields before them”. The third last determi-
nant in the product is the ghost—for-ghost-for-ghost determinant and so on.
Physical theories involve the differential operator and thus each map T, will
also involve a differential operator (exterior derivative). It means that some
of the spaces I', will be the spaces of different p-forms and so the number n

will be Imited by the dimension of the manifold. We will illustrate how this
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method works in the last section of this part.

Consider now the case when the cohomology of the resolvent is not trivial. In
this case Schwarz’s method fails — it is for exact sequences only. We will de-
scribe the generalization of Schwarz’s method for manifolds with non-trivial

homology [14]. We have:
ker T, = Im T..,, & H*(R(S)) (36)
and
vol(ker T,): = wol(ImT,,) vol (Hk (R(S))), (37)

where HF (R(S)) is the space of “harmonic” k-forms, associated with the
resolvent, that is, these elements w of I, which are “closed” (T, w = 0) and
“co-closed” (TI. w = 0). In the last section of this part the exact sequence will
be the de Rham complex, the operators T, will be the exterior derivatives
and the inverted commas will disappear. Equation (37) implies that we have
to evaluate an additional factor: vol <7—lk (R(S))), which will appear in the
recursion formula (33). Everything else will be the same.

The projection map ker T, — HE, (R(S)) = kerT’“/ImTHl induces the

isomorphism:

¢ - H(R(S)) — HE (R(S)). (38)
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Therefore:

vol (H"(R(S))) = |det¢,| ™" vol (Hf;R (R(S))) (39)

Thus the recursion relation (33) gets modified:

dletf (IR TV e

k41

det ((f)f.d)k)l/“-’ vol (ker T',;)

ol (e o el (HfH(R(S))) (40)

Finally, the partition function will be given by:

n

=

S(—1)k-t

200 = Mfdet (1T, det (9] der (21)7 (a)

k=1 m

|

Here we have already normalized by:

n

vol (')

4
Il [vol (H’“(R(S)))y |

NG —

7 Zeta-regularization of Determinants

Assume that we have a non-negative operator ((:1:, Ay =0, Vx), acting
in some infinite-dimensional space. Assume also that this operator is self-
adjoint with a discrete spectrum. The determinant of this operator is given

by the product of its eigenvalues A, (k=1,...,00; A\, >0, Vk):

det A = [] A« (43)
k=1
Therefore
Indet A =) In A, (44)
k=1

29



Recall that:

(], = d o0 =9
e )\‘S = A ,vs]n/\;\> L E 1 )\ -
<(/.5‘ ; ; )H,l) <(,.~; /.z-_;( e Z:l LA (45)
Thus:
/s YO
dera=em|-( ) | (46)
as s=0

The function

Slg, A) = i e (47)

is the Riemann zeta-function for the operator A. A, in (47) are the eigen-
values all of which strictly positive — of the operator A. It is obvious,
that the zero modes of the operator should be promptly discarded at first. It
is another matter what happens if some of the eigenvalues are negative (we
will deal with this case in a while).

So, the determinant of the elliptic operator A is given by:
detA = e O, (48)

Note that if A is elliptic operator of order n on m-dimensional compact
manifold, the (-function of A converges for values of s greater than m/n.
We can analytically continue ((s, A) [15] into a meromorphic function of s
at s = 0 (the only singularity of the (-function is a simple pole at s =
1). Thus we will end up with a finite expression for the infinite (formally
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divergent) product of the eigenvalues of the operator A. This technique is
called zeta regularization of determinants. From now on we will assume that
the determinants of all elliptic operators are regularized in this way.

An alternative definition of the Riemannian (-function is:

X I e g i e _At
G /f R /f L Tye4tgs  (49)
['(s) LZ:; o ['(s) 4
where I'(s) is the Gamma-function:
e /t"'“](:"’dt. (50)
.()
This alternative definition is based on the formula:
s 7#" e~ gt (51)
i ['(s) J ' |

(¢

Witten [12] first showed how to take the imaginary unit i out of the determi-
nant. Later, in [16], this precedure was expanded for arbitrary complex num-
bers and the case when some of the eigenvalues of the infinite-dimensional
operator A are negative is also addressed (from now on we will assume that
all zero modes of all operators are discarded somehow before we write down
the expression for a (-regularized determinant). Let us briefly outline this
procedure.

As the order of the eigenvalues of the operator A is of no importance when
we have to multiply them all to calculate the determinant, we can always
assume that first come the positive ones, then the negative ones. It means
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that for our purposes we can write any operator A in the form:
A,
A= : (52)

where A, : T’y — I'y and I'; is the space spanned by eigenvectors of A
corresponding to positive (negative) eigenvalues.

The operator |A], formed by A, has positive eigenvalues only:

A,
i : (53)
_A_

The (-regularization technique makes sense for the operator |A| only:

det |A| = e=¢'(0, |A|), (54)

where
¢(s |A) = ¢ls, A) + Cls, —AL). (55)

The eta function of the operator A is [16]:

o0

sign A\,
i A= U= =R e A L) (56)

The n-function can be analytically continued in a similar way so that 7(0) is
well-defined. This number formally represents the number of positive eigen-
values less the number of negative ones.

For any real positive number o we have [16]:

det (@A) = Al et il (57)
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For any complex number 3 = |3|e? we have [16]:

det (BA) = det(BA,) det ((—B)(-A))

_ @) doa) + o) 16|94 det|Al.  (58)

Equipped more or less with everything we need, we now proceed to

8 Abelian Duality

We will first calculate the partition function of free Maxwell theory:

Z(A) = / DA ¢ M [PovE Fu P /DA e M AN diA
Q! (M) Q1 (M)
ot /DA oM (diA, diA) _ /DA o (A, dld 4) (59)
Q1(M) Q1{a1)

The integral is over the space of all one-forms Q'(M). We can decompose the
space of all one-forms as a direct sum of the kernel of the operator entering

the partition function and its orthogonal complement:
Q'(M) = kerd, @ (kerd,)™. (60)
Therefore
Z(\) = vol(kerd,) / DA e~N A dldi )

(ker dy )+

= vol(kerd,) det’ (> did,)
¥iq

—1/2

(61)
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The partition function is thus an ill-defined quantity — the determinant and
the volume factor are infinite. Our calculations will be formal. With a zeta-
regularization technique we can make the determinant finite. We can also
asssume that an appropriate normalization is chosen in such way that the
divergency of the volume factor is absorbed. This will make the partition
function finite.

Note that vol(kerd,) is nothing else but the Faddeev-Popov ghost determi-
nant times the ghost-for-ghost determinant. To see that, let us calculate
the same partition function using the method of invariant integration: we
will exploit the gauge symmetry of the theory to restrict the integration over
QY(M) to integration over a lower-dimensional space — the space of the or-
bits of the group of gauge transformation.

The stabilizer of the group of gauge transformations A — A + d,Q°(M)
consists of those elements of Q°(M) for which d,Q°(M) = 0, that is, the
constant functions. In order to pick one representative of each equivalence
class [A], we impose a gauge condition, that is, we intersect the space of the
orbits of the group of gauge transformations in the space of all one-forms by
a hyperplane defined by those A’s, for which d,A" = 0, i.e. diA = 0. The

integration is then performed over this hyperplane. We thus get:

1 1
VAR S e oy / DIA] e M (A didiA) qat! (dtd )2, 62
e vol (kerd,) bl det’ (dyd,) (62)

Q! (M)/do
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The stabilizer of the group of gauge transformations consists of the constant
functions, that is, the stabilizer is the real line. The real line can be canon-

ically identified with the zeroth de Rham cohomology group HY,(M). The

projection map kerd, — Hi,(M) induces the isomorphism [14]:
¢, : HI(M) — Hi(M) (63)
where H9(M) is the space of harmonic ¢g-forms. Therefore:
vol (H1(M)) = |detp, | vol (Hi(M)). (64)
So the volume of the stabilizer is:
vol (kerd,) = det (¢}¢,)""* vol (HO(M)). (65)

The volume of the orbit of the group is proportional to the ghost-for-ghost
determinant det (¢f¢,) that extracts the zero modes from the Faddeev-Popov
ghost determinant det (dd,). The ghost—for-ghost determinant is equal to

the inverse of the volume of the manifold [14]:
det (¢i¢,) ™" = vol(M). (66)

Now we will extract the scaling factor ’:r—l from the functional determinant.

Following [16] we can write:

s ~3¢(0,dld,)
det' (2 dfa)™" = <ﬁ> T det! (dfd)2. (67)
m

s
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Thus the partition function of Maxwell theory is given by:

A1>~%<<°-dfdu) vol(M)? det! (did,)"?

Z](/\l) = <_ \’()l(%o(l\/l)) d(‘,t/(d;rdl)l/z . (68)

s

We now use the fact that on odd-dimensional and two-dimensional manifolds
there are no poles in the (- function near s = 0. This can be seen using
Seeley’s formula [15] for the (-function of some Laplace-type operator L on

a d-dimensional manifold without a boundary:

e ais e

0 ;
n=0 S + (U :(21 F("’)

(69)

where A, are the heat kernel co-efficients and .J(s) is analytic. Then

¢(0, A,) = —dimH%; (M). Using the formula [16]:

G(s; did.) = 1R SE (1) obae Al (70)

we finally get:

L2
Laimuo (M) vol (M)

Z](/\l) ik /\r i V()l(’HO(M))

det’ (did,)" det'(dld ) "2 (%L}

Consider now the partition function of free scalar theory:

Z()(/\()) = / ‘D(p 3 —-Xo fd-’i;r,\/.a Oup 0t Ll /DQO e —x\ofdo(p/\*dogp
QO(M) Q0(M)
e Dy e ~A0(dow, doy) = Dy e o0 (0 dhdoe).
QO(M) Q0(M)
(72)
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We now decompose the space of all zero-forms Q°(M) in a similar way:
Q°(M) = kerd, @ (kerd,)*. (73)
With this decomposition the partition function becomes:

Zol o) = N0k kerd, ) / Dy e o (¢, dldye)

kf °F (I(]

- édm]ll‘(’m(l\/l)
. <_> vol (kerd,) det’ (did, )"

m

Ag\ 3dim HYL (M) vol (HO( ))
= |—= —— ¢ det'(dld,)" 2 4
) g et (dld) (74)
Therefore:
L vol (H°(M
Zo(Ao) = AFmHan™ ) det’ (dtd,)~"/* . (75)

vol (M)"*
The product of the partition functions of the theories is:

/\0 > %(lim HY R (M)

Lok M) & (X)) = <_

7 det' (did,)~/2. (76)

On the other hand we have:
Zi(A) = AR o) erd,) det! (dld,)4 det! (dld,)"4.  (77)

The Hodge star operator is invertible and on three-dimensional manifolds
we have: det'(did,)"* = det’(xd,). (For these operators the multiplicative

anomaly vanishes.) Thus (modulo a phase factor):

Zi(A) = Ar2mHRD g gty )1 vol (ker (xd,)) det' (xd,)™"*. (78)
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The last two factors in this formula are exactly the partition function of
Chern -Simons theory Z.,. The partition function of Chern-Simons theory
is a topological invariant (modulo a phase factor [16]), given by the Ray-

Singer torsion of the manifold [3]:

—3dimHY (M) /),
ZuslPan)i= poat i) (79)
Therefore:
Z /\1 : —dim .
(i ]E/\))> = AT ey (gld,) 2 (80)
“os\\cs

Il

2L AR = 0 e g ) (81)

R <— 1/R duality means that if the coupling constants (overall scaling
factors) are related as A\, = A;' then both partition functions will depend
on the coupling constants in the same way (one has to be careful, because
the coupling constants are not dimensionless). The ratio of the partition
functions is a topological invariant — the Ray-Singer torsion of the manifold.
Therefore the two theories are equivalent. For manifolds for which the Ray-
Singer torsion is one (S? for instance), the partition functions are equal.

Note that both scalar field theory and Maxwell theory are non-topological in

three dimensions.
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Abelian Duality

is stronger than R +— 1/R duality

Z,(4)
Z(3)

in the sense that if the coupling constants are not related as R +— 1/R |

= Tus(M) (83)

there is still a relation the ratio of the partition functions is given by
the square of the partition function of Chern-Simons theory with coupling
constant Acs = VA Ay, that is, by the partition function of U(1) x U(1)

Chern-Simons theory with purely off-diagonal coupling (BF theory).

We can show the Abelian Duality by considering the following resolvent gen-

erated by the de Rham complex:

0 s <H e B ps G RS

Here, for simplicity only, we have assumed that the first cohomology group

of the mainfold is trivial and thus we have:
vol (kerd,) = vol(Imd,). (85)
If we denote by d, the restriction of d, over (kerd,)*, then the map

o (lkerdy) = —Tnid, (86)
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implies:

0
vol(Imdy) = det’ (dfd,)"’* vol ((kerd,)") = <1et,'(dgdn)”2%l(—(%%))—).(87)
We thus get:

vol (kerd,) = vol (Q°(M)) det' (dfd,)"’* mlm—d—) (88)
rd,
We have already seen that
vol (kerd,) = det(plg,)" vol(HO(M)). (89)

Therefore the partition function of Maxwell theory is given by the same

expression as (71).

To show that the Abelian Duality is a property of three dimensions only,
consider again the de Rham complex. Due to Hodge duality, d! —

m—p—1

*d,*. Therefore (Iot'((l:f”_p_ldm_pfl) = det'(dldp) and for even—dimensional
manifolds all determinants involving the differential operator cancel each
other. In higher odd dimensions, it is possible to find a relation between
scalar field theory and Maxwell theory, but there will be more determinants

coming in from the de Rham complex, thus non-physical theories should also

be involved.

R +— 1/R duality can be shown in a different manner — by a duality
transformation. We will illustrate this by considering the following partition
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function:
7 = [FareR e L  ole H (90)
kv;‘ dy ker dy
Over the space of the kernel of the operator d, we can locally write A = d,®.
Therefore Z becomes the partition function of free scalar field theory:

Z A /D(I) e lfj.(i()q)A*d0¢‘ (91)

QO(M)
Alternatively, we can replace the integral over the kernel of the operator d,
by an integral over 2' (M) and include a Lagrange multiplier B (B € QI(J\[))

to keep track of the fact that A is flat:

iy /’DA cRfANxA _ /DA’DB eRfANCA+ [BadiA (g9

ker d; QY (M)

If we integrate over A and absorb the resulting determinant det (R1) in the
normalization, we end up with the partition function of Maxwell theory with

coupling constant 1/R:

s /DB e® aBACMB, (93)

Q' (M)

The same can be seen if we make a change in the variables in (92) — dual-
wzation — A — A'= A+ % xd,B.

With this dualization the partition function becomes:

T /'Dxl el\’f:l/\*r\ /DB e%fdlB/\*dlB‘ (94)
Q'(M) QM)
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The integral over A is Gaussian and can be absorbed in the normalization

factor. The remaining integral is the partition function of Maxwell theory.

Let us now include external currents .J, in Maxwell theory and j in scalar

field theory:

A /.DA o= JE /G (Fu ¥ — g1, A) _ /DA oA dld, A) +q (), 4)
Q' (M) Q1 (M)
Zo(j) = /Dvﬁ e~ JPT VT Oup o —ejo)  _ /D(p o~ (@ didgp) + e (4, 2
QO(M) QO (M)
(95)

where ¢ and e are some charges.
Now extract perfect squares and perform the Gaussian integration to end up

with:

Zs) = () e (0 exp(e i, d%j—])) exp(q (J, ﬁJ}). (96)

070 1

If the charges and the currents are related as:

B e (97)

€

then the Abelian duality will go through on the level of interactions with
external currents.
Alternatively, if the condition for the cancelation of the terms, involving the

currents, is not satisfied, then the ratio of the partition functions of scalar
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field theory, interacting with external current j, and Maxwell theory, inter-
acting with external current .J, would be given by the partition function of
U(1) x U(1) Chern-Simons theory interacting with some current £, specified
by j, J and the corresponding propagators of these two theories.

Using the definition of correlation function (as a functional derivative of the
partition function with respect to the external current), we can easily relate
the correlation functions of scalar field theory, Maxwell theory and Chern—
Simons theory.

We have recently shown [17] (see part II of the thesis) that the partition
functions of Maxwell-Chern-Simons theory and the self-dual model differ by
the partition function of Chern-Simons theory (thus the two theories being
equivalent). Therefore, the ratio of the partition functions of scalar field the-
ory and Maxwell theory is equal (modulo phase ambiguities) to the square of
the ratio of the partition functions of Maxwell-Chern-Simons theory and the
self-dual model. We can relate the correlation functions of these five models
as well.

Finally we would like to mention that Chern—-Simons theory can be dy-
namically generated from the parity-breaking part of a theory with massive
fermions [18] — as gauge-invariant regularization of the massless fermionic
determinant introduces parity anomaly given by the Chern-Simons theory
(see part IV of the thesis). In this sense, our result (81) implies that a the-
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ory with massive fermions (interacting with external currents) together with
massless scalar fields (possibly iteracting with external currents) add up to
Maxwell theory (with possible interaction with external currents). Thus we
have a form of bosonization in three dimensions.

After this work was completed, our attention was kindly drawn by A. Schwarz
to [19] where the ratio Z,_,/Z,,_._, (where m is the dimension of the man-
ifold) is expressed as the Ray-Singer torsion. The difference between our
work and [19] is in the following. In [19], the initial considerations are for
the case when there are no zero modes of the Laplace operators A, (acting
on k-forms). When these zero modes are absent, it is rather obvious that the
quotient Z,_,/Z,,_,_, is the Ray-Singer torsion of the manifold. The case of
interest appears when these zero modes are no longer neglected. In [19] a
very deep analysis is given for this case: the theory of the measure of the path
integrals involved is developed and certain general results are given in this
direction. In our paper we have kept these zero modes all along and we have
shown that even with them the quotient (Z,/Z, in our case) is still given by
the Ray—Singer torsion. In addition we have studied the scaling dependence
of the models and we have shown the relation to R «+— 1/R duality. We
have also given treatment on the physically relevant case — interaction with

external currents and correlation functions.
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II. Equivalence of the Self-Dual Model and
Maxwell-Chern—Simons Theory on Arbitrary
Manifolds

9 Introduction

In three dimensions it is possible to add a gauge-invariant Chern-Simons term
to the Maxwell gauge field action [13], [20], [21]. The resulting Maxwell-
Chern-Simons theory has been analyzed completely and in [13] the entire
subject of topologically massive three-dimensional gauge theories has been
set up. Further Maxwell-Chern-Simons theory has been used as an ef-
fective theory for different models, such as fractional Hall effect and high-
temperature superconductivity [22], [23].

The Self-Dual Model was first studied in detail by Deser et al. [13] and it
was shown in [24] that the Self-Dual Model is equivalent, modulo global dif-
ferences, to the Maxwell-Chern—Simons theory.

Subsequently, this equivalence has been studied by many authors using vari-
ety of techniques: in the context of bosonisation and at the quantum level (us-
ing Legendre transformation) in the abelian and non-abelian case in [25], [26];
by constraint analysis in [27] and [28]; by means of Batalin-Fradkin-Tyutin

formalism [29]; in the context of duality [30], [31], [32] and many others.



We address the equivalence with differential geometric tools. It allows us to
reveal global features of these models which, so far, have been overlooked.
We pay particular attention to the zero modes present in the problem. These
zero modes contain topological information regarding the manifold. By ne-
glecting them, i.e. absorbing the divergence due to the zero modes in the
normalization constant, this information is lost. Schwarz’s method of invari-
ant integration [3], allows us to formally consider a key part of the zero mode
sector from the divergent term. This is enough, as we show, to get topologi-
cal information regarding the manifold.

We show that, subject to choice of appropriate normalizations, the ratio of
the partition functions of the two theories in the presence of currents is given,
modulo a phase factor, by the partition function of abelian Chern-Simons
theory with currents. This phase factor captures the geometrical properties
of the manifold. The partition function of Chern-Simons theory contains a
phase factor which captures the topological properties of the currents (their
linking number) and modulo this phase factor it is a topological invariant
(the Ray-Singer torsion of the manifold). Therefore the Self-Dual Model
and Maxwell-Chern-Simons theory are equivalent to within a phase fac-
tor which contains geometrical information about the manifold and another
phase factor which contains information about the topological properties of
the currents.
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10 Self~Dual Model

The Self Dual Model was introduced in [33] as a “square root” of the Proca

equation for a massive antisymmetric tensor field. Proca equation is:

O*F,, —mA, =0, (98)

nv

where F,, = 0,4, — d,A,. This equation implies the Lorentz condition

0"A, =0, (99)

from which only two of the three components of A survive.
In [33] a “square root” is taken from Proca’s equation in order to find a
model in which not two, but only one mode is propagated. A self-duality

condition is introduced:

A s D (100)

)
This condition implies Proca equation together with the Lorentz condition

and is generated as an equation of motion by the following Lagrangian:
= AA + 2 A0, A 101
£ P T ST e by + —2— € i (O AR ( )

The term “self-duality” is related only to the equations of motion of the

model.
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11 Maxwell-Chern—Simons Theory

In three dimensions we can add a metric-independent scalar, the Chern-
Simons term, to Maxwell theory [13]. The Chern-Simons term, violating P
and T discrete symmetries, serves as a topological mass term for the U(1)
gauge field A. In result the massless spinless Maxwell excitation acquires
mass and spin 1. It is the topological non-triviality of the Chern-Simons
term (invariant under small gauge transformations and changed by a discrete
quantity — the winding number of the transformation — under large gauge
transformations) that generates masses for the gauge fields. The Maxwell-
Chern-Simons Lagrangian

AT R gf“"”Aua,Ap (102)

detRiy
implies equations of motion

‘ w k()z vaps
()“F’ + 7 (c: E,/; - O, (103)

which describe the propagation of a single degree of freedom with mass ke?.
The fact that here we also have a single degree of freedom might serve as a
first naive indication of possible equivalence with the self-dual model.

That is an alternative way of providing massless gauge fields with masses and
the theories, describing this phenomenon, are called topologically massive
gauge theories. This mechanism has nothing in common with the standard

48



Higgs mechanism. We can even consider Maxwell-Chern-Simons theory in
the framework of the spontaneous symmetry breaking mechanism. This will
result in Maxwell-Chern-Simons-Higgs theory with two independently gen-

erated masses for the gauge fields (see [34] and the references therein):

: (104)

where mycs = ke? (as stated above) is the topological mass and m? = 2e?v?
is the square of the Higgs mass (v is the non-zero vacuum expectation value
of the Higgs field). Both m, are physical mass poles of the propagator of
Maxwell-Chern-Simons Higgs theory. In the broken phase we have one real
massive scalar degree of freedom (the Higgs field) and two massive gauge

degrees of freedom [34].

12 Multiplicative Anomaly

Basic formulae from the linear algebra fail when we have operators acting
in infinite-dimensional spaces. Of course, the most difficult question is what
the determinant of such operator is. We hope that we already have a satis-
factory answer — the (-regularised expression. The trace of such operators

also causes problems, as it is an infinite sum. Let us accept the following
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regularization dependent convention:

fr A" =50 & a1 (105)

However, for such type of operators two basic formulae from the finite-

dimensional case in general no longer hold:

tr(A+ B) # trA+trB, (106)

det(AB) # (detA)(detB). (107)

In the expression for the determinants the operators are with discarded zero
modes.

The property trin A =IntrA continues to hold in the infinite-dimensional
case.

Let us now define the mulltiplicative anomaly:

F(A,B) = Indet(AB) — Indet A — Indet B

= ('(0, A) + ¢'(0, B) — ¢'(0, AB). (108)

The quantity F'(A, B) need not be zero for infinite-dimensional operators.
We will illustrate the confusion caused by the multiplicative anomaly in a
very simple model of calculating the functional determinant of some infinite—
dimensional operator. We will show that there are two recipes, both of which

seem absolutely acceptable, but leading to different answers. Dowker [35]



poses the following problem. Consider the classical action:

4 Ly
S = 5 [(@AG+ds4,) do, (109)
where 4, = V? + m? and

oy il
&z:;/@A@W; (110)

o, V2 +m? 0
where @ = and A =

b, 0 V2 +m?
Even though S, = S,, there are two different answers:

B /D@D@«*~: (det A,) (det 4,) (111)

7 /D@c“b 2 delfan). (112)

The answers are different because of the multiplicative anomaly.

According to Dowker [35], the natural and usual way is to consider Z,. In a
reply to this choice, Elizalde et al. [36] give substantial arguments in favour
of Z,, that is, to take the algebraic determinant first and then the functional
determinant. We note that the multiplicative anomaly has been tested only
in terms of a (-regularization set up. It is obvious that all resluts depend
on the regularization scheme. If we consider the infinite-dimensional block

M N
matrix A = it is true that in general det A # (det M) (det

P @
Q) — (det N) (det P). The (-regularization technique justifies the formula

o1



M 0
det = (det M) (det Q). However, a different regularization will not
0 Q
necesarilly give the same answer. In this sense, taking algebraic determinant
and taking functional determinant are not necessarily commutative actions.

Thus 7, seems to be the more natural choice. However, even though the
a b

resluts are different, the physics is most likely the same.

13 Equivalence of the Self-Dual Model and
Maxwell—Chern—Simons Theory on Ar-

bitrary Manifolds

We will consider a general Riemannian manifold.

The Self-Dual Model is given by the action:

Sop = [(fuf? + eunf* & P)ds = (£.(L+xd)f), (113)
M

where d, is the map from the space of all p-forms to the space of (p + 1)-

forms, i.e. d, : QP(M) — QPT(M), and * is the Hodge star operator:
x 1 QPM) — Q" P(M) (m = dimM = 3). The Hodge star operator
explicitly depends on the metric of the manifold M.

The partition function of the model is:
I

Zip = [ Df et ) (114)

Ql(M)

on
(S)



The operator T+ *d, is self-adjoint.
Now we will extract the zero-mode dependence from the action functional.

To do so, decompose Q' (M):
QYM) = ker (I + *d,) ® ker (I + *d,)". (115)

Therefore:

—if2

Zsp = vol (ker(1++d,)) det’(i(1+ *d,)) (116)

Witten has shown [12] how to deal with 7 in det/(iT) for some operator T,
using (-regularization technique. He found that ¢ leads to a phase factor,
depending on the n-function of the operator T and explicitly involving the
metric of the manifold. For our case we have:

im

det/ (i(]I + * (11)) o (o, (1+e ) det’' (T + xd,)""*. (117)
Finally, the partition function of the Self-Dual Model is:

i

Zsp = ¢TI0 ) yol (ker (14 *d,)) det/ (I++d,)™.  (118)

The action of Maxwell-Chern—Simons Theory is:
- / (Fo F™ 4 e AP AN dPr = (A, dld,A) + (A, xd,A) (119)
M

where d} : QF1(M) — QF(M).
In this case the topological invariance is explicitly violated by the Maxwell
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term.
On three-dimensional manifolds we have: df = xd, x . Therefore we may

write the partition function as:
ZM('.\' i / DA 0—1'<A, (*(11 +(*d1)2)A>. (120)
Ql'(M)

The operator *d, + (xd,)’ is self-adjoint.
We proceed to explicitly calculate the partition function. The theory has a

gauge invariance under gauge transformations A, — A, — 9d, A, i.e.
A— A + d,Q°(M). (121)

To proceed we pick up one representative of each equivalence class [A], where
[A] = {A+d, Q°(M)}. To do this we impose the gauge condition 9, A* = 0,
that is df A = 0.

This ensures that the space of orbits of the gauge group in the space of all
one-forms is orthogonal to the space of those A’s, for which df A = 0 and so
we will pick up only one representative of each orbit.

Then the operator d, plays the role of ’ET of the Section 5, i.e. the stabilizer
consists of those elements of Q°(M), for which d, Q°(M) = 0 (the constant
functions). Hence: H= R

Therefore:

1
vol (H)

Wi / DA e~ {A (it 0dP)A) gopt (gt )72 (122)

Q‘(M)/G



The operator in the exponent has zero-modes.

Let A € kor(*(l, + (*(ll)"’>, ie. xd,A + *d, * d;/A = 0. There are two
situations to consider. We can take xd, A = 0, that is: A € ker(xd,), or
A ¢ ker(xd,), ie. *dA # 0, but xd,A = —(xd,)?A. In the second
case * d, has inverse (xd,)™'. Therefore: A = — % d, A, which means that
(I++d,)A=0, ie. A€ker(I+x*d,).

By definition ker(xd,) N ker (I + *d,) = 0.

It is easy to see that ker(xd,) and ker(I + xd,) are orthogonal:

Let f € ker(I1+ xd,) and g € ker(xd,).

{f, g) = (f, @)+ {f, xdig) = (f, @T+xd)g) = ((I+xd)f, g) =0,
since (I + xd,) is self-adjoint and f € ker (1 + xd,).

So, ker(xd,) is the orthogonal complement of ker (I + xd,).

Therefore we can write:
ker (+d, + (+d,)?) = ker(xd,) @ ker (1 + xd,) (123)
and
vol (ker(*d1 + (*d])z) =" vel (ker(* dl)) vol (ker(][ + * dl)). (124)

On the other hand, since /'Dw e @ Tw) = yol (kerT) det/(T)™/?, the parti-

tion function is given by:

e—%'r/((), xdy +(*d; )2)

ZM('.s‘ V()](H)

det'(dfd,)"/* det!(xd, + (*dl)'z)_”2



= (0 wdir(ed)?) o (ker(*dl)> vol (ker(]I+ *dl))

=172

(lvt’(*d1 + (*dl)2> : (125)

Let us now consider (l('t’(*(ll + (*(11)3)71/2.

In the infinite-dimensional case we have to take into account the multiplica-
tive anomaly, i.e. the fact that the determinant of a product of operators is
not always equal to the product of the determinants of the operators.

For our case we will show that:
det'(#d, + (+d,)?) = (=1)"™ det/(xd,) det'(I + *d,), (126)

where: 1y = C((), —(*(l] + (*dl)z)) — C(O, —(*dl)_) — C(O, —(I + *dl)h).
The meaning of (0, A_) will become clear from the context of the proof.

Take A to be some operator without zero-modes. We saw that we can write A
Ay A,
in the form: A = SEEAN = , where A, : 'y =T,
A —A_

and ', is the space spanned by eigenvectors of A corresponding to positive

(negative) eigenvalues. The operator |A| has positive eigenvalues only.
Feti A — xd,, B =1l -F *dj.
For the determinants:

o0 oo

det|A] = [T A, det|B| =[] 11 + A.| (127)

n=1 n=1

we write formal expressions which are always to be (-regularized.



The multiplicative anomaly is:

F(ALIBY) = S[¢(s 141) + (s 11) - ¢(s.14B1)]

ds

- Ao oA 080 B

ds

s=0
—¢(s,(4B),) — ¢(s, —(AB)_)} . (128)
8=0
For all operators entering this expression we can apply the analysis of [15].
This analysis holds for the case of a smooth and compact manifold. The

Seeley-De Witt formula:

((s,U) =

=l (129)

n=0 S + (e _2_

1 [ i A,
[(s)
where A, are the heat-kernel co-efficients, D is the dimension of the manifold

and J(s) is some analytic function, leads to the fact that the multiplicative

anomaly will vanish when D = 2 or D is odd.
det!(xd, + (+d))?) = (=1)"™ det'(xd,) det'(I + xd,), (130)

where: ¢ = ( (0, —(*(11 + (*(1,)2)_> - C(O, —(*dl)_) - (((), —(I + *dl)_).

Note that the appearance of the phase factor is not due to the multiplicative
anomaly. We have used the fact that the multiplicative anomaly vanishes for
the moduli of the operators. However, we are forced to include some phase
ambiguity which is related to the “negative” parts of the operators — other-

wise we would not be able to define a zeta-function regularized expressions

~
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for operators which have negative eigenvalues*.
It follows that the partition function of Maxwell-Chern-Simons theory can
be written as:

o ﬂu~ %U(U, *d) +(*dy )2)

s = det’ (did,)/* det'(xd,)~"* det'(I + *d,)™*/
vol(H)

— o Fv-Fa(0, xdi+(xd1)?) (] (k(‘r(*d,)) vol (ker(l[ + * dl))

det'(xd,)™"* det'(I + *d,)~"/. (131)

The *-operator is invertible, hence: ker(xd,) = kerd,.
As in the previous part of the thesis, the stabilizer is the same (the constant

functions). Therefore:

e~ Fv=Fn(0, +di+(d1)*)  qot! (dld, )12

vol (H"(M)) (lot((ﬁlqbo)l/z

- det (+d,)™"? det'(1 + *d,) "2

vol (ker(*dl)) >
dOt’(*dl)l/2 SD-

— o~ Fv=5n(0, xdi+(xd1)?)+En(0, T+xd1)

(132)

From this expression follows that the ratio of the partition functions of
Maxwell-Chern-Simons theory and the Self-Dual Model is equal, modulo
phase factor, to the partition function of pure abelian Chern—-Simons theory.
Thus:

ZM('S
Zsp

=0 (133)

*For other examples of phase ambiguities associated with (-regularised determinants

see for instance [16] and [37].



where

s

P <<o. —(xd + (*(/l)'-’)_) +2C(0, =) )+ ¢ (0, ~(T + +d)) )

ND

t

+ %7)((), xd,) + gn((), I+ xd,)— 271(0, *d, + (*(ll)’). (134)

The partition function of abelian Chern-Simons theory is equal [3], modulo
a phase factor [16], to the square root of the Ray—-Singer torsion [2] which is

a topological invariant of the manifold given by [14]:

3

s (M) = [T (Idet s, | |det'd, )" (135)

q=0

This formula refers for the general case of non-trivial homology.

So the absolute value of ratio of the partition functions of Maxwell-Chern—
Simons theory and the Self-Dual Model is independent of the metric of the
manifold and consequently these two theories are equivalent to within a phase
factor on arbitrary manifolds.

Consider now the partition function of Maxwell-Chern-Simons theory with

an external source .J coupled to the fields A:
ZAI("S(J) = / Bdle” <A’ (*dl + (*d1)2)A> + (< A). (136)
For consistency we require that:
N
J € ker (xd, + (xd,)*) . (137)
Decompose Q'(M):

QL(M) = ker (xd, + (+d,)?) @ ker (xd, + (xd,)?) . (138)

29



Thus:

Zues(J) = vol(ker(xd,)) vol (ker (I + xd,))

/ DA o= (A (1 +xd1)A) + (J, A) (139)
ker (*(Il+ (xdy)? )

The integral gives:

/D4(v' A, xdi (1 +xd1)A) + (J, A)

k(*r(*dl+(*d]) )
-1/2 g 1
= det/ [i(*dl + (*d,)"’)] Sy el (140)
We obtain:

i i

AP A RER s n(0, v +(sd1)?) vol(ker(*dl)) vol (ker(][+ *dl))

. 1
det!(xd,) /2 det' (T + *d,)"? &' avean? 7 (141)

Here we again identify the Ray-Singer torsion. Namely, with a suitable choice

of normalization N:

1 2 1/2
N vol(ker(*dl)) deti{awd) 0 =" F iR (142)

Hence:

im

Znes(J) = e~ Fv=5(0 «di+0di?) qop/ (14 4d,)" V2 vol (ker (1 + +d,))

ras(M)'2 ¢ ¢ e 7 (143)

The determinant entering this expression can be written as:

)

det!(T+%d,)™2 = eF10 1) dot' [ (1 + *d,)]
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= 10, T+xdi) (’j U e ¥ /D4 & i H+*d1)4> il A>(144)
ker (I+# dy)+

In the integral we now change the variables from A to 4. The Jacobian of
this change of variables is det’(i1) which is a constant and we can absorb it
in the normalization factor.

The product of this determinant with the volume element gives (modulo
normalization factor) the partition function of the Self-Dual Model with

current .J = —i.J. Therefore:
] s 9 (e el 7
Zz\l('.\'(']) = ()I(T_T"(O‘ *dl) T,{S(l\/l) oy € <], Fdq J) ZSD(J) (145)

The first exponent contains the geometrical information of the manifold via
the n-function, while the second one yields the linking number of the currents.
The partition function of pure abelian Chern-Simons theory in the presence

of a current .J is:

Zos(l): = et Al0d) o o nb % of e ), (146)

Therefore, at the level of currents, the ratio of the partition functions of
Maxwell-Chern-Simons theory and Self-Dual Model is a topological invari-

ant to within a phase factor:

ZI\I('S('])
Z ol

where:

i —gc(o, —(+d, + (*d])'—’)_> +gg(o, —(*d,)_)%c(o, — (I + *d,)_)
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— %n(o. ed, + (xd,)?) + gn(o, +d,) + %77(0, I++d). (148)

The factor o contains the geometrical information of the manifold.

Note that the correlation functions can be calculated in the usual way by
functionally differentiating the partition functions with respect to the exter-
nal current. Equation (147) allows us to relate the correlation functions of
the models.

As an example, let us take the manifold to be S* (hence the Ray-Singer
torsion is 1 [2]) and let us suppose that the currents do not link. Then we
get Z.4(J) = 1 and therefore Maxwell-Chern-Simons theory is equivalent to
the Self-Dual Model to within a phase factor which captures the geometrical
properties of the manifold. If the currents link then the partition functions
differ by an additional phase which captures the topological features of the
currents.

The main differences between our results and those of earlier authors can be
summarized as follows. We consider arbitrary manifolds and show, for the
complete theories, the surprising result that the ratio of these two theories is
itself a complete topological field theory (i.e. Chern-Simons theory). We also
note that when the manifold is IR*(S?) and, as considered by earlier authors,
with no topological entanglement of currents, then the partition function of

the Chern-Simons theory is 1. This result is in exact agreement with the



results obtained by earlier authors.

After completion of this work our attention was drawn by P. J. Arias and J.
Stephany to [27] and [32]. The relationship between Maxwell-Chern-Simons
theory and the Self-Dual Model, without the phase factor, was established

in these works by different analyses.
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ITI. A Remark on Schwarz’s Topological Field
Theory

14 Introduction

In this section, for the sake of completeness, we will review, following [38]
Schwarz’s method of evaluation of the partition function of Schwarz’s Topo-
logical Field Theory [3], [38] in terms of the Ray—-Singer torsion [2]. As this
pattern is of paramount importance for the following section, we will have to
repeat some things already discussed in this thesis.

Schwarz’s result has turned out to be a very important issue in Topolog-
ical Quantum Field Theory; for example it is used to evaluate the semi-
classical approximation for the Chern-Simons partition function [12], [39],
which gives a QFT-predicted formula for an asymptotic limit of the Witten—
Reshetikhin-Turaev 3-manifold invariant [40] since this invariant arises as the
partition function of the Chern-Simons gauge theory on the 3-manifold [12]
(see also [41] for a review of Schwarz’s Topological Quantum Field Theory in
a general context, and [42] for some explicit results in the case of hyperbolic
3-manifolds.)

The partition function Z of Scwarz’s Topological Field theory is a priori a

formal, mathematically ill-defined quantity and its evaluation [3], [38] is by
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formal manipulations which in the end lead to a mathematically meaningful
result — the Ray Singer torsion of the background manifold.

In this part of the thesis we will show that there is an alternative formal eval-
uation of the partition function which results in the trivial answer Z = 1.
This result amounts to a novel perspective on analytic torsion: we find that it
can be formally written as a certain ratio of volumes of spaces of differential
forms which is formally equal to 1 by Hodge duality.

We begin by recalling the evaluation of the partition function
1 —S(w)
Yie v /Dw R (149)

of Schwarz’s Topological Field Theory [3], [38]. Here V' is a normalisation
factor to be specified below. The background manifold (“spacetime”) M is
closed, oriented, riemannian, and has odd dimension n = 2m+1. For simplic-
ity we assume m is odd; then the following variant of Schwarz’s topological
field theory can be considered [38]: the field w € Q™ (M, E) is an m-form on M
with values in some flat O(NV) vectorbundle E over M. The action functional
is

Sw)s = /w Ad, ws = (W *xda0n). (150)

M

Here d, : QF — QP! (Q” = QP(M, E)) is the exterior derivative twisted by

a flat connection on E (which we surpress in the notation) and a sum over



vector indices is implied in the expression for the action®. A choice of metric
on M determines an inner product in each QP given in terms of the Hodge
operator x by
(. el = /.u)/\*u}/. (151)
M
Let kerS denote the radical of the quadratic functional S and kerd, the
nullspace of d,. Then kerS = kerd,,, and after decomposing the integra-

tion space as Q™ = kerS @ (kerS)* the partition function can be formally

evaluated to get

vol (ker S)

~1/4 vol (ker S)
i ;

7 = detlfiped i) 7 T = i det'(d'd )% (152)

m m

(we are ignoring certain phase and scaling factors — see [16] for these). Here
vol (ker S) denotes the formal volume of ker S. The obvious normalisation
choice, V" = vol (ker S), does not preserve a certain symmetry property which
the partition function has when S is non-degenerate [38]; therefore we do not
use this but instead proceed, following Schwarz, by introducing a resolvent
for S. For simplicity we assume that the cohomology of d vanishes, i.e.

Imd, =kerd,,, for all p. Then S has the resolvent

NG o SRS N o I iy

*Note that the action vanishes if m is even.
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which we use in the following to formally rewrite vol(ker S). As before, the

orthogonal decompositions
QP = kerd, ® (kerd,)t (154)
give the formal relations
vol (ker @7) = vol(kerd,) vol ((kerd,)*). (155)

As we saw before, the maps d, restrict to isomorphisms d, : kerd: —

kerd,,,, giving the formal relations
vol{kerd:. )+ = i|det'd | vol((ker dl,)L). (156)

Combining what we have so far we get a recursion relation, similar to the

one before:
vol(kerd,,,) = det'(d!d )"* vol(Q") vol(kerd,)™. (157)

Now with a simple induction argument and starting with vol(ker S) =

vol(kerd,,) gives the formal relation:
m—1 AP
vol(ker ) =[] [det'(dld,) "> vol(27)] . (158)
p=0

A natural choice of normalisation is now*

m—1

sl v (159)
p=0

*This choice can be motivated by the fact that, in an analogous finite-dimensional
setting, the partition function then continues to exhibit a certain symmetry property

which it has when S is non-degenerate [38].
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Thus we finally get:

m—1

Z = | I det'(dld )2""] det'(dl &) 1", (160)

mm
p=0

These determinants can be given well-defined meaning via zeta-regularisation
[2], resulting in a mathematically meaningful expression for the partition
function. As a simple consequence of Hodge duality, we have det'(dldp) =
det'(d'_ d,_ ) (withn = dimM), which allows us to re-write the parti-

tion function as:

Z = Tas(M)Y2. (161)
where
Tas(M) = [ det'(dld )ac"" (162)

is the Ray-Singer analytic torsion [2]. It is independent of the metric — it
depends only on M and d. This variant of Schwarz’s result has the advantage
that the resolvent is relatively simple. The cases where m need not be odd,
and the cohomology of d need not vanish, are covered in [3] (see also [38]
for the latter case). Everything we do in the following has a straightforward
extension to these more general settings, but for the sake of simplicity and

brevity we have omitted this.
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15 The Partition Function of Schwarz’s
Topological Field Theory and the Ray —
Singer Torsion as a Volume Ratio

Anomaly

We now proceed to derive a different answer for Z to the one above. Our
starting point is (155) and (156) which we consider as a formal expression
for Z, i.e. we do not carry out the zeta regularisation of the determinants.
Instead, we formally write

vol (kerd,,,)
vol((ker dp+,)l) ,

detidlid ) = (163)

We will also use the whole de Rham complex instead of the resolvent (which
is a de Rham complex, “truncated” at a suitable point for calculating the
volume of the kernel of the action). Thus we will get information, related to
the manifold in general and to the partition function of Schwarz’s topological
field theory in particular (as it can be expressed in terms of the Ray—Singer
torsion).

Substituting (163) in (162) and using (157) we find*:

vol (') vol (Q3) ... vol (")

mal M = A .
Tas(M) vol (©2°) wol(Q%)... . val(fin 1)

(164)

*This relation is obtained without any restriction on m , i.e. for arbitrary odd n.
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Formally, the ratio of volumes on the right hand side equals 1, due to
vol(§27) = vol(§1* ). (165)

This is a formal consequence of the Hodge star operator being an orthogonal
isomorphism from Q" to Q"?. (Recall that (*w, *w') = (w, ') for all
w, w' € QP.) This implies Z = 1 due to (161), (164) and (165).

The formal relation (164) shows that analytic torsion can be considered as a
“volume ratio anomaly”: The ratio of the volumes on the right hand side of
(164) is formally equal to 1, but when 7,45(M) is given well-defined meaning
via zeta-regularisation of the determinants, a non-trivial value results in
general.

[t is also interesting to consider the case where n is even — in this case, using
the same arguments, we get in place of (164) the formal relation

vol (2°) vol(£02) .. ol (G1) ] Yo
. = febigly 150t =
vol (60 Jovel(§27) ., .o volliy &) g) det (d,d,) (166)

The last equality is an easy consequence of Hodge duality and continues
to hold after the determinants are given well-defined meaning via zeta-
regularisation. On the other hand, the ratio of volumes on the left hand
side is no longer formally equal to 1 by Hodge duality.

As a conclusion at this stage of the thesis, we would like to state the follow-
ing. It is well known that the Ray-Singer invariants on even-dimensional
manifolds are all trivial. We give an alternative form of these invariants and
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show that they are trivial for odd-dimensional manifolds as well, unless a
well-defined meaning is given via (-regularization. In even dimensions using
the fact that the Ray-Singer invariants (expressed in this alternative form)
are trivial, we end up with new trivial invariants, given by volume ratios.
From here we can formally express volumes of spaces of different p-forms as
functions of each other and use that to formally calculate determinants of

Laplacians.

16 The Discrete Analogue

It is interesting to see how these resluts extend in a discrete set up. Given a
simplicial complex K triangulating M, a discrete version of Schwarz’s topo-
logical field theory can be constructed which captures the topological quan-
tities of the continuum theory [14], [43]. The discrete theory uses K, the
cell decomposition dual to K, as well as K itself. This necessitates a field
doubling in the continuum theory prior to discretisation. An additional field
w' is introduced and the original action S(w) = (w, *d,,w) is replaced by the

doubled action

S(w,w') = <<:j,), (*2 *(C)l> (:j/)> = 2/w’/\ dsunl 168

‘m

This theory (known as the abelian BF theory [41]) has the same topological
content as the original one; in particular its partition function, Z, can be
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evaluated in an analogous way to get Z = Z% = 7,4(M). The discretisation

prescription is [14], [43]:

(= (o @) @K@ 1D (168)
~ ; ~ gy « 0 *K d?n o
Slwyw') = Slasa) = < <“/,> , (*K & 0 ) (a’) > (169)

Here C?(K) = C?(K, E) is the space of p-cochains on K with values in the flat
O(N) vectorbundle E; d¥ : C?(K) — CP*'(K) is the coboundary operator
twisted by a flat connection on E; C"(K) and d,f are the corresponding
objects for K; ** : CP(K) — C"?(K) and #* : CYK) - C"9(K)
are the duality operators, induced by the duality between p-cells of K and
(n—p)-cells of K. The p-cells of K and K determine canonical inner products in
C?(K) and C”(IA\') for each p, and with respect to these the duality operators
are orthogonal maps. (The definitions and background can be found in [44];
see also [2] and [14].) As before, we are assuming that m is odd and that the
cohomology of the flat connection on E vanishes: H*(M, E) = 0. Then the
partition function of the discrete theory, denoted by Zy, can be evaluated
by formal manipulations analogous to those in before (see [14], [43]) and the

resulting expression can be written as either

Ze = 7(K,d¥) or. gl ) (170)
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where

n—1

r(K,d<) = [ det'(8%,d<)sD" (171)

and T(IA\',(IR) is defined analogously. Here 0 | denotes the adjoint of dX (it
can be identified with the boundary operator on the (p+1)-chains of K). The
quantities 7(K, d*) and T(IA\'.,(IQ) coincide; in fact (171) is the Reidemeister
combinatorial torsion (also called the R-torsion) of M determined by the
given flat connection on E, and is the same for all cell decompositions K
of M [2], [45]. (This is analogous to the metric-independence of analytic
torsion.) Moreover, the analytic and combinatorial torsions coincide [46], so

the discrete partition function in fact reproduces the continuum one:
b =14 (172)

We now present an analogue of the formal argument which led to Z =1

earlier. Consider

n—1

(K, d*) 7(K,d%) = [ depi(@ ) D0 e @ )eC = i)

p+1
p=0

Using the analogues of (155) and (163) in the present setting,
vol (C*(K)) = vol(ker d:f)vol((ker d:f)L) (174)

and

1(ker d*
(1(’t/((l:£(1p)1/2 e vol(ker d¥, ) i (175)
vol ((ker d%)*)
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and the corresponding K relations, we find an analogue of the formal relation

(164):

(K, d) 7(R,d¥) = vol (C'(K)) vol (C*(K) ) vol (C"(K))
vol (CO I\ ) \()1( )V()l (C" 1 )
) ((”(R )vol( ( )vol(C”( ))
vol( (R)) V()I(CZ(R)) vol(C” l(IA\)) '
(176)

Formally, the right hand side equals 1 due to
vol(CP(K)) = vol(C"*(K)). (177)

This is a formal consequence of the duality operator being an orthogonal
isomorphism from C?(K) to C"?(K) (i.e. (o, ey = oy o) for all

a, o € C”"(K)). This implies that, formally,

11742)

7} =S 4y i e ST (178)

Thus we see that combinatorial torsion can also be considered as a “volume
ratio anomaly” in an analogous way to analytic torsion.
Finally, in the n even case it is straightforward to find a combinatorial ana-

logue of the formal relation (166) — we leave this to the reader.



IV. Absence of Cross—Confinement for
Dynamically Generated Multi—Chern—Simons

Theories

17 Introduction

In a recent paper Cornalba et al. [47] have proposed a novel topological way
of confining charged particles. The method uses the special properties of
U(1) x U(1) Chern Simons gauge theory, interacting with external sources
in two spatial dimensions, with a scalar Higgs field providing condensates.
The idea of the approach is to note that, when charge/flux constraints of a
certain type are not satisfied, the fall off of the Higgs fields at infinity will
not be fast enough and will lead to configurations with infinite energy; hence,
such configurations are confined. The analysis is based on number-theoretic
properties of the couplings and charges and shows the intriguing possibility
for confinement even for integral charge particles. The confinement mecha-
nism is topological in origin.

A Chern-Simons term of the form considered in [47] can be dynamically gen-
erated as the parity-breaking part of the low-momentum region of the effec-
tive action of a three-dimensional U(1) x ... x U(1) Maxwell gauge filed the-

ory with fermions, after integrating out the fermionic degrees of freedom [18].
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Indeed, we carry out this procedure for the system at non-zero temperature.
The effective action, obtained by us, following the approach of [18] has the
correct temperature dependence for the multiple U(1) Chern-Simons term
and vields in its zero-temperature limit a multiple Chern—Simons term of the
form considered in [47], [48], [49].

Such multiple U(1) gauge theories have been considered before, for ex-
ample: in the study of spontaneously broken abelian Chern-Simons theo-
ries [48], [49]; in the study of two-dimensional superconductivity without
parity violation [50].

Our original motivation was to investigate if the mechanism for cross—
confinement, proposed in [47], continues to hold for the system with a tem-
perature slightly deviated from zero and if confinement is lost for high tem-
perature with the system still in the Higgs phase.

Surprisingly, with this dynamically generated parity-breaking term, the ar-
guments of Cornalba et al. [47] do not hold, namely, the proposed scheme
of confinement is not possible. This result is valid, as we show, for zero
and non-zero temperatures. In this model it is not possible to eliminate the
screening of the long range Coulomb interactions. We claim that, if confine-
ment occurs, it happens when the broken U(1) x ... x U(1) gauge symmetry
is restored in at least one of the directions of the gauge group.

By the standard Higgs mechanism, the gauge group is spontaneously broken
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down to a product of the cyclic groups Z, x ... x Z,. This residual symme-
try represents the non-trivial holonomy of the Goldstone boson. The photon
fields A}, 7 = 1,..., N now acquire masses by their coupling to the Gold-
stone bosons. In the broken Higgs phase the Higgs currents are proportional
in magnitude to the massive vector fields and screen the Coulomb interaction
and we are left with purely quantum Aharonov-Bohm interactions [48], [49].
In this phase, at temperature well below the critical, all conserved charges can
reside in the zero-momentum mode due to the bosonic character of the parti-
cles. When the temperature increases, some of the charges get excited out of
the condensate and at sufficiently high temperature the condensate becomes
thermally disordered and the symmetry is restored. When this happens the
charges introduced by the matter currents will not be screened and the en-
ergy of the Coulomb field will logarithmically diverge with distance (in two

spatial dimensions) and this will lead to confinement.

18 Spontaneous Symmetry Breaking

In this section we will briefly describe, following [51], the physics of a phe-
nomenon known as Spontaneous Symmetry Breaking. Consider a system,
which has a certain stable symmetric configuration. Say, the temperature

(this choice is motivated by our further analysis) is such a parameter in this

=3

=~



theory, that in a certain low temperature range this symmetric configuration
persists. Above some critical value of the temperature, this symmetric con-
figuration becomes unstable and the new ground state is no longer symmetric
(as it was for lower values of the temperature). In classical field theory this
corresponds to a global symmetry of the Lagrangian (it is invariant under a
symmetry group (), with ground state not obeying this symetry (it is in-
variant under a subgroup H of the group ). This leads to the appearance
of massless particles (called Goldstone particles). These particles are not
necessarily observable. The bigger the subroup H (i.e. the less degenerate
the vacuum), the smaller the number of the Goldstone particles. Actually,
the number of the Goldstone particles is equal to the dimension of the coset
G /g and does not depend on the representation of G and on the form of
the potentail term. The Goldstone particles could be bosons or fermions (in
certain supersymmetric theories). As the number of the degrees of freedom
in the theory is preserved, the appearance of Goldstone particles leads to
disappearance of some of the original particles. If we start off with scalar
fields (massless or massive — each have one degree of freedom), then the
number of the surviving scalar fields together with the Goldstone particles
equals the original number of scalar fields.

Upon quantization, there are some subtleties, but in general, the ideas ex-
tend easily from the classical case.
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It is very interesting to consider the case when the symmetry is local (gauge
symmetry). This phenomenon is known as Higgs mechanism. When talking
about scalar fields and local symmetries, gauge fields A, should be introduced
in order to guarantee the invariance of the Lagrangian under this gauge sym-
metry. These gauge fields enter via the covariant derivatives of the scalar
fields. A gauge-invariant kinetic term F,, F** does no harm to the gauge-
invariance of the Lagrangian and can also be added. The photons, introduced
by A,, have two degrees of freedom (each) and are d priori massless. As a
result of the Spontaneous Symmetry Breaking, the Goldstone bosons “eat”
the massless photon and this amounts to the appearance of massive photon
fields and disappearance of some of the original scalar fields, necessary to
produce Goldstone bosons, the Goldstone bosons themselves and some of
the massless photons. What counts in this mechanism is not the preserva-
tion of the number of particles, but the number of the degrees of freedom (a
massive photon has three degrees of freedom).

As we have mentioned before, the Spontaneous Symmetry Breaking mech-

anism is another way of endowing particles with masses (cf. topologically

massive gauge theories) and these two known mechanisms can work together.



19 Finite Temperature Field Theory
The partition function of a statistical system is:
20y =sTre i (179)

where [ is the inverse of the equilibrium temperature (/3 = ) and H is

L
kT
the ensemble Hamiltonian. The trace is taken over some complete basis.
Generally, this partition function cannot be evaluated exactly. Matsubara
formalism [52] in Temperature Field Theory shows how to perturbatively
calculate this partition function. We would like to give, following [53], a

short introduction to one of the reincarnations of Matsubara formalism —

the path integral approach. In 241 dimensions the action is:

Sle) = /dt /'(12:1:6(99), (180)

where L(p) is the Lagrangian density and ¢ is the quantum field. Let us

identify
el s (181)

that is, let us limit the time integration to integration over a finite inter-
val. The time dependence is called temperature dependence. The partition

function is then given by:

Z(B) = Tre P = /Dcpe‘sff, (182)



where S, is the Euclidean action. To make the propagator dependent non-
trivially on the tempreature, one should introduce (anti) periodic boundary
conditions for the fundamental fields of the theory. Since the fields are de-
fined only within a finite time interval, we can Fourier expand them over a
set of discrete, or Matsubara, frequencies w. = ’;—,’r, wiheneln —H0F =1k =D
For boson fields one should take only the even frequencies and for fermion
fileds — only the odd ones. Since the remaining spatial coordinates are still
continuous, it is now easy to calculate the partition function using diagra-
matic methods, similar to those in zero temperature quantum field theory
(see [53] and the references therein). The only difference would be in the fact

that the propagator has all the temperature dependence in it.

20 Induced Parity—Breaking Term at Finite

Temperature

Unless the co-efficient of the Chern-Simons term is quantized, the Chern—
Simons term is not invariant under large gauge transformations, that is,
transformations with non-zero winding number. At finite temperature, when
the euclidean time (temperature) is compactified, we have non-trivial S* ge-

ometry and the quantization law of the Chern-Simons co-efficient plays an
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important role. Gauge field theories with charged fermions can be made
gauge-invariant under both small and large gauge transformations at any
temperatures (by (-regularization of the fermionic determinant). The price
for that is the appearance of parity anomaly, in the form of the Chern-Simons
term, after integrating out the fermionic degrees of freedom [18]. At zero
temperature the Chern-Simons term enters with a quantized co-efficient, so
there are no problems with large gauge invariance. At non-zero temperature
it was firstly believed that the Chern Simons co-efficient remains unchanged
(with this resulting in preservation of the gauge invariance). However, this
co-efficient turns out to be a smooth function of the temperature and thus
one might expect a gauge anomaly appearing (as this part of the action will
no longer be invariant under large gauge transformations). In [18] it is shown
that, for both the abelian and non-abelian cases, although the perturbative
expansion leads to a non-quantized temperature-dependent Chern-Simons
co-efficient, the whole action is still invariant under large gauge transforma-
tions — there is no clash between temperature dependence and gauge invari-
ance — the violation of the gauge invariance by the Chern-Simons term is
compensated by non-local higher order terms in the perturbative expansion.
In the next section we will briefly describe a confinement mechanism, pro-
posed by Cornalba et al. [47], which involves a p* scalar field theory coupled
to a Chern Simons term, and in the section following this one we will in-
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corporate massive fermions instead of this Chern—-Simons term in order to
investigate the possibilities for confinement at any temperature, after dynam-
ically generating a Chern—Simons term (when integrating out the fermionic

degrees of freeedom).

21 Cross—Confinement in

Multi—Chern—Simons Theories

Cornalba et al. [47] proposed a classical mechanism of confinement in 241
dimensions based on number-theoretic properties of the charges and the cur-
rents involved in the model. This possibility for confinement in two spatial di-
mensions is the following [47]: the Coulomb field of a charged particle decays
as 1/r and the field energy diverges logarithmically at large distances. The
proposed mechanism in its simplest form goes as follows [47]: a U(1),xU(1),
gauge theory with off-diagonal Chern-Simons term is considered. As a re-
sult, an electric charge with respect to one gauge group induces a magnetic
flux with respect to the other. If we have a condensed scalar field, charged
with respect to gauge group U(1),, it will quantize the U(1), flux. If the
values of this quantized flux are not in accordance to the value, “desired”

by the electric charge, then this electric charge will be confined. Otherwise,
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the Coulomb interaction will be screened and the electric charge will not be
confined. The general case of Chern-Siomns coupling (as 2 x 2 and 3 x 3
matrices with arbitrary entries) is also considered and the conditions for con-
finement are given after similar (slightly more complicated) considerations.
In the following section we will show that this mechanism does not work
if the Chern-Simons term is dynamically generated in the sense discussed

above.

22 Absence of Cross—Confinement for
Dynamically Generated

Multi—Chern—Simons Theories

We will first determine the parity-breaking part of the effective action for
U(1l) x...x U(1) Maxwell gauge field theory coupled to massive fermions
and ¢* scalar field theory in 3 dimensions at finite temperature. Contact with
the multiple Chern-Simons term, considered in [47], [48], [49], is made by tak-
ing the zero-temperature limit. The effective action for the low-momentum

region of the theory is:
P

N 3
e T(AM.My) _ /HDI/‘)A, Dy, D oxp{— /dT i {Z (’L/_)klpf.?/«’k 4 j(“A“”) -
O | 0

k=1

84



+ (D.d)(D"9)" — m*pg" — /\(¢¢*)2] } (183)

where P/ = @ +iQ),, A" + M, are the fermionic covariant derivatives with
(e g =1 N being the matrix of the fermionic charges with respect
to the NV gauge groups, D, = 0, +1q, A",k = 1,..., N are the covariant
derivatives for the scalar field with ¢, being the charge of the scalar field

1

NPT, i e AT 2 :
" gauge group. In this action 8 = £ is the inverse

with respect to the i
temperature and Dirac matrices are in the representation v, = o,. We have
also introduced external currents coupled to the gauge fields.

We shall consider first the parity-breaking part of the fermionic part of the
action and at this stage the scalar field is only a spectator.

For this purpose we will follow the approach of Fosco et al. [18].

The fermionic fields obey antiperiodic boundary conditions, while the gauge
fields are periodic. The considered class of configurations for the gauge fields

15"
Ag“ = A (n), 4(1“ — A‘lf',z’(:l:), o=l N (184)

There is a family of gauge transformation parameters, which allow us to
gauge the time-components A’ (7) to the constants a” [18]. This makes the
Dirac operator invariant under translations in the time coordinate (as the
dependence on 7 comes solely from the A{" fields) and therefore we could
Fourier expand 1, and ¢, over the Matsubara modes. As we mentioned
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above, the fermion fields are expanded over the odd frequencies:

[l o
S % Z T ) (185)
/‘ n=-—oo
; 1 & | s
il )= 3 Z ol (186)
where w, = (2n + l)%. For a single U(1) theory with one fermion field and

without scalars we have [18]:
: g
det( P +iefd+ M) = / DYDY exp|- / dr / d*x P (P +ie A+ M)y
0

e /H Dy, (2) Dy, (z) oxp /d P

n=-—0oo n=—oo

x (d+ M +in(w+ eAa))wn(a:)]

= et d + p, e e, (187)

n=-—o00

where A, = /,/ A,(r)dr, d = ~,(0; + ieA;) is the Dirac operator in

P = \/M'-’—|~(w+e,43)2 and @, &=

the remaining spatial coordinates,

autg,(“’*‘ wieds ) It is shown in [18] that:

oo

det(P+ied+M) = [[ det(f+M+iv(w+ed,))

n=-—oo

- ﬁ J.(A, M) det(d+ p,), (188)

n=-—oo

where J, (A, M) is the anomalous Fujikawa jacobian [54]:
1 ie¢1l D)
J(A,0) = exp[——%—/d z 640, A). (189)

The parity-odd part of the action is then given by [18]:

o0

PR, S N6 0 R % S 4 / 1 €,,0, A,

n=-—00 n=-—0o
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: 8
ie M BIM e 5
=5 ] ;11-(~t,g[th< |2 |> tg<§ -O/dT 43(7'))} / d’z €;,0; A, (190)

and

,ll.iil(l)rmm == m Sos- (191)

In [18] the sumation was performed in the following way:

2n+1 T

n=-—oo y

+ e, M
Zdutg(w ; ) ]

n=-—0oo

where = =¢34, and y = |M| are dimensionless parameters. Then we

have:
= A = 2n + 1
;ﬁ( ar('tg(w J;‘; ' ) |M| lz_:w /(lu, — arc tg[—( i J)W il
WL a3 Y
= e il ; 2 (198
M| J ik ,,:Z_oo ¥ + [(2n+ )7 + u)? e
The summation is done [18] with the formula:
i 1 e w[cotg(mzx,) — COtg(ﬂ'.’L})]' (194)
L= () - 2y T, — X,

Following similar steps, one finds that the parity-odd bit of the fermion part

of our effective action is given by:

s N +oo
(ul Z Z qsflk‘)/elkajalAﬁi)d?x’ (195)
=1 n=-0c0
.a(J) o .
where ¢*) = arvtg(‘i’%&) and the Matsubara frequenies w, are given

above.



Performing the summation we get that for U(1) x ... x U(1) gauge group

the parity-odd part of the action is:

B
; : Pl BM, 1 :
e Lodd — / Do (»xp{—z— > arctg [th« g A) tg<_2—-0/ Q,\,JA‘(%”(T)CIZT)]

kg n=1

m

X flverkrzaI‘4(71)d23f

+/  dr /[ (D.¢)(D°8)* — m2po* — A(9g")? +J"“A<*'>]d'-’a,-}.

(196)

As the temperature T approaches 0 (that is, # — oo) this reduces to
U(1) x...x U(1) Chern Simons gauge theory.

We will use now the effective parity -odd temperature dependent action (with
the induced U(1) x ... x U(1) parity breaking term) to re-examine the con-
finement argument of Cornalba et al. [47]. First of all, let us perform the
integration (using Stokes’ theorem) of the gauge fields over the spatial co-

ordinates. This gives the relation with the magnetic fluxes ®,:

B
; ; o M, 1 :
e Vodd — /D(/) (*xp{—é—l— Z arctg[th(ﬂ2 A) tg(é/ijAg”(T)dT)}anQ)ﬂ

k,j,n=1

g 'O/dT/.I:(DnQS)(anS)* - mipd* — Npd*)® + j(k)A(k)]d2(E}, (197)

The equations of motion, obtained by varying the action with respect to the

magnetic fields, are:

7 oY th(%) ka Q/\'n P,
3

/ - . € ﬁ m
AT s ('os'-’<% I Aﬁ'")dT) + thz(ﬁ—g{fi) suﬁ(% o h )dT)
0

0
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—q /((/)DR(/)* — ¢"Dp)d’r + /p(’)d2:17 = /a,F””3 din,

(198)

"are the charge densities. Here we have included explicitely

where p¥ = j{
the contribution of the Maxwell term F!'F®* . We ignore temperature
dependent terms which come from O(A*) terms in the effective action. These
are of higher order (~ @) in the fermionic chagres. The Coulomb charges
on the right hand side vanish because all U(1) fields are massive.

Denote by u the integral over the third component of the conserved Nother

current:  w = /(d)D;,(/)* —.0" Dedld?s and by CW = /p(”d’:r, the total

external charge. So, we have:

u® =C — ugq, (199)
, q, (G4
whisre Bi="]5 L s g I S
Dy dn (0
7 o t'h QA—[& Q : Q N
iy, = ZI— 5 (434) Qu @ .(200)

B 3 o B o
T comt (3] QuuAdr) + th (48) sine (4 [ Qu, A dr )
0 0
As in [47] there is another condition which must be satisfied by the magnetic

fluxes. The Higgs field ¢ should be completely condensed, i.e. ¢(x) = ve”™),
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where o(x) is the Goldstone boson field (the mass and the coupling constants
of the scalar field are temperature -dependent). In order that this holds we
have to require that the covariant derivative of the scalar field vanishes. After

integration we get:
27l = 'q®;+... P = g P, (201)

where 27l is the non-trivial holonomy of the Goldstone boson (reflecting a
topological property of the Higgs field). Combining the two conditions (7)

and (9) for the fluxes we get:

anl =0l gD, (202)

Following the analysis of [47] we identify u as a continuous parameter, rep-
resenting the ability of the condensate to screen the electric charge.
The matrix p can be written as u = 'Q F(8) Q, where F(f3) is a diagonal

matrix with entries:

b, th( 23
Fij(B) = e 3 ; 3 :
cost (4] QuuAS™dr) + th? (24 ) s (£  Qu,ASdr
(203)
As F(f3) is diagonal we can always write p in the form:
p="Q(T) Q(T), (204)

90



where Q.,..(T) = F?(68) Q

mn mj / In:

Let us now try to eliminate the screening in (10) by inverting the matrix p.

We get that if the determinant of y is not zero and if
g e W ¢ (205)

then the screening would be eliminated (the condition ‘¢ p~'¢ = 0 is the
condition for confinement, proposed by Cornalba et al. [47]. According to
their analysis, if the determinant of y vanishes, then ' should be interpreted
as the transposed matrix of co-factors).

Assuming that the determinant of y is not zero, we can re-write this as:

(Q(1)a) Q(T)g = o, (206)

where Q(T) is the matrix of co-factors. This equation shows that the vec-
tor Q(T)q is orthogonal to itself (“orthogonal” with respect to the matrix

multiplication of column vectors) and, therefore, this is the null vector:
Qg = 0 (207)

This is an equation for the values of the boson field charges, which would
eliminate the screening mechanism. As we see, we can have a non-trivial so-
lution if, and only if, det@ = 0, which contradicts to our initial assumption
(detp # 0). Therefore, we cannot eliminate the screening. Otherwise, this
theory would be inconsistent with the induced parity-breaking term. This
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argument is valid for all values of the temperature.

Intuitively, one can expect that if condition (201) is violated, after elimi-
nation of screening, there would be currents which would not fall off faster
than 1/r at infinity and the resulting long-range forces will lead to diverging
energies. We argue that condition (201) can never be violated — this condi-
tion represents the fact that we are left with a residual symmetry after the
spontaneous symmetry breakdown. If this condition does not hold, it would
mean that the symmetry is restored. This, on its turn, will lead to diverging
energy straight away, but not in the broken Higgs phase.

We conclude that confinement is not possible in the Higgs phase in the pres-
ence of the dynamically generated parity-breaking term (which coincides
with Chern -Simons term in zero-temperature limit). If there are configura-
tions with infinte energy, they must necessarily be outside the broken Higgs

phase — where the gauge symmetry is restored.

92



V. Operator Formalism for Chern—Simons

Theories

23 Introduction

Take a three-dimensional manifold M, which is a connected sum of two pieces
M, and M,. The boundaries of each of the pieces are the same, just the ori-
entations are opposite and the corresponding Hilbert spaces are canonically
dual to each other. The path integral in each of the ingredients determines
vectors in the Hilbert spaces and, “according to the general ideas of quantum
field theory”, Witten introduces [12] the partition function of the theory as

the product
Z(M) = (x, ¥), (208)

where \ belongs to the Hilbert space associated with the boundary of M,
and v belongs to the Hilbert space associated with the boundary of M,. The
essential part is to construct the states y and .

We will show how this idea is applied to Chern-Simons theory, following the
work of Labastida and Ramallo [55] and of Bos and Nair [56].

We will start with an oriented compact three-dimensional surface without

boundary M and a U(1) bundle E with connection A,. Abelian Chern-
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Simons theory is given by:
Zi /’[DA,,] RS () (209)
where
1 n
S /A/\dA. (210)
i

The path integral is over the gauge orbits and £ is an arbitrary integer guar-
anteeing invariance with respect to gauge transformations.

The choice of vectors y and v in [55] is as follows:

W A /[DA,‘] exp[ﬂsmy)-—k— / $a kel o ()
M; 2 27‘-(‘)1\4,
' | AP k 2
DA & = M/ [DA,] (n\p[—Q—S(A“) o Ew/ d aAzAg]. (212)

Here a holomorphic representation is chosen: A, = %(A1 —1A,) is fixed on
OM, and A; = %(Al +1A,) is fixed on OM,. A, is taken to be orthogonal
to the boundary and ¢ are the local coordinates on the Riemann surface
¥ = aM, = —aM,.

The partition function is then [55]:

20M) = (M(As), (A} = [PADad 2"

M

We have:

) = 3(4,) (214)



and [56]:

PO R e %(5(@—(4)') 5@ — &) (215)
Therefore
TR0,
A e
P k 0A 120

We will now determine the vectors W(A;) and ®(A,) using the symmetries of
the model. Under a gauge transformation (say on M,) A, — A, +¢7'0,9,

the vector W(A;) transforms as [55]:

V(4:) — exp|—k(1(g) + (u, 9) )] ¥(4s), (217)
where
1 g s
v(g) = o~ /d“rf g0 g9 0sg (218)
T
J
and
e i
(u,8) = = [PohsBigg (219)
z

The gauge transformations are classified by the winding number around
non-contractible loops in the manifold. In [55] it is assumed that M, is
a solid ball with ¢ handles for which a canonical set of closed contours
{ow, B, | 4,5 = 1,..., g} is chosen. Let w, ='w,(2)dz be the 'basis for the

Qy

space of holomorphic one-forms, defined via /wj = 0,; and let 7; = /wj.
Bi
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We also have /dg.: w;(2) w;(2) = —2i Im7; (the period matrix 7 is a sym-
metric g X g matrix with positive definite imaginary part). We can therefore

parametrize the gauge fields [55]:
Ay '=srluay " dilu ), (220)

where u is single-valued map connected to the identity map and

T oxp{ﬂ/w(z) (Im7)" ¢ — ma(Im7)™" /w(z)] (221)
We can therefore choose [55]:

U (A

r

Y= i e "M (222)

I8

where £ is some a-independent constant, y(u) is defined above and the set of

functions {¢,(a) | p=1,...,k9} is given by:

)= e'7e-(Imn)7".a @[pék (kalkT). (223)

Here C—)[”(/]k](ka|k7’) is the Jacobi theta-function with characteristics (for a
deep analysis see [57]). As we see, we got not one, but a whole basis of vectors

U, (A;) — these are the Wilson line operators around non-contractible cycles.
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24 On the Chern—Simons Parameter £ in
Z(M) = [[DA] exp(ik’/A A dA)

We will now show that the parameter £ must be even.
It is enough to consider:

A; = u]'0Ozu,. (224)

Thus, under gauge transformation, we have:
g

A; — A = uw'0:u, + g '0g. (225)

Therefore [55]:
B(A;) = e—rmlm) (226)
U(AD) = e Tkltag) (227)

where v,,(u,) should be such that any single-valued map g must satisfy

You(tag) = Yaulwa) — K(A9) + (e 9))- (228)

Under large gauge transformations with a map which winds n, times around

B; and m; times around «; [55]:

>
2z

g = exp|—m(n+m7)(Im7)™" /u}(z) + 7

w(z) (Im7)™" (n + 7m)| (229)

\M

we have:

“u -—> /11/u+n+rm = lu’a (] (230)

2



and

km
exp[—“,a_,k(’u,,+,,+,,”)] = exp[T(271,(11117)’1(1,+n(Ian)‘ln+71,(Im”r)‘1m7

+ 2m7(Im7)'a + m7(Im7)"'n

+ 71),7”(1111T)’1m7')] exp[—'y%(ua)]. (231)

As far as the behaviour of ¢, (a) under large gauge transformations, we have:

km }

(‘xp[j a(Im7)™'a

k
- (‘xp[‘—)ﬂ— ('mT(hnT)"‘(z, +mr(Im7)"'n + mT(ImT)‘lmT)] (232)

and [57]:

(—)[g](a—knh) = (—)[g](a\r), (233)

(—)[g] (a+mr|r) = exp(—iwmrm - 27rima) @[g] (alr). (234)

In order to match the transformation law (231) to the transformation laws
(232), (233) and (234), we have to make sure that exp(%’r imn) matches to
exp(—%’r i'm,?z)‘ That is, we have to make sure that for arbitrary integers m

and n we have:
exp(lmz’mn) =], (235)

Thus the Chern-Simons parameter must be even.
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