LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Self-Organizing Resource Location
and Discovery

Diego Doval
Department of Computer Science
Trinity College, Dublin

A thesis submitted to the University of Dublin, Trinity College,
in fulfillment of the requirements for the degree of
Doctor of Philosophy (Computer Science)

September 30, 2003

TRINITY COLLEGE
0 7 FEB 2005

P a—

LIBRARY DUBLIN

/

Declaration

I, the undersigned, declare that this work has not previously been sub-
mitted at this or any other University, and that, unless otherwise stated, it

is entirely my own work.

Permission to Lend and/or Copy

Trinity College Library may lend or copy this thesis on request.

Signed: WA{/ (Diego Doval)

Date: November 23, 2004

A mis padres, Luis y Ana Maria,

por todo lo que no se puede expresar con palabras.

Acknowledgements

When I begun my work at Trinity College at the end of September 2001
I was not only starting a degree, I had also just arrived to a new country.
My family, friends and colleagues all provided support and help, making this
work possible.

I would like to thank, first, my supervisor, Prof. Donal O’Mahony. Donal
provided support and guidance without constraining my work, always giving
me freedom to advance in the direction I thought best while helping keep
my feet (relatively) close to the ground. I am also grateful for his assistance
even in what were definitely non-research tasks, from finding a room to rent
before I arrived in Dublin, to giving me advice on how to sort out my taxes.

Dr. Linda Doyle and Dr. Hitesh Tewari helped in many ways through
encouragement, comments on my work, and proof-reading of papers as well
as of this thesis. I would also like to acknowledge the help, feedback and ideas
of the members of the Networks and Telecommunications Research Group,
in particular Juan Flynn, Stephen Toner, Philip Mackenzie, Tim Forde and
Derek Greene for their work on environments and applications that 1 used
cither directly or indirectly during the course of this work. They, and others
like Brian Lehane and Patroklos Argyroudis were always willing to talk about
all sorts of topics and helped me understand better some areas of networking
that were outside my main focus.

I also want to thank my thesis examiners, Dr. Simon Dobson and Dr.
Seif Haridi, for their comments and suggestions.

Beyond the immediate environment of College, I'd like to thank Dr.
Telma Caputti, who provided unwavering support throughout the years in
pursuing my ideas. She also proof-read the Mathematics sections of this
work, giving me many good suggestions for improving the text and the pre-
sentation.

Paul Kenny, my friend and business partner, gave me feedback and sug-

gestions, along with constant encouragement.

My move to Ireland from the US was made infinitely easier with the
help of Dylan Parker, Tracey Mellor, Martin Traverso, Tanna Drapkin, Vic-
tor Calo and Natacha Poggio. They helped me pack, organize, and move.
Through it all Marcelo Cominguez, Sergio Mirabelli and Fernando Koch pro-
vided good conversation and advice, regardless of the distance between us.

Martin helped me with other aspects of the move, and in many other
ways since then. He also proof-read this thesis, providing insights, correcting
typos and asking probing questions that helped me improve my work.

Tracey and Dylan went above and beyond the call of duty by not only
helping me with a myriad details (and those that were more than “details” —
such as taking care of my furniture!), but also spending the next two years
listening patiently to my rants regularly over the phone at all hours, day or
night. I am amazed at all they’ve done for me, and I am deeply grateful for
it.

I would also like to express my gratitude to Chris Vosnidis, who has
always been there, and has helped me through more than one rough patch
in these last two years.

I am lucky to count them as friends.

Finally, my family, though not here with me, was always present. My
parents, Luis and Ana Maria, supported me at every step in every way they
could. I would not be where I am today without their help, and this work is
dedicated to them as a small token of my appreciation. My brother Sergio
and my sister Laura have done more for me than they realize, through big

and small everyday things— Gracias!

Abstract

Networked applications were originally centered around backbone inter-
host communication. Over time, communications moved to a client-server
model, where inter-host communication was used mainly for routing pur-
poses. As network nodes became more powerful and mobile, traffic and
usage of networked applications has increasingly moved towards the edge
of the network, where node mobility and changes in topology and network
properties are the norm rather than the exception.

Distributed self-organizing systems, where every node in the network is
the functional equivalent of any other, have recently seen renewed interest due
to two important developments. First, the emergence on the Internet of peer-
to-peer networks to exchange data has provided clear proof that large-scale
deployments of these types of networks provide reliable solutions. Second,
the growing need to support highly dynamic network topologies, in particular
mobile ad hoc networks, has underscored the design limits of current central-
ized systems, in many cases creating unwieldy or inadequate infrastructure
to support these these new types of networks.

Resource Location and Discovery (RLD) is a key, yet seldom-noticed,
building block for networked systems. For all its importance, comparatively
little research has been done to systematically improve RLD systems and
protocols that adapt well to different types of network conditions. As a
result, the most widely used RLD systems today (e.g., the Internet’s DNS
system) have evolved in ad hoc fashion, mainly through IETF Request For
Comments (RFC) documents, and so require increasingly complex and un-
wieldy solutions to adapt to the growing variety of usage modes, topologies,
and scalability requirements found in today’s networked environments.

Current large-scale systems rely on centralized, hierarchical name resolu-

tion and resource location services that are not well-suited to quick updates

and changes in topology. The increasingly ad hoc nature of networks in
general and of the Internet in particular is making it difficult to interact con-
sistently with these RLD services, which in some cases were designed twenty
years ago for a hard-wired Internet of a few thousand nodes.

Ideally, a resource location and discovery system for today’s networked
environments must be able to adapt to an evolving network topology; it
should maintain correct resource location even when confronted with fast
topological changes; and it should support work in an ad hoc environment,
where no central server is available and the network can have a short lifetime.
Neediess to say, such a service should also be robust and scalable.

This thesis addresses the problem of generic, network-independent re-
source location and discovery through a system, Manifold, based on two
peer-to-peer self-organizing protocols that fulfil the requirements for generic
RLD services. Our Manifold design is completely distributed and highly
scalable, providing local discovery of resources as well as global location of
resources independent of the underlying network transport or topology. The
self-organizing properties of the system simplify deployment and maintenance
of RLD services by eliminating dependence on expensive, centrally managed
and maintained servers.

As described, Manifold could eventually replace today’s centralized, static
RLD infrastructure with one that is sclf-organizing, scalable, reliable, and
well-adapted to the requirements of modern networked applications and sys-

tems.

Contents

1 Introduction 9
1.1 Background and Requirements 10
1.2 Manifold: Generic Self-Organizing RLD 11
1.3 Summaryof Goals « . ¢ vt v i e e e e e e e 12
1.4 Organization of thiswork 13

2 Background and Related Work 14
2.1 The Evolution of Networked Systems 15

2.1.1 The Origins of Centralized Infrastructure 15
2.1.2 Edge Networks and RLD 174
2.2 Typesiof BRI .z o o c o b 5 5 5 50 s e 66w 6 s 56 19
2.2.1 Name 1esolitionc = » - & 5 = 5 & & & 5@ 5 2 & = 6@ i 4 20
2.2.2 Directory Serviceso 20
223 SearchServices vt 20
2.24 HSimilarities: . - ¢ v 6w 9 s 5. s B e s S e S & S 21
23 VUBapp PBIIGEOE . « v o 5 s ¢ s s & % s S A s g & 58 & o BE W 21
23] Lompliiesanh « - c oo s« s o n o ws waws xama a 21
2.3.2 Global/exact 22
233 Gbal/inexact . . o« o 2 cx b ss e s ms ns e s s 22
2.4 Generic RLD: Requirements 23
2.4.1 Correct and Time-Bounded 23
2.4.2 Coexist with Legacy Systems 24

243 Sealabiityi: i 5 = 5 i iees she B s Bl w a S B E 24
2.4.4 Support mobility and dynamic topologies 24
2.4.5 Support low-resources 25
246 Support DiSCOVEry . .. i i e e e e e e e s 25
e S N T O eCUTI Y s ARSI SRR R MR e 25
2.5 RLD and RLD-based Systems: State of the Art 26
5 T D o W T i I A 27
2.5.2 DHCP and NAT 30
203 IHB. . -« 40 v o s b b m e s E ok e 32
1 MR T AT VR TR I 33
200 Mo, o5 s < pams s B op e R R CREE B P w 35
256 TRIAD 36
T N . O U 38
2.5.8 State of the Art: Implications 40
2.6 The Manifold Algorithms: Evolution, and Related Work . . . 41
2.7 Introduction to P2P systemso oo 41
2.7.1 Bootstrapping Self-Organizing P2P 43
2.8 TTL-based P2P Systems 45
28.1 Gnutella 47
282 Hréenel. « - - 5 o v = 58 4k 546 & 5w EEE S v S A5 3 50
2.9 Overlay Networks 52
29.1 Chord 58
N - T U I R 61
2:9.3 ‘Oceanstore and TEpestIy « o & =« v = & » w « 9 5 15 & 5 64
2.9.4 Other Systems 65
2.10 Comparison of P2P Systems 70
Manifold, an Overview 73
3.l IRGEGAUECHION - « = + 41 = 61 % 6 5 % & 61 8 6 & & 5 B e 73
3.2 Resolving Inexact Queries: Manifold-b 74
3.3 Exact Search in a Global Scale: Manifold-g 74

Gl Dol v om ek s s & n R e i/

3.4.1 Algorithm Use and Interaction 78
Manifold-b 79
4] INiToduetione = - ¢ « = 5 5 % o a8 S s AR 8 L m Rk 79
A2 The Algorithin. . x o o 5 @ 5 4 2 = S & @ & 5 & kel o B0 e 80 3 79

A0, INOAeTBIN - - » o 4 v @ w5 5 0w ena s el o i Lo 80

4.22 Nodeleave : . o « 5w o com s mmm s o 5 o @ e 5w 80

423 KeySearch . . « . o« 59 ¢ o s b was o5 m s s oo 80

4.2.4 Key Insert, Key Remove 82
4.3 Dealing with Node Failure 83
A4 ANAYSIS & « o v 5 v mos s E e s A R a s E e B E e e 83
4.5 Summary 87
Manifold-g 89
5.1 Restating the Problemof Search 89
5.2 A Short Descriptioni. = & & &8 & & w5 & & 5 3w a0 = & s Ew ek S 90

5.2.1 The Neighbor Function, 91

5.2.2 Space Defined by the Neighbor Function 93
5.3 Search in a Complete Hypercube 000 0. 94
54 ANEXEMPIE . . v v v v 5 0 v 0 v oo g e s ws s s B s 97
5.5 Operations in an Incomplete Hypercube 97
5.6 The Shadow Mapping: Definition 99
5.7 The Space-Complete Join Function 101
5.8 Building a network: A step-by-step example 103
5.9 Search in an Incomplete Hypercube 109
5.10 Performance in an Incomplete Hypercube 111
511 Analysiso 112
512 ISUIMIMALY. = 5 2 &6 &2 48 5 5 2 5@ 8@ & 56 8@ =@ me &8s 114

6.1
6.2
6.3

6.4

71
7.2

7.3

74

7.5

6 Manifold-g: Extensions and Improvements

BP0 L STl O W e e e e e e & s
T T R L T R
Search In a Meta-Hypercube
6.3.1 Increased Number of Connections
613921 RArtItIONINDE sus a s & 1 ome e S vt irs B @ e B
6.3.3 Partitioning With Multiple Connections
6.3.4 Combining the Techniques
Adapting the Overlay Network to the Physical Topology

6.4.1 An Abstraction of Physical Distance
6.4.2 The Distance Function
6.4.3 The Distance-Based Algorithm
6.4.4 Distance and Network Adaptability

Manifold: An Implementation

Introductiono
Considerations for Mobile Ad Hoc Networks
7.2.1 Routingand Liocation - = - & = = 5 s 4 5 5 @ 5 5 =5 =
7.2.2 Scalability
253 SECUTITY 1 L o Pl b e e e S e e e
724 The NamMeSPace - = = = « » 5 & ¢ 5 5 5 & 55 & 5 5 58 & &
7.2.5 Prerequisites and assumptions L.
The Manifold Layer
731 A HighTievel View . .« - - = 65 s sd 2 885 o 28 5 3
102 MEBBABES . o = - o = & b e E & s s e
DN « = - <05 w6 us 0 ME R e e s S
7.4.1 Operations: Node Join
7.4.2 Operations: Node Leave
74.3 Operations: SEANCH .. - v o = s = s s & 56 & @ & & & 5
Closn/Flow DIREIBIA. - - « s s = s 5 56 s wwah os 66855
Implementation Resultso 00000

7.6

7.7 Applications 147

Conclusions and Future Work 149
8l ConcluSIONS s + 5 5 56 5 & 55 © 5 58 %% B wh o b 2 408 o0k 149
8.2 Summary of Contributions 150
8.3 Future Worko 151
Hypercubes: Theory and Properties 155
A.1 Definitions: the Boolean Space, and the Concept of Distance . 155

A.1.1 Initial Definitions 155

A.1.2 Hamming Distance 158

A.1.3 The Boolean Algebra as Hypercube 159

AdA String Uniqueness . . « « .« o o o« 5 ¢ o 5w 5 6 5 5 o 5 @ 159
Manifold Message Format 161
Bl Introduction . = « = 5 o 50 5@ a6 95 56 &8 8§ 5 96 55 858 28 161
B.2 Manifold-b Message Template 161
B.3 Manifold-g Message Template 162

(2]

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

4.1

4.2

A Sample DNS Query-Reply Cycle
Typical LDAP Configuration
A MobileIP Node in a Foreign Network
An node publishing its location to the i3 cloud
A node sending data through the i3 cloud
A Sample TTL-based P2P Network and Query
A Sample Lookup in a Small Gnutella Network

A Two Dimensional CAN After a Node Join
A Sample Lookup in a Two Dimensional CAN

Influence of the average number of neighbors on the network-
wide cycles necessary to resolve a request L L.
Influence of the average number of neighbors on messages

transferred

A Length-3 String Space Mapped into an Euclidean Space

with the Neighbor Function

5.2

5.3
5.4
9.5
5.6
5.7
0.8
2.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
2

A Sample Search for Length-3 Strings Viewed in an Euclidean

Incomplete Hypercube Example: Diagram Guide
Incomplete Hypercube Example: Initial Network
Incomplete Hypercube Example: First Node
Incomplete Hypercube Example: Second Node
Incomplete Hypercube Example: Third Node
Incomplete Hypercube Example: Fourth Node
Incomplete Hypercube Example: Fifth Node
Incomplete Hypercube Example: Sixth Node
Incomplete Hypercube Example: Seventh Node
Incomplete Hypercube Example: Eighth Node
Average and Maximum Path Lengths compared to their theo-

retical maximum on a Manifold-g network of increasing num-

bers of n nodes

A Graphical Representation of Partitioning
A Secarch Path in a Partitioned Space
Applying Partitioning Recursively
A Sample Physical Topology
A Two-Node Overlay Network
Node 1 Joins the Network
Node 4 Joins the Network
Optimized Overlay Topology

High Level Block Diagram of Manifold
Manifold Class/FlowDiagram

Chapter 1
Introduction

Resource location and discovery (RLD) is a key building block for networked
applications and systems, since it provides abstractions between names and
physical locations for machines, services, or people that correspond to that
name. For users, RLD abstracts a memorable or application-specific name
(such as www.ted.ie) from its physical network location, provides a way to
map from ecasy-to-remember names to machines, and a way to search for
services or machines according to specific query terms.

In essence, resource location creates a level of indirection, and therefore a
decoupling, between a resource! and its location. This decoupling can then
be used to solve one or more problems: mapping human-readable names to
machine names, obtaining related information, autoconfiguration, support-
ing mobility, load balancing, etc. Resource discovery, on the other hand,
facilitates search for resources that match certain characteristics, allowing

then to perform a location request or using the resulting data set directly.

'In the pages that follow, we will commonly refer to locating people, machines, and
software services or agents, usually interchangeably. When the term “resource” is used, it
will refer to locating/discovering items in general, and those three in particular. Similarly,
the term user of a given RLD service is usually understood to be a person, but in general
both software and people use RLD services regularly to perform different tasks. The term
user should therefore be understood to reference any system or person that could require
RLD service.

Today, we are faced with a multiplicity of application-specific RLD sys-
tems, some of them with self-organizing properties, most relying on central-
ized (though distributed) infrastructure to operate. Basic Internet services,
such as name resolution, remain implemented as static, hierarchical, central-
ized systems. Additionally, recent developments in networking have given rise
to heterogeneous environments where the current solutions fit awkwardly, or

not at all.

1.1 Background and Requirements

During the initial stages of this work, we studied both the major current
systems that perform RLD and the infrastructure on which they are based.

Our analysis of the evolution of networked systems and services clarified
the constraints that had driven previous developments, and it showed wide
applicability a generic solution would have. As a result of this analysis, we

derived general requirements that were common in all cases:

e Nodes are often mobile, making complete dependence on fixed infras-

tructure difficult or impossible.

e The network transport used can vary widely between implementations,

as can between fixed and mobile implementations.

e While current prototypes rarely exceed a few dozen nodes, it is expected
that in the next few years it will be possible to create Mobile Ad Hoc
Networks (MANETS) of size ranging from only a few nodes to several
hundred or even thousands, which places widely varying degrees of

scalability requirements on the protocols that must support them.

e Membership of the network is determined dynamically by location

rather than by a static or server-dependent configuration.

10

To measure the applicability of a solution we identified the main categories

of usage that would be given to the service, namely:

e [nexact search: to find resources or people that match certain values
in a query. This kind of search is relatively limited in reach, since the
user is looking for resources in their vicinity?. A typical example of this

would be looking for a printer in a conference location.

e Fract search: to find resources that might be or not in the vicinity,
and of which the user knows the full name. A typical example of this

would be accessing a given Internet website.

1.2 Manifold: Generic Self-Organizing RLD

The requirements and usage patterns expected of RLD allowed us to define
the elements that would be necessary for a generic solution. We focused on
designing a self-organizing system that used peer-to-peer (P2P) algorithms to
climinate dependencies from centralized infrastructure, as well as providing
a rcliable, scalable service.

Our solution is a hybrid system, Manifold, that incorporates two different

sclf-organizing P2P algorithms:

1. Manifold-b, or “Manifold-broadcast”, An algorithm that supports in-

exact searches of (typically local) resources, and

2. Manifold-g, or “Manifold-global”, An algorithm that supports exact

searches on a global scale, with extreme scalability and low overhead.

The first algorithm was an extension of initial work done exclusively
for MANETSs [18], while the second was an original development: a self-
organizing algorithm with properties that make it well-suited for resource-

location problems, including node control over its data, guaranteed results,

2As defined in terms of network topology

11

and predictable time-bounds. We characterized this algorithm mathemati-
cally and later related it to an emerging body of work generally identified
as Overlay Networks®. We compared Manifold-g with other overlay network
algorithms, noting in particular that, while guaranteeing similar scalability
and self-organization, they are not designed from the ground up to guarantee
data location (an important element since network nodes typically require
control over the location and availability of the data they publish).

Finally, we implemented Manifold for use in mobile ad hoc networks.
The implementation used the two algorithms according to the requests per-
formed: Manifold-b is invoked when an inexact query (local in nature) is
performed, while Manifold-g is invoked for exact queries (potentially global
in nature). Our implementation demonstrated the feasibility of the system
and is currently in use in the DAWN network (a MANET currently being
deployed throughout the Trinity College campus) providing RLD for various
experimental applications.

Manifold, then, can be used in any type of nctwork and will be able
to bridge them, providing the basis for generic, transport- and topology-
independent resource location and discovery in large-scale, globally intercon-

nected heterogeneous networks.

1.3 Summary of Goals
The goals for this work were threefold:

e 'To properly define requirements and usage patterns of RLD in heteroge-

neous network environments and wireless ad hoc networks in particular,

e To identify a set of algorithms that can provide resource location for
self-organizing networks in general and for wireless ad hoc networks in

particular. To quantify the limits of these algorithms and to relate them

3also often referred to as Distributed Hashtables, or DHTs

12

to the usage patterns that will define their performance in real-world

applications, and,

e To demonstrate the feasibility of the system by describing an imple-

mentation in a real-world wireless ad hoc network.

1.4 Organization of this work

There are two main elements to this work: the design of the service that
provides self-organizing RLD, and the algorithms that make it possible. The
sections proceed from the highest level of abstraction to the lowest, since
requirements for the service affect design decisions and requirements at the
algorithm level, and then work back up to a description of an implementation

of the system.

13

Chapter 2

Background and Related Work

Manifold includes two main elements: the service that provides generic self-
organizing RLD and the underlying algorithms that make the service possi-
ble. Through this chapter, we will discuss the background for each of those
elements. The analysis of the evolution and current state of the art of the
various components, as well as of the services themselves, presented in this
chapter, will allow us to derive requirements for a generic RLD service and
the usage patterns that will govern its interaction with other systems.

We will begin by outlining the evolution of networked systems from the
beginnings of the Internet to the present. This outline has two purposes.
First, it will show the environment in which current centralized services were
deployed and used, providing context for their evolution. Second, it will show
that self-organizing networks are an appropriate solution to the problem of
generic RLD, given the current development of networked systems, including

the Internet.

14

2.1 The Evolution of Networked Systems

2.1.1 The Origins of Centralized Infrastructure

The first networked systems, developed in the late 1960s, were designed to
connect hosts across great distances. This was a natural outcome of the usage
that existed at the time: powerful centralized machines accessed through
terminals. As a result, the early Arpanet routers (IMPs) were meant to
connect remote systems. However, almost immediately, as more machines
came online connected to the same IMP, researchers found that more and
more traffic was happening locally, that is, between machines connected to
the same IMP that would therefore be within the same geographic location—
at the time, this phenomenon was called “incestuous traffic” [54].

This “incestuous traffic” marked the appearance of what is now known as
LAN traffic. Since it was first identified, LAN traffic has grown exponentially
compared to the growth in Inter-LAN (or Internet) traffic, to the point where
today Internet traffic is insignificant compared to LAN traffic: the majority
of the traffic has been pushed to the edge of the global network. In the
early 1980s, as LANs were deployed, the first Internet-wide resource location
systems were being developed. Machine name to IP resolution for example,
initially a simple process -—the distribution to system administrators of a
hosts file with host name to IP address mappings— had become unsuitable
for the number of hosts and the speed at which the network was growing,
thus requiring the creation of an automated system: DNS [57].

That is, even as LANs started their geometric growth, the first Inter-

net Resource Location and Discovery systems (of which DNS is the best

known) were being designed and deployed——but without taking into account
the requirements for the dynamics imposed by LANs: more varied topologies,
greater number of nodes, and, more importantly, mobility.

This did not create problems initially. The central uses of resource loca-

tion and discovery are to ask the remote machine to perform a certain task

15

(e.g., perform a calculation), to obtain data from it (e.g., obtain a name-to-
address mapping, serve a file) or to store data in it (e.g., update a database
record), and the dissemination of LANs happened on the backs of the early
personal computers, which did not have the storage of the processing capac-
ity to deal with anything except their own local tasks. Even some fifteen
years later, in the mid 1990s, when PCs were capable of performing more
tasks in “server-mode” very few applications existed that took advantage of
them, consequently limiting interesting in edge-only RLD.

For a long time since the appearance of LANs then, Resource Location
and Discovery was split in two: globali RLD, exemplified by DNS, and per-
formed either between Internet hosts or between clients and Internet hosts,
and local RLD, such as shared printers, file servers, or contact databases us-
ing protocols such as LDAP. In a very real sense, the firewalls that protected
LANSs from external attack were a frontline that delimited the difference be-
tween global RLD and local RLD. There were some solutions for connecting
central databases between LANs, but, with their high cost and complexity
and (perhaps more importantly) lacking a standard, they remained niche
solutions.

In the late 90s, peer-to-peer computing gained world-wide prominence in
the form of global music-sharing systems in which individual PCs were used
to serve digital music files. Almost overnight, a task that had been typically
confined to the LAN (i.c., locate a particular file) could now be performed
on a global scale, not between clients on the same corporate network, not
between a client on a LAN and a host on the Internet, but between clients
residing on completely different LANs. The dividing line between local and
global RLD had finally been crossed.

At the same time, other applications began to emerge, such as peer-to-
peer collaboration, and with the growth of portable devices (laptops, hand-
helds, cellphones) and wireless networking, the complexity of the network

environment in which RLD had to operate increased even further. Appli-

16

cations that before required a connection to a particular server now had to
provide a connection to a particular user, regardless of the device, or the
network, the user was on.

Mobile Ad Hoc Networks (MANETSs) have become an important area
of innovation and research in the past few years, and most of the efforts
have concentrated in solving the basic building blocks of the technology:
hardware, routing protocols, and so on. MANETS are typically wireless but
they can equally include “wired” components. These networks interact with
the Internet through endpoints, connecting and disconnecting as they are
formed, or as they move across geographical boundaries.

The Internet, which was originally designed as a network-of-networks,
is fulfilling its promise. It is quickly changing from a set of static nodes
connected to a high-speed backbone in “monolithic” fashion to a collection
of a multitude of small networks that connect to each other depending on
location and capabilities available at their entry point. In other words, the
Internet itself is becoming an ad hoc network.

In this new context, services designed for what was originally a static
network of a few thousand nodes are increasingly strained to accommodate

new networked applications and systems.

2.1.2 Edge Networks and RLD

In large part, the Internet’s increasingly ad hoc nature is driven by the growth
of networks connected at its endpoints, commonly referred to as “edge net-
works.”

Edge networks are becoming more powerful, more mobile, and more dy-
namic. As applications built on them become more distributed, edge net-
works will cease to be “client-only” environments, in which nodes only use
the resources of the network; they will become full blown client-server en-
vironments in which all nodes request and provide services to the network

through peer-to-peer applications deployed on a global scale.

17

The growth of edge networks and the variety of applications that are mak-
ing use of them (from messaging systems to global file-sharing applications)
underscores that a self-organizing solution to the problem of RLD is not only
possible but also desirable. For example, mobility, such as that exhibited
by portable devices and MANETS, presents a number of challenges for an
RLD system. Devices in a mobile network might be turned on or off and
might quickly move across locations with different types of infrastructure,
sometimes switching to environments where a central server is not directly
accessible or might not be available. Typical scenarios include a mix of de-
vices (e.g., handhelds, embedded devices, base stations, desktop computers)
that use different physical layers (such as Bluetooth, IEEE 802.11b, Ether-
net) with different protocols, depending on various factors such as location
and power consumption requirements.

These unique qualities mean that certain protocols and systems that work
well in more static, homogeneous topologies (of which the best example is the
Internet) might perform badly or not work at all in these kinds of network-
ing scenarios. For example, a Bluetooth-enabled cell phone has no way of
referencing a handheld device that might be running on a wireless network
(e.g., IEEE 802.11b) even though the cell phone might have a connection
path available through a desktop computer with both Bluetooth and wire-
less stacks. If this connection was possible, the cell phone might be able to
determine that the handheld device is in range and therefore it should not
display appointment reminders, since a device that is better suited for it (the
handheld) is active in the vicinity.

This kind of functionality would also be useful for global communication
systems, such as Internet-based VoicelP phones or SMS (Short Messaging
Systems) designed to run on mobile ad hoc networks. For example, when an
ad hoc wireless network is set up for emergency crews at a disaster site, if
one base station is deployed to provide connectivity within the nodes in one

network (e.g., for Paramedic crews) and to the Internet, nodes from a nearby

18

ad hoc network (e.g., Fire Department) and from the Internet (e.g., a gov-
ernment official trying to contact somebody on site from a remote location)
would not be able to locate those nodes.

A MANET could easily function in a way similar to a “fixed” network
such as the Internet, with static nodes such as PCs connected through 1P-
based protocols in a stable, slowly-evolving topology. Because of their nature,
MANETS can also support a highly dynamic environment: mobile nodes that
quickly change membership between different MANETS, nodes that quickly
turn on and off, and others. In the most extreme case a MANET could
be formed completely independently from any infrastructure (e.g., by the
emergency crews at a disaster site). Finallyy MANETS, with or without access
to infrastructure, run on a variety of protocols that may not be compatible
with cach other, but that would still find useful to locate nodes or services
between them.

If the resource location problem is solved for large-scale mobile ad hoc
networks!, the same solution would apply for networks in general, including

wired /static topologies (e.g., the Internet).

2.2 Types of RLD

Based on different systems that implement RLD functions (Described below
in Section 2.5) we can identify three main categories of systems, covering
three different types of RLD needs from users. These are: Name Resolution,

Directory Services, and Search Services.

!Throughout our work we will reference the problem of RLD on MANETS as a test
case, while keeping in mind the larger goal of applying it on generic heterogeneous network
environments.

19

2.2.1 Name resolution

Name resolution is the most basic and widely used RLD system. Naming
is necessary to map easy-to-remember names to physical machine locations
(on the Internet, a name-to-IP mapping). Naming is the core operation on
any RLD system, and all types of resource location could, in general, be
considered a type of name resolution problem, since they are trying to map
a resource’s name with its physical location.

More recently, the use of RLD for name resolution has extended to the
area of presence, which tracks people, and sometimes software agents, across

machines. Presence is a concept used by all Instant Messaging platforms [59].

2.2.2 Directory Services

Directory services are extremely common, particularly in corporate intranets.
They are used to store information regarding people, machines; or even ser-
vices within the organization. This differs from the concept of presence and
name resolution in that it returns information about a resource or person,

rather than their location.

2.2.3 Search Services

More generic and open ended search services are also common. Printing
could be considered a special case of search, since a print operation on a
nearby printer can be started using the appropriate search parameters. In
large organizations, where employees often move between different offices
or buildings, the use of search allows them to locate particular items of
information, or the resources needed for particular tasks.

Search differs from name resolution and directory services in that it is
more open-ended. At the end of a search query, the user will commonly
perform a final operation either of name resolution, or directory service re-

quest to obtain the location or information about the resource requested,

20

respectively. This typically happens invisibly from the user’s point of view.
Therefore, depending on the way it is implemented, search can be consid-
ered either a component at the same level of directory services and name

resolution, or middleware built on top of them.

2.2.4 Similarities

In essence, all of these services perform a mapping of keys to values. Some-
times those key/value mappings are updated frequently, sometimes not, but
that is irrelevant with respect to the location/discovery process itself. As we
will see in the following chapter, the difference lies in usage patterns: whether
we are trying to locate a resource that we already know about, or discover

one that matches our needs.

2.3 Usage patterns

At the core of the problem of resource location and discovery is the way
in which RLD services (such as those defined in the previous chapter) are
typically used. In any network, users will likely try to locate and contact
resources (which may or may not belong to another user) according to their
location, which divides typical usage into distinct categories.

These categories are in a sense present in the terms “Resource Location
and Discovery”. Resource Discovery implies that the user wants to discover
resources that might match certain attributes, while Resource Location im-
plies that the user knows the name of the target resource, and only its physical

location is unknown.

2.3.1 Local/inexact

In the first case, local/inexzact search, the user is looking for something that

is in their vicinity (as defined by the topology of the network). The search

21

is typically performed based on capabilities (e.g. a printer, or a device that
can act as relay to the Internet) or based on inexact queries? (e.g., a storage
system with a given name, or another user’s handheld computer). DHCP
(Section 2.5.2) lookups or LDAP(Section 2.5.4) queries are examples of lo-
cal/inexact requests.

In general, this means finding resources that match certain values in a
query. This kind of search is limited in reach, since the user is looking for

DC&I‘by resources.

2.3.2 Global/exact

When the target of the search is beyond the user’s physical reach, it is com-
monly based on ezact names (e.g., the printer at the user’s office, a person’s
SIP [71] address). A DNS (Section 2.5.1) query is an example of an exact
name search for a globally unique string. We define this type of scarch as a
global/ezact search.

Generally speaking, this type of search is performed to find resources that
might be or not in the vicinity, and of which the user knows the full name.
A global search, in this context, requires that a result be returned if the
resource exists anywhere in the network.

Additionally, the use-case of local/exact searches is a trivial subcase of
this one; even if the resource to be located is within physical proximity of

the user, the usage case remains unchanged.

2.3.3 Global/inexact

The final category that we will consider is inexact searches performed on a

global scale.

2Commonly, this type of use imply searching for resources that conform to a certain
property or whose name matches a given substring.

22

This kind of generic functionality is currently provided (partially) by In-
ternet directories or search engines. Additionally, most current file-sharing
systems are global in scale; however, they provide no guarantees as to whether
a resource can be found within reasonable time limits. Because of this limi-
tation, both Internet search engines and large-scale file-sharing networks are
more similar to a local search but with vastly expanded scope, rather than
a truly global search that will guarantee location of a resource if it exists
somewhere on the network.

Global/inezact search systems are more limited in application than the
two previously described, and so its usage differs from that of resource lo-
cation and discovery applications. Therefore, a system that provides this
particular function in a decentralized form (and one that could match other
requirements that we will specify later) is outside the scope of this work, and

will not be discussed further.

2.4 Generic RLD: Requirements

The usage patterns identified above helped us enumerate a requirement that
a generic RLD system must satisfy, with emphasis on generic RLD for het-

erogeneous networks that must interoperate on a global scale.

2.4.1 Correct and Time-Bounded

When RLD is global/ezxact, the service must guarantee that the target of a
search is found as long as it exists anywhere on the network3. Additionally,
the search operation must be time-bounded, with the goal of responding

within a reasonable time period to the user’s request.

3This is not necessary when the search is local /inexact

23

2.4.2 Coexist with Legacy Systems

Because any change for the system has to come incrementally, nodes should
be able to join the network without special configuration requirements. Only
running the necessary software on the node should be necessary. Further,
when legacy systems, such as DNS, are available, the network should be
able to revert to them if desired (since other target nodes might not be
participating in the self-organizing network created by the new service).
Additionally, gateways should exist to provide two-way resolution be-
tween other network nodes (particularly Internet nodes) and nodes in the

resulting RLD network.

2.4.3 Scalability

The resulting system could be used globally to connect distant ad hoc net-
works (e.g., to make a voice-over-data phone call between handheld devices
or cell phones without using the operator’s infrastructure), or locally within
a large scale ad hoc network (e.g., within a group of thousands attendees to

a conference).

2.4.4 Support mobility and dynamic topologies

A generic RLD solution must support constant membership changes, provid-
ing resource location for the new nodes and maintaining validity of the query
results, i.e., providing results that are up to date in terms of topology. Ad-
ditionally, it must provide correct results for queries for the remaining nodes
of the network when one or more nodes leave the network or are switched
off.

When nodes move between heterogenecous networks they shouldn’t be
required to change their configuration, and there should be no dependence
on any particular node or underlying transport protocol to provide resource

location.

24

2.4.5 Support low-resources

Many of the nodes participating in the network will be low-resource nodes in
one or more senses: limited in processing power, or low-power, with a slow
network connection, etc. As such, an RLD service must take into account this
factor and either a) adapt to the capabilities of the nodes or b) have generally

low resources as a minimum to join and operate within the network.

2.4.6 Support Discovery

When performing local/inezact searches only, users will frequently know only
the general details of what they are attempting to find, that is, when they
are engaging in discovery of a resource rather than location. Therefore, the
system must provide partial attribute or string matching on local/inexact

search to support this functionality.

2.4.7 Security

An important issue in resource location is security, particularly in a decen-
tralized network such as the one described here. When resolving the physical
location of resources, a node should be able to verify that the location re-
solved is valid and current. Without security, a malicious network user that

has access to the message flow in the network could:
e impersonate other nodes and resources by answering requests for them.
e modify query results being passed along and change the values passed.

In DNS; security is largely an issue of trust between clients and servers.
Both of the problems described can happen in DNS, assuming that a name
server (slave or master) has been compromised (commonly called DNS “spoof-
ing”). Additionally, if a gateway has been compromised, the DNS requests

themselves can be manipulated by a malicious third-party.

We will leave the verification of the identity of the node location/discovery
result to higher level application layers with enough information to make
these checks (for example, by verifying signed security certificates), just like
DNS does. In the future, modifications similar to those currently being
discussed for DNS IETF [70] could also be applied.

2.5 RLD and RLD-based Systems: State of
the Art

Throughout this section we will revisit systems that we identified as per-
forming RLD functions either implicitly or implicitly. We will present these
systems starting from the most standard and broadly used to the most spe-
cialized and research-based.

Some of the systems we will describe appear, on the surface, to have little
relevance to the subject of RLD. This is not the case, however.

Solutions to specific problems, such as mobility?, are in fact using very
specialized types of RLD. If a system is designed to support, for example,
mobility of network nodes, it will generally revert to some form of indirection
between its physical location and its global identifier. That, in turn, creates
the need for part of the system to be able to locate that global identifier,
which is essentially a function performed by an RLD subsystem of some
kind.

This type of specialization of RLD solutions is the norm rather than the
exception. The analysis of these systems, along with their differences and
similarities, leads to two important conclusions. The first is that a generic
RLD system would have potential application well beyond that of resolving
names. The second is that, even though some of the systems use distributed

(even, in some cases, sclf-organizing) environments, all of them are based,

4We will come back to examples of solutions to the problem of mobility (primarily of
devices, but also of services) below.

26

implicitly or explicitly, on the assumption that significant fixed infrastructure
exists somewhere on the network. These two conclusions underscore, in turn,
the need to maintain generality in our requirements (and, consequently, our
design) and support varying degrees of scalability, as well as maintain focus
on working on a solution that could function completely disconnected from
fixed infrastructure.

These systems, therefore, provide not only examples of how RLD is usu-
ally approached today but also of the broad applicability that a generic RLD

solution would have.

2.5.1 DNS

On the Internet, it is the Domain Name System (DNS) [55] [56] [57] that
provides the lowest level of name resolution service available, and is the pro-
totypical case of Global/Exact matching mentioned in Section 2.3.2. Name
resolution creates mappings of easy-to-remember names to physical nodes.
In the case of the Internet, this means mapping service names to 1P [28]
numbers. DNS is hierarchical and relatively static, requiring propagation of
names from root name servers to a series of slaves across the network. Each
IP subnetwork has a fixed static reference to the physical location of the local
name server node, using it to resolve the names of all other nodes into 1P
numbers so that communication with them can be established. This scheme
is dependent on servers; client machines are reachable only as part of the
subdomain of a given server, assuming a correct setup.

The naming system on which DNS is based is a hierarchical and logical
tree structure referred as the domain namespace. Organizations can create
private networks that are not visible on the Internet, using their own domain
namespaces, and each node in the DNS tree represents a single DNS name.
Each organization/group is assigned authority for a portion of the domain
namespace and is responsible for administering, subdividing, and naming the

DNS domains and computers within that portion of the namespace, as well

27

as for servicing queries that correspond to its particular domain.
Name-to-address mappings published through the DNS system can be
resolved by clients through their Internet Service Provider’s (ISP) or organi-

zation’s DNS servers, as shown in Figure 2.1.

Root DNS
Server(s)

Target domain's
DNS Server(s)

|

(4)
yes - contact target
domain nameservers

servers
known?

no - contact
root nameservers

ISP DNS
Server(s)

[1 Client
(1)

Figure 2.1: A Sample DNS Query-Reply Cycle

The cycle works as follows (Numbers at each step match correspond to

those in the figure):

e Client requests a name (1), such as www.somedomain.com, in response

to a user’s action (e.g., navigating to a webpage).

e The client contacts the domain server (2) for its ISP or organization,

requesting the address of the domain name in question.

28

e The client’s server first tries to answer by itself using cached data (3).
If the answer is cached it is returned directly. Since the client’s server
is not responsible for the name and is just acting as a relay, the answer

is marked as non-authoritative.

e If the answer is not found in the cache, or if the value cached has
expired (i.e., it is past the TTL, or Time-To-Live, of the value), then
the server will try to contact the (authoritative) name servers for the
domain directly (4) requesting the mapping. If the name servers are
not known (i.c., not cached), the client’s server requests the address of
the domain’s name servers from the Internet Root servers (5), which

reside at a well known address.

e Once the domain’s name servers are contacted, the client’s server re-
turns the result (6) or a DNS error (7) if the target name was not

found.

The way in which DNS works points to a number of problems for dy-
namic systems. Aside from its dependency on fixed/centralized infrastruc-
ture, changes to the authoritative server for a domain (i.c., if the server
is moved to a different location) have to be reported to the Root servers,
which will propagate the new values to other servers as they perform new re-
quests (as the cached results expire). This typically means a delay of several
days between a move of an authoritative name server and the propagation
of its new address across the internet. Increasingly, machines operate on
autonomous mode, not related to any particular infrastructure, and DNS’s
structure prevents its use for more direct client-to-client communications.

DNS was designed to solve the problem of managing hosts tables in the
original Arpanet, with requirements vastly different than those found today.
In this respect, it has performed admirably, scaling well beyond its original
design parameters to accommodate millions of hosts and hundreds of millions

of clients. Even so, its design poses a number of problems, such as increased

29

requirements on the domain servers (particularly on the root servers), and
their increased administrative complexity, as well as their potential as points
of attack or failure. Systems that solve some of the problems observed in
DNS, providing better load and administration distribution, but still hier-
archical and largely centralized, have been proposed in the past [10] [37]
[49].

DNS resolution need not be implemented using a hierarchical system,
though. Implementing DNS using a self-organizing network of servers has
been proposed recently in [12]. While this would provide some improvements
(most notably automatic load balancing and faster updates) there would still
be dependence on fixed infrastructure, namely, the set of servers that are
responsible for replying to requests. In the next chapter we will discuss some
additional elements that a full solution will require that would not be satisfied
in that case (for example, how to deal with ad hoc wireless networks of small
devices that have no connectivity to the Internet).

A standard setup of DNS on a client machine requires that the informa-
tion for the DNS server(s)’s IP addresses that serve the machine in question
be entered by hand. This was appropriate initially, but as mobility and use
of the Internet have become more widespread (thus bringing in less technical
users) a simpler solution was required to provide that setup. This created a
need for a protocol that would perform Local /Inexact searches (as defined in
Section 2.3.1) for available DNS servers in the vicinity of the user.

The standard solution for this problem is provided by DHCP and NAT.

2.5.2 DHCP and NAT

The Dynamic Host Configuration Protocol [20], or DHCP, is an autoconfig-
uration service that provides a way to automatically assign all details about
the network to a computer that wants to be a part of it. A user can simply
plug a device to the network port and start working without the need for edit-

ing any settings manually. Autoconfiguration can be considered a subset of

30

the resource location problem if resource location is used to provide a “boot-
strap” mechanism that can then initialize a node’s operating/connectivity
parameters.

In DHCP, the client sends out a request to the DHCP server by transmit-
ting on an IP broadcast address, essentially performing an open-ended search
on the local network. The DHCP server responds to the request by providing
a lease to an IP Address and other relevant details about the network, such
as gateways or DNS servers.

The settings given to the client by the DHCP server are not permanent
but time-bound, to solve the problem of network failures (i.e., if a node fails
the server will eventually take over the IP assigned again when the lease
expires). Along with the settings the server also tells the client about the
period (lease-time) for which the settings are valid, and if the client needs to
use the network beyond this time then it has to “renew” its lease.

For LANSs, recent years have scen the growth of more dynamic network
topologies, and the need to easily provide Internet access to machines in
them. Again, a Local/Inexact solution is required to locate a service that
provides that functionality.

NAT [79] (Network Address Translation) is a special type of autoconfig-
uration service that provides internet access to machines through a special
type of gateway. A NAT gateway translates the clients” internal network 1P
Addresses into the I[P Address on the NAT-enabled gateway device, making
the network appear as a single device to the rest of the world. NAT gate-
ways typically interoperate closely with DHCP to provide zero-configuration
Internet access for clients in small networks.

All communications from the private network are handled by the NAT
device, which will ensure all the appropriate translations are performed to
maintain the “illusion” of one-to-one Internet connections for the devices
connected through the NAT gateway.

When a NAT gateway receives a packet into its private interface, it strips

31

the source IP Address from the third layer in the IP stack (e.g., 192.168.1.5)
and places its own public IP address (203.154.123.223) before sending it to
its target host in the Internet. (In some cases, depending on the NAT mode,
the source and destination port numbers, found in layer five of the IP stack,
will be changed as well). The gateway then stores this information in an
in-memory table so when the expected reply arrives it will know to which
workstation within its network it needs to forward it.

NAT is of note because its increasingly widespread use has given renewed
importance to the issues it raises. NAT makes it impossible for current nam-
ing systems to resolve names behind the NAT server (unless another system,
such as MobilelP, described in Section 2.5.5 below, is in use to bridge be-
tween the local network and the Internet). In essence, NAT turns a network
of computers into an ad hoc network, with all the problems that entails for
current centralized systems, and it is a situation solved by the system pre-
sented in this work (for a centralized solution to the NAT /naming problem,
see the description of TRIAD in Section 2.5.6 below).

2.5.3 INS

The last few years have seen some developments in the area of name res-
olution specifically, in particular on the Intentional Naming System [1], or
INS. INS defines a network as a set of components: clients, services, and a
decentralized network composed of “Intentional Name Resolvers” or INRs.
Clients send requests to INRs, specifying a particular name-specifier, which
is matched against the services advertised in the resolver network. Services
periodically advertise their intentional names (INs) to the system to describe
what they provide. Intentional names are based on a set of attributes and
values (i.e., key/value pairs) that allow expressing generic system information
in hierarchical form.

The main activity of an INR is to resolve INs to their corresponding

network locations. When a request message arrives at an INR, it performs

32

a lookup in its name-tree. The lookup returns information which includes
the IP address(es) of the destination(s) with advertisements that match the
requested name as well as a set of routes to next-hop INRs to support routing
when mappings change in the middle of a session.

INRs also store metric information (such as load, distance, etc) to facil-
itate sclf-managing of the different parameters the service is subjected to.
Load management, for example, is thus performed by the INRs.

While providing certain desirable qualities such as automatic load balanc-
ing and self-management, INS is still dependent on network infrastructure
that has to be maintained (i.e., the INRs), making it less useful in purely ad

hoc environments where no central management is possible.

2.5.4 LDAP

Another example of search, but for information related to a resource rather
than its location, is that of LDAP [85] [86], a commonly used directory
service to provide discovery of information about resources, typically people,
groups, and organizations. LDAP is a lightweight version of the X.500 Global
Directory Service [84].

LDAP directories reside on a server or cluster or servers, and are typically
used to store information about entities like people, offices, locations, etc.,
but it could equally store other types of relatively static information, essen-
tially anything that can be described by a set of attributes. In LDAP every
entry has a primary key called the Distinguished Name (DN). DNs are unique
within a particular LDAP directory. An LDAP server uses a back-end data-
store to store its data, but is not limited to using any particular database,
achieving database-independence through the a flexible notion of a schema
for the data it needs to store. The schema consists of entries organized in a
hierarchy, optimized for reading rather than writing.

A typical LDAP configuration is shown in Figure 2.2.

As the figure shows, LDAP is based on a client-server model. Servers

33

Clients

L]

1 LDAP
server/cluster

L] -
— —f
backend
L] 4_,/’/ database

—3

Figure 2.2: Typical LDAP Configuration

make information about resources accessible to LDAP clients, and define
operations that clients can use to search and update the directory. Typical

LDAP operations include:
e scarching and retrieving entries from the directory
e adding new entries in the directory
e updating entries in the directory
e dcleting entries in the directory
e rcnaming entries in the directory

For example, to update an entry in the directory, an LDAP client submits
the distinguished name of the entry with updated attribute information to
the LDAP server. The server uses the distinguished name to find the entry
and performs a modify operation to update the entry in the directory.

LDAP can provide results both exact and inexact searches, but not glob-
ally, unless a global infrastructure of servers/clusters is deployed and main-

tained.

34

2.5.5 MobilelP

IP version 4 assumes that a node’s IP address uniquely identifies its physical
attachment to the Internet. Therefore, when a host tries to send a packet
to another host, that packet is routed to the target host’s “home network”.
In static environments this does not present a problem, but when a node is
mobile, packets could easily end up routing to the previous location where the
node was, rather than its current location. This is solved by adding one level
of indirection to the process, which in effect turns the problem into one of a
special type of resource location. The level of indirection establishes a fixed
point that can be easily contacted and that will be notified of changes of the
target node, thus adapting to mobility. The fixed point, whatever its form,
thus becomes a dynamic table that keeps the position of the mobile node
updated as it moves, providing in essence Global/Exact resource location for
the target machine, based on an identifier.

One such solution is MobileIP [64]. In MobilelP, when the target host is
on its home network and a another host sends packets to it, those packets are
handled normally. However, if the target is mobile and away from its home
network, it uses agents, to work on behalf of it. The home agent must be
able to communicate with both the home network and with the mobile host
when it is online, independently of the current position of the mobile host.
The home agent then becomes a permanent relay for that mobile host. The
foreign agent, meanwhile, is responsible for relaying requests to the mobile
host in its foreign network.

An example of a MobilelP node in a foreign network is shown in Fig-
ure 2.3.

As we can see in the figure, the MobilelP host uses the foreign agent and
the home agent to receive information from other clients, essentially letting
the agents act as resolvers for its location.

To determine a change in its network environment, the mobile host detects

its current location (and therefore the need to register with the agent) based

35

‘——’D
home | — -— NErne <————>[_I-T_I
1

agent

\ MobilelP

foreign | — D host
g </1/’|:]

agent

Figure 2.3: A MobilelP Node in a Foreign Network

on looking at periodic adverts of the foreign agent and home agents.

When the mobile host returns to its home network, it does not require
mobility capabilities, so it sends a deregistration request to the home agent
to deactivate tunnelling and to remove previous carc-of address(es).

At this point, the mobile host does not have to (de)register again, until
it moves away from its network. The detection of the movement is based on
the same method explained before.

While MobilelP’s solution appears to solve the problem of mobility, it
has one important drawback: since the agent must be running constantly at
a fixed location, it must be managed from a centralized location as well. So
mobility in Mobile 1P is obtained at the cost of further centralization of the

infrastructure, with all the subsequent disadvantages.

2.5.6 TRIAD

TRIAD [13] (which stands for Translating Relaying Internet Architecture
integrating Active Directories) is a content layer on top of IP that provides

scalable content routing, caching, content transformation and load balancing,

36

integrating naming, routing and transport connection setup.

To perform its functions, TRIAD creates a set of address realms that
arc interconnected through a hierarchy. At the leaf level, an address realm
corresponds to an certain network owned by an organization, or a set of nodes
organized within a network. The router that connects this level to the WAN
acts as a TRIAD relay agent between realms, translating addresses as it relays
packets between the realms that it interconnects. Higher-level address realms
correspond to local and global Internet service providers (ISPs). Backbone
or wide-arca ISPs can connect at peering points, as it happens today, but
through high-speed relay agent routers. Within a realm, the operation of
naming, addressing and routing operates the same as currently with [Pv4.
Thus, TRIAD doesn’t require changes in the host or the router.

End-to-end Internet-wide identification of a host interface or multicast
channel is provided using a hierarchical naming scheme based on DNS nam-
ing. Names are the basis for all end-to-end identification, authentication,
and reference passing in TRIAD, since there is no other identifier for the
host interface that is global and persistent, unlike addresses in 1Pv6 and
in the original Internet architecture. In particular, IPv4 addresses have no
end-to-end significance since they can change depending on network configu-
rations, dynamic hosting, and so on, and are reduced to the role of transient
routing tags.

TRIAD supports name resolution, wide area relaying and content lookup.
Name resolution in particular is supported by TRIAD’s Internet Name Res-
olution Protocol (INRP), a protocol that is backward-compatible with DNS.
Clients initiate a content request by contacting a local TRIAD content router,
just as they would contact a DNS server. Their requests may include just
the “server” portion of a URL, although TRIAD supports looking up the
entire URL, allowing for fine-grained load-balancing and higher availability.
Because names are distributed based on a distance-vector routing algorithm

with path information, TRIAD can also reduce latency and round-trip times

37

by routing information along more optimal paths (compared to DNS).
A name resolution cycle for TRIAD looks very much like the one presented

for DNS in Figure 2.1, with the following important exceptions:

e The DNS servers are replaced by Content Routers, which allow pub-

lishing and propagation of the information.
e The round-trip times are shorter, because of INRP’s characteristics.

e The Content Routers support resolution of generic names, not only of
the server name portion of them, allowing resolution of server names

as well as of individual URLs.

TRIAD is, then, an indirection infrastructure that improves in several
respects on previous systems, such as DNS, but that is again dependent on
fixed infrastructure (as well as modification/additions on the current Internet

infrastructure).

2.5.7 i3

Finally, a solution proposed recently in a research context to essentially the
same problem (but with wider applicability) is the Internet Indirection In-
frastructure [80], or i3. i3 provides a layer of indirection that decouples sender
from receiver: sources send packets to a logical identifier and receivers ex-
press interest in packets sent to an identitier. Delivery is "best effort” like
in today’s Internet, with no guarantees about packet delivery. The system
is similar to IP multicast, but in IP multicast the infrastructure must build
efficient delivery trees; in i3 these are managed by a trigger inserted into
an overlay network (Overlay Networks are discussed in detail in Sections 2.9
and 2.9.1) which routes queries efficiently.

At its core, i3 is relatively simple. The i3 services arc provided by a self-
organizing “cloud” of servers that provide the mapping functions and routing.

When a node (Receiver) wants to receive information, it can register with

38

the cloud by inserting a trigger that effectively states “Send all packets with

identifier id to address R,” as shown in Figure 2.4.

i3 cloud

[]
=

Receiver (R)
Figure 2.4: An node publishing its location to the i3 cloud

After a trigger is added, another machine (Sender) can send packets into
the i3 cloud using the ¢d necessary to reach R. The i3 cloud then matches
the id to the trigger and derives the address R, subsequently forwarding the

packets, as shown in Figure 2.5.

i3 cloud

(R, data)

In

Sender (S) Receiver (R)

Figure 2.5: A node sending data through the i3 cloud

This process describes the unicast functionality of i3. Note however that
more than one Receiver can register for a given identifier, thus allowing i3 to
support other modes of operation, such as anycast and multicast.

In i3, the “fixed point” is a logical identifier, completely removed from
physical location. Its operation depends on a self-organizing network of hosts
that take responsibility for performing the necessary mappings. Thus, as
other systems that we have described, i3 depends on infrastructure that has

to be deployed and maintained.

39

2.5.8 State of the Art: Implications

We have covered a variety of systems that perform RLD either explicitly
or implicitly. Even though some of them exhibit desirable features for a
generic, dynamic RLD solution, all of them rely to different degrees on fixed
infrastructure. Furthermore, none of them is specifically designed to deal
with all of the requirements that a generic solution to the RLD problem
must exhibit. Most use specialized RLD solutions that are not interoperable
or that are not suitable for use in other applications.

For these systems, support for both highly dynamic topologies at the
edge of the network coupled with extreme scalability requirements becomes
a problem. None of those systems satisfies both the local/inexact requirement
and the global/exact requirement in a single solution, increasing the com-
plexity for applications that require both of these services (as many typically
do). Finally, none of the systems can operate completely independent of
centralized infrastructure, making them unsuitable for operation in wireless
ad hoc networks.

Many systems designed for specific purposes (e.g., systems that support
mobility in IP networks) use RLD concepts or subsystems to achieve their
results. Therefore, if a generic self-organizing resource location and discovery
system is scalable enough, and resilient enough, its applicability would not
be limited to mobile ad hoc networks alone, or even to name resolution
or resource discovery alone. Such a system would be useful for a variety of
networked infrastructure and applications, from name resolution, to mobility

applications, to presence functions provided directly to end-users.

40

2.6 The Manifold Algorithms: Evolution, and
Related Work

In the preceding sections we discussed different types of RLD systems and
presented various examples, deriving the usage patterns that govern them.
We discussed requirements for our solution from those usage patterns in
Section 2.4.

Based on the requirements and usage patterns, we concluded that Man-
ifold would require two different self-organizing P2P algorithms to oper-
ate. The first of the algorithms, Manifold-b , is based on a TTL-based
P2P algorithm (see Section 2.8 below). The design of the second algorithm,
Manifold-g, was based on the idea of creating a virtual topology using the
values of the names stored by each node that would allow efficient traversal
and provide guaranteed results.

After the work on Manifold-g was completed, we related it to a category
of algorithms known as Overlay Network algorithms (also referred to as Dis-
tributed Hashtables, or DHTs —see Section 2.9 below). In the sections that
follow we will review P2P systems in general and these two types of P2P
algorithms in particular, pointing out some of their differences, advantages

and disadvantages.

2.7 Introduction to P2P systems

Peer-to-peer (P2P) systems are distributed systems that operate without
the need of centralized control or organization. They achieve this by running
the same software on each node (even if the software differs between nodes,
they can also interoperate by conforming to the same set of network-based
application programming interfaces, or APIs). Network-wide behavior thus
emerges from the action of the local algorithms in each of the nodes. All

P2P systems, regardless of their application, provide a mechanism to find

41

the location of a given piece of data within a network. All P2P systems
provide a lookup function that, given a certain string to be found returns
a set of nodes that match it. We will refer to this function as the locator
function.

Because of their decentralized nature and relatively low consistency re-
quirements, P2P networks have no single point of failure, continuing to func-
tion even with multiple node failures.

The network structure defined by P2P networks is, regardless of their
type, independent of the underlying physical topology; ‘neighbors’ can exist
across the Internet or within the same subnetwork. While some types of
networks adapt to the underlying physical topology, this kind of optimization
is not in general required for the proper operation of the P2P algorithm.

Recent years have seen research and development on the field of P2P
systems of all kinds grow steadily, as the many examples presented in [63]
show. In large part, this has been propelled by the massive success (if not
necessarily in commercial terms, certainly in exposure and number of users)
of Internet file-sharing applications. Another factor is that these systems
proved that self-organizing protocols can effectively function in a global scale,
something that is, at first glance, slightly counter-intuitive.

The idea of peer-to-peer systems however, is not new. As we noted in the
Introduction, the Internet (then Arpanet) was originally designed to provide
host-to-host connectivity where remote hosts were treated as equals, creating
something that was, both in principle and in practice, a network of peers.
There is one crucial difference, however, between the original Arpanet design
and today’s P2P networks: self-organization.

Arpanet, though decentralized by nature, required extensive human in-
tervention: for example, a host newly connected to the network could not, on
its own, advertise its existence to other hosts. Additionally, the first popular
applications on Arpanet quickly tilted the field towards client-server models

(e.g., Telnet [15]), resulting in diminished interest in true self-organizing P2P

42

models.

Earlier, we cited DNS as an example of how name resolution today hap-
pens in centralized, hierarchical fashion. However, it is important to note
that DNS provided one of the first examples of self-organization found on
the Internet. To the clients that resolve queries, DNS servers provide only
one function, i.e., resolving Internet names. But within the DNS tree, a
DNS server operates, in some sense, as a node in a P2P network: at times,
it acts as a client, requesting information from servers higher in the tree, at
times, it acts as a server, returning information to other DNS servers that
might require it. During the 1990s, self-organization started to emerge as a
standard feature in different systems, such as distributed databases and oper-
ating systems, but most of them re-created the idea of a server as a network
of self-organizing servers that acted as a (sometimes loosely) coordinated
cluster.

To be truly self-organizing, P2P systems must support a set of basic func-
tions: Join, to connect to the P2P network, Insert, to add keys to the net-
work, Search, to find keys, and Leave, to disconnect from the network while
keeping its structure intact. In the case of failures, the network must also
include functions to recover, which are typically built using subsets or modi-
fied implementations of the Join and Search algorithms. All of the functions
must work—in principle—without dependence on centralized infrastructure,
though they will benefit from it, particularly for initial Join operations to
the network, where the entry point to the network must be located.

As the power of desktop computers (and, lately, mobile devices) increased,
the final stage was reached: true self-organizing P2P, deployed on a global

scale, applied to any type of device.

2.7.1 Bootstrapping Self-Organizing P2P

Before going into more detail for each of the types of P2P network, it is useful

to note the alternatives available for a crucial element for any self-organizing

43

P2P algorithm: bootstrapping.

The first step in joining a P2P self-organizing network requires identifying
at least one node that is already connected to the network. The challenge
with self-organizing networks is that they lack fixed points of entry, and that
the network as a whole has no global identifying address and no permanent
nodes that can act as gateways. This makes unpredictable the context in
which a node joins the network.

In current systems, bootstrapping is usually done by providing a fixed,
well-known server that serves a list of some of the P2P peers. If a node has
connected to the network once, it can rely on previous information about
the network to try to contact nodes that were known, in the past, to exist
connected to the network. If a node is connected to multiple P2P networks,
a search in one network can be used to find nodes in the other. Similarly,
another possibility is to employ connections to random IP addresses in certain
address ranges, or to perform IP broadcasts in the local subnet to locate a
connection.

We can therefore characterize bootstrapping processes as belonging to

one of three generic types. The three types of bootstrapping are:

e by fized-point, typically residing on the Internet. Fixed-points of P2P
networks keep track of sets of previously existing nodes (by registering
nodes that have already joined the network) and return addresses of
nodes in the network on request. These fixed points may or may not be
nodes in the network themselves—in many cases they are the equivalent
of DNS servers, deployed at multiple points in the network to minimize

single-point-of-failure problems.

e by previously-known network nodes, in which the incoming node has
already connected previously and has stored a list of previous neigh-
bors. The incoming node uses the list to attempt connections to those
nodes, that will be in the target network with higher probability than

randomly selected nodes.

44

e by intersection with another network, where the incoming node per-
forms a search in another network (to which it is already connected)
for nodes that that belong to the target network. The origin network
can be another P2P network, or, more commonly, an IP network on
which a random search or broadcast request (at class-D subnet level)

is performed.

Self-organizing P2P networks use all three bootstrapping methods, typi-
cally in sequence, from most accurate (fixed-point bootstrapping) to the least

(intersection).

2.8 TTL-based P2P Systems

The most common method for providing P2P locator functions on Inter-
net applications involves a form of Time-To-Live (TTL) controlled flooding
mechanism. With this approach, the querying node wraps the query into a
single message, then sends that message to all the neighbors it knows about.
The neighbors verify if they can reply to the query (by matching the query
to the strings stored in its internal database), in which case they send back
a reply, or otherwise they forward the query to their own neighbors incre-
menting the TTL value of the message in the process (if the TTL value is
past a certain threshold the message is not forwarded again). The TTL value
in effect defines a “horizon” for the query: a boundary that will control its
propagation.

Figure 2.6 illustrates an example of a P2P search with TTL-controlled
flooding. In the figure, node Ngq is requesting the value associated with a
string located in Nr (and for which only Nr can provide the value). The
query is transmitted across the network while the result returns directly to
the node requesting the information (the number of concentric circles indicate
the number of hops the message has performed up to that point). In a sense,

the network itself resolves the resource mapping requested. Once the lookup

45

(query TTL=2)

Node that originates o
the query Node Connectivity

o Node that replies / Node affected by the query

tothe query + Reply path
Figure 2.6: A Sample TTL-based P2P Network and Query

has been solved, it can be cached by the requesting node so future requests
will resolve faster.

The example underscores the problems of flooding-style P2P networks:
even though the query can only be answered by Nr, all the nodes within TTL-
range (with being 2 in this case) of the query have to process it. Additionally,
if the value had been stored in node Nar the result would not have been found
unless the TTL of the message was set to a higher value, potentially requiring
flooding the entire network.

TTL-Controlled networks are unstructured in the sense that nodes attach
themselves to the network according to measures unrelated to the content
itself, such as join-order, connection speed or even physical proximity, re-

sulting in a randomly created connection topology. This approach makes it

46

simpler to maintain connections but has two problems:

e Since there is no correlation between content location and network
topology, search within the network is essentially open-ended, forcing
the protocols to use TTL measures to control propagation of the mes-
sages and thus avoid flooding the entire network. This results in the
possibility that even though content might be available, it might not be
reachable by all nodes in the network. In other words, a result cannot

be guaranteed even if the target exists somewhere on the network.

e Because the network is built randomly, search for a particular element
within the “horizon” has a theoretical limit of N steps, where N is the
number of nodes within the reach of the query (In practice, different
sections of the graph are usually traversed in parallel, reducing lookup
times). Strictly speaking, queries on an unstructured P2P network

have a maximum number of steps of the order of N, or O(N).

Our initial work on name resolution on ad hoc networks, the Nom [18]
system, was based on the two most important self organizing systems at the
time: Gnutella [33], the first true P2P system to be widely deployed (and still
popular today), and Freenet [11], a system that focused on P2P networks as

a way to provide anonymity and defeat censorship.

2.8.1 Gnutella

Gnutella is a fully decentralized P2P application layer protocol that is de-
signed to provide file sharing on the Internet, implemented as an open proto-
col that runs on top of HTTP [25] and that supports host discovery, search,
and file transfer. The set of all Gnutella-protocol-enabled applications on the
Internet constitutes what is commonly referred to as the Gnutella Network.

Nodes in Gnutella communicate with their peers by receiving, process-

ing, and forwarding standardized messages. The reach of messages within

47

the network is controlled by a Time-To-Live (TTL) field embedded in the
message, which is decreased at every step. When the TTL field reaches zero,
the message is not forwarded.

To join the network, an incoming node must know about a node already
connected to the network (see Section 2.7.1). Once connected to the network,

a node participates in it as follows:

e by performing discovery for other nodes,

by propagating the messages that it receives from its peers,

by initiating queries,

by replying to queries,

by retrieving files (or, more generally, content), and
e by giving access to files requested from it.

Nodes in Gnutella communicate with their peers by receiving, processing,
and forwarding messages. Messages can be one of the following types: Ping
and Pong for discovery-requests and replies, respectively, Query and Query-
Hit for queries and replies, and Push, used when the client that is publishing
the file is behind a firewall or NAT server and thus has to initiate the con-
nection itself (instead of the connection being initiated by the requester). A

Gnutella message consists of the following:

e GUID (Globally Unique Identifier), which provides a unique identifier

for a message on the network.

e TTL (Time-To-Live), the maximum number of hops that this message

is allowed to perform.

e Type, which indicates which type of message is being communicated

(e.g., Query, QueryHit, etc.)

48

e Hops, a count of the hops this message has performed.

e Payload Size (in bytes), the size of the data expected to follow the

message.
The procedure to limit the lifetime of a message is simple:

e Before forwarding a message, a node will decrement its TTL field and
increment its Hops field®. If the TTL field is zero following this action,

the message is not forwarded.

e [f a node receives a message with the same GUID and Type fields as a
message already forwarded, the new message is treated as a duplicate

and consequently discarded.

In summary, the node that is initiating a query sends the query message
to its neighbors, which in turn forward it until the TTL limit is reached.
When processing a query, each host will try to match the query with its local
content, and respond with a set of URLs [27] pointing to the corresponding
files if there are matches.

The process can be seen in Figure 2.7, where node Ng is requesting a
certain key. The Query message is propagated until its TTL-limit (of 2 in
the example) and nodes Nrl and Nr2 reply with a QueryHit message. Ngq
then chooses to request the content only from Nr1. Nr3, which also contains
the key, cannot reply since the TTL of the message does not allow it to reach
the node.

Because of its widespread use, Gnutella was also the first self-organizing
P2P system whose traffic patterns where systematically studied [74] (along

with those of Napster, the first Internet music-sharing application that while

5At all times, the TTL and Hops fields must satisfy: TTLo = TTL; + Hops, where
TTL; and Hops; are the values of the TTL and Hops fields (respectively) at the ith hop,
for i >= 0.

49

(query TTL=2)

Node that originates
the query

/@ Node that replies @ / Node affected by the query

tothe query » Reply path

Node Connectivity

Data request/transfer path

Figure 2.7: A Sample Lookup in a Small Gnutella Network

performing peer-to-peer data transfers, relied on a centralized directory to
function).

Pure self-organizing systems sparked a renewed interest in applications
to facilitate free speech (or, more accurately, defeat censorship). Freenet was
the first of those.

2.8.2 Freenet

Freenet is a distributed information storage and retrieval system designed

primarily to:

e address privacy concerns in other P2P systems, and

50

e guarantee maximum availability of content.

Specifically, Freenet has five main design goals:

e anonymity for both producers and consumers of information

e deniability for producers of information

e resistance to attempts by third parties to deny access to information
e cfficient dynamic storage and routing information, and

decentralization of all network functions.

Freenet’s design allows the network to adapt to usage/load patterns,
transparently moving, replicating, and deleting files as necessary to provide
efficient service without constantly resorting to generalized broadcast search,
or using centralized indexes. Because of the way in which it handles replica-
tion, however, Freenet is not intended to guarantee permanent storage, since
the survivability of the content depends on how often it is accessed.

Users contribute to the network by giving bandwidth and a portion of
their hard drive (a local “data store”) for storing data. Unlike other peer-to-
peer file sharing networks, a Freenet user can’t control what is stored in the
data store. Instead, files are maintained or removed depending on how often
they are accessed, with the least popular being discarded to make way for
newer or more popular content. Data is stored encrypted in the data store,
to resist local attacks.

In Freenet queries are passed from node to node in a chain of proxy
requests, with each node making a routing decision based on the key that is
searched. To limit propagation, cach query is given a TTL (“hops-to-live” in
Freenet terminology), and queries are assigned pseudo-random identifiers to
prevent loops (letting nodes reject queries that they have seen before). This

process is continued until the query is matched or the TTL is exceeded, in

o1

which case the query fails. The query (or failure notice) returns through the
same node-to-node path established by the request, therefore guarantecing
local anonymity (i.e., each node only knows the next/previous node in the
chain, though access to the complete network traffic would still expose the

origin and destination of the information).

2.9 Overlay Networks

As we identified the usage patterns that applied to generic RLD, we con-
cluded that a TTL-based algorithm (Manifold-b) was an appropriate solution
to serve queries based on the local/inexact search use case for RLD systems.
TTL-Controlled systems such as that defined by Manifold-b are ideal for this
function: they cover all the nodes in a certain area; and they can easily match
a regular expression or substring against a set of strings for which they can
respond.

However, the usage patterns pointed to a bigger challenge: providing
global /exact location of a resource. The qualities of TTL-controlled algo-
rithms make them well suited to provide local/inexact searches (our first
usage pattern). However, global /exact searches require that content is guar-
anteed to be found whenever the information is available in the network. This
implies that all nodes have to be reachable by the content-location service,
and that search times are bound by a predictable limit, to avoid having to
wait an arbitrary amount of time for a reply. In other words, scarch in this
case has to be deterministic. This must be achieved with zero-dependency
on centralized services, self-organization and, consequently, automatic load
balancing to avoid overloading any particular network node.

Based on these requirements, we designed a second algorithm, Manifold-g.
Manifold-g was based on the idea that the values of the names stored on cach
node could be used to create a virtual topology with a specific structure (de-

rived mathematically from those values). Since the structure was predictable,

52

it could also be navigated predictably, allowing both guaranteed results and
time limits on the search process. As we have mentioned above, after the
work on Manifold-g had been completed we related it to a category of self-
organizing network algorithms that has been under development in recent
years: Overlay Networks.

Overlay networks [19] involve a level of network semantics above that
of basic routing that create a structure that can be navigated predictably;
these extended semantics are achieved by organizing the overlay topology
based on some of the content exposed by the nodes rather than using their
more immediately available physical organization, thus creating a virtual
topology on top of the physical topology®. These networks in effect create
special purpose routing abstractions to optimize the process of searching for
particular data items by performing distributed lookup.

In essence, overlay networks ask the question “what is the search space?”
and instead of answering “a graph,” they consider the answer to be “a set of
strings” . Overlay network algorithms then use the values of the bit-sequences
defined by the strings. The strings are generally transformed using consis-
tent one-way hash functions similar to those presented by Karger et. al.
on their work on consistent hashing and random trees [39] (which improved
on systems such as that defined for a Distributed Dynamic Hashing Algo-
rithm [17]), reducing the size of the string space to be manipulated with the
additional, important side-effect of providing good load balancing by evenly
distributing the values that exist in the network.

Overlays were proposed as a way of creating topologies according to
content rather than other parameters (node-dependent or arbitrary) of the
nodes. By creating a structure based on content, overlays turn the prob-
lem of search from a standard graph-traversal problem into a set of steps

that can be calculated according to a mathematical function, reducing the

51n terms of creating a virtual topology on top of the physical topology, TTL-based P2P
networks are also a type of Overlay. However, we will use the term “Overlay Network” only
in relation to networks that create virtual topologies based on node content attributes.

overall load on the network and making the query process deterministic. In
abstract terms, an overlay network operates like a hashtable by allowing in-
sertion, querying, and removal of strings. Those strings are derived in some
way from the content exposed by the nodes, for example, by using a consis-
tent hashing algorithm. In fact, overlay network algorithms are also referred
to as distributed hashtables or DHTs—throughout the rest of this work, we
will prefer the more generic term Overlay Network to refer to these types of
content-based networks.

Overlay network systems include Chord [81], CAN [66], Viceroy [48], Pas-
try [72], and Kademlia [53]. We will now briefly consider some of their generic
qualities, and then look more specifically at how these systems implement
content-based networks.

Overlay networks have the following common qualities:

e Guaranteed results. If the data item exists in the network, it will be

found regardless of its location.

e Provable bounds on lookup times (typically of O(logn) with n the

number of nodes in the network),
e automatic load balancing, and
e sclf organization.

Figure 2.8 shows a hypothetical overlay network and a query propagating
through it. While the algorithm used to construct the overlay varies accord-
ing to the network type the end result is generally similar to the one shown in
the figure in terms of topology: symmetrical in nature and fairly consistent
on a node-per-node basis.

Since nodes in the overlay are connected according to a consistent math-
ematical function applied to the content stored, a query for a particular key
can be routed directly to the node that is storing the desired key, value pair,

resulting in the minimal query path shown in the diagram.

Node that originates
the query

o Node that replies Node affected by the query

Node Connectivity

tothe query -+ Reply path

Figure 2.8: A Sample Overlay Network and Query

Overlay networks can be understood as one-to-many mapping functions
of a set (that contains all the possible bit strings of a certain size) onto itself
while preserving its relations and operations 7. The resulting subset of results
of the mapping function defines the appropriate “neighbors” for that string
(and therefore for the node that stores that string ®). The original set of
strings then becomes an algebra (since it will include both the values and a
group of operations that satisfy the conditions for an algebra) that maps the
set of strings onto itself.

The set of all possible strings is clearly bigger than the set of any real world
network. To solve this problem, overlay networks always define, implicitly or
explicitly, a way to “complete” the space, so, as far as the mapping function
is concerned, the space will be complete, or they establish procedures to jump

across sections in the space in ways that maintain the characteristics of the

"in mathematical terms, and endomorphism

8We are assuming each node exposes a single string. The other case, where multiple
strings are stored in a single node (whether they belong to that node or not) is a specific
application of the generalized case.

95

search process.

Any overlay network algorithm contains, at its core, at least one such
mapping function that, given a string to be found (and knowledge of the cur-
rent location on the network) returns the next step in the path to that result
string. Thus, the theoretical path between two nodes is fixed by that mapping
function; the only thing that changes is how this path is mapped using the
nodes/values present on the network, which makes the search through the
overlay deterministic (bounded).

The mapping function is at the core of the algorithm, and it is used not
only to calculate neighbors to connect to the network, but also to as part of
the locator function that is at the core of every P2P algorithm. To connect to
the network, a node requires only to know the address of a node already in the
network, obtained through bootstrapping (see Section 2.7.1. Once connected
to the network, any node can calculate the path from itself to a target node.
This calculation is a completely abstract exercise: a node’s neighbors can be
calculated without any information other than the string value itself, and the
only step necessary is to obtain the actual network locations of each node
along the way (to account for missing strings in the actual mapping of the
theoretical topology).

In other words, the theoretical path between two nodes is fixed by the
mapping function, and the only thing that changes is how this path is mapped
using the nodes/values present on the network.

The mapping function has an additional condition to fulfill. If a given
neighbor 7 of a node ® N is M, then the neighbor i of node M should be N:

N,=M — M;=N

In mathematical terms, the mapping functions used in overlay networks

9Since a node has several neighbors, the mapping function maps a single string onto
a subset of the original set of strings. Neighbor 7 then represents value ¢ in the subset of
results provided by that function

56

satisfy the conditions for a metric in the algebra defined by the set of strings
plus the operations that allow their manipulations. Therefore, all overlay
networks define (implicitly or explicitly) a metric space on the string set
considered. The fact that overlay network functions are metrics on the set of
strings is not a coincidence: it is a necessary condition for the overlay network
structure to be valid. (The mapping function has an additional requirement,
that of symmetry).

As an example, let’s consider a network where nodes want to “publish” a
given name (for example, the nodes in a distributed database system). In this
example the content “exposed” by a node is also its identifier, which we define
to be a positive integer value (this will allow us to skip the step of having
to hash the identifier/content, which would be necessary if we were using
strings). If the identifiers are universally unique then we can, for illustrative

purposes only, define a few simple rules to create an overlay topology:

e The “neighbors” for each node (in the overlay) will be two: the node
whose value is the next available (higher) integer, and the node whose

value is the previous available (lower) integer.

e At the limits (if the current node is either the lowest identifier in the
network, or the highest), the neighbor will be the opposite maximum

in the range of nodes available.

e To join the network, a node needs to locate another node already ex-
isting in the network as described in Section 2.7.1. Then, the incoming
node can use the search function to find the “slot” in the network where
it should insert itself by locating its two neighbors. If one (or both)
of the neighbors is not present, the incoming node will “cover” for the
missing node(s) by assuming their responsibilities until the node(s) ar-
rive. If they are present the incoming node simply connects to them
while taking over functions from the node(s) that were “covering” in

the incoming node’s absence.

e The first node to join the network will “cover” for its neighbors itself.

These rules define a linear overlay topology, through the use of a lincar
mapping function. Searching in this topology follows a simple algorithm:
the search can start at any node, and the node will determine the relation
between its own value and the “target” value: if the target value is higher
than its own, it will pass on the request to its neighbor of higher content
value, and the process will continue making decisions locally until it reaches
the destination node, which can then reply directly to the requester with its
physical network address for additional operations.

The example is unrealistic in that the search time will be bound, but
lincar, making lookup times unacceptable. Typical Overlay Network algo-
rithms use more complex rules to organize the nodes (resulting in logarithmic

lookup upper bounds), as we’ll see in the sections that follow.

2.9.1 Chord

Chord operates like a distributed hashtable by allowing insertion, querying,
and removal of strings on a virtual data structure maintained in a set of
participating nodes. The strings used as keys are derived in some way from
the content exposed by the nodes by using a consistent hashing algorithm,
so everything in Chord centers around a distributed hash lookup primitive.
Chord can find data using only log(/N) messages, where N is the number of
nodes in the system, and its lookup mechanism is provably robust in the face
of frequent node failures and re-joins.

As shown in Figure 2.9, Chord defines a basic “ring” topology; its basic
algorithm implies one connection per node and is thus inherently resilient to
node joins, leaves or failures. Each nodes store key/value mappings according
to the values of the keys and the identifiers given to the nodes, redistributing
key/value mappings as new nodes come into the network. For the example

in Figure 2.9, which shows a network of eight nodes with 4 keys, if a node

o8

N1

N44
N40
K38 NO
N36
N14
N17
N25 K16

Figure 2.9: The Basic Chord Ring Topology

with identifier 16 were to enter the network, key 16 would migrate from node
17 to the incoming node.

Chord then extends the basic successor node with a set of fingers accord-
ing to powers of two, so for a value n the neighbors will be those nodes that
match a rule that evolves according to n 4+ 2% n + 2!, n+22..n 4+ 2™ ! with
m the number of bits in the identifier'®, as shown in Figure 2.10.

In this case, several of the fingers that N9 would connect to are not
present in the network. Therefore the responsibilities for the missing nodes
are assumed by the next node that is present in the topology. As new nodes
come in, they would take control of the connections that they are responsible
for, just as they will take control of the keys that “belong” in their section of

the space. Chord stores multiple key /value pairs in each node, automatically

0y is the number of bits in the identifier that can be assigned to each node, and

thus defines the maximum number of nodes supported to be 2™. Formally speaking, the
fingers for a node in Chord are defined as each of the successors in the ring for node
(n+25"mod2™ 1<k <m

99

N1

N44
K4
i b - N9 Finger Table

K38 bar N9 N9+1 N14
“““““““““ N9+2 N14
N36 5, N9 + 4 N14
\ N9+8 N17
N/ N9 +16 N25
o N9 +32 N44

N14

i N17
B

Figure 2.10: Chord Fingers for One Node

balancing the load of the nodes as new entrants to the network arrive.

When the fingers are used, the lookup time becomes of the order of the
logarithm of the number of nodes, O(log N). Note that, to maintain correct-
ness, Chord only requires that the successor node pointer be correct, and it
can revert to use the basic scheme when, at any given step, the fingers table
has been damaged (e.g., by node failures). Since the fingers table is small
on cach node, it can be maintained valid (along with the successor pointer)
through a periodic “stabilization” algorithm. In Chord, lookup times of
O(log N) are maintained even when faced with probability of node failure of
1/2, as long as the initial network is stable.

Figure 2.11 shows a sample Chord lookup operation, in which N9 requests
the value associated with K38. N9 first finds the finger connection that gets
it closer to the target (N25). The process is then repeated at each node,
moving closer to the target based only on information local to each node.

This sample lookup shows the maximum number of steps for a network of 8

60

N1

N44

N40

K38

N14

WN17

s

K17

Figure 2.11: A Sample Chord Lookup

nodes, which is log 8 = 3.
Chord has been used as the basis of several self-organizing systems and
services, such as CFS [14] and i3 [80].

2.9.2 CAN

CAN uses a d-dimensional Cartesian coordinate space to implement the dis-
tributed hashtable abstraction. The coordinate space is partitioned into sec-
tions of dimension d — 1 called zones. Each node in the system is responsible
for a zone and identified by its boundaries. Keys stored in the system are
mapped onto a point in the coordinate space, and stored at the node whose
zone contains the point’s coordinates. Each node contains a table of all its
neighbors, defined as the nodes whose zones share a d — 1 dimensional hyper-
plane. The lookup operation in CAN is implemented by forwarding a query
message along the path that approximates a straight line in the coordinate

space from the querying node to the node storing the target key.

61

maps to (0.4, 0.8)

0.1) (1,1)

7 3
maps 10 (015,042 4 | 5 | g TJK3| mapsto (04, 05)
-+
Ji K40 | maps to (0.56, 0.38)
5
(0,0) (1.0)

Figure 2.12: A Two Dimensional CAN

As an example, consider the small CAN network shown in Figure 2.12,
organized is organized on a two dimensional space. In the example, connec-
tion points are defined along edges of dimension one. Each node is therefore
connected to four other nodes at most (and one at a minimum). In the fig-
ure, we can also see keys assigned to different nodes based on their calculated
coordinates (derived through a hash of the key). The node responsible for
holding a (set) of given key(s) is the one that is covering the coordinate space
to which the key belongs.

To join the network, a new node first chooses a random point in the
coordinate space, and asks a node already in the network to find the node n
whose zone contains that point. Node n splits its zone in two and assigns one
of the halves to the new node. The new node can easily initialize its routing
table, since all its neighbors, except n itself, are among n’s neighbors.

Figure 2.13 shows the same network after a new node (node 8) has entered
the network, partitioning the space that previously was covered by node 2
alone.

Once the new node has joined, the new node announces itself to its neigh-
bors. This allows the neighbors to update their routing tables with the new
node, as well as re-assigning keys that correspond to the space covered by

the new node (In Figure 2.13, node 8 has taken over key K40 from node 2).

62

maps to (0.4, 0.8)

(0,1) (1,1)

maps to (0.15, 0.42) o

T~ (2

K39| maps to (0.4, 0.5)

—
maps to (0.56, 0.38)

o
o)

(0,0) (1,0)
Figure 2.13: A Two Dimensional CAN After a Node Join

When a node departs, it hands its zone to one of its neighbors. If merging
the two zones creates a new valid zone, the two zones are combined into a
larger zone. If not, the neighbor node will temporarily handle both zones.
To handle node failures, CAN allows the neighbor of a failed node with the
smallest zone to take over. One potential problem is that multiple failures
will result in the fragmentation of the coordinate space, with some nodes
handling a large number of zones. To address this problem, CAN runs a
node-reassignment algorithm in the background. This algorithm tries to as-
sign zones that can be merged into a valid zone to the same node, and then

combine them.

(0.1) (1,1
7~ 71;
i
=4 —
N 4 2 38| 6 K39
B
K40
5
(0,0 (1.0

Figure 2.14: A Sample Lookup in a Two Dimensional CAN

63

Lookups in CAN proceed (as mentioned above) essentially by approx-
imating a straight line between the requesting node and the node that is
responsible for the target area in which the key resides. Figure 2.14 is an
example of this process. To lookup K40, node 7 calculates the expected
coordinates of the key in the space. With that information, node 7 routes
the request to the neighbor closest to the target section of the space, in this
case node 3, which repeats the process, reaching node 8, creating the search
path shown in the figure with a solid line. Node 8 then returns the value

associated with K40 to node 7 and the scarch cycle is completed.

2.9.3 Oceanstore and Tapestry

In the mid-90s, Plaxton et. al. proposed [65] a randomized hierarchical dis-
tributed data structure that gave rise to systems such as Tapestry [36] and
Oceanstore [42]. This data structure yields routing locality with balanced
storage and computational load, but does not provide dynamic maintenance
of membership. That is, the Plaxton algorithm requires a static set of par-
ticipating nodes as well as significant work to pre-process this set to generate
a routing infrastructure, which complicates coping with node failures.

Tapestry assigns unique identifiers to nodes and objects in the distributed
system, uniformly distributed in the namespace. Each tapestry node contains
pointers to other nodes as well as mapping between object identifiers and
the Node-identifiers of storage servers. Queries are routed from node to node
along neighbor links until an appropriate object pointer is discovered, at
which point the query is forwarded along neighbor links to the destination
node.

OceanStore is a “utility infrastructure” designed to provide continuous
access to persistent information in a global scale whose routing mechanism
is another variation on Plaxton et. al’s data structure. Since this infrastruc-
ture is comprised of untrusted servers, data is protected through redundancy

and cryptographic techniques. To improve performance, data is allowed to be

64

cached at any node in the network; monitoring of usage patterns allows adap-
tation to regional outages and denial of service attacks, and it can enhance
performance through pro-active movement of data to more active locations.

Entities in OceanStore are free to reside on any of the OceanStore servers.
This freedom provides maximum flexibility in selecting policies for replica-
tion, caching, and migration. Addressable entities!! in OceanStore are iden-
tified by one or more GUIDs (Entities that are functionally equivalent, such
as different replicas for the same object, are identified by the same GUID).
Clients interact with these entities with a series of protocol messages. The
role of the OceanStore routing layer is to route messages directly to the clos-
est node that matches the query. In order to support this routing process,
OceanStore creates a distributed, fault-tolerant data structure that explic-
itly tracks the location of all objects. Routing is thus a two-phase process.
Messages begin by routing from node to node along the distributed data
structure until a destination is discovered. At that point, they route directly
to the destination. Thus, the OceanStore routing layer does not replace 1P

routing, but is built on top of it as an overlay.

2.9.4 Other Systems

HyperCast

In the late 90s, HyperCast [46] [47] was put forward as a protocol based on an
overlay that used a hypercube topology for efficiently performing multicast on
a network, and it has more recently been used for peer-to-peer networking
of very large groups. HyperCast embeds spanning trees into incomplete
hypercubes through the use of an algorithm that uses a Gray Code. More
recently, HyperCast has been used to perform point-to-point communications
between nodes.

In HyperCast, all data is transmitted along trees that are embedded in

1 An entity in OceanStore can be a replica, an archival fragment, or a client

65

the overlay network topology. For cach node in the network, there is an
embedded spanning tree in the overlay network with that member as the
root of the tree. Given the root of an embedded tree, any node can locally
determine its children and parent with respect to that tree. Each member
forwards data to its children or parent in an embedded tree with respect to a
specific node. The embedding of trees (and other data structures) in abstract
topologies such as hypercubes as butterflies was also studied in relation to

massively parallel machines, for example, in [43].

Viceroy

A Viceroy network is similar to a butterfly network [41] combined with a set
of predecessor and successor links like those defined by Chord. In addition
to predecessor and successor links, cach server includes five outgoing links to
chosen “long range” contacts. First, each node chooses a “level” at random in
such a way that when n servers are operational, one of logn levels is sclected
with ncarly equal probability. Edges connecting a node at level [to other

nodes are selected according to the following steps:

e a “down-right” edge is added to a long-range contact at level [+ 1 and

distance roughly 1/2! away
e a “down-left” edge at a close distance on the ring to level [+ 1.
e An “up” edge to a nearby node at level [— 1 is included if [> 1.

e “level-ring” links are added to the next and previous nodes of the same

level 1.

Routing proceeds in three stages: the first one consists of a “climb” using
connections to a level-1 node. In the second stage, routing proceeds down the
levels of the tree using the down links; moving from level [to level [4 1 one

follows either the edge to the close-by down link or the far-away down link,

66

depending on whether the target v is at a distance greater than 1/2' or not.
This continues until a node is reached with no down links, which presumably
is in the vicinity of the target, at which point a “vicinity” search is performed
using the level-ring links until the target is reached. This process requires

O(log N) steps with high probability for randomly built networks.

Pastry

Pastry gives each node a randomly chosen identifier, indicating its position
on an identifier circle. It routes messages requesting (or inserting) a given
key to the node with identifier that is numerically closest to the key, using
128-bit identifiers in base 2P where p is an algorithm parameter typically set
to 4. Each node maintains a leaf set, composed of nodes closest to its own
identifier and larger than it, and those closest to its own identifier and smaller
than it. These heuristics allow Pastry route queries according to a network-
proximity metric. Each node is likely to forward a query to the nearest one
of k possible nodes, using a neighborhood set of other nearby nodes. As long
as a failure doesn’t involve an entire half of the leaf set, correctness in the
algorithm is guaranteed.

To optimize forwarding performance, Pastry maintains a routing table of
pointers to other nodes spread in the identifier space. This can be viewed as
log, pN rows, cach with 2p — 1 entries cach (where N is the number of nodes
in the network). Each entry in row ¢ of the table at node n points to a node
whose identifier shares the first 7 digits with node n, and whose i+ 1st digit is
different (there are at most 2p — 1 such possibilities). Given the leaf set and

the routing table, cach node n implements the forwarding step as follows:

e [f the key that is being looked up is covered by n’s leaf set, then the

query is forwarded to that node.

e In general this will not be the case until the query reaches a point close

to the key’s identifier. In this case, the request is forwarded to a node

67

from the routing table that has a longer shared prefix (than n) with
the sought key.

e If the entry for the target node is missing from the routing table because
the node doesn’t exist, or because that node is unreachable, n forwards
the query to a node whose shared prefix with the key is at least as long
as n’s shared prefix with the key, and whose identifier is numerically
closer to the key. Such a node must clearly be in n’s leaf set unless the
query has already arrived at the node with numerically closest identifier

to the key, or at its immediate neighbor.

If the routing tables and leaf sets are correct, the expected number of
hops taken by Pastry to route a key to the correct node is at most log p/N.
Pastry has a join protocol that builds the routing tables and leaf sets by
obtaining information from nodes along the path from the bootstrapping
node and the node closest in identifier space to the new node. It may be
simplified by maintaining the correctness of the leaf set for the new node,
and building the routing tables in the background. This approach is used
in Pastry when a node leaves; only the leaf sets of nodes are immediately
updated, and routing-table information is corrected only on demand when a

node tries to reach a nonexistent one and detects that it is unavailable.

Kademlia

Kademlia uses an XOR-metric to dynamically route messages/keys to the
node with the identifier numerically closest to the key, similar to Pastry.
Each Kademlia node has a 160-bit node identifier (Node identifiers are con-
structed as in Chord). Every message transmitted by a node includes its
identifier, thus allowing other nodes to record the originator node’s existence
if necessary. Keys stored in Kademlia are also 160-bit identifiers. For finding
and publishing keys, Kademlia relies on the distance between two identi-

fiers, defined as their bitwise exclusive or (XOR) interpreted as an integer,

68

dz,y) =z ®y.

Kademlia nodes store contact information about each other to route mes-
sages. Every node keeps a list of (IP address, Port, Node identifier) triples
for nodes of distance between 2¢ and 2! and itself. These lists are main-
tained through a least-recently seen eviction policy, and live nodes are never
removed from the list, thus maximizing the probability that nodes contained
in the list are valid.

The system differentiates between finding nodes and values stored in
them; one node might contain one or more values. When a node is being
looked up, the search procedure in a node returns information for a number
of nodes it knows about that are closest to the target identifier, which are
then queried for the result (the procedure stops when a value is found). In
this sense, Kademlia performs a search across a likely set of neighbor nodes of
a target value which will typically result in search times of O(log N), where
N is the number of nodes.

To find a key/value pair, a node starts by performing a lookup to find
the & nodes with identifiers closest to the key, and the procedure halts im-
mediately when a node returns the value (this response might come from a
holding node, or from a node that is actually caching the result). Once the

node is found, a similar recursive procedure for the key is performed in it.

Early Applications of Virtual Topologies

While searching the literature for references on work similar to Manifold-g, we
found similarities beyond those of Overlay Networks, first on the work done
on parallel computing architectures and on predictable (i.e., mathematically
derived) virtual topologies in different arcas. In all cases studying these
systems helped us understand the qualities and properties of Manifold-g.

In the late 70s and during the 80s, new types of massively parallel com-
puter systems were developed that used the concept of a network organized

according to some well-known parameter to create a topology that could be

69

navigated predictably. The network, in that case, was one of processors that
would divide a particular task in several sub-components, achieving faster
processing times (for example, Tree Machines [3], the Cosmic Cube [76], the
Connection Machine [44], the nCube [60] and Butterfly Networks [77]). Pro-
cessor networks were static in their topology, and were not self-organizing (al-
though they had capabilities to route around failures, see, for example, [35]),
but many of their routing concepts are similar to those used in content-based
overlay networks today. Even at that time, solutions that went beyond pro-
cessing that used virtual topologies for other purposes were proposed, such
as [32].

Similar alternatives have been explored in the realm of physical network
transports. One of the best examples of these is the the Manhattan Street
Network [50], where nodes are connected in a two dimensional grid (mesh)
with alternating rows and columns, where the wraparound links between
nodes place the resulting two dimensional grid on the surface of a logical
torus. A mnode is represented by a simple 2x2 switch and, at the beginning
of each time-slice, it switches slots from its two incoming links to its two
outgoing links. The regular topology of a Manhattan Street Network makes
it well suited for self-routing algorithms such as those described in [6] [51]
[52] [69] .

2.10 Comparison of P2P Systems

The central difference between TTL-controlled algorithms and overlay algo-
rithms is that overlays guarantee that a result will be found if present in the
network. Overlays also guarantee that the lookup time (either with a result
or a failure) will be bounded; TTL-controlled algorithms can make no such
guarantee.

Compared to TTL-controlled algorithms, overlay algorithms require a

much smaller number of steps to reach the desired node. However, this

70

is done at the cost of a higher number of physical hops the message has
to perform on the network. That is, for a given hop between nodes in an
overlay network the physical distance covered might usually be more than
physical hops between nodes for a flooding-based network. Overlay networks
make up for this deficiency by significantly reducing the total number of
hops at the overlay level, by operating as a highly optimized point-to-point
communication mechanism, rather than using the “brute force” approach of
flooding-based networks.

Note that the connectivity pattern in an overlay network is different from
the one obtained using a TTL-based algorithm: the number of connections

t'2. This is an important feature because

to and from cach node is constan
the structure created by the overlay has to be, either implicitly or explicitly,
symmetrical, and it is the structural symmetry of the topology that allows
nodes to forward queries optimally from any node with the certainty that a
path to the target will always be found.

The symmetry of the network (either implicit or explicit) contributes to
the short-path lookup times of overlays. Nodes use the lookup function to
define which content they are responsible for, therefore ensuring the integrity
of the structure.

Overlays structure their content based on the exact values of the keys
stored, making them unsuitable for inexact (or substring) searches. TTL-
controlled algorithms can deal properly with both exact and inexact queries
alike.

In case of node failures, overlay network algorithms provide mechanisms
for the network to recover and re-create or maintain an appropriate network
structure. TTL-Controlled networks, on the other hand, have lower consis-
tency requirements, allowing them to operate even if only one connection

to one node in the network is available and making them more resilient to

12Some overlay networks might obtain this result implicitly (i.e., not necessarily through
direct connections between nodes, but by adding traversal rules to the space)

71

large-scale, disruptive changes in network topology.
We will now look at how these specific implementations of these two types
of P2P algorithms can be combined to provide a self-organizing solution to

the problem of generic RLD.

2

Chapter 3

Manifold, an Overview

3.1 Introduction

In Section 2.3 we noted that a user will typically have two different require-
ments for resource location: local/inezact search, and global/exact search.
We will now briefly discuss the Manifold algorithms, how they differ from
the algorithms discussed in the previous chapter, and their interaction and
design, to provide context to the following chapters, in which cach algorithm
is described, and analyzed, in detail.

Manifold uses a hybrid, dual-algorithm system. One algorithm, Manifold-b,
handles inexact queries; the other, Manifold-g deals with exact queries in a
global scale. The first algorithm is based on a TTL-Controlled P2P algo-
rithm, and the second is based on an overlay network algorithm. Manifold
doesn’t force the application to make a choice of which algorithm to use; it
receives an inexact query in the form of a regular expression [16] [40] [82]
(or, alternatively, with a string and an additional parameter specifying that
the string is actually a substring to be matched, which creates the regular
expression on the fly). If the string to be matched is a regular expression,

Manifold-b is used. If not, Manifold-g is used.

73

3.2 Resolving Inexact Queries: Manifold-b

Manifold-b uses TTL-Controlled P2P to serve queries based on the local/inexact
search use case for RLD systems. TTL-Controlled systems are ideal for this
function: they cover all the nodes in a certain area, they have proven scala-
bility up to tens of thousands of nodes; and they can easily match a regular
expression or substring against a set of strings for which they are responsible.
The Manifold-b algorithm is, at its core, relatively simple, and similar
to the algorithm found in well-known P2P systems, Gnutella in particular.
Differences for these types of algorithms appear in specific implementation
details, such as caching, or usage of underlying network features, such as
increased use of nodes that have access to fast network connections (e.g., ap-

plying concepts described in [30]), which are also implementation dependent.

3.3 Exact Search in a Global Scale: Manifold-g

For the second use case, of global/eract search, Manifold uses an overlay
network to guarantee results in bounded time if the target value exists on
the network, something not possible with TTL-limited P2P networks, in
which the diameter of the search is usually less than the diameter of the
network itself.

Manifold’s overlay network algorithm was designed with the requirements
of resource location in mind, in particular with support for content-locality.
In current overlay networks content can be said to be non-local: published
content may or may not reside on the node that publishes it ! (a consequence

of their design goal of achieving good load balancing) through some kind of

Tt should be noted some systems (CAN and Chord in particular) could be forced to
maintain locality, or, in other words, a strict correspondence of a single content value to
its originating node. However using them in this fashion could create unnecessary strain
in the systems; as we have already seen both CAN and Chord are designed primarily as
distributed self-organizing hashtables that maintain several key/value pairs per node, and
pairs might require redistribution among nodes after a certain number of insertions.

74

mapping of contents to nodes. Additionally, they all rely on an implicit or
explicit mechanism to obtain bounded search times: in some cases (as in
the case of CAN) the content mapping function has certain built-in qualities
that guarantee a given search speed, in others (such as in Chord) the content
is stored according to a hash function but then an additional mechanism
(Chord’s “fingers”) is used to improve the search efficiency. In all cases, the
search time can be improved by modifying certain parameters within the
network, such as number of neighbors per node.

This non-locality of content, while useful for various reasons in contexts
such as distributed network storage [14] [42], is not a desirable feature in other
contexts, most notably name resolution in particular and RLD in general,
where it is important that the node that serves the content is the same that
publishes it.

Additionally, current designs place little emphasis on minimizing resource
usage on the nodes while increasing performance, since they generally re-
quire a node in the network to store multiple keys. The common solution
to increasing performance usually results in an increase of the number of
connections (or initial lookups, to maintain state on neighbors) a node has
to perform. While this is acceptable for PCs, it might be more of a problem
for mobile devices or devices with slow or low-quality wireless connections,
or with limited processing power.

The problem of global/exact search in RLD has certain specific require-

ments beyond RLD in general:

e Content locality. As mentioned before, name resolution ideally requires
a one-to-one mapping between content and the node that publishes it.
For example, if CompanyX is publishing its name/address mapping,
it is safe to assume that CompanyX would like a certain degree of
control over response times; for example exposing the content through
a cluster of servers rather than through a single machine. If the content

is not local to the node that publishes it, the name for CompanyX

might be served by CompanyY’s servers or machines, which might be
overloaded or might be CompanyX’s competitor, therefore making it an
unacceptable choice for CompanyX for political, rather than technical
reasons. For an in-depth analysis of the political, social, and technical

issues raised by name resolution in a global scale see [58].

Low resource usage. A self-organizing network has the potential to pro-
vide global name resolution even between client devices, without any
need for server intervention. Consider the following scenario: UserX
is travelling with a wireless device, and she connects to the Internet,
therefore “publishing” her new address to the network, so other users
can find her address and contact her directly to send a file. Current
solutions to this problem would involve specific server configuration of
systems like DHCP at potentially large cost, while using an overlay
network would provide this functionality as part of the same system
used to look up server (rather than client) addresses. However, small
devices are usually severely limited in connection speed, memory, stor-
age, and /or processing power. In this case, the ability to off-load man-

agement of a node’s responsibilities to a proxy is an important element.

Speed with extremely large scalability requirements. Name resolution
is an application that, if deployed in today’s systems, would include
hundreds of millions of devices, with this number reaching the billions

of devices in the near future.

A global, seclf-organizing RLD system requires locality of content, ex-

treme scalability, and the ability to provide speed/resource usage tradeoffs

for deployment in devices of different connection and performance capabil-

ities. While many other applications that use overlay networks might not

have these specific requirements, any of them would benefit from a solution

to the problems they present.

76

3.4 Design

We will go into more detail on the design of a real-world implementation of
the Manifold system in Chapter 7, but it’s useful to introduce some of the
design concepts at this point, to clarify the basis of the discussion for this
chapter as well as the next part of this work where we discuss the theoretical
basis of the algorithms that compose Manifold.

In keeping with the end-to-end principle [73], Manifold does not require
modifications on the underlying network layer addressing and routing; this
allows Manifold operate on different platforms, network types, and transport
layers. Manifold achieves this level of abstraction through the use of mes-
sages. Messages can be received locally? or through the network interface.
Once a message is received there is one component that chooses which algo-
rithm is responsible for that message, and passes it on. The query process is
itself stateless, that is, both algorithms operate by receiving a message (which
carry their own state, such as nodes visited in the query path, etc), process-
ing it, and continue appropriately, cither replying to the query, forwarding
the message, or ignoring it. The only state maintained is query-independent,
having to do with the structure of the P2P networks used.

The core of Manifold is controlled by two independent algorithms that
process messages received from an internal message manager. Through the
manager, they have the ability to send messages to the local (requester)
application as well, or use the network interface to send messages to other
Manifold nodes (specifying which algorithm on the target node will be re-

sponsible for processing the received message).

2through Inter-Process Communication for example, or function calls, or local message
passing within a single process.

77

3.4.1 Algorithm Use and Interaction

The two algorithms coexist within the same environment, and the algorithm
to be used is chosen based on the type of query requested by the user. If
the query involves a substring search (e.g., all the names that begin with the
term “printer”) then the system automatically uses the Controlled Flooding
algorithm. If the query is exact (e.g. a specific name like “printer01”) the
query will be routed using the overlay algorithm.

The two algorithms don’t require interaction; they essentially create two
parallel networks to resolve the different types of query: the Manifold-b TTL-
based network is limited in reach (from the point of view of each node); the
Manifold-g network is global in nature. That is, while every node belongs
to the same global overlay, each node might belong to different Manifold-b
networks of limited reach.

While it’s not required that the algorithms interact, there are some cases
where interaction is important in providing best-effort resolution. For exam-
ple, if a small section of the overlay has been suddenly been cut off from
the global network (e.g., if its Internet access point failed) then reverting to
use the local Manifold-b network automatically would be a useful feature;
since it’s possible that the target node is actually local. If not, a failure will
be reported, but switching to the Manifold-b network has the potential to

provide a response even in the face of catastrophic failures for the overlay.

78

Chapter 4

Manifold-b

4.1 Introduction

As we have mentioned earlier, our initial work on RLD was Nom [18], a
system that was applied to mobile ad hoc networks exclusively. This initial
work led us to explore the generic RLD problem in more detail. As we further
identified the requirements of generic RLD, the Nom algorithm emerged as
an appropriate solution for the first half of generic RLD, and it was used as

a basis for the Manifold-b algorithm, presented in this chapter.

4.2 The Algorithm

Manifold-b! is a TTL-based self-organizing algorithm. At the core of Manifold-b
is a loop that monitors messages coming both from the network and the ap-
plication level code (i.e., query/query-reply messages from the network and
query-initiate messages from the application) and reacts according to the
message type received, either forwarding the message received if it doesn’t
apply to the current node, creating and forwarding an appropriate query-

reply message if the node should respond to the query, or creating a query

! “Manifold-broadcast”

79

message and inserting it into the network.
We will now consider the basic functions of the algorithm, as mentioned
at the beginning of Chapter 2.6: Join, Leave, and Search as well as Key

insertion and removal.

4.2.1 Node Join

The Join process in Manifold-b starts with the P2P bootstrapping rules dis-
cussed in Section 2.7.1. Once a node has found one or more nodes in the
network, it will request connections to them using a special type of message,
connection-request, which will be either accepted or denied. Additionally,
once connected, a node can expand its reach (ie., expand its neighbor list)

by sending out query-bind messages into its known peers (see Section 4.2.3).

4.2.2 Node Leave

A node will, if possible, inform its neighbors that it is disengaging from
the network. This is done by sending a leave-notify message to its peers.
The leave-notify message is one-way; no replies are required or expected. If
a target node is not reachable for some reason, then no further steps are
attempted for notification. In some scenarios, it is possible that the target
might not be reachable only temporarily (e.g., in a wireless network, if the
target has moved temporarily out of range). In that case, the next connection
the target attempts with the leaving node will fail, and the rules for dealing

with node failures will be followed (see next section).

4.2.3 Key Search

The basic search algorithm of Manifold-b operates in a continuous loop, as

follows:

1. Receive message. If the message has already been processed (i.c., its

80

Message identifier is found in the internal Message identifier list?) list,

ignore it.

. Retrieve a list of neighbors (obtained from the underlying routing pro-

tocol). Alternatively, in a mobile environment a direct broadcast can

be attempted.

. If message is a query-initiate message, build the query message and

send it to the neighbors.

If message is a query message, check whether this node contains the
information requested on the query. If so, create a query-reply message
and send it to the neighbors so it can go back to its destination 3. If the
message’s number of hops is past the TTL limit, ignore it. If the infor-
mation requested is not in the current node, increment the number of
hops in the message and re-send the query message to the node’s neigh-
bors. After re-sending the query message, store the Message identifier

in the identifier list (for use of the list see step 1).

If the message is a query-reply message, check whether the request
was sent by this node (see Step 3). If the query was sent by this
node, return the result to the application layer that made the resource-
location request. If the query was not sent by this node, increment the
number of hops in the query-reply message and re-send it to the node’s
neighbors, storing the Message identifier in the identifier list (for use of
the list see step 1). Note: the query-reply contains the original query
information, making storage of queries unnecessary. Since the query

also has a timestamp, the node is able to determine that a timeout on

“Message identifiers must be globally unique. Universally unique identifiers can be
obtained by concatenating a variety of data including current system time, node identifier,
and other elements such as ethernet address. Some operating systems (such as Microsoft
Windows) allow creation of globally unique identifiers via API calls.

3In most cases, the reply could be sent directly to the requester as an optimization.
The basic algorithm, however, makes no assumptions in that regard.

81

the query has already occurred (and only cache the query for future

use instead of passing the result to the application).

An additional type of message handled is query-bind and query-reply-
bind. They are processed just like query and query-reply messages, but they
are intended to be an aid in the Join process described above. Nodes answer
query-bind requests assuming that they have not passed their set maximum
number of neighbors in the network.

Once the algorithm is implemented for a particular platform, several op-
timizations are possible, including caching of neighbors’ physical addresses
(depending to the dynamics of the network), return of the query messages

directly to the requester using the underlying routing protocol.

4.2.4 Key Insert, Key Remove

Because Manifold is designed to expose keys locally from a node (for example,
names with which the node will be identified), key-insertion operations will
normally happen locally. However, there is no limitation in the system that
mandates that a key can’t be inserted from a remote node, and in some cases
it will be useful to provide self-organizing key-storage mechanisms that will
exist as services available to the network.

Manifold-b supports a key-insert message, with parameters that identify
the key being inserted and its origin (as well as whether the key is a cache
copy or not). This type of message can be received either locally or remotely.
After a key-insert message the key in question will be available for resolution
by the Key Search function.

A key-remove message operates in a similar way, but deleting the key in

question from the store.

82

4.3 Dealing with Node Failure

Manifold-b has extremely low consistency requirements. Quite literally, all
that’s required is that a single connection into the network be valid for a
search query to proceed. Manifold-b nodes should have, although they’re
not required to by the algorithm, a minimum number of neighbors to ensure
fast query propagation (We will come back to the issue of performance and
number of neighbors in the next section). If a connection is attempted, either
to initiate a query or propagate it, and the neighbor to whom the query
must be forwarded is not online, the node should engage in re-discovery
(i.e., perform a Join) to rebuild its list of neighbors. This ensures that
the network maintains connectivity based on activity (that is, re-discovery
requests are performed on the basis that new queries have to be forwarded)

without requiring potentially expensive keep-alive measures.

4.4 Analysis

While it is clear that flooding-based schemes could present scalability prob-
lems, the size of networks such as Gnutella, with millions of nodes operat-
ing concurrently, makes it clear that they can work, even in large scale de-
ployments (although their inability to guarantee results remains unchanged).
Broadcast-related issues have been studied in the past, in particular for wire-
less networks in [2] [23] [26] [75].

It would be possible to use different broadcast schemes, and even use
limited-broadcast within structured overlays such as that described in [21].

However:

e in highly dynamic or failure-prone environments such as ad hoc net-
works, the low consistency requirements of Manifold-b provide an ad-
vantage in terms of reliability, overhead, and performance, particularly

when the network is in the process of forming or it only has a few

83

nodes. Wireless ad hoc networks in particular are by nature broadcast

environments, and thus naturally suited to broadcast operations.

e finally, Manifold-b can assist Manifold-g as an out-of-band method for

nodes attempting to join the Manifold-g overlay.

Since we are not concerned with the specific physical transport used, we
will show the results of our analysis of Manifold-b, performed on a simulation.
The three main factors to take into account when analyzing the algorithm

are:

e The total traffic it generates depending on the number of nodes in the

network.

e The traffic it generates within a node’s range, which could potentially
limit the bandwidth available to each node if the local (i.e., in-range)

traffic generated by the algorithm is too high.

e The speed with which an answer can be received. This query-reply
speed is directly related to the average path length for the network. As
mentioned in [29] the average path length (number of hops required)
for a given transmission between nodes is expected to grow with the
spatial diameter of the network, that is, the square root of the area (s),

or O(y/s) for a fixed transmission range capacity per node.

Our Manifold-b simulator creates a “world” consisting of several nodes,
each running the protocol, each with a unique physical identifier and node
name. The simulator is built on top of the Swarm Simulation System [24], a
software package widely used for multi-agent simulation of complex systems.

The simulator allowed us to both obtain data on the messages exchanged
between the nodes as well as visualizing in real time the propagation of the
messages throughout the network. Different types of messages (e.g., a query

request, or a query reply) could be visualized differently by changing the color

84

of the nodes that carried them. The system also ensured that even when all
nodes where running on the same machine (and therefore sharing a single
processor) their actions could be synchronized through time, to represent
a simplified network®, were actions happen simultaneously. The nodes were
located on a virtual two-dimensional grid, and the system allowed us to place
nodes in different configurations (e.g., grid, random, etc).

Each run of the experiment created a configuration of a random network
with 100 nodes. For each run, a node chosen at random inserted a query
for a randomly chosen string from the list of strings that are known to be
available in the network. In each simulation cycle, every node processed the
messages that arrived in the previous cycle. As we mentioned in the previous
paragraph, this simultancous processing of messages is a simplification of the
real world case, but it allowed us to find the upper bound of messages set by
maximizing the number of simultancous messages that could be theoretically
be sent at any given instant.

Our measurements indicate that the main factor conditioning perfor-
mance for a network running the algorithm is not the total number of nodes,
but rather the average number of neighbors for a given node®.

Based on the results shown in Table 4.1 and Figures 4.1 and 4.2, it is
possible to find the maximum bandwidth that will be allocated to resource

location by using the following function® :

“In a real network actions might happen simultaneously or not, but this was not a
factor in our simulation since we were interested in measuring traffic and propagation
patterns, rather than response-time related issues.

°In Table 4.1 and Figure 4.2 the value Peak Messages In Range represents the average
number of messages within a node’s range, and it can therefore be used to calculate the
cost, in bandwidth terms, of the service. This value is obtained by averaging the peak
number of messages per simulation cycle.

5Note that this bandwidth peak usage happens in bursts, since resource location is not
typically requested constantly, but rather as users perform functions that are meant to
initiate sustained data traffic. The impact of resource-location traffic is therefore limited
when compared to typical traffic.

85

Average Average Average Total Peak
Neighbors Cycles Cycles Until Messages To | Messages
Until Done | Reply Received | Resolve Query | In Range
3 22 13 715 16
6 14 9 1356 67
10 12 7 1990 145
15 9 5 3130 415
21 7 4 4191 791
26 T 4 5189 1304
33 6 3 6552 2315
52 5 3 10330 6724
55 5 3 10962 7396
69 4 3 13672 9604
79 4 2 15740 9801
95 4 2 18955 9801
99 3 2 19604 9801

Where B is the total bandwidth (in bytes per second), P is the propor-

Table 4.1: Simulation results

number of messages =

86

BP

S

tion of bandwidth to allocate to resource location (which can be configured
by an end-user application or operating system setting) and S is the average
message size. As an example, assuming resource location was to be confined
to a peak of 20% of bandwidth, for a 2Mbps system, it would mean a band-
width usage limit of ~45 KBytes. This value translates into ~1800 messages
per second. Therefore according to Table 4.1 the algorithm would support
at most ~20 average number of neighbors for the system at the desired 20%
bandwidth, allowing one query per second at a constant rate. This result
is based on a query-resolution cycle of a duration of ~250 milliseconds. If

the value is smaller, more queries can be resolved per second at a constant

25

A

|

—— Avg. Total Cycles Until
% \\ Finished
3 \ \ ——Avg Cycles Until Reply
10 Recewed

3 6 10 1B 21 26 33 52 55 69 79 95 99
Average Neighbors

Figure 4.1: Influence of the average number of neighbors on the network-wide
cycles necessary to resolve a request

rate for that bandwidth usage proportion. The number-of-neighbors limit
therefore points to parameter that has to be controlled (for example, in the
case of a wireless ad hoc network, by reducing radio range until an appro-
priate number of nodes is within range, or in the case of wired networks by
simply requesting less neighbor connections) for Manifold-b to maintain its
usefulness in high-density wircless networks, and to a number that must be

appropriately limited when used in “wired” networks.

4.5 Summary

Manifold-b is an appropriate solution for RLD for problems of inexact search,
or of exact search that is not required to be global or time-bounded. Appli-
cations for this algorithm include in particular those that imply the discovery
portion of RLD, or location without guarantee that the results will be found.
We will now discuss the Manifold-g algorithm, which solves the second part

of the problem by providing global search with guaranteed results.

87

0D e S e

20000
/.
15000 4
g /
2 / —— Total Msgs Transferred
i / ——Peak Msgs In Range
10000

el

0 t————————— 77— 77—

3 6 10 15 21 26 33 52 55 69 79 95 99
Average Neighbors

Figure 4.2: Influence of the average number of neighbors on messages trans-
ferred

88

Chapter 5

Manifold-g

5.1 Restating the Problem of Search

The limitations of TTL-based algorithms, particularly with regard to guar-
antees on results and lookup times, led us to look for an alternative solution.

We began by recognizing that T'TL-based self-organizing algorithms con-
sider the search algorithm a distributed version of a local search algorithm,
which is in the end based on fast string matching of the requested string
against a database of the strings stored by the node. The focus is usually,
therefore, on the graph traversal techniques used to move between nodes in
the graph, while the properties of the search space itself (i.e., the space de-
fined by all the possible strings to be searched) is rarely if ever considered a
factor.

We then realized that if the connection between nodes was determined
based on the values exposed by them, rather than through other measures,
the structure of the topology would be predictable, allowing us to guarantee
that if a node existed then it would be placed at a certain location that could
be determined dynamically with respect to the other nodes. Furthermore,
if the structure had the appropriate characteristics, navigating the space of

values could be fast enough to apply to large scale networks.

89

Therefore, we recast the search problem as one of predictable traversal
through a mesh of finite boolean sequences (the strings published by the
nodes in the network), understood as an [-dimensional hypercube, or I-cube.
We were thus able to derive a an algorithm with complexity O(log N) where
N is the total number of possible boolean strings in the space. We called
this algorithm Manifold-g!.

Throughout this chapter we will show how this algorithm maps into a
self-organizing overlay network, and then show how the problem of “holes”
in the hypercube can be solved by an appropriate node-insertion algorithm,
and how that leads to a maximum complexity of O(logn) where n is the
actual number of nodes in the network. In the next chapter, we will consider
additional improvements on the algorithm, such as optimizations to the basic
topology, and how Manifold-g can adapt to the topology of the underlying
physical network through the use of prozies, that can also be used by low-

power nodes to off-load some of their tasks.

5.2 A Short Description

The Manifold-g algorithm uses finite boolean sequences (in other words,
strings of 0’s and 1’s), organizing them in an [-dimensional space (where
[is the maximum length of the binary string of particular characteristics,
which are then used to traverse the space efficiently.

One of the key elements of the algorithm is the fact that any node in
the network will not only search for data in the network, but also provide
data to the network itself. For example, when the network is used for name
resolution (i.e., name to IP address mapping) each node in the network will
can map the name itself. This means that if the algorithm can provide a
way to map from a particular value (node in the network) to another in a

predictable way, the search problem would be solved.

1 “Manifold-global”

90

For this, we consider the boolean space X (see Appendix A) as an I-
dimensional space, with [being the maximum length of the boolean string.
We are thus able to calculate different points that “connect” elements of
the linear boolean space to different dimensions by using an XOR function
recursively applied starting with the bit-string derived from the name of the
node that initiates the query. The way in which we use the function will
guarantee that cach point will only appear once and will always be mapped
into the same values in this new function space relative to all its neighboring
values. Once we show that the the space can be navigated deterministically,
we will show how it is a matter of applying the same function recursively
to traverse from one point to another in the original /-dimensional space,

therefore completing the query.

5.2.1 The Neighbor Function

We're interested in being able to define (calculate) our neighbors locally,
ic., based on a node’s local information only. Using the theory from Ap-
pendix A, and in particular its definition of Hamming distance 4, we define

the neighbors S; of a node S as the set of those nodes that satisfy
84(5,8:)=1 YO<i<l
To calculate those neighbors using only local information (i.e., the value

of the string in question) we can apply the boolean XOR operator () as

follows:
SeoP 0<i<l

With [the length of the string (ie., the dimensions of the l-cube), and P;

defined as a boolean string in which

91

Py =0 ¥ j#i

(7)
and

g S5 ¥ J=0

which implies [neighbors for any string S in space X (X defined in
Appendix A).

In terms of base ten integer values, this means the neighbors of a node are
calculated by performing an XOR operation between S’s own value against
each power of 2 between 0 and [— 1.

It is important to note that, according to this definition, neighbors could
be (and indeed will be) lower- as well higher-value strings (in integer terms)
than the value being considered. The number of necighbors of lower value
will be the number of powers of 2 below the number, while the number of
neighbors of lower value will be the number of powers of 2 above it.

We should also point out that:

e the neighbor function N(X) is symmetric, that is to say that

N(X)=Y < N)=X V (X,Y)eS

Where S is the set of all possible strings, X and Y are node names and

N; is the neighbor 7 of the node to which the function is applied.

e the neighbor function maps a set onto itself:

N(X)=Y <« (X,Y)eS

Where S is the set of all possible node names.

92

Value | Neighbor 1 | Neighbor 2 | Neighbor 2
000 001 010 100
001 000 011 101
010 011 000 110
011 010 001 b}
100 101 110 000
101 100 111 001
110 111 100 010
111 110 101 011

Table 5.1: Values and Neighbors for a String Length of 3

5.2.2 Space Defined by the Neighbor Function

As mentioned in Appendix A, we can look at the original boolean set as the
set of vertices that define an [-dimensional hypercube, where [is the fixed
length of the boolean strings used. Each dimension j of that hypercube will
contain 27 strings (or vertices). However, we are only concerned by the actual
number of neighbors, which remains at [due to the qualities of the neighbor
function described in the previous section.

As an example, let us consider a fixed string length of 3. Table 5.1 shows
all the possible string values (nodes) and the corresponding 3 neighbors per
node, obtained by applying the boolean neighbor algorithm described above:

Now, to visualize the [-cube as a 3-dimensional euclidean space, we define
a point in cuclidean space P = (z,y, z) for a string S as given by z = S,
y = Say and z = S(g). If we also specify that when any two strings are
neighbors (that is; S and T satisfy §(S,T) = 1) they are connected by an
edge, we obtain the graph shown in Figure 5.1.

Viewing the space in this form helps to intuitively understand how the
neighbors are connected by a distance of 1 in the virtual topology, and later
it will also facilitate visualization of the search process, particularly for string
lengths n = 2 and n = 3.

In the discussion that follows, we will refer to a complete hypercube when

93

010 110

Figure 5.1: A Length-3 String Space Mapped into an Euclidean Space with
the Neighbor Function

discussing an [-cube with all its vertices. If one or more of the vertices are
not present, as would be the case if the node responsible for that string was

not present, we will refer to it as an incomplete hypercube.

5.3 Search in a Complete Hypercube

As a first step, we will define a local function to traverse a complete, or fully
connected, hypercube. The assumption of a complete hypercube is, however,
unrealistic, at any time the number of strings inserted in the network will
be less than the maximum possible given a string length [(since not all the
possible combinations of names will be present). We will define a scarch
function that takes into account incomplete hypercubes in Section 5.5.

The complete-search function uses the topology of the hypercube to tra-

verse the graph one string at a time through local operations (that are,

94

globally, viewed as a single function applied recursively).

On each string (a node might be responding for one or more strings), the
search function reduces the Hamming distance d between the current string,
Sc and the target 7' by 1, until the target is reached. We will consider the
search as originating from a particular origin string So and try to find a path
from it to a target string T. In the first step, S¢ = So.

We therefore define a local minimal path function? o as follows:
O'(S(), T) = {A],AQ, caey A]} Wlth] = 5(30, T)

Where cach A; is the string returned at each step for the recursive func-
tion A:

Sc®P, < 0T, Sc®P)-6T,Sc)=1

A(Sc,T,i) =
(i Z) { S(; — (s(T,SC@R)_‘&(T’SC):O

} Vi<i<l
With P; as defined above in the neighbor function. To avoid backtracking

on a path, we add the condition
V T,A(S,T,1) =6(S¢,T)—1

which guarantees that the distance will be reduced at every step, even-
tually reaching the target. Note that for the final step A(S,T,i) = T. This
function returns, with each iteration, a set of strings that will allow us to
“move” one step closer to the target, halving the distance to it from the cur-
rent position in the hypercube. Any of the strings can be chosen as the S¢
to be used in the next iteration. While it is quite clear that on a complete
hypercube the full search is completely predictable, as we will see shortly
when defining traversal it is important to define a local function as a basis.

In other words, the local minimal path function o returns

2on the fully connected hypercube

95

o(So,T) = {Sc1,S¢c2,--.,8¢;} with j=106(So,T)

The set of S¢ strings found between Sp and T’ is the path P between the
origin and the target, and the number of strings in that subsct is the path
length, or P,.

There are some important elements of the algorithm that should be noted:

e As we mentioned earlier, the algorithm is purely local. Only infor-
mation regarding the current position (and the previous position) is

needed to proceed to the next step in the process.

e Because of this, the algorithm can be implemented either as a recursive
process (where each node is responsible for forwarding the query to the
next node) or as an iterative process (where the origin node queries
each node in succession for the next node to be contacted according
to the algorithm). The theoretical definition is recursive, however, and
implementing the algorithm as an iterative process is related to how
the load is to be distributed on the network. We will consider the

differences in implementation later in this work.

e Since the path moves along the edges of the hypercube bridging dif-
ferences of 1 between bit strings, it is obvious that the maximum path
length for o is [l] = [log N] where N is the number of nodes in the

hypercube, as
N=2

And so o has a complexity of O(log N).

e If we consider the binary strings as base ten integers, the algorithm can
be viewed as moving between one node and the target by the power of 2

that will take the search closer to its target. This is possible because the

96

space is already organized with connections between nodes according

to powers of 2.

5.4 An Example

As an example, let us consider a search from an origin Sp = 0,0,1 for a
target T'=1,1,1. The first call to the search function is the set returned by
calls to A(S¢, T, 1) with 0 < ¢ < 3 since I = 3 and S¢c = Sp =’ 001’. That is:

A8, T,0) = 5S¢
A(So, T, 1) = Sg @ P, =' 011"
A(Sc, T,2) = Sc @ P, =" 101

Therefore both ‘011" and 101" takes us closer to the target. We choose
‘011, set it as the new S¢, and repeat the process. At the next step, we
directly obtain T' as the result of the iteration, and the search process is
completed.

From the point of view of the euclidean representation we described car-
lier, the algorithm is simply moving across edges in the direction of the target

string. This example can thus be viewed graphically as shown in Figure 5.2.

5.5 Operations in an Incomplete Hypercube

A central assumption in the algorithm presented in the previous section is
that the network will be a fully connected l-cube, i.c., that every string in
the space will be available for searching and, more importantly, for providing
paths to other strings. This is clearly unrealistic for most cases: while some
types of self-organizing networks (such as sensor networks) could be designed
to “fill” a search space completely, most cases (e.g., name resolution on the
Internet) will not. So a central problem is how to provide full connectiv-

ity without affecting the algorithm’s behavior and its search complexity of

97

Figure 5.2: A Sample Search for Length-3 Strings Viewed in an Euclidean
Space

O(log, N).

A solution would be to organize the space as it grows according to certain
rules that guarantee full connectivity. This has to be guaranteed at the
point when a node joins the network, which results in a relatively expensive
operation compared to the cost of a search (as will be for the neighbors of a
node leaving the network, which would have to rearrange their connections
to adapt to the new space topology). However, the value of this operation
will far outweigh its cost if it is kept within certain bounds.

We will use the scarch capabilities of the network to maintain its full con-
nectivity as new nodes join or leave. The join/leave operations will then be
dependent on the speed of the search, which we already know to be extremely
fast even for large networks.

It is important to note that while what follows in this chapter is an

98

accurate mathematical formalization of the process, it is not an exact rep-
resentation of the actual implementation of the algorithm. Later on we will
describe such an implementation to create a self-organizing name resolution

system.

5.6 The Shadow Mapping: Definition

Given X a boolean algebra as defined in Appendix A (a set of boolean values
B plus its operations), we will define X’ to be another boolean algebra formed
by combining a set B’, such that B’ C B with the same operations. We
also define B” to be a subset (or partially ordered set®) of B’, such that
Sy < S, V x <y and where z and y define the position of the string in
the poset. In other words, B’ is the algebra that represents a network as
it exists, while B” is a partially ordered set of B’ used within the shadow
mapping definition.

Boolean strings in B’ can be of two kinds:
e Actual strings, denoted as before as S, T, S, etc., or

e What we will call shadow strings, noted as S’, T, S}, etc. A shadow

string is a string that does not exist in B’ but exists in B, that is S’ is
a shadow string iff S’ € B and S' ¢ B'.

Based on the concept of shadow strings, we will define a shadow string

mapping SSM such that
SSM(S") = F(S',B",1)

Where S’ is a shadow string and S € B’. The shadow string mapping F

is defined as a recursive function, as follows:

3 A partial order is an order defined for some, but not necessarily all, items. For instance,
the sets M = {000,001} and N = {000,010,011} are subsets of P = {000,001,010,011}
but neither M or N is a subset of the other, so “subset of” is a partial order on sets.

99

P8 B m) =8, i 8«8 and 0 cm=<]

where [is the number of elements in B”, the poset of B’, and S,, is the

element at position m in B”.
F(8' , B' m)=F(9.,B"m+1) f 8'>8; and O <m <1
and finally
SSM(S',B",m)= 8,1 if 8'>8,1 and m>1

Which covers the ceiling value of the set. In this last case, of course, it
will still hold that S < sup(B).

The shadow mapping, then, specifies which node in the network (under-
stood as the string value it represents) is responsible for “covering” which
shadow strings. To visualize the shadow mapping more easily, it’s useful to
think just in terms of values, that is, A string S is responsible for a given

shadow string S’ if:

e S >5 > 5, where S, is any of the nodes connected to S, either as

neighbors or shadow neighbors.

e S > S > S,, which covers the remaining case, i.c., when a shadow

string is of higher value than any of the strings present.

In practical terms, the inherent load-balancing effected by the shadow
mapping means that the overhead (in terms of state maintained) created by

shadow strings on the nodes that are covering for them is not significant.

100

5.7 The Space-Complete Join Function

The next step is to consider how to complete the hypercube, even if values
are missing, to maintain the properties of the search, by combining the ba-
sic properties of the hypercube with the shadow mapping definition defined
above in Section 5.6. We will therefore define the Join function for our space
B’ ¢ B. Before that, however, we should make a note of how new strings
are added into B'.

While at its most basic this process relies on basic hypercube search, it can
be modified to take advantage of the information available in an incomplete
hypercube, as explained in Section 5.9 below.

Because there is no central or hierarchical organization to the set, we need
a ‘starting point’. In actual peer-to-peer networks, finding this initial node
to connect to the network is done using bootstrapping techniques as those
discussed in Section 2.7.1. From the algorithmic point of view, however, we
can only assume that such a node exists, and we will refer to it as Sg, a
reference node that is already connected. We will use this node to determine

whether the new string to be inserted Sy exists in B’:
U(B/,SN) :B/USN — U(SR,SN) :S;V

With S following the definition of shadow string given in Appendix A.
Given that strings are unique, a string can only be added once to B, so a
string is added to the set if and only if a search for itself has returned a
shadow string, that is, an empty space not yet filled. Since the space B” is
dependent on B’, it will grow as B’ grows.

Now, the basic search algorithm in this new case remains unchanged. We
should keep in mind that the result of the search function o(Sp,T') will be a
set of strings of the form P = {S¢y, Sca, ..., Sc;}, defining a path between
So and T'. However, this result applies only to B, and not necessarily to B’,

since some of the strings of P might be shadow strings, and not valid strings.

101

To map the shadow strings to an actual string (and thus be able to provide
a path through strings that actually exist), we must use the shadow string

mapping function, selectively on the shadow strings, by applying

where R; is the string at position 7 in the solution path R. Applying the
shadow string mapping function in this way will give us a modified result
path, R, with only valid values (i.e., values such that S € B’) and therefore
a valid path for the subset B’.

When a new string is inserted into the network, the following algorithm

is applied:

e Consider, as before, that Sg is the reference node (already in the net-

work) and Sy is the node that is joining the network.

e Calculate the list of neighbors Sy, V0 < ¢ < [for Sy. Now for cach of
Sn,, 0(Sr,Sn,) = Si, we obtain a sct of ncighbors that are cither a)

the actual string and the node responsible for it or b) a shadow string.

e If the “real string” (i.e., the node responsible for that string) replies,
then assign S; as its neighbor. In the process, the node/string that was
“covering” for Sy must be notified that Sy has arrived. Those that

were using it as shadow neighbor must also be notified.

e If a node covering for that string (as shadow string) replies, check if we
need to take over for that shadow string, and if so, do it. Otherwise,

we’ll register S; as shadow neighbor and update the covering node.

The Node Leave inverts the process to maintain connectivity in the hy-
percube.
Given this, the Join operation has a ceiling is [llog N'| steps, with a re-

sulting complexity for the node operation of O(llog N). We will now show

102

the impact of shadow nodes in the search process, and how it then effectively
reduces the complexity of the search and join to O(logn) and O(llogn) re-
spectively, with n being the actual number of strings inserted in the network,

rather than the maximum possible (i.c., 2').

5.8 Building a network: A step-by-step ex-
ample

This section is a step-by-step example that shows how network topology
evolves as new nodes enter it, and how the nodes retain full connectivity as
the space is completed. For this purpose, we’ll use a 3-bit namespace, and
assume that all eight possible nodes will join the network (i.e., self-insert).
The following is a summary of the join process used by nodes as they come

online and connect to the network:

e a node with string value S calculates its neighbors Sy, Sy,...,S5, — 1

(with m string length).

e the node locates one node already in the network through out-of-band

methods.

e the node searches for cach of its neighbors, obtaining cither the node
itself or a shadow (along with the node that is currently responsible for

that shadow).

e the node joins the network, notifying its neighbors, and in the process
“taking over” the shadow nodes that it is responsible for, according to

the shadow mapping.

This example will show, for each new node added to the network, the
results of the scarches for its neighbors and the network diagram that exists

after the node has completed the join process, as well, as which nodes have

103

to be reassigned according to the shadow mapping. Figure 5.3 is a guide for

the network diagrams in this example.

<1 shadow node
@ rcal node
-------- virtual connection
actual connection
(010 node ’010’ physically present
on the network
010 {01 1 } shadow node 010’ covered
by node "011” (physically present)

Figure 5.3: Incomplete Hypercube Example: Diagram Guide

The initial network is empty. The diagram in Figure 5.4 represents the

positions of the nodes as they exist in the theoretical space.

__010 .
e (5_)110
011 * e e 3 ”1
= O e ‘.‘.100
0011157*' ----------------- 7101

Figure 5.4: Incomplete Hypercube Example: Initial Network

The nodes will be inserted in the following arbitrary order: 100, 111, 011,
010, 000, 001, 101.

Each node that joins must first find an entry point, i.c., a node that
already belongs to the overlay. Once this is done, the incoming node uses
that entry point to locate its neighbors. It then proceeds to notify them and

take over shadow nodes as appropriate.

104

The first node added has a value of ‘100’. Through out-of-band methods,
the node determines that there are no other nodes in the network and sets
itself in control of the entire string space, creating shadow nodes (mapped to

itself) for its own neighbors.

9110 {100}

000 {100}
ey B100

3101 {100}
Figure 5.5: Incomplete Hypercube Example: First Node

The resulting network is shown in Figure 5.5.
When ‘1117 is added, it looks for its own neighbors, 011, 110, and 101. It

obtains:
e 011 — 100 (shadow node, covered by 100)
e 101 — 100 (shadow node)

e 110 — 100 (shadow node)

Through the shadow string function, node 111 determines that it should

take over coverage for 110 and 101, resulting in the new network topology.
The resulting network after node 111 is added is shown in Figure 5.6.
‘011’ looks for its neighbors, 010, 111 and 001. It obtains:

e 010 — 100 (shadow node)
e 001 — 100 (shadow node)
e 111 — 111 (real node)

105

Ao110 {111}

011 {100}

<01 {111y

Figure 5.6: Incomplete Hypercube Example: Second Node

_o1o{o11};
(e eeme s 40110 {111}

o

011

N '
. o
.

T TT 10 B T PR <3101 (111}
Figure 5.7: Incomplete Hypercube Example: Third Node

011 determines that it must take over coverage of 010, 001, and 000 from
100. This results in a 'physical’ connection between 011 and 100, which in
a complete network would not exist, to connect 100 to its shadow neighbor
000, and the neighbor of a shadow 100 is covering for, 110.

The resulting network after node 011 is added is shown in Figure 5.7.

‘110" looks for its neighbors, 111, 100 and 010. It obtains:

e 010 — 011 (shadow node)
e 100 — 100 (real node)

e 111 — 111 (real node)

106

..010 {011}
| 110

b0 @100

:
[EEEERERE v
H
1
]
1
:

1.
000 {011}

SO i <101 {110}
Figure 5.8: Incomplete Hypercube Example: Fourth Node

110 must take over its place, replacing the shadow previously being cov-
ered by 111, and it also takes over coverage of the shadow of 101 from 111,
removing the physical connection between 111 and 100 for that shadow node.

The resulting network after node 110 is added is shown in Figure 5.8.

‘010 looks for its neighbors, 000, 011 and 110. It obtains:

e 000 — 011 (shadow node)
e 011 — 011 (real node)

e 110 — 110 (real node)

100

001{010} ¢ F-mmmrmmmmennnne 101 {110}

Figure 5.9: Incomplete Hypercube Example: Fifth Node

107

010 takes over coverage of shadows 001 and 000 from 011. Also, because it
replaces the 010 shadow covered by 011, it replaces the physical connection
from 011 to 110 with one to itself, also using that connection for the 000
shadow it has taken over.

The resulting network after node 010 is added is shown in Figure 5.9.

‘000’ looks for its neighbors, 010, 001 and 100. It obtains:

e 001 — 010 (shadow node)
e 010 — 010 (real node)

e 100 — 100 (real node)

110
100
001{010}:F-cmemmevneemaaaan’101 {110}

Figure 5.10: Incomplete Hypercube Example: Sixth Node

000 inserts itself without taking over coverage of any shadow nodes. It
does, however, remove the connection that 010 had with 100 which existed
to connect 100 to the 000 shadow covered by 010.

The resulting network after node 000 is added is shown in Figure 5.10.

Then 001 comes online, looking for its neighbors, 000, 011, 101. It obtains:

e 000 — 000 (real node)

e 101 — 110 (shadow node)

108

100

001 @F="-------mo-- <7101 {110}
Figure 5.11: Incomplete Hypercube Example: Seventh Node

e 011 — 011 (real node)

001 inserts itself without taking over coverage of any shadow nodes. It
does, however, create a connection to 110, since 110 is covering for shadow
node 101.

The resulting network after node 001 is added is shown in Figure 5.11.

Neighbors, 001, 100, 111. It obtains:
e 000 — 000 (real node)
e 100 — 100 (real node)
e 111 — 111 (real node)

101 inserts itself, removing the connection that existed from 001 to 110
(because 110 was covering for its shadow), and completed the network.
The final resulting network (the complete hypercube) is shown in Fig-

ure 5.12.

5.9 Search in an Incomplete Hypercube

Performing a search in an incomplete hypercube where the missing strings are

“covered” can be modified to take advantage of the fact that certain nodes

109

010

011

100

001

Figure 5.12: Incomplete Hypercube Example: Eighth Node

actually hold more information than nodes in the fully connected hypercube.
First, So is the origin string/node (the one that starts the query). As before,
Sc is the current value and we add Sc¢, as the ¢ values currently covered by
Sc as shadow strings. 7' is the target value. The function o can be modified
as follows:

At the start, So = Sp. We calculate 6(S¢, T') = dcor as well as 0(Scc,, T) =
dcor,, for cach of the ¢ values currently covered as shadow strings.

Now, if dor = 0 or any of dcor. = 0, we have reached the target.

If ¢ = 1 or any of d¢c, = 1 then we are one step away from the target,
and the result will be found in the next iteration.

If cr > 1 and Secer, > 1, then choose all neighbors SN; of Sc that
satisfy

(S(SNZ, T) = (S(jT

and all shadow ncighbors S Neer, neighbors for shadow nodes Scer, that

satisfy
8(SNeer,, T) < dcer,
from both sets, choose the node for which the distance between it and

110

the target is the smallest. That node is the new S¢; assign it, and repeat the

process.

5.10 Performance in an Incomplete Hyper-

cube

Searching in an incomplete hypercube actually has the advantage that the
number of steps required to reach the target is reduced.
As we have mentioned, the mazimum number of steps to get from any

vertex of the [-cube to any other is [.
j=log2 =log N

Again, N is the number of vertices in the hypercube.

Now, consider a network with n actual nodes, such that n < N. We
must keep in mind that when there are less nodes than the maximum, some
nodes will be “covered” by others, as shadow nodes. Essentially when a
node is covering another it’s acting as two nodes, itsclf and the shadow—
note that potentially it could be more, but one is the minimum, and in any
case it would average out since a node covered there would not be covered
elsewhere. Because it’s acting as two nodes, then the number of connections
out of the node is twice the “normal”, so the distance to the target can be
divided by four, rather than halved, in a single step. This results in that
step being skipped (or rather, in the possibility of taking a step that takes
us much closer to the target than normal).

It is clear that, for any path, there will be a maximum of
(log N) — (logn)

steps that will not be real nodes, but shadow nodes. That is, these are

111

steps that will be in practice skipped since another node is covering for them
(potentially more than one step could be skipped, but to get the upper bound
we use only one skip per shadow—the minimum).

So, if log N is the maximum number of steps and (log N) — (logn) is the
maximum number of steps that will be skipped, then the actual number of

steps can be obtained by subtracting both maximums:

(log N) — ((log N) — (logn)) = (logn)

And so the upper bound is actually [logn] which gives us search path
lengths of complexity O(logn) for n actual nodes in the network, and join

complexity of O(llogn).

5.11 Analysis

To analyze the behavior of the Manifold-g algorithm we implemented a sys-
tem that considered nodes as objects with pointers to each other (to simulate
network connections). We used string lengths of 14, giving us a maximum
of 21 = 16384 nodes. Our simulation ran in steps, incrementing the size
of the network (with ten new nodes joining at every step), with a starting
node chosen at random from the list of nodes already in the network. After
cach join step, we performed 100 queries between randomly chosen origin and
target strings (with a probability of 1/2 of the target string being a shadow
string in the network, to verify behavior of secarches on strings that have not
been inserted). The results of the simulation can be seen in Figure 5.13.

As the results show, the maximum path length remained below or at its
expected theoretical limit of log n throughout, as new nodes entered the net-
work, with the average number of steps for a search remaining substantially
lower, since random searches might at times be requested on strings that are

“close” in the 14-cube topology.

112

16

14
12 4 —— Average Path
ﬁ, 10 Length Traversed
s e —— Maximum Path
< Length Traversed
E 83 {log n) for current
4 number of nodes
i
0

N N N NN N N o
M O O N 0 @

22 k8

—

Number of nodes

136512
15442

Figure 5.13: Average and Maximum Path Lengths compared to their theo-
retical maximum on a Manifold-g network of increasing numbers of n nodes

As a final note, while at its peak the join operation requires a maximum
total of (in this case) 196 messages, we should note that this actually rep-
resents [= 14 paths that are being traversed in parallel when the node is
gathering the information to join the network, with cach parallel track be-
ing 14 messages. If each step takes, for example, 100 msec, the total time
required for a join operation in this network would be 1.4 seconds at its maxi-
mum, when the network is almost complete. This time decreases accordingly
with the observed maximum number of messages required (seen in the graph)
when the network is incomplete.

Although in our examples we focused on functions that assume a one-
to-one mapping between nodes and their content (the node’s name), the
functions, and their respective results, apply equally well when aggregation
of several key/value pairs occurs in a single node (thus trivially supporting

the mapping of multiple names to a single node).

113

5.12 Summary

The properties of the Manifold-g algorithm make it well-suited for large pop-
ulations of nodes, while guarantecing data location and setting an upper limit
on the time necessary to complete an operation. Together with Manifold-b,
the two algorithms satisfy the requirements outlined earlier in this work for

generic, network-independent RLD.

114

Chapter 6

Manifold-g: Extensions and

Improvements

6.1 Introduction

The initial Manifold-g overlay design was based on a view of the overlay as a
hypercube obtained using the binary values of the strings in question. With
cach node connected to [neighbors (with [the number of bits of the string)
we create a hypercube of [dimensions. This allowed us to create a search
function with an upper bound of O(logn) on the number of steps per search,
requiring O(log () initial connections.

Given the conditions under which a mapping function creates a valid
overlay network, it is possible optimize its structure according to different
parameters. As long as the modifications chosen maintain structural sym-
metry, it will remain a valid overlay mapping function for Manifold-g.

We will now consider several optional optimizations that could be made

to the basic Manifold-g algorithm, improving different operating parameters.

6.2 Hashing

We should note that, unlike other overlays, Manifold-g does not depend on
hashing to function, only on a name-to-binary mapping. The simplest way to
do this mapping is to directly take the binary value of a name string. Since
each alphanumeric character has a unique ASCII code, this would result in
unique strings. However, the algorithm can define its own mapping because
using the ASCII mapping would be wasteful. In general a large number of
character combinations will produce names that are difficult to remember
and will therefore not be used at all.

Since the binary strings can be derived in any form as long as they main-
tain relative uniqueness in the space, an immediate optimization is the use
hashing on the names, to reduce string size (reduce the space dimensionality)
and to balance string distribution. If the hash function is properly defined,

collisions in the resulting string space should happen with low probability.

6.3 Search In a Meta-Hypercube

6.3.1 Increased Number of Connections

One way to improve the basic algorithm is to increase the number of con-
nections, forming what is known as a variant hypercube [83]. Doubling the
number of connections would mean half the number of steps are required to
rcach one node from any other. This improvement, however, has a limit.
For example, in an 8-bit space a search would take 8 steps. Increasing the
number of connections to 16 would halve the maximum number of steps, to
4. Increasing the connections to 32 halves the steps again to 2, and then
further increases only mean that there is less probability that the maximum
of 2 steps will be reached. After 32 connections, the only way to achieve a
one-step search always is to create 256 connections.

For 64-bit strings this is still not useful: already 64 connections are nec-

116

essary. Another alternative has to be considered: partitioning.

6.3.2 Partitioning

Partitioning divides the hypercube into a set of multiple hypercubes, which
are connected through a single node each. Every sub-hypercube is thus
connected to every other hypercube; searches then involve a search in the
local hypercube (for a jump point into the target’s sub-hypercube) and then
another search in the target’s sub-hypercube for the target node. This sepa-
ration allows us to partially “linearize” the number of connections, freeing up
a number of connections per node to be used in the more standard fashion of
increasing the number of connections in each sub-hypercube to increase the
local speed. We can thus cut by half the upper bound of both the number
of connections required, and the maximum number of steps per search. An
additional side-effect of partitioning is that failures become less problematic,
since they affect a lower number of nodes.

For this, we will use the fact that any string is actually a combination of
a number of others. So for example, the set of all possible 8-bit strings is the
combination of the set of 4-bit strings with itself. Table 6.1 illustrates this
partitioning.

If for a string of [bits we get a set with 2! values, then partitioning the
string by half creates 2/2 subsets of 2//2 values.

Now, given that each subset has the same number of values as there are
subsets, we can use a formula to connect a single value uniquely to another
subset. Essentially, we would be subdividing the hypercube into a set of
smaller hypercubes, with every hypercube connected to each other by a single
connection, as shown in Figure 6.1 (with the connections between hypercubes
in blue).

In the figure, we have only used three connections per hypercube, dividing
a 5-bit space into 4 3-bit spaces. The most efficient use of partitioning in

this case would be dividing a 6-bit space in the same way, thus creating 8

117

0000 | 0000
0000 | 0001
0000 | 0010
0000 | 0011
0000 | 1111
0001 | 0000
0001 | 1111
1111 | 0000
16 O

Table 6.1: Decomposition of an 8-bit String Set into Combinations of 4-bit
Sets

smaller degree-3 cubes where each node connects to three other nodes in its
own degree-3 cube and to a single node in another cube.
Once we have this partitioning, searching for any value in the full space

requires the following steps:

e Find the node in the “source” subspace that connects to the “target”
subspace (which can be calculated by partitioning the name of the

target string).
e usc that node to connect to the target subspace.

e once in the target subspace, perform another search internally for the

actual target node.

Using this search algorithm, the number of connections required per node
becomes 1/2 + 1 instead of [. However, the maximum number of steps in the

search becomes 2(1/2) + 1. 1f we partitioned a 64-bit string we would need

118

Figure 6.1: A Graphical Representation of Partitioning

33 connections, but scarch could take a maximum of 65 steps on a complete
hypercube (i.c., with 254 nodes).

Figure 6.2 shows the path a particular search would take. In the figure,
node S is looking for the target T' (The search path is marked in red).

Recursive Partitioning

Partitioning can be done recursively. Adding another level of recursion means

that every node would connect to:
e All necessary nodes in its subspace

e One node for the level-1 aggregation

119

Figure 6.2: A Search Path in a Partitioned Space

e One node for the level-2 aggregation.

Figure 6.3 shows the connections of the first node (without showing all
connections into its 4-bit). We can see how that node connects completely to
its own subspace, and then to the next level-2 subspace, and so on. Therefore
if any node in the first 4-bit subspace wanted to connect to a node starting
with 000000000001 it would look for node *0000000000000000" which would
then route the query appropriately to the subspace.

In the example shown, partitioning the 16-bit string twice (creating a sct
of 2% 8-bit subspaces, cach of which is divided into a set of 2% 4-bit, we’d need

6 connections: 4 + 1 + 1. Any search would then have the following steps:

e Find node within the 4-bit space (max 4 steps) that connects to the

120

00000000
00000000
00000000
00000000
00000000

00000000
00000000

00000001
00000001

11111111

8-bit (level 2) subspace

A
4-bit (level 1) su<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>