
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Self-Organizing R esource Location
and D iscovery

Diego Doval
Department of Computer Science

Trinity College, Dublin

A thesis subm itted to the University of Dublin, Trinity College,
in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

September 30, 2003

TRINITY C O LLEG E

0 7 FEB 2005

^ L I B R A R Y DUBLIN

D eclaration

1, the undersigned, declare tha t this work has not previously been sub
m itted at this or any other University, and that, unless otherwise stated, it
is entirely my own work.

Perm ission to Lend a n d /o r Copy

Trinity College Library may lend or copy this thesis on request.

Signed: (Diego Doval)

Date; November 23, 2004

A m is padres, Luis y A na M aria,

por todo lo que no se puede expresar con palabras.

A cknow ledgem ents

When 1 begun my work at Trinity College a t the end of September 2001
I wa« not only starting a degree, I had also just arrived to a new country.
My family, friends and colleagues all provided support and help, making this
work possible.

I would like to thank, first, my supervisor. Prof. Donal O ’Mahony. Donal
provided support and guidance without constraining my work, always giving
me freedom to advance in the direction 1 thought best while helping keep
my feet (relatively) close to the grovuid. I am also grateful for his assistance
even in what were definitely non-research ta^sks, from finding a room to rent
before 1 arrived in Dublin, to giving me advice on how to sort out my taxes.

Dr. Linda Doyle and Dr. Hitesh Tewari helped in many ways through
encouragement, comments on my work, and proof-reading of papers as well
as of this thesis. 1 would also like to acknowledge the help, feedback and ideas
of the members of the Networks and Telecommunications Research Group,
in particular Juan Flynn, Stephen Toner, Philip Mackenzie, Tim Forde and
Derek Greene for their work on environments and applications tha t 1 used
either directly or indirectly during the course of this work. They, and others
like Brian Lehane and Patroklos Argyroudis were always willing to talk about
all sorts of topics and helped me miderstand better some areas of networking
tha t were outside my main focus.

1 also want to thank my thesis examiners, Dr. Simon Dobson and Dr.
Seif Haridi, for their comments and suggestions.

Beyond the immediate environment of College, I’d like to thank Dr.
Telma Caputti, who provided unwavering support throughout the years in
pursuing my ideas. She also proof-read the Mathematics sections of this
work, giving me many good suggestions for improving the text and the pre
sentation.

Paul Kemiy, my friend and business partner, gave me feedback and sug
gestions, along with constant encouragement.

My move to Ireland from the US was made infinitely easier with the
help of Dylan Parker, Tracey Mcllor, Martin Traverso, Tanna Drapkin, Vic
tor Calo and Natacha Poggio. They helped me pack, organize, and move.
Through it all Marcelo Cominguez, Sergio Mirabelli and Fernando Koch pro
vided good conversation and advice, regardless of the distance between us.

Martin helped me with other aspects of the move, and in many other
ways since then. He also proof-read this thesis, providing insights, correcting
typos and asking probing questions tha t hel{)ed me improve my work.

Tracey and Dylan went above and beyond the call of duty by not only
helping me with a myriad details (and those tha t were more than “details”—
such as taking care of my furniture!), but also spending the next two years
listening patiently to my rants regularly over the phone at all hours, day or
night. 1 am amazed at all they’ve done for me, and 1 am deeply grateful for
it.

1 would also like to express my gratitude to Chris Vosnidis, who has
always been there, and has helped me through more than one rough patch
in these last two years.

I am lucky to count them as friends.
Finally, my family, though not here with me, was always present. My

parents, Luis and Ana Marfa, supported me at every step in every way they
could. I would not be where 1 am today without their help, and this work is
dedicated to them as a small token of my appreciation. My brother Sergio
and my sister Laura have done more for me than they realize, through big
and small everyday things— Gracias!

A bstract

Networked applications were originally centered around backbone inter
host coinmmiication. Over time, communications moved to a client-server
model, where inter-host communication wa« used mainly for routing pur-
jioses. As network nodes became more powerful and mobile, traffic and
usage of networked applications has increasingly moved towards the edge
of the network, where node mobility and changes in topology and network
properties are the norm rather than the exception.

Distributed self-organizing systems, where every node in the network is
the functional equivalent of any other, have recently seen renewcxl interest due
to two im portant developments. First, the emergence on the Internet of peer-
to-peer networks to exchange data has provided clear proof tha t large-scale
deployments of these types of networks provide reliable solutions. Second,
the growing need to support highly dynamic network topologies, in particular
mobile ad hoc networks, has underscored the design limits of current central
ized systems, in many cases creating unwieldy or inadequate infrastructure
to support these these new types of networks.

Resource Location and Discovery (RLD) is a key, yet seldom-noticed,
building block for networked systems. For all its importance, comparatively
little research has been done to systematically improve RLD systems and
protocols that adapt well to different types of network conditions. As a
result, the most widely used RLD systems today (e.g., the Internet’s DNS
system) have evolved in ad hoc fashion, mainly through IETF Request For
Conunents (RFC) documents, and so require increasingly complex and un
wieldy solutions to adapt to the growing variety of usage modes, topologies,
and scalability requirements found in today’s networked environments.

Current large-scale systems rely on centralized, hierarchical name resolu
tion and resource location services tha t arc not well-suited to quick updates

and changes in topology. T he increasingly ad hoc natu re of networks in

general and of the In ternet in particular is m aking it difficult to in teract con
sistently w ith these RLD services, which in some cases were designed twenty

years ago for a hard-wired In ternet of a few thousand nodes.
Ideally, a resource location and discovery system for to day ’s networked

environm ents m ust be able to adap t to an evolving network topology; it
should m aintain correct resource location even when confronted with fast

topological changes; and it should support work in an ad hoc environm ent,
where no central server is available and the network can have a short lifetime.
Needless to say, such a service should also be robust and scalable.

This thesis addresses the problem of generic, netw ork-independent re
source location and discovery through a system. Manifold, based on two
peer-to-peer self-organizing protocols th a t fulfil the reqxiirements for generic
RLD services. Our Manifold design is completely d istribu ted and highly
scalable, providing local discovery of resources as well as global location of
resources independent of the underlying network transport or topology. The
self-organizing properties of the vsystem simplify deployment and m aintenance
of RLD services by elim inating dependence on expensive, centrally m anaged

and m aintained servers.
As described. Manifold could eventually rejjlace to d ay ’s centralized, static

RLD infrastructure with one th a t is self-organizing, scalable, reliable, and
well-adapted to the requirem ents of m odern networked applications and sys

tems.

C ontents

1 In tro d u ctio n 9
1.1 Background and R equirem ents... 10
1.2 Manifold; Generic Self-Organizing R L D ... 11
1.3 Summary of Goals .. 12
1.4 Organization of this work .. 13

2 B ackgroun d and R ela ted W ork 14
2.1 The Evolution of Networked S y s te m s .. 15

2.1.1 The Origins of Centralized lnfra.struetvire.......................... 15
2.1.2 Edge Networks and R L D ... 17

2.2 Types of R L D ... 19
2.2.1 Name resolution ... 20
2.2.2 Directory Services.. 20
2.2.3 Search S e rv ic e s ... 20
2.2.4 Similarities .. 21

2.3 Usage patterns ...21
2.3.1 L o ca l/in ex ac t...21
2.3.2 Global/exact ...22
2.3.3 Global/inexact ... 22

2.4 Generic RLD: R equ irem en ts ... 23
2.4.1 Correct and Time-Bounded .. 23
2.4.2 Coexist with Lcgacy Systems ...24

1

2.4.3 S ca lab ility ... 24
2.4.4 Support mobility and dynamic topologies.............................24
2.4.5 Support low-resources .. 25
2.4.6 Support Discovery ... 25
2.4.7 S e c u r i ty ... 25

2.5 RLD and RLD-based Systems: State of the A r t26
2.5.1 D N S ... 27
2.5.2 DIICP and N A T .. 30
2.5.3 IN S ... 32
2.5.4 L D A P .. 33
2.5.5 M obile lP ...35
2.5.6 TRIAD ...36
2.5.7 i 3 .. 38
2.5.8 State of the Art: Im p lica tio n s ...40

2.6 The Manifold Algorithms: Evolution, and Related Work . . . 41
2.7 Introduction to P2P sy stem s..41

2.7.1 Bootstrapping Self-Organizing P 2 P 43
2.8 TTL-bascd P2P S y s te m s .. 45

2.8.1 G n u te l la ...47
2.8.2 F recnet.. 50

2.9 Overlay N etw orks... 52
2.9.1 C h o r d .. 58
2.9.2 C A N ..61
2.9.3 Occanstore and T ap e s try ...64
2.9.4 O ther Systems ... 65

2.10 Comparison of P2P S y s te m s .. 70

3 M anifold, an O verview 73
3.1 In tro d u c tio n ... 73
3.2 Resolving Inexact Queries: M a n ifo ld -b ... 74
3.3 Exact Search in a Global Scale: M anifold-g.................................. 74

2

O'!

Cn
cn

cn
Cn

3.4 D e s ig n .. 77
3.4.1 Algorithm Use and In terac tion ... 78

4 M anifold-b 79
4.1 In tro d u c tio n ... 79
4.2 The Algorithm ... 79

4.2.1 Node J o i n ..80
4.2.2 Node L e a v e .. 80
4.2.3 Key Search ...80
4.2.4 Key Insert, Key R e m o v e ... 82

4.3 Deahng with Node F a i lu re ... 83
4.4 A n a ly s is ...83
4.5 Summary ... 87

5 M anifold-g 89
.1 Restating the Problem of S earch ... 89
.2 A Short D escription.. 90

5.2.1 The Neighbor F u nction .. 91
5.2.2 Spacc Defined by the Neighbor F u n c tio n93

.3 Searcli in a Complete ilypercube ..94

.4 An E x am p le ...97

.5 Operations in an Incomplete Ilypercube .. 97

.6 The Shadow Mapping: D e fin it io n ..99

.7 The Space-Complete Join F u n c t io n .. 101
5.8 Building a network: A step-by-step e x a m p le103
5.9 Search in an Incomplete H y p e rcu b e ...109
5.10 Performance in an Incomplete Ilypercube .. I l l
5.11 A n a ly s is ...112
5.12 Summary ... 114

3

6 M anifold-g: E xtensions and Im provem ents 115
6.1 In tro d u c tio n ..115
6.2 H a s h in g ...116
6.3 Search In a M eta-H ypercube..116

6.3.1 Increased Number of C on n ectio n s ...116
6.3.2 P a r ti tio n in g ...117
6.3.3 Partitioning W ith Multiple C o n n e c tio n s 122
6.3.4 Combining the T echn iques.. 123

6.4 Adapting the Overlay Network to the Physical Topology . . . 123
6.4.1 An Abstraction of Physical D is ta n c e 124
6.4.2 The Distance F u n c tio n ...124
6.4.3 The Distance-Based Algorithm .. 126
6.4.4 Distance and Network A d ap tab ility 130

7 M anifold: A n Im plem entation 132
7.1 In tro d u c tio n .. 132
7.2 Considerations for Mobile Ad Hoc N e tw o rk s133

7.2.1 Routing and Location ...133
7.2.2 S ca lab ility .. 134
7.2.3 S e c u r i ty ..134
7.2.4 The N am espace.. 134
7.2.5 Prerequisites and assu m p tio n s..135

7.3 The Manifold L ay e r.. 137
7.3.1 A High Level V ie w ..137
7.3.2 M essages..140

7.4 O perations... 141
7.4.1 Operations: Node J o i n ...141
7.4.2 Operations: Node L e a v e ..142
7.4.3 Operations: S e a rc h ..143

7.5 Class/Flow D ia g r a m ... 145
7.6 Implementation Results .. 146

4

7.7 A pplications.. 147

8 C onclusions and Future W ork 149
8.1 C o n c lu sio n s .. 149
8.2 Summary of C on trib u tio n s ... 150
8.3 Future W ork .. 151

A H ypercubes: Theory and P roperties 155
A.l Definitions: the Boolean Spacc, and the Concept of Distance . 155

A.1.1 Initial D efin itions... 155
A. 1.2 Hamming D is ta n c e .. 158
A. 1.3 The Boolean Algebra as lly p e rc u b e159
A. 1.4 String U niqueness... 159

B M anifold M essage Format 161
B.l In tro d u ctio n .. 161
B.2 Manifold-b Message T e m p la te ...161
B.3 Manifold-g Message T e m p la te ...162

6

List o f Figures

2.1 A Sample DNS Query-Reply C y c l e ... 28
2.2 I ’ypical LDAP Configuration.. 34
2.3 A MobilelP Node in a Foreign N etw o rk .. 36
2.4 An node publishing its location to the i3 c lo u d39
2.5 A node sending data through the i3 cloud39
2.6 A Sample TTL-ba.sed P2P Network and Q u ery46
2.7 A Sample Lookup in a Small Gnutella N e tw o rk50
2.8 A Sample Overlay Network and Q u e r y 55
2.9 The Basic Chord Ring Topology... 59
2.10 Chord Fingers for One N o d e .. 60
2.11 A Sample Chord L o o k u p .. 61
2.12 A Two Dimensional CAN ...62
2.13 A Two Dimensional CAN After a Node J o i n 63
2.14 A Sample Lookup in a Two Dimensional C A N63

4.1 Influence of the average number of neighbors on the network
wide cycles necessary to resolve a re q u e s t... 87

4.2 Infiucncc of the average number of neighbors on messages
transferred .. 88

5.1 A Length-3 String Space Mapped into an Euclidean Space
with the Neighbor F u n c t io n .. 94

7

5.2 A Sample Search for Length-3 Strings Viewed in an Eiiclidean
Space..98

5.3 Incomplete llypercube Example: Diagram Guide104
5.4 Incomplete Hypercube Example; Initial N etw ork............... 104
5.5 Incomplete Hypercube Example: First N o d e105
5.6 Incomplete Hypercube Example: Second N o d e 106
5.7 Incomplete Hypercube Example: Third N o d e106
5.8 Incomplete Hypercube Example: Fourth N o d e107
5.9 Incomplete Hypercube Example: Fifth N o d e107
5.10 Incomplete Hypercube Example: Sixth N o d e108
5.11 Incomplete Hypercube Example: Seventh N o d e 109
5.12 Incomplete Hypercube Example: Eighth N ode?...................110
5.13 Average and Maximum Path Lengths compared to their theo

retical maxinunn on a Manifold-g network of increasing num
bers of n n o d e s .. 113

6.1 A Graphical Representation of P artitio n in g 119
6.2 A Search Path in a Partitioned S p a c e ...120
6.3 Applying Partitioning R ecursively ... 121
6.4 A Sample Physical T opology... 128
6.5 A Two-Node Overlay N etw ork ..128
6.6 Node 1 Joins the N e tw o rk ...129
6.7 Node 4 Joins the N e tw o rk .. 129
6.8 Optimized Overlay Topology... 130

7.1 High Level Block Diagram of M a n ifo ld ... 138
7.2 Manifold Class/FlowDiagram ..146

Chapter 1

Introduction

Resource location and discovery (RLD) is a key building block for networked
ajjplications and systems, since it provides abstractions between names and
physical locations for machines, services, or people tha t correspond to tha t
name. For users, RLD abstracts a memorable or application-specific name
(such a« ww'w.tcd.ie) from its physical network location, provides a way to
map from eaay-to-reniember names to machines, and a w'ay to search for
services or machines according to specific query terms.

In essence, resource location creates a level of indirection, and therefore a
decoupling, between a resource' and its location. This decoupling can then
be used to solve one or more problems: mai)ping human-readable names to
machine names, obtaining related information, autoconfiguration, support
ing mobility, load balancing, etc. Resource discovery, on the other hand,
facilitates search for resources tha t match certain characteristics, allowing
then to perform a location request or using the resulting data set directly.

^hi the pages that follow, we will coimnoiily refer to locating people, machines, and
software services or agents, usually interchangeably. When the term “resource” is used, it
will refer to locating/discovering items in general, and those three in particular. Similarly,
the term user of a given RLD service is usually understood to be a person, but in general
both software and people use RLD services regularly to perform different tasks. The term
user should therefore be understood to reference any system or person that could require
RLD service.

9

Today, wc arc faccd with a multiphcity of apphcation-spccific RLD sys
tems, some of them with self-organizing properties, most relying on central
ized (though distributed) infrastructure to operate. Basic Internet services,
such as name resolution, remain implemented as static, hierarchical, central
ized systems. Additionally, recent developments in networking have given rise
to heterogeneous environments where the current solutions fit awkwardly, or
not at all.

1.1 Background and R equirem ents

During the initial stages of this work, wc studied both the major current
systems tha t perform RLD and the infrastructure on which they are based.

Our analysis of the evolution of networked systems and services clarified
the constraints tha t had driven previous developments, and it showed wide
applicability a generic solution would have. As a result of this analysis, we
derived general requirements tha t were common in all cases:

• Nodes are often mobile, making complete dependence on fixed infras
tructure difficult or impossible.

• The network transport used can vary widely between implementations,
as can between fixed and mobile implementations.

• While current prototypes rarely exceed a few dozen nodes, it is expected
tha t in the next few years it will be possible to create Mobile Ad floc
Networks (MANETs) of size ranging from only a few nodes to several
hundred or even thousands, which places widely varying degrees of
scalability requirements on the protocols tha t nmst support them.

• Membership of the network is determined dynamically by location
rather than by a static or server-dependent configuration.

10

To measure the applicability of a solution we identified the main categories
of usage tha t would be given to the service, namely:

• Inexact search: to find resources or people tha t match certain values
in a query. This kind of search is relatively limited in reach, since the
user is looking for resources in their vicinity^. A typical example of this
would be looking for a printer in a conference location.

• Exact search: to find resources tha t might be or not in the vicinity,
and of which the user knows the full name. A typical example of this
would be accessing a given Internet website.

1.2 M anifold: G eneric Self-O rganizing RLD

The requirements and usage patterns expected of RLD allowed us to define
the elements tha t would be necessary for a generic solution. We focused on
designing a self-organizing system tha t used peer-to-peer (P2P) algorithms to
eliminate dependencies from centralized infrastructure, as well as providing
a reliable, scalable service.

Our solution is a hybrid system. Manifold, tha t incorporates two different
self-organizing P2P algorithms:

1. Manifold-b, or “Manifold-broadcast” , An algorithm tha t supports in
exact searches of (typically local) resources, and

2. Manifold-g, or “Manifold-global” , An algorithm that supports exact
searches on a global scale, with extreme scalability and low overhead.

The first algorithm was an extension of initial work done exclusively
for MANETs [18], while the second was an original development: a self
organizing algorithm with pro{)crtics that make it well-suited for resource-
location problems, including node control over its data, guaranteed results,

^As defined in terms of network topology

11

and predictable time-bounds. We characterized this algorithm m athem ati
cally and later related it to an emerging body of work generally identified
as Overlay Networks^. We compared Manifold-g with other overlay network
algorithms, noting in particular that, while guaranteeing similar scalability
and self-organization, they arc not designed from the ground up to guarantee
data location (an im portant element since network nodes typically require
control over the location and availability of the data they publish).

Finally, we implemented Manifold for use in mobile ad hoc networks.
The implementation used the two algorithms according to the requests per
formed: Manifold-b is invoked when an inexact query (local in nature) is
performed, while Manifold-g is invoked for exact queries (potentially global
in nature). Our implementation demonstrated the feasibility of the system
and is currently in use in the DAWN network (a MANET currently being
deployed throughout the Trinity College campus) providing RLD for various
experimental applications.

Manifold, then, can be used in any type of network and will be able
to bridge them, providing the basis for generic, transport- and topology-
indejjendent resource location and discovery in large-scale, globally intercon
nected heterogeneous networks.

1.3 Sum m ary of Goals

The goals for this work were threefold:

• To properly define requirements and usage patterns of RLD in heteroge
neous network environments and wireless ad hoc networks in particular,

• To identify a set of algorithms tha t can provide resource location for
self-organizing networks in general and for wireless ad hoc networks in
particular. To quantify the limits of these algorithms and to relate them

®also often referred to as Distributed Hashtables. or DHTs

12

to the usage patterns tha t will define their performance in real-world
applications, and,

• To dem onstrate the feasibility of the system by describing an imple
mentation in a real-world wireless ad hoc network.

1.4 Organization o f this work

There are two main elements to this work; the design of the scrvicc that
provides self-organizing RLD, and the algorithms tha t make it possible. The
sections procet^d from the highest level of abstraction to the lowest, since
requirements for the service affect design decisions and requirements at the
algorithm level, and then work back up to a description of an implementation
of the system.

13

C hapter 2

Background and R elated Work

Manifold includes two main elements: the service tha t p:>rovides generic self
organizing RLD and the underlying algorithms tha t make the service possi
ble. Through this chapter, we will discuss the background for each of those
elements. The analysis of the evolution and current state of the art of the
various components, as well a.s of the services themselves, presented in this
chapter, will allow us to derive requirements for a generic RLD service and
the usage patterns tha t will govern its interaction with other systems.

We will begin by outlining the evolution of networked systems from the
beginnings of the Internet to the present. This outline has two purposes.
First, it will show the environment in which currcnt centralized services were
deployed and used, providing context for their evolution. Second, it will show
tha t self-organizing networks are an appropriate solution to the problem of
generic RLD, given the current development of networked systems, including
the Internet.

14

2.1 The Evolution of Networked System s

2.1.1 T he O rigins o f C entralized Infrastructure

The first networked systems, developed in the late 1960s, were designed to

connect hosts across great distances. This was a na tu ra l outcom e of the usage
th a t existed a t the time: powerful centralized machines accessed through
term inals. As a result, the early A rpanet routers (IM Ps) were m eant to

connect rem ote systems. However, alm ost immediately, as more machines
came online connected to the same IMP, researchers found th a t more and
more traffic was happening locally, th a t is, between machines connected to
the same IM P th a t would therefore be w ithin the same geographic location -
a t the tim e, this phenomenon wjis called “incestuous trafhc” [54],

This “incestuous traffic” m arked the appearance of w hat is now known aa
LAN traffic. Since it was first identificid, LAN traffic has grown exponentially
compared to the growth in Inter-LAN (or In ternet) traffic, to the point where
today Internet traffic is insignificant com pared to LAN traffic: the m ajority
of the traffic ha.s been pushed to the edge of the global network. In the
early 1980s, a.s LANs were deployed, the first Internet-w ide resource location
system s were being developed. M achine nam e to IP resolution for example,
initially a simple process - th e distribution to system adm inistrators of a
hosts file with host name to IP address m appings- had become unsuitable
for the num ber of hosts and the speed a t which the network was growing,

thus requiring the creation of an au tom ated system: DNS [57].
T h a t is, even as LANs s ta rted their geometric growth, the first In ter

net Resource Location and Discovery system s (of which DNS is the best
known) were being designed and deployed - bu t w ithout taking into account

the requirem ents for the dynamics imposed by LANs: more varied topologies,
greater num ber of nodes, and, more im portantly, mobility.

This did not create problems initially. The central uses of resource loca
tion and discovery are to ask the rem ote m achine to perform a certain task

15

(e.g., perform a calculation), to obtain d a ta from it (e.g., obtain a narne-to-

address m apping, serve a file) or to store d a ta in it (e.g., upda te a database
record), and the dissem ination of LANs happened on the backs of the early

personal com puters, which did not have the storage of the processing capac
ity to deal with anything except their own local tasks. Even some fifteen

years later, in the mid 1990s, when PCs were capable of performing more
tasks in “server-m ode” very few applications existed th a t took advantage of
them , consequently lim iting interesting in edge-only RLD.

For a long tim e since the appearance of LANs then. Resource Location

and Discovery was split in two: global RLD, exemplified by DNS, and per
formed either between Internet hosts or between clients and Internet hosts,

and local RLD , such as shared printers, file servers, or contact databases us
ing protocols such as LDAP. In a very real sense, the firewalls th a t protected
LANs from external a ttack were a frontline th a t delim ited the difference be
tween global RLD and local RLD. There were some solutions for connecting
central databases between LANs, bu t, with their high cost and complexity
and (perhaps more im portantly) lacking a standard , they rem ained niche
solutions.

In the late 90s, peer-to-peer com puting gained world-wide prominence in
the form of global music-sharing system s in which individual PC s were used
to serve digital music files. Almost overnight, a task th a t had been typically
confined to the LAN (i.e., locate a particu lar file) could now be performed

on a global scale, not between clients on the same corporate network, not
between a client on a LAN and a host on the In ternet, bu t between clients
residing on completely different LANs. The dividing line between local and
global RLD had finally been crossed.

At the same tim e, other applications began to emerge, such as peer-to-

peer collaboration, and with the growth of portable devices (laptops, hand
helds, cellphones) and wireless networking, the complexity of the network

environm ent in which RLD had to operate increased even further. Appli-

16

cations tha t before required a connection to a particular server now had to
provide a connection to a particular user, regardless of the device, or the
network, the user was on.

Mobile Ad Hoc Networks (MANETs) have become an im portant area
of innovation and research in the past few years, and most of the efforts
have concentrated in solving the basic building blocks of the technology:
hardware, routing protocols, and so on. MANETs are typically wireless but
they can equally include “wired” components. These networks interact with
the Internet through endpoints, connecting and disconnecting as they arc
formed, or as they move across g(!ographical boundaries.

The Internet, which was originally designed as a network-of-networks,
is fulfilling its promise. It is quickly changing from a set of static nodes
connected to a high-speed backbone in “monolithic” fashion to a collection
of a multitude of small networks tha t comiect to each other depending on
location and capabilities available at their entry point. In other words, the
Internet itself is becoming an ad hoc network.

In this new context, s(^rvices designed for what was originally a static
network of a few thousand nodes are increasingly strained to acconunodate
new networked applications and systems.

2.1.2 Edge N etw orks and RLD

In large part, the Internet’s increasingly ad hoc nature is driven by the growth
of networks connected at its endpoints, commonly referred to as “edge net
works.”

Edge networks are becoming more powerful, more mobile, and more dy
namic. As applications built on them become more distributed, edge net
works will cease to be “client-only” enviromnents, in which nodes only use
the resources of the network; they will become full blown client-server en
vironments in which all nodes request and provide services to the network
through i)eer-to-peer ap{)lications deployed on a global scale.

17

The growth of edge networks and the variety of apphcations tha t are mak
ing use of them (from messaging systems to gk)bal file-sharing apphcations)
underscores tha t a self-organizing solution to the problem of RLD is not only
possible but also desirable. For example, mobility, such as tha t exhibited
by portable devices and MANETs, presents a number of challenges for an
RLD system. Devices in a mobile network might be turned on or off and
might quickly move across locations with different types of infrastructure,
sometimes switching to environments where a central server is not directly
accessible or might not be available. Typical scenarios include a mix of de
vices (e.g., handhelds, embedded devices, base stations, desktop computers)
tha t use different physical layers (such as Bluetooth, IEEE 802.11b, Ether
net) with different protocols, depending on various factors such as location
and power consumption requirements.

These unique qualities mean tha t certain protocols and systems tha t work
well in more static, homogeneous topologies (of which the best example is the
Internet) might perform badly or not work at all in these kinds of network
ing scenarios. For example, a Bluetooth-enabled cell phone liâ i no way of
referencing a handheld device tha t might be running on a wireless network
(e.g., IEEE 802.11b) even though the cell phone might have a connection
path available through a desktoj) computer with both Bluetooth and wire
less stacks. If this connection was possible, the cell phone might be able to
determine tha t the handheld device is in range and therefore it should not
display appointment reminders, since a device that is better suited for it (the
handheld) is active in the vicinity.

This kind of functionality would also be useful for global communication
systems, such as Internet-based VoicelP phones or SMS (Short Messaging
Systems) designed to run on mobile ad hoc networks. For example, when an
ad hoc wireless network is set up for emergency crews at a disaster site, if
one base station is deployed to provide connectivity within the nodes in one
network (e.g., for Paramedic crews) and to the Internet, nodes from a nearby

18

ad hoc network (e.g., Fire D epartm ent) and from the In ternet (e.g., a gov

ernm ent offtcial try ing to contact somebody on site from a rem ote location)

would not be able to locate those nodes.

A M ANET could easily function in a way similar to a “fixed” network
such as the In ternet, w ith s ta tic nodes such as PC s connected through IP-
based protocols in a stable, slowly-evolving topology. Because of their nature,

M ANETs can also support a highly dynam ic environm ent; mobile nodes th a t
quickly change m em bership between different M ANETs, nodes th a t quickly

tu rn on and off, and others. In the m ost extrem e case a M ANET could
be formed completely independently from any infrastructure (e.g., by the

emergency crews a t a disaster site). Finally, M ANETs, with or w ithout access
to infrastructure, run on a variety of protocols th a t may not be com patible
with each other, bu t th a t would still find useful to locate nodes or services
between them.

If the resource location problem is solved for large-scale mobile ad hoc
netw orks', the same solution would apply for networks in general, including
w ired /sta tic topologies (e.g., the Internet).

2.2 T ypes o f RLD

Based on different system s th a t implem ent RLD functions (Described below

in Section 2.5) we can identify three m ain categories of system s, covering
three different types of RLD needs from users. These are: Name Resolution,
Directory Services, and Search Services.

'Throughout our work we will reference the problem of RLD on MANETs as a test
case, while keeping in mind the larger goal of applying it on generic heterogeneous network
environments.

19

2.2.1 N am e resolu tion

Name resolution is the most basic and widely used RLD system. Naming
is nccessary to map easy-to-remember names to physical machine locations
(on the Internet, a narne-to-IP mapping). Naming is the core operation on
any RLD system, and all types of resource location could, in general, be
considered a type of name resolution problem, since they are trying to map
a resource’s name with its physical location.

More recently, the use of RLD for name resolution has extended to the
area of presence^ which tracks people, and sometimes software agents, across
machines. Presence is a concept used by all Instant Messaging platforms [59].

2.2.2 D irectory Services

Directory services are extremely common, particularly in corporate intranets.
They arc used to store information regarding peopk^, machines, or even ser
vices within the organization. This differs from the concept of presence and
name resolution in tha t it returns information about a resource or person,
rather than their location.

2.2.3 Search Services

More generic and open ended search services arc also common. Printing
could be considered a special case of search, since a print operation on a
nearby printer can be started using the appropriate search parameters. In
large organizations, where employees often move between different offices
or buildings, the use of search allows them to locate particular items of
information, or the resources needed for particular tasks.

Search differs from name resolution and directory services in tha t it is
more open-ended. At the end of a search query, the user will commonly
perform a final operation either of name resolution, or directory service re
quest to obtain the location or information about the resource requested.

20

rcspcctivcly. This typically happens invisibly from the user’s point of view.
Therefore, depending on the way it is implemented, search can be consid
ered either a component at the same level of directory services and name
resolution, or middleware built on top of them.

2.2 .4 S im ilarities

In csscnce, all of these services perform a mapping of keys to values. Some
times those key/value mappings are updated frequently, sometimes not, but
that is irrelevant with respect to the location/discovery process itself. As we
will see in the following chapter, the difference lies in usage patterns: whether
we are trying to locate a resource tha t we already know about, or discover
one tha t matches our needs.

2.3 U sage patterns

At the core of the problem of resource location and discovery is the way
in which RLD services (such as thovse defined in the previous chapter) arc
typically used. In any network, users will likely try to locate and contact
resources (which may or may not belong to another user) according to their
location, which divides typical usage into distinct categories.

These categories are in a sense present in the terms “Resource Location
and Discovery” . Resource Discovery implies tha t the user wants to discover
resources tha t might match certain attributes, while Resource Location im
plies tha t the user knows the name of the target resource, and only its physical
location is unknown.

2.3.1 L oca l/in exact

In the first case, local/inexact search, the user is looking for something that
is in their vicinity (as defined by the topology of the network). The search

21

is typically performed based on capabilities (e.g. a printer, or a device th a t

can act as relay to the Internet) or based on inexact queries^ a storage
system with a given name, or another user’s handheld com puter). DHCP

(Section 2.5.2) lookups or LDAP(Section 2.5.4) queries are examples of lo

cal/inexact requests.
In general, th is m eans finding resources th a t m atch certain values in a

query. This kind of search is lim ited in reach, since the user is looking for

nearby resources.

2.3 .2 G lo b a l/ex a ct

W hen the target of the search is beyond the user’s physical reach, it is com

monly based on exact names (e.g., the prin ter a t the user’s office, a person’s
SIP [71] address). A DNS (Section 2.5.1) query is an example of an ('xact
name search for a globally unique string. We define this type of search aa a
global/exact search.

Generally speaking, this type of search is performed to find resources tha t
m ight be or not in the vicinity, and of which the user knows the full name.
A global search, in this context, requires th a t a result be returned if the
resource exists anywhere in the network.

Additionally, the use-case of local/exact searches is a triv ial subcase of
this one; even if the resource to be located is w ithin physical proxim ity of
the user, the usage case remains unchanged.

2.3 .3 G lob a l/in exact

The final category th a t wc will consider is inexact searches performed on a
global scale.

^Commonly, this type of use imply searching for resources tliat conform to a certain
property or whose name matches a given substring.

22

This kind of gencric functionahty is currently provided (partially) by In

ternet directories or search engines. Additionally, m ost current file-sharing

system s arc global in scale; however, they provifie no guarantees as to w hether

a resource can be found w ithin rea«onablc tim e limits. Because of th is limi
tation , both In ternet search engines and large-scale file-sharing networks are

more sim ilar to a local search but w ith vastly expanded scope, ra ther than
a tru ly global search th a t will guarantee location of a resource if it exists

somewhere on the network.
Global/inexact search system s are more hm ited in application th an the

two previously described, and so its usage differs from th a t of resource lo

cation and discovery applications. Therefore, a system th a t provides this
particu lar function in a decentralized form (and one th a t could m atch other
requirem ents th a t we will specify later) is outside the scope of this work, and
will not be discussed further.

2.4 G eneric RLD: R equirem ents

The usage])atterns identified above helped us enum erate a requirem ent th a t
a gencric RLD system m ust satisfy, with em phasis on generic RLD for het

erogeneous networks th a t m ust in teroperate on a global scale.

2.4.1 C orrect and T im e-B ound ed

W hen RLD is global/exact, the service m ust guarantee th a t the target of a
search is found as long as it exists anywhere on the network^. Additionally,
the search operation m ust be tim e-bounded, w ith the goal of responding

within a reasonable tim e period to the user’s request.

^This is not necessary when the search is local/inexact

23

2.4 .2 C oex ist w ith Legacy System s

Bccausc any changc for the system has to come incrementally, nodes should
be able to join the network without special configuration requirements. Only
running the necessary software on the node should be necessary. Further,
when legacy systems, such as DNS, are available, the network should be
able to revert to them if desired (since other target nodes might not be
participating in the self-organizing network created by the new service).

Additionally, gateways should exist to provide two-way resolution be
tween other network nodes (particularly Internet nodes) and nodes in the
resulting RLD network.

2.4 .3 Scalability

The resulting system could be used globally to connect distant ad hoc net
works (e.g., to make a voice-over-data phone call between handheld deviccs
or cell phones without using the operator’s infrastructure), or locally within
a large scale ad hoc network (e.g., within a group of thousands a ttend«» to
a conference).

2.4 .4 Support m ob ility and dynam ic top o log ies

A generic RLD solution must support constant membership changes, provid
ing resource location for the new nodes and maintaining validity of the query
results, i.e., providing results tha t are up to date in terms of topology. Ad
ditionally, it must provide correct results for queries for the remaining nodes
of the network when one or more nodes leave the network or are switched
off.

When nodes move between heterogeneous networks they shouldn’t be
required to change their configuration, and there should be no dependence
on any particular node or underlying transport protocol to provide resource
location.

24

2.4 .5 Support low -resources

M any of the nodes participating in the network will be low-resource nodes in

one or more senses: lim ited in processing power, or low-power, w ith a slow

network connection, etc. As such, an RLD service m ust take into account this

factor and either a) adap t to the capabilities of the nodes or b) have generally
low resources as a minimum to join and operate w ithin the network.

2.4 .6 Support D iscovery

W hen performing local/inexo.ct searches only, users will frequently know only

the general details of w hat they are a ttem pting to find, th a t is, when they
arc engaging in discovery of a resource ra ther than location. Therefore, the
system nnist provide partial a ttr ib u te or string m atching on local/inexact
search to support this functionality.

2.4 .7 Security

An im portan t issue in resource location is security, particularly in a decen
tralized network such â i the one describc^d here. W hen resolving the physical

location of resources, a node shouki be able to verify th a t the location re
solved is valid and current. W ithout security, a malicious network user th a t
has access to the message flow in the network could:

• im personate other nodes and resources by answering requests for them.

• modify query results being passed along and change the values passed.

In DNS, security is largely an issue of tru s t between clients and servers.
Both of the problems described can happen in DNS, assum ing th a t a name
server (slave or m aster) has been compromised (commonly called DNS “spoof

ing”). Additionally, if a gateway has been compromised, the DNS requests

themselves can be m anipulated by a malicious third-party .

25

Wc will leave the verification of the identity of the node location/discovery
result to higher level application layers with enough information to make
these checks (for example, by verifying signed security certificates), just like
DNS does. In the future, modifications similar to those currently being
discussed for DNS IETF [70] could also be applied.

2.5 RLD and RLD-based System s: State of
the Art

Throughout this section we will revisit systems tha t we identified a*s per
forming RLD functions either impheitly or implicitly. Wc will present these
systems starting from the most standard and broadly used to the most spe
cialized and research-based.

Some of the systems we will describe appear, on the surface, to have little
relevance to the subject of RLD. This is not the ca*se, however.

Solutions to specific {)roblems, such as mobility', are in fac:t using very
specialized types of RLD. If a system is designed to support, for example,
mobility of network nodes, it will generally revert to some form of indirection
between its physical location and its global identifier. That, in turn, creates
the need for part of the system to be able to locate tha t global identifier,
which is essentially a function performed by an RLD subsystem of some
kind.

This type of specialization of RLD solutions is the norm rather than the
exception. The analysis of these systems, along with their differences and
similarities, leads to two im portant conclusions. The first is tha t a generic
RLD system would have potential application well beyond tha t of resolving
names. The second is that, even though some of the systems use distributed
(even, in some cases, self-organizing) environments, all of them are based,

'’We will come back to examples of sohitions to the problem of mobility (primarily of
devices, but also of services) below.

26

implicitly or explicitly, on the assumption tha t significant fixed infra^structure
exists somewhere on the network. These two conclusions underscore, in turn,
the need to maintain generality in our requirements (and, consequently, our
design) and support varying degrees of scalability, as well as maintain focus
on working on a solution tha t could fimction completely disconnected from
fixed infrastructure.

These systems, therefore, provide not only examples of how RLD is usu
ally approached today but also of the broad applicability tha t a generic RLD
solution would have.

2.5.1 D N S

On the Internet, it is the Domain Name System (DNS) [55] [56] [57] that
provides the lowest level of name resolution servicc available, and is the pro
totypical case of G lobal/Exact matching mentioned in Section 2.3.2. Name
resolution creates mappings of easy-to-remember names to physical nodes.
In the case of the Internet, this means mapping service names to IP [28]
numbers. DNS is hierarchical and relatively static, requiring propagation of
names from root name servc^rs to a series of slaves across the network. Each
IP subnetwork hâ s a fixed static reference to the physical location of the local
name server node, using it to resolve the names of all other nodes into IP
niunbers so tha t comnumication with them can be established. This scheme
is dependent on servers; client machines are reachable only as part of the
subdomain of a given server, assuming a correct setup.

The naming system on which DNS is based is a hierarchical and logical
tree structure referred as the domain namespace. Organizations can create
private networks tha t are not visible on the Internet, using their own domain
namespaces, and each node in the DNS tree represents a single DNS name.
Each organization/group is assigned authority for a portion of the domain
namespace and is responsible for administering, subdividing, and naming the
DNS domains and computers within tha t portion of the namespace, as well

27

as for servicing queries tha t correspond to its particular domain.
Name-to-address mappings published through the DNS system can be

resolved by clients through their Internet Service Provider’s (ISP) or organi
zation’s DNS servers, as shown in Figure 2.1.

Root DNS
Server(s)

/ c a n \
n o -/th e target

server
\ be found?

Target domain's
DNS Server(s)

yes

/ are \
the ta r g ^ \ (4)
servers

\known?^
yes - contact target
domain nameservers

no - contact
root nameservers

/ can \ .
/ the target

yes \ b e found?

ISP DNS
Server(s)

^is t h e \
value \ y ? i .

cached"^ /
no

returrv
answer

feturn
DNS

verroo
client
sends
requestj

Client
(1)

Figure 2.1: A Sample DNS Query-Reply Cycle

The cycle works as follows (Numbers at each step match correspond to
those in the figure):

• Client requests a name (1), such cis www.somedomain.com, in response
to a user’s action (e.g., navigating to a webpage).

• The client contacts the domain server (2) for its ISP or organization,
requesting the address of the domain name in question.

28

• The chent’s server first tries to answer by itself using cached data (3).
If the answer is cached it is returned directly. Since the client’s server
is not responsible for the name and is just acting as a relay, the answer
is marked as non-authoritative.

• If the answer is not found in the cache, or if the value cached has
expired (i.e., it is past the TTL, or Timo-To-Live, of the value), then
the server will try to contact the (authoritative) name servers for the
domain directly (4) requesting the mapping. If the name servers are
not known (i.e., not cached), the client’s server requests the address of
the domain’s name servers from the Internet Root servers (5), which
reside at a well known address.

• Once the domain’s name servers are contacted, the client’s server re
turns the result (6) or a DNS error (7) if the target name was not
found.

The way in which DNS works points to a number of problems for dy
namic systems. Aside from its dependency on hxed/centralized infrastruc
ture, changes to the authoritative server for a domain (i.e., if the server
is moved to a different location) have to be reported to the Root servers,
which will propagate the new values to other servers as they perform new re-
(juests (as the cached results expire). This typically means a delay of several
days between a move of an authoritative name server and the propagation
of its new address across the internet. Increasingly, machines operate on
autonomous mode, not related to any particular infrastructure, and DNS’s
structure prevents its use for more direct client-to-client communications.

DNS was designed to solve the problem of managing hosts tables in the
original Arpanet, with requirements vastly different than those found today.
In this respect, it has performed admirably, scaling well beyond its original
design parameters to acconmiodate millions of hosts and hundreds of millions
of clients. Even so, its design poses a number of problems, such as increased

29

requirements on the domain servers (particularly on the root servers), and
their increased administrative complexity, as well as their potential as points
of attack or failure. Systems tha t solve some of the problems observed in
DNS, providing better load and adm inistration distribution, but still hier
archical and largely centralized, have been proposed in the past [10] [37]
[49].

DNS resolution need not be implemented using a hierarchical system,
though. Implementing DNS using a self-organizing network of servers has
been proposed recently in [12]. While this would provide some improvements
(most notably automatic load balancing and faster updates) there would still
be dependence on fixed infrastructure, namely, the set of servers tha t are
responsible for replying to requests. In the next chapter we will discuss some
additional elements tha t a full solution will require tha t would not be satisfied
in tha t case (for example, how to deal with ad hoc wireless networks of small
devices tha t have no connectivity to the Internet).

A standard setup of DNS on a client machine requires tha t the informa
tion for the DNS server(s)’s IP addresses tha t serve the machine in cjuestion
be entered by hand. This was appropriate initially, but Jis mobility and use
of the Internet have become more widespread (thus bringing in less technical
users) a simpler solution was required to provide that setup. This created a
need for a protocol tha t would perform Local/Inexact searches (as defined in
Section 2.3.1) for available DNS servers in the vicinity of the user.

The standard solution for this problem is provided by DHCP and NAT.

2.5.2 DHCP and NAT

The Dynamic Host Configuration Protocol [20], or DHCP, is an autoconfig
uration service tha t provides a way to automatically assign all details about
the network to a computer tha t wants to be a part of it. A user can simply
plug a device to the network port and start working without the need for edit
ing any settings manually. Autoconfiguration can be considered a subset of

30

the resource location problem if resource location is used to provide a “boot
strap” mechanism tha t can then initialize a node’s operating/connectivity
parameters.

In DHCP, the client sends out a request to the DHCP server by transm it
ting on an IP broadcast address, essentially performing an open-ended search
on the local network. The DHCP server responds to the request by providing
a lease to an IP Address and other relevant details about the network, such
â s gateways or DNS servers.

The settings given to the client by the DHCP server arc not permanent
but timcvbound, to solve the problem of network failures (i.e., if a node fails
the server will eventually take over the IP assigned again when the lease
expires). Along with the settings the server also tells the client about the
period (leascvtirne) for which the settings are valid, and if the client needs to
use the network beyond this time then it has to “renew” its lease.

For LANs, recent years have seen the growth of more dynamic network
toj)ologies, and the need to easily provide Internet access to machines in
them. Again, a Local/Inexact solution is required to locate a service that
])rovides that functionality.

NAT [79] (Network Address Translation) is a spccial type of autoconfig
uration service tha t provides internet access to machines through a special
type of gateway. A NAT gateway translates the clients’ internal network IP
Addresses into the IP Address on the NAT-enabled gateway device, making
th(̂ network appear as a single device to the rest of the world. NAT gate
ways typically interoperate closely with DHCP to provide zero-configuration
Internet access for clients in small networks.

All communications from the private network are handled by the NAT
device, which will ensure all the appropriate translations are performed to
maintain the “illusion” of one-to-one Internet connections for the devices
comiected through the NAT gateway.

When a NAT gateway receives a packet into its private interface, it strips

31

the source IP Addrcss from the third layer in the IP stack (e.g., 192.168.1.5)
and places its own public IP address (203.154.123.223) before sending it to
its target host in the Internet. (In some cases, depending on the NAT mode,
the source and destination port numbers, found in layer five of the IP stack,
will be changed as well). The gateway then stores this information in an
in-memory table so when the expected reply arrives it will know to which
workstation within its network it needs to forward it.

NAT is of note because its increasingly widespread use has given renewed
importance to the issues it raises. NAT makes it impossible for current nam
ing systems to resolve names behind the NAT server (unless another system,
such as MobilelP, described in Section 2.5.5 below, is in use to bridge be
tween the local network and the Internet). In essence, NAT turns a network
of computers into an ad hoc network, with all the problems tha t entails for
current centralized systems, and it is a situation solved by the system pre
sented in this work (for a centralized solution to the NAT/namiiig problem,
see the description of TRIAD in Section 2.5.6 below).

2.5.3 INS

The last few years have seen some developments in the area of name res
olution specifically, in particular on the Intentional Naming System [1], or
INS. INS defines a network as a set of components: clients, services, and a
decentralized network composed of “Intentional Name Resolvers” or INRs.
Clients send requests to INRs, specifying a particular name-specifier, which
is matched against the services advertised in the resolver network. Services
periodically advertise their intentional names (INs) to the system to describe
what they provide. Intentional names are based on a set of attributes and
values (i.e., key/value pairs) tha t allow expressing generic system information
in hierarchical form.

The main activity of an INR is to resolve INs to their corresponding
network locations. When a request message arrives at an INR, it performs

32

a lookup in its narnc-trcc. The lookup returns information which includes
the IP address(es) of the destination(s) with advertisements tha t match the
requested name as well as a set of routes to next-hop INRs to support routing
when mappings change in the middle of a session.

INRs also store metric information (such as load, distance, etc) to facil
itate self-managing of the different parameters the service is subjected to.
Load management, for example, is thus performed by the INRs.

While providing certain desirable qualities such as automatic load balanc
ing and self-management, INS is still dependent on network infrastructure
tha t has to be maintained (i.e., the INRs), making it less useful in purely ad
hoc envirornnents where no central management is possible.

2.5.4 LDAP

Another example of search, but for information related to a resource rather
than its location, is tha t of LDAP [85] [86], a commonly used directory
service to provide discovery of information about resources, typically people,
groups, and organizations. LDAP is a lightweight version of the X.500 Global
Directory Service [84].

LDAP directories reside on a server or cluster or servers, and are typically
used to store information about entities like people, offices, locations, etc.,
but it could equally store other types of relatively static information, essen
tially anything tha t can be described by a set of attributes. In LDAP every
entry has a primary key called the Distinguished Name (DN). DNs are unique
within a particular LDAP directory. An LDAP server uses a back-end data-
store to store its data, but is not limited to using any particular database,
achieving database-independerice through the a flexible notion of a schema
for the data it needs to store. The schema consists of entries organized in a
hierarchy, optimized for reading rather than writing.

A typical LDAP configuration is shown in Figure 2.2.
As the figure shows, LDAP is based on a client-server model. Servers

33

Clients

□
LDAP

server/cluster

□
backend
database

Figure 2.2: Typical LDAP Configuration

make information about resources accessible to LDAP clients, and define
operations tha t clients can use to search and update the directory. Typical
LDAP operations include:

• searching and retrieving entries from the directory

• adding new entries in the directory

• updating entries in the directory

• deleting entries in the directory

• renaming entries in the directory

For example, to update an entry in the directory, an LDAP client submits
the distinguished name of the entry with updated attribute information to
the LDAP server. The server uses the distinguished name to find the entry
and performs a modify operation to update the entry in the directory.

LDAP can provide results both exact and inexact searches, but not glob
ally, Tuiless a global infrastructure of servers/clusters is deployed and main
tained.

34

2.5.5 M ob ile lP

IP version 4 assumes tha t a node’s IP address uniquely identifies its physical
attachm ent to the Internet. Therefore, when a host trios to send a packet
to another host, tha t packet is routed to the target host’s “home network” .
In static environments this docs not present a problem, but when a node is
mobile, packets could easily end up routing to the previous location where the
node was, rather than its current location. This is solved by adding one level
of indirection to the process, which in cffcct turns the problem into one of a
special type of resource location. The level of indirection establishes a fixed
point tha t can be easily contacted and tha t will be notified of changcs of the
target node, thus adapting to mobility. The fixed point, whatever its form,
thus becomes a dynamic table tha t keeps the position of the mobile node
uj)dated as it moves, providing in essence Global/Exact resource location for
the target machine, based on an identifier.

One such solution is MobilelP [64]. In MobilelP, when the target host is
on its home network and a another host sends packets to it, those packets arc
handled normally. However, if the target is mobile and away from its home
network, it uses agents, to w'ork on behalf of it. The home agent must be
able to communicate with both the home network and with the mobile host
when it is online, independently of the current position of the mobile host.
The home agent then becomes a permanent relay for tha t mobile host. The
foreign agent, meanwhile, is responsible for relaying requests to the mobile
host in its foreign network.

An example of a MobilelP node in a foreign network is shown in Fig
ure 2.3.

As we can see in the figure, the MobilelP host uses the foreign agent and
the home agent to receive information from other clients, essentially letting
the agents act as resolvers for its location.

To determine a change in its network environment, the mobile host detects
its current location (and therefore the need to register with the agent) based

35

client

hom e
agen t

I n t e r n e t ^ ^ ^ ^ ^ I I

\
Internet

MobilelP

foreign r r n ^ — Z ^ ^ n h °st
a n p n t I Iagen t

Figure 2.3: A MobilelP Node iu a Foreign Network

on looking at jjeriodic adverts of the foreign agent and home agents.
When the mobile host returns to its home network, it does not require

mobility capabilities, so it sends a deregistration request to the home agent
to deactivate tunnelling and to remove previous care-of address(es).

At this point, the mobile host does not have to (de)register again, until
it moves away from its network. The detection of the movement is ba.sed on
the same method explained before.

While M obilelP’s solution appears to solve the problem of mobility, it
has one im portant drawback: since the agent rrmst be running constantly at
a fixed location, it must be managed from a centralized location as well. So
mobility in Mobile IP is obtained at the cost of further centralization of the
infrastructure, with all the subsequent disadvantages.

TRIAD [13] (which stands for Translating Relaying Internet Architecture
integrating Active Directories) is a content layer on top of IP that provides
scalable content routing, caching, content transformation and load balancing,

2.5.6 TRIAD

36

integrating naming, routing and transport conncction setup.

To perform its functions, TRIA D creates a set of address realms th a t
arc interconnected through a hierarchy. At the leaf level, an address realm

corresponds to an certain network owned by an organization, or a set of nodes
organized within a network. The router th a t connects th is level to the WAN
acts as a TRIA D relay agent between realms, transla ting addresses as it relays

packets between the realms th a t it interconnects. Higher-level address realms
correspond to local and global In ternet service providers (ISPs). Backbone
or wide-area ISPs can coimect a t peering points, as it happens today, but
through high-speed relay agent routers. W ithin a realm, the operation of
naming, addressing and routing operates the same fis currently with IPv4.
Thus, TRIA D doesn’t require changes in the host or the router.

End-to-end Internet-w ide identification of a host interface or m ulticast

channel is provided using a hierarchical nam ing scheme based on DNS nam
ing. Names are the basis for all end-to-end identification, authentication,
and reference passing in TRIA D, since there is no other identifier for the
host interface th a t is global and persistent, unlike addresses in IPv6 and
in the original In ternet architecture. In particular, IPv4 addresses have no
end-to-end significance since they can change depending on network configu
rations, dynamic hosting, and so on, and are reduced to the role of transient
routing tags.

TRIA D supports name resolution, wide area relaying and content lookup.
Name resolution in particular is supported by T R IA D ’S Internet Name Res
olution Protocol (IN RP), a protocol th a t is backward-com patible with DNS.
Clients in itiate a content request by contacting a local TRIA D content router,

ju st as they would contact a DNS server. Their requests may include just
the “server” portion of a URL, although TR IA D supports looking up the

entire URL, allowing for hne-grained load-balancing and higher availability.
Because names arc d istribu ted based on a distance-vector routing algorithm

with path inform ation, TRIA D can also reduce latency and round-trip times

37

by routing information along more optimal paths (compared to DNS).
A name resolution cycle for TRIAD looks very much like the one presented

for DNS in Figure 2.1, with the following im portant exceptions:

• The DNS servers are replaced by Content Routers, which allow pub
lishing and propagation of the information.

• The round-trip times are shorter, because of IN RP’s characteristics.

• The Content Routers support resolution of generic names, not only of
the server name portion of them, allowing resolution of server names
as well as of individual URLs.

TRIAD is, then, an indirection infrastructure tha t improves in several
respects on previous systems, such as DNS, but tha t is again dependent on
fixed infrastructure (as well as modification/additions on the current Internet
infrastructure).

2.5.7 i3

Finally, a solution proposed recently in a research context to essentially the
same problem (but with wider applicability) is the Internet Indirection In
frastructure [80], or i3. i3 provides a layer of indirection that decouples sender
from receiver: sources send packets to a logical identifier and receivers ex
press interest in packets sent to an identitier. Delivery is ’’best effort” like
in today’s Internet, with no guarantees about packet delivery. The system
is similar to IP multicast, but in IP multicast the infrastructure must build
efficient delivery trees; in i3 these arc managed by a trigger inserted into
an overlay network (Overlay Networks are discussed in detail in Sections 2.9
and 2.9.1) which routes queries efficiently.

At its core, i3 is relatively simple. The i3 services arc provided by a self
organizing “cloud” of servers tha t provide the mapping functions and routing.
When a node (Receiver) wants to receive information, it can register with

38

the cloud by inserting a trigger tha t effectively states “Send all packets with
identifier id to address i2,” as shown in Figure 2.4.

i3 cloud

R eceiver (R)

Figure 2.4: An node publishing its location to the i3 cloud

After a trigger is added, another machine (Sender) can send packets into
the iS cloud using the id necessary to reach R. The iS cloud then matches
the id to the trigger and derives the address R, subsequently forwarding the
packets, as shown in F^igurc 2.5.

i3 cloud

(id, R)

□ / I 1
S e n d e r(S)

(id, data)

R eceiver (R)

Figure 2.5: A node sending data through the i3 cloud

This process describes the unicast functionality of iS. Note however that
more than one Recxnver can register for a given identifier, thus allowing iS to
support other modes of operation, such as anycast and multicast.

In iS, the “fixed point” is a logical identifier, completely removed from
physical location. Its operation depends on a self-organizing network of hosts
tha t take responsibility for performing the necessary mappings. Thus, as
other systems tha t we have described, i3 depends on infrastructure tha t has
to be deployed and maintained.

39

2.5 .8 S ta te o f th e Art: Im plications

We have covered a variety of systems tha t perform RLD either expHcitly
or imphcitly. Even though some of them exhibit desirable features for a
generic, dynamic RLD solution, all of them rely to different degrees on fixed
infrastructure. Furthermore, none of them is specifically designed to deal
with all of the requirements tha t a generic solution to the RLD problem
must exhibit. Most use specialized RLD solutions tha t arc not interoperable
or th a t are not suitable for use in other applications.

For these systems, support for both highly dynamic topologies at the
edge of the network coupled with extreme scalability requirements becomes
a problem. None of those systems satisfies both the local/inexact requirement
and the global/exact requirement in a single solution, increasing the com
plexity for applications that require both of these services (as many typically
do). Finally, none of th(̂ systems can operate completely independent of
centralized infrastructure, making them unsuitable for operation in wireless
ad hoc networks.

Many systems designed for specific purposes (e.g., systems tha t support
mobility in IP networks) use RLD concepts or subsystems to achieve their
results. Therefore, if a generic self-organizing resource location and discovery
system is scalable enough, and resilient enough, its applicability would not
be limited to mobile ad hoc networks alone, or even to name resolution
or resource discovery alone. Such a system would be useful for a variety of
networked infrastructure and applications, from name resolution, to mobility
applications, to presence functions provided directly to end-users.

40

2.6 The M anifold Algorithm s: Evolution, and
R elated Work

In the preceding sections we discussed different types of RLD system s and
presented various examples, deriving the usage pa tte rns th a t govern them .

We discussed requirem ents for our solution from those usage pa tte rn s in
Section 2.4.

Based on the requirem ents and usage patterns, we concluded th a t M an
ifold would require two different self-organizing P 2P algorithm s to oper
ate. The first of the algorithm s, M anifold-b , is ba«ed on a TTL-based

P2P algorithm (sec Section 2.8 below). The design of the second algorithm ,
Manifold-g, was based on the idea of creating a v irtual topology using the
values of the names stored by each node th a t would allow efficient traversal
and provide guaranteed results.

After the work on M anifold-g was completed, we related it to a category
of algorithm s known cus Overlay Network algorithm s (also referred to aii Dis
tribu ted Hashtables, or D IlT s see Section 2.9 below). In the sections th a t
follow we will review P2P system s in general and these two types of P2P
algorithm s in particular, pointing out some of their differences, advantages
and disadvantages.

2.7 Introduction to P 2P system s

Peer-to-peer (P2P) system s are d istribu ted system s th a t operate w ithout
the need of centralized control or organization. They achieve this by ruim ing
the same software on each node (even if the software differs between nodes,

they can also in teroperate by conforming to the same set of network-based
application program m ing interfaces, or APIs). Network-wide behavior thus

emerges from the action of the local algorithm s in each of the nodes. All
P2P system s, regardless of their application, provide a mechanism to find

41

the location of a given piece of data within a network. All P2P systems
provide a lookup function that, given a certain string to be found returns
a set of nodes tha t match it. We will refer to this function as the locator
function.

Because of their decentralized nature and relatively low consistency re
quirements, P2P networks have no single point of failure, continuing to func
tion even with multiple node failures.

The network structure defined by P2P networks is, regardless of their
type, independent o f the underlying physical topology, ‘neighbors’ can exist
across the Internet or within the same subnetwork. While some types of
networks adapt to the underlying physical topology, this kind of optimization
is not in general required for the proper operation of the P2P algorithm.

Recent years have seen research and development on the field of P2P
systems of all kinds grow steadily, a« the many examp)les presented in [63]
show. In large part, this has been propelled by the massive success (if not
necessarily in commercial terms, certainly in exposure and number of users)
of Internet file-sharing applications. Another factor is tha t these systems
proved tha t self-organizing protocols can effectively function in a global scale,
something tha t is, a t first glance, slightly counter-intuitive.

The idea of peer-to-peer systems however, is not new. As we noted in the
Introduction, the Internet (then Arpanet) was originally designed to provide
host-to-host connectivity where remote hosts were treated as equals, creating
something tha t was, both in principle and in practice, a network of peers.
There is one crucial difference, however, between the original Arpanet design
and today’s P2P networks: self-organization.

Arpanet, though decentralized by nature, required extensive human in
tervention: for example, a host newly connected to the network could not, on
its own, advertise its existence to other hosts. Additionally, the hrst popular
applications on Arpanet quickly tilted the field towards client-server models
(e.g., Telnet [15]), resulting in diminished interest in true self-organizing P2P

42

models.
Earlier, wc cited DNS as an example of how name resolution today hap

pens in centralized, hierarchical fashion. However, it is im portant to note
tha t DNS provided one of the first examples of self-organization found on
the Internet. To the clicnts tha t resolve queries, DNS servers provide only
one function, i.e., resolving Internet names. But within the DNS tree, a
DNS server operates, in some sense, as a node in a P2P network: at times,
it acts as a client, requesting information from servers higher in the tree, at
times, it acts as a server, returning information to other DNS servers that
might require it. During the 1990s, self-organization started to emerge as a.
standard feature in different systems, such as distributed databases and oper
ating systems, but most of them rc'-created the idea of a server as a network
of self-organizing servers that acted as a (sometimes loosely) coordinated
cluster.

To be truly self-organizing, P2P systems must support a set of basic func
tions: Join, to connect to the P2P network, Insert, to add keys to the net
work, Search, to find keys, and Leave, to disconnect from the network while
keeping its structure intact. In the case of failures, the network must also
include functions to rccover, which are typically built using subsets or modi
fied implementations of the Join and Search algorithms. All of the functions
nuist work in principle—without dependence on centralized infrastructure,
though they will benefit from it, particularly for initial Join operations to
the network, where the entry point to the network must be located.

As the power of desktop computers (and, lately, mobile devices) increased,
the final stage was reached: true self-organizing P2P, dej)loyed on a global
scale, applied to any type of device.

2.7,1 B ootstrap p in g Self-O rganizing P 2 P

Before going into more detail for each of the types of P2P network, it is useful
to note the alternatives available for a crucial clement for any self-organizing

43

P2P algorithm: bootstrapping.
The first step in joining a P2P self-organizing network requires identifying

at least one node tha t is already connected to the network. The challenge
with self-organizing networks is tha t they lack fixed points of entry, and that
the network as a whole has no global identifying address and no permanent
nodes th a t can act as gateways. This makes unpredictable the context in
which a node joins the network.

In current systems, bootstrapping is usually done by providing a fixed,
well-known server tha t serves a list of some of the P2P peers. If a node has
connected to the network once, it can rely on previous information about
the network to try to contact nodes tha t were known, in the past, to exist
connected to the network. If a node is connected to multiple P2P networks,
a search in one network can be used to find nodes in the other. Similarly,
another possibility is to employ connections to random IP addresses in certain
address ranges, or to perform IP broadcasts in the local subnet to locate a
connection.

We can therefore characterize bootstrapping processes as belonging to
one of three generic types. The three types of bootstrapj)ing are:

• by fixed-point, typically residing on the Internet. Fixed-points of P2P
networks keep track of sets of jireviously existing nodes (by registering
nodes tha t have already joined the network) and return addresses of
nodes in the network on request. These fixed points may or may not be
nodes in the network themselves — in many cases they are the equivalent
of DNS servers, deployed at multiple points in the network to minimize
single-point-of-failure problems.

• by previously-known network nodes, in which the incoming node has
already connected previously and has stored a list of previous neigh
bors. The incoming node uses the list to attem pt connections to those
nodes, tha t will be in the target network with higher probability than
randomly selected nodes.

44

• by intersection with another network, where the incoming node per
forms a search in another network (to which it is already connected)
for nodes tha t tha t belong to the target network. The origin network
can be another P2P network, or, more commonly, an IP network on
which a random search or broadcast request (at cla^ss-D subnet level)
is performed.

Self-organizing P2P networks use all three bootstrapping methods, typi
cally in sequence, from most accurate (fixed-point bootstrapping) to the least
(intersection).

2.8 T T L -based P 2 P System s

The most conunon method for providing P2P locator functions on Inter
net api)lications involves a form of Time-To-Live (TTL) controlled flooding
mechanism. With this approach, the querying node wraps the query into a
single message, then sends tha t message to all the neighbors it knows about.
The neighbors verify if they can reply to the query (by matching the query
to the strings stored in its internal database), in which case they send back
a reply, or otherwise they forward the query to their own neighbors incre
menting the TTL value of the message in the process (if the TTL value is
p.ist a certain threshold the message is not forwarded again). The TTL value
in effect defines a “horizon” for the query: a boundary tha t will control its
propagation.

Figure 2.6 illustrates an exami)le of a P2P search with TTL-controlled
flooding. In the figure, node Nq is requesting the value associated with a
string located in Nr (and for which only Nr can provide the value). The
query is transm itted across the network while the result returns directly to
the node requesting the information (the number of concentric circles indicate
the number of hops the message has performed up to tha t point). In a sense,
the network itself resolves the resource mapping requested. Once the lookup

45

(query TTL=2)

Nar

Nr

© Node that originates
the query

Node that replies
to the query

Figure 2.6: A Sample TTL-ba«ed P2P Network and Query

has been solved, it can be cached by the requesting node so future nxjuests
will resolve faster.

The example imderscores the problems of fiooding-style P2P networks:
even though the query can only be answered by N r, all the nodes within TTL-
range (with being 2 in this case) of the query have to process it. Additionally,
if the value had been stored in node N ar the result would not have been found
unless the TTL of the message was set to a higher value, potentially requiring
flooding the entire network.

TTL-Controlled networks are unstructured in the sense tha t nodes attach
themselves to the network according to measures unrelated to the content
itself, such as join-order, connection speed or even physical proximity, re
sulting in a randomly created connection topology. This approach makes it

Node Connectivity

C 3 / Node affected by the query

------------- -#■ Reply path

46

simpler to maintain connections but has two problems:

• Sincc there is no correlation between content location and network
topology, search within the network is essentially open-ended, forcing
the protocols to use TTL measures to control propagation of the mes
sages and thus avoid flooding the entire network. This results in the
possibility that even though content might be available, it might not be
reachable by all nodes in the network. In other words, a result cannot
be guaranteed even if the target exists somewhere on the network.

• Because the network is built randomly, search for a particular element
within the “horizon” has a theoretical limit of N steps, where N is the
number of nodes within the reach of the query (In practice, different
sections of tlie graph are usually traversed in parallel, reducing lookup
times). Strictly speaking, queries on an unstructured P2P network
have a maximum number of steps of the order of N , or 0{N) .

Our initial work on name resolution on ad hoc networks, the Nom [18]
system, was btised on the two most im portant self organizing systems at the
time: Gnutella [33], the first true P2P system to be widely deployed (and still
popular today), and Freenet [11], a system tha t focused on P2P networks as
a way to j)rovide anonymity and defeat censorship.

2.8.1 G nutella

Gnutella is a fully decentralized P2P application layer protocol tha t is de
signed to provide file sharing on the Internet, inn)lemented as an open proto
col tha t runs on top of HTTP [25] and tha t supports host discovery, search,
and file transfer. The set of all Gnutella-protocol-cnabled applications on the
Internet constitutes what is commonly referred to as the Gnutella Network.

Nodes in Gnutella communicate with their peers by receiving, process
ing, and forwarding standardized messages. The reach of messages within

47

the network is controlled by a Time-To-Live (TTL) field embedded in the
message, which is decreased at every step. When the TTL field reaches zero,
the message is not forwarded.

To join the network, an incoming node must know about a node already
connected to the network (see Section 2.7.1). Once coimected to the network,
a node participates in it as follows:

• by performing discovery for other nodes,

• by propagating tfic messages tha t it rcceiv(^s from its peers,

• t)y initiating queries,

• by replying to queries,

• by retrieving files (or, more generally, content), and

• by giving acccss to files requested from it.

Nodes in Gnutella comnnniicate with their peers by receiving, processing,
and forwarding messages. Messages can be one of the following types: Ping
and Pong for discovery-requests and replies, respectively. Query and Query-
Hit for queries and replies, and Push, used when the client tha t is publishing
the file is behind a firewall or NAT server and thus has to initiate the con
nection itself (instead of the comiection being initiated by the requester). A
Giuitella message consists of the following;

• QUID (Globally Unique Identifier), which provides a unique identifier
for a message on the network.

• TTL (Time-To-Live), the maximum number of hops tha t this message
is allowed to perform.

• Type, which indicates which type of message is being communicated
(e.g., Query, QueryHit, etc.)

48

• Hops, a count of tlie hops th is message has performed.

• Payload Size (in bytes), the size of the d a ta expected to follow the

message.

T he procedure to lim it the lifetime of a message is simple:

• Before forwarding a message, a node will decrement its T T L field and

increment its Hops field^. If the T T L field is zero following this action,

the message is not forwarded.

• If a node receives a message with the same GUID and Type fields as a
message already forwarded, the new message is trea ted as a duplicate
and consequently discarded.

In summary, the node th a t is initiating a query sends the query message
to its neighbors, which in tu rn forward it until the T T L limit is reachcxl.
W hen processing a query, each host will try to m atch the query with its local
content, and respond with a set of URLs [27] pointing to the corresponding

files if there are matches.
Tlu! process can be seen in Figure 2.7, where node Nq is requesting a

certain key. The Query message is propagated until its TTL-lim it (of 2 in
the example) and nodes N r l and N r2 reply w ith a QueryHit message. Nq
then chooses to n^quest the content only from N r l . Nr3 , which also contains
the key, cannot reply since the T T L of the message does not allow it to reach

the node.
Because of its widespread use, G nutella was also the first self-organizing

P2P system whose traffic pa tte rns where system atically studied [74] (along
with those of Napster, the first In ternet m usic-sharing application th a t while

®At all tim es, the T T L and Hops fields m ust satisfy: TTLo = TTL; + HopS; wliere
TTLj and HopSj are the values of the T T L and Hops fields (respectively) at the ith hop,
for i > = 0.

49

(query TTL=2)

Nr1

Nr3

© N ode that originates
the query

thal
query

N ode Connectivity

N ode that replies 0 ^ / * 0 affected by the query
to the query D„rvi„ r,oth

-*■ R eply path
Data request/transfer path

Figure 2.7: A Sample Lookup in a Small Gnutella Network

performing peer-to-peer data transfers, relied on a centralized directory to
function).

Pure self-organizing systems sparked a renewed interest in applications
to facilitate free speech (or, more accurately, defeat censorship). Freenet was
the first of those.

2.8 .2 Freenet

Fr(!cnet is a distributed information storage and retrieval system designed
primarily to:

• address privacy concerns in other P2P systems, and

50

• guarantee maxiniuni availability of content.

Specifically, Freenet has five main design goals:

• anonymity for both producers and consumers of information

• deniabihty for producers of information

• resistance to attem pts by third parties to deny access to information

• efficient dynamic storage and routing information, and

• decentralization of all network functions.

Frcenet’s design allows the network to adapt to usage/load patterns,
transparently moving, replicating, and deleting files a:s necessary to provide
efficient service without constantly resorting to generalized broadcast search,
or using centralized indexes. Because of the way in which it handles replica
tion, however, Freenet is not intended to guarantee permanent storage, since
the survivability of the content depends on how often it is accessed.

Users contribute to the network by giving bandwidth and a portion of
their hard drive (a local “data store”) for storing data. Unlike other peer-to-
peer file sharing networks, a Freenet Tiser can’t control what is stored in the
data store. Instead, files are maintained or removed depending on how often
they are accessed, with the least popular being discarded to make way for
u(!wer or more popular content. D ata is stored encrypted in the data store,
to resist local attacks.

In Frcenet queries are ptissed from node to node in a chain of proxy
requests, with each node making a routing decision based on the key tha t is
searched. To limit propagation, each query is given a TTL (“hops-to-live” in
Freenet terminology), and queries are assigned pseudo-random identifiers to
prevent loops (letting nodes reject queries that they have seen before). This
process is continued until the query is matched or the TTL is exceeded, in

51

which case the query fails. The query (or failure notice) returns through the
same node-to-node path established by the request, therefore guaranteeing
local anonymity (i.e., each node only knows the next/previous node in the
chain, though access to the complete network traffic would still expose the
origin and destination of the information).

2.9 Overlay Networks

As we identified the usage patterns tha t applied to generic RLD, we con
cluded tha t a TTL-based algorithm (Manifold-b) was an appropriate solution
to serve queries based on the local/inexact search use case for RLD systems.
TTL-Controlled systems such as tha t defined by Manifold-f) are ideal for this
function: they cover all the nodes in a certain area; and they can easily match
a regular expression or substring against a set of strings for which they can
respond.

However, the usage patterns pointed to a bigger challenge: providing
global/exact location of a resource. The qualities of TTL-controlled algo
rithms make them well suited to provide local/inexact searches (our first
usage pattern). However, global/exact searches require tha t content is guar
anteed to be found whenever tfie information is available in the network. This
implies tha t all nodes have to be rcachable by the content-location service,
and tha t search times are bound by a predictable limit, to avoid having to
wait an arbitrary amount of time for a reply. In other words, search in this
ease has to be deterministic. This must be achieved with zero-dependency
on centralized services, self-organization and, consequently, automatic load
balancing to avoid overloading any particular network node.

Based on these requirements, we designed a second algorithm, Manifold-g.
Manifold-g was based on the idea tha t the values of the names stored on each
node could be used to create a virtual topology with a specific structure (de
rived mathematically from those values). Since the structure was predictable.

52

it could also be navigated predictably, allowing both guaranteed results and
time limits on the search process. As wc have mentioned above, after the
work on Manifold-g had been completed we related it to a category of self
organizing network algorithms tha t has been under development in recent
years: Overlay Networks.

Overlay networks [19] involve a level of network semantics above that
of basic routing tha t create a structure tha t can be navigated predictably;
these extended semantics are achieved by organizing the overlay topology
based on some of the content exposed by the nodes rather than using their
more immediately available physical organization, thus creating a virtual
topology on top of the physical topology®. These networks in effect create
special purpose routing abstractions to optimize the process of searching for
particular data items by performing distributed lookup.

In essence, overlay networks ask the (luestion “what is the search space?”
and instead of answering “a graph,” they consider the answer to be “a set of
strings". Overlay network algorithms then use the values of the bit-sequences
defined by the strings. The strings are generally transformed using consis
tent one-way hash functions similar to those presented by Karger et. al.
on their work on consistent liashing and random trees [39] (which improved
on systems such as tha t defined for a Distributed Dynamic Hashing Algo
rithm [17]), reducing the size of the string space to be manipulated with the
additional, im portant side-effect of providing good load balancing by evenly
distributing the values tha t exist in the network.

Overlays were proposed as a way of creating topologies according to
content rather than other parameters (node-dependent or arbitrary) of the
nodes. By creating a structure based on content, overlays turn the prob
lem of search from a standard graj^h-traversal problem into a set of steps
that can be calculated according to a mathematical function, reducing the

®Iii terms of creating a virtual topology on top of the physical topology, TTL-based P2P
networks are also a type of Overlay. However, we will use the term “Overlay Network” only
in relation to networks that create virtual topologies baised on node content attributes.

53

overall load on the network and making the query process deterministic. In
abstract terms, an overlay network operates like a hashtable by allowing in
sertion, querying, and removal of strings. Those strings are derived in some
way from the content exposed by the nodes, for example, by using a consis
tent hashing algorithm. In fact, overlay network algorithms are also referred
to as distributed hashtables or DHTs—throughout the rest of this work, we
will prefer the more generic term Overlay Network to refer to these types of
content-based networks.

Overlay network systems include Chord [81], CAN [66], Viceroy [48], Pas
try [72], and Kademlia [53]. We will now briefly consider some of their generic
(}ualities, and then look more specifically at how these systems implement
content-based networks.

Overlay networks have the following common qualities:

• Guaranteed results. If the data item exists in the netw’ork, it will be
foimd regardless of its location.

• Provable bounds on lookup times (typically of O(logrj) with n the
number of nodes in the network),

• automatic load balancing, and

• self organization.

Figure 2.8 shows a hypothetical overlay network and a query propagating
through it. While the algorithm used to construct the overlay varies accord
ing to the network type the end result is generally similar to the one shown in
the figure in terms of topology: symmetrical in nature and fairly consistent
on a node-per-node basis.

Since nodes in the overlay are connected according to a consistent m ath
ematical function applied to the content stored, a query for a particular key
can be routed directly to the node tha t is storing the desired key, value pair,
resulting in the minimal query path shown in the diagram.

54

© Node that originates
the query

Node that replies

Node Connectivity

Node affected by the query
^ to the query -*• Reply path

Hgurc 2.8: A Sample Overlay Network and Query

Overlay networks can be understood a»s one-to-many mapping functions
of a set (that contains all the possible bit strings of a certain size) onto itself
while preserving its relations and operations The resulting subset of results
of the mapping function defines the aj>propriate “neighbors” for tha t string

strings then becomes an algebra (since it will include both the values and a
group of operations tha t satisfy the conditions for an algebra) tha t maps the
set of strings onto itself.

The set of all possible strings is clearly bigger than the set of any real world
network. To solve this problem, overlay networks always define, implicitly or
explicitly, a way to “complete” the space, so, an far as the mapping function
is concerned, the space will be complete, or they establish procedures to jimip
across sections in the space in ways that maintain the characteristics of the

^iii mathematical terras, and endomorphism
*We are assuiiiiiig eadi node exposes a single string. The other case, where multiple

strings are stored in a single node (whether they belong to that node or not) is a specific
application of the generalized case.

(and therefore for the node tha t stores tha t string *). The original set of

55

search proccss.
Any overlay network algorithm contains, at its core, at least one such

mapping function that, given a string to be found (and knowledge of the cur
rent location on the network) returns the next step in the path to tha t result
string. Thus, the theoretical path between two nodes is fixed by tha t mapping
function; the only thing tha t changes is how this path is mapped using the
nodes/values present on the network, which makes the search through the
overlay deterministic (bounded).

The mapping function is at the core of the algorithm, and it is used not
only to calculate neighbors to connect to the network, but also to as part of
the locator function tha t is at the core of every P2P algorithm. To connect to
the network, a node requires only to know tlu? address of a node already in the
network, obtained through bootstrapping (see Section 2.7.1. Once connected
to the network, any node can calculate the path from itself to a target node.
This calculation is a completely abstract exercise: a node’s neighbors can be
t:alculated without any information other than the string value itself, and the
only step necessary is to obtain the actual network locations of each node
along the way (to accoimt for missing strings in the actual mapping of the
theoretical topology).

In other words, the theoretical path between two nodes is fixed by the
mapping function, and the only thing that changes is how this path is mapped
using the nodes/values present on the network.

The mapping function has an additional condition to fulfill. If a given
neighbor z of a node ̂ N is M , then the neighbor i of node M should be N:

N, = M ^ M, = N

In mathematical terms, the mapping functions used in overlay networks

^Since a node has several neighbors, the mapping function maps a single string onto
a subset of the original set of strings. Neighbor i tlien represents value i in the subset of
results provided by that function

56

satisfy the conditions for a metric in the algebra defined by the set of strings
plus the operations tha t allow their manipulations. Therefore, all overlay
networks define (implicitly or explicitly) a metric space on the string set
considered. The fact tha t overlay network functions are metrics on the set of
strings is not a coincidence: it is a necessary condition for the overlay network
structure to be valid. (The mapping function has an additional requirement,
that of symmetry).

As an example, le t’s consider a network where nodes want to “publish” a
given name (for example, the nodes in a distributed database system). In this
example the content “exposed” by a node is also its identifier, which we define
to be a positive integer value (this will allow us to skip the step of having
to hash the identifier/content, which would be necessary if we were using
strings). If the identifiers arc universally unique then we can, for illustrative
jMuposes only, define a few simple rules to create an overlay topology:

• The “neighbors” for each node (in the overlay) will be two: the node
whose value is the next available (higher) integer, and the node wliose
value is the previous available (lower) integer.

• At the limits (if the current node is either the lowest identifier in the
network, or the highest), the neighbor will be the opposite maxinuim
in the range of nodes available.

• To join the network, a node ntn'ds to locate another node already ex
isting in the network as described in Section 2.7.1. Then, the incoming
node can use the search function to find the “slot” in the network where
it should insert itself by locating its two neighbors. If one (or both)
of the neighbors is not present, the incoming node will “cover” for the
missing node(s) by assuming their responsibilities until the node(s) ar
rive. If they are present the incoming node simply connects to them
while taking over functions from the node(s) tha t were “covering” in
the incoming node’s absence.

57

• The first node to join the network will “cover” for its neighbors itself.

These rules define a linear overlay topology, through the use of a linear
mapping function. Searching in this topology follows a simple algorithm:
the search can start at any node, and the node will determine the relation
between its own value and the “target” value: if the target value is higher
than its own, it will pass on the request to its neighbor of higher content
value, and the process will continue making decisions locally until it reaches
the destination node, which can then reply dircctly to the requester with its
physical network address for additional operations.

The example is unrealistic in tha t the search time will be bound, but
linear, making lookup times unacceptable. Typical Overlay Network algo
rithms use more complex rules to organize the nodes (resulting in logarithmic
lookup upper bounds), as we’ll see in the sections tha t follow.

2 .9 .1 C hord

Chord operates like a distributed hashtable by allowing insertion, querying,
and removal of strings on a virtual data structure maintained in a set of
participating nodes. The strings used as keys are derived in some way from
the content exposed by the nodes by using a consistent hashing algorithm,
so everything in Chord centers around a distributed hash lookup primitive.
Chord can find data using only log(A^) messages, where N is the number of
nodes in the system, and its lookup mechanism is provably robust in the face
of frequent node failures and re-joins.

As shown in Hgure 2.9, Chord defines a basic “ring” topology; its basic
algorithm implies one connection per node and is thus inherently resilient to
node joins, leaves or failures. Each nodes store key/value mappings according
to the values of the keys and the identifiers given to the nodes, redistributing
key/value mappings as new nodes come into the network. For the example
in Figure 2.9, which shows a network of eight nodes with 4 keys, if a node

58

N1
N44

N40

N9

N36

N14

N17

N25

K4

K17

K16

K38

Figure 2.9; The Basic Chord Ring Topology

with identifier 16 were to enter the network, key 16 would migrate from node
17 to the incoming node.

Chord then extends the basic successor node with a set of fingers accord
ing to powers of two, so for a value the neighbors will be those nodes that
match a rule tha t evolves according to n + 2®, n + 2 \ n + 2^...ri + 2”*~*, with
m the rnimber of bits in the identifier'^, as shown in Figure 2.10.

In this case, several of the fingers tha t N9 woukl connect to are not
{)resent in the network. Therefore the responsibilities for the missing nodes
are assumed by the next node tha t is present in the topology. As new nodes
come in, they would take control of the connections tha t they are responsible
for, just as they will take control of the keys tha t “belong” in their section of
the space. Chord stores multiple key/value pairs in each node, automatically

is the imiiiber of bits in the identifier that can be assigned to each node, and
thus defines the inajcimum niuiiber of nodes supported to be 2'". Formally speaking, the
fingers for a node in Chord are defined as each of the successors in the ring for node
(n + I < k < rn

59

N1
N44

N40

N9

N36

N14

N17

N25

K4

K17

K16

K38
N9 Finger Table
N 9+ 1 N14
N9 + 2 N14
N9 + 4 N14
N9 + 8 N17
N 9+ 16 N25
N9 + 32 N44

Figure 2.10: Chord Fingers for One Node

balancing the load of the nodes as new entrants to the network arrive.
When the fingers are used, the lookup time b(x:oines of the order of the

logarithm of the number of nodes, 0{ \ogN) . Note that, to maintain correct
ness, Chord only requires tha t the successor node pointer be correct, and it
can revert to use the b<isic scheme when, at any given step, the fingers table
has been damaged (e.g., by node failures). Since the fingers table is small
on each node, it can be maintained valid (along with the successor pointer)
through a periodic “stabilization” algorithm. In Chord, lookup times of
0(log N) arc maintained even when faced with probability of node failure of
1/2, as long as the initial network is stable.

Figure 2.11 shows a sample Chord lookup operation, in which N9 requests
the value associated with K38. N9 first finds the finger connection tha t gets
it closer to the target (N25). The proccss is then repeated at each node,
moving closer to the target based only on information local to each node.
This sample lookup shows the maximum number of steps for a network of 8

60

N1
N44

N40

N9

N36

N14

N25

K4

K17

K16

K38

Figure 2.11: A Sample Clioni Lookup

nodes, wliicli is log 8 = 3.
Chord has been used aa the baisis of several self-organizing systems and

services, such tus CFS [14] and i3 [80],

2.9.2 C A N

CAN uses a d-dimensioiial Cartesian coordinate space to implement the dis
tributed hashtable abstraction. The coordinate space is partitioned into sec
tions of dimension d —\ called zones. Each node in the system is responsible
for a zone and identified by its boundaries. Keys stored in the system are
mapped onto a point in the coordinate space, and stored at the node whose
zone contains the point’s coordinates. Each node contains a table of all its
neighbors, defined as the nodes whose zones share a d —\ dimensional hyper
plane. The lookup operation in CAN is implemented by forwarding a query
message along the path tha t approximates a straight line in the coordinate
space from the querying node to the node storing the target key.

61

|K23{ maps to (0.4, 0.8)

— T “ 7 ---------1” “ '

|K1 6K .
maps to (0.15, 0.42) K39 maps to (0.4, 0.5)

----------------- 4- ---------------- 1------------------ 1
I I I maps to (0.56, 0.38)K40

(1 .0)(0 .0)

Figure 2.12: A Two Dimensional CAN

As an example, consider the small CAN network shown in Figure 2.12,
organized is organized on a two dimensional space. In the example, connec
tion points are defined along edges of dimension one. Each node is therefore
connected to four other nodes at most (and one at a minimum). In the fig
ure, we can also see keys assigned to different nodes ba^sed on their calculated
coordinates (derived through a hash of the key). The node responsible for
holding a (set) of given key(s) is the one tha t is covering the coordinate space
to which the key belongs.

To join the network, a new node first chooses a random point in the
coordinate space, and asks a node already in the network to find the node n
whose zone contains tha t point. Node n splits its zone in two and assigns one
of the halves to the new node. The new node can easily initialize its routing
tabic, since all its neighbors, except n itself, are among n ’s neighbors.

Figure 2.13 shows the same network after a new node (node 8) has entered
the network, partitioning the space that previously wa« covered by node 2
alone.

Once the new node hâ s joined, the new node announces itself to its neigh
bors. This allows the neighbors to update their routing tables with the new
node, as well as re-assigning keys tha t correspond to the space covered by
the new node (In Figure 2.13, node 8 has taken over key K40 from node 2).

62

|K23| maps to (0.4, 0.8)

(0 ,1)

|K16 ĥ
maps to (0.15, 0.42)

----1I - - - - - - - - - -

maps to (0.4, 0.5)

rK40] m aps to (0.56, 0.38)

(1.0)(0 ,0)

Figure 2.13: A Two Dimensional CAN After a Node Join

When a node departs, it hands its zone to one of its neighbors. If merging
the two zones creates a new valid zone, the two zones arc combined into a
larger zone. If not, the neighbor node will temporarily handle both zones.
To handle node failures, CAN allows the neighbor of a failed node with the
smallest zone to take over. One potential problem is tha t multiple failures
will result in the fragmentation of the coordinate space, with some nodes
handling a large number of zones. To address this problem, CAN runs a
node-r(!a.ssignnient algorithm in the background. This algorithm tries to as
sign zones that can be merged into a valid zone to the same node, and then
combine th(^m.

K23

— — I---------------- 1

k i 6 h - - - --------1

r 1- .— I—

(1 .0)(0 ,0)

Figure 2.14: A Sample Lookup in a Two Dimensional CAN

63

Lookups in CAN procccd (as mentioned above) essentially by approx
imating a straight line between the requesting node and the node tha t is
responsible for the target area in which the key resides. Figure 2.14 is an
example of this process. To lookup K40, node 7 calculates the expected
coordinates of the key in the space. With tha t information, node 7 routes
the request to the neighbor closest to the target section of the space, in this
case node 3, which repeats the process, reaching node 8, creating the search
path shown in the figure with a solid line. Node 8 then returns the value
associated with K40 to node 7 and the search cycle is completed.

2.9 .3 O ceanstore and T apestry

In the mid-90s, Plaxton et. al. proposed [65] a randomized hierarchical dis
tributed data structure tha t gave rise to systems such â s lap estry [36] and
Oceanstore [42]. This data structure yields routing locality with balanced
storage and computational load, but docs not provide dynamic maintenance
of membership. That is, the Plaxton algorithm requires a static set of par
ticipating nodes as well â s significant work to pre-process this set to generate
a routing infrastructure, which complicates coping with node failures.

Tapestry assigns unique identifiers to nodes and objects in the distributed
system, uniformly distributed in the namespace. Each tapestry node contains
pointers to other nodes as well as mapping between object identihers and
the Nodcvidentifiers of storage servers. Queries are routed from node to node
along neighbor links until an appropriate object pointer is discovered, at
which point the query is forwarded along neighbor links to the destination
node.

OceanStore is a “utility infrastructure” designed to provide continuous
acccss to persistent information in a global scale whose routing mechanism
is another variation on Plaxton et. al’s data structure. Since this infrastruc
ture is comprised of untrusted servers, data is protected through redimdancy
and cryptographic techniques. To improve performance, data is allowed to be

64

cachcd at any node in the network; monitoring of usage patterns allows adap
tation to regional outages and denial of service attacks, and it can enhance
performance through pro-active movement of data to more active locations.

Entities in OceanStorc arc free to reside on any of the OceanStore servers.
This freedom provides maximum flexibility in selecting policies for replica
tion, caching, and migration. Addressable cntities^^ in OceanStore are iden
tified by one or more GUIDs (Entities tha t are functionally equivalent, such
as different rcplicas for the same object, are identified by the same GUID).
Clients interact with these entities with a series of protocol messages. The
role of the OceanStore routing layer is to route messages directly to the clos
est node tha t matches the query. In order to support this routing process,
OceanStore creates a distributed, fault-tolerant data structure tha t explic
itly tracks the location of all objects. Routing is thus a two-phase process.
Messages begin by routing from node to node along the distributed data
structure until a destination is discovered. At tha t point, they route directly
to the destination. Thus, the OceanStore routing layer does not replace IP
routing, but is built on top of it a,s an overlay.

2.9,4 O ther S ystem s

H yperC ast

In the lat(̂90s, HyperCast [46] [47] was put forward aa a protocol based on an
overlay tha t used a hypercube topology for efficiently performing multicast on
a network, and it has more recently been useci for peer-to-peer networking
of very large; grouf)s. Hyi)erCast embeds spanning trees into incomplete
hypercubes through the use of an algorithm tha t uses a Gray Code. More
recently, HyperCast has been used to perform point-to-point communications
between nodes.

In IlyperCast, all data is transm itted along trees tha t are embedded in

^^Ari entity in OceanStore can be a replica, an archival fragment, or a client

65

the overlay network topology. For each node in the network, there is an
embedded spanning tree in the overlay network with that member a« the
root of the tree. Given the root of an embedded tree, any node can locally
determine its children and parent with respect to that tree. Each member
forwards data to its children or parent in an embedded tree with respect to a
specific node. The embedding of trees (and other data structures) in abstract
topologies such as hypercubes as butterflies was also studied in relation to
massively parallel machines, for example, in [43].

V iceroy

A Viceroy network is similar to a butterfly network [41] combined with a set
of predecessor and successor links like those defined by Chord. In addition
to predecessor and successor links, each server includes five outgoing links to
chosen “long range” contacts. First, each node chooses a “level” at random in
such a way that when n servers are operational, one of logn levels is selected
with nearly equal probability. Edges connecting a node at level / to other
nodes are selected according to the following steps:

• a “down-right” edge is added to a, long-range contact at level / -|-1 and
distance roughly 1/2^ away

• a “down-left” edge at a close distance on the ring to level / -I- 1.

• An “up” edge to a nearby node at level / — 1 is included if / > 1.

• “level-ring” links are added to the next and previous nodes of the same
level I.

Routing proceeds in three stages: the first one consists of a “climb” using
connections to a level-1 node. In the second stage, routing proceeds down the
levels of the tree using the down links; moving from level I to level I + 1 one
follows either the edge to the close-by down link or the far-away down link.

66

depending on whether the target t) is at a distance greater than 1/2^ or not.

This continues until a node is reached w ith no down links, which presumably

is in the vicinity of the target, at which point a “vicin ity” search is performed

using the level-ring links until the target is reached. This process requires

() { \ o g N) steps with high probability for randomly built networks.

P astry

Pastry gives each node a randomly chosen identifier, indicating its position

on an identifier circle. It routes messages requesting (or inserting) a given

key to the node with identifier that is numerically closest to the key, using

128-bit identifiers in baae 2 ̂ where p is an algorithm parameter typically set

to 4. Each node m aintains a leaf set, composed of nodes closest to its own

identifier and larger than it, and those closest to its own identifier and smaller

than it. Those heuristics allow Pastry route queries according to a network-

proximity metric. Each node is likely to forward a query to the nearest one

of k possible nodes, using a neighborhood set of other nearby nodes. A s long

as a failure doesn’t involve an entire half of the leaf set, correctness in the

algorithm is guaranteed.

To optimizer forwarding performance, Pastry maintains a routing table of

pointers to other nodes spread in the identifier space. This can be viewed as

log2 p N rows, each with 2p — 1 entries each (where N is the number of nodes

in the network). Each entry in row i of tlie table at node n points to a node

whose identifier shares the first i digits w ith node n , and whose i + 1st digit is

different (there are at m ost 2p — 1 such possibilities). Given the leaf set and

the routing table, each node n im plem ents the forwarding step as follows:

• If the key that is being looked up is covered by n ’s leaf set, tfien the

query is forwarded to that node.

• In general this will not l:)e the case until the query reaches a point close

to the key’s identifier. In this case, the request is forwarded to a node

67

from the routing table that has a longer shared f)refix (than n) with
the sought key.

• If the entry for the target node is missing from the routing table because
the node doesn’t exist, or because tha t node is unreachable, n forwards
the query to a node whose shared prefix with the key is at least as long
as n ’s shared prefix with the key, and whose identifier is numerically
closer to the key. Such a node must clearly be in n ’s leaf set unless the
query has already arrived at the node with numerically closest identifier
to the key, or at its immediate neighbor.

If the routing tables and leaf sets arc correct, the expected number of
hops taken by Pastry to route a key to the correct node is at most logpiV.
Pastry has a join protocol tha t builds the routing tables and leaf sets by
obtaining information from nodes along the path from the bootstrapping
node and the node closest in identifier space to the new node. It may be
simplified by maintaining the correctness of the leaf set for the new node,
and building the routing tables in the background. This approach is used
in Pastry when a node leaves; only the leaf sets of nodes are inuriediately
updated, and routing-table information is corrected only on demand when a
node tries to reach a nonexistent one and detects tha t it is unavailable.

K adem lia

Kademlia uses an XOR-metric to dynamically route messages/keys to the
node with the identifier numerically closest to the key, similar to Pastry.
Each Kademlia node has a 160-bit node identifier (Node identifiers are con
structed as in Chord). Every message transm itted by a node includes its
identifier, thus allowing other nodes to record the originator node’s existence
if necessary. Keys stored in Kademlia are also 160-bit identifiers. F'or finding
and publishing keys, Kademlia relies on the distance between two identi
fiers, defined as their bitwise exclusive or (XOR) interpreted as an integer.

68

d{x, y) = X © y.
Kadcmlia nodes store contact information about cach other to route mes

sages. Every node keeps a list of (IP address, Port, Node identifier) triples
for nodes of distance between 2* and 2^^^ and itself. These lists arc main
tained through a Icast-reccntly seen eviction policy, and live nodes are never
removed from the list, thus maximizing the probability tha t nodes contained
in the list are valid.

The system differentiates between finding nodes and values stored in
them; one node might contain one or more values. When a node is being
looked up, the search procedure in a node returns information for a number
of nodes it knows about tha t are closest to the target identifier, which are
then queried for the result (the procedure stops when a value is fomid). In
this sense, Kademlia performs a search across a likely set of neighbor nodes of
a target value which will typically result in search times of 0{ \ogN) , where
N is the number of nodes.

To find a key/value pair, a node starts by performing a lookup to find
the k nodes with identifiers closest to the key, and the procedure halts im
mediately when a node returns the value (this response might come from a
holding node, or from a node that is actually caching the result). Once the
node is found, a similar recursive {)rocedure for tlie key is performed in it.

Early A pplications o f V irtual T opologies

While searching the literature for references on work similar to Manifold-g, we
foimd similarities beyond those of Overlay Networks, first on the work done
on parallel computing architectures and on predictable (i.e., mathematically
derived) virtual topologies in different area.s. In all cases studying these
systems helped us understand the qualities and properties of Manifold-g.

In the late 70s and during the 80s, new types of massively parallel com
puter systems were developed tha t used the concept of a network organized
according to some well-known parameter to create a topology tha t could be

69

navigated predictably. The network, in tha t case, was one of processors that
would divide a particular task in several sub-components, achieving faster
processing times (for example. Tree Machines [3], the Cosmic Cube [76], the
Connection Machine [44], the nCube [60] and Butterfly Networks [77]). Pro
cessor networks were static in their topology, and were not self-organizing (al
though they had capabilities to route around failures, see, for example, [35]),
but many of their routing concepts are similar to those used in content-based
overlay networks today. Even at tha t time, solutions tha t went beyond pro
cessing tha t used virtual topologies for other purposes were proposed, such
tui [32].

Similar alternatives have been explored in the realm of physical network
transports. One of the best examples of these is the the M anhattan Street
Network [50], where nodes arc connected in a two dimensional grid (mesh)
with alternating rows and columns, where the wTaparound links between
nodes place the resulting two dimensional grid on the surface of a logical
torus. A node is represented by a simple 2x2 switch and, at the beginning
of each time-slice, it switches slots from its two incoming links to its two
outgoing links. The regular topology of a M anhattan Street Network makes
it well suited for self-routing algorithms such as those described in [6] [51]
[52] [69] .

2.10 C om parison o f P 2 P S ystem s

The central difference between TTL-controlled algorithms and overlay algo
rithms is tha t overlays guarantee tha t a result will be found if present in the
network. Overlays also guarantee tha t the lookup time (either with a result
or a failure) will be bounded; TTL-controlled algorithms can make no such
guarantee.

Compared to TTL-controlled algorithms, overlay algorithms require a
much smaller number of steps to reach the desired node. However, this

70

is done at the cost of a higher number of physical hops the message has
to perform on the network. That is, for a given hop between nodes in an
overlay network the physical distance covered might usually be more than
physical hops between nodes for a flooding-ba^ed network. Overlay networks
make up for this deficiency by significantly reducing the total number of
hops at the overlay level, by operating as a highly optimized point-to-point
communication mechanism, rather than using the “brute force” approach of
flooding-based networks.

Note tha t the connectivity pattern in an overlay network is different from
the one obtained using a TTL-based algorithm; the number of connections
to and from each node is constant This is an im portant feature because
the structure created by the overlay has to be, either implicitly or explicitly,
symmetrical, and it is the structural symmetry of the topology tha t allows
nodes to forward queries optimally from any node with the certainty tha t a
path to the target will always be found.

The symmetry of the network (cither implicit or explicit) contributes to
the short-path lookup times of overlays. Nodes use the lookup fimction to
define which content they are responsible for, therefore ensuring the integrity
of the structure.

Overlays structure their content based on the exact values of the keys
stored, making them unsuitable for inexact (or substring) searches. TTL-
controlled algorithms can deal properly with both exact and inexact queries
alike.

In case of node failures, overlay network algorithms provide mechanisms
for the network to recover and re-create or maintain an appropriate network
structure. TTL-Controlled networks, on the other hand, have lower consis
tency requirements, allowing them to operate even if only one connection
to one node in the network is available and making them more resilient to

^^Some overlay networks might obtain this result implicitly (i.e., not necessarily tlirough
direct connections between nodes, but by adding traversal rules to the space)

71

large-scale, disruptive changes in network topology.
We will now look at how these specific implementations of these two types

of P2P algorithms can be combined to provide a self-organizing solution to
the problem of generic RLD.

72

Chapter 3

Manifold, an Overview

3.1 In troduction

In Section 2.3 we noted th a t a user will typically have two different require
m ents for resource location: local/inexact search, and global/exact search.
VVe will now briefly discuss the M anifold algorithm s, how they differ from
the algorithm s discussed in the previous chapter, and their interaction and
design, to provide context to the following chapters, in which each algorithm
is descrilx'd, and analyzed, in detail.

Manifold uses a hybrid, dual-algorithrn system. One algorithm , Manifold-b,
handles inexact queries; the other, Manifold-g deals w ith exact queries in a

global scale. The first algorithm is based on a TTL-C ontrolled P2P algo
rithm , and the second is based on an overlay network algorithm . Manifold
doesn’t force the aj)plication to make a choice of which algorithm to use; it
receives an inexact query in the form of a regular expression [16] [40] [82]
(or, alternatively, with a string and an additional param eter specifying th a t
the string is actually a substring to be m atched, which creates the regular

expression on the fly). If the string to be m atched is a regular expression,
Manifold-b is used. If not, M anifold-g is used.

73

3.2 R eso lv in g Inexact Queries: M anifold-b

Manifold-b uses TTL-Controlled P2P to serve queries based on the local/inexact
scarch use case for RLD systems. TTL-Controlled systems arc ideal for this
function: they cover all the nodes in a certain area, they have proven scala
bility up to tens of thousands of nodes; and they can easily match a regular
expression or substring against a set of strings for which they are responsible.

The Manifold-b algorithm is, at its core, relatively simple, and similar
to the algorithm found in well-known P2P systems, Gnutella in particular.
Differences for these types of algorithms appear in specific implementation
details, such a»s caching, or usage of underlying network features, such as
increased use of nodes tha t have access to fast network connections (e.g., ap
plying concepts described in [30]), which are also implementation dependent.

3.3 E xact Search in a G lobal Scale: M anifold-g

For the second use case, of global/exact search, Manifold uses an overlay
network to guarantee results in bounded time if the target value exists on
the network, something not possible with TTL-limited P2P networks, in
which the diameter of the search is usually less than the diameter of the
network itself.

Manifold’s overlay network algorithm was designed with the requirements
of resource location in mind, in particular with support for content-locality.
In current overlay networks content can be said to be non-local, published
content may or may not reside on the node tha t publishes it ̂ (a consequence
of their design goal of achieving good load balancing) through some kind of

^It should be noted some systems (CAN and Chord in particular) could be forced to
maintain locality, or, in other words, a strict correspondence of a single content value to
its originating node. However using them in this fashion could create unnecessary strain
in the systems; as we have already seen both CAN and Chord are designed primarily as
distributed self-organizing hashtables that maintain several key/value pairs per node, and
pairs might require redistribution among nodes after a certain immber of insertions.

74

mapi)ing of contents to nodes. Additionally, they all rely on an implicit or
explicit mechanism to obtain bounded search times: in some cases (as in
the case of CAN) the content mapping function has certain built-in qualities
that guarantee a given search speed, in others (such as in Chord) the content
is stored according to a hash function but then an additional mechanism
(Chord’s “fingers”) is used to improve the search efficiency. In all cases, the
search time can be improved f)y modifying certain parameters within the
network, such as number of neighbors per node.

This non-locality of content, while useful for various reasons in contexts
such as distributed network storage [14] [42], is not a desirable feature in other
contexts, most notably name resolution in particular and RLD in general,
where it is im portant tha t the node that serves the content is the same that
publishes it.

Additionally, current designs place little emphasis on minimizing resource
usage on the nodes while increasing performance, since they generally re
quire a nock; in the network to store multiple keys. The common solution
to increasing performauc:e usually results in an increase of the niunber of
connections (or initial lookups, to maintain state on neighbors) a node has
to perform. While this is acceptable for PCs, it might be more of a problem
for mobile! devices or devices with slow or low-quality wireless connections,
or with limited processing power.

The j)roblem of global/exact search in RLD has certain specific require
ments beyond RLD in general:

• Content locality. As mentioned before, name resolution ideally requires
a one-to-one mapping between content and the node tha t publishes it.
For example, if CompanyX is publishing its nam e/address mapping,
it is safe to assinne tha t CompanyX would like a certain degree of
control over response times; for example ex{)osing the content through
a cluster of servers rather than through a single machine. If the content
is not local to the node tha t publishes it, the name for CompanyX

75

might be served by CompanyY's servers or machines, which might be
overloaded or might be CompanyX’s competitor, therefore making it an
unacceptable choice for CompanyX for political, rather than technical
reasons. For an in-depth analysis of the political, social, and technical
issues raised by name resolution in a global scale see [58].

• Low resource usage. A self-organizing network has the potential to pro
vide global name resolution even between client devices, without any
need for server intervention. Consider the following scenario: UserX
is travelling with a wireless device, and she connects to the Internet,
therefore “publishing” her new address to the network, so other users
can find her address and contact her directly to send a file. Current
solutions to this problem would involve specific server configuration of
systems like DHCP at potentially large cost, while using an overlay
network would provide this functionality as part of the same system
used to look up server (rather than client) addresses. However, small
devices are usually severely limitcxl in connection s{)(!ed, memory, stor
age, and/or processing power. In this Ccuse, the ability to off-load man
agement of a node’s resi)onsibilities to a proxy is an im portant element.

• Speed with extremely large scalability requirements. Name resolution
is an application that, if deploycxl in today’s systems, would inchidc
liundreds of millions of devices, with this inunber reaching the billions
of devices in the near future.

A global, self-organizing RLD system requires locality of content, ex
treme scalability, and the ability to provide speed/resource usage tradeoffs
for deployment in devices of different connection and performance capabil
ities. While many other applications tha t use overlay networks might not
have these specific requirements, any of them would benefit from a solution
to the problems they present.

76

3.4 D esign

We will go into more detail on the design of a real-world im plem entation of

the Manifold system in C hapter 7, bu t i t ’s useful to introduce some of the
design concepts a t th is point, to clarify the basis of the discussion for this
chaptcr as well as the next part of this work where we discuss the theoretical

basis of the algorithm s th a t compose Manifold.
In keeping w ith the end-to-end principle [73], Manifold does not require

modifications on the underlying network layer addressing and routing; this

allows Manifold operate on different platform s, network types, and transport
layers. Manifold achieves th is level of abstraction through the use of m es

sages. Messages can be received locally^ or through the network interface.
Once a message is received there is one com ponent th a t chooses which algo
rithm is responsible for th a t message, and passes it on. The query process is
itself stateless, th a t is, both algorithm s operate by receiving a message (which
carry their own sta te , such as nodes visited in the query path , etc), process
ing it, and continue appropriately, either replying to the query, forwarding
the message, or ignoring it. The only sta te m aintained is query-independent,
having to do with the structu re of the P2P networks used.

The core of Manifold is controlled by two independent algorithm s th a t
[process messages received from an internal message m anager. Through the
m anager, they have the ability to send messages to the local (requester)
aj)plication as well, or use the network interface to send messages to other
Manifold nodes (specifying which algorithm on the target node will be re
sponsible for processing the received message).

^through Inter-Process Coiiiniuiiicatioii for example, or function calls, or local message
passing within a single process.

77

3.4.1 A lgorithm U se and Interaction

The two algorithms cocxist within the same environment, and the algorithm
to be used is chosen based on the type of query requested by the user. If
the query involves a substring search (e.g., all the names tha t begin with the
term “printer”) then the system automatically uses the Controlled Flooding
algorithm. If the query is exact (e.g. a specific name like “printerOl”) the
query will be routed using the overlay algorithm.

The two algorithms don’t require interaction; they essentially create two
parallel networks to resolve the different types of query: the Manifold-b TTL-
ba.sed network is limited in reach (from the point of view of each node); the
Manifold-g network is global in nature. T hat is, while every node belongs
to the same global overlay, each node might belong to different Manifold-b
networks of limited reach.

While i t’s not required tha t the algorithms interact, there are some cases
where interaction is im portant in providing best-effort resolution. For exam
ple, if a small section of the overlay luis been suddenly boon cut off from
the global network (e.g., if its Internet access point failed) then reverting to
us(̂ the local Manifold-b network automatically would be a useful feature;
since i t ’s possible that the target node is actually local. If not, a failure will
be reported, but switching to the Manifold-b network ha.s the fiotential to
provide a response even in the face of cata^stropliic failures for the overlay.

78

Chapter 4

M anifold-b

4.1 In troduction

As wc have mentioned earlier, our initial work on RLD was Nom [18], a
system tha t was applied to mobile ad hoc networks exclusively. This initial
work led us to explore the generic RLD problem in more detail. As we further
identified the requirements of generic RLD, the Nom algorithm emerged as
an appropriate solution for the first half of generic RLD, and it was used as
a basis for the Manifold-b algorithm, presented in this chapter.

4.2 T he A lgorithm

Manifold-b* is a TTI^-based self-organizing algorithm. At the core of Manifold-b
is a loop that monitors messages coming both from the network and the ap
plication level code (i.e., query/ query-reply messages from the network and
query-initiate messages from the apphcation) and reacts according to the
message type received, either forwarding the message received if it doesn’t
apply to the current node, creating and forwarding an appropriate query-
reply message if the node should respond to tfie query, or creating a query

* “Manifold-broadcast”

79

message and inserting it into the network.
We will now consider the basic fimctions of the algorithm, as mentioned

at the beginning of Chapter 2.6: Join, Leave, and Search as well as Key
insertion and removal.

4.2 .1 N od e Join

The Join process in Manifold-b starts with the P2P bootstrapping rules dis
cussed in Section 2.7.1. Once a node has found one or more nodes in the
network, it will request connections to them using a special type of message,
connection-request, which will be either accepted or denied. Additionally,
once connected, a node can expand its reach (ie., expand its neighbor list)
by sending out query-bind messages into its known peers (see Section 4.2.3).

4.2 .2 N od e Leave

A node will, if possible, inform its neighbors tha t it is disengaging from
the network. This is done by sending a leave-notify message to its peers.
The leave-notify message is one-way; no replies are required or expected. If
a target node is not reachable for some reason, then no further stops are
attem pted for notification. In some scenarios, it is possible tha t the target
might not be reachable only temporarily (e.g., in a wireless network, if the
target has moved temporarily out of range). In that case, the next connection
the target attem pts with the leaving node will fail, and the rules for dealing
with node failures will be followed (see next section).

4.2 .3 K ey Search

The basic search algorithm of Manifold-b operates in a continuous loop, as
follows:

1. Receive message. If the message has already been processed (i.e., its

80

Message identifier is found in tfie internal Message identifier list^) list,

ignore it.

2. Retrieve a list of neighbors (obtained from the underlying routing pro

tocol). A lternatively, in a mobile environm ent a dircct broadcast can
be attem pted.

3. If message is a query-initiate message, build the query message and
send it to the neighbors.

4. If message is a query message, check w hether this node contains the
information requested on the query. If so, create a query-reply message
and send it to the neighbors so it can go back to its destination If the
message’s num ber of hops is past the TTL limit, ignore it. If the infor
m ation requested is not in the currcnt node, increment the num ber of
hops in the message and re-send the query message to the node’s neigh
bors. After re-sending the query message, store the Message identifier
ill the identifier list (for use of the list see step 1).

5. If the message is a query-reply message, check w hether the request
was sent by th is node (see Step 3). If the query was sent by this
node, retu rn the result to the application layer th a t m ade the resource-
location request. If the (juery w<us not sent by th is node, increm ent the

number of hops in the query-reply message and re-send it to the node’s
neighbors, storing the Message identifier in the identifier list (for use of

the list see step 1). Note: the query-reply contains the original query
information, m aking storage of queries unnecessary. Since the query
also has a tim estam p, the node is able to determ ine th a t a tim eout on

^Message identifiers must be globally unique. Universally unique identifiers can be
obtained by concatenating a variety of data including current system time, node identifier,
and other elements such as ethernet address. Some operating systems (such as Microsoft
Windows) allow creation of globally unique identifiers via API calls.

'̂ In most cases, the reply could be sent directly to the requester as an optimization.
The basic algorithm, however, makes no assumptions in that regard.

81

the query has already occurred (and only cache the query for future
use instead of passing the result to the application).

An additional type of message handled is query-bind and query-reply-
bind. They are processed just like query and query-reply messages, but they
are intended to be an aid in the Join process described above. Nodes answer
query-bind requests assuming tha t they have not passed their set maxinuun
number of neighbors in the network.

Once the algorithm is implemented for a particular platform, several op
timizations are possible, including caching of neighbors’ physical addresses
(dc{)cnding to the dynamics of the network), return of the query messages
directly to the requester using the underlying routing protocol.

4.2 .4 K ey Insert, K ey R em ove

Because Manifold is designed to expose keys locally from a node (for example,
names with which the node will be identified), key-insertion operations will
normally hajjpen locally. However, there is no limitation in the system that
mandates tha t a key can’t be inserted from a remote node, and in some cases
it will be useful to provide self-organizing key-storage mechanisms tha t will
exist as services available to the network.

Manifold-b supports a key-insert message, with parameters that identify
the key being inserted and its origin (as well as whether the key is a cache
copy or not). This type of message can be received either locally or remotely.
After a key-insert message the key in question will be available for resolution
by the Key Search fimction.

A key-remove message operates in a similar way, but deleting the key in
(juestion from the store.

82

4.3 D ealing w ith N od e Failure

Manifold-b has extremely low consistency requirements. Quite literally, all
th a t’s required is tha t a single connection into the network be valid for a
search query to proceed. Manifold-b nodes should have, although they’re
not required to by the algorithm, a minimum number of neighbors to ensure
fast query propagation (We will come back to the issue of performance and
number of neighbors in the next section). If a connection is attem pted, either
to initiate a query or propagate it, and the neighbor to whom the query
must be forwarded is not online, the node should engage in re-discovery
(i.e., perform a Join) to rebuild its list of neighbors. This ensures that
the network maintains connectivity based on activity (that is, re-discovery
recjuests are performed on the basis that new queries have to be forwarded)
without requiring potentially expensive keep-alive measures.

4.4 A nalysis

While it is clear tha t flooding-bfused schemes could present scalability prob
lems, the size of networks such as Gnutella, with millions of nodes operat
ing concurrently, makes it clear tha t they can work, even in large scale de
ployments (although their inability to guarantee results remains unchanged).
Broadcast-related issues have been studied in the past, in particular for wire
less networks in [2] [23] [26] [75].

It would be possible to use different broadcast schemes, and even use
limited-broadcast within structured overlays such as tha t described in [21].
However;

• in highly dynamic or failure-prone environments such as ad hoc net
works, the low consistency requirements of Manifold-b provide an ad
vantage in terms of reliability, overhead, and performance, particularly
when the network is in the process of forming or it only has a few

83

nodes. W ireless ad hoc networks in particu lar are by natu re broadcast

environm ents, and thus naturally suited to broadcast operations.

• finally, M anifold-b can assist M anifold-g as an out-of-band m ethod for

nodes a ttem pting to join the M anifold-g overlay.

Since we are not concerned w ith the specific physical tran spo rt used, we

will show the results of our analysis of M anifold-b, performed on a simulation.
The three m ain factors to take into account when analyzing the algorithm
are:

• The to ta l traffic it generates depending on the num ber of nodes in the
network.

• The traffic it generates w ithin a node’s range, which could potentially
lim it the bandw idth available to each node if the local (i.e., in-range)
traffic generated by the algorithm is too high.

• The speed with which an answer can be received. This query-reply
speed is directly related to the average pa th length for the network. As
m entioned in [29] the average path length (num ber of hops reciuired)
for a given transm ission between nodes is cxpected to grow with the
spatial diam eter of the network, th a t is, the square root of the area (s),
or 0 {^ / s) for a fixed transm ission range capacity per node.

O ur M anifold-b sim ulator creates a “world” consisting of several nodes,
each running the protocol, each w ith a unique physical identifier and node

name. The sim ulator is built on top of the Swarm Simulation System [24], a
software package widely used for m ulti-agent sinuilation of complex systems.

T he sim ulator allowed us to bo th obtain d a ta on the messages exchanged
between the nodes as well as visualizing in real tim e the propagation of the

messages throughout the network. Different types of messages (e.g., a (luery
request, or a query reply) could be visualized differently by changing the color

84

of the nodes tha t carried them. The system also ensured tha t even when all
nodes where running on the same machine (and therefore sharing a single
processor) their actions could be synchronized through time, to represent
a simplified network'*, were actions happen simultaneously. The nodes were
located on a virtual two-dimensional grid, and the system allowed us to place
nodes in different configurations (e.g., grid, random, etc).

Each run of the experiment created a configuration of a random network
with 100 nodes. For each run, a node chosen at random inserted a query
for a randomly ehoscn string from the list of strings that are known to be
available in the network. In each simulation cycle, every node processed the
messages that arrived in the previous cycle. As we mentioned in the previous
paragraph, this sinmltaneous processing of messages is a simplification of the
real world case, but it allowed us to find the upper bound of messages set by
maximizing the number of simultaneous messages tha t could be theoretically
be sent at any given instant.

Our measurements indicate that the main factor conditioning perfor
mance for a network miming the algorithm is not the total inunber of nodes,
but rather the average niunber of neighbors for a given node''’.

Based on the results shown in Table 4.1 and Figures 4.1 and 4.2, it is
possible to find the maximum bandwidth tha t will be allocated to resource
location by using the following function® :

'*Iii a real network actions might happen simultaneously or not. but this was not a
factor in oiu' sinuilation since we were interested in measuring traffic and propagation
patterns, rather than response-time related issues.

®In Table 4.1 and Figure 4.2 the value Peak Messages In Range represents the average
number of messages within a node’s range, and it can therefore be used to calculate the
cost, in bandwidth terms, of the service. This value is obtained by averaging the peak
number of messages per simulation cycle.

®Note that this bandwidth peak usage happens in bursts, since resource location is not
typically reejuested constantly, but rather as users perforin functions that are meant to
initiate sustained data traffic. The impact of resource-location traffic is therefore limited
when compared to typical traffic.

85

Average
Neighbors

Average
Cycles

Until Done

Average
Cycles Until

Reply Received

Total
Messages To

Resolve Query

Peak
Messages
In Range

3 22 13 715 16
6 14 9 1356 67
10 12 7 1990 145
15 9 5 3130 415
21 7 4 4191 791
26 7 4 5189 1304
33 6 3 6552 2315
52 5 3 10330 6724
55 5 3 10962 7396
69 4 3 13672 9604
79 4 2 15740 9801
95 4 2 18955 9801
99 3 2 19604 9801

Table 4.1: Simulation results

number of messages = ——
o

Where D is the total bandwidth (in bytes per second), P is the propor
tion of bandwidth to allocate to resource location (which can be configured
by an end-user application or operating system setting) and S is the average
message size. As an example, assuming resource location was to be confined
to a peak of 20% of bandwidth, for a 2Mbps system, it would mean a band
width usage limit of ~45 KBytes. This value translates into ~1800 messages
per second. Therefore according to Table 4.1 the algorithm would support
at most ~20 average number of neighbors for the system at the desired 20%
bandwidth, allowing one query per second at a constant rate. This result
is based on a query-resolution cycle of a duration of ~250 milliseconds. If
the value is smaller, more queries can be resolved per second at a constant

86

25 T "

 Avg Total C y c les Until
F in ished

 Avg C y c les Until R eply
R eceK ed

Average Neighbors

Figure 4.1: Infiueiicc of the average number of neighbors on the network-wide
cycles necessary to resolve a recjuest

rate for that bandwidth usage prop)ortion. The number-of-neighbors limit
therefore points to param eter tha t has to be controlled (for example, in the
case of a wireless ad hoc network, by reducing radio range until an appro
priate number of nodes is within range, or in the ca»se of wired networks by
sim{)ly requesting less neighbor connections) for Manifold-b to maintain its
usefulness in high-density wireless networks, and to a ruimber tha t must be
appropriately limited when used in “wired” networks.

4.5 Sum m ary

Manifold-b is an appropriate solution for RLD for problems of inexact search,
or of exact search tha t is not required to be global or time-bounded. Appli
cations for this algorithm include in particular those tha t imply the discovery
portion of RLD, or location without guarantee tha t the results will be found.
We will now discuss the Manifold-g algorithm, which solves the second part
of the problem by providing global search with guaranteed results.

87

25000

20000

15000

10000

5000

0
3 6 10 16 21 26 3 3 62 66 69 79 96 99

Average Neighbors

— Total M sgs Transferred
 P eak M sgs In Range

Figure 4.2: Irifiiience of the average number of neighbors on messages trans
ferred

88

C hapter 5

M anifold-g

5.1 R esta tin g th e P rob lem o f Search

The limitations of TTL-based algorithms, particularly with regard to guar
antees on results and lookup times, led us to look for an alternative solution.

We began by recognizing tha t TTL-based self-organizing algorithms con
sider the search algorithm a distributed version of a local search algorithm,
which is in the end based on fa«t string matching of the requested string
against a database of the strings stored by the node. The focus is usually,
therefore, on the graph traversal techniques used to move between nodes in
the graph, while the properties of the search space itself (i.e., the space de
fined by all the possible strings to be searched) is rarely if ever considered a
factor.

We then realized tha t if the connection between nodes was determined
based on the values exposed by them, rather than through other measures,
the structure of the topology would be predictable, allowing us to guarantee
tha t if a node existed then it would be placed at a certain location tha t could
be determined dynamically with rcspcct to the other nodes. Furthermore,
if the structure had the appropriate characteristics, navigating the space of
values could be fast enough to apply to large scale networks.

89

Therefore, we recast the search problem as one of predictable traversal
through a mesh of finite boolean sequences (the strings published by the
nodes in the network), understood as an /-dimensional hypercube, or /-cube.
We were thus able to derive a an algorithm with complexity 0(log N) where
N is the total number of possible boolean strings in the space. We called
this algorithm Manifold-g^.

Throughout this chapter we will show how this algorithm maps into a
self-organizing overlay network, and then show how the problem of “holes”
in the hypercube can be solved by an appropriate node-insertion algorithm,
and how tha t leads to a maxinuim complexity of O(k)gn) where n is the
actual number o f nodes in the network. In the next chapter, we will consider
additional improvements on the algorithm, such as optimizations to the basic
topology, and how Manifold-g can adapt to the topology of the underlying
physical network through the use of proxies, tha t can also be used by low-
power nodes to off-load some of their tasks.

5.2 A Short D escrip tion

The Manifold-g algorithm uses finite boolean sequences (in other words,
strings of O’s and I ’s), organizing them in an /-dimensional space (where
I is the maximum length of the binary string of particular characteristics,
which are then used to traverse the space efficiently.

One of the key elements of the algorithm is the fact tha t any node in
the network will not only search for data in the network, but also provide
data to the network itself. For example, when the network is used for name
resolution (i.e., name to IP address mapping) each node in the network will
can map the name itself. This means that if the algorithm can provide a
way to map from a particular value (node in the network) to another in a
predictable way, the search problem would be solved.

 ̂“M anifold-global”

90

For this, we consider the boolean space X (sec Appendix A) as an /-
dimensional space, with I being the maximum length of the boolean string.
We arc thus able to calculate different points th a t “connect” elements of
the linear boolean space to different dimensions by using an XOR function
recursively applied starting with the bit-string derived from the name of the
node that initiates the query. The way in which we use the function will
guarantee tha t each point will only appear once and will always be mapped
into the same values in this new function space relative to all its neighboring
values. Once we show tha t the the space can be navigated deterniinistically,
we will show how it is a m atter of applying the same function recursively
to traverse from one point to another in the original /-dimensional space,
therefore completing the query.

5.2.1 T he N eighbor Function

We’re interested in being able to define (calculate) our neighbors locally,
ie., based on a node’s local information only. Using the theory from Ap
pendix A, and in particular its definition of Hamming distance (5, we define
the neighbors Si of a node S tus the set of those nodes tha t satisfy

S{S,Si) = 1 V 0 < i < /

To calculate those neighl)ors using only local information (i.e., the value
of the string in question) we can apply the boolean XOR operator (0) as
follows:

S ® Pi 0 < i < I

With I the length of the string (ie., the dimensions of the Z-cubc), and Pi
defined as a boolean string in which

91

and

= 1 ^ *

which imphes I neighbors for any string S in space X {X defined in
Appendix A).

In terms of base ten integer values, this means the neighbors of a node are
calculated by performing an XOR operation between S”s own value against
(^ach power of 2 between 0 and / — 1.

It is im portant to note that, according to this definition, neighbors could
be (and indeed w'ill be) lower- as well higher-value strings (in integer terms)
than the value being considered. The number of neighbors of lower value
will be the mimber of powers of 2 below the number, while the number of
neighbors of lower value will be the number of powers of 2 above it.

We should also point out that:

• the neighbor function N{ X) is symmetric, tha t is to say that

N,{X) = Y ^ N,{Y) = X y { X , Y) e S

Where S is the set of all possible strings, X and Y arc node names and
Ni is the neighbor i of the node to which the function is applied.

• the neighbor function maps a set onto itself:

Ni{X) = Y ^ { X , Y) e S

Where S is the set of all possible node names.

92

Value Neighbor 1 Neighbor 2 Neighbor 2
000 001 010 100
001 000 O il 101
010 O il 000 110
O il 010 001 111
100 101 110 000
101 100 111 001
110 111 100 010
111 110 101 O il

Table 5.1: Values and Neighbors for a String Length of 3

5.2.2 Space D efined by th e N eighbor Function

As m entioned in Appendix A, we can look at the original boolean set â i the

set of vertices that define an /-dim ensional hypercube, where I is the fixed

length of the boolean strings used. Each dimension j of that hyjjercube will

contain 2-' strings (or vertices). However, we are only concerned by the actual

numl)er of neighbors, which remains at I due to the qualities of the neighbor

function described in the previous section.

As an exam ple, let us consider a fixed string length of 3. Table 5.1 shows

all the possible string values (nodes) and the corresponding 3 neighbors per

node, obtained by ai)plying the boolean neighbor algorithm described above;

Now, to visualizx; the /-cube as a 3-dimensional euclidean space, we define

a point in euclidean space P — (x , y , z) for a string S as given by x = 5(o),

y = 5(1) and 2 = 5(2). If we also specify that when any two strings are

neighbors (that is, 5 and T satisfy 5 (5 , T) = 1) they are connected by an

edge, we obtain the graph shown in Figure 5.1.

Viewing the space in this form helps to intuitively understand how the

neighbors arc connected by a distance of 1 in the virtual topology, and later

it will also facilitate visualization of the searcli process, particularly for string

lengths n = 2 and n — 3.

In the discussion that follows, we will refer to a complete hypercube when

93

. .000 . 1(

Figure 5.1; A Lcngtli-3 String Space M apped into an Euclidean Space with
the Neighbor Function

discuHsing an /-cube w ith all its vertices. If one or more of the vertices are
not present, as would be the case if the node responsible for th a t string was
not present, we will refer to it as an incomplete hypercube.

5.3 Search in a C om plete H ypercube

As a first step, we will define a local function to traverse a complete, or fully
connected, hypercube. T he assum ption of a complete hypercube is, however,
unrealistic, a t any tim e the num ber of strings inserted in the network will
be less than the m axim um possible given a string length I (since not all the

possible com binations of names will be present). We will define a search
function th a t takes into account incom plete hypercubes in Section 5.5.

The complete-search function uses the topology of the hypercube to tra
verse the graph one string at a tim e through local operations (tha t arc.

94

globally, viewed as a single function applied recursively).
On each string (a node might be responding for one or more strings), the

search function reduces the Hamming distance S between the current string.
S c and the target T by 1, until the target is reached. We will consider the

from it to a target string T. In the first step. S c = So-
We therefore define a local minimal path function^ a as follows:

Where each A j is the string returned at cach step for the recursive func-

With Pi cis defined above in the neighbor function. To avoid backtracking
on a i)ath, we add the condition

which guarantees tha t the distance will be reduced at every step, even
tually reaching the target. Note tha t for the final step A { S , T , i) = T. This
function returns, with each iteration, a set o f strings that will allow us to
'‘move” one step closer to the target, halving the distance to it from the cur
rent position in the hypercube. Any of the strings can be chosen as the Sc
to be used in the next iteration. While it is quite clear tha t on a complete
hypercube the full search is completely predictable, as we will sec shortly
when defining traversal it is im portant to define a local function â i a l)asis.

In other words, the local minimal path fimction a returns

^oii the fully connected hypercube

search as originating from a particular origin string Sq and try to find a path

c r (6 o ,T) = { A i , A 2 , . . . , A j } w ith j = 6 { S o , T)

tion A:

V S { T , A { S , T , t)) = S { S c , T) ~ l

95

a{So ,T) = { S c i , S c 2 , - - - , S c j } with j = 6{Sq,T)

The set of Sc strings found between S q and T is the path P between the
origin and the target, and the number of strings in tha t subset is the path
length, or Pi.

There arc some im portant elements of the algorithm tha t should be noted:

• As we mentioned earlier, the algorithm is purely local. Only infor
mation regarding the current position (and the previous position) is
needed to proceed to the next step in the process.

• Because of this, the algorithm can be implemented either as a recursive
process (where each node is responsible for forwarding the query to the
next node) or a« an iterative process (where the origin node queries
each node in succession for the next node to be contacted according
to the algorithm). The theoretical definition is recursive, however, and
implementing the algorithm as an iterative process is related to how
the load is to be distributed on the network. We will consider the
differences in implementation later in this work.

• Since the path moves along the edges of the hypercube bridging dif
ferences of 1 between bit strings, it is obvious tha t the maximum path
length for cr is [/] = [log TV] where N is the munber of nodes in the
hypercube, as

N = 2̂

And so a has a complexity of 0(log A)̂.

• If we consider the binary strings as base ten integers, the algorithm can
be viewed a.s moving between one node and the target by the power of 2
tha t will take the search closer to its target. This is possible because the

96

spacc is already organized with connections between nodes according
to powers of 2.

5.4 A n E xam ple

As an example, let us consider a search from an origin So = 0,0,1 for a
target T = 1,1,1- The first call to the search function is the set returned by
calls to A{Sc, T, i) with 0 < i < 3 since I = 3 and Sc = So — 001'. That is:

A (5 c ,r ,0) = SV
A (5 c ,r , l) = 5 c © P i = '011 '
A (5 c , T ,2) = 5 c © F 2 = 101'

Therefore both 'O il' and '101' takes us closer to the target. We choose
'on', set it aii the new Sc-, and repeat the process. At the next step, we
directly obtain T a« the result of the iteration, and the search process is
complet('d.

From the point of view of the euclidean representation we described ear
lier, the algorithm is simply moving across edges in the direction of the target
string. This example can thus be viewed graphically as shown in Figure 5.2.

5.5 O perations in an Incom plete H ypercube

A central assumption in the algorithm presented in the previous section is
that the network will be a fully connected /-cube, i.e., that every string in
the space will be available for searching and, more importantly, for providing
paths to other strings. This is clearly unrealistic for most cases: wliile some
types of self-organizing networks (such as sensor networks) could be designed
to “fill” a search space completely, most cases (e.g., name resolution on the
Internet) will not. So a central problem is how to provide full connectiv
ity without affecting the algorithm’s behavior and its search complexity of

97

J) 10 A 10

O i l ,

Looo 00

001 ' 101

Figure 5.2: A Sample Search for Length-3 Strings Viewed in an Euclidean
Spat^e

0{log,N).
A solution would be to organize the space a« it grows according to certain

rules that guarantee full connectivity. This hâ i to be guaranteed at the
point when a node joins the network, which results in a relatively exjiensive
operation compared to the cost of a search (as will be for the neighbors of a
node leaving the network, which would have to rearrange their connections
to adapt to the new space topology). However, the value of this operation

will far outweigh its cost if it is kept within certain bounds.
We will use the search capabilities of the network to maintain its full con

nectivity as new nodes join or leave. The join/leave operations will then be
dependent on the speed of the search, which we already know to be extremely
fast even for large networks.

It is important to note that while what follows in this chapter is an

98

accuratc mathematical formalization of the process, it is not an exact rep
resentation of the actual implementation of the algorithm. Later on we will
flescribe such an implementation to create a self-organizing name resolution
system.

5.6 T he Shadow M apping: D efin ition

Given X a boolean algebra as defined in Appendix A (a set of boolean values
D plus its operations), we will dehne X ' to be another boolean algebra formed
by combining a set B ', such tha t B ' B with the same operations. We
also define B ” to be a subset (or partially ordered set^) of B', such that
Sx < Sy V X < y and where x and y define the position of the string in
the poset. In other words, B ' is the algebra tha t represents a network a«
it exists, while B" is a i)artially ordered set of B ' used within the shadow
mai)ping definition.

Boolean strings in B' can be of two kinds:

• Actual strings, denoted as before as S, T, Sn, etc., or

• W hat we will call shadow strings, noted as S', T ', 5',, etc. A shadow
string is a string tha t docs not exist in B’ but exists in B, th a t is S' is
a shadow string iff S ' G B and S' ^ B '.

Based on the concept of shadow strings, we will define a shadow string
mapping S S M such that

S S M (S ') = F{S ' , B" , 1)

Where S' is a shadow string and S G B'. The shadow string mapping F
is defined as a recursive function, as follows;

partial order is an order defined for some, but not necessarily all, items. For instance,
the sets M = {000,001} and N = {000,010,011} are subsets of P = {000,001,010,011}
but neither M or is a subset of the other, so “subset of” is a partial order on sets.

99

F{S', B", m) = Sm if S' < Sm and 0 < m < I

where I is the number of elements in B ”, the poset of B \ and Sm i« the
element at position m in B ".

F {S \ B", m) = F {S \ B ”, m + 1) if 5 ' > Sm and 0 < rn < I

and finally

SSM {S', B ”,m) = Srn-i if S' > S„^-l and m > I

Which covers the ceiling value of the set. In this la«t case, of course, it
will still hold that S' < s^ip{B).

The shadow mapping, then, specifics which node in the network (under
stood a.s the string value it represents) is responsible for “covering” wdiich
shadow strings. To visualize the shadow mapping more easily, i t ’s useful to
think just in terms of values, that is, A string S is responsible for a given
shadow string S' if:

• S > S' > Sn where Sn is any of the nodes connected to 5, either as
neighbors or shadow neighbors.

• S' > S > Sn, which covers the remaining case, i.e., when a shadow
string is of higher value than any of the strings present.

In practical terms, the inherent load-balancing effected by the shadow-
mapping means that the overhead (in terms of state maintained) created by
shadow strings on the nodes that are covering for them is not significant.

100

5.7 The Space-C om plete Join Function

The next step is to consider how to com plete the hypercube, even if values
are missing, to m aintain the properties of the search, by combining the ba
sic properties of the hypcrcube w ith the shadow m apping definition defined

above in Section 5.6. We will therefore define the Join function for our space

D' C B. Before th a t, however, we should make a note of how new strings
are added into B ' .

W hile a t its m ost basic th is process relies on basic hypercube search, it can
be modified to take advantage of the inform ation available in an incomplete
hypercube, as explained in Section 5.9 below.

Because there is no central or hierarchical organization to the set, we need
a ‘s tarting po in t’. In actual peer-to-peer networks, finding this initial node
to connect to the network is done using bootstrapping techniques as those
discussed in Section 2.7.1. From the algorithm ic point of view, however, we
can only assume th a t such a node exists, and we will refer to it as Sn, a
reference node th a t is already connected. We will use tliis node to determ ine
whether the new string to be inserted 5/v exists in B':

U{B\ Sn) = B'V ̂Sn a{Sn, Sn) = 5^

W ith S'l̂ following the definition of shadow string given in A ppendix A.

Given th a t strings are unique, a string can only be added once to B', so a
string is added to the set if and only if a search for itself has returned a

shadow string, th a t is, an em pty space not yet filled. Since the space B" is
dependent on B' , it will grow as B ' grows.

Now, the basic search algorithm in th is new case rem ains unchanged. We

should keep in mind th a t the result of the search function a { S o ,T) will be a

set of strings of the form P = {5’c i , S c 2 , ■ ■ ■, S c j } , defining a pa th between
So and T. However, th is result applies only to B, and not necessarily to B',
since some of the strings of P m ight be shadow strings, and not valid strings.

101

To map the shadow strings to an actual string (and thus be able to provide
a path through strings tha t actually exist), we must use the shadow string
mapping function, selectively on the shadow strings, by applying

SSM{R^) y 0 < i < I ^ R ^ i B '

where Ri is the string at position i in the solution path R. Applying the
shadow string mapping function in this way will give us a modified result
path, R ' , with only valid values (i.e., values such that S G D') and therefore
a valid path for the subset B ' .

When a new string is inserted into the network, the following algorithm
is applied;

• Consider, as before, tha t S r is the rcfcrence node (already in the net
work) and 5/v is the node tha t is joining the network.

• Calculate the list of neighbors < z < / for S n - Now for each of
S^., a-(5fi, S'atJ = Si, we obtain a set of neighbors tha t are either a)
the actual string and the node res])onsible for it or b) a shadow string.

• If the “real string” (i.e., the node responsible for tha t string) replies,
then assign Si as its neighbor. In the process, the node/string tha t was
“covering” for S n must be notihed tha t S n has arrived. Those that
were using it as shadow neighbor must also be notified.

• If a node covering for tha t string (as shadow string) replies, check if we
need to take over for tha t shadow string, and if so, do it. Otherwise,
we’ll register 5* as shadow neighbor and update the covering node.

The Node Leave inverts the process to maintain connectivity in the hy
percube.

Given this, the Join operation has a ceiling is [Hog Â] steps, with a re
sulting complexity for the node operation of 0 { l \ogN) . We will now show

102

the impact of shadow nodes in the search process, and how it then effectively
reduces the complexity of the search and join to O(logn) and 0 (/lo g n) re
spectively, with n being the actual number of strings inserted in the network,
rather than the maximum possible (i.e., 2^).

5.8 Building a network: A step-by-step ex
ample

This scction is a step-by-step example tha t shows how network topology
evolves fis new nodes enter it, and how the nodes retain full connectivity as
the space is completed. For this purpose, we’ll use a 3-bit namespace, and
assume tha t all eight possible nodes will join the network (i.e., self-insert).
The following is a siunmary of the join process used by nodes as they come
online and connect to the network;

• a node with string value S calculates its neighbors Sq, S i , , 5„j — 1
(with rn string length).

• the node locates one node already in the network through out-of-band
methods.

• the node searches for each of its neighbors, obtaining either the node
itself or a shadow (along with the node tha t is currently responsible for
tha t shadow).

• the node joins the network, notifying its neighbors, and in the process
“taking over” the shadow nodes tha t it is responsible for, according to
the shadow mapping.

This example will show, for each new node added to the network, the
results of the searches for its neighbors and the network diagram th a t exists
after the node has completed the join process, as well, as which nodes have

103

to be reassigned according to the shadow mapping. Figure 5.3 is a guide for
the network diagrams in this example.

j shadow node
% real node

 virtual connecdon
 actual connection
0 1 0 node ’010’ physically present

on the network
0 1 0 { 0 1 1 } shadow node’010’ covered

by node ’Oi l ’ (physically present)

Figure 5.3: Incomplete Hypercube Example: Diagram Guide

The initial network is empty. The diagram in Figure 5.4 represents the
positions of tlie nodes as they exist in the theoretical space.

010
OfO 110

j, 000
C ' l O O

0 0 1:..*- 101

Figure 5.4: Incomplete Hypercube Example: Initial Network

The nodes will be inserted in the foHowing arbitrary order: 100, 111, Oil,
010, 000, 001, 101.

Each node that joins must first find an entry point, i.e., a node that
already belongs to the overlay. Once this is done, the incoming node uses
that entry point to locate its neighbors. It then proceeds to notify them and
take over shadow nodes as appropriate.

104

The first node added has a value of ‘100’. Through out-of-band methods,
the node determines tha t there arc no other nodes in the network and sets
itself in control of the entire string spacc, creating shadow nodes (mapped to
itself) for its own neighbors.

r j i l lO { 100 }

000 (100 } :
 ; # 1 0 0

C ' 101 { 100}

Figure 5.5: Incomplete liypercube Example: First Node

The resulting network is shown in Figure 5.5.
When ‘111’ is added, it looks for its own neighbors, Oil, 110, and 101. It

obtains:

• Oil —> 100 (shadow node, coverixl by 100)

• 101 ^ 100 (shadow node)

• 110 100 (shadow node)

Through the shadow string function, node 111 determines tha t it should
take over coverage for 110 and 101, resulting in the new network topology.

The resulting network after node 111 is added is shown in Figure 5.6.
‘O il’ looks for its neighbors, 010, 111 and 001. It obtains:

• 010 —> 100 (shadow node)

• 001 ^ 100 (shadow node)

• 1 1 1 —>111 (real node)

105

X ; - i i o {111}

100

Figure 5.6; Incomplete Hypercnbe Example; Second Node

0 1 1

100

0 0 1 {0 1 1 }

Figure 5.7; Incomplete Hypcrcube Example; Third Node

Oil determines tha t it must take over coverage of 010, 001, and 000 from
100. This results in a ’physical’ connection between Oil and 100, which in
a complete network would not exist, to connect 100 to its shadow neighbor
000, and the neighbor of a shadow 100 is covering for, 110.

The resulting network after node Oil is added is shown in Figure 5.7.
‘110’ looks for its neighbors. 111, 100 and 010. It obtains;

• 010 ^ Oil (shadow node)

• 100 ^ 100 (real node)

• 1 11—>111 (real node)

106

010 {0 1 1 }

011

100
'000 { 0 1 1 }:

Figure 5.8: Incomplete llypercube Example: Fourth Node

110 nmst take over its place, rejjlacing the shadow previously being cov
ered by 111, and it also takes over coverage of the shadow of 101 from 111,
removing the physical connection between 111 and 100 for tha t shadow node.

The resulting network after node 110 is added is shown in Figure 5.8.
‘010’ looks for its neighbors, 000, Oil and 110. It obtains:

• 000 ^ 011 (shadow node)

• Oil —> Oil (real node)

• 110 110 (real node)

010

100

0 0 1 {0 1 0 }

Figure 5.9: Incomplete llypercube Example: Fifth Node

107

010 takes over coverage of shadows 001 and 000 from Oil. Also, because it
replaces the 010 shadow covered by Oil, it replaces the physical connection
from Oil to 110 with one to itself, also using tha t connection for the 000
shadow it has taken over.

The resulting network after node 010 is added is shown in Figure 5.9.
‘000’ looks for its neighbors, 010, 001 and 100. It obtains:

• 001 —> 010 (shadow node)

• 010 —> 010 (real node)

• 100 ^ 100 (real node)

010

1 0 0
'000

0 0 1 (0 1 0 }

Figure 5.10: Incomplete Hypercube Example: Sixth Node

000 inserts itself without taking over coverage of any shadow nodes. It
docs, however, remove the connection tha t 010 had with 100 which existed
to connect 100 to the 000 shadow covered by 010.

The resulting network after node 000 is added is shown in Figure 5.10.
Then 001 conies online, looking for its neighbors, 000, O il, 101. It obtains:

• 000 ^ 000 (real node)

• 101 110 (shadow node)

108

010
110

1 0 0
t)00

001 101 { 1 1 0 }

Figure 5.11: Incomplete Hypercube Example: Seventh Node

• Oil Oil (real node)

001 inserts itself without taking over coverage of any shadow nodes. It
does, however, create a connection to 110, since 110 is covering for shadow
node 101.

The resulting network after node 001 is added is shown in Figure 5.11.
Neighbors, 001, 100, 111. It obtains:

• ()()() ^ 000 (real node)

• 100 100 (real node)

• 111 111 (real node)

101 inserts itself, removing the connection tha t existed from 001 to 110
(because 110 was covering for its shadow), and completed the network.

The final resulting network (the complete hypercube) is shown in Fig
ure 5.12.

5.9 Search in an Incom plete H ypercube

Performing a search in an incomplete hypercube where the missing strings are
“covercid” can be modified to take advantage of the fact tha t certain nodes

109

010

011

100
t)00

001 101

Figure 5.12: Incom plete Hypercube Example: Eightli Node

actually hold more inform ation th an nodes in the fully connected hypercube.
F irst, S o is the origin s tring /node (the one th a t s ta rts the query). As before,

Sc is the current value and we add Sec, af’ the i values currently covered by
S c as shadow strings. T is the target value. The function a can be modified
as follows:

At the s ta rt. S c = Sq . We calculate S{Sc, T) = 5ct as well as S {S cC i,T) =

SccT,, for each of the i values currently covered as shadow strings.

Now, if ScT = 0 or any of 5ccTi = 0, we have reached the target.
If ScT = 1 or any of 6ccTi = 1 then we are one step away from the target,

and the result will be found in the next iteration.

If ScT > 1 and SccTi > 1; then choose all neighbors S N i of S c th a t
satisfy

6{ SN, , T) < 5ct

and all shadow neighbors S N ccT i neighbors for shadow nodes SccT t th a t
satisfy

5{SNccTi,T) < SccTi

from both sets, choosc the node for which the distance between it and

110

the target is the smallest. That node is the new Sc', assign it, and repeat the
process.

5.10 Perform ance in an Incom plete H yper
cube

Searching in an incomplete hypercube actually has the advantage that the
inimber of steps required to reach the target is reduced.

As we have mentioned, the maximum number of steps to get from any
vertex of the /-cube to any other is /.

j = log 2-' = log N

Again, N is the number of vertices in the hypercube.
Now, consider a network with n actual nodes, such that n < N. We

must k('ep in mind that when there are less nodes than the maximum, some
nodes will be “covered” by others, as shadow nodes. Essentially when a
node is covering another it’s acting as two nodes, itself and the shadow—
note that potentially it could be more, but one is the minimum, and in any
case it would average out since a node covered there would not be covered
elsewhere. Because it’s acting as two nodes, then the niunber of cormections
out of the node is twice the “normal”, so the distance to the target can be
divided by four, rather than halved, in a single step. This results in that
step being skipped (or rather, in the possibility of taking a step that takes
us much closer to the target than normal).

It is clear that, for any path, there will be a maximum of

(log T V) - (logn)

steps that will not be real nodes, but shadow nodes. That is, these are

111

steps tha t will be in practice skipped sincc another node is covering for them
(potentially more than one step could be skipped, but to get the upper bound
we use only one skip per shadow - th e minimum).

So, if log is the maximum number of steps and (log Â) — (logn) is the
maximum nimibcr of steps that will be skipped, then the actual number of
steps can be obtained by subtracting both maximums:

(logiV) - {{\ogN) - (logn)) = (logn)

And so the upper bound is actually [logn] which gives us search path
lengths of complexity O(logn) for n actual nodes in the network, and join
complexity of O (nogn).

5.11 A nalysis

To analyze the behavior of the Manifold-g algorithm we implemented a sys
tem tha t considered nodes as objects with pointers to each other (to simulate
network comieetions). We used string lengths of 14, giving us a maxinnuii
of 2̂ *̂ = 16384 nodes. Our simulation ran in steps, incrementing the size
of the network (with ten new nodes joining at every step), with a starting
node chosen at random from the list of nodes already in the network. After
each join step, we performed 100 queries between randomly chosen origin and
target strings (with a probability of 1/2 of the target string being a shadow
string in the network, to verify behavior of searches on strings tha t have not
been inserted). The results of the simulation can be seen in Figure 5.13.

As the results show, the maximum path length remained below or at its
expected theoretical limit of logn throughout, as new nodes entered the net
work, with the average number of steps for a search remaining substantially
lower, since random searches might at times bo requested on strings tha t are
“close” in the 14-cubc topology.

112

16

14

12 Average Rath
Length Traversed

 Maximum Path
Length Traversed

(log n) for current
number of nodes

2
0

Number of ncKles

Figure 5.13: Average and M axinmm P a th Lengths compared to their theo
retical m axinnnn on a Manifold-g network of increasing num bers of n nodes

As a final note, while a t its peak the join operation requires a maximum
to tal of (in this ca«e) 196 messages, we should note th a t this actually rep
resents I = 14 paths th a t are being traversed in parallel when the node is

gathering the inform ation to join the network, with each parallel track be
ing 14 messages. If each step takes, for example, 100 msec, the to ta l tim e
required for a join oj)eration in this network would be 1.4 seconds a t its m axi
mum, when the network is alm ost complete. This tim e deerea.ses accordingly
with the observed m axim um num ber of messages required (seen in the graph)
when the network is incomplete.

Although in our examples we focused on functions th a t assum e a one-
to-one m apping between nodes and their content (the node’s nam e), the
functions, and their respective results, apply equally well when aggregation

of several key/value pairs occurs in a single node (thus trivially supporting

the m apping of m ultiple names to a single node).

113

5.12 Sum m ary

The properties of the Manifold-g algorithm make it well-suited for large pop
ulations of nodes, while guaranteeing data location and setting an upper limit
on the time necessary to complete an operation. Together with Manifokl-b,
the two algorithms satisfy the requirements outlined earlier in this work for
generic, network-independent RLD.

114

Chapter 6

M anifold-g: E xtensions and
Im provem ents

6.1 In troduction

The initial Manifold-g overlay design wa.s ba«ed on a view of the overlay as a
hypercube obtained using the binary values of the strings in question. With
each node connected to / neighbors (with I the number of bits of the string)
we create a hyj^ercube of I dimensions. This allowed us to create a search
function with an upper bound of O(logn) on the number of steps i)cr search,
requiring 0(log/) initial connections.

Given the conditions under which a mapping function creates a valid
overlay network, it is possible optimize its structure according to different
parameters. As long as the modifications chosen maintain structural sym
metry, it will remain a valid overlay mapping function for Manifold-g.

We will now consider several optional optimizations that could be made
to the basic Manifold-g algorithm, improving different operating parameters.

115

6.2 H ashing

We should note that, unlike other overlays, Manifold-g does not depend on
hashing to function, only on a name-to-binary mapping. The simplest way to
do this mapping is to directly take the binary value of a name string. Since
each alphanumeric character has a unique ASCII code, this would result in
unique strings. However, the algorithm can define its own mapping because
using the ASCII mapping would be wasteful. In general a large number of
character combinations will produce names tha t are difficult to remember
and will therefore not be used at all.

Since the binary strings can be derived in any form as long as they main
tain relative imiqueness in the space, an immediate optimization is the use
hashing on the names, to reduce string size (reduce the space dimensionality)
and to balance string distribution. If the hash fmiction is properly defined,
collisions in the resulting string space should happen with low probabihty.

6.3 Search In a M eta-H yp ercu be

6.3.1 Increased N um ber o f C onnections

One way to improve the basic algorithm is to increase the number of con
nections, forming what is known as a variant hypercube [83]. Doubling the
number of connections would mean half the number of stops arc required to
reach one node from any other. This improvement, however, has a limit.
For example, in an 8-bit space a search would take 8 steps. Increasing the
number of connections to 16 would halve the maximum munber of steps, to
4. Increasing the connections to 32 halves the steps again to 2, and then
further increases only mean tha t there is less probability tha t the maximum
of 2 steps will be reached. After 32 connections, the only way to achieve a
one-step search always is to create 256 connections.

Por 64-bit strings this is still not useful: already 64 connections are nec-

116

CHsary. Another alternative has to be considered: partitioning.

6.3 .2 P artition in g

Partitioning divides the hypercube into a set of multiple hypercubes, which
arc connected through a single node each. Every sub-hypercube is thus
connected to every other hypercube; searches then involve a search in the
local hypercube (for a jump point into the ta rge t’s sub-hypercube) and then
another search in the ta rge t’s sub-hypercubc for the target node. This sepa
ration allows us to partially “linearize” the number of connections, freeing up
a number of connections per node to be used in the more standard faahion of
increasing the number of connections in each sub-hypercube to increase the
local speed. We can thus cut by half the upper bound of both the number
of connections rc(}uired, and the maximum number of steps per search. An
additional sidc'-effect of partitioning is tha t failures become less problematic,
since they affect a lower number of nodes.

For this, we will use the fact tha t any string is actually a combination of
a luunber of others. So for examj)le, the set of all possible 8-bit strings is the
combination of the set of 4-bit strings with itself. Table 6.1 illustrates this
partitioning.

If for a string of I bits we get a set with 2̂ values, then partitioning the
string by half creates 2 /̂ ̂ subsets of 2̂ ^̂ values.

Now, given tha t each subset has the same number of valuers as there arc
subsets, we can use a formula to connect a single value uniquely to another
subset. Essentially, we would be subdividing the hypercube into a set of
smaller hypercubes, with every hypercube connected to each other by a single
connection, as shown in Figure 6.1 (with the connections between hypercubcs
in blue).

In the figure, we have only used three connections per hypcrcube, dividing
a 5-bit space into 4 3-bit spaces. The most efficient use of partitioning in
this case would be dividing a 6-bit space in the same way, thus creating 8

117

0000
0000
0000
0000

0000
0001
0010
0011

0000 n i l
0001 0000

0001 n i l
1111 0000

n i l n i l

Table 6.1: Decomposition of an 8-bit String Set into Com binations of 4-bit
Sets

smaller degree-3 cubes where each node c:onnects to three other nodes in its
own degree-3 cube and to a single node in another culx'.

Once we have this partitioning, searching for any value in the ftill space
requires the following steps;

• Find the node in the “source” subspace th a t connects to the “ta rg e t”
subspace (which can be calculated by partitioning the name of the

target string).

• use th a t node to connect to the target subspace.

• once in the target subspace, perform another search internally for the

actual target node.

Using th is search algorithm , the num ber of connections required per node
becomes 1/2 + I instead of I. However, the maximum m unber of steps in the
search becomcs 2 (//2) -1-1. If wc partitioned a 64-bit string we would need

118

Figure 6.1: A Grapliical Representation of Partitioning

33 eoiniections, but search could take a niaxinnun of 65 stc{)s on a complete
hypercube (i.e., with 2*’4 nodes).

Figure 6.2 shows the path a particular search would take. In the figure,
node S is looking for the target T (The search path is marked in red).

R ecursive P artition ing

Partitioning can be done recursively. Adding another level of recursion means
that every node would connect to:

• All nccessary nodes in its subspace

• One node for the level-1 aggregation

119

Figure 6.2: A Search P a th in a Partitioned Space

• One node for the level-2 aggregation.

Figure 6.3 shows the connections of the first node (w ithout showing all

connections into its 4-bit). We can see how th a t node coiniects completely to
its own subspace, and then to the next level-2 subspace, and so on. Therefore
if any node in the first 4-bit subspace wanted to connect to a node starting

with ’000000000001’ it would look for node ’0000000000000000’ which would
then route the query appropriately to the subspace.

In the example shown, partitioning the 16-bit string twice (creating a set
of 2*̂ 8-bit subspaces, each of which is divided into a set of 2'^ 4-bit, we’d need
6 connections: 4 -|- 1 -|- 1. Any search would then have the following steps:

• Find node w ithin the 4-bit space (max 4 steps) th a t cormects to the

120

8-bit (level 2) subspace

4-bit (level 1) subspace

00000000 0000 ^0000^
00000000 0000 \^0001
00000000 0000 ^0010
00000000 0000 0011
00000000 0000 0100

00000000 0001 0000 '

00000000 0001 0010

00000001 0000 0000 '

00000001 0000 0010

11111111 1111 1111

Figure 6.3: Applying Partitioning Recursively

node in the local 8-bit space tha t will allow us to connect to the target
8-bit space.

• Jump to the new 4-bit subspace, still within our local 16-bit space, and
perform another search. (4-1-1 max steps).

• W ithin the target 8-bit space, perform the same two-step process.

121

This gives a total maximum of steps o f4 + l + 4 + l + 4 + l + 4 = 19.
While this is more than the number of steps required for a purely logarithmic
approach (16) only 6 connections arc required per node, compared to 16 for
the logarithmic approach.

Subspace Jum p Function

The subspace jum p function (that maps a single value from one subspace to
another subspace) is the key of the partitioning algorithm. Like the standard
function, it must be symmetric, so tha t based on a number we can calculate
the target value, and its inverse must exist, so tha t nodes can use it to derive
the jump-node based on the target subspace desired. This requires a new
neighbor function. The following is a function tha t fulfills these requirements:

N{ M) = mod{M, 2‘) * 2 ‘ + ((v - rnod{v, 2 '))/2 ')

Where M is the decimal value of the node whose neighbor we are looking
for, I is the string length for the subsj^ace (the length of the complete string
divided by 2) and mod{x,y) is the remainder of x/y.

Given the function defined above, which maintains symmetry, the same
algorithms used for the standard hypercube can be used for the partitioned
hypercubc.

6.3 .3 P artition in g W ith M ultip le C onnections

In addition to simple partitioning, we can further reduce the number of steps
we need to find a value within each partition by “targeting” the jum p into the
next partition more accurately. Using 4 connections between each partition
(if the connections are properly placed) ensures tha t any node, at any position
within those partitions, will have to do no more than 1/2 steps necessary to
reach the appropriate node.

122

6.3 .4 C om bining th e Techniques

Now if wc combinc multiplc-coniicctioii partitioning with increased number
of connections in each partition, we can reduce the number of steps. For
example, if wc divide a 64-bit string by 2 we’d need 65 connections but now
a search would take 16 + 1 + 16, or 33 steps. W ith this approach, while the
luunber of active connections has remained basically unchanged, we have cut
the maximum ruimber of steps for any search by half.

We can thus combine recursive partitioning with increased rmrnber of
connections to substantially improve on the upper bounds of the logarithmic
approach. In particular, we divide the 64-bit space (resulting from hashing
name strings into 64-bit strings) twice, giving us a base subspace of 16 bits.

We create 32 comiections in the level-1 subspace of 16 bits, giving us a
maximum of 8 steps. Then we use 2 sets of 4 connections (one set for cach
of the higher-dimensional subspaces) giving us a total of 40. A search would
then take, at most 4-)-l-|-4-|-l-|-4-|-l-|-4 = 19 steps. W ith this approach, we
have achieved less than 2/3 the mimbcr of connections and almost 1/4 the
upper bound of the number of steps compared to the logarithmic aj^proach
discussed in the basic algorithm.

6.4 A dap ting th e O verlay N etw ork to th e P h ys
ical T opology

The Manifold-g algorithm defined so far is efficient, but it doesn’t take into
account actual network topology, since in the overlay network a node’s neigh
bors could potentially be located on the opposite end of the physical network.
In fast networks this wouldn’t be a problem, but when slow connections are
involved (such as low-speed modem connections, or, as in the example pre
sented in the next chapter with wireless connections, where the number of
collisions will increase if traffic is constantly crossing the entire network) this

123

issue can’t be ignored, since it can result in search times nuich slower than
those implied by the number of steps. P’or example, in a network with 64
nodes, the algorithm defines at most 6 steps for the search (2® = 64). But
if by chance each node’s neighbors are located in distant points of the phys
ical network (for example, requiring 500 msec to get from one point to the
other) then a query could potentially take 3000 msec to resolve, which is not
acceptable from the user’s point of view in such a small network.

An algorithm tha t ignores network topology is also forgoing the potential
speed improvement tha t highly cormected nodes can bring. As it has been
pointed out in [30], real-world networks tend to create so-called power-law
topologies, where a few nodes cormect to many more nodes than the aver
age number of comiections per node, and most nodes have less connections
than the average. If we could achieve a closer mapping to the physical net
work topology, we would not only improve the response time by reducing
the physical distance between a node and its neighbors, but we would also
be exploiting more efficiently the power-law qualities of the physical net
work topology. Similar work has been done for other overlay topologies, for
example [9] [34] [67].

6.4.1 A n A bstraction o f P hysica l D istance

The first step towards adapting the overlay network topology to the physical
topology is to be able to quantify the physical “distance” between nodes.
This has to be done in terms relative to the network at hand, since different
networks will have different parameters to define the distance between nodes.
The distance function will then have to be implemented in particular for each
network type, according to certain constraints.

6.4 .2 T he D istan ce Function

We define the physical distance function 7 as

124

7 (yV,M) = V

Where N and M are two physical nodes on the network tha t are connected
to the overlay network, and V is the resulting distance value. This distance
function must also satisfy:

• The distance K of a node to itself must be zero:

j (N , M) = 0 ^ N =^M

• The distance between two different nodes must be positive and non
zero:

7 (iV, M) > 0 ^ N ^ M

• If a node N is connected to anotlier node M through a unique path
tha t includes node J , then their relative distances must satisfy:

7(yV,M) = 7(A^,^) + 7 (^ ,M)

with both 7 (Â , J) > 0 and 7 (J, M) > 0. The constraint of this previous
('quation nuist satisfy an equality relationship (=) rather than one less-
constrained of lower-or-equal (<) because the distances arc part of a
discrete domain, i.e., arbitrarily-defined distances between nodes.

Sam ple D istance FYinctions

The distance function 7 is by nature network dependent, and it can be im
plemented in different ways, as long as it satisfies the conditions specified in
the previous section. Some examples arc:

125

• for IP networks the distance could define whether the nodes are in
different class A, B, C or D networks, a value that is immediately
available between two nodes.

• for ad hoc wireless mobile networks, the distance could be the number
of hops. Example: if to get to node X node A requires 3 hops then
the distance is 3. So any physical neighbor of the node would be at
distance 1.

• in general, distance can be calculated not physically (number of hops)
or “geographically” (IP network value differences) but by testing the
cormection speed between the two nodes in question. This value is
more representative, since two nodes might be distant but cormected
through high speed lines, which might make it more effective to use
tha t node as a neighbor rather than a node tha t is closer physically
but coimected through a much slower channel.

For mobile networks, and wireless networks in particular, the definition
of the distance function becomes important. The definition for distance as
number of hops is more appropriate for mobile networks because as the nodes’
positions change relative to each other, so will the distance, since the hops
required will also change. The first distance function, defined for a fixed II’
network, would not be useful in this case since the distance would remain
fixed even if the nodes changed relative j)ositions, and therefore routing paths.

6.4 .3 T he D istan ce-B ased A lgorithm

With the distance function defined, it is possible to improve the connection
algorithm described earlier. We should keep in mind tha t this improvement
is more related to implementation (and real-world constraints) rather than
theoretical need, and in fact it is completely separate from the original algo
rithm, which can choose whether or not to implement it. The distance-based

126

algorithm can be applied to both M anifold-b and Manifold-g, although we

will focus our discussion on its use for M anifold-g as it is the overlay th a t
will benefit the m ost from the advantages it provides.

We are looking for certain qualities in im proving the original algorithm ,
namely:

• We want to m aintain locality: the distance-based algorithm should not
rely on global inform ation, or on server-based approaches.

• Since the distanctvbased algorithm is not intrinsically tied to the basic
search algorithm , the search algorithm should not nc(!d any modifica
tion to support th is improvement.

A pplying th e D istance EYinction

We define the following rule to adap t the overlay topology to the underlying
physical network;

1. W hen a node M contacts a neighbor N in the process of a search
(which inclndc searches related to jo in operations), it will request the
n(^ighbor’s N distance to its own neighbors, as well as their neighbor’s
addresses N \, N 2 , .. ■, Ni. W ith th is inform ation, it can calculate the
distances to those nodes. If the distance to one of those nodes is such
th a t

7(iV ,M) <7(yV,7V,) + 7(M ,iV ,)

(where Ni is neighbor i of node N) node M will define Ni as a node
proxy for its connection with N . Ni will then cache A'̂ ’s information,

and M will contact TVj whenever a search’s next step would be N . The
proxy is symmetrical, so it will proxy requests bo th for M in relation
to N , and viceversa.

The proxy node, as defined, is loosely coupled w ith the nodes it is serving:

it only needs to be informed of changes in the neighbors s ta te either N or

127

M. When a query is answered by a proxy rather than by the actual target
node, an identifier will be added to the reply to specify tha t that is the case.
This is since the calculations for distance-based optimization have to be done
against the original node rather than the proxy (although the proxy’s values
could also be taken into account).

To prevent excessive proxy-Ioad, a node can deny the request to becornc
a proxy, forcing the requesting node to look for another suitable node to use
as proxy, or to skip using a proxy altogether for that particular neighbor.

To better understand how this distance-based algorithm works, le t’s con
sider the sample (physical) network topology from Figure 6.4.

In Figure 6.4, we have several nodes of which only 4 are enabled to join
the overlay network, with values 1, 2, 4 and 6. (Note tha t the numbers
represent the “names” of the nodes, and not their physical address).

2

2

6

Figure 6.4: A Sample Physical Topology

Figure 6.5: A Two-Node Overlay Network

128

Initially only nodes 2 and 4 are active, creating the overlay topology seen
in Figure 6.5. We should note tha t the nodes are “covering” for other nodes
to create the complete boolean space.

2

Figure 6.6: Node 1 Joins the Network

Then, node 1 joins the network (Figure 6.6), connecting to 4 (since 4 is
responsible for shadowing nodes 3 and 5, both of which are neighbors of 1)
and (X)nnecting to 2 as its existing neighbor.

2

Figure 6.7: Node 4 Joins the Network

After the initial connection happens, node 1 requests information regard
ing 2’s neighbors to calculate its distance in relation to them. 2 will relay
4’s information and 1 will determine that 4 satisfies the proxy-distance con-

129

dition, and thus request tha t 4 operate as a proxy, creating the final overlay
topology seen in figure Figure 6.7.

2

Figure 6.8: Optimized Overlay Topology

Finally, if Node 6 joins the network, it will require one connection to
each node. Node 2 will be able to act as proxy for the connections between
node 6 and node 1, since it is physically closer. Node 1 will require a direct
connection to 6. The hiial result is shown in Hgure 6.8.

6.4 .4 D istan ce and N etw ork A daptab ility

It is im portant to note tha t while this improvement does not affect the al
gorithm ’s complexity, it does change the balance of the load in the network.
In particular, adapting the topology to connection speeds shifts load into
“hub” nodes tha t are connected to many others through high speed lines.
This is desirable, since those nodes are the most likely to be powerful ma
chines tha t arc already performing server- or proxy-like functions. In essence,
a properly applied distance function will map the overlay topology not just
to the physical network, but to a power-law' network, allowing the algorithm
to use qualities found both in structured overlay networks and power-law
networks.The adaptability achieved by this algorithm is clearly sub-optimal.
Over time, however, connections will adapt better to the underlying network

130

topology.
Additionally, the use of proxies is im portant for low-power nodes. Re

gardless of the distance function, low-powered nodes could use proxies to
off-load some or all of their responsibilities to other nodes tha t are better
able to handle them, improving network performance and resilience.

131

Chapter 7

Manifold: An Implementation

7.1 In troduction

The initial im plem entation of the M anifold system wa^ targeted to run on
network conditions where speed and self-organization are the most critical:
on a mobile ad hoc network. Since all types of networks are increasingly
acquiring properties found, until now, only on M ANETs, using a M ANET
allowed us to provide a proof-of-concept environm ent th a t tests the various
requirem ents found for general RLD.

We im plem ented the algorithm s to run on a system ba«ed on the NTRG
Stack [62], which provided us w ith a pre-existing set of com ponents th a t sup
ported mobile ad hoc networks both in wireless and wired configurations, and
allowed us to focus exclusively on the Manifold im ijlem entation ra ther than

solving other problems related to M ANETs, such a»s routing. The NTRG
stack is simple and extensible, and it can incorporate different routing al

gorithm im plem entations aa well as physical connectivity layers, including
software radio and 802.11. The stack is also supported by the JEm u [22]

radio em ulator, greatly simplifying creating and running tests scenarios of

several devices for debugging and evaluation.
The N TRG stack uses the concept of layers to define abstraction bomid-

132

arics tha t simphfy implementing different elements of a complete ad hoc stack
can be implemented, including low-level connectivity, routing and security,
among others, and we implemented the Manifold algorithm to match those
requirements.

7.2 C onsiderations for M obile A d H oc N e t
works

We will now cover some of the special considerations required for a wireless
ad hoc implementation of Manifold. Special considerations might not be
necessary if the MANET is emulating a protocol such aa T C P/IP , but it is
necessary in other cases, for example, when the ad hoc routing protocol in the
MANET does not ensure reliability (a common occurrencc). Additionally,
MANETs, because of their “broadctust” nature, benefit from reduced message
traffic and at the same time enable certain opjtimizations that wouldn’t be
possible with other physical environments.

7.2.1 R outing and L ocation

Routing in MANETs has been an active area of research in recent years.
Interestingly, elements of the resource location i)roblem surface on ad hoc
routing algorithms since the concept of neighbors ha« a physical counterpart
in wirek^ss networks. In particular dynamic ad hoc routing protocols such as
Dynamic Source Routing, or DSR [38] perform several functions tha t bear a
strong resemblance to some of those performed by location services. Another
example is the Grid Location Service, GLS [45], in which location services
can interact closely with the routing protocol, providing solutions tha t adapt
better to certain circumstances. Our Manifold implementation, however,
makes no assimiptions regarding the type of routing used in the MANET.

133

7.2.2 Scalability

Bccausc of the broadcast nature of MANETs, Manifold-g is at a disadvantage
with respect to Manifold-b, which is a broadcast algorithm and so naturally
suited to take advantage of this particular physical transport environment.
This means tha t for groups of nodes that are operating autonomously and
tha t are concentrated in a small area (which can be defined as an area small
enough so tha t any node is within two hops of any other), Manifold-b will
always be faster, and require less network resources, than Manifold-g. Be
cause of this, applications operating in tha t kind of environment would be
better off by always sending queries to be processed by Manifold-b, even in
cases when an exact match is required.

7.2.3 Security

As we have mentioned in Section 2.4.7, Manifold currently leaves the verifi
cation of the identity of the node location result to higher level application
layers with enough information to make these checks (for example, by verify
ing signed security certificates), just like DNS does. In the future. Manifold
could be extended so tha t initial verifications can be made directly at the
resource-location level by using cryptographic digital signatures, using de
centralized trust systems such as the PG P Web of Trust [5] and SDSI [68].
(Security and trust-based modifications to DNS arc currently under consid
eration at the IETF [70]).

7.2 .4 T he N am espace

The namespace of a resource location protocol is the standard used to identify
resources in the network. In DNS [55] [56], the namespace is defined by case-
insensitive alpharumieric combinations of a maximum length of 255 bytes,
by convention ending in a particular string tha t identifies root domain, such
as “net” or “com” and they are part of the protocol definition, i.e., DNS

134

can only resolve queries for resources whose names exist in its namespace.
Achieving a single, consistent namespace definition was actually one of the
primary goals in the development of DNS.

Since Manifold is designed to operate in heterogeneous networks and sup
port different applications including presence and machine location, enforcing
a DNS-style namespace is not acceptable. Manifold resolves any string stored
as a mapping in its internal database for a particular node. Applications can
then make use of it in different ways, for example, storing DNS-style names
or using SIP [71], The application can simply store the mapping desired
and other applications nmning on different nodes will be able to resolve it
regardless of the type.

M apping a String Space to a B oolean Space

For Manifold-g, we will use ha^ihing (a<s discussed in Section 6.2) to normalize
the namespace and reduce the string size.

Although not likely, it is possil)le that the hashed value of two differ
ent strings return the same valu(\ If two names (corresponding to different
nodes) are hashed to the same value, the nodes evenly divide the task of
managing tha t particular vertex in the hypercube; if one of the nodes leaves
the remaining node will take over all of its tasks.

For this apjilication, we will then hash name strings into a 16-bit value,
resulting in a hypercube of degree^ 16.

7.2 .5 P rerequisites and assum ptions

A ll nodes are nam ed

One of the algorithm implicit assumptions is tha t a search has to occur with
a node that is already on the network as a starting point. In our implemen
tation, it follows then tha t a node has to insert itself into the network before

^diniensions

135

i t’s able to run a query in it. Nodes tha t are not inserted into the network
will be able to use a node that is in the network as a query proxy to obtain
results. This means tha t for a node to be able to initiate a search without a
query-proxy, it ha.s to be connected to the hypercube, and therefore has to
have a name assigned. Furthermore, the name has to be unique, as specified
next.

A ll n am es are un iq u e

In the example of name resolution, having a unique name per node not a
problem. Name resolution depends precisely on every node having a unique
name. For the example at hand, of name resolution in an autonomous ad hoc
network, we can specify tha t names are chosen by the machine’s owner, who
will be notified if the name already exists in the network, therefore requesting
tha t the owner choose another name.

B o o tstr a p p in g

To be able to join the network, a node nuist also hav(̂ access to a bootstrap
ping mechanism a.s defined in Section 2.7.1. The out-of-band method iimst
provide the node with one or more active nodes in the network. It is impor
tan t to node that any node in the network will do, since the network will
maintain full coimectivity as it grows, all nodes already in the network will
be able to provide the new node joining with enough information to insert
itself in the appropriate position.

to r this example, we will choose broadcast as bootstrapping method.

Full n o d e c o n n e c tiv ity

In the case of the implementation, full node connectivity implies tha t any
node has to be able to establish a direct connection to any other node by
using the ta rge t’s physical network name (which is the IP number in IP-based

136

networks). This imphcs an unbroken routing chain between all the nodes.
Later we will consider how networks with partial routing might still be able
to resolve queries by routing the reply through the hypercube network itself.
However, this solution problem of name resolution assumes tha t a direct
connection will be established between the nodes after the name is resolved,
Ko the requirement of full routing between any two nodes is not spurious.

7.3 T he M anifold Layer

The current version of the Manifold library is built for Windows operating
systems. It uses the lowest common denominator of Windows-based API
functions (Win32 base) so it is portable across a variety of Window's-based
systems, including Windows 98, Windows 2000 and Windows-CE based plat
forms such as Microsoft PockctPC. Porting the library to other operating sys
tems or platforms should not be difficult due to the relatively simple nature
of the operations required (i.e., thread management, local and network I/O)
and because most of the i)latform-dej)endent functions are abstracted into a
set of function calls tha t are implemented as necessary for each platform on
which Manifold is deployed.

The implementation has been tested both on real-world ad hoc wireless
networks with a few nodes and on large networks with the JEmu [22] ad hoc
simulator, both concentrated on small areas and spread over large distances.

7.3.1 A H igh Level V iew

From a high-level perspective, the Manifold design is relatively simple:
Figure 7.1 shows the basic components: a Local message manager that

connects Manifold with applications in the local device, the Algorithm Man
ager (AM) tha t controls message flow between local/remote calls and the
specific algorithms, each of the algorithm cores, and the Network Interface
Library, w'hich abstracts network calls so tha t Manifold remains independent

137

Manifold - b

Manifold - g

Local Message Manager

Network Interface Library

Algorithm Manager

Figure 7.1; High Level Block Diagram of Manifold

of any particular underlying physical network implementation. Each block
(including the algorithms) runs independent of the others. The algorithms
themselves interact with the local application and the network (that is, with
other Manifold nodes) only through the AM, keeping the algorithm code ab
stract and ensuring tha t in the future new algorithms (or variations of the
current algorithms) can be plugged in for testing and deployment without
rc(}uiring modifications either on the internal Manifold code, or on the ap
plications tha t use it. Additionally, since the AM manages the algorithms,
it can sometimes bridge between them. For example, if there was a catas
trophic failure on the Manifold-g overlay structure, while it is being rebuilt
the AM can route requests through Manifold-b, which has lower consistency
requirements, to provide best-effort results even if the overlay is temporarily
not available.

Manifold is intended to be used by local applications in a “black-box”
fa.shion: the application needs to resolve a name or pattern to a machine
or series of machines tha t can match tha t name, and it calls the Manifold
library which eventually returns the result, or a failure. While some of the
param eters of the Manifold-g and Manifold-b topologies might be available
for configuration by applications, behavior of Manifold is largely opaque.

138

Furthermore, each Manifold node is opaque to all others, operating indepen
dently except for maintaining certain lists of known neighbors for each of the
networks.

One of the im portant elements of implementing Mariifold-g in ad hoc
networks (wireless ad hoc networks in particular) is to make the operations
atomic. This is necessary to avoid relying on the concept of connections,
which might not be available in particular ad hoc network implementations.
Everything is done in a single atomic step on a per-node basis.

When a Manifold node initializes, it sends out requests for neighbors
including its local identifier. The neighbors then update their tables accord
ingly and reply to the incoming node with their updated tables (including, in
the case of Manifold-g, shadow nodes for which the incoming neighbor must
assume coverage). This reduces nodc'-joins to an efficient two-step process
tha t minimizes the probability of disruption of connectivity.

The core of Manifold is controlled by two indep)endent algorithms that
{)rocess messages, one at a time, rec(MV(̂ d from an internal message manager.
Through the manager, they have the ability to send messages to the local
(recjuester) application a« well, or use the network interface to send messages
to other Manifold nodes (specifying which algorithm on the target node will
be responsible for processing the received message).

Manifold nodes connect to each other through the use of messages that
can be received through any of the standard message-passing niec:hanisnis
used in software today: Inter-Process Conmumication (IPC), API method
calls, RPC [78], local message passing, and so on. Distinctions between mes
sages tha t arrive from the network and messages tha t arrive from local appli
cations are only made when a result ha*s been found, since network messages
nuist be routed through one path (to return the reply to the query originator)
and local requests must be replied directly through the local conmnmication
mechanisms.

139

7.3.2 M essages

Messages passed between nodes contain information relevant to the task at
hand (i.e., Join, Query, Leave, etc), for example:

• The string being searched for, both in binary and alphanumeric form.

• Physical address of the node tha t originated the query.

• Physical address and name of the first node in the network to receive
the query (useful when tha t node acted as query-proxy for another node
outside the network).

• List of all the nodes tha t the query has “visited” in order.

Once a message is received the algorithm responsible for the message is
chosen dynamically (through polymorphism), and processed. The behavior
of the algorithms is largely stateless, tha t is, the algorithms receives a nies-
sagi; (which carries its own state, such as nodes visited in the query jjath,
etc), processes it, and continues appropriately, either replying to the query,
forwarding the message, or ignoring it. The only state maintained, having
to do with the structure of the P2P networks used, is query-independent.

M essa g e Form at

For messages, Manifold uses an XML [7] based format. XML was chosen
because of its platform independence and ease of parsing while maintaining
readabihty, which aids in debugging and in creating additional implementa
tions. Additionally, XML is easily extensible, while maintaining backward
compatibility.

Details on the specific XML message formats used by Manifold can be
found in Appendix B.

140

7.4 O perations

7.4.1 O perations: N od e Join

W hen joining the network, a node first has to collect the necessary informa
tion, i.e., find the location in the networks of its would-be neighbors. Once

the inform ation is collcctcd, it can in itiate a join process. The join process
has to be alm ost atom ic from the point of view of the network, sincc a node

in the middle of a join process essentially d isrupts the connectivity s tructu re
and query paths have to be halted while a join is in progress. Therefore a
node first obtains all the inform ation and then performs all necessary changes
to the network.

Node initialization steps:

• do a broadcaiit of neighbors in range for the incoming node S n , looking
for Manifold nodes, including a search for each of the neighbors (for
Manifold-g), which essentially uses the receiving node as query-proxy

to perform (jueries for Syv’s neighbors.

• those nodes th a t receive the request will reply to S' r̂ with their infor
m ation. The inform ation comes separately for both Manifold-b and
Manifold-g.

For M an ifo ld -g ,

• On each node th a t receives the request, add the node to the its neigh
bors list modifying shadows a« necessary.

• On the node th a t receives the replies, S n , for each reply, modify
shadow list, and neighbor list according to the replies received from

each neighbor SN^, as follows:

— If is the actual node th a t S n searched for, a^>sign it as a
neighbor and assign ourselves as neighbor of th a t node. Bcicause

141

Sn, had to have full connectivity, there had to be a node T covering
in S'iv’s place. So Sn must also notify other nodes that were
connected to “shadow” in T and take control of its name

- If the node obtained is a shadow node, assign it as a shadow neigh
bor and add ourselves to the list of neighbors for S'at/s shadow
name on the responding node, T.

— Negotiate the takeover of additional shadow nodes with the re
sponding node T (whether its the target node, or a shadow node),
since that node might be covering for shadow nodes that be
long to L’s “shadow space.” This can be determined simply, as
per the space-complete algorithm describ(;d in the previous chap
ter, by verifying the decimal value of each shadow node in that
neighbor. If the numeric value of a shadow node P is such that
D{T) < D{P) < D{Sn) then should take control of that
shadow node, which involves contacting the neighbors for that
shadow node and updating their information.

• On each algorithm, once all neighbors have been gathered, switch state
to initialized=true.

At the begiiming the shadow node list of any node will be only its neigh
bors majjped to itself. As new nodes enter the network, it will be re-balanced.
Shadow node update operations decrea.se as new nodes come online and the
hypercube topology is completed.

For M anifold-b, nodes are simply added to the Manifold-b neighbor
list. Note that the neighbor lists for Manifold-b and Manifold-g are different
and will likely have little overlap.

7.4.2 O perations: N od e Leave

The algorithm for a node leaving the network reverses the process of joining
the network. Essentially, a node leaving the network will notify its neighbors

142

of tlie fact, and with cach of them to return the shadow nodes they were
covering for (if any). Also, each node tha t is being disconnected from the
node leaving the network will have to perform a “partial join,” i.e., it will
have to search for the node tha t is leaving after i t ’s left and coimect to the
shadow node tha t responds, thus maintaining full connectivity.

N ode Failure

When a node or its network connection fail, its neighbors might not be no
tified of the failure. P2P algorithms thus have to be aware of potential gaps
gaps in the topology, and be ready to rebuild it when necessary.

Manifold-b treats node failures in a “lazy” fashion. No active polling is
made to ensure tha t neighbors exist. However, if a query has to be forwarded
and the target node does not reply, Manifold-b will perform a partial or
complete Join operation to restore its connectivity, and continue the transfer
after the operation is complete and coimectivity is restored.
Manifold-g

operates in a similar way (by initiating a partial Join process), which is
apj)ropriate for non-sinuiltaneous node failures. However, if multiple node
failures have occurrcd siumltaneously and the network ha« not had time to
recover, it is possible tha t the api)ropriate value might not be found on a
query. While the Manifold-g structure is rebuilding, Manifold-g attemi)ts
best-effort resolution by forwarding the queries through Manifold-b.

7.4.3 O perations: Search

Search on Manifold chooses the algorithm based on the type of query received,
exact, or inexact. A query into a Manifold node can be received in two ways,
irrespective of which algorithm will process it;

• If software running in the node has made the query

143

• If the query has been received (i.e., forwarded) from another node as
part of the query routing process.

As far as the node receiving the query is concerned, these two events are
indistinguishable, and are processed in the same fashion.

For in e x ac t q u e rie s Manifold-b is used.
For e x a c t q u e rie s Manifold-g is used. The algorithm for a node N

receiving a query Q contains the following steps:

1. add N to the list of nodes traversed by Q.

2. if the query matches N's name, reply to the origin node with A'̂ as a
response. Otherwise, contimie with the next step.

3. if the query matches one of the shadow nodes N is covering for, reply
with N as a response. Otherwise, continue with the next step.

4. if the (}uery matches one of Â ’s neighbors, forward the query to that
neighbor; the local loop will be finished and it will start in tha t neigh
bor. Otherwise, continue with the next step.

5. iterate through N's neighbors and A ’s shadow neighbors (i.e., nodes
tha t are neighbors of a node tha t N is covering for) searching for the
minimum distance between each neighbor/shadow neighbor and the
target string [(5(A^3.,^)1 = V 5{Nj:,T) < 6{N,T) , tha t is for all
the distances that are less than the current distance. If a node is found,
forward the query to that node; the local loop will be finished and it
will s tart in tha t node. Otherwise, continue with the next step.

6. If this step has been reached, it means tha t a path can’t be found to
the target node of the query, and so tha t target is not on the network.
However, if the query message has reached N, it means that either N
or one of its neighbors is the “closest” topologically to the target node,
and therefore should reply for that node (therefore specifying tha t the

144

target doesn’t exist and they arc covering for them). For this, N will
check with each of its neighbors (and shadow neighbors) to sec which
of them has authority over the target name’s value by comparing the
decimal value of each neighbor of the current neighbor in control C
(which initially is N) to each of the neighbors of N such tha t in the
end dec{Ni) < dec{Q) < dec{C) for i any of the positions in a list that
includes N and all of its neighbors. Finally, N will reply to the origin
node with C as a response, while C will take over for covering that
node’s value.

These basic steps force the algorithm to navigate the hypcrcube topology
as if it was complete even though it is not, thus satisfying the space-complete
search algorithm defined above.

7.5 C lass/F low D iagram

Figure 7.2 shows the relationship between the main Manifold C + + classes,
along with the main data flow paths^.

The core of Manifold is the message processing loop, which detects in
coming messages (both from applications and from the network interface)
and processes them if appropriate. When a message is received, the main
message loops detects whether it is a Manifold message, and if so it parses
it (i.e., “deserializes” it from its platform-independent XML representation)
and creates an internal Manifold Message subclass tha t is passed on to the
ConnectionManager. The ConnectionManager routes the Message to the
appropriate Algorithm subclass, based on its type^. The Algorithm subclass

^Oiily the main classes used in the implementation are shown in the figure. The full
implementation consists of 50 C + + classes comprising approximately 6,000 lines of code.
Both the Manifold-b and Manifold-g simulators arc— although built on completely different
code-bases due to their different purpose each on its own roughly similar in complexity
to the implementation.

'^Messages can be either standard messages or “control” messages, used for Join/Leave

145

Message

■ ManifoldGMessageManifoldBMessage

ManifoldBControlMessage ManifoldGControlMessage

Algorithm

Main
message

loop

denotes data flow relationship

denotes inheritance relationship

ManifoldGAIgorithm

ConnectionManager

ManifoldBAIgorithm

XMLParser

XMLGenerator

Figure 7.2; Manifold Class/FlowDiagrain

then decides whether to ignores, forward, or reply to the message, and gener
ates a new internal message tha t is passed back to the ConnectionManager,
which will “serialize” it back into platform-independent XML and forward
it to the main message loop so tha t it can be sent to either the network
interface or back to the application.

7.6 Im plem entation R esu lts

The main objective of our Manifold implementation was to prove tha t the
system could work, beyond the sinmlatioris we had already performed, in a

operations. Control messages differ from standard messages in that they don’t contain
query-related data

146

real-world environment.
The test environment presented by our ad hoc network was tha t of a

few nodes distributed over a relatively small geographic area (the Trinity
College Campus). While both Manifold-g and Manifold-b were tested and
used, the size of the network prevented large-scale performance testing of
the algorithms'*. We could, however, prove tha t it delivered timely responses
to user requests, which is an im portant subjective test any technology must
pass. Tests were nm both with “pure” networks composed only of devices
and with networks tha t mixed devices and simulated nodes, to further verify
these subjective results.

The Manifold implementation was thus successful in proving tha t the
system could work. Not only basic Manifold tests worked correctly, but the
Manifold layer was quickly used as part of two higher-level apj)lications, as
described below.

7.7 A pplications

The two main applications tha t currently make use of the Manifold layer
on the NTRG Stack are the 4GPhone [61] and an Instant Messaging (IM)
application.

The applications initialize the Manifold layer to map the name of the
owner of the device to the physical ID of the node in the ad hoc network. The
application can then make a function call to the resource location layer with
the rciquested username as a query, and waits asynchronously for Manifold to
return the result. In this ŵ ay, the requested name (the owner of the machine)
is dynamically mapped to the physical node ID for the device, in this case
D4. With the physical address resolved, the ad hoc routing protocol (e.e.,

'‘While it was possible to simulate nodes in the network, that was equivalent to running
simulated networks of a large size, which defeated the purpose of testing in a real-world
environment. Further testing in large-scale real-world networks would be a key element of
any future work on Manifold, as outlined below in the conclusions

147

DSR) is now able to establish a route to tha t destination.
Applications also use the Manifold layer directly or indirectly. The 4GPhone,

for example, allows a user to directly input the name of the person to be called
and keep a list of recently-called users, while the IM application creatcs a
presence layer tha t uses Manifold to maintain state on the users by period
ically updating their location on the network. One location is estabhshed,
the actual communication can then begin without the need for centralized
management of mappings or configurations.

Subjective tests of several nodes running on both the JEmu emulator and
actual devices (both PCs and handheld devices) have shown tha t Manifold
is an appropriate solution for this type of usage, particularly because of the
“disconnected” nature of the networks formed, usually without access to
centralized infrastructure, which would preclude the use of other solutions.

The implications of the types of applications enabled by Manifold are pro
found. For example, voice or message communications are currently routed
through centralized services within a particular network (e.g., the POTS®, or
a celular network). Interoperability between these networks is complex and
expensive, and users are generally limited to using one type of device (e.g.,
a cell phone, or several {)hones connected to a single landline). A generic
RLD system such a« Manifold would allow networks of differc^nt types to
locate users and establish communications independent of network provider
or device used, allowing to separate the directory functions performed by,
for example, phone service providers, from their functions as data-carriers.
Additionally, as we have seen in Section 2.5, RLD also has applicability to
several other areas, such as mobility or routing. New types of applications,
such as collaboration systems tha t operate globally between different types
of deviccs and over various networks, would also be possible.

® “Plain Old Telephone System”

148

Chapter 8

Conclusions and Future Work

8.1 C onclusions

Resoiirc'c Location and Discovery is a key service of networked systems. The
evohition of networked systems however, in particular of the Internet, has
occurn'd at a fa^ster pac(? than many of the services tha t must support them.
This is placing increased strain on a largely centralized infrastructure that
Hnds it difficult to adapt to the new conditions of mobility, rapidly changing
topological dynamics, and iimltiplicity of physical transports and network
conditions. At the same time, the increasingly ad hoc nature of the Internet
is making RLD systems more critical than ever, with the result tha t appli
cations have to resort to deploying specialized RLD solutions tha t arc not
compatible and tha t are still dependent to various degrees on centralized
infrastructure.

Additionally, there hadn’t been to date an analysis of the usage patterns
and requirements that drive generic RLD across all types of networks. These
requirements pointed to a system that maintained scalability, was able to
provide results for both inexact (local) and exact (global) queries, could
function equally well in small ad hoc groups and on the Internet, without
depending on expensive, complex centralized infrastructure.

149

Our solution to this problem is Manifold, a generic, nctwork-indei)endent
RLD service based on two self-organizing algorithms tha t allowed us to p ro
vide resource location for networked systems in general (and self-organizing
networks, such as MANETs, in particular) based on those requirements.
The first algorithm, Manifold-b, provides local/inexact RLD, while the sec
ond, Manifold-g provides global/exact RLD, supporting guaranteed results
to have an upper bound of O (logn) steps (with n the mimber of nodes in
the network). We further proposed a number of optional improvements to
the algorithms (in particular for Mariifold-g) that could, under certain cir
cumstances, provide better performance and adaptability to the topologies
created by the Manifold algorithms.

Our analysis of Manifold and subsequent proof-of-concept implementa
tion for mobile ad hoc networks shows tha t those requirements were not only
desirable but also achievable, and tha t the resulting generic system is use
ful for a variety of different applications, such as voice comnumication and
instant messaging.

Manifold and the concepts on which it is based have tlie potential to
create a uniform, global infrastructure tha t provides scalable, self-organizing
RLD services at all levels of the network stack, simplifying support for newly
dynamic networked systems that potentially cover the entire global network,
and enabling new types of applications for the future.

8.2 Sum m ary o f C ontributions

The main contributions of this thesis are:

• an analysis of the problem of Resource Location and Discovery in the
context of heterogeneous networks, current systems, and a dear iden
tification of the usage patterns and basic requirements generic RLD
must satisfy, regardless of design or implementation.

150

• a system, Manifold, th a t satisfies those requirem ents, providing RLD
for heterogeneous network environm ents in general and for wireless ad
hoc networks in particular, and a set of self-organizing algorithm s to

support it (including analysis and quantification of their lim its), and,

finally,

• a dem onstration of the feasit)ility of the system by im plem enting it in

a real-world wireless ad hoc network, and verifying its applicability by
actual use in real-world applications.

8.3 Future W ork

Manifold holds great potential for future work, bo th theoretical and p racti
cal. Specifically, the next step should be its deployment on an actual large-
scale network of millions of nodes, both mobile and fixed, to provide final
mea.surenients beyond those described in th is work (which include the the-
orctic’al {)roof, sim ulations, and small-sc’ale real-world experim ents). This
would present a m nnber of questions to be resolved th a t we discuss in the
paragraj)hs th a t follow.

One im portan t design clement of Manifold is its transport independence.
W hile th is potentially allows Manifold to bridge different networks, an ad
ditional element, not described in this work, would be necessary: a routing
bridge. A routing bridge is a software com ponent or device th a t is connected
to two or more different types of networks and can tran sla te requests between
them . Since one of the main uses of Manifold is to enable device location to
perform ccrtain tasks, such as d a ta transfer or processing requests, it is desir
able th a t th is bridge allow not only for the routing of Manifold messages, but
also for the transfer of generic packets between the different networks. Even

so, this is not required, and only the ability to locate someone or something
(even if a direc;t conncction cannot be established) is still useful for presence

and other pervasive com puting applications th a t depend to a large degree on

151

“environm ent awareness.”

Ideally, the design of such a bridge would be based on self-organizing
concepts as those used for the design of Manifold, allowing the creation of

autonom ous bridge-clusters th a t can provide bridge fim ctionahty reliably for

certain network or networks w ithin range, allowing location of the d istributed
service through Manifold-b requests. W hile a bridge is, in fact, a piece of
fixed infrastructure, such a connection point would clearly have to be pre
existing before its deploym ent (otherwise there would be no need for it),
so no additional requirem ents would be necessary on the i)hysical network

infrastructure to support it.
This concept opens up a num ber of interesting possibilities, like its po

ten tia l to also perform some proxy functions such as those defined for the
distance-based algorithm discussed in Section 6.4, allowing b e tte r adaptation
of the v irtual topology to highly dynam ic physical topologic's.

W hile it is clear th a t network toi)ologies are increasingly dynamic, the
degree to which they are dynam ic is not obvious. T h a t is, it is not readily ap
parent how quickly m em bership changes when using networked devices with
both ad hoc- and Internet-capabilities in real-world environm ents. W hile we
m ight be tem pted to assum e th a t there is no limit to how fast m em bership
can change on a network (e.g., by nodes activating or coming w ithin range

of others) the dynam ics of network topologies arc not completely random or
unpredictable: they are closely related to the users’ behavior and the opera
tion of the devices th a t conform them . A deeper understanding of not only

the network dynamics bu t also of the social dynamics th a t drive them would
be useful to improve how Manifold (and other applications) are applied in
particu lar contexts.

For example, if the network is highly dynam ic and reduced to small

num bers of nodes w ithout access to fixed infrastructure, Manifold-b, rather
th an M anifold-g with appropriate tim e-to-live param eters on the queries

m ight well be used as the default mechanism for name resolution even when

152

exact resolution is necessary, since the higher consistency requirements of
Manifold-g might unfavorably affect performance. On the other hand, if the
network is largely centered aroimd Internet connectivity, rather than ad hoc
connectivity, Manifold-g will usually be a better option.

Another case to consider is when only reduced groups of nodes with broad
band connectivity (i.e., within range of fixed infrastructure) have highly dy
namic membership requirements, in which cai^e the use of the previously
mentioned proxy might be a mandatory requirement rather than an optional
feature.

These questions point to a larger problem. While the theory of network
dynamics has been an active topic of research in recent years, we still haven’t
reached an in-depth understanding of the social and technological factors
tha t affect their operation and behavior. These gaps in knowledge has led us
more than once to underestimate the resilience, scalability, and capabilities
of systems, such as global music-sharing platforms, and even of the Internet
itself.

A better understanding of the governing dynamics for networked systems,
both from a theoretical as well as from an empirical sense, will open up
new avenues of research and allow us to define solutions tha t fit different
firoblems, allowing the creation of applications tha t adapt dynamically and
autonomously to the increasingly complcx demands of our connected world.

153

154

A ppendix A

H ypercubes: T heory and
P roperties

A .l D efinitions: th e B oolean Space, and the
C oncept o f D istance

The algorithm also depends on the maximum length available to a string that
will serve as a search key. For the moment, we will make certain definitions
tha t will later be mapped to a real-world situation. We will make these
definitions in the subsections tha t follow.

A. 1.1 Initial Definitions

The algorithm makes use of a Boolean Algebra [4] defined as a set B of
elements a, h , .. . such that;

• B has two boolean operations, AND (symbolized by A) and OR (sym
bolized by V). These operations:

155

— Satisfy the idempotent laws:

a A a = a \ / a = a

— Satisfy the commutat ive laws:

a /\ b — b A a

a y b = b y a

— Satisfy the associative laws:

a A {b A c) = {a Ab) A c

a \ / { b y c) = (a y b) y c

— Satisfy the absorption law:

a A {a V b) = a y {a A b) = a

— They are mutually distributive:

a A { b y c) = {a A b) y {a A c)

a V (6 A c) = (a V 6) A (a V c)

• D contains universal bounds 0 and I which satisfy:

0 A a = 0

0 V a = a

1 A a = a

I y a = I

156

• B has a unary operation a —> a' of com plem entation which obeys the

laws:
a A a ' = 0

a V a' = 1

For th is operation we will use the notation So la = a' and a =\a'.

An clem ent of such an algebra has the general form of a \ ,a 2 , ...an, where
n is the m axim um length of the elements, and com ponents arc one of 0 ,1 .

Throughout this work, unless otherwise noted, one such element will be from
here on referred as a boolean string, boolean value or simply a value, using the
notation S or The notation Sn refers then to a particular string, such as
S\ or S-2 , and it should not be m istaken by a reference to a particular value
in the string, which will always be referred to as S^i).

In this context, we will define the XOR function (which wc will denote as
©), also known as the exclusive disjunction, w’hich yields true if exactly one
(but not both) of the two values are true. Formally, the XOR function can
be defined as:

© 5a = (5iA!S2) V (!5i A S2) = (5 , V S2) A (!5iV!62)

Strings considered in this work will have a fixed length of n. Below, we will
see th a t this n is also the dim ensionality of the space on which wc will map
our com plete set of boolean values. Given th a t we are dealing w ith boolean
num bers, a string of length n will span all the positive integers between 0
and 2" - 1.

The algebra defined also has an absolute upper bound, sup{B), such
th a t sup{B) > S y S ^ B and an absolute lower bound i n f { B) such th a t
i n f { B) < S y S & B. In the case of our finite boolean algebra, these values

can be readily calculated , they are: i n f { B) = 0 and sup{B) = 2" — 1.

157

Finally, wc will sometimes use the dccimal mapping (i.e., the boolean
string considered as a number and mapped to a decimal value), which we
will refer to as dec{S). Formally, D{S) is defined as:

n

i = 0

Where n is, as mentioned before, the length of the boolean string in
question, i.e., the niunber of boolean characters in the string.

A .1,2 H am m ing D istan ce

The total number of positions at which these strings differ is referred to as
the Hamming distance between the strings. The Hamming distance 5 can be
calculated as follows:

where n is the length of the bit-string, ie., the dimensionality of the
hypercube (diamet(;r?)

S and T are two bit strings (that define a position in the hypercube).
Note that:

n

and so 6{S,T) can be considered a metric [8] on the set of binary strings
X . X + S defines, therefore, a metric space.

158

A .1.3 T he B oolean A lgebra as H ypercube

Now let the labels in vertices in a hypercube be bit-strings, as directed by
their eviclidean coordinates, defined as a set of points Ci in Ri whose coordi
nates are all 0 or 1, i.e., the set of vertices of the unit /-cube (a hypercube of
I dimensions). These labels form a sequence of bit-strings that define a set
of bit-strings that matches that of the algebra previously defined.

The Hamming distance ^ between two vertices of a hypercube is the
number of coordinates at which the two vertices differ [31]. 6{S,T) is also
equal to the shortest path in the hypcrcubc (minimal path) between any two
strings, S and T.

Incidentally, 5 is called a manhattan distance in Euclidean metric spaces.
Throughout the text, we will refer to I interchangeably as the length of

the string or the dimensionality of the hypercube in question.

A. 1.4 String U niqueness

For the purposes of the algorithm, we will consider each string unique. That
is to say, if a certain boolean string S\ is composed of a particular subset of
elements ai,02, ...a„ (where n is the niaximimi length of the boolean string,
and elements arc either value of 0,1) and another string S2 is composed of
elements hi, 62, ...fen, if S\ and S2 are ecjual term by term such that = bi for
n > i > 0 then we say that Si = S2 and they will represent a single position
in our search space. Conversely, if o* 7̂ for n > z > 0 then Si ^ S2
and therefore they represent difi'erent positions on the search space. In other
words, the function that maps our basic boolean space into the search spacc
is injective since f {x) 7̂ f {y) for any x ^ y.

159

Tmj

160

A ppendix B

M anifold M essage Format

B .l Introduction

In this appendix we will briefly present the message templates used by Man
ifold for both Mariifold-b and Manifold-g queries, as examples of how the
messages contain the state necessary to perform operations and of our usage
of XML.

Botli of the message templates presented here apply to cjueries. While
the examples deal with final replies to a successful query, the same template
is used as a ciuery traverses the network in both cases (without including the
results tag).

B.2 M anifold-b M essage Tem plate

<manifold-message>
<mainParameters

guid="[message guid] "
type=" [identifier for the message type]"/>

<originNode
name="[origin node’s name]"

161

networkID="[physical network id of the origin node]"/>
<query value="[substring to be matched in the query]"/>
<results found="true">

<result
networkID="[node that replied]"
matchingString="[first string that matched]"/>

<result
networkID="[node that replied]"
matchingString="[second string that matched]"/>

<result
networkID="[node that replied]"
matchingString="[nth string that matched]"/>

</results>
<hopParameters

ttl="[this message’s time-to-live]"
hops=" [number of hops performed]"/>

</manifold-message>

Note that this implies that Manifold-h results for a given query arrive sep
arately from different nodes, aa the query is propagated through the network,
providing more results back to the caUer application on the origin node.

B .3 M anifold-g M essage T em plate

Manifold-g messages are similar to those of Manifold-b, but they add infor
mation related to the path traversed so far.

<manifold-message>
<mainParameters

guid="[message guid]"

162

type="[identifier for the message type]"/>
<originNode

name="[origin node’s name]"
networkID="[physical network id of the origin node]"/>

<query value="[string to be matched in the query]"/>
<visitedNodes>

<node
name="[first node name]"
networkID=" [first node id]"/>

<node
name="[second node name]"
networkID="[second node id]"/>

<node
name="[nth node name]"
networkID="[nth node id]"/>

</visitedNodes>
<results found="true">

<result
networkID="[node that replied]" matchingString="101"/>

</results>
</manifold-message>

If Manifold-g detcnnines tha t the path has already been traversed fully
but a reply hasn’t been found, it replies by setting the results tag as follows:

<manifold-message>

<results found="false"/>

</manifold-message>

163

164

Bibliography

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, The de
sign and implementation of an intentional naming system, 17th ACM
SOSP, December 1999.

[2] R. Bejar B. Krishnamachari, S. B. Wicker, Phase transition phenomena
in wireless ad-hoc networks, Proceedings of the Symposium ib Ad-hoc
Wireless Networks (Globecom), 2001.

[3] S. N. Bhatt and C. E. Leiscrson, How to assemble tree machines, Pro
ceedings of the fourteenth annual ACM symposium on Theory of com
puting, ACM Press, 1982, pp. 77 84.

[4] G. Birkhoff and S. Mac Lane, A survey of modem algebra, 5th ed.,
p. 317, Macmillian, New York, 1996.

[5] M. Blaze, J. Feigenbauin, and J. Lacy, Decentralized trust management,
In Proceedings 1996 IEEE Symposium on Security and Privacy, May
1996, pp. 164-173.

[6] J. Brassil, A. Choudhury, and N. Maxemchuk, The manhattan street
network: a high performance, highly reliable metropolitan area network.
Computer.Networks and ISDN Systems (1994), no. 26, 841-858.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler, Extensi
ble markup language (xml) 1.0 (second edition), w3c recommendation.
World Wide Web Consortiiun (W3C), October 2000.

165

[8] V. Bryant, Metric spaces: Iteration and application, Cambridge Univer
ity Press, 1985.

[9] M. Castro, P. Druschel. Y. Hu, and A. Rowstron, Exploiting network
proximity in distributed hash tables, In Proceedings of the International
Workshop on Future Directions in Distributed Computing (FuDiCo),
2002 .

[10] D. R. Cheriton and T. P. Mann, Decentralizing a global naming service
for improved performance and fault tolerance, ACM Transactions on
Computer Systems 7 (1989), no. 2, 147-183.

[11] I. Clarke, O. Sandberg, B. Wiley, and T. Ilong, Freenet: A distributed
anonymous information storage and retrieval system, ICSI W^orkshop on
D('sign Issues in Anonymity and Unobservability, June 2000.

[12] R. Cox, A. Muthitacharocn, and R. Morris, Serving dns using chord.
Proceedings of the 1st International W^orkshop on Peer-to-Peer Systems
(IPTPS) (Cambridge, MA), March 2002.

[13] Triad: a scalable deployable nat-based internet architecture., 2001,
http ://w w w .dsg.stanford .edu/triad/.

[14] F. Dabck, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, Wide-
area cooperative storage with cfs, ACM SOSP, October 2001.

[15] J. Davidson, W. Hathaway, J. Postel, N. Mimno, R. Thomas, and
D. Walden, The arpanet telnet protocol: Its purpose, principles, imple
mentation, and impact on host operating system design, Proceedings of
the fifth data communications symposium, ACM Press, 1977, pp. 4.10-
4.18.

[16] M. R. Dempsey and L. H. Goldsmith, A regular expression pattern
matching processor for apl. Proceedings of the international conference
on APL, ACM Press, 1981, pp. 94-100.

166

[17] R. Devine, Design and implementation of DDH: A distributed dynamic
hashing algorithm, FODO, 1993, pp. 101-114.

[18] D. Doval and D. O ’Mahony, Nom: Resource location and discovery
for ad hoc mobile networks, Proceedings of the Mediterranean Ad Hoc
Networking Workshop, Med-hoc-Net 2002 (Sardegna, Italy), September
2002 .

[19] ______ , Overlay networks: A scalable alternative for p2p, IEEE Internet
Computing 7 (2003), no. 4, 79-82.

[20] R. Droms, Dynamic host configuration protocol, rfc 1541, IETF Network
Working Group, November 1997.

[21] Sameh El-Ansary, Luc Onana Alima, Per Brand, and Seif Haridi, Effi
cient broadcast in structured p2p networks. Proceedings of the 2nd In
ternational Workshop on Peer-to-Peer Systems (IPTPS ’03) (Berkeley,
CA), F’ebruary 2003.

[22] J. Flynn et. al., A real time emulation system for ad-hoc networks. Pro
ceedings of the Communication Networks and Distributed Systems Mod
eling and Simulation Conference 2002 (CNDS ’02) (San Antonio, Texas),
January 2002.

[23] M. Kosuga et. al., Analysis of wireless message broadcast in large ad hoc
networks of pdas. In proceedings of Fourth IEEE conference on Mobile
and Wireless Communications Networks, 2002, pp. 299 303.

[24] N. Minar et. al., The swarm simulation system: A toolkit fo r building
multi-agent systems, Tech. Report 96-06-042, The Santa Fe Institute,
■lune 1996.

[25] R. Fielding ct. al.. Hypertext transfer protocol - http/1.1, rfc 2616, IETF
Network Working Group, June 1999.

167

[26] S. Ni et. al., The broadcast storm problem in a mobile ad-hoc network,
Proceedings of the fifth anniial A C M /IE E E international conference on

Mobile com puting and networking, August 1999.

[27] T. Berners-Lee et. al., Uniform resource locators (url), rfc 1738, IETF
Network Working Group, December 1994.

[28] V. Cerf et. al., In ternet protocol, rfc 791, IE T F, Septem ber 1981.

[29] J. Li et.al., Capacity o f ad hoc wireless networks. Proceedings of ACM
Sigmobile, ACM Press New York, NY, USA, 2001, pp. 61-69.

[30] L. A. Adamic et.al.. Search in power-law networks. Physical Review E
(S tatistical, Nonlinear, and Soft M atter Physics) 64 (2001), no. Issue 4.

[31] G. Exoo, A euclidean ramsey problem. D iscrete and C om putational Ge
om etry 29 (2003), no. 2, 223 227.

[32] R. J. Flyrm and H. Hadimioglu, A distributed hypercube file system,
Proceedings of the th ird conference on Hypercul)c concurrent com puters
and applications, ACM Press, 1988, pp. 1375 1381.

[33] Gnutella protocol vO.4-, 2001, h ttp ;//w w w 9 .liniew irc.com /developer/
gnutella_protocoL0.4.pdf.

[34] N. Harvey, M. Jones, S. Saroiu, M. Theim er, and A. W olman, Skipnet: A

scalable overlay network with practical locality properties, In Proceedings

of USITS (Seattle, WA, M arch 2003), USENIX, 2003.

[35] J. H astad and T. Leighton, Fast computation using faulty hypercubes.
Proceedings of the twenty-first annual ACM symposium on Theory of

com puting, ACM Press, 1989, pp. 251-263.

[36] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao, Distributed object

location in a dynamic network, 14th ACM Symp. on Parallel Algorithms
and A rchitectures (SPAA), August 2002.

168

[37] Y. Hu, D. Rodney, , and P. Druschel, Design and scalability of nls, a
scalable naming and location service, In Proc. of INFOCOMM, June
2002 .

[38] D. B. Johnson and D. A. Maltz, Mobile computing, ch. 5 - Dynamic
Source Routing in Ad Hoc Wireless Networks, pp. 153-181, Khiwer Aca
demic Publishers, 1996.

[39] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Pani-
grahy. Consistent hashing and random trees: Distributed caching proto
cols for relieving hot spots on the world wide web, ACM Symposium on
Theory of Computing, May 1997, pp. 654 663.

[40] S.C. Kleene, Representation of events in nerve nets and finite automata.
A utom ata Studies, Ann. Math. Stu., no. 34, Princeton U. Press, 1956,
pp. 3-41.

[41] J. Kleinberg, The small world phenomenon: an algorithmic perspective,
32nd ACM Symposium on Theory of Computing, May 2000.

[42] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gvunmadi, S. Rhea, IL Weathcrspoon, W. Weimer, C. Wells, and
B. Zhao, Oceanstore: An architecture for global-scale persistent storage.
Ninth international Conference on Architectural Support for Program
ming Languages and Operating Systems (ASPLOS 2000), November
2000 .

[43] T. Leighton, M. Newman, A. G. Ranade, and E. Schwabe, Dynamic tree
embeddings in butterflies and hypercubes. Proceedings of the first annual
ACM symposium on Parallel algorithms and architectures, ACM Press,
1989, pp. 224 234.

[44] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N.
Ganmukhi, J, V. Hill, D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S.

169

Wells, M. C. Wong, S. Yang, and R. Zak, The network architecture of the
connection machine cm-5 (extended abstract), Proceedings of the fourth
annual ACM symposium on Parallel algorithms and architectures, ACM
Press, 1992, pp. 272-285.

[45] J. Li, J. Jannotti, D. Do Couto, D. Karger, and R. Morris, A scalable
location service for geographic ad-hoc routing, Proceedings of the 6th
ACM International Conference on Mobile Computing and Networking
(MobiCom ’00), August 2000, pp. 120-130.

[46] J. Liebeherr and Tyler K. Beam, Hypercast: A protocol for maintaining
multicast group members in a logical hypercube topology. First Interna
tional Workshop on Networked Group Comnmnication (NGC ’99) in:
Lecture Notes in Computer Science, vol. 1736, Jiily 1999, pp. 72-89.

[47] J. Liebeherr and B. S. Sethi, Towards super-scalable multicast. Tech.
report. Polytechnic University CATT 98-121, January 1998.

[48] D. Malkhi, M. Naor, and D. Ratajczak, Viceroy, a scalable and dynamic
emulation of the butterfly, ACM Principles of Distributed Computing
(PODC), July 2002.

[49] T. P. Mann, Decentralized Naming in Distributed Computer Systems,
Tech. Report STAN-CS-87-1179, Stanford University, Stanford, Califor
nia, 1987.

[50] N. F. Maxemchuk, The manhattan street network. Proc. IEEE GLOBE-
COM, December 1985, pp. 255-261.

[51] ______ , Routing in the manhattan street network, IEEE Trans. Comm.
35 (1987), no. 5, 503-512.

[52] ______ , Comparison of deflection and store-and-forward techniques in
the manhattan street and shuffle-exchange networks, Proc. of INFOCOM
89, vol. 3, April 1989, pp. 800-809.

170

[53] P. Maymoimkov and D. Mazieres, Kademlia: A peer-to-peer information
system based on the xor metric, 1st International Workshop on Peer-to-
Peer Systems (IPTPS’02), 2002.

[54] R. M. Metcalfe, Packet communication,, Computer Classics Revisited,
vol. I, Peer-to-Peer Communications, 1996.

[55] P. Mockapetris, Domain names-concepts and facilities, rfc 1035, IETF
Network Working Group, November 1987.

[56] ______ , Domain names-implementation and specification, rfc 1035,
IETF Network Working Group, November 1987.

[57] P. Mockapetris and K. J. Dunlap, Development of the domain name
system, ACM SIGCOMM Computer Communication Review' 18 (1988),
no. 4, 123-133.

[58] M. L. Mueller, Ruling the root: Internet governance and the taming of
cyberspace. The MIT Press, March 2002.

[59] B. Nardi, S. W hittaker, and E, Bradner, Interaction and outeraction:
Instant messaging in action. In Proceedings CSCW’2000, ACM Press,
2000 .

[60] (Corporate) Ncube, The ncube family o f high-performance parallel com
puter systems. Proceedings of the third conference on Hypercube con
current computers and applications, ACM Press, 1988, pp. 847-851.

[61] D. O ’Mahony and L. Doyle, Architectural imperatives for 4th generation
ip-based mobile networks. Fourth international symposium on wireless
personal multimedia communications, Aalborg, Denmark, September
2001 .

171

[62] ______ , Mobile computing: Implementing pervasive information and
communication technologies, ch. An Adaptable Node Architecture for
Future Wireless Networks, Kluwer Academic Publishers, August 2001.

[63] A. Oram (ed.), Peer-to-peer: Harnessing the power of disruptive tech
nologies, O ’Reilly and Associates, 2001.

[64] C. Perkins, Ip mobility support for ipv4, rfc 3220, IETF Network Work
ing Group, January 2002.

[65] C. Plaxton, R. Rajamaran, and A. Richa, Accessing nearby copies o f
replicated objects in a distributed environment, ACM SPAA, June 1997,
pp. 311- 320.

[66] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, A
scalable content-addressable network, ACM SIGCOMM, August 2001.

[67] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, Topologically-
aware overlay construction and server selection, Proceedings of IEEE
INFOCOM’02, 6 2002.

[68] R. Rivcst and B. Lampson, Sdsi— a simple distributed security infras
tructure, Tech. report, Massachusetts Institute of Technology, Cam
bridge, MA, 1996.

[69] T. Robertazzi and A. Lazar, Deflection strategies for the manhattan
street network, IEEE ICC 91, vol. 3, June 1991, pp. 1652-1658.

[70] S. Rose, Dns security document roadmap, rfc 1541, IETF DNEXT Work
ing Group, November 2001.

[71] J. Rosenberg, II. Schulzriime, Columbia U., G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler, Sip: Session ini
tiation protocol, rfc 3261, IETF Network Working Group, June 2002.

172

[72] A. Rowstron and P. Druschel, Pastry: Scalable, distributed object loca
tion and routing for large-scale peer-to-peer systems, 18th IFIP/ACM
In t’l Conf. on Distributed Systems Platforms, November 2001.

[73] J. Saltzer, D. Reed, and D. Clark, End-to-end arguments in system
design, ACM Transactions on Computer Systems (1984), no. 2, 277-
288.

[74] S. Saroiu, P. Krishna Gummadi, and S. D. Gribble, A measurement
study o f peer-to-peer file sharing systems, Proceedings of Multimedia
Computing and Networking 2002 (MMCN ’02) (San Jose, CA, USA),
January 2002.

[75] Y. Sajsson, D. Cavin, and A. Schiper, Probabilistic broadcast for flooding
in wireless mobile ad hoc networks. Proceedings of IEEE Wireless Com
munications and Networking Conference (WCNC 2003), March 2003.

[76] C. L. Seitz, The cosmic cube. Communications of the ACM 28 (1985),
no. 1, 22 33.

[77] II. J. Siegel, Interconnection networks for smid machines. Computer,
vol. 12, 57-65, no. 6, 1979.

[78] R. Srinivasan, Rpc: Remote procedure call protocol specification version
2, rfc 1831, IETF Network Working Group, August 1995.

[79] P. Srisuresh and K. Egevang, Traditional ip network address transla
tor (traditional nat), rfc 3022, IETF Network Working Group, January
2001 .

[80] I. Stoica, D. Adkins, S. Ratnasamy, S. Shenker, S. Surana, and
S. Zhuang, Internet indirection infrastructure. First International Work
shop on Peer-to-Peer Systems, March 2002.

173

[81] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
Chord: A scalable peer-to-peer lookup service for internet applications,
Proceedings of ACM SIGCOMM, August 2001.

[82] K. Thompson, Programming techniques: Regular expression search al
gorithm, Communications of the ACM 11 (1968), no. 6, 419- 422.

[83] N. Tzeng, Analysis o f a variant hypercube topology. Proceedings of the
4th international conference on Sujiercomputing, ACM Press, 1990,
pp. 60 70.

[84] Various, The directory — overview o f concepts, models and services,
CCITT X.500 Series Recommendations, December 1988.

[85] M. Whal, A. Coulbeck, T. Howes, and S. Kille, Lightweight directory
access protocol (v3): Attribute syntax definitions, and others, rfc 2252,
IETF Network Working Group, December 1997.

[86] M. Whal, T. Howes, and S. Kille, Lightweight directory access protocol
(v3), rfc 2251, IETF Network Working Group, December 1997.

174

