Genomic identification, expression profiling, and functional characterization of CatSper channels in the bovine†

Gillian P. Johnson1,2,3, Anne-Marie English1,2, Sinead Cronin1, David A. Hoey3,4,5, Kieran G. Meade5 and Sean Fair1,*

1Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; 2Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; 3Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; 4Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin 2, Ireland and 5Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Meath, Ireland

*Correspondence: Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick V94 PH61, Ireland. Tel: +353 61 202548; Fax: +353 61 331490; E-mail sean.fair@ul.ie

†Grant Support: The authors gratefully acknowledge the financial support from the Irish Research Council (Dublin, Ireland; GOIPG/2014/1463), European Research Council (ERC) Starting Grant (#336882), and Science Foundation Ireland ERC Support Grant SFI 13/ERC/L2864 (to D.A.H.).

Received 28 March 2017; Revised 22 June 2017; Accepted 25 July 2017

Abstract

Cation channels of sperm (CatSper) are sperm-specific calcium channels with identified roles in the regulation of sperm function in humans, mice, and horses. We sought to employ a comparative genomics approach to identify conserved CATSPER genes in the bovine genome, and profile their expression in reproductive tissue. We hypothesized that CATSPER proteins expressed in bull testicular tissue mediate sperm hyperactivation and their rheotactic response in the reproductive tract of the cow. Bioinformatic analysis identified all four known CATSPER genes (CATSPER 1–4) in the bovine genome, and profiling by quantitative real-time polymerase chain reaction identified site-specific variation in messenger ribonucleic acid (mRNA) expression for all four genes along the reproductive tract of the bull. Using a novel antibody against CATSPER 1, protein expression was confirmed and localized to the principal piece of bull sperm, in agreement with what has been reported in other species. Subsequent treatment of bull sperm with either the calcium chelator ethylene glycol tetraacetic acid; mibefradil, a specific blocker of CatSper channels in human sperm; or CATSPER1 antibody all significantly inhibited caffeine-induced hyperactivation and the rheotactic response, supporting the concept that the calcium influx occurs via CatSper channels. Taken together, the work here provides novel insights into expression and function of CatSper channels in bull testicular tissue and in the function of ejaculated sperm.

Summary Sentence

The effect of blocking calcium channels on hyperactivation and rheotactic response.

Key words: sperm, calcium, rheotaxis, hyperactivation, fertility, comparative reproduction, bull.
Introduction

Despite tens of millions to billions (species dependent) of sperm being deposited in the vagina/cervix after ejaculation, only a few hundred sperm are thought to be present in the ampulla of the oviduct at the time of fertilization [1]. It is now apparent that sperm transport in the female reproductive tract is facilitated by a range of physiological mechanisms including rheotaxis, chemotaxis, thermotaxis as well as smooth muscle contractions of the female reproductive tract [2–4]. One of the least studied of these is rheotaxis, which is a cell’s preference to swim with or against fluid flow, and has recently been reported as a mechanism for directing sperm towards the oocyte [3]. Positive rheotaxis is the tendency of sperm to swim against the flow and has been lightly observed over the past 50 yr, but only recently has rheotaxis gained attention as a guiding mechanism [3, 5]. Rheotaxis plays a fundamental role in directing sperm towards the site of fertilization, as sperm swim against the retrograde flow of mucus secreted under the influence of oestrogen in the lead up to ovulation [3, 6, 7]. In mice, it has been shown that positive rheotaxis occurs as a result of the spiral rotation of the sperm tail, leading to an increased amplitude of the tail waves and flagellar force, orientating the sperm upstream. This mechanism has been shown to be dependent on the influx of extracellular calcium (Ca$_{2+}$) [3]. Bull sperm have been shown to exhibit positive rheotaxis and can change their trajectory with respect to a change in fluid flow direction [7]. While bull sperm and sperm of other species have been shown to display positive rheotaxis, the mechanisms by which this is mediated are unclear.

Hyperactivation is characterized by a high amplitude, asymmetrical beating pattern (whip-like movement) of the sperm tail [8]. It is hypothesized that hyperactivation assists sperm in pulling away from the oviductal epithelium and increases swimming efficiency in viscous mucus [8, 9]. As with rheotaxis, the exact molecular mechanisms by which hyperactivation is mediated has yet to be elucidated; however, it has been demonstrated that Ca$_{2+}$ and cyclic adenosine monophosphate (cAMP) are two key factors in the regulation of hyperactivation of mammalian sperm [10]. Intracellular increases in Ca$_{2+}$ have been reported in hyperactivated flagella of hamster and bull sperm [11], where a high concentration of caffeine was used to increase intracellular Ca$_{2+}$ [12].

In most cells, entry of external Ca$_{2+}$ occurs through several types of Ca$_{2+}$ channels: mainly voltage-activated channels and store-operated channels [13, 14], while intracellular Ca$_{2+}$ may be released from internal stores via receptor-operated channels. Inositol-1,4,5-trisphosphate receptors and ryanodine receptors represent the two main intracellular Ca$_{2+}$ channels responsible for releasing stored Ca$_{2+}$. In sperm of many mammals, members of a specific transmembrane Ca$_{2+}$ channel family, cation channels of sperm (CatSper) also play an important role [15]. CatSper are weakly voltage-dependent, Ca$_{2+}$-selective, and pH-sensitive ion channels that control the entry of positively charged Ca$_{2+}$ ions into the sperm [16]. CatSper is composed of four separate pore-forming α (alpha) subunits; these are CatSper 1–4 and three additional auxiliary subunits: CatSper β (beta), CatSper γ (gamma), and CatSper δ (delta). The complexity of the channel due to the several subunits, seems to be necessary for its functional co-ordination, localization to the flagella, and sensitivity to intracellular pH, progesterone, prostaglandins, odorants, and to a potential range of other proteins and signaling molecules [16, 17]. CatSper channels have been shown to localize to the principal piece of the flagellum and are involved in the regulation of sperm function and male fertility in humans, mice, and horses [8, 18, 19]. In mice, hyperactivated sperm motility is dependent upon the presence of CatSper channels, where sperm lacking in any one of the CatSper subunits fail to develop functional CatSper Ca$_{2+}$ currents and therefore are unable to hyperactivate [8, 17, 20]. Mutations in human CATSPER genes are associated with infertility and abnormal sperm motility [21]. While CatSper channels have been identified and characterized in humans, stallions, and mice [8, 18, 19], they have yet to be identified in the bulls.

We hypothesized that CatSper channels are present in bull sperm and they play a role in hyperactivation and rheotactic response. Therefore, the aim of this study was to use a comparative genomics approach to identify and characterize the evolutionary orthologs of CATSPER genes in the bovine genome and to investigate the effect of CatSper agonists and antagonists as well as extracellular calcium on bull sperm hyperactivation and rheotaxis.

Materials and methods

Bioinformatic identification of bovine CATSPER orthologs

Orthology searches using the basic local alignment search tool BLAST [22] were performed for four known human and mouse CATSPER gene sequences (CATSPER 1–4) in the bovine genome (version: bosTaur8). The bioinformatic tool, BLAST-Like Alignment Tool (BLAT; UCSC Genome Browser), was used to determine the chromosomal position of the four orthologs bovine genes identified. Phylogenetic analysis was also performed to investigate the evolutionary relationships between the four novel bovine CATSPER genes and their evolutionary orthologs using Molecular Evolutionary Genetics Analysis (MEGA) software [23, 24]. Bootstrap resampling was carried out 1000 times. Bovine CATSPER genes were annotated on the basis of sequence similarity and phylogenetic relationships to previously described CATSPER sequences in humans and mice to maintain consistency in the comparative analysis of CATSPERs with other species. A multiple sequence alignment for all genes was performed using T-coffee [25] and annotated using Jalview [26].

Reproductive tissue collection

To characterize the expression profile of CATSPER genes, bull reproductive tract segments (tissues and sperm), including parenchyma tests, rete tests, and the different segments of the epididymis (caput, corpus, and cauda) were collected from sexually mature beef bulls (n = 4) within 20 min of slaughter. All segments were immediately snap frozen in liquid nitrogen and transported to the laboratory for RNA extraction. The rationale for this experiment was simply to assess if CATSPER genes were expressed and, if so, which of the CATSPER genes were most highly expressed in the bull.

RNA extraction and cDNA synthesis

Total RNA was extracted from all tissues using a homogenizer to disrupt cells in buffer RLT, supplied with the RNeasy mini kit (Qiagen), according to the manufacturer’s instructions. All samples were DNA-digested to remove genomic DNA using Qiagen’s on-column DNase and eluted with water. RNA quantity was assessed using a Nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA); whereas the quality was determined with the use of an Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Complementary DNA (cDNA) was synthesized using an Applied Biosystems cDNA reverse-transcription kit (Life Technologies, Carlsbad,
CA, USA) and an Eppendorf Mastercycler (Eppendorf, Hamburg, Germany).

Primer design, quantitative real-time polymerase chain reaction

Nucleotide sequences were retrieved from the University of California, Santa Cruz (UCSC) Genome Browser and Primer3 used for primer design (Table 1). Primers were designed to be intron spanning and were commercially synthesized (Sigma Aldrich, St Louis, MO, USA). Quantitative real-time polymerase chain reaction (qRT-PCR) was performed using a 20 μl reaction mix containing 10 μl SYBR green PCR MasterMix (Invitrogen Ltd, Paisley, UK), 2.5 μl primer and dH2O mix, 5.5 μl dH2O, and 2 μl sample. Plates were run in an ABI 7500 Fast Thermocycler (Life Technologies, Carlsbad, CA, USA). The cycle parameters were as follows: Uracil N-glycosylase activation was run for 2 min at 50°C, DNA polymerase activation for 10 min at 95°C, the melt cycle was run for 15 s at 95°C, and the annealing–extending cycle for 1 min at 60°C. A no-template control was run in each well to confirm the absence of gDNA contamination. Levels of expression of the gene of interest were compared with the average of the two reference genes, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta actin (ACTb). Normalizing gene expression to multiple reference genes in order to give a more reliable baseline for the calculation of relative gene expression using qRT-PCR is common practice especially when small changes in gene expression are being reported [27].

In situ immunocytochemistry for the CATSPER1 protein

Fresh bull semen from a commercial bull stud was collected using an artificial vagina and diluted to 2 × 10⁶ sperm/mL in phosphate-buffered saline (PBS; Sigma Aldrich, St Louis, MO, USA). Cells were fixed in 4% paraformaldehyde, and washed with PBS before being permeabilized with Triton X-100 (0.2%) for 15 min at room temperature (RT). After rinsing in PBS, cells were blocked using a mixture (0.4 g bovine serum albumin (BSA) + 2 μl Triton X-100 + 10 mL PBS) for 1 h at RT. Immunostaining was carried out using primary antibody targeted against CATSPER1 (1:100; ab203626, Abcam, Cambridge, United Kingdom) at 4°C overnight. The immunogen sequence of the CATSPER1 antibody used was MDSSRAQGAWY. The homology between this and the bovine CATSPER1 sequence was 90%. After three 5 min washes in PBS, sperm were incubated for 1 h with goat antiserum IgG Alexa Fluor 488 (1:500; Invitrogen, California, United States) as a secondary antibody. Nuclei were counterstained with 4’,6-diamidino-2-phenylindole (DAPI). Cells were imaged with an Olympus IX83 (Norfolk, USA) inverted microscope equipped with a 40× objective.

Sperm preparation

Frozen-thawed sperm from Holstein bulls (n = 3) of proven fertility were used in all the functional experiments. Semen straws were thawed in a water bath at 39°C for 30 s. For each functional assessment, one straw per bull, of which there were three, were thawed. The resulting volume to run the assessment consisted of a pool of three straws coming from three bulls to eliminate the interbull variability. All sperm were diluted in TALP media [28].

Effect of extracellular Ca²⁺ on hyperactivation and rheotactic response

The aim of this experiment was to investigate the role of extracellular calcium on sperm hyperactivation and rheotaxis. Preliminary experiments were carried out to assess the optimum concentration of all agonists/antagonists (data not shown). To investigate this, extracellular Ca²⁺ was ablated using ethylene glycol tetraacetic acid (EGTA) that chelates Ca²⁺ in the media [29]. Motility of the frozen-thawed sperm was analyzed objectively by computer-assisted sperm analysis (CASA; Sperm Class Analyzer, Microptic, Viladomat, Barcelona, Spain). A droplet of diluted sperm (10 μL) from each sample described above was placed on a prewarmed slide; a prewarmed cover slip was added and analyzed for sperm motion and kinematic parameters using factory CASA (bull) settings. At least three randomly selected microscopic fields and a minimum of 100 sperm per treatment were assessed. Any samples with post-thaw progressive motility less than 30% were not used in experiments. Thawed sperm were incubated with either (i) 2 mM EGTA, (ii) 5 mM caffeine (phosphodiesterase inhibitor but also an agonist for extracellular Ca²⁺ influx [30], (iii) 2 mM EGTA in combination with 5 mM caffeine, or (iv) no treatment, for 10 min before hyperactivation and rheotaxis were assessed. Hyperactivation was assessed using a phase-contrast microscope (CX41; Olympus, Hamburg, Germany) at a magnification of 40×. A droplet of diluted sperm (10 μL at a concentration of 25 × 10⁶ sperm/mL) was placed on a prewarmed slide, covered with a prewarmed cover slip and assessed subjectively by counting 100 motile sperm for each treatment. Hyperactivation was expressed as the percentage of motile sperm that displayed hyperactivated motility. Hyperactivation was characterized by high amplitude, asymmetrical beating pattern of the sperm tail [31]. This manifested in a characteristic figure of eight swimming trajectory. To assess sperm rheotactic response, sperm were loaded into the starting well (50 μL at a concentration of 25 × 10⁶ sperm/mL) of a specialized microfluidic device (microchannel size of 300 μm wide, 100 μm deep, and 30 mm in length) with a flow rate of 30 μm/s. The number of sperm that swam past the 10 mm mark in the microchannel at 10 min were assessed. This experiment was replicated three times.

Effect of blocking calcium channels on hyperactivation and rheotactic response

The aim of this experiment was to assess the role of calcium channels in the hyperactivation and the rheotactic response of bull sperm. To achieve this, a Ca²⁺ channel antagonist (Mibebradil) was utilized to block all sperm Ca²⁺ channels [8]. The concentration of mibebradil was chosen following a dose response effect of 1, 5, and 10 μM mibebradil on hyperactivation. Caffeine (5 mM) was used to

Table 1. Oligonucleotide sequences for primers as well as the genomic coordinates of the CATSPER genes (UCSC version bosTau8).

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Forward primer (5'-3')</th>
<th>Reverse primer (5'-3')</th>
<th>Genomic co-ordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATSPER1</td>
<td>TACTCTGGACCAAAACCTTT</td>
<td>GCCTTCAGCTGATGTAAGG</td>
<td>chr29:44,771,514--44,779,197</td>
</tr>
<tr>
<td>CATSPER2</td>
<td>CTCAGATAGCAGTTCCCTCC</td>
<td>GCAGTTGAAACGGTGTAAAT</td>
<td>chr21:55,906,680--55,924,768</td>
</tr>
<tr>
<td>CATSPER3</td>
<td>GAATCTGATCTGGTTTCTCT</td>
<td>CACTACGAGCAGTTGAGGC</td>
<td>chr7:48,012,507--48,043,848</td>
</tr>
<tr>
<td>CATSPER4</td>
<td>GACGGAGAAGAGGGAGTAC</td>
<td>TGAAAGCTATTTGGATCTGTG</td>
<td>chr2:127,488,171--127,499,030</td>
</tr>
</tbody>
</table>

CatSper channels in bovine sperm, 2017, Vol. 97, No. 2
induce hyperactivation as a positive control in all experiments. Sperm were incubated with (i) mibefradil (5 μM), (ii) caffeine (5 mM), (iii) mibefradil (5 μM) in combination with caffeine (5 mM), or (iv) no treatment, for 10 min prior to the assessment of rheotactic response and hyperactivation as described above. This experiment was replicated three times. Motility of the frozen-thawed sperm was analyzed as described above.

Effect of CatSper channels on hyperactivation and rheotactic response

The aim of this experiment was to assess the effect of CatSper channels on hyperactivation and rheotactic response of bull sperm. To achieve this, CATSPER1 antibody (Ab) was used to specifically block CatSper1. An initial dose response hyperactivation test was carried out using: 0.8, 4, and 20 μg/mL CATSPER1 Ab, and a concentration of 20 μg/mL was selected for use in this study. Sperm were incubated with either (i) CATSPER1 Ab (20 μg/mL), (ii) caffeine (5 mM), (iii) CATSPER1 Ab (20 μg/mL) in combination with caffeine (5 mM), or (iv) with no treatment, for 10 min following which they were assessed for hyperactivation and rheotactic response. This experiment was replicated three times. Motility of the frozen-thawed sperm was analyzed as described above.

Data analysis

For gene expression data, the formula $E = 10^{-\left(\frac{-1}{slope}\right)} - 1$ was used where slope refers to the slope of the linear curve of cycle threshold (C_T) values plotted against log dilution. Only primers with PCR efficiencies between 90% and 110% were used. Gene expression was analyzed using GenEx software (www.multid.se/genex.html), which allowed for compensation of PCR efficiencies, before averaging for RT-qPCR replicates. A normalization factor, calculated based on the geometric mean of the two reference genes, GAPDH and ACTB, was used to normalize the expression of each gene of interest. Functional data were checked for normality of distribution, transformed where appropriate using a log transformation, and analyzed using one-way Analysis of Variance (ANOVA), while qPCR data were analyzed using univariate ANOVA in the Statistical Package for the Social Sciences (SPSS, Version 21.0; IBM, Armonk, NY, USA). Posthoc tests were carried out using the Bonferroni correction and a P value < 0.05 was considered to be statistically significant.

Results

Bioinformatic identification of bovine CATSPER orthologs

All four of the CATSPER genes reported in mice, humans, and horses were found to be present on chromosome 29, 21, 7, and 2, respectively, in the bovine genome (Table 1). Multiple-sequence alignment was performed on novel CATSPER sequences with a complete second exon. Despite slight sequence variation between species, conserved areas were clearly identified across the three species for each protein (Fig. 1). Sequence similarity for CATSPER 1–4 peptides between bovine, murine, and humans were 90%, 85%, 72%, and 88%, respectively. Phylogenetic analysis showed that orthologs genes (identical by descent from the common ancestor of bovine, murine, and human, and in a conserved syntenic location) can be confidently predicted with bootstrap values generally in excess of 90% (Fig. 2). The phylogenetic relationships among different CATSPERs are much less certain. This is to be expected for genes that are so short that the phylogenetic signal is noisy and that are also known to be under selective pressure for different structure and function. A bootstrap value of 100 indicates that the sequences below that node consistently cluster together even with multiple resamplings of the data. The proteins are thus likely to be orthologs because their similarity is systemic and internally consistent rather than dependent on a few similar sites in the alignment.

Expression of CATSPER 1–4 genes along the reproductive tract of the bull

The expression of all four CATSPER genes varied depending on the location along the reproductive tract of the bull. There was an effect of tissue location for expression of all four of the CATSPER genes, with CATSPER1–4 upregulated in the parenchyma testis compared to the three segments of the epididymis ($P < 0.01$; Fig. 3). The rete testis had higher expression of all CATSPER1–4 genes compared to the caudal and corpus epididymis ($P < 0.01$); however, there was no difference in expression level between it and the caput epididymis or the parenchyma testis ($P > 0.05$). CATSPER1 expression in the parenchyma testis was upregulated 6-fold, compared to the average of the housekeeping genes, which was the highest fold change of all the CATSPER genes. CATSPER 2–4 were upregulated 4.5-, 2.5-, and 2.7-fold, respectively.

In situ immunocytochemistry for the CATSPER1 protein

Fluorescence labeled to the principal piece was evident in frozen-thawed bull sperm stained with the antirabbit CATSPER 1 antibody (Fig. 4). CATSPER1 staining was primarily found along the principal piece of the flagella; however, light staining was also found on the postacrosomal region. No staining was evident when the primary antibody was withheld (data not shown).

Effect of extracellular Ca$^{2+}$ on hyperactivation and rheotactic response

There was no effect of EGTA treatment on the percentage of motile sperm. Caffeine increased hyperactivation but when extracellular calcium was removed by the addition of EGTA, there was a reduction in hyperactivation when compared to both the control and caffeine-treated sperm ($P < 0.001$). Interestingly, when caffeine was added back to the media containing EGTA, there was no increase in hyperactivation (Fig. 5A). A mirrored response was found for the rheotactic response, where caffeine significantly increased the number of sperm to progress along the channel, while chelating extracellular Ca$^{2+}$ inhibited this behavior ($P < 0.01$). As before, adding caffeine back into the media did not result in a significant increase in rheotactic response (Fig. 5B). These data demonstrate that extracellular calcium is required for hyperactivation and rheotaxis of bull sperm. Treatment with EGTA or caffeine did not have an effect on the percentage of motile sperm.

Effect of blocking calcium channels on hyperactivation and rheotactic response

Similar to the removal of extracellular calcium above, there was no effect of blocking calcium channels on the percentage of motile sperm. However, incubation with caffeine increased sperm hyperactivation while blocking calcium channels by pretreatment with mibefradil-prevented caffeine inducing hyperactivation ($P < 0.01$; Fig. 6A). A similar response was found with regards to the rheotactic response. Caffeine treatment increased sperm progression along
the microchannel, compared to the control group ($P < 0.01$; Fig. 6B); however, when sperm were treated with mibefradil prior to caffeine, there was no significant increase in sperm progression ($P < 0.01$). These data demonstrate that an influx of calcium via mibefradil-sensitive channels is required for bull sperm hyperactivation and rheotaxis. Mibefradil treatment did not have an effect on the percentage motile sperm.

Effect of CatSper channels on hyperactivation and rheotactic response

Blocking CatSper channels via CATSPER1 antibody reduced the levels of hyperactivity in the control sample and also inhibited the action of caffeine ($P < 0.01$; Fig. 7A). Similarly, CATSPER1 antibody reduced the ability of sperm to display rheotaxis compared to the control group and when added prior to caffeine it inhibited hyperactivation ($P < 0.01$; Fig. 7B). Despite the actions of both caffeine and the CATSPER1 antibody on hyperactivation and rheotactic response there was no effect of treatment on the percentage of motile sperm. Furthermore, sperm treated with CATSPER1 antibody displayed an increase in nonprogressive motility compared to no treatment sperm and swam in anticlockwise circles, as reported in CatSper null mice (Fig. 8; Supplemental Videos S1 and S2). These data demonstrate that an influx of extracellular calcium via CatSper channels is required for bull sperm hyperactivation and rheotaxis. Sperm treated with CATSPER1 antibody also displayed bending of the tail over the head.

Discussion

The advent of more completely annotated genomes from farm animal species is facilitating novel gene discovery at an unprecedented level. As genes that are required for the regulation of sperm motility, CATSPER hold significant promise in understanding the mechanisms by which sperm navigate to the site of fertilization, but also in the design of new screening methods for diagnosing unexplained male infertility. The importance of CATSPER genes in male fertility has been clearly established, where disruption of the CATSPER genes leads to complete male infertility in both humans and mice [32,33]. Despite fertility being an important issue in cattle, the role of CatSper channels in the bull has not been previously investigated. In this study, we show for the first time that CATSPER 1–4 are expressed in the testes of the bull, where they have a role in sperm hyperactivation and rheotaxis.
CATSPER 1–4 are conserved in the Bos taurus genome. Using a comparative genomics approach, we searched the Bos taurus genome for homologs of the four CATSPER genes that have recently been described [8,9,19]. We found homologs of all four CATSPER subunit genes in the Bos taurus genome on various chromosomes, and revealed that the bovine CATSPER genes are present in similar synthetic sequence to those of humans and mice [9,20]. Multiple-sequence alignment showed the conserved regions over the three species for each of the CATSPER protein sequences. Conserved regions highlight that the CATSPER proteins in Bos taurus, Homo sapiens, and Mus musculus have an evolutionary relationship by which they share a lineage and are descended from a common ancestor. Phylogenetic analysis of these bovine genes in conjunction with their human and mouse orthologs showed a high degree of sequence similarity, which suggests functional conservation of these genes over the course of evolution. Where both a first and a second exon could be recovered for the bovine ortholog, the percentage of sequence identity ranged from 72% (CATSPER3) to 90% (CATSPER1). The high degree of similarity of the bovine genes to their human and mouse orthologs prompted us to delve further into the specific expression and function of CatSper channels in bull sperm.

Expression analysis at the gene level showed that CATSPER1–4 messenger RNA (mRNA) was expressed in the reproductive tract of the bull with highest expression in the parenchyma testis, indicating that they are incorporated into sperm during spermatogenesis. Of the four CATSPER genes, CATSPER1 was found to have the highest expression across all tissue segments and is in agreement with studies in mice and humans [19,33]. The expression of CATSPER1 was 2-fold that of CATSPER3 and 4 in the parenchyma testis. This is of particular interest as recently the profiles of CATSPER1 mRNA expression in testis biopsy of subfertile human male patients were investigated [34]. Compared with patients whose infertility cannot be ascribed to a deficiency in motility, a significant reduction in the level of CATSPER1 gene expression among patients with asthenospermia was observed leading the authors to propose that CATSPER1 expression be used as a noninvasive screening method for male infertility [35]. Additionally, CATSPER1-deficient mice are infertile as a result of an impairment of sperm motility and an inability to fertilize oocytes [18]. Immunocytochemical analysis of the CATSPER1 protein revealed CATSPER1 to be localized to the principal piece of the flagellum that is in agreement with the staining pattern reported for mouse, human, and stallions [8,18,19]. This same expression and localization of CATSPER1 in bulls as in humans, mice, and stallions points to a similar role of CATSPER1 all species.

Hyperactivation in sperm of other species is dependent upon the presence of the cation channel CatSper. Therefore, we investigated
the function of this channel in bull sperm. We found that caffeine was an effective inducer of hyperactivation in bull sperm, as has been reported in other studies, and thus was used as a positive control for all functional studies [30,36]. While caffeine is known to induce hyperactivation in both capacitated and noncapacitated bull sperm by inhibiting phosphodiesterase and thus increasing cAMP [37], studies have also shown that caffeine-induced hyperactivation requires extracellular Ca$^{2+}$ in bull sperm [30,36], which is in agreement with this study as sperm treated with caffeine did not hyperactivate while in Ca$^{2+}$-deficient medium. We investigated if bull sperm require extracellular Ca$^{2+}$ for hyperactivated motility and the ability to display a sufficient rheotactic response to fluid flow. The results from this study, in which EGTA was used to chelate calcium, indicate that bull sperm require extracellular calcium for both hyperactivation and rheotactic responses. While the need for extracellular calcium for hyperactivation has been reported, this is the first study to our knowledge to report that bull sperm requires extracellular Ca$^{2+}$ to effectively induce rheotaxis. The typical characteristics of bull sperm hyperactivation, when assessed in a static droplet, is an increase in swimming speed of sperm but in a nonprogressive fashion; however, although not assessed directly in this study, it appears that when hyperactivated bull sperm are exposed to a fluid flow they are able to maintain the increase in swimming speed but alter their swimming pattern to linear.

The T-type calcium channel blocker mibefradil has been reported to block calcium currents in stallion and human sperm including that mediated by CatSper [8,38]. Treatment of equine sperm with mibefradil has been shown to reduce the influx of Ca$^{2+}$ associated with intracellular alkalinization [8]. We found similar results in this study, where treatment of bull sperm with mibefradil reduced both percentage hyperactivation and rheotactic response. These results tell us that calcium channels are required for both of these sperm functions. Although CatSper channels are T-type calcium channels, the lack of specificity of mibefradil to CatSper channels alone led us to assess hyperactivation and rheotaxis following blocking with a CATSPER1 antibody, to target the CatSper channel specifically. Treatment with CATSPER1 antibody significantly inhibited the increase in hyperactivation and rheotaxis when compared to the caffeine treatment group. Interestingly, we found that with antibody treatment alone there was a decrease in both hyperactivation and rheotactic response to that below the level of the no treatment control. This tells us that blocking of the CatSper channels has a negative effect on sperm function, independent from the effect of caffeine. Mouse sperm lacking CatSper-induced Ca$^{2+}$ influx tend to swim in
Figure 4. Immunostaining for CATSPER1 (green) and nuclei counterstained with DAPI (blue; A). Fluorescent imaging showing colocalization of CATSPER1 to bull sperm flagellum. CatSper1 is specifically labeled in the principal piece of the tail (B). Bar = 20 μm.

Figure 5. The effect of removing extracellular calcium using EGTA treatment on (A) hyperactivation and (B) rheotactic response of bull sperm. Number of sperm refers to the number of sperm to swim past the 10 mm mark of the microfluidic channel. Values are means ± SEM for three independent replicates. abcdDifferent superscripts differ significantly within panel (P < 0.05).

Figure 6. The effect of Mibebradil treatment on (A) hyperactivation and (B) rheotactic response of bull sperm. Number of sperm refers to the number of sperm to swim past the 10 mm mark of the microfluidic channel. Values are means ± SEM for three independent replicates. abcdDifferent superscripts differ significantly within panel (P < 0.05).
Figure 7. The effect of CATSPER1 antibody on (A) hyperactivation and (B) rheotactic response of bull sperm. Number of sperm refers to the number of sperm to swim past the 10 mm mark of the microfluidic channel. Values are means ± SEM for three independent replicates. abcD Different superscripts differ significantly within panel (P < 0.05).

Figure 8. Stills from supplementary videos showing the swimming patterns of control (A) and sperm treated with CATSPER1 antibody (B). Sperm swimming in an anticlockwise direction (circle) and bending of the sperm tail over the head (arrows) was observed in the Ab-treated group (B).

an anticlockwise circular plane, which does not change regardless of fluid flow [3]. We observed a similar swimming pattern in the bull sperm treated with CATSPER1 antibody. We observed a small proportion of sperm that had been treated with CATSPER1 Ab displayed bending of the tail over the sperm head. The reason for this is unknown. None of the calcium blocking treatments influenced the percentage of motile sperm, allowing us to separate the effect of diminished hyperactivation and rheotactic response from that of changes in motility. Thus, our findings suggest that hyperactivation and rheotactic response is mediated by CatSper channels.
In conclusion, this study is the first to identify and characterize CATSPER genes in the bull. The testes expression and location-specific changes in mRNA abundance support an evolutionary conserved role for these channels in bull reproduction. This study demonstrates that CatSper channels play a critical role in hyperactivation and rheotactic response in bull sperm. The location and functionality of these channels points to their use as potential male infertility markers and should provide a basis for much future research to define the factors associated with effective sperm–oocyte interactions in this species.

Supplementary data

Supplementary data are available at *Biol Reprod* online.

Supplemental Video S1. Video showing normal motility of control sperm. Sperm are observed to be swimming in a progressive manner.

Supplemental Video S2. Sperm treated with 20 μg/mL CATSPER1 antibody swim in an anticlockwise direction (blue circle). Bending of the sperm tail over the head of sperm was observed (arrows).

Acknowledgment

The authors gratefully acknowledge the financial support from the National Cattle Breeding Centre (Naas, Co Kildare, Ireland) for the donation of bull semen.

References

6. Kantcel’ V, Dunkel J, Blayney M, Goldstein RE. Rheotaxis facilitates of the sperm tail over the head of sperm was observed (arrows).

