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Abstract

With the increasing number of resource-rich handsets equipped with diverse

wireless communication technologies, users within a limited geographical area

can share the services deployed on their mobile devices to form service-sharing

communities. By leveraging the computing resources on nearby devices, new

service-based applications can be developed to expand users’ service options.

Many applications from multiple domains have the potential for improvement

with flexible, dynamic service composition, including automotive (e.g., real-time

hazard warnings), energy demand-side management (e.g., communities maximis-

ing use of renewable energy while catering to individual home needs), and Fin-

Tech (e.g., fast insurance response).

Automatic planning, with adaptive composition recovery mechanisms, has

been used to tackle complex service provisioning in such dynamic environments.

Existing service composition proposals generate a service dependency graph

based on the interoperable relationships between available services, and use goal-

driven techniques to discover paths that can functionally satisfy user requests.

Apart from functional requirements, though, Quality of Service (QoS) such as

execution reliability and latency are also major concerns that impact users’ satis-

faction. Finding paths in this graph that can functionally satisfy a user’s request

while simultaneously guaranteeing user-acceptable QoS levels is difficult in mo-

bile environments. Given mobile devices’ limited communication ranges, the

frequent network topology changes, and services with time-dependent QoS, the

existing proposals for QoS-optimal service composition trade-off computational

efficiency for optimality to provide only best-effort QoS. The existing mechanisms

also use a-priori articulation of the QoS objectives’ weights, which does not al-

low for the exploration of different QoS trade-offs. These relative weights might

differ at runtime, and the constant enquiry for user’s preferences can inhibit the

development of automatic, planning-based service composition.

This thesis presents SBOTI (Stigmergic-Based OpTImisation), a decentralised,

v
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QoS optimisation mechanism for automatic, planning-based service composition.

SBOTI uses a community of homogeneous, mobile software agents, which share

the same goal, to effectively and efficiently approximate the set of QoS-optimal

service composition configurations available in a geographically-limited, mobile

environment. The proposed mechanism uses an iterative, reinforcement-based

approach to control the trade-off between computational efficiency and the op-

timality of the identified service composition solutions. SBOTI incorporates a

non-dominated sorting technique to identify the Pareto-optimal set solutions,

which allows the user to explore various QoS trade-offs. To control the diver-

sity of the solutions in this set, SBOTI globally updates both dominated and

non-dominated solutions using digital pheromones. To allow for exploration of

new service composition configurations that may emerge as a result of providers’

mobility, SBOTI uses an adaptation procedure that limits the amount of pher-

omone on previously identified solutions. SBOTI also engages multiple com-

munities, with diverse properties, to collaboratively address the computational

efficiency and optimality concerns introduced by a single community of homoge-

neous agents.

SBOTI is evaluated using simulations under various dynamic conditions. The

evaluation metrics are the size of the dominated space, which indicates the opti-

mality of the identified set of solutions, and communication overhead. Baselines

for comparison are SimDijkstra, GoCoMo and a Random approach. Also, an

utility metric is used to compare the performance of SBOTI with the baselines

that require a-priori articulation of user preferences. The evaluation results illus-

trate both the strengths and the limitations of SBOTI in a mobile environment,

under different network densities and mobility speeds.
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Chapter 1

Introduction

In 2017, 175 billion mobile applications were downloaded [Sydow and Cheney,

2018]. Also, it is estimated that the number of people connected to mobile

services surpassed 5 billion globally [gsm, 2018]. The number of personal user

devices (e.g., smartphones, tables, wearables, etc.) and Internet of Things (IoT)

devices (e.g., Internet-enabled sensors) in the physical environment and the

amount of data they generate is expected to grow exponentially over the next

few years [Mascitti et al., 2018]. To process this huge amount of data, cloud

platforms are typically used, with mobile devices acting as mere data generators

and consumers of the output of data elaboration. However, this approach may

not be a solution working well in all scenarios. Even next generation cellular

technologies might not be able to scale up the capacity to the levels required by

predicted traffic demands [Mascitti et al., 2018]. Also, during environment dis-

asters or disaster relief efforts, the network infrastructure that is used to access

these cloud-based platforms can be severely damaged or completely destroyed,

which affects the potential of mobile applications relying on cloud-based ser-

vices [Le and Kwon, 2017].

As emerging mobile computing-based techniques become more prevalent, the

way services are provided and consumed is evolving, which highlights the po-

tential to bring great opportunities for traditional service computing in mobile

environments [Deng et al., 2016, Cicirelli et al., 2018, Olaniyan et al., 2018]. By

leveraging the computing resources on nearby devices, new service-based applica-

tions can be developed to expand users’ service options [Georgantas, 2018, Palade

et al., 2018b]. Users within a limited geographical area can share the services

deployed on their mobile devices to form service-sharing communities. The ca-

pability of flexibly and dynamically composing services in a limited geographic

1
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area from mobile, resource-constrained and heterogeneous devices opens up ex-

citing possibilities in a large number of domains [Deng et al., 2017]. For example,

indoor location-based service providers have to conduct effort-intensive and time-

consuming business negotiations with building owners or operators to collect the

floor plans or wait for them to voluntarily upload such data, which is not con-

ducive to large-scale coverage in short time. However, by leveraging mobile data

via commodity smartphones to construct the floor plans of complex indoor envi-

ronments, intensive efforts and time overhead in the business negotiation process

for service providers is avoided, which opens up the possibility of fast and scal-

able floor plan reconstruction in many indoor environments such as airports,

train stations, shopping malls, museums and hospitals [Gao et al., 2018]. This

leads to increasing attention to mobility issues in pervasive computing research

because most of the existing (wired-based) service composition architectures were

not designed with mobility taken into consideration. The seamless composition

of distributed service components into more complex applications in a dynamic

environment is a laborious process, especially when considering the possibility

of facing disruptions caused by movement of users and service providers [Groba

and Clarke, 2014, Chen et al., 2018].

Apart from functional requirements, Quality of Service (QoS) such as exe-

cution reliability and latency of such applications are also major concerns that

impact users’ satisfaction [Wagner et al., 2012]. Finding service composition

configurations that can functionally satisfy a user’s request while simultaneously

guaranteeing user-acceptable QoS levels is difficult in mobile environments [Liu

et al., 2017, Cervantes et al., 2017]. Given mobile devices’ limited communi-

cation ranges, the frequent network topology changes, the resources variability

and services with time-dependent QoS, the existing proposals for QoS-optimal

service composition trade-off computational efficiency for optimality to provide

only best-effort QoS [Karmouch and Nayak, 2012].

1.1 Service Composition in Mobile Environments

Service computing has become an important computing paradigm to develop

distributed information systems through the composition of multiple loosely-

coupled, autonomous, self-described, reusable, and portable components encap-

sulated as services. Such software artefacts have become the basic units for

building rapid, low-cost, secure, and reliable applications [Erl, 2005, Baryannis
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et al., 2008]. With the rapid emergence of smart, resource-rich handsets equipped

with diverse wireless communication technologies, services are no longer limited

to traditional contexts and platforms [Perera et al., 2013]. They can be deployed

on mobile devices and can be delivered over wireless networks [Jiang et al.,

2007]. Mobile devices can play the roles of consumer and provider simultane-

ously. Mobile services delivered through mobile techniques are now emerging as

a promising means to extend traditional service computing [Efstathiou et al.,

2014, Deng et al., 2017].

1.1.1 Service Composition Process

A single service may not always be available to satisfy a user request, and may

need to be provisioned by dynamically combining existing services [Urbieta et al.,

2008, Teixeira et al., 2011, Lemos et al., 2016]. For example, a wind-chill service

can be created by combining the data flows of a temperature service and a wind-

speed service [Hachem et al., 2014]. The service composition process, in its

simplest definition, can be defined in two parts:

• Addressing Functional Requirements: Given a set of atomic services avail-

able, the goal is to find a sub-set of these services, that can satisfy user’s

request [van Der Aalst et al., 2003]. This sub-set of services becomes a

composite service, and each service in this set is a composite participant.

In addition to these components, a composite service follows a composition

pattern, which represents the execution order (data dependency) of the ser-

vices in the composite. Such a composite can be strictly-defined or loosely-

defined [Wang, 2011]. In a strictly-defined service composition request the

services are invoked (executed) in a specific order (e.g., {S1 → S2 → S3}).

In a loosely-defined service composition request, multiple feasible service

invocation orders are possible (e.g., {S1 → S2 → S3} or {S1 → S3 → S2}).

This work deals with only the strictly-defined service composition request

case because it captures the interoperable relationship among available

services in the environment. Common composition patterns are: sequen-

tial, parallel, conditional and loop [Zheng et al., 2016]. This work deals

with only QoS concerns, and, for simplicity, it assumes that the available

composites follow only sequential patterns. QoS aggregation formulae can

reduce the parallel, conditional and loop structures to either a single or a

set of QoS values, which can then be used within a composite that follows
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a sequential pattern [Cardoso et al., 2004, Jaeger et al., 2004].

• Addressing Non-functional Requirements: These are the constraints and

objectives on a service’s QoS attributes. Examples of QoS attributes for

services are availability, reliability, execution cost, reputation, throughput

or response time [Strunk, 2010]. The values of these QoS attributes can

be either collected from service providers directly (e.g., price), recorded

from previous executions (e.g., response time), or from user feedbacks

(e.g., reputation) [Liu et al., 2004]. Also, recent advances in QoS pre-

diction has used collaborative filtering approaches based on similar users

invoking similar services to estimate the value of a QoS attribute, thereby

avoiding expensive invocation of the service [White et al., 2017a, White

et al., 2017b, White et al., 2018b, White et al., 2018c, White et al., 2019].

The global QoS of a composite service is determined by the local QoS of its

composite participants and the composition pattern of the composite ser-

vice [Ma et al., 2015]. The set of QoS attributes can be divided into positive

and negative QoS attributes. The values of positive attributes need to be

maximised (e.g., throughput and availability), whereas the values of nega-

tive attributes need to be minimised (e.g., price and response time) [Alrifai

and Risse, 2009]. These attributes can also be categorised into determinis-

tic and non-deterministic. Deterministic attributes are those where their

values are known before the service invocations (e.g., price of using a ser-

vice or security properties). Non-deterministic attributes are the attributes

whose values are unknown at service invocation time (e.g., response time

or availability) [Liu et al., 2004].

1.1.2 QoS Optimisation

The dynamic nature of mobile systems can negatively impact the quality of the

composition [Liu et al., 2017], which, as a consequence, impacts user satisfaction

with the provided composition [O’Sullivan et al., 2002, Wagner et al., 2012]. A

large number of services can be available for the users to use in a mobile en-

vironment. The quality of these services may vary with time. In other words,

alternatives that previously had a degraded QoS, can later improve their QoS.

For example, the response time of a service improves as the workload required

by that service has been reduced, or criteria that were important at a particu-

lar point in time are now irrelevant. Optimisation generally deals with finding,
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among many alternatives, a best (or good enough) solution to a given problem.

However, these type of problems can become intractable when the scale increases,

and usually require high-dimensional and complex computer algorithms to re-

solve. Finding the most optimal subset of these services becomes very hard. Such

a Multi-Objective Problem (MOP) is generally solved by existing approaches by

using a priori articulation of user preferences, and enumerating through each

possible service composition configuration to find the one with the highest util-

ity. A “simple” method to deal with multi-objective problems is to aggregate

multiple objectives using a weighted average approach [Cruz et al., 2011]. Equa-

tion 1.1 shows how this can be performed, where parameter wi is a user preference

provided as a weight, and x is a proposed solution.

min(F (x)), where F (x) =

m∑
i=1

wi ∗ fi(x), and

m∑
i=1

wi = 1 (1.1)

The concept of optimum with several objective functions changes because in

multi-objective problems the aim is to find good compromise solutions (or trade-

offs) rather than a single solution as in a global optimization problem. The notion

of optimum was originally proposed by Francis Ysidro Edgeworth in 1881. This

notion was later generalised by Vilfredo Pareto (in 1896), and the commonly

accepted term is Pareto-optimum [Sindhya, 2011, Chiandussi et al., 2012, Talbi

et al., 2012]. A vector of decision variables ~x∗ ∈ F is Pareto optimal if there does

not exist another ~x ∈ F such that fi(~x) ≤ fi(~x∗) for all i = 1, . . . , k and fj(~x) <

fj(~x
∗) for at least one j. The vector ~x∗ is Pareto optimal if there exists no feasible

vector of decision variables ~x ∈ F which would decrease some criterion without

causing a simultaneous increase in at least one other criterion [Deb, 2014]. This

concept almost always results in a set of solutions called the Pareto optimal set.

The vectors ~x∗ corresponding to the solutions included in the Pareto optimal

set are called non-dominated. The plot (mapping) of the objective functions

whose non-dominated vectors are in the Pareto optimal set is called the Pareto

front [Talbi et al., 2012].

1.1.3 Challenges

Service composition in a mobile environment is a challenging task. The time

available for service selection and composition is limited. The service providers

rely on mobile devices to deliver their services, and their services may become

unavailable due to their mobility. The composition fails if a provider becomes
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unavailable when it is being used, and a new composition is needed. Also, other

service providers (with better QoS) may appear in the environment. To avoid

frequent re-composition, a set of service providers with a long available time for

service is required so that the composition can exist as long as possible [Wang,

2011]. The computation complexity and the timeliness for providing a solution

introduced by the optimisation mechanism makes the problem of finding QoS

optimal service composition configurations challenging.

Failures can come from different sources such as connections may be inter-

mittent and inconsistent in quality, devices may be switched off, and wireless

connections may be of low bandwidth or shared among multiple devices. Such

failures in service providers reduces the reliability of a composed service when

they are participating in the composition [Wang, 2011]. The fluctuating usage

load of these composition participants can reduce the performance of running

applications. The large number of users and a potentially large number of ap-

plications running on this infrastructure, can impose capacity constraints on the

underlying devices such as limited bandwidth [Deng et al., 2017]. The main

challenges for enabling service-based applications in a mobile environment are:

(Ch1) Mobility. Mobile devices frequently change network operators. They

are expected to experience frequent link failures during handover, where

services they provide may become temporarily unreachable [Jiang et al.,

2007]. Also, the mobile devices may move entirely out range, and be-

come completely unreachable. These present major challenges for pro-

viding reliable service compositions in highly dynamic mobile wireless

environments [Wang, 2011].

(Ch2) Limited Resources. Mobile devices (smartphones in particular) are

still recognised as constrained computing devices. This is because of

the limited battery power, which remains a major challenge for poten-

tial growth of mobile computing [Al Ridhawi and Karmouch, 2015, Deng

et al., 2017]. For instance, too many service invocations by mobile de-

vice, can result in excessive computation, network traffic and energy con-

sumption, which in turn increases the delay in receiving services [Park

and Shin, 2008, Sadiq et al., 2015].

(Ch3) Scalability. Given the limited resources of a mobile device, the services

deployed on such devices do not scale when many users are expected to

concurrently access them [Deng et al., 2017]. The qualities of a service
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may evolve relatively frequently, either because of internal changes or

workload fluctuations [Ardagna and Pernici, 2007].

Existing wired-based service composition architectures were not designed

with mobility taken into consideration. The seamless composition of distributed

service components into more complex applications in a dynamic environment

is a laborious process, especially when considering the possibility of facing dis-

ruptions caused by movement of users and service providers [Razzaque et al.,

2016, Chen et al., 2018]. Additionally, the heterogeneity of devices, resource

variability and service reliability is highly unpredictable in mobile networks.

Furthermore, the presence of multiple service providers offering the same func-

tionality exacerbates this problem [Sadiq et al., 2015].

1.2 Problem Definition

As wireless technologies such as Wi-Fi and BLE are increasingly adopted for

device-to-device communication [Gubbi et al., 2013], users can share their ser-

vices deployed on their mobile devices to enable new applications [Deng et al.,

2017, Chen et al., 2018, White et al., 2018a]. This section illustrates the charac-

teristics of an environment through a motivating example. The scenario presents

an adaptive, multi-modal route planner for a smart city [Palade et al., 2017,

Palade et al., 2018a].

Applications for mobile users from multiple domains can be improved with

flexible, dynamic service composition, including automotive (e.g., real-time haz-

ard warnings), energy demand-side management (e.g., communities maximising

use of renewable energy while catering to individual home needs), FinTech (e.g.,

fast insurance response) and many more [Gai et al., 2018]. Traditional service

composition models rely on cloud-computing resources to deliver applications

to users. With variable latencies associated with the Internet, accessing distant

compute resources is not suitable for time-critical control or delivering stringent

QoS to mobile applications [Mascitti et al., 2018]. In recent years, resource-

sharing has emerged as a collaborative service consumption model [Owyang

et al., 2014, Nielsen, 2014]. Users in a limited physical area (e.g., an office

or a region of a city) can leverage the unused capacity of the devices they own

or services they can provide [Deng et al., 2017]. Driven by convenience, better

price and quality of available services (Figure 1.1a), user attitudes towards this

collaborative economy concept are growing more positive (Figure 1.1b).
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Figure 1.1: Figure 1.1a shows the reasons why users engage in resource-sharing
communities. Re-shares are users that already buy/sell services using traditional
platforms, and neo-sharers are users that consume emerging sharing services.
Data collected and reported by Owyang et al. [Owyang et al., 2014]. Figure 1.1b
shows the percentage of users willing to participate in resource-sharing commu-
nities based on the answers of 30,000 Internet respondents in 60 countries. Data
collected and reported by Nielsen [Nielsen, 2014].

To illustrate the opportunities and challenges, consider a small tourist appli-

cation example. Tourists and locals move toward different destinations in busy

cities, such as Dublin, and hold various mobile devices such as smart phones,

tablets, fitness trackers, GPS navigators, and other wearable sensors [Deng et al.,

2017]. Because of their geographical position, the services offered by these de-

vices commonly intertwine with services offered by the city’s public transport

or other road-side units. Buses and taxis supplied with navigators can offer

transport services to users. Road-side units can provide tourist information or

information about real-time obstacles or current local special offers. This myriad

of services can form a virtual-service sharing community, which provides oppor-

tunities for complex service requests to be opportunistically solved. For instance,

a tourist who is at the Science Gallery, and wants to find the fastest route to The

Spire (a landmark in Dublin, Ireland), can use this service-sharing community to

provision a smart, multi-modal, service-based route planner application [Palade

et al., 2017]. Such an application is processed in a distributed way such that

each mobile device executes their service according to a specific flow [Groba and

Clarke, 2014, Chen et al., 2018]. The set of flows that can satisfy a user’s request

can be represented as a service dependency graph [Leung et al., 2010, Feng et al.,

2013]. This process is explained in Section 2.1.2.

Figure 1.2 shows an example of a possible service dependency graph for such

an application. Such a graph can be enabled by clustering the available services

deployed on mobile devices within a limited geographic area in a Service-Specific
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Figure 1.2: An example of a service dependency graph. Each node represents a
service and an edge between two nodes represents a syntactic matching between
the two services. The direction represents the execution order. The red labels
under each node represents the QoS associated with that service, and has the
format [Response Time (RT), Throughput (Th)].

Pi (Available Paths) RT (          ) Th (             )

P0:{S0→S1→S2} 1.447 0.334

P1:{S0→S3→S4→S6} 1.878 4.415

P2:{S0→S3→S5→S7→S8} 2.518 15.692

 𝑹𝑻𝒊 𝐦𝐢𝐧(𝑻𝒉𝒊 )

Figure 1.3: Aggregated QoS of each service composition configuration (path) in
the service dependency graph presented in Fig. 1.2.

Overlay Network (SSON) [Al-Oqily and Karmouch, 2011]. Goal-driven service

composition using planning-based algorithms can automatically solve a user’s re-

quest using the available services in these clusters [Chen et al., 2018]. This graph

captures the data-flow and control-flow relations between the available services in

the environment, where the former describes the input-output data dependencies

between services, and the later how the execution order is performed [D’Mello

et al., 2011]. In this example, three service composition configurations are avail-

able, which are represented as paths in this graph: P0: {S0 → S1 → S2}, P1:

{S0 → S3 → S4 → S6} and P2: {S0 → S3 → S5 → S7 → S8}. The output of

a location service S0 can be used as input to either a traffic congestion service

S1 (enabled by the local city council and deployed on stationary edge devices

installed in bus stations) or a walking speed service S3 (deployed on a fitness

tracker). The output of S1 can be used as input by the bus tracking service S2

(enabled by a bus station or by buses equipped with an on-board computer, GPS

navigation system and a radio which allows them to report their position [dub,

2018]) to estimate the arrival time of the next bus. The output of S3 can be

used as input to S4 or S5, which are another bus tracking services. These can be

applications installed on users’ mobile devices and offered as services to service

consumers. The output flow of S4 can then be used as input by S6, an estimated

time of arrival service deployed on a nearby mobile device. Similarly, the flow

of S5 is used by S7 and then S8. Exclusive choice structures such as guide-
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posts [Chen et al., 2018] allow switching between different services (or paths in

this graph) at runtime (e.g., switching between S1 and S3 after S0).

In addition to the requested functionality, any consumer is likely to want

a service along specific performance dimensions - for example, within a given

cost level, and a minimum time delay, but with high availability. Dimensional

qualities may conflict with one another in the real world. For instance, some

service providers may charge more (monetary units) to provide services with

low response time or high availability [Moustafa et al., 2016]. Each service in

the service dependency graph from Figure 1.2 is initialised with two QoS val-

ues: response time (RT) and throughput (Th). If the QoS of the composite is

not considered, then the optimal path is the shortest path (P0 in this exam-

ple). However, if the values of each QoS attribute for each service in the service

dependency graph are considered, then P0 is not the optimal path. Figure 1.3

shows the QoS of each possible path in the service dependency graph presented

in Figure 1.2. Path P0 has the best response time but the worst throughput,

whereas, path P2 has the worst response time, but the highest throughput. It

is difficult to say which path is the optimal path without a priori preference

articulation. Instead, both paths can be presented to the user who can explore

the trade-offs between the QoS objectives. A priori articulation of user prefer-

ences may affect the flexibility of the composition and developing mechanisms

for automatic service composition when the environment is dynamic, because it

is difficult to analyse the trade-offs between multiple objectives and automati-

cally adjust these weights at runtime [Chen and Bahsoon, 2017]. A progressive

preference articulation approach through user feedbacks would also not be ap-

propriate because of the increased resolution time in delivering the application

to the user. In this context, techniques that minimise or avoid human interaction

are preferred. In the a posteriori case, the decision maker is presented with a set

of Pareto-optimal candidate solutions and chooses a solution from that set [Veld-

huizen and Lamont, 2000]. The process of preference articulation with the user

is outside the scope of this work.

While the QoS values of each service in the graph can generally be estimated

using existing QoS prediction mechanisms [White et al., 2017b], finding valid

paths in this dynamic graph is challenging. The QoS values of services may be

time-dependent, or services may become un-available if service providers move

out of range. In contrast to optimisation towards a static optimum, the goal in

a dynamic environment is to track the dynamically changing optima as closely



Chapter 1. Introduction 11

as possible [Blum and Li, 2008]. To describe the adaptivity in changing con-

ditions, Mehboob et al. use the term “landscape” both as a metaphor where

an entity needs to climb a landscape in pursuit of the highest peak, and as a

mathematical object in which the value of a function maps to the elevation of

the landscape [Mehboob et al., 2016]. This metaphor is represented through two

landscape models: rugged landscapes and dancing landscapes [Page, 2010]. A

rugged landscape is a landscape with many peaks, valleys and troughs. Such a

landscape assumes that the fitness levels do not change. In a dancing landscape,

local peaks may change, making a solution that was earlier optimal no longer a

peak. Prior QoS optimisation methods for flexible service composition in mobile

environments assume a static and well-known environment and are not suited for

dynamic environments. In this work, the focus is more satisficing, which is the

focus on finding sufficiently good solutions that satisfies one’s purposes, rather

than finding the best solutions.

1.3 Existing Solutions

The QoS-aware service composition problem is NP-hard [Strunk, 2010]. Given

the user QoS objectives and constraints, the combinatorial explosion of services

and devices in the environment that can execute those services introduces a

large solutions space, and searching for the optimal plan is time-consuming. To

address this problem, the QoS optimisation community has reduced the ser-

vice composition process to a QoS-aware service selection problem [Yan et al.,

2012, Trummer et al., 2014] where services are grouped in classes of equivalent

functionality and are mapped to a predefined set of abstract tasks (i.e., user’s

request) [Jiang et al., 2014]. Each task corresponds to a class of services, and,

for each task, a concrete service with optimal QoS is selected to implement the

task [Zeng et al., 2004, Canfora et al., 2005a, Ardagna and Pernici, 2007, Cali-

nescu et al., 2011, Deng et al., 2014]. Such an exactly-defined task request affects

the flexibility of service composition because services (with potential better QoS)

that are not outlined in the predefined abstract set of tasks, but could contribute

to the user’s request, are not used during composition [Chen et al., 2018].

Partial matching and planning-based techniques can be combined to address

this functional limitation. Service composition includes searching the service de-

pendency graph generated according to input/output relationship between ser-

vices [Geyik et al., 2013, Jiang et al., 2014, Zou et al., 2014, Rodriguez-Mier et al.,
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2017, Chen et al., 2018]. To address the challenges associated with the environ-

ment’s openness and dynamism, the existing methods employ flexible service

composition for services maintained by different hosts and adaptable compos-

ites to create a new service composition when the network topology changes the

QoS of services in the environment [Al-Oqily and Karmouch, 2011, Zou et al.,

2014, Groba and Clarke, 2014, Chen et al., 2018]. The limitations of the ex-

isting representative solutions in the literature, are classified as follows: Single-

Objective vs. Multi-Objective Optimisation, and Computational Efficiency and

Optimality Trade-off.

1.3.1 Single-Objective and Multi-Objective Optimisation

The existing QoS-aware, flexible service composition proposals transform the

multi-objective optimisation problem into a single-objective optimisation prob-

lem [Palade and Clarke, 2018, Palade et al., 2018b] by using a weighted average

method (Section 1.1.2). This approach is restrictive in dealing with the QoS

optimisation problem because (i) it is difficult to observe the trade-offs between

multiple QoS objectives to allow the user to make compromises between the

available solutions in the environment [Trummer et al., 2014]; (ii) the values of

some of the QoS attributes can not be simultaneously optimised (e.g., improving

the availability of a service composition configuration may imply an increase in

cost) [Liang et al., 2018]; (iii) the a priori knowledge requirement about the QoS

objectives’ weights, can inhibit the development of automatic, planning-based

service composition [Palade and Clarke, 2018, Palade et al., 2018b].

1.3.2 Computational Efficiency and Optimality Trade-off

The existing flexible service composition models have used two types of QoS

optimisation mechanisms: exact and heuristics [Gabrel et al., 2018]. The ex-

act approach has high computational complexity, and requires a complete (ac-

curate) state of the environment to make decisions. The heuristic algorithms

are generally fast but do not offer any optimality guarantees [Trummer et al.,

2014, Gabrel et al., 2018]. Metaheuristics algorithms have been introduced to

control the trade-off between computational efficiency and optimality. This type

of algorithms generally use agent-based approach to explore the solutions space.

However, several challenges still need to be considered. For instance, the cur-

rent approaches require a centralised perspective, or have been implemented for

template-matching composition (Section 1.3.1).
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1.3.3 Research Gaps and Observations

Based on the service composition challenges introduced by a mobile environ-

ment (Section 1.1 and Section 1.2) and the limitations of the existing solutions

to address these challenges (Section 1.3), the following research gap is observed.

A large number of service composition proposals have been proposed for open

and dynamic environments, however, these approaches are based on template-

matching composition (introduced in Section 1.3.1), which is not flexible in dy-

namic environments. Dynamic and opportunistic environments can contain a

large number of services and a common problem the lack of interoperability be-

tween the services. By imposing signature constraints between the abstract tasks

provided by the user and the available services in the environment, many services

that could be useful during the composition (with potentially better QoS) are

not used, because they do not have the specified signature. The existing flex-

ible service composition proposals do not allow the user to make compromises

between multiple QoS objectives, and use optimisation methods that trade-off

computational efficiency for optimality, or vice-versa.

1.3.4 Research Questions

In the context of the research gaps and observations of the limitation of existing

research presented in Section 1.3.3, this thesis explores the question of how to

search for service compositions options that can functionally satisfy a user’s

request while simultaneously guaranteeing user-acceptable QoS levels in mobile

environments. This question can be decomposed into:

Q1 Multi-objective optimisation. For service compositions in mobile environ-

ments, to what extent can the trade-off between computational efficiency

and optimality be controlled, such that a broad range of composition op-

tions can be presented to users?

Q2 Adaptation. To what extent can service providers’ mobility, potentially

resulting in new service options appearing in the environment, be leveraged

through an adaptive approach to exploring new service compositions?

Q3 Efficient Exploration. To what extent will more search agents improve the

optimality and diversity of identified service compositions?

The next section will introduce the approach used to answer these questions.
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1.4 Thesis Approach

This thesis presents SBOTI (Stigmergic-Based OpTImisation), a decentralised,

nature-inspired optimisation mechanism designed to find a set of QoS near-

optimal service composition configurations that may emerge in mobile environ-

ments as a result of service providers’ mobility.

Assumptions. The following assumptions are made about the mobile environ-

ment and the service composition process performed in such an environment:

(A1) The physical environment is a limited geographic area such as a mall [Wang,

2011, Sadiq et al., 2015, Chen et al., 2018] or university campus [Deng

et al., 2017] where users can form service-sharing communities using the

services deployed on their mobile devices. Such communities are formed

in highly dynamic environments using existing ad-hoc (infrastructure-less)

wireless technologies (e.g., WLAN, BLE, NFC [Deng et al., 2016]) and

do not require dedicated infrastructure to exchange services deployed on

the participating mobile devices [Karmouch and Nayak, 2012, Cervantes

et al., 2017, Liu et al., 2017, Mascitti et al., 2018]. A container with micro-

service oriented architecture operates on each device and provides specific

services [Liu et al., 2017]. Stationary, resource-rich entities such as the

ones used for web services may relieve service providers from some of their

duties, may not be available or accessible at all times [Chakraborty et al.,

2005, Wang, 2011, Groba and Clarke, 2014]. The users are willing to share

the services available on their mobile devices to participate as helpers in

the composition process [Al-Oqily and Karmouch, 2011, Hachem et al.,

2014, Georgantas, 2018, Peng et al., 2018]. These users consume their own

resources such as battery and computing power. Incentive mechanisms can

provide participants with enough rewards for their participation costs [Zhao

et al., 2014, Wang and Du, 2016]. Such mechanisms are outside the scope

of this work, and will not be discussed any further.

(A2) The available services are clustered based on their syntactic or seman-

tic similarity using a Service-Specific Overlay Network (SSON) [Al-Oqily

and Karmouch, 2011, Cabrera et al., 2017b, Cabrera et al., 2017a]. Goal-

driven service composition using planning-based algorithms are used to au-

tomatically solve a user’s request using the available services in these clus-

ters [Chen et al., 2018, Cabrera et al., 2018b, Cabrera et al., 2018a]. The
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available service compositions are merged into a service dependency graph

(e.g., Figure 1.2), and are modelled as a service dependency graph [Gu

et al., 2008, Jiang et al., 2014]. This thesis assumes that the generated

service compositions guarantee to provide the expected behaviour from a

functional perspective. Several tools such as static analysis or model check-

ing can be used to prove the functional correctness of these services [Hull

and Su, 2005]. Probability-free or probabilistic techniques may be used to

model the uncertainty in providers’ mobility. A probability-free approach

assumes that each service provider reports a time-window [ai, bi] during

which they may leave. In the probabilistic approach, a priori information

about each service provider’s estimated available time in the current envi-

ronment is available and it is modelled using a random variable Xi [Wang,

2011].

(A3) There is no central repository that can offer access to the QoS of each

service available in the environment. However, this information can be

collected by each device that provides a service. More precisely, if a device

hosts one or more services, the device can estimate the QoS of these services

using techniques such as sampling-based methods through active execution

monitoring [Cardoso et al., 2004, Wiesemann et al., 2008], or collaborative

filtering procedures based on feedbacks from similar users [White et al.,

2017b]. This work assumes that the service providers that rely on such

devices have the mechanisms to advertise the values of the QoS attributes

in a device-enabled, local registry [Liu et al., 2004]. This work deals with

deterministic QoS values. Also, this work assumes that the QoS of available

services is likely to change faster than the functional structure (i.e., service

dependency graph) built on top of a service-sharing community to satisfy

a user’s request.

(A4) There is no a priori knowledge about the preference ranking of the QoS

objectives. More precisely, there is no specification with regards to the

weights of each QoS objective. For instance, if there are two QoS objec-

tives, to minimise the response time and to maximise the reliability of the

composition, there is no scalar to quantify how the “minimise the response

time” objective relates to the “maximise the reliability” one [Trummer

et al., 2014]. The elicitation of these preferences will happen after the

user is presented with the set of identified solutions. This elicitation pro-
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cess will not discussed in this work. However, a set of user QoS objective

weights will be used to allow performance comparison with the existing

baseline proposals [Palade and Clarke, 2018, Palade et al., 2018b], which

use a single-objective optimisation approach (Section 1.3.1).

Observations. The key driver for this research is the observation that limited

attention has been paid to the existing QoS optimisation mechanisms for flex-

ible service composition in mobile environments [Karmouch and Nayak, 2012].

The existing approaches are limited to best effort QoS. The mechanisms use ei-

ther exact algorithms or heuristic-based approaches. Exact algorithms can find

the optimal solution, but lack scalability because of their exponential complex-

ity. These mechanisms generally use (greedy-based) heuristic approaches, which

have low computational cost, but do not offer any worst-case guarantees on how

close the QoS values of the returned solutions come to the QoS values of the

Pareto-optimal ones [Trummer et al., 2014]. While this is generally difficult in

an open and dynamic setting such as the mobile environment, an approximate

set of solutions that is as close as possible to the real set of optimal solutions

can be provided to the user to allow him to make various compromises between

the QoS values. The existing proposals require a centralised perspective, which,

in a mobile environment, is a single point of failure or has the potential to cause

processing and communication bottlenecks because of frequent state updates.

Hypothesis. This thesis investigates the QoS optimisation problem for flex-

ible service composition in mobile environments. As opposed to the existing

heuristic-based, best effort approaches, this thesis investigates whether an op-

timisation mechanism can be developed to be able to find service composition

configurations with better QoS. The hypothesis is framed as follows: By us-

ing a decentralised, iterative, stigmergic-based mechanism that can control the

trade-off between the computational efficiency of the execution and optimality

of identified solutions, in a mobile environment, service composition configura-

tions with higher utility than the ones produced by the existing heuristic-based

proposals can be identified.

Basic Idea. The concept of opportunistic computing combined with flexible

service composition in a mobile environment can improve the resilience of the

service composition. Previous works such as Groba and Clarke [Groba and

Clarke, 2014] and Chen and Clarke [Chen et al., 2018] focused on investigat-
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ing failure rate of the composition by proposing various service discovery and

composition mechanisms. These works focused on minimising the interactions

with the service providers. The proposed models defer all interactions with the

service providers until they are indispensable for the service composition to make

progress in the execution. However, the existing investigations are limited to a

functional level. These works have used (greedy-based) heuristics approaches

for service selection, and make only best-effort guarantees. The model proposed

in this thesis is a nature-inspired metaheuristic that can control the trade-off

between computational efficiency and QoS, to optimise the QoS that can be

achieved. While the main objective of flexible service composition in dynamic,

opportunistic environments is to reduce failures, the proposed approach aims to

improve the QoS that can be achieved at an acceptable communication overhead.

Objectives. Existing proposals for flexible service composition in mobile en-

vironments (e.g., Groba and Clarke [Groba and Clarke, 2014] or Chen and

Clarke [Chen et al., 2018]) focused on functional requirements and single-objective

optimisation. This work’s high level research research objective is to investigate

a QoS optimisation mechanism that can address the limitations of these systems

as follows:

(O1) All currently available services should be considered when searching for

the most appropriate service compositions. A user’s request should be

functionally solved using multi-granular, goal-driven service composition

approaches. Syntactic, partial matching can automatically identify the

available compositions in the environment.

(O2) Optimal utilisation of devices should be enabled. Services are likely to

be deployed on battery powered devices. The overhead introduced by the

model should be kept to an acceptable level to increase the network lifetime.

(O3) Device mobility should be supported. Provider devices may move out of

range, which may cause an executing composition to fail. Service provision-

ing should remain seamless to the consumer, even under those conditions.

(O4) Multiple possible service composition configurations should be produced,

to allow for exploration of QoS trade-offs, and any preference articulation

process with the user should be done after the optimisation process.
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1.5 Thesis Contribution

This thesis investigates the QoS optimisation problem for flexible service com-

position in a dynamic ad hoc environment while accommodating for changes in

the operating environment. This research contributes to the body of knowledge

by providing:

(C1) Stigmergic-based QoS Optimisation Mechanism. Finding QoS op-

timal service compositions in mobile-based, service-sharing communities is

challenging because of the inherent dynamism in services deployed on mo-

bile devices, and in the underlying physical network used to enable these

services. Existing service composition proposals for such environments re-

quire a priori knowledge either about the service composition structure, or

about the QoS objectives’ weights, which limits the composition flexibil-

ity and does not allow for compromises to be made between multiple QoS

objectives. This thesis proposes SBOTI, a nature-inspired, decentralised,

iterative, QoS optimisation mechanism for service composition in mobile

environments. SBOTI uses a community of homogeneous, mobile software

agents, which share the same goal, to effectively and efficiently approxi-

mate the set of QoS-optimal service composition configurations available

in a geographically-limited, mobile environment. The proposed mechanism

uses a reinforcement-based approach to control the trade-offs between com-

putational efficiency and the optimality of the identified service composi-

tion solutions. The proposed mechanism is inspired by existing swarm-

based algorithms, which use the collective intelligence of a group of agents

distributed in the environment to efficiently and effectively explore the so-

lution space. SBOTI incorporates a non-dominated sorting technique to

identify the Pareto-optimal set solutions, which allows the user to explore

various QoS trade-offs. To control the diversity of the solutions in this set,

SBOTI globally updates both dominated and non-dominated solutions us-

ing digital pheromones. This contribution is focused on answering research

question Q1.

(C2) Adaptation Mechanism. New service composition configurations may

emerge (with potentially better QoS) as a result of service providers’ mo-

bility. Most service composition proposals for mobile environments either

use template-matching composition or require a priori knowledge about

the QoS objectives’ weights, which limits the composition flexibility in
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such environments and does not allow for compromises to be made be-

tween multiple QoS objectives. Also, the existing stigmergic-based service

composition proposals do not allow for efficient exploration of the solution

space. The digital pheromone mechanism used by such approaches may

affect the exploration of new service composition configuration that may

emerge as a result of service providers mobility. This thesis proposes an

adaptation procedure to deal with the dynamic topology of the service

providers deployed on mobile devices. To allow for exploration of new ser-

vice composition configurations that may emerge as a result of providers’

mobility, SBOTI uses an adaptation procedure that limits the amount of

pheromone on previously identified solutions. This contribution is focused

on answering research question Q2.

(C3) Collaborative Agent Communities. Given the dynamic nature of the

environment under consideration for this work, re-optimisation needs to

be performed to closely track any changes in the available service compo-

sition configurations. SBOTI’s optimisation process requires a number of

hyper-parameters to be configured, such as the number of mobile agents

required to explore the search space, the initial pheromone level τ associ-

ated with each service agent, the evaporation frequency ρ parameter that

allows new paths to be explored. An important limitation of metaheuristic-

based algorithms is that these hyper-parameters need to be tuned, because

a universally optimal parameter values set does not exist [Talbi, 2009].

A tuning process allows for a larger flexibility and robustness, but it is

difficult to perform since it may require problem specific information, or

a priori knowledge about the environment [Hussein and Saadawi, 2003].

This thesis proposes a collaborative approach to engage multiple communi-

ties of agents for provisioning QoS-optimal service compositions in mobile

environments. New service compositions (with better QoS) can emerge

from local decisions and interactions with agents from diverse communities.

Several communities can independently tackle the optimisation problem in

parallel, and maximise the explored/exploited search space. Each commu-

nity searches and converges into different areas in the search space. When

a dynamic change occurs, the multi-community approach has knowledge

from a set of previously good solutions whereas a single community ap-

proach knows about only a single solution. This contribution is focused on
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answering research question Q3.

1.5.1 Evaluation

The performance and communication overhead of the proposed contributions

is evaluated in Simonstrator [Richerzhagen et al., 2015], and the results are

compared with baseline variants that are Dijkstra-based, (Greedy) Heuristic-

based and Random. A prototype case study is proposed to demonstrate the

feasibility of the proposed approach on simulated mobile devices. The metrics

used for evaluation are the size of dominated space, the spread, the utility of the

identified service composition configurations and the introduced communication

overhead.

1.6 Thesis Scope

The goal of this thesis is to provide an optimisation method for approximating

the set of QoS-optimal service composition configurations in a mobile environ-

ment. To achieve this, this thesis introduces SBOTI. The aim of this thesis

is threefold. First, SBOTI uses stigmergy, a form of indirect communication

through the environment to deal with the challenges introduced by the studied

environment, and uses a multi-agent approach to deal perform efficient search

of the solutions space. Second, this thesis proposes an optimisation for flexible

service composition that can optimise multiple user objectives and produce a

number of solutions to allow the user to make various QoS compromises. Third,

the mechanism should allow for control of the computational efficiency and opti-

mality trade-off. This should allow for more optimal or more diversified solutions

to be identified if the user is willing to wait for a particular amount of time.

This thesis does not deal with the functional requirements of the composi-

tion. SBOTI takes as input a service dependency graph, which represents a set

of solutions available that can functionally satisfy a user’s request (e.g., Fig-

ure 1.2). Such a graph is built using a service discovery component [Cabrera

et al., 2018a]. The available services are combined in an input-output service

dependency graph, based on the (syntactic/semantic) interoperable relationship

among available services. Each node in the graph corresponds to one service,

and an edge is a syntactic matching between two connected services [Kalasapur

et al., 2007, Jiang et al., 2014]. Planning-based algorithms are generally used

to find paths in this graph using goal-driven approaches [Chen et al., 2018] that
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provide the required flexibility as to which services currently in the environ-

ment can be used in a service composition, and contribute to multiple possible

configurations. This work assumes that such a component exists, and, once it

initialises SBOTI with a new graph, this component can perform in parallel to

SBOTI to continuously adapt this functional structure relative to the changing

environment. The adaptation process is required because service providers are

mobile. New services may become available at runtime, and existing services

may become unavailable. Examples of how such a component can be built have

been previously outlined in Chen and Clarke [Chen et al., 2018] or Groba and

Clarke [Groba and Clarke, 2014]. Mascitti et al. [Mascitti et al., 2018] made a

similar assumption. Previous work has investigated whether user feedback can

improve the accuracy of the search results during the planning process [Cabrera

et al., 2018a].

The incentives for mobile service providers to share their resources in service-

sharing communities are not studied in this thesis. Different methods to encour-

age collaboration between available providers can be found in the literature (e.g.,

Li and Shen [Li and Shen, 2012]). Also, this thesis does not deal with the re-

course value, which is the observed difference between the pre-invocation time

and after-invocation time value of a certain QoS attribute. This issue is left as

future work and will be discussed in the last section of this work.

1.7 Thesis Structure

The rest of this thesis is structured as follows:

• Chapter 2 State of the Art analyses how the state of the art optimisa-

tion mechanisms meet the challenges of mobile environments. In particular,

the chapter explores the common types of performing service composition,

the existing proposals for multi-objective optimisation, and how the exist-

ing approaches deal with the computational efficiency concerns.

• Chapter 3 Design returns to the challenges of QoS-aware service com-

position in mobile environments outlined in Chapter 1 and describes the

design objectives, and design decisions of this thesis. Thereafter the chap-

ter outlines how the proposed optimisation mechanism addresses the design

decisions in detail.

• Chapter 4 Implementation outlines the implementation of the optimi-
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sation mechanism for QoS-aware, flexible service composition. The chapter

describes how the integration with the Simonstrator enables mobility for

composite participants. Then the chapter highlights the implementation

details of the optimisation mechanism, and specifies the interaction be-

tween the actors used during the optimisation.

• Chapter 5 Evaluation evaluates how well SBOTI achieves its objective

of finding QoS optimal service composition solutions compared to base-

line approaches. The chapter first describes the experimental setup of the

simulation-based study. The second part of the chapter presents and anal-

yses the results showing that the proposed optimisation mechanism is a

suitable alternative to existing optimisation mechanism for flexible service

composition in mobile environments.

• Chapter 6 Discussion and Conclusion summarises the thesis and its

achievements. The chapter then discusses the findings with regards to the

proposed optimisation mechanism and highlights potential areas for future

work. A final remark provides a succinct wrap-up of this work.

1.8 Chapter Summary

This chapter introduced the context of this research, together with the limita-

tions of the existing works, the thesis approach and the thesis contributions.

Users within a limited geographic area can form service-sharing communities us-

ing the services deployed on their mobile devices. Creating Quality of Service

(QoS) optimal service compositions in such decentralised and dynamic environ-

ments is challenging because of the service providers’ mobility and the inherent

dynamism in the available services. Existing proposals for mobile environments

either use template-matching composition or require a priori knowledge about

the QoS objectives’ weights, which limits the composition’s flexibility in such en-

vironments. Also, these proposals do not allow for efficient exploration of various

QoS trade-offs between multiple service composition configurations available in

the environment.

This thesis presents SBOTI, a decentralised, QoS optimisation mechanism

for automatic, planning-based service composition. SBOTI uses a community

of homogeneous, mobile software agents, which share the same goal, to effec-

tively and efficiently approximate the set of QoS-optimal service composition



Chapter 1. Introduction 23

configurations available in a geographically-limited, mobile environment. The

proposed mechanism uses an iterative, reinforcement-based approach to control

the trade-off between computational efficiency and the optimality of the identi-

fied service composition solutions. SBOTI incorporates a non-dominated sorting

technique to identify the Pareto-optimal set solutions, which allows the user to

explore various QoS trade-offs. To control the diversity of the solutions in this

set, SBOTI globally updates both dominated and non-dominated solutions using

digital pheromones. To allow for exploration of new service composition configu-

rations that may emerge as a result of providers’ mobility, SBOTI uses an adap-

tation procedure that limits the amount of pheromone on previously identified

solutions. SBOTI also engages multiple communities, with diverse properties, to

collaboratively address the computational efficiency and optimality concerns in-

troduced by a single community of homogeneous agents. The performance of the

proposed approach is compared with baseline variants, which are Dijkstra-based,

(Greedy) Heuristic-based and Random.
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State of the Art

This chapter presents the background of this work and provides a review of

the relevant literature. Existing surveys of service composition illustrate its

maturity as an approach to building new applications in web [Lemos et al.,

2016], cloud [Vakili and Navimipour, 2017, Hayyolalam and Kazem, 2018], and

dynamic environments [Urbieta et al., 2008, Stavropoulos et al., 2013, Immonen

and Pakkala, 2014]. Two methods are generally used to functionally solve a user’s

request: Template-Matching and Flexible Service Composition. In addition to

the functional requirements, a service composition process needs to satisfy non-

functional (QoS) requirements such response time or throughput of the final

service composition configuration. Searching for service compositions that satisfy

these requirements when many functionally-equivalent services are available can

be formulated as a multi-objective optimisation problem, where each objective

is associated with the value of a QoS attribute [Trummer et al., 2014].

This chapter is structured as follows: Section 2.1 defines the key SOA con-

cepts, and Section 2.2 introduces the representative works for QoS optimisa-

tion in mobile environments. The discussion moves towards metaheuristic based

proposals, and Section 2.2.5 introduces the stigmergic-coordination mechanism,

which has been used successfully in finding QoS optimal routes in networks with

frequent link disconnections, and rapid topology changes such as Mobile (Vehic-

ular) Ad-Hoc Networks. This chapter culminates with a summary of the existing

works, and an overview of the research gaps in Section 2.3.

2.1 Service Computing

Services computing is a design paradigm that provides a conceptual foundation

for building software applications by re-using loosely-coupled software entities

24
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called services [Erl, 2005]. Services are self-contained software modules that

perform pre-defined tasks. A service takes a set of inputs, performs a certain

task, and produces a set of outputs. A set of non-functional Quality of Service

(QoS) parameters (e.g., response time, throughput, reliability, availability) are

associated with a service, which determine the performance of the service [Geor-

gakopoulos and Papazoglou, 2008]. A single service may not be able to satisfy a

user’s request, and service composition is required. During service composition, a

set of services are combined in a specific order based on their syntactic/semantic

dependencies to produce the required outputs given a set of inputs [Groba and

Clarke, 2014, Chen et al., 2018]. While providing a solution to a user’s request, it

is also necessary to satisfy user’s end-to-end QoS requirements, which is the main

challenge in QoS-aware service composition [Gu et al., 2003, Xiao and Boutaba,

2005, Estévez-Ayres et al., 2009, Liang et al., 2009, Wada et al., 2012, Ma et al.,

2013, Zou et al., 2014, Chen et al., 2015b, Trummer et al., 2014, Jiang et al.,

2014, Mostafa and Zhang, 2015, Wang and Du, 2016, Hashmi et al., 2016, Lemos

et al., 2016, Wang et al., 2017, Rodriguez-Mier et al., 2017, Chattopadhyay and

Banerjee, 2017, Mascitti et al., 2018, Gabrel et al., 2018].

This section extends the description of the key SOA concepts presented briefly

previously in Section 1.1.1. A comprehensive list of the key principles of this

paradigm have been presented in previous works such as Zhang et al. [Zhang

et al., 2007], Georgakopoulos and Papazoglou [Georgakopoulos and Papazoglou,

2008], Papazoglou et al. [Papazoglou et al., 2008], O’Sullivan et al. [O’Sullivan

et al., 2002], and Huhns and Singh [Huhns and Singh, 2005]. This work focuses

on the two general types for performing service composition, which are template-

matching and flexible service composition [Baryannis et al., 2008].

2.1.1 Key Concepts

Service. A service is a self-contained software unit that encapsulates a well-

defined processing logic, which can be described by a set of functional and non-

functional properties [Srinivasan and Treadwell, 2005]. A service consists of

well-published, implementation agnostic interfaces that are loosely-coupled, pro-

mote re-usability and concepts such as location transparency. Service providers

are entities offering services to service consumers. In the context of this work,

heterogeneous resources available on devices can be abstracted as services to sim-

plify the access and have platform independence [Sadiq et al., 2015]. A service is

deployed and executes on a mobile device [Groba and Clarke, 2014, Chen et al.,
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2018, Mascitti et al., 2018].

Service Composition. Service composition facilitates seamless and flexible in-

tegration of applications from different providers [Cervantes et al., 2017]. Users

do no have prior knowledge about the available services in the environment.

Service composition promotes the quick creation of high level applications by

aggregating already existing software services to provide complex functionali-

ties that none of the services could provide by itself. Previous research efforts

have undertaken two orthogonal directions: manual or automatic [Ko et al.,

2008]. Manual service composition is performed by a developer which chooses

the outsourced services that are relevant to the user request, and programs the

interaction logic between the services using using a programming language such

as BPEL. This approach is ad-hoc and time consuming, and does not scale with

the number of service composition, or with the number of service composition

requests. The automated approach has been introduced to address this limita-

tion. This is combination done through the combination of syntactic/semantic

matching and planning-based algorithm. Goal-driven service composition is used

to identify the available service composition configurations [Chen et al., 2018].

Quality of Service. Non-functional requirements (or QoS) can be considered

as constraints over the functionality of a service and can be used to differentiate

between multiple functionally-similar services [O’Sullivan et al., 2002]. Service

quality is used to define a contract between a service consumer and a service

provider to guarantee that their expectations are met [Kritikos et al., 2013].

This contract is used by a service management system to assess whether the

requested quality levels during service execution are achieved, and to enforce ap-

propriate adaptation actions if these cannot be satisfied by the existing service

providers [Wada et al., 2012]. Such actions could be to increase the underlying

service resources, to substitute or recompose the faulty service, and, where a Ser-

vice Level Agreement (SLA) needs to be enforced, to determine which settlement

actions apply based on the actual quality values delivered [Duan et al., 2003].

These could be penalties to be paid by the service provider, or re-negotiation for

contract termination [Yan et al., 2007, Kritikos et al., 2013, Lemos et al., 2016].

Table 2.1 shows examples of some of the widely proposed QoS attributes and their

aggregation formulae for sequential service composition configurations [Canfora

et al., 2005b, Cardoso et al., 2004].
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QoS Attribute Unit Sequence Pattern
Response Time (qrt) msec

∑n
i=1 qrt(fi)

Latency (ql) msec
∑n

i=1 ql(fi)
Price (qp) per invocation

∑n
i=1 qp(fi)

Availability (qav) percent
∏n

i=1 qav(fi)
Reliability (qr) percent

∏n
i=1 qr(fi)

Accuracy (qac) percent
∏n

i=1 qac(fi)
Throughput (qtp) invocation/sec min(fi, . . . , fn)

Table 2.1: QoS aggregation formulae for service composition configurations using
Sequence Pattern, which is the main service composition pattern considered in
this work (Section 1.1.1).

As introduced in Section 1.1.1, QoS attributes can be positive or negative,

where the value of a positive attribute should be maximised (e.g. throughput

and availability), and the value of a negative attribute should be minimised (e.g.

price and response time) [Alrifai and Risse, 2009]. These attributes can also be

categorised into deterministic and non-deterministic. Deterministic attributes

are those for which values are known before the service invocations (e.g., price

of using a service or other security properties). Non-deterministic attributes are

those whose values are unknown at service invocation time (e.g., response time

or availability) [Liu et al., 2004]. This description is extended in Section 2.1.3.

2.1.2 Methods for Addressing Functional Requirements

Service-oriented architectures have been used for designing and deploying mobile

and pervasive computing environments, to facilitate user tasks that require a

number of resources that may be spread over the networked environment. If the

user requirements are known a priori, the required resources can be tuned for user

access when desired. However, such a static design of systems limits their possible

usage by other user tasks. Because of the growing applications of pervasive

computing, there is a need to provide support to user tasks in the face of dynamic

challenges such as heterogeneity, resource restrictions, and mobility. Service-

oriented environments promise flexibility in terms of user support, as well as

better resource utilisation. By modelling the available resources as services and

by designing a mechanism to access the available services, a pervasive computing

environment can be effectively transformed into a service- oriented environment.

Further, by creating access mechanisms that can dynamically use the available

services in an efficient way to provide the best possible support for user tasks,

guaranteed results can be delivered [Kalasapur et al., 2007].

One of the most promising features of the service-oriented paradigm is run-
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Figure 2.1: Template-matching service composition example.

time service discovery and late-binding [Canfora et al., 2005b]. Runtime service

discovery implies that a workflow or program contains a list of abstract tasks

that need to be matched to concrete services. Late-binding mechanisms select

those services that best contribute to maximise a set of local and global objec-

tives. Local objectives refer to single service selection. Global objectives refer

to composite level selection. From a functional perspective of how the users’

requests are provisioned, the general approaches for performing service compo-

sition can be divided in template-based and flexible service composition [Wang

et al., 2017].

Template-based

Service composition selects and interconnects services offered by different service

providers on the basis of a specified business process. Such a business process

is generally represented using a workflow language for web services such as WS-

BPEL [Weerawarana et al., 2005, Oasis, 2007], OWL-S [Martin et al., 2004] or

BPML [Model, 2011] to define the data dependency and control flow between

tasks. As example, Cardoso et al. [Cardoso et al., 2004] developed METEOR-S

system, to compose services. The users’ queries are used to logically build the

service composition description using a BPEL-based language. This description

does not contain any invocable service, as this process is left for execution time,

where services are matched to abstract tasks.

Template-based service composition is based on an abstract composite ser-

vice, consisting of a set of abstract services controlled through workflow patterns.

This is abstract composite is instantiated and executed at runtime by binding

abstract services to concrete services. As mentioned earlier, the dynamic binding



Chapter 2. State of the Art 29

ensures a loose coupling of services [Wu et al., 2016]. The optimisation process

is transformed into a template-matching approach where the QoS optimal ser-

vices are allocated to each abstract service. Figure 2.1 shows an example of

template-matching service composition. In this example, the business process,

which represents the formalised functional requirements of the application, is

specified as a set of abstract services (or tasks). This specification of the set of

abstract tasks is provided a priori by the user [Kalasapur et al., 2007]. Examples

of works that use this approach are Zeng et al. [Zeng et al., 2004], Canfora et

al. [Canfora et al., 2005a], Ardagna and Pernici [Ardagna and Pernici, 2007], Ca-

linescu et al. [Calinescu et al., 2011], Deng et al. [Deng et al., 2014], Al Ridhawi

and Karmouch [Al Ridhawi and Karmouch, 2015], Mostafa and Zhang [Mostafa

and Zhang, 2015], and Wu et al. [Wu et al., 2016]. The description of these works

is extended in the next section from a non-functional perspective. The common

lifecycle of the template-matching service composition approach consists of three

phases:

• Composition Phase: This phase deals with synthesising the service compo-

sition schema [Baryannis et al., 2008]. Given a user’s request, the service

composition schema designer formalises this request to build the service

composition schema. This represents the description of the business pro-

cess that needs to be performed [Zeng et al., 2004]. This business process

consists of a set of abstract tasks. This schema also contains the data-flow

and the control-flow constructs to specify how the order of the abstract

tasks should be executed. This composition schema is generally manually

constructed.

• Selection Phase: For each task from the set of abstract tasks, a set of

concrete services is identified from the service registry after the schema is

created. The selection phase finds and matches the advertised composite

service specification to the available service implementations [Jiang et al.,

2014]. This follows either a static or a dynamic procedure. In a static ap-

proach, the specific services are known in advance, and are matched to the

service composition specification at design-time. In a dynamic approach,

the service composition specification is matched with the available services

at runtime. The static approach is preferred when the business process and

the available services rarely change. However, when the service composi-

tion requirements change, or the environment is continuously changing,
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dynamic approaches are preferred [Chen et al., 2015a].

• Execution Phase: In this phase an executable instance of the composite

service is created. The composite service instance is then invoked by the

end user using a service execution engine. The common tasks performed by

such an engine are logging, execution monitoring, performance measuring

and exception handling [Baryannis et al., 2008].

An important limitation of this approach is that it requires a priori knowl-

edge about user tasks or about the environment. In a mobile environment, this

knowledge may not be available. Because of the mobility of service providers,

services that may be available during the discovery phase, may not be available

at runtime, or vice-versa. Also, this approach requires that the user has complete

knowledge about the specification of available services. Such an exactly-defined

request reduces the flexibility of service composition and limits the capability of

developing automatic service composition approaches to cope with the challenges

introduced by the environment [Kalasapur et al., 2007].

Flexible Service Composition

Open and dynamic environments such as mobile environments require flexible

and automatic service composition approaches. A number of surveys capture

the approaches that can support automatic service composition such as Rao

and Su [Rao and Su, 2004], Küster et al. [Küster et al., 2005], and Alférez et

al. [Alférez and Pelechano, 2017]. This work summaries the general approach

of how this is performed. These approaches combined partial matching and AI

planning to identify the service composition configurations.

An AND/OR graph structure can be used to represent the set of possible

alternative service composition configurations. Alternative configuration routes

are denoted by an OR-subgraph to indicate that only one of the alternative

paths needs to be visited. A dummy node is used to merge all the service

composition configurations [Leung et al., 2010]. In this work, this structure is

called a service dependency graph [Palade and Clarke, 2018, Palade et al., 2018b].

Examples of works that present how such a structure is built are Callaway et

al. [Callaway et al., 2010], Groba and Clarke [Groba and Clarke, 2014], Lv et

al. [Lv et al., 2015], GoCoMo [Chen et al., 2018] and Mascitti et al. [Mascitti

et al., 2018]. These works use distributed service discovery mechanisms that use

the local registries deployed on mobile devices to build this service dependency
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graph structure. Section 2.2 discusses such approaches in detail, and presents

the existing QoS optimisation mechanisms used to find QoS optimal solutions in

such proposals.

2.1.3 QoS Requirements

QoS requirements can be considered as constraints over the functionality of a

service or a composed service. These non-functional properties are then used

to differentiate between such multiple candidate services. The notion of QoS-

awareness is being aware of the user-required QoS and the QoS required by

various resources at the user’s location and time. This may require having full

visibility of QoS variations, and being able to perform adaptation countermea-

sures to deliver the required QoS requirements.

Multi-Objective Optimisation (MOO) is defined as the simultaneous optimi-

sation of a set of objective functions [Deb, 2014]. A simple example is commuting

between one’s home and workplace. Given such a task, a user’s solution might

need to meet several objectives to maximise the level user’s satisfaction relating

to his choice. The first objective is to minimise monetary cost (e.g., fuel use, bus

fare, tram fare, etc.). A second objective is to minimise the travel time. Addi-

tional objectives may be related to the level of comfort, safety or environmental

impact. For many situations there is no simple feasible solution which simul-

taneously optimises all objectives and a trade-off or compromise solution must

be selected. When constraints imposed, the set of feasible solutions might be

null or have only a small number of elements. When no constraints are imposed,

the set of possible solutions increases significantly [Angus and Woodward, 2009].

With respect to the preference elicitation of the decision maker, multi-objective

optimisation problems are generally approached in three ways in the literature:

• A priori preference articulation: The user specifies a set of weights, which

represent his preferences for each objective. This process is done through

a utility function. The system identifies the configurations that maximises

the value of this utility function (e.g., weighted-sum approach or lexico-

graphic approach [Freitas, 2004]).

• Progressive preference articulation: The user and the system work, at run-

time, through a number of iterations and user feedbacks, to identify the

user preferences.

• A posteriori preference articulation: The system computes a list of Pareto
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optimal solutions and presents it to the user. The user can use this list

to explore various compromises between the objectives (e.g., Pareto ap-

proach [Trummer et al., 2014]).

Services operate autonomously in variable environments, and, as a conse-

quence, their QoS continuously changes (e.g., higher system loads due to large

number of requests). Composition participants may change their QoS, others

may become unavailable, or others may emerge [Zeng et al., 2004]. This is

the case especially in a mobile environment, where service providers rely on

mobile devices to provide their services. Such an environment transforms the

QoS-optimisation into a dynamic optimisation problem. Dynamic optimisation

problems generally involve changes in the parameters of objective functions, do-

main variables, and the number of considered variables, and also whether the

changes are cyclic/recurrent in the search space or not. Yang et al. [Yang et al.,

2013] provide a complete list of parameters that characterises such a problem.

From a functional perspective, most existing service composition proposals

focused on how to offer support for automatic service composition to create dy-

namic service composition configurations using the available services deployed

on mobile devices with minimal or no human intervention. However, the existing

proposals have paid little or no attention to the quality of service aspect. Sec-

tion 2.2 presents how the existing proposals addressed this type of requirements.

2.2 QoS-Aware Service Composition

QoS-aware service composition problem can be modelled using a combinatorial

model or using a graph model [Yu et al., 2007]. In the combinatorial approach,

the optimisation problem is formulated using as a Multi-Choice 0-1 Knapsack

Problem (MMKP). In the graph model case, the problem is formulated as a

Multi-Constraint Optimal Path. QoS-aware service composition has used either

centralised or decentralised service composition models to facilitate the adapta-

tion of the service configurations at runtime [Ye et al., 2016]. Centralised service

composition models generally use a feedback loop controller to measure, at reg-

ular intervals, the utility of the current service composition configuration [Chen

et al., 2015a]. Changes to this configuration are made according to how this

utility value changes over time. Trade-off analysis is used to measure which

service compositions configurations satisfy user requirements. Decentralised ser-

vice composition models use a network of decentralised controllers to collect and



Chapter 2. State of the Art 33

Controller
Target 

System
∑ 

Feedback

Managed
System

Managed
System

Managed
System

Service 

Composition 

Participant

Service 

Composition 

Participant

Service 

Composition 

Participant

Error Control Output
Set 

Point

Central Coordinator

Data FlowControl Flow

(a)

Controllern

Managed
System

Controller1

Managed
System

Target System

Controller2

Managed
System

Local State 

Info

Global 

State Info

Service 

Composition 

Participant

Service 

Composition 

Participant

Service 

Composition 

Participant

Data FlowControl Flow

(b)

Figure 2.2: Figure 2.2a shows a centralised approach to service composition pro-
cess. Figure 2.2b shows a decentralised approach to service composition process.

disseminate information about the available service providers [Cardellini et al.,

2012]. These decentralised approaches use global information for service com-

position. For example, a service consumer is allowed to select services in the

whole environment, which implies that a service consumer knows all the ser-

vice providers in the environment. The use of global information is infeasible

in large environments. To avoid using global information, some decentralised

approaches were developed in networked environments, where each participant

has a set of acquaintances and each participant has knowledge only about these

acquaintances [Ye et al., 2016].

Adaptation decisions are managed using a decision mechanism, which is re-

sponsible for adapting a service configuration based on the conditions of the

environment. These type of mechanisms have two parts: the managed system

and the managing system. In a service composition system context, the man-

aged system deals with the composition functionality, and the managing system

deals with the adaptation of the managed system to achieve particular (quality)

objectives. The managing systems are implemented using a controller [De Lemos

et al., 2013] and can be divided in two categories based on their distribution:

centralised and decentralised [Patikirikorala et al., 2012]:

1. Centralised Controller : This type of controller uses a central coordinator

which has a global view of the entire composed system to make adaptation

decisions. The most common type of controller is a feedback control loop,

which uses a fixed-gain control scheme. The main controller uses the differ-

ence between the output of the system and the set point, in order to adjust

the target system (Figure 2.2a) [Chen et al., 2015a]. QoSMOS [Calinescu

et al., 2011] use this type of controller to find another service mapping for

the current process configuration or to find another process configuration
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when the available service providers can not provide the required QoS at

the process level.

2. Decentralised Controller : This type of control is achieved through the co-

ordination of service providers controllers (Figure 2.2b). This coordination

is achieved by propagating the global state information of the composition

between the composition participants. GoCoMo [Chen et al., 2018] and

Mabrouk et al. [Mabrouk et al., 2009] use this type control to improve the

resilience of composed services in dynamic and uncertain environments.

The rest of this work focuses on the graph model, as the combinatorial prob-

lem is can be considered as an extension to this model. The combinatorial

model assumes that the service dependency graph (e.g., Figure 1.2) is created,

and the available services are to be matched to services available in the environ-

ment [Jiang et al., 2014].

2.2.1 Exact Algorithms-Based Proposals

Dijkstra’s algorithm is a graph-based search algorithm that solves the single

source shortest path problem for a graph with non negative edge costs. The

algorithm maintains the length d of the shortest path from the source node s

to another node v in the graph and the predecessor p(v) of v on the path for

every node in the graph. The algorithm can be summarised as follows: initially

d(s) = 0, d(v) = ∞ for all other vertices and p(v) = null for all v. A queue

of unvisited vertices with finite d values is maintained. The algorithm extracts

the minimum valued node from the queue and scans it. If v is the queued

node with smallest distance, and de(v, u) the distance from v to a neighbour

u, for each neighbour u of v the algorithm looks at all edges (v, u) ∈ E and if

d(u) < d(v) + de(v, u), sets d(u) = d(v) + de(v, u) and p(v) = u. The algorithm

terminates when the target t is extracted. The bidirectional version of Dijkstra’s

algorithm is similar, running a forward search from s and a reverse search from

t. If an edge (v, u) is scanned by the forward search and u has already been

scanned by the reverse search, the concatenation of paths s − v and u − t is a

new path P from s to t. Dijkstra’s original algorithm has high computational

cost and runs in O(|V 2|). This algorithm commonly implemented in link-state

routing protocols.

GraphPlan [Yan et al., 2012], SimDijkstra [Jiang et al., 2014], and Rodriquez-

Mier et al. [Rodriguez-Mier et al., 2017] presented a Dijkstra-based algorithm to
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find composition paths that satisfy users’ QoS objectives, subject to constraints.

To improve the resilience of the composition, Jiang et al. [Jiang et al., 2014] re-

turn the top-k optimal paths. However, these works do not address the dynamic

nature of a mobile environment. They assume that the services are static. This

means that the service dependency graph does not change over time. To address

this limitation, SimDijkstra-CQ, an extension of the SimDijkstra model, that

uses a continuous quary algorithm to keep track of the functional structure of

the service dependency graph [Lv et al., 2015].

While the Dijkstra-based algorithms may have polynomial time to search a

graph, building and maintaining an up-to-date view of the service components of

the service dependency graph requires a high communication overhead [Gabrel

et al., 2018].

2.2.2 Heuristics-Based Proposals

GoCoMo [Chen et al., 2018] and Kalasapur et al. [Kalasapur et al., 2007] use

a heuristics approach based on greedy selection to find the service composition

configuration with the highest utility to the user. These planning-based service

composition approaches require a priori knowledge about the user’s objectives,

which reduces the flexibility of composition in a dynamic environment. Also,

Kalasapur et al. [Kalasapur et al., 2007] used A*-search (A*-prune) to identify

a service service composition configuration that satisfies the constraints. An im-

portant limitation of the existing flexible service composition proposals is that

they use a utility function to identify a single service composition configuration

that maximises user satisfaction. As mentioned in Section 2.1.3, such an ap-

proach requires a priori preference elicitation of a user’s preferences to produce

a single solution. This approach does not allow the user to perform trade-offs

between multiple QoS objectives. In addition to this, such an approach does not

support automatic service composition. The relative weights presented by the

user may need to be adjusted at runtime based on the available solutions in the

environment [Chen and Bahsoon, 2017].

2.2.3 Metaheuristics-Based Proposals

A mobile environment introduces a number of constraints on the available service

composition solutions. Because of the mobility of service providers, an algorithm

that needs a global (complete) view of the environment to search for solutions

may introduce considerable overhead. Also, the QoS of services available is
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continuously changing, which exacerbates this problem. Most proposals focus

on the functional requirements on the composition and consider only best-effort

solutions in terms of QoS. However, this work explores whether better solutions

can be obtained.

Metaheuristics have been designed to address challenges that are common

in large-scale, dynamic and decentralised networks [Di Caro et al., 2008]. Such

algorithms can support self-organisation, self-configuration, and collaboration

in changing environmental conditions. They can dynamically adapt to ensure

end-to-end communication between devices and provide efficient management of

available resources. As opposed to the exact (Section 2.2.1) and heuristic-based

(Section 2.2.2) proposals, these algorithms can balance the trade-off between

computation efficiency and optimality [Sim and Sun, 2003], and can obtain a set

of solutions having two important properties: good convergence and diversity in

solutions.

A multi-objective metaheuristic contains three main search features [Talbi,

2009]: fitness assignment, diversity preservation and elitism. Fitness assignment

is a search procedure that is used to guide a search toward Pareto-optimal so-

lutions for a better convergence. Diversity preservation is used to ensure the

diverse set of Pareto solutions in the objective and/or decision space. Elitism is

the preservation and use of only elite solutions (e.g., Pareto-optimal solutions),

which allows for a robust, fast, and monotonically increasing performance of

the search. The fundamental properties by which metaheuristics are charac-

terised [Alba, 2005] are:

• The metaheuristics are used as strategies to “guide” the search process

with the goal to efficiently explore the search space for (near-) optimal

solutions.

• The metaheuristics algorithms are approximate and usually non-deterministic.

• The metaheuristics may employ mechanisms to avoid getting trapped in

confined areas of the search space.

• The metaheuristics are not problem-specific.

• The metaheuristics make use of domain-specific knowledge in the form of

heuristics that are controlled by the upper level strategy.

• Search experience (embodied in some form of memory) is used to guide the

search.
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A metaheuristic is successful on a given optimisation problem if it can provide

a balance between the exploration (diversification) and the exploitation (inten-

sification) phases. In the exploration phase, the parts of the search space with

high quality solutions are identified. Exploitation is important to intensify the

search in some promising areas from the accumulated search experience. The

main differences between the existing metaheuristics concern the way in which

they try to achieve this balance [Alba, 2005, BoussäıD et al., 2013].

Nature-inspired approaches have been introduced to address the challenges

that are common to large-scale networks [Talbi, 2009]. Such networks are charac-

terised by complex and heterogeneous architectures, a dynamic and self-organizing

nature, resource constraints, and the absence of a centralised control and infras-

tructure [Dressler and Akan, 2010]. In this context, swarm-based networking and

communication algorithms such as Ant Colony Optimisation [Stutzle and Dorigo,

2002] mimic the laws and dynamics that govern biological systems. The follow-

ing features of swarm-based algorithms make such mechanisms appealing for the

development of optimisation mechanisms in challenging environments [Bello and

Zeadally, 2016]:

1. Adaptability to changing environmental conditions. These systems can

learn and evolve when the properties of the environment change. They

can deal with the issue of unpredictability of service providers or the

available resources that can be used at runtime [Blackwell and Branke,

2006, Wang and Shen, 2017]. These systems facilitate collaboration and

self-organisation among participating agents, without using a central coor-

dinator.

2. Efficient management of resource-constrained devices. The foraging pro-

cess used in Ant Colony Optimisation techniques has inspired many re-

source efficient techniques that report high resource efficiency [Dressler

and Akan, 2010]. In the context of this work, service providers rely on

mobile devices to deliver their services, and require a resource-efficient

mechanism to distribute information about their services because they are

battery-powered.

Examples of nature-inspired algorithms include evolutionary-based algorithms

such as Genetic Algorithms (GAs) [Wada et al., 2012] or swarm-based algorithms

such as Particle Swarm Optimisation (PSO) [Hossain et al., 2016] or Ant Colony

Optimisation (ACO) [Moustafa et al., 2016]. The GAs belong to the larger class
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of evolutionary algorithms, which generate solutions to optimisation problems

using techniques such as selection, cross-over and mutation. Swarm Intelligence

(SI) is based on the observation of the collective behaviour of decentralised and

self-organized systems such as ant colonies, flocks of fishes, or swarms of bees or

birds [Di Caro et al., 2004].

The main indicator to evaluate the performance of an exact optimisation

method is the efficiency in terms of search time as they guarantee global optimal

solutions. To evaluate the effectiveness of metaheuristic-based methods, the

following groups of quality indicators are generally used: quality of solutions,

computational effort, and robustness. In addition to these groups, qualitative

criteria such as the development cost, simplicity, ease of use, flexibility, and

maintainability may be used [Talbi, 2009].

Genetic Algorithms-Based Approaches

A Genetic Algorithm (GA) is a nature-inspired metaheuristic computational

method that imitates the robust procedures used by various biological organisms

to adapt as part of their natural evolution [Mehboob et al., 2016]. The adaptation

is done through processes such as natural selection, survival-of-the-fittest, repro-

duction, mutation, competition and symbiosis [Kulkarni et al., 2011]. Genetic

Algorithms (GAs) algorithms have been successfully used in fields such as chip

design, computer animation, telecommunications and financial markets [Gold-

berg, 2006]. In the context of QoS optimisation for service composition, a num-

ber of mechanisms have been proposed.

Canfora et al. [Canfora et al., 2005b] introduced GAs for solving the QoS-

aware service composition problem by finding a set of services that satisfy QoS

constraints and optimise the QoS of the composite. Each service composition

configuration is encoded as a chromosome, and a fitness value is calculated based

on the aggregated QoS of the composite service. GAs are iterative. In each iter-

ation, a new generation of service composition configuration is generated. The

fitness value increases from generation to generation, and the fittest chromosome

in each generation represents the QoS-optimal service composition configuration.

An extension of this work compares the results of this approach with MIP [Can-

fora et al., 2005a]. Also, Jaeger et al. [Jaeger and Mühl, 2007] reproduce these

works and propose a different set of parameters to initialise the algorithm. They

also extend the baselines evaluations to highlight the performance of their pro-

posed approach.
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SanGA [Klein et al., 2014] use a genetic algorithm to find the best can-

didates for a set of abstract tasks. The authors use a template-based service

composition approach. They also integrate the network QoS by using the short-

est distance between two network location points. Wu et al. [Wu et al., 2016]

developed a QoS-aware multi-granularity service composition model, and use

Genetic Programming (GP) to encode the available service composition config-

urations. These procedure require a centralised perspective of the environment.

The composition follows a template-based approach.

Swarm Intelligence-Based Approaches

Swarm Intelligence (SI) is a distributed intelligence paradigm for solving optimi-

sation problems that takes inspiration from the collective behaviour of a group

of insect colonies or animal societies [Saleem et al., 2011, Karaboga et al., 2014].

SI systems are made up of a population of simple agents (an entity capable

of performing/executing certain operations) interacting with one another and

with the environment. These entities with very limited individual capability

can jointly (cooperatively) perform many complex tasks necessary for their sur-

vival. Although there is no centralised control structure dictating how individual

agents should behave, local interactions between such agents often lead to the

emergence of global and self-organised behaviour.

Several optimisation algorithms inspired by the metaphors of swarming be-

haviour in nature have been proposed: Ant Colony Optimisation (ACO) [Dorigo

and Stützle, 2004], Particle Swarm Optimisation (PSO) [Yin et al., 2014], Bac-

terial Foraging Optimisation (BFO) [Das et al., 2009], Bee Colony Optimisation

(BCO) [Karaboga and Basturk, 2007], Artificial Immune System (AIS) [Hofmeyr

and Forrest, 2000] and Biogeography-Based Optimization (BBO) are examples

to this effect [BoussäıD et al., 2013, Gui et al., 2016, Patnaik et al., 2017]. With

respect to a mobile, dynamic environment, the ACO-based algorithms present

several advantages compared to the other approaches [Cobo et al., 2010]:

• ACO is fully distributed with no single point of failure.

• The operations, which need to be performed at each node, are simple. Lim-

ited storage is required, which is suitable for resource-constrained devices.

• The algorithm is based on agents’ asynchronous and autonomous interac-

tions.
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Algorithm 1 General ACO Procedure

1: return Best solution found
2: while termination conditions are not met do
3: ConstructSolutions()
4: UpdatePheromone()
5: DaemonActions() {Optional}
6: end while

• It is self-organising and resilient. Path recovery algorithms are generally

not required.

• It inherently adapts to network traffic without requiring complex, and in-

flexible metrics.

• It adapts to all kinds of long-term variations in topology and traffic de-

mand, which are difficult to consider in deterministic approaches.

Compared to other metaheuristics, an important aspect in ACO is the dif-

ferential path length (DPL) effect of ants, which means that ants that travel

on the shorter paths can deposit pheromone before ants travelling on longer

paths [Dorigo and Stützle, 2001]. This allows faster convergence on the optimal

path. The decentralised and asynchronous nature of ants is important in solving

distributed problems where there is no global view of the objective function.

Decisions must be taken under a local view of the problem [Talbi, 2009]. ACO

is a metaheuristic approach that was inspired by the foraging behaviour of ants

in an ant colony. This behaviour enables ants to find the shortest paths between

their food sources and their nests. This is enabled by stigmergy, which is a form

of indirect communication between ants through the environment, realised by

depositing a substance called a pheromone on the path. The quantity of phero-

mone deposited, which may depend on the quantity and quality of the food, will

guide the other ants to the food source. This functionality of real ant colonies

has been exploited in artificial ant colonies in order to solve multi-objective op-

timisation problems [Alba, 2005, Farooq and Di Caro, 2008]. Algorithm 1 shows

the basic steps of the ACO procedure.

Previous ACO-based proposals have addressed multi-objective optimisation

problem either through a single pheromone matrix or with multiple pheromone

matrices [Angus and Woodward, 2009]:

1. Single. One pheromone matrix associated with each ant colony. Based on

the qualities of a solution, the entry in this matrix, that is associated with

this solution is reinforced.
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2. Multiple. Several pheromone matrices, each associated with one objective.

This model is associated with multiple ant colonies. Each colony is focused

on optimising a particular objective.

There are different types of ant colony optimisation methods: Ant System

(AS), Elitist Ant System (EAS - each ant that finds a better solution has the

chance to deposit more pheromone), Ant-Q (where the deposited pheromone

amount is directly proportional to the quality of the found solution), Max-Min

Ant System, Rank-Based Ant System. In Max-Min System the pheromone level

is kept between τmax and τmin. In MMAS, only the best ant in iteration or the

best ant so far is permitted to deposit the pheromone. Initially, before the search

begins, the pheromone intensity of all the ways be maximum value and updated

only through a pheromone evaporation operation. In Ant System (AS), the ants

use a local updating policy for the amount of pheromone when they construct

a tour (solution). After all the ants have finished their tour, a global updating

policy is applied to modify the pheromone level on the edges that belong to the

best ant tour [Angus and Woodward, 2009].

Like all the evolutionary approaches, ACO provides the means of exploring

parts of the solutions space that offer optimal/near optimal solutions [Chitty and

Hernandez, 2004]. This procedure is performed by creating a trade-off between

the conflicting aims of exploration and exploration. Exploration is defined as the

search through the space of possible solutions to find optimal or near-optimal

solutions. Exploitation is the fusion of information regarding the quality of

identified solutions at a particular moment to focus on promising areas of the

search space. This process is enforced through a reinforcement phase where the

pheromone trail is updated according to the generated solutions. Three different

strategies may be applied [Talbi, 2009]:

1. Online step-by-step pheromone update: The pheromone trail τij is updated

by each ant, at each step of the solution construction.

2. Online delayed pheromone update: The pheromone update τ is applied

after the solution is constructed.

3. Offline pheromone update: The pheromone update τ is applied after all

ants generate a complete solution. Different strategies are based on this

approach: quality-based pheromone update (updates the pheromone value

associated with the best found solution among all ants), rank-based ap-

proach, worst pheromone update, elitist pheromone update.



42

2.2.4 Other Proposals

Yu and Lin [Yu et al., 2007] propose two models for service composition: a

combinatorial model and a graph model. In each model, two algorithms are

introduced to find the optimal service composition configuration. All the four

algorithms are compared and an usage context for each algorithm is suggested.

Zeng et al. [Zeng et al., 2004] propose two optimisation models: local opti-

misation and global optimisation. The local optimisation is required to satisfy

local QoS constraints, but cannot guarantee global optimality. The global op-

timisation mechanism is used to seek globally-optimal components for service

composition by using a Mixed-Integer Programming (MIP) approach. However,

this approach suffers from poor scalability because of its exponential computa-

tional complexity and is impractical for real-time and dynamic applications [Wu

and Zhu, 2013]. To address the scalability challenges, Alrifai et al. [Alrifai and

Risse, 2009] propose a preprocessing step to delete low quality service candidates.

The proposed mechanism combines global optimisation with local selection tech-

niques to adapt in distributed environments. MIP is also employed to find the

best decomposition of global QoS constraints into local QoS constraints and then

local selection is performed to find the best services satisfying these local con-

straints for each abstract task in the user’s request. The optimisation problem is

modelled as an extended flexible constraint satisfaction framework and a heuris-

tic algorithm based on branch and bound is proposed to solve it. However, these

approaches require a template-matching service composition model.

Liu et al. [Liu et al., 2017] propose a three-staged distributed approach for

finding service composition configurations in mobile environments. The service

dependency graph is decomposed into multiple Independent Function Flows, and

each sub-solution is explored in a distributed manner. The authors use Dynamic

Programming (DP), and propose a branch-and-bound approach to search for

the optimal service composition configuration. However, the authors transform

the multi-objective optimisation problem into a single objective optimisation

problem.

2.2.5 Stigmergic QoS Optimisation

Given the dynamic nature of the mobile environment under consideration for

this work, re-optimisation needs to be performed to closely track any changes in

the service composition configurations. Multi Agent System (MAS) techniques
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have been applied to the service composition problem [Singh et al., 2005, Temglit

et al., 2017, Ye et al., 2016]. A multi-agent system provides a way to solve a

software problem by decomposing the system into a number of autonomous en-

tities embedded in the environment to achieve the functional and non-functional

requirements of the system [Weyns et al., 2013].

In a MAS system several agents operating in the system cooperate to achieve

a particular system goal. A coordination mechanism is used to ensure that the

agents act in a coherent manner, to prevent chaos in the system. Since no single

agent has a global view of the system, it is possible that an agent actions will

conflict with other agent’s actions. Another reason to coordinate agent’s actions

is to meet global constraints, which should be met by the system as a whole.

Garćıa-Mart́ınez et al. [Garćıa-Mart́ınez et al., 2007], Angus and Wood-

ward [Angus and Woodward, 2009] and López-Ibánez and Stutzle [Lopez-Ibanez

and Stutzle, 2012] discuss stigmergic-based proposals from a generic perspec-

tive. In a mobile environment, stigmergic-based algorithms have been success-

fully used for QoS routing in MANETs (e.g., AntNet [Di Caro and Dorigo, 1998],

ARAMA [Hussein and Saadawi, 2003], AntHocNet [Di Caro et al., 2005], EARA-

QoS [Liu et al., 2005], SAMP-DSR [Khosrowshahi-Asl et al., 2011], QAMR [Kr-

ishna et al., 2012], QoRA [Al-Ani and Seitz, 2016], and WSNs (e.g., AntSen-

sNet [Cobo et al., 2010]). Zhang et al. [Zhang et al., 2017] presented a compre-

hensive list of ACO routing protocols.

Moustafa et al. [Moustafa et al., 2016] propose a decentralised, stigmergic-

based service composition mechanism. The mechanism offers support for uncer-

tain and changing environments. The proposed mechanism does not consider

the QoS of the network, and the description of the architecture is limited.

MO ACO [Zhang et al., 2010] introduces an ACO for template-based service

composition. The authors use a reference-point function (e.g., the reference

function in VIKOR [Opricovic and Tzeng, 2004]) to make compromises between

different objectives when selecting a concrete service to be mapped to an abstract

service. This reference point function is used because the user’s preferences are

not specified a priori and can quantify the utility of a candidate service in the

abstract composition graph. This number is used to update the pheromone

matrix. This algorithm is evaluated against a genetic algorithm and the results

show that the proposed algorithm has a lower convergence time and produces

higher quality solutions.

Wu and Zhu [Wu and Zhu, 2013] focus on the transactional properties of
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services and how to compose individual services in a transactional manner, and

then formulate the problem of transactional and QoS-aware dynamic service

composition. Transactional support is used to guarantee consistent outcome

and correct execution.

AACO [Wang et al., 2014] uses mechanism to generate Pareto-optimal so-

lutions and introduces an adaptive model. The proposed mechanism uses a

trust-based model to dynamically control the pheromone evaporation procedure.

This procedure is used to adjust the routing behaviour of ants according to the

dynamic change in the environment.

MOACS [Wang et al., 2015] propose a multi-objective ACO for data-intensive

service composition with global QoS constraints. The composition model follow

a template-matching approach. The authors compare the performance of the

proposed approach with a multi-objective GA. The authors conclude that when

a large number of concrete services are available for each abstract service, a

multi-objective GA is more efficient. However, when a small number of concrete

services is available for each abstract service, the proposed ACO-based approach

is preferred.

C-MMAS [Wang et al., 2011] propose a ACO protocol for template-based

service composition. They combine a Max-Min ant model with a culture algo-

rithm. A generic QoS model and domain QoS model are used to updated the

values of the pheromone. DACO [Xia et al., 2008] introduce a dynamic ACO-

based mechanism for finding a list of service composition configurations. The

solution with the highest utility is reinforced.

MOCACO [Li and Yan-Xiang, 2010] is a mechanism for finding a set of QoS-

optimal configurations in template-matching service composition. The mech-

anism uses a chaos-operator and chaos-variable based on Logistic Mapping to

control the diversity of solutions. The performance of the mechanism is com-

pared to a multi-objective GA and a multi-objective ACO. The authors measure

only the number of solutions produce and the running time of the mechanism,

and show that the proposed mechanism can outperform the baseline algorithms.

MOACO4WS [Qiqing et al., 2009] presents an ACO-based protocol for template-

based service composition. For each abstract task in the abstract service com-

position task, the authors select the non-dominated instances which are Pareto-

optimal. The QoS value of each service instance is used to calculate the evapo-

ration rate. These values are also used to calculate the heuristic used to select

the next service (i.e., node) to visit. In the evaluation, the authors showed that
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their implementation outperforms a genetic variant.

Other ACO-based algorithms for Web Services Environments are ACO-WSC [Yu

et al., 2015], Shanshan et al. [Shanshan et al., 2012], ACS-Based [Zheng et al.,

2007], Yunwu [Yunwu, 2009], Pop et al. [Pop et al., 2010] and ACAGA WSC [Yang

et al., 2010]. These optimisation mechanisms propose an ACO-based algorithm

for identifying the QoS-optimal service composition configuration in a web ser-

vices environment. ACO-WSC [Yu et al., 2015] is mechanism for selecting the

cloud combination that contains a minimum number of clouds. Yunwu proposes

an ACO mechanism that uses chaos-search to improve the diversity of identified

solutions. The performance evaluation shows that the proposed approach can

obtain more optimal solutions than GA and SA. Pop et al. [Pop et al., 2010]

propose a mechanism to support flexible service composition, however the eval-

uation not compared with any baselines. ACAGA WSC use Genetic Algorithm

to find the optimal parameters for ACO. However, this mechanism produces a

single solution, and no adaptation produce is used to deal with the variation in

the QoS values. The performance of this approach is compared against a GA

and an IA, and the results show that the proposed mechanism can identify more

optimal solutions.

Table 2.2 summarises the existing stigmergic-based service composition pro-

posals. Most of these proposals have been developed for web services environ-

ment where services are generally deployed on resource-rich, stationary devices.

Also, most of the existing proposals follow a template-matching service compo-

sition. This table shows that none of the proposals consider multi-objective QoS

optimisation for decentralised, flexible service composition open and dynamic

environments such as the mobile environments, with reinforcement strategies

and adaptation procedures to ensure efficient exploration of the solution space

and diversity of identified solutions. None of the existing proposals consider the

collaboration of multiple population of agents in the optimisation process.

2.3 Chapter Summary

This chapter reviewed the state of the art of QoS optimisation processes for ser-

vice composition from a perspective of openness and dynamism. The existing ser-

vice composition proposals have been generally categorised as template-matching

or flexible service composition. The template-matching proposals require a pri-

ori knowledge about the environment and require an a priori description in



Chapter 2. State of the Art 47

the form of a set of abstract tasks. The QoS optimisation process is used to

find an optimal allocation of available services in the environment to the set of

abstract tasks. To perform this allocation, a number of approaches have been

proposed, many based on Mixed-Integer Programming (MIP), or Genetic Algo-

rithms (GAs). However, the template-matching approach is not flexible in open

and dynamic environments such as the mobile environments. Services that can

be used during composition (with potentially better QoS) are not used because

they do not meet the required signature specification.

Flexible service composition has been introduced to address this limitation by

combining partial syntactic/semantic matching and planning based algorithms,

and using goal-driven techniques to identify the service composition configu-

rations that can satisfy users’ goals. However, in terms of QoS support, the

existing proposals for flexible service composition in mobile environments have

only used (greedy-based) techniques to provide only best effort QoS. In addition

to trading off computational efficiency for optimality of solutions, the existing

proposals transform the multi-objective QoS optimisation problem into a single-

objective optimisation problem by using a utility function which requires a user’s

preferences. This limits their support for automatic service composition, which

reduces their applicability in mobile environments. Also, this approach does not

allow users to explore various compromises between the QoS attributes.

Nature-inspired metaheuristics, and in particular swarm-based algorithms

using stigmergy-based mechanisms have been successfully used for QoS routing

in Mobile Ad-Hoc Networks. A number of stigmergic-based service composition

mechanisms have been proposed for finding QoS optimal service compositions

in web services environments. However, the existing approaches do not consider

the mobility of service providers, and most of the existing approaches have been

developed for template-matching service composition and transform the multi-

objective optimisation problem into a single-objective optimisation problem to

find a single QoS-optimal service composition configuration.

Figure 2.3 shows how the most related QoS optimisation mechanisms for

flexible service composition address to the following reference criteria, and how

these address the requirements established in Chapter 1:

• Service Composition Procedure: This criterion refers to the method to ad-

dress functional requirements used by the proposal (Section 2.1.2). Liu (Liu

et al. [Liu et al., 2017]), GoCoMo (GoCoMo [Chen et al., 2018]), SimDijk-

stra (Jiang et al. [Jiang et al., 2014] follow a flexible service composition
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Figure 2.3: The State of the Art review shows how the most related solutions
address the eight reference criteria. These solutons are: SBOTI (current work),
Mostafa (Mostafa et al. [Moustafa et al., 2016]), Liu (Liu et al. [Liu et al., 2017]),
GoCoMo (GoCoMo [Chen et al., 2018]), SimDijkstra (Jiang et al. [Jiang et al.,
2014])

approach, and Mostafa et al. [Moustafa et al., 2016], uses a template-

matching service composition approach.

• Service Providers: This criterion refers to the type of environment consid-

ered by the proposals. Services providers may rely on stationary (static) or

mobile devices to deliver their services. Liu (Liu et al. [Liu et al., 2017]),

GoCoMo (GoCoMo [Chen et al., 2018]), have been developed for mobile

environments, whereas SimDijkstra (Jiang et al. [Jiang et al., 2014] and

Mostafa et al. [Moustafa et al., 2016], which do not consider the mobility

of service providers.

• Environment Perspective: This criterion refers to the type of the compo-

sition approach (Section 2.2). All proposals used for comparisons follow a

decentralised approach. Even if all the works address this criterion with

the highest value, this was intentionally added here to outline why other

popular approaches are not used.

• QoS Management : This criterion refers to the type of QoS management

performed by the service composition proposals. More precisely, how the
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information about the new QoS values is distributed between composition

participants. This can be done through either direct communication (i.e,

broadcasts) or through indirect communication (i.e., stigmergic). Only

Mostafa et al. [Moustafa et al., 2016] uses the concept of stigmergy, whereas

the other methods assume a mechanism that continuously broadcasts the

QoS of the services across the service providers.

• QoS Values: This criterion considers if the proposals considers static or

dynamic values. Most of the approaches assume that the QoS values fluc-

tuate at runtime and do not maintain the same values, with the exception

of SimDijkstra (Jiang et al. [Jiang et al., 2014].

• Optimisation Approach: This criterion refers to if the proposals produces

a single or multiple set of solutions. Only Mostafa et al. [Moustafa et al.,

2016] produces a set of multiple (Pareto-optimal) solutions. The other ap-

proaches transform the multi-objective optimisation problem into a single-

optimisation problem using the weighted sum approach.

• Solution Approach: This criterion refers to the type of optimisation ap-

proach (Section 2.2). Only Mostafa et al. [Moustafa et al., 2016] is im-

plemented based on a metaheuristic algorithm. The other approaches are

either heuristic or exact approaches.

• Collaborative Agent Communities: This criterion is only for agent-based

proposals, and informs if the proposal uses the information from multiple

agent communities to improve the exploration of the solution space (Sec-

tion 2.2.5). Only Mostafa et al. [Moustafa et al., 2016] considers using a

group of agents to efficiently explore the solutions space. However, their

solution does not extend to multiple collaborative communities.



Chapter 3

Design

The review of the state-of-the-art, presented in Chapter 2, has identified a num-

ber of limitations in current QoS optimisation mechanisms for flexible service

composition in mobile, dynamic environments. Open issues with current re-

search on QoS-aware service composition are that: (i) existing proposals are not

sufficiently flexible to cope with finding QoS-optimal composites mobile environ-

ments; (ii) the existing mechanisms have limited support for efficient exploration

of the solutions space; (iii) the existing flexible service composition proposals do

not allow for exploration of various QoS trade-offs.

This chapter introduces SBOTI (Stigmergic-Based OpTImisation). Sec-

tion 3.1 re-iterates over the requirements for a QoS optimisation mechanism

for flexible service composition in mobile environments introduced in Chapter 1,

and outlines the required features for such a mechanism. Section 3.2 defines

the system model, and highlights how the optimisation mechanism is mapped

to the physical environment. Section 3.3 introduces the design decisions that

were made to address the required features presented in Section 3.1. Then Sec-

tion 3.4 presents SBOTI, and shows how the design addresses the requirements.

Section 3.5 outlines functional limitations due to design decisions. Finally, Sec-

tion 3.6 provides an in-depth discussion of the solution and the contribution.

3.1 Design Objectives and Required Features

As introduced in Chapter 1, the main goal of this thesis is to design a QoS-

optimisation mechanism for flexible service composition in mobile environment.

The proposed mechanism must deal with the challenges introduced by the en-

vironment, which are (i) the frequent link failures during handover caused by

the mobility of service providers [Wang, 2011]; (ii) the difficulties in achieving

50
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an up-to-date global view of the environment because the service providers rely

on devices with limited resources to deliver their services [Sadiq et al., 2015];

and (iii) the large number of potential service consumers that may want access

to the available services, and with the qualities of these services evolving with

the internal changes or workload fluctuations [Ardagna and Pernici, 2007, Deng

et al., 2017]. To address these challenges, this work proposes SBOTI, a QoS-

optimisation mechanism for flexible service composition that supports the fol-

lowing required features:

(F1) Flexible Service Composition Support: All currently available ser-

vices should be considered when searching for the most appropriate service

compositions. A user’s request should be functionally solved using multi-

granular, goal-driven service composition approaches. Syntactic, partial

matching can be used to automatically identify the available compositions

in the environment. SBOTI should be able to cope with service com-

position configurations built with flexible service composition approaches

(Section 2.1.2).

(F2) Resource-Aware: Optimal utilisation of devices should be enabled. Ser-

vices are likely to be deployed on battery-powered devices. The overhead

introduced by the model should be kept to an acceptable level to increase

the network lifetime. SBOTI should consider the resource limitations of

devices, and the methods employed should avoid resource-intensive proce-

dures that rely on a large number of exchanged messages.

(F3) Mobility-Aware: Device mobility should be supported. Provider devices

may move out of range, which may cause an executing composition to

fail. Service provisioning should remain seamless to the consumer, even

under those conditions. SBOTI should consider the mobility of service

providers, and the intermittent availability or unavailability of services as

a consequence of the mobility.

(F4) Pareto-Optimal Solutions Support: Multiple possible service compo-

sition configurations should be produced, to allow for exploration of QoS

trade-offs, and any preference articulation process with the user should be

done after the optimisation process. SBOTI should allow for a posteriori

preference articulation after analysing all optimal solutions, to simplify the

operation of users and to avoid deviations caused by unreasonable setting
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Figure 3.1: Mapping of the agents in the Agent Layer to the physical mobile
devices in the Physical Network Layer, through the Service Layer (Section 3.4
introduces the Service Agent and Mobile Agent concepts). Adding the Agent
Layer on top of the Service Layer created using a Service-Specific Overlay Net-
work (SSON) and a Dynamic Composition Overlay Network (DCON) network
is a contribution of this work [Palade and Clarke, 2018, Palade et al., 2018b].
All the contributions of this thesis are made at this Agent Layer.

of QoS objectives’ weights. The optimal solutions is a set of Pareto-optimal

solutions, where dominated solutions are removed and the available solu-

tions are diverse to allow exploration of various compromises between the

QoS criteria (Section 2.1.3).

3.2 System Environment

The services deployed on mobile devices in a limited geographic area such as a

mall [Chen et al., 2018] or an university campus [Deng et al., 2017] can be used

to create new service-based applications. These devices are generally connected

through a Mobile Ad-hoc Network (MANET). To enable service-based applica-

tions on top of such a network, services can be clustered based on their syntactic

or semantic similarity using a Service-Specific Overlay Network [Al-Oqily and

Karmouch, 2011]. Goal-driven service composition using planning-based algo-

rithms can automatically solve a user’s request using the available services in

these clusters [Chen et al., 2018]. The optimisation process is modelled using a

multi-agent system approach. This approach is presented in Section 3.4. Fig-

ure 3.1 shows the main layers of the system model, which are:

• Physical Network Layer: This layer represents the physical network
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infrastructure made of mobile devices in the environment [Park and Shin,

2008]. Generally, MANET-based systems are used to create the communi-

cation links between these devices. Applying SOA principles in a mobile

environment is fundamentally different from the traditionally web-based

systems [Halonen and Ojala, 2006]. The distributed nature, limited band-

width, network reliability, heterogeneity, and energy constraints factor in

the dynamism introduced by the mobility of the service providers [Efs-

tathiou et al., 2014].

• Service Layer: A composite service contains a set of services and the data

and control flow between them, and the set of composite services can be

represented as a service dependency graph, in which the nodes of the graph

correspond to services and the directed edges between the nodes reflect the

syntactic/semantic interoperability [Park and Shin, 2008]. This thesis as-

sumes that composites do not contain repetitive parts and models the set

of available service composition configurations that can satisfy a user’s

request as a service dependency graph [Feng et al., 2013]. A service depen-

dency graph can be enabled by clustering the available services deployed

on mobile devices within a limited geographic area in a Service-Specific

Overlay Network (SSON) [Al-Oqily and Karmouch, 2011]. Goal-driven ser-

vice composition using planning-based algorithms can automatically solve

a user’s request using the available services in these clusters [Chen et al.,

2018]. The result of this process is a service dependency graph, which uses

a Dynamic Composition Overlay Network (DCON) to perform the admin-

istrative tasks (e.g., service invocation). A DCON organises the service

providers that are currently participating in the current composition. This

overlay is temporary, and only exists when a composition is executed in

the environment [Chen et al., 2018].

• Agent Layer: A decentralised approach to service composition allows a

service consumer to autonomously organise the service composition process

without assuming a full knowledge of the environment. Each service in the

DCON is equipped with an intelligent agent, which provides access to the

service [Ye et al., 2016]. Then, various multi-agent technologies can be

used to perform the optimisation process. This procedure is detailed in

Section 3.4.
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3.3 Design Decisions

QoS-aware service composition in mobile environments can be performed in dif-

ferent ways. The following sub-sections outline the decision decisions made to

address the required features identified in Section 3.1.

3.3.1 Flexible Service Composition in Mobile Environments

The service providers available in a mobile environment rely on mobile devices

to deliver their services. These entities are autonomous, and they can leave the

composition process at any time. The service composition process can be de-

signed from a centralised or a decentralised perspective. Most of the existing

service composition mechanisms have used centralised approaches, with a few

decentralised proposals. In the centralised approach, a central controller has

full knowledge of the environments and is responsible to organise service com-

position for consumers in environments. However, such approach may incur a

performance bottleneck as the number of service providers increases. Also, this

controller represents a single point of failure for the system. Decentralised ap-

proaches distribute the decision process relating to service composition across

multiple service composition participants. Thus, computation bottlenecks and a

single point of failure are avoided.

Design Decision 1: Distributed Execution

SBOTI decentralises the challenges relating to service execution, us-

ing a swarm-based approach to deal with the challenges introduced

by the mobile environment.

The decentralised approaches either assume that each service consumer has

full knowledge about the environment, or use a modeling approach where each

service composition participant has knowledge only about its neighbours. Having

a service consumer with full knowledge about the environment may not be feasi-

ble in large-scale environments. The proposed modeling approach overlooks the

evolution of the environment, where participants may change their acquaintance

relationship between each other over time [Ye et al., 2016]. Such evolution has

been explored previously in the context of multi-agent systems. In the context of

service composition, previous approaches have shown that multi-agent systems

can be used to engineer the coordinated activities of a multitude of decentralised

autonomous components [Castelli et al., 2015].
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Design Decision 2: Agent-Based

SBOTI uses a multi-agent approach to model the QoS optimisation

problem for flexible service composition in a mobile environment.

The proposed solution uses an agent-layer deployed on top of the

service layer to perform the optimisation process. More precisely,

this network is created on top of the DCON (see Figure 3.1).

Two of the challenges introduced by mobile environments are mobility and

scalability of the service providers (Section 1.1.3). As previously mentioned, these

providers rely on mobile devices to deliver their services. In large and decen-

tralised environments whose components belong to different stakeholders, service

composition configurations solutions that are able to maximise the satisfaction

of QoS requirements, and have a self-adaptive behaviour without centralised

control strategies [Castelli et al., 2015]. Natural systems promote the capabil-

ity of emergence of self-organised patterns of coordinated behaviours which are

suitable in the dynamic environments.

Natural systems (e.g., ant colonies) introduce coordination mechanisms to

identify the requirements of the environment spontaneously and efficiently [Omicini,

2013]. For example, ants use stigmergic interactions, which is a form of indirect

communication through the environment by depositing and locally capturing

pheromones in the environment. This type of interactions decouple interact-

ing agents and let interactions take place spontaneously [Parunak, 1997]. Also,

pheromones can promote simple forms of situation-aware interactions, by ex-

pressing some fact/event/information that has occurred in a particular portion

of the environment. As a result of overall activities of ants in building complex

distributed pheromones structures, and in reacting to the presence and shape of

such structures, globally coordinated behaviours emerge in the colony, support-

ing self-adaptation and self-organization [Dorigo and Gambardella, 1997, Castelli

et al., 2015].

Design Decision 3: Indirect Communication

The mobile environment is dynamic and a coordination mechanism

that can deal with this is needed. SBOTI uses a stigmergic-based

mechanism to coordinate the behaviour of the agents that are used

in the optimisation process. This mechanism uses an indirect com-

munication approach through the environment.
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3.3.2 Multi-Objective Optimisation

Most of the existing service composition approaches have formulated QoS op-

timisation as a single-objective objective optimisation problem. This makes it

difficult to analyse trade-offs for various QoS attributes.

Design Decision 4: A Posteriori Preference Articulation

Because of the decentralised and dynamic environment, users are

unfamiliar with the QoS of available services, and so it is not easy

to decide in advance what should be the precise weights on their

QoS criteria. SBOTI allows users to explore various compromises

between the available QoS attributes by presenting them with a set

of solutions, each of which may have different trade-offs across the

QoS criteria. The preference elicitation process is performed after

the user is presented with the possible set of solutions.

The goal of Multi-Objective Optimisation (MOO) algorithms is to find a

set of Pareto-optimal solutions, which have been identified using the concept of

dominance [Zitzler and Thiele, 1999, Wang et al., 2015]. The definition of this

process was presented in Section 1.1.2.

Design Decision 5: Non-dominated sorting

SBOTI uses non-dominated sorting to identify solutions that are not

dominated. These solutions will be reinforced throughout the optimi-

sation process and returned to the user at the end of the optimisation

process.

New service composition configurations may emerge (with potentially better

QoS) as a result of service providers’ mobility. Therefore, to adapt to such evolv-

ing environment, it is important to develop a service composition approach which

can self-evolve over time [Ye et al., 2016]. The digital pheromone mechanism

used by such approaches may affect the exploration of new service composition

configuration that may emerge as a result of service providers mobility.

Design Decision 6: Adaptation Support

To allow for exploration of new service composition configurations

that may emerge as a result of providers’ mobility, SBOTI uses an

adaptation procedure that limits the amount of pheromone on pre-

viously identified solutions.
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Design Decisions SBOTI ContributionsRequired Features

Agent-Based

Distributed 
Execution

Indirect Communication

A-Posteriori Preference 
Articulation

Adaptation Support

Flexible Service 
Composition Support

Resource-Awareness

Mobility-Awareness

C1: Stigmergic-based QoS 
Optimisation Mechanism

C2: Adaptation Mechanism

C3: Collaborative Agent 
Communities

Iterative

Pareto-Optimal 
Solutions

Non-dominated
Sorting

Figure 3.2: Mapping of the required features (Section 3.1), the design decisions
made to implement these features presented in this section, and the SBOTI
contributions (Section 3.4.1) outlined as C1 (Section 3.4.2), C2 (Section 3.4.4),
C3 (Section 3.4.5)

3.3.3 Computational Effort and Optimality Trade-off

Centralised approaches can achieve a global optimum, but are a single point

of failure and a potential performance bottleneck during composition. Decen-

tralised approaches make decisions based on their local view of the environment,

but inferring a global optimum from local calculations can be difficult and expen-

sive in a mobile environment. Previous decentralised methods relied on direct

communication through broadcasts. However, in a mobile environment this can

increase the failure rate (Section 2.2).

Design Decision 7: Iterative

SBOTI uses an iterative approach to continuously (and selectively)

explore the environment. This design decision is made to avoid the

need for a complete knowledge about the environment, which may

require a continuous broadcast of each participant state. This de-

sign decision is made to address a resource-awareness requirement of

mobile devices. The trade-off between computational efficiency and

optimality of identified service composition configurations is achieved

by the continuous sampling of the environment. This number reflects

the time a user is willing to wait for a particular optimisation request.

Figure 3.2 summarises the design decisions that constitute the novel QoS

optimisation mechanism to address the required features discussed in Section 3.1,
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and maps these decisions to the contributions made by the proposed solution

detailed in Section 3.4.2, Section 3.4.4, and Section 3.4.5. The next section

provides the details about the proposed solution and explains how the design

decisions materialise in SBOTI.

3.4 Proposed Solution: SBOTI

SBOTI is a nature-inspired, metaheuristic-based, distributed optimisation mech-

anism for finding QoS-optimal service composition configurations in a mobile

environment. SBOTI uses the concept of stigmergy, a (digital) pheromone-based

approach for coordinating and controlling swarming agents. Stigmergic-based

systems can generate resilient, complex, intelligent behaviours at the system level

even when the individual agents only possess limited or no intelligence [Theraulaz

and Bonabeau, 1999]. Such multi-agent systems can cope with continuously

changing environments through the decentralised control of agents distributed

in the environment. Unlike existing optimisation approaches for flexible service

composition in mobile environments, SBOTI produces a set of Pareto-optimal

solutions, and does not require a global (complete) view of the search space.

SBOTI uses a probabilistic approach to efficiently explore different parts of the

solution space. SBOTI is inspired by Ant Colony Optimisation [Dorigo and

Gambardella, 1997], and is based on a model originating from biological collec-

tive organisms, and inherits the following principles observed in swarm-based

systems [Parunak, 1997]:

• Simplicity. Swarm-based entities do not perform any deep reasoning and

rely on a small set of simple rules during their lifecycle. The execution

of these rules leads to the emergence of complex behaviour. The active

entities used by SBOTI obey this principle of simplicity.

• Dynamism. Natural swarms perform self-organisation procedures to adapt

to dynamically changing environments. SBOTI can adapt to the changing

environment and identify a different set of solutions, if previous service

composition configurations are rendered unavailable because of the envi-

ronment’s dynamics.

• Locality. Swarm-based entities observe their direct neighbourhood and

take decisions based on their local view. A key design decision in SBOTI is

that the active entities perform only local searches and communicate only
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with direct neighbours.

3.4.1 Stigmergy System Model

The users within a limited geographic area can create a service-sharing com-

munity using the services deployed on their mobile devices [Deng et al., 2017].

Stigmergic coordination, exhibited by social insects to coordinate their activi-

ties, can be used to find QoS-optimal service composition configurations in such

mobile environments. Each (mobile) service can be modelled as a service agent,

and a service-sharing community as a multi-agent system [Moustafa et al., 2016].

A set of mobile agents, which form an agent community, interact with the ser-

vice agents in the environment by encoding application-specific information as a

pheromone to achieve certain tasks [Parunak, 1997]. These agents achieve collab-

oration and self-organisation by exchanging pheromones and performing several

pheromone procedures, such as positive/negative reinforcement of optimal/non-

optimal solutions [Palade and Clarke, 2018]. This section defines these terms,

and uses this abstraction to model the decentralised, flexible service provider

interactions in a mobile environment.

A service agent is a stationary software entity responsible for the interactions

with a service deployed on a physical device. A service represents a single unit

of functionality. The set of interactions include the execution of the service, and

QoS performance monitoring of the service. Given the graph from Figure 1.2 as

an example, each service si is associated with a service agent. In this example,

at runtime, after s0 is invoked, the execution can follow three directions: to-

wards P0, P1 or P2. The service agent associated with s0 has two service agent

neighbours (associated with s1 and s3). A Service Agent is defined as follows:

Definition 1. Service Agent (sa). A service agent is modelled as a tuple

sa = <id, F>, where id is the identifier of the service for which this service agent

is responsible in the given service dependency graph, and F is the pheromone store

used to facilitate the service composition process.

Definition 2. Pheromone Store (F). A pheromone store is modelled as a set

of tuples <id, τ>, where id is the identifier of a direction (to an outgoing node

in the service dependency graph of the current node) and τ is the pheromone

level associated with that direction. τ pheromone level is a value that indicates

the quality of a direction and is proportional with the quality associated with that

direction. When initialised, each direction is associated with the same initial
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Figure 3.3: Mapping of Service Agent Network to Dynamic Composition Over-
lay Network (DCON), and showing the Pheromone Store associated with each
Service Agent.

pheromone level, τinitial, which is set before the start of the optimisation process.

In case a direction becomes invalid due to a link disconnection between two service

agents, the tuple associated with that direction is removed from the store.

Figure 3.3 shows the mapping of Service Agent Network to the Dynamic

Composition Overlay Network (DCON). This figure shows also shows the Pher-

omone Store elements associated with each service agent saj . For example, the

Pheromone Store associated with sa0, has two entries sa1 and sa3, where sa1 is

associated with pheromone level τ = 20, sa3 is associated with pheromone level

τ = 30. The mobility of service providers may cause link disconnections between

service agents. In this case, the pheromone level τ associated with the discon-

nected direction (node) is removed from the table. If a new direction becomes

available at runtime, a tuple with the <id, τinitial> is added to the store, where

id is the identifier of the direction and τinitial is the initial pheromone level.

A mobile agent is a non-stationary software entity capable of autonomously

moving between the networked devices [Satoh, 2010]. Service agents are associ-

ated with a service in the service dependency graph. Such services may reside

on separate physical devices. These (distributed) service agents (e.g., sa1 and

sa2) need to interact through a (unreliable) network of mobile devices. A mobile

agent has several advantages as opposed to continuous communication between

service agents:

• Reduced Communication Costs: A mobile agent at sa1 can include

execution logic and the data collected (i.e., QoS values of the service)

from sa1, and migrate to service agent sa2 instead of requiring continuous

communication between sa1 and sa2.
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• Asynchronous Execution: After migrating to sa2, the mobile agent does

not have to interact sa1. The mobile agent can continue processing at sa2

even when sa1 is disconnected from sa2, which is useful in environments

with unstable communications.

• Direct Manipulation: A mobile agent is locally executed on the service

agent that it is visiting. A mobile agent can directly interact with a service

agent if they reside on the same physical device. This may be helpful

in service management, in particular in improving the resilience of the

network.

• Easy Development of Distributed Applications: A mobile agent can

easily interact with other service agents using some standard messaging

protocol. A mobile agent can carry information between service agents,

and a service agent provides the necessary abstractions for the interaction

of a mobile agent with the service.

A mobile agent can query and update the pheromone store of the service

agent. A mobile agent mai queries all the values stored in the pheromone store

F of service agent saj . Agent mai uses these values to decide which neighbour

of saj will be next explored. Agent mai can also update the values in F . Each

update changes only one value in F with a positive or negative offset given by

the quality of the identified solution (see in detail in Section 3.4.2). The query

and update interactions are possible only when the mobile agent resides on the

service agent reside on the same overlay network node (i.e., DCON). A Mobile

Agent is defined as follows:

Definition 3. Mobile Agent (ma). A mobile agent is modelled as a tuple

ma = <id,M>, where id is the agent’s identifier, and M is the memory store

associated with that agent.

Definition 4. Memory Store (M). A memory store is modelled as an ordered

set of tuples <sai, q> represented as a stack where each element sai is a service

agent and q is service specific information provided by that service agent to fa-

cilitate the optimisation process (e.g., QoS of the service). This set represents

the path traversed by a mobile agent in the given service dependency graph.

Figure 3.4 shows the mapping of Mobile Agent Network to Service Agent

Network. This figure shows also shows the Memory Store elements associated

with each mobile agent mai. This example shows two mobile agents: ma0 and
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Figure 3.4: Mapping of Mobile Agent Network to Service Agent Network, and
showing the Memory Store associated with each Mobile Agent. The Pheromone
Store structure used by service agents is omitted from this figure to highlight
the Memory Store used by the mobile agents.

ma1. The Memory Store associated with ma0, has two entries sa0 and sa1,

where sa0 is associated with QoS values [0.982, 189.045], sa1 is associated with

QoS values [0.228, 0.334]. This means that mobile agent ma0 has first visited sa0

and recorded in its memory store the QoS associated with service S0 (i.e., service

specific information) and the id of sa0. Afterwards, agent ma1 traversed to sa1

where it performed a similar procedure. The mobility of service providers may

cause link disconnections between service agents. In this case, the mobile agent

will continue its traversal. If the links to any of the service agents registered in

the memory store of a mai become unavailable, then the mobile agent will not

update the pheromone store associated with that service agent or the reminder

of service agents in that memory store.

An optimisation process performed by SBOTI will require a group of mobile

agents to explore the available services in the environment. This group can be

formed based on similarity between agents. A set of mobile agents can form an

agent community to share information about the quality of identified solutions.

An Agent Community is defined as follows:

Definition 5. Agent Community (AC). An agent community is modelled as

a tuple AC = {id, S}, where S = {ma0, . . . ,man} is the set of mobile agents in

the community, and id is the identifier of the community.

The number of mobile agents in a community is task dependent. For sim-
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plicity, this number can be set to the number of nodes in the service dependency

graph. This number can affect the overhead, as well as the performance of the

optimisation method [Moustafa et al., 2016].

Two procedures are defined to facilitate the coordination of service and mo-

bile agents: pheromone evaporation and pheromone deposit:

Definition 6. Pheromone Evaporation. Pheromone evaporation is a pro-

cedure associated with the pheromone store F of each service agent sai. This

procedure periodically decreases each pheromone level in the pheromone store ac-

cording to a defined rule. The period T is given by the evaporation frequency.

The rule is defined in Section 3.4.2.

Definition 7. Pheromone Deposit. A pheromone deposit is a procedure as-

sociated with a service agent sai, and is triggered by a mobile agent mai. During

this procedure, a quantity of pheromone is added or subtracted from the phero-

mone level associated with a particular neighbour from the pheromone store F .

Different communities of agents can form based on their similarity. Each

community may have their own properties, and during the optimisation process

one community or multiple communities may be available. We assume that the

agents within a single community are homogeneous, are willing to collaborate

and do not have any conflicting goals. The set of available communities that can

perform the optimisation process can then be categorised as follows:

1. Homogeneous. The communities share the same properties: each commu-

nity has the same number of mobile agents; each mobile agent in each

community deposits the same pheromone scalar Q1; each community has

the same initial pheromone level τ ; and each community uses the same

evaporation coefficient ρ. Each community searches in the same part of

the solution space.

2. Heterogeneous. The communities have different properties: each commu-

nity decides how many mobile agents it has; each community has its own

Q1 value, its own initial deposited pheromone on each service agent, and

its own evaporation coefficient ρ. Each community may search in different

parts of the solution space.

The SBOTI model for a single agent community [Palade and Clarke, 2018,

Palade et al., 2018b] is introduced in Section 3.4.2. An extension of this model for
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multiple, collaborative agent communities is presented in Section 3.4.5. Each in-

dividual agent community (even in a multiple community configuration) behaves

as described in Section 3.4.2.

3.4.2 Single Agent Community

SBOTI takes as input a service dependency graph, which represents a set of avail-

able composites that can functionally satisfy a user’s request (e.g., Figure 1.2).

Such a graph is built using a service discovery component. This work assumes

that such a component exists, and, once it initialises SBOTI with a new graph,

this component can perform in parallel to SBOTI to continuously adapt this

functional structure relative to the changing environment.

Examples of how such a component can be built have been previously outlined

in Chen and Clarke [Chen et al., 2018] or Groba and Clarke [Groba and Clarke,

2014]. Local knowledge bases available on each mobile device, built by each

node using the information from nodes they encounter, can be used to find all

the composites that can satisfy user’s request [Mascitti et al., 2018]. During the

encountering phase, two nodes will exchange information about their expected

contact time and the services deployed on each node. The contact time is the

duration of being in the proximity of each other, and is used to maintain each

node’s local knowledge base. Information about the services stored by each node

can be removed when the node associated with those services is no longer in

contact. User feedback can be used to improve the accuracy of the search results

during the discovery process [Cabrera et al., 2018a].

Within an agent community, a service agent saj can have source, destination

or intermediate roles. As the source, saj is responsible for the initialisation of

the optimisation process. The agent receives the service dependency graph from

a service discovery component, initialises a set of mobile agents based on the

properties of the graph, and forwards each mobile agent mai towards the first

node (root) in the graph (Algorithm 2). This node is identified using the syntac-

tic/semantic dependency relations between services in the service dependency

graph. After this, the source service agent transits to a Listening state where

it waits for the mobile agents to return after their forward/backward traversal

of the graph. When a mobile agent mai returns, saj transits to the Enqueuing

state where it adds the received mobile agent to a local queue. If all the mobile

agents are received, saj transits to an Re-optimisation state where it checks if

the number of iterations iter is below the requested threshold N to start a new
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Figure 3.5: Overview of participating agents in the stigmergic service compo-
sition process, which captures the state of each agent in different roles, and
the events that triggered the state transition. Algorithm 2, Algorithm 3, Algo-
rithm 4, and Algorithm 5 describe the flow of the events that trigger the state
transition.

traversal of the graph. This number is provided by the user as part of the com-

position request, and may be used to control the user’s time willing to wait for

the optimisation process.

As the destination, saj is responsible for collecting the mobile agents after

they finish traversing the service dependency graph, sorting the solutions which

are the paths in the graph traversed by the mobile agents, and deciding which

mai will be sent in the backward direction to reinforce the path used in the

forward direction, as each mai records the id of each visited graph node in its

memory store. saj starts in a Listening state where it waits for all mai to

arrive. Metadata can be piggybacked on each maj to transfer information such

as the number of expected mobile agents. When a mai arrives, saj transits to

an Enqueueing state where it adds the received mai to a local queue. When

all have been received, saj extracts the memorised path from each mai, uses a

non-dominated sorting solution technique [Mishra and Harit, 2010] to identify

which paths are associated with non-dominated solutions, and forwards each

mai in the backwards direction (Algorithm 3). After this it transits back to the

Listening state. Based on how dynamic the environment is, a decision can be
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Algorithm 2 Initialisation of optimisation process by the service agent with
source role

Require: G {Service Dependency Graph}
Require: N {Total number of iterations}
1: iter ← 0 {Current Iteration}
2: R← extract address(G) {Root of G address}
3: while iter < N do
4: n← size(G) {Number of services}
5: AC ← {} {Empty queue to store ma(s)}
6: for i ← 1 to n do
7: Initialise mai,Mi ← {}
8: Mi ←Mi ∪R {Add root address to M for this ma}
9: d← forward {Set forward direction for this ma}

10: end for
11: for i ← 1 to n do
12: Forward mai to {Trigger traversal}
13: end for
14: allMARecv ← false
15: while ¬allMARecv do
16: *Listening()* {Wait for *all* mobile agents to return}
17: if maRecv then
18: AC ← AC ∪mai {ma Enqueueing}
19: end if
20: if n = size(AC) then
21: allMARecv ← true
22: end if
23: end while
24: iter ← iter + 1
25: end while

made to configure SBOTI to wait for only a fraction of mobile agents in the

destination or source roles, as waiting for all the mobile agents may affect the

resolution time. This can be used to cater for any traversal failures that may be

caused by network failures. A requester service agent may play both the source

and destination roles. As an intermediate, saj facilitates mai’s movement and

access to its pheromone store (Algorithm 4). To allow for new paths to emerge,

saj runs a Pheromone Evaporation procedure (Definition 6) periodically, with

period T using (Equation 3.1):

τi = τi ∗ (1− ρ) (3.1)

where τi is the pheromone scalar associated with an entry in the pheromone

store M of a service agent saj , and ρ is the pheromone evaporation coefficient.

The mobile agents iteratively traverse the graph in a forward and backward

motion, and communicate with each other through the pheromone store of service

agents. In the forward direction, a mobile agent mai collects the QoS of the
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Algorithm 3 Procedure used by the service agent with destination role

Require: n {Initial number of mobile agents}
1: AC ← {} {Empty queue to store ma(s)}
2: allMARecv ← false
3: while ¬allMARecv do
4: *Listening()* {Wait for *all* mobile agents to return}
5: if maRecv then
6: AC ← AC ∪mai {ma Enqueueing}
7: end if
8: if n = size(AC) then
9: allMARecv ← true

10: end if
11: end while
12: P ← extract solutions(AC)
13: ND ← non dominated solution sorting(P )
14: for i ← 1 to n do
15: if mai ∈ ND then
16: set non dominated(mai)
17: end if
18: d← backward {Set backward direction for this ma}
19: Forward mai {Trigger traversal}
20: end for

service maintained by the explored service agent through a Pheromone Store

Querying procedure to decide which neighbour will be next explored. Based

on these values, a probabilistic approach is used to select the next neighbour

(direction), using equation:

Pd =
[τd]

α∑N
i [τi]α

(3.2)

where d is the index of the neighbour, τi is the pheromone level associated

with that neighbour, and Pd is the probability of selecting neighbour d. While

heuristic information is generally used in existing stigmergic-based systems for

service composition (e.g., Mostafa and Zhang [Moustafa et al., 2016]), SBOTI

does not assume such a priori knowledge about the environment. When a mobile

agent mai arrives at a service agent that has no neighbours (no directions), then

the mobile agent moves to the destination agent. This work assumes that such

a node exists and its address does not change throughout the forward traversal

of the mobile agents, or if it does, there is a method or a procedure pre-defined

that can update this address in every mobile agent that is used in the current

optimisation process.

As mobile agents traverse the graph in the backwards direction using the path

stored in their memory store, the intermediate service agents associated with this
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Algorithm 4 Procedure used by service agents

Require: sid {A service in service dependency graph G}
Require: NG {The set of successor neighbours of sid in G}
Require: T {Pheromone Evaporation procedure period}
Require: τinitial {Initial pheromone level}
1: Initialise pheromone store F ← {}
2: for i ← 1 to size(NG) do
3: τi ← τinitial
4: ngi ← extract index(NG, i) {i-th element in set NG}
5: F ← F ∪ (ngi, τi)
6: end for
7: while true do
8: for i ← 1 to size(NG) do
9: update(τi) {Pheromone Evaporation procedure}

10: end for
11: wait(T ) {Listening for other events}
12: end while

Algorithm 5 Procedure used by mobile agents

Require: Parameters α,Q1

Require: sid ← current service agent id
1: while isEmpty(M) = false do
2: d← getTraversalDirection
3: if d = forward then
4: F ← queryPheromoneStore(sid)
5: ng ← getNeighbour(F ) {Using Equation 3.2}
6: M ←M ∪ ng {Append address to M}
7: else if d = backward then
8: ng ← removeLast(M) {Remove last item from memory store M}
9: i← extract index(F, ng)

10: update(τi) {Pheromone Deposit procedure}
11: end if
12: traverse(mai, ng)
13: end while

path will modify their pheromone store (through positive reinforcement) using

the following Pheromone Deposit procedure (Definition 7):

τi = τi + τi ∗ (Q1/li) (3.3)

where τi is the pheromone level, Q1 is a constant and l is the length of the

i -th path (Algorithm 5). After this mai transits to a Memory Store Updating

state where it removes the top element from its M . If M is empty then the

lifecycle of this mobile agent is over, otherwise it will move in the Traversing

state. When all the mobile agents arrive at the source service agent, they are

discarded.
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3.4.3 Solution Diversity Strategy

A reinforcement strategy where both dominated and non-dominated solutions

are reinforced is used. The non-dominated solutions are reinforced with a pos-

itive offset, whereas the dominated solutions are reinforced with a negative off-

set [Palade and Clarke, 2018]. This is done through Equation 3.4.

τi = τi − τi ∗ (Q2/li) (3.4)

where τi is the pheromone scalar, Q2 is a constant and l is the length of the

i -th path (Algorithm 5).

To deal with the dynamic environments, a [τmin, τmax] pheromone reset strat-

egy can be used, where τmin and τmax are lower/upper bounds for pheromone

level. When the pheromone scalar is below the lower bound or above upper

bound, the pheromone scalar is reset to the initial τinitial value.

3.4.4 Adaptation Support

To facilitate composition adaptation during execution, a procedure that encour-

ages the exploration of new service composition configurations that emerge as a

result of providers’ mobility is required. The stigmergic optimisation mechanism

can converge to the optimal solution by selecting the path with the highest phero-

mone value. However, a mobile environment introduces two additional challenges

to finding the optimal configuration: (1) services in the service dependency graph

may join or leave at any time because of the mobility of the providers; (2) the

QoS of the services offered by such providers may vary in time. An adaptation

procedure is required to effectively address these issues [Palade et al., 2018b].

A pheromone smoothing scheme is used to facilitate composition adaptation

during execution, and allow other parts of the solution space to be explored.

Identified optimal paths are reinforced with less pheromone [Stützle and Hoos,

2000], which allows for other (some previously marked as non-optimal) paths to

be explored again. Each element in the pheromone store is updated as follows:

τij′ = τij + δ ∗ (τmax − τij) (3.5)

where τij′ is the new pheromone level, τij is the previous pheromone level, δ

is a smoothness coefficient and τmax is the maximum pheromone level that can

be associated with this path.
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While evaporation adopts a uniform discount rate for every node, the pher-

omone smoothing technique places a greater emphasis on the reinforcement of

pheromone concentration on the optimal path(s), by reducing the rate of rein-

forcement of dominant paths [Sim and Sun, 2003]. Previous research showed

that such a technique can prevent the generation of dominant paths. Stuzle and

Hoos [Stützle and Hoos, 2000] introduced a similar mechanism to solve the trav-

elling salesman problem, but in a stationary environment. Also, this approach

showed promising results in a dynamic, but stationary Wireless Sensor Networks

environment [Cai et al., 2006].

In a mobile environment, the devices on which the services are deployed may

move out of range, or may be power depleted. If these services are part of

optimal service composition paths, when the environment changes, other paths

in the service dependency graph may become optimal during the execution of

the composition. Also, new service compositions may emerge, which may have

more optimal QoS.

The pheromone smoothing approach is used as an adaptation handling pro-

cedure for planning-based service composition in mobile environments. Each

service agent is allocated with two pheromone update rules, the evaporation and

pheromone smoothing of each element in the pheromone store.

3.4.5 Collaborative Agent Communities

Given the dynamic nature of the environment under consideration for this work,

re-optimisation needs to be performed to closely track any changes. SBOTI’s op-

timisation process requires a number of the previously-defined hyper-parameters

to be configured, in particular the number of mobile agents required to explore

the search space, the initial pheromone level τinitial associated with each ele-

ment in M of each service agent (Definition 2), the evaporation frequency ρ

parameter that allows new paths to be explored (Definition 6), the parameter

α used during neighbour selection (Equation 3.2). An important limitation of

metaheuristic-based algorithms is that hyper-parameters need to be tuned, be-

cause a universally optimal parameter values set does not exist [Talbi, 2009]. The

ACO metaheuristic used in SBOTI requires a number of parameters to be set,

and the selected values can affect the performance of the method [Engelbrecht,

2006, Fulcher, 2008, Chitty and Hernandez, 2004, Wang and Shen, 2017]:

• nk, number of ants: affects the exploration ability of the algorithm. A large
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number increases the time until the pheromone levels on good links increase

to higher levels than they do on inferior links. A small number affects the

level of information about the environment. Also, this number directly

affects the communication overhead as the number exchanged messages

increases with the number of ants.

• nt, number of iterations: The quality of the solutions depends on the space

explored by the ants. If the number of iterations is small, then the ants

may not have time to explore and settle on a single path, whereas a large

number of iterations may introduce unnecessary communication overhead

through repetitive exploration of the same paths.

• τinitial, initial pheromone level: During the initialisation step, all the links

are initialised with either a constant value, τinitial, or to random values

in the range [0, τ0]. The random values may cause a bias towards the

links with initial large pheromone concentrations, and links with small

pheromone concentrations may be neglected as components in the final

solution.

• The pheromone evaporation period T allows for the trade-off between the

exploration and exploitation to be controlled. If T has a large value, the

pheromone matrix is highly dependent on good solutions from previous

generation, which leads to search around these good solutions. The smaller

the value of T , the greater the contribution of good solutions from all the

previous generations and the greater the diversity of search space through

the solution space.

• Influence of α: If α = 0, the services with the best QoS attributes are more

likely to be selected: this corresponds to a stochastic greedy algorithm.

The smaller values of α lead to the slow convergence and local optimum,

whereas the larger values lead to a strong emphasis on initial solution,

random fluctuations and bad algorithm behaviour. If β = 0, only the

pheromone information is used, which generally leads to poor results. The

larger values lead to suboptimal solutions.

• Pheromone evaporation coefficient ρ: The larger values affect the global

search ability, and the smaller values reduce the convergence speed.

Selecting the best values for the control parameters is a difficult task. A

tuning process allows for larger flexibility and robustness. Previous empirical
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studies have investigated these parameters, suggested values and heuristics to

calculate the values. However, it is difficult to maximise the efficiency of such

algorithms since these parameters have to be optimised for the specific problem

being solved, which requires problem specific information, or a priori knowledge

about the environment [Hussein and Saadawi, 2003]. Previous works used em-

pirical analysis or through learning. An additional algorithm can be used to

“learn” the best values of the parameters for the given algorithm and problem.

For instance, Botee and Bonabeau [Botee and Bonabeau, 1998] used a GA mech-

anism to explore the possible parameters for the implementation to address the

slow convergence, tendency to stagnancy [Xia et al., 2008].

Multiple, collaborative agent communities can improve the diversity and op-

timality of identified solutions (a shared goal), without an optimal, pre-defined

hyper-parameters set or a priori knowledge about the environment. Several

communities can independently tackle the optimisation problem in parallel, and

maximise the explored/exploited search space. Each community searches and

converges into different areas in the search space. When a dynamic change oc-

curs, the multi-community approach has knowledge from a set of previously good

solutions whereas a single community approach knows about only a single solu-

tion. Agent collaboration for multi-agent systems [Ferber and Weiss, 1999] has

been shown to benefit the accomplishment of complex tasks, sharing constrained

resources, or achieving individual or shared goals. A successful collaboration

process requires agents to form an effective collaboration community. This in-

cludes agents that are willing to support other community members by providing

useful domain information and taking actions towards a shared goal [Huebscher

and McCann, 2008]. The rest of section presents how such an agent community

is formed, explain the reasoning behind the collaboration process, and introduce

the mechanism used to exchange information about the solution space between

multiple communities of agents.

As the mobile and service agents interact on behalf of users seeking services to

be composed subject to certain QoS constraints and objectives, communities of

interest begin to emerge. These agent communities are formed using agents who

share the same interests, and may overlap by sharing goals or available resources

in the environment (e.g., the services and devices available in the service-sharing

communities). For finding QoS-optimal service composition configurations, these

interests could be exploring solutions bound to only a single region of the Pareto-

optimal set of solutions, or optimising only a partition of the service dependency
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Figure 3.6: Overview of the optimisation process using single and multiple agent
communities, where AC0, AC1 and AC2 are agent communities, Si is a service
agent, and Gi is an exclusive choice control element (i.e., Guidepost [Chen et al.,
2018]). Sub-figure 3.6a shows the optimisation process starting from the Start
(root) node of the given service dependency graph. Sub-figure 3.6b shows three
colonies AC0, AC1 and AC2, where AC0 starts exploring the service dependency
graph from the Start node (root), and AC1 and AC2 start from the guideposts
G1, respectively G2. The process in sub-figure 3.6c is similar to the optimisation
process in sub-figure 3.6c, but all the agent communities start traversing the
graph from the Start node.

graph. As more services are composed, the mobile agents become more efficient

and effective by interacting with the agents in the communities most likely to be

able to provide them with required service components [Shen et al., 2011]. This

can be locating services that maximise the overall QoS.

An agent community can choose to search for optimal solutions in only a

partition of the service dependency graph. For example, in Figure 3.6b three

agent communities are available: AC0, AC1, AC2. In this case, AC0 may start

from the Start node, AC1 may start from the exclusive choice control element

(guidepost) G1, and AC2 may start from guidepost G2. Heuristic-based methods

can be used to select the starting service agents, or the agent communities may

overlap with between several concurrent service compositions [Shen et al., 2011].

The Start, G1 and G2 also represent the source and destination of the mobile

agents. If an agent community chooses to search for solutions in the entire service

dependency graph, then the optimisation process will start from the Start node

(e.g., Fig. 3.6a, Fig. 3.6b, Fig. 3.6c). With regards to the destination, all available

communities can arrive at the same destination service agent, or they may arrive
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at different destinations. This work assumes that all the communities start and

end at service agents available in the given service dependency graph.

The proposed information exchange mechanism uses the pheromone values

from multiple communities for the same direction (neighbour) to efficiently ex-

plore the solution space. This work assumes that the transfer happens when a

mobile agent mai needs to select a neighbour to explore. Equation 3.6 replaces

Equation 3.2 for calculating Pd, which is the probability of choosing the neigh-

bour d (adjusted from Equation 3.2). More precisely, a mobile agent mai will

use Equation 3.6 instead of Equation 3.2 for selecting a neighbour (direction) to

explore. The pheromone information for neighbour d from all the agent com-

munities having information about that node is aggregated, averaged, and then

used to select the next node as follows:

Pd =
[τ ]α[avg(τ)λ + var(τ)1−λ]β∑N
i [τi]α[avg(τ)λ + var(τ)1−λ]β

(3.6)

where avg(τ) is the average of the pheromone level from all the communities

except the community of the current mobile agent making the selection, var(τ) is

the variance of this value, λ is a parameter used to select the preference (weight

of) the average and variance values, and β represents the preference for external

information (knowledge) from other communities.

The use of multiple collaborating communities allows SBOTI to use more

knowledge to efficiently explore the solution space, with Equation 3.6 replacing

Equation 3.2 (Algorithm 5). In Figure 3.5, the Pheromone Store Querying and

Neighbour Selecting states use the information provided by all the communities

available in the system.

3.5 Limitations Due to Design Decisions

SBOTI is inspired by a SI system, and two limitations are inherited because of

this. This work outlines these limitations and presents how they are addressed

to mitigate these limitations. A detailed evaluation of the performance and

feasibility of SBOTI is presented in Chapter 5.

(L1) Time Critical Applications: The optimal service composition configura-

tions are neither predefined nor pre-programmed. These configurations

emerge from the environment through continuous exploration. Because of

this, SBOTI may not be suitable for time-critical applications that require
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hard-QoS [White et al., 2017b]. However, this work explores if SBOTI can

provide satisfactory solutions within restrictive time-frames.

(L2) Parameter Tuning : This is known as a general drawback of the SI-based

systems. This work proposes using a collaborative approach to address

this limitation. By using multiple agent communities with diverse proper-

ties, this thesis explorers whether the utility of identified solutions can be

improved.

(L3) Stagnation: This is another known general drawback of the SI-based sys-

tems. Because of lack of a central coordinator, SI-based systems may con-

verge to a local optimum. For example, in ACO, stagnation occurs when

all the ants follow the same path. In the context of this work, this means

that the same service composition configuration is identified in every iter-

ation. This work proposes an adaptation procedure to avoid stagnation on

sub-optimal path.

3.6 Chapter Summary

This chapter introduced SBOTI, a QoS optimisation mechanism for flexible ser-

vice composition in mobile environments. To address the challenges of a mobile

environment, SBOTI is offers support for flexible service composition, is resource-

aware and mobility-aware, and can produce a set of Pareto-optimal solutions to

allow users to make compromises between the service composition configurations

available in a mobile environment. Section 3.1 introduced the required features

for a QoS optimisation mechanism for flexible service composition in a mobile

environment, and Section 3.2 introduced how the proposed agent-based approach

is mapped to the physical environment. Section 3.3 presented the design deci-

sions made to implement the required features presented in Section 3.1 in the

mobile environment.

Section 3.4.1 introduces SBOTI, a decentralised, QoS optimisation mecha-

nism for automatic, flexible service composition. SBOTI uses a community of

homogeneous, mobile software agents, which share the same goal, to effectively

and efficiently approximate the set of QoS-optimal service composition configu-

rations available in a geographically-limited, mobile environment. The proposed

mechanism uses an iterative, reinforcement-based approach to control the trade-

offs between computational efficiency and the optimality of the identified service
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composition solutions. Furthermore, it uses stigmergic-modelling (presented in

Section 3.4.1) to deal with the mobility of service providers. SBOTI incorporates

a non-dominated sorting technique to identify the Pareto-optimal set solutions,

which allows the user to explore various QoS trade-offs (Section 3.4.2). To control

the diversity of the solutions in this set, SBOTI globally updates both dominated

and non-dominated solutions using digital pheromones.

New service composition configurations may emerge (with potentially better

QoS) as a result of service providers mobility. The digital pheromone mechanism

used by such approaches may affect the exploration of new service composition

configuration that may emerge as a result of service providers mobility. To allow

for exploration of new service composition configurations that may emerge as a

result of providers’ mobility, SBOTI uses an adaptation procedure that limits

the amount of pheromone on previously identified solutions. This procedure is

presented in Section 3.4.4.

Given the dynamic nature of the environment under consideration for this

work, re-optimisation needs to be performed to closely track any changes in the

available service composition configurations. SBOTI’s optimisation process re-

quires a number of hyper-parameters to be configured, such as the number of mo-

bile agents required to explore the search space, the initial pheromone level τinitial

associated with each service agent, the evaporation frequency ρ parameter that

allows new paths to be explored. A collaborative approach to engage multiple

communities of agents for provisioning QoS-optimal service compositions in mo-

bile environments is presented in Section 3.4.5. New service compositions (with

better QoS) can emerge from local decisions and interactions with agents from

diverse communities. Several communities can independently tackle the optimi-

sation problem in parallel, and maximise the explored/exploited search space.

Each community searches and converges into different areas in the search space.

When a dynamic change occurs, the multi-community approach has knowledge

from a set of previously good solutions whereas a single community approach

knows about only a single solution.

Section 3.5 highlights the limitation introduced due to design decisions. These

limitations are because of the limitation inherited from SI-based systems. This

section also presents how these limitations are addressed in this thesis. The last

section summarises this chapter.



Chapter 4

Implementation

The previous chapter described the design of SBOTI, presented the main com-

ponents of this mechanism, and described how they address the challenges of

flexible, QoS-aware service provision in mobile environments. SBOTI is de-

signed and implemented on top of the Service Composition & Execution Engine

(SCE) component in the Service-centric network for URban-scale Feedback sys-

tems (SURF) middleware [Cabrera et al., 2017a]. The SURF middleware offers

the necessary components for service discovery, QoS-aware service composition

and optimisation, QoS monitoring and prediction, runtime Service Level Agree-

ment (SLA) between service consumers and service providers, and re-negotiation

support in case these agreements can not be enforced.

This chapter is structured as follows. Section 4.1 introduces the SURF mid-

dleware, enumerates the main components of the middleware, and describes their

interaction to provision QoS-aware service compositions in dynamic IoT envi-

ronments. Section 4.2 presents the architecture and implementation details of

SBOTI in the context of the Simonstrator platform. Section 4.3 summarises this

chapter.

4.1 SURF Middleware

The SURF middleware is a distributed software-layer that can be deployed in

a network of IoT gateways [Cabrera et al., 2017a]. Figure 4.1 shows the main

components of this middleware and their interaction. The main components are

Service Discovery Engine (SDE), Service Discovery Engine (SDE), QoS Monitor-

ing Engine and QoS Prediction Engine, SLA Negotiator and SLA Manager. Two

utility components are included to facilitate the QoS-aware service provisioning

process: a Request Handler and a Service Registry. This middleware is designed
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Figure 4.1: Architecture showing the main components of the SURF middleware.

to be deployed on IoT gateways and to manage services from different service

providers (i.e., web services, WSN services, and mobile service providers). De-

pending on the capabilities of the physical device, an IoT gateway can be a fixed

(embedded) or a mobile (e.g., a smartphone) [Aloi et al., 2017]. The reminder

of this section briefly describes each component.

4.1.1 Request Handler

Service consumers such as smart city applications or software developers access

the available services through (service) requests. In this work, a request is defined

as r = 〈I,O,QoS〉, consisting of the request inputs, outputs and QoS require-

ments. The Request Handler is a utility module that obtains user’s request and

formalises this request in a format that can be used by the Service Discovery

Engine (SDE) to find the service composition plans that can functionally satisfy

the composition request, and by the Service Composition & Execution Engine

(SCE) to perform the runtime service composition procedures (i.e., QoS optimi-

sation, and service execution and adaptation). The Request Handler exposes an

interface that receives requests, establishes the communication channel with the

application and with the user, and sends requests to other components in the

architecture.
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4.1.2 Service Registry

The Service Registry is a distributed component that can store the descriptions of

services. This component facilitates the service discovery process. Each available

service has a description sdesc = 〈id, I, O,D〉, consisting of a service identifier,

inputs, outputs, and domains. The registration can be pro-active, re-active or

both. When a new service provider becomes available, this provider can register

its services with the gateway. Also, the service provider can announce its presence

and push the details of the stored services to this gateway.

4.1.3 Service Discovery Engine

The Service Discovery Engine (SDE) is a distributed component used to per-

form the discovery of service composition configurations that can satisfy users’

requests. This component is notified of users’ request by the Request Han-

dler component (Section 4.1.1). When such a notification is received, the SDE

searches for services in the distributed registry. The output of this search is a set

of service composition configurations (or service plans) that satisfy the request

from the functional perspective (i.e., input and outputs matching). Each service

plan can have one or more services. In addition to the service components, each

service plan includes the data-flow and control-flow relations between these ser-

vice components (Section 1.2). The set of service plans are passed to the Service

Composition & Execution Engine (SCE) that chooses the best plan according to

the non-functional requirements (i.e., QoS parameters).

4.1.4 QoS Monitoring Engine and QoS Prediction Engine

IoT applications can be used in a range of domains that have different QoS

requirements based on the sensitivity and criticality of the application. IoT ap-

plication QoS can typically be categorised as best-effort (no QoS), differentiated

services (soft QoS) and guaranteed services (hard QoS) [White et al., 2017b].

To maintain Soft QoS guarantees for IoT applications, service execution require

continuous monitoring to ensure QoS is maintained, with processes required for

corresponding real-time negotiation and adaptation to cater for perturbations

in the environment. The choice for monitor placement in related work is either

on the service execution server [Baresi et al., 2004, Artaiam and Senivongse,

2008, Cabrera and Franch, 2012] or designed to overhear events generated by ser-

vices [Mahbub and Spanoudakis, 2004, Baresi and Guinea, 2005, Barbon et al.,
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2006] or to monitor at the client side [Jurca et al., 2007]. Existing monitor-

ing frameworks include Wetzstein et al. [Wetzstein et al., 2009], who provide a

framework for dependency analysis, using machine-learning techniques to analyse

the main factors that influence performance, but does not allow for distributed

execution of services and assumes a single workflow engine, and Ameller and

Franch [Ameller and Franch Gutiérrez, 2008], who describe a framework with a

monitor, an analyser that checks for SLA violations and a decision-maker that

provides treatment for violations, but requires instrumentation of the servers

that are running the services. In an urban scale environment, requiring every

service provider to be instrumented is an unreasonable assumption. To address

these limitations, the QoS Monitoring Engine and QoS Prediction Engine are

introduced in the SURF middleware.

The QoS Monitoring Engine captures the user side QoS and stores the values

in a distributed registry. The communication links for invoking these services

are diverse, which may affect the personal QoS experience of users, so they are

monitored using the monitoring engine. The QoS Prediction Engine focuses

on forecasting future values of currently executing services to identify if they

may be about to fail and makes predictions for component services that the

middleware may select when composing an application based on other users in

the environment. Each service consumer contributes with QoS information to

enable collaborative filtering. The values reported by the users are then input

for the IoTPredict algorithm [White et al., 2018b] to make QoS predictions

for candidate services. This algorithm can achieve higher prediction accuracy

compared to the state-of-the-art approaches, while maintaining a low overhead.

4.1.5 Service Composition & Execution Engine

The Service Composition & Execution Engine (SCE) searches for the optimal

service composition configurations using the QoS information that the QoS Mon-

itor Engine and QoS Prediction Engine provide (Section 4.1.4). The SCE is ini-

tialised using the set of service plans provided by the SDE (Section 4.1.3). This

component merges all these plans into as a service dependency graph using an

AND/OR graph structure introduced in Section 2.1.2.

In a dynamic environment, service components may have intermittent avail-

ability, or, if the devices that provide these service components are mobile, the

service components may become permanently unavailable. Because of the fre-

quent changes, finding a QoS-optimal service composition configuration (service
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plan) may be difficult. By the time the search process for such a configuration

finishes, the service components may become unavailable or the QoS information

may be out-of-date. Also, a user may want to explore various trade-offs between

the QoS attributes.

SBOTI is introduced to address these requirements. The optimisation pro-

cess is distributed over the available gateways. Service component failures caused

by the intermittent availability of the nodes are managed by requesting a replace-

ment from the SDE. Also, SBOTI uses a stigmergic-based mechanism to cope

with this dynamic environment. The architecture and design of SBOTI is pre-

sented in Section 3.4. Also, the implementation details of this design is presented

in Section 4.2.

4.1.6 SLA Negotiator and SLA Manager

Best-effort services are not sufficient for mission-critical applications like trans-

portation, healthcare, and emergency response [Islam et al., 2015]. To provide

a certain level of control to service consumers and deliver services with quality

guarantees, a Service Level Agreement (SLA) is used as a contract-like concept

to formalise the obligations of the involved parties [Ludwig et al., 2003]. This

agreement is the result of an SLA negotiation process, which is performed to

tailor service properties (e.g., QoS) before the actual service delivery [Faniyi and

Bahsoon, 2016].

The SURF middleware contains two components to deal with the SLA nego-

tiation and compliance process: SLA Negotiator and SLA Manager. In particu-

lar, the SLA Negotiator analyses the agreement templates submitted by service

providers, selects the candidate service providers that have potential to satisfy

the requirements, and negotiates on behalf of service consumers to solve possible

conflicts between service providers and consumers. The SLA Manager ensures

compliance with the agreed terms at runtime (i.e., during service execution time).

This component subscribes to performance deviation notifications from the QoS

Monitoring Engine (Section 4.1.4) through a publish/subscribe broker. The SLA

Manager subscribes to the QoS Monitoring Engine for performance deviation

notifications, to trigger SLA negotiation in case the current performance does

not comply with the guarantee terms and measurement metrics specified in the

negotiated SLA agreement [Palade et al., 2018a].



82

4.2 SBOTI Implementation

The SBOTI optimisation process performs in the context of the SURF mid-

dleware. SBOTI is part of the SCE component. This section shows the im-

plementation of SBOTI’s main components by following the design specifica-

tions presented in Section 3.4. SBOTI is implemented on the Simonstrator

platform [Richerzhagen et al., 2015], which is an event-based simulator imple-

mented in Java for mobile applications. The Simonstrator platform has been

selected because of the portability of the implementation. The Simonstrator

platform can provide a runtime environment, which enables systems to run on

network simulators such as OMNeT++, commodity PCs, or Android mobile

devices [Richerzhagen et al., 2015]. The simulator facilitates the performance

evaluation of service-based applications in mobile environments.

Figure 4.3 shows how SBOTI was implemented in Simonstrator. The figure

can be split into two parts. The first shows the main components of Simonstrator.

The second shows SBOTI’s components, their interaction and how these are

connected to Simonstrator.

In Simonstrator, all individual devices are modelled as Hosts. This means

that all the active entities that are part of SBOTI (e.g., service agents) are mod-

elled using the Host interface. All the Simonstrator’s internal features (e.g.,

Overlay, Network, Service, Sensor) are exposed as components. These com-

ponents are accessed through a Host object. In addition to these, Simonstrator

offers a Scheduling component and an Instrumentation component. The Schedul-

ing allows for operations (events) to be generated. The Instrumentation offers

logging features.

4.2.1 Agent Design

SBOTI uses a multi-agent, decentralised architecture, which allows service com-

position configurations to adapt in decentralised environments. As introduced

in Chapter 3, there are two types of agents that are used by this optimisation

mechanism: Service Agent and Mobile Agent. SBOTI uses the stigmergic coor-

dination of these agents to perform the optimisation process. Figure 4.2 shows

SBOTI’s class diagram. The main components of SBOTI are:

• Service Agent. A Service Agent is associated with each service in the

service dependency graph, and it has the following features:
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Figure 4.3: SBOTI prototype implemented in Simonstrator [Richerzhagen et al.,
2015].

– Message Helper. This component deals with serialisation and de-

serialisation of the incoming and outgoing messages. When a mes-

sage is received, this component retrieves the message and extracts

the header and body of the message, and processes the body of the

message based on the type of task extracted from the header. Also,

this component creates the messages that are to be sent to the next

service agents. Mobile agents are wrapped in messages when they

migrate between service agents.
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– Task Queue Store: This structure stores the tasks that are per-

formed by the agent. Two types of tasks are stored in this queue,

which are associated with the incoming messages and the outgoing

messages. In case of an incoming message, which represents the ar-

rival of a mobile agent at a service agent, a task is created to include

the details of the mobile agent. In case of an outgoing message, a task

which includes the details of the mobile agent is stored in this queue,

until the message has been acknowledged by the receiving node. Us-

ing a separate sending/receiving queue for processing tasks facilitates

parallel execution of tasks, and the resilience of the system. This fea-

tures allows for re-transmissions in case a message delivery times out.

These transmissions are performed through Forward Mobile Agent

Operation and Backward Mobile Agent Operation components.

– Pheromone Store Manager: This structure is the implementa-

tion of the Pheromone Store concept presented in Section 3.4. The

component uses a hash map data structure to associate each suc-

cessor neighbour in the service dependency graph with a pheromone

scalar. This component facilitates the periodic execution of the Pher-

omone Evaporation and Pheromone Deposit operations. This com-

ponent also performs the pheromone smoothing procedure presented

in Section 3.4.4. The Pheromone Evaporation operation is performed

through the Evaporation Operation component. The pheromone smooth-

ing procedure is performed through the Pheromone Smoothing Oper-

ation component.

• Start Service Agent. This component is responsible for the initialisation

of the set of mobile agents that are used during the optimisation process.

It initialises and configures each mobile agent, and forwards each mobile

agent towards the service agent responsible for the first service in the service

dependency graph. Also, this component is responsible for collecting all

the mobile agents when they return from traversing the service dependency

graph.

• End Service Agent. This component is responsible for storing the identi-

fied solutions by the mobile agents. After the solutions are stored, it uses a

non-dominated sorting technique to identify the Pareto-optimal solutions.

This component is also selects the reinforcement strategy that will be used
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during the execution of the mechanism (Section 3.4.2).

• Sboti Node Factory. This component initialises the Service Agent com-

ponents and allocates a Start Service Agent and a End Service Agent. A

user (developer) specifies the properties of the service dependency graph.

Then, the this component initialises the Service Agent components using

the properties of this graph. Also, this component contacts a Service Reg-

istry to extract a set of QoS values, which will be used to initialise the

services in the service dependency graph.

• Mobile Agent. This entity is used in the optimisation process. This

component traverses the service dependency graph, and collects the QoS

of each service in the path. The Start Service Agent component initialises

a set of Mobile Agents, and are forwarded as messages towards the Service

Agent associated with the first node in the service dependency graph. A

Mobile Agent provides two features:

– Memory Store Manager: This component is the implementation

of the memory store as described in the design chapter. It is imple-

mented as a list using a stack data structure. This component provides

the necessary procedures to update the memory store. These proce-

dures are the insertion of new service agent address in the memory

store when the mobile agent traverses in the forward direction, and

dequeuing when the mobile agent traverses in the backwards direction.

When the memory store is empty, the mobile agent is transferred to

the Start Service Agent. The logical address of the Start Service Agent

can be embedded into the memory of a Mobile Agent.

– Migration Manager: This component is responsible with the traver-

sal procedures of the mobile agent. In the forward direction, this

component queries the Pheromone Store Manager associated with

the current service agent for the neighbours of the current service,

and the pheromone values associated with each neighbour. A prob-

abilistic procedure (as explained in Section 3.4.2) is used to select

which neighbour will be visited next. In the backward direction, this

component is responsible for updating the Memory Store Manager.

• Message Transport Monitor. This is an utility component that records

the messages sent between the Host components in Simonstrator. This
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Figure 4.4: Sequence diagram showing the interactions between the main actors
of the system: Mobile Agent, Service Agent and Service. This figure complements
Figure 3.5 by showing the messages exchanged between these actors.

component is used to measure the communication overhead.

4.2.2 Agents Interaction

Figure 4.4 shows the interactions between the main actors of the SBOTI mech-

anism: Mobile Agent, Service Agent and Service. The Mobile Agent and Ser-

vice Agent concepts were introduced in Section 3.4.1. The Service is a node

in the service dependency graph, which is maintained in the DCON network

(Section 3.2). The UML 2.0 specification was used to generate this sequence di-

agram1. Figure 4.4 complements Figure 3.5 by showing the messages exchanged

between these actors. The self-messages (events) that trigger the state changes

are shown in Figure 3.5.

Figure 4.4 shows the SBOTI optimisation process. The Service Agent sends

an initialisePheromoneStore() request to initialise its pheromone store, based

on the successor neighbours in the service dependency graph. This agent then

starts a QoS Monitoring loop to retrieve the values of each QoS attribute of

user’ interests. These values are retrieved from a local registry that is deployed

on the same device as the service. The monitoring component samples the QoS

of the Service, and stores these values in a local registry for further analysis.

1https://www.ibm.com/developerworks/rational/library/3101-pdf.pdf
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Alternatively to this sampling procedure, the QoS Monitoring loop could use

the QoS values reported by previous users to make forecast the future values of

these QoS attributes. This procedure is performed by the QoS Monitoring and

Prediction Engine (Section 4.1.4).

The Mobile Agent performs two procedures: Pheromone Store Querying and

Pheromone Deposit (Section 3.4.2). In the Pheromone Store Querying proce-

dure, the Mobile Agent sends a synchronous message request getPheromoneVal-

ues() to the Service Agent to retrieve the pheromone values associated with each

neighbour in the pheromone store of the Service Agent. The Service Agent replies

to this messages with the contents of the pheromone store. This procedure is trig-

gered only when the Mobile Agent moves in the forward direction in the service

dependency graph. In the Pheromone Deposit procedure, the Mobile Agent sends

a synchronous message request setPheromoneValue(ni) to the Service Agent to

set the pheromone value for i-th element in the pheromone store. When this

request is received, the Service Agent generates an updatePheromoneStore(ni)

self-message to update the i-th element in its pheromone store. The Service

Agent sends a confirmation message to the Mobile Agent to inform the end of

the Pheromone Deposit procedure. The Mobile Agent produces a self-message

to continue the traversal of the service dependency graph.

4.3 Chapter Summary

SBOTI is implemented the SURF Middleware, and performs in the context of the

Service Discovery Engine (SDE) component. Section 4.1 introduces the SURF

Middleware, which is a distributed software-layer deployed in a network of IoT

gateways. The gateways may be fixed or mobile. The main components are

Service Discovery Engine (SDE), Service Discovery Engine (SDE), QoS Moni-

toring and Prediction Engine, SLA Negotiator and SLA Manager, and two utility

components Request Handler and Service Registry. The SURF middleware can

manage services from different service providers (i.e., web services, WSN ser-

vices, and mobile service providers). Section 4.2 described the implementation

of SBOTI based on the design description presented in Chapter 3.
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Evaluation

This chapter evaluates SBOTI’s performance in a mobile environment, and com-

pares the results with GoCoMo [Chen et al., 2018], SimDijkstra [Jiang et al.,

2014], and Random approach. Three evaluation objectives are realised in this

chapter: (i) to determine whether SBOTI can outperform the existing heuristic-

based proposals for flexible, QoS-aware service composition in mobile environ-

ments; (ii) to determine whether SBOTI, while adapting to the mobile environ-

ments, can maintain or further improve the diversity and optimality of identified

solutions; (iii) to determine whether SBOTI can improve the optimality and di-

versity of identified solutions by increasing the communication overhead, and by

re-using knowledge about the solution space from other agents.

The chapter is structured as follows: Section 5.1 maps the evaluation objec-

tives to the research questions, and introduces the performance metrics measured

during the evaluation. Section 5.2 presents the statistical analysis performed to

investigate whether the observed differences in results are statistically signifi-

cant. Section 5.3 presents the evaluation setup. Section 5.4 presents the eval-

uated baseline algorithms and Section 5.5 the test cases proposed to perform

the evaluation. Three studies are presented in Section 5.6, Section 5.7 and Sec-

tion 5.8 to evaluate the limitations of SBOTI under various dynamic conditions.

Section 5.10 summarises this chapter.

5.1 Evaluation Objectives and Performance Metrics

The existing proposals for flexible, QoS-aware service composition in mobile envi-

ronments are generally based on best-effort approaches. Such approaches trade-

off optimality for computational efficiency. Further more, these approaches have

been developed to address the optimisation problem from a single-objective per-

88



Chapter 5. Evaluation 89

spective. This means that they only return one solution. This section evaluates

the performance of SBOTI to measure to what extent can the trade-off between

computational efficiency and optimality be controlled, such that a broad range of

composition configurations can be presented to users (research question Q1), to

what extent the service providers’ mobility can be leverage through an adaptive

approach to exploring new service compositions (research question Q2). Also,

this section measures to what extent will more search agents improve the opti-

mality and diversity of identified service compositions (research question Q3).

Table 5.1 shows how these evaluation objectives are mapped to the research

questions.

To be able to evaluate SBOTI’s performance, and compare the results with

baseline algorithms for QoS optimisation in mobile environments, a number of

metrics are required. In general, the performance of an algorithm is assessed

using both the quality of identified solution and the amount of resources re-

quired to generate that solution. While this is true for both Single-Objective

Optimisation (SOO) and Multi-Objective Optimisation (MOO) problems, there

is a substantial difference in the process of estimating the performance of the

resulted solution (in the SOO case) or a set of solutions (in the MOO case). In

SOO problems a single value is produced by using users’ preferences. The larger

this value, the better the solution produced. The outcome of a MOO problem

is a set of mutually incomparable Pareto-optimal solutions. The size of domi-

nated space metric (Section 5.1.1) and spread metric (Section 5.1.2) are used to

measure the performance of this set of solutions. To compare the performance

with SOO-based proposals, the utility metric is used (Section 5.1.3). Finally, the

communication overhead metric presents the communication cost introduced by

each evaluated algorithm (Section 5.1.4).

5.1.1 Size of Dominated Space

This metric indicates how well the Pareto-optimal set is approximated by the

set of solutions [Zitzler and Thiele, 1999]. The greater the size of the space

dominated, the closer the solutions are to the Pareto-optimal set [Wang et al.,

2015]. The size of dominated space of a set A of solutions, which contains only

non-dominated solutions, is calculated as follows:
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Figure 5.1: Size of dominated space and spread metrics. Figure 5.1a shows the
space dominated (in orange) by a given Pareto set (points d1, d2, d3, d4 and X5)
when two objectives are minimised. Figure 5.1b outlines the Euclidean distance
between these points.

PS(A) =
(Max I − x1) ∗ (Max II − y1) +

∑n
i=2(Max I − xi) ∗ (yi−1 − yi)

Max I ∗Max II
(5.1)

where Max I and Max II are the obtained maximum values of two given

objectives: Objective I and Objective II. These two values create the Reference

Point XR. Figure 5.1a shows the composition of set A, which is a Pareto front

made of 5 points. The size of the dominated space is illustrated by the area

covered by the orange surface. In this work, the Reference Point XR was set

to the highest throughput plus 5 units and the lowest response time minus 0.1

units.

5.1.2 Spread

This metric measures the extent of non-uniformity achieved in the obtained

solutions [Deb et al., 2002]. The obtained set of solutions should span the entire

Pareto-optimal region. The Euclidean distance between consecutive solutions in

the obtained non-dominated set of solutions is identified, and then the average of

these distance is calculated. The extreme solutions (in the objective space) are

identified using all the solutions obtained from the evaluated algorithms. This

metric is calculated as follows:

∆ =
df + dl +

∑N−1
i=1

∣∣di − d∣∣
df + dl + (N − 1)d

(5.2)

where the parameters df and dl are the Euclidean distances between the

extreme solutions and the boundary solutions in the obtained non-dominated

set. The parameter d is the average of the distances between all points di, given

by the N solutions, with N − 1 distances between these solutions. Figure 5.1b

shows the distribution of five points d1, d2, d3, d4, d5. A uniformly spread set
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would make all the distances between these points equal to d, and the parameter

∆ would be zero [Deb et al., 2002].

5.1.3 Utility

This metric indicates the overall satisfaction of QoS requirements of a service

composition configuration [Zeng et al., 2004, Alrifai and Risse, 2009, Ye et al.,

2016]. Certain QoS values such as response time are considered negative criteria

and need to be minimised to increase user satisfaction, whereas others such as

throughput are considered positive criteria and need to be maximised. The

utility metric is calculated as follows:

Uimin =


Qmax

i −Qi

Qmax
i −Qmin

i

1

and Uimax =


Qi−Qmin

i

Qmax
i −Qmin

i
ifQmaxi −Qmini 6= 0

1 ifQmaxi −Qmini = 0

(5.3)

where Qi is a QoS value, and Qmini and Qmaxi are the minimum/maximum

QoS values available for Qi. Equation 5.3 computes utility of a composite from

the perspective of an objective that needs to be minimised or maximised [Alrifai

and Risse, 2009]. The utilities are aggregated as follows:

Utilityg =

i∑
1

Ui ∗Wi (5.4)

where Wi represents the importance weights assigned to the i -th utility met-

ric. Each weight is a number in the range [0, 1] and the sum of all weights is

equal to 1. Evaluations with various weights are performed to assess the utility

of produced solutions, while covering the entire Pareto-front. Table 5.3 shows

the values of these weights used in this evaluation.

5.1.4 Communication Overhead

This metric measures the number of exchanged messages between the nodes

used during the composition. All the types of messages that are exchanged are

included, counting retransmission or probing messages.

5.2 Statistical Analysis

Because this work deals with stochastic algorithms, the observed results must be

provided with a certain level of confidence. Also, some aggregation numbers that
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summarise the average and deviation tendencies must be considered when using

a performance indicator (i.e., size of dominated space and spread indicators). To

provide this, a statistical analysis procedure is performed to verify whether the

observed differences in results of the evaluated algorithms are statistically signif-

icant [Talbi, 2009]. First, a Kolmogorov-Smirnov test and a Shapiro–Wilk test

are performed to verify whether the obtained results follow a normal (Gaussian)

distribution. This step allows to decide between non-parametric and parametric

tests. Generally, if results do not follow a normal distribution and the sample size

is small, non-parametric tests such as Wilcoxon-Mann-Whitney are performed.

Otherwise, parametric tests such as t-test are used [Alba, 2005]. This statistical

tests were selected because they are the most used statistical tests for dynamic

multi-objective optimisation [Bechikh et al., 2016].

In all tests in this work, the confidence level is set to 95% in all statisti-

cal tests (p-value under 0.05), which means that the differences are unlikely to

have occurred by chance with a probability of 95% [Durillo et al., 2006]. The

sample size is set to 50 data points. A data point is the value of the measured

performance indicator in the 250-th iteration. If the observed differences are

significant, the effect size is recorded [Grissom and Kim, 2005]. The effect size

is calculated as follows:

p̂a,b =
U

nanb
(5.5)

where U is the statistic calculated using Wilcoxon-Mann-Whitney test, na is

the number of samples in group a, respectively group b for nb. The parameter

p̂a,b is the probability that an observation from group a will be higher than an

observation from group b.

5.3 Experimental Setup

SBOTI is implemented on the Simonstrator platform [Richerzhagen et al., 2015],

which is an event-based simulator implemented in Java for mobile applications.

The experiments were performed on the Lonsdale cluster, which was provided

by TCHPC at Trinity College Dublin, Ireland. Each node in the cluster has

the following configuration: Linux OS, 2.30GHz AMD Opteron processor, and

16GB of RAM1. A mobile environment was simulated where each node represents

a mobile device. The environment was designed based on the specifications in

1https://www.tchpc.tcd.ie/resources/clusters/lonsdale
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Figure 5.2: Figure 5.2a and Figure 5.2b show the response time and through-
put experienced by the users in the WS-DREAM dataset for three different
services [Zheng et al., 2014].

Table 5.2.

Table 5.2: Simulator properties.

Simulator Parameters Value

Speed
SLOW (1.5 - 2.5m/s)
MEDIUM (2.5 - 7.5m/s)
FAST (7.5 - 13.5m/s)

Communication Range 250m

Field Size 1000m2

Node Placement Random Position Distribution

Movement Model Gauss Markov

Each device is set to offer one service, and each service is associated with

two QoS attributes: response time and throughput. A QoS dataset is used to

initialise the QoS of each service participant. This work uses the WS-DREAM

dataset [Zheng et al., 2014], which consists of a matrix of response time and

throughput values for 339 users by 5825 services. Figure 5.2a and Figure 5.2b

show the response time and throughput experienced by the users in the dataset

for three different services. To address the dynamism in the services available

in the environment, the QoS values of each service are changed after every it-

eration by multiplying every value with a random number in the interval [0.5,

1.5] as performed in previous works (e.g., [Alsaryrah et al., 2018]). The formulae

in Table 2.1 were used to aggregate the QoS values of composite participants

(the services in a service composition). Only service compositions following a

sequential pattern were used in this work.

5.4 Baseline Approaches

For the proposes of establishing a baseline against which to compare GoCoMo,

this study is using existing proposals for flexible service composition in mobile
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environments. The baselines for comparison are:

1. SimDijkstra: an algorithm that uses a Dijkstra-based algorithm to find

the shortest path in the service dependency graph [Jiang et al., 2014]. The

execution ends when a leaf node is reached. A leaf node is the last service

in a path in the service dependency graph.

2. GoCoMo: a heuristics-based algorithm that uses a greedy-based approach

to select the path with the highest utility value to the user. It uses monitors

to collect QoS of potential paths. Probes are sent regularly to update the

QoS from the leaf nodes to each exclusive choice structure in the service

dependency graph [Chen et al., 2018].

3. Random: randomly selects the next service in the service dependency

graph. This algorithm shows the expected value of a random solution and

provides a baseline that the specialised algorithms should easily outper-

form [Klein et al., 2014].

These baselines use an utility function to transform the multi-objective opti-

misation problem into a single-objective optimisation. SBOTI does not require a

priori articulation of preferences and may produce a set of solutions. To compare

the performance of the solutions produced by SBOTI with the baseline single-

solution approaches, the utility metric (Section 5.1.3) is used to select a single

solution from the set of Pareto-optimal solutions produced SBOTI.

5.5 Test Case Generation

For the purpose of evaluation, a scenario based on an adaptive route planner

application [Chen et al., 2018] is used. Such an application can be built using

services provided by the available (mobile) devices in the environment. There

can be many functionally similar services, and more than one service compo-

sition configuration may be available. The composition with the optimal QoS

should be selected to maximise user satisfaction of non-functional requirements.

The service dependency graph is generated using a service discovery component.

This component can also perform in parallel to SBOTI (or its variants) to con-

tinuously adapt this functional structure relative to the changing environment.

As mentioned in Section 1.4, this work assumes that such a component exists.

Four control variables are used in this work. The first two are given by the

data structure that is used to represent the service dependency graph, which is



96

a full and complete k-ary tree [Cormen et al., 2009] with the height h and k

number of children. Each path in this graph from root to a leaf node represents

a service composition configuration. Variable k controls the number of potential

service composition configurations, whereas variable h is used to vary the length

of the service composition configurations. For simplicity, only sequential service

composition configurations are used. Each internal node in the service depen-

dency graph is an exclusive choice control element (i.e., guidepost). The number

of alternatives for this structure is given by the number of leaf nodes in this

structure. The third control variable is the speed of devices in the environment

(Section 5.3). The fourth control variable adjusts the weights wRT and wTH for

the response time (RT) and throughput (TH) objectives used in this evaluation.

These values are used to compute the utility of the final composition plan. These

values were adopted by experimenting with various sets of parameters and by

considering other researchers’ earlier experiments [Wang et al., 2015]. Table 5.3

shows the values used to initialise the control variables.

Table 5.3: Control variables used in the studies.

Control Variable Description Values

h Height of the tree 3, 4

k The number of children in every node 2, 3, 4

Speed The speed of nodes in the environment
SLOW (1.5 - 2.5 m/s)
MEDIUM (2.5 - 7.5 m/s)
FAST (7.5 - 13.5 m/s)

wRT , wTH The weights of the QoS objectives
(0.01, 0.99), (0.25, 0.75)
(0.50, 0.50), (0.75, 0.75)
(0.99, 0.01)

5.6 Study 1: Stigmergic Optimisation and Diversity

Strategy

Finding QoS optimal service compositions in mobile-based, service-sharing com-

munities is challenging because of the inherent dynamism in services deployed

on mobile devices, and in the underlying physical network used to enable these

services. Existing service composition proposals for such environments require

a priori knowledge either about the service composition structure, or about the

QoS objectives’ weights, which limits the composition flexibility and does not

allow for compromises to be made between multiple QoS objectives.

This study is focused on answering research question Q1. This section in-

vestigates to what extent can the trade-off between computational efficiency and

optimality be controlled, such that a broad range of composition options can
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be presented to users and whether SBOTI can outperform the existing baseline

approaches. To control the diversity of the solutions in this set, SBOTI uses

a diversity strategy that globally updates both dominated and non-dominated

solutions using digital pheromones (Section 3.4.3).

5.6.1 Evaluated Algorithms

The following algorithms are evaluated in this study:

1. SBOTI: the implementation of the QoS optimisation mechanism using a

single community of agents as described in Section 3.4.2 (e.g., Figure 3.6a).

The agent colony uses a non-dominated reinforcement strategy approach.

Only the solutions that belong to the observed Pareto-front are reinforced.

2. SBOTI-NDS: the implementation of the QoS optimisation mechanism

using a single community of agents as described in Section 3.4.2 (e.g., Fig-

ure 3.6a). The agent colony uses both a non-dominated and a dominated

reinforcement approach. The solutions that belong to the observed Pareto-

front are reinforced using a positive scalar, whereas the other solutions are

reinforced with a negative scalar.

3. GoCoMo: presented in Section 5.4.

4. SimDijkstra: presented in Section 5.4.

5. Random: presented in Section 5.4.

5.6.2 Evaluated Algorithms Settings

A number of parameters need to be set before running SBOTI. These are: the

initial pheromone scalar τinitial associated with each entry in each pheromone

store (Definition 2), the parameter α which is used to control the influence of

τinitial (used in Equation 3.2 and Equation 3.6), parameter Q1 which is the

amount of pheromone added during the Pheromone Deposit procedure (Defini-

tion 7), parameter Q2 which is the amount of pheromone subtracted during the

Pheromone Deposit procedure (Section 3.4.3), and the pheromone evaporation

coefficient ρ used for the Pheromone Evaporation procedure (Definition 6). A

pheromone reset strategy is used to allow the previously explored solutions, but

depleted by the Pheromone Evaporation procedure, to be re-explored. When a

pheromone value is outside the interval [τmin, τmax], it is reset to τinitial. This

strategy is used because the QoS values of each service in each solution are
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Table 5.4: Parameter values used to initialise SBOTI and SBOTI-NDS.

Parameter Value

α 5.0

ρ 0.015

Q1 55.0

Q2 25.0

τmin 10.0

τmax 1000.0

τinitial 250.0

continuously changing. Table 5.4 shows the values used to initialise these pa-

rameters. The number of mobile agents is set to the initial number of services

in the service dependency graph. This number is set based on other researchers’

experiments [Palade et al., 2018b].

5.6.3 Results

Size of Dominated Space

Figure 5.3a shows the trade-off between the size of the dominated space metric

and the number of iterations (i.e., search time), for SBOTI, SBOTI-NDS and

SBOTI-PM, where all the mechanisms are initialised using the values from Ta-

ble 5.4. The figure shows this trade-off as the number and lengths of service

compositions configurations available in the environment is varied. In all the

evaluated cases, the size of the dominated space of SBOTI-NDS decreases as the

iterations number control variable k (the number of service composition config-

urations in the solutions space) is increased. The size of dominated space of

SBOTI is higher than SBOTI-NDS in all the cases. As an example, when h is

4, the speed is Fast, and k is 2, after 10 iterations, the sizes of the dominated

space for SBOTI, SBOT-NDS are 43.15%, respectively 41.49%. When k is 3, the

results are 50.22%, respectively 49.41%. And when k is 4, the results are 59.4%,

respectively 57.4%. SBOTI trades-off exploration time (in number of iterations)

for optimality, whereas SBOTI-NDS achieves a lower value for this metric. After

250 iterations, and when k is 2, the sizes of the dominated space are 46.13%,

respectively 35.16%. When k is 3, the results are 50.11%, respectively 42.58%.

And when k is 4, the results are 61.16%, respectively 39.77%. By increasing the

length of the service composition configurations, the sizes of dominated space

obtained by both mechanisms increases. As the speed is increased, the size of

dominated space obtained by SBOTI-NDS decreases significantly compared to

the other two approaches. A statistical analysis is performed to measure whether

the observed differences are statistically significant by following the procedure
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Table 5.5: Statistical analysis for the size of the dominated space and the spread
indicator results. Statistically significant differences (Yes/No) and exact p-value
are highlighted with bold. The effect size is calculated in the same cell if the
results are statistically significant.

Slow (1.5 - 2.5 m/s) Medium (2.5 - 7.5 m/s) Fast (7.5 - 13.5 m/s)
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

Pair Size of Dominated Space

h=3
SBOTI vs.
SBOTI-NDS

No (0.005)
Yes (0.000)

0.74
Yes (0.000)

0.7356
No (0.005)

Yes (0.027)
0.6112

Yes (0.000)
0.7064

No (0.113)
Yes (0.000)

0.7692
Yes (0.000)

0.7656

h=4
SBOTI vs.
SBOTI-NDS

Yes (0.000)
0.7428

Yes (0.000)
0.7776

Yes (0.000)
0.9072

Yes (0.000)
0.7272

Yes (0.000)
0.7408

Yes (0.000)
0.9232

Yes (0.000)
0.7896

Yes (0.001)
0.6704

Yes (0.000)
0.8992

Pair Spread

h=3
SBOTI vs.
SBOTI-NDS

No (0.917)
Yes (0.042)

0.6002
Yes (0.001)

0.677
No (0.856) No (0.098)

Yes (0.041)
0.6008

No (0.685)
Yes (0.006)

0.6436
Yes (0.041)

0.6006

h=4
SBOTI vs.
SBOTI-NDS

No (0.294)
Yes (0.019)

0.62
Yes (0.000)

0.7922
No (0.148)

Yes (0.008)
0.6388

Yes (0.000)
0.8092

Yes (0.038)
0.6024

Yes (0.011)
0.6318

Yes (0.000)
0.718

presented at the beginning of this section. If the observed differences are signif-

icant, the effect size is also measured (Section 5.2).

After applying the Kolmogorov-Smirnov and Shapiro-Wilk tests, this work

concludes that the results do not follow a Gaussian distribution. A non-parametric

analysis is performed to verify whether the differences observed between the

means of the obtained results are statistically significant. The Wilcoxon-Mann-

Whitney test by pairs of algorithms is performed. Table 5.5 shows the p-values

obtained from this statistical test. The cases in which the differences are statisti-

cally significant are highlighted with bold. These tests confirm the observations

made about the variable speed and the size of the solution space (i.e., num-

ber of service composition configurations). The table shows that by increasing

the speed of devices in the environment and the number of service composition

configurations h, SBOTI-NDS achieves inferior results compared to SBOTI. By

increasing the length of the service composition configurations, the differences

between the results obtained by each mechanism become significant.

Spread

Figure 5.3b shows the trade-off between the spread of identified solutions and

the number of iterations (i.e., search time), for SBOTI and SBOTI-NDS. The

figure shows this trade-off as the number and the lengths of service compositions

configurations available in the environment is varied. A first observation is that

the variables speed and h significantly influences the spread metric. For example,

as variable speed is increased the spread values increases from 0.8 when h is 3

to 0.9 when h is 4. Another observation is that SBOTI-NDS achieves has a

better spread than SBOTI in all the cases. A statistical analysis is performed

to measure whether the observed differences in the obtained spread values are

statistically significant by following the procedure presented at the beginning

of this section. If the observed differences are significant, the effect size is also
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measured.

The Kolmogorov-Smirnov and Shapiro-Wilk tests indicate that the results

do not follow a Gaussian distribution. A non-parametric analysis is performed

to verify whether the differences observed between the means of the obtained

results are statistically significant. The Wilcoxon-Mann-Whitney test by pairs

of algorithms is performed. Table 5.5 shows the p-values obtained from this

statistical test. The cases in which the differences are statistically significant

are highlighted. These tests confirm the observations about the spread values

obtained by SBOTI-NDS as the speed and the size of the solution space is in-

creased. The results show that SBOTI-NDS trades-off the spread of solutions

for optimality of solutions.

Utility of Solutions

Figure 5.4 shows the results of the utility evaluation as the number of service

composition configurations (i.e., variable k), the length of the service composition

configurations (i.e., variable h) and the speed of devices in the environment is

increased. The utility is calculated using the configurations produced by SBOTI

and SBOTI-NDS in their 250-th iteration, and the configurations produced by

SimDijkstra, GoCoMo and Random. This metric was defined in Section 5.1.3.

Two objectives are considered in this evaluation: minimising response time and

maximising the throughput of the composition. The weights of these objectives

as well as the values of variables k, h and speed are varied using the values in

Table 5.3. Two trends can be observed for SBOTI and SBOTI-NDS: (1) the

utility of these variants confirm their optimality results from Figure 5.3a, and

(2) the utility of these variants is higher than the utility of the SimDijkstra,

GoCoMo and Random algorithms for a particular portion of the Pareto-front.

The utility of SBOTI is higher than SBOTI-NDS in all the cases. This is be-

cause these mechanisms focus on exploitation of the information learned from

the environment, whereas SBOTI-NDS uses the diversify strategy to improve

the exploration of the solution space. Compared to the evaluated baselines, the

results show that the evaluated variants achieve a higher utility when the weights

(RT, TH) are {(0.01, 0.99), (0.25, 0.75), (0.50, 0.50)}.

Communication Overhead

Figure 5.5 shows the communication overhead (number of exchanged messages)

after 250 iterations as the size of the solution space varies over the number of ser-
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Figure 5.5: The overhead when various number of paths are available (lower is
better). The results are averaged over 50 executions.

vice composition configurations, the length of the configurations and the speed

of devices. All the control variables influence the overhead. The speed introduces

communication failures between devices, which require retransmissions. This in-

creases the communication overhead, which can be observed in every presented

scenario. The number and the length of the service composition configurations

also affect the overhead as follows. In GoCoMo, a global state mechanism pe-

riodically disseminates network state to all participating nodes, which explains

the high overhead. This mechanism is not used in SimDijkstra and Random and

the communication overhead introduced by these two algorithms is insignificant.

The results show that the evaluated agent-based approaches trade-off communi-

cation efficiency for optimality and diversity of solutions. SBOTI and SBOTI-

NDS introduce a higher overhead than the GoCoMo, SimDijkstra and Random

approaches because of the large number of agents that exchanged messages to

perform the optimisation process.

5.6.4 Discussion

The first study evaluated SBOTI and SBOTI-NDS, a proposed variant that uses

a solution diversity strategy to improve the diversity of identified solutions (Sec-

tion 3.4.3). The proposed diversity strategy uses a both positive and negative

reinforcement approach to improve the exploration of different parts of the solu-

tions space. The results showed that the proposed diversity strategy, based on

positive reinforcement of optimal solutions and negative reinforcement of non-

optimal solutions, can improve the diversity of identified solutions. The results

of this study addresses research question Q1 in Section 1.3.4.

Figure 5.6a shows the size of dominate space per communication overhead

ratio as number of iterations increases. Figure 5.6b shows the spread per com-

munication overhead ratio as the number of iterations increases. These results
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are shown for various length and number of service composition configurations.

In all the cases SBOTI-NDS has a lower value than SBOTI at the beginning,

but as the number of iterations increases the gap between the two is reduced.

5.7 Study 2: Adaptation Support

New service composition configurations may emerge (with potentially better

QoS) as a result of service providers’ mobility. Most service composition propos-

als for mobile environments either use template-matching composition or require

a priori knowledge about the QoS objectives’ weights, which limits the compo-

sition flexibility in such environments and does not allow for compromises to

be made between multiple QoS objectives. The existing stigmergic-based ser-

vice composition proposals do not allow for efficient exploration of the solution

space. The digital pheromone mechanism used by such approaches may affect

the exploration of new service composition configuration that may emerge as a

result of service providers mobility.

This study is focused on answering research question Q2. This section in-

vestigates to what extent can service providers’ mobility, potentially resulting

in new service options appearing in the environment, be leveraged through an

adaptive approach to exploring new service compositions. To allow for explo-

ration of new service composition configurations that may emerge as a result of

providers’ mobility, SBOTI uses an adaptation procedure that limits the amount

of pheromone on previously identified solutions. This procedure is implemented

in SBOTI. A new variant is defined as SBOTI-PM, which includes this pro-

cedure. This variant is compared with SBOTI, SBOTI-NDS and the baseline

algorithms.

5.7.1 Evaluated Algorithms

The following algorithms are evaluated in this study:

1. SBOTI: the implementation of the QoS optimisation mechanism using a

single community of agents as described in Section 3.4.2 (e.g., Figure 3.6a).

The agent colony uses a non-dominated reinforcement strategy approach.

Only the solutions that belong to the observed Pareto-front are reinforced.

2. SBOTI-PM: the implementation of the QoS optimisation mechanism us-

ing a single community of agents as described in Section 3.4.2 (e.g., Fig-
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Table 5.6: Two sets of parameter values used to initialise the evaluated algo-
rithms as follows: Set 1 initialised SBOTI, SBOTI-NDS and SBOTI-PM, and
Set 2 initialises SBOTI and SBOTI-PM.

Set 1 Set 2

Parameter Value Value

α 5.0 0.9

ρ 0.015 0.01

Q1 55.0 10

Q2 25.0 -

τmin 10.0 0

τmax 1000.0 20

τinitial 250.0 10

δ 0.5 0.5

ure 3.6a). This variant also include the adaptation mechanism presented

in Section 3.4.4.

3. SBOTI-NDS: presented in Section 5.6.1.

4. GoCoMo: presented in Section 5.4.

5. SimDijkstra: presented in Section 5.4.

6. Random: presented in Section 5.4.

5.7.2 Evaluated Algorithms Settings

In addition to the parameters defined in Section 5.6.2, SBOTI-PM uses a pher-

omone smoothing coefficient δ (Section 3.4.4). Table 5.6 highlights two sets of

values used in this evaluation. Set 1 re-uses the values from Table 5.4. These

values are used to evaluate SBOTI, SBOTI-NDS and SBOTI-PM. Set 2 reduces

the value associated with τinitial and reduces the value of τmin and τmax, which

are used in the Reset Strategy (Section 3.4.3). This set is used for evaluation

of SBOTI and SBOTI-PM. The purpose of the second set is to check whether

SBOTI-PM can be adjusted to identify more optimal solutions than SBOTI. By

reducing the min and max values associated with the reset interval, the fre-

quency of which knowledge about previous solutions is discarded is increased.

This highlights the performance improvements of the pheromone smoothing tech-

nique evaluated in this study. Similar to study in Section 5.6, the number of

mobile agents is set to the initial number of services in the service dependency

graph.
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5.7.3 Results

Size of Dominated Space

Figure 5.7a shows the trade-off between the size of the dominated space metric

and the number of iterations (i.e., search time), for SBOTI, SBOTI-NDS and

SBOTI-PM, where all the mechanisms are initialised using the Set 1 values from

Table 5.6. The figure shows this trade-off as the number and lengths of service

compositions configurations available in the environment is varied. In all the

evaluated cases, the size of the dominated space of SBOTI-NDS decreases as the

iterations number control variable k (the number of service composition config-

urations in the solutions space) is increased. The size of dominated space of

SBOTI-PM is higher than SBOTI-NDS in all the cases, but lower than SBOTI.

As an example, when h is 4, the speed is Fast, and k is 2, after 10 iterations,

the sizes of the dominated space for SBOTI, SBOT-NDS and SBOTI-PM are

43.15%, 41.49% and 45.66%, respectively. When k is 3, the results are 50.22%,

49.41%, and 50.38%, respectively. And when k is 4, the results are 59.4%, 57.4%,

and 58.46%, respectively. SBOTI and SBOTI-PM trade-off exploration time (in

number of iterations) for optimality, whereas SBOTI-NDS achieves a lower value

for this metric. After 250 iterations, and when k is 2, the sizes of the dominated

space are 46.13%, 35.16% and 39.66%, respectively. When k is 3, the results

are 50.11%, 42.58%, and 46.84%, respectively. And when k is 4, the results are

61.16%, 39.77%, and 55.96%, respectively. Another observation with regards to

these dimensions is that SBOTI-PM achieves super results compared to SBOTI-

NDS, but inferior results compared to SBOTI. However, by increasing the length

of the service composition configurations, the sizes of dominated space obtained

by all three evaluated mechanisms increases. Another observation is that as

the speed is increased, the sizes of dominated space obtained by SBOTI-NDS de-

creases significantly compared to the other two approaches. A statistical analysis

is performed to measure whether the observed differences are statistically signifi-

cant by following the procedure presented at the beginning of this section. If the

observed differences are significant, the effect size is also measured (Section 5.2).

After applying the Kolmogorov-Smirnov and Shapiro-Wilk tests, this work

concludes that the results do not follow a Gaussian distribution. A non-parametric

analysis is performed to verify whether the differences observed between the

means of the obtained results are statistically significant. The Wilcoxon-Mann-

Whitney test by pairs of algorithms is performed. Table 5.7 shows the p-values



Chapter 5. Evaluation 109

Table 5.7: Statistical analysis for the size of the dominated space and the spread
indicator results. Statistically significant differences (Yes/No) and exact p-value
are highlighted with bold. The effect size is calculated in the same cell if the
results are statistically significant.

Slow (1.5 - 2.5 m/s) Medium (2.5 - 7.5 m/s) Fast (7.5 - 13.5 m/s)
k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

Pair Size of Dominated Space

h=3

SBOTI vs.
SBOTI-NDS

No (0.072)
Yes (0.000)

0.7212
Yes (0.000)

0.7076
Yes (0.047)

0.5968
Yes (0.03)

0.6092
Yes (0.000)

0.7152
No (0.135)

Yes (0.000)
0.7716

Yes (0.000)
0.7732

SBOTI vs.
SBOTI-PM

No (0.205) No (0.05)
Yes (0.005)

0.6476
Yes (0.002)

0.6644
No (0.221) No (0.073) No (0.33)

Yes (0.006)
0.6444

Yes (0.004)
0.6524

SBOTI-PM vs.
SBOTI-NDS

No (0.303)
Yes (0.002)

0.6644
No (0.128) No (0.806) No (0.124)

Yes (0.003)
0.6552

No (0.266)
Yes (0.006)

0.6448
Yes (0.026)

0.6124

h=4

SBOTI vs.
SBOTI-NDS

Yes (0.000)
0.7576

Yes (0.000)
0.7712

Yes (0.000)
0.8972

Yes (0.000)
0.7152

Yes (0.000)
0.7544

Yes (0.000)
0.9316

Yes (0.000)
0.7856

Yes (0.000)
0.6876

Yes (0.000)
0.8852

SBOTI vs.
SBOTI-PM

Yes (0.011)
0.6328

Yes (0.008)
0.6388

Yes (0.000)
0.6844

Yes (0.000)
0.6896

Yes (0.000)
0.6812

Yes (0.000)
0.7208

Yes (0.000)
0.6876

Yes (0.002)
0.662

Yes (0.015)
0.626

SBOTI-PM vs.
SBOTI-NDS

Yes (0.023)
0.6152

Yes (0.001)
0.6712

Yes (0.000)
0.8176

No (0.264)
Yes (0.002)

0.6136
Yes (0.000)

0.8248
Yes (0.007)

0.64
No (0.27)

Yes (0.000)
0.8052

Pair Spread

h=3

SBOTI-NDS vs.
SBOTI

No (0.918)
Yes (0.032)

0.393
Yes (0.006)

0.355
No (0.555) No (0.071) No (0.086) No (0.771)

Yes (0.023)
0.3848

No (0.059)

SBOTI-PM vs.
SBOTI

No (0.491)
Yes (0.000)

0.2968
Yes (0.000)

0.2688
No (0.108) No (0.054)

Yes (0.008)
0.3608

No (0.436) No (0.185)
Yes (0.028)

0.3896
SBOTI-PM vs.
SBOTI-NDS

No (0.104) No (0.152) No (0.052)
Yes (0.015)

0.375
No (0.399) No (0.098) No (0.281) No (0.826) No (0.392)

h=4

SBOTI-NDS vs.
SBOTI

No (0.313) No (0.06)
Yes (0.000)

0.2274
No (0.283)

Yes (0.006)
0.3544

Yes (0.000)
0.228

No (0.424)
Yes (0.011)

0.3682
Yes (0.000)

0.2988
SBOTI-PM vs.
SBOTI

Yes (0.033)
0.3938

No (0.055)
Yes (0.004)

0.3462
No (0.063)

Yes (0.013)
0.3712

No (0.115) No (0.0550
Yes (0.037)

0.3968
No (0.152)

SBOTI-PM vs.
SBOTI-NDS

No (0.055) No (0.438) No (0.972) No (0.155) No (0.537) No (0.999) No (0.306) No (0.545) No (0.944)

obtained from this statistical test. The cases in which the differences are statisti-

cally significant are highlighted with bold. These tests confirm the observations

made about the variable speed and the size of the solution space (i.e., num-

ber of service composition configurations). The table shows that by increasing

the speed of devices in the environment and the number of service composition

configurations h, SBOTI-NDS achieves inferior results compared to SBOTI and

SBOTI-PM. By increasing the length of the service composition configurations,

the differences between the results obtained by each mechanism become signif-

icant. As the number of devices and their speed increases, SBOTI-PM offers

better adaptation support as it has a better exploitation the service composition

configurations that emerge from service providers mobility.

A second evaluation is performed within this study to verify whether the size

of the dominated space obtained by SBOTI-PM can be improved by adjusting

the parameters used to initialise the underlying optimization mechanism. For

this evaluation, SBOTI and SBOTI-PM are initialised using Set 2 values from

Table 5.6. This evaluation is performed using only SBOTI and SBOTI-PM.

The highest difference between these two mechanism can be observed when the

speed variable is set to Fast. In the second evaluation, variable k is set to 2,

variable speed is set to Fast, and variable h is varied from 3 to 6. Previous

service composition proposals in mobile environments, showed that the success

rate of service compositions is affected by the length of the service composition

configurations [Karmouch and Nayak, 2012, Chen et al., 2018]. This evaluation

is performed to check whether SBOTI-PM can outperform SBOTI, by using the
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pheromone smoothing mechanism to support adaptation to the mobile environ-

ment.
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Figure 5.8: Trade-off between the Size of Dominated space metric (defined in
Section 5.1.1) and the number of iterations for different number of service com-
position configurations.

Figure 5.8 shows how the size of the dominated space achieved by SBOTI

and SBOTI-PM evolves as the number of iterations is increased. Both SBOTI

and SBOTI-PM increase the size of their dominated space as the number of

available paths increases. When h is set to 3, the size of the dominated space

for SBOTI is 63.32% after 10 iterations and decreases to 60.54% after 250 it-

erations, whereas for SBOTI-PM maintains a level of 64%. When h is set to

4, SBOTI obtains 64.07% after 10 iterations and decreases to 60.56% after 250

iterations, whereas SBOTI-PM slowly increases from 64.35% to 64.76%. When

h is set to 5, SBOTI achieves 67.05% after 10 iterations and 62.90% after 250

iterations, whereas SBOTI-PM achieves 66.96% after 10 iterations and 68.45%

after 250 iterations. When h is set to 6, SBOTI achieves 67.59% and SBOTI-

PM achieves 66.96%. SBOTI maintains the same decreasing slope and achieves

64.51% after 250 iterations, whereas SBOTI-PM achieves 68.45% after 250 it-

erations. As the length of the service composition configurations increases the

smoothing mechanism used in SBOTI-PM can reduce the pheromone deposit on

the optimal identified paths, and improve the exploration of the emerging service

composition configurations. By reducing the pheromone deposited during each

iteration, the exploration of new configurations as a result of mobility can be

facilitated. Also, by reducing the pheromone associated with each service agent

in the environment, in case of disconnections, SBOTI-PM can search for better

solutions.
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Spread

Figure 5.7b shows the trade-off between the spread of identified solutions and the

number of iterations (i.e., search time), for SBOTI, SBOTI-NDS and SBOTI-

PM. The figure shows this trade-off as the number and the lengths of service

compositions configurations available in the environment is varied. A first obser-

vation is that the variables speed considerably influences the spread metric. For

example, as variable speed is increased the spread values increases from 0.8 when

h is 3 to 0.9 when h is 4, after 10 iterations. Another observation is that SBOTI-

PM achieves similar spread value as SBOTI-NDS when the speed is slow and

medium. A statistical analysis is performed to measure whether the observed

differences in the obtained spread values are statistically significant by follow-

ing the procedure presented at the beginning of this section. If the observed

differences are significant, the effect size is also measured.

The Kolmogorov-Smirnov and Shapiro-Wilk tests indicate that the results

do not follow a Gaussian distribution. A non-parametric analysis is performed

to verify whether the differences observed between the means of the obtained

results are statistically significant. The Wilcoxon-Mann-Whitney test by pairs

of algorithms is performed. Table 5.7 shows the p-values obtained from this

statistical test. The cases in which the differences are statistically significant

are highlighted. These tests confirm the observations about the spread values

obtained by SBOTI-PM as the speed and the size of the solution space is in-

creased. The results show that SBOTI-PM trades-off the spread of solutions

for optimality of solutions. For slow and medium speeds, SBOTI-PM achieves

similar spread performances but more optimal compared to SBOTI-NDS.

Utility of Solutions

Figure 5.9 shows the results of the utility evaluation as the number of service

composition configurations (i.e., variable k), the length of the service composition

configurations (i.e., variable h) and the speed of devices in the environment is in-

creased. The utility is calculated using the configurations produced by SBOTI,

SBOTI-NDS and SBOTI-PM in their 250-th iteration, and the configurations

produced by SimDijkstra, GoCoMo and Random. This metric was defined in

Section 5.1.3. Two objectives are considered in this evaluation: minimising re-

sponse time and maximising the throughput of the composition. The weights of

these objectives as well as the values of variables k, h and speed are varied using



112

0 50

100

h=3

Slow
 (1.5 - 2.5m

/s)
M

edium
 (2.5 - 7.5m

/s)
Fast (7.5 - 13.5m

/s)

k=2
k=3

k=4
0 50

100

h=4

k=2
k=3

k=4
k=2

k=3
k=4

Utility (%)

(0.01, 0.99)
(a)

U
tility

w
h

en
w

eig
h
ts

(R
T

,
T

H
)

=
(0

.0
1,

0
.9

9
).

0 50

100

h=3

Slow
 (1.5 - 2.5m

/s)
M

edium
 (2.5 - 7.5m

/s)
Fast (7.5 - 13.5m

/s)

k=2
k=3

k=4
0 50

100

h=4

k=2
k=3

k=4
k=2

k=3
k=4

Utility (%)

(0.25, 0.75)
(b

)
U

tility
w

h
en

w
eigh

ts
(R

T
,

T
H

)
=

(0.25,
0.75).

0 50

100

h=3

Slow
 (1.5 - 2.5m

/s)
M

edium
 (2.5 - 7.5m

/s)
Fast (7.5 - 13.5m

/s)

k=2
k=3

k=4
0 50

100

h=4

k=2
k=3

k=4
k=2

k=3
k=4

Utility (%)

(0.50, 0.50)
(c)

U
tility

w
h

en
w

eigh
ts

(R
T

,
T

H
)

=
(0.50

,
0
.5

0
).

0 50

100

h=3

Slow
 (1.5 - 2.5m

/s)
M

edium
 (2.5 - 7.5m

/s)
Fast (7.5 - 13.5m

/s)

k=2
k=3

k=4
0 50

100

h=4

k=2
k=3

k=4
k=2

k=3
k=4

Utility (%)

(0.75, 0.25)
(d

)
U

tility
w

h
en

w
eigh

ts
(R

T
,

T
H

)
=

(0.75,
0.25).

0 50

100

h=3

Slow
 (1.5 - 2.5m

/s)
M

edium
 (2.5 - 7.5m

/s)
Fast (7.5 - 13.5m

/s)

k=2
k=3

k=4
0 50

100

h=4

k=2
k=3

k=4
k=2

k=3
k=4

SB
O

TI
SB

O
TI-N

D
S

SB
O

TI-PM
G

oC
oM

o
Sim

D
ijkstra

R
andom

Utility (%)

(0.99, 0.01)
(e)

U
tility

w
h

en
w

eig
h
ts

(R
T

,
T

H
)

=
(0

.9
9
,

0
.01).

F
ig

u
re

5.9:
T

h
e

u
tility

(h
igh

er
is

b
etter)

o
f

th
e

eva
lu

ated
algorith

m
s

as
th

e
n
u

m
b

er
of

serv
ice

com
p

osition
con

fi
gu

ration
s

(k
),

th
e

len
gth

of
serv

ice
com

p
o
sition

co
n

fi
gu

ra
tio

n
s

(h
)

an
d

th
e

sp
eed

o
f

d
ev

ices
in

th
e

en
v
iron

m
en

t
is

varied
.

T
h

e
resu

lts
are

averaged
over

50
ex

ecu
tion

s.



Chapter 5. Evaluation 113

50 100 150 200 250
Iterations (#)

0

20

40

60

80

100

U
til

ity
 (%

)

 k=2, h=3 

(a)

50 100 150 200 250
Iterations (#)

0

20

40

60

80

100

U
til

ity
 (%

)

 k=2, h=4 

(b)

50 100 150 200 250
Iterations (#)

0

20

40

60

80

100

U
til

ity
 (%

)

 k=2, h=5 

(c)

50 100 150 200 250
Iterations (#)

0

20

40

60

80

100

U
til

ity
 (%

)

 k=2, h=6 

(d)

SBOTI SBOTI-PM SimDijkstra GoCoMo Random

Figure 5.10: The utility of solutions produced by the evaluated algorithms
(higher is better) after 250 iterations for different number of paths. The results
are averaged over 50 executions.

the values in Table 5.3. Two trends can be observed for SBOTI, SBOTI-NDS

and SBOTI-PM: (1) the utility of these variants confirm their optimality results

from Figure 5.7a, and (2) the utility of these variants is higher than the utility of

the SimDijkstra, GoCoMo and Random algorithms for a particular portion of the

Pareto-front. The utility of SBOTI and SBOTI-PM is higher than SBOTI-NDS

in all the cases. This is because these mechanisms focus on exploitation of the

information learned from the environment, whereas SBOTI-NDS uses the diver-

sify strategy to improve the exploration of the solution space. Compared to the

evaluated baselines, the results show that the evaluated variants achieve a higher

utility when the weights (RT, TH) are {(0.01, 0.99), (0.25, 0.75), (0.50, 0.50)}.

Figure 5.10 shows the results of the utility evaluation as the number of avail-

able paths (service composition configurations) is increased. In this evaluation,

the results for when the length of the service composition configurations is in-

creased from 3 to 6, while the value of variable k is set to 2 and the value of

variable speed is set to Fast. The utility is calculated using the configurations

produced by SBOTI and SBOTI-PM in the last 5 iterations, and the config-
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Figure 5.11: The overhead (lower is better) of evaluated algorithms as the num-
ber of service composition configurations (k), the length of service composition
configurations (h) and the speed of devices in the environment is varied. The
results are averaged over 50 executions.

urations produced by SimDijkstra, GoCoMo and Random. By increasing the

number of iterations, two trends can be observed for SBOTI and SBOTI-PM:

(1) the utility of both increases as the number of paths increases, and (2) the

utility of SBOTI is higher than the utility of SBOTI-PM after 100 iterations.

This difference decreases as the number of paths increases. When h = 3 (Fig-

ure 5.10a), SBOTI achieves an utility of 86.58% and SBOTI-PM achieves an

utility of 80.38%. This decreases to 93.26% for SBOTI and 88.52% for SBOTI-

PM, when h = 6 (Figure 5.10d). The SimDijkstra and Random algorithms have

the lowest utility for almost all runs. GoCoMo performs comparably to SBOTI

and SBOTI-PM. Figure 5.10b, Figure 5.10c and Figure 5.10d show that SBOTI

has a higher utility than SBOTI-PM, which can be because of a bias towards a

particular region of the Pareto-front.

Communication Overhead

Figure 5.11 shows the communication overhead (number of exchanged messages)

after 250 iterations as the size of the solution space varies over the number of ser-

vice composition configurations, the length of the configurations and the speed

of devices. All the control variables influence the overhead. The speed introduces

communication failures between devices, which require retransmissions. This in-

creases the communication overhead, which can be observed in every presented

scenario. The number and the length of the service composition configurations

also affect the overhead as follows. In GoCoMo, a global state mechanism pe-

riodically disseminates network state to all participating nodes, which explains

the high overhead. This mechanism is not used in SimDijkstra and Random and

the communication overhead introduced by these two algorithms is insignificant.

The results show that the evaluated agent-based approaches trade-off communi-
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Figure 5.12: The overhead when various number of paths are available (lower is
better). The results are averaged over 50 executions.

cation efficiency for optimality and diversity of solutions. SBOTI, SBOTI-NDS

and SBOTI-PM introduce a higher overhead than the GoCoMo, SimDijkstra

and Random approaches because of the large number of agents that exchanged

messages to perform the optimisation process.

Figure 5.12 shows the overhead (number of exchanged messages) after 250

iterations as the length of service composition configurations in the service depen-

dency graph varies. In GoCoMo, a global state mechanism periodically dissemi-

nates network state to all participating nodes, which explains the high overhead.

This mechanism is not used in SimDijkstra and Random and the overhead in-

troduced by these two algorithms is smaller. However, the utility of solutions

of these algorithms is considerably lower than the utility produced by SBOTI

and SBOTI-PM and GoCoMo. SBOTI-NDS and SBOTI-PM introduce a higher

overhead than the other approaches because of the large number of agent mes-

sages. This number is task dependent, and, for simplicity, it was set to the

number of nodes in the service dependency graph. Tuning this parameter would

likely reduce the overhead, though this needs to be verified.

5.7.4 Discussion

The second study evaluated SBOTI, SBOTI-NDS (introduced in previous study)

and SBOTI-PM, a proposed variant that uses a pheromone smoothing strategy

to improve the optimality of identified solutions (Section 3.4.4). Two evaluations

are performed in this study. In the first evaluation, SBOTI-PM is compared to

SBOTI and SBOTI-NDS. The results show that SBOTI-PM can achieve superior

solutions compared to SBOTI-NDS. SBOTI-PM improves the approximation of

the set of QoS optimal service composition configurations that emerge as a results

of providers mobility, while maintaining similar performances to SBOTI-NDS

with regards to the spread metric. The decrease in utility of solutions when the
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adaptation procedure is used can be motivated by the choice of weights that are

used to evaluate this metric. In the second evaluation, SBOTI-PM is compared

to SBOTI. In this second evaluation, the configuration parameters are adjusted

to verify whether SBOTI-PM can outperform SBOTI. The results show that

the adaptation procedure can achieve a better approximation of the Pareto-

optimal solutions than the no-adaptation variant. The results show that the

proposed approach can pro-actively adapt to fluctuations in the QoS values, and

can approximate the set of QoS-optimal of service composition configurations

that may emerge in mobile environments. The results of this study addressed

research question Q2 in Section 1.3.4.

Figure 5.13a shows the size of dominate space per communication overhead

ratio, and Figure 5.13b shows the spread per communication overhead ration as

the length and number of service composition configurations increases. In all

the cases SBOTI-PM and SBOTI-NDS have a lower value than SBOTI at the

beginning of the optimisation process, but as the number of iterations increases

the gap is reduced. SBOTI-PM and SBOTI-NDS achieve similar performances.

5.8 Study 3: Collaborative Agent Communities

Given the dynamic nature of the environment under consideration for this work,

re-optimisation needs to be performed to closely track any changes in the avail-

able service composition configurations. SBOTI’s optimisation process requires

a number of hyper-parameters to be configured, such as the number of mobile

agents required to explore the search space, the initial pheromone level τ associ-

ated with each service agent, the evaporation frequency ρ parameter that allows

new paths to be explored. An important limitation of metaheuristic-based algo-

rithms is that these hyper-parameters need to be tuned, because a universally

optimal parameter values set does not exist [Talbi, 2009]. A tuning process al-

lows for a larger flexibility and robustness, but it is difficult to perform since

it may require problem specific information, or a priori knowledge about the

environment [Hussein and Saadawi, 2003].

This study is focused on answering research question Q3. This section inves-

tigates to what extent will more search agents improve the optimality and diver-

sity of identified service compositions. A collaborative approach to engage mul-

tiple communities of agents for provisioning QoS-optimal service compositions in

mobile environments is evaluated in this section. New service compositions (with
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better QoS) can emerge from local decisions and interactions with agents from

diverse communities. Several communities can independently tackle the optimi-

sation problem in parallel, and maximise the explored/exploited search space.

Each community searches and converges into different areas in the search space.

When a dynamic change occurs, the multi-community approach has knowledge

from a set of previously good solutions whereas a single community approach

knows about only a single solution.

5.8.1 Evaluated Algorithms

The following algorithms are evaluated in this study:

1. SBOTI: the implementation of the QoS optimisation mechanism using a

single community of agents as described in Section 3.4.2 (Fig. 3.6a).

2. SBOTI-HOM: an extension to SBOTI, which uses the homogeneous

multi-community of agents as described in Section 3.4.5 and which op-

timises partitions of the service dependency graph (Fig. 3.6b).

3. SBOTI-HET: an extension to SBOTI, which uses the heterogeneous multi-

community of agents as described in Section 3.4.5 and which optimises

partitions of the service dependency graph (Fig. 3.6b).

4. GoCoMo: presented in Section 5.4.

5. SimDijkstra: presented in Section 5.4.

6. Random: presented in Section 5.4.

5.8.2 Evaluated Algorithms Settings

Single Agent Community Evaluation Settings

A number of parameters need to be set before running SBOTI. These are: the ini-

tial pheromone scalar τinitial associated with each entry in each pheromone store

(Definition 2), the parameter α which is used to control the influence of τinitial

(used in Equation 3.2 and Equation 3.6), parameter Q1 which is the amount of

pheromone added during the Pheromone Deposit procedure (Definition 7), and

the pheromone evaporation coefficient ρ used for the Pheromone Evaporation

procedure (Definition 6). A pheromone reset strategy is used to allow the previ-

ously explored solutions, but depleted by the Pheromone Evaporation procedure,

to be re-explored. When a pheromone value is outside the interval [τmin, τmax],
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it is reset to τinitial. This strategy is used because of the QoS values of each ser-

vice in each solution are continuously changing. The settings for a single agent

community case can be found in Table 5.8.

Multiple Agent Communities Evaluation Settings

As introduced in Section 3.4.5, multiple agent communities may be used during

the optimisation process instead of a single agent community. These commu-

nities may choose to search in the entire service dependency graph, like in the

single agent community case, or in partitions of this graph (Figure 3.6b). In

this evaluation, only the second case is considered, where one agent community

has as a starting point for the optimisation process the first node in the service

dependency graph, and one agent community is allocated to each node in the

graph that has more than one outgoing node. As mentioned in Section 3.4.1,

the available agent communities may be homogeneous or heterogeneous. The

settings for each type of community can be found in Table 5.8. The agent com-

munities are initialised as follows. In case of homogeneous agent communities,

each community uses the values associated with the Homogeneous Communities

column in this table. The period T of the Evaporation Procedure is set to the

same value as in the case of single agent community.

In case of heterogeneous communities, each community selects a random

value between a Min and a Max value, which are associated with the Hetero-

geneous Communities column in the same table. The period of the Evaporation

Procedure is set to a random value in the interval [T/2, T ∗ 3], where T is the

period used in the single agent community case. These values were selected to

introduce heterogeneity between the available communities. The choice of values

of these parameters can affect the search 3.4.5. For instance, the evaporation

period provides one means by which the trade-off between the exploration and

exploitation can be controlled.

Only the mobile agents associated with non-dominated solutions are allowed

to reinforce the traversed paths, and the number of mobile agents is set to the

initial size of the service dependency graph.
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Table 5.8: Parameter values used to initialise each type of agent community.

Parameter
Single Agent
Community

Homogeneous Agent
Communities

Heterogeneous Agent
Communities

Value Value Min Max

α 5.0 5.0 0.01 10.99

ρ 0.015 0.015 0.001 0.5

β 1.5 1.5 0.01 2.0

λ 0.95 0.95 0.01 0.99

Q1 55.0 55.0 5.0 155.0

τmin 10 10 10 15

τmax 1000 1000 350 1500

τinitial 250 250 1.25 * τmin 0.75 * τmax

5.8.3 Results

Size of Dominated Space

Figure 5.14a shows the trade-off between the size of the dominated space metric

and the number of iterations (i.e., search time), for SBOTI, SBOTI-HOM and

SBOTI-HET. The figure shows this trade-off as the number and lengths of service

compositions configurations available in the environment is varied. In all the

evaluated cases, the size of the dominated space increases as the control variable

k (the number of service composition configurations in the solutions space) is

increased. As an example, when h is 4, the speed is Fast, and k is 2, after 10

iterations, the sizes of the dominated space for SBOTI, SBOT-HOM and SBOTI-

HET are 24.82%, 26.89% and 27.14%, respectively. When k is 3, the results are

35.88%, 37.14%, and 35.19%, respectively. And when k is 4, the results are

45.66%, 45.57%, and 45.86%, respectively. After 250 iterations, the sizes of the

dominated space increases for all the mechanisms. When k is 2, the sizes of

the dominated space are 36.91%, 34.99% and 33.98%, respectively. When k is

3, the results are 46.09%, 44.81%, and 41.30%, respectively. And when k is 4,

the results are 55.27%, 52.92%, and 50.89%, respectively. Another observation

with regards to these dimensions is that SBOTI-HET achieves inferior results

compared to SBOTI-HOM and SBOTI. However, by increasing the length of the

service composition configurations, the sizes of dominated space obtained by all

three evaluated mechanisms increases.

Another observation is that as the speed is increased, the difference between

the obtained results by these mechanisms becomes smaller. A statistical anal-

ysis is performed to measure whether the observed differences are statistically

significant by following the procedure presented at the beginning of this section.

If the observed differences are significant, the effect size is also measured. After

applying the Kolmogorov-Smirnov and Shapiro-Wilk tests, this work concludes
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Table 5.9: Statistical analysis for the size of the dominated space and the spread
indicator results. Statistically significant differences (Yes/No) and exact p-value
are highlighted with bold. The effect size is calculated in the same cell if the
results are statistically significant.

Pair
Slow (1.5-2.5 m/s) Medium (2.5-7.5 m/s) Fast (7.5 - 13.5 m/s)

k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4

Size of Dominated Space

h=3

SBOTI vs.
SBOTI-HOM

No (0.248) No (0.075)
Yes (0.025)

0.5396
No (0.251) No (0.061) No (0.199) No (0.331) No (0.184) No (0.056)

SBOTI vs.
SBOTI-HET

Yes (0.034)
0.6056

Yes (0.009)
0.6352

Yes (0.000)
0.6852

No (0.28)
Yes (0.024)

0.614
Yes (0.03)

0.6092
No (0.294) No (0.126)

Yes (0.002)
0.6624

SBOTI-HOM vs.
SBOTI-HET

No (0.162) No (0.287) No (0.052) No (0.495) No (0.37) No (0.119) No (0.447) No (0.363) No (0.108)

h=4

SBOTI vs.
SBOTI-HOM

No (0.164)
Yes (0.035)

0.6048
Yes (0.037)

06032
No (0.273) No (0.129) No (0.379) No (0.235) No (0.298) No (0.075)

SBOTI vs.
SBOTI-HET

Yes (0.037)
0.6032

Yes (0.006)
0.6436

Yes (0.001)
0.674

No (0.148)
Yes (0.001)

0.6732
Yes (0.043)

0.5992
No (0.087)

Yes (0.005)
0.6464

No (0.134)

SBOTI-HOM vs.
SBOTI-HET

No (0.247) No (0.212) No (0.111) No (0.445)
Yes (0.009)

0.6352
No (0.084) No (0.3)

Yes (0.022)
0.616

No (0.343)

Spread

h=3

SBOTI vs.
SBOTI-HOM

No (0.360) No (0.592) No (0.111) No (0.674) No (0.276) No (0.444) No (0.942) No (0.928) No (0.148)

SBOTI vs.
SBOTI-HET

No (0.534)
Yes (0.041)

0.3996
No (0.248) No (0.625) No (0.24) No (0.465) No (0.827) No (0.171) No (0.33)

SBOTI-HOM vs.
SBOTI-HET

No (0.637)
Yes (0.01)

0.3664
No (0.715) No (0.49) No (0.443) No (0.561) No (0.271)

Yes (0.01)
0.6332

No (0.702)

h=4

SBOTI vs.
SBOTI-HOM

No (0.487) No (0.515) No (0.07) No (0.667) No (0.609) No (0.162) No (0.424) No (0.358) No (0.22)

SBOTI vs.
SBOTI-HET

No (0.54) No (0.471)
Yes (0.01)

0.3652
No (0.652) No (0.205)

Yes (0.006)
0.3548

No (0.424) No (0.1)
Yes (0.009)

(0.3636)
SBOTI-HOMvs.
SBOTI-HET

No (0.581) No (0.548) No (0.21) No (0.556) No (0.111) No (0.094) No (0.379) No (0.138)
Yes (0.041)

(0.3664)

that the results do not follow a Gaussian distribution. A non-parametric analy-

sis is performed to verify whether the differences observed between the means of

the obtained results are statistically significant. The Wilcoxon-Mann-Whitney

test by pairs of algorithms is performed. Table 5.9 shows the p-values obtained

from this statistical test. The cases in which the differences are statistically sig-

nificant are highlighted. These tests confirm the observations made about the

variable speed. The table shows that by increasing the speed of devices in the en-

vironment, the differences in sizes of dominated space become insignificant. For

a slow speed SBOTI performs better than SBOTI-HOM and SBOTI-HET, but

this difference becomes insignificant as the speed is increased. When the speed is

increased the solution space is also changing faster, which continuously affects its

size. When the solution space is small, using a single-agent community may con-

verge to a more optimal set of solutions quicker than the multi-agent community

approaches. Another highlight is that SBOTI-HOM outperforms SBOTI-HET

when the length of the service composition configurations is increased (i.e., h).

Although, the effect size of this performance is relatively small.

Spread

Figure 5.14b shows the trade-off between the spread of identified solutions and

the number of iterations (i.e., search time), for SBOTI, SBOTI-HOM and SBOTI-

HET. The figure shows this trade-off as the number and the lengths of service

compositions configurations available in the environment is varied. A first ob-
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servation is that variable h considerably influences the spread metric. As the

length of the service composition configurations is increased, the interval of the

spread values increases from 0.78 and 0.83 when h is 3, to 0.7 and 0.98 when h is

4, and k is varied between 2 and 4. Another observation is that the spread value

obtained by SBOTI-HET improves as the speed of devices increases, whereas the

SBOTI (single-agent community) and SBOTI-HOM (homogeneous multi-agent

community) maintain the same spread level.

A statistical analysis is performed to measure whether the observed differ-

ences in the obtained spread values are statistically significant by following the

procedure presented at the beginning of this section. If the observed differences

are significant, the effect size is also measured. The Kolmogorov-Smirnov and

Shapiro-Wilk tests indicate that the results do not follow a Gaussian distribu-

tion. A non-parametric analysis is performed to verify whether the differences

observed between the means of the obtained results are statistically significant.

The Wilcoxon-Mann-Whitney test by pairs of algorithms is performed. Table 5.9

shows the p-values obtained from this statistical test. The cases in which the

differences are statistically significant are highlighted. These tests confirm the

observations about the spread values obtained by SBOTI-HET as the speed and

the size of the solution space is increased. The results show that SBOTI-HET

trades-off optimality of solutions for a better distribution of solutions.

Utility of Solutions

Figure 5.15 shows the results of the utility evaluation as the number of service

composition configurations (i.e., variable k), the length of the service composition

configurations (i.e., variable h) and the speed of devices in the environment is

increased. The utility is calculated using the configurations produced by SBOTI,

SBOTI-HOM and SBOTI-HET in their 250-th iteration, and the configurations

produced by SimDijkstra, GoCoMo and Random. This metric was defined in

Section 5.1.3. Two objectives are considered in this evaluation: minimising re-

sponse time and maximising the throughput of the composition. The weights of

these objectives as well as the values of variables k, h and speed are varied using

the values in Table 5.3. By increasing the number of iterations, two trends can

be observed for SBOTI, SBOTI-HOM and SBOTI-HET: (1) the utility of the

variants increases as the number of paths increases, and (2) the utility of these

variants is higher than the utility of the SimDijkstra, GoCoMo and Random al-

gorithms. This is because of the efficient exploration approach used by the agent
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Figure 5.16: The overhead (lower is better) of the evaluated algorithms as the
number of service composition configurations (k), the length of service compo-
sition configurations (h) and the speed of devices in the environment is varied.
The results are averaged over 50 executions.

community-based variants, which is more efficient when compared to the other

baselines, as they rely on continuous broadcasts of the environment state. The

agent community-based approaches use a set of agents to continuously explore

the solutions space, where each agent produces a service composition configura-

tion. Also, the continuous sampling of the environment through each iteration,

allows these approaches to avoid exploring previously explored solution space

and explore new parts to identify better service compositions.

Communication Overhead

Figure 5.16 shows the communication overhead (number of exchanged messages)

after 250 iterations as the size of the solution space varies over the number of ser-

vice composition configurations, the length of the configurations and the speed

of devices. All the control variables influence the overhead. The speed introduces

communication failures between devices, which require retransmissions. This in-

creases the communication overhead, which can be observed in every presented

scenario. The number and the length of the service composition configurations

also affect the overhead as follows. In GoCoMo, a global state mechanism pe-

riodically disseminates network state to all participating nodes, which explains

the high overhead. This mechanism is not used in SimDijkstra and Random and

the communication overhead introduced by these two algorithms is insignificant.

The results show that the evaluated agent-based approaches trade-off communi-

cation efficiency for optimality and diversity of solutions. SBOTI, SBOTI-HOM

and SBOTI-HET introduce a higher overhead than the GoCoMo, SimDijkstra

and Random approaches because of the large number of agents that exchanged

messages to perform the optimisation process. Also, the results show that the

multi-agent approaches introduce higher overhead than single-agent approaches.
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This is because of the increased number of agent entities that exchange messages.

The number of mobile agents was set to the number of nodes in the initial service

dependency graph for both single agent and multi agent approaches.

5.8.4 Discussion

The evaluation of these mechanisms is performed using an event-based simulator.

The experimental results show the effectiveness of the multi-agent community

approach in complex and highly dynamic, mobile environments. The results show

that: (i) agent-based mechanisms that use stigmergic coordination may identify

service composition configurations with better QoS in a mobile environment; (ii)

using multiple heterogeneous agent communities can improve the diversity of

identified solutions, which allows for a user to make better compromises between

his objectives. The results of this study addressed research question Q3 in

Section 1.3.4. Tuning this parameter would likely reduce the overhead, though

this needs to be verified.

Figure 5.17a shows the size of dominate space per communication overhead

ratio, and Figure 5.17b shows the spread per communication overhead ration as

the length and number of service composition configurations increases. In all

the cases SBOTI-HOM and SBOTI-HET have a lower value than SBOTI at the

beginning, but as the number of iterations increases the gap between the two is

reduced.

5.9 Threats to Validity

Construct threats can be introduced by the stochastic nature of the SBOTI’s un-

derlying swarm-based approach, which may introduce bias to the used metrics.

To mitigate these threats, the experiments were repeated 50 times. Statisti-

cal significant tests were used to further validate the results. Internal validity

threats may arise from the hyper-parameter settings used to initialise SBOTI.

For instance, the mobile environment may remove the knowledge learned about

the solutions in the environment if the pheromone evaporation frequency is too

high and pheromone deposit quantity is very low. To mitigate these threats, a

number of experiments with various interval settings were performed to identify

a set of parameters which allow convergence on a set of approximately optimal

solutions. Threats to external validity are linked to the selected benchmark setup

are linked to the selected benchmark setup, the QoS data set used and the exper-
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imental setup environment. To mitigate these threats, SBOTI was evaluated in

Simonstrator, which is a simulator for mobile environments. The WS-DREAM

dataset, a popular data set used in many works, was used to initialise the QoS

of each available service. The agent-based variants and the other baselines were

evaluated on a cluster provided by TCHPC (see Section 5.3), where each node

had similar resources and was running the same number of tasks.

5.10 Chapter Summary

This chapter presents three studies to assess the limitations of SBOTI, under

various dynamic conditions, and to answer the research questions presented in

Section 1.3.4. The evaluation is performed using an event-based simulator. The

evaluation results are compared with the performance results of GoCoMo, SimDi-

jkstra and a Random approach. In all the studies, the experimental results show

the superior effectiveness of SBOTI in complex and highly dynamic, mobile en-

vironments, compared to existing baselines, but at a cost of increased communi-

cation overhead.

The first study evaluated SBOTI and SBOTI-NDS, a proposed variant that

uses a solution diversity strategy to improve the diversity of identified solutions

(Section 3.4.3). The results showed that the proposed diversity strategy, based

on positive reinforcement of optimal solutions and negative reinforcement of non-

optimal solutions, can improve the diversity of identified solutions. The results

of this study addresses research question Q1 in Section 1.3.4.

The second study evaluated SBOTI, SBOTI-NDS (introduced in previous

study) and SBOTI-PM, a proposed variant (i.e., ) that uses a pheromone smooth-

ing strategy to improve the optimality of identified solutions (Section 3.4.4). The

results show that the proposed approach can pro-actively adapt to fluctuations

in the QoS values, and can approximate the set of QoS-optimal of service com-

position configurations that may emerge in mobile environments. The results of

this study addresses research question Q2 in Section 1.3.4.

The third study focused on the limitation of always requiring an optimal

hyper-parameter set to initialise SBOTI. This study explores whether by using

an information exchange mechanism between multiple, potentially diverse, agent

communities, the approximation of the real Pareto-front can be improved. Two

variants SBOTI-HOM and SBOTI-HET are proposed. These mechanisms use

the information provided through multi-agent communities to approximate the
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set of QoS-optimal service composition configurations. SBOTI-HOM exchanges

information only with homogeneous agent communities, whereas SBOTI-HET

exchanges information only with heterogeneous agent communities. The results

show that: (i) agent-based mechanisms that use stigmergic coordination may

identify service composition configurations with better QoS in a mobile envi-

ronment; (ii) using multiple heterogeneous agent communities can improve the

diversity of identified solutions, which allows for a user to make better com-

promises between his objectives. The results of this study addressed research

question Q3 in Section 1.3.4.

Each study has employed statistical tests to verify whether the observed dif-

ferences in the performance indicators are statistically significant. The results

have been presented in Table 5.5, Table 5.7, and Table 5.9, respectively. In

case of single agent communities study (i.e., first and second studies), a general

pattern can be observed. As the size of the search space increases, statistically

significant differences can be observed in both performance indicators. In par-

ticular, in the first study, the use of the negative reinforcement has improved

the size of the dominated space, which shows the optimality of the solutions. In

the second study, the spread of solutions is improved by using the adaptation

support mechanism. In case of multiple agent communities, the statistical tests

has shown statistically significant differences in size of dominated spaces as the

length of service composition configurations increases.



Chapter 6

Discussion and Conclusion

This thesis has investigated the limitations of existing QoS optimisation propos-

als for flexible service compositions in a mobile environment, and has focused on

how to search for an optimal and a diverse set of service composition configu-

rations in such an environment. This thesis has proposed SBOTI, a stigmergic-

based optimisation mechanism for flexible, QoS-aware service composition in

mobile environments. SBOTI can efficiently explore the environment and can

identify a set of Pareto-optimal solutions, which allows users to make trade-offs

between QoS objectives. SBOTI was evaluated under various dynamic condi-

tions, and the results were compared with the performance of existing baseline

algorithms.

This chapter is structured as follows: Section 6.1 summaries this thesis, Sec-

tion 6.2 highlights the contributions to the body of knowledge, and Section 6.3

outlines future research questions and possible extensions to this work.

6.1 Thesis Summary

Chapter 1 Introduction described the motivation behind this thesis and high-

lighted the challenges that arise when composing services deployed on mobile

devices from a functional and a non-functional perspective. This thesis was

especially concerned with the openness and dynamism of the mobile environ-

ment. In addition to the transient networks, the lack of composition infras-

tructure, unreliable communication, service composition needs to consider the

service providers autonomy and mobility, and the limited resources available on

the devices that are used to provide these services. The myriad of services avail-

able in service-sharing communities created by users within a limited geographic

area, and through sensors deployed in the environment, introduces scalability

130
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concerns. To address these dynamic conditions, the existing proposals trade-off

optimality for computational efficiency. The chapter hypothesised that by us-

ing a decentralised, iterative, stigmergic-based mechanism that can control the

trade-off between the computational efficiency of the execution and optimality

of identified solutions, in a mobile environment, service composition configura-

tions with higher utility than the ones produced by the existing proposals can

be identified.

Chapter 2 State of the Art analysed how the state of the art optimisation

mechanisms for flexible, QoS-aware service composition meet the challenges of

mobile environments. The chapter explored the common types of performing

service composition, the existing proposals for multi-objective QoS optimisation

for service composition, and how the existing approaches deal with the computa-

tional efficiency concerns in mobile environments. The analysis highlighted the

gap for a novel QoS optimisation mechanism that can be used to control the op-

timality and communication overhead to find service composition configurations

in mobile environments.

Chapter 3 Design returned to the challenges of QoS-aware service compo-

sition in mobile environments outlined in Chapter 1 and described the design

objectives, and design decisions made in this thesis. The chapter outlined the

design of SBOTI, a stigmergic-based QoS optimisation mechanism that uses an

agent-based approach to solve the QoS optimisation problem for flexible ser-

vice composition in mobile environment. Thereafter, the chapter outlined how

SBOTI addressed the design decisions in detail. Each service available in the

environment is associated with a service agent. A set of mobile agents is used

to search the environment for QoS optimal and diverse service composition con-

figurations. By using stigmergic-coordination of these agents, a set of solutions

can be identified using a pheromone mechanism. SBOTI uses a non-dominated

sorting technique to extract the Pareto-optimal solutions. SBOTI uses a diver-

sity strategy where solutions belonging to this set are reinforced with a positive

scalar, whereas solutions the other solutions are reinforced with a negative offset.

An adaptation support mechanism is used to further improve the optimality and

diversity of identified solutions. Given the dynamic nature of the environment,

re-optimisation is required to closely track any changes available in the available

service composition. SBOTI requires a number of hyper-parameters to be con-
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figured to efficiently explore such a dynamic space. To address this limitation,

SBOTI uses a collective agent communities approach to exchange information

about the identified solutions, to improve the optimality and diversity of solu-

tions.

Chapter 4 Implementation introduced the SURF middleware, which provides

the necessary components for service provisioning in dynamic environments. In

addition to registration, discovery and composition, this middleware offers the

necessary components for SLA-negotiation and QoS monitoring of available ser-

vice composition configurations. Then, the chapter highlighted the implementa-

tion details of SBOTI, including the interaction between the main components

of this mechanism. This chapter also described how SBOTI was implemented in

Simonstrator, an event-based simulator that is used to simulate mobile devices,

moving at various speeds and according to a specific trajectory in the environ-

ment.

Chapter 5 Evaluation evaluated how well SBOTI achieves its objective of find-

ing QoS optimal service composition solutions compared to baseline approaches,

subject to three research questions. SBOTI and four variants are evaluated in a

(simulated) mobile environment to expose these mechanisms to various dynamic

conditions such as different speeds of composition participants, and various di-

mensions of the (functional) service dependency graph which emerges based on

the syntactic/semantic dependencies between service providers. The results show

that SBOTI (and the variants) can identify solutions of higher utility than the

evaluated baseline algorithms (Section 5.4). Section 6.2 of this chapter extends

this discussion on how well SBOTI performed agains the baseline algorithms.

6.2 Discussion

SBOTI was evaluated under various dynamic conditions, and the results com-

pared to the existing baselines. In all the studies, the experimental results show

the superior effectiveness of SBOTI in complex and highly dynamic, mobile envi-

ronments, compared to existing baselines, but at a cost of increased communica-

tion overhead. The contributions to the body of knowledge are outlined first. A

discussion of the results and a description of the limitations of SBOTI conclude

this section.
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6.2.1 Thesis Contributions

This thesis has made three contributions to the body of knowledge. The first

contribution is SBOTI, a stigmergic-based QoS optimisation mechanism that

can control the trade-off between computational efficiency and optimality of so-

lutions, using an iterative approach that continuously explores the search space

for better solutions. To allow for a broad selection of service composition configu-

rations, a diversity strategy is used where the service composition configurations

in the Pareto-optimal set are reinforced using a positive scalar and the ser-

vice composition configurations outside this set are reinforced using an negative

scalar to reduce the probability of exploration. This strategy was implemented

in SBOTI, and the final variant named SBOTI-NDS.

The second contribution is an adaptation mechanism, which uses a phero-

mone smoothing mechanism to limit the pheromone reinforcement on the pre-

viously explored (and optimal) service composition configurations. The purpose

of this approach was to allow new service composition to emerge as a result

of service providers mobility. This adaptation mechanism was implemented in

SBOTI, and the final variant named SBOTI-PM.

The third contribution was a collaborative agent communities approach to

assess how much can the optimality and diversity of identified service compo-

sition can be improved by increasing the number of search agents. In addition

to increasing the number of agents, this work also evaluated the cases when

the search agents have different properties. SBOTI uses an agent-community to

search for service composition configurations. Multiple agent communities can

be used to search for service composition configurations in various parts of a

given service dependency graph. These communities may share similar prop-

erties (homogeneous) or may have different properties (heterogeneous). These

agent communities may exachange information about the identified solutions to

improve the exploration of the solution space. SBOTI-HOM and SBOTI-HET

are the variants that were implemented as part of this contribution.

6.2.2 Quality of Solutions

Three studies have been performed in this thesis. The first study evaluated

SBOTI and SBOTI-NDS, a proposed variant that uses a solution diversity strat-

egy to improve the diversity of identified solutions (Section 3.4.3). The results

showed that the proposed diversity strategy, based on positive reinforcement of
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optimal solutions and negative reinforcement of non-optimal solutions, can im-

prove the diversity of identified solutions. The results of this study addresses

research question Q1 in Section 1.3.4. The quality of identified solutions iden-

tified using SBOTI is bounded by the limitations due to the design decisions.

SBOTI is not suitable for time-critical applications that require strict QoS guar-

antees. While SBOTI uses an iterative mechanism to continuously explore the

environment, the identified solutions do not evenly cover the entire Pareto-front.

This is because of the pheromone reinforcement mechanism, which can favour

stagnation on a particular set of identified solutions. The diversity strategy

in SBOTI-NDS addresses this limitation. By reducing the pheromone on the

previously non-optimal solutions, the exploration of the solution space can be

improved at a cost of reduced exploitation. However, by increasing the explo-

ration, does not necessarily mean that more optimal solutions can be identified.

The service composition configurations that emerge as a results of the mobility

of services providers and the fluctuations in the QoS values, exacerbates the re-

quirement for controlling the trade-off between the exploitation and exploration.

The second study showed that SBOTI-PM can pro-actively adapt to fluctu-

ations in the QoS values, and can approximate the set of QoS-optimal of service

composition configurations that may emerge in mobile environments. The results

of this study addresses research question Q2 in Section 1.3.4. Two evaluations

are performed as part of this study. In each study, SBOTI and SBOTI-PM were

initialised with different hyper-parameters. The first evaluation showed that the

optimality of identified solutions can be improved compared to the optimality

achieved by SBOTI-NDS, while maintaining similar distribution over the Pareto-

front (i.e., spread) as SBOTI-NDS. The results of the second evaluation show that

SBOTI-PM can also outperform SBOTI. By reducing the pheromone associated

with optimal solutions, the adaptation mechanism in SBOTI-PM allows further

exploration of the solution space. This study also highlighted the limitation due

to the design decisions of SBOTI. Carefully selecting the hyper-parameters used

to initialise this mechanism affects the performance of the mechanism.

The third study focused on the limitation of always requiring an optimal

hyper-parameter set to initialise SBOTI. This study explores whether by using

an information exchange mechanism between multiple, potentially diverse, agent

communities, the approximation of the real Pareto-front can be improved. The

results of this study addresses research question Q2 in Section 1.3.4. The results

of the evaluation showed that by using multiple heterogeneous agent communities
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diversity of identified solutions can be improved, which allows for a user to make

better compromises between his objectives.

6.2.3 Computational Efficiency

Each study performed in Chapter 5 has concluded that SBOTI (and the other

evaluated variants: SBOTI-NDS, SBOTI-PM, SBOTI-HOM and SBOTI-HET)

introduce a higher overhead than the existing proposals (see Section 5.6, Sec-

tion 5.7 and Section 5.8). This is partly because of the mechanism and the

rate (frequency) of updates used when evaluating the baseline proposals. While

SBOTI (selectively) samples the environment, the existing proposals use broadcast-

based protocols to inform other service providers about any state changes (e.g.,

GoCoMo [Chen et al., 2018]). By increasing the rate of broadcasts, the util-

ity of identified solutions may increase. Even if by increasing this rate, and a

service composition configuration with a higher utility may be identified, the ex-

isting proposals are still limited to single-objective optimisation, which produces

a single solution.

6.3 Future Work

This thesis has shown that SBOTI, a QoS optimisation mechanism for flexi-

ble service composition in mobile environments, can be used for finding better

service composition configurations in a mobile environment compared to exist-

ing proposals in an environment where services are deployed on mobile devices

and made available through a Dynamic Composition Overlay Network (DCON).

Further research work may focus on:

1. Heterogeneous Environments: Mobile environments use devices with vary-

ing resource capacities such as CPU, RAM, and storage. Also, these de-

vices are generally equipped with more than one network interface such

as BLE and NFC, with various maximum bandwidth available. Future

work should assess SBOTI’s performance in heterogeneous operating envi-

ronments. The limited resources available on these devices may affect the

resilience service compositions, which may favour exploitation rather than

exploration.

2. Trustworthy Service Composition: This work relies on services that are

offered by third-party service providers to resolve user’s request and process
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Figure 6.1: Device-to-Device (D2D) Networks of Mobile Devices using Edge
Servers to access Cloud Servers.

their data. Fraudulent service providers may use attractive advertisements

to deceive service consumers. Mechanisms to consider the trust of service

providers has been considered in works such as Moustafa et al. [Moustafa

et al., 2016]. Also, reputation based ratings or reviews can be used to

represent service’ trustworthiness levels represented by data from off-device

authorities [Chang et al., 2006]. Future work should consider incorporating

a trust-based scheme into SBOTI, and investigate the implications of such

a scheme on SBOTI’s performance in a mobile environment.

3. More Realistic Mobility Models: SBOTI’s performance should be evaluated

in more realistic mobility scenarios. All devices were set to the same speed

during each test case, whereas in a real environment each device has its

own speed. Future evaluations should consider scenarios with diverse char-

acteristics such as the inter-contact time (ICT) distribution, node density

and transmission ranges. Also, a priori information about the environment

can be used to guide the search in SBOTI. In this context, future research

questions may arise such as how to combine a priori environment knowl-

edge to improve the optimality and diversity of identified solutions. How

can the collaborative agent community approach be extended to improve

the optimality of solutions?

4. Cloud and Edge Computing : Various IoT platforms have been previously

proposed such as Mosden [Perera et al., 2014], Cheng et al. [Cheng et al.,
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2016], FIoT [do Nascimento and de Lucena, 2017], Jin et al. [Jin et al.,

2014], Le et al. [Le and Kwon, 2017] (a comprehensive list can be found

in Razzaque et al. [Razzaque et al., 2016]). These platforms are either

cloud-based. Future work should investigate the performance of the SURF

middleware (Section 4.1) in a hybrid edge-clould computing model [Cicirelli

et al., 2018, Olaniyan et al., 2018] (see Figure 6.1), and to investigate

whether offloading some of the computational expensive tasks (such as data

processing) into cloud may improve the resilience of service compositions

in a mobile environment, and how this affects the service composition from

a non-functional perspective.
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Appendix A

While Section 4.2 highlights how SBOTI is implemented in Simonstrator, the

following appendix represents the configuration script used in Simonstrator to

support its implementation.

This script contains a set of (XML) nodes. The Default node shows the values

of the variables used in the configuration. These values are used to initialise the

fields of rest of the nodes. In this work, the service providers rely on mobile

devices to deliver their services, and each service provider is associated with

a mobile device. The node HostBuilder illustrates the configuration of each

service provider used during the evaluation. The sub-nodes of this node represent

the elements that are part of the protocol stack of each service provider. The

Topology node configures the topology and the speed of the mobile devices. The

rest of the nodes in this script show how each layer in the protocol stack was

configured.

<?xml version=’1.0’ encoding=’utf−8’?>

<Configuration xmlns:xi=”http://www.w3.org/2001/XInclude”>

<Description>SBOTI</Description>

<Default>

<Variable name=”seed” value=”500” />

<Variable name=”startTime” value=”0m” />

<Variable name=”finishTime” value=”10080m” />

<Variable name=”actions” value=”config/scenarios/sbotiTrans/dynamicBroadcast.dat” />

<Variable name=”WORLD X” value=”1000”/>

<Variable name=”WORLD Y” value=”1000”/>

<Variable name=”WIFI RANGE” value=”250” />

<Variable name=”WIFI MODEL” value=”80211” />

<Variable name=”WIFI LOSS EXPONENT” value=”3.8” />

<Variable name=”SPEED MIN” value=”7.5” /><!−− Slow 1.5 and Medium 2.5−−>

<Variable name=”SPEED MAX” value=”13.5” /><!−− Slow 2.5 and Medium 7.5−−>

<Variable name=”PHY” value=”WIFI” />

<Variable name=”ALGORITHM” value=”GLOBAL KNOWLEDGE” />

<Variable name=”ENABLE FRAGMENTING” value=”true” />

<Variable name=”upBandwidth” value=”3150kbits” />

<Variable name=”downBandwidth” value=”53665kbits” />

<Variable name=”enableChurn” value=”true” />

<Variable name=”enableChurnController” value=”false” />

<Variable name=”ENERGY INITIAL” value=”18648” />

<Variable name=”ENERGY MODEL ENABLED” value=”true” />

<Variable name=”SERVICE DENSITY” value = ”1” />

<Variable name=”ITERATIONS NUMBER” value = ”250” />

<Variable name=”LOG” value=”off” />

<Variable name=”ENABLE DAO” value=”false” />

139
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<Variable name=”DAO TABLE” value=”test” />

<Variable name=”DAO ENABLE AT” value=”0m” /> <!−− 30m −−>

<Variable name=”DAO STOP AT” value=”30m” /> <!−− 120m −−>

</Default>

<SimulatorCore class=”de.tud.kom.p2psim.impl.simengine.Simulator” static=”getInstance” seed=”$seed”

finishAt=”$finishTime” realTime=”false” />

<Topology class=”de.tud.kom.p2psim.impl.topology.TopologyFactory” worldX=”$WORLD X” worldY=”$WORLD Y”>

<View class=”de.tud.kom.p2psim.impl.topology.views.RangedTopologyView” range=”$WIFI RANGE” phy=”WIFI”>

<Latency class=”de.tud.kom.p2psim.impl.topology.views.latency.DistanceBasedLatency” />

<DropRate class=”de.tud.kom.p2psim.impl.topology.views.droprate.StaticDropRate” dropRate=”0” />

<Placement class=”de.tud.kom.p2psim.impl.topology.placement.RandomPositionDistribution” />

<Movement class=”de.tud.kom.p2psim.impl.topology.movement.GaussMarkovMovement”

timeBetweenMoveOperations=”15s” alpha=”0.8”edgeThreshold=”10” />

</Topology>

<LinkLayer class=”de.tud.kom.p2psim.impl.linklayer.LinkLayerFactory” >

<Mac class=”de.tud.kom.p2psim.impl.linklayer.mac.configs.SimpleMac” phy=”WIFI”

trafficQueueSize=”100” downBandwidth=”53665kbits” upBandwidth=”3150kbits” />

</LinkLayer>

<NetLayer class=”de.tud.kom.p2psim.impl.network.routed.RoutedNetLayerFactory”

enableFragmenting=”$ENABLE FRAGMENTING”>

<Routing class=”de.tud.kom.p2psim.impl.network.routed.config.Routing” phy=”$PHY” algorithm=”$ALGORITHM”

protocol=”IPv4” />

</NetLayer>

<TransLayer class=”de.tud.kom.p2psim.impl.transport.modular.ModularTransLayerFactory” />

<Overlay class=”surfqosmos.overlay.sbotiTrans.SbotiTransNodeFactory” factoryType=”SERVICE PROVIDER”></Overlay>

<StartNode class=”surfqosmos.overlay.sbotiTrans.SbotiTransNodeFactory” factoryType=”START NODE” ></StartNode>

<DestinationNode class=”surfqosmos.overlay.sbotiTrans.SbotiTransNodeFactory”

factoryType=”DESTINATION NODE” ></DestinationNode>

<AuxiliaryStartNode class=”surfqosmos.overlay.sbotiTrans.SbotiTransNodeFactory”

factoryType=”AUXILIARY START NODE” ></AuxiliaryStartNode>

<AuxiliaryDestNode class=”surfqosmos.overlay.sbotiTrans.SbotiTransNodeFactory”

factoryType=”AUXILIARY DESTINATION NODE” ></AuxiliaryDestNode>

<Controller class=”surfqosmos.overlay.sbotiTrans.SbotiTransNodeFactory” factoryType=”MAIN CONTROLLER” >

</Controller>

<Monitor class=”de.tud.kom.p2psim.impl.common.DefaultMonitor”

static=”getInstance” start=”$startTime” stop=”$finishTime” experimentDescription=”CompositionExperiment”>

<Analyzer class=”surfqosmos.overlay.generic.analyzer.CompositionLogger” />

</Monitor>

<Monitoring class=”de.tudarmstadt.maki.simonstrator.overlay.monitoring.oracle.GlobalKnowledgeResolver$Factory” />

<SiS class=”de.tudarmstadt.maki.simonstrator.service.sis.minimal.MinimalSiSComponent$Factory” />

<EnergyModel class=”surfqosmos.overlay.generic.energy.EnergyModelFactory”>

<Battery class=”de.tud.kom.p2psim.impl.energy.SimpleBattery” capacity=”$ENERGY INITIAL”

initialEnergy=”$ENERGY INITIAL” />

<Component class=”de.tud.kom.p2psim.impl.energy.configs.TimeBased” phy=”WIFI” />

</EnergyModel>

<HostBuilder class=”de.tud.kom.p2psim.impl.scenario.DefaultHostBuilder” experimentSize=”$TOTAL NODES NUMBER”>

<!−− Group of service providers −−>

<Group groupID=”G1” size=”$NODES NUMBER”>

<Topology /><LinkLayer />

<NetLayer upBandwidth=”$upBandwidth” downBandwidth=”$downBandwidth” />

<TransLayer /><EnergyModel /><Overlay /><Monitoring /><SiS />

<Properties enableChurn=”$enableChurn” maxMovementSpeed=”$SPEED MAX” minMovementSpeed=”$SPEED MIN” />

</Group>

<!−− This is the main start node −−>

<Host groupID=”S” size=”$NUMBER OF MAIN START NODES”>

<Topology /><LinkLayer />

<NetLayer upBandwidth=”$upBandwidth” downBandwidth=”$downBandwidth” />

<TransLayer /><EnergyModel /><StartNode />

<Properties enableChurn=”$enableChurnController” maxMovementSpeed=”0” minMovementSpeed=”0” />

</Host>

<!−− This is the main destination node −−>

<Host groupID=”D” size=”$NUMBER OF MAIN DESTINATION NODES”>

<Topology /><LinkLayer />

<NetLayer upBandwidth=”$upBandwidth” downBandwidth=”$downBandwidth” />

<TransLayer /><EnergyModel /><DestinationNode />

<Properties enableChurn=”$enableChurnController” maxMovementSpeed=”0” minMovementSpeed=”0” />

</Host>
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<!−− This will be the auxiliary start nodes that will be used to start optimisation from multiple places −−>

<Group groupID=”SA” size=”$NUMBER OF AUXILIAR START NODES”>

<Topology /><LinkLayer />

<NetLayer upBandwidth=”$upBandwidth” downBandwidth=”$downBandwidth” />

<TransLayer /><EnergyModel /><AuxiliaryStartNode />

<Properties enableChurn=”$enableChurnController” maxMovementSpeed=”0” minMovementSpeed=”0” />

</Group>

<!−− This is the main destination node −−>

<Host groupID=”C” size=”$NUMBER OF MAIN DESTINATION NODES”>

<Topology /><LinkLayer />

<NetLayer upBandwidth=”$upBandwidth” downBandwidth=”$downBandwidth” />

<TransLayer /><Controller />

<Properties enableChurn=”$enableChurnController”

maxMovementSpeed=”0”

minMovementSpeed=”0” />

</Host>

</HostBuilder>

<Scenario class=”de.tud.kom.p2psim.impl.scenario.CSVScenarioFactory” actionsFile=”$actions”

componentClass=”surfqosmos.overlay.sbotiTrans.SbotiTransNode”

additionalClasses=”surfqosmos.overlay.sbotiTrans.CentralController” />

</Configuration>
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[Geyik et al., 2013] Geyik, S. C., Szymanski, B. K., and Zerfos, P. (2013). Robust Dy-

namic Service Composition in Sensor Networks. Services Computing, IEEE Transac-

tions on, 6(4).

[Goldberg, 2006] Goldberg, D. E. (2006). Genetic Algorithms. Pearson Education India.

[Grissom and Kim, 2005] Grissom, R. J. and Kim, J. J. (2005). Effect Sizes for Re-

search: A Broad Practical Approach. Lawrence Erlbaum Associates Publishers.

[Groba and Clarke, 2014] Groba, C. and Clarke, S. (2014). Opportunistic Service Com-

position in Dynamic Ad-hoc Environments. IEEE Transactions on Services Comput-

ing, 7(4).

[Gu et al., 2003] Gu, X., Nahrstedt, K., Chang, R. N., and Ward, C. (2003). QoS-

Assured Service Composition in Managed Service Overlay Networks. In Distributed

Computing Systems, 2003. Proceedings. 23rd International Conference on, pages 194–

201. IEEE.

[Gu et al., 2008] Gu, Z., Li, J., and Xu, B. (2008). Automatic Service Composition

based on Enhanced Service Dependency Graph. In 2008 IEEE International Confer-

ence on Web Services, pages 246–253. IEEE.

[Gubbi et al., 2013] Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M. (2013).

Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions.

Future Generation Computer Systems, 29(7):1645–1660.

[Gui et al., 2016] Gui, T., Ma, C., Wang, F., and Wilkins, D. E. (2016). Survey on

Swarm Intelligence based Routing Protocols for Wireless Sensor Networks: An Ex-

tensive Study. In Industrial Technology (ICIT), 2016 IEEE International Conference

on, pages 1944–1949. IEEE.

[Hachem et al., 2014] Hachem, S., Pathak, A., and Issarny, V. (2014). Service-Oriented

Middleware for the Mobile Internet of Things: A Scalable Solution. In IEEE GLOBE-

COM: Global Communications Conference (Accepted).

[Halonen and Ojala, 2006] Halonen, T. and Ojala, T. (2006). Cross-Layer Design for

Providing Service Oriented Architecture in a Mobile Ad Hoc Network. In Proceedings

of the 5th international Conference on Mobile and Ubiquitous Multimedia, page 11.

ACM.

[Hashmi et al., 2016] Hashmi, K., Malik, Z., Erradi, A., and Rezgui, A. (2016). QoS

Dependency Modeling for Composite Systems. IEEE Transactions on Services Com-

puting.

[Hayyolalam and Kazem, 2018] Hayyolalam, V. and Kazem, A. A. P. (2018). A System-



150

atic Literature Review on QoS-Aware Service Composition and Selection in Cloud

Environment. Journal of Network and Computer Applications.

[Hofmeyr and Forrest, 2000] Hofmeyr, S. A. and Forrest, S. (2000). Architecture for an

Artificial Immune System. Evolutionary Computation, 8(4):443–473.

[Hossain et al., 2016] Hossain, M. S., Moniruzzaman, M., Muhammad, G., Ghoneim,

A., and Alamri, A. (2016). Big Data-Driven Service Composition using Parallel Clus-

tered Particle Swarm Optimization in Mobile Environment. IEEE Transactions on

Services Computing, 9(5):806–817.

[Huebscher and McCann, 2008] Huebscher, M. C. and McCann, J. A. (2008). A Sur-

vey of Autonomic Computing-Degrees, Models, and Applications. ACM Computing

Surveys (CSUR), 40(3):7.

[Huhns and Singh, 2005] Huhns, M. N. and Singh, M. P. (2005). Service-Oriented Com-

puting: Key Concepts and Principles. IEEE Internet Computing, 9(1):75–81.

[Hull and Su, 2005] Hull, R. and Su, J. (2005). Tools for Composite Web Services: A

Short Overview. ACM SIGMOD Record, 34(2):86–95.

[Hussein and Saadawi, 2003] Hussein, O. and Saadawi, T. (2003). Ant Routing Algo-

rithm for Mobile Ad-hoc Networks (ARAMA). In Performance, Computing, and

Communications Conference, 2003. Conference Proceedings of the 2003 IEEE Inter-

national, pages 281–290. IEEE.

[Immonen and Pakkala, 2014] Immonen, A. and Pakkala, D. (2014). A Survey of Meth-

ods and Approaches for Reliable Dynamic Service Compositions. Service Oriented

Computing and Applications, 8(2):129–158.

[Islam et al., 2015] Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., and Kwak, K.-S.

(2015). The Internet of Things for Health Care: a Comprehensive Survey. IEEE

Access, 3:678–708.
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