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A bstract

This thesis investigates semantic analysis of broadcast sports footage. A domain depen­
dent sports video model is proposed. Under this model, the game semantics can be derived 
according to their relationship with the sequence of dynamic events tha t occur in the sport 
and the evolution of the spatio-temporal behaviour of a relevant object. Snooker and tennis 
are targeted as typical broadcast sports footage for the purpose of this research. The prob­
lem focus is to automatically extract semantically meaningful events and to convey a useful 
representation to the user.

Access to semantics provides a more natural tool for a user to query a corpus of data 
than by low-level content based features alone. These semantics are however open to various 
interpretations by different viewers. Therefore, in order to create a successful semantic based 
retrieval system it is necessary to consider the user-context. Unconstrained sports footage 
is generally very comphcated in structure, so restricting the domain being addressed enables 
a viewer model to be created. Domain specific features are extracted from the raw footage. 
These can then be exploited to develop algorithms which understand the characteristics of 
the data  and the requirements of the user. These algorithms enable low-level domain features 
to be mapped to high-level semantics by learning the evolution of the features.

Traditionally, low-level visual features have been used to summarise the content in view. 
Global colour, texture and motion have all been used for this purpose. In this thesis a novel 
algorithm is presented which captures the geometry of the scene without having to extract 
and reconstruct complicated 3D scene geometry. Hidden Markov models are then used in a 
novel fashion to model these observations for camera view classification.

A new extension of the colour based Particle Filter is employed to track objects. It 
encourages better tracking in a constrained sports environment by exploiting prior scene 
geometry and playing surface colour information. The implementation of the tracker also 
allows for object collision and disappearance to be detected. The performance of the tracker 
is assessed using geometrical measures and by comparing it to the tracking produced using a 
gradient based motion estimator.

Thus far, retrieval of semantic events from sports footage has relied on prior knowledge 
of the broadcast video syntax. Typically, the temporal interleaving of camera views has 
been used to infer these im portant events or highlights in the footage. In this research, 
the spatio-temporal behaviour of tennis players and snooker balls are considered as being the 
embodiment of a semantic event. This concept offers a new means of automatically extracting 
semantic episodes from sports footage.

The scope of this thesis could easily be extended by further investigation into retrieval of 
semantic events from the vast quantities of other live and archived sports footage.
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1
Introduction

Research interest in high-level content based video analysis has grown in recent years [9,25]. 
A good deal of this has been focused on the detection of semantic events that occur in sports 
video footage [5,24,31,40,48,76,172]. There are two primary factors contributing to this 
upsurge in research.

T h e  C o m m erc ia l A sp ec t: In a recent study performed for the European Union it was
shown that sport themed channels are those showing the most considerable growth 
across the member States [111]. The commercial value of certain sports broadcast on 
these channels  ̂ and the increasing choice being made available to viewers with the 
advent of Digital Television (DTV), has motivated broadcasting companies into finding 
additional means of exploiting the data set, from which to add to the marketability 
of the product. Interactivity is still hoped to be the killer application in new digital 
satellite and terrestrial services. The ability to choose the camera angle with which to 
view a soccer game, or being able to select a particular match from several concurrent 
games in tennis are just two examples of current trends in sports broadcasting.

The vast quantities of live and archived sports video material has resulted in demands 
by broadcasters for systems that ease the burden of annotating these bodies of data. 
This has motivated many researchers into undertaking the problem of high-level con­
tent based analysis of sports videos. This annotation process is currently a manual

^In 2003 for example, a £1.024bn three year deal was struck by BSKYB with the English Football Asso­
ciation for the live broadcast rights to the Premier League [61]. While in 1998, the National Football League 
(NFL) agreed an eight year deal with four broadcasters worth $18bn [53].
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undertaking, where hum ans are responsible for accounting for the events which take 
place [9]. T he existing m anually derived m etad a ta  can be augm ented by way of au to ­
m atically derived low-level content based features such as colour, shape, m otion and 
tex tu re [41]. This enables queries against visual content as well as tex tual searches 
against the predefined annotations allowing for more subjective queries to  be posed.

T h e  U ser  C on sid eration ; Sports, as a genre, appeals to  the general public and while 
most viewers will be content to  view an entire game, some m ay only wish to  view the 
highlights or a brief description of the  events th a t  occurred in the  game. Alternatively, 

the user could specify the level of sum m ary required {e.g.  the  entire tennis game w ith 
adverts, only the tennis, playing time or im portan t events). This kind of freedom of 
access to  the m edia has been m ade possible by DTV. I t enables the viewer to  effectively 
become the editor of their own program m ing w ith the content having been pre-recorded 
on a set-top box similar to  the  TiVo  ̂ or SKY+

The enhanced viewing abihties offered by D TV  also offers a  wealth of inform ation 
to  be m ade available to  the viewer in the form of tex tual headers and content based 
descriptors. In the 2004 Six N ations Rugby, for example, the BBC provided statistics 
of previous games between the nations along w ith the player line-ups and tex tual m eta 
d a ta  of the im portan t events. T he BBC coverage of the 2004 Olympics allowed the 
viewer to  select one of 5 video stream s of different events in conjunction w ith access to 
medal tables and a news ticker updating  the  user on the  Games proceedings. Providing 
the user with the capacity to query broadcast footage a t a high-level of abstraction to 
retrieve relevant events is a m ain area of research in m any institutes.

Retrieval is a non-trivial task in general and is m ade even more difficult by the  so-called 
“sem antic gap” th a t exists between machine and user. As sem antic level queries provides the 
m ost natu ral means for a user to query a corpus of d a ta , it makes sense to  develop algorithm s 
th a t understand the natu re  of the d a ta  in this way. T he typical user would ra ther search 
for this type of content using high-level queries ra th e r th an  making use of low-level content 
descriptors. Integrating several low-level features can allow a user to  search for high-level 
events bu t it is invariably cumbersome and tim e consuming. For goal events in a soccer game 
for example, a user would ra ther pose a sem antic query {e.g. “Show me all the goals in 
the game” ) ra ther than  specifying low-level content based features such as percentages of 
dom inant colour, velocities of objects, cam era m otion and the am plitude of the audio.

Semantics are subjective, so in order to create a successful retrieval system  based on the 
sem antics of the visual docum ent, it is necessary to  understand  the  user context. As the 
viewer operates at high levels of abstraction, sem antic video indexing and dom ain specific 
video indexing are required. For example, inferring an  im portan t event in a sports game will

^TiVo; http://www.tivo.com
^SKY"*": http: //www, sky. com/skyplus/
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require a different set of features to  those needed to  retrieve an im portan t event in a  talk  show. 
T his type of indexing can be accom plished by restric ting  the dom ain being addressed. These 
constrain ts enable low-level content based features to  be m apped to  high-level sem antics 
through the  application of certain  dom ain rules.

T he necessity for autom atic sum m ary generation m ethods is highlighted by the  fact th a t  
the sem antic value of sports footage spans short durations a t irregular intervals during an 
event (high energy, short term  episodes). A single day of test cricket can last six hours 
while a single frame of snooker will norm ally exceed 10 m inutes. Interesting events occur 
interm ittently , so it makes sense to  parse the footage a t an event level (where the event is 
related  to  a sem antic episode). In cricket for example, an interesting event m ight be the 
bowler run-up, b atsm an’s stroke and the  direction of travel of the  ball [82] while sem antic 
episodes such as snookers, shot-to-nothings and break-building occur in snooker (please refer 
to  A ppendix B.3 for some snooker term inology). Considering the client or user end, a snooker 
game could be recorded on a digital set top  box w ith integrated  hard  disk drive. The user 
could query the footage at a high-level of abstraction  and the m achine would re tu rn  the 
relevant events from the video stream , perhaps w ith derived tex tual inform ation giving the 
tim e a t which the event happened, the player involved and a brief description of the event.

Content adap ta tion  and au tom atic  sum m ary and index generation could also prove useful 
in the transm ission of sports footage to  low-bandwidth devices. For example, a 3G provider in 
the  UK, 3 offers their custom ers a sports service which transm its  clips of English prem ier­
ship soccer games direct to  the user’s 3G handsets. An autom atic m ethod of generating these 
clips (in the form of key frames or video skims), or different kinds of sum m aries which m ight 
be too tedious to  be generated by hand {e.g. a cartoonised version of the event), could prove 
invaluable to  th is service. Furtherm ore, techniques to adap t the content to fit the display of a 
particu lar m edia device m ight also be needed. B roadcast sport footage contains shots where 
im portan t events are most likely to  be found pooled w ith replays, close-ups and crowd shots. 
Close up views often contain little  sem antic inform ation relating to  the events in hand and 
norm ally take place after an im portan t event has happened. As there is generally no need 
to  transm it these views, a significant am ount of bandw idth  could be freed up for relevant 
inform ation to  be transm itted . A utom atically  derived m etad a ta  from the broadcast footage 
could be added to  the transm ission in the  form of closed captions, augm enting the description 
of the event. Backward com patibility could allow an SMS (Short Messaging Service) message 
to  be sent to  GSM com pliant hand held devices or a p icture message with added tex t and 
audio to  2.5G mobile phones.

This thesis concerns itself w ith retrieval and sum m arisation of sem antic events th a t occur 
in broadcast snooker and tennis footage. I t is arranged in 7 chapters of which, chapters 3, 4, 5 
and 6 present the main contributions of the  research.

“*5: http: //www. three. C O . uk/indexcompany. omp
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C hapter 2: V isual Inform ation Retrieval: A  R eview

A review of the literature in the area of visual information retrieval is presented in this chapter. 
A framework for sport video analysis is discussed which involves temporal structure analysis, 
feature extraction, event recognition, summarisation and indexing of the footage. A review 
of research in the area of semantic based retrieval in sports is presented along with other 
areas which employ similar methods for different domains. The chapter concludes with an 
overview of the framework for semantic analysis of broadcast sports footage. The individual 
steps in the framework are considered in modular form under the headings of extraction and 
recognition. A high-level summary of each module is then presented.

C hapter 3: C hoosing Features for Sports R etrieval

Common to any retrieval system is a feature extraction stage. This chapter details a new 
algorithm for parsing sports video footage. Based on summarising the geometrical content 
in view, the algorithm does not require the calculation of complex three dimensional scene 
geometry. Further features include the statistical moments of colour and geometrical image 
content, and their relevance to  the parsing of sports video footage is discussed. A robust 
playing area detector for tennis and snooker, based on the Radon transform of a segmented 
colour space is also established.

C hapter 4: O bject Tracking

In this chapter, a colour based particle filter based on the CONDENSATION algorithm [70] 
is outlined. Novel extensions of the trackers proposed by Perez et al [117] and Nummiaro 
et al [107] are used to encourage better tracking of objects in the sports domain. The 
implementation of the particle filter allows for the tracking of snooker balls and tennis players. 
The tracking results generated are then assessed using geometrical measures and compared 
to the tracks produced by a gradient based motion estimator for broadcast snooker footage.

C hapter 5: D ynam ic Event D etection  in Snooker

Dynamic events in snooker are im portant in so far as they affect the viewer’s perception of 
the state of the game, allowing a rich set of semantics to  be inferred. Methods which exploit 
the explicit motion tracks generated by the particle filter are used to detect dynamic events 
that occur in broadcast snooker footage. Three events are considered: ball pots, inter-ball 
collisions and ball-cushion collisions.

C hapter 6: Event M odelling and C lassification using H M M s

In this chapter, special consideration is given to modelling the temporal evolution of low- 
level image features with a Hidden Markov Model (HMM). The modelling power of the
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HMM enables it to cope with wide deviations in observation behaviour and create a signal 
model for each camera view.

Following correct labelling of each of the views, the concept of parsing sports footage at 
an event level is established. The evolution of the spatio-temporal position of a fundamental 
object in the footage is considered to embody the semantics of an event. The explicit motion 
tracks generated by the particle filter are quantised and a HMM for each event is trained 
based on a human perception of events in terms of the spatio-temporal feature. Finally, 
results of the event classification for snooker and tennis are discussed.

C h a p ter  7: D iscu ss io n  and  F u rth er R esea rch

In the final chapter of the thesis, the contributions of the research are assessed and ideas for 
future work are presented which might guide subsequent investigations into semantic analysis 
of broadcast sports footage.



2
Visual Information Retrieval: A Review

T he concept of Visual Inform ation R etrieval (VIR) encompasses the tools and m ethods used 
to  retrieve d a ta  relevant to  a query from large databases and archives. Queries can be made 
using either low-level visual content based features from images and video such as colour, 
tex ture , shape, etc. or high-level sem antic content; objects, events and emotions for instance. 
T his chapter addresses VIR from its inception in Inform ation Retrieval through to  its use in 
retrieval of sem antic events from broadcast footage.

T he need for VIR is becoming increasingly im portan t w ith the wealth and speed with 
which visual inform ation is being m ade available on digital m edia and in digital archives. The 
emergence of m ultim edia on the Net and the ease with which visual d a ta  can be d istribu ted  
through high bandw idth transm ission channels has highlighted the  need for user friendly and 

efficient means of retrieval. T he G etty  image archive  ̂ for example, contains in excess of 
30 million unconstrained images while the  BBC footage library  ̂ contains more th an  two 
million subject listings on over 500 million feet of film and 400,000 hours of video. Cheap 
digital cameras and camcorders have enabled the home user to  create personal image and 
video archives of several gigabytes in size.

The advances th a t have been m ade in techniques for VIR have however, been unable 
to  m atch the level a t which these visual docum ents are being produced. The unstructu red  
natu re  of these ever expanding databases highlights a requirem ent for a cheap and efficient 
m eans of describing, retrieving and m anaging the vast quantities of audio-visual data.

'G etty Archive: h t t p : / /c r e a t iv e  .g e tty im a g e s . com/source/home/home. asp
^BBC Footage Library: h ttp ://w w w .bbcfootage.com /
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2.1. In fo rm a tio n  R e trie v a l 7

VIR has its roots in Information Retrieval (IR). In section 2.1, the concept of IR is 
introduced. A brief description of a traditional model used in IR is also presented along with 
a discussion on how wide-ranging the problem of IR is.

One means of achieving structure in video and image databases is by way of indexing. The 
established indexing technique of annotating visual documents is based around the traditional 
library paradigm. Manual generation of low- and high-level content descriptors are created by 
expert annotators in the form of textual m etadata appended to the visual document. Textual 
annotation and its limitations are discussed in section 2.2. During the past decade, automatic 
derivation of high-level and low-level content based descriptors and the implementation of 
appropriate methods has been an area of much debate. The introduction of MPEG-7 has 
standardised the processes for the representation of multimedia content. In section 2.5.5 a 
brief description of the MPEG-7 standard is given along with the merits of the scheme.

Content Based Retrieval (CBR) has been used to complement existing retrieval methods 
where the stored m etadata (usually in the form of textual annotations) is augmented by the 
incorporation of content based visual information. Current trends and techniques in Content 
Based Video Retrieval (CBVR) will be reviewed in section 2.3. While low-level content based 
information can be useful for some queries, it can not entirely be relied upon as being related 
to the semantic substance of the document. The so-called “semantic gap” that exists between 
machine and user will be discussed in section 2.4.

Semantic-level indexing of multimedia documents has a high expressive power and it can 
be used to describe most important aspects of the content. This form of indexing involves 
extracting the high-level content directly from the footage. The indexing is generally tailored 
to a specific domain [3,5,76,157]. In section 2.5.3, a review of the literature in the area of 
semantic based retrieval from broadcast sports video is presented. Cognition based systems 
and hand written character recognition use similar techniques to those employed in high-level 
content video retrieval and these are also reviewed.

2.1 Inform ation R etrieval

Information Retrieval (IR) was a term coined in the 1950’s by Calvin Moores. He described it 
in [103] as a method that “embraces the intellectual aspects of the description of information 
and its specification for search, and also whatever systems, techniques, or machines that are 
employed to carry out the operation.” There are four key issues in IR as follows:

1. M ed ia  C o n te n t A nalysis: This stage in IR relates to the information content of the 
document as perceived by the machine. This low-level machine perception of the media 
contains no semantically meaningful information tha t might be useful to the user.

2. P a t te r n  R ecogn ition : Secondly, the structure of these low-level features is analysed 
and the best fitting clusters are calculated according to a model. This model will
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depend on the level of supervision (supervised/unsupervised) provided to  the clustering 
algorithm  {i.e. if the desired num ber of ou tpu ts is known a-priori).

3. R e le v a n c e  F e e d b a c k : This stage of IR  entails introducing hum an subjectiv ity  in 
the form of relevance feedback [152]. As each docum ent is open to  different sem antic 

in terpre tations by various users, the retrieval processes in such systems are often aug­
m ented by allowing hum an evaluation of the retrieval. This technique allows the user to  
weight the results based on their own perceptions to  enhance the retrieval effectiveness 
for future queries.

4. E v a lu a tio n  o f  th e  re tr ie v a l :  A large p art of IR  involves evaluating the retrieval [72, 
130]. M easures of the retrieval sensitivity involve assessing the relevance of the  retrieval 
relative to  a ground tru th . Precision and recall are trad itional m etrics used in Visual 
Inform ation Retrieval (VIR) systems. Relevance feedback also offers a way of m easuring 
the effectiveness of the retrieval, where the m easure is based on the subjective opinion 
of the user.

A simple, trad itional model of an IR  system  is illustrated  in figure 2.1.
The problem  of successful IR  is wide-ranging and extends from the  retrieval of tex t doc­

um ents using keyword queries to  the retrieval of sem antic events from vast archives of video 
libraries using high-level queries. An example of an effective IR system for the  retrieval of 
scientific docum ents was proposed by Lawrence et al [86] through the NEC project Cite- 
seer It has proved to  be an invaluable resource for the worldwide scientific com m unity 
by allowing the user to  retrieve scientific literature spanning the web. C itation indices are 
generated autom atically  along with abstract extraction and the provision of links to  related  
and overlapping docum ents.

The concept of IR  is straightforw ard: a user queries a database with the hope of retrieving 
inform ation relevant to  th a t query. A system  th a t responds to  a query in this fashion however 
is affected by user subjectivity, a central issue in any retrieval system. Relevance feedback 
is often used to  circumvent this problem. It is often more appropriate however to  ex tract 
additional features from the m edia docum ent providing the user with more descriptive power. 
VIR system s can improve on the retrieval by incorporating autom atically  derived visual 
features (section 2.3) and sem antics (section 2.5.3).

Colombo et al [27] refer to  tex tual annotation systems and low-level content based sys­
tem s as the first and second generations of visual inform ation retrieval systems. W hile the 
first generation allows sem antic based queries, the notions of the  user m ust correspond to 
those of the annotator. As video and images are generally rich in high-level content the 
query could prove to  be beyond th a t of the stored m etadata . Even though the retrieval pro­
cess is autom ated {e.g. ex tracting colour) in second generation system s it is generally not

^Citeseer: h t t p : I I c i t e s e e r . nj . n e c . com/cs
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F ig u re  2.1: Inform ation Retrieval system  with relevance feedback. The user selects an initial 
query and the system  returns a set o f docum ents. The user weights the relevant docum ents 
according to their perception. The distance m etric and database are updated with this new  
information to enhance subsequent queries.

possible to link low-level content to high-level concepts for unconstrained media. It is only 
through restricting the domain being addressed that this link can be established. Sections 2.2 
and 2.3 discuss both generations of visual information retrieval and section 2.4 discusses the 
importance of domain restriction.

2.2 Textual Annotation

Comprehensive textual annotation systems have been in use for many years now. This process 
is currently the most direct, efficient and accurate means of finding “unconstrained” images 
and video in large unstructured databases such as the Web (for example the Google Image 
search ^). These systems are however subject to high costs as the annotations can only 
be obtained by manual effort. Transcripts, captions, embedded text, surrounding text and 
hyperlinked document type annotation are often used to represent the high-level concepts of

^Google Image Search; h t t p ://w w w .google. com/imghp?hl=eii&tab=wi&q=
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the images.
The use of tex tual retrieval in large image databases can be illustrated  by considering the 

im plem entation of such a system  in the Bridgem an A rt Library (BAL) BAL has built up 

an expert tex tual database on 750,000 of their images. A ttached to  each image is a manually 
entered set of m etada ta  describing the image sem antics along w ith its size, the nam e of the 
a rtis t and several keywords describing the m ain content [135]. In such system s the search 
process is based purely on predefined a ttrib u tes  and the perceptions of the anno tato r. Such 
a retrieval system  is open to  the problem  of user subjectivity  due to  the  nature of the content 
rich images.

Recent increases in the com putational power of PCs have allowed the use of previously 
inefficient language understanding algorithm s to  add tex tual inform ation to  m ultim edia doc­
um ents. Com puter assisted annotations in the  form of closed captions can be added to  the 
video for example. Keywords or keyphrases can be ex tracted  from the audio track using 
techniques such as Term Frequency-Inverse D ocum ent Frequency (TF-ID F) [137]. TF-ID F 
uses A utom atic Speech Recognition (ASR) to  relate the frequency of words which occur in 
the audio stream  to those stored in a database. Words which occur frequently in a segment 
bu t which are not as common in the database are assigned a high weight. It is assumed 
th a t these words are related to  the visual content. These ‘im p o rtan t’ words can be utilised 
in the indexing of the docum ents allowing the user to  pose tex t based queries and retrieve 
audio-visual clips which are synchronised w ith the derived tex tual m etadata.

Com pilation of m etadata  describing every aspect of a m edia docum ent is unfeasible. 
Demand for an efficient and cheap means of retrieval is driving research in the area of CBR 
which improves on the lim itations of trad itional tex t based system s by providing extended 
access to the media.

2.3 C ontent Based R etrieval

CBR has received a vast am ount of interest since the 1995 publication of the first paper [54] 
which formally addressed the subject by offering the potential to autom ate the  retrieval 
process from visual media. CBR is a difficult problem. E xtracting  salient features from an 
image or video stream  requires much more sophisticated m ethods th an  those used for parsing 
tex t docum ents for keywords [151]. M ethods built around content analysis [106,146], object 
segm entation [155] in images and shot classification [33,68] in video have been developed to 
enable quicker and more efficient access to  image and video docum ents.

Initially restric ted  to  use in large image databases {e.g. The S ta te  H erm itage M useum ® 
in St. Petersburg, Russia) the system  provided good retrieval results for relevant content 
based queries. At the time, content based retrieval for video purposes was deterred  due

®Bridgeman Art Library: h ttp ://w w w .bridgem an.co.uk/
®State Hermitage Museum St. Petersburg: http://www.herm itagem useuni.org/
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to the prohibitive cost of storage and slow access times. Further development and new 
research [67] allied with the lower cost of storage media and video capturing devices has 
allowed video repositories such as the ABC News Video Source  ̂ to make use of low-level 
visual content for retrieval. Low-level content based information has been fused with existing 
textual annotations in the Bridgeman Art Library. Retrieval effectiveness has shown to be 
increased using this system rather than the annotations alone [135].

Combined with the adoption of the MPEG-7 standard * (a standard for multimedia 
description outlined in section 2.5.5), CBR has emerged as a major field of research. Content 
in visual media can be considered to encompass two levels of abstraction.

1. Low-level: Low-level visual content is generally described using colour, texture, shape 
and motion. These content descriptors are typically easily extracted from images or 
video and are chosen due to their efficiency, robustness and perceptual similarities. 
Traditional methods for CBR involve vectorising the image. An image can then be 
represented as a feature set and similarities between images can be measured by cal­
culating a distance between these feature vectors. There are a number of different 
distance measures that can be used {e.g. Euclidean, Chebychev M anhattan for 
comparing feature vectors, but none have been established as a definitive model for 
human similarity evaluation.

2. H igh-level: High-level content is embodied by both semantic and affective-content 
information [16]. The semantics relate to an event or object in the event, whereas the 
affective-content is the reaction triggered by tha t same semantic event. For example, 
in soccer, if a goal is scored, the semantic event is the goal itself. The effect of the goal 
(the affective content) is the player celebration and crowd reaction.

High-level features are more difficult to extract from the media than low-level as they 
are open to different interpretations by viewers. Techniques have been formulated which 
typically rely on restricting the retrieval to a unique domain and then mapping the low- 
level features to high-level concepts by modelling the temporal evolution of the low-level 
visual features. It was concluded by Roach et al [129], that narrowing the domain being 
addressed is a good means of bridging the semantic gap.

2.3.1 C ontent Based V ideo Retrieval

Content based video retrieval (CBVR) is a burgeoning area of CBR. The main goal of CBVR 
is the full automation of the process of parsing, indexing and describing low- and high-level 
content using multimodal information.

’’ABC News Video Source: http://w w w .abcnew svsource.com /vsource/htm l/hom e.htm
®MPEG7 ISO/IEC JTC1/SC29 W G ll: http://ipsi.fhg.de/delite/Projects/MPEG7/
®Chebychev distance: http://www.comp.lancs.ac.uk/ kristof/research/notes/basicstats/

^°Manhattan distance: http: //mathworId. wolfram. com/TaxicabMetric .html
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2.3.2 CBVR Systems

Over the past number of years CBVR systems have become available by commercial vendors 
and and academic institutes. Initially, the focus of much research was on adapting existing 
CBIR systems for video retrieval purposes. Consequently, this meant that the inherent audio 
and motion information were not exploited, and the temporal aspect was ehminated by 
only considering keyframes from automatically detected shots. A summary of some existing 
systems is given below.

• Q B IC  The QBIC (Query By Image Content) system [54] was created by IBM as a 
means of retrieving images from large databases. The system enables operators to query 
the database using a pictorial example or sketch which can comprise a combination of 
shape, texture, colour and spatial location descriptors. The system then calculates a 
distance metric between the query and the corpus and returns images which minimise 
the distance. A ranking can then be performed based on the distance. The main 
advantage of this system is that it allows the user to query the database without using 
text. The query is based solely on low-level image content which eliminates individual 
user interpretations. The image based QBIC system was adapted [95] to allow queries 
against a video database by incorporating a shot cut detector to extract a keyframe 
for each shot. This effectively eliminates the defining temporal feature of video by 
generating a “storyboard representation” of the entire video. The task now becomes 
one of image comparison and thus ignores any evolution of the descriptors which may 
occur over the duration of a shot.

• In fo rm e d ia  The school of Computer Science at Carnegie Mellon University has 
developed a content based video retrieval system giving users access to over 1500 
hours of news and documentaries from which a number of papers have been pub­
lished [62,63,123,173]. The Informedia project (started in 1994) attem pts to facilitate 
machine understanding of video to allow efficient summarisation and retrieval of rele­
vant content. The video is indexed using automatically transcribed audio tracks, closed 
captions or extracted on-screen text. Text based queries are then compared to the 
precomputed indices to retrieve visual summaries from the vast corpus. Approaches to­
ward multimodal queries are currently being considered which would allow all features 
of the video medium to be exploited.

• V isu a lG R E P  : The VisualGREP Project at Mannheim University employs a
domain-independent search by video sample technique to retrieve video footage of vary­
ing durations using features including colour, motion and object types. The features are

^^QBIC: h ttp : / /w w w q b ic .a lm a d e n . ibm.com/
^^Informedia: h t t p : //uww. in f  ormedia. c s . emu. edu/
^^Vi.sualGREP: h t t p :  //www. in fo rm a t ik .u n i -m a n n h e im .d e / in fo rm a t ik /  p i4 /pro jec ts /M oC A /

P ro j  ec t-v isua lG R E P .html
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combined by the user, where (s)he weights the features according to the required query. 
The MoCA project, discussed in section 2.5.4 is one apphcation of the VisualGREP 
framework.

• V ideoQ  The VideoQ system developed at Columbia University is a web based video 
retrieval system which allows the user to formulate a query by means of an animated 
sketch. The chief difference between this system and the others is that it incorporates 
the spatio-temporal information of objects into the query. The user can specify the 
colour, shape and texture attributes of objects along with the required trajectories in 
the video. Video objects in the original footage are spatially and temporally segmented 
off-line using a combination of edge, colour and motion continuity information and shot 
cut detection respectively. The segmented object characteristics are then approximated 
using colour, texture, shape and motion features. The similarity between the query 
and the corpus is calculated using a composite distance comprised of a user specified 
weighting of each of the attributes in the query. A keyframe from each of the candidate 
clips is returned.

• F isch la r Developed in Dublin City University, the Fi'schlar system allows registered 
users on the local area network to record broadcast television programmes from eight 
channels. The system parses the video and extracts relevant keyframes using the method 
outlined in section 2.5.4 enabling the user to peruse the video using a web browser or 
mobile device.

2.4 The Sem antic Gap

The most natural means for a user to query a corpus of data is by way of semantics. As 
CBVR systems operate in terms of low-level or primitive visual features, they have no concept 
of the semantics of images or video clips. Even though low-level content can sometimes be 
related to high-level semantics, the machine cannot perceive it as such. For example, if a 
user wishes to find all the morbid pictures in a database, and can query by colour content, 
he will probably pose the query with a substantial amount of black, and other dark colours. 
To the machine, the operator is simply looking for images with low-values of luminance. 
Overcoming the semantic bottleneck by enabling high-level understanding has been an area 
of much research in both CBIR and CBVR systems [50].

The fundamental problem with semantics in general, is tha t they are open to an indi­
vidual’s own interpretation. This is referred to as semantic ambiguity in O’Leary [110]. In 
other words, human judgement is conditioned by intuition, experience and expertise. It is not 
feasible to assume that a retrieval process could be created that would be able to understand

VideoQ: http: //www. ctr. Columbia, edu/videoq/
^^Fischlar: http://www. cdvp.dcu. ie/
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the complex human thought process which would allow for high-level semantic queries in 
broad domains. On the contrary, in current systems, humans have to translate the semantic 
contents into low-level descriptors in order to find an appropriate document. The retrieval 
is then based on the assumption that the semantics of the document are correlated with the 
visual content, which is not always the case.

The extraction of semantics and translation of low-level to high-level content is still an 
open issue, and there has been no unilateral resolution on how to accomplish this. The most 
common approach used for facilitating semantic queries has been by tailoring the retrieval 
to a unique domain [3,5,31,39,59,76,125,141,157]. This has achieved success in the sports 
domain (in tennis [74] and baseball [24] where the temporal interleaving of camera views was 
noticed to exemplify semantic events for example) and in other broadcast programming such 
as wildlife videos [59] where the presence of certain motion patterns is used to indicate the 
occurrence of hunts in the footage.

2.5 Sports V ideo A nalysis

The work presented in this thesis is restricted to the sports domain, specifically to snooker 
and tennis. The goal then is to create models which exploit low-level features and are able 
to retrieve semantic events which occur in broadcast footage. Our work was one of the first 
to approach broadcast sports footage for this purpose. A five stage systematic approach to 
sports video content analysis is presented in this section. The stages involved are:

1. Temporal structure analysis.

2. Feature extraction.

3. Event detection and recognition.

4. Summarisation.

5. Indexing of the footage.

Each stage in the process is described in sections 2.5.1-2.5.5 and a discussion of the methods 
employed in other works is presented. The focus of the reviews are not solely on sports video 
processing as much of the research in generic video content analysis is applicable to tha t used 
in sports footage.

2.5.1 T em poral S tructure A nalysis

A video can be organised by analysing the relationship between its temporal segments which 
comprises of a hierarchy of frames, shots and events for sports or scenes for non-sport video 
(figure 2.2 illustrates the hierarchy of a typical video sequence). The first step in uncovering 
the temporal structure of the video involves the detection of temporal boundaries.
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T he problem  of shot cut detection in any video footage is considered to  be generic, so the 
following section unifies the various sport and non-sport approaches. D etection of gradual 
shot transitions proves to  be more difficult th an  the problem  of shot cut detection. In the 
subsequent section, some techniques dedicated to  the detection of gradual effects will be 

reviewed.
Once tem poral boundaries have been established the location of shots are known. A shot 

is considered to  be the basic logical unit of a  video which is delim ited by the locations of 
the tem poral boundaries. A shot can therefore be defined as a sequence of contiguous frames 
which is continuously captured by a single camera.

S h o t C u t D e te c t io n

Shot cut detection techniques exploit the inherent relative homogeneity of frames in a shot in 
term s of their colour and m otion content. Hence, a large variation in the correlation between 
consecutive frames indicates the presence of a shot cut. A variety of features have been ex­
ploited to good effect to  characterise this homogeneity; the sum of histogram  differences [14], 
edge pixel ermmeration [167] and M PEG DCT coefficients [170].

It was noted in Ekin et al [48] th a t there is a high correlation of colour content present 
in different cam era views in some sports footage. This is due for the m ost p a rt to  the colour 
homogeneity of large background playing regions [ e . g .  soccer or A m erican-football type 
pitches). A three feature colour based approach was therefore proposed in [48]. It fuses the 
difference in colour histogram  sim ilarity w ith dom inant colour pixel ra tios in a  particu lar 
frame and the difference between dom inant colour pixel ratios of two frames under a robust 
classifier, which adap ts based on the local content. Incorporating spatial inform ation into 
shot cut detection. Tan et al [144], divide the DC-image of an M PEG  encoded sequence into 
12 rectangular regions. T he intensity histogram  of each region is com puted and com pared 
to  th a t of the corresponding region in the successive frame. Most of th e  significant shot 
changes were found. A similar spatial segm entation of each fram e is undertaken in Pickering 
et al [121]. In this research each frame is divided into 9 blocks. Shot cut detection is 
perform ed by calculating the M anhattan  distance between the RGB colour distributions 
of each corresponding block in consecutive frames. Vasconcelos and L ippm an [153] create a 
statistical framework for shot segm entation which incorporates prior shot duration  knowledge 
into the decision process. Results of the m ethod are com pared to  those achieved w ithout a 
prior to  illustrate the im portance of considering tem poral features for shot cut detection.

Due to the hm itations of colour based approaches, several m ethods th a t make use of other 
features enabling shot cuts detection have been proposed. In Kokaram  et al [82] for example, 
global m otion estim ation is applied to  the detection of shot cuts during “action sequences” 
in cricket footage. As the cam era cuts to a long framing view of the playing field when the 

bowler run up is followed by a h it, a noticeable discontinuity in the diagonal affine m otion
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transformation parameters is exhibited. This is due to the global motion changing from 
predominantly zoom to pan left or right. A shot cut and gradual shot transition detection 
method based around the tracking of feature points in texture, such as corner points, was 
proposed by Abdeljaoued et al [1]. Each of the feature points is tracked from frame-to-frame 
using a Kalman filter. The rate of change of disappearance of points, and emergence of new 
points was used to infer the type of transitions tha t occurred. Results show a significant 
improvement over standard histogram techniques.

G rad ual S h o t 'I'ransition D e te c t io n

Detection of gradual transitions is considerably more difficult than that of the shot cut 
detection problem. These types of production effects are broadcaster or event dependent 
and usually include variations in the types of wipes, dissolves and fades. Wipes may include 
a logo while the rate of dissolve might vary for different programs. Several robust algorithms 
for shot transition detection have been developed using statistical methods [38], pixelwise 
comparisons [158] and edge pixel information [168].

Wu et al [158] propose a solution to wipe detection in video using the DC-images in 
an MPEG encoded sequence. A wipe stripe which is evident in the pixelwise difference of 
consecutive I /P  frames characterises the boundary between the two images. A statistical 
measure of the stripe enables wipes and camera motion to be differentiated. Similar to their 
previous paper [167], Zabih et al [168] propose a method for detecting a variety of production 
effects based on edge pixel enumeration and the spatial distribution of edges. The scheme 
is based around the fact that new and old edges appear and disappear far from each other 
assuming that the frames have been compensated for global motion.

In section 3.4 shot cuts and gradual shot transitions are detected by exploiting shape and 
spatial luminance correlations between consecutive frames of sports footage.

T em p ora l H ierarch y

While shots do not provide much insight as to the overall content of a video, they can prove 
to be useful as a unit for indexing a visual document. Combined with domain constraints, an 
understanding of im portant episodes can be derived. For example, in most sport applications, 
the main action takes place in a certain camera view. If this view can be categorised, relevant 
shots can be extracted from the sequence and labelled. Furthermore, the occurrence of shots 
in a particular order can point to certain high-level events [76]. Figure 2.2 illustrates the 
hierarchical structure of a video sequence.

It is im portant to distinguish between scenes and events in video. In this thesis we 
consider an event to be the basic high-level element during which an important episode takes 
place in sports footage. An event in a tennis match might be a rally or ace for instance. A 
review of techniques related to the detection of events in sports is described in section 2.5.3.
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Scenes are defined as a group of shots with the same thematic content unified by space, time 
and event. For example, a scene of a conversation might comprise several shots of the people 
talking in a certain environment. So, a scene in a sport event rarely changes, except perhaps 
where there is a change from the playing arena to a studio for analysis of the game. Events 
within each scene in sports footage are therefore considered to be of most importance.

For completeness some techniques that enable the detection of scenes in video are re­
viewed. Detection of scenes in video is considerably more complicated than temporal bound­
ary detection and normally involves the incorporation of prior domain knowledge. Back­
ground tracking techniques can be used to detect scene boundaries where the locale changes. 
In Schaffalitzky et al [132] salient points on rigid 3D objects are used to identify shots with 
the same background content using wide-baseline methods. The technique is invariant to the 
camera viewpoint, occlusion and object scahng. Background tracking is used to calculate 
scene cuts and compare the semantics of scenes in Oh et al [109]. A fixed background area is 
defined a-priori and a Gaussian pyramid is used to reduce its representation to a background 
signature. Two consecutive signatures are compared by shifting them in opposite directions. 
If a contirmous match, less than the length of the signature is found, a scene cut is presumed 
to have occurred.

2.5 .2  Feature E xtraction

The first step in content based video analysis and processing involves identifying features in 
the footage that the user can exploit in order to formulate a query. Colour, shape, motion 
and texture have all been used to this effect. These features are chosen because they are 
generally easily understood by human operators and similarity measures can generally be 
easily computed. Since broadcast sports exhibit different patterns of such low-level content 
they prove to be useful for retrieval purposes. Work in extraction of these features is now 
discussed under the relevant headings.

Colour

Colour features are exploited in most retrieval systems [6,33,54,115,134,136]. It is perhaps 
the easiest low-level feature for human operators to perceive and can, at the same time, be 
considered to give a good summary of the video or image content. For example, in image 
sequences with significant dominant colour, a single value can be used to summarise the 
image [33]. Colour features also offer scale invariance and are generally efficiently computable. 
Furthermore, techniques have been established for comparison of features such as histogram 
differencing and the Bhattacharyya distance [117]. From the human psychological point of 
view, colour properties of images are very useful in that they can sometimes be associated 
with the semantics in an image. A user could, for example, search a database for an image 
of a beach scene by specifying the quantity of yellow (sand), blue (sand and sea) and white
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F igu re 2.2: Hierarchical structure o f a video. Relevant features are extracted from the  
footage which is then broken into its constituent shots. Low level analysis is then undertaken  
which pertains to som e high-level processing on the low-level features. This allows high-level 
semantics to be inferred (these m ight be events for sports or scenes in generic video).

(clouds) present.
Colour histograms [14], colour coherent vectors [113] and the moments of colour fea­

tures [33] have been used to describe low-level visual content in images and videos. Colour 
histograms are the most traditional and common means of expressing the colour properties 
of an image. Histograms are an approximation of the colour distribution in the image but 
do not account for the spatial arrangement of the colours in the image. This can be useful if 
there is a requirement for the query to be rotationally invariant but in the majority of cases 
a lack of spatial information will be detrimental. Colour correlograms incorporate colour and 
spatial information. They express how the spatial correlation of pairs of colours change with 
distance [66]. Colour queries are formulated in query by sketch systems by selecting a colour 
for a particular region from a predefined palette. The system then retrieve images or video 
that best match the chosen colour.

In the sports domain, dominant colour regions have been used for the detection of playing 
surfaces [24,48,74,141]. Ekin et al [48] developed a colour region detection algorithm which
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autom atically  detects the colour of the sports field and adap ts to  spatio-tem poral variations 
in the dom inant colour. In Chang et al [24] ratios of grass and sand along with o ther shape 
descriptors are used for classifying different views in baseball. Jain  et al [141] calculate 
the most frequent colour in a specified region for classification of a tennis court surface. The 
distance between it and the m ean value of a trained set of predefined colours is then calculated. 
T he result of m inim um  distance is set as the appropriate playing surface {i.e. clay, grass, hard 
and carpet type tennis courts). Zivkovic et al [175] take a different approach by modelling 
the colour properties of a tennis court using a 3D Gaussian d istribution  in RGB colour space. 
It is assum ed th a t the colour distribution is unim odal due to  the high occurrence of playing 
surface pixels in the  full-court view. Only a single Gaussian is therefore required to  model 
the colour d istribution. However, while not explicitly stated , it seems th a t only an indoor 
playing surface is considered. Furtherm ore, only footage from one source is used. Due to  the 
hard  court surface, it does not experience any degradation in surface quality. The court is 
therefore not subject to any changes in colour as is the case for grass and clay. M PEG-7 colour 
descriptors have also been used for the retrieval of high-level events in sports footage [64]. In 
section 3.3.4 we exploit the colour content exhibited in different cam era views for the purpose 
of view classification.

M o tio n

E xtracting  m otion inform ation provides another feature essential for video content analysis. 
The inherent tem porality  of video is manifest through cam era m otion or the m otion of objects 
in the scene. The m otion of objects of interest means th a t m otion as a feature is key in 
any video analysis. The intensity of cam era m otion or object m otion can be evaluated using 
techniques such as m otion estim ation [81] and edge change ratios (ECR) [167] or by extracting 
existing m otion v^ectors from an M PEG  encoded sequence [114].

M otion features provide access to  rich sem antics in the footage. For example, they can be 
used to  identify the level of “action” in a sequence because high levels of action will usually 
be manifest as high intensity m otion vectors [20,52]. Kokaram and Delacourt [82] exploit this 
observation in the  sports dom ain where global m otion is used to  classify high-level events in 
cricket. A view of the bowler run  up is signified by an increase in the zoom param eters, while 
a batsm an stroke results in a change in the global m otion translation  param eter, the sign of 
which represents the direction of the hit.

Cam era m otion has been used for shot type classification in a num ber of publications 
relating to the  sports domain. Assfalg et al [5] use m otion features to  describe the type of 
framing use in soccer footage as one of very long framing, long shot and medium shot. Chang 
et al [24] classify individual shots in baseball by noticing th a t those shots of the same type 
have com parable distributions of cam era m otion along with colour and texture. G ibert et 
al [159] extend the concept used in [24] to classify different sports footage as being one from
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ice hockey, baseball, American football and soccer. They assume that different sports (and 
not individual shots within the footage) exhibit different motion patterns. Motion vectors 
extracted from MPEG encoded sports footage are used as content descriptors to classify the 
various individual sports.

For the most part, only camera related motion has been used for high-level retrieval in 
the sports domain. Explicit tracks of relevant objects have not yet been considered for this 
purpose. In section 6.5.2 a new means of detecting high-level events which occur in sports 
is presented. It exploits the fact that in certain sports, the behaviour of particular objects 
encapsulates the meaning of high-level events.

S h ap e

Much in the same way as machines used for computer vision decompose complex 3D objects 
into simpler volumetric components, it has been shown that the human visual system performs 
similar operations when attem pting to analyse images [10]. This means that humans can 
instantly recognise objects by shape features alone. Querying by simple shape features can 
therefore be considered to be an effective method for retrieval.

Most shape descriptors rely heavily on good segmentation [15]. Following segmentation, 
object areas are labelled and spatial measurements such as area, centre of gravity and ec­
centricity are taken. A query is formed by computing the same features in the query visual 
document and computing a similarity metric against the corpus.

In the sports domain there has been much interest in describing the playing areas in terms 
of their geometrical content. Since sports playing surfaces are generally well defined in terms 
of their geometry, the arrangement of lines in a particular order can signify the presence of a 
certain camera view or the possible occurrence of a high-level event. Gong et al [58] attem pt 
to locate all incidents around the goal, corners and open play in a soccer game by recognising 
the required arrangement of lines. Ekin et al [48] also deal with soccer by attem pting to 
detect three parallel lines for the retrieval of the goal region. In Zivkovic et al [175], after the 
player is segmented from the tennis court standard shape features such as orientation and 
eccentricity along with centre of gravity, area and distances of the extrema from the centre 
based on a pie structure are used to characterise the player. Shape descriptors specified in 
an MPEG-7 stream are used by Hoynck et al [64] to detect objects in equestrian footage. A 
highlight is deemed to have occurred upon detection of such an obstacle as a jump will have 
been attempted.

In sections 3.3 and 3.3.3 a novel shape descriptor for classifying camera views is presented. 
The descriptor does not require the computation of complicated 3 dimensional geometries. 
Four steps (segmentation, edge detection. Radon transform and moment calculation) are 
sufficient to describe the shape content of sports footage which exhibit strong geometrical 
content in terms of the shape of the playing area. This value can then be used as a shape
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index for each frame. Another shape feature which exploits the alignment of local edges is 
also used to characterise the shape content of a frame.

Texture

The textures of regions in an image are characterised by variances in brightness levels. The 
texture of an object can therefore be considered as describing the relationship between ad­
jacent pixels in an image. Texture, while not being particularly useful independently, can 
complement the use of other features where those features alone cannot sufficiently describe 
an object. For example, if two regions of similar colour properties border each other, a de­
scription of the textures will help in their disambiguation, for example a picture leaves and 
grass.

Texture descriptors may be computed using frequency techniques, such as wavelet de­
composition [131]. These methods are based on relating the spatial arrangement of pixels 
to the degree of coarseness of the texture in the visual document. In sports, texture is used 
in conjunction with other features by Kittler et al [79] as a semantic cue for the presence of 
objects in broadcast sequences.

Similar to tha t of the colour feature, systems which allow queries based on texture use a 
predefined set of palette textures which the user selects for a particular region. The system 
returns images or video that best match the chosen texture.

2.5 .3  E vent D etec tio n  and R ecogn ition

Following temporal and low-level content analysis, the semantic content can be extracted from 
the footage. In order to do so, the machine must understand the events in hand. Retrieval 
techniques in some of the systems discussed previously, apply to corpora of unconstrained 
images or video. Successful semantic level retrieval based on high-level queries on such bodies 
of unconstrained information are currently not possible as the retrieval system would have 
to understand all the information presented. So, in order to implement successful retrieval 
techniques based on semantic queries it is necessary to constrain the problem to a unique 
domain.

Robust techniques, which might be useful for user based on-line semantic level query 
applications, are essential in an age of emerging interactive television. A review of some of 
the methods used for semantic analysis of sport events is presented in subsequent sections. In 
most of these cases, analysis of the content is performed on observable low-level features, and 
probabilistic or deterministic models are subsequently used to classify the particular semantic 
events.

Later in this section, the field of emotion recognition is briefly reviewed. Cognition based 
systems are considered relevant for review as the problem of classification of content in these 
systems and semantic based retrieval are relatively similar tasks. Both problems involve au-



2.5 . S p o r ts  V id eo  A n a ly s is 22

tornatically learning and classifying contents of the video sequence by analysing the tem poral 

p a tte rn s  of low-level features.

E vent R ecogn ition  in Sports

Much research in retrieval has been focused on the detection of semantic events th a t occur 
in the  sports domain. As individual sports tend  to  have different rules, it becomes necessary 
to further restric t the dom ain to  a unique sporting event. W hile some research propose a 

generic solution to  detection of events in any kind of sports footage [162,172] an overlap in 
feature space could cause some events to  be misclassified.

Thus far, techniques for the retrieval of im portant events in sports including soccer [5, 
48,58,160], American football [93], baseball [24], tennis [33,76,172], snooker [39,125,126], 
cricket [82], basketball [144] and equestrian sports [64] have been sought. The problem  has 
been approached using bo th  uniniodal [5,40] and m ultim odal [31,48] data.

T he inherent tem poral nature of video m anifest by the evolution of video features typically 
shows wide variations in behaviour. M odelling these often inhomogeneous features is difficult 
and pointwise statistics do not suffice. For example, features which are subject to  noise and 
behave impulsively such as those used in au tom atic speech recognition, a more complex model 
than , say a Gaussian needs to  be used. This has lead to  an increasing interest in the use of 
Hidden Markov Model (HMM) based classifiers [5,24,76].

T he following section introduces the concept of the HMM and the discusses the m otivation 
for its use in video sequences. T he subsequent section discusses some publications which have 
exploited HMMs to  model various sem antic events th a t occur in broadcast sports footage.

H idden M arkov M odels

This section will provide the reader with sufficient knowledge of the HMM to appreciate 
the concepts outlined in the literature review of the following sections. C hapter 6.2 and 
appendix A deal w ith HMMs in greater depth.

HMMs have been shown to be one of the m ost efficient tools for processing dynam ic 
tim e-varying patterns. Their use has found considerable success in applications where these 
pa tte rns are particularly  evident, for example in cognition based systems and video processing 
applications. They allow a variety of tem poral pa tte rns to  be modelled as the model topology 
can be chosen such th a t it reflects the natu re  of the data . Figure 2.3 shows the structu re 
of a left-to-right first order HMM with N  states. The left-to-right model has been found to 
well represent problems th a t are inherently tem poral since the s tructu re  follows the na tu re  of 
tem porally evolving d a ta  {e.g. au tom atic speech recognition where each s ta te  or a num ber 
of s tates represents a word phone).

The model in figure 2.3 is first order in the sense th a t the current s ta te  relies only on 
the s ta te  th a t preceded it. Given a sequence of states {q\...qt}, under a first order Markov
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F igure 2.3: First order left-to-right Hidden Markov Model

assumption the probability of state qt+i, can be written as:

p(qt+i\qt...qi) = p(qt+i\qt) ( 2 . 1 )

In more general terms, a state-to-state transition is encoded by a transition probability 
matrix A, where qt  =  Si  and q t+ i  = S j  are the realisations of state Si  and S j  at times t and 
t + I. Equation 2.2 defines the state transition probability matrix.

A =  {aij] = {p{qt+\ = Sj\qt = 5*)} (2 .2 )

The model is initialised by specifying the probability of being in a particular state, at
the first time instance, i =  1, {i.e. ni = p{qi = Si ) ) .

For each state in the HMM, an observation vector, B =  bj{xk), is defined which may
be continuous or discrete. Observations, [V = {xi...a:A'}), are therefore a function of their
state. Equation 2.3 is the observation emission probability mass function (pmf) (or pdf for 
the continuous case) associated with state j .

b j { x k )  =  p { X t  =  Xk\qt  =  S j ) (2.3)

The hidden nature of the HMM means that only the observation pattern is seen and not 
the state sequence (the state sequence can however be derived from the observations with the 
Viterbi algorithm (section A.2.4)). A HMM can therefore be implemented to represent the 
statistical nature of the observations in terms of a network of states and for each observation 
the process occupies a particular state in the HMM (figure 2.3).

The parameters of the HMM are typically estimated from training with ground tru th  data. 
The algorithm used is called the Baum-Welch algorithm and is described in appendix A.3. 
The following two sections show how the HMM has been used for different applications in 
sports.
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Event Recognition in Sports Video using Stylised Production Information

Due to practical lim itations, there can only be a finite num ber of cameras m ounted at fixed 
locations in the broadcast of any sport. These cameras transm it a continuous video stream  to 
an  editing suite. W hen dealing w ith broadcast footage, the coverage of some sports is typified 
by the stylised interleaving of these cam era views interspersed with production effects such 
as dissolves and wipes. Some work in high-level content analysis exploit this inherent tra it 
in the footage to  classify sem antic events [5,24,76].

To convey particu lar sem antic episodes, m ost sports highlights are composed of a specific 
num ber of interleaved cam era views with a certain  tem poral structure. This means th a t 
events can be detected by applying certain  sem antic constraints in term s of the video syntax. 
T his characteristic is prevalent in w hat are known as action-stop sports such as tennis and 
baseball, where each sem antic episode is punctuated  by a period of non-action. Non-action 
events are typically com m unicated via a crowd or close-up shot of the player. All of the 
im plem entations th a t use HMMs in this way are variations on the same theme. The models 
are simply adapted  in order to  suit the appropriate dom ain (th a t of identifying sem antic 
events through pa tte rns of view). Similar techniques are used for parsing broadcast news 

footage [23,46].
Kijak et al [76] deals with the m apping of the tem poral s tructu re  of raw tennis broadcast 

footage to  high-level concepts such as aces, rallies and service breaks using HMMs. Tennis 
footage has a particular video syntax which is exploited in this paper. A rally for example, 
can be modelled using a left-to-right model where one s ta te  is a non-global view {i.e. any 
view other th an  th a t  of the full court - NV) and the o ther is a global view {i.e. a  full court 
view - GV). In o ther words, in broadcast tennis footage a rally is typified by a full court view 
preceded by a non-global view such as a close-up of the player or crowd. Figure 2.4 shows 
the model for a tennis rally. A higher level HMM is then  used to reflect the tennis game in 
term s of points. This is achieved by concatenating previous HMMs {e.g. a point is achieved 
when a first serve4-rally or rally is followed by a replay).

NV GV

Figure 2.4: HMM for a tennis rally in [76] where N V  is a non-global view and GV is a 
global view.

In a sim ilar fashion to  Kijak, Assfalg et al [5] identified th a t  significant events in soccer 
{e.g. corner kicks, free kicks and penalty  kicks) are alm ost always taken w ith long shot framing



2.5 . S p o rts  V id eo  A n a ly sis 25

(from a cam era th a t is m ounted on one of the stands and takes a wide view of the pitch) 
interspersed with medium (a view showing the player(s) and some of the pitch) and short 
shot fram ing (a close up). Due to  the commercial nature of soccer, it is one sport into 
which considerable research has been invested [5,48,143,148,160] in an a ttem pt to  uncover 
p a tte rn s  in the spatio-tem poral dimensions thereby allowing sem antic events to  be inferred. 
T he moving ball is considered to  em body the hidden process and dom ain knowledge helps 
deduce the num ber of states required for the  HMM. T he values corresponding to  cam era 
action, representing the moving ball, are therefore considered to  be the observations.

C hang et al [24] use HMMs to detect highlights in sports footage. Their techniques are 

restric ted  to  the dom ain of baseball. Each sem antic episode { e . g .  home-run, good catch) is 
modelled on the video syntax. An architecture is determ ined by analysing the tem poral and 
spatial dom ain specific structures, unique to  the game. The observation vector used to drive 
the HMM comprises several visual features including motion, edge and playing area descrip­
tors. The model th a t best fits the observation sequence is returned as the m atching event. 
Likewise, Li et al [93] model plays in American football for coaching video analysis. Two 
algorithm s are proposed, one determ inistic (see subsequent section) and one probabilistic. A 
HMM models the views which had been classified using tem poral and colour constraints. It 
was shown th a t the probabihstic approach achieved be tte r classification results in 3 out of 4 
footage sources and equal classification in the final source.

The retrieval process considered in Ekin et al [48] differs from the previous attem pts of 
high-level event recognition in broadcast soccer videos. They instead rely on feature based 
determ inistic m ethods to  classify high-level events. Cinem atic features are derived from the 
dom inant colour content from which three different types of shot are classified (long shots, 
in-field medium shots and out of field/close-up shots. Goals are detected using a cinem atic 
tem plate composed of an interspersion of these types of shots, the existence of slow m otion 
replays and the duration  of the break in play when a goal has been scored. O bject features 
(referee and penalty  box detection) are used to  discover higher-level events in the play. W hen 
a close-up of the referee is detected for example, he m ight be showing a red or yellow card 
to  a player. W hen the penalty box is detected, an a ttem p t on goal could be taking place. 
The retrieval framework is extended in [49] by creation of a generic integrated object-based 
video event description model. Event models are form ulated by describing the event in term s 
of actors, interactions, m otion (elem entary m otion units (EM U)) and reactions (elem entary 

reaction units (ERU)) realised by the extraction of low-level descriptors.

O th er m e th o d s  o f  ev en t R eco g n it io n  in S p o rts

Modelling the tem poral evolution of interspersing cam era views has proved to  be successful 
in retrieving high-level events th a t occur in a variety of sports footages. S tatistical m ethods 
applied to  o ther features have been shown to  be equally effective in retrieving valuable high-
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level content.
Successful sem antic level retrieval has been perform ed by Petkovic et al [119] by limiting 

the  search dom ain and taking advantage of HMMs. The paper addresses CBVR by recog­
nising events in a tennis video using a Discrete Hidden Markov Model (DHMM). T he model 
is driven by spatial features extracted  from a binary m ap of player following its segm enta­
tion from the tennis court by a robust colour segm entation algorithm . A model is trained  
on observation features enabling high-level queries to  be performed. A similar problem  was 
undertaken by Yamoto et al [163], however broadcast tennis footage was not used. They 
presented an early paper in which HMMs were applied to  a com puter vision problem  and 
is recognised as the first action recognition m ethod using HMMs. A set of tim e sequential 
images of a tennis player is quantised into a discrete sequence of symbols. Mesh features are 
then  used as the dom ain specific feature vector (the ratio  of black pixels (background) in the 
binary image of the player to the to ta l num ber of pixels). A more advanced feature set is used 
to  accomplish a similar objective in Lee et al [87]. In this paper hum an actions (jumping, 
sitting, walking, etc.) are classified in close to  real-tim e. Wu et al [157] a ttem p t to  classify 
different types of track and field evets by analysing changes in global m otion accelerations. 
A three level architecture of neural networks (NN), decision trees and finite s ta te  machines 
(FSM) is used to  m ap low-level features to  sem antic episodes.

The im portance of retrieval of sem antic content is again highlighted in Xu et al [162]. In 
this paper, various levels of sem antics in sports footage are represented by a corresponding 
layer in a nmlti-level HMM framework. T he m ethod used in this paper a ttem pts to  derive a 
generic solution to  sem antic based retrieval for sports (volleyball and basketball are analysed). 
At the lowest level, features based on m otion are used to  drive a HMM for each event in the 
particu lar sport. Each event is then  represented by a s ta te  in the higher level HMM. The 
likelihood of each model is then calculated and the sem antic is inferred.

Kawashim a et al [73] a ttem p t to  sum m arise and index events in baseball using dom ain 
specific heuristics and m ultim odal techniques. A characteristic view from behind the pitcher 
is used as the basic scene from which the  sum m arisation is begun. Detection of on-screen 

tex t allows the beginning of a ba tting  sequence and change of player to be recognised. The 
tex t is then  ex tracted  and optical character recognition allows scores to  be extracted. B atting  
actions can be detected in the basic scene by calculating a feature vector of the moving areas 
using frame differencing and com paring it to a model. The sequence is term inated  when a 
hit or strike or ball has been detected. A hit is assum ed if the view cuts to  one where all the 
bases are in view, a strike or ball is assum ed otherwise.

In [60], Hanjalic proposes a generic solution to  event detection in broadcast sports footage. 
By fusing low-level m ultim odal features (m otion activity, shot cut density and sound energy), 
exciting periods in the game are considered to  have occurred. As this m ethod is not confined 
to  a single sport event, specific high-level events cannot be sought for in the footage. I t is 
therefore only suitable for sum m ary generation purposes and not retrieval. Audio features
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alone have been used by Marlow et al [97] which offer good summary results for various 
sports. A mosaicking scheme for the summarisation of soccer footage is proposed by Yow et 
al [166], Im portant events are detected by recognising frames which contain the goal posts 
and a panoramic image is constructed by compensating for global motion. A track of player 
movements and ball positions are overlaid on the mosaic providing and effective summary of 
an exciting segment.

C lassification o f content in cognition based system s

In many areas of video processing, modelling the dynamic behaviour of features is important. 
In cognition based systems for example, it was recognised that it is not essential to reconstruct 
complex human geometry and movement in an attem pt to recognise human actions [26,104, 
140,145]. This observation can be related to one of the problems in this thesis of modelling 
the motion of an object around a playing area.

HMMs allow the temporal nature of low-level features related to human movements to be 
modelled. It is a widely used modelling technique for gesture and handwriting recognition 
applications and has been used successfully since Starner et al [140] in 1995. Gesture recog­
nition is undertaken in Cohen et al [26] in which they propose a multi-level HMM for the 
automatic segmentation and recognition of human facial expressions. On-line handwriting 
recognition has also been modelled by a HMAI in [89] and [164].

2 .5 .4  S u m m a risa tio n

Summary generation has been a main area of research in content based video analysis in recent 
years [48]. Summarisation involves locating and extracting im portant events and conveying 
the information to the user in a concise manner. Good summarisation is vital given the 
vast amount of data associated with any video document. This is particularly the case for 
sports where the most valuable semantics only occupy short time periods relative to the total 
duration of the footage.

Good summarisation of content can be provided by Motion History Images (MHI) [18] 
where a synthetic representation of object motion is overlaid on a keyframe. MHIs were not 
originally intended for summarisation purposes, but prove particularly useful for video where 
motion conveys some substantial semantic information. The motion history is collected by 
frame differencing and is overlaid on an average of the first and final images in the sequence. 
The motion is represented by a temporally graduating intensity which increases over time. 
Frames with recent motion are therefore represented by bright regions and earlier motion by 
darker regions. The first application of MHIs in sport can be found in Denman et al [39]. An 
illustration of MHIs for snooker is given in figure 2.5. In the presence of global motion the 
use of MHIs for summarisation is impractical unless the camera motion can be compensated.
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Figure 2.5: MHI of snooker shots.

The most common methods of summarising video are keyframes and video-skims. Reviews 
of works in the area are presented in the following sections.

K eyfram es

A keyframe is a single frame extracted from video footage which is considered to give the best 
representation of the events by capturing the visual content of the shot. Keyframes provide 
a static representation of a dynamic event which enables a user to efficiently browse a corpus 
of video material or annotators to index footage. Keyframes are the most conmionly used 
method of video summarisation. Chapter selection on DVD movies is one example of their 
use for commercial purposes. Below is a review of some of the techniques in this area.

Keyframes are typically extracted from each shot in the footage but several keyframes 
may be used to convey object or global motion [171] based on certain criteria. The keyframe 
selection process is generally based on a similarity metric between frames or a rule based 
approach. The Fischlar system implemented by the Center for Digital Video Processing 
at Dublin City University Ireland for example, uses a thumbnail keyframe browser where 
the keyframes are selected from the footage based on analysis of the colour content in each 
shot [88]. The colour distribution of a frame that is of closest distance to the mean colour 
histogram for the shot is selected as the keyframe.

Another keyframe extraction algorithm was presented by Liu et al [94]. Shots are seg­
mented into motion events by using the Perceived Motion Energy (PME). The motion vectors 
from MPEG B-frames are used to calculate the average motion magnitude and direction of 
the motion, the product of which yields the PME. A triangular motion model is fitted to the 
PME representation to temporally segment the footage where the model represents motion

Fischlar: h t t p : //www. cdvp. dcu. i e /
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acceleration and deceleration. A heuristic rule based approach is used to  ex tract keyframes 
according to  either the detected positions of the initial acceleration and term inating  deceler­
ation or from frames extracted  using the tw in-com parison gradual transition  effect detection 

m ethod [169].
A seminal paper in adaptive keyframe extraction  is described in Zhuang et al [174] which 

uses clustering m ethods for keyframe selection. T he clustering, which is based on the  K- 
m eans algorithm , is initialised by selecting the  first frame in the shot and com paring it to 
consecutive frames. If the distance is less th an  a predefined threshold, it is deemed to be part 
of the cluster and the centroid is adjusted  accordingly. A new cluster is instan tia ted  if the 

sim ilarity is less th an  another threshold. Fram e sim ilarity is calculated based on the distance 
between colour histogram s. A cluster th a t  is big enough is a key cluster, and the keyframe is 
the frame closest to  the cluster centroid.

A comic book style sum m ary is proposed by Boreczky et al [19] and Uchihashi et al [150]. 
As in [57], the video is clustered based on sm oothed 3D YUV colour histograms. This 
produces clusters which are independent of their tem poral a ttribu tes. W hen the clusters 

have been formed, continuous segments can be derived by seeing to which cluster each frame 
belongs. Keyframes in each segment are selected according to their im portance in the footage 
which is calculated based on the duration  and rarity  of the segments. The weighting can also 
be adjusted  based on the application. In this publication, more emphasis is pu t on those 
shots with hum ans present. For this to be applied to  a sports problem, a greater weight 
could be applied to those shots where there is a greater probability of an im portan t event 
occurring, such as the full court view in tennis or a side on view in basketball. Figure 2.6 
shows a manually generated sum m ary of how a teim is sequence could be sum m arised using 
this technique. Using the audio track to  detect racquet hits [31], the global views could 
contain a m otion sunm iary for each pair of shots m ade by the players. A novel feature of the 
paper is the comic book style of the browsing interface. The size of the keyframes (calculated 
using an im portance m etric) reflects their im portance in the footage.

V id eo  sk im

A video skim is a condensed audio-visual clip of a longer sequence, comprised of autom atically  
ex tracted  shorter clips which preserving the  “message” from the original footage. In order 
to  generate a perfect video skim, a high level of understanding of the footage is required and 
the footage sem antics m ust firstly be derived to  ensure th a t the best clips for describing the 
rem ainder of the footage are extracted. In o ther words, video skim generation is dom ain 
dependent and does not offer the same flexibility as keyframes for sum m ary generation.

It has been shown in Smith et al [137], th a t video processing alone cannot be relied upon 
for generating a good video skim. Through the integration of image and language under­
standing, Sm ith et al create a coherent synopsis (in the  region of 10:1 com paction ratio) of
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Figure 2.6: Comic book summary o f a tennis game.

the original material. Keywords are detected in the audio track using Time Frequency Inverse 
Document Frequency (TF-IDF), and keyphrases are extracted using a predefined heuristics. 
Video skim candidates are established by classifying scenes using video processing techniques 
including shot cut detection, global motion analysis and object detection. Using high-level 
nieta rules the temporal correlation of the skim candidates and extracted keyphrases allow 
for a video skim of the original video to be created.

The MoCA (Automatic Movie Content Analysis) Project [120] at the University of Mannheim 
has concentrated on the automatic abstraction of movies based on content analysis of the 
video. Heuristics are used to create a movie trailer where certain cinematic events such as 
action or dialogue are detected using the video and audio tracks to detect significant events. 
These scenes are concatenated to produce a movie abstract. No user evaluation of the trailers 
was presented so the performance of MoCA can not be assessed.

2 .5 .5  In d ex in g

Following the temporal and spatial segmentation of the nmltimedia document, it is indexed 
using the appropriate derived metadata. Depending on the type of document being indexed 
the m etadata to be appended might comprise textual headers, visual and audio features or 
some other temporal information.

The MPEG-7 standard is now introduced which has stemmed from the worldwide re­
quirements for the creation of a standard specifically designed for representing multimedia 
content. In 2001 the ISO finalised and approved the MPEG-7 standard. The primary aim of
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MPEG-7 is to create a framework which is able to describe all the characteristics of multime­
dia documents using four elements: descriptors, description schemes, description definition 
language and coded descriptions. Low-level visual (such as those described in section 2.5.2) 
and audio features are contained in the descriptors while the descriptor schemes create a 
structure by relating the individual descriptors to one another.

The main advantage of MPEG-7 is the potential for interoperability between compliant 
devices for easy identification, retrieval and categorisation of multimedia documents. Searches 
for relevant documents will become more efficient as the feature descriptors will not have to 
be calculated for individual queries as they will already be present in the document.

2.6 Overview of a Framework for Sports V ideo A nalysis

The review has shown that high-level event spotting in sports has been primarily based on 
the arrangement of particular view types. By restricting the domain to sports, this thesis 
proposes to shift the focus from these characteristics of sports footage, to objects contained 
in the footage. The behaviour of these objects help bridge the semantic gap.

The proposed framework for sports video analysis follows the steps outlined in section 2.5 
and is illustrated in figure 2.7. The system is composed of two alternating module concepts: 
Extraction and Recognition. Extraction encompasses temporal analysis of the sequence, ex­
traction of low-level features to yield correct classification of camera views and the extraction 
of motion features enabling high-level events to be inferred. The features are quantised as a 
symbol sequence which represents the observed views and semantics. The recognition module 
is a HMM driven by the symbol sequences and a maximum likelihood decision is employed 
for classification of camera views and high-level events.

2 .6 .1  E x tr a c tio n

The fixed nature and finite number of cameras broadcasting a sport event means that domain- 
dependent information can be exploited to extract low-level features from the footage. In 
this research, three colour and four shape features are used to extract information relating 
to which view is being broadcast.

Another feature used is the motion of a fundamental object in the ‘global’ view. In 
this thesis the motion trajectories of the white ball and tennis player in snooker and tennis 
respectively are considered to embody a semantic event. A method for accurate tracking of 
the object is needed which enables abrupt changes in motion to be detected.

C hoosing Features for Sports R etrieval

The first level in the framework is to extract relevant features for sports retrieval. Playing 
areas in broadcast sports footage are generally well defined in terms of their colour as well
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F igu re 2.7: System  for parsing broadcast sports footage.

as geometry. For instance, tennis can be played on green, red or blue surfaces with white 
delineating field lines in a rectangular shape. Snooker tables are green w ith a contrasting 
background colour. The playing surface shape is also rectangular. The low-level content 
based features used in this research encompass bo th  of these playing surface attribu tes. The 
features used are easily and efficiently calculable. Novel mom ent features which provide 
a succinct single value representation of the image surface are used. Tem poral analysis is 
perform ed by exploiting the ex tracted  geometric features and established tem poral boundary 
detection techniques.

T he work reported  here appears in the  Journal of C om puter Vision and Image Under­
standing: Special Issue on Video Retrieval and Sum m arisation as a paper entitled “Con­

tent based analysis fo r  video from  Snooker Broadcasts” by H. Denman, N. Rea and A. C. 
Kokararn [40] and was also published in the  proceedings of the In ternational Conference on 
Image and Video Retrieval as a paper under the same nam e [39]. This is the first stage in 

the framework illustrated in figure 2.7.
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M otion  E xtraction  and M otion Events

Extracting the motion of relevant objects is the fourth step in the framework (figure 2.7). 
Object tracking is performed using a colour based particle filter. The implementation differs 
from others [107,117] in that it exploits prior scene geometry and colour for better tracking 
fidelity. A target model of the object’s colour distribution is created in the first appropriate 
frame of the footage. The likelihood of candidate models generated from particles distributed 
around the projected position of the region in the next frame are computed and weighted 
accordingly. If the cumulative likelihood of the samples is greater than a specific threshold, 
the mean location of the samples is taken as the location of the object. Explicit tracking of 
the object in this fashion also enables a summary of the event to be shown in terms of the 
temporally evolving position of the object overlaid on a keyframe from the footage.

Sudden changes in the behaviour of the object can be taken to indicate a change in 
perception of the event that might occur in the eyes of the viewer. In snooker footage for 
example, a cushion bounce that occurs before an inter-ball collision could indicate that the 
player is attem pting to escape from a snooker (see appendix B for snooker terminology).

2 .6 .2  R e c o g n itio n  u s in g  H id d en  M ark ov  M o d e ls

The second and fourth levels in the framework are performed by the recognition module. 
Recognition is performed at both low- and high-levels of abstraction. Low-level analysis is 
performed by modelling the evolution of the moment features using HMMs for view classifi­
cation.

V iew  R ecognition

As correct detection of the required views is essential to perform high-level content analysis, 
the stochastic nature of the moment features within each view is modeled using a HMM. 
Although the sequence is relatively homogeneous, it is subject to variations within each 
clip. This is due to subtle camera motion and the occlusion and uncovering of parts of the 
playing areas as a result of player movement. The use of a HMM fulfills the requirements of 
statistically modelling of the underlying signal. Figure 2.8 shows the evolution of the eight 
order central moment of the Radon transform for snooker footage. This appeared in a paper 
entitled “Sport Video Shot Segmentation and Classification” by R. Dahyot, N. Rea and A. 
C. Kokaram [33] in the Visual Communications and Image Processing conference.

Event R ecognition

High-level content based analysis is achieved by performing object based analysis. If the 
spatio-temporal evolution of an object in view can be modelled using statistical processes, 
high-level semantics can be inferred from low-level observations. This approach can be con-
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F igu re 2.8: View recognition overview where M L is m axim um  likelihood classification.

sidered to be generic for sports where tlie movement of an object around a predefined playing 
area can be considered as being the embodiment of a semantic event.

In this thesis, snooker and tennis footage are used as examples of broadcast sports footage. 
For snooker footage, the motion of the white ball, and its interaction with other balls and 
the table is taken to symbolise certain events or plays that occur during the game. While in 
broadcast tennis footage, a model created of the track borne out by a tennis player in the 
lower half of the court, is used to ascertain the type of play under way. Other sports where 
this principle could be used might be table-tennis, squash and badminton, while tracking of 
a ball in soccer or rugby could elicit the appropriate semantics.

Having successfully classified the camera views and the compilation of the object tracking 
having been completed, the spatio-temporal evolution of these positions in terms of a spatially 
segmented playing area are modelled using a HMM. The topology of the HMM is derived from 
the data where each state is representative of a segment of the playing area. Continuing from 
the view recognition step in section 2.6.2, an overview of the event recognition is illustrated
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below.
Event recognition was the theme of two papers entitled “Modelling High Level Structure 

in Sports with Motion Driven HM M s” by N. Rea and R. Dahyot and A. Kokaram [125] and 
“Semantic Event Detection in Sports through Motion Understanding” by N. Rea, R. Dahyot 
and A. Kokaram [126] appearing in the IEEE International Conference on Acoustics, Speech, 
and Signal Processing and in the 3rd International Conference on Image and Video Retrieval 
respectively.

2.7 Sum m ary

As the quantity and range of content increases so has the need for the number of means to 
effectively mine it. This chapter has presented a review of the literature under the heading of 
the steps in a proposed framework for sports video analysis. The review has shown that the 
approach that most of these researchers adopt begins with a low-level feature extraction stage. 
The low-level features are then processed and subsequent high-level reasoning is applied in 
order to detect high-level semantics.

The remainder of the thesis will be considered under two headings: Feature Extraction 
and Recognition. Feature extraction will deal with the first two problems in the framework of 
temporal structure analysis and feature extraction from the raw video footage. Recognition 
will engage the problem of view classification, event detection and recognition along with 
summarisation and indexing. The architecture of the full system for parsing snooker footage 
is illustrated in figure 2.9. Views are classified and followed by event classification. A similar 
system is adopted for tennis footage analysis.
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3
Choosing Features for Sports Retrieval ^

In section 2.6, a proposal for a five stage framework for sports video analysis was presented. 
This chapter details the steps involved in the implementation of the first two stages used 
for analysis of broadcast sports footage: feature extraction (section 3.2-3.3) and temporal 
structure analysis (section 3.4).

For the purpose of this research, two sports are considered, one of which is played in­
doors (snooker) and the other outdoors (tennis) These sports were chosen as they both 
exhibit strong geometrical content in terms of their playing areas. Furthermore, they are 
very structured in terms of their unambiguous rule sets.

Feature extraction is central to any successful retrieval system. The features used must 
give a good representation of the content while being efficiently calculable. The feature 
extraction stage is in this case begun by finding the delineating field lines or playing surface 
boundaries for a particular sport. Once these lines have been detected, other important 
regions on the surface such as the pockets and spots in snooker and the net and service boxes 
in tennis can be inferred using the initial playing area outline.

In section 3.3.3, a new feature for parsing sports footage is presented. Based on the strong 
geometries of the delineating playing area, this feature does not require the calculation of 
complex three dimensional basis sets to model the camera view as in Jain et al [141]. Instead,

^Results from this chapter have been pubhshed as “Content based analysis for video from snooker broad­
casts” by H. Denman, N. Rea, and A. C. Kokaram in the Journal of Computer Vision and Image Understanding 
(CVIU): Special Issue on Video Retrieval and Summarisation, November-December 2003.

^Although it is appreciated tha t tennis can be played indoors, the footage used is tha t from outdoor grass 
court and clay court tournaments.

37
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it relies on clearly delineated field lines or contrasting playing surface and background colours 
to label the appropriate view type.

Statistical moments of colour and shape features are also considered for classification of 
the different camera views. The shape feature differs to that of the Radon moment in that 
all the information in the scene is used by measuring the alignment of the local edges. The 
colour feature is a single value representation of the colour distribution in the image. Using 
colour information for sports footage is appropriate as the different camera views used to 
capture the footage will exhibit different colour content from view-to-view.

By modelling the temporal structure of the evolving features, it will be shown that high- 
level events can be detected. As a first step toward exposing this temporal structure, the 
boundaries between homogeneous feature behaviours should be detected. These boundaries 
can be detected by computing a correlation measure between successive frames. There are 
many means of detecting shot boundaries [92]. In this work three steps are used. Initial shot 
boundaries are detected using scene geometry from the feature extraction stage. The remain­
ing shot cuts are detected using a traditional absolute sum of luminance histogram differences. 
Other gradual transitions such as dissolves and fades are detected using a modification of the 
technique outhned in Zhang et al [169].

3.1 The reasons for exp loiting geom etrical and colour content

Broadcast snooker and tennis footage exhibit many similar characteristics to most other 
televised sports. The finite number of fixed camera views are arranged in such a way as to 
cause the viewer to become immersed in the footage while trying to convey the excitement 
of the game to a mass audience. The most im portant views in the footage can be considered 
to be those of the full table in snooker and the full court view in tennis. These type of 
views have been dubbed “global views” [76], the remaining views are “non-global” . Amongst 
others, these include close-ups of the player, crowd and other views generally not used for 
live broadcast of action events.

In snooker, global views are considered to be of most importance as they hold the funda­
mental details about the state of the game. All ball positions and pockets can be retrieved 
from the footage using this camera view, while practically all of the player’s shots and ‘pots’ 
are normally shown in this primary view. From the three footage sources of snooker used 
as data material in this thesis, an average of 63.92% of the total footage duration is spent 
in the full table view. Table 3.1 illustrates the time spent in the global view relative to the 
total footage length, along with the number of shots and unique camera views used in the 
broadcast.

Similarly, in the tennis footage a considerable amount of the total duration of the footage 
is spent in the global view. Over four different games, 47.56% of the total duration is spent 
in this view. The most important events in a tennis game are also deemed to occur in the
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Footage Hunter Hendry Higgins
#  Frames (Total) 24250 5832 3491
#  Shots (Total) 115 21 23
#  Unique views 14 5 6

#  Frames (Full View) 16323 2894 2243
% Full view duration 67.31% 49.62% 64.25%

Table 3.1: Table showing the ‘value’ of the full table view in terms of broadcast time 
occupied by this single view.

global view. Rallies, aces and other shots are initially broadcast in this view, while other 
non-global views of the court are generally used in replays. The importance of the global 
view for each of the footage sources is shown in table 3.2.

3.2 Playing area segm entation

To correctly segment the snooker and tennis playing surfaces from the background, three 
commonly used methods were implemented: direct thresholding, adaptive thresholding and 
colour distribution modelling. For each of these segmentation methods, different colour spaces 
are used. Utilisation of the colour spaces is based on the perception in quality of segmentation 
achieved. Further details about colour spaces can be found in [14] and [56].

3.2.1 S egm en tation  using d irect th resh old in g  o f colour spaces

Direct thresholding of colour spaces has been used to good effect for segmentation pur­
poses [14]. Given that an image or sequence of images will generally exhibit peaks at certain

Footage Pierce Hewitt Malisse Costa
#  Frames (Total) 2949 12009 4114 11000
#  Shots (Total) 16 59 18 75
#  Unique views 5 9 7 7

^  Frames (Full View) 1286 5872 2733 4410
% Full view duration 43.61% 48.9% 66.43% 40.09%

Table 3.2: Table showing the ‘value’ of the full court view in terms of broadcast time 
occupied by this single view.
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points in some distributions, relevant data can be extracted by applying thresholding con­
straints. The first technique involves segmenting the playing area from the background by 
applying an empirically derived threshold to the differences of colour planes while direct 
thresholding of the luminance component was performed on the termis footage to segment 
the delineating playing area.

Snooker

In snooker, it is noticeable that the playing area is of a clearly contrasting colour to that of 
the background (figure 3.2). The colour of the cloth used on championship tables exhibits 
high values of green, while having low blue and red content. Using this knowledge, the table 
can be segmented by thresholding the difference in colour planes according to equation 3.1.

-  R i i J ) )  > t } A {{G{i,j) -  > t ) (3.1)

Where i?, G and B  are the red, green and blue colour components of the image, and t 
is the binary map of the table for pixel locations {i,j). For snooker footage a threshold of 
r  = 25 was used to generate the binary image.

The choice of threshold is reflected in the scatter plots of figure 3.1. The difTerence in 
colour planes {G — R v G — B) ior three separate stills of the global view, from each footage 
source are plotted. The green points correspond to the table area, which was manually 
extracted. The red points are the remaining colours in view. A contour plot is overlaid 
to highlight high density regions. The high density region in the top right of the plots, 
emphasised by the contour lines, is due to the table while the other high density regions are 
a result of the background surfaces. Note the presence of some isolated green points outside 
the threshold range (r = 25). These are attributed to the balls on the table and possibly 
an encroaching player. Red values within the threshold range are cushion pixels (of similar 
colour to the table) which were not taken into account when manually extracting the table 
region for analysis.

T ennis

No matter the type or colour of termis court surface, the court lines are always painted white. 
A simple, direct thresholding of the brightness component (V̂ ) from H S V  colour space, 
looking for regions which are brighter than a specified threshold, should therefore yield the 
brightest objects in view. These will generally be due to the lines, players and part of the 
crowd.

While direct thresholding is sufficiently robust for snooker using non-normalised RGB  
colour space (since the game is played indoors with relatively uniform lighting conditions) 
this is not the case for tennis footage which is normally played outdoors. Thresholds often 
have to be chosen empirically meaning that over a large sample of data, the technique may
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F igu re 3.1: A  scatter plot o f the difference o f  colour planes for Higgins (top), Hendry 
(middle) and Hunter. A  close-up o f the regions o f  table colour is shown on the right w ith a 
colour bar conveying the contour density. The bold dashed line is the threshold values o f  25.

not be quite so robust due to  possible variations causing drifts in the data . It can be seen 
in the  bo ttom  row of figure 3.3 th a t the value chosen (V  > 145) for the  brightness threshold 
does not perform  equally well in all sequences. As games are played a t different times during 
the day and in different lighting conditions, court regions can seem brighter and are labelled
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Figure 3.2: Top: Global view from Higgins, Hendry, Hunter sequences. Bottom: Binary 
maps of the snooker footage generated from RGB colour differences.

as part of the field lines.

3.2.2 S egm en tation  using ad ap tive th resh old in g  o f  colour spaces

In most sports footage, the playing area colours contribute toward a large proportion (typi­
cally > 70% in tennis and > 60% in snooker) of the overall colour distribution in the global 
view. In this view, peaks in the individual distributions correspond to the playing area region 
(as shown for tennis in figure 3.4). The adaptive thresholding method used for this segmen­
tation uses a greedy algorithm which accounts for this property. The idea is to select r% of 
the histogram centred on the mode. The algorithm is outlined in table 3.3 for the brightness 
component, where the greedy range is r%.

Snooker

Again, RG B  space is used in this segmentation of the snooker table. Using the same ob­
servation as direct thresholding (that there are high values of green for the table in G and 
not in R  and B), the histograms of the difference between the green and blue components, 
and green and red components are calculated. The binary ‘and’ of the thresholded images 
GRmap = {G — R) and GBmap = {G — B), who’s values lie within the 60% greedy range of 
both histograms are deemed to be the table.

table  — G RjYiap A GBj^iap (3.2)
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F ig u re  3.3: Binary maps o f tennis footage by application o f a direct threshold o f V >  145. 
Left to right: Fierce, Hewitt, Malisse, Costa sequences.

This shows good results for H iggins  and H unter  footage (figure 3.5). However, since 
the playing area in the global view in H endry  is quite small, the mode in the distribution 
does not correspond to the colour of the table, but the background. This issue affects the 
discussion in section 3.2.4.

T ennis

The contrasting luminance and saturation values of the tennis court lines and the court 
itself offers the possibility of segmenting the court from the delineating field lines. H S V  
(Hue, Saturation, Value) colour space is used for segmenting the tennis court. The peaks 
in the value, or brightness, and saturation histograms correspond to the dominant colours 
of the playing area, are firstly found. A greedy algorithm is then used to find the values 
which account for 65% of the brightness histogram, grown outwards from the peak value and 
70% for saturation. As white has a high brightness and low saturation, pixels with values 
greater than the range produced by applying the algorithm to the brightness component are 
considered to be non-court surface pixels. Those values less than the range returned by the 
same algorithm on the saturation component also contribute to the court lines. While the 
65% range used for the luminance histogram will uncover some patches of worn down grass, 
it is necessary to ensure that all the straight Hnes are detected. The binary map of the ‘and’ 
operation between the two thresholded colour spaces, Vmap and Smap, retrieves the court lines 
(equation 3.3).

court —  V r n a p  ^  ^ m a p  (^*^)

It can be seen in figure 3.3 that the greedy histogram segmentation, with a greedy range
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Figure 3.4: Tennis court colour (HSV) distribution. The main lobe in the distribution 
corresponds to the court surface. (Hue (left), saturation (middle), value (right).

Figure 3.5: Segmentation o f the snooker table using the greedy algorithm on H iggins (left) 
and H unter (right).

of 65% for the luminance histogram and 70% for the saturation histogram, works well on two 
types of tennis court surface (grass and clay).

3.2.3 Colour space m odelling

In an attem pt to derive a more generic solution to the segmentation problem, a probabilistic 
approach was considered by modelling the colour distribution using a mixture of Gaussians.
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1. Compute the normalised M  bin brightness (V̂ ) histogram, H v{m ) 
from HSV space.

2. Find the argument of the mode in the distribution.
m =  argmaxi<„<M (^^v(m))

Define the variables k\ — k2 = m  for the first iteration.

3. while (E^U, H v{n)) < r%,

^2 =  ^2 +  1

else,
A:i =  fci — 1

end;
end;

T ab le  3.3: Greedy histogram algorithm for calculating r% o f the brightness histogram V, 
from H S V  colourspace.

F ig u re  3.6: Binary maps o f tennis footage generated using the greedy histogram. Left to 
right: Pierce, Hewitt, Malisse, Costa sequences.

In order to characterise the colour content of the footage, the CIE L*a*b* colour space was 
used.
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Depending on the environm ent (indoor/outdoor) in which a sport is being plaj^ed, light­
ing conditions will affect the segm entation process, bo th  tem porally and spatially. Under 
conditions where artificial lighting is present, the brightness over the playing area may not be 
sufficiently uniform to allow segm entation using the lum inance component. The luminance 
invariant chrom aticity space a*b* is therefore employed.

In an outdoor environm ent, the opposite is the case T he brightness may vary tem ­
porally over the duration  of a game. However, the duration  in which it takes for lighting 
conditions to  change are considerably longer relative to  the frame operations. Moreover, in 
an outdoor environm ent lum inance should be spatially uniform, assuming there is no shad­
owing of the playing area due to  obstructing objects. A model which incorporates luminance 
m ust therefore be considered. An L*a*b* colour model is therefore adopted for outdoor 
sports.

M ultim odal colour space m odelling

As a result of the natu re  of the global view, the playing area accounts for the m ajority 
of the to ta l colour d istribution over the entire image. T he distribution will in general be 
m ultim odal bu t will exhibit a substan tial peak in the colour histogram  due to  the dom inant 
colour of the playing surface, as discussed previously. In order to  derive a model for the colour 
distribution, means and covariances m ust be resolved from the data . A model is trained by 
m anually selecting 3 regions of playing area from 20 frames a t different points in each of 
the footage sources. A param etric model is then created by approxim ating the complex pdf 
in the form of an aggregation of individual Gaussian com ponents {i.e. a Gaussian m ixture 
model (GMM)) [13,37]. Essentially, the goal of the GMM algorithm  is to estim ate the 
means, covariances, and probabilities of each m ixture distribution. T he GMM is also used 
in chapter 6 for clustering and quantisation of a two dimensional space. A description of the 
GMM and the iterative estim ation formulae are now presented.

G aussian m ixture m odelling

In this type of clustering each cluster is m athem atically  represented by a Gaussian d istribu­
tion. The entire d a ta  set, (where x„ is a collection of features) can be modelled by
a weighted m ixture of m ultivariate Gaussians, each with a particu lar mean value, /ifc, and 
covariance m atrix  R ^. The Integrated Com pleted Likelihood (ICL) [11] is known to help in 
de term inating the num ber of m ixture com ponents to fit the data . T he ICL however was 
not used in this work. The expectation-m axim isation (EM) algorithm  is used to  iteratively 
update the param eters of each m ixture until some convergence criterion is reached. The 
m ixture is defined as:

Afk = (wk,  (3.4)

®In this thesis, it is assumed that outdoor sports are only considered to take place during the daytime.
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For a Gaussian mixture model, the likelihood is given by equation 3.5 where 0  =  
{ l Uf e , R/ t }  and Ck is the cluster class

p{x^\Ck,Q)^ /o îp (3-5)
Y 27r|xv/j|

A new parameter set is estimated by maximising 0  to generate a new updated 0 ' accord­
ing to equation 3.6

0 ' =  argm ax P  |0^  (3.6)

The optimisation process is described below where K  Gaussians are fitted to the data  x^, 
where n =  1 , . . . ,  Â .

1. Initialisation: Randomly choose K  points as the centroids of the Gaussians from the 
data set. The weights on each Gaussian, or mixing coefficients, Wk, are initialised as 
vjk = \ / K .  Variances are initialised to be one with zero covariance.

2. Update: E-Step: Compute the probability given in equation 3.7. This is known as the 
mixture ‘responsibility’, so named as it effectively measures how responsible the 
mixture is for generating the data

p (c .|x „ ) =  (3.7)
^  ^P{Xn\Ck)p{Ck) ^n=l

3. Update: M-Step: New parameters are estimated using the update equations below 
based on the mixture responsibilities from the E-step and the data.

a

Rfc =
-  Afc)(̂ n -  (3-8)

1

4. Termination: The algorithm converges if the change in an error function (given by the 
ratio of hkelihoods from the current iteration and previous iteration in equation 3.9) is 
less than a specified tolerance.

AW =  - l n ^ ^ ^ ^  (3.9)

'’The param eter update  equations are derived by introducing an auxiliary function Q ( 0 ,0 ')  which is the 
expected value of the complete d a ta  log-likelihood function. This is described a t length in Bilmes [13].
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W here,
N

=  J 2 p i ^ n \C k ) p { C k )  (3.10)

If <  tol term inate, otherw ise go to  step 2.

Having established a param etric  model for the colour d istribution  (0  =  Rfc}))
the likelihood of each pixel, is com puted and sum m ed over all m ixtures K .

p (x „ |0 )  =  ^  (3.11)
k e K

Tests were carried ou t on two examples of indoor sports (snooker and badm inton) and 
two outdoor sports (tennis and cricket).

I n d o o r  s p o r ts

T he a*b* chrom aticity space results in a good segm entation of the snooker table. Three 
regions, of approxim ately 200 x 200 pixels, from the three source footages Hsted in section 3.2 
are used to  train  the snooker model. F igure 3.7 shows a contour plot of the 2D a*b* histogram  
w ith an overlay of the  m odelling Gaussians for snooker and badm inton footage.
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F ig u re  3.7: Indoor models: L eft to right. The a*b* distribution for snooker footage approx­

im ated using a 4 m ixture  GMM; The a*b* distribution for badm inton footage approximated  
using a 2 m ixture GMM.

O u td o o r  s p o r ts

As with the indoor footage, th ree regions of approxim ately 200 x 200 pixels are chosen m an­
ually from the source footage to  model the dom inant colour of the playing area. The scatter
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F ig u re  3.8: Binary maps o f snooker and badminton generated using the ab colour model.

plot of the tennis footage exhibits three distinct clusters, while two clusters are evident in the 
cricket footage (figure 3.9). The regions chosen manually to model the tennis playing area 
colour were selected to include worn regions of the court resulting in the second peak in the 
distribution Three regions of the crease were also chosen from cricket footage. Figure 3.9 
shows the 3D L*a*b* scatter plot with an overlay of the three modelling Gaussians for tennis 
and the two Gaussians required to model the colour distribution of the crease for the cricket 
footage.

Distinguishing between the termis court playing surfaces and thereby choosing the correct 
model type for segmentation can be done by analysing the (r, g) chrominance content of the 
full court view. As a clay court contains higher red values than grass it is reasonable to say 
that if equation 3.12 is true, the clay court model should be chosen.

   >   ------------ (3.12)
N M  N M

Where M, N  are the number of rows and columns in the image. The opposite is the case 
then for the grass model. An illustration of the segmentation achieved using the GMM is 
shown in figure 3.10.

3.2.4 Choice o f segm entation m ethod

In summary, three segmentation approaches were considered, direct thresholding, adaptive 
thresholding and colour distribution modelling with the aim of segmenting the delineating 
playing surface in snooker and tennis. Direct thresholding was chosen for snooker segmenta-

®It was necessary to model the worn regions, as grass tennis courts tend to become degraded following 
considerable play.
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as

b

F ig u re  3.9: Outdoor models. Clockwise from top left: The L*a*b* plot for grass court 
tennis footage approximated using a 3 mixture GMM; The L*a*b* plot for cricket footage 
approximated using a 2 mixture GMM; The L*a*b* plot for clay court termis footage ap­
proximated using a 2 m ixture GMM; The data sets for all three footage sources have been 
subsampled for viewing purposes.

tion and adaptive thresholding for tennis. The reasons for which are given below.

S nooker

Playing conditions in snooker tend to be stable since the game is played indoors, without 
any natural light and on a surface which does not vary from competition to competition. 
Furthermore, the lights are set up so as not to cast shadows on the playing surface. This 
means that a direct thresholding approach is sensible for segmenting the snooker playing 
surface from all footages. Of the other two segmentation methods, adaptive thresholding 
cannot be guaranteed to work on all snooker footage sources since it is assumed that the table 
accounts for the majority of the view, which it sometimes does not, while the computational
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Figure 3.10: Binary maps o f grass court tennis (top - the negative is shown here), cricket 
(middle), and clay court tennis (bottom) footage generated using the L*a*b* colour model.

burden of the GMM is excessive.

Tennis

It is clear from figures 3.3, 3.6 and 3.10 that the GMM and adaptive thresholding offer the 
most reliable segmentation. While direct thresholding does work well for some sources, the 
variations in lighting conditions limit its effectiveness. Once again the GMM is not chosen 
due to its excessive computation, so the adaptive threshold is used.

3.3 P laying area d etection  and inference o f geom etry

In the subsequent sections, the results from the segmentation are drawn upon to infer the 
geometry of the playing areas for tennis and snooker. The Hough transform and the related 
Radon transform [36] have been used for detecting objects that can be specified by some 
parametric form (circles, lines, ellipse). The discrete form of the Radon transform, the 
M ojette transform [35], has also been used for object finding purposes. These transforms 
have been exploited in a number of applications including medical imaging [51, 127] and 
cartography [149]. They work by mapping hnes in image space to points in Radon or Hough
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space by re-param etrisation. A brief review of the Radon transform  is given in A ppendix D.
To our best knowledge, the work presented in this thesis is the first to  exploit the Radon 

transform  for detection of delineating field lines in broadcast sports footage [39]. Both the 
Radon transform  and Hough transform  have found considerable success in the sports do­
main [69,77,99] since, due to  their robustness against occlusion and relative simplicity. The 
techniques involved in retrieving the relevant lines and salient points on tennis and snooker 
playing surfaces are discussed in the subsequent sections.

3.3 .1  G e o m e tr y  o f  a  sn ook er  ta b le

An edge m ap of the binary image generated by the  segm entation in section 3.2 is created 
using a Sobel Edge detector [71]. A R adon transform  is perform ed on the edge image using 
polar line param eters {p,d).  Figure 3.11 shows examples of the Radon transform  from the 
segmented snooker table.

From analysis of the footage (and as can be seen in figures 3.11), the orientation of the 
table in the global view dictates th a t straight lines should be found a t angles in the range 
[3 ° , . . . ,  25°], [8 9 ° ,.. . ,  90°], and [1 5 5 ° ,...,  177°]. C om putational complexity of the Radon 
transform  is substantially  reduced by making use of this prior information. Figure 3.11 
shows the arrangem ent of the peaks in R adon space for a full table view. So for a full table 
view the following p a tte rn  is observed:

• One peak in the range 9 G [3 ° , . . . ,  25°] representing the line a t the right hand side of 
the table.

• Two peaks in the range 9 G [8 9 ° ,... ,91°] representing the two horizontal lines a t the 
top (p >  0) and bottom  {p < 0) of the table.

• One peak in the range 9 G [1 5 5 ° ,...,  177°] representing the line at the left hand side of 
the table.

If peaks in Radon space are found in this configuration a table is deemed to  have been found.
By finding the intersection points of the retrieved lines from R adon space, the corner 

pockets can be recovered using equation 3.13, where the equation of a line in polar form is 
p = X  cos9 +  y  sin0. All relevant global view clips can be ex tracted  using th is process.

X cos 6i sin 9\
-1

Pi

y cos 02 sin 02 P2

Knowing th a t the diagonals of a trapezoid intersect a t its centre enables the coloured ball- 
spot positions to  be recovered. All spots along the centre line of the table can be related  to 
the appropriate subdivision of the table using this process. For example, finding the intersect 
of the two m ain diagonals (top left pocket to  bo ttom  right and top right pocket to bottom  
left) allows the blue spot to  be recovered, subdividing again from the middle pockets to
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the bottom  corners of the table, in the same fashion, allows the pink spot to be recovered, 
etc. Furthermore, from the known physical geometry of the table, the yellow and green spots 
(which are to the 14.5 cm to the left and right of the brown ball) can also be recovered. Results 
from the table, pocket and spot finding procedure are illustrated in figure 3.11. Figure 3.12 
illustrates non-global views correctly rejected using the playing area detection algorithm.

Figure 3.11: Inference o f the table geometry for 3 footage sources. Left column: Table edge 
images; Middle column: Radon Transform o f the global view; Right column: Table geometry, 
spots and pockets recovered.

Experiments for the table finding algorithm were conducted on three sequence. The 
accuracy of the algorithm is given in terms of precision and recall defined in equation 3.14 
where the classification of the retrieved view is given in table 3.4.

A A
Recall =  —---- — Precision = —-— (3-14)

A + C  A + B
Here, correct views are considered to be those showing the full table and incorrect views

are of any other type. Results of the classification showing 100% retrieval for all snooker
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Figure 3.12: Correctly rejected camera views from the snooker footage. The Radon spaces 
in the second and third images are sparse because no geometry is detected.

User evaluation
Relevant Not Relevant

R etrieved A: Correctly retrieved B-. Incorrectly retrieved
N ot retrieved C: Missed D: Correctly rejected

Table 3.4: Classification o f retrieved views.

footage sources are tabulated in table 3.5.

Footage Hunter Higgins Hendry
Precision 100% 100% 100%

Recall 100% 100% 100%

Table 3.5: Precision and recall results for table view classification.

3.3.2 G eom etry of a tennis court

Due to the dynamic nature of the game, tennis footage exhibits a great deal of horizontal 
translational camera motion as the camera pans to follow the main action on court. As a
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consequence of the panning, horizontal camera translation in image space results in a vertical 
translation of the projections in Radon space. This is due to the changes in the parameter 
p (the perpendicular distance from the centre of the image to a line) as the lines drift from 
their original position. This is shown in figure 3.13, which illustrates a simulated camera 
translation to the right over two frames and the affect on the Radon transform.

F ig u re  3.13: Illustrating the resulting Radon transform o f a simulated camera pan to the 
right. Top: Tennis court at frame t and its corresponding Radon transform; Bottom: Frame 
t + I and its corresponding Radon transform. The vertical displacement o f the transform o f 
the tram lines is clearly visible as the values for p change.

Furthermore, since the camera capturing the global view is fixed at the centre of the 
court, camera panning will cause a perceived rotation of the lines about the fixed location of 
the camera filming the action. In the case of translation to the left, the lines will appear to 
rotate clockwise, and counter clockwise for a translation to the right. Consequently, peaks in 
Radon space will drift horizontally (left or right depending on the rotation of the line) due to 
the varying line parameter 9. A simulated rotation of the tennis court, and its corresponding
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Radon transform is shown in figure 3.14. The perceived rotation of the court from some of 
the televised footage is well illustrated in figure 3.15.

10 15 20 25 30 35 40 4590935 140 145 ISO 155 160 165 170 175

25 30 35 40 4590 535 140 145 150 155 160 165 170 175

F ig u re  3.14: Illustrating the resulting Radon transform o f a simulated rotation. Top: 
Tennis court at frame t and its corresponding Radon transform; Bottom: Frame i +  1 and its 
corresponding Radon transform. The horizontal displacement o f the tram lines can be seen 
as the values for 9 change.

The court can be retrieved without the need for compensating for camera motion. This 
is achieved by noting that the horizontal lines are always present in the global view as the 
camera will rarely pan sufficiently causing them to disappear. Furthermore, from analysis of 
broadcast footage, it was realised that at least 2 vertical tram  lines will also be in sight.

Significant peaks in the region d = [5°,... ,45°] and & = [135°,..., 175°] in Radon space, 
represent the two tram  hnes on either side of the court. This range of angles is sufficient to 
allow for the effects of camera panning in image space.

The peaks are located by thresholding the individual histograms of the specified 9 ranges 
in Radon space. The minimum of the top 0.25% of the histogram in the range 9 — [5 ° ,.. . ,  45°]
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F ig u re  3.15: Examples o f the perceived rotation o f the tennis court.

locates the vertical trams on the right hand side of the court, the minimum of the top 1% of 
the histogram in the range 6 = [85°,... ,95°] locates the horizontal lines and the minimum 
of the top 0.25% of the histogram in the range 6 = [135°,..., 175°] locates the left hand 
side tram  lines. A further condition that the threshold be greater than 50 is also imposed to 
detect the peaks. The percentages values used to arrive at the threshold value were derived 
empirically.

The structure of the lines, labelled with distances and angles, and the corresponding 
Radon transform is illustrated in the mock schematic of a court shown in figure 3.16. The 
difference in the 6 values between the ‘parallel’ tram  lines on either side of the court arise 
from the perspective distortion of the playing area.

4590.335 140 145 150 155 160 165 170 17515 20 25 30 35

F ig u re  3.16: Illustration o f the tennis court geometry. Left to right: A  schematic o f a tennis 
court with parameters (p, 0) for each line; The Radon transform o f the schematic.

Peaks spanning the range 9 = [85°,... ,95°] are deemed to be the horizontals, of which
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Vertical 9 =  [ 5 ° , . . . ,  45°] Horizontal 9 =  [ 85° , . . . ,  95°] Vertical 9 =  [ 135° , . . . ,  175°]

2 4 or 5 2

1 4 or 5 1

0 4 or 5 2

2 4 or 5 0

Table 3.6: Conditions on the presence of lines in order for a full table view to be flagged.

there are five. It was found empirically that a range of 0 ±  5° off the horizontal was sufficient 

to locate those horizontal lines and com pensate for their apparent rotation. Occasionally, 

the top of the net covers alm ost all of one of the lines, depending on the angle at which the 

camera capturing the global view  is perched. Either four or five peaks are sought for in this 

range. Two of the peaks are below the centre of the image (i.e.  have negative values of p) 

and two or three are above the centre of the image (i.e.  positive values of p).  The schem atic 

of the tennis court illustrated in figure 3.16 shows five horizontal lines.

If peaks are not found in the required order shown in table 3.6, or if the total number of 

peaks is less than 6 (sparse lines) or greater than 10 (spurious lines), then a view other than  

the tennis court is flagged. Supplem ental views can be further categorised using colour and 

shape features. This is outlined in section 3.3.4.

To elim inate objects which may not be lines, accum ulated points in Radon space less than  

25 pixels are suppressed. Line intersections are found in the sam e way as for snooker using 

equation 3.13.

In order to reconstruct the full shape of the court, tram lines which are out of view as a 

result o f camera translation are sim ulated by mirroring the existing peaks in Radon space. 

As discussed previously, horizontal camera translation is m anifest as a vertical displacem ent 

of the peaks in Radon space. In Radon space, the p values of the peaks (corresponding 

to the horizontal lines) behave asym m etrically about a centre point where the distances to  

corresponding tram lines are equal. Consequently, this enables the location of “hidden tram  

lines” (z.e.those which are out of view) to be approximated.

To sim ulate the hidden lines, their (p, 0) parameters must be derived from the existing  

tram line data. In order to achieve this, a frame is extracted from the footage where the 

difference in distances from the centre of the image of the two outer tram lines is less than  

10 pixels (from figure 3.16), where pi «  pg rs p* and P2 ~  P9 ~  P* respectively

This is referred to as the centre frame. By calculating the drift o f each peak in the 

relevant 9 range in the current frame from its location in Radon space in the centre frame,

®It is assumed that there is no vertical camera translation so a frame of this type gives the one location 
where this equality is valid.
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the perpendicular distance to the corresponding hidden tram  line can be approxim ated as:

= P o  +  (Po-Po^)  (3-15)

P f  =PI + {PI - Pf )  (3-16)

W here and p- are the distances to  the hidden outer and inner tram  lines respectively and 
Po  ̂ and pf^ are the distances to  the outer and inner visible tram  lines in the current fram e t.

Occasionally, if the cam era angle is tigh t or the  segm entation not good, the outside lines 
are not sufficiently long to  be detected using the Radon transform . Under such circum stances, 
the param eters of those lines have to  be inferred. This is sim ply done by calculating the 
distance between the inner lines in the  centre frame and those in the current frame and 
offsetting the  outer tram  lines in the centre frame by the  difference in distance.

W hen calculating the 9 param eters of the  hidden tram  lines, cam era induced line ro tation
m ust be accounted for. 6 values from the centre frame are used for approxim ating the
rotation. Using figure 3.16 as an example of the  centre frame, the values for 6i =  9% =  9*

and 92 =  9q =  9* are registered. In a  sim ilar fashion as estim ating the values for the p
param eters, 6 values for the right hand tram  lines are approxim ated using equations 3.18 and 
the left hand tram  lines are approxim ated using equations 3.20.

+  (3.17)

=  0* +  ( 6 1 * ( 3 . 1 8 )

9i^y =  m -  e ; +  (180 -  9* -  9i^ )̂ ( 3 .19)

=  180 -  9* +  (180 -  9* -  6»f') (3.20)

it) ' (f^y
The resulting angles 0- and 9o are those of the  corresponding tram  lines on the opposite 
side of the court, where i stands for inner and o outer. 9q and 9i are the angles of the lines 
in the current frame t. Changes in the angle of the  lines as a result of perspective distortion 
are negligible as the cam era pans to  the  o ther side of the  court, and are not considered in 
the approxim ation.

While sim ulation of lines outside the  range of the  cam era m ay not be useful for viewing 
purposes, it does allow reconstruction of the  rem ainder of the court. T he same assum ption as 
used for snooker, in th a t the diagonals of a trapezoid  always intersect a t its centre is employed 
to  find the centre line. Diagonals from the  corners of the outer tram  lines (be they sim ulated 
or real) intersect a t the centre of the court. By consecutive subdivision of the  court, the 
rem aining lines can be recovered.

Figure 3.17 shows fully reconstructed tennis courts in the global view. On the left, a 

court where only the left hand tram  lines and horizontal lines are viewable is shown. The 
middle image illustrates the global view of the tennis court where th e  inner left hand tram  
line along with bo th  right hand tram  lines is in view. Lastly, a centre frame is shown on



3.3. P laying area detection  and inference o f geom etry 60

the right. Figure 3.18 illustrates non-global views correctly rejected using the playing area 
detection algorithm. It is easy to reject these images because the Radon transform does not 
exhibit the required arrangement of peaks.

Figure 3.17: Fully reconstructed tennis courts in the global view. The interpolated lines 
are overlaid on the existing white lines and are shown in red.
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CO ESPUIITO SANTO — ^

Figure 3.18: Correctly rejected camera views from the tennis footage. The discontinuities 
on the abscissa are a result o f the range o f 6 used.
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Footage Pierce Hewitt Malisse Costa

Precision 100% 100% 100% N /A

Recall 100% 100% 99.95% N /A

Table 3.7: Precision and recall results for tennis court global view detection.

Experim ents were conducted on three tennis sequences played on a grass surface and one 
on a  clay court. T he lower recall from the Malisse footage is a result of poor segm entation, 
which in tu rn  can be considered to  be a consequence of the poor quality of the  captured 
footage. Over a duration  of 21 frames, the cam era pans very quickly, following the ball from 
a hard  shot. As a result of m otion blur the vertical tram  lines blend w ith the court surface 
reducing their brightness. The segm entation reveals only small p arts  of the white line and 
cannot be detected by the court finding algorithm . Results of the tennis court detection are 
given in table 3.7 in term s of precision and recall.

In an a ttem p t to  classify the footage into its further constituent shots, it was parsed 
according to  the statistica l mom ents of local colour and geom etrical based features. The 
problem s encountered in classifying the views in the Costa footage can be addressed using 
this m ethod. This is discussed in section 3.3.4.

3 .3 .3  R a d o n  M o m en t

Sports such as teimis, snooker, badm inton, and cricket all occur w ithin predefined playing 
limits and are therefore well defined in term s of their geometry. Most of the video footage 
from these events contains well delineated field lines in the views which contain the most 
inform ation about the play - for example, the court lines in termis, and the edge of the table 
in snooker. It is sensible then th a t the video should be parsed according to  the geom etry of 
the cam era view.

Previous work has considered the use of 3D scene geom etry [141] to  generate a correspon­
dence between certain  image features and real court markings. This inform ation could be 
used also for identifying the cam era view, hence allowing the  video to  be parsed. This can be 
a complicated exercise, and in fact a much simpler idea yields the same inform ation. W hat 
is of interest is the relative geom etry of the lines w ithin each image; it is not im portant to 
know how th a t geom etry relates to  the  real world, only how it relates to  o ther geometries, 
from other views, in the footage.

Summ arising the geom etry of th a t edge inform ation in view will yield a useful feature for 
parsing. The R adon transform  of an image containing edge inform ation yields concentrated 
peaks representing significant straight lines and since shapes of the  playing areas for the 
sports listed are quite distinctive, different views of the playing areas exhibit very dissimilar
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arrangem ents of peaks in Radon space. The nature of this Radon surface will therefore follow 
changes in the edge information. Summarising the Radon transform  should therefore yield an 
appropriate feature, and it is proposed to  use the p +  q th  order geometric mom ent [138,139] 
as follows:

OO OO

(3-21)
i = —oo j = —oo

W here i , j  are the pixel co-ordinates, p +  q is the m om ent order and x d / c  are the co­
ordinates of the origin in Radon space, a single feature describing the  frame can be obtained.

Snooker

The different geometries of the snooker table shown from the various cam era angles used in 
common televised footage is reflected in Radon space by exhibiting very distinct transform s. 
For example, the Radon space of the full table view reveals four distinct peaks representing 
the edges of the table, while the projection of the table from a different cam era angle in Radon 
space shows a num ber of peaks in the incorrect order (figure 3.12). W hile all broadcasters 
will have preferences about the location of the cameras around the table, the full table view 
is the most commonly used and can be considered to be of greatest im portance as it bears 
the most useful information.

Figure 3.19 shows the 8th  order Radon mom ent for all the snooker footage. The various 
plateau level are shown in different colours to  highlight the view type. The 8th order moment 
was chosen emperically, because it gave the best seperation in feature space.

Tennis

In section 3.3.2, for all footage sources, the court lines were found to  lie a t angles in the 
range 6 =  [ 5 ° , . . . ,  45°, 8 5 ° , . . . ,  95°, 1 3 5 ° ,. . . ,  175°]. T he distances to  the visible lines always 
remains in the range p =  [—4 6 3 ,.. .  ,463], however, the lines which are not in the view can 
occupy the ranges p =  [—1 3 8 9 ,.. .,  —464] and p =  [4 6 4 ,.. .,  1389] since the position of the 
tennis court hnes change relative to the centre of the  image

Classifying the different views using this m ethod proves more difficult th an  for the snooker 
footage since the global view is subject to  translational global motion. As the cam era pans, 
bo th  the m agnitude of the lines and their positions in R adon space change. T he inconsis­
tencies in the R adon moment plots for the tennis footage reflect th is and are illustrated  in 
figure 3.20.

^These values of p  assume that the resolution of the images are 720 x 576.
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F ig u re  3.19: 8th order Radon moment for Higgins (top), Hendry (middle) and Hunter 
(bottom). The green value corresponds to the global view, magenta is a different view o f the 
table, black is a close up o f the player, red is the commentator or crowd, blue is a close up o f 
the table and yellow is a gradual shot transition.

3.3 .4  S ta tistica l colour and geom etrica l m om ents

As discussed in section 3.3.3, the playing areas of both tennis and snooker are well-defined by 
their geometrical features. Each of the views associated with the different cameras also exhibit 
differing colour content. Local colour based measures are therefore considered as further 
indicators to the particular view content [33]. A 3-tuple containing the chrominance and 
intensity information is defined in equation 3.22 and is a succinct representation of the frame. 
The red {R) and green (G) colour spaces are normalised by the intensity (equation 3.22) 
component of the image resulting in the rg chrominance space [122].

f  ^=7  \
^ c o lo u r  ^  (3  2 2 )

V I  = R + G + B  j

Further shape features are also considered for classifying the different camera views. These 
features are not restricted by introducing thresholding constraints and use all the information
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F ig u re  3.20: 8th order Radon moment for Hewitt (top), Pierce (middle) and Malisse (bot­
tom). The green values corresponds to the global view, magenta is a different view o f the 
court, black is a close up o f the player, red is the commentator or crowd, blue is a close up 
o f the court and yellow is a gradual shot transition.

in the image. The first parameter, 0, is the angle of a local edge. The second parameter, a, is 
an alignment measurement. 0 is related to a  in that if two points belong to the same straight 
contour, they will have similar values. The third parameter, N , is the norm of the spatial 
gradient computed on the intensity component. The 3-tuple containing the shape information 
is given in equation 3.23. The gradients of the intensity images, [lx,Iy] are computed using 
a Deriche operator [30] where the subscript is the gradient direction. A schematic of how the 
parameters are calculated is shown in figure 3.22. Figure 3.21 illustrates the shape measures 
using the global views in tennis and snooker footage.

/  a  =

m shape

X N y'-i \
= arctan ■ (3.23)

By considering the statistical moments of the measures the representation of the features 
can be reduced to a single value for each image. The extracted features are of very low



3.3. P la y in g  a re a  d e te c tio n  a n d  in ference  o f g e o m e try 66

Global view 6 a  |7V|

F ig u re  3.21: Shape features for snooker and tennis footage.

F ig u re  3.22: Illustration o f the geometrical features, 6, a  and |Â | for a straight line.

computational complexity. The first order moments, which correspond to the mean values of 
the features are computed on each frame according to equations 3.24 where x is the spatial 
location of the local measure and t is the frame number. For moment orders i + j  + k — 1:

(3.24)

Higher order statistical moments are calculated by centring the features on their first
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order moment value as shown in equation 3.25. So, for moment orders where i+  j  -\- k > 1:

(3.25)
Figures 3.23 and 3.24 show the evolution of the shape and colour moments for the footage 

Hendry. It can be seen that the features occupy different levels for the various view types.
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F ig u re  3.23: Evolution o f the mean o f r and g for the footage Hendry. The green plot is 
that o f the full table, red is the crowd/commentator, blue is a close-up o f the table and black 
is a close up o f the player.

Scatter plots of the statistical moments (figure 3.25) show good separation for the different 
classes of camera view. As can be seen from the plots, the frames of interest exhibit relatively 
homogeneous moment values. The stochastic nature of the feature will be modelled using a 
hidden Markov model which will enable the various shots to be classified as a particular view 
type. This will be presented in chapter 6.
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Figure 3.24: Plots o f the second order moments o f the statistical shape features for Hendry. 
From top to bottom: a, 6, N. The colours correspond to those camera views given in fig­
ure 3.23.

3.4 Tem poral boundary detection

The tem poral unit most commonly used for video analysis is the shot. It is typically punc­
tuated  by gradual or sharp transitions or event specific wipes. Sharp transitions are the 
most easily detected. Their position in the video stream can be located by exploiting the 
correlation between consecutive frames in terms of their colour, luminance or other local 
features.

Gradual transitions such as fades and dissolves are more difficult to detect. They result 
from intensity scaling of frames in a shot. Dissolves are a mixture of two fades where the 
intensity of one shot is scaled up and the other is reduced. Consequently, the two shots are 
both spatially and temporally intermingled. Wipes are an editing effect which are broadcaster 
or event specific. However, they all exhibit the same property in tha t one shot is gradually 
spatially replaced by another. As wipes and m attes are used less frequently than the other 
transitions mentioned [14], only shot cuts and dissolves are sought for. For the sports footage 
used in this thesis, shot transitions are detected using:
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F igu re 3.25: Plot of the statistical m oment features: Top: P lot of chrominance information 
(r,g) for snooker (left) and tennis (right). The green clusters in each o f the plots correspond 
to the global views in each o f the sports; Bottom : P lots of the shape features Moo2 V'sMioi 
for tennis (left) and snooker (right).

1. Shot cut detection

2. Global/Non-global view transition detection

3. Dissolve detection

S h ot cu t d e te c tio n

Initial shot cuts are detected using the well known sum of absolute luminance histogram dif­
ferences. Since histograms contain no information related to the spatial arrangement of pixels 
in the image, each frame is split into 5 segments. If the sum of luminance histograms differ­
ences for each local histogram exceeds a specific threshold, a shot cut is inferred. Figure 3.26 
illustrates the arrangement of the local quadrants.

The sum of absolute luminance histogram differences between histograms Ht{j )  and
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F ig u re  3.26: Quadrants for computing histograms over the image. The quadrants bound­
aries are shown in red.

of m bins are computed for each quadrant, Q = ( 1 . . .  5).

m

d = y 2 \ H t U ) - H t - i { j ) \  (3.26)
j = i

If d exceeds a threshold, for all quadrants, a shot cut is deemed to have occurred. 
An adaptive threshold based on the statistics of a window of 20 previous histogram difference 
values is used to set the thresholds for each quadrant. The mean, and standard deviation 

are computed and the threshold is set as (3 is set to 5.

G lo b a l/N o n -g lo b a l view  tra n s i t io n

Parsing sports footage according to the global or non-global view type is akin to detecting 
high-level shot cuts. This is because the geometry not only allows the shot cut to be identified 
but also the camera view and hence the importance of tha t shot for summary purposes. This 
immediately allows for exploitation of the context of these kinds of view type and could 
conceivably be a more powerful approach than  the generic use of histogram based shot cut 
detection. For instance, in both tennis and snooker, shots of the crowd and of the players can 
be considered less im portant than shots containing game events which occur in the global 
view, so can be summarised simplistically, or discarded entirely. These high-level shot cuts 
can be inferred by searching the first frames of each of the detected shot cuts for the required 
geometry exhibited by a tennis court or a snooker table.

D isso lve d e te c tio n

In order to detect dissolve transitions, a variation of the twin thresholding method outlined 
in Zhang et al [169] was implemented. It differs to [169] by dividing the image into the same 
quadrants used for the shot cut detection (figure 3.26). The method sets two thresholds based 
on the statistics of previous frames in the shot. The first threshold, is set to a higher
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value which detects shot cuts, while the second threshold, of lower value initialises the 
dissolve detection.

If the lower bound is exceeded in more than  three of the five segments, the difference 
between the low threshold and sums of absolute luminance histogram differences for each 
subsequent frame, are accumulated. If this cumulative sum is greater than the higher thresh­
old and the current histogram difference is less than the low threshold in more than three of 
the five segments, a dissolve is inferred.

Figure 3.27 shows a plot of the histogram differences (blue) and cumulative histogram 
differences (red) for the middle quadrant in H iggins. The relevant dissolve frames from the 
footage are shown above the plot.

2  -

1.5 -

0,5  -  . . .

50  60  70  80  90  100  110
Frames

F ig u re  3.27: Dissolve detection. Histogram differences are shown in blue and the cumulative 
difference is shown in red. The dissolve is detected between frame 88 and 99. The low 
threshold is a dashed green line and the high threshold is solid green. The images shown are 
from frame 88 and every second one to frame 100.

3.5 Sum m ary

This chapter introduced the first two steps in the proposed framework for sports video anal­
ysis. Feature extraction involved segmenting the playing surface and locating the delineating 
playing area. This was used to locate ‘high-level shot cuts’ in the footage. These types of 
shot cut detect the camera view as being global or non-global and hence understand the 
importance of tha t shot for summary purposes. The sequences of non-global views were tem-
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porally segmented further into their constituent shots using conventional temporal boundary 
detection techniques.

A new feature which summarises the geometrical content of a scene without the need to 
calculate complex 3D geometries was presented. Additional colour and shape features which 
exploit the shape and colour content of each view were extracted from the footage which will 
be used to help classify the different view types.



4
Object Tracking ^

There has been a long history in the research of object tracking [17]. It has proved to be 
useful in surveillance applications (both in tracking of hurnans [90] and road traffic [83]), 
teleconferencing [154] and human-computer smart interaction [80]. Tracking can be difficult 
in the presence of clutter and generally relies on certain operator imposed constraints.

The ability to track objects in an image sequence is useful where the motion of an object, 
or several objects is important, and conveys useful information. This is particularly the case 
in sports where the motion of an object can embody the description of high-level events. 
In snooker, explicit tracking of the white ball from frame to frame can provide useful clues 
relating to the game semantics. For example, if the cue ball is struck, travels down the table, 
hits a coloured ball that is not potted and returns back to the baulk area, a conservative 
shot can be inferred. Similarly, if the white ball remains in the centre portion of the playing 
area, the player is deemed to be break building. Tracking a player around a court can allow 
certain types of plays to be recognised in tennis footage. A player moving from the base line 
to the net could mean that he is attem pting a “serve-and-volley”

From the literature the tracking of objects can be divided into two classes:

1. Matching techniques: Matching techniques for tracking rely on segmenting the im­
age into various components based on colour, motion and texture. The candidates are 
then matched to a specific template. Basic template matching techniques have been

^Results from this chapter have been pubhshed as “Semantic event detection in sports through motion 
understanding” by N. Rea, R. Dahyot, and A. Kokaram in the Proceedings of the 3rd International Conference 
on Image and Video Retrieval.
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used such as minimising the sum of absolute differences between the intensities of the 
candidates and targe t pixel areas [42]. A mean-shift m atching m ethod which deter- 
ministically searches for regions similar to  a reference RGB histogram  model has also 
been im plemented allowing control over characters in first person perspective video 
games [21],

2. Probabilistic tracking: The general idea of probabihstic tracking {e.g. particle fil­
ters (PF), unscented Kalm an filter (UK F), m ultiple hypothesis tracking (M HT)) is to  
evaluate several hypotheses and weight candidate models according to  their sim ilar­
ity to  a target model. The K alm an filter [156] is one such trad itional probabiHstic 
tracking m ethod. It works by estim ating a  process s ta te  and updating  the  sta te  w ith 
observations related to  the s ta te  space. It is Hmited however, by its inability to handle 
non-linear s ta te  transitions and non-Gaussian process and observation noise.

Successful a ttem pts of probabilistic object tracking in video have been im plemented in 
a num ber of papers, using either edge/shape features [70], colour d istributions [107,117] 
or a fusion of a num ber of features [118]. Particle filtering has proved to be a successful 
m ethod of tracking objects in clu tter [70,108] bu t can be used in m ost applications where 
the state  of a system  needs to  be calculated as noisy observations become available .

In this chapter, probabilistic based approaches to  tracking will be reviewed and the m eth­
ods involved in particle filtering will be discussed. The im plem entation of a tracker based on 
the CONDENSATION algorithm  will be presented and assessed using geom etrical measures. 
For the applications considered in this thesis, improvements have been able to  be made to 
the tracker. These include the use of:

a) Likelihood ratios based on the colour d istribution of the object to  be tracked and th a t of 
the playing area.

b) The use of Parzen windows for the estim ation of the pdf of small objects.

c) Using a-priori inform ation from the  geometry of the scene to  scale the size of the targe t 
and candidate regions.

The results from the tracker will then  be com pared to  those generated by a gradient based 
m otion estim ator.

4.1 Probabilistic tracking

The main objective in probabilistic tracking is the  com putation of a current hidden state , 
qt, given current, Xt ,  and previous observations, X t~ \  If the  system  is M arkovian, the

^In the implementation of this object tracker, the states, qt, are taken as the location of the ball at any 
time and the observations, X t  are the histograms of the samples in HSV (Hue, Saturation, Value) space.
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evolution dynam ics of the states can be defined using the function:

qt = ■ ■ ,q t -r ,a t )  (4.1)

where describes the s ta te  transition  model, r  is the M arkovian order and at, the process 
noise. Noisy observations X t  arise from each s ta te  described by a  function Q where bt is the 

noise.
X t ^ G i q u b t )  (4.2)

Under the Bayesian sequential framework, a posterior, p{qt\Xi,„t),  ta n  be approxim ated 
using a two step recursive process of prediction and updating. T he goal then  of tracking is 
to  estim ate a sta te , qt from the posterior which is sufficiently close to  the true  sta te  qt.

The two step Bayesian filtering approxim ation is listed below.

1. P red ic tio n : In the first step, the prior for the next tim e step  t +  1, p{qt+\\X\_,_t), 
is com puted by propagating the posterior from the currcnt tim e step t according to  a 

transition  density p{qt+i\qt) (or the T{ . )  function in equation 4.1).

p (9 tfi|A 'i...t) =  J  piqt+i\qi)p{qt\X-i...t)dqt (4.3)

2. U p d a te : U pdating the posterior prediction is achieved by direct application of Bayes
theorem , upon receiving a new observation Xt+i  is given by the solution.

p{qt+i\Xi...t+i) cc p{Xt+i\qt+i)piqt+i\Xi.. .t) (4.4)

T he likelihood used to estim ate the posterior is the function Q{.) given by equation 4.2.

Recursion of the two steps is however not generally possible. This is because, for a given 
s ta te  qt, the observation likelihood model, G{.), often produces observations which are non­
linear and non-Gaussian as a result of non-Gaussian noise, at- Furtherm ore, non-linear/non- 
Gaussian s ta te  transitions often occur in practice affecting the  transition  function !F{.). The 
Bayesian solution to  the posterior u pdate  also involves high dim ensional integrals [43] whose 
solutions are generally analytically intractable.

This has m otivated the foundation of approxim ations to  the  posterior, one of which is the 
particle filter (PF).

4.2 Particle F iltering

The main aim of particle filtering is to approxim ate a density using a discrete set of particles 
(or samples), random ly selected from sta te  space. These particles have associated
weights, based on a likelihood model. T he approxim ated posterior can therefore be

thought of as a random ly sam pled weighted approxim ation of the tru e  posterior, p{qt\X\„,t)-
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The recursion equations from the previous section can be solved using Sequential Monte 
Carlo methods, a toolkit which is described at length in Doucet et al [44] and MacKay 
et al [96]. Under this framework, the previously intractable posterior, p{qt\^i...t), can be 
represented by a discrete set of N  weighted samples. The discrete set of samples allows 
the integrals to be replaced by discrete summations. A derivation of the process is given in 
appendix C.

The sample set where wt are the weights of each particle, are initially
distributed according to a proposal function u{qt\Xi,„t)- The proposal distribution is required 
as it is sometimes hard to sample from the true posterior. A mechanism to sequentially update 
the weights is given in equation 4.5 which is proved fully in Doucet et al [44].

P i X t + i \ q t + i ) p { q t + i \ q t )  
w t + i  =  W t— .  ̂ t; r

If the proposal distribution in the sequential update of the weights is chosen to equal the 
prior (the transition probability of going from a state at time t to that at time f + 1 ), the new 
weight of each sample is directly related to the corresponding observation likelihood. This is 
also known as a bootstrap filter [43]. While not being the optimal proposal distribution, it is 
sufficient for low-dimensional spaces such as the colour likelihood model which is used here 
(see section 4.3 for specification of the likelihood function). The bootstrap approximation is 
therefore:

wt+i = Wt p{Xt+i\qt+i) (4.6)

Although this update is easy to implement, it is possible that the majority of weights 
will eventually group around a local maximum. This is known as degeneracy. When this 
happens, it becomes difficult to approximate the posterior fully.

Sequential resampling of the weights is used to help avoid particle degeneracy {i.e. by 
retaining and multiplying samples of high likehhood and rejecting those with low likelihood), 
and is achieved by using what is commonly known as roulette wheel selection.

Roulette wheel selection entails mapping the approximation of the posterior 
into an equally distributed measure {q l ' ^ \ l /N }  by generating a random number r £ [0,1] 
and selecting the smallest sample n such that cumulative sum of samples up to n is less than 
r.

The entire process can be described by the following steps and in figure 4.1.

1. Prediction: Perturb the particles according to a deterministic drift and an individual 
zero mean stochastic component. In the case of snooker ball tracking the drift is a 
second order AR motion model with a stochastic component e ~  A/^(0,cr). Tennis uses 
the stochastic component alone. This will be discussed in section 4.3.

2. M easu rem en t/U p d ate: Calculate the likelihoods of the samples and calculate the 
new weights according to equation 4.5.



4.3. G eneric im plem entation  of the tracker 77

3. S am ple/R esam ple: Select N  samples based on their weights according to r  G [0,1]. 
This will select multiple samples with high probabilities. The samples are initiahsed 
with equal weights.

O O

Measure

p ( q , \ X ,  J

r e  [0,1]Resampling

Drift

Diffuse

; ; 5,,^] Measure

o ^  ~ Pig,

Figure 4.1: Particle filtering for one iteration from time t to t  + \.

4.3 Generic im plem entation of the tracker

Edge based image features have been traditionally used for contour tracking under a particle 
filter framework [70,90]. In snooker however, the edges of the balls are not always clearly 
defined. For example, if two balls of similar colour are beside each other it may be difficult 
to distinguish the two individual balls by shape alone. Furthermore, motion blur causes the 
perceived ball shape to become elongated. This motion blur occurs instantaneously when a 
ball is hit from its initial resting state.

With regard to the termis footage, creation of a tennis player edge model could also prove 
to be extremely difficult. Thus far, tracking of edges has been limited to models of head and 
shoulders of humans and objects of relatively simple geometry such as leaves and cars [70]. 
Players on the tennis court move about vigorously as they attem pt to hit the ball while also



4 .3 . G en eric  im p lem en ta tio n  o f  th e  tracker 78

deforming due to motion blur. In the case of both tennis and snooker, the quality of the 
captured footage also contributes to the difficulty in using edges to track the objects. A 
colour based approach is therefore adopted for object tracking in both snooker and tennis 
footage.

H S V  (Hue, Saturation, Value) space colour histograms are used to approximate the 
colour distribution of the objects and create a target and candidate models for computing 
the particle likelihoods. H S V  space is used because it allows separate histogram comparisons 
by decorrelating the brightness and chrominance components.

Histograms offer the properties of being scale and rotationally invariant and robust to 
partial occlusion. While rotation invariance is not an issue for tracking in this application, 
the first and last properties of colour histograms are particularly useful for tracking snooker 
balls and tennis players. Furthermore, it is trivial to impose a weighting function thereby 
giving more importance to pixels in certain locations. The weighting function, z, used for 
snooker and tennis footage is given in sections 4.4.2 and 4.5.2. The target model is generated 
from an automatically selected object region from the first frame of the sequence in which 
the object is to be tracked, and is retained throughout the shot. It has been shown that this 
approach can achieve robust tracking even if there is deformation of the shape of the object 
being tracked [28,117].

As the objects in snooker and tennis move in the vertical plane of a camera view which 
enforces true perspective, they are subject to changes in scale due to perspective distortion. 
Candidate regions must therefore be scaled appropriately to ensure that the presence of 
background pixels in the colour distribution is minimised. Knowing the physical dimensions 
of the playing surfaces (the dimensions of the snooker table along with a schematic of a 
tennis court in appendix B), an approximation of the physical size of the objects and their 
current co-ordinates along with the perceived length of the lines in the image (obtained from 
sections 3.3.2 and 3.3.1 for tennis and snooker respectively), the size of the object in pixels 
can be approximated by analysing the perspective distortion of the playing surface. The 
object sizes are scaled according to the proportional reduction in playing area width at the 
location of the object relative to the reduction in length of the top delineating line with 
respect to the bottom  line. Other tracking applications do not have this knowledge to hand 
and instead rely on HR filtering of the similarity between candidates and target models for 
a preset increase or decrease in region size [28].

4.3.1 Establishing the hkeUhood model

A HSV colour histogram of a circular region is used to construct the likelihood of the particle 
regions in snooker. A rectangular region is used for the tennis footage. The idea is that 
the likelihood should encourage the matching of regions with similar colour distributions. A 
Bhattacharyya distance measure [55] is used to calculate the similarity between candidate
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histograms, p, and the target, and is in turn  used to weight the sample set, =
The sample likelihoods are computed as

p{pt kt >0 = ^

Where,
m

j = i

where p is the candidate histogram, j  is the of m  histogram bins and ^ is the target or 
prototype model.

To further improve the tracking, prior knowledge of the playing surface can be incorpo­
rated into the weighting of the candidate regions. This has been used to good effect in face 
and object detection applications [12,78]. In these applications it was shown that a likelihood 
ratio between face models and non-face models can help reduce the number of false alarms. 
This principle is applied to particle filtering where a ratio of likelihoods of each candidate 
given the object model, and the likelihood of the candidate given a playing surface model, is 
calculated.

A colour model for the playing surface, k , {i.e. the snooker table and tennis court) can 
be trained by manually selecting regions of the surface from each footage source. This is 
done in a similar fashion to that used for estimating the colour pdf of the playing surface 
for segmentation using the Gaussian mixture model (GMM) in section 3.2.3. The likelihood 
of each candidate region having been generated by the playing surface model, k, can be 
computed using the same likelihood as equation 4.7 with ^ being replaced by k .

(n)A likelihood ratio, Xt > object to non-object regions can be calculated using equa­
tion 4.9.

( n )  ^  p { p i" ^ \q 'r\ 0  , 4  9 .

Tracking using likelihood ratios gives better tracking fidelity as it encourages tracking of 
the selected object and not regions with a large number of playing area pixels, forcing the 
particle to be more centred on the object to be tracked. This is particularly useful in the 
snooker footage. When the ball is hit with a great deal of force, it is perceived to have become 
elongate due to the slow frame rate of the camera. The colour distribution of the entire object 
changes with some regions appearing to be an amalgamation of some table pixels and some 
ball.

An illustration of this is shown in figure 4.2 where the white ball has been tracked over 
15 (top), 10 (middle) and 20 (bottom) consecutive frames respectively. As can be seen from 
the image on the top right, the track produced using the likelihood ratio is smoother, and a 
collision is detected. The middle row shows the white ball being hit, again with great force. 
The track produced using likelihood ratios is, once more, superior to that produced by the
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(a) O bject likelihood (b) O bject and background likelihood ratio

Figure 4.2: Comparison o f tracking: Tracking the white ball using the ball colour likelihood 
and the table and ball colour likelihood ratio. In cases where the ball is hit with a great deal 
o f force by the player (top and middle rows) the tracking produced using likelihood ratios is 
superior to that o f the likelihood based on ball colour alone.
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object model alone. T he tracks produced by both  m ethods in the figures on the  bottom  
row illustrate the com parison of trackers for a white ball th a t is moving relatively slowly. In 
th is case, bo th  m ethods produce equally good tracks as the ball colour is not significantly 
d istorted  as a result of m otion blur.

4.3.2 Establishing the proposal distribution

It has been established th a t the optim al proposal d istribu tion  is the posterior [43], bu t since 
the posterior is not generally available, a new proposal m ust be created from auxiliary fea­

tures. The objective of this d istribution  is to  relocate particles to  areas of high posterior 
probability by taking into account the previous s ta te  and current observations from an aux­
iliary source. In Perez et al [116], audio visual features are used to  estim ate prospective 
regions of high posterior probability. M otion and audio are used under separate conditions to  
sim ulate a proposal d istribution and s ta te  space particles are generated from these measure­
ments. These particles are passed to  a colour based particle filter which refines the search. 
For example, regions from the previous s ta te  which exhibit high m otion activity  are given a 
large weight, so particles which are resam pled for colour filtering should already be in good 
locations in sta te  space to  provide a reasonable approxim ation to  the posterior distribution. 
M otion is a particularly  helpful proposal when occlusion is present in the  sequence. Using the 
m otion as a proposal, the tracker can be reinitialised if the targe t is lost a t any stage. While 
partia l occlusion can be a problem  in snooker, th is can be dealt w ith using the technique 
outlined in section 4.4. Full occlusion is not generally problem atic in snooker or tennis as the 
objects are alm ost always in the frame If tracking is lost the object should ream m erge in, 
or close to, the position from which it left.

Audio can also be used as proposal. A stereo microphone array can be employed to  es­
tim ate  the horizontal regions in which a speaker might be located. T he particles generated 
from this proposal are then passed to  the colour filter which then refines the search [118]. 
Audio is only useful when the layout of a scene is known a-priori (such as for the  applica­
tion of tracking talking heads in video conferencing where audio features param eter can be 
configured).

For the tracking in this thesis, the boo tstrap  im plem entation of the particle filter is used. 
It specifies the proposal d istribution as the prior (or the transition  d istribu tion  p{Qt+i\Qt))- 
So the posterior takes the form:

p{qt+i\Xt+i) (X p { X t+ i \ q t+ \ ) p { q t+ i \q t )  (4.10)

As discussed, this prior is generally a weak m otion model w ith a stochastic com ponent 
which, by its nature , only makes use of previous s ta te  inform ation. The im plem entation 
of this particle filter employs a two step  iterative prior which updates the prior by recycling

®This may be useful in doubles tennis but this kind of footage is not considered in this thesis.
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particles with high weight. If the cum ulative likelihood of all the  particles exceeds a threshold 
the object is deemed to  have been found and the particles are pertu rbed  according to  a m otion 

model. T he process is outlined below

• Iteration  Prior
The prior used during the iterative process recycles relevant particles based on their 
individual weights. If the cum ulative Kkelihood of all particles is not sufficient to  assume 
a correct lock, particles w ith high likelihoods are kept and the rem aining particles are 
redistributed according to  a contracting-expanding algorithm . This process is iterated 
on each frame until a good estim ate to  the posterior is achieved.

As is typical for object tracking, it is necessary to  distinguish between correct tracking 
in the next frame and loss of ‘lock’. This can be detected by using a threshold on 
the sum of the particle likelihoods, Lr-  If the condition in equation 4.11 is fulfilled, a 
correct lock is assumed and the ball is deemed to have been found in frame t where Lt  

is the cum ulative sum of the  particle weights.

The minimum mean square error (MMSE) estim ate is taken as the current position of 
the object and is calculated using equation 4.12.

N

W here qt are the positions of the particles and the posterior is the weight on each one

If the cum ulative likelihood of the samples is less than  the threshold {Lt < L t ), the 
ball is deemed not to  have been found and a new prior is used for the next iteration. 
Particles with high likelihoods are kept, and those w ith low likelihoods (<  0.01) are 
pertu rbed  using an iterative expanding-contracting particle d istribution m ethod. The 
purpose of this is to  increase the range of the particle filter if the  original prior does 
not give a good lock [i.e. if the object has moved in a way such th a t it is out of scope 
of the tracker). This does not impinge on the validity of the P F  process since it is only 
a superficial m ethod of improving a lock using low-likelihood particles.

In each step, if the likelihood produced by a single particle is greater th an  th a t of the 
most likely individual particle in the retained set, the new particle (th a t of greatest 
likelihood) is used as a seed for the next search (assuming Lt  < L t ) and the expanding- 
contracting process is reset. The contracting expanding m ethod is outlined as follows

N

(4.11)
n = \

(4.12)
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1. C ontract: If Lt < from step  2, the relevant particles a t iteration z, are 
propagated according to  the prior. The zero m ean Gaussian w ith variance of 2 is 
chosen for a tight spread of particles.

P ( 9 ? k _ J = A T ( 0 ,2 ) ,  i > 0  (4.13)

2. Expand; If Lt < Lr  from step 1, d istribu te the relevant particles according to 
the m otion model (equation 4.16) w ith the stochastic component:

=  AA(0,(72) (4.14)

where =  4 bu t is increm ented by one on each successive iteration.

The M aximum a Posteriori (M AP) estim ate 4.15 is used as an approxim ation for the 
position of the object if the particle filter does not converge after 7 iterations.

p{qt\Xi...t) =  a rgm ax[x t” ]̂ (4.15)
l< n < N

An example of the particle distribution  is shown in figure 4.3 where the process of 
tracking the white ball from snooker footage from its initial stationary  position to  the 
first frame of its m otion is illustrated. T he colour bar shows the likelihood of each 
particle. The tracking is ra ther coarse as only five particle are used. This is simply for 
illustrative purposes T he process is initialised by giving each particle equal weight. 
T he weight on each particle is then measured according to  the likelihood given above 
(equation 4.9). A ppropriate particles are then  chosen by roulette wheel selection. These 
particles are then  pertu rbed  by the m otion model. Three stages of initial weighting 
(column 4.3(a)), likelihood calculation (column 4.3(b)) and rou lette wheel selection 
(column 4.3(c)) are shown in figure 4.3.

In figure 4.3, the top  row shows the first frame of the sequence (full resolution frame 
shown in figure 4.4 (left)). The second to  fourth rows shows the first to  th ird  iteration 
of finding the white ball in the second frame (full resolution frame shown in figure 4.4 
(middle)). A subsequent full resolution frame is shown in figure 4.4 (right). Iteration 
two of frame two shows the expanding of the search region and iteration  three is the 
contraction, finding the ball.

• Transition Prior
On each successful iteration of the tracker, the sta te  of particle is recorded and the 
particle set is dispersed. For snooker, assuming linear motion, this is taken to be a 
second order auto-regressive m otion model which places more em phasis on m otion from 

the previous frame th an  the frame before th a t {i.e. piqt+Alt-'-Qi) =  p (9 t+ ik t 59<-i))- 

‘‘For experim ents conducted in later sections, 100 particles are used.
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(a) In itial weighting (b) Likelihood calculation (c) R oulette wheel selection

F igu re 4.3: Tracking o f the white ball with 5 particles.
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Figure 4.4: Three full resolution frames from the video sequence used in figure 4.3.

Each sam ple is then pertu rbed  according to  the stochastic com ponent of the  m otion 
model as shown in equation 4.16.

q t + i  = q t  +  [ a  {qt  -  9 t-i)] +  [(1 -  a )  [ q t - \  -  q t - 2 ) \  +  e (4.16)

where a  =  0.7, and e ~  A/’(0, r) . The same process is used for bo th  horizontal and 
vertical directions.

Tracking the tennis player is a more difficult problem  th an  th a t of tracking the  snooker 
ball. Due to  the presence of global m otion and the pathological m otion undergone by 
the player, such m otion models used for the snooker ball tracker do not hold. This 
is the case for tennis footage where there is generally a large am ount of horizontal 
translational global motion. Assuming th a t the  player always tries to  be near the ball, 
a prior with ju st a stochastic com ponent is sufficient to  locate the player. In any case, 
the iterative prior helps refine the search for the object to  be tracked.

4.4 Tracking snooker balls

As was discussed in section 4.3, a targe t model of the  colour d istribu tion  of a snooker ball is 
created in the first frame of the clip from an initial location. A snooker clip is defined as the 
instance a t which the cue ball is first set in m otion until the tim e a t which it, and all other 
balls being tracked come to rest. Initialisation of the  colour model can be applied manually 
or by m eans of the m ethod described in section 4.4.1 for tracking the  w hite ball. Coloured 
balls which have been in collision with the white ball can also be tracked by analysing the 
velocity of the cue ball (section 5.2) and instan tia ting  a separate track for these balls.

4 .4 .1  L o ca lisa tio n  o f  th e  w h ite  b a ll

It is im portan t to  accurately m odel the colour d istribution of the w hite ball for correct 
tracking because the evolution of the  location of the white ball from frame to  fram e provides
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F ig u re  4.5: Binary maps. Left-to-right: {V{i , j )  — R{i , j ) )  < =  0; — S{i , j ) )  > 0;
{{V{i , j)  -  R( i , j ) )  < 0 V {V{i , j )  -  S { i J ) )  > 0).

high level information about the type of shot being played. A target colour distribution is 
established by locating the white ball at the start of each clip of the full table. Localisation 
of the white ball is accomplished using a combination of segmentation based on thresholding 
and detection of a bright moving region on the table by frame differencing.

The player must first be removed from view because moving white components attributed 
to his attire might interfere with correct detection of the white ball. A binary map of the 
player (figure 4.5), player{i , j ) ,  is created by thresholding the colour plane differences below 
(equation 4.17), where V  is the brightness from H S V  space, R  is the red and S  is the 
saturation components.

player{i , j )  = {{V{i , j)  -  R{i , j ) )  <  0 V {V{i , j )  -  S{i , j ) )  > 0); (4.17)

By applying this segmentation without consideration of the player’s location, a number 
of balls will also be inadvertently masked. The player is distinguished from ball objects on 
the table by finding the largest region that is connected to the edge of the table (recalling 
that the table edge has already been located using the methods outlined in chapter 3).

In order to remove the player from the view, the detected player region must be filled with 
some suitable table information. From the centre of the table, the gradient of the intensity 
of a region of size 30 x 30 pixels is calculated [Ix,Iy] (defined in section 3.3.4). If the sum of 
the gradient magnitude over the region is less than a specific threshold, r  =  30, a fiat area 
of the table is deemed to have been found (equation 4.18). Otherwise the region is shifted 
toward the top of the table, which is generally less densely populated by balls, until a flat 
region is found.

5UZ + ^  (4-18)
* j

False masking of coloured balls, either as a result of being too close to the tables edge or 
to the player, is not considered to be too costly as correct detection of the white ball is all 
that is required. Results of the player segmentation and masking are shown in figure 4.6.
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F ig u re  4.6: Player masking. Left to right: H unter, H iggins, H endry footage. In the 
H unter footage, the player’s cue is very close to the white ball. The algorithm considers it 
as being part o f the player region. The black region surrounding the table in each image was 
computed using the table finding technique outlined in section 3.3.1. This allows detection 
o f suitable regions that are connected to the table.

Frame differencing is used to uncover any motion tha t may have occurred between frames, 
indicating that the cue ball was struck by the player. A problem arises using this form of 
differencing. As the player walks around the table he may occlude balls as he passes. These 
balls will be masked in subsequent frames (depending on the speed of the player), as the 
player masking algorithm considers them as being a part of the player. The balls will then 
suddenly reappear as he continues around the table. This will manifest itself as impulsive 
motion in the frame differencing binary map. A further thresholding on the colour planes is 
therefore required to determine if the moving region is white.

For all ‘moving’ object detected by frame differencing, windows of 6r x 6r pixels (where r  is 
the radius of the ball) centred around the mean location of objects are selected. By applying 
a threshold to the non-masked frames (equation 4.19) on the intensity and saturation of these 
windows, a binary map corresponding to white objects can be found. If an object of size less 
than |7rr^ and greater than ^Trr^ is found, it is deemed to be the window containing the 
white ball, whiteball{i,j).

w hiteball(i,j) — [V{i , j )  > 160) A {S{i , j )  < 140) (4-19)

The white ball localisation algorithm iteratively back-tracks to find a frame where the 
magnitude of frame differences is lowest. This will be the frame in which the white ball is 
stationary. If the distance between the centre of gravity of the segmented white ball objects 
is less than 5 pixels, the stationary white ball is deemed to have been found. The target 
colour model must be computed while the white ball is stationary, as motion artefacts will 
corrupt the model histogram.

Experiments conducted on 30 shots from the footage sources where the white is hit by 
the player results in 100% correct localisation of the white ball.
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4.4.2 Tracking the balls

A H S V  space colour histogram, of a circular region specified by the relative size of the 
ball in relation to the table, is calculated. As a snooker table can be affected by luminance 
gradients due to non-uniform lighting conditions, the brightness component of the colour 
space was quantized to 16 bins. The colour histogram was represented using a concatenation 
of 3 separate 1-D histograms of (256+256+16) bins. Figure 4.7 shows the individual H, S 
and V histograms of the selected white ball region shown in black. The goal of the particle 
filter is to try and match the hypothesised model with the target model.

A collision between balls or a collision between a ball and the bottom  cushion of the table 
may temporarily block the ball being tracked from view. Therefore, partial occlusion of the 
ball must be addressed. These peripheral pixels are unreliable when attem pting to calculate 
the colour distribution of the object. Hence, a kernel with a monotonically decreasing profile 
from the centre of the object to its extrema assigns a lesser weight to those pixels. This is 
done in both the calculation of the colour distribution of the target and candidate models. 
It also proves useful for avoiding the incorporation of the colour properties of the table into 
the ball model. The weighting function is given in equation 4.20. For a ball with a radius of 
7 pixels, the corresponding pixel weighting is shown in figure 4.8 where r  =  ||xi — xd].

Depending on the angle of orientation of the camera in the global view and the amount 
of space taken up by the table, the ball object normally varies in size from 5 pixels to 7 
pixels in radius. This is typically not enough data to empirically yield a useful histogram.

The noise a, is computed over a region of 30 x 30 pixels within the bounds of the table, 
exhibiting sufficiently low gradient, in the same way as computing the texture for player 
masking (section 4.4.1). The Parzen window is not applied to the brightness component as 
it has been quantised to 16 bins. As a result of using such a coarse bin quantisation there 
should be sufficient data to yield a good representation of the colour distribution.

The colour space is represented by 'I' =  The effect of the Parzen window on
the hue and saturation components of the white ball are shown in figure 4.9. The colour 
distribution, p = of the object region, R,  is given as:

Where c is a normalising factor, Xc is the location of the centre of the ball, j  = [0...m —

max(||xj -  Xcll) (4.20)

The use of Parzen windows resolves the problem of sparse data  by spreading the distribution.

(4.21)

1] and where z is given in equation 4.20 and where 4>{x) is the Gaussian kernel given by 
equation 4.22.
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(a) Hue (b) Saturation (c) Value

Figure 4.7: Target histograms and candidate histograms o f the cue ball at frame k and 
frame k + 5. Top row: W hite ball at frame k (left) and k + 5 (right); Middle row: Target 
(blue) and the weighted candidate (red) histograms (H, S, V) o f the white ball in frame k; 
Bottom  row: Target (blue) and the weighted candidate (red) histograms (H, S, V) o f the 
white ball in frame k + 5.

4.5 Im plem entation  o f tennis player tracker

A slightly modified version of the tracker outlined in section 4.3 is used to track the player in 
the tennis footage. As previously discussed, the global view is considered to be the camera
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Figure 4.8: Ball pixel weighting z(r)

view which conveys the most information to the viewer. In this view the position of the 
players can be tracked from frame to frame.

4.5.1 L ocalisation  o f th e  player

The tracker is initialised by finding the player regions in the bottom  and top halves of the 
court. This is achieved using a greedy algorithm on the brightness and saturation histograms 
for the player in the top half and the histogram of hue and brightness colour spaces for the 
player in the bottom  half. The greedy algorithm has been discussed in section 3.2.1.

The clothing that the players wear tend to exhibit quite contrasting colours to those of 
the court surface. The white colours worn by the players are generally of high brightness, low 
saturation and high hue. The hoardings behind the player in the top half also show evidence 
of high hue, so this cannot be used to extract the player on that side of the court. For the 
player in the top half of the court, values greater than the range of brightness returned by 
the greedy algorithm and values less the ‘greedy range’ from the saturation component are 
considered not to be attributed to the playing field. These are labelled as player regions. 
Relevant values greater than the maximum and less than the minimum values of 90% range 
of the greedy histogram are sought. This is because, as tournaments progress, particularly on 
grass surfaces, regions tend to wear down and become notably brighter. The clothing worn 
by the player is both brighter and less saturated than these regions.

The player on the bottom  half of the court is segmented using the brightness and hue 
component. Values greater than the maximum value returned by 90% of the range of the 
greedy histogram for both colour spaces are used to detect this player.

Any court lines that have been detected using the segmentation can be suppressed using 
the court finding technique outlined in chapter 3.3.2. Furthermore, the net area is masked by
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W«igh(9d hislogram 
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Weighted histogram 
WeiflMeJ P a a en  approximation

Figure 4.9: Weighted histograms and the corresponding Parzen approximation o f the hue 
and saturation components o f the white ball. The red plot is the Parzen approximation and 
the blue is the weighted histogram o f the ball using equation 4.20.

approxim ating tiie height of the net a t the centre point using the sam e technique as for the 
player scaling. The entire region across the net is masked to  elim inate any ball boys th a t are 
close to the net. Areas below the bottom  of the net region and above the top of the net are 
dilated because the lines th a t have been masked may also have masked some of the player.

The centre of gravity of the ‘blobs’ (which correspond to  the torso of the players) of g reat­
est size, in the bottom  and top halves of the court are com puted. It was found heuristically 
th a t the centre of gravity of a player can be estim ated by shifting the centre of gravity by 
//4  beneath the original value, where I is the m aximum height of the blob. Using th is value 
as the centre of the  region to  be selected and assuming th a t the average height of a player is 
1.80 m eters and has a w idth of 0.5 m eters, the region can be scaled relative to the perspective 
distortion of the tennis court (using the same m ethod as th a t used for scaling the  snooker 
balls in section 4.4) such th a t it sufficiently frames the tennis player. The dimensions of a 
championship size tennis court are shown in figure B.2 in appendix B. Localisation of the 
player in this fashion is shown for all grass court footage in figure 4.5.1.

Initial player detection experim ents conducted on 30 shots of the global view from the 
four sources of tennis footage results in 100% correct localisation for the top and bottom  
players.

4 .5 .2  T rack ing th e  p layer

The HSV colour space is once again used and a colour histogram  of the player region is calcu­
lated. Full 8 bit colour histogram s (256-1-256-1-256 bins for H, S, V) were used to approxim ate 
the d istributions in this case. A Gaussian, 2  ~  A/”(0 ,R ), is used to  weight the pixels within
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Figure 4.10: Player localisation. Top: Original images; Bottom: Segmented player using 
greedy histogram segmentation and court segmentation. The binary map of the bottom and 
top players have been concatenated to form this image.

the candidate and target regions. This weighting kernel gives a higher importance to pixels 
in the centre of the window and less to those pixels at the edge. The variances are related to 
the size of the window given by:

where h is the height of the player in pixels and w is the width of the player. A 3-D plot of 
the kernel is illustrated in figure 4.11 where the height and the width of the player region are 
taken as h = 150 and w = 75 respectively.

A Parzen approximation was not needed for tracking the tennis player as the size of 
the region is sufficient to yield a useful histogram. A playing area model is constructed by 
preselecting several regions of the court off-line. A likelihood ratio can then be formulated as 
outlined in section 4.3, and the players can be tracked around the court.

Figure 4.12 shows the bottom  player located at two frames in the footage, the second of 
which is 50 frames after the first. The target and candidate histograms of the player region 
are shown for each frame, where the blue in each plot is the target and the red is the weighted 
candidate. Six stills from a clip of 500 frames of the sequence Hewitt are shown in figure 4.13 
where both the top and bottom  players are tracked.
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Figure 4.11: Tennis player weighting, z.

4.6 A ssessm ent of the perform ance o f th e particle filter

In order to evaluate the perfornnance of the tracker, the tracks obtained from the snooker 
footage were assessed using two geometrical measures. As the snooker balls generally travel 
in a straight line (assuming they are hit without any side spin) until a cushion or other ball 
is hit, it is possible to measure the deviation of each location estimated by the particle filter 
from the true trajectory of the ball.

In total, 11 shots made by the player (5 red, 2 black, 2 blue, 1 brown, 1 pink and 1 
green balls) were assessed. These occurred at different stages in the game and in various 
locations on the table from the different sources of snooker footage. Two of these tests were 
conducted on balls which were potted. The velocity of the balls also varied. In total, the tests 
represented analysis on approximately 300 frames. Two performance measures were used to 
assess the performance of the tracker. In both cases the true trajectory is taken as a straight 
line between the starting and ending motion positions of the ball. The true trajectory of four 
shots is illustrated in figure 4.14. The tracks achieved using the particle filter are also shown.

4.6.1 Perpendicular distance from points

The first measure is the length of the normal, di, from the true trajectory, y = m x  +  c, of 
the ball to the projected position of the ball (xj, yj). It is assumed that the true trajectory is 
the line connecting the initial position of the object to its final position. The perpendicular 
distance from a point to the true trajectory is described in [98] as:

d, =  (4.24)
Vl  +
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(a) Hue (b) Saturation (c) Value

Figure 4.12: Bottom player location detected. Top: Player location at frame t and t + 
50. Middle: Candidate and target histograms at frame t. Bottom: Candidate and target 
histograms at frame t + 50.

4.6 .2  A ngle b etw een  least squares fit and true tra jectory

The second measure used is the angle between the true trajectory and the least squares fit 
to the data. The ground truth was found by manually locating the start and end locations 
of the ball across the trajectory. The least squares line was found using equation 4.25 where 
T  is the number of frames in the shot.

—  1

Ef=i m
XiVi

(4.25)
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Figure 4.13: Player tracking o f a rally event. Both players are tracked over a sequence of 
500 frames and an overlay o f the court is also provided.

The angle between the true trajectory and the least squares fit can then be calculated 
using the trigonometric expression below, where m i, m 2 are the slopes of the two trajectories. 
This can be considered as being a measurement of deviation between the two trajectories.

m i - m2  ,  .
0 =  arctan --------------r (4.26)(l + mim2)

4 .6 .3  C o m m en ts  on  th e  tra ck in g  p erfo rm a n ce

Results of the performance in terms of the mean distances from the true trajectory to the 
points along the track produced by the particle filter are tabulated in table 4.1. The mean 
distance for all tracks is accurate to a sub-pixel level, which is acceptable for this application. 
Furthermore, the mean angle difference between the true trajectory and the least squares fit 
also achieves sub pixel accuracy. Results are tabulated in table 4.2.

On tests of ball tracking, the white ball was successfully tracked 100% of the time using 
likelihood ratios and 90.9% of the time using likelihoods based on a ball colour model alone. 
There are some occasions when the tracker cannot successfully track some of the coloured 
balls. Correct tracking of balls in complex shots is intractable. For example, when a head-on 
collision ® between two balls of the same colour occurs, the ball in advance will be tracked.

head-on collision is also know as a  ‘flush’ coUision.
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F igu re 4.14: Illustration o f  the performance o f  the particle filter for tracking: The tracks 
in red are the true trajectories o f the ball while the yellow tracks are the particle filter 
estim ation to the trajectory. Clockwise from the top left, examples o f  the individual tracks 
o f two whites, the green and blue are shown. N ote in particular the successful track o f  the 
green ball (bo ttom  right) which is difficult given the sim ilarity between the ball and table 
cloth colours.

This can be remedied by applying the algorithm outlined in section 5.2 to detect collisions 
between all balls. When a collision is detected, the motion model directing the placement 
of particles can be reset to account for the sudden reduction in velocity of the current ball 
being tracked.

Motion blur is the main contributing factor leading to poor tracks in snooker. As the ball 
becomes elongated, the tracker will lock on to an area within this region which may not be 
the actual ball centre. The use of likelihood ratios remedies this somewhat but occasionally 
the hypothesised location of the ball will not always be located on the true centre.

If a ball is near a pocket and the player walks in front of the camera blocking the ball from 
view, a pot will be detected. This means tha t the tracker cannot always be fully rehed on 
for detecting successful ball pots. The algorithm used in Denman et al [40], could be used to 
ensure that all the pots are detected and therefore if there is ambiguity in the semantics, they
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Colour W hite Red Black Blue Brown Green Pink
Shot 1 0.523 1.006 - - - - -
Shot 2 1.069 0.523 - - - - -
Shot 3 0.645 1.414 - - - - -
Shot 4 0.778 0.625 - - - - -
Shot 5 0.884 - 0.771 - - - -
Shot 6 1.013 - 1.094 - - - -
Shot 7 0.511 - - 0.763 - - -
Shot 8 0.705 - - 0.813 - - -
Shot 9 0.484 - - - 0.785 - -
Shot 10 0.97 - - - - 1.517 -
Shot 11 0.862 - - - - - 0.917

Table 4.1: Mean distances from the true trajectory to the projected points along the track 
produced by the particle filter.

Colour White Red Black Blue Brown Green Pink
Shot 1 0.15 0.503 - - - - -
Shot 2 0.411 -0.676 - - - - -
Shot 3 0.154 -0.648 - - - - -
Shot 4 -0.054 0.981 - - - - -
Shot 5 -0.089 - 0.487 - - - -
Shot 6 0.874 - -0.345 - - - -
Shot 7 -1.008 - - 0.614 - - -
Shot 8 0.954 - - 0.748 - - -
Shot 9 0.638 - - - 0.974 - -

Shot 10 0.095 - - - - -1.115 -
Shot 11 -0.71 - - - - - 0.84

Table 4.2: Mean angles between the least squared trajectory and the true trajectory in

could be verified. The representation of the game semantics will be presented in Chapter 6.
Tracking the tennis player proved to be more difficult. Histograms by their nature in­

corporate no spatial information and for a large irregular shape such as the tennis player, a 
correct lock on the centre of the region can not always be presumed. Furthermore, owing to 
the shape of the tennis player, the rectangular region not only contains player pixels but also
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includes several pixels of the court. While they can be slightly suppressed using the  weighting 
kernel, they do affect the tracking fidelity.

A nother problem  encountered was th a t of the occasional disappearance of the player from 
view when the cam era pans to follow the tra jecto ry  of the ball. The track of the  player was 
recovered by assuming th a t he will reappear close to the position from which he disappeared. 
Tracking of players in a doubles m atch was not considered for this work bu t may com plicate 
m atters  w ith frequent occlusions.

As is evident from figure 4.14, the tracks for some of the balls are ‘noisy’. T he apparent 
noise is due to  the non-fractional accuracy of the random  tracker. This is particularly  evident 
in the track of the green ball. Due to  the sim ilarity between its colour d istribution and th a t 
of the background, tracking becomes difficult. Also contributing to  the noise is the  relatively 
slow speed a t which it is travelling. The track obtained is therefore perceived as not being 
as sm ooth as for the ball which move at a faster speed.

4.7 Tracking com parison

As a comparison of tracking perform ance, an im plem entation of the gradient based m otion 
estim ator in [81] was used to  track snooker balls. The idea was to  generate m otion vectors 
for each pixel in the image (optic flow). The concatenating vectors in time, s ta rting  with an 
object position, yields an object track. The m otion estim ation m ethods enable those tracks 
generated by the particle filter to  be evaluated and justify  its use for tracking. This idea does 
not seem to have been considered in the literature.

4.7.1 G radient B ased  M otion  E stim ation

A gradient based approach to m otion estim ation (GBME) involves expanding the generalised 
spatio-tem poral model for m otion in image sequences is given by equation 4.27.

/f(x ) = /(_ i(x  +  dt,«_i) (4.27)

This equation describes how the  image at tim e i — 1 can be m apped to  th a t a t tim e t by 
accounting for the displacement of m agnitude th a t the image undergoes, d  is known
as the m otion vector. A Taylor Series expansion of equation 4.27 yields the expression

/t(x ) =  / t - i ( x )  +  d '^ V /t_ i(x ) +  e t_ i(x ) (4.28)

The block m atching solution to  m otion estim ation defines the displaced frame difference 
(DFD) as:

D F D (x ,d ) =  / t ( x ) - / t _ i ( x  +  d) (4.29)

M aking use of the DFD, a solution for the m otion vector fo r  each block can be obtained
by neglecting the higher order term s of the expansion e i_ i(x ) and vectorising equation 4.28.

d =  [G ^ G ]” ’ g ^Zo (4.30)
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W here G  is a vector of intensity gradients a t tim e t — 1, Zo are the corresponding DFDs, 
obtained from equation 4.29 and d  is the m otion vector.

This m ethod is explained in greater detail in [81].

4.7.2 Q uantitative comparison of tracking perform ance - GBM E vs PF  ®

The im plem entation of the m otion estim ator uses 9x9 blocks. Given th a t the radius of the 
ball varies from approxim ately 5 to  7 pixels, and even greater w ith m otion blur, the accuracy 
of the GBM E for ball tracking should be reasonably good. An illustration of the performances 
differences between the particle filter and the tracking using m otion estim ation is shown in 
figure 4.16.

Only the white ball is tracked in these frames because the GBM E im plem entation does 
not allow differentiation between ball colours. Only one moving object can therefore be 
tracked a t one tim e, so all o ther balls m ust be stationary. The sam e m ethod employed in 
section 4.4.1 is used to  find the frame in which the w hite ball begins its motion. In each 
frame, the weighted mean of the vectors in a 45 x 45 pixel region around the strongest vector 
on the table, is taken to  be the position of the cue ball. To ensure th a t only m otion due to  
the white ball is accounted for the analysis, any m otion by the player m ust be removed. This 
is achieved by masking him from view using the m ethod outlined in section 4.4.1.

Figure 4.15 shows the m otion vector field for three frames from two shots used for mea­
suring the perform ance of block m atching tracker. Also shown is the track borne out by the 
white ball over the duration of the entire shot using the weighted mean of the vectors as the 
location. Figure 4.16 illustrates a comparison of the tracking achieved using both  methods.

Tracking using m otion estim ation was assessed using the same geom etrical m etrics used 
in section 4.6. The true trajecto ry  was obtained by m anually locating the centre of the white 
ball from the first and last frames of the footage. Analysis was carried out on 12 tracks of the 
white ball and the results of the tracking are com pared to  those obtained using the particle 
filter. The shots varied in duration, the shortest of which is six frames and the longest, thirty. 
Table 4.3 compares the results of two tracking m ethods and shows the particle filter to  be 
b e tte r in all cases.

4.8 Sum m ary

This chapter presented a probabilistic colour based object tracker derived from the CON­
DENSATION algorithm  and considered its use for tracking of objects in broadcast sports 
footage. Novel extensions to  the tracker were conceived which make use of prior scene ge­
om etry and the known background colour distribution. This was shown to  improve tracking

®The ME considered was realised in C, and took approximately 2.5 seconds per frame. The particle filter 
was implemented in Matlab and took approximately 10 seconds per frame depending on when convergence 
was reached and the number of particles used to estimate the location (100 for tracking snooker balls).
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Figure 4.15: Motion vector field for two snooker shots. The full track o f the ball using the 
weighted mean location is shown in the first row.



4.8. Sum m ary 101

Tracking using ME Tracking using PF

F igu re 4.16: Comparison o f  tracking using gradient based m otion estim ation (left) and 
particle altering (right).

fidelity and was used to good effect for tracking snooker balls and tennis players.
The performance of the tracker was assessed using geometrical measures and compared 

to the results obtained using a gradient based motion estimator. In chapter 6 the tracks 
provided by this chapter, in conjunction with results from chapter 5, will be exploited to 
retrieve high-level events which occur in tennis and snooker games.
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Metric Mean Distance PF Mean Angle PF Mean Distance ME Mean Angle ME
Shot 1 0.523 0.15 1.201 2.093
Shot 2 0.754 0.744 0.950 -2.683
Shot 3 1.069 0.411 1.479 -1.522
Shot 4 0.979 -0.544 0.967 -3.527
Shot 5 0.845 -0.345 2.493 -1.258
Shot 6 0.595 0.078 3.376 1.107
Shot 7 0.645 0.154 2.753 2.167
Shot 8 0.837 -0.132 1.072 2.802
Shot 9 0.778 -0.054 2.336 1.541

Shot 10 0.690 0.048 1.002 -1.221
Shot 11 0.884 0.089 0.952 3.665
Shot 12 0.974 0.103 1.447 -1.784

T able 4.3: Table illustrating the performance difference between P F  and M E for tracking  
o f the white ball in term s o f the distance and angle measures. Distances are in pixels and 
angles are in



5
Dynamic Event Detection in Snooker

Snooker requires the player to accumulate the highest score possible by potting the coloured 
balls in a certain sequence (see appendix B for a brief description of the rules of the game 
and means for accumulating a high score). This can only be achieved by hitting the white 
ball and causing a collision with a particular coloured ball resulting in a pot. If a coloured 
ball is not hit or if an incorrect colour in the sequence is hit, a foul is called. Therefore, a 
semantic episode is expressed between the instant a player initially hits the white ball and 
the time at which all balls being tracked come to rest or are potted.

W ithin this period several incidents may occur which will affect the viewer interpretation 
of the shot made by the player. Incidents such as inter-ball collisions, ball-cushion bounces 
and ball pots, are events which determine this interpretation. These events can be inferred 
from the explicit tracking path approximated by the particle filter described in the last 
chapter. This is the focus of dynamic event detection.

Given tha t the ball spot positions are known at the start of the game, colour models for 
each ball can be established. This allows the colour of the ball which has just undergone 
collision to be detected. This is described in section 5.1. Section 5.2 outlines a method 
centred around segmentation and transient motion differences to detect inter-ball collisions 
and ball-cushion bounces. In section 5.3 a technique that utilises the sample likelihoods 
generated by the particle filter for the detection of ball pots is discussed. Furthermore, a foul 
can be inferred by incorporating collision detection techniques and analysing the trajectory 
of the white ball.

103
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F ig u re  5.1: Segmented balls. Left to right: Yellow, green, brown (and part o f the white 
ball), blue, pink, black and red.

5.1 Establishing initial ball colour m odels

Given that the position of each ball can be retrieved using the table finding technique outlined 
in section 3.3.2, colour models for each ball on the table can be generated automatically. This 
enables the colour of the ball which has just been hit to be determined (see section 5.2 for 
details on how to detect the collision). Detecting this colour provides a simple, but important 
piece of information which could prove useful to the user (for browsing) and broadcaster (for 
applications such as automatic scoring, etc.).

We assume that in the first frame of the global view, a new game has just begun and the 
balls are all on their appropriate spots. A small region, W , of 30 x 30 pixels centred on the 
estimated spot position of each coloured ball is then segmented. The problem of segmenting 
these balls poses a similar problem to that of the playing area segmentation discussed in 
chapter 3. Direct thresholding, adaptive thresholding and a GMM were once again employed 
for segmentation. The poor quality of the footage inhibited the performance of the GMM. 
Ghosting artefacts around the balls resulted in excessively large areas being detected and 
often caused objects which are close, to be merged. Direct thresholding of the difference of 
R G B  colour planes proved equally inept over all footage sources. The adaptive thresholding 
method implemented here firstly locates a flat area of table, TZ (in the same way as generating 
the texture for the player mask outlined in section 4.4.2). The luminance component, Y , of 
window W , is segmented using a twin density slice of the luminance component, where the 
thresholds are based on the local luminance statistics of the region TZ (equation 5.1). a-jz is 
the standard deviation over the region TZ and i , j  G W .

c(i , j )  = {{Yw{i, j ) > max(yK) +  2an) A {Yw(i , j )  < mm {Yn) -  2ctt?)) (5.1)

Figure 5.1 shows the segmentation of each ball. Since the radius of the ball at each spot 
position is known, the colour information can be extracted from the circular region centred 
on the segmented object.
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5.2 C ollision D etection

Consider that the white ball has been hit. A straightforward approach to collision detection 
is to observe the change in velocity of that ball as it traverses the table. Abrupt velocity 
change indicates collisions. This information can be extracted directly from the particle filter 
tracker presented in the previous chapter. In practice however, the resolution of the tracker 
is limited by the resolution of the standard definition TV image. Here, slight collisions may 
not result in observable velocity changes. Fortunately frame differencing in the region of the 
impacting ball (white in this case) is always able to highlight another object responding to 
an impact. The basic idea proposed for collision detection is therefore to threshold the frame 
difference within a window W,  the size of which is conditioned by the maximum velocity of 
the ball.

A window of twice the size of the maximum speed of the white ball is used to frame the 
impact area. The position of the centre of the window depends on the dominant velocity of 
the white ball. For example, if the magnitude of the horizontal velocity in the left direction 
is greater than its vertical velocity, the window is offset such that the distance from the white 
ball to the right hand side of the window is The same approach of adjusting the position 
of the window is adopted for all other dominant directions of velocity. This ensures that 
white ball is close to the edge of the window, giving a better chance of finding the ball which 
has just undergone impact. An illustration of the windowing is shown in figure 5.2.

Dominant 
direction of 
motion

Figure 5.2: Impact area windowing.

Given the position of the white ball and its corresponding radius, the cue ball can be 
masked from view in each frame with suitable table texture. The same texture as exploited 
for player masking (section 4.4.1) can be used for this purpose. Any motion in the windowed
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region must therefore only be attributed to the coloured ball which has just undergone the 
impact. If the inter frame difference in the window region W  of the luminance component 
y ,  between times t and  ̂— 1 exceeds a threshold, a collision (i.e. coloured ball motion) is 
assumed to have occurred (equation 5.2).

> 20 (5.2)

5.2.1 D ealing w ith shape distortion

Upon detection of the collision event, the shape of the new ball may be distorted by motion 
blur. As a result, the modelled histogram will be corrupted by motion artefacts. As is the 
case for localising the white ball, a frame from the footage must be chosen such that the 
coloured ball to be tracked is motionless. To find the frame in which this ball is stationary, 
previous frames in the regions of impact are retroactively searched for lack of motion. This 
is achieved by using the same frame differencing method for detecting the collision. Once the 
non-motion frame has been found, the colour ball needs to be segmented from the background. 
This segmentation is attained by employing the same adaptive thresholding method outlined 
in section 5.1. The segmentation of several balls from the different footage sources is shown 
in the middle column of figures 5.3-5.4.

The centre of a connected component region of area greater than pels (where r is the 
radius of an object in that area) is deemed to be the centre of the new ball to be tracked. The 
same procedure as that used for modelling the white (described in section 4.4.2) is followed 
for tracking the coloured balls. A number of examples of successful localisations of a second 
ball are shown in the right hand columns of figures 5.3-5.4.

Complications arise in selecting the ball to be tracked when it is located close to others 
within the window. In an attem pt to correctly select the object which has just undergone 
an impact, it is necessary to reduce the potential ball misclassification by monitoring the 
motion of all objects in the windowed area. Connected component regions from the colour 
segmented binary map in which motion is first exhibited (i.e. the collision) are labelled, and 
the distance between the centre of each object and the white ball is computed. If the centre 
of the object of shortest distance to the white ball is less than 2r pixels, it is selected as the 
ball to be tracked and a model of the region is created. If this condition is not fulfilled, the 
distance is retroactively checked in 5 previous frames. If no object is found to be within this 
distance, tracking of the white resumes from the frame where it was thought a ball was hit.

Occasionally the ball to be tracked might be partially occluded by another ball of different 
colour. By only exploiting the binary map generated using the luminance segmentation, these 
separate regions become merged. Given that the colour models of all balls are known (from 
section 5.1) it was attem pted to associate regions in the binary map with their corresponding 
colour model. The windowed H S V  frames were masked using the luminance binary map so 
that only relevant ball regions were showing. A likelihood was computed on each of these
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jm

Figure 5.3: Left to right: Track o f the white ball from its initial starting position until 
it collides with the coloured ball; (middle-top) The windowed balls before impact; (middle- 
bottom) A binary map o f the above with the white ball masked; The coloured ball is found 
and colour properties are modelled.
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F ig u re  5.4: Left to right: Track o f the white ball from its initial starting position until 
it collides with the coloured ball; (middle-top) The windowed balls before impact; (middle- 
bottom) A binary map o f the above with the white ball masked; The coloured ball is found 
and colour properties are modelled.

pixels for each colour model. However, owing to the poor quality of the footage a reasonable 
segmentation was not achieved. Better segmentation methods and superior footage quality 
could resolve this issue. ^

5.2.2 D eterm in ing  th e  colour o f th e  new  ball

To detect the ball colour, the likelihood of the colour distribution of the new ball region 
(obtained using collision detection) is computed, given the known ball colour models. The 
Bhattacharyya distance is once again used to calculate this similarity based on H S V  his­
tograms. Colour ball recognition could also be augmented by incorporating prior knowledge 
of the most likely location of the ball. For example, red and brown have similar colour distri­
butions, however, red balls are more likely to be found in the bottom half of the table than 
the brown. Balls colours were identified with 86.67% precision.

^The image on the left of the first row in figure 5.3 does not correspond to  the detailed one in the middle 
because the white ball was travelling quite fast and due to  the retroactive search outlined in section 5.2.1, the 
colour ball was found in the previous frame. The image on the right shows the ball located in the previous 
frame again.
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5.3 P ot D etection

Monitoring the score in a snooker game aids in determining the state of the game. An event 
detection/object disappearance algorithm has been developed [40], which categorises the type 
of shot played as a miss, near-miss or pot. The classification is achieved by monitoring two 
rectangular regions centred on each of the pockets - a small one enclosed by a larger one. A 
ball pixel to table pixel ratio in the regions is calculated to detect the presence of incoming 
balls in each region. For example, if a ball enters the large region, then enters the small, 
leaves the small area first and then the large one, a miss can be inferred.

In this work, the particle filter can be used to achieve the same goal. When a ball is potted, 
it is obvious that the particle filter will be unable to continue tracking. The evidence for this 
drastic loss of lock can be extracted by observing the weight of each particle. When the like­
lihood is low, a loss of lock is indicated, hence inferring a pot. A threshold of Lr  on the sum 
of the likelihoods of all particles was used to achieve this. Note that the cunmlative likelihood 
of the particle set is calculated as part of the tracking phase (section 4.4). In the implemen­
tation considered here, a 60% reduction in the cumulative likelihood between the current and 
previous sample set is taken to indicate that the ball has been potted {i.e. L t / L t - i  <  0.4). 
Some examples of correctly labelled ball pots are illustrated in figure 5.5.

Unfortunately, hard inter-ball or cue-to-ball impacts can also yield a drastic likelihood 
drop. In order to differentiate between a pot and such impacts, it is assumed that the ball 
which has just undergone the collision cannot be potted in the first two frames following the 
impact. This allows the ratios of L t / L t - i  to stabilise.

5.4 Foul detection

Fouls can be inferred by monitoring the ‘bouncing’ state of the white ball. The implemen­
tation of the inter-ball collision detector does not enable cushion-ball type bounces to be 
detected. They can however be detected by identifying changes in angle between two trajec­
tories when the white ball is in the vicinity of a cushion (within 20 pixels). This is achieved 
much in the same way as the angles between the particle filter and true ball trajectories were 
calculated in section 4.6.2.

The trajectories li and I2 are defined ioi to <  t — i  in equation 5.3 as:

h  =  c { t - 3 , . . . , t )

Where c is the vector of positions of the white ball from frame to until t. to is initialised 
as the frame in which the white starts its motion. It is set to the current frame number, t, 
if a ball cushion bounce is detected. The least squares fit for li and I2 are calculated using 
equation 5.4 where { {xi , yi ) }  are the set of ball positions for the relevant trajectories. The
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F ig u re  5.5 : Clockwise From top: Tracking a red ball struck and p o tted  by the w hite into  
the bottom  right pocket (a continuation o f the footage in the top row o f  figure 5.3) - Shot to 
nothing. Tracking a red ball struck and p o tted  by the w hite into the m iddle left pocket (a 
continuation o f the footage in the second row o f figure 5.3) - Break building. Tracking a blue 
ball struck and p o tted  by the white into the m iddle right pocket - Break building.

angle between the two lines (w ith param eters and [m(2 ,Q j]), 6t, a t frame t is then
com puted using equation 5.5 where mi^ and mi^ are the slopes of the two trajectories.

™l6 1

1

E J ir i
-1

\ n  =  to, T2 =  t  -  4: for 6 =  1

>̂6 . E?=n . \ t i  =  t  -  S ,  T2 = t for 6 =  2
(5.4)

6t = arctan  , ~  , (5.5)
(1 + mi^mQ

If the absolute difference in 6 between frame t and t — 1 is greater th an  10° (i.e. rj =
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— \ > 10°) the ball is deemed to have deviated from its original path and a ball-cushion
collision is inferred.

I

200

F ig u re  5.6: Foul detected due to the lack o f inter-ball collision. Ball cushion bounces are 
detected at B ,C  and D in the plot. The impulses after D arise as the ball begin to slow down 
and so are not registered as cushion bounces.

Since both ball-cushion bounces and inter-ball collisions can be detected, a lack of ball- 
ball interaction before the white ball comes to a rest can be used to indicate that a foul has 
occurred. Figure 5.6 shows an example of such a foul event (top) along with a plot of the 
absolute angle derivative rj (bottom left) and position of the white ball at each frame (bottom 
right).

As the snooker balls begin to slow down, the estimated locations of the balls are closer 
together. Under such circumstances, the derivative of the angle exhibits peaks in the plot 
(figure 5.6 (top) and 5.7 (top)). A condition on the speed of the ball (if the speed is greater 
than 3 pixels per frame) and the cushion location is therefore used to ensure correct ball- 
cushion collision detection.
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5.5 Snooker escape

Detection of ball-cushion bounces also provides a clue to other semantic events. Assuming 
that a cushion bounce occurs before an inter-ball collision implies that the player is attem pting 
a difficult shot. If the player approaches a shot in this way it can be assumed that the direct 
line of sight from the white ball to the ball which the player is attem pting to hit is obstructed. 
This allows a snooker escape event to be inferred. A plot of the position of the ball for such 
an event is shown in figure 5.7 along with a track of the white ball and a plot of rj. The cue 
ball is situated at the bottom cushion when the player begins his shot. He is attem pting to 
hit the blue ball close to the top cushion.

1 1 - - - - - - - -  Y  p O M K lf l  j
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F ig u re  5.7: Example o f a snooker escape. Two cushion bounces occur before an inter-ball 
collision. The bounces are clearly visible from the position plot while the plot o f rj validates 
the conditions for ball-cushion collision detection outlined in section 5.4.
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5.6 Sum m ary

In this chapter, the detection of incidents which affect the viewer’s interpretation of particular 
events in snooker were discussed. These incidents included inter-ball collisions, ball-cushion 
bounces, ball pots and fouls. Results show the techniques used for the detection of collisions 
and pots to be robust for a number of different types of shot made by the players from a 
number of footage sources.



6
Event Modelling and Classification using HMMs ^

In this chapter Hidden Markov Models (HMMs) are introduced as a means of modelling 
tim e varying patterns. Their use has found considerable success in applications where these 
pa tte rns are particularly  evident, for example in speech recognition [124,128] and cognition 
based systems [140,163]. Success in these fields has m otivated their use in retrieval applica­
tions [5,24,76,84].

HMMs are employed in two ways for modelling and classifying events th a t occur in snooker 
and tennis broadcast footage. Firstly, in order to conduct high level feature extraction such 
as ball tracking (section 4.4) and pot detection (section 5.3) in snooker and player tracking 
(section 4.5) in temiis, it is necessary to  ensure th a t the correct view {i.e. th a t of the global 
view) is being shown. This can be achieved by modelling the stochastic s tructu re  of the 
m oment features (the geometric R adon moment and statistica l shape and colour moments 
presented in chapter 3) within each clip. A similar modelling technique was undertaken a t the 

same tim e by Xie et al [160] for classifying ‘plays’ and ‘breaks’ in broadcast soccer footage.
As shown in figure 6.1, the evolution of the Radon m om ent feature is closely related  to 

the view in each image. Similarly, the tem poral behaviour of the shape and colour m oments 
are correlated w ith the interleaving cam era views. For these cases, the HMM can be used as 
a mechanism to link the behaviour of the moment features w ith the  relevant cam era views.

^Results from this chapter have been published as “Modelling high level structure in sports with motion 
driven HMMs” by N. Rea, R. Dahyot and A. Kokaram in the IEEE International Conference on Acoiistics, 
Speech, and Signal Processing 2004 ^nd in ‘‘Sport Video Shot Segmentation and Classification” by R. Dahyot, 
N. Rea and A, C. Kokaram in Visual Communications and Image Processing 2003.
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F ig u re  6.1: Moment features (from top) for snooker footage (Hendry): 8th order Radon 
moment; g chrominance; r chrominance; Second order moment of N ;  Second order moment 
ofd,J\f.

W ithin each of the correctly classified global views, high-level feature extraction is con­
ducted using a second HMM step. In this classification module, the spatio-temporal evolution 
of an object is considered to embody a particular semantic event. A HMM can be used to 
model the behaviour of this object as it traverses the playing area. In tennis we consider the 
movement of the player around the court to ‘mean something’, while in snooker the evolving 
position of the white ball over the duration of a shot can be related to a semantic event.

Discrete HMMs (DHMM) are used for modelling the temporal behaviour of both the 
moment features and the positions of the objects. This type of HMM is chosen over others 
(e.g. continuous HMMs and semi continuous HMMs) because the emission probabilities of 
the high level classification stage are a discrete distribution of quantised labels (i.e. quadrants 
of a playing surface). The moment features can be quantised in order to maintain the same 
HMM framework throughout.
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To facilitate the generation of an alphabet to drive the DHMM, the moment features 
were quantised using a K-means clustering [45,101] algorithm and a Gaussian mixture model 
(GAIM) [102], K-means clustering was used to generate a discrete alphabet of K  entries rep­
resenting the Radon moment feature, while the GMM was used to cluster the two dimensional 
statistical moment vector. For both cases, the choice of size of the codebook, or number of 
quantisation levels, results in a trade off between lower quantization error and faster HMM 
operations.

In all work using HMMs for retrieval thus far, there has been relatively little attention 
given to the details of HMM manipulation. The technique is certainly not well known in 
the image and video processing community while being fundamental to those groups in the 
speech processing. There are some important lessons to be learned in the workings of the 
HMM for video processing which will be presented in this chapter.

6.1 Creating the Alphabet

In order to drive the DHMM, the feature vectors must be quantised into a discrete set of 
labelled clusters. A cluster can be thought of as a set of points that are in some way related. 
Since it is common for data to exhibit similar properties, and therefore appear as clusters 
in feature space, algorithms have been developed which enable the understanding of the 
relationship that exist among the data.

Two common methods of clustering are K-means and Gaussian mixture modelling. The 
clustering transforms the continuous vector to scalar quantised levels Xt  (alphabet). K- 
means is a simple, yet effective, optimisation algorithm which iteratively re-centres clusters 
by minimising a distance from all data points, to the centroid of each cluster until
convergence. The GMM involves parametrising the data set,{x„}^^j, using a mixture of 
a predefined number of Gaussians. Means, covariances and weights of each mixture are 
iteratively estimated by the Expectation Maximisation (EM) algorithm. The GMM has 
previously been introduced in section 3.2.3 for an object segmentation application.

6.1.1 Clustering using the K-m eans algorithm

The K-means algorithm is known to be a good way of quantising one-dimensional real valued 
signals into a set of K  discrete bins [45]. It is therefore appropriate as a clustering mechanism 
for the one-dimensional Radon moment. The algorithm works by firstly selecting (randomly 
or manually) K  initial cluster centres from the data. K  clusters are formed by associating 
each data point to the cluster centre to which it is closest. The centroids of the K  clusters 
become the new cluster centres. The clusters are then individually labelled. These labelled 
clusters are known as the codebooks entries. For a large number of clusters the algorithm 
becomes computationally expensive being of complexity 0 { i K N )  where K  is the number of
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clusters, i the number of iterations before convergence, N , the size of the data  set.
The steps in the K-means clustering algorithm are outlined below.

1. Initialisation: Define the codebook size to be K  and choose K  initial cluster centroids. 
These centroids, for 1 <  /c < K,  are chosen at random from the existing data  set of 
size N .

2. Classification: At the iteration assign each data point to a class, where 
I < k < K ,  such that the distance of the data point to the centre of the class is 
minimised.

C k \ ^ n )  = arg min [l|x„ -  /ifc|l] (6.1)
l < k < K

(i)3. Updating: Update each cluster by computing new cluster centroids fik where k = 
1,..., A'. The cluster centroids are the mean values of all data points, for 1 <  n < 
associated with tha t cluster, where Nk  is the number of training data  in cluster Cj. '.

x„ecl!'>

4. Termination: If the decrease in the overall distortion, J , at the current iteration com­
pared with that of the previous one, is less than a particular threshold, then stop; 
otherwise goes back to step 2. The overall distortion is an objective function based on

u \
the distances between all data points in class C\. and their associated cluster centre, 
defined in equation 6.3.

K

^  = Y .  \ \^n-^^k\\  (6.3)

Labelling the clusters

The erratic moment values that can be seen in the plot (figure 6.2) are due to global motion 
as the camera zooms and pans around the table. This resulted in a codebook length of 20 
being used to cluster the Radon moment vector for Higgins and 24 for Hendry. The feature 
vector is transformed into the codeword which in turn is used to drive the HMM.

6.1 .2  C lustering using G aussian m ixtu re m odels

The GMM has been introduced in chapter 3 where it was employed to model the colour 
distribution of a playing region for segmentation. In this section, the GMM is used for 
clustering of a feature space. It is clear from figure 6.4 that the clusters of feature points can 
not be modelled by a single Gaussian distribution. Therefore, the Gaussian mixture model 
implicitly assigns several Gaussians to model each such cluster 6.4. To reduce the chance of
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Figure 6.2: Shot cuts (green) are also shown along with the normalised 8th order Radon 
moment (blue) for Higgins and Hendry footage.
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over fitting, the Gaussians estimated by the EM mixture modelling process are merged and 
pruned. On each iteration, all mixtures are tested for the following pruning and merging 
conditions:

• Prune:
If the probability of a particular Gaussian is 0. (i.e. Wk = 0)- 
If the det(R ) =  0
If the condition number of the covariance matrix exceeds a specified threshold (10,000 
in this case).

• M erge:
As the algorithm approaches convergence (a convergence tolerance of 2 x tol is used, 
see section 3.2.3 for more details on convergence) the Euclidean distance between each 
cluster mean is calculated. If this distance is less than a specified threshold (0.01 for 
all footage), the cluster exhibiting the greatest weight {wk) is kept and the remaining 
are eliminated.

Using equation 6.4, upon convergence each data point is labelled by associating it with 
the mixture component to which it is most likely to be a part.

= argm ax \p{xJCk) ] , 0 < k < K  -  1 (6.4)
l < n < N

For the colour moments for the snooker footage for example (figure 6.4 (left)), 25 initial 
mixtures were used to model the distribution. This was pruned to 22 mixtures and merged 
to 13. Each of these clusters is then assigned a discrete codebook entry for training and 
classification via the HMM.

6.2 H idden Markov M odels

A time domain process demonstrates a Markov property if the conditional probability density 
of current events, given all present and past events, depends only on the most recent 
events. A order Markov process is given in equation 6.5 where qt is the hidden state of a 
system at time t.

P{ q t +i \ q t  ■ ■ ■ q \ )  = p { q t + \ \ q t - - - q t - r )  (6.5)

This thesis concerns itself solely with first order models which are given by the expres­
sion 6.6.

p { q t + \ \ q t - - q \ )  = p { q t + \ \ q t )  (6 .6 )

This independence assumption also extends itself to model observations. If the hid­
den state of a HMM is qt and the observation generated from this hidden state is Xt,  the
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F ig u re  6.4: Colour moments distribution: Clustered moments using a GMM, 13 mixtures 
for Hendry (left) and 24 for Hewitt (right).

observation is independent of all other variables conditioned on qt, where T  is the length of 
the observation sequence X =  (A^i. . .  X t )-

p { X t \ X T - - - X i , q T . . . q t - - - q i )  =  p{Xt \qt )  (6.7)

Unlike Markov models in which each state corresponds to an observable or physical event, 
HMMs include the case where observations are a function of the states. This means that a 
HMM can be implemented to represent the statistical nature of the observations in terms of 
a network of states. For each observation the process occupies a single particular state in the 
HMM. The current state is therefore conditioned only by the previous r  states and the state 
transition probability associated with the state.

HMMs have found most use in problems which are inherently temporal. This temporality 
is particularly evident in visual and speech cognition based systems. The HMM approach 
to speech recognition was established by Lenny Baum in the early 1970’s [105]. Since then 
there has been much investment in speech recognition systems such as “Natural Speaking” 
by Dragon  ̂ and Microsoft Speech

The earliest use of HMMs in the visual domain was by Yamoto et al [163] in which human 
actions were modelled and classified using a HMM. Visual recognition of sign language [140] 
and handwriting [164] have also been studied. The ability of the HMM to manage large 
deviations in feature behaviour such as those in these cognition based systems encourages its 
use for high-level video indexing problems.

There are two primary disadvantages of using HMMs. The first is the need for a-priori no­
tation of the model topology. The structure of the HMM is data dependent and the obser-

^Natural Speaking; h ttp ://« w w .sc a n so ft . com /n atu ra llysp eak in g /p referred /
^Microsoft Speech: h ttp ://w w u .m icroso ft.com /sp eech /
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vations must be understood in order to create an efficient model. Secondly, large amounts of 
labelled training data are required to create a model that will work well. For this application, 
these disadvantages do not pose a problem. Prior knowledge of the sports allows the model 
topology to be easily created while video data for model training of the events are plentiful. 
Moreover, the observations used for high level event classification enable human specification 
of the training sequences. This is discussed is section 6.5.3.

6.3 Defining a H M M

A HMM can be defined by a set of five parameters. If the full parameter set is present 
the HMM can be used either as a generative model or to compute how likely a particular 
observation sequence is.

The elements of a general discrete HMM are;

• A set of states S = {5i,52, ...,Sn }- The state at time t is qt- The process moves from 
one state to another in a Markovian fashion.

• Matrix of transition probabilities A =  (a^) where aij = P{qt+i = Sj\qt =  Si),  1 < 
h j  < It defines probabilistically how the process moves among states, where 
obeys the standard constraints:

o-ij >0, I < j  < N
E l l  ay = 1, l < i < N

(6 .8)

A three state HMM with transition and observation probabilities is illustrated in fig­
ure 6.5.

• Set of discrete observations V = {x i,X2,...,x/^}: States are not directly observed. In 
a given state observations are generated according to a distribution described by B, 
discussed next.

•  Matrix of observation probabilities B =  bj{xk) where bj{xk) = P{Xt = Xk\qt = Sj ) ,  1 < 
j  < N,  I < k < K  : It defines the pdf of observations given the state. In tiie discrete 
case B obeys the constraints:

b j { x k ) > 0 ,  l < j < N

=  1 < J < N
(6.9)

In essence, each state has a probability mass function associated with it that dictates 
how likely a particular observation is from that state.

• Vector of initial probabilities tt = {ttj}; TTj =  P(qi = 5^), 1 < i < A'̂ : It defines the 
probability of the initial state.
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F igu re 6.5: Three sta te  ergodic H M M  {N  = 3) w ith transition probabiUties, and four 
quantised levels in the codebook (discrete observations) V  = {x i,X 2 ,2:3,X4} (i.e. K  = A) 
with their probabiUty mass function p{Xt\qt  = Si) where 1 < i <  3.

So, given K  and Al a succinct definition of a HMM can be given by A, wliere

A =  { A ,B ,7t} (6 .1 0 )

Three central issues of evaluation, decoding and estim ation have to  be resolved before a 
IIMM can be applied to a specific problem.

Issu e 1: Given the observation sequence of quantised levels X  =  { X i ,  X 2 , ■ ■ ■, X j } ,  and 
the model A =  ( A ,B ,7t), find the probability th a t the HMM actually  generated the 
sequence regardless of the particu lar s ta te  sequence.

Issu e 2: Given the observation sequence of quantised levels X  =  { X i , X 2 , . ■ ■ , X t } ,  and the 

model A =  ( A ,B ,7t), find the most likely sequence of states, S  = {91, Q2i •••) 9t} )  th a t 
produced the observation sequence.

Issu e 3: Given the observation sequence of quantised levels X  =  { X \ , X 2 , ■ ■ ■ , X t } ,  calcu­
late the model th a t best fits the d a ta  (i.e. evaluate the model, A =  ( A ,B ,7t), th a t 
maximises the likelihood P (X |A )).
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A comprehensive explanation of these three issues along with derivations of the  appropriate 
param eters are given in appendix A.

For the two applications considered in this chapter {i.e. modelling the stochastic nature 
of the mom ent features and the spatio-tem poral evolution of an object) only issues 1 and 
3 are of im portance. Issue 1 refers to  the design of a sort of ranking system  where there 
are a imrnber of com peting HMM classes and the one th a t best fits the observation is to 
be found. In o ther words, from an observation sequence, X  (which is either the quantised 
mom ent features or playing area quadrants), it enables classification based on maximising 
the expression in equation 6.11.

A =  argm ax[P(X |A c)] (6-11)
l< c< C

For this work the resolution of issue 1 allows classification of cam era view types and high 

level events (from C com peting models { A c } c = i . . , c } -  Issue 3 involves estim ating the various 
model param eters from, train ing  data . An iterative EM algorithm  called the  Baum-Welch 
algorithm  is typically employed. This algorithm  is described a t length in appendix A.

6.3.1 HM M  topology

To determ ine the IIMM topology is to  choose the num ber of states and the connection between 
them  {e.g. ergodic, left-to-right, etc.). In order to  do so it is necessary to  understand  the 
m eaning of the states. Various studies suggest th a t the HAIM should be designed depending 
on the signal being modelled [124]. Since the observation vectors reflect the ‘real world’ 
representation of the hidden states it is necessary to  choose the topology so as to reflect the 
stochastic nature of the observations.

Suggested m ethods for the choice of model have varied in the literature. Models based 
on intuition and em pirical adjustm ent of the num ber of s tates has been advocated by Hu et 
al [65] where the representation of the states in real world term s is difficult to  articulate. A 
d a ta  driven approach where the model is constructed from the data , reflecting the structure 
of the target p a tte rn  has been used by Lee et al [89]. In the design m ethod of [89], the  num ber 
of states in the HMM is determ ined by the structu ra l decomposition of Korean characters 
into straight line segments. The direction of adjacent points on the line is clustered to  form 
individual segments based on a set of 16 directional codes. A left-to-right topology was chosen 
to  represent the tem poral evolution of the line segments. In K ijak et al [76], each s ta te  in 
the HMM is chosen to  represent a particu lar view or shot transition  and the s ta te  transitions 
are derived from the observations and conventional editing techniques.

If the observation vector can be represented by a num ber of topologies, then the one 
of least complexity and fewest elements of model param eters is the best choice [124]. An 
excessively large HMM will incur increased com putational cost while perhaps only m arginally 
increasing recognition performance.
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The num ber of states used in the  event and view classification experim ents a ttem p ts  to 
conceptualise the natu re  of the d a ta  presented (section 6.5). This does not m ean however 
th a t these models are the sole m ethod of modelling the data . The essence of HMMs allow 
d a ta  to  be modelled in various ways, none of which are incorrect. However, the sam e number 
of s tates and observations obviously need to  be used in train ing  as the detection.

6.4 V iew  classification of snooker and tennis sequences

In order to conduct high level feature extraction such as ball tracking (section 4.3) and pot 

detection (section 5.3), it is necessary to ensure th a t the correct view {i.e. the global view) 
is being shown. W hile o ther views are not exploited for high level event detection in this 
research, they may find some use for extracting o ther useful sem antics in future research 
such as in [5] and [76]. Parsing the footage using the low-level moment features described in 
chapter 3 is one way of accomplishing this. A HMM is constructed which is trained  on half 
of the features and then tested  on the entire sequence.

Xie et al [160] reduce soccer footage to the canonical forms of a play {i.e. when the 
ball is on the pitch) or a break {i.e. when the ball is over a touch line). The main aim 
of this research is not to  locate sem antic events in the footage, bu t to  determ ine the play 
sections, which allows the footage to  be condensed to  less th an  60% of the original length. The 
stochastic nature of two low-level features, dom inant colour ratio  and m ean m otion intensity, 
are modelled using HMMs. A V iterbi algorithm  is then used to account for the long-term  
correlation of the p lay /b reak  scenes. Results show classification accuracy of approxim ately 
83.5%. This is similar to our m ethod of classifying cam era views which was published at the 
same tim e (section 6.4).

Sections 6.4.1 and 6.4.2 present the results of classification of shots using the Radon 
mom ent feature and a com bination of shape and colour m oments respectively. Table 6.1 
indicates the length of the snooker and tennis sequences in term s of frames. The num ber of 
shots in the sequence is also listed along with the chosen num ber of classes of interest. An 
illustration of some frames from these classes is shown in figure 6.6.

As discussed in section 6.3.1, determ ining the num ber of states to  model an observation 
sequence can be a difficult task  and is generally em pirically derived. As there exists no correct 
analytical m eans of calculating the optim um  HMM topology for the purpose of the  tem porally 
evolving moment feature {i.e. associating states with observations), the most viable one is 
chosen empirically by determ ining th a t model which maximises the likelihood of each class 
while minimising com putational effort. To this end, a two s ta te  ergodic topology (figure 6.7) 
is used to model the image sequences whose properties change over time. One possible way 
these states might be related to  the  observation sequence is th a t one s ta te  models the more 
homogeneous observation behaviours while the  other s ta te  deals w ith the more impulsive 
observations.
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Footage Clipl Hendry Hunter Pierce Malisse Hewitt Costa

#  Frames (Total) 3491 5832 24250 2949 4114 12009 11000
#  Shots (Total) 23 21 115 16 18 59 75
#  Global views 11 9 42 5 9 16 20

#  Classes 4 5 5 3 4 4 4

T able  6.1: Snooker and tennis sequences. The classes for each footage source correspond 
to the images in figure 6.6 (e.g. the four view type classes in Higgins are the Global view, 
Playing area close-up, player and other area view.

6.4.1 V iew  classification using the Radon m om ent feature

The HAIM was employed to model the stochastic nature of the moment of the Radon trans­
form. The models were trained using half the observations for each shot associated with the 
particular view type. This is illustrated using the first 2000 frames of quantised observations 
from Higgins in figure 6.8. The training vector is the hatched areas between the shot cuts 
shown in black.

Since the temporal boundaries can be detected using the methods outlined in chapter 3,
the different shot types can be recognised in the context of the entire image sequence of an
arbitrary length, by finding the most likely model according to equation 6.12. In this case, 
X is the quantised Radon moment observations and C is the number of views.

A =  max [P(X|Ac)] (6.12)
c = l . . . C

The accuracy of the retrieval is given in terms of precision and recall which are defined 
below. To summarise from chapter 3, recall is a measurement of the ability of the HMM to 
retrieve all relevant views whereas precision measures the ability of the HMM to retrieve only 
relevant views.

A A
Recall = —---- — Precision — —------ — (6.13)

A + C A + B
A  is the number of correctly retrieved views, B  is the number of incorrectly retrieved 

views and C  is the rmmber of correct views which were missed by the classifier.
The main misclassification in snooker is in miscellaneous views of the crowd and score 

board, being classified as a close up of the player. This can be explained by observing the 
moment plots in figure 3.19, where the segmentation process results in a sparse Radon space. 
This is because no table colour, and hence geometry is found in these images.

Results of the classification using the Radon moment feature for tennis are not as good 
as for snooker. This is because of the wild deviations in behaviour of the features over shots 
which are similar (see figure 3.20). Global motion is the primary reason for this feature 
behaviour and hence low classification results.
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Global view Playing area close-up Player Other area view Miscellaneous

Figure 6.6: Examples o f frames from the classes o f interest. Top to bottom, Higgins, 
Hendry, Hunter, Pierce, Hewitt 1, Malisse, Costa.

Higgins Hendry Hunter

Precision 95.65% 86.96% 82.86%
Recall 100% 100% 89.69%

Table 6.2: Precision and recall results for view classification using the Radon moment feature 
in snooker.
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Figure 6.7: Two state ergodic model.

Pierce Malisse Hewitt

Precision 52.24% 55.98% 57.26%
Recall 60.95% 67.64% 60.45%

Table 6.3: Precision and recall results for view classification using the Radon moment feature 
in tennis. Costa was not analysed for reasons outlined in chapter 3.

6.4.2 V iew classification using statistical colour and shape m om ents

In a similar fashion that of the previous section, the quantised colour and shape moments 
(generated in section 3.3.4) were used to drive a two state HMM. For this experiment, the 
HMM was used in an attem pt to recognise views from three snooker sequences and four tennis 
sequence. The accuracy of the retrieval is once again given in terms of precision and recall.

The system was initially assessed using the colour and shape information individually. 
The classification results using colour alone were superior to the various combinations of 
coupled shape features.

The average performance of the classification achieved by each individual feature is given

30

20

10

0
0 500 1000 1500 2000

Figure 6.8: The training vector for Higgins is the hatched areas o f the plot. Frames are on 
the abscissa and the number o f quantised levels are on the y-axis.



6.4. V iew  c lassifica tion  o f snooker a n d  te n n is  sequences 129

in table 6.4 for snooker and table 6.5 for tennis. Bar charts in figure 6.9 show the average 
performance of the retrieval in terms of precision and recall over the snooker and tennis 
footage for the individual shape and colour features.

M o m en ts / ^ s h a p e  ^ s h a p e ^
W '^‘002 ’ ■''^‘ 100 I (M̂ oor,M̂ oon

Recall 76.29% 83.12% 79.19%
Precision 86.76% 90.39% 84.66%

M o m en ts Colour

Recall 79.32% 84.91% 85.65%
Precision 85.68% 86.12% 93.65%

T able  6.4: Classification results. Mean precision and recall using shape and colour moments 
for all snooker sequences.

M o m en ts ( shape ijshape^ 
'.■''̂ ‘002 ) (M^oor^M^ooD

Recall 78.50% 79.33% 77 .37%

Precision 89.08% 86.66% 92.34%

M o m en ts Colour

Recall 83.5% 82.28% 86.13%
Precision 80.69% 83.65% 88.26%

T able  6.5: Classification results. Mean precision and recall using shape and colour moments 
for all tennis sequences.

Tables E.1-E.3 provide the precision and recall results for the snooker footage and ta ­
bles E.4-E.7 of appendix E give the tennis results for the relevant shape and colour moments.

6.4.3 Com m ents on classification and im provem ents by m erging th e results

To enhance the performance of the view classifier, the results from the individual shape and 
colour classifications were merged by cascading two classifiers. This was achieved by first 
considering the classifications due to the colour moment feature. This feature proved to give 
the best classification for the majority of sequences.

For shots which remained unclassified using this method the results from the remaining 
shape feature classifications were used. The observation sequences which are unclassified 
arise from the inability of the HMM to resolve the observation sequence with a particular
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F igu re 6.9: Bar charts o f  the average precision (top) and recall (bo ttom ) for the individual 
shape and colour features for all snooker and tennis footage.

view model. This is because the likelihood of those particular observation sequences, given 
each view model is zero. Since the HMMs are only trained on half of each shot, in some cases 
the remainder of the sequence is subject to some global motion which alters the observations 
sufficiently so as to not recognise them as being attributed to any model. Results from the 
colour classification which had a likelihood less than tha t achieved using the shape features
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were also replaced w ith relevant classifications obtained by th a t shape feature (equation 6.14).

A =  a rg m a x  \p ( X ^ o l o u r ^ ^ c o l o u r p ^ ^ s h a p e ^ y j i a p e ^ ' ]  (5 ^ 4 )
l < c < C  L J

The new results of the classification are tabu la ted  in tables E.8-E.10 for snooker and 
tables E.11-E.14 for tennis in appendix E.

Recognition results achieved by merging the shape and colour feature classification results 

have shown to give an im provement, for most cases, over the use of the features individually. 
Misclassification arises due to  the  sim ilarity between some of the different shot types. For 

example, another view of the playing area can exhibit similar colour and shape content to 
th a t of the global view.

The average perform ance of the classification for each com bination of features is given 
in table 6 . 6  for snooker and table 6.7 for tennis. T he plots in figure 6.10 show the average 
retrieval perform ance for all footage sources using a com bination of colour and shape features.

M o m e n ts , f^A^hape. i j s h a p e \
W' ^ ‘ 0 0 2  ’ - ''■ ^‘ 0 0 1  I

Recall 90.88% 94.20% 86.74%

Precision 88.80% 90.32% 90.56%

M o m e n ts

Recall 91.88% 92.75%
Precision 89.30% 90.16%

T a b le  6 .6 : Classification results. Mean precision and recall using a com bination o f the colour 
and shape m om ents for all snooker sequences.

M o m e n ts

Recall 83.98% 82.99% 87.89%

Precision 92.68% 92.11% 94.45%

M o m e n ts

Recall 82.26% 84.60%
Precision 93.54% 92.22%

T a b le  6.7 : Classification results. Mean precision and recall using a com bination o f  the colour 

and shape m om ents for all tennis sequences.
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Figure 6.10: Plots o f the average precision (top) and recall (bottom) for a combination of 
colour and the relevant shape features for all snooker and tennis footage.

A lternate training sequence on longer sequences

The training performed previously does not reflect true classification which might be needed 
in practice, but since only short sequences were available it was necessary to train in this 
way. The longer sequences were assessed again by training the view models with only half 
the shots in the sequence. So, using figure 6.8 as an example, only the training up to frame 
1000 would be used. The classification results for Hunter, Hewitt and Costa are tabulated in
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tables 6.8, 6.9 and 6.10. Bar charts of the retrieval performance are shown in figure 6.10.

M o m en ts

Recall 81.74 % 82.61 % 82.61%
Precision 92.16 % 95.96% 94.06%

M o m en ts

Recall 84.35 % 82.61%
Precision 93.27 % 92.23%

T ab le  6.8: Results o f the classification using a combination o f colour and each o f the shape 
features for the Hunter sequence using half the shots for training.

M o m en ts

Recall 90.74% 86.79% 90.91%
Precision 83.64% 83.33% 84.21%

M o m en ts

Recall 85.19 % 90.57%
Precision 88.46% 88.89%

T able  6.9: Results o f the classification using a combination o f colour and each o f the shape 
features for the Hewitt sequence using half the shots for training.

M o m en ts {M̂ oor^MZn
Recall 82.67 % 82.67% 91.89%

Precision 100% 100% 98.55%

M o m en ts

Recall 81.33 % 85.33%
Precision 100% 100%

T able  6.10: Results o f the classification using a combination o f colour and each o f the shape 
features for the Costa sequence using half the shots for training.

As expected, when compared to the averages classifications in section 6.4.3, recall results 
are generally not quite as good as those achieved using the previous training sequences. This
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could be a result of some of the shots which were not used for train ing exhibiting different 
cam era m otion resulting in missed classifications. However, classification remains reasonably 
good. This supports the argum ent for using the robust HMM for classifying observations 
w ith such stochastic properties.

It is im portan t to  consider th a t this m ethod of train ing could be com pared to  training from 
one game and testing on another w ithin the same tournam ent. This approach would be useful 
for a broadcaster who m ight require view classification over the duration  of a tournam ent (for 
example the BBC are providing coverage for the 2005 Em bassy World Cham pionship which 
will have 31 games w ith a minimum of 10 frames in each game).

Training and testing  on different sequences

W hen modelling the evolution of the features with an HMM, it is desirable th a t the HMM 
model param eters estim ated from one broadcast of a particu lar sport could be used on another 
broadcast of the same sport. In the framework used here it is not straightforw ard to exercise 
this aspect of model based estim ation. The reason is th a t to  use the HMM, the input 
m ulti-dim ensional continuous feature space is quantised to  create a single dimension d a ta  
stream  with samples represented by an alphabet of a fixed num ber of clusters. These clusters 
correspond to the different Gaussians used in the GMM model estim ation process. Consider 
two outdoor games of tennis e.g. W imbledon played and the Stella Artois Cham pionships 
which are bo th  played on grass. Because the features used are based on the colour content 
of the scene, the colour description of one game may not be appropriate for another game 
even though sematically the objects in the game are the same. Thus grass in W imbledon 
for instance does not look the same as grass in New York. This problem  is worse for games 
played in to tally  different arenas where the colour and m aterials and even the broadcaster is 
changed.

These effects imply th a t the m eaning of the symbols used in the  alphabet for an HMM 
appropriate for one game, are not the same for another game. P u t another way, there is no 
reason for the GMM to select the same symbol for the red in a clay court m atch and the green 
in a grass match. Therefore, to  make the HMM in one game be applicable to the HMM in 
another a system  m ust be pu t in place to  a ttem p t to  make the quantised feature space have 
the same num ber of entries for the same type of event and  make those entries correspond to 
the same s e m a n tic  feature.

While this thesis does not consider this far ranging im plication, the a ttem p t was made 

to  explore these issues w ith a further view classification experim ent. In th a t experim ent, 
by train ing on one sequence {Hendry) and testing on a longer sequence from a different 

hioadceLSter{Hunter) .  Again, as the colour content generally differs from broadcaster to 
broadcaster, labelled clusters in one source will not correlate w ith those in the other. It 
is therefore necessary to  m ap the features between the sequences to  obtain  a reasonable
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observation sequence for classification.
The first mapping that can be easily assigned is the global view. That view occurs most 

frequently and colour content remains fairly consistent throughout. This is corroborated by 
table 3.1. The greatest mixture weights from the GMM clustering in the two sequences should 
therefore correspond to the global view. The likelihood of each data pair within a distance of 
0.1 from each mixture component in feature space with weight greater than 0.25 is therefore 
calculated. These points are then considered to be part of the global view clusters. Close up 
views of the table exhibit more green content than red, while close ups of the players exhibit 
more red than green. Separate clusters are assigned to each of these views based on this 
observation. The remaining two views are significantly more difficult to distinguish in feature 
space. They occur less frequently and have similar feature values to the more prevalent 
view types. The clusters corresponding to these views were labelled by observation. In this 
experiment, the number of clusters is therefore reduced to five for each of the footage sources 
to maintain a consistent number of clusters for testing.

A classification recall of 100% was achieved and a precision of 68.7%. The low precision 
is a result of the feature mapping from which some views are incorrectly labelled.

This issue of ensuring the consistency of the quantisation is crucial for generalisation of 
the HMM between different broadcasts and should be the focus of future work in this area. 
Note however that this observation does not invalidate the work done here, since even if a 
different HMM has to be trained for different sequences, the point is that the data  used for 
training is always a tiny fraction of the length of the entire broadcast.

6.5 Event Classification

In [5,24,76], the temporal interleaving of camera views was found to have inherent meaning 
in terms of the various semantic events. By classifying the different camera views using 
low-level content based features such as colour ratios and global motion, a model could be 
created for high-level events. In [76], to create the model for a ‘service break’ for example, it 
was observed tha t a non-global view was followed by a dissolve transition. This in turn was 
followed by a shot of the full court or another non-global view. The model is terminated by a 
state which represents a close-up of the player. Separate states in the HMM are assigned for 
each of these views. The states are interconnected by a left-to-right topology representing the 
temporal evolution of the views. Using a quantised feature vector derived from the low-level 
content, a separate HMM is trained for each semantic event.

In broadcast snooker footage however, it seems as though the editorial arrangement of 
camera views is independent of the semantic event which has occurred. This is also the case 
for some events that occur in tennis which cannot be inferred using the methods outlined in 
Kijak et al [76], such as a serve and volley. Furthermore, there is a reliance on the editor 
to comply with editorial conventions. This might not occur from broadcaster to broadcaster
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and from year to  year.
O ther features from the footage m ust therefore be discovered th a t do convey some se­

m antic inform ation. By considering th a t the spatio-tem poral evolution of objects as they 
traverse the playing areas em body high-level inform ation, the well known on-hne character 
recognition paradigm  can be applied to  the sports domain. This approach can be validated 
by juxtaposing the arb itra ry  strokes m ade to  draw out characters, w ith the movement of the 
objects which bear out high-level events.

O n-lin e h a n d w ritin g  reco g n itio n

On-line handw riting recognition typically relies on sam pling the tra jecto ry  of a stylus as it 
inputs characters on a pressure sensitive pad. The features ex tracted  from the input are 
generally a com bination of direction, pressure (pen up/dow n), angle between two consecutive 
samples and location from a s ta r shaped quadrant quantisation [142]. The evolution of the 
features are commonly modelled using a left-to-right topology [65,142] where each s ta te  is 
representative of a character stroke (the quantised stroke between a pen up and pen down).

Since each stroke corresponds to  a s ta te  in the model, on-line character recognition systems 
are capable of handling different stroke orders since various topologies can be assigned to 
the various ways th a t a hum an m ight write a character [85]. This encourages its use for 
modelling different plays perform ed by the players in sports since each play, while having the 
same sem antic in terpre tation  may undergo different evolutionary paths.

S p ort A p p lica tio n s

This research approaches sem antic event recognition using explicit tracks of objects which are 
deemed to be im portan t and carrying relevant sem antic inform ation as outlined in sections 4.4 
and 4.5 for snooker and tennis respectively. These are in tu rn , used as observation features 
in order to  model high-level events which occur in sports footage under a HMM framework.

A p p lica tio n  to  snooker: It was observed th a t the position of the white ball a t any time 
instance can allow one to deduce particular events occurring in the footage. T he spatio- 
tem poral behaviour of the white ball, over the duration  of a player’s shot is considered 
to  em body a sem antic event. A shot is the tim e from which the w hite ball s ta rts  its 
m otion until all the balls being tracked come to rest or are po tted . Pot detection can 
be used as a binary classifier to  distinguish between certain  events when am biguity is 
present.

A p p lica tio n  to  tenn is: Tennis footage also offers the prospect of relating the spatio-tem poral 
behaviour of objects to  high-level concepts. For broadcast tennis footage, it is very hard 
to  track the ball as it travels a t great speeds and deforms as a result of m otion blur. 
This invariably leads to  the possibility of tracking the players. As tracking using the
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particle filter has shown good results for tracking both players, it offers the prospect 
of extracting rich semantics directly from the footage. An event in tennis is therefore 
embodied by the motion of the player in the time period between the detection of 
the first racquet hit and a transition from a global view to a non-global view. Court 
view detection and initial player locations are used as binary classifiers if there is a 
discrepancy between models.

6.5.1 Spatial encoding o f the playing area

The playing areas in teimis and snooker can be spatially encoded using the playing area finding 
algorithm outlined in sections 3.3.2 and 3.3.1 respectively. By consecutive subdivision of the 
relevant sections, regions can be labelled even in the presence of global motion. The spatial 
encoding of the playing area also leads to a simple procedure for assigning the initial and 
state transition probabilities in the HMMs for each high-level event. The following sections 
detail the spatial segmentation for both sports.

D iscretisation  o f snooker tab le positions

The dimensions of the table (figure B .l), the positions of the balls and their values dictate 
the flow of the play to be mostly along the long side (from the baulk area to the black spot)  ̂
of the table. The vertical position of the white ball over the duration of a player’s shot, could 
therefore be considered exemplify a particular semantic event.

Using the fact that diagonals of a trapezoid intersect at its centre, the table can be divided 
into 5 horizontal sections at the coloured balls spot intervals (figure 6.11). Initially, the table 
is divided by intersecting the main diagonals, retrieving the centre line. Sub division of the 
two resulting sections retrieves the pink and brown lines, and so on. The starting and end 
positions of the white ball alone do not sufficiently represent a semantic event. The model 
must be augmented by the dynamic behaviour of the ball. The observation sequence, X, is 
therefore the sequence of evolving table sections.

D iscretisation  o f tenn is court positions

In a similar fashion to that used for snooker, the tennis court is divided into sections. The 
existing delineating field lines are used to provide an initial spatial segmentation of the court. 
These quadrants alone are not sufficient to represent the position of the player at all times 
as they can sometimes move out of the court region. These regions must also be accounted 
for. Figure 6.12 illustrates the spatial segmentation of the tennis court. It was decided to 
divide the court into 24 segments where each segment is associated with the lines of play on 
the court. The value of 24 was considered to give a sufficient discretisation of the space to

“'W ithout loss of generality, this dimension is assumed to be the vertical, in that the full table view is 
usually broadcast as such.
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Figure 6.11: Spatial segmentation of the table into 5 sections.

enable tlie determination of the various events required. The figure on the right hand side of 
figure 6.12 shows the typical close up view of the the global view. The figure on the left is 
just used for illustrative purposes to show all 24 quadrant of the court.

Figure 6.12: Spatial segmentation of the tennis court into 24 sections.

6.5 .2  P arsing th e  foo tage at an even t level

For the purpose of this research six well known events from snooker are considered along with 
five from tennis.
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S nooker

The events considered in this thesis were established by querying 6 amateur snooker players  ̂
as to which events they thought to be most im portant in the game of snooker. Break building, 
conservative play, snooker escapes, shot to nothings, open tables and fouls were chosen. These 
events are outlined below and examples of the events are illustrated in figure 6.13.

B re a k  bu ild ing : When break building (illustrated in figure 6.13 (lop left)), the player will
attem pt to pot the balls in a red-colour-red sequence, thereby accumulating the highest 
score possible. This is generally accomplished by keeping the white in the middle of the 
table amongst the red balls. The balls are generally potted in the easier bottom  corner 
pockets when attem pting to build a large break. In terms of the section observations 
this will mean that the white ball will be prominently contained in section 3 or 4. 
Occasionally a ball will need to be potted in either of the middle pockets depending on 
the positions of the remaining balls. This could mean that the white ball will have to 
traverse the table and use the top cushion to regain a good position on the reds.

C o n se rv a tiv e  P lay : During the game each player will attem pt to make his opponent’s
shot as difficult as possible if there is no easy shot available to him. In this case, the 
player will endeavour to play the white ball in such a way as to place it in the baulk 
region behind the three coloured balls (yellow, brown and green) or close to the bottom 
cushion so that his opponent is ‘snookered’. This will generally be the state of play at 
the start of a frame as both players jockey for position and try to force his opponent 
into making an error. An example keyframe of a conservative play is illustrated in 
figure 6.13 (top right).

E scap ing  a  snooker: As is required by the rules of the game, the player must attem pt
to hit a red ball on his first shot after play has been passed to him. If he is snookered 
he will attem pt to either nestle the white amongst the reds, send the white ball back 
to the baulk region, or make the next shot for his opponent as difficult as possible. A 
snooker escape is shown in figure 6.13 (middle left).

S h o t-to -n o th in g : When attem pting to snooker ones opponent, if the shot has not been
played well, a red ball might be in a position to be potted by the opponent. The 
white ball might be situated close to the top of the table in a similar fashion to the 
conservative play model, but on this occasion the player might attem pt to pot a ball 
instead of playing safe. This model will be the same as that used for conservative play 
as the player will attem pt to return the white to the baulk area so as not to leave 
his opponent with an open table. In this case however, the detection of a ball pot is 

^These are the same players used to establish the training observations outlined in section 6.5.3.
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able to  disam biguate between both  events. An example of a typical shot-to-nothing is 
illustrated  in figure 6.13 (middle right).

O p e n  T ab le : An open table (figure 6.13 (bottom  left)) occurs if a player is a ttem pting  to
build a break and misses a pot. This is because, as discussed previously, the player will 
generally try  to  keep the cue ball in such a position so as to  increase his break {i.e. in 
the middle of the table). If he misses, his opponent will have the  opportun ity  to  take 
his shot from a prom ising position and hence is left w ith an open table.

F ou l: In the case of each event, if a new track is not instan tia ted  by the  collision of the
white ball w ith a colour, a foul is flagged. A second condition for a foul to  be declared 

is if the white ball is po tted . A ball p o tted  in the incorrect sequence will also result in a 
foul being called. However, even though the tracker allows the  colour of the ball which 
has been po tted  to  be detected, pots m ight be displayed in cam era views other th an  the 
global view. Consequently, the sequence of pots cannot be accurately recorded. Such 
fouls cannot be detected in this event detection im plem entation. A foul is shown in the 
bottom  right of figure 6.13.

T e n n is

Similar to the snooker footage, 6 termis players were asked their opinions on the most im­
po rtan t events which occur in termis. Aces, faults, double faults, a ttacking plays (serve and
volley) and rallies were chosen. It is difficult to  illustrate the events using a keyframe such
as those used for snooker bu t the descriptions below should suffice.

A ce: From their first service, a player will generally a ttem p t to  h it the ball so th a t their
opponent will be unable to  re tu rn  the ball, or hit the  ball w ith any p art of their racquet. 
In this case, the player serving will stay in the same vicinity as which they s ta rted  their 
serve, not moving across the court or too close to the net. T he cam era view then cuts 
to some other view, norm ally a close up of the  player. To supplem ent detection of the 
event, audio inform ation [31] can be used. There should only be one audible hit before 
the cam era cuts to different view.

F a u lt:  If from the first serve of a player, the ball is h it either into the net, or outside the
bounds of legal play for th a t particu lar serve, a fault is incurred by the serving player. 
The player then moves back to the service line for their next serve.

D o u b le  fa u lt :  If a player incurs two faults on the same service, a point is awarded to  the
other player and a double fault is called. This event can be detected using com binations 
of the ace and fault events and knowledge th a t the player should be serving from the 
same side of the court. It can also be detected by its own particu lar m otion a ttribu tes, 
if the event is conveyed in one contiguous shot.
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W I U I A M

F ig u re  6.13: Illustration o f the high level events in snooker. Top: Break building (left), 
Conservative play (right); Middle: Snooker escape (left). Shot to nothing (right); Bottom: 
Open table (left), Foul (right).

A ttac k in g  serve  an d  volley: Following a good service, the serving player might attem pt
to win the point by moving into the net and returning his opponents shot. A shot where 
the player moves in such a manner is considered to be attacking play.
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R ally : After a serve, the players move around the court hitting the ball to one another
before one attem pts a winner.

6.5 .3  M odel tra in ing  based  on hum an u n derstand ing  o f th e  events

Training data was collated using human understanding of the events. This was achieved using 
a GUI which allows the user to trace the route which they believe the object should travel 
for each of the events. Figure 6.14 shows screen shots of the GUI for tennis and snooker 
with training tracks in each for the event listed. There are three principal benefits of training 
models based on human perception gathered in this way.

MwtEvwtOHt
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F ig u re  6.14: GUI used for user training. Left: Training a shot to nothing event in snooker 
with three tracks. Right: Training a serve and volley event from the right in tennis with five 
tracks.

• Unlike abstract observations such as human feature based representations [119] or mo­
tion energies [161], the observations used have an inherent meaning to the user, and 
are well understood in terms of the geometrical layout of the playing area.

• Since human training is used, there is no need to parse vast amounts of training data 
in the corpus.

• From the user perspective, if he/she is not happy with the training provided, it would 
allow them to tailor the retrieval for their own viewing purposes.

The training is provided with the knowledge that high-level events in snooker and tennis 
are punctuated by certain constraining observations. In snooker, this constraint is that the 
event occurs in the time period between which the white ball begins its motion until all balls 
being tracked come to rest or are potted. In tennis the motion of the player in the time
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period between the detection of the first racquet hit and a transition from a global view to a 
non-global view embodies the semantic event.

Snooker O bservations

In order to accurately correlate the notion of the events listed to the temporally evolving 
position of the white ball, six amateur snooker players were independently asked to express 
their perceptions of each event in terms of the spatio-temporal position of the white ball using 
the GUI. They were asked to make 5 tracks for each event. This allows the formulation of 
models which reflect several human opinions.

The question was posed as follows:

“In terms of the motion of the white ball, in what sequence of sections ® would 
it need to traverse in order to represent each of the following high-level episodes: 
Attempting a snooker, escaping a snooker, shot-to-nothing, break building. Fur­
thermore, what events (ball pots or misses, for example), would also have been 
experienced by the white ball or other balls on the table.”

A single realisation of the each of the players opinions are tabulated in table 6.11. Similar 
answers were given for most of the events by each player (see figure 6.12 for the spatial 
segmentation of the snooker table).

B.B. Conservative Play Snooker escape Shot to nothing

Player 1 [3,4,3] [ 1 - . 5 - 1 ] [ 1 - 4 ] [1 ^ 5 ^  1]
Player 2 [3,4,5] [1] [ 1 - 5 ] [ 1 - 5 ^ 1 ]
Player 3 [3] [2 ^  5 ^  1] [ 1 - 5 ] [1 ^  5 ^  1]
Player 4 [4,5,4] [2,1] [ 1 - 4 ] [1 5 1]
Player 5 [4,5,4] [5] [ 5 - 1 ] [1 ^  5 ^  1]
Player 6 [4,3] [4,5] [ 1 - 5 ] [1 - . 5 ^  1]

Table 6.11: Player’s judgement on the sequence o f sections needed to exemplify an event. 
The notation a —> b impUes that the ball traverses all regions from section a ending in b. 
Illustrations o f a break building event and a shot-to~nothing are shown in figure 6.13.

As can be seen from the table, the requirements for conservative play are similar to those 
of the shot-to-nothing. However, the pot classifier can be used to distinguish between the 
two events as the shot-to-nothing requires that a pot occurs while conservative play does not.

®The concept of the spatial encoding of the table had already been explained
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Tennis Observations

A similar question was posed to six tennis players. They were asked how the motion of 
the serving player should be reflected in the event of an ace, fault, double fault, rally and 
attem pted attack or serve and volley using the GUI. Again, they were asked to make five 
tracks. Note that the observations considered here only take into consideration the behaviour 
of the player in the lower half of the court but can be easily adapted for a player in the top half 
(see figure 6.12 for the spatial segmentation of the court). Furthermore, using this method of 
high-level event classification, the events can be further discriminated into having originated 
from the left or right (for faults, ace and double fault) hand side of the court. This could 
prove useful for coaching videos where a serve from one side of the court might be weaker 
than the other. Table 6.12 shows a realisation of each event from the six players where each 
event originates from the right hand side of the court.

Ace Fault Double Fault

Player 1 [23,19] 23 [23,19,23]
Player 2 23 23 [23, 22]
Player 3 [23,19,18] 23 [23,19,18,22]
Player 4 [23,19] [23,19,18,19,23] [23,18,22]
Player 5 23 [23,19,2.3] [23,22]
Player 6 [23,19] [23,19,18] [23,19,23]

Rally Serve and Volley

Player 1 [23,19,18,22,21,22] [23,19,15]
Player 2 [23,18,19,20,24] [23,19.18,14]
Player 3 [23,19,15,14,18,22] [23,19,14]
Player 4 [23,18,22,21,22,23] [23,19,15,14]
Player 5 [23,19,18,17,18,19,22] [23,19,15]
Player 6 [23,19,23,19,23,20,23] [23,19,15,14]

Table 6.12: Examples of the realisations of the players in terms of the evolution of the 
position of the player in the bottom half o f the court. These observations typify a service 
which originates on the right hand side of the base line.

6.5 .4  E stab lish ing  th e  m odel top o log ies

The model topologies are derived from the observations generated by the training perceptions 
of the users. The topologies therefore reflect the nature of the target patterns for the required 
events in both snooker and tennis.
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S nook er

Events in snooker can be modelled by analysing the spatio-tem poral behaviour of the white 
ball and observations from another ball being tracked. T he observations used are:

X  =  {A’i ,A ’2,;I^3,A’4,A’5} (6.15)

• A’l is the spatially encoded tra jec to ry  white ball.

•  ^ " 2  is a binary value which indicates w hether the white ball has been p o tted  or not
collided with a coloured ball.

•  < ^ 3  is a binary value which is 1  if a global view occurs during a players shot.

• A4  takes a binary value which specifies whether the coloured ball th a t  has been hit has
been potted .

• indicates if the white ball is moving before a global to  non-global view transition  is 

detected.

T he observations therefore take the form:

A-a e  {0 , 1 }
A’3 G { 0 , 1 } (6.16)

{0, 1}
-fs e  {0 , 1 }

Knowing the num ber of states, where a s ta te  is representative of a table section, N  = 5, 
and discrete codebook entries, K  = 5, a. model Ac, can be defined for each of the com peting 
events, C. The observations th a t result from the current s ta te  of the  white ball and the 
coloured ball are taken as binary classifiers to  help distinguish between events w ith similar 
models.

The occurrence of a ball pot or miss (the white ball not colliding w ith a coloured ball) 
will affect the viewer semantics. Priori dom ain knowledge allows a set of heuristics to  be 
established which are used to  evaluate the  current m aximum likelihood classification upon 
detection of a miss or a pot. I t was also observed th a t a snooker escape event is characterised 
by a cut from the full-table view to a close up view of the ball about to  be hit. This occurs 
while the white ball is still in motion. If the velocity of the white ball is greater th an  zero, a 

snooker escape is inferred. T he models for each event are specified below.

• Break building (Ai): The topology (figure 6.15) of this 5 s ta te  HMM enforces the 
occupation of sta tes 3,4 and 5.

If a pot has been detected, ^ ”4  =  1 , the player is a ttem pting  to  build a high break. 
In the unlikely event of one of the balls not being po tted , =  0, the white ball will
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^T> ^ 33

Cl55

F ig u re  6 .15 : H M M  for break building.

probably be in a position such th a t the rem aining balls will be em inently ‘p o ttab le ’. 
This is called an o p e n  ta b le  event (A5 ).

Conservative Play (A2 ); A d a ta  driven approach to  the design of this topology (fig­
ure 6.16) ensures th a t the states 1 and 2 or 4 and 5 are occupied. If this model is

^^22 ^33

F ig u re  6 .16 : H M M  for conservative play.

chosen as being the most likely, and a pot is detected  < ^ 4 =  1 , a shot-to-nothing will be 

inferred (A4 ). This is because the ball will be in an area where it m ight prove difficult 
for a player to  pot the next coloured ball in the sequence. If there is no pot A4  =  0, the 
model choice rem ains the sam e (A2 ). This is a sufficient model for conservative play, 
even though some of the train ing  provided by the players is sim ilar to th a t  used for 
the shot-to-nothing model. T he lack of a po t, even if th a t  model is selected will infer a 
conservative play (see the  flowchart in figure 6.18).

• Escaping an a ttem p ted  snooker (A3 ): Since a player can be snookered from either end 
of the  table a left-to-right, right-to-left topology (figure 6.17) is required to  encompass 

all possible eventualities of the  event as given by the observations in table 6.11. If a pot 
is detected  following the  classification of a snooker escape -^ 4  =  1 , the heuristics will 

infer a break-building event (Ai). As the only goal of the player will be to  escape the 
snooker w ithout conceeding a foul or an  open table if a ball is po tted , it sim ply serves 
as a bonus. If there is no po t, X 4 =  0, the classification will rem ain the same {i.e. a 
snooker escape (A3 )). It has also been noticed from the footage th a t a snooker escape
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F ig u r e  6 .1 7 : H M M  for a snooker escape and a shot-to -noth ing .

is also stylised by a view  transition A 3  =  1  while the w hite ball is m oving — 1.

•  Shot-to-nothing ( A4) :  From observing the training data in table 6.11, a shot to nothing  

can be m odelled using a 5 state, left-to-right, right-to-left HMM (figure 6.17). If a pot 

is detected, — 1, the pot heuristics will infer a shot-to-nothing (A4) .  If there is no 

pot, A 4  =  0 , the spatio-tem poral evolution of the w hite ball position will show that the 

player is attem pting to return the w hite ball to the top of the table. A conservative 

play event, (A2 ), could therefore be inferred as he is making the next shot as difficult 

as possible for his opponent.

In all o f these cases a m iss by the white, Â 2 — 0 , flagged by a non-instantiated second track, 

or if the w hite is potted  will result in a fo u l (Ag) being inferred. P lay will then be transferred 

to the opposing player. Furthermore, if a ball-cushion bounce is detected before an inter-ball 

collision, the player is attem pting a difficult shot which will generally be a snooker escape. 

B oth  of these classifiers override any ML m odel selection. Figure 6.18 illustrates the process 

of determ ining the correct m odel for each event.

T e n n is

Events in tennis can be m odelled by analysing the spatio-tem poral behaviour of the players 

com bined w ith audio inform ation (the racquet hits are detected using the m ethod outlined  

in Dahyot et al [31]) and initial player locations. Since broadcast footage is being used, the  

m odels must be adapted to incorporate view  transition detection  as a further binary classifier.

X  =  {A’i ,^ 2 ,A ’3,A 4} (6.17)

•  X i is the spatially encoded trajectory of the serving player.

•  ^ " 2 is a binary value which is equal to 1  when the first racquet hit which occurs in each  

global view  is detected and remains at 1  until a view  transition is detected.

•  A3  is a binary value representing which side of the court the player is on for their 

detected service (left 0 , right 1 ).
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Figure 6.18: Event HMMs with binary classifiers. An event is taken as the time between 
which the white starts moving and all balls being tracked come to rest. The null event might 
occur i f  a player walks in front o f the white ball and then uncovers it. A tracker will be 
instantiated. However, i f  the white ball does not move until a view transition is detected, it 
is deemed to be a null event.
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• A4 is a binary value which is 1 if the tim e between the first and second racquet hits in 
a global view is greater th an  5 seconds.

T he observations take the form;

A-i e

(6.18)
- f 3 e { 0 , i }

^4 G {0,1}

Knowing the num ber of states, where a s ta te  represents a vertical column of the  tennis 
court (see figure 6.12 for illustrations), =  4, and discrete codebook entries, K  = 12, where 
each of the observations is a quadran t of the tennis court in the upper or lower half of the 
court depending on the side from which a service is taken a model Ac, can be defined for 
each of the com peting events, C. K  = \2

The models for each event are specified below and are given for a service which originates 
from the bo ttom  half of the court. The figures (6.19-6.21) a ttem p t to  illustrate the  possible 
ou tpu ts which might be observed from each s ta te  for the particu lar event type. This is 
expressed via the  rectangles which show the probabilites of the observations from each state. 
T he observations obey the standard  constraint th a t the sum of the observation probabilities 
for each sta te  is equal to  one. The methodology for the choice of event given the observations 
is clarified in the flowchart of figure 6 .22 .

1. If ^ ”2 =  1;

• Ace (Ai), Fault (A2): If a single racquet hit is detected ^ ”2 =  1 in the global view, 
a fault or an ace is deemed to have occurred. The model used for the two events is 
the same, bu t the observations differ. For an ace, the player serves and moves to 
the left or right while for a fault the player moves back to  the base line from where 
they originally served. If two fault events are detected in sequence, w ith the  player 
serving from the same side of the  court for both , the second is considered to  be a 
‘le t’ (when the ball hits the top of the net bu t bounces in the correct service box). 
If a fault is followed by an ace, w ith the player serving from the same side of the 
court for both , A3 =  0 or 1 for both , a double fault is assum ed to  have occurred. 
We assume this because the likelihood of an ace on a second service is quite low. 

A 4 s ta te  HMM, which is ergodic for s tates 2 and 3 is used to model the  service 
and follow up of the player as they move toward the net for an ace, or back to 
the service line for a fault. T he transitions to  the left from sta te  2 and to  the 
right from sta te  3 model any m otion of the player if they walk off the court. The 
observations proabilities are shown in the rectangles em inating from each state.

’̂ The total number of quadrants is 24 but only the behaviour of serving player is considered to embody the 
event. This means that only 12 quadrants (1 . . .  12 for the player in the top half and 13. . .  24 for the player in 
the bottom half) are needed as observations. Figure 6.12 illustrates the spatial locations of the quadrants.
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F ig u r e  6 .1 9 : H M M  for an ace, fault and double fau lt w ith  relevant observations.

2. If A”2  =  0:

•  Fault (A2 ): If A4  =  1, and on the next detected racquet hit, the initial location  

of the player is the sam e i.e. is the same, a fault is assum ed to have occurred.

•  Double fault (A3 ): A double fault can be m odelled using the sam e 4 state topology  

used for the ace and fault events. The different m odel param eters arise from the 

difference in the observations (table 6.12). The player makes their first fault, moves 

back to the base line and then faults again.

•  Attacking serve and volley (A4 ): The sam e topology as is used for the ace and

(double) fault is employed for an attacking serve and volley. As the player moves 

toward the net he generally stays between the two inner tram  lines and between the 

net and the service line Training observations differ however from the previous 

events.

•  Rally (A5 ): A rally is m odelled using a 4 state left-to-right, right-to-left HMM.

A rally will generally last several racquet hits and is typified by large am ounts of 

m otion around the court illustrated by the realisation of such an event in table 6 . 1 2 .

®See figure B.2 for a labelled schematic of a tennis court.
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a22 a33

aLl a44

Figure 6.20: HMM for an attacking serve and volley with relevant observations.

6 .5 .5  E v en t c la ss ifica tio n  r e su lts  for sn ook er  an d  te n n is

The goal of this section is to report on the results of high-level event classification in snooker 
and tennis. The frequency of these events in each of the snooker and tennis footage sources 
are listed in tables 6.13 and 6.15 respectively.

It should be noted that the sum of the frequency of events for each footage source is not 
equal to the total number of global views (see table 6.1 for details). This is because more 
than one event can occur in any global view {e.g. a fault followed by a rally, or several break 
building events in one contiguous shot of the global view). Furthermore, in the same way as 
other views convey no useful high-level information, if the required objects are not moving 
while the global view is being displayed, no important information is transm itted. Global 
views containing no motion information are discarded.

Experiments were conducted on all three sources of snooker footage {Higgins, Hendry 
and Hunter) and an additional source King, from the same broadcaster as Hendry. This 
additional footage was 86622 frames in duration with 109 global views, but was only made 
available late in the research and was not utilised in previous chapters. Half of this footage 
was processed using the tracker and the remainder was simulated using the GUI outlined in 
section 6.5.3. 7 events were observed in Higgins, 10 in Hendry, 33 in Hunter and 116 in King.
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F ig u re  6.21: HMM for a rally with relevant observations.

Table 6.13 lists the frequencies of these events.
Experiments were conducted on three sources of tennis footage {Pierce, Malisse and 

Hewitt). Since the geometry was not available in Costa, the players could not be tracked 
using the method outlined in chapter 4, so the footage was not considered for high-level event 
detection. 5 events were observed in Pierce, 9 in Malisse and 20 in Hewitt. Table 6.15 lists 
the frequency of these events.

Given the observation sequence, X, and the trained models, Ac, the semantic episode 
within each clip can be classified by finding the model which results in the greatest likelihood 
of occurring according to equation 6.19. The binary classifiers are then used to correctly de­
termine the event type. The event classifications results for snooker and tennis are illustrated 
using confusion matrices in tables 6.14 and 6.16 respectively.

A =  argmaxi<c<c[-P('^i|Ac)], C = 4 events for snooker
. X y j

C — 5 events for tennis

One discrepancy in results is the classification of break building events as shot-to-nothings. 
The reason for this is in the topology of the break building model. As discussed in the event 
descriptions, break building is mainly confined to the bottom  part of the table. However, it 
can also occur in the top sections. This is where the inconsistency arises. Some of the shots
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/ i  = argmax[P(A'il A )]
l<r<5

l  = argmax[Wii;i^)]
3<r<5

Ace /if Fault /i, Double fault Serve and volley Rally>^

F ig u r e  6 .2 2 : Event HM M s with binary classifiers.

taken by the players originate from one end of the table and rebound off the opposing cushion 
as the player a ttem p ts  to  get a good position on another ball. An illustration of this is shown 
in figure 6.23. A break building was also classified as an open table on one occasion. This 
was because a green ball pot could be detected using the ball tracker (figure 6.23). All the 
break building event which are misclassified as open tables are due to  problem  in tracking. As 
discussed in chapter 5, the lum inance segm entation does not enable differentiation between 
ball colours. These separate ball regions appear merged in the binary image. The colour 
model cannot resolve the targe t model with the ball to be tracked and pots are not detected.

The missed events arise for a number of reasons. On two occasions in Higgins and once
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Higgins Hendry Hunter King

Break building (Ai) 3 9 2 2 59
Conservative Play (A2 ) 2 1 6 41

Snooker Escape (A3 ) 0 0 1 3
Shot-to-nothing (A4 ) 1 0 2 5

Open Table (A5 ) 1 0 1 4

Foul(Ae) 0 0 1 4

T able 6.13: Frequency of events in the global view in snooker.

Event Ai A2 A3 A4 As Ae Missed T otal

Ai 71 1 0 5 5 3 8 93
0 37 6 0 C

0 0 2 50

A3 0 0 4 0 0 0 0 4

A4 2 1 0 5 0 0 0 8

As 0 2 0 0 4 0 0 6

Ae 0 0 1 0 0 4 0 5

T otal 73 41 11 10 14 7 10 166

T able 6.14: Confusion m atrix for event classification in all snooker footage

POT!!

F igu re 6.23: Break building classified as a shot-to-nothing (left) and an open table (right)

in King, a player attempts to pot a ball along the cushion. Here, the white ball is located very 
close to the cushion for the duration of the shot and is masked by the player masking. This
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means that a track is not generated. Other missed break building events and conservative 
plays result from a loss of track of the white ball. On these occasions, the player hits the ball 
with such force that it is out of the range of the tracker. Possible use of a motion proposal 
in the particle filtering stage would help re-establish the track.

Snooker escapes are confused with conservative plays on occasion due to the track borne 
out by the ball. A foul is incorrectly classified as a snooker escape in King. It arose by the 
systems inability to determine the correct sequence in which balls should be hit. On this 
occasion a black was hit instead of a green.

Pierce Malisse Hewitt

Ace (Ai) 0 1 2
Fault (A2) 1 3 4

Double Fault (A3) 0 1 1
Serve and volley (A4) 0 0 2

Rally (As) 4 4 11

Table 6.15: Frequency o f events in the global view in tennis.

Event ^1 A2 ^3 A4 As Missed Total

Ai 2 0 0 1 0 0 3

A2 0 7 1 0 0 0 8

•̂ 3 0 0 2 0 0 0 2

A4 0 0 0 2 0 0 2

As 0 1 1 0 17 0 19

Total 2 8 4 3 17 0 34

Table 6.16: Confusion matrix for event classification in all tennis footage

The tabulated confusion matrix (table 6.16) shows that two rally events are misclassified. 
In Hewitt, one of the rallies is quite short in duration. The player moves from one side of 
the court to the other where the point is won. This is analogous to the motion behaviour 
of the player for a double fault event. A similar problem occurs in Pierce where a short 
rally exhibits a comparable track to a fault where the player remains in one state. The final 
misclassification results from a fault being classified as a rally. In Malisse, the single observed 
ace event is a game point winner. The camera follows the player for a short duration as he 
returns to his seat. His motion is similar to that of an attacking serve and volley play, and is 
classified as such.
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In both the case of snooker and tennis, under trained models could also be responsible 
for some of the misclassifications. Additional training should provide better results.

Results using our method {Rea) are tabulated in table 6.17 in terms of precision (P) 
and recall (R), and are compared to those obtained in Kijak et al [75] for equivalent events. 
The results obtained using our method compare favourably to those obtained by Kijak. It 
is im portant to note that our method retrieves an additional three explicit {i.e. semantic) 
events over Kijak while they also retrieve aspects from the footage which do not contain 
specific semantics (Break in play and Replays) relating to the play.

Rea Kijak
P R P R

Fault 87.5% 100% 86% 88%
Rally 89.47% 100% 94% 86%

T able  6.17: Comparison between our technique and that obtained by Kijak et al [75],

6.6 Sum m arisation and Indexing

A browser for viewing high level events which occur in a snooker or tennis match has been 
created by Andrew Crawford of the Sigmedia group in the Electrical and Electronic Engineer­
ing Department in Trinity College Dublin. The browser takes as an input a time indexed file 
labelled with each event type, the start and end time of the events, the camera view type and 
the locations of shot cuts for snooker and tennis footage. Supplemental ball colour and pot 
pocket information are provided for snooker to enable the user to search for pots made by the 
players by relevant ball colours, pocket numbers or a combination of both. Player position 
m etadata allows the user to discriminate from which side of the court the event originates. 
A keyframe summary for each high-level event clip is generated off-line to which this data  is 
associated.

A time indexed tree structure of events types, combined with the keyframe summary 
allows the user to determine if they wish to view the clip. The idea of keyframe selection in 
this work is to build a synthetic representation of the event using the motion of the objects 
which convey the semantics in some comprehensible manner. A keyframe for each clip in the 
snooker footage is generated by superimposing the track borne out by the white ball and the 
ball which has just been hit on the averaged first and last frame of the clip. An illustration 
of the keyframes used in the browser is shown in figure 6.24. They are annotated with the 
event type, and if a pot has occurred, the pocket in which the ball was potted and its colour. 
High-level events in tennis are summarised using the work of Yeterian [165], also at Sigmedia. 
A mosaic of the termis court is rendered, on to which an onion skin of the motion of the player
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between detected ball hits [31] is overlaid.

F ig u re  6.24: Snooker and tennis summaries. Top: A  summary ot an open table (left), a 
conservative play (middle) and break building (right); Bottom: Three keyframes from a rally 
event.

These kinds of keyframe summaries could also prove useful for media aware content adap­
tation applications where there is insufficient bandwidth to transm it a full video summary of 
the game. More details on the browser can be found in [29].

6.7  Sum m ary

This chapter presented an approach for camera view and high-level event classification. The 
iIMM was introduced and its abilities to model temporally evolving sequences were presented. 
A DHMM was chosen to model the stochastic nature of the quantised colour and shape 
features.

By considering the spatio-temporal behaviour of an object as being the embodiment of 
the semantics of an event, high-level events were retrieved from broadcast tennis and snooker 
footage. The treatm ent of this problem differs from previous works which rely on the temporal 
interspersion of various camera views to classify the appropriate views. These constraints 
assume that the editorial arrangement of camera views will be abided by. While there is 
some requirement for view transitions from global to non-global for detection of certain 
events in this thesis (because broadcast footage is being used), the techniques described in 
this chapter are more independent of the editorial process. If only the global view feed was 
broadcast, the modelling procedures could easily be altered by incorporating other features 
such as detection of crowd response to capture all the required events, without the need for
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these editing constraints.



7
Conclusions and Future Directions

This thesis has presented the means for detecting high-level events which occur in sports using 
only broadcast footage. A five stage framework for sports video analysis was proposed, with 
each stage contributing to the goal of detecting semantic events. The difficulty of detecting 
such events in a video stream has been discussed and the solution provided by this thesis has 
been shown to be effective for tennis and snooker footage. This was achieved by considering 
the spatio-temporal evolution of an object as being the embodiment of a semantic process.

In the preliminary stages of the research it became obvious that in order to detect high- 
level events, it was necessary to firstly simplify this problem to one of detecting where in the 
video stream these events could actually occur. This initiated the creation of the first two 
steps of the framework. It was assumed that the global view, which provides an overview 
of the entire playing surface, was able to capture all the significant events which may be 
required to create a useful summary of the game. This was affirmed by analysing videos of 
temiis and snooker footage. The approach taken for detecting this view type was presented 
in chapter 3. It was argued tha t sports such as tennis, snooker, badminton, and cricket all 
occur within predefined playing limits. This means that they are well defined in terms of the 
geometrical properties of their delineating playing areas and colour properties of the camera 
view, and could be parsed accordingly. This led to the creation of a feature which could 
follow the changes in the edge information of each camera view. This feature summarised 
the surface of Radon space within a single value representation. Statistical colour and shape 
moments were also extracted to aid in the classification of camera views. A hidden Markov 
model (HMM) was chosen as a suitable framework for modelling the stochastic nature of the

159
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view features. Using maximum likelihood classification, the HMM was employed to classify 
the various view types. Results presented in chapter 6 show it to be effective for this purpose.

Having classified the views, chapters 4 and 5 were conceived by the need for additional 
features for high-level event classification. Object tracking was achieved using a colour based 
particle filter based on the CONDENSATION algorithm. Extensions to this technique were 
proposed to encourage better tracking in a constrained sports environment such as tennis and 
snooker. The tracker made use of the a-priori detected scene geometry and its relation to 
the real world geometry of the delineated playing area to automatically scale the candidate 
regions. This both increased the efficiency of the tracking algorithm while also providing 
better track of the object. Since the playing area surface is also known a-priori, a likehhood 
ratio of object colour to background colour was used. Tracking using this method was shown 
to give better tracking fidelity because it promotes tracking of the selected object and not 
regions which contain a large number of playing area pixels, forcing the particles to be more 
centred on the object to be tracked. Parzen windows were used to help track smaller objects 
because these objects typically do not contain enough data to empirically yield a useful 
histogram.

In view of the track borne out by the object, it was identified that the spatio-temporal 
behaviour of the object over a particular duration could be related to semantic events. It 
is believed that this was the first attem pt at analysing this behaviour to elicit high-level 
semantics in the sports domain. The spatio-temporal behaviour of the objects was modelled 
using a HMM. It enabled six common high-level events in snooker and five tennis events to 
be detected. This thesis only observed the behaviour of a single object under the HMM and 
used supplemental features such as collisions in snooker and initial player positions in tennis 
to aid in the classification. As there can be many more moving objects in view, modelling the 
behaviour of each one could provide access to additional semantics. This could be achieved 
for example by modelling the behaviour of both the top and bottom  tennis players with 
separate HMMs. This would require the calculation of a correlation measure between the two 
models to correctly infer the event. Alternatively a single HMM which models the behaviour 
of both players could be used. Significant drawbacks of this approach would include both 
computational expense and a need for a great deal of training material.

7.1 Future work

The vast quantity and range of archived sports footage permits this area of research to be 
explored for many years to come. While this thesis has dealt with the detection of semantic 
events for specific sports, the problem of creating a complete system for generic sports parsing 
and high-level event extraction remains open. A hierarchical approach is clearly the most 
appropriate way to engage this undertaking. A typical domain hierarchy could be structured 
as follows:
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L evel 1: L ow -level co n ten t a n a ly sis  ;
T he lowest level in the hierarchy could involve discrim inating the various sports based 
on low-level features such as colour, motion, geom etry and audio and classify them  as 
being either indoor or outdoor, the playing surface type (grass, sand, clay, etc.) and 
an approxim ation of the num ber of partic ipants and their m otion properties. Further 
refinement of low-level features could detect the actual sport being played.

L evel 2: S em a n tic  C o n ten t :
High-level sem antic events could then be detected by m onitoring the evolution of fea­
tures for specific sport dom ains as was presented in this thesis.

L evel 3: A ffectiv e  C o n ten t :
Relating the resulting emotions from sem antic events is key in further enhancing the 
retrieval for the user.

Possible improvements to  the  current techniques im plemented are discussed under the 
headings of the levels in the dom ain hierarchy.

L ow -level co n ten t an a lysis

Im provements in spatial and tem poral segm entation are essential for this stage in the hierar­
chy. To this end, a m ethod based on estim ating the unknown standard  deviation of a centred 
norm al d istribution from a m ixture density is currently  being researched for applications 
including spatial segm entation [32], This m ethod has thus far shown promising results for 
playing area segm entation w ithout the  need for any sort of thresholding.

Spatial segm entation could also include analysis of light and shadows to deduce the playing 
environment. Dom inant colour ratios, models for surface type and the geom etry of the scene 
could help classify the sport genre being played. Superior dom ain independent tem poral 
boundary detection techniques are also required to  b e tte r parse sports sequences.

Being able to  distinguish between different types of broadcast sports requires sufficient 
domain knowledge. It has been shown th a t different sports footage exhibit varying global 
m otion patterns [159] and colour content [24,48]. D etection of slow-motion sections [47,112] 
and view type could allow the sport type to  be inferred.

S em an tic  C o n ten t

Most of the work undertaken in the thesis has dealt with this particu lar level in the hierarchy. 
While bo th  visual and audio features were exploited to  detect sem antic events, they were 
applied separately. A future improvement could be to  use both  stream s under the same 
probabilistic framework. HMMs allow for m ultim odal integration so it makes sense to  exploit 
this powerful tra it  of the model.
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Both audio and text have been shown to be valuable for detecting semantic events in 
sports footage [2,31,91,97]. Crowd cheers can signify that a score has been made or a 
significant event has occurred and since the score is normally on screen at all times, OCR 
techniques should be used to supplement the existing audio visual data to identify which 
player or team has scored.

While the global view captures most of the im portant events, the same events can on 
occasion, be captured from other angles. Assuming that a stream of the full view is being 
captured, which is increasingly the case with DTV, this becomes a moot observation and all 
processing can be carried out on the required global view. In any case, other views must be 
considered to embody additional useful information which can be parsed for further high-level 
events. For example, in soccer, the global view would be that of an elevated side on view of 
the pitch. Such a view might not capture an off the ball incident. However, another camera 
could allow such an event to be detected.

There has been some research recently in attem pting to resolve annotating keywords with 
visual features in images [100]. Fusing the existing keywords with segmented objects in this 
way could provide access to additional semantics.

A ffectiv e  C o n ten t

As was discussed in section 2.3, high-level content comes in two flavours; semantic content 
and affective content. The purpose of this work was to extract the semantic events from the 
footage, for indexing and summarisation purposes. The occurrence of these events can be 
exploited to gauge the level of excitement of a sport, thereby accessing the affective content. 
For example, if a user wished to find all the exciting games in a set of tennis, this might be 
signified by a high presence of base-line rallies, several aces and many points exchanged around 
the deuce/ad vantage period of the game. A tedious game might be a result of a succession of 
aces or double faults. This would require supplemental feature extraction such as temporal 
information and character recognition to recognise to whom the points were awarded. A 
hierarchical HMM such as that used by Cohen et al [26] for emotion recognition could exploit 
the state sequence generated by the event detection HMMs to drive a IIMM which recognises 
exciting, boring or eventful games. The degree or quality of affective content could be given 
further discriminating power by monitoring the frequency of the semantic events.

In any system such as this, user feedback is essential for improving the retrieval. While 
relevance feedback is a relatively mature field of research for text and low-level content based 
image retrieval, it could prove to be a promising research area which would enhance the 
retrieval of high-level sports events in video. To a certain extent the training methods for 
high-level events provided by this thesis are a form of relevant feedback. If the user is not 
happy with the retrieval provided by the system, they can tailor the retrieval for their own 
viewing purposes.
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C o n tin u in g  w ork in sp o r ts  retr ieva l in  S ig in ed ia

A front end browser is currently being produced by the Sigmedia group in Trinity College 
Dublin. The browser allows the user to search through the footage by the labelled events. It 
takes as input the time indexed footage with an event label and displays the event clip. A 
content aware summary of the event is generated using the methods outlined in section 6.6. 
The first detected content aware frame is used as a keyframe to select the event.

By detecting events and the player/team  to which the points are awarded, the burden of 
human editing of sports footage could be alleviated. Using the detected event type along with 
view classification, the HMM could be used as a generative model which has been trained 
with established editing techniques. Robotic cameras which capture the global view could 
also be used to track the required objects.

The fruits of the collaboration between members of Sigmedia for sports retrieval are to 
be presented on Scope [133], a television program on RTE (the national Irish broadcaster) 
which encourages teenagers to pursue Engineering and Science courses.

It is hoped that this thesis has illustrated that with the correct combination of classifica­
tion and modelling tools and exploiting the user context, high-level CBVR is feasible.



Hidden Markov Models

A HMM can be defined by a set of three param eters, and the known model specifications K  
and N.  If this full set is known the HMM can be used either as a generative model or to 
com pute how the o u tpu t sequence was generated.

The elements of a general discrete HMM are:

• A set of states 5  =  {Si ,  S 2 , ■■■, S ^ } .  The s ta te  at tim e t is qt'. Process moves from one 
sta te  to another in a M arkovian fashion.

• M atrix of transition  probabilities A  =  (0 ^ )  where a^- =  P{qt+i =  Sj\qt =  Si),  1 <  

h j  <  It defines probabilistically how the process moves among states, where 
obeys the standard  constraints:

« „ > 0 .  l < i , j < J V
I < i  <  N

•  Set of discrete quantised observations V =  { x \ , x 2 , . . . x k } -  In a given state , observations 
are generated according to  a d istribution described by B , discussed next.

• M atrix  of observation probabilities B  =  hj{xk) where bj{xk) =  P{ Xt  =  Xk\qt =  Sj),  1 <  
j < N , \ < k < K  : It defines the pdf of observations given the state. In the discrete 
case B  obeys the constraints:

bj{xk) >0,  1 < j  < iV
K ........................................  (A-2)
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In essence, each s ta te  has a probability mass function associated w ith it th a t dictates 
how likely a particu lar observation is from th a t state.

• Vector of initial probabilities tt =  {tt,;}; tt* =  P{q\ = 5 ,), 1 < i < N:  It defines the 
probability of the initial state.

So, given K  and N  a succinct definition of a HMM can be given by A, where

Issue 1: Evaluating the observation sequence likelihood. Given the quantised observation 
sequence X  =  { X i , X 2 , and the model A =  (A ,B ,7 t), find the probabihty  th a t
the HMM actually generated the  sequence regardless of the particu lar s ta te  sequence. 
This can then  be used as a sort of ranking system where there are a num ber of com peting 
HMM classes and the one th a t best fits the observation is to  be found.

Issue 2: Calculation of the optim al s ta te  sequence and the individually most likely state. 
Given the quantised observation sequence X  =  { Xi ,  X 2 , ■ ■ ■ X t } ,  and the model A =  
( A , B ,  7t), find the most likely sequence of states, S  = {qi ,q2 , th a t produced the
observation sequence.

Issue 3: HMM param eter estim ation using Baum-Welch. Given the quantised observation 
sequence X  =  {X i, X 2 , ■ ■ ■ X t } ,  calculate the model th a t best fits the observation data. 
{i.e. evaluate the model, A =  (A, B,7t), th a t maximises the likelihood P (X |A )).

The following sections outline the derivations and solutions to each of each issues.

A .l  Issue 1: Evaluating the observation likelihood

Evaluating the observation likelihood, P (X |A ), can be solved directly by m arginalising the

joint probability P (X ,5 |A ), where S  — {Qi,q2 ,

A =  { A , B , 7 t} (A.3)

Given this definition of a HMM, there are three central issues of evaluation, decoding and 
estim ation which have to  be resolved before a HMM can be applied to  a specific problem.

P(X |A ) =  J P { X , S \ X ) d S (A.4)

Assuming th a t the observations are independent and of length T :

P 0 ^ \ s , \ )  =  h,,{x^)h,,{X2)....h,.,{XT) (A.5)

The probability th a t this s ta te  sequence results is

/ ’(lS|A) — 91 92 '^ 9 2 9 3  • • • • ® 9 r - 1 9 T (A.6)
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The joint probability of X and S  is therefore

P{X,S\X)  = Pi X\S ,X)P{S\X)  (A.7)

Summing over all state sequences results in

P{X\X) = ^ P { X \ S , X ) P { S \ X )  (A.8)
5

This, however, results in an exponentially increasing complexity over time of 0{2TN'^) ,  
as the sum is taken over all possible routes through the trellis. The calculation is computa­
tionally unfeasible even for a HMM with a small number of states, N ,  and a short observation 
sequence, T.

A more elegant solution to the problem of finding the observation probability is to con­
sider the HMM in trellis representation, or alternatively, as a finite state machine (FSM)
extended over time (Figure A .l). This allows an algorithm called the ‘forward-backward 
algorithm’ [124] to be implemented where a variable is declared that can be calculated in­
ductively at each time step.

The basic function of the forward-backward algorithm is to efficiently propagate state 
information through the trellis. The following sections detail the derivations of the forward 
part of the algorithm.

A . 1.1 D e r iv a t io n  o f  t h e  fo rw a rd  v a r ia b le .

For each state in the trellis the forward variable. at{i), is defined as the joint probability of 
observing the partial observation sequence X =  {Aj, A'2 , . . .  Xt}  and being in state Si at time 
t\

at{t) = P { X u X 2 , . . . X t , q t  = s^) (A.9)

The forward variable is calculated recursively starting at the left hand side of the trellis 
and working to the right as illustrated in figure A.2.

1. Initialisation of forward variable for 1 < i < iV.

Ql(z) = P { X u q i = S , )
= P{X, \qi  = S^)P{ql = S^)

ai{i) =hi{Xi) 'Ki

2. Derivation of induction step for 1 < i < A'’ and 1 < t < T  — 1.

oit+iU) = ■ ■ ■ ^t+i,Qt+i =  Sj)
-  E z = i  • • • Xt+i,qt = Si, qt+i = Sj)
=  E!Li P(Xi+i,qt+i = SjjXi . . .Xt , q t  =  S^)P{X^ . . . Xt , q t  =  Ŝ )
= T . ^ =i f ‘{^t+I,qt+1 = S'jkt =  Si)at{i)
= E , = 1  Pi^t+ilQi+i = Sj)P{qt+i = Sj\qt = Si)at{i)

at+iU) = Y^^=i{aijOit{i))bj{Xt+i)
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«!(/) a,{i) a {̂i) a j  (/)

State

T

N T
Time

Figure A .l :  Trellis representation o f HMM with N  states and trellis section repeated T  — 3 
times. Transitions between states defined by matrix A  and observation generation defined 
bv matrix B

3. Termination.
^(X |A ) =  E i l i  P{y^\QT =  X)P{qT =  5i|A)

= ZliP{^,QT = Ŝ \X) 
nX|A) =E*=i«r(*)

This is a much more computationally efficient method than the ‘direct m ethod’, being of 
0 { T N ‘̂).

A .2 Issue 2: C alculation of optim al sta te sequence and m ost
likely state

The state sequence can be calculated in two ways. The first (section A.2.1) exploits the 
forward and backward variables to calculate a locally optimal state. It does so by selecting the 
state which maximises the probability of tha t state occurring at time t given all observations. 
The second uses the Viterbi algorithm (section A.2.4) to calculate an optimal state sequence 
by selecting a state from which the path to the current state is most likely.
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t - \  t t + \

Figure A .2; Illustration of operations to obtain at+i(j).

A .2.1 Locally op tim al sta te  selection

This method maximises the expected number of correct states, therefore generating a locally 
optimised path. The decoding algorithm determines the state which should be arrived in by 
calculating the highest probability of all paths coming from the previous step and producing 
the desired observation. This is a local optimisation, therefore the algorithm does not guar­
antee that the path is actually allowable, (e.g. the probability of a certain state at a time 
step t may be the maximum at that instance according to the calculations, but the path may 
not be valid as an null transition in Cy may be given).

The state path is produced by defining a variable 7t(i) as the probability of being in state 
Si at time t given the observation sequence X = {XiX2.. . .Xt} .  The most likely state at any 
time t is the one which maximizes expression A. 10.

-ft{i) = P{qt = S^\X,....XT), l < t < T  (A.IO)

Forward recursion has been presented, now backward recursion is shown and how 7 is
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calculated from a and 0 (the backward variable).

A .2.2 D erivation  o f th e  backward variable

For each state in the trellis the backward variable, /3f(z), is defined as the conditional proba­
bility of observing the partial observation sequence {Xt+i, Xt+2 , ■ ■ ■ ^ t }  given that state Si 
had been occupied at time t.

dtii) = P(X(+i, Xi+2,. . .  Xr\qt  = Si) (A .ll)

Similar to the calculation of the forward variable, the backward variable is calculated 
recursively, but in this case beginning at the right hand side of the trellis and working to 
the left. An illustration of the operations needed to obtain the backward variable is given in 
figure A.3.

t t + \  t + 2

Figure A .3: Illustration of operations to obtain /3t+i(j) for one time step.



A .2. Issu e  2: C a lcu la tio n  o f  o p tim a l s ta te  seq u en ce  and m o st lik e ly  s ta te  170

1. Initialisation of backward variable a t tim e t = T  and for states I < i < N .

Pri i )  = where 1 <  z <  (A .12)

2. Derivation of the induction step for 2 <  t <  T  — 1 and 1 <  i <  Â .

f3t{i) = P { X t + u - X T \ q t  = S^)

= E f = i P { X t + i , . . . XT , q t + l  = Sj\qt = Si , )

=  Ef=i P { X t + i , q t + i  =  S j \ X t + 2 - X T , q t  =  5,)A+i(j)
= Ef=i P{ Xt +l \ q t + l  =  S j ) P{ q t +i  = Sj\qt =  S^)Pt+l{ j )

0 t { i )  = E^i^j(^t+i)auA+i(j)

3. Term ination.
,v

/? i(l) =  J ]5 j(X 2 )a ,,/3 2 (j)  (A.13)
j= i

A .2.3 D erivation  o f th e  op tim al s ta te  at tim e t.

is a variable which is the probability of being in s ta te  S, a t tim e t given the entire 
observation sequence. 7t (0  can be calculated using the forward and backward variables 
where 7 has already been defined as the probability of being in s ta te  Si  a t tim e t  given the 
observation sequence X  =  { X i X 2 -. . -Xt}-

-fk{i) = P { q t ^ S ^ \ X , . . . X T )
_  P ( X i . . . X r , q t = S j )
-  P { X r . . . X r )_ P ( X i . . . X T \ q t = S , ) P ( q t = S ^ )
-  P { X , . . . X r )

Since ( X\  . . .  Xt )  and (X(+i . . .  X y )  are independent given qt the probability  of the entire 
observation sequence can be re-w ritten as:

P { X i  . . . X u  Xt+i  . . .  Xr \ qt  = Si) = P { X ,  . . .  Xt \qt  =  S^)P{Xt+l  . . .  X r h  = S^) (A.14)

^ ^•'1 _  P{X,. . .Xt\qt=Si)P{Xt+^.. .XT\qt=S^)P{qt=Si)
-  P { X i . . . X r )
_  P ( X i . . . X t , q t = S i ) P { X t + i . . . X r \ q t = S i )  

P { X , . . . X t )

7t(z) E;=ia<(i)AW 
Where,

N  N

P { X ,  . . . X t )  = Y 1  ■■■^T, q t  = s^) = Y ,  at{i)Pt{i)  (A.15)
i= l i= l

The most likely sta te  qt a t tim e t  is the one which maximises 7t(i).

Qf =  argm ax[7t(i)], l < t < T  (A .16)
K i< N
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A .2.4 V iterb i algorithm : M ost likely path  v ia  D ynam ic program m ing

The Viterbi algorithm is used to obtain the most likely state sequence S  = {qi,q2 , (or
the sequence which maximises P (5 |X i,X 2 ...X t) given the observation vector. It is based 
on the Dynamic Programming principles proposed by Bellman [8]. The evaluation is similar 
to that of the forward algorithm except at each state, instead of summing the probabilities 
from previous states, the maximum is found so there exists only the most probable path to 
the next state. The computation begins at time t = 1 and continues to the right, as with the 
forward algorithm, to t = T.

In order to keep track of the most likely state sequence, a state pointer variable, 
is defined for each state and tiniestep. This pointer contains the argument which maximises 

and is used to find the optimal path through the trellis. The most likely state q^, 
or the individually most likely state at any time t, is calculated by finding the argument 
which maximises St{i). The three steps involved in calculating the optimal state sequence are 
similar to the derivation of a r  with the being replaced with a rnax^^.

1. Initialisation: As with the forward variable, computation begins &t t = 1 for states 
I < i < N . The state reference pointer is initialised at 0.

(5i(z) = n M X i )
4>i{i) = 0

2. Induction Step: For each state in the trellis the parameter St{i) is defined as the maxi­
mum of the joint probability of the partial observation sequence X = {X\ ,  X 2 , ■■■, Xt}  
and the state sequence. To retrieve the state sequence, the argument which maximises 
the previous equation must be kept track of (for 2 < t < T  — I and 1 < j  < Â )-

6tU) = P { X u . . . , X u q t  =  Sj)
=  niaxi<j<jv[-f* ( ^ ■ ■ ■ T X t — i ,  q t — i  =  S i , q t  =  S j ) ]

= niaxi<j<7v[.P(^tI Qt — 5'j 1^1,. • • , 11 qt-\  — S i ) P { X \ , , Xt~\, qt—i — 5'j)]
=  maxi<j<iv[(5t-i(i)ay] bj{Xt)

( p t U )  =  argmaxi<j<yv[(5«-i(i)ay]

3. Termination: At time t = T, the best single path is

P* =  maxi<i<N[ST{i)] 

q^ = argmaxi<j<jv[(5T(0]

4. Backtracking: The optimal state sequence is uncovered by backtracking through the 
trellis according to

q; = cPt+liq^+l), i =  T - ( A . 1 9 )
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A .3 Issue 3: H M M  param eter estim ation  using Baum -W elch

The goal in HMM learning is to  determ ine the model param eters from an ensemble of feature 
vectors or training corpus. The most likely or optim al param eters cannot be directly solved 
from the d a ta  bu t a good estim ate can be obtained using the Baum-W elch algorithm  [7]. The 
algorithm  calculates the expected values of the param eters to  iteratively update the model 
using user supplied training. Convergence is assumed when the change in u pdate  is very 

small. The Baum-W elch algorithm  is an instance of a generalised expectation-m axim isation 
(GEM ) algorithm .

A .3.1 Baum -W elch algorithm

Assuming a model A =  (A ,B ,7 t), the Baum-Welch algorithm  a ttem pts to  obtain a  model X' 
which locally maximises P(X jA ). The process is itera ted  until a certain  threshold is met. 

The model param eters, Sy, bi{Xt),  and nt  can be intuitively estim ated as follows:

_  __ Ex p ec t ed  n u m b e r  o f  t i m e s  a t r a n s i t i o n  f r o m  Sj  to S j  occurs
Ex p ec t ed  n u m b e r  o f  t r a n s i t i on s  out  o f  s t a t e  Si

^  N   E xp e c t ed  n u m b e r  o f  observat ions  o f  X t  wh i le  i n  s tate  Sj
 ̂  ̂ ^ ' N u m b e r  o f  t i m e s  i n  s tate  Si

TTi = Expected f r equency  in  state Sj a t t — 1

To describe the reestim ation process, the variable m ust is defined. This variable
com putes the probability th a t one hidden s ta te  follows another, {i.e. the probability of being 
in sta te  5, a t tim e t and Sj  a t tim e t - | - 1 given the observation sequence X  =  { X i X 2 - . -Xt})-

i t i i j )  = P ( q t  = S i , q t + , = S j \ X , . . . X T )
-  P { q t = S r , q t + i = S , , X i . . . X T )  (A.^Uj

P { X i . . . X r )

M aking use of the observation independence assum ption in equation A. 14, and the Markov 
assum ption equation A .20 can be rew ritten as:

r  /,• P ( q t = S „ X , . . . X t ) P { X t + l . . . X T , q t + l = S , )
-  P ( X i . . . Xt )
_  P i q t = S i , X i . . . X t j P { q t + i = S - j , X t + i ) P { X t + i . - . X T \ q t + i = S j )

P { X , . . . X t )
  P i q t —S i , X i . . . X t ) P { q t + i —S j \ X t + i ) P { X t + i \ q t - n = S j ) P { X t + i - - - X T \ q t - \ - i = S j )

P ( X , . . . X t )_ at { t )a i i b j (X t +i ) l 3 t +i { j )
-  P ( X i . . . X t )

t  ( j  _  <^ti i )o-nb. i (Xt+i)f}t+i i j )_______

This can also be interpreted as being the probability of going through a specific branch. 
Figure A.4 shows the sequences of operations required for the com putation of the joint event 
of a system which is in 5j a t time t and Sj  a t tim e i -|- 1. From figure A.4, it can be seen 
th a t at{i) accounts for the observations up until time t, aij and bj{xk+i) accounts for the
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transition from state i to j  and the resulting observation at tim e t + I. f t t+i{j)  accounts for 

the observations from tim e t +  2 until X t -

By sum m ing the 7 t(z) and variables over tim es ( 1 . . .  T)  and ( 1 . . .  T —1) , quantities

expressing the number of tim es Si  is visited and transitions made from from Si,  respectively 

can be obtained.

•  E xpected frequency in state at i =  1: 71  (i).

•  The expected number of transitions out of state 5j is: I t i i ) -

•  E xpected number of transitions from state 5 , to S j  can be given as: Y lt= i j)-

•  The expected number of tim es in state Si observing sym bol Xfc: Xt=xk (^^ut
only tim es when observation is equal to are counted.)

Using the expressions above, the reestim ation formulae become:

Based on the above procedure, by iteratively using the updated m odel. A' =  ( A , B , ^ ) ,  in 

lieu of A and repeating the reestim ation calculation, the probabihty of X  being observed can 

be improved until a limit governing convergence is reached.

A .3.2 Training and recognition using scaling of forward and backward vari-

of the observation sequence, the values approach zero exponentially which, if the sequence is

(A.21)

ables

As the forward, at{i ) ,  and backward /3t{i) variables are com puted recursively over the length

long enough, will be beyond the precision of m ost machines. In order to com pensate for this, 

a scaling factor must be com puted for all a  values. (3 is also changed using this scale. The 

scaling factor q  can be com puted as:

5f(i) =  ctat(i) (A.22)

The scaling values do not affect the results of the re-estim ated parameters as they are 

based on the interm ediate probabilities, and 7t(i) from which the scaling values in the

rmmerator and denom inator cancel.
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t — \ t 7 + 1 7 + 2
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B
A brief history of Snooker and Tennis, the basic rules 

and terminology

B .l  A brief h istory o f Snooker

Snooker is derived from the game of bilhards which had been played by aristocrats since 
the early 16th century. Disillusioned w ith the complex rules of billiards, Colonel Sir Neville 
Cham berlain decided on placing different coloured balls in various locations on the table 
and attaching certain  values to  these balls. The objective of this new game becam e one of 
accum ulating a high score (a break) by potting  the balls in a cetain sequence in place of a 

more com plicated rule set of ‘w inners’, ‘losers’ and ‘cannons’.
The title  of the game is often a ttrib u ted  to Col. C ham berlain who was quoted as once 

saying in an article in The Billiard Player [34];

‘T he term  (snooker) was a new one to  me \  b u t I soon had an opportunity  of 
exploiting it when one of our party  failed to  hole a coloured ball which was close 
to  a corner pocket. I called out to him:

“Why, you’re a regular snooker.” I had to  explain to  the com pany the defini­
tion of the word and, to  soothe the feelings of the  culprit, I added th a t we were 
all, so to  speak, snookers a t the game, so it would be appropriate to call the game 
snooker. T he suggestion was adopted with enthusiasm  and the game has been 
called snooker ever since.’

^The nick-name 'snooker’ was given to cadets at the Royal Military Academy.

175
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A meeting was arranged in Ootacamund, India, in 1882, where the officers in Col. Cham­
berlain’s brigade were stationed. There, precise rules were drawn up and published. However, 
the game was not officially recognised by the Billiards Club until the early 20th century. Since 
then snooker has grown into the more popular of the two games due to its more accessible 
rule set.

W ith the advent of the colour television in the 1960’s, snooker emerged as the most 
popular table based game in the UK. Players such as Denis Taylor and Ray Reardon breathed 
new life into the game that up until then, was still viewed very much as a sport for the social 
elite. Snooker’s popularity was confirmed in 1985 when 18.5 million viewers watched Dennis 
Taylor beat Steve Davis 18-17 in the Embassy World final at 12;23am on a Monday morning. 
The last frame finished on equal scores and the match was decided on a re-spotted black.

Charismatic players such as Ronnie “The Rocket” O’Sullivan and the return of Jimmy 
■‘Whirlwind” W hite have kept the interest in snooker at a high since a downturn in the 
early 1990’s. Viewing figures for last years (2003) Embassy World final, televised on BBC2, 
in which Mark Williams withstood a comeback from Ken Doherty, before winning 18-16, 
peaked at 7.1 million at around llp rn  and produced an audience share of 40.2%. This was 
the second year in a row where viewing figures exceeded 7 million for the final.

B.2 The basic rules - Snooker

Snooker is played on a green felted table measuring 1.86m in width and 3.7m in length with 
21 coloured balls and one cue ball all of 52.5mm in diameter. The objective of the game 
is to accumulate the highest break by potting (sinking) balls in a particular order. A red 
nmst be the first ball potted followed by another ball of any colour other than red or white. 
The coloured balls are re-spotted after being sunk. This sequence is followed until all red 
balls have been potted. The player must then pot the yellow, green, brown, blue, pink and 
black balls in that order. These are not re-spotted. For example, to accumulate the highest 
break possible in snooker (147 points), each red must be potted followed in turn by the black. 
Having potted all reds, the remaining coloured balls are potted in the required sequence.

If the white ball is potted or if the white collides with a ball other than that declared, 
a foul is called. The opposing player receives 4 extra points (minimum), or the value of the 
ball that the white hit, and play reverts to him. Figure B .l shows a typical snooker table 
with measurements, ball locations and ball values.

B .3 Snooker Term inology

B aulk: The area before the top horizontal line (the baulk line), drawn on the table. This 
is normally the safest area for the white ball since it should be the furthest away from the reds.
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Figure B .l:  A snooker table with dimensions, location o f the balls and their values.

Baulk Colours: The coloured balls on the line that borders the baulk from the rest of 
the table (yellow, brown and green).

Break: The cumulative score of a player in one turn at the table.

Colours: Defined as the balls of the game other than the white and the reds. They all 
have values between two and seven as shown in figure B .l.

Cue B a ll/W h ite  Ball: The white ball of the game, used to hit the other balls. The 
ball is hit by the cue of the player.

Cushion: The edges of the playing area are lined with cushions to allow the balls to bounce 
freely. A difficult shot results if the cue ball is positioned beside the cushion (on the cushion). 
This means that a player does not have full control over the ball.

Frame: Usually described as one '‘racked” game of snooker. (Not to be confused with a 
single image. Should be implicit in the context).

O pen Table: If a player attem pts a shot but misses and leaves the white ball in such 
an area where there is a high likelihood of balls being available to pot by his opponent.
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P o ck e t: These are located at each corner of the snooker table and half way down the 
longest sides. It is not necessary for a player to call the pocket into which he is attem pting 
to pot the ball.

P o t: When a ball rolls into a pocket.

R eferee : A person that keeps track of the scores, cleans the balls, racks them and de­
cides on fouls. He will usually have to impinge on the table to fulfil his duties.

Safety : If the player hits the cue ball so that a collision will result in a difficult shot for the 
opponent. A safety does not necessarily have to be a snooker (see last term). The white ball 
is usually hit into the baulk area or beside a cushion.

S h o t-to -n o th in g : When the player takes on a pot while not attem pting to place himself on 
the next ball in the sequence. These are usually long, dangerous pots and if not achieved can 
leave an easy opening for the opponent, but if they are, can be quite spectacular.

Snooker: Snookering an opponent is achieved by making it difficult for him to hit his 
next desired ball. Usually a player will try to snooker his opponent when there is no easy 
shot available, or when there are not enough points on the table for him to win the frame. 
The white ball is usually hit so that it becomes positioned behind a coloured ball tha t is not 
the next in the sequence to be hit.

B .4 The basic rules - Tennis

Tennis can be played in either indoor or outdoor environments and on a variety of court 
surfaces. Typically, outdoor games are played on grass, clay, rebound ace or hard courts 
while indoor games are played on hard court or rebound ace surfaces. Each of the four 
annual Grand Slam events is contested on a different surface: Grass at W'imbledon, clay at 
The French Open, hard court at the US Open, and rebound ace at the Australian Open. The 
delineating lines on all surfaces are painted white.

The type of surface will dictate the players approach to the game [22]. Grass surfaces have 
a low coefficient of friction and are called ‘fast’ surfaces. Clay on the other hand is a ‘slow’ 
surface due to its relatively high coefficient of friction. On a fast court, a serve-and-volley is 
an often used attack by the serving player. His opponent will find it difficult to return the 
serve and the point can be won by the server approaching the net and volleying the winner. 
Longer baseline rallies are a typical feature of harder court surfaces as the players probe for 
openings.

The figure below shows a schematic of an ITF (International Tennis Federation) regulation
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sized tennis court.
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F ig u re  B .2: A schematic o f  a tennis court w ith hue dimensions.

B.5 N otes on the captured broadcast footage

T he broadcast snooker and tennis footage used in this research were captured a t 720 x 576 
resohition. Each of the footage sources is from a different broadcaster an d /o r com petition 
exhibiting different editing effects and cam era views. The footage H unter is from Sky Sports 
and is of the 2002 B ritish Open between Paul H unter and Ian McCulloch. Higgins shows 
John Higgins playing Stephen Hendry in the 2001 W orld Cham pionship, broadcast on BBC 
while Hendry is the final of the 2002 Irish Open between John Higgins and Stephen Hendry 
shown on RTE television. Each of the footage sources was captured on different m edia and 
all are of relatively low quality. Hendry  was recorded using VHS, Higgins using S-VHS and 
H unter using a DVD copy from VHS. The low quality caused some hindrance in conducting 
the experim ents, in particular the ball tracking. Supplem ental DV footage was m ade available 
late in the research from stop.w atch television. This footage was not used for evaluation of 
the algorithm s outlined in chapters 3- 5, or view classification in chapter 6. It was however
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used for event detection, the results of which are reported on in the relevant sections. The 
footage King is of the 2004 Irish Masters from RTE and was contested between Mark King 
and Graeme Dott.

The tennis footage used was captured on DigiBeta and consists of four separate games 
from 2 broadcasters. The grass court footage is from BBC coverage at Wimbledon. The 
first grass court game, Pierce, is of Mary Pierce vs Magui Serna while the second grass 
court match, Hewitt is between Lleyton Hewitt and Xavier Malisse. The final footage from 
Wimbledon, Malisse, is of Xavier Malisse against David Nalbandian. The clay court footage, 
Costa, is from RTP coverage of the Estoril Open and shows the match of Albert Costa against 
Todd Martin.

The system developed in this research operates on captured live broadcast footage. The 
camera views that are used are therefore controlled by a studio editor. Advances in digital 
television enables the user to interact with the video stream and select whichever camera view 
they would like to observe. This means that each view is continuously broadcast without 
interference from the others. As this thesis only considers the global view (full table for 
snooker and full court for tennis) for event classification, current technologies encourage and 
validate the use of this assumption. In section 3.2, it is shown that for non-interactive tennis 
and snooker streams respectively, the occurrences of these main views are quite high relative 
to the total duration of the clip.



c
Particle Filter

The Particle Filter is one of the principal tools in a suite of Sequential Monte Carlo (SMC) 
techniques [44]. It is a numerical technique for generating samples from the posterior distri­
bution of some variable that is under scrutiny. The key point is that the technique allows 
the updating of the underlying sample distribution as new data arrives. It is different from 
the Kalman Filter in that it is a numerical technique that is suitable for handling non-linear 
systems in which the underlying distributions are non-Gaussian.

Consider that the state variable under scrutiny at time t is qt, and it must be estimated 
indirectly through the observed data Xt- The essential idea of the Particle Filter is to exploit 
the factorisation of the posterior p{qt\Xt, into a term involving a likelihood
at the current time t and a prior which connects previous states with the current state: a 
predictive process for the states. For the work in this thesis for instance, the state to be 
estimated is the position of an object. Hence the likelihood encodes some image matching 
criterion while the predictive prior encodes the motion of the object i.e. how the current 
position relates to previous positions.

The Particle Filter therefore involves two broad stages. The first is simulation of the 
posterior at time t + 1 given observations up to time t. This is the prediction step. Secondly 
a weighting or "‘filtering” step is employed, which is a direct application of Bayes rule, to 
compute the posterior from observations up until time i -|- 1. This second step employs the 
likelihood at  ̂ - I -  1 as weights for resampling, much like importance weights would be used 
in importance sampling. Note that in this context the word "filtering” is not used in the 
traditional DSP sense. Instead it refers to the time evolution of the samples in the Particle
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F ilter as they are pruned or regenerated through the weighting and resam pling steps.
T he mean s ta te  of the system , or the posterior m ean estim ate, can be solved using the

filtering density, where qt^\  is the s ta te  at tim e t +  1, and is the
observation sequence up to  tim e t + \ .

£\p{qt+i\Xi,„t+i)\ =  J  qt+ip{qt+i\Xi,„t+i)dqt+i (C .l)

T he filtering density is estim ated recursively in two steps: Prediction and U pdate. If a first 
order M arkovian process is assum ed the transition  density of the unobserved states can be 
described by:

p{Qt+i\qt-qi) = p{qt+\\qt) (C.2)

and if observations are considered to  be independent given a particu lar s ta te  the observation 

likelihood becomes:

p{Xt+i \q t+i -q i )  = p[Xt+i\qt+i)  (C.3)

In the p re d ic t io n  stage, the  prior at tim e t + 1  is estim ated by propagating the current fil­
tering density, p{qt\Xi,,,t)^ by the sta te  transition  density p{qt+i\qt) according to  equation C.4 
below:

p(qui \Xi . . . t )  = Jp{qt,qt+i\Xi. . . t)dqt
=  I  P(qt+i\qt)piqt\Xi...t)dqt 

At the next tim e step, i +  1, the filtering density is u p d a te d  by Bayes theorem  when new 
d a ta  is observed to  arrive at the new posterior.

P{qt+\\^\.. .t+\) p(X i,  , t+ i)
_ p(^yt+i.-yi.,,t|gt-|-i)p(g(-|-i)  

p(^t+i,A''i. ..t )
_  p{^t+i \^i . . . t ,q t+i )p{Xi , . . t \q t+i )p{qt+i )
~   ̂ p{Xt+i \Xi. . . t )p{Xi^. . t )
_  p(A't+i|Xi. . . i ,g t+ i)p( i?t+ i |A 'i . . . i )p (Xi. . . t )p(qf+ i)
“   ̂ p(Xt+i \X, . . . t )plXi . . . t )p(qt+i )
_  p(A'’i+i|i?t+i)p(<iif+i|A''i...t)
-  p (Xt +i \Xu. . t )

(C.5)

So the effective prior in equation C.5, p{qt+i\Xi,„t),  is taken as a prediction of the pos­
terior, p{qt\Xi^,,t), hi the previous tim e-step, given in equation C.4. However, this recursion 
formula cannot be im plem ented in practice because it can only be evaluated using high di­
mensional integrals [43].

An approxim ation to the tru e  posterior can be achieved however by m apping the integrals 
of the Bayesian solution of a recursively estim ated posterior to  a discrete weighted sum of 
samples drawn indirectly from the posterior via a proposal function which is in someway 
related to  the posterior.

Since the true posterior is not norm ally available to  be sam pled from, a proposal dis­

tribu tion  u{qt\X\,,,t) is used in its place. From equation C .l, a general formulation of the
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approxim ation to  the posterior is:

=  (C.6)

=  p(Xi.^t+i) I  f i Q t + i ) w t + M < l t + i \ X i . . . t + i ) d q t + i

Elim inating the normalising density and where

w t + \  = -------7------nr;-------- -̂---- (C.7)

the norm alised posterior becomes

c { t l „  M _  J  f i Q t + l ) w t  + i u { q t  +  i \Xi . . . t - \ - i )dq t  + i

_  I  f {Qt+l )wt+lu{Qt+i \Xi . . . t+i )dqt -^.  I (C.8)
f  Wt + i u { q t i - i \ X i . . t  + i)dqt-i-i

According to  perfect M onte Carlo sim ulation [44] any expectation of the  form in equa­
tion C.9 can be approxim ated by equation C.IO.

£[ f {Qt +i ) ]  =  J  f { q t + i ) p { q t + i \ X i . . . t + i ) d q t + i  (C.9)

1 ^
(C.IO)

i=l

This m eans th a t by sam pling from the proposal function u{. ) ,  equation C.8 can be ap­
proxim ated as equation C .l l .

nf{qt+̂ )] «  (C.ll)
N  Z ^ i = l  ^ t + 1

By replacing f { q t + i )  w ith q,  statistics such as the MMSE or M AP estim ates of the sta te  
can be calculated. A mechanism to sequentially update  the weights is given in equation C.12 
which is proved fully in Doucet et al [44].

p{Xt+i\qt+i)p{qt+i\qt)  
w t + i = w t —  ^ ^  (C.12)

The iterative algorithm  for the generic particle filter, which is im plem ented for the tracking 
problem  in this thesis, is given in several papers [4,107,118], so is not reproduced here.



D
The Radon Transform

The Radon transform enables the value of a 2D function at an arbitrary point to be uniquely 
obtainable by calculating the integrals along the lines of all directions passing the point. 
The primary goal of the transform is to simplify the process of finding global geometrical 
objects (circles and lines for example) in the (x, y) image domain by re-parameterisation. 
The problem of finding the object is then converted into one of local peak detection. For 
straight line detection, the Radon transform uses the p = x cos6 + y sin0 form of the line 
(illustrated in figure D .l), where p is the perpendicular distance of the line to the origin and 
6 is the angle of the perpendicular to the horizontal in image space.

F ig u re  D .l :  {p,9) representation o f a straight line.
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It has been shown in [36,147] th a t the R,adon transform  of a point is a sine wave. Fig­
ure D.2 (top) shows an arb itra ry  point (x*,y*)  and its corresponding R adon transform .
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F ig u re  D.2: Top: Radon Transform o f  a po int {x*,y*) in [x, y)  image space to  a sine 
wave with parameters (p*,0*) in (p,0) Radon space. B ottom : Radon Transform o f  a line 
resulting in a peak in accumulated Radon space, where the location o f  the peak {p*,9*) are 
the parameters o f  the image space line.

By applying th is procedure to  several points, (e.g. the discrete points in a line), where 
each point results in a corresponding sine wave of different (p, 0) param eters, integration of 
the waves in R adon space results in a peak where the  waves intersect. The m aximum in the 
accum ulated Radon space are the (p, 0) param eters of the line in image space. Figure D.2 
(bottom ), illustrates the Radon transform  of a line.

As a result of the strong geom etry of some sports playing surfaces, the lines or playing 
surface boundaries can be ex tracted  from the image using a com bination of segm entation and 
edge detection.



E
Results of snooker and tennis view classification

This appendix tabulates the results from the view classification of section 6.4. The quan­
tised statistical shape and colour features were used to train a discrete hidden Markov model 
(DHMM). In section E .l, tables E.1-E.7 provide recall and precision results for the clas­
sification using the features individually for snooker and termis footage. In section E.2, 
tables E.8-E.14 show the result of cascading the two classifiers for the same footage.
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E .l  V iew  Classification using features individually

M om ents {Mtor,Mton
Recall 83.33 % 100 % 81.82%

Precision 75.00 % 91.30% 94.74%

M om ents Colour

Recall 90.48 % 95.24% 100%
Precision 90.48 % 90.91% 86.96%

Table E .l:  Results of the classification using shape and colour moments on the Higgins 
sequence.

M om ents

Recall 92.31 % 92.31% 92.86%
Precision 60.00 % 60.00% 65.00%

M om ents (^^002"^A1l0^) Colour

Recall 91.67 % 85.71% 100%
Precision 55.00 % 63.16% 71.43%

Table E.2: Results o f the classification using shape and colour moments on the Hendry 
sequence.

M om ents

Recall 80.95 % 83.64% 81.13%
Precision 89.47 % 94.85% 90.53%

M om ents /  f ^ s h a p e  f ^shape- . /  i j s h a p e  jLjshape\ Colour

Recall 83.96 % 81.73% 86.41%
Precision 90.82 % 88.54% 88.12%

Table E.3: Results of the classification using shape and colour moments on the Hunter 
sequence .
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M om ents (M^oor,MfoD
Recall 100 % 100 % 100%

Precision 81.25 % 75.00% 62.50%

M om ents Colour

Recall 91.67 % 100% 87.50%
Precision 73.33 % 81.25% 100%

Table E.4: Results of the classification using shape and colour moments on the Pierce 
sequence.

M om ents (■Moo7^■^o^r)
Recall 90.00 % 83.33% 100%

Precision 52.94% 62.50 % 72.22%

M om ents Colour

Recall 75.00 % 71.43% 76.92%
Precision 85.71 % 71.43% 66.67%

Table E.5: Results o f the classification using shape and colour moments on the Malisse 
sequence.

M om ents (Mtor^Mfor) (M̂ oor,M̂ oin (Mtor^Mfor)
Recall 80.39 % 81.63% 77.36%

Precision 83.67 % 80.00% 87.23%

M om ents (M̂ oor^MfoD Colour

Recall 70.83 % 75.51% 93.75%
Precision 75.56% 78.72% 80.36%

Table E.6: Results o f the classification using shape and colour moments on the Hewitt 
sequence.
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M o m en ts / I , s h a p e  / . j s h a p e \  
V' *002 '•'''^‘010 ) ( ^ ^ 0 S 2 " ^ A ^ 0 0 ^ )

Recall 83.33 % 80.56% 93.06%
Precision 95.24 % 95.08% 95.71%

M o m en ts Colour

Recall 82.43 % 86.30% 89.04
Precision 98.39 % 96.92% 97.01

T able  E .7: Results o f the classification using shape and colour moments on the Costa 
sequence .

E.2 V iew  C lassification by cascading th e classifiers

M o m en ts (M^oor^M^oiD
Recall 90.91% 100% 82.61%

Precision 90.91 % 95.83% 95.00%

M o m en ts (M^oor^M^oiD
Recall 91.30% 95.65%

Precision 95.45 % 95.65%

T ab le  E .8: Results o f the classification using a combination o f colour and each o f the shape 
features for the Higgins sequence.

M o m en ts

Recall 100% 100% 95.00%
Precision 83.33 % 79.17% 82.61%

M o m en ts {MllT.Mtun (M^oor,Mfon
Recall 100% 100%

Precision 79.17 % 82.61%

T able  E .9: Results o f the classification using a combination o f colour and each o f the shape 
features for the Hendry sequence.
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M om ents

Recall 81.74 % 82.61 % 82.61%
Precision 92.16 % 95.96% 94.06%

M om ents

Recall 84.35 % 82.61%
Precision 93.27 % 92.23%

Table E.IO: Results o f the classification using a combination o f colour and each o f the shape 
features for the Hunter sequence.

M om ents

Recall 87.50% 87.50% 87.50%
Precision 100% 100% 100%

M om ents

Recall 87.50% 87.50%
Precision 100% 100%

Table E . l l :  Results o f the classification using a combination o f colour and each o f the shape 
features for the Pierce sequence.

M om ents

Recall 75.00% 75.00% 81.25%
Precision 80.00% 80.00% 86.67%

M om ents

Recall 75.00% 75.00%
Precision 85.71 % 80.00%

Table E.12: Results o f the classification using a combination o f colour and each o f the shape 
features for the Malisse sequence.
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M om ents { M t o r ,M f o r ) 1 ^  shape ^  shape  ̂

Recall 90.74% 86.79% 90.91%

Precision 83.64% 83.33% 84.21%

M om ents / t .shape shapes.

Recall 85.19 % 90.57%

Precision 88.46% 88.89%

Table E.13: Results o f the classification using a combination o f colour and each o f the shape 
features for the Hewitt sequence.

M om ents (M^oor^M^ooD
Recall 82.67 % 82.67% 91.89%

Precision 100% 100% 98.55%

M om ents

Recall 81.33 % 85.33%
Precision 100% 100%

Table E.14: Results o f the classification using a combination o f colour and each o f the shape 
features for the Costa sequence.
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