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Abstract

This thesis investigates semantic analysis of broadcast sports footage. A domain depen-
dent sports video model is proposed. Under this model, the game semantics can be derived
according to their relationship with the sequence of dynamic events that occur in the sport
and the evolution of the spatio-temporal behaviour of a relevant object. Snooker and tennis
are targeted as typical broadcast sports footage for the purpose of this research. The prob-
lem focus is to automatically extract semantically meaningful events and to convey a useful
representation to the user.

Access to semantics provides a more natural tool for a user to query a corpus of data
than by low-level content based features alone. These semantics are however open to various
interpretations by different viewers. Therefore, in order to create a successful semantic based
retrieval system it is necessary to consider the user-context. Unconstrained sports footage
is generally very complicated in structure, so restricting the domain being addressed enables
a viewer model to be created. Domain specific features are extracted from the raw footage.
These can then be exploited to develop algorithms which understand the characteristics of
the data and the requirements of the user. These algorithms enable low-level domain features
to be mapped to high-level semantics by learning the evolution of the features.

Traditionally, low-level visual features have been used to summarise the content in view.
Global colour, texture and motion have all been used for this purpose. In this thesis a novel
algorithm is presented which captures the geometry of the scene without having to extract
and reconstruct complicated 3D scene geometry. Hidden Markov models are then used in a
novel fashion to model these observations for camera view classification.

A new extension of the colour based Particle Filter is employed to track objects. It
encourages better tracking in a constrained sports environment by exploiting prior scene
geometry and playing surface colour information. The implementation of the tracker also
allows for object collision and disappearance to be detected. The performance of the tracker
is assessed using geometrical measures and by comparing it to the tracking produced using a
gradient based motion estimator.

Thus far, retrieval of semantic events from sports footage has relied on prior knowledge
of the broadcast video syntax. Typically, the temporal interleaving of camera views has
been used to infer these important events or highlights in the footage. In this research,
the spatio-temporal behaviour of tennis players and snooker balls are considered as being the
embodiment of a semantic event. This concept offers a new means of automatically extracting
semantic episodes from sports footage.

The scope of this thesis could easily be extended by further investigation into retrieval of

semantic events from the vast quantities of other live and archived sports footage.
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Introduction

Research interest in high-level content based video analysis has grown in recent years [9,25].
A good deal of this has been focused on the detection of semantic events that occur in sports
video footage [5,24, 31,40,48,76,172]. There are two primary factors contributing to this

upsurge in research.

The Commercial Aspect: In a recent study performed for the European Union it was
shown that sport themed channels are those showing the most considerable growth
across the member States [111]. The commercial value of certain sports broadcast on
these channels ! and the increasing choice being made available to viewers with the
advent of Digital Television (DTV), has motivated broadcasting companies into finding
additional means of exploiting the data set, from which to add to the marketability
of the product. Interactivity is still hoped to be the killer application in new digital
satellite and terrestrial services. The ability to choose the camera angle with which to
view a soccer game, or being able to select a particular match from several concurrent

games in tennis are just two examples of current trends in sports broadcasting.

The vast quantities of live and archived sports video material has resulted in demands
by broadcasters for systems that ease the burden of annotating these bodies of data.
This has motivated many researchers into undertaking the problem of high-level con-
tent based analysis of sports videos. This annotation process is currently a manual

'In 2003 for example, a £1.024bn three year deal was struck by BSKYB with the English Football Asso-
ciation for the live broadcast rights to the Premier League [61]. While in 1998, the National Football League
(NFL) agreed an eight year deal with four broadcasters worth $18bn [53].




undertaking, where humans are responsible for accounting for the events which take
place [9]. The existing manually derived metadata can be augmented by way of auto-
matically derived low-level content based features such as colour, shape, motion and
texture [41]. This enables queries against visual content as well as textual searches

against the predefined annotations allowing for more subjective queries to be posed.

The User Consideration: Sports, as a genre, appeals to the general public and while
most viewers will be content to view an entire game, some may only wish to view the
highlights or a brief description of the events that occurred in the game. Alternatively,
the user could specify the level of summary required (e.g. the entire tennis game with
adverts, only the tennis, playing time or important events). This kind of freedom of
access to the media has been made possible by DTV. It enables the viewer to effectively
become the editor of their own programming with the content having been pre-recorded
on a set-top box similar to the TiVo 2 or SKY™* 3.

The enhanced viewing abilities offered by DTV also offers a wealth of information
to be made available to the viewer in the form of textual headers and content based
descriptors. In the 2004 Six Nations Rugby, for example, the BBC provided statistics
of previous games between the nations along with the player line-ups and textual meta
data of the important events. The BBC coverage of the 2004 Olympics allowed the
viewer to select one of 5 video streams of different events in conjunction with access to
medal tables and a news ticker updating the user on the Games proceedings. Providing
the user with the capacity to query broadcast footage at a high-level of abstraction to

retrieve relevant events is a main area of research in many institutes.

Retrieval is a non-trivial task in general and is made even more difficult by the so-called
“semantic gap” that exists between machine and user. As semantic level queries provides the
most natural means for a user to query a corpus of data, it makes sense to develop algorithms
that understand the nature of the data in this way. The typical user would rather search
for this type of content using high-level queries rather than making use of low-level content
descriptors. Integrating several low-level features can allow a user to search for high-level
events but it is invariably cumbersome and time consuming. For goal events in a soccer game
for example, a user would rather pose a semantic query (e.g. “Show me all the goals in
the game”) rather than specifying low-level content based features such as percentages of
dominant colour, velocities of objects, camera motion and the amplitude of the audio.

Semantics are subjective, so in order to create a successful retrieval system based on the
semantics of the visual document, it is necessary to understand the user context. As the
viewer operates at high levels of abstraction, semantic video indexing and domain specific

video indexing are required. For example, inferring an important event in a sports game will

2TiVo: http://www.tivo.com
3SKY*: http://www.sky.com/skyplus/



require a different set of features to those needed to retrieve an important event in a talk show.
This type of indexing can be accomplished by restricting the domain being addressed. These
constraints enable low-level content based features to be mapped to high-level semantics
through the application of certain domain rules.

The necessity for automatic summary generation methods is highlighted by the fact that
the semantic value of sports footage spans short durations at irregular intervals during an
event (high energy, short term episodes). A single day of test cricket can last six hours
while a single frame of snooker will normally exceed 10 minutes. Interesting events occur
intermittently, so it makes sense to parse the footage at an event level (where the event is
related to a semantic episode). In cricket for example, an interesting event might be the
bowler run-up, batsman’s stroke and the direction of travel of the ball [82] while semantic
episodes such as snookers, shot-to-nothings and break-building occur in snooker (please refer
to Appendix B.3 for some snooker terminology). Considering the client or user end, a snooker
game could be recorded on a digital set top box with integrated hard disk drive. The user
could query the footage at a high-level of abstraction and the machine would return the
relevant events from the video stream, perhaps with derived textual information giving the
time at which the event happened, the player involved and a brief description of the event.

Content adaptation and automatic summary and index generation could also prove useful
in the transmission of sports footage to low-bandwidth devices. For example, a 3G provider in
the UK, 3 4, offers their customers a sports service which transmits clips of English premier-
ship soccer games direct to the user’s 3G handsets. An automatic method of generating these
clips (in the form of key frames or video skims), or different kinds of summaries which might
be too tedious to be generated by hand (e.g. a cartoonised version of the event), could prove
invaluable to this service. Furthermore, techniques to adapt the content to fit the display of a
particular media device might also be needed. Broadcast sport footage contains shots where
important events are most likely to be found pooled with replays, close-ups and crowd shots.
Close up views often contain little semantic information relating to the events in hand and
normally take place after an important event has happened. As there is generally no need
to transmit these views, a significant amount of bandwidth could be freed up for relevant
information to be transmitted. Automatically derived metadata from the broadcast footage
could be added to the transmission in the form of closed captions, augmenting the description
of the event. Backward compatibility could allow an SMS (Short Messaging Service) message
to be sent to GSM compliant hand held devices or a picture message with added text and
audio to 2.5G mobile phones.

This thesis concerns itself with retrieval and summarisation of semantic events that occur
in broadcast snooker and tennis footage. It is arranged in 7 chapters of which, chapters 3, 4, 5

and 6 present the main contributions of the research.

43: http://www.three.co.uk/indexcompany.omp




Chapter 2: Visual Information Retrieval: A Review

A review of the literature in the area of visual information retrieval is presented in this chapter.
A framework for sport video analysis is discussed which involves temporal structure analysis,
feature extraction, event recognition, summarisation and indexing of the footage. A review
of research in the area of semantic based retrieval in sports is presented along with other
areas which employ similar methods for different domains. The chapter concludes with an
overview of the framework for semantic analysis of broadcast sports footage. The individual
steps in the framework are considered in modular form under the headings of extraction and

recognition. A high-level summary of each module is then presented.

Chapter 3: Choosing Features for Sports Retrieval

Common to any retrieval system is a feature extraction stage. This chapter details a new
algorithm for parsing sports video footage. Based on summarising the geometrical content
in view, the algorithm does not require the calculation of complex three dimensional scene
geometry. Further features include the statistical moments of colour and geometrical image
content, and their relevance to the parsing of sports video footage is discussed. A robust
playing area detector for tennis and snooker, based on the Radon transform of a segmented

colour space is also established.

Chapter 4: Object Tracking

In this chapter, a colour based particle filter based on the CONDENSATION algorithm [70]
is outlined. Novel extensions of the trackers proposed by Perez et al [117] and Nummiaro
et al [107] are used to encourage better tracking of objects in the sports domain. The
implementation of the particle filter allows for the tracking of snooker balls and tennis players.
The tracking results generated are then assessed using geometrical measures and compared

to the tracks produced by a gradient based motion estimator for broadcast snooker footage.

Chapter 5: Dynamic Event Detection in Snooker

Dynamic events in snooker are important in so far as they affect the viewer’s perception of
the state of the game, allowing a rich set of semantics to be inferred. Methods which exploit
the explicit motion tracks generated by the particle filter are used to detect dynamic events
that occur in broadcast snooker footage. Three events are considered: ball pots, inter-ball

collisions and ball-cushion collisions.

Chapter 6: Event Modelling and Classification using HMMs

In this chapter, special consideration is given to modelling the temporal evolution of low-
level image features with a Hidden Markov Model (HMM). The modelling power of the



HMM enables it to cope with wide deviations in observation behaviour and create a signal
model for each camera view.

Following correct labelling of each of the views, the concept of parsing sports footage at
an event level is established. The evolution of the spatio-temporal position of a fundamental
object in the footage is considered to embody the semantics of an event. The explicit motion
tracks generated by the particle filter are quantised and a HMM for each event is trained
based on a human perception of events in terms of the spatio-temporal feature. Finally,
results of the event classification for snooker and tennis are discussed.

Chapter 7: Discussion and Further Research

In the final chapter of the thesis, the contributions of the research are assessed and ideas for
future work are presented which might guide subsequent investigations into semantic analysis

of broadcast sports footage.



Visual Information Retrieval: A Review

The concept of Visual Information Retrieval (VIR) encompasses the tools and methods used
to retrieve data relevant to a query from large databases and archives. Queries can be made
using either low-level visual content based features from images and video such as colour,
texture, shape, etc. or high-level semantic content; objects, events and emotions for instance.
This chapter addresses VIR from its inception in Information Retrieval through to its use in
retrieval of semantic events from broadcast footage.

The need for VIR is becoming increasingly important with the wealth and speed with
which visual information is being made available on digital media and in digital archives. The
emergence of multimedia on the Net and the ease with which visual data can be distributed
through high bandwidth transmission channels has highlighted the need for user friendly and
efficient means of retrieval. The Getty image archive ! for example, contains in excess of
30 million unconstrained images while the BBC footage library 2 contains more than two
million subject listings on over 500 million feet of film and 400,000 hours of video. Cheap
digital cameras and camcorders have enabled the home user to create personal image and
video archives of several gigabytes in size.

The advances that have been made in techniques for VIR have however, been unable
to match the level at which these visual documents are being produced. The unstructured
nature of these ever expanding databases highlights a requirement for a cheap and efficient

means of describing, retrieving and managing the vast quantities of audio-visual data.

'Getty Archive: http://creative.gettyimages.com/source/home/home .asp
*BBC Footage Library: http://www.bbcfootage.com/
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VIR has its roots in Information Retrieval (IR). In section 2.1, the concept of IR is
introduced. A brief description of a traditional model used in IR is also presented along with
a discussion on how wide-ranging the problem of IR is.

One means of achieving structure in video and image databases is by way of indexing. The
established indexing technique of annotating visual documents is based around the traditional
library paradigm. Manual generation of low- and high-level content descriptors are created by
expert annotators in the form of textual metadata appended to the visual document. Textual
annotation and its limitations are discussed in section 2.2. During the past decade, automatic
derivation of high-level and low-level content based descriptors and the implementation of
appropriate methods has been an area of much debate. The introduction of MPEG-7 has
standardised the processes for the representation of multimedia content. In section 2.5.5 a
brief description of the MPEG-7 standard is given along with the merits of the scheme.

Content Based Retrieval (CBR) has been used to complement existing retrieval methods
where the stored metadata (usually in the form of textual annotations) is augmented by the
incorporation of content based visual information. Current trends and techniques in Content
Based Video Retrieval (CBVR) will be reviewed in section 2.3. While low-level content based
information can be useful for some queries, it can not entirely be relied upon as being related
to the semantic substance of the document. The so-called “semantic gap” that exists between
machine and user will be discussed in section 2.4.

Semantic-level indexing of multimedia documents has a high expressive power and it can
be used to describe most important aspects of the content. This form of indexing involves
extracting the high-level content directly from the footage. The indexing is generally tailored
to a specific domain [3,5,76,157]. In section 2.5.3, a review of the literature in the area of
semantic based retrieval from broadcast sports video is presented. Cognition based systems
and hand written character recognition use similar techniques to those employed in high-level

content video retrieval and these are also reviewed.

2.1 Information Retrieval

Information Retrieval (IR) was a term coined in the 1950’s by Calvin Moores. He described it
in [103] as a method that “embraces the intellectual aspects of the description of information
and its specification for search, and also whatever systems, techniques, or machines that are

employed to carry out the operation.” There are four key issues in IR as follows:

1. Media Content Analysis: This stage in IR relates to the information content of the
document as perceived by the machine. This low-level machine perception of the media

contains no semantically meaningful information that might be useful to the user.

2. Pattern Recognition: Secondly, the structure of these low-level features is analysed

and the best fitting clusters are calculated according to a model. This model will
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depend on the level of supervision (supervised /unsupervised) provided to the clustering

algorithm (7.e. if the desired number of outputs is known a-priori).

3. Relevance Feedback: This stage of IR entails introducing human subjectivity in
the form of relevance feedback [152]. As each document is open to different semantic
interpretations by various users, the retrieval processes in such systems are often aug-
mented by allowing human evaluation of the retrieval. This technique allows the user to
weight the results based on their own perceptions to enhance the retrieval effectiveness

for future queries.

4. Evaluation of the retrieval: A large part of IR involves evaluating the retrieval [72,
130]. Measures of the retrieval sensitivity involve assessing the relevance of the retrieval
relative to a ground truth. Precision and recall are traditional metrics used in Visual
Information Retrieval (VIR) systems. Relevance feedback also offers a way of measuring
the effectiveness of the retrieval, where the measure is based on the subjective opinion

of the user.

A simple, traditional model of an IR system is illustrated in figure 2.1.

The problem of successful IR is wide-ranging and extends from the retrieval of text doc-
uments using keyword queries to the retrieval of semantic events from vast archives of video
libraries using high-level queries. An example of an effective IR system for the retrieval of
scientific documents was proposed by Lawrence et al [86] through the NEC project Cite-
seer 3. It has proved to be an invaluable resource for the worldwide scientific community
by allowing the user to retrieve scientific literature spanning the web. Citation indices are
generated automatically along with abstract extraction and the provision of links to related
and overlapping documents.

The concept of IR is straightforward: a user queries a database with the hope of retrieving
information relevant to that query. A system that responds to a query in this fashion however
is affected by user subjectivity, a central issue in any retrieval system. Relevance feedback
is often used to circumvent this problem. It is often more appropriate however to extract
additional features from the media document providing the user with more descriptive power.
VIR systems can improve on the retrieval by incorporating automatically derived visual
features (section 2.3) and semantics (section 2.5.3).

Colombo et al [27] refer to textual annotation systems and low-level content based sys-
tems as the first and second generations of visual information retrieval systems. While the
first generation allows semantic based queries, the notions of the user must correspond to
those of the annotator. As video and images are generally rich in high-level content the
query could prove to be beyond that of the stored metadata. Even though the retrieval pro-

cess is automated (e.g. extracting colour) in second generation systems it is generally not

3Citeseer: http://citeseer.nj.nec.com/cs
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document
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Figure 2.1: Information Retrieval system with relevance feedback. The user selects an initial
query and the system returns a set of documents. The user weights the relevant documents
according to their perception. The distance metric and database are updated with this new

information to enhance subsequent queries.

possible to link low-level content to high-level concepts for unconstrained media. It is only
through restricting the domain being addressed that this link can be established. Sections 2.2
and 2.3 discuss both generations of visual information retrieval and section 2.4 discusses the

importance of domain restriction.

2.2 Textual Annotation

Comprehensive textual annotation systems have been in use for many years now. This process
is currently the most direct, efficient and accurate means of finding “unconstrained” images
and video in large unstructured databases such as the Web (for example the Google Image
search %). These systems are however subject to high costs as the annotations can only
be obtained by manual effort. Transcripts, captions, embedded text, surrounding text and

hyperlinked document type annotation are often used to represent the high-level concepts of

“Google Image Search: http://www.google.com/imghp?hl=en&tab=wikq=
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the images.

The use of textual retrieval in large image databases can be illustrated by considering the
implementation of such a system in the Bridgeman Art Library (BAL) °. BAL has built up
an expert textual database on 750,000 of their images. Attached to each image is a manually
entered set of metadata describing the image semantics along with its size, the name of the
artist and several keywords describing the main content [135]. In such systems the search
process is based purely on predefined attributes and the perceptions of the annotator. Such
a retrieval system is open to the problem of user subjectivity due to the nature of the content
rich images.

Recent increases in the computational power of PCs have allowed the use of previously
inefficient language understanding algorithms to add textual information to multimedia doc-
uments. Computer assisted annotations in the form of closed captions can be added to the
video for example. Keywords or keyphrases can be extracted from the audio track using
techniques such as Term Frequency-Inverse Document Frequency (TF-IDF) [137]. TF-IDF
uses Automatic Speech Recognition (ASR) to relate the frequency of words which occur in
the audio stream to those stored in a database. Words which occur frequently in a segment
but which are not as common in the database are assigned a high weight. It is assumed
that these words are related to the visual content. These ‘important’ words can be utilised
in the indexing of the documents allowing the user to pose text based queries and retrieve
audio-visual clips which are synchronised with the derived textual metadata.

Compilation of metadata describing every aspect of a media document is unfeasible.
Demand for an efficient and cheap means of retrieval is driving research in the area of CBR
which improves on the limitations of traditional text based systems by providing extended

access to the media.

2.3 Content Based Retrieval

CBR has received a vast amount of interest since the 1995 publication of the first paper [54]
which formally addressed the subject by offering the potential to automate the retrieval
process from visual media. CBR is a difficult problem. Extracting salient features from an
image or video stream requires much more sophisticated methods than those used for parsing
text documents for keywords [151]. Methods built around content analysis [106, 146], object
segmentation [155] in images and shot classification [33,68] in video have been developed to
enable quicker and more efficient access to image and video documents.

Initially restricted to use in large image databases (e.g. The State Hermitage Museum 6
in St. Petersburg, Russia) the system provided good retrieval results for relevant content

based queries. At the time, content based retrieval for video purposes was deterred due

°Bridgeman Art Library: http://www.bridgeman.co.uk/
SState Hermitage Museum St. Petersburg: http://www.hermitagemuseum.org/
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to the prohibitive cost of storage and slow access times. Further development and new
research [67] allied with the lower cost of storage media and video capturing devices has
allowed video repositories such as the ABC News Video Source 7 to make use of low-level
visual content for retrieval. Low-level content based information has been fused with existing
textual annotations in the Bridgeman Art Library. Retrieval effectiveness has shown to be
increased using this system rather than the annotations alone [135].

Combined with the adoption of the MPEG-7 standard ® (a standard for multimedia
description outlined in section 2.5.5), CBR has emerged as a major field of research. Content

in visual media can be considered to encompass two levels of abstraction.

1. Low-level: Low-level visual content is generally described using colour, texture, shape
and motion. These content descriptors are typically easily extracted from images or
video and are chosen due to their efficiency, robustness and perceptual similarities.
Traditional methods for CBR involve vectorising the image. An image can then be
represented as a feature set and similarities between images can be measured by cal-
culating a distance between these feature vectors. There are a number of different
distance measures that can be used (e.g. Euclidean, Chebychev ?, Manhattan '°) for
comparing feature vectors, but none have been established as a definitive model for

human similarity evaluation.

2. High-level: High-level content is embodied by both semantic and affective-content
information [16]. The semantics relate to an event or object in the event, whereas the
affective-content is the reaction triggered by that same semantic event. For example,
in soccer, if a goal is scored, the semantic event is the goal itself. The effect of the goal

(the affective content) is the player celebration and crowd reaction.

High-level features are more difficult to extract from the media than low-level as they
are open to different interpretations by viewers. Techniques have been formulated which
typically rely on restricting the retrieval to a unique domain and then mapping the low-
level features to high-level concepts by modelling the temporal evolution of the low-level
visual features. It was concluded by Roach et al [129], that narrowing the domain being

addressed is a good means of bridging the semantic gap.

2.3.1 Content Based Video Retrieval

Content based video retrieval (CBVR) is a burgeoning area of CBR. The main goal of CBVR
is the full automation of the process of parsing, indexing and describing low- and high-level

content using multimodal information.

"ABC News Video Source: http://www.abcnewsvsource . com/vsource/html/home. htm
SMPEG7 ISO/IEC JTC1/SC29 WG11: http://ipsi.fhg.de/delite/Projects/MPEGT/
9Chebychev distance: http://www.comp.lancs.ac.uk/ kristof/research/notes/basicstats/
'"Manhattan distance: http://mathworld.wolfram.com/TaxicabMetric.html
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2.3.2 CBVR Systems

Over the past number of years CBVR systems have become available by commercial vendors
and and academic institutes. Initially, the focus of much research was on adapting existing
CBIR systems for video retrieval purposes. Consequently, this meant that the inherent audio
and motion information were not exploited, and the temporal aspect was eliminated by
only considering keyframes from automatically detected shots. A summary of some existing

systems is given below.

e QBIC '!': The QBIC (Query By Image Content) system [54] was created by IBM as a
means of retrieving images from large databases. The system enables operators to query
the database using a pictorial example or sketch which can comprise a combination of
shape, texture, colour and spatial location descriptors. The system then calculates a
distance metric between the query and the corpus and returns images which minimise
the distance. A ranking can then be performed based on the distance. The main
advantage of this system is that it allows the user to query the database without using
text. The query is based solely on low-level image content which eliminates individual
user interpretations. The image based QBIC system was adapted [95] to allow queries
against a video database by incorporating a shot cut detector to extract a keyframe
for each shot. This effectively eliminates the defining temporal feature of video by
generating a “storyboard representation” of the entire video. The task now becomes
one of image comparison and thus ignores any evolution of the descriptors which may

occur over the duration of a shot.

e Informedia '?: The school of Computer Science at Carnegie Mellon University has
developed a content based video retrieval system giving users access to over 1500
hours of news and documentaries from which a number of papers have been pub-
lished [62,63,123,173]. The Informedia project (started in 1994) attempts to facilitate
machine understanding of video to allow efficient summarisation and retrieval of rele-
vant content. The video is indexed using automatically transcribed audio tracks, closed
captions or extracted on-screen text. Text based queries are then compared to the
precomputed indices to retrieve visual summaries from the vast corpus. Approaches to-
ward multimodal queries are currently being considered which would allow all features

of the video medium to be exploited.

e VisualGREP '3 : The VisualGREP Project at Mannheim University employs a
domain-independent search by video sample technique to retrieve video footage of vary-

ing durations using features including colour, motion and object types. The features are

"1QBIC: http://uwwgbic.almaden.ibm.com/

“Informedia: http://www.informedia.cs.cmu.edu/

"¥Visual GREP: http://www.informatik.uni-mannheim.de/informatik/ pi4/projects/MoCA/
Project-visualGREP.html
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combined by the user, where (s)he weights the features according to the required query.
The MoCA project, discussed in section 2.5.4 is one application of the VisualGREP

framework.

e VideoQ *: The VideoQ system developed at Columbia University is a web based video
retrieval system which allows the user to formulate a query by means of an animated
sketch. The chief difference between this system and the others is that it incorporates
the spatio-temporal information of objects into the query. The user can specify the
colour, shape and texture attributes of objects along with the required trajectories in
the video. Video objects in the original footage are spatially and temporally segmented
off-line using a combination of edge, colour and motion continuity information and shot
cut detection respectively. The segmented object characteristics are then approximated
using colour, texture, shape and motion features. The similarity between the query
and the corpus is calculated using a composite distance comprised of a user specified
weighting of each of the attributes in the query. A keyframe from each of the candidate

clips is returned.

e Fischladr !5: Developed in Dublin City University, the Fischlar system allows registered
users on the local area network to record broadcast television programmes from eight
channels. The system parses the video and extracts relevant keyframes using the method
outlined in section 2.5.4 enabling the user to peruse the video using a web browser or

mobile device.

2.4 The Semantic Gap

The most natural means for a user to query a corpus of data is by way of semantics. As
CBVR systems operate in terms of low-level or primitive visual features, they have no concept
of the semantics of images or video clips. Even though low-level content can sometimes be
related to high-level semantics, the machine cannot perceive it as such. For example, if a
user wishes to find all the morbid pictures in a database, and can query by colour content,
he will probably pose the query with a substantial amount of black, and other dark colours.
To the machine, the operator is simply looking for images with low-values of luminance.
Overcoming the semantic bottleneck by enabling high-level understanding has been an area
of much research in both CBIR and CBVR systems [50].

The fundamental problem with semantics in general, is that they are open to an indi-
vidual’s own interpretation. This is referred to as semantic ambiguity in O’Leary [110]. In
other words, human judgement is conditioned by intuition, experience and expertise. It is not

feasible to assume that a retrieval process could be created that would be able to understand

14VideoQ: http://www.ctr.columbia.edu/videoq/
®Fischlr: http://www.cdvp.dcu.ie/
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the complex human thought process which would allow for high-level semantic queries in
broad domains. On the contrary, in current systems, humans have to translate the semantic
contents into low-level descriptors in order to find an appropriate document. The retrieval
is then based on the assumption that the semantics of the document are correlated with the
visual content, which is not always the case.

The extraction of semantics and translation of low-level to high-level content is still an
open issue, and there has been no unilateral resolution on how to accomplish this. The most
common approach used for facilitating semantic queries has been by tailoring the retrieval
to a unique domain (3,5, 31,39, 59, 76,125,141, 157]. This has achieved success in the sports
domain (in tennis [74] and baseball [24] where the temporal interleaving of camera views was
noticed to exemplify semantic events for example) and in other broadcast programming such
as wildlife videos [59] where the presence of certain motion patterns is used to indicate the

occurrence of hunts in the footage.

2.5 Sports Video Analysis

The work presented in this thesis is restricted to the sports domain, specifically to snooker
and tennis. The goal then is to create models which exploit low-level features and are able
to retrieve semantic events which occur in broadcast footage. Our work was one of the first
to approach broadcast sports footage for this purpose. A five stage systematic approach to

sports video content analysis is presented in this section. The stages involved are:
1. Temporal structure analysis.
2. Feature extraction.
3. Event detection and recognition.
4. Summarisation.
5. Indexing of the footage.

Each stage in the process is described in sections 2.5.1-2.5.5 and a discussion of the methods
employed in other works is presented. The focus of the reviews are not solely on sports video
processing as much of the research in generic video content analysis is applicable to that used

in sports footage.

2.5.1 Temporal Structure Analysis

A video can be organised by analysing the relationship between its temporal segments which
comprises of a hierarchy of frames, shots and events for sports or scenes for non-sport video
(figure 2.2 illustrates the hierarchy of a typical video sequence). The first step in uncovering

the temporal structure of the video involves the detection of temporal boundaries.
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The problem of shot cut detection in any video footage is considered to be generic, so the
following section unifies the various sport and non-sport approaches. Detection of gradual
shot transitions proves to be more difficult than the problem of shot cut detection. In the
subsequent section, some techniques dedicated to the detection of gradual effects will be
reviewed.

Once temporal boundaries have been established the location of shots are known. A shot
is considered to be the basic logical unit of a video which is delimited by the locations of
the temporal boundaries. A shot can therefore be defined as a sequence of contiguous frames

which is continuously captured by a single camera.

Shot Cut Detection

Shot cut detection techniques exploit the inherent relative homogeneity of frames in a shot in
terms of their colour and motion content. Hence, a large variation in the correlation between
consecutive frames indicates the presence of a shot cut. A variety of features have been ex-
ploited to good effect to characterise this homogeneity; the sum of histogram differences [14],
edge pixel enumeration [167] and MPEG DCT coefficients [170].

It was noted in Ekin et al [48] that there is a high correlation of colour content present
in different camera views in some sports footage. This is due for the most part to the colour
homogeneity of large background playing regions (e.g. soccer or American-football type
pitches). A three feature colour based approach was therefore proposed in [48]. It fuses the
difference in colour histogram similarity with dominant colour pixel ratios in a particular
frame and the difference between dominant colour pixel ratios of two frames under a robust
classifier, which adapts based on the local content. Incorporating spatial information into
shot cut detection, Tan et al [144], divide the DC-image of an MPEG encoded sequence into
12 rectangular regions. The intensity histogram of each region is computed and compared
to that of the corresponding region in the successive frame. Most of the significant shot
changes were found. A similar spatial segmentation of each frame is undertaken in Pickering
et al [121]. In this research each frame is divided into 9 blocks. Shot cut detection is
performed by calculating the Manhattan distance between the RGB colour distributions
of each corresponding block in consecutive frames. Vasconcelos and Lippman [153] create a
statistical framework for shot segmentation which incorporates prior shot duration knowledge
into the decision process. Results of the method are compared to those achieved without a
prior to illustrate the importance of considering temporal features for shot cut detection.

Due to the limitations of colour based approaches, several methods that make use of other
features enabling shot cuts detection have been proposed. In Kokaram et al [82] for example,
global motion estimation is applied to the detection of shot cuts during “action sequences”
in cricket footage. As the camera cuts to a long framing view of the playing field when the

bowler run up is followed by a hit, a noticeable discontinuity in the diagonal affine motion
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transformation parameters is exhibited. This is due to the global motion changing from
predominantly zoom to pan left or right. A shot cut and gradual shot transition detection
method based around the tracking of feature points in texture, such as corner points, was
proposed by Abdeljaoued et al [1]. Each of the feature points is tracked from frame-to-frame
using a Kalman filter. The rate of change of disappearance of points, and emergence of new
points was used to infer the type of transitions that occurred. Results show a significant

improvement over standard histogram techniques.

Gradual Shot Transition Detection

Detection of gradual transitions is considerably more difficult than that of the shot cut
detection problem. These types of production effects are broadcaster or event dependent
and usually include variations in the types of wipes, dissolves and fades. Wipes may include
a logo while the rate of dissolve might vary for different programs. Several robust algorithms
for shot transition detection have been developed using statistical methods (38|, pixelwise
comparisons [158] and edge pixel information [168].

Wu et al [158] propose a solution to wipe detection in video using the DC-images in
an MPEG encoded sequence. A wipe stripe which is evident in the pixelwise difference of
consecutive I/P frames characterises the boundary between the two images. A statistical
measure of the stripe enables wipes and camera motion to be differentiated. Similar to their
previous paper [167], Zabih et al [168] propose a method for detecting a variety of production
effects based on edge pixel enumeration and the spatial distribution of edges. The scheme
is based around the fact that new and old edges appear and disappear far from each other
assuming that the frames have been compensated for global motion.

In section 3.4 shot cuts and gradual shot transitions are detected by exploiting shape and

spatial luminance correlations between consecutive frames of sports footage.

Temporal Hierarchy

While shots do not provide much insight as to the overall content of a video, they can prove
to be useful as a unit for indexing a visual document. Combined with domain constraints, an
understanding of important episodes can be derived. For example, in most sport applications,
the main action takes place in a certain camera view. If this view can be categorised, relevant
shots can be extracted from the sequence and labelled. Furthermore, the occurrence of shots
in a particular order can point to certain high-level events [76]. Figure 2.2 illustrates the
hierarchical structure of a video sequence.

It is important to distinguish between scenes and events in video. In this thesis we
consider an event to be the basic high-level element during which an important episode takes
place in sports footage. An event in a tennis match might be a rally or ace for instance. A

review of techniques related to the detection of events in sports is described in section 2.5.3.
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Scenes are defined as a group of shots with the same thematic content unified by space, time
and event. For example, a scene of a conversation might comprise several shots of the people
talking in a certain environment. So, a scene in a sport event rarely changes, except perhaps
where there is a change from the playing arena to a studio for analysis of the game. Events
within each scene in sports footage are therefore considered to be of most importance.

For completeness some techniques that enable the detection of scenes in video are re-
viewed. Detection of scenes in video is considerably more complicated than temporal bound-
ary detection and normally involves the incorporation of prior domain knowledge. Back-
ground tracking techniques can be used to detect scene boundaries where the locale changes.
In Schaffalitzky et al [132] salient points on rigid 3D objects are used to identify shots with
the same background content using wide-baseline methods. The technique is invariant to the
camera viewpoint, occlusion and object scaling. Background tracking is used to calculate
scene cuts and compare the semantics of scenes in Oh et al [109]. A fixed background area is
defined a-priori and a Gaussian pyramid is used to reduce its representation to a background
signature. Two consecutive signatures are compared by shifting them in opposite directions.
If a continuous match, less than the length of the signature is found, a scene cut is presumed

to have occurred.

2.5.2 Feature Extraction

The first step in content based video analysis and processing involves identifying features in
the footage that the user can exploit in order to formulate a query. Colour, shape, motion
and texture have all been used to this effect. These features are chosen because they are
generally easily understood by human operators and similarity measures can generally be
easily computed. Since broadcast sports exhibit different patterns of such low-level content
they prove to be useful for retrieval purposes. Work in extraction of these features is now

discussed under the relevant headings.

Colour

Colour features are exploited in most retrieval systems [6,33,54,115,134,136]. It is perhaps
the easiest low-level feature for human operators to perceive and can, at the same time, be
considered to give a good summary of the video or image content. For example, in image
sequences with significant dominant colour, a single value can be used to summarise the
image [33]. Colour features also offer scale invariance and are generally efficiently computable.
Furthermore, techniques have been established for comparison of features such as histogram
differencing and the Bhattacharyya distance [117]. From the human psychological point of
view, colour properties of images are very useful in that they can sometimes be associated
with the semantics in an image. A user could, for example, search a database for an image

of a beach scene by specifying the quantity of yellow (sand), blue (sand and sea) and white
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Figure 2.2: Hierarchical structure of a video. Relevant features are extracted from the
footage which is then broken into its constituent shots. Low level analysis is then undertaken
which pertains to some high-level processing on the low-level features. This allows high-level

semantics to be inferred (these might be events for sports or scenes in generic video).

(clouds) present.

Colour histograms [14], colour coherent vectors [113] and the moments of colour fea-
tures [33] have been used to describe low-level visual content in images and videos. Colour
histograms are the most traditional and common means of expressing the colour properties
of an image. Histograms are an approximation of the colour distribution in the image but
do not account for the spatial arrangement of the colours in the image. This can be useful if
there is a requirement for the query to be rotationally invariant but in the majority of cases
a lack of spatial information will be detrimental. Colour correlograms incorporate colour and
spatial information. They express how the spatial correlation of pairs of colours change with
distance [66]. Colour queries are formulated in query by sketch systems by selecting a colour
for a particular region from a predefined palette. The system then retrieve images or video
that best match the chosen colour.

In the sports domain, dominant colour regions have been used for the detection of playing

surfaces [24,48,74,141]. Ekin et al [48] developed a colour region detection algorithm which
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automatically detects the colour of the sports field and adapts to spatio-temporal variations
in the dominant colour. In Chang et al [24] ratios of grass and sand along with other shape
descriptors are used for classifying different views in baseball. Jain et al [141] calculate
the most frequent colour in a specified region for classification of a tennis court surface. The
distance between it and the mean value of a trained set of predefined colours is then calculated.
The result of minimum distance is set as the appropriate playing surface (i.e. clay, grass, hard
and carpet type tennis courts). Zivkovic et al [175] take a different approach by modelling
the colour properties of a tennis court using a 3D Gaussian distribution in RGB colour space.
It is assumed that the colour distribution is unimodal due to the high occurrence of playing
surface pixels in the full-court view. Only a single Gaussian is therefore required to model
the colour distribution. However, while not explicitly stated, it seems that only an indoor
playing surface is considered. Furthermore, only footage from one source is used. Due to the
hard court surface, it does not experience any degradation in surface quality. The court is
therefore not subject to any changes in colour as is the case for grass and clay. MPEG-7 colour
descriptors have also been used for the retrieval of high-level events in sports footage [64]. In
section 3.3.4 we exploit the colour content exhibited in different camera views for the purpose

of view classification.

Motion

Extracting motion information provides another feature essential for video content analysis.
The inherent temporality of video is manifest through camera motion or the motion of objects
in the scene. The motion of objects of interest means that motion as a feature is key in
any video analysis. The intensity of camera motion or object motion can be evaluated using
techniques such as motion estimation [81] and edge change ratios (ECR) [167] or by extracting
existing motion vectors from an MPEG encoded sequence [114].

Motion features provide access to rich semantics in the footage. For example, they can be
used to identify the level of “action” in a sequence because high levels of action will usually
be manifest as high intensity motion vectors [20,52]. Kokaram and Delacourt [82] exploit this
observation in the sports domain where global motion is used to classify high-level events in
cricket. A view of the bowler run up is signified by an increase in the zoom parameters, while
a batsman stroke results in a change in the global motion translation parameter, the sign of
which represents the direction of the hit.

Camera motion has been used for shot type classification in a number of publications
relating to the sports domain. Assfalg et al [5] use motion features to describe the type of
framing use in soccer footage as one of very long framing, long shot and medium shot. Chang
et al [24] classify individual shots in baseball by noticing that those shots of the same type
have comparable distributions of camera motion along with colour and texture. Gibert et

al [159] extend the concept used in [24] to classify different sports footage as being one from
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ice hockey, baseball, American football and soccer. They assume that different sports (and
not individual shots within the footage) exhibit different motion patterns. Motion vectors
extracted from MPEG encoded sports footage are used as content descriptors to classify the
various individual sports.

For the most part, only camera related motion has been used for high-level retrieval in
the sports domain. Explicit tracks of relevant objects have not yet been considered for this
purpose. In section 6.5.2 a new means of detecting high-level events which occur in sports
is presented. It exploits the fact that in certain sports, the behaviour of particular objects

encapsulates the meaning of high-level events.

Shape

Much in the same way as machines used for computer vision decompose complex 3D objects
into simpler volumetric components, it has been shown that the human visual system performs
similar operations when attempting to analyse images [10]. This means that humans can
instantly recognise objects by shape features alone. Querying by simple shape features can
therefore be considered to be an effective method for retrieval.

Most shape descriptors rely heavily on good segmentation [15]. Following segmentation,
object areas are labelled and spatial measurements such as area, centre of gravity and ec-
centricity are taken. A query is formed by computing the same features in the query visual
document and computing a similarity metric against the corpus.

In the sports domain there has been much interest in describing the playing areas in terms
of their geometrical content. Since sports playing surfaces are generally well defined in terms
of their geometry, the arrangement of lines in a particular order can signify the presence of a
certain camera view or the possible occurrence of a high-level event. Gong et al [58] attempt
to locate all incidents around the goal, corners and open play in a soccer game by recognising
the required arrangement of lines. Ekin et al [48] also deal with soccer by attempting to
detect three parallel lines for the retrieval of the goal region. In Zivkovic et al [175], after the
player is segmented from the tennis court standard shape features such as orientation and
eccentricity along with centre of gravity, area and distances of the extrema from the centre
based on a pie structure are used to characterise the player. Shape descriptors specified in
an MPEG-7 stream are used by Hoynck et al [64] to detect objects in equestrian footage. A
highlight is deemed to have occurred upon detection of such an obstacle as a jump will have
been attempted.

In sections 3.3 and 3.3.3 a novel shape descriptor for classifying camera views is presented.
The descriptor does not require the computation of complicated 3 dimensional geometries.
Four steps (segmentation, edge detection, Radon transform and moment calculation) are
sufficient to describe the shape content of sports footage which exhibit strong geometrical

content in terms of the shape of the playing area. This value can then be used as a shape
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index for each frame. Another shape feature which exploits the alignment of local edges is

also used to characterise the shape content of a frame.

Texture

The textures of regions in an image are characterised by variances in brightness levels. The
texture of an object can therefore be considered as describing the relationship between ad-
jacent pixels in an image. Texture, while not being particularly useful independently, can
complement the use of other features where those features alone cannot sufficiently describe
an object. For example, if two regions of similar colour properties border each other, a de-
scription of the textures will help in their disambiguation, for example a picture leaves and
grass.

Texture descriptors may be computed using frequency techniques, such as wavelet de-
composition [131]. These methods are based on relating the spatial arrangement of pixels
to the degree of coarseness of the texture in the visual document. In sports, texture is used
in conjunction with other features by Kittler et al [79] as a semantic cue for the presence of
objects in broadcast sequences.

Similar to that of the colour feature, systems which allow queries based on texture use a
predefined set of palette textures which the user selects for a particular region. The system

returns images or video that best match the chosen texture.

2.5.3 Event Detection and Recognition

Following temporal and low-level content analysis, the semantic content can be extracted from
the footage. In order to do so, the machine must understand the events in hand. Retrieval
techniques in some of the systems discussed previously, apply to corpora of unconstrained
images or video. Successful semantic level retrieval based on high-level queries on such bodies
of unconstrained information are currently not possible as the retrieval system would have
to understand all the information presented. So, in order to implement successful retrieval
techniques based on semantic queries it is necessary to constrain the problem to a unique
domain.

Robust techniques, which might be useful for user based on-line semantic level query
applications, are essential in an age of emerging interactive television. A review of some of
the methods used for semantic analysis of sport events is presented in subsequent sections. In
most of these cases, analysis of the content is performed on observable low-level features, and
probabilistic or deterministic models are subsequently used to classify the particular semantic
events.

Later in this section, the field of emotion recognition is briefly reviewed. Cognition based
systems are considered relevant for review as the problem of classification of content in these

systems and semantic based retrieval are relatively similar tasks. Both problems involve au-
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tomatically learning and classifying contents of the video sequence by analysing the temporal

patterns of low-level features.

Event Recognition in Sports

Much research in retrieval has been focused on the detection of semantic events that occur
in the sports domain. As individual sports tend to have different rules, it becomes necessary
to further restrict the domain to a unique sporting event. While some research propose a
generic solution to detection of events in any kind of sports footage [162,172] an overlap in
feature space could cause some events to be misclassified.

Thus far, techniques for the retrieval of important events in sports including soccer [5,
48,58, 160], American football [93], baseball [24], tennis [33, 76, 172|, snooker (39,125, 126],
cricket [82], basketball [144] and equestrian sports [64] have been sought. The problem has
been approached using both unimodal [5,40] and multimodal [31,48] data.

The inherent temporal nature of video manifest by the evolution of video features typically
shows wide variations in behaviour. Modelling these often inhomogeneous features is difficult
and pointwise statistics do not suffice. For example, features which are subject to noise and
behave impulsively such as those used in automatic speech recognition, a more complex model
than, say a Gaussian needs to be used. This has lead to an increasing interest in the use of
Hidden Markov Model (HMM) based classifiers 5,24, 76].

The following section introduces the concept of the HMM and the discusses the motivation
for its use in video sequences. The subsequent section discusses some publications which have

exploited HMMs to model various semantic events that occur in broadcast sports footage.

Hidden Markov Models

This section will provide the reader with sufficient knowledge of the HMM to appreciate
the concepts outlined in the literature review of the following sections. Chapter 6.2 and
appendix A deal with HMMs in greater depth.

HMDMs have been shown to be one of the most efficient tools for processing dynamic
time-varying patterns. Their use has found considerable success in applications where these
patterns are particularly evident, for example in cognition based systems and video processing
applications. They allow a variety of temporal patterns to be modelled as the model topology
can be chosen such that it reflects the nature of the data. Figure 2.3 shows the structure
of a left-to-right first order HMM with N states. The left-to-right model has been found to
well represent problems that are inherently temporal since the structure follows the nature of
temporally evolving data (e.g. automatic speech recognition where each state or a number
of states represents a word phone).

The model in figure 2.3 is first order in the sense that the current state relies only on

the state that preceded it. Given a sequence of states {q...q:}, under a first order Markov
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Figure 2.3: First order left-to-right Hidden Markov Model

assumption the probability of state g1, can be written as:

p(gr+1lge---q1) = p(qe+1lqe) (2.1)

In more general terms, a state-to-state transition is encoded by a transition probability
matrix A, where ¢; = S; and ¢;41 = S; are the realisations of state S; and S; at times ¢ and

t + 1. Equation 2.2 defines the state transition probability matrix.

A = {a;;} = {p(gt+1 = Sjlae = Si)} (2.2)

The model is initialised by specifying the probability of being in a particular state, 7; at
the first time instance, t = 1, (i.e. 7 = p(qg1 = Si))-

For each state in the HMM, an observation vector, B = bj(zy), is defined which may
be continuous or discrete. Observations, (V = {z;...zx}), are therefore a function of their
state. Equation 2.3 is the observation emission probability mass function (pmf) (or pdf for

the continuous case) associated with state j.
bj(zk) = p(Xt = zk|g = S;) (2.3)

The hidden nature of the HMM means that only the observation pattern is seen and not
the state sequence (the state sequence can however be derived from the observations with the
Viterbi algorithm (section A.2.4)). A HMM can therefore be implemented to represent the
statistical nature of the observations in terms of a network of states and for each observation
the process occupies a particular state in the HMM (figure 2.3).

The parameters of the HMM are typically estimated from training with ground truth data.
The algorithm used is called the Baum-Welch algorithm and is described in appendix A.3.
The following two sections show how the HMM has been used for different applications in

sports.
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Event Recognition in Sports Video using Stylised Production Information

Due to practical limitations, there can only be a finite number of cameras mounted at fixed
locations in the broadcast of any sport. These cameras transmit a continuous video stream to
an editing suite. When dealing with broadcast footage, the coverage of some sports is typified
by the stylised interleaving of these camera views interspersed with production effects such
as dissolves and wipes. Some work in high-level content analysis exploit this inherent trait
in the footage to classify semantic events [5,24,76].

To convey particular semantic episodes, most sports highlights are composed of a specific
number of interleaved camera views with a certain temporal structure. This means that
events can be detected by applying certain semantic constraints in terms of the video syntax.
This characteristic is prevalent in what are known as action-stop sports such as tennis and
baseball, where each semantic episode is punctuated by a period of non-action. Non-action
events are typically communicated via a crowd or close-up shot of the player. All of the
implementations that use HMMs in this way are variations on the same theme. The models
are simply adapted in order to suit the appropriate domain (that of identifying semantic
events through patterns of view). Similar techniques are used for parsing broadcast news
footage [23,46].

Kijak et al [76] deals with the mapping of the temporal structure of raw tennis broadcast
footage to high-level concepts such as aces, rallies and service breaks using HMMs. Tennis
footage has a particular video syntax which is exploited in this paper. A rally for example,
can be modelled using a left-to-right model where one state is a non-global view (i.e. any
view other than that of the full court - NV) and the other is a global view (i.e. a full court
view - GV). In other words, in broadcast tennis footage a rally is typified by a full court view
preceded by a non-global view such as a close-up of the player or crowd. Figure 2.4 shows
the model for a tennis rally. A higher level HMM is then used to reflect the tennis game in
terms of points. This is achieved by concatenating previous HMMs (e.g. a point is achieved

when a first serve+rally or rally is followed by a replay).

go80

Figure 2.4: HMM for a tennis rally in [76] where NV is a non-global view and GV is a

global view.

In a similar fashion to Kijak, Assfalg et al [5] identified that significant events in soccer

(e.g. corner kicks, free kicks and penalty kicks) are almost always taken with long shot framing
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(from a camera that is mounted on one of the stands and takes a wide view of the pitch)
interspersed with medium (a view showing the player(s) and some of the pitch) and short
shot framing (a close up). Due to the commercial nature of soccer, it is one sport into
which considerable research has been invested [5,48,143,148,160] in an attempt to uncover
patterns in the spatio-temporal dimensions thereby allowing semantic events to be inferred.
The moving ball is considered to embody the hidden process and domain knowledge helps
deduce the number of states required for the HMM. The values corresponding to camera
action, representing the moving ball, are therefore considered to be the observations.

Chang et al [24] use HMMs to detect highlights in sports footage. Their techniques are
restricted to the domain of baseball. Each semantic episode (e.g. home-run, good catch) is
modelled on the video syntax. An architecture is determined by analysing the temporal and
spatial domain specific structures, unique to the game. The observation vector used to drive
the HMM comprises several visual features including motion, edge and playing area descrip-
tors. The model that best fits the observation sequence is returned as the matching event.
Likewise, Li et al [93] model plays in American football for coaching video analysis. Two
algorithms are proposed, one deterministic (see subsequent section) and one probabilistic. A
HMM models the views which had been classified using temporal and colour constraints. It
was shown that the probabilistic approach achieved better classification results in 3 out of 4
footage sources and equal classification in the final source.

The retrieval process considered in Ekin et al [48] differs from the previous attempts of
high-level event recognition in broadcast soccer videos. They instead rely on feature based
deterministic methods to classify high-level events. Cinematic features are derived from the
dominant colour content from which three different types of shot are classified (long shots,
in-field medium shots and out of field/close-up shots. Goals are detected using a cinematic
template composed of an interspersion of these types of shots, the existence of slow motion
replays and the duration of the break in play when a goal has been scored. Object features
(referee and penalty box detection) are used to discover higher-level events in the play. When
a close-up of the referee is detected for example, he might be showing a red or yellow card
to a player. When the penalty box is detected, an attempt on goal could be taking place.
The retrieval framework is extended in [49] by creation of a generic integrated object-based
video event description model. Event models are formulated by describing the event in terms
of actors, interactions, motion (elementary motion units (EMU)) and reactions (elementary

reaction units (ERU)) realised by the extraction of low-level descriptors.

Other methods of event Recognition in Sports

Modelling the temporal evolution of interspersing camera views has proved to be successful
in retrieving high-level events that occur in a variety of sports footages. Statistical methods

applied to other features have been shown to be equally effective in retrieving valuable high-
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level content.

Successful semantic level retrieval has been performed by Petkovic et al [119] by limiting
the search domain and taking advantage of HMMs. The paper addresses CBVR by recog-
nising events in a tennis video using a Discrete Hidden Markov Model (DHMM). The model
is driven by spatial features extracted from a binary map of player following its segmenta-
tion from the tennis court by a robust colour segmentation algorithm. A model is trained
on observation features enabling high-level queries to be performed. A similar problem was
undertaken by Yamoto et al [163], however broadcast tennis footage was not used. They
presented an early paper in which HMMs were applied to a computer vision problem and
is recognised as the first action recognition method using HMMs. A set of time sequential
images of a tennis player is quantised into a discrete sequence of symbols. Mesh features are
then used as the domain specific feature vector (the ratio of black pixels (background) in the
binary image of the player to the total number of pixels). A more advanced feature set is used
to accomplish a similar objective in Lee et al [87]. In this paper human actions (jumping,
sitting, walking, etc.) are classified in close to real-time. Wu et al [157] attempt to classify
different types of track and field evets by analysing changes in global motion accelerations.
A three level architecture of neural networks (NN), decision trees and finite state machines
(FSM) is used to map low-level features to semantic episodes.

The importance of retrieval of semantic content is again highlighted in Xu et al [162]. In
this paper, various levels of semantics in sports footage are represented by a corresponding
layer in a multi-level HMM framework. The method used in this paper attempts to derive a
generic solution to semantic based retrieval for sports (volleyball and basketball are analysed).
At the lowest level, features based on motion are used to drive a HMM for each event in the
particular sport. Each event is then represented by a state in the higher level HMM. The
likelihood of each model is then calculated and the semantic is inferred.

Kawashima et al [73] attempt to summarise and index events in baseball using domain
specific heuristics and multimodal techniques. A characteristic view from behind the pitcher
is used as the basic scene from which the summarisation is begun. Detection of on-screen
text allows the beginning of a batting sequence and change of player to be recognised. The
text is then extracted and optical character recognition allows scores to be extracted. Batting
actions can be detected in the basic scene by calculating a feature vector of the moving areas
using frame differencing and comparing it to a model. The sequence is terminated when a
hit or strike or ball has been detected. A hit is assumed if the view cuts to one where all the
bases are in view, a strike or ball is assumed otherwise.

In [60], Hanjalic proposes a generic solution to event detection in broadcast sports footage.
By fusing low-level multimodal features (motion activity, shot cut density and sound energy),
exciting periods in the game are considered to have occurred. As this method is not confined
to a single sport event, specific high-level events cannot be sought for in the footage. It is

therefore only suitable for summary generation purposes and not retrieval. Audio features
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alone have been used by Marlow et al [97] which offer good summary results for various
sports. A mosaicking scheme for the summarisation of soccer footage is proposed by Yow et
al [166]. Important events are detected by recognising frames which contain the goal posts
and a panoramic image is constructed by compensating for global motion. A track of player
movements and ball positions are overlaid on the mosaic providing and effective summary of

an exciting segment.

Classification of content in cognition based systems

In many areas of video processing, modelling the dynamic behaviour of features is important.
In cognition based systems for example, it was recognised that it is not essential to reconstruct
complex human geometry and movement in an attempt to recognise human actions [26, 104,
140, 145]. This observation can be related to one of the problems in this thesis of modelling
the motion of an object around a playing area.

HMMs allow the temporal nature of low-level features related to human movements to be
modelled. It is a widely used modelling technique for gesture and handwriting recognition
applications and has been used successfully since Starner et al [140] in 1995. Gesture recog-
nition is undertaken in Cohen et al [26] in which they propose a multi-level HMM for the
automatic segmentation and recognition of human facial expressions. On-line handwriting
recognition has also been modelled by a HMM in [89] and [164].

2.5.4 Summarisation

Summary generation has been a main area of research in content based video analysis in recent
years [48]. Summarisation involves locating and extracting important events and conveying
the information to the user in a concise manner. Good summarisation is vital given the
vast amount of data associated with any video document. This is particularly the case for
sports where the most valuable semantics only occupy short time periods relative to the total
duration of the footage.

Good summarisation of content can be provided by Motion History Images (MHI) [18]
where a synthetic representation of object motion is overlaid on a keyframe. MHIs were not
originally intended for summarisation purposes, but prove particularly useful for video where
motion conveys some substantial semantic information. The motion history is collected by
frame differencing and is overlaid on an average of the first and final images in the sequence.
The motion is represented by a temporally graduating intensity which increases over time.
Frames with recent motion are therefore represented by bright regions and earlier motion by
darker regions. The first application of MHIs in sport can be found in Denman et al [39]. An
illustration of MHIs for snooker is given in figure 2.5. In the presence of global motion the

use of MHIs for summarisation is impractical unless the camera motion can be compensated.
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Figure 2.5: MHI of snooker shots.

The most common methods of summarising video are keyframes and video-skims. Reviews

of works in the area are presented in the following sections.

Keyframes

A keyframe is a single frame extracted from video footage which is considered to give the best
representation of the events by capturing the visual content of the shot. Keyframes provide
a static representation of a dynamic event which enables a user to efficiently browse a corpus
of video material or annotators to index footage. Keyframes are the most commonly used
method of video summarisation. Chapter selection on DVD movies is one example of their
use for commercial purposes. Below is a review of some of the techniques in this area.
Keyframes are typically extracted from each shot in the footage but several keyframes
may be used to convey object or global motion [171] based on certain criteria. The keyframe
selection process is generally based on a similarity metric between frames or a rule based

approach. The Fischldr system !©

implemented by the Center for Digital Video Processing
at Dublin City University Ireland for example, uses a thumbnail keyframe browser where
the keyframes are selected from the footage based on analysis of the colour content in each
shot [88]. The colour distribution of a frame that is of closest distance to the mean colour
histogram for the shot is selected as the keyframe.

Another keyframe extraction algorithm was presented by Liu et al [94]. Shots are seg-
mented into motion events by using the Perceived Motion Energy (PME). The motion vectors
from MPEG B-frames are used to calculate the average motion magnitude and direction of
the motion, the product of which yields the PME. A triangular motion model is fitted to the

PME representation to temporally segment the footage where the model represents motion

16Fischlar: http://www.cdvp.dcu.ie/
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acceleration and deceleration. A heuristic rule based approach is used to extract keyframes
according to either the detected positions of the initial acceleration and terminating deceler-
ation or from frames extracted using the twin-comparison gradual transition effect detection
method [169].

A seminal paper in adaptive keyframe extraction is described in Zhuang et al [174] which
uses clustering methods for keyframe selection. The clustering, which is based on the K-
means algorithm, is initialised by selecting the first frame in the shot and comparing it to
consecutive frames. If the distance is less than a predefined threshold, it is deemed to be part
of the cluster and the centroid is adjusted accordingly. A new cluster is instantiated if the
similarity is less than another threshold. Frame similarity is calculated based on the distance
between colour histograms. A cluster that is big enough is a key cluster, and the keyframe is
the frame closest to the cluster centroid.

A comic book style summary is proposed by Boreczky et al [19] and Uchihashi et al [150].
As in [57], the video is clustered based on smoothed 3D YUV colour histograms. This
produces clusters which are independent of their temporal attributes. When the clusters
have been formed, continuous segments can be derived by seeing to which cluster each frame
belongs. Keyframes in each segment are selected according to their importance in the footage
which is calculated based on the duration and rarity of the segments. The weighting can also
be adjusted based on the application. In this publication, more emphasis is put on those
shots with humans present. For this to be applied to a sports problem, a greater weight
could be applied to those shots where there is a greater probability of an important event
occurring, such as the full court view in tennis or a side on view in basketball. Figure 2.6
shows a manually generated summary of how a tennis sequence could be summarised using
this technique. Using the audio track to detect racquet hits [31], the global views could
contain a motion summary for each pair of shots made by the players. A novel feature of the
paper is the comic book style of the browsing interface. The size of the keyframes (calculated

using an importance metric) reflects their importance in the footage.

Video skim

A video skim is a condensed audio-visual clip of a longer sequence, comprised of automatically
extracted shorter clips which preserving the “message” from the original footage. In order
to generate a perfect video skim, a high level of understanding of the footage is required and
the footage semantics must firstly be derived to ensure that the best clips for describing the
remainder of the footage are extracted. In other words, video skim generation is domain
dependent and does not offer the same flexibility as keyframes for summary generation.

It has been shown in Smith et al [137], that video processing alone cannot be relied upon
for generating a good video skim. Through the integration of image and language under-

standing, Smith et al create a coherent synopsis (in the region of 10:1 compaction ratio) of
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Figure 2.6: Comic book summary of a tennis game.

the original material. Keywords are detected in the audio track using Time Frequency Inverse
Document Frequency (TF-IDF), and keyphrases are extracted using a predefined heuristics.
Video skim candidates are established by classifying scenes using video processing techniques
including shot cut detection, global motion analysis and object detection. Using high-level
meta rules the temporal correlation of the skim candidates and extracted keyphrases allow
for a video skim of the original video to be created.

The MoCA (Automatic Movie Content Analysis) Project [120] at the University of Mannheim
has concentrated on the automatic abstraction of movies based on content analysis of the
video. Heuristics are used to create a movie trailer where certain cinematic events such as
action or dialogue are detected using the video and audio tracks to detect significant events.
These scenes are concatenated to produce a movie abstract. No user evaluation of the trailers

was presented so the performance of MoCA can not be assessed.

2.5.5 Indexing

Following the temporal and spatial segmentation of the multimedia document, it is indexed
using the appropriate derived metadata. Depending on the type of document being indexed
the metadata to be appended might comprise textual headers, visual and audio features or
some other temporal information.

The MPEG-7 standard is now introduced which has stemmed from the worldwide re-
quirements for the creation of a standard specifically designed for representing multimedia
content. In 2001 the ISO finalised and approved the MPEG-7 standard. The primary aim of
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MPEG-7 is to create a framework which is able to describe all the characteristics of multime-
dia documents using four elements: descriptors, description schemes, description definition
language and coded descriptions. Low-level visual (such as those described in section 2.5.2)
and audio features are contained in the descriptors while the descriptor schemes create a
structure by relating the individual descriptors to one another.

The main advantage of MPEG-7 is the potential for interoperability between compliant
devices for easy identification, retrieval and categorisation of multimedia documents. Searches
for relevant documents will become more efficient as the feature descriptors will not have to

be calculated for individual queries as they will already be present in the document.

2.6 Overview of a Framework for Sports Video Analysis

The review has shown that high-level event spotting in sports has been primarily based on
the arrangement of particular view types. By restricting the domain to sports, this thesis
proposes to shift the focus from these characteristics of sports footage, to objects contained
in the footage. The behaviour of these objects help bridge the semantic gap.

The proposed framework for sports video analysis follows the steps outlined in section 2.5
and is illustrated in figure 2.7. The system is composed of two alternating module concepts:
Extraction and Recognition. Extraction encompasses temporal analysis of the sequence, ex-
traction of low-level features to yield correct classification of camera views and the extraction
of motion features enabling high-level events to be inferred. The features are quantised as a
symbol sequence which represents the observed views and semantics. The recognition module
is a HMM driven by the symbol sequences and a maximum likelihood decision is employed

for classification of camera views and high-level events.

2.6.1 Extraction

The fixed nature and finite number of cameras broadcasting a sport event means that domain-
dependent information can be exploited to extract low-level features from the footage. In
this research, three colour and four shape features are used to extract information relating
to which view is being broadcast.

Another feature used is the motion of a fundamental object in the ‘global’ view. In
this thesis the motion trajectories of the white ball and tennis player in snooker and tennis
respectively are considered to embody a semantic event. A method for accurate tracking of

the object is needed which enables abrupt changes in motion to be detected.

Choosing Features for Sports Retrieval

The first level in the framework is to extract relevant features for sports retrieval. Playing

areas in broadcast sports footage are generally well defined in terms of their colour as well
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Figure 2.7: System for parsing broadcast sports footage.

as geometry. For instance, tennis can be played on green, red or blue surfaces with white
delineating field lines in a rectangular shape. Snooker tables are green with a contrasting
background colour. The playing surface shape is also rectangular. The low-level content
based features used in this research encompass both of these playing surface attributes. The
features used are easily and efficiently calculable. Novel moment features which provide
a succinct single value representation of the image surface are used. Temporal analysis is
performed by exploiting the extracted geometric features and established temporal boundary
detection techniques.

The work reported here appears in the Journal of Computer Vision and Image Under-
standing: Special Issue on Video Retrieval and Summarisation as a paper entitled “Con-
tent based analysis for video from Snooker Broadcasts” by H. Denman, N. Rea and A. C.
Kokaram [40] and was also published in the proceedings of the International Conference on
Image and Video Retrieval as a paper under the same name [39]. This is the first stage in

the framework illustrated in figure 2.7.
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Motion Extraction and Motion Events

Extracting the motion of relevant objects is the fourth step in the framework (figure 2.7).
Object tracking is performed using a colour based particle filter. The implementation differs
from others [107,117] in that it exploits prior scene geometry and colour for better tracking
fidelity. A target model of the object’s colour distribution is created in the first appropriate
frame of the footage. The likelihood of candidate models generated from particles distributed
around the projected position of the region in the next frame are computed and weighted
accordingly. If the cumulative likelihood of the samples is greater than a specific threshold,
the mean location of the samples is taken as the location of the object. Explicit tracking of
the object in this fashion also enables a summary of the event to be shown in terms of the
temporally evolving position of the object overlaid on a keyframe from the footage.

Sudden changes in the behaviour of the object can be taken to indicate a change in
perception of the event that might occur in the eyes of the viewer. In snooker footage for
example, a cushion bounce that occurs before an inter-ball collision could indicate that the

player is attempting to escape from a snooker (see appendix B for snooker terminology).

2.6.2 Recognition using Hidden Markov Models

The second and fourth levels in the framework are performed by the recognition module.
Recognition is performed at both low- and high-levels of abstraction. Low-level analysis is
performed by modelling the evolution of the moment features using HMMs for view classifi-

cation.

View Recognition

As correct detection of the required views is essential to perform high-level content analysis,
the stochastic nature of the moment features within each view is modeled using a HMM.
Although the sequence is relatively homogeneous, it is subject to variations within each
clip. This is due to subtle camera motion and the occlusion and uncovering of parts of the
playing areas as a result of player movement. The use of a HMM fulfills the requirements of
statistically modelling of the underlying signal. Figure 2.8 shows the evolution of the eight
order central moment of the Radon transform for snooker footage. This appeared in a paper
entitled “Sport Video Shot Segmentation and Classification” by R. Dahyot, N. Rea and A.

C. Kokaram [33] in the Visual Communications and Image Processing conference.

Event Recognition

High-level content based analysis is achieved by performing object based analysis. If the
spatio-temporal evolution of an object in view can be modelled using statistical processes,

high-level semantics can be inferred from low-level observations. This approach can be con-
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Figure 2.8: View recognition overview where ML is maximum likelihood classification.

sidered to be generic for sports where the movement of an object around a predefined playing
area can be considered as being the embodiment of a semantic event.

In this thesis, snooker and tennis footage are used as examples of broadcast sports footage.
For snooker footage, the motion of the white ball, and its interaction with other balls and
the table is taken to symbolise certain events or plays that occur during the game. While in
broadcast tennis footage, a model created of the track borne out by a tennis player in the
lower half of the court, is used to ascertain the type of play under way. Other sports where
this principle could be used might be table-tennis, squash and badminton, while tracking of
a ball in soccer or rugby could elicit the appropriate semantics.

Having successfully classified the camera views and the compilation of the object tracking
having been completed, the spatio-temporal evolution of these positions in terms of a spatially
segmented playing area are modelled using a HMM. The topology of the HMM is derived from
the data where each state is representative of a segment of the playing area. Continuing from

the view recognition step in section 2.6.2, an overview of the event recognition is illustrated
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below.

Event recognition was the theme of two papers entitled “Modelling High Level Structure
in Sports with Motion Driven HMMs” by N. Rea and R. Dahyot and A. Kokaram [125] and
“Semantic Event Detection in Sports through Motion Understanding” by N. Rea, R. Dahyot
and A. Kokaram [126] appearing in the IEEE International Conference on Acoustics, Speech,
and Signal Processing and in the 3rd International Conference on Image and Video Retrieval

respectively.

2.7 Summary

As the quantity and range of content increases so has the need for the number of means to
effectively mine it. This chapter has presented a review of the literature under the heading of
the steps in a proposed framework for sports video analysis. The review has shown that the
approach that most of these researchers adopt begins with a low-level feature extraction stage.
The low-level features are then processed and subsequent high-level reasoning is applied in
order to detect high-level semantics.

The remainder of the thesis will be considered under two headings: Feature Extraction
and Recognition. Feature extraction will deal with the first two problems in the framework of
temporal structure analysis and feature extraction from the raw video footage. Recognition
will engage the problem of view classification, event detection and recognition along with
summarisation and indexing. The architecture of the full system for parsing snooker footage
is illustrated in figure 2.9. Views are classified and followed by event classification. A similar

system is adopted for tennis footage analysis.
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Figure 2.9: Overview of a system for parsing snooker footage and detecting events where

VQ is vector quantisation.




Choosing Features for Sports Retrieval !

In section 2.6, a proposal for a five stage framework for sports video analysis was presented.
This chapter details the steps involved in the implementation of the first two stages used
for analysis of broadcast sports footage: feature extraction (section 3.2-3.3) and temporal
structure analysis (section 3.4).

For the purpose of this research, two sports are considered, one of which is played in-
doors (snooker) and the other outdoors (tennis) 2. These sports were chosen as they both
exhibit strong geometrical content in terms of their playing areas. Furthermore, they are
very structured in terms of their unambiguous rule sets.

Feature extraction is central to any successful retrieval system. The features used must
give a good representation of the content while being efficiently calculable. The feature
extraction stage is in this case begun by finding the delineating field lines or playing surface
boundaries for a particular sport. Once these lines have been detected, other important
regions on the surface such as the pockets and spots in snooker and the net and service boxes
in tennis can be inferred using the initial playing area outline.

In section 3.3.3, a new feature for parsing sports footage is presented. Based on the strong
geometries of the delineating playing area, this feature does not require the calculation of

complex three dimensional basis sets to model the camera view as in Jain et al [141]. Instead,

'Results from this chapter have been published as “Content based analysis for video from snooker broad-
casts” by H. Denman, N. Rea, and A. C. Kokaram in the Journal of Computer Vision and Image Understanding

(CVIU): Special Issue on Video Retrieval and Summarisation, November-December 2003.
2 Although it is appreciated that tennis can be played indoors, the footage used is that from outdoor grass

court and clay court tournaments.
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it relies on clearly delineated field lines or contrasting playing surface and background colours
to label the appropriate view type.

Statistical moments of colour and shape features are also considered for classification of
the different camera views. The shape feature differs to that of the Radon moment in that
all the information in the scene is used by measuring the alignment of the local edges. The
colour feature is a single value representation of the colour distribution in the image. Using
colour information for sports footage is appropriate as the different camera views used to
capture the footage will exhibit different colour content from view-to-view.

By modelling the temporal structure of the evolving features, it will be shown that high-
level events can be detected. As a first step toward exposing this temporal structure, the
boundaries between homogeneous feature behaviours should be detected. These boundaries
can be detected by computing a correlation measure between successive frames. There are
many means of detecting shot boundaries [92]. In this work three steps are used. Initial shot
boundaries are detected using scene geometry from the feature extraction stage. The remain-
ing shot cuts are detected using a traditional absolute sum of luminance histogram differences.
Other gradual transitions such as dissolves and fades are detected using a modification of the

technique outlined in Zhang et al [169].

3.1 The reasons for exploiting geometrical and colour content

Broadcast snooker and tennis footage exhibit many similar characteristics to most other
televised sports. The finite number of fixed camera views are arranged in such a way as to
cause the viewer to become immersed in the footage while trying to convey the excitement
of the game to a mass audience. The most important views in the footage can be considered
to be those of the full table in snooker and the full court view in tennis. These type of
views have been dubbed “global views” [76], the remaining views are “non-global”. Amongst
others, these include close-ups of the player, crowd and other views generally not used for
live broadcast of action events.

In snooker, global views are considered to be of most importance as they hold the funda-
mental details about the state of the game. All ball positions and pockets can be retrieved
from the footage using this camera view, while practically all of the player’s shots and ‘pots’
are normally shown in this primary view. From the three footage sources of snooker used
as data material in this thesis, an average of 63.92% of the total footage duration is spent
in the full table view. Table 3.1 illustrates the time spent in the global view relative to the
total footage length, along with the number of shots and unique camera views used in the
broadcast.

Similarly, in the tennis footage a considerable amount of the total duration of the footage
is spent in the global view. Over four different games, 47.56% of the total duration is spent

in this view. The most important events in a tennis game are also deemed to occur in the
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Footage Hunter | Hendry | Higgins
# Frames (Total) 24250 5832 3491
# Shots (Total) 115 21 23
# Unique views 14 5 6

# Frames (Full View) | 16323 2894 2243
% Full view duration | 67.31% | 49.62% | 64.25%

Table 3.1: Table showing the ‘value’ of the full table view in terms of broadcast time

occupied by this single view.

global view. Rallies, aces and other shots are initially broadcast in this view, while other
non-global views of the court are generally used in replays. The importance of the global

view for each of the footage sources is shown in table 3.2.

3.2 Playing area segmentation

To correctly segment the snooker and tennis playing surfaces from the background, three
commonly used methods were implemented: direct thresholding, adaptive thresholding and
colour distribution modelling. For each of these segmentation methods, different colour spaces
are used. Utilisation of the colour spaces is based on the perception in quality of segmentation

achieved. Further details about colour spaces can be found in [14] and [56].

3.2.1 Segmentation using direct thresholding of colour spaces

Direct thresholding of colour spaces has been used to good effect for segmentation pur-

poses [14]. Given that an image or sequence of images will generally exhibit peaks at certain

Footage Pierce | Hewitt | Malisse | Costa
# Frames (Total) 2949 12009 4114 11000
# Shots (Total) 16 59 18 75
# Unique views 5 9 7 Tk

# Frames (Full View) 1286 5872 2733 4410
% Full view duration | 43.61% | 48.9% | 66.43% | 40.09%

Table 3.2: Table showing the ‘value’ of the full court view in terms of broadcast time

occupied by this single view.
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points in some distributions, relevant data can be extracted by applying thresholding con-
straints. The first technique involves segmenting the playing area from the background by
applying an empirically derived threshold to the differences of colour planes while direct
thresholding of the luminance component was performed on the tennis footage to segment

the delineating playing area.

Snooker

In snooker, it is noticeable that the playing area is of a clearly contrasting colour to that of
the background (figure 3.2). The colour of the cloth used on championship tables exhibits
high values of green, while having low blue and red content. Using this knowledge, the table

can be segmented by thresholding the difference in colour planes according to equation 3.1.

t(i,j) = {(G(1,J) — R(i, 5)) > 7} A{(G(i, j) — B(i,5)) > 7} (3.1)

Where R,G and B are the red, green and blue colour components of the image, and ¢
is the binary map of the table for pixel locations (i, j). For snooker footage a threshold of
T = 25 was used to generate the binary image.

The choice of threshold is reflected in the scatter plots of figure 3.1. The difference in
colour planes (G — R v G — B) for three separate stills of the global view, from each footage
source are plotted. The green points correspond to the table area, which was manually
extracted. The red points are the remaining colours in view. A contour plot is overlaid
to highlight high density regions. The high density region in the top right of the plots,
emphasised by the contour lines, is due to the table while the other high density regions are
a result of the background surfaces. Note the presence of some isolated green points outside
the threshold range (7 = 25). These are attributed to the balls on the table and possibly
an encroaching player. Red values within the threshold range are cushion pixels (of similar
colour to the table) which were not taken into account when manually extracting the table

region for analysis.

Tennis

No matter the type or colour of tennis court surface, the court lines are always painted white.
A simple, direct thresholding of the brightness component (V) from HSV colour space,
looking for regions which are brighter than a specified threshold, should therefore yield the
brightest objects in view. These will generally be due to the lines, players and part of the
crowd.

While direct thresholding is sufficiently robust for snooker using non-normalised RGB
colour space (since the game is played indoors with relatively uniform lighting conditions)
this is not the case for tennis footage which is normally played outdoors. Thresholds often

have to be chosen empirically meaning that over a large sample of data, the technique may
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Figure 3.1: A scatter plot of the difference of colour planes for Higgins (top), Hendry
(middle) and Hunter. A close-up of the regions of table colour is shown on the right with a

colour bar conveying the contour density. The bold dashed line is the threshold values of 25.

not be quite so robust due to possible variations causing drifts in the data. It can be seen
in the bottom row of figure 3.3 that the value chosen (V > 145) for the brightness threshold
does not perform equally well in all sequences. As games are played at different times during
the day and in different lighting conditions, court regions can seem brighter and are labelled
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Figure 3.2: Top: Global view from Higgins, Hendry, Hunter sequences. Bottom: Binary

maps of the snooker footage generated from RGB colour differences.

as part of the field lines.

3.2.2 Segmentation using adaptive thresholding of colour spaces

In most sports footage, the playing area colours contribute toward a large proportion (typi-
cally > 70% in tennis and > 60% in snooker) of the overall colour distribution in the global
view. In this view, peaks in the individual distributions correspond to the playing area region
(as shown for tennis in figure 3.4). The adaptive thresholding method used for this segmen-
tation uses a greedy algorithm which accounts for this property. The idea is to select 7% of
the histogram centred on the mode. The algorithm is outlined in table 3.3 for the brightness

component, where the greedy range is r%.

Snooker

Again, RGB space is used in this segmentation of the snooker table. Using the same ob-
servation as direct thresholding (that there are high values of green for the table in G and
not in R and B), the histograms of the difference between the green and blue components,
and green and red components are calculated. The binary ‘and’ of the thresholded images
GRmap = (G — R) and GBpgp = (G — B), who's values lie within the 60% greedy range of

both histograms are deemed to be the table.

table = G Rian A\ G Biasn 3.2
I 7
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Figure 3.3: Binary maps of tennis footage by application of a direct threshold of V' > 145.

Left to right: Pierce, Hewitt, Malisse, Costa sequences.

This shows good results for Higgins and Hunter footage (figure 3.5). However, since
the playing area in the global view in Hendry is quite small, the mode in the distribution
does not correspond to the colour of the table, but the background. This issue affects the

discussion in section 3.2.4.

Tennis

The contrasting luminance and saturation values of the tennis court lines and the court
itself offers the possibility of segmenting the court from the delineating field lines. HSV
(Hue, Saturation, Value) colour space is used for segmenting the tennis court. The peaks
in the value, or brightness, and saturation histograms correspond to the dominant colours
of the playing area, are firstly found. A greedy algorithm is then used to find the values
which account for 65% of the brightness histogram, grown outwards from the peak value and
70% for saturation. As white has a high brightness and low saturation, pixels with values
greater than the range produced by applying the algorithm to the brightness component are
considered to be non-court surface pixels. Those values less than the range returned by the
same algorithm on the saturation component also contribute to the court lines. While the
65% range used for the luminance histogram will uncover some patches of worn down grass,
it is necessary to ensure that all the straight lines are detected. The binary map of the ‘and’
operation between the two thresholded colour spaces, Viqp and Spqp, retrieves the court lines
(equation 3.3).

Eourt = Vonap /A Smap (3:3)

It can be seen in figure 3.3 that the greedy histogram segmentation, with a greedy range
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0025

Figure 3.4: Tennis court colour (HSV) distribution. The main lobe in the distribution

corresponds to the court surface. (Hue (left), saturation (middle), value (right).

Figure 3.5: Segmentation of the snooker table using the greedy algorithm on Higgins (left)

and Hunter (right).

of 65% for the luminance histogram and 70% for the saturation histogram, works well on two
types of tennis court surface (grass and clay).
3.2.3 Colour space modelling

In an attempt to derive a more generic solution to the segmentation problem, a probabilistic

approach was considered by modelling the colour distribution using a mixture of Gaussians.
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1. Compute the normalised M bin brightness (V') histogram, Hy (m)
from HSV space.

2.  Find the argument of the mode in the distribution.
M = arg max; <,,< v (Hy (m))

Define the variables k; = ko = m for the first iteration.

3. while (X%, Hy(n)) <r%,
if (SR Hy(h) > X2, Hy(9)),
ko = ko +1
else,
ki=k —1
end;

end;

Table 3.3: Greedy histogram algorithm for calculating r% of the brightness histogram V,

from HSV colour space.

Figure 3.6: Binary maps of tennis footage generated using the greedy histogram. Left to

right: Pierce, Hewitt, Malisse, Costa sequences.

In order to characterise the colour content of the footage, the CIE L*a*b* colour space was

used.
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Depending on the environment (indoor/outdoor) in which a sport is being played, light-
ing conditions will affect the segmentation process, both temporally and spatially. Under
conditions where artificial lighting is present, the brightness over the playing area may not be
sufficiently uniform to allow segmentation using the luminance component. The luminance
invariant chromaticity space a*b* is therefore employed.

In an outdoor environment, the opposite is the case 3. The brightness may vary tem-
porally over the duration of a game. However, the duration in which it takes for lighting
conditions to change are considerably longer relative to the frame operations. Moreover, in
an outdoor environment luminance should be spatially uniform, assuming there is no shad-
owing of the playing area due to obstructing objects. A model which incorporates luminance
must therefore be considered. An L*a*b* colour model is therefore adopted for outdoor

sports.

Multimodal colour space modelling

As a result of the nature of the global view, the playing area accounts for the majority
of the total colour distribution over the entire image. The distribution will in general be
multimodal but will exhibit a substantial peak in the colour histogram due to the dominant
colour of the playing surface, as discussed previously. In order to derive a model for the colour
distribution, means and covariances must be resolved from the data. A model is trained by
manually selecting 3 regions of playing area from 20 frames at different points in each of
the footage sources. A parametric model is then created by approximating the complex pdf
in the form of an aggregation of individual Gaussian components (i.e. a Gaussian mixture
model (GMM)) [13,37]. Essentially, the goal of the GMM algorithm is to estimate the
means, covariances, and probabilities of each mixture distribution. The GMM is also used
in chapter 6 for clustering and quantisation of a two dimensional space. A description of the

GMM and the iterative estimation formulae are now presented.

Gaussian mixture modelling

In this type of clustering each cluster is mathematically represented by a Gaussian distribu-

N

tion. The entire data set, {z,},,_;,

(where z,, is a collection of features) can be modelled by
a weighted mixture of multivariate Gaussians, each with a particular mean value, pj, and
covariance matrix Rg. The Integrated Completed Likelihood (ICL) [11] is known to help in
de terminating the number of mixture components to fit the data. The ICL however was
not used in this work. The expectation-maximisation (EM) algorithm is used to iteratively
update the parameters of each mixture until some convergence criterion is reached. The

mixture is defined as:

Nk éN(’wk,;_Lk,Rk) (3'4)

3In this thesis, it is assumed that outdoor sports are only considered to take place during the daytime.
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For a Gaussian mixture model, the likelihood is given by equation 3.5 where © =
{wk,gk, Ry} and Cy is the cluster class

p(z,|Cks8) = L e (n ~ )Ry (@ —p)T (3.5)

V27| Rg|

A new parameter set is estimated by maximising © to generate a new updated ©’ accord-
ing to equation 3.6 4.
©' = argmax [P ({gn}n=1 n |@)] (3.6)
[5)

The optimisation process is described below where K Gaussians are fitted to the data z,,,

wheren=1,...,N.

1. Initialisation: Randomly choose K points as the centroids of the Gaussians from the
data set. The weights on each Gaussian, or mixing coefficients, wy, are initialised as

wy = 1/K. Variances are initialised to be one with zero covariance.

2. Update: E-Step: Compute the probability given in equation 3.7. This is known as the
mixture ‘responsibility’, so named as it effectively measures how responsible the k"

mixture is for generating the data z,,.
P(2,|Cr)P(Ck)
N
> PzalC)p(Cr)

3. Update: M-Step: New parameters are estimated using the update equations below

p(Cklzy) = (3.7)

based on the mixture responsibilities from the E-step and the data.

Ky nNL
Zn:l (Cklxn
& (Culgn) = )t~ By) (3.8)

NZ p(Cklz,,)

4. Termination: The algorithm converges if the change in an error function (given by the
ratio of likelihoods from the current iteration and previous iteration in equation 3.9) is

less than a specified tolerance.

(2)
6 _ 1 P(E)
L (3.9)

“The parameter update equations are derived by introducing an auxiliary function Q(©,©’) which is the

expected value of the complete data log-likelihood function. This is described at length in Bilmes [13].
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Where,
N

P'(z,) =Y p(,|Cx)p(Ch) (3.10)

n=]
If AGHD < tol terminate, otherwise go to step 2.

Having established a parametric model for the colour distribution (6 = {w, Ek’Rk})’

the likelihood of each pixel, {z,,}}_,, is computed and summed over all mixtures K.
P(2a]©) = 3 wpe O3E B R @) (3.11)
keK

Tests were carried out on two examples of indoor sports (snooker and badminton) and

two outdoor sports (tennis and cricket).

Indoor sports

The a*b* chromaticity space results in a good segmentation of the snooker table. Three
regions, of approximately 200 x 200 pixels, from the three source footages listed in section 3.2
are used to train the snooker model. Figure 3.7 shows a contour plot of the 2D a*b* histogram

with an overlay of the modelling Gaussians for snooker and badminton footage.
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Figure 3.7: Indoor models: Left to right. The a*b* distribution for snooker footage approx-
imated using a 4 mixture GMM; The a*b* distribution for badminton footage approximated
using a 2 mixture GMM.

Outdoor sports

As with the indoor footage, three regions of approximately 200 x 200 pixels are chosen man-

ually from the source footage to model the dominant colour of the playing area. The scatter
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Figure 3.8: Binary maps of snooker and badminton generated using the ab colour model.

plot of the tennis footage exhibits three distinct clusters, while two clusters are evident in the
cricket footage (figure 3.9). The regions chosen manually to model the tennis playing area
colour were selected to include worn regions of the court resulting in the second peak in the
distribution ®. Three regions of the crease were also chosen from cricket footage. Figure 3.9
shows the 3D L*a*b* scatter plot with an overlay of the three modelling Gaussians for tennis
and the two Gaussians required to model the colour distribution of the crease for the cricket
footage.

Distinguishing between the tennis court playing surfaces and thereby choosing the correct
model type for segmentation can be done by analysing the (r, g) chrominance content of the
full court view. As a clay court contains higher red values than grass it is reasonable to say

that if equation 3.12 is true, the clay court model should be chosen.

Z7AIZJ 17'2 .]) 21;12_19(1]
NM NM
Where M, N are the number of rows and columns in the image. The opposite is the case

(3.12)

then for the grass model. An illustration of the segmentation achieved using the GMM is

shown in figure 3.10.

3.2.4 Choice of segmentation method

In summary, three segmentation approaches were considered, direct thresholding, adaptive
thresholding and colour distribution modelling with the aim of segmenting the delineating

playing surface in snooker and tennis. Direct thresholding was chosen for snooker segmenta-

°It was necessary to model the worn regions, as grass tennis courts tend to become degraded following

considerable play.
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Figure 3.9: Outdoor models. Clockwise from top left: The L*a*b* plot for grass court
tennis footage approximated using a 3 mixture GMM; The L*a*b* plot for cricket footage
approximated using a 2 mixture GMM; The L*a*b* plot for clay court tennis footage ap-
proximated using a 2 mixture GMM; The data sets for all three footage sources have been

subsampled for viewing purposes.

tion and adaptive thresholding for tennis. The reasons for which are given below.

Snooker

Playing conditions in snooker tend to be stable since the game is played indoors, without
any natural light and on a surface which does not vary from competition to competition.
Furthermore, the lights are set up so as not to cast shadows on the playing surface. This
means that a direct thresholding approach is sensible for segmenting the snooker playing
surface from all footages. Of the other two segmentation methods, adaptive thresholding
cannot be guaranteed to work on all snooker footage sources since it is assumed that the table

accounts for the majority of the view, which it sometimes does not, while the computational
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Figure 3.10: Binary maps of grass court tennis (top - the negative is shown here), cricket

(middle), and clay court tennis (bottom) footage generated using the L*a*b* colour model.

burden of the GMM is excessive.

Tennis

It is clear from figures 3.3, 3.6 and 3.10 that the GMM and adaptive thresholding offer the
most reliable segmentation. While direct thresholding does work well for some sources, the
variations in lighting conditions limit its effectiveness. Once again the GMM is not chosen

due to its excessive computation, so the adaptive threshold is used.

3.3 Playing area detection and inference of geometry

In the subsequent sections, the results from the segmentation are drawn upon to infer the
geometry of the playing areas for tennis and snooker. The Hough transform and the related
Radon transform [36] have been used for detecting objects that can be specified by some
parametric form (circles, lines, ellipse). The discrete form of the Radon transform, the
Mojette transform [35], has also been used for object finding purposes. These transforms

have been exploited in a number of applications including medical imaging [51, 127] and

cartography [149]. They work by mapping lines in image space to points in Radon or Hough
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space by re-parametrisation. A brief review of the Radon transform is given in Appendix D.

To our best knowledge, the work presented in this thesis is the first to exploit the Radon
transform for detection of delineating field lines in broadcast sports footage [39]. Both the
Radon transform and Hough transform have found considerable success in the sports do-
main [69,77,99] since, due to their robustness against occlusion and relative simplicity. The
techniques involved in retrieving the relevant lines and salient points on tennis and snooker

playing surfaces are discussed in the subsequent sections.

3.3.1 Geometry of a snooker table

An edge map of the binary image generated by the segmentation in section 3.2 is created
using a Sobel Edge detector [71]. A Radon transform is performed on the edge image using
polar line parameters (p,#). Figure 3.11 shows examples of the Radon transform from the
segmented snooker table.

From analysis of the footage (and as can be seen in figures 3.11), the orientation of the
table in the global view dictates that straight lines should be found at angles in the range
[3°,...,25°], [89°,...,90°], and [155°,...,177°]. Computational complexity of the Radon
transform is substantially reduced by making use of this prior information. Figure 3.11
shows the arrangement of the peaks in Radon space for a full table view. So for a full table

view the following pattern is observed:

e One peak in the range 6 € [3°,...,25°] representing the line at the right hand side of
the table.
e Two peaks in the range 6 € [89°,...,91°] representing the two horizontal lines at the

top (p > 0) and bottom (p < 0) of the table.

e One peak in the range 6 € [155°,...,177°| representing the line at the left hand side of
the table.

If peaks in Radon space are found in this configuration a table is deemed to have been found.
By finding the intersection points of the retrieved lines from Radon space, the corner
pockets can be recovered using equation 3.13, where the equation of a line in polar form is

p = x cos + y sinf. All relevant global view clips can be extracted using this process.

—1
T cos f; sin 0
i s h (3.13)
y cos B> sin 6o 02
Knowing that the diagonals of a trapezoid intersect at its centre enables the coloured ball-
spot positions to be recovered. All spots along the centre line of the table can be related to
the appropriate subdivision of the table using this process. For example, finding the intersect

of the two main diagonals (top left pocket to bottom right and top right pocket to bottom

left) allows the blue spot to be recovered, subdividing again from the middle pockets to
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the bottom corners of the table, in the same fashion, allows the pink spot to be recovered,
etc. Furthermore, from the known physical geometry of the table, the yellow and green spots
(which are to the 14.5 cm to the left and right of the brown ball) can also be recovered. Results
from the table, pocket and spot finding procedure are illustrated in figure 3.11. Figure 3.12

illustrates non-global views correctly rejected using the playing area detection algorithm.

Figure 3.11: Inference of the table geometry for 3 footage sources. Left column: Table edge
images; Middle column: Radon Transform of the global view; Right column: Table geometry,

spots and pockets recovered.

Experiments for the table finding algorithm were conducted on three sequence. The
accuracy of the algorithm is given in terms of precision and recall defined in equation 3.14

where the classification of the retrieved view is given in table 3.4.

A
Precision = (3.14)

A+C A+

Here, correct views are considered to be those showing the full table and incorrect views

Recall =

are of any other type. Results of the classification showing 100% retrieval for all snooker
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Figure 3.12: Correctly rejected camera views from the snooker footage. The Radon spaces

in the second and third images are sparse because no geometry is detected.

User evaluation
Relevant Not Relevant
Retrieved A: Correctly retrieved | B: Incorrectly retrieved
Not retrieved C': Missed D: Correctly rejected

Table 3.4: Classification of retrieved views.

footage sources are tabulated in table 3.5.

Footage | Hunter | Higgins | Hendry
Precision | 100% 100% 100%
Recall 100% 100% 100%

Table 3.5: Precision and recall results for table view classification.

3.3.2 Geometry of a tennis court

Due to the dynamic nature of the game, tennis footage exhibits a great deal of horizontal

translational camera motion as the camera pans to follow the main action on court. As a
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consequence of the panning, horizontal camera translation in image space results in a vertical
translation of the projections in Radon space. This is due to the changes in the parameter
p (the perpendicular distance from the centre of the image to a line) as the lines drift from
their original position. This is shown in figure 3.13, which illustrates a simulated camera

translation to the right over two frames and the affect on the Radon transform.

o
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Figure 3.13: Illustrating the resulting Radon transform of a simulated camera pan to the
right. Top: Tennis court at frame t and its corresponding Radon transform; Bottom: Frame
t + 1 and its corresponding Radon transform. The vertical displacement of the transform of

the tram lines is clearly visible as the values for p change.

Furthermore, since the camera capturing the global view is fixed at the centre of the
court, camera panning will cause a perceived rotation of the lines about the fixed location of
the camera filming the action. In the case of translation to the left, the lines will appear to
rotate clockwise, and counter clockwise for a translation to the right. Consequently, peaks in
Radon space will drift horizontally (left or right depending on the rotation of the line) due to

the varying line parameter #. A simulated rotation of the tennis court, and its corresponding
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Radon transform is shown in figure 3.14. The perceived rotation of the court from some of

the televised footage is well illustrated in figure 3.15.
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Figure 3.14: Illustrating the resulting Radon transform of a simulated rotation. Top:
Tennis court at frame t and its corresponding Radon transform; Bottom: Framet+ 1 and its
corresponding Radon transform. The horizontal displacement of the tram lines can be seen

as the values for 6 change.

The court can be retrieved without the need for compensating for camera motion. This
is achieved by noting that the horizontal lines are always present in the global view as the
camera will rarely pan sufficiently causing them to disappear. Furthermore, from analysis of
broadcast footage, it was realised that at least 2 vertical tram lines will also be in sight.

Significant peaks in the region 8 = [5°,...,45°] and 6 = [135°,...,175°] in Radon space,
represent the two tram lines on either side of the court. This range of angles is sufficient to
allow for the effects of camera panning in image space.

The peaks are located by thresholding the individual histograms of the specified 6 ranges

in Radon space. The minimum of the top 0.25% of the histogram in the range 6§ = [5°,.. ., 45°]
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Figure 3.15: Examples of the perceived rotation of the tennis court.

locates the vertical trams on the right hand side of the court, the minimum of the top 1% of

the histogram in the range 6 = [85°,..., 95°] locates the horizontal lines and the minimum
of the top 0.25% of the histogram in the range 6 = [135°,..., 175°] locates the left hand

side tram lines. A further condition that the threshold be greater than 50 is also imposed to
detect the peaks. The percentages values used to arrive at the threshold value were derived
empirically.

The structure of the lines, labelled with distances and angles, and the corresponding
Radon transform is illustrated in the mock schematic of a court shown in figure 3.16. The
difference in the 6 values between the ‘parallel’ tram lines on either side of the court arise
from the perspective distortion of the playing area.
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Figure 3.16: Illustration of the tennis court geometry. Left to right: A schematic of a tennis

court with parameters (p,6) for each line; The Radon transform of the schematic.

Peaks spanning the range 6 = [85°,..., 95°] are deemed to be the horizontals, of which
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Vertical § = [5°,...,45°] | Horizontal § = [85°,...,95°] | Vertical § = [135°,...,175°]
2 4 orb 2
1 4ord 1
0 4orb 2
2 4ord 0

Table 3.6: Conditions on the presence of lines in order for a full table view to be flagged.

there are five. It was found empirically that a range of § + 5° off the horizontal was sufficient
to locate those horizontal lines and compensate for their apparent rotation. Occasionally,
the top of the net covers almost all of one of the lines, depending on the angle at which the
camera capturing the global view is perched. Either four or five peaks are sought for in this
range. Two of the peaks are below the centre of the image (i.e. have negative values of p)
and two or three are above the centre of the image (i.e. positive values of p). The schematic
of the tennis court illustrated in figure 3.16 shows five horizontal lines.

If peaks are not found in the required order shown in table 3.6, or if the total number of
peaks is less than 6 (sparse lines) or greater than 10 (spurious lines), then a view other than
the tennis court is flagged. Supplemental views can be further categorised using colour and
shape features. This is outlined in section 3.3.4.

To eliminate objects which may not be lines, accumulated points in Radon space less than
25 pixels are suppressed. Line intersections are found in the same way as for snooker using
equation 3.13.

In order to reconstruct the full shape of the court, tram lines which are out of view as a
result of camera translation are simulated by mirroring the existing peaks in Radon space.
As discussed previously, horizontal camera translation is manifest as a vertical displacement
of the peaks in Radon space. In Radon space, the p values of the peaks (corresponding
to the horizontal lines) behave asymmetrically about a centre point where the distances to
corresponding tram lines are equal. Consequently, this enables the location of “hidden tram
lines” (i.e.those which are out of view) to be approximated.

To simulate the hidden lines, their (p,f) parameters must be derived from the existing
tram line data. In order to achieve this, a frame is extracted from the footage where the
difference in distances from the centre of the image of the two outer tram lines is less than
10 pixels (from figure 3.16), where p; ~ ps ~ p} and ps ~ pg ~ p} respectively .

This is referred to as the centre frame. By calculating the drift of each peak in the

relevant 6 range in the current frame from its location in Radon space in the centre frame,

5Tt is assumed that there is no vertical camera translation so a frame of this type gives the one location

where this equality is valid.
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the perpendicular distance to the corresponding hidden tram line can be approximated as:

o = oo+ (o= p8) (.15
R () (3.16)

Where p; and p; are the distances to the hidden outer and inner tram lines respectively and

p,()t) and pz(t)

are the distances to the outer and inner visible tram lines in the current frame ¢.

Occasionally, if the camera angle is tight or the segmentation not good, the outside lines
are not sufficiently long to be detected using the Radon transform. Under such circumstances,
the parameters of those lines have to be inferred. This is simply done by calculating the
distance between the inner lines in the centre frame and those in the current frame and
offsetting the outer tram lines in the centre frame by the difference in distance.

When calculating the 6 parameters of the hidden tram lines, camera induced line rotation
must be accounted for. 6 values from the centre frame are used for approximating the
rotation. Using figure 3.16 as an example of the centre frame, the values for 6; = 0g = 6,
and 6y = Oy = 0 are registered. In a similar fashion as estimating the values for the p
parameters, 6 values for the right hand tram lines are approximated using equations 3.18 and

the left hand tram lines are approximated using equations 3.20.

8 =0 + (62— 6) (3.17)
oY =g+ (6 -6 (3.18)
90’ =180 — 6% + (180 — 8% — ) (3.19)
6% =180 — 67 + (180 — 67 — 6) (3.20)

The resulting angles Oz(t), and th), are those of the corresponding tram lines on the opposite

side of the court, where ¢ stands for inner and o outer. 6, and 6#; are the angles of the lines
in the current frame t. Changes in the angle of the lines as a result of perspective distortion
are negligible as the camera pans to the other side of the court, and are not considered in
the approximation.

While simulation of lines outside the range of the camera may not be useful for viewing
purposes, it does allow reconstruction of the remainder of the court. The same assumption as
used for snooker, in that the diagonals of a trapezoid always intersect at its centre is employed
to find the centre line. Diagonals from the corners of the outer tram lines (be they simulated
or real) intersect at the centre of the court. By consecutive subdivision of the court, the
remaining lines can be recovered.

Figure 3.17 shows fully reconstructed tennis courts in the global view. On the left, a
court where only the left hand tram lines and horizontal lines are viewable is shown. The
middle image illustrates the global view of the tennis court where the inner left hand tram

line along with both right hand tram lines is in view. Lastly, a centre frame is shown on
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the right. Figure 3.18 illustrates non-global views correctly rejected using the playing area
detection algorithm. It is easy to reject these images because the Radon transform does not

exhibit the required arrangement of peaks.

Figure 3.17: Fully reconstructed tennis courts in the global view. The interpolated lines

are overlaid on the existing white lines and are shown in red.
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Figure 3.18: Correctly rejected camera views from the tennis footage. The discontinuities

on the abscissa are a result of the range of 6 used.
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Footage | Pierce | Hewitt | Malisse | Costa
Precision | 100% | 100% | 100% | N/A
Recall 100% | 100% | 99.95% | N/A

Table 3.7: Precision and recall results for tennis court global view detection.

Experiments were conducted on three tennis sequences played on a grass surface and one
on a clay court. The lower recall from the Malisse footage is a result of poor segmentation,
which in turn can be considered to be a consequence of the poor quality of the captured
footage. Over a duration of 21 frames, the camera pans very quickly, following the ball from
a hard shot. As a result of motion blur the vertical tram lines blend with the court surface
reducing their brightness. The segmentation reveals only small parts of the white line and
cannot be detected by the court finding algorithm. Results of the tennis court detection are
given in table 3.7 in terms of precision and recall.

In an attempt to classify the footage into its further constituent shots, it was parsed
according to the statistical moments of local colour and geometrical based features. The
problems encountered in classifying the views in the Costa footage can be addressed using

this method. This is discussed in section 3.3.4.

3.3.3 Radon Moment

Sports such as tennis, snooker, badminton, and cricket all occur within predefined playing
limits and are therefore well defined in terms of their geometry. Most of the video footage
from these events contains well delineated field lines in the views which contain the most
information about the play - for example, the court lines in tennis, and the edge of the table
in snooker. It is sensible then that the video should be parsed according to the geometry of
the camera view.

Previous work has considered the use of 3D scene geometry [141] to generate a correspon-
dence between certain image features and real court markings. This information could be
used also for identifying the camera view, hence allowing the video to be parsed. This can be
a complicated exercise, and in fact a much simpler idea yields the same information. What
is of interest is the relative geometry of the lines within each image; it is not important to
know how that geometry relates to the real world, only how it relates to other geometries,
from other views, in the footage.

Summarising the geometry of that edge information in view will yield a useful feature for
parsing. The Radon transform of an image containing edge information yields concentrated
peaks representing significant straight lines and since shapes of the playing areas for the

sports listed are quite distinctive, different views of the playing areas exhibit very dissimilar




3.3. Playing area detection and inference of geometry 63

arrangements of peaks in Radon space. The nature of this Radon surface will therefore follow
changes in the edge information. Summarising the Radon transform should therefore yield an
appropriate feature, and it is proposed to use the p + gth order geometric moment [138,139]

as follows:

(o o] o
o= D Y (=2 — )" (i,5) (3.21)
1=—00 j=—00
Where i, are the pixel co-ordinates, p + ¢ is the moment order and z.,y. are the co-

ordinates of the origin in Radon space, a single feature describing the frame can be obtained.

Snooker

The different geometries of the snooker table shown from the various camera angles used in
common televised footage is reflected in Radon space by exhibiting very distinct transforms.
For example, the Radon space of the full table view reveals four distinct peaks representing
the edges of the table, while the projection of the table from a different camera angle in Radon
space shows a number of peaks in the incorrect order (figure 3.12). While all broadcasters
will have preferences about the location of the cameras around the table, the full table view
is the most commonly used and can be considered to be of greatest importance as it bears
the most useful information.

Figure 3.19 shows the 8th order Radon moment for all the snooker footage. The various
plateau level are shown in different colours to highlight the view type. The 8th order moment

was chosen emperically, because it gave the best seperation in feature space.

Tennis

In section 3.3.2, for all footage sources, the court lines were found to lie at angles in the
range 6 = [5°,...,45° 85°,...,95°,135°,...,175°]. The distances to the visible lines always
remains in the range p = [—463,...,463|, however, the lines which are not in the view can
occupy the ranges p = [—1389,...,—464] and p = [464,...,1389] since the position of the
tennis court lines change relative to the centre of the image .

Classifying the different views using this method proves more difficult than for the snooker
footage since the global view is subject to translational global motion. As the camera pans,
both the magnitude of the lines and their positions in Radon space change. The inconsis-
tencies in the Radon moment plots for the tennis footage reflect this and are illustrated in
figure 3.20.

"These values of p assume that the resolution of the images are 720 x 576.
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8th order Radon moment
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Figure 3.19: 8th order Radon moment for Higgins (top), Hendry (middle) and Hunter
(bottom). The green value corresponds to the global view, magenta is a different view of the
table, black is a close up of the player, red is the commentator or crowd, blue is a close up of
the table and yellow is a gradual shot transition.

3.3.4 Statistical colour and geometrical moments

As discussed in section 3.3.3, the playing areas of both tennis and snooker are well-defined by
their geometrical features. Each of the views associated with the different cameras also exhibit
differing colour content. Local colour based measures are therefore considered as further
indicators to the particular view content [33]. A 3-tuple containing the chrominance and
intensity information is defined in equation 3.22 and is a succinct representation of the frame.
The red (R) and green (G) colour spaces are normalised by the intensity (equation 3.22)

component of the image resulting in the rg chrominance space [122].

R
r= T
mcolour — g= % (322)
I=R4+G+B

Further shape features are also considered for classifying the different camera views. These

features are not restricted by introducing thresholding constraints and use all the information
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8th order Radon moment
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Figure 3.20: 8th order Radon moment for Hewitt (top), Pierce (middle) and Malisse (bot-
tom). The green values corresponds to the global view, magenta is a different view of the
court, black is a close up of the player, red is the commentator or crowd, blue is a close up

of the court and yellow is a gradual shot transition.

in the image. The first parameter, 6, is the angle of a local edge. The second parameter, a, is
an alignment measurement. 6 is related to « in that if two points belong to the same straight
contour, they will have similar values. The third parameter, N, is the norm of the spatial
gradient computed on the intensity component. The 3-tuple containing the shape information
is given in equation 3.23. The gradients of the intensity images, (I, I,] are computed using
a Deriche operator [30] where the subscript is the gradient direction. A schematic of how the
parameters are calculated is shown in figure 3.22. Figure 3.21 illustrates the shape measures

using the global views in tennis and snooker footage.
— I
a=zF +tyw
mShape @ = arctan %1 (3.23)
W = 0 I
By considering the statistical moments of the measures the representation of the features

can be reduced to a single value for each image. The extracted features are of very low
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Global view 6 «@ |NV|

Figure 3.21: Shape features for snooker and tennis footage.
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Figure 3.22: Illustration of the geometrical features, 6, « and |N| for a straight line.

computational complexity. The first order moments, which correspond to the mean values of
the features are computed on each frame according to equations 3.24 where x is the spatial

location of the local measure and t is the frame number. For moment orders ¢ + j + k = 1:
MG () =t x)g (t, x)I5(t, %)
(3.24)

M;].’,;a”“(t) =3 ai(t,x)09 (t, x) N*(t, x)

Higher order statistical moments are calculated by centring the features on their first
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order moment value as shown in equation 3.25. So, for moment orders where i + 7 + k > 1:

MEn(6) = 3, (r(t,x) — MBI (8)) (g2, %) — MGy (18, x) — Mggiew*
MPe(8) = Lylalt,x) — MigP () (0(t %) — Mige™ () (N (¢, %) — Mg (8))*

(3.25)

Figures 3.23 and 3.24 show the evolution of the shape and colour moments for the footage

Hendry. It can be seen that the features occupy different levels for the various view types.
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Figure 3.23: Evolution of the mean of r and g for the footage Hendry. The green plot is
that of the full table, red is the crowd /commentator, blue is a close-up of the table and black

is a close up of the player.

Scatter plots of the statistical moments (figure 3.25) show good separation for the different
classes of camera view. As can be seen from the plots, the frames of interest exhibit relatively
homogeneous moment values. The stochastic nature of the feature will be modelled using a
hidden Markov model which will enable the various shots to be classified as a particular view

type. This will be presented in chapter 6.
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Figure 3.24: Plots of the second order moments of the statistical shape features for Hendry.
From top to bottom: «, 6, N. The colours correspond to those camera views given in fig-
ure 3.23.

3.4 Temporal boundary detection

The temporal unit most commonly used for video analysis is the shot. It is typically punc-
tuated by gradual or sharp transitions or event specific wipes. Sharp transitions are the
most easily detected. Their position in the video stream can be located by exploiting the
correlation between consecutive frames in terms of their colour, luminance or other local
features.

Gradual transitions such as fades and dissolves are more difficult to detect. They result
from intensity scaling of frames in a shot. Dissolves are a mixture of two fades where the
intensity of one shot is scaled up and the other is reduced. Consequently, the two shots are
both spatially and temporally intermingled. Wipes are an editing effect which are broadcaster
or event specific. However, they all exhibit the same property in that one shot is gradually
spatially replaced by another. As wipes and mattes are used less frequently than the other
transitions mentioned [14], only shot cuts and dissolves are sought for. For the sports footage
used in this thesis, shot transitions are detected using:
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Figure 3.25: Plot of the statistical moment features: Top: Plot of chrominance information
(r,g) for snooker (left) and tennis (right). The green clusters in each of the plots correspond
to the global views in each of the sports; Bottom: Plots of the shape features Moo vsMio1
for tennis (left) and snooker (right).

1. Shot cut detection
2. Global/Non-global view transition detection

3. Dissolve detection

Shot cut detection

Initial shot cuts are detected using the well known sum of absolute luminance histogram dif-
ferences. Since histograms contain no information related to the spatial arrangement of pixels
in the image, each frame is split into 5 segments. If the sum of luminance histograms differ-
ences for each local histogram exceeds a specific threshold, a shot cut is inferred. Figure 3.26
illustrates the arrangement of the local quadrants.

The sum of absolute luminance histogram differences between histograms H(j) and
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Figure 3.26: Quadrants for computing histograms over the image. The quadrants bound-

aries are shown In red.

H,;_1(j) of m bins are computed for each quadrant, @ = (1...5).

m

d="_|Hi(j) - Hi-1(j)
j=1

(3.26)

If d exceeds a threshold, T(Q)

cut

An adaptive threshold based on the statistics of a window of 20 previous histogram difference

, for all quadrants, a shot cut is deemed to have occurred.

values is used to set the thresholds for each quadrant. The mean, /1(Q). and standard deviation

. 16)
o(Q) are computed and the threshold is set as T(E,E

) = W + 369, 3is set to 5.

Global/Non-global view transition

Parsing sports footage according to the global or non-global view type is akin to detecting
high-level shot cuts. This is because the geometry not only allows the shot cut to be identified
but also the camera view and hence the importance of that shot for summary purposes. This
immediately allows for exploitation of the context of these kinds of view type and could
conceivably be a more powerful approach than the generic use of histogram based shot cut
detection. For instance, in both tennis and snooker, shots of the crowd and of the players can
be considered less important than shots containing game events which occur in the global
view, so can be summarised simplistically, or discarded entirely. These high-level shot cuts
can be inferred by searching the first frames of each of the detected shot cuts for the required

geometry exhibited by a tennis court or a snooker table.

Dissolve detection

In order to detect dissolve transitions, a variation of the twin thresholding method outlined
in Zhang et al [169] was implemented. It differs to [169] by dividing the image into the same

quadrants used for the shot cut detection (figure 3.26). The method sets two thresholds based
Q)
-

~ut » 18 set to a higher

on the statistics of previous frames in the shot. The first threshold,
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value which detects shot cuts, while the second threshold, Téi%), of lower value initialises the
dissolve detection.

If the lower bound is exceeded in more than three of the five segments, the difference
between the low threshold and sums of absolute luminance histogram differences for each
subsequent frame, are accumulated. If this cumulative sum is greater than the higher thresh-
old and the current histogram difference is less than the low threshold in more than three of
the five segments, a dissolve is inferred.

Figure 3.27 shows a plot of the histogram differences (blue) and cumulative histogram
differences (red) for the middle quadrant in Higgins. The relevant dissolve frames from the

footage are shown above the plot.
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Figure 3.27: Dissolve detection. Histogram differences are shown in blue and the cumulative
difference is shown in red. The dissolve is detected between frame 88 and 99. The low
threshold is a dashed green line and the high threshold is solid green. The images shown are

from frame 88 and every second one to frame 100.

3.5 Summary

This chapter introduced the first two steps in the proposed framework for sports video anal-
ysis. Feature extraction involved segmenting the playing surface and locating the delineating
playing area. This was used to locate ‘high-level shot cuts’ in the footage. These types of

shot cut detect the camera view as being global or non-global and hence understand the

importance of that shot for summary purposes. The sequences of non-global views were tem-
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porally segmented further into their constituent shots using conventional temporal boundary
detection techniques.

A new feature which summarises the geometrical content of a scene without the need to
calculate complex 3D geometries was presented. Additional colour and shape features which
exploit the shape and colour content of each view were extracted from the footage which will

be used to help classify the different view types.



Object Tracking !

There has been a long history in the research of object tracking [17]. It has proved to be
useful in surveillance applications (both in tracking of humans [90] and road traffic [83]),
teleconferencing [154] and human-computer smart interaction [80]. Tracking can be difficult
in the presence of clutter and generally relies on certain operator imposed constraints.

The ability to track objects in an image sequence is useful where the motion of an object,
or several objects is important, and conveys useful information. This is particularly the case
in sports where the motion of an object can embody the description of high-level events.
In snooker, explicit tracking of the white ball from frame to frame can provide useful clues
relating to the game semantics. For example, if the cue ball is struck, travels down the table,
hits a coloured ball that is not potted and returns back to the baulk area, a conservative
shot can be inferred. Similarly, if the white ball remains in the centre portion of the playing
area, the player is deemed to be break building. Tracking a player around a court can allow
certain types of plays to be recognised in tennis footage. A player moving from the base line
to the net could mean that he is attempting a “serve-and-volley”

From the literature the tracking of objects can be divided into two classes:

1. Matching techniques: Matching techniques for tracking rely on segmenting the im-
age into various components based on colour, motion and texture. The candidates are

then matched to a specific template. Basic template matching techniques have been

'Results from this chapter have been published as “Semantic event detection in sports through motion
understanding” by N. Rea, R. Dahyot, and A. Kokaram in the Proceedings of the 3rd International Conference
on Image and Video Retrieval.
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used such as minimising the sum of absolute differences between the intensities of the
candidates and target pixel areas [42]. A mean-shift matching method which deter-
ministically searches for regions similar to a reference RGB histogram model has also
been implemented allowing control over characters in first person perspective video

games [21].

2. Probabilistic tracking: The general idea of probabilistic tracking (e.g. particle fil-
ters (PF), unscented Kalman filter (UKF), multiple hypothesis tracking (MHT)) is to
evaluate several hypotheses and weight candidate models according to their similar-
ity to a target model. The Kalman filter [156] is one such traditional probabilistic
tracking method. It works by estimating a process state and updating the state with
observations related to the state space. It is limited however, by its inability to handle

non-linear state transitions and non-Gaussian process and observation noise.

Successful attempts of probabilistic object tracking in video have been implemented in
a number of papers, using either edge/shape features [70], colour distributions [107,117]
or a fusion of a number of features [118]. Particle filtering has proved to be a successful
method of tracking objects in clutter [70,108] but can be used in most applications where

the state of a system needs to be calculated as noisy observations become available .

In this chapter, probabilistic based approaches to tracking will be reviewed and the meth-
ods involved in particle filtering will be discussed. The implementation of a tracker based on
the CONDENSATION algorithm will be presented and assessed using geometrical measures.
For the applications considered in this thesis, improvements have been able to be made to

the tracker. These include the use of:

a) Likelihood ratios based on the colour distribution of the object to be tracked and that of
the playing area.

b) The use of Parzen windows for the estimation of the pdf of small objects.

¢) Using a-priori information from the geometry of the scene to scale the size of the target

and candidate regions.

The results from the tracker will then be compared to those generated by a gradient based

motion estimator.

4.1 Probabilistic tracking

The main objective in probabilistic tracking is the computation of a current hidden state,

q¢, given current, X;, and previous observations, X; ; 2. If the system is Markovian, the

%In the implementation of this object tracker, the states, ¢;, are taken as the location of the ball at any
time and the observations, X; are the histograms of the samples in HSV (Hue, Saturation, Value) space.
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evolution dynamics of the states can be defined using the function:

qt :f(Qt—lv"'7qt—T7at) (41)

where F(.) describes the state transition model, r is the Markovian order and a;, the process
noise. Noisy observations X; arise from each state described by a function G where b; is the
noise.

Xt ~ G (qt,be) (4.2)

Under the Bayesian sequential framework, a posterior, p(g:|X1. ¢), can be approximated
using a two step recursive process of prediction and updating. The goal then of tracking is
to estimate a state, ¢; from the posterior which is sufficiently close to the true state g;.

The two step Bayesian filtering approximation is listed below.

1. Prediction: In the first step, the prior for the next time step t + 1, p(qr+1|X1..4),
is computed by propagating the posterior from the current time step t according to a
transition density p(g:+1|gt) (or the F(.) function in equation 4.1).

el / paerla)p(ed X1..s)das (4.3)

2. Update: Updating the posterior prediction is achieved by direct application of Bayes

theorem, upon receiving a new observation X;,; is given by the solution.

P(@r+1| X1 t41) < p(Xe41]e41)P(Ge41|X1..t) (4.4)
The likelihood used to estimate the posterior is the function G(.) given by equation 4.2.

Recursion of the two steps is however not generally possible. This is because, for a given
state ¢, the observation likelihood model, G(.), often produces observations which are non-
linear and non-Gaussian as a result of non-Gaussian noise, a;. Furthermore, non-linear/non-
Gaussian state transitions often occur in practice affecting the transition function F(.). The
Bayesian solution to the posterior update also involves high dimensional integrals [43] whose
solutions are generally analytically intractable.

This has motivated the foundation of approximations to the posterior, one of which is the
particle filter (PF).

4.2 Particle Filtering

The main aim of particle filtering is to approximate a density using a discrete set of particles

N
n=1?

based on a likelihood model. The approximated posterior can therefore be

(or samples), {qt(n)}

N
n=1»

randomly selected from state space. These particles have associated
weight w(n)
g 57 { t }

thought of as a randomly sampled weighted approximation of the true posterior, p(g:| X1, +).
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The recursion equations from the previous section can be solved using Sequential Monte
Carlo methods, a toolkit which is described at length in Doucet et al [44] and MacKay
et al [96]. Under this framework, the previously intractable posterior, p(g:|Xi..+), can be
represented by a discrete set of N weighted samples. The discrete set of samples allows
the integrals to be replaced by discrete summations. A derivation of the process is given in
appendix C.

The sample set {qt(n),wt(")},]:/:1 where w; are the weights of each particle, are initially
distributed according to a proposal function u(g¢|X;. ¢). The proposal distribution is required
as it is sometimes hard to sample from the true posterior. A mechanism to sequentially update

the weights is given in equation 4.5 which is proved fully in Doucet et al [44].

P(Xt41|ge41)p(qe41]at)
u(ge+1lqr..t, X1..441)

Wiyl = Wt (4.5)

If the proposal distribution in the sequential update of the weights is chosen to equal the
prior (the transition probability of going from a state at time ¢ to that at time ¢+ 1), the new
weight of each sample is directly related to the corresponding observation likelihood. This is
also known as a bootstrap filter [43]. While not being the optimal proposal distribution, it is
sufficient for low-dimensional spaces such as the colour likelihood model which is used here
(see section 4.3 for specification of the likelihood function). The bootstrap approximation is
therefore:

w1 = we P(Xe41]qe4+1) (4.6)

Although this update is easy to implement, it is possible that the majority of weights
will eventually group around a local maximum. This is known as degeneracy. When this
happens, it becomes difficult to approximate the posterior fully.

Sequential resampling of the weights is used to help avoid particle degeneracy (i.e. by
retaining and multiplying samples of high likelihood and rejecting those with low likelihood),
and is achieved by using what is commonly known as roulette wheel selection.

Roulette wheel selection entails mapping the approximation of the posterior {qin), wEn)}
into an equally distributed measure {qt(n), 1/N} by generating a random number r € [0, 1]
and selecting the smallest sample n such that cumulative sum of samples up to n is less than
7.

The entire process can be described by the following steps and in figure 4.1.

1. Prediction: Perturb the particles according to a deterministic drift and an individual
zero mean stochastic component. In the case of snooker ball tracking the drift is a
second order AR motion model with a stochastic component € ~ N(0,0). Tennis uses

the stochastic component alone. This will be discussed in section 4.3.

2. Measurement/Update: Calculate the likelihoods of the samples and calculate the

new weights according to equation 4.5.
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3. Sample/Resample: Select N samples based on their weights according to r € [0, 1].
This will select multiple samples with high probabilities. The samples are initialised

with equal weights.

{q" 1/ N}
p(qr l Xlu.l)

Measure

{qt("), Wt(n)} = P(Cl, I Xl...l)

u re[0,1]

| TS

Drift

Diffuse  {g,,," 1/ N}

PG X, )

# : ' Spsi Measure
x x @ x O O x {C],H("),WH](")} - p(q1+l I XI.J-H)

Figure 4.1: Particle filtering for one iteration from timet tot + 1.

4.3 Generic implementation of the tracker

Edge based image features have been traditionally used for contour tracking under a particle
filter framework [70,90]. In snooker however, the edges of the balls are not always clearly
defined. For example, if two balls of similar colour are beside each other it may be difficult
to distinguish the two individual balls by shape alone. Furthermore, motion blur causes the
perceived ball shape to become elongated. This motion blur occurs instantaneously when a
ball is hit from its initial resting state.

With regard to the tennis footage, creation of a tennis player edge model could also prove
to be extremely difficult. Thus far, tracking of edges has been limited to models of head and
shoulders of humans and objects of relatively simple geometry such as leaves and cars [70].

Players on the tennis court move about vigorously as they attempt to hit the ball while also
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deforming due to motion blur. In the case of both tennis and snooker, the quality of the
captured footage also contributes to the difficulty in using edges to track the objects. A
colour based approach is therefore adopted for object tracking in both snooker and tennis
footage.

HSV (Hue, Saturation, Value) space colour histograms are used to approximate the
colour distribution of the objects and create a target and candidate models for computing
the particle likelihoods. H SV space is used because it allows separate histogram comparisons
by decorrelating the brightness and chrominance components.

Histograms offer the properties of being scale and rotationally invariant and robust to
partial occlusion. While rotation invariance is not an issue for tracking in this application,
the first and last properties of colour histograms are particularly useful for tracking snooker
balls and tennis players. Furthermore, it is trivial to impose a weighting function thereby
giving more importance to pixels in certain locations. The weighting function, z, used for
snooker and tennis footage is given in sections 4.4.2 and 4.5.2. The target model is generated
from an automatically selected object region from the first frame of the sequence in which
the object is to be tracked, and is retained throughout the shot. It has been shown that this
approach can achieve robust tracking even if there is deformation of the shape of the object
being tracked [28,117].

As the objects in snooker and tennis move in the vertical plane of a camera view which
enforces true perspective, they are subject to changes in scale due to perspective distortion.
Candidate regions must therefore be scaled appropriately to ensure that the presence of
background pixels in the colour distribution is minimised. Knowing the physical dimensions
of the playing surfaces (the dimensions of the snooker table along with a schematic of a
tennis court in appendix B), an approximation of the physical size of the objects and their
current co-ordinates along with the perceived length of the lines in the image (obtained from
sections 3.3.2 and 3.3.1 for tennis and snooker respectively), the size of the object in pixels
can be approximated by analysing the perspective distortion of the playing surface. The
object sizes are scaled according to the proportional reduction in playing area width at the
location of the object relative to the reduction in length of the top delineating line with
respect to the bottom line. Other tracking applications do not have this knowledge to hand
and instead rely on IIR filtering of the similarity between candidates and target models for

a preset increase or decrease in region size [28].

4.3.1 Establishing the likelihood model

A HSV colour histogram of a circular region is used to construct the likelihood of the particle
regions in snooker. A rectangular region is used for the tennis footage. The idea is that
the likelihood should encourage the matching of regions with similar colour distributions. A

Bhattacharyya distance measure [55] is used to calculate the similarity between candidate
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histograms, p, and the target, £, and is in turn used to weight the sample set, {(qt( (n))

In=
1...N}. The sample likelihoods are computed as
il = h[p(qt ))51
p(p{™ g™, €) = —e” 2 (4.7)

Where,

hlp,€] = Z\/ B (4.8)

where p is the candidate histogram, j is the jt of m histogram bins and £ is the target or
prototype model.

To further improve the tracking, prior knowledge of the playing surface can be incorpo-
rated into the weighting of the candidate regions. This has been used to good effect in face
and object detection applications [12,78]. In these applications it was shown that a likelihood
ratio between face models and non-face models can help reduce the number of false alarms.
This principle is applied to particle filtering where a ratio of likelihoods of each candidate
given the object model, and the likelihood of the candidate given a playing surface model, is
calculated.

A colour model for the playing surface, k, (i.e. the snooker table and tennis court) can
be trained by manually selecting regions of the surface from each footage source. This is
done in a similar fashion to that used for estimating the colour pdf of the playing surface
for segmentation using the Gaussian mixture model (GMM) in section 3.2.3. The likelihood
of each candidate region having been generated by the playing surface model, x, can be
computed using the same likelihood as equation 4.7 with £ being replaced by &

A likelihood ratio, XE”), of object to non-object regions can be calculated using equa-
tion 4.9.

) _ 2ot &)
B (n)) (n) (+.9)
p(p: gy

Tracking using likelihood ratios gives better tracking fidelity as it encourages tracking of
the selected object and not regions with a large number of playing area pixels, forcing the
particle to be more centred on the object to be tracked. This is particularly useful in the
snooker footage. When the ball is hit with a great deal of force, it is perceived to have become
elongate due to the slow frame rate of the camera. The colour distribution of the entire object
changes with some regions appearing to be an amalgamation of some table pixels and some
ball.

An illustration of this is shown in figure 4.2 where the white ball has been tracked over
15 (top), 10 (middle) and 20 (bottom) consecutive frames respectively. As can be seen from
the image on the top right, the track produced using the likelihood ratio is smoother, and a
collision is detected. The middle row shows the white ball being hit, again with great force.

The track produced using likelihood ratios is, once more, superior to that produced by the




4.3. Generic implementation of the tracker 80

(a) Object likelihood (b) Object and background likelihood ratio

Figure 4.2: Comparison of tracking: Tracking the white ball using the ball colour likelihood
and the table and ball colour likelihood ratio. In cases where the ball is hit with a great deal
of force by the player (top and middle rows) the tracking produced using likelihood ratios is

superior to that of the likelihood based on ball colour alone.
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object model alone. The tracks produced by both methods in the figures on the bottom
row illustrate the comparison of trackers for a white ball that is moving relatively slowly. In
this case, both methods produce equally good tracks as the ball colour is not significantly

distorted as a result of motion blur.

4.3.2 Establishing the proposal distribution

It has been established that the optimal proposal distribution is the posterior [43], but since
the posterior is not generally available, a new proposal must be created from auxiliary fea-
tures. The objective of this distribution is to relocate particles to areas of high posterior
probability by taking into account the previous state and current observations from an aux-
iliary source. In Perez et al [116], audio visual features are used to estimate prospective
regions of high posterior probability. Motion and audio are used under separate conditions to
simulate a proposal distribution and state space particles are generated from these measure-
ments. These particles are passed to a colour based particle filter which refines the search.
For example, regions from the previous state which exhibit high motion activity are given a
large weight, so particles which are resampled for colour filtering should already be in good
locations in state space to provide a reasonable approximation to the posterior distribution.
Motion is a particularly helpful proposal when occlusion is present in the sequence. Using the
motion as a proposal, the tracker can be reinitialised if the target is lost at any stage. While
partial occlusion can be a problem in snooker, this can be dealt with using the technique
outlined in section 4.4. Full occlusion is not generally problematic in snooker or tennis as the
objects are almost always in the frame 3. If tracking is lost the object should reammerge in,
or close to, the position from which it left.

Audio can also be used as proposal. A stereo microphone array can be employed to es-
timate the horizontal regions in which a speaker might be located. The particles generated
from this proposal are then passed to the colour filter which then refines the search [118].
Audio is only useful when the layout of a scene is known a-priori (such as for the applica-
tion of tracking talking heads in video conferencing where audio features parameter can be
configured).

For the tracking in this thesis, the bootstrap implementation of the particle filter is used.
It specifies the proposal distribution as the prior (or the transition distribution p(g:+1|gt))-
So the posterior takes the form:

P(qe1]|Xes1) < p(Xes1]gt41)P(qr+1]q¢) (4.10)

As discussed, this prior is generally a weak motion model with a stochastic component
which, by its nature, only makes use of previous state information. The implementation

of this particle filter employs a two step iterative prior which updates the prior by recycling

3This may be useful in doubles tennis but this kind of footage is not considered in this thesis.
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particles with high weight. If the cumulative likelihood of all the particles exceeds a threshold
the object is deemed to have been found and the particles are perturbed according to a motion

model. The process is outlined below

e Iteration Prior
The prior used during the iterative process recycles relevant particles based on their
individual weights. If the cumulative likelihood of all particles is not sufficient to assume
a correct lock, particles with high likelihoods are kept and the remaining particles are
redistributed according to a contracting-expanding algorithm. This process is iterated
on each frame until a good estimate to the posterior is achieved.

As is typical for object tracking, it is necessary to distinguish between correct tracking
in the next frame and loss of ‘lock’. This can be detected by using a threshold on
the sum of the particle likelihoods, L,. If the condition in equation 4.11 is fulfilled, a
correct lock is assumed and the ball is deemed to have been found in frame ¢ where L;

is the cumulative sum of the particle weights.

N
L= x">L, (4.11)

n=1

The minimum mean square error (MMSE) estimate is taken as the current position of

the object and is calculated using equation 4.12.
N
Elgtl X1..t) = Z qt(")xi") (4.12)
n=1

Where ¢; are the positions of the particles and the posterior is the weight on each one
(i.e. Xgn)).

If the cumulative likelihood of the samples is less than the threshold (L; < L.), the
ball is deemed not to have been found and a new prior is used for the next iteration.
Particles with high likelihoods are kept, and those with low likelihoods (< 0.01) are
perturbed using an iterative expanding-contracting particle distribution method. The
purpose of this is to increase the range of the particle filter if the original prior does
not give a good lock (i.e. if the object has moved in a way such that it is out of scope
of the tracker). This does not impinge on the validity of the PF process since it is only

a superficial method of improving a lock using low-likelihood particles.

In each step, if the likelihood produced by a single particle is greater than that of the
most likely individual particle in the retained set, the new particle (that of greatest
likelihood) is used as a seed for the next search (assuming L; < L.) and the expanding-

contracting process is reset. The contracting expanding method is outlined as follows
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)

1

1. Contract: If L; < L, from step 2, the relevant particles at iteration %, ¢;.’, are
propagated according to the prior. The zero mean Gaussian with variance of 2 is

chosen for a tight spread of particles.
l .
g lae,_,) = N(0,2), i>0 (4.13)

2. Expand: If Ly < L; from step 1, distribute the relevant particles according to
the motion model (equation 4.16) with the stochastic component:

1
p(a lge,_,) = N(0,0%) (4.14)
where 02 = 4 but is incremented by one on each successive iteration.

The Maximum a Posteriori (MAP) estimate 4.15 is used as an approximation for the

position of the object if the particle filter does not converge after 7 iterations.

P(t|X1..¢) = arg max[x;" (4.15)
1<n<N

An example of the particle distribution is shown in figure 4.3 where the process of
tracking the white ball from snooker footage from its initial stationary position to the
first frame of its motion is illustrated. The colour bar shows the likelihood of each
particle. The tracking is rather coarse as only five particle are used. This is simply for
illustrative purposes 4. The process is initialised by giving each particle equal weight.
The weight on each particle is then measured according to the likelihood given above
(equation 4.9). Appropriate particles are then chosen by roulette wheel selection. These
particles are then perturbed by the motion model. Three stages of initial weighting
(column 4.3(a)), likelihood calculation (column 4.3(b)) and roulette wheel selection
(column 4.3(c)) are shown in figure 4.3.

In figure 4.3, the top row shows the first frame of the sequence (full resolution frame
shown in figure 4.4 (left)). The second to fourth rows shows the first to third iteration
of finding the white ball in the second frame (full resolution frame shown in figure 4.4
(middle)). A subsequent full resolution frame is shown in figure 4.4 (right). Iteration
two of frame two shows the expanding of the search region and iteration three is the

contraction, finding the ball.

e Transition Prior
On each successful iteration of the tracker, the state of particle is recorded and the
particle set is dispersed. For snooker, assuming linear motion, this is taken to be a
second order auto-regressive motion model which places more emphasis on motion from

the previous frame than the frame before that (i.e. p(gsi1lgt-..q1) = p(@e+1lae, Gt—1))-

“For experiments conducted in later sections, 100 particles are used.
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Figure 4.3: Tracking of the white ball with 5 particles.
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Figure 4.4: Three full resolution frames from the video sequence used in figure 4.3.

Each sample is then perturbed according to the stochastic component of the motion

model as shown in equation 4.16.
g1 =g + [ (g — q—1)] + [(1 — @) (g1 — qt—2)] + € (4.16)

where @ = 0.7, and € ~ N(0,7). The same process is used for both horizontal and

vertical directions.

Tracking the tennis player is a more difficult problem than that of tracking the snooker
ball. Due to the presence of global motion and the pathological motion undergone by
the player, such motion models used for the snooker ball tracker do not hold. This
is the case for tennis footage where there is generally a large amount of horizontal
translational global motion. Assuming that the player always tries to be near the ball,
a prior with just a stochastic component is sufficient to locate the player. In any case,

the iterative prior helps refine the search for the object to be tracked.

4.4 Tracking snooker balls

As was discussed in section 4.3, a target model of the colour distribution of a snooker ball is
created in the first frame of the clip from an initial location. A snooker clip is defined as the
instance at which the cue ball is first set in motion until the time at which it, and all other
balls being tracked come to rest. Initialisation of the colour model can be applied manually
or by means of the method described in section 4.4.1 for tracking the white ball. Coloured
balls which have been in collision with the white ball can also be tracked by analysing the

velocity of the cue ball (section 5.2) and instantiating a separate track for these balls.

4.4.1 Localisation of the white ball

It is important to accurately model the colour distribution of the white ball for correct

tracking because the evolution of the location of the white ball from frame to frame provides




4.4. Tracking snooker balls 86

Figure 4.5: Binary maps. Left-to-right: (V (i,j
(V(i4) — R(,4)) <0 v (V(i,4) — S(i,5)) 2 0).

high level information about the type of shot being played. A target colour distribution is
established by locating the white ball at the start of each clip of the full table. Localisation
of the white ball is accomplished using a combination of segmentation based on thresholding
and detection of a bright moving region on the table by frame differencing.

The player must first be removed from view because moving white components attributed
to his attire might interfere with correct detection of the white ball. A binary map of the
player (figure 4.5), player(i, j), is created by thresholding the colour plane differences below
(equation 4.17), where V is the brightness from HSV space, R is the red and S is the

saturation components.
player(i, j) = (V(i,3) — R(,j)) <0 Vv (V(i,5) — 5(, 7)) = 0); (4.17)

By applying this segmentation without consideration of the player’s location, a number
of balls will also be inadvertently masked. The player is distinguished from ball objects on
the table by finding the largest region that is connected to the edge of the table (recalling
that the table edge has already been located using the methods outlined in chapter 3).

In order to remove the player from the view, the detected player region must be filled with
some suitable table information. From the centre of the table, the gradient of the intensity
of a region of size 30 x 30 pixels is calculated [/, I] (defined in section 3.3.4). If the sum of
the gradient magnitude over the region is less than a specific threshold, 7 = 30, a flat area
of the table is deemed to have been found (equation 4.18). Otherwise the region is shifted
toward the top of the table, which is generally less densely populated by balls, until a flat

region is found.

SSBGH+ 26 <7 (4.18)
O

False masking of coloured balls, either as a result of being too close to the tables edge or

to the player, is not considered to be too costly as correct detection of the white ball is all

that is required. Results of the player segmentation and masking are shown in figure 4.6.
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Figure 4.6: Player masking. Left to right: Hunter, Higgins, Hendry footage. In the
Hunter footage, the player’s cue is very close to the white ball. The algorithm considers it
as being part of the player region. The black region surrounding the table in each image was
computed using the table finding technique outlined in section 3.3.1. This allows detection

of suitable regions that are connected to the table.

Frame differencing is used to uncover any motion that may have occurred between frames,
indicating that the cue ball was struck by the player. A problem arises using this form of
differencing. As the player walks around the table he may occlude balls as he passes. These
balls will be masked in subsequent frames (depending on the speed of the player), as the
player masking algorithm considers them as being a part of the player. The balls will then
suddenly reappear as he continues around the table. This will manifest itself as impulsive
motion in the frame differencing binary map. A further thresholding on the colour planes is
therefore required to determine if the moving region is white.

For all ‘moving’ object detected by frame differencing, windows of 6r x 67 pixels (where 7 is
the radius of the ball) centred around the mean location of objects are selected. By applying
a threshold to the non-masked frames (equation 4.19) on the intensity and saturation of these
windows, a binary map corresponding to white objects can be found. If an object of size less
than %71’7‘2 and greater than %777’2 is found, it is deemed to be the window containing the
white ball, whiteball(i, j).

whiteball(, 7) = (V(4,5) > 160) A (S(3, ) < 140) (4.19)

The white ball localisation algorithm iteratively back-tracks to find a frame where the
magnitude of frame differences is lowest. This will be the frame in which the white ball is
stationary. If the distance between the centre of gravity of the segmented white ball objects
is less than 5 pixels, the stationary white ball is deemed to have been found. The target
colour model must be computed while the white ball is stationary, as motion artefacts will
corrupt the model histogram.

Experiments conducted on 30 shots from the footage sources where the white is hit by

the player results in 100% correct localisation of the white ball.
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4.4.2 Tracking the balls

A HSV space colour histogram, of a circular region specified by the relative size of the
ball in relation to the table, is calculated. As a snooker table can be affected by luminance
gradients due to non-uniform lighting conditions, the brightness component of the colour
space was quantized to 16 bins. The colour histogram was represented using a concatenation
of 3 separate 1-D histograms of (256+256+16) bins. Figure 4.7 shows the individual H, S
and V histograms of the selected white ball region shown in black. The goal of the particle
filter is to try and match the hypothesised model with the target model.

A collision between balls or a collision between a ball and the bottom cushion of the table
may temporarily block the ball being tracked from view. Therefore, partial occlusion of the
ball must be addressed. These peripheral pixels are unreliable when attempting to calculate
the colour distribution of the object. Hence, a kernel with a monotonically decreasing profile
from the centre of the object to its extrema assigns a lesser weight to those pixels. This is
done in both the calculation of the colour distribution of the target and candidate models.
It also proves useful for avoiding the incorporation of the colour properties of the table into
the ball model. The weighting function is given in equation 4.20. For a ball with a radius of
7 pixels, the corresponding pixel weighting is shown in figure 4.8 where r = ||x; — x¢||.

2
[Ixi — x|

2(Xi, %) =1— (4.20)

max([lx; — x]])

Depending on the angle of orientation of the camera in the global view and the amount
of space taken up by the table, the ball object normally varies in size from 5 pixels to 7
pixels in radius. This is typically not enough data to empirically yield a useful histogram.
The use of Parzen windows resolves the problem of sparse data by spreading the distribution.
The noise o, is computed over a region of 30 x 30 pixels within the bounds of the table,
exhibiting sufficiently low gradient, in the same way as computing the texture for player
masking (section 4.4.1). The Parzen window is not applied to the brightness component as
it has been quantised to 16 bins. As a result of using such a coarse bin quantisation there
should be sufficient data to yield a good representation of the colour distribution.

The colour space is represented by ¥ = {H,S}. The effect of the Parzen window on
the hue and saturation components of the white ball are shown in figure 4.9. The colour
distribution, p = {p"},_¢_m_1 of the object region, R, is given as:

p=c) z(llxe—xil) ¢ - ¥ (x) (4.21)
xi€ER

Where ¢ is a normalising factor, x. is the location of the centre of the ball, j = [0...m —
1] and where z is given in equation 4.20 and where ¢(z) is the Gaussian kernel given by

equation 4.22.

() = €277 (4.22)
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Figure 4.7: Target histograms and candidate histograms of the cue ball at frame k and
frame k + 5. Top row: White ball at frame k (left) and k + 5 (right); Middle row: Target
(blue) and the weighted candidate (red) histograms (H, S, V) of the white ball in frame k;
Bottom row: Target (blue) and the weighted candidate (red) histograms (H, S, V) of the
white ball in frame k + 5.

4.5 Implementation of tennis player tracker

A slightly modified version of the tracker outlined in section 4.3 is used to track the player in

the tennis footage. As previously discussed, the global view is considered to be the camera
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Figure 4.8: Ball pixel weighting z(r)

view which conveys the most information to the viewer. In this view the position of the

players can be tracked from frame to frame.

4.5.1 Localisation of the player

The tracker is initialised by finding the player regions in the bottom and top halves of the
court. This is achieved using a greedy algorithm on the brightness and saturation histograms
for the player in the top half and the histogram of hue and brightness colour spaces for the
player in the bottom half. The greedy algorithm has been discussed in section 3.2.1.

The clothing that the players wear tend to exhibit quite contrasting colours to those of
the court surface. The white colours worn by the players are generally of high brightness, low
saturation and high hue. The hoardings behind the player in the top half also show evidence
of high hue, so this cannot be used to extract the player on that side of the court. For the
player in the top half of the court, values greater than the range of brightness returned by
the greedy algorithm and values less the ‘greedy range’ from the saturation component are
considered not to be attributed to the playing field. These are labelled as player regions.
Relevant values greater than the maximum and less than the minimum values of 90% range
of the greedy histogram are sought. This is because, as tournaments progress, particularly on
grass surfaces, regions tend to wear down and become notably brighter. The clothing worn
by the player is both brighter and less saturated than these regions.

The player on the bottom half of the court is segmented using the brightness and hue
component. Values greater than the maximum value returned by 90% of the range of the
greedy histogram for both colour spaces are used to detect this player.

Any court lines that have been detected using the segmentation can be suppressed using

the court finding technique outlined in chapter 3.3.2. Furthermore, the net area is masked by
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Figure 4.9: Weighted histograms and the corresponding Parzen approximation of the hue
and saturation components of the white ball. The red plot is the Parzen approximation and

the blue is the weighted histogram of the ball using equation 4.20.

approximating the height of the net at the centre point using the same technique as for the
player scaling. The entire region across the net is masked to eliminate any ball boys that are
close to the net. Areas below the bottom of the net region and above the top of the net are
dilated because the lines that have been masked may also have masked some of the player.

The centre of gravity of the ‘blobs’ (which correspond to the torso of the players) of great-
est size, in the bottom and top halves of the court are computed. It was found heuristically
that the centre of gravity of a player can be estimated by shifting the centre of gravity by
/4 beneath the original value, where [ is the maximum height of the blob. Using this value
as the centre of the region to be selected and assuming that the average height of a player is
1.80 meters and has a width of 0.5 meters, the region can be scaled relative to the perspective
distortion of the tennis court (using the same method as that used for scaling the snooker
balls in section 4.4) such that it sufficiently frames the tennis player. The dimensions of a
championship size tennis court are shown in figure B.2 in appendix B. Localisation of the
player in this fashion is shown for all grass court footage in figure 4.5.1.

Initial player detection experiments conducted on 30 shots of the global view from the
four sources of tennis footage results in 100% correct localisation for the top and bottom

players.

4.5.2 Tracking the player

The HSV colour space is once again used and a colour histogram of the player region is calcu-
lated. Full 8 bit colour histograms (25642564256 bins for H, S, V) were used to approximate
the distributions in this case. A Gaussian, z ~ N'(0,R), is used to weight the pixels within
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Figure 4.10: Player localisation. Top: Original images; Bottom: Segmented player using
greedy histogram segmentation and court segmentation. The binary map of the bottom and

top players have been concatenated to form this image.

the candidate and target regions. This weighting kernel gives a higher importance to pixels
in the centre of the window and less to those pixels at the edge. The variances are related to

the size of the window given by:

h
0
R= 8 ; (4.23)

where h is the height of the player in pixels and w is the width of the player. A 3-D plot of
the kernel is illustrated in figure 4.11 where the height and the width of the player region are
taken as h = 150 and w = 75 respectively.

A Parzen approximation was not needed for tracking the tennis player as the size of
the region is sufficient to yield a useful histogram. A playing area model is constructed by
preselecting several regions of the court off-line. A likelihood ratio can then be formulated as
outlined in section 4.3, and the players can be tracked around the court.

Figure 4.12 shows the bottom player located at two frames in the footage, the second of
which is 50 frames after the first. The target and candidate histograms of the player region
are shown for each frame, where the blue in each plot is the target and the red is the weighted
candidate. Six stills from a clip of 500 frames of the sequence Hewitt are shown in figure 4.13

where both the top and bottom players are tracked.
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Figure 4.11: Tennis player weighting, z.

4.6 Assessment of the performance of the particle filter

In order to evaluate the performance of the tracker, the tracks obtained from the snooker
footage were assessed using two geometrical measures. As the snooker balls generally travel
in a straight line (assuming they are hit without any side spin) until a cushion or other ball
is hit, it is possible to measure the deviation of each location estimated by the particle filter
from the true trajectory of the ball.

In total, 11 shots made by the player (5 red, 2 black, 2 blue, 1 brown, 1 pink and 1
green balls) were assessed. These occurred at different stages in the game and in various
locations on the table from the different sources of snooker footage. Two of these tests were
conducted on balls which were potted. The velocity of the balls also varied. In total, the tests
represented analysis on approximately 300 frames. Two performance measures were used to
assess the performance of the tracker. In both cases the true trajectory is taken as a straight
line between the starting and ending motion positions of the ball. The true trajectory of four

shots is illustrated in figure 4.14. The tracks achieved using the particle filter are also shown.

4.6.1 Perpendicular distance from points

The first measure is the length of the normal, d;, from the true trajectory, y = max + ¢, of
the ball to the projected position of the ball (z;,y;). It is assumed that the true trajectory is
the line connecting the initial position of the object to its final position. The perpendicular

distance from a point to the true trajectory is described in [98] as:

yi — (c+ mz;)|

4= TTin? S
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Figure 4.12: Bottom player location detected. Top: Player location at frame t and t +
50. Middle: Candidate and target histograms at frame t. Bottom: Candidate and target

histograms at frame t + 50.

4.6.2 Angle between least squares fit and true trajectory

The second measure used is the angle between the true trajectory and the least squares fit
to the data. The ground truth was found by manually locating the start and end locations
of the ball across the trajectory. The least squares line was found using equation 4.25 where

T is the number of frames in the shot.

{mlz r ZTW{Z@/} (429
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Figure 4.13: Player tracking of a rally event. Both players are tracked over a sequence of

500 frames and an overlay of the court is also provided.

The angle between the true trajectory and the least squares fit can then be calculated
using the trigonometric expression below, where m1,mo are the slopes of the two trajectories.
This can be considered as being a measurement of deviation between the two trajectories.
mj — mo

f = arctan
1+ mimsa)

4.6.3 Comments on the tracking performance

Results of the performance in terms of the mean distances from the true trajectory to the
points along the track produced by the particle filter are tabulated in table 4.1. The mean
distance for all tracks is accurate to a sub-pixel level, which is acceptable for this application.
Furthermore, the mean angle difference between the true trajectory and the least squares fit
also achieves sub pixel accuracy. Results are tabulated in table 4.2.

On tests of ball tracking, the white ball was successfully tracked 100% of the time using
likelihood ratios and 90.9% of the time using likelihoods based on a ball colour model alone.
There are some occasions when the tracker cannot successfully track some of the coloured
balls. Correct tracking of balls in complex shots is intractable. For example, when a head-on

collision ® between two balls of the same colour occurs, the ball in advance will be tracked.

°A head-on collision is also know as a ‘flush’ collision.
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Figure 4.14: Illustration of the performance of the particle filter for tracking: The tracks
in red are the true trajectories of the ball while the yellow tracks are the particle filter
estimation to the trajectory. Clockwise from the top left, examples of the individual tracks
of two whites, the green and blue are shown. Note in particular the successful track of the
green ball (bottom right) which is difficult given the similarity between the ball and table

cloth colours.

This can be remedied by applying the algorithm outlined in section 5.2 to detect collisions
between all balls. When a collision is detected, the motion model directing the placement
of particles can be reset to account for the sudden reduction in velocity of the current ball
being tracked.

Motion blur is the main contributing factor leading to poor tracks in snooker. As the ball
becomes elongated, the tracker will lock on to an area within this region which may not be
the actual ball centre. The use of likelihood ratios remedies this somewhat but occasionally
the hypothesised location of the ball will not always be located on the true centre.

If a ball is near a pocket and the player walks in front of the camera blocking the ball from
view, a pot will be detected. This means that the tracker cannot always be fully relied on
for detecting successful ball pots. The algorithm used in Denman et al [40], could be used to

ensure that all the pots are detected and therefore if there is ambiguity in the semantics, they
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Colour || White | Red | Black | Blue | Brown | Green | Pink
Shot 1 || 0.523 | 1.006 - = = = -
Shot 2 || 1.069 | 0.523 - = - - -
Shot 3 || 0.645 | 1.414 - = = - -
Shot 4 || 0.778 | 0.625 - = = - -

Shot 5 || 0.884 - 0.771 - - - ,
Shot 6 || 1.013 - 1.094 - - - -
Shot 7 || 0.511 - - 0.763 - 2 =
Shot 8 || 0.705 - - 0.813 - . .
Shot 9 || 0.484 - - - 0.785 = .
Shot 10 0.97 - 2 = = 1.517 x
Shot 11 || 0.862 - = = = - 0.917

Table 4.1: Mean distances from the true trajectory to the projected points along the track

produced by the particle filter.

Colour | White | Red | Black | Blue | Brown | Green | Pink
Shot 1 0.15 | 0.503 - = . . =
Shot 2 || 0.411 | -0.676 - = 1 L =
Shot 3 || 0.154 | -0.648 - = , E i
Shot 4 | -0.054 | 0.981 - 2 2 - ,

Shot 5 || -0.089 - 0.487 - = = =
Shot 6 || 0.874 - -0.345 - 2 : s
Shot 7 || -1.008 - - 0.614 = - y
Shot 8 || 0.954 - - 0.748 - . -
Shot 9 || 0.638 - - - 0.974 s .
Shot 10 || 0.095 - - = = -1.115 y
Shot 11 || -0.71 - - = = = 0.84

Table 4.2: Mean angles between the least squared trajectory and the true trajectory in °.

could be verified. The representation of the game semantics will be presented in Chapter 6.

Tracking the tennis player proved to be more difficult. Histograms by their nature in-
corporate no spatial information and for a large irregular shape such as the tennis player, a
correct lock on the centre of the region can not always be presumed. Furthermore, owing to

the shape of the tennis player, the rectangular region not only contains player pixels but also
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includes several pixels of the court. While they can be slightly suppressed using the weighting
kernel, they do affect the tracking fidelity.

Another problem encountered was that of the occasional disappearance of the player from
view when the camera pans to follow the trajectory of the ball. The track of the player was
recovered by assuming that he will reappear close to the position from which he disappeared.
Tracking of players in a doubles match was not considered for this work but may complicate
matters with frequent occlusions.

As is evident from figure 4.14, the tracks for some of the balls are ‘noisy’. The apparent
noise is due to the non-fractional accuracy of the random tracker. This is particularly evident
in the track of the green ball. Due to the similarity between its colour distribution and that
of the background, tracking becomes difficult. Also contributing to the noise is the relatively
slow speed at which it is travelling. The track obtained is therefore perceived as not being

as smooth as for the ball which move at a faster speed.

4.7 Tracking comparison

As a comparison of tracking performance, an implementation of the gradient based motion
estimator in [81] was used to track snooker balls. The idea was to generate motion vectors
for each pixel in the image (optic flow). The concatenating vectors in time, starting with an
object position, yields an object track. The motion estimation methods enable those tracks
generated by the particle filter to be evaluated and justify its use for tracking. This idea does

not seem to have been considered in the literature.

4.7.1 Gradient Based Motion Estimation

A gradient based approach to motion estimation (GBME) involves expanding the generalised

spatio-temporal model for motion in image sequences is given by equation 4.27.
Ii(x) = I 1(x +dsz1) (4.27)

This equation describes how the image at time ¢t — 1 can be mapped to that at time ¢ by
accounting for the displacement of magnitude d;;—; that the image undergoes. d is known
as the motion vector. A Taylor Series expansion of equation 4.27 yields the expression

I(x) = I—1(x) + dTVI_1(x) + e;—1(x) (4.28)

The block matching solution to motion estimation defines the displaced frame difference
(DFD) as:
DFD(x,d) = Li(x) — I;_1(x + d) (4.29)

Making use of the DFD, a solution for the motion vector for each block can be obtained

by neglecting the higher order terms of the expansion e;_1(x) and vectorising equation 4.28.

d=[G"G] ' Gz, (4.30)




4.8. Summary 99

Where G is a vector of intensity gradients at time t — 1, z, are the corresponding DFDs,
obtained from equation 4.29 and d is the motion vector.
This method is explained in greater detail in [81].

4.7.2 Quantitative comparison of tracking performance - GBME vs PF ¢

The implementation of the motion estimator uses 9x9 blocks. Given that the radius of the
ball varies from approximately 5 to 7 pixels, and even greater with motion blur, the accuracy
of the GBME for ball tracking should be reasonably good. An illustration of the performances
differences between the particle filter and the tracking using motion estimation is shown in
figure 4.16.

Only the white ball is tracked in these frames because the GBME implementation does
not allow differentiation between ball colours. Only one moving object can therefore be
tracked at one time, so all other balls must be stationary. The same method employed in
section 4.4.1 is used to find the frame in which the white ball begins its motion. In each
frame, the weighted mean of the vectors in a 45 x 45 pixel region around the strongest vector
on the table, is taken to be the position of the cue ball. To ensure that only motion due to
the white ball is accounted for the analysis, any motion by the player must be removed. This
is achieved by masking him from view using the method outlined in section 4.4.1.

Figure 4.15 shows the motion vector field for three frames from two shots used for mea-
suring the performance of block matching tracker. Also shown is the track borne out by the
white ball over the duration of the entire shot using the weighted mean of the vectors as the
location. Figure 4.16 illustrates a comparison of the tracking achieved using both methods.

Tracking using motion estimation was assessed using the same geometrical metrics used
in section 4.6. The true trajectory was obtained by manually locating the centre of the white
ball from the first and last frames of the footage. Analysis was carried out on 12 tracks of the
white ball and the results of the tracking are compared to those obtained using the particle
filter. The shots varied in duration, the shortest of which is six frames and the longest, thirty.
Table 4.3 compares the results of two tracking methods and shows the particle filter to be

better in all cases.

4.8 Summary

This chapter presented a probabilistic colour based object tracker derived from the CON-
DENSATION algorithm and considered its use for tracking of objects in broadcast sports
footage. Novel extensions to the tracker were conceived which make use of prior scene ge-

ometry and the known background colour distribution. This was shown to improve tracking

5The ME considered was realised in C, and took approximately 2.5 seconds per frame. The particle filter
was implemented in Matlab and took approximately 10 seconds per frame depending on when convergence
was reached and the number of particles used to estimate the location (100 for tracking snooker balls).
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Figure 4.15: Motion vector field for two snooker shots. The full track of the ball using the

weighted mean location is shown in the first row.



Tracking using ME Tracking using PF

Figure 4.16: Comparison of tracking using gradient based motion estimation (left) and

particle filtering (right).

fidelity and was used to good effect for tracking snooker balls and tennis players.

The performance of the tracker was assessed using geometrical measures and compared
to the results obtained using a gradient based motion estimator. In chapter 6 the tracks
provided by this chapter, in conjunction with results from chapter 5, will be exploited to

retrieve high-level events which occur in tennis and snooker games.
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Metric || Mean Distance PF | Mean Angle PF | Mean Distance ME | Mean Angle ME
Shot 1 0.523 0.15 1.201 2.093
Shot 2 0.754 0.744 0.950 -2.683
Shot 3 1.069 0.411 1.479 -1.522
Shot 4 0.979 -0.544 0.967 -3.527
Shot 5 0.845 -0.345 2.493 -1.258
Shot 6 0.595 0.078 3.376 1.107
Shot 7 0.645 0.154 2.753 2.167
Shot 8 0.837 -0.132 1.072 2.802
Shot 9 0.778 -0.054 2.336 1.541
Shot 10 0.690 0.048 1.002 -1.221
Shot 11 0.884 0.089 0.952 3.665
Shot 12 0.974 0.103 1.447 -1.784

Table 4.3: Table illustrating the performance difference between PF and ME for tracking
of the white ball in terms of the distance and angle measures. Distances are in pixels and

angles are in °.



Dynamic Event Detection in Snooker

Snooker requires the player to accumulate the highest score possible by potting the coloured
balls in a certain sequence (see appendix B for a brief description of the rules of the game
and means for accumulating a high score). This can only be achieved by hitting the white
ball and causing a collision with a particular coloured ball resulting in a pot. If a coloured
ball is not hit or if an incorrect colour in the sequence is hit, a foul is called. Therefore, a
semantic episode is expressed between the instant a player initially hits the white ball and
the time at which all balls being tracked come to rest or are potted.

Within this period several incidents may occur which will affect the viewer interpretation
of the shot made by the player. Incidents such as inter-ball collisions, ball-cushion bounces
and ball pots, are events which determine this interpretation. These events can be inferred
from the explicit tracking path approximated by the particle filter described in the last
chapter. This is the focus of dynamic event detection.

Given that the ball spot positions are known at the start of the game, colour models for
each ball can be established. This allows the colour of the ball which has just undergone
collision to be detected. This is described in section 5.1. Section 5.2 outlines a method
centred around segmentation and transient motion differences to detect inter-ball collisions
and ball-cushion bounces. In section 5.3 a technique that utilises the sample likelihoods
generated by the particle filter for the detection of ball pots is discussed. Furthermore, a foul
can be inferred by incorporating collision detection techniques and analysing the trajectory
of the white ball.

103
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Figure 5.1: Segmented balls. Left to right: Yellow, green, brown (and part of the white
ball), blue, pink, black and red.

5.1 Establishing initial ball colour models

Given that the position of each ball can be retrieved using the table finding technique outlined
in section 3.3.2, colour models for each ball on the table can be generated automatically. This
enables the colour of the ball which has just been hit to be determined (see section 5.2 for
details on how to detect the collision). Detecting this colour provides a simple, but important
piece of information which could prove useful to the user (for browsing) and broadcaster (for
applications such as automatic scoring, etc.).

We assume that in the first frame of the global view, a new game has just begun and the
balls are all on their appropriate spots. A small region, W, of 30 x 30 pixels centred on the
estimated spot position of each coloured ball is then segmented. The problem of segmenting
these balls poses a similar problem to that of the playing area segmentation discussed in
chapter 3. Direct thresholding, adaptive thresholding and a GMM were once again employed
for segmentation. The poor quality of the footage inhibited the performance of the GMM.
Ghosting artefacts around the balls resulted in excessively large areas being detected and
often caused objects which are close, to be merged. Direct thresholding of the difference of
RGB colour planes proved equally inept over all footage sources. The adaptive thresholding
method implemented here firstly locates a flat area of table, R (in the same way as generating
the texture for the player mask outlined in section 4.4.2). The luminance component, Y, of
window W, is segmented using a twin density slice of the luminance component, where the
thresholds are based on the local luminance statistics of the region R (equation 5.1). og is

the standard deviation over the region R and ¢,5 € W.
c(i,j) = (Yw (i, j) > max(YR) + 20%) A (Yw (i, j) < min(YR) — 20r)) (5.1)

Figure 5.1 shows the segmentation of each ball. Since the radius of the ball at each spot
position is known, the colour information can be extracted from the circular region centred

on the segmented object.
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5.2 Collision Detection

Consider that the white ball has been hit. A straightforward approach to collision detection
is to observe the change in velocity of that ball as it traverses the table. Abrupt velocity
change indicates collisions. This information can be extracted directly from the particle filter
tracker presented in the previous chapter. In practice however, the resolution of the tracker
is limited by the resolution of the standard definition TV image. Here, slight collisions may
not result in observable velocity changes. Fortunately frame differencing in the region of the
impacting ball (white in this case) is always able to highlight another object responding to
an impact. The basic idea proposed for collision detection is therefore to threshold the frame
difference within a window W, the size of which is conditioned by the maximum velocity of
the ball.

A window of twice the size of the maximum speed of the white ball is used to frame the
impact area. The position of the centre of the window depends on the dominant velocity of
the white ball. For example, if the magnitude of the horizontal velocity in the left direction
is greater than its vertical velocity, the window is offset such that the distance from the white
ball to the right hand side of the window is %. The same approach of adjusting the position
of the window is adopted for all other dominant directions of velocity. This ensures that
white ball is close to the edge of the window, giving a better chance of finding the ball which

has just undergone impact. An illustration of the windowing is shown in figure 5.2.
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Figure 5.2: Impact area windowing.

Given the position of the white ball and its corresponding radius, the cue ball can be
masked from view in each frame with suitable table texture. The same texture as exploited

for player masking (section 4.4.1) can be used for this purpose. Any motion in the windowed
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region must therefore only be attributed to the coloured ball which has just undergone the
impact. If the inter frame difference in the window region W of the luminance component
Y, between times ¢t and t — 1 exceeds a threshold, a collision (i.e. coloured ball motion) is

assumed to have occurred (equation 5.2).

(ly(f) — YV(J,'W) > 20 (5.2)

5.2.1 Dealing with shape distortion

Upon detection of the collision event, the shape of the new ball may be distorted by motion
blur. As a result, the modelled histogram will be corrupted by motion artefacts. As is the
case for localising the white ball, a frame from the footage must be chosen such that the
coloured ball to be tracked is motionless. To find the frame in which this ball is stationary,
previous frames in the regions of impact are retroactively searched for lack of motion. This
is achieved by using the same frame differencing method for detecting the collision. Once the
non-motion frame has been found, the colour ball needs to be segmented from the background.
This segmentation is attained by employing the same adaptive thresholding method outlined
in section 5.1. The segmentation of several balls from the different footage sources is shown
in the middle column of figures 5.3-5.4.

The centre of a connected component region of area greater than %"7“2 pels (where r is the
radius of an object in that area) is deemed to be the centre of the new ball to be tracked. The
same procedure as that used for modelling the white (described in section 4.4.2) is followed
for tracking the coloured balls. A number of examples of successful localisations of a second
ball are shown in the right hand columns of figures 5.3-5.4.

Complications arise in selecting the ball to be tracked when it is located close to others
within the window. In an attempt to correctly select the object which has just undergone
an impact, it is necessary to reduce the potential ball misclassification by monitoring the
motion of all objects in the windowed area. Connected component regions from the colour
segmented binary map in which motion is first exhibited (i.e. the collision) are labelled, and
the distance between the centre of each object and the white ball is computed. If the centre
of the object of shortest distance to the white ball is less than 2r pixels, it is selected as the
ball to be tracked and a model of the region is created. If this condition is not fulfilled, the
distance is retroactively checked in 5 previous frames. If no object is found to be within this
distance, tracking of the white resumes from the frame where it was thought <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>