Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in part, the material for valid purposes, providing the copyright owners are acknowledged using the normal conventions. Where specific permission to use material is required, this is identified and such permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising from use of the thesis for whatever reason. Information located in a thesis may be subject to specific use constraints, details of which may not be explicitly described. It is the responsibility of potential and actual users to be aware of such constraints and to abide by them. By making use of material from a digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from Trinity College Library is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for your research use or for educational purposes in electronic or print form providing the copyright owners are acknowledged using the normal conventions. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
Sequence Analysis of Alphavirus Pathogenesis

A thesis submitted to the University of Dublin, Trinity College
For the Degree of Doctor of Philosophy

by

Christopher H. Logue

Department of Microbiology,
Moyne Institute of Preventive Medicine,
Trinity College, Dublin

September 2005
Declaration

This thesis is submitted by the undersigned to the University of Dublin, Trinity College for the examination of Doctorate of Philosophy. The work herein is entirely my own work and has not been submitted as an exercise for a degree to any other university. The librarian of Trinity College Dublin has my permission to lend or copy this thesis upon request.

Christopher H. Logue
Summary

This investigation involved the sequencing and characterisation of Chikungunya virus (CHIKV), a positive-stranded RNA virus with a genome spanning 11.8 kb. The prototype strain of CHIKV, termed Ross was used. This is the first complete genome of CHIKV to be sequenced and submitted to Genbank (Accession No. AF490259). CHIKV was analysed in relation to six other geographically distinct CHIKV strains and Semliki Forest virus which is well characterised in our laboratory. This is the first report of CHIKV being characterised both in vitro and in vivo. The rate of RNA production, rate of infection and cell tropism were investigated in vitro, while the multiplication of virus in the brains of infected Balb/c mice, mortality rates, and the neuropathology caused were studied in vivo. To fully ascertain the functions of various CHIKV genes and their possible roles in causing disease, the construction of a CHIKV full-length cDNA clone was subsequently carried out.

The existence of several different virulent and avirulent strains of SFV has allowed comparative analysis between them at the molecular level, which, combined with the development of SFV infectious cDNA clone technology, provides a useful model for analysis of the molecular basis of alphavirus neuropathogenesis.

In order to investigate whether the 5' UTR plays a role in determining the degree of virulence in infected adult mice, possibly through its involvement in RNA replication, SFV-5'UTR chimeras were constructed. This involved sequence analysis of the 5' UTRs and the construction of reciprocal chimeras that incorporated the 5' UTR nucleotide differences between virulent and avirulent strains of SFV. The survival rates of and the neuropathology caused in infected adult mice intranasally infected with each chimera and the infectious virus from three SFV infectious clones were determined.

The results showed that no marked difference between rates of RNA synthesis in BHK cells was detected. A significant increase in the survival of infected mice paralleled with a sharp reduction in neuropathology in the brains of infected mice however, was observed. Combined with sequence data this suggests that the SFV 5' UTR acts together with other genes within the SFV genome as a pathogenicity determinant.
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.a.</td>
<td>amino acid(s)</td>
</tr>
<tr>
<td>AAP</td>
<td>Abridged Anchor Primer</td>
</tr>
<tr>
<td>Ab</td>
<td>antibody</td>
</tr>
<tr>
<td>BHK</td>
<td>baby hamster kidney</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>C</td>
<td>capsid</td>
</tr>
<tr>
<td>cDNA</td>
<td>complimentary DNA</td>
</tr>
<tr>
<td>CHIKV</td>
<td>Chikungunya virus</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre(s)</td>
</tr>
<tr>
<td>CNP</td>
<td>2',3' - cyclic nucleotide 3' -phosphodiesterase</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>c.p.e.</td>
<td>cytopathogenic effect</td>
</tr>
<tr>
<td>c.p.m.</td>
<td>counts per minute</td>
</tr>
<tr>
<td>CSE</td>
<td>conserved sequence element</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6', diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleoside triphosphate</td>
</tr>
<tr>
<td>d.p.i.</td>
<td>days post infection</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double stranded deoxyribonucleic acid</td>
</tr>
<tr>
<td>dsRNA</td>
<td>double stranded ribonucleic acid</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EEEV</td>
<td>Eastern equine encephalitis virus</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g</td>
<td>gravitational force</td>
</tr>
<tr>
<td>GSPs</td>
<td>genome specific primers</td>
</tr>
<tr>
<td>Gt</td>
<td>goat</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>h.p.i.</td>
<td>hours post infection</td>
</tr>
<tr>
<td>ic</td>
<td>infectious clones</td>
</tr>
<tr>
<td>i.c.</td>
<td>intracerebral(ly)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuscular(ly)</td>
</tr>
<tr>
<td>i.n.</td>
<td>intranasal(ly)</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal(ly)</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-galactopyranoside</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo Dalton</td>
</tr>
<tr>
<td>L28</td>
<td>Litmus 28</td>
</tr>
<tr>
<td>L38i</td>
<td>Litmus 38i</td>
</tr>
<tr>
<td>LF</td>
<td>L28i fragment</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mA</td>
<td>milliamps</td>
</tr>
<tr>
<td>MCS</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>MGC</td>
<td>mixed glial cell</td>
</tr>
<tr>
<td>MID</td>
<td>Middelburg virus</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre(s)</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>M.O.I.</td>
<td>multiplicity of infection</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>Ms</td>
<td>mouse</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram(s)</td>
</tr>
<tr>
<td>NLS</td>
<td>nuclear localisation sequence</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre(s)</td>
</tr>
<tr>
<td>nsP</td>
<td>non-structural protein</td>
</tr>
<tr>
<td>nt</td>
<td>nucleotide</td>
</tr>
<tr>
<td>ONNV</td>
<td>O'Nyong nyong virus</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>P</td>
<td>protein</td>
</tr>
<tr>
<td>pB</td>
<td>pBluescript SK II(+)</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>p.f.u.</td>
<td>plaque forming units</td>
</tr>
<tr>
<td>rATP</td>
<td>Adenosine 5'-Triphosphate</td>
</tr>
</tbody>
</table>
rCTP Cytidine 5'-Triphosphate
rGTP Guanosine 5'-Triphosphate
rUTP Uridine 5'-Triphosphate
Rb rabbit
RNA Ribonucleic acid
rpm revolutions per minute
RRV Ross River virus
R.T. room temperature
RT reverse transcription
SDS Sodium dodecyl sulphate
sec second(s)
SFV Semliki Forest virus
SINV Sindbis virus
TCA trichloroacetic acid
TD Trinidad Donkey
ts temperature sensitive
U units
UAP Universal Amplification Primer
UTR Untranslated regions
VEEV Venezuelen equine encephalitis virus
Vero African green monkey kidney cells
vol volume
WEEV Western equine encephalitis virus
wt weight
X-Gal 5-bromo-4-chloro-3-indolyl-β-galactopyranoside
μCi micro Curie
μg microgram(s)
μl microlitre(s)
μm micrometer(s)
μM micromolar
Index of figures

Chapter one

Figure 1.1	Phylogenetic tree of all Alphavirus species
Figure 1.2	Structure of SFV virion
Figure 1.3	Genome organisation of SFV and the pSP6-SFV4 infectious clone
Figure 1.4	Schematic of the Alphavirus life cycle
Figure 1.5	Replication and transcription of SFV RNA
Figure 1.6	Processing pathways of SFV nonstructural proteins
Figure 1.7	Processing of SFV structural Proteins
Figure 1.8	Geographic distribution of CHIKV
Figure 1.9	Phylogenetic analysis of CHIKV and ONNV
Figure 1.10	Electron micrograph of purified CHIKV virions

Chapter two

Figure 2.1	Schematic of 5’ RACE PCR procedure
Figure 2.2	Double-labelled immunofluorescence of CHIKV-infected rat oligodendrocytes
Figure 2.3	CHIKV nonstructural and structural PCR amplicons
Figure 2.4	Complete sequence of the Ross strain of Chikungunya virus
Figure 2.5	Circularised annotated representation of Chikungunya Ross genome
Figure 2.6	Stem-loops of CHIKV, CHIKV 37997, SFV-A7, and the Igbo Ora, Gulu and SG650 strains of ONNV
Figure 2.7	Phylograms of CHIKV Ross vs other SF group Alphaviruses
Figure 2.8	Immunofluorescence of uninfected oligodendrocytes
Figure 2.9	Immunofluorescence of CHIKV infected oligodendrocytes
Figure 2.10	Immunofluorescence of SFV-A7 infected oligodendrocytes
Figure 2.11	Growth curves of CHIKV and SFV-A7 in BHK-21 cells
Figure 2.12 Trypan blue exclusion assay of a primary mixed glial cell culture infected with CHIKV and SFV-A7

Figure 2.13 Viral RNA synthesis in BHK-21 cells

Figure 2.14 Growth curve of CHIKV and SFV-A7 in infected mouse brain following intranasal inoculation

Figure 2.15 Survival curves for CHIKV and SFV-A7 with SFV4 and PBS controls

Figure 2.16 Titres of virus in brains of Balb/c mice infected intranasally with seven geographically distinct strains of Chikungunya virus

Figure 2.17 Plaque analysis of seven geographically distinct strains of Chikungunya virus, ONNV, SFV4 and SFV-A7.

Chapter three

Figure 3.1 Linearised map of Chikungunya Ross genome showing the locations of 5 fragments of the CHIKV genome

Figure 3.2 L28i with CHIKV fragment 1 (LF1)

Figure 3.3 L28i with CHIKV fragment 2 (LF2)

Figure 3.4 L28i with CHIKV fragment 3 (LF3)

Figure 3.5 L28i with CHIKV fragment 4 (LF4)

Figure 3.6 L28i with CHIKV fragment 5 (LF5)

Figure 3.7 Construction of LF1-2 intermediate

Figure 3.8 Construction of LF1-2 Δ Nde I intermediate

Figure 3.9 L28i with CHIKV Fragments 1 and 2 Δ Nde I fragment plus Fragment 3 (LF1-2-3 Δ Nde I)

Figure 3.10 L28i with complete CHIKV Fragments 1, 2, and 3 (LF1-2-3)

Figure 3.11 LF5 with CHIKV Fragment 4 (LF5-4)

Figure 3.12 pBluescript SK II [+] vector used for final stages of CHIKV full-length clone construction

Figure 3.13 Oligonucleotide flanked with a Kpn I and Bam HI site at the 5’ and 3’ ends respectively

Figure 3.14 Ligation of CHIKV 5’ UTR into pBluescript SK II [+] vector (pB-5’)

vi
Figure 3.15 pB5' with Fragment 123 (pB5'123)
Figure 3.16 Construction of pB-5'123*45 Intermediate
Figure 3.17 RT-PCR CHIKV fragment 3 / 4
Figure 3.18 CHIKV full-length clone pB-5'12345 (pBCHIKV)
Figure 3.19 CHIKV genome amplified over 5 fragments
Figure 3.20 Four random LF1 colonies digested with Nde I and Sac I
Figure 3.21 Five random LF2 colonies digested with Stu I
Figure 3.22 Two random LF3 colonies digested with Eco RV
Figure 3.23 Six random LF4 colonies digested with Eco RV
Figure 3.24 Five random LF5 colonies digested with Spe I and Stu I
Figure 3.25 Seven random LF1-2 colonies digested with Nde I
Figure 3.26 LF1-2-3 Δ Nde I undigested, digested with Nde I, dephosphorylated and the
excised Nde I fragment from LF1-2
Figure 3.27 LF1-2-3 colony digested with Xmn I
Figure 3.28 Three LF5-4 colonies digested with Cla I and Eco RV
Figure 3.29 Seven pB-5'123 colonies digested with Eco RV
Figure 3.30 Five pB-5'123*45 colonies digested with Eco RV
Figure 3.31 Pooled Fragment 3 / 4 PCR amplicons
Figure 3.32 pB-5'12345 CHIKV cDNA digested with Eco RV

Chapter four

Figure 4.1 Schematic (1 of 2) of strategy used to site-mutagenise SFV infectious clone
5' UTRs to SFV-A7 5' UTR
Figure 4.2 Schematic (2 of 2) of strategy used to site-mutagenise SFV infectious clone
5' UTRs to SFV-A7 5' UTR
Figure 4.3 Schematic of strategy used to create reciprocal pSP6-SFV4 / rA7[74] 5' UTR
chimeras
Figure 4.4 Schematic of strategy used to create reciprocal pSP6-CA7 / rA7[74] 5' UTR
chimeras
Figure 4.5 Site-mutagenised clones 1-5 digested with Sph I and Eco RV
Figure 4.6 SFV 5' UTRs
Figure 4.7 In vitro RNA Transcription
Figure 4.8 Sequence alignment of SFV 5’ untranslated regions
Figure 4.9 Secondary structure of SFV 5’ untranslated regions
Figure 4.10 Survival of Balb/c mice intranasally infected with SFV
Figure 4.11 SFV titres in brains of intranasally infected Balb/c mice
Figure 4.12 Sequence alignment of SFV 5’ UTR chimeras
Figure 4.13 Survival of Balb/c mice intranasally infected with SFV-5’ UTR chimeric viruses
Figure 4.14 RNA synthesis of SFV and SFV 5’ UTR chimeric virus in BHK-21 cells

Chapter five

Figure 5.1 Illustrative representation of the cells of the CNS
Figure 5.2 Diagrammatic representation of a neuron
Figure 5.3 Virus infection via the olfactory route
Figure 5.4 Pathology photos
Index of tables

Chapter one

Table 1.1 Chronological order of CHIKV outbreaks

Chapter two

Table 2.1 Virus strains used in the characterization of Chikungunya virus
Table 2.2 Primers designed from O’nyong nyong virus Gulu to amplify the CHIKV non-structural polyprotein
Table 2.3 Primers designed from CHIKV vaccine virus to amplify the CHIKV structural polyprotein
Table 2.4 Thermocycling conditions used for PCR
Table 2.5 Percentage identity of individual CHIKV genes and other SFV subgroup alphaviruses

Chapter three

Table 3.1 Restriction enzymes used in the construction of the CHIKV full-length clone with their respective 10X Buffers
Table 3.2 Primers designed to amplify the CHIKV genome in five fragments and a 106 nt CHIKV 5’ UTR oligonucleotide and its complement.

Chapter four

Table 4.1 Amino acid analysis of SFV non-structural polyprotein
Table 4.2 Amino acid analysis of SFV structural polyprotein
Table 4.3 Amino acid analysis of SFV 3’ untranslated region
Chapter One – General Introduction

1. Introduction

1.1 Alphaviruses
1.2 Semliki Forest Virus
1.2.1 Origins and Strains of SFV
1.2.2 SFV Virion
1.2.3 SFV Genome
1.2.4 SFV Replication cycle
1.2.4.1 Viral Entry
1.2.4.2 Viral Replication
1.2.4.3 Processing of non-structural proteins and their functions
1.2.4.3.1 nsP1
1.2.4.3.2 nsP2
1.2.4.3.3 nsP3
1.2.4.3.4 nsP4
1.2.4.4 Processing of structural proteins and virus assembly and maturation
1.2.4.5 Pathogenesis of SFV in mice
1.2.4.6 Functions of the conserved sequence elements of the SFV genome
1.2.4.6.1 5' Untranslated region
1.2.4.6.2 51nucleotide CSE in nsP1
1.2.4.6.3 Junction region
1.2.4.6.4 3' Untranslated region
1.2.4.7 SFV as a viral vector
1.3 Chikungunya Virus
1.3.1 Origins and Strains
1.3.2 Structure of CHIKV
1.3.3 Pathogenicity of CHIKV infection

1.4 Project Aims

Chapter Two – Sequencing and Characterisation of the Ross strain of Chikungunya Virus

2.1 Introduction

2.2 Sequencing strategy of CHIKV genome

2.3 5' RACE PCR

2.4 Phylogenetic Analysis

2.5 Virus growth \textit{in vitro}

2.6 Virus growth \textit{in vivo}

2.7 Virus RNA synthesis \textit{in vitro}

2.8 Cell Tropism of CHIKV

2.9 Plaque analysis

2.10 Materials and Methods

2.10.1 Cells

2.10.1.1 Baby Hamster Kidney Cells

2.10.1.2 Neonate rat mixed glial primary cells

2.10.2 Viruses

2.10.2.1 Virus strains

2.10.2.2 Growth and harvest of virus

2.10.2.3 Plaque assays

2.10.3 Preparation of virus DNA

2.10.3.1 Virus RNA isolation

2.10.3.2 cDNA amplification

2.10.3.3 Primer design

2.10.3.3.1 CHIKV non-structural protein primers

2.10.3.3.2 CHIKV structural primers

2.10.3.3.3 CHIKV 5' untranslated region primers

2.10.3.4 Polymerase Chain Reaction (PCR) thermocycling conditions

2.10.3.5 PCR
2.10.4 Manipulation of virus DNA
2.10.4.1 DNA purification I
2.10.4.2 Restriction digestion
2.10.4.3 DNA purification II
2.10.4.4 Preparation of Litmus 28 cloning vector
2.10.4.6 Preparation of competent \textit{E. coli} DH5\alpha cells
2.10.4.7 Transformation
2.10.4.8 Colony selection and linearization
2.10.4.9 Sequencing and sequence alignment
2.10.5 \textit{In vitro} analyses
2.10.5.1 CHIKV growth curves in BHK-21 cells
2.10.5.2 Mixed glial cell viability assay
2.10.5.3 Virus RNA synthesis of CHIKV, SFV-A7 and six geographically distinct strains
2.10.5.4 Plaque analysis
2.10.5.5 Immunofluorescence of virus infected oligodendrocytes
2.10.5.5.1 Production of antibody
2.10.5.5.2 Preparation of cells for immunofluorescent labelling
2.10.5.5.3 Immunofluorescent labelling of virus antigen
2.10.5.5.4 Immunofluorescent labelling of oligodendrocytes
2.10.6 \textit{In vivo} analyses
2.10.6.1 Infection of Balb/c mice with CHIKV and SFV-A7
2.10.6.2 Virus titres in brains of Balb/c mice infected with CHIKV and SFV-A7
2.10.6.3 Virus titres in Balb/c brains infected with CHIKV and six geographically distinct Chikungunya virus strains
2.10.6.4 Survival of Balb/c infected with CHIKV and six geographically distinct Chikungunya virus strains

2.11 Results
2.11.1 Sequence of Chikungunya Ross (CHIKV)
2.11.1.1 Non-translated regions of the genome
2.11.1.2 Non-structural genes of CHIKV
2.11.1.3 Structural genes of CHIKV
2.11.1.4 Percentage identity in nucleotide and deduced amino acid sequences between CHIKV and other alphaviruses 73
2.11.1.5 Phylogenetic analysis of CHIKV and other alphaviruses 73
2.11.1.6 Immunofluorescent labelling of virus-infected oligodendrocytes 73
2.11.1.7 Immunofluorescence of CHIKV-infected oligodendrocytes 74
2.11.1.8 Immunofluorescence of SFV-A7-infected oligodendrocytes 74
2.11.1.9 Growth curves of CHIKV and SFV-A7 in BHK-21 cells 74
2.11.1.10 Trypan-blue exclusion assay of a mixed glial cell culture infected with CHIKV and SFV-A7 74
2.11.1.11 Viral RNA synthesis in BHK-21 cells 75
2.11.1.12 Growth curves of CHIKV and SFV-A7 in infected mouse brain following intranasal inoculation 75
2.11.1.13 Survival curves of CHIKV and SFV-A7 75
2.11.1.14 Survival curves of CHIKV and six geographically distinct strains of CHIKV 75
2.11.1.15 Growth curves of CHIKV and six geographically distinct strains of CHIKV in infected mouse brain following intranasal inoculation 76
2.11.1.16 Plaque Analysis 76

2.12 Discussion 87

Chapter 3 – Construction of a Full-length Chikungunya cDNA clone

3.1 Introduction 89
3.1.1 Alphavirus infectious clones 89
3.1.2 Chikungunya vaccine 89
3.1.3 Construction of a Chikungunya full-length clone 90
3.1.4 TripleMaster PCR system 90

3.2 Materials and Methods 91
3.2.1 Molecular biology techniques used in the construction of a CHIKV full-length clone. 91
3.2.1.1 Cloning vectors 91
3.2.1.2 Restriction enzymes 91
3.2.1.3 Dephosphorylation of linearised L28i and pB cloning vectors
3.2.1.4 Ligation of fragments into cloning vectors
3.2.1.5 Transformation, colony selection and confirmation analysis
3.2.1.6 Primer design
3.2.1.7 Polymerase Chain Reaction (PCR)
3.2.1.8 DNA purification
3.2.2 Preparation and ligation of CHIKV fragments 1-5 into L28i
3.2.2.1 Preparation of L28i
3.2.2.2 Restriction Digestion
3.2.2.3 Ligation of CHIKV fragments 1-5 into L28i
3.2.2.4 Confirmation analysis of L28i – CHIKV fragment colonies
3.2.2.5 Confirmation analysis of L28i – Fragment 1
3.2.2.6 Confirmation analysis of L28i – Fragment 2
3.2.2.7 Confirmation analysis of L28i – Fragment 3
3.2.2.8 Confirmation analysis of L28i – Fragment 4
3.2.2.9 Confirmation analysis of L28i – Fragment 5
3.2.3 Construction of L28i / CHIKV Fragment (LF) intermediates
3.2.3.1 Construction of LF1-2 intermediate
3.2.3.2 Construction of LF1-2 Δ Nde I intermediate
3.2.3.3 Construction of LF1-2-3 Δ Nde I intermediate
3.2.3.4 Reinsertion of Nde I fragment into LF1-2-3 Δ Nde I intermediate
3.2.3.5 Construction of LF5-4 intermediate
3.2.4 Construction of pBluescript SK II [+] / CHIKV Fragment intermediate
3.2.4.1 Preparation of pBluescript SK II [+] (pB)
3.2.4.2 Production of CHIKV 5' UTR oligonucleotide
3.2.4.3 Ligation of CHIKV 5' UTR into pB cloning vector
3.2.4.4 Construction of pB-5' plus Fragment 1-2-3 intermediate (pB-5'123)
3.2.4.5 Construction of pB-5'123 plus Fragment 5-4 intermediate (pB-5'123*45)
3.2.4.6 Insertion of RT-PCR 3 / 4 Cla I Fragment
3.2.4.7 Insertion of a Poly (A) tail
3.2.5 Production of RNA from pB-5'12345 CHIKV cDNA infectious clone (pBCHIKV)
3.2.6 Electroporation in BHK-21 cells
3.3 Results

3.3.1 CHIKV genome in 5 Fragments
3.3.2 CHIKV Fragments ligated into L28i
3.3.2.1 LF1
3.3.2.2 LF2
3.3.2.3 LF3
3.3.2.4 LF4
3.3.2.5 LF5
3.3.2.6 LF1-2 Intermediate
3.3.2.7 Religation of Nde I fragment into LF1-2-3 Δ Nde I Intermediate
3.3.2.8 LF1-2-3
3.3.2.9 LF5-4
3.3.2.10 pB-5'123
3.3.2.11 pB-5'123*45
3.3.2.12 RT-Fragment 3 / 4 (prior to Cla I digestion)
3.3.2.13 pB-5'12345

3.4 Discussion

Chapter Four – Analysis of the Semliki Forest Virus 5' Untranslated region as a pathogenicity determinant

4.1 Introduction

4.1.1 SFV-induced neuropathogenesis of the murine CNS
4.1.2 Virus produced from SFV infectious clones
4.1.3 Analysis of SFV genomes
4.1.4 Virulence determinants of SFV
4.1.5 Construction of SFV 5' UTR chimeras

4.2 Materials and Methods

4.2.1 Sequence analysis of SFV genomes
4.2.2 SFV 5' UTR Sequences
4.2.3 Virus strains and infectious clones
4.2.4 Preparation of virus DNA
 4.2.4.1 Spe I linearisation of SFV infectious clones
 4.2.4.2 In vitro SP6 RNA transcription
 4.2.4.3 Electroporation
 4.2.4.4 Harvesting SFV infectious virus
4.2.5 Amplification of SFV 5' UTRs
 4.2.5.1 Primer Design
 4.2.5.2 DNA Purification
 4.2.5.3 Sequence Alignment
 4.2.5.4 Prediction of Secondary structures
4.2.6 Survival of Balb/c mice infected with SFV-A7, SFV-L10 and infectious virus produced from pSP6-SFV4, SP6-CA7 and rA7[74]
4.2.7 Virus titres in BAlb/c brains infected with SFV-A7, SFV-L10 and infectious virus produced from pSP6-SFV4, SP6-CA7 and rA7[74]
4.2.8 Construction of SFV 5' UTR chimeras
 4.2.8.1 Preparation of chimeras I – Restriction Digestion
 4.2.8.1.1 Preparation of SFV infectious clones with restriction enzyme Nde I
 4.2.8.1.2 Preparation of SP6-SFV Δ Nde I infectious clones with Sph I and Eco RV
 4.2.8.1.3 Preparation of pSP6-SFV4 / rA7[74] 5' UTR reciprocal chimeras
 4.2.8.1.4 Preparation of SP6-CA7 / rA7[74] 5' UTR chimera
 4.2.8.2 Preparation of SP6-SFV / SFV-A7 5' UTR chimeras
 4.2.8.2.1 Restriction digestion of L38i with Sph I and Eco RV
 4.2.8.2.2 Site-directed mutagenesis
 4.2.8.2.3 PCR
 4.2.8.2.4 Excision of site-mutated SFV-A7 5' UTR and ligation into SP6-SFV Δ Nde I (Δ Sph I / Eco RV) infectious clones
 4.2.8.2.5 Religation of respective Nde I fragments
 4.2.8.2.6 PCR confirmation
 4.2.8.2.7 Production of infectious chimeric virus
 4.2.8.2.8 Infectious virus RNA isolation and 5’ RACE PCR confirmation of 5’ UTRs
 4.2.8.2.9 Plaque assay
 4.2.8.2.10 Intranasal infection of Balb/c mice
 4.2.8.2.11 RNA synthesis of SFV 5’ UTR chimeric virus
4.3 Results

4.3.1 Analysis of SFV strains

4.3.1.1 Amino acid sequence analysis of prototype virulent and avirulent SFV strains 153

4.3.1.2 Sequence of SFV 5’ UTR 156

4.3.1.3 Prediction of SFV 5’ UTR secondary structure 157

4.3.1.4 Survival of Balb/c mice intranasally infected with SFV 158

4.3.1.5 Virus titres in Balb/c mice intranasally infected with SFV 158

4.3.2 Construction and analysis of SFV 5’ UTR chimeric virus

4.3.2.1 Sequence of SFV chimera 5’ UTRs 162

4.3.2.2 Survival of Balb/c mice intranasally infected with SFV 5’ UTR chimeric virus 162

4.3.2.3 RNA synthesis of SFV strains and SFV 5’ UTR chimeric viruses 162

4.4 Discussion 167

Chapter Five – Pathology

5.1 Introduction 172

5.2 Cells of the Central Nervous System 172

5.2.1 Neurons 174

5.2.2 Astrocytes 176

5.2.3 Oligodendrocytes 176

5.2.4 Epenymal Cells 177

5.2.5 Microglia 177

5.3 Pathology and its terminology 178

5.3.1 Necrosis 178

5.3.2 Demyelination 179

5.3.3 Gliosis 179

5.3.4 Inflammatory lesions 179

5.3.5 Spongiform degeneration 179

5.4 Routes of infection into the CNS 180

5.4.1 The Blood-brain barrier (BBB) 180
5.4.2 Haematogenous route 180
5.4.3 The Neural route 180
5.4.4 The olfactory system 181

5.5 Materials and Methods 183
5.5.1 Intranasal infection of Balb/c mice 183
5.5.2 Brain Perfusion and Fixation 183
5.5.3 Paraffin embedding and sectioning 183
5.5.4 Histological staining 184
5.5.5 Pathology Grading System 184

5.6 Results 185
5.6.1 Chikungunya virus – Seven geographically distinct strains 185
5.6.1.1 CHIKV – Ross 185
5.6.1.2 CHIKV – DaKAR 185
5.6.1.3 CHIKV – 37997 185
5.6.1.4 CHIKV – PO731460 186
5.6.1.5 CHIKV – 181/25 186
5.6.1.6 CHIKV PhH15483 186
5.6.1.7 CHIKV – SV450 186
5.6.2 Semliki Forest Virus strains 186
5.6.2.1 SFV-A7 and SFV-A7[74] 186
5.6.2.2 SFV4 186
5.6.2.3 CA7 186
5.6.2.4 rA7[74] 186
5.6.3 SFV 5’ UTR Chimeric viruses 187
5.6.3.1 CA7 + SFV-A7 5’ UTR 187
5.6.3.2 CA7 + rA7[74] 5’ UTR 187
5.6.3.3 rA7[74] + SFV-A7 5’ UTR 187
5.6.3.4 rA7[74] + SFV4 5’ UTR 187

5.7 Discussion 189

Chapter Six – General Discussion 190
Chapter Seven – References 198
Chapter One

General Introduction
1. INTRODUCTION

1.1 Alphaviruses

The Alphavirus genus of the Togaviridae family is comprised of 26 globally distributed members, inclusion in the genus was originally based on serological cross-reaction; however more recently comparison of partial E1 envelope glycoprotein gene sequences has been used to construct phylogenetic trees of the alphaviruses (Powers et al., 2001, figure 1.1). In nature, alphaviruses are transmitted by arthropods to vertebrates such as birds, small rodents and occasionally humans. Alphavirus infection in man causes a range of symptoms from subclinical or mild febrile illness to high fever, headache, myalgia, arthritis and occasionally encephalitis. On the basis of nucleotide and amino acid comparisons between alphaviruses, specifically between regions in the non-structural proteins (Strauss and Strauss, 1994), the genus can be divided into two subgroups: The Old World viruses including Semliki Forest Virus (SFV), Sindbis Virus (SINV), Chikungunya virus (CHIKV), O'Nyong nyong virus (ONNV), Ross River virus (RRV), Middelburg (MID), and the New World alphaviruses including Venezuelan equine encephalitis virus (VEEV), Western equine encephalitis virus (WEEV), and Eastern equine encephalitis virus (EEEV). The Old World alphaviruses are mainly distributed throughout Africa and South-East Asia although they have occasionally also been found in Northern Europe, and RRV has been isolated in Australia (Calisher et al., 1985). The New World alphaviruses are predominantly found in the Americas and regularly cause lethal encephalitis in humans although these are in low numbers (Whitley, 1990). Although alphaviruses are generally divided into the New World and Old World viruses, recombinants between viruses from both worlds are also present. CHIKV and ONNV have been responsible for numerous well documented outbreaks in Africa, causing a painful but not life-threatening illness in over two million individuals (Johnston and Peters, 1996). Alphavirus epidemics are common with the most recent outbreak of CHIKV occurring in Ile de la Reunion between 28th March and 20th June 2005, infecting 1922 people, (ProMED, 2005) Alphaviruses infect laboratory animals such as mice, hamsters, guinea pigs and rats, making these viruses ideal to use as models to evaluate their pathogenesis in vertebrates.
Figure 1.1 Phylogenetic tree of Alphavirus species

Phylogenetic tree is divided into 7 individual complexes, WEE, EEE, and VEE complexes make up the New World alphaviruses, whereas Barmah Forest, Ndumu, Middelburg and Semliki Forest virus make up the Old World alphaviruses. Semliki Forest, Chikungunya and O’nyong nyong viruses are members of the SFV complex. This phylogenetic tree was adapted from Powers et al. (2001) who generated it from partial E1 envelope glycoprotein gene sequences by using the neighbour-joining program with the F84 distance formula. It does not however, include recombinant species between Old and New World viruses. It has been used with kind permission of Dr. Ann Powers, CDC, Fort Collins, USA.
Alphaviruses are widely used as tools in molecular biology to study the relationship between the virus and host immune system in disease outcome, to elucidate what viral and host genetic factors may be responsible for the onset of disease and what cellular tropisms may be involved in virus infection. An important development in the studies of alphaviruses has been the construction of full length cDNA clones, containing the entire viral genome positioned downstream of a promoter that is used to drive RNA synthesis (Rice et al., 1987; Davies et al., 1989; Liljestrom et al., 1991; Kuhn at al., 1991; Tarbatt et al., 1997; Tuittila et al., 2000). The resulting in vitro transcribed RNA can then be transfected or electroporated into cells. Transfection of full length viral RNA results in the replication and production of infectious virus. Infectious clones have been instrumental in the study of the synthesis and intracellular transport of membrane proteins (reviewed by Lundstrom, 1997), the analysis of factors influencing viral pathogenesis and cell tropism in animal models, and the identification of domains known to be essential for the replication of RNA. (Lopez et al., 1994; Smyth et al., 1997; Yao et al., 1998)

1.2 Semliki Forest Virus

Semliki Forest Virus (SFV) is an arthropod-borne neurotropic virus that infects vertebrates. SFV is generally thought to be non-pathogenic in man with most human infections of SFV being subclinical. However, in 1979 a laboratory worker in Germany working on the Osterrieth strain of SFV died from a fatal encephalitis. SFV antibody was not detected until the time of death and the individual had a history of chronic pulmonary infection suggesting that her immune system was suppressed (Willems et al., 1979). An outbreak of SFV that occurred in the Central African Republic in 1987 was reported by Mathiot et al in 1999. SFV was isolated from serum samples from individuals with mild clinical symptoms including fever, persistent headache, myalgias and arthralgias. SFV infects both adult and neonate mice and has an age and strain-dependent pathology including fatal encephalitis, teratogenesis, and virus-induced demyelination, thus providing a useful model for the study of viral neuropathogenesis (Atkins et al., 1985). The existence of several different virulent and avirulent strains of SFV which differ in their neuropathogenicity has allowed comparative analysis between them at the molecular
level which, combined with the availability of SFV infectious cDNA clones (Liljestrov \textit{et al.}, 1991), provides a useful model for analysis of the molecular basis of alphavirus neuropathogenesis (Atkins \textit{et al.}, 1985).

1.2.1 Origins and Strains of SFV

The original SFV strain was isolated from a pool of 130 female \textit{Aedes abnormalis} Theobald mosquitoes by Smithburn and Haddow in Uganda in 1944. Although serologically indistinguishable from one another, the differing strains of SFV are distinguished on their degree of virulence following intraperitoneal (i.p.) inoculation of mice, guinea-pigs and rabbits. (Bradish \textit{et al.}, 1971). The strain with the highest virulence; L10, a derivative of the original 1944 isolate is lethal to mice of any age causing encephalitis, irrespective of route. (Smithburn and Haddow, 1944). The least virulent strain of SFV, AR2066, designated A7 after seven passages in neonatal mouse brain, was isolated from a pool of 97 \textit{Aedes argenteopunctatus} mosquitoes in Mozambique in 1959 (McIntosh \textit{et al.}, 1961). A7 is not lethal in adult mice with mice appearing normal at all times, although inflammatory demyelinating lesions are present in the brain; A7 is however lethal in suckling mice (Atkins \textit{et al.}, 1982). Infection of mice with A7 provides immune protection against challenge with a lethal dose of the virulent L10 strain. Strains of SFV currently used in laboratories were derived from these two virus strains. These include a temperature sensitive mutant of A7 designated \textit{ts} 22 which is teratogenic to the foetus (Hearene \textit{et al.}, 1987) and a chemical mutant of L10 designated M9 (Barrett \textit{et al.}, 1980). M9 produces similar brain lesions to those seen with A7, however unlike L10 it does not produce the characteristic fatal encephalitis in mice (Atkins and Sheahan, 1982). An infectious clone was constructed by Liljestrom \textit{et al} in 1991, designated pSP6-SVF4. The prototype strain from which pSP6-SVF4 was constructed (L10) resulted in a loss of some virulence due to an undetermined number of passages in cell culture between 1961 and 1991 (Glasgow \textit{et al.}, 1991). Following \textit{in vitro} transcription and electroporation of RNA derived from pSP6-SVF4, infectious SFV4 virus is produced. SFV4, like L10 produces lethal encephalitis in adult mice irrespective of route, however, SFV4 shows reduced virulence in mice following i.p. inoculation killing only 50-60\% of mice within 5-6 days post infection. Both viruses
cause 100% mortality in intranasally (i.n.) infected mice with a mean day of death 4-5 days post infection (Atkins \textit{et al.}, 1990). An avirulent strain designated SFV-A7[74] was derived by further selection for avirulence from the SFV-A7 strain (Bradish \textit{et al.}, 1971), the nomenclature based on the 74th plaque being selected. The pathogenicity of these SFV strains is discussed in more detail in section 1.2.4.5.

1.2.2 SFV Virion

The virion of SFV consists of a nucleocapsid enclosed in an envelope of host-derived membrane from which 80 virus spike glycoproteins protrude (Vogel \textit{et al.}, 1986). The nucleocapsid is made up of 240 copies of a single repeating capsid (C) protein that is complexed with the single-stranded positive-sense RNA genome. (Schlesinger and Schlesinger, 1996). The spike proteins of the envelope are composed of three virus-specific glycoproteins: E1 (MW 49 kDa), E2 (MW, 52 kDa) and E3 (MW 10 kDA), with three heterotrimers forming each spike (Simons \textit{et al.}, 1973, Garoff \textit{et al.}, 1974). The nucleocapsid and viral envelope are organised into T = 4 icosahedral lattices (Choi \textit{et al.}, 1991, Paredes \textit{et al.}, 1992, 1993, von Bonsdorff and Harrison, 1975). This structure renders the encapsidated RNA sensitive to RNase, and shrinking at low pH with subsequent loss of viral RNA has been observed (Soderland \textit{et al.}, 1979).

The C protein is made up of 267 amino acids (aa) and has a molecular weight of 30 kDa. It contains a conserved C-terminal chymotrypsin-like serine protease region (Choi \textit{et al.}, 1991) that enables cleavage from the nascent structural polypeptide (Hahn and Strauss, 1990, Melancon and Garoff, 1987). An RNA-binding domain resides in the N-terminus of the C protein, and is recognised by the signal recognition particle targeting the nascent chain-ribosome complex to the endoplasmic reticulum (ER) membrane (Owen and Kuhn, 1996, Bonatti \textit{et al.}, 1984, Garoff \textit{et al.}, 1978). It is subsequently cleaved into the three structural membrane proteins p62 (precursor of E2 and E3), 6K and E1 (Liljestrom and Garoff, 1991, Garoff \textit{et al.}, 1990, Melancon and Garoff, 1987) E2 and E1, are transmembrane glycoproteins with short internal domains; they are intertwined in a heterodimer formation to which E3, a peripheral protein, is associated non-covalently (Garoff and Simons, 1974; Garoff and Soderlund, 1978).
Figure 1.2 Structure of SFV Virion

The SFV virion is 60-65 nm in diameter and consists of a nucleocapsid containing 240 copies of the Capsid protein and a single stranded RNA genome of positive polarity. The host-derived lipid membrane contains 80 spikes, each consisting of 3 copies of the E1, E2 and E3 glycoproteins.
In contrast to SFV, the E3 protein of both CHIKV and SINV is released in the culture medium and only E1 and E2 glycoproteins are found on the viral envelope (Simizu et al., 1984, Mayne et al., 1984). 6K remains in the cytoplasm of infected cells, this is discussed in more detail in section 1.2.4.4.

The E1 glycoprotein is made up of 438 aa with a molecular weight of 49 kDa and contains a hydrophobic transmembrane region separating the glycosylated ectodomain at the N-terminus from two arginine residues at its C-terminal (Wahlberg et al., 1992) making it responsible for maintaining spike stability, enabling viral entry and fusion.

The E2 glycoprotein has a molecular weight of 52 kDa and consists of 422 aa, that contain a large N-terminal ectodomain that serves as a receptor binding subunit (Simmons and Garoff, 1980). Also within the E2 glycoprotein of the viral membrane, a hydrophobic transmembrane region and a 31 aa C-terminal region have been shown to interact with the nucleocapsid (Metsikko and Garoff, 1990, Skoging et al., 1996). As previously mentioned, E2 is formed from the precursor p62 which is cleaved during virus maturation, which also contains a smaller 66 aa protein (E3) with a molecular weight of 10 kDa. The function of E3 has yet to be completely determined however; the N-terminus functions as a signal peptide for p62 during viral replication (Sariola et al., 1995) and it remains non-covalently associated with the SFV virion, although is shed into the culture fluid upon maturation in the cases of SINV and CHIKV (Garoff et al., 1974, Simizu et al., 1984, de Curtis and Simons, 1988). Another small 60 aa viral membrane protein with a molecular weight of 6 kDa termed 6K is present in submolar quantities and is thought to be involved in viral budding (Loewy et al., 1995; Strauss and Strauss, 1994; McInerney et al., 2004).

1.2.3 SFV Genome

Within the SFV nucleocapsid is the viral RNA which is single stranded and of positive polarity, which functions directly as mRNA (Kaarianen et al., 1987). The genome has a sedimentation coefficient of 42S with the 5' end capped with a 7-methylguanosine residue (m7GpppN1pN2pN3) and has a polyadenylated 3' end (Clegg and Kennedy, 1974; Schlesinger et al., 1990). The SFV genome size is approximately 11.4 kb (Garoff et al., 1980; Takkinen, 1986) and contains untranslated regions (UTRs)
at both the 5' and 3' ends and a short UTR between the two open reading frames of the genome termed the junction region (Strauss et al., 1984).

The 5' two-thirds of the SFV genome code for the non-structural polyprotein precursor which is processed to yield four non-structural proteins termed nsP1 proteinto nsP4 protein which are required for RNA replication and transcription (Strauss and Strauss, 1983; Takkinen, 1986). The remaining one third of the genome serves as mRNA for the synthesis of the structural proteins, although these are translated from a smaller co-linear subgenomic 26S RNA rather than from the 42S RNA. The 26S RNA species which is capped and polyadenylated codes for the capsid, p62 (a precursor of the glycoproteins E2 and E3), 6K and E1 structural proteins. (Garoff et al., 1980). A graphic representation of the linearised SFV genome can be seen in figure 1.3.

Four conserved regions or sequence elements (CSEs) have been identified through sequence analysis of different alphaviruses and are thought to play important roles in RNA replication (Ou et al., 1993). Of the four CSEs found in the SFV genome, three are located in untranslated regions. The first CSE is a conserved stem-loop structure formed by a sequence of 40 nt in the 5' UTR (Ou et al., 1983; Levinson et al., 1990). The second CSE is a region of 51 nt found at the 5' end of the nsP1 proteincoding sequence which can form two stable hairpin structures (Ou et al., 1983). Further downstream a 21 nt CSE spanning the untranslated junction region between the non-structural and structural genes including the initiation of translation sequence can be found. The final CSE is found in the 3' UTR and comprises 19 nt immediately preceding the poly (A) tail (Levinson et al., 1990). These four sequence elements are discussed in more detail in section 1.2.4.6.
SFV4
11442 bp

SP6-SFV4
14285 bp

Figure 1.3 Genome organisation of Semliki Forest Virus (A) and the pSP6-SFV4 infectious clone (B).

SFV genome is 11442 nt in length including the 5' and 3' Untranslated regions (UTRs) (A). It consists of 2 open reading frames: the first consists of the non-structural genes and the second, the structural genes. The subgenomic promoter begins within the junction region. The SFV infectious clone constructed by Liljeström et al (1991) contains the complete SFV genome downstream of an SP6 promoter; an Ampicillin resistance gene is upstream of the promoter (B). The infectious clone is linearised for in vitro transcription using a unique Spe I restriction site at the end of the virus poly(A) tail at the 3' end of the genome.
1.2.4 The SFV Replication cycle

The replication cycle of alphaviruses involves a series of stages illustrated in figure 1.4. Initially the virus attaches itself to the surface of a host cell, fuses with the endosomal membrane and enters the cytoplasm. Subsequent steps involve the release of the viral RNA into the cytoplasm, with translation, replication and transcription of the RNA genome resulting in the production of non-structural and structural proteins, virus assembly, budding and maturation.

1.2.4.1 Viral Entry

The virus binds to a receptor on the cell surface. Virus adsorption and entry into the host cell are dependent on virus-host protein interactions. The virus glycoprotein responsible for these interactions with cell receptors has been identified as E2 (Dubuisson and Rice, 1993). As alphaviruses have a broad host range and replicate in a variety of different cell types and species it is possible that the viruses use a variety of different molecules or a ubiquitous surface molecule for attachment (Strauss et al., 1994). In the case of Sindbis virus (SINV), the laminin receptor has been identified as a major mammalian cellular receptor (Wang et al., 1992) although other molecules may facilitate SINV entry.

After binding to a receptor on the cell surface, the virus undergoes receptor-mediated endocytosis. There are 4 main stages of endocytosis, beginning with binding of the virus at coated pits on the cell surface and then internalisation via clathrin-coated vesicles which transfer the virus into intracellular endosomes (DeTulleo and Kirchhausen, 1998). Low pH induces a number of conformational changes in the SFV spike resulting in the dissociation of the E1/E2 heterodimer (Lescar et al., 2001; Lobigs et al., 1990b; Wahlberg and Garoff, 1992) which enables the E1 subunit to mediate fusion of the viral envelope with the endosomal membrane (Wahlberg et al., 1992). The dissociation of the E2 subunit stimulates E1 to extend a portion of the spike, initiating the formation of a stable E1 trimer (Fuller et al., 1995). This subsequently leads to formation of a pore in the virion membrane by the E1 trimer interacting hydrophobically with the lipid bilayer of the cell membrane. It has been shown that this fusion cannot occur in the absence of cholesterol and sphingolipids (Phalen and Kielian, 1991; Smit et al., 1999; Moesby et al.,
1995). Once virus and cell membrane association occurs a pH and temperature lag follow culminating in the mixing of the virus and cell membranes. This results in the release of the nucleocapsid into the cytoplasm where it is uncoated by ribosomes, liberating the viral RNA genome for initiation of replication (Dick et al., 1996; Singh and Helenius, 1992).

1.2.4.2 Viral replication

Replication of virus RNA takes place in the cytoplasm of infected cells in association with cytoplasmic membranes. As the RNA of SFV is single-stranded with positive polarity it functions directly as mRNA. The first stage in RNA replication is the translation of the 5’ two-thirds of the genome coding for the non-structural precursor polyprotein termed P1234 (Garoff et al., 1974; Takkinen et al., 1986, 1991). Following translation of P1234 the non-structural proteins are cleaved (Hardy and Strauss, 1988, 1989) into four individual non-structural proteins nsP1, nsP2, nsP3 and nsP4. The non-structural proteins form replicase complexes for transcription of minus-strand replicative intermediate RNA and positive strand RNAs (Hardy et al., 1990; Strauss and Strauss, 1994).

The structural proteins are translated from the subgenomic 26S RNA (Garoff et al., 1980) with transcription initiated by the 26S promoter on the 42S minus-strand replicative intermediate (Sawicki et al., 1978, Levis et al., 1990). The structural proteins are translated as a polyprotein NH2-C-p62 (E3/E2)-6K-E1-COOH (Garoff et al., 1980a, b). A more detailed description of alphavirus replication can be seen in figure 1.5.
Figure 1.4 Schematic of the *Alphavirus* Life Cycle

An overview of the 13 principle steps of virus replication: on binding to the cellular receptor the virus is internalised in the cell cytoplasm by receptor-mediated endocytosis (1). Through conformational changes induced by a change in pH positive-sense virus RNA is released into the cytoplasm (2). The RNA is initially translated to give a non-structural polyprotein, which is then cleaved into the non-structural proteins (nsP1-4) (3). nsP2 and nsP3 proteins are then involved in the synthesis of the 26S subgenomic RNA (4) which is then translated (5) to give a structural polyprotein which is cleaved to generate capsid, p62 and E1 proteins (6). The p62 and E1 proteins are translocated to the endoplasmic reticulum (ER, 7) where p62 and E1 dimerise before moving to the Golgi apparatus (GA, 8). The dimerised p62 protein is cleaved to give E2 and E3 within the trans-Golgi network and the spike (E1E2E3 heterotrimer) proteins are transported to the cell membrane (9). Virus RNA (10) and the capsid proteins (11) migrate to the cell membrane and form the nucleocapsid. At the plasma membrane the trimers interact with the nucleocapsid and the capsid proteins bind to the E2 domain of the spike protein causing the plasma membrane to wrap around the nucleocapsid thereby budding off (12) and releasing progeny virus (13).
Figure 1.4 Schematic of the Alphavirus Life Cycle
Figure 1.5 Replication and Transcription of Semliki Forest Virus (SFV) RNA. (*, †, ▶) represent helicases, replicases and the subgenomic promoter respectively.
1.2.4.3 **Processing of non-structural proteins and their functions**

SFV, unlike SINV and most other alphaviruses has no opal codon (UGA) in the non-structural open reading frame between nsP3 and nsP4 proteins due to it being replaced by an arginine codon (CGA). In infected mammalian cells the production of P1234 is due to read-through of the opal codon, in SINV this occurs approximately 10 to 20% of the time with P123 being produced the remainder of the time (Li and Rice, 1993; Shirako and Strauss, 1994). There are two pathways by which the polyprotein precursor P1234 can be processed.

Both SFV and SINV produce P123 and nsP4 proteins early in infection and P12 and P34 later in infection. However, SFV produces greater amounts of nsP4 protein and nsP4-containing polyproteins than SINV (deGroot et al., 1990, Takkinen et al., 1991). It has been shown that the P123 + nsP4 protein pathway in SFV is the principal route and that nsP4 protein possesses autoprotease activity responsible for the cleavage of the nascent P1234 polyprotein (Hardy and Strauss, 1988; Takkinen et al., 1990, 1991, Figure 1.6). nsP2 protein has a role in processing P1234 by initially cleaving the nsP1/nsP2 protein bond and is not dependent on cleavage of the nsP2/nsP3 protein (deGroot et al., 1990, Shirako and Strauss, 1994). LaStarza et al (1994) showed that uncleaved P123 in association with nsP4 protein is responsible for minus-strand synthesis. The initial cleavage of nsP1/nsP2 protein causes a conformational change of P123 and a build up of enough nsP2 protein protease activity to shut-off negative-strand synthesis (Shirako and Strauss, 1994). Cleavage defects in nsP1/nsP2 protein and nsP2/nsP3 protein in SINV results in decreased levels of subgenomic RNA synthesis (Lemm and Rice, 1993a). It has also been shown that for RNA replication to occur the expression of P123 and P34 is essential (Lemm and Rice, 1993b). Previously, Hahn et al. (1989) showed by using nsP4 protein ts mutants at non permissive temperatures that viral RNA was not produced. As nsP4 protein is unstable and short-lived in infected cells (Keranen and Ruohonen, 1983) it degenerates rapidly allowing a build up of P123 (figure 1.6, pathway II) and P34 from the first processing pathway (figure 1.6, pathway I). The accumulation of these proteins brings about the shut-off of minus-strand synthesis and initiation of plus-strand synthesis. P34 then acts as the functional polymerase for plus-strand RNA synthesis (Kim et al., 2004; Vasiljeva et al., 2003).
Figure 1.6 Processing pathways of SFV Non-structural Proteins: Schematic representation of the two alternative processing pathways of the polyprotein P1234 yielding either (I) P12 and P34 or (II) P123 and nsP4. The amino-terminal domain of nsP4 protein is represented with a blue circle while the carboxy-terminal of the nsP2 protein serine protease domain is shown as a red circle. The broken box in pathway I represents the breakdown product of P34 which is thought to be unstable.
1.2.4.3.1 nsP1 protein

nsP1 protein of SFV is 1610 nt in length and is thought to have three main functions. Hahn et al., (1989) suggested that nsP1 protein is required for the initiation of or continuation of synthesis of minus-strand RNA. On moving a temperature sensitive mutant (ts11) to non-permissive temperature it ceases to produce minus-strand RNA although plus-strand synthesis continues (Wang et al., 1991; Sawicki et al., 1986).

Another function of nsP1 protein lies in it binding tightly to intracellular membrane structures when expressed alone in HeLa cells (Peranen et al., 1995), suggesting a role in anchoring the replication complexes to intracellular membrane structures (Laakkonen et al., 1996) and acting in association with nsP3 protein to target the polyprotein to intracellular vesicles (Lampino et al., 2000; Salonen et al., 2003). nsP1 protein has also been shown to be responsible for capping the genomic and subgenomic RNAs during transcription as it has guanine-7-methyl- and guanyltransferase activities (Cross, 1981, 1983; Scheidel et al., 1987; Mi and Stollar, 1991; Ahola et al., 1997, 2000). More recently Shirako et al. (2000) and Fata et al. (2002 a, b) have also shown for SINV, direct interactions between nsP1 protein and nsP4 protein in minus-strand RNA synthesis.

1.2.4.3.2 nsP2 protein

In studies using temperature sensitive mutants nsP2 protein has been shown to be involved in the synthesis of the 26S subgenomic RNA (Sawicki and Sawicki, 1985). As previously mentioned (section 1.2.4.3) nsP2 protein has autoproteinase activity in its C-terminus (figure 1.6, pathway I). However, in SFV nsp4 is responsible for the proteolytic processing of the intermediate P34 (Takkinen et al., 1991) whereas this is the role of nsP2 protein in SINV. The N-terminal domain of nsP2 protein is a helicase involved in duplex unwinding during RNA replication and transcription (Gomez de Cedron et al., 1999), an NTPase (Rikkonen et al., 1994) which is essential for virus infectivity and an RNA triphosphate (Vasiljeva et al., 2000) characterised by two motifs (in SINV) one starting at residue 189 (GSGKS) and the second starting at residue 252 (DEAF) (Gorbalyena et al., 1988, 1990; Hodgman, 1988). In SFV-infected cells approximately half of nsP2 protein is found in the nucleus, mainly in the nucleolus (Peranen et al., 1990) and a nucleus targeting
signal (NLS) starting at residue 648 (PRRRV) is also found in the C-terminus (Rikkonen et al., 1992).

1.2.4.3.3 nsP3 protein

The function of nsP3 protein is not fully understood, however it has been suggested that it is involved in the synthesis of subgenomic and minus-strand RNA as mutations in the N-terminus of nsP3 protein (in SINV) render the virus unable to synthesise RNA at nonpermissive temperatures (Hahn et al., 1989; LaStarza et al., 1994, Wang et al., 1994). nsP3 protein is phosphorylated, the phosphorylation sites have recently been mapped to serine and threonine residues in the C-terminus (Vihinen and Saarinen, 2000). nsP3 protein is thought to participate with nsP1 protein in anchoring the replication complex to cytoplasmic membrane structures (Peranen and Kaariainen, 1991; Peranen et al., 1988). Current work in our lab (Galbraith et al., in press) has indicated that deletions in the C-terminus of nsP3 protein decrease virus yield and total viral RNA synthesis of SFV. These viruses are avirulent i.p. and intramuscularly (i.m) and less virulent when administered to mice i.n. This could be due to the reduction of the ability to anchor the replication complex to cytoplasmic membrane structures.

1.2.4.3.4 nsP4

nsP4 protein has been shown to possess autoproteinase activity responsible for the cleavage of the nascent P1234 polyprotein (section 1.2.4.3). Although nsP4 protein is unstable and short-lived in infected cells (Keranen and Ruohonen, 1983), it has been suggested (Strauss and Strauss., 1994) that nsP4 protein associated with the RNA replicase complex may be protected from degradation, whereas free nsP4 protein is degraded more rapidly (deGroot et al, 1991). The presence of a GDD sequence motif, typical of RNA-dependent RNA polymerases shows that nsP4 protein is the RNA polymerase of the virus (Argos, 1988).
1.2.4.4 Processing of Structural proteins and virus assembly and maturation

Structural proteins are translated from the 26S subgenomic RNA as a polyprotein NH2-C-p62 (E3/E2)-6K-E1-COOH within 3 hours of infection (Garoff et al., 1982). The C protein is cleaved from the nascent polyprotein precursor by its own C-terminal serine (Ser 268) protease activity (Melancon and Garoff, 1987). The C protein associates with the large ribosomal subunit and assembles as nucleocapsids within the cytoplasm of the infected cell (Ulmanen et al., 1976 Strauss et al., 1995). Specific encapsidation signals have been located that are required for efficient assembly of nucleocapsids within the infected cell (Weiss et al., 1989; Strauss et al., 1995). The capsid binds to the RNA at this encapsidation signal located at the N-terminal of the capsid protein (Geigenmuller-Gnirke et al., 1993; Forsell et al., 1995; Frolov et al., 1997) initiating binding of additional capsid protein molecules to form the final structure of the nucleocapsid in the cytoplasm (Strauss et al., 1995, figure 1.7)

The cleavage of the C protein at Ser 268 reveals the N-terminus of the p62 protein which is the signal sequence for initiating chain translocation across the endoplasmic reticulum (ER) membrane (Melancon and Garoff, 1987; Garoff et al., 1990). The p62 signal sequence is not removed by signal peptidase as one may expect but instead is translocated as part of p62 to be glycosylated soon after release into the lumen of the ER (Garoff et al., 1990). The p62 signal sequence is necessary only for initiation as the completion of the chain translocation is determined by signal sequences located at the C-terminus of p62 and 6K to promote 6K and E1 translocations respectively (Liljestrom and Garoff, 1991; Melancon and Garoff, 1986). p62, 6K and E1 proteins are therefore translocated co-translationally (Barth et al., 1995). Shortly after synthesis, PE2 and E1 form a heterodimer in the ER (Garoff et al., 1982; Yao et al., 1996) which is exported through the secretory pathway and the PE2 protein is cleaved to produce E2 and E3 within the trans-Golgi network by a furin-like proteinase. (Carleton et al., 1997). The spike protein, nucleocapsid and the 6K protein are transported to the cell membrane where 6K disassociates and is excluded from virus progeny (Lusa et al., 1991). Loewy et al (1995) showed that the 6K protein was also involved in virus budding, as deletion mutants resulted in a significant reduction of virus release. Yao et al (1996) also demonstrated the requirement of a sequence-specific interaction between the 6K protein and the E1 and E2
glycoproteins for virus assembly to occur. They suggested that the 6K protein promotes the correct folding of the E1 protein in its heterodimeric form (E1E2) in order for the E2 subunit to be positioned correctly in the plasma membrane for budding. In SFV the E3 protein remains non-covalently associated with the E1E2 heterodimer contributing to the stabilisation of the heterodimeric complex (Garoff and Simons, 1974, Lobigs et al., 1990). At the plasma membrane, the E1E2 heterodimers form trimers that interact with the nucleocapsid (Schlesinger et al., 1993). The C-terminus of the capsid proteins bind to the E2 domain of the spike protein (Choi et al., 1991), causing the plasma membrane to wrap around the nucleocapsid thereby budding off and releasing progeny virus (Garoff et al., 1982).

1.2.4.5 Pathogenesis of SFV infection in mice

Infection of the murine central nervous system (CNS) with SFV has been employed as a model for viral neuropathogenesis. Strains of SFV elicit different degrees of virulence in mice depending on the route of administration, the age of the host and the strain used. All strains of SFV are lethal when administered to neonatal mice. The prototype strain of SFV termed L10, was derived from the isolate originally isolated by Smithburn and Haddow in 1944 by eight intracerebral passages through adult and two through baby mouse brains. Lethal encephalitis by CNS infection is caused in mice of all ages, regardless of the route of infection, (reviewed by Atkins et al., 1999). The original cDNA infectious clone of SFV is derived from L10, and termed pSP6-SFV4 (Liljestrom et al., 1991). Transcription from this cDNA produces infectious virus termed SFV4 that has a slight reduction in virulence, most likely due to an undetermined number of passages of the prototype strain in cell culture (Glasgow et al., 1991). SFV4 causes lethal encephalitis 4 to 5 days post infection in mice infected intranasally (i.n.), when virus is administered by the intraperitoneal route (i.p.) only 60-70% of adult mice die. A slightly higher mortality rate is observed when mice are infected intramuscularly (i.m.) although less than i.n. infected mice (Glasgow et al., 1991; Atkins et al., 1999). In 1961, McIntosh et al., described another strain of SFV designated A7 after seven passages in neonatal mouse brain of the original AR2066 isolate, extracted from mosquitoes in Mozambique.
Figure 1.7 Processing of SFV Structural proteins: The capsid protein is released from the nascent polyprotein by autoproteolysis. The protease domain is represented as a red circle present in the N-terminus of the capsid protein. Free capsids interact rapidly with newly synthesised 42S RNAs to form nucleocapsids. The nucleocapsid binds to the internal E2 section of the transmembrane spike protein to initiate budding.
A7 was avirulent in adult mice, fatal in neonatal mice and caused foetal death in pregnant females. The adult survivors of A7 infection show demyelination in the CNS, most likely triggered by the infection of oligodendrocytes (Atkins et al., 1985; 1994) and partially immune-mediated (Gates et al., 1984; Fazakerley and Webb., 1987; Subak-Sharpe et al., 1993).

Although A7 is avirulent in adult mice, it replicates at least as efficiently as the virulent L10 and SFV4 in cultured cells such as BHK-21 cells (Atkins et al., 1983; Glasgow et al., 1997; Atkins et al., 1999).

Another SFV strain was derived from A7 by further colony selection for avirulence on chick embryo fibroblasts by Bradish et al in 1971, termed A7[74]. Infection with A7[74] is lethal only for mice younger than 2 weeks; in adult mice spread is partially restricted in CNS neurons and infection remains asymptomatic, as is the case for A7 (Fazakerley et al., 1993; Oliver et al., 1997; Atkins et al., 1985). Infectious cDNA clones for A7 and A7[74] have been constructed (Tarbatt et al., 1997; Tuittila et al, 2000), termed pSP6-CA7 and rA774 respectively. pSP6-CA7 was constructed by removing fragments of the SFV4 genome from pSP6-SFV4 and replacing them with those of A7; Tarbatt et al compared the virulence between SFV4 and infectious virus produced from the pSP6-CA7 termed CA7 by creating a series of reciprocal chimeras spanning the genome. CA7 contains the complete translated region from A7 with only the 5’ untranslated region (UTR) from SFV4 and kills over 30% of mice when administered i.n. (Tarbatt, C.J. unpublished data). In addition, lesions induced in the CNS of mice inoculated i.n. are more severe at 14 days post infection (d.p.i.) than those infected by the same route with A7. These results indicate that CA7 unlike A7 is not totally avirulent, clearly having retained a degree of virulence, possibly due to the 3 nucleotide changes in the 5’UTR, although only two changes were noted by Tarbatt et al (1997). Mutations in the 5’ UTR of VEE in combination with a mutation in the E2 gene (Kinney et al., 1993) have been shown to influence virulence. This is discussed in more detail in section 1.2.4.6.1.

It has been shown that virulent strains of SFV induce more extensive damage to neurons in the CNS than avirulent strains (Atkins et al., 1985). It is the partial restriction of the ability of avirulent strains to multiply in neurons that is responsible for the slower
multiplication in the CNS (Gates et al., 1985; Balluz et al., 1993; Fazakerley et al., 1993). Therefore the fundamental difference between virulent and avirulent strains of SFV is the rapidity of spread of neuronal damage in the CNS (Balluz et al., 1993) resulting in a lethal threshold in the case of L10 and SFV4 before the immune system can intervene. The virus properties controlling these functions remain to be fully elucidated.

1.2.4.6 Functions of the Conserved Sequence Elements of the SFV genome

On sequence comparison of several alphavirus genomes (Ou et al., 1981, 1982 a, b, 1983) four conserved sequence elements (CSE) were identified that include a conserved hairpin structure at the extreme 5' end of the genome, a 51-nt sequence found in the coding sequence of nsP1 protein also capable of forming hairpin structures, a 21-nt sequence of which 19-nts are found in the untranslated junction region preceding the first 2-nts of the 26S RNA, and a 19nt conserved sequence adjacent to the poly(A) tract at the 3' end of the genome. Evidence from several viral systems indicates that the untranslated regions of viral genomes may be important as virulence determinants and in virus pathogenicity, presumably through their effects on and involvement in genome replication, translation, or transcription. Each of the four CSEs are individually examined in more detail below.

1.2.4.6.1 5' Untranslated Region

The 5' UTR has a low overall nucleotide identity in alphaviruses but shares a conserved predicted secondary structure (Ou et al., 1983). Studies have been carried out on the 5' UTRs of several different viruses including poliovirus where the importance of the 5' UTR demonstrated by comparison of nucleotide sequences between virulent and attenuated variants and their revertants, and from mapping the virulence determinants (Kawamura et al., 1989). In the case of the Sabin type 3 poliovaccine genome a single nucleotide change in the 5' UTR significantly increased neurovirulence (Evans et al., 1985). The effects of substitutions and deletions in the 5' UTRs have been investigated for several alphaviruses, namely SINV virus (Gorchakov et al., 2004; Fayzulin and Frolov, 2004; Frolov et al., 2001; McKnight et al., 1996; Kuhn et al., 1992; Neisters et al., 1990) and Venezuelan equine encephalomyelitis (VEE) virus (Kinney et al., 1993).
Frolov et al. (2001) carried out a series of trans-competition experiments using SINV / SFV chimeras that showed that replacement of the SINV 5' UTR by heterologous UTRs derived from SFV abolished RNA replication in vivo and negative-strand RNA synthesis in vitro. They suggested that sequences at the 5' end of the RNA genome (including the 51nt CSE in nsP1, discussed later) and the complementary sequences at the 3' end of minus-strand RNAs play crucial roles in translation and replication of alphaviruses. In SINV if a first stem-loop structure is replaced with the SFV 5'-terminal stem-loop structure, all RNAs produced were incapable of replication, making the first terminal stem loop the most important (Ilya Frolov, personal communication). The SFV 5’ end is incapable of binding host and/or SINV-specific protein factors required for initiation of the negative-strand synthesis (Frolov et al., 2001). In earlier studies Neisters and Strauss (1990 a, b) using SINV 5'UTR deletion mutants, suggested that a characteristic feature of the 5' terminal sequences of alphavirus genomes is that they are predicted to fold into compact structures that bring the 5'UTR and the 51nt CSE into close proximity. Kobiler et al. (1999) showed that much like poliovirus the 5’ UTR was important in neurovirulence; in their study on rats they noted that a single nucleotide substitution in the 5’UTR of SINV (SINVN) transformed a neurovirulent but non-lethal virus in 3-week-old rats into a lethal virus. Similarly site directed mutations in another strain of SINV (S.A.AR86) significantly reduced mortality and increased survival in mice inoculated intracerebrally (i.e. Johnston et al., 1996). Kinney et al. (1993) carried out mouse challenge experiments with VEE viruses of the virulent Trinidad donkey (TD) strain and its attenuated vaccine derivative (TC-83) that indicated that attenuation is partially determined by mutations within the 5’UTR, with mutations in the E2 envelope glycoprotein also playing a role.

This polygenic influence in virulence was investigated further in SINV by Kobiler et al. (1999), where they showed that substitution of 2 amino acids in E2 of the nonlethal neurovirulent strain SINVN with Met-190 and Lys-260 of the lethal SINVNI strain resulted in the induction of paralysis in 2 and 5-week-old rats. Only substitution of both the 5’ UTR and E2 SINVNI determinants produced virus with virulence properties indistinguishable from those of SINVNI parent virus. As E2 is involved in receptor binding and penetration (described previously in section 1.2.4.4) it is possible that age-dependent resistance is influenced by changes in viral receptors during neuronal maturation. In SFV there are 8
amino acid changes in the E2 envelope glycoprotein between the avirulent A7 strain and the virulent SFV4 strain, although in a paper published by Tarbatt et al (1997) the author did not report an M/K amino acid difference at position 215 of E2, thus reporting only 7 amino acid changes. The investigation carried out by Tarbatt et al involved constructing an avirulent A7 infectious clone and involved several intermediate SFV4-A7 chimeras, one of which termed C8930/11033 involved the substitution of a 2104 nt fragment that encompassed 5 of the 8 amino acid changes in E2 as well as 6 in E1. When mice were administered C8930/11033 virus i.p. only 20% of mice died in comparison to 60% of those infected with parental SFV4; none died when infected with SFV-A7. This result suggests that E2 may play an important part in neurovirulence. Tarbatt et al did not substitute the 5'UTR of the SP6- SFV4 infectious clone with that of A7 (unpublished results) which may be relevant regarding the CA7 infectious clone retaining a significant degree of virulence for infected mice. To date no group has investigated the 5'UTR of SFV strains and a possible role as a neurovirulence determinant either functioning alone or polygenically with E2 or another virus gene.

1.2.4.6.2 51 nucleotide CSE in nsP1

The high degree of conservation of the 51-nt sequence element suggests that this short sequence is important in the replication of alphaviruses. Ou et al (1983) hypothesised that cyclisation of the 49S RNA could be important in RNA replication as it could result in the recognition elements of the 5' end of the genome being in close proximity to the 3' end recognition element (described later in section 1.2.4.6.4). This would allow the replicase to interact with both sequences simultaneously, allowing only intact 49S positive RNA strands to be replicated to produce negative strands and the exclusion of the 26S RNA from replication as shown by Martin et al in 1979. The involvement of the 51-nt CSE in replication was further investigated by Niesters et al (1990b) who through a series of mutational analyses examined 25 substitution mutants. Of the 21 silent changes (not involving an amino acid change), 19 were deleterious for replication resulting in a decrease in virus growth of 2 to 4 orders of magnitude. The 51-nt sequence is capable of forming two hairpin structures that serve as a replication enhancer in mammalian cells with multiple mutations in this region destabilising the secondary structure but not abolishing the
replication of the SINV genome RNA although they did down-regulate RNA synthesis as much as 10-fold (Frolov et al., 2001). However, changes that did not disrupt the structures were deleterious, indicating that the linear sequence is also important. In a recent study by Fayzulin and Frolov (2004) SINV viruses containing mutations in this sequence demonstrated that this CSE is dispensable for SINV replication in cells of vertebrate origin, however the same mutations had a deleterious effect on virus replication in mosquito cells. This demonstrates an excellent potential of alphaviruses for adaptation, with SINV adapting to replication in cells of a vertebrate or invertebrate origin within one passage. It therefore seems that the 51-nt CSE increases RNA replication and in SINV its integrity is more important in mosquito cells than in mammalian cells (Neisters et al., 1990b).

1.2.4.6.3 Junction region

The junction region was originally postulated to be 21 nts in length and to act as a promoter of the subgenomic RNA (Ou et al., 1982). However in a later study by Levis et al. (2000) it was shown that the junction region CSE is precisely 24 nts in length (AUCUCUACGUGUCCUAAAUAGU), including 19 nt 5' of the start site and 5 nts downstream of the start site and is necessary and sufficient to promote transcription of the 26S subgenomic RNA. This promoter sequence is highly conserved in alphaviruses although some differences are present and have been shown to influence the efficiency of translation (Raju et al., 1991).

A double subgenomic system in SENV RNA genomes that transcribe two different subgenomic RNAs by using two independent promoters was constructed by Raju et al. (1991) allowing direct comparison of the relative efficiencies of different promoters. By carrying out site-specific mutagenesis to change the 24 nt promoter of SINV to that of other alphaviruses this system indicated that almost all alphavirus promoters tested were recognised by the SINV RNA polymerase with varying degrees of efficiency. In the case of SFV, which differs from SINV by two nucleotide differences in this region; a relative promoter strength of 75% that of SINV was observed. This suggests that promoter strength is regulated by the virus because of a need to balance the production of genomic RNA and subgenomic RNA following infection with an overly strong promoter being selected against. This study confirmed earlier work by Grakoui et al. (1989) who inserted 3 nts into
the subgenomic promoter of wild-type SINV and found that transcription of subgenomic RNA was dramatically reduced to a level that made the resulting virus barely viable. A later investigation by Durbin et al. (1991) suggested the involvement of host proteins in the recognition of the subgenomic promoter and that the optimal promoter sequence may depend on the normal host cell of the virus. This was elegantly shown using a mutant of SINV with a silent nucleotide substitution in the subgenomic promoter that led to decreased synthesis of 26S RNA in mosquito cells but not in chicken cells. Host cell selective recognition of promoter sequences is not unique to the junction CSE and is more apparent in the 3' UTR of alphaviruses.

1.2.4.6.4 3'Non translated region

The 3'-untranslated region (UTR) of alphavirus genomes ranges from 77nt in Pixuna virus, a subtype of VEEV to 547 nts in Ndumu virus. In SFV, SINV, ONNV and CHIKV the 3' UTR is 264, 323, 425 and 503 nts in length respectively (Pfeffer et al., 1998). Although there is considerable variation in length of the 3' UTR between alphaviruses the sequence is not particularly conserved; there is a 19-nucleotide sequence (AUUUUGUUUUUAAUAUUUC-An) immediately preceding the 3'-poly(A) tail that is highly conserved in all alphaviruses. Initial investigations of the 3' conserved sequence element (3' CSE) involved substitutions and deletions of the 19nt sequence of SINV (Kuhn et al., 1990) and showed a decrease in the ability of virus to replicate by 2 or more orders of magnitude. However deletions of large areas upstream of the 19nt were deleterious although not lethal in mosquito cells indicting that the entire 3' UTR was important for virus replication. The 3' CSE and poly(A) tail were therefore assumed to constitute the core promoter for minus-strand RNA synthesis during genome replication.

It was also noted by the authors that these mutants affected differently the ability of the virus to grow well in chicken, mosquito and mouse cells. This suggested that host cell factors, presumably proteins, bind to these CSEs, and as the CSEs are all quite different, it is likely that different cellular proteins interact with the different CSEs to promote RNA replication. Recently, Hardy and Rice (2005) examined the role of the CSEs in the initiation of minus-strand RNA synthesis. They found that for efficient minus-strand RNA synthesis the wild-type 3' CSE and the poly(A) tail are required. They showed that the poly
(A) tail must be a minimum of 11 to 12 residues in length and immediately follow the 3' CSE and deletion or substitution of the 3' 13 nucleotides of the 3' CSE severely inhibits minus-strand RNA synthesis. The authors were also able to show that templates possessing non-wild-type 3' sequences previously demonstrated to support virus replication do not program efficient RNA synthesis.

In a follow-up study to their initial findings, Kuhn et al (1992) tested for rates of RNA synthesis, virus production in chicken, mosquito and mouse cells, and examined virulence and virus production in different tissues in mice. By constructing 4 mutants with changes in the 5'UTR and 4 with changes in the 3'UTR sequence elements they were able to show that all mutants had defects in RNA synthesis and that virus production was host cell dependent with mouse, chicken and mosquito cells responding differently to each change from the wild-type sequence elements. Therefore it seems that wild-type sequence elements have been adapted to interact with all of the natural hosts but are not necessarily optimal for a particular host.

Interestingly one of the mutants in this investigation that had nucleotides 18-25 of the 3' UTR deleted demonstrated tissue specific differences, growing less well than the parent virus in mouse cells but growing to a titre of almost 10 times that of the parent virus in the mouse brain. These results suggest that host proteins interacting with these CSEs in both a species specific and tissue specific manner may serve to modulate tissue tropism of alphaviruses. Studies using minus-sense riboprobes of 60-120nt corresponding to the first 250nt of the 3' end of the minus strand of SINV genomic RNA mixed with extracts from infected and uninfected chicken and mosquito cells (Pardigon and Strauss, 1992a, b) showed that binding of host proteins was sequence specific. More interestingly however, it was found that the same mosquito protein bound to riboprobes from other alphaviruses (SFV, Ross River (RR)), demonstrating that binding of this protein is a general phenomenon of alphavirus infection.
SFV as a viral vector

SFV has several traits that make it a good viral vector candidate. It has an RNA genome of positive polarity thus functioning as mRNA. Infectious RNA can be obtained by transcription of the full-length cDNA copy of the genome. As well as having a very efficient replication that occurs in the cytoplasm of infected cells, SFV has a broad host range and has been shown to infect a range of different cells in culture, including mammalian, avian, amphibian and insect (Clark et al., 1973, Griffin, 1986, Stollar, 1980). In man SFV has a low pathogenicity with most people outside of Africa having no pre-existing immunity against the virus.

In 1991, Liljestrom and Garoff manipulated the SFV genome to produce a novel DNA protein expression system. The structural proteins of the SFV genome were removed from the infectious clone to allow insertion of the foreign gene/s of interest. The foreign DNA sequence was then transcribed to produce recombinant RNA which can be subsequently electroporated into BHK-21 cells. The SFV replicase system replicates the recombinant RNA within the cells and expression results in considerable production of foreign proteins (Berglund et al., 1993). The SFV expression system may also be used to facilitate packing of the RNA into infectious virus “suicide particles”. Utilising a helper RNA molecule deficient in its own packaging signals, the recombinant RNAs are packaged utilising the helper structural proteins (Liljestrom and Garoff, 1991; Berglund et al., 1993).

The development of the SFV as a vector system has opened a broad range of opportunities for vaccine development. The inclusion of mutations specifying maturation defects of the helper ensuring that only one round of replication is possible has further increased the vectors biosafety. SFV vectors have been shown to successfully induce humoral and cell-mediated immunity against several diseases (Berglund et al., 1999, 1997; Fleeton et al., 1999, 2000; Morris-Downes et al., 2001).

Recently the SFV vector system has been tested as a means of delivery into the CNS, and this shows great potential for the treatment of CNS diseases. Current research has indicated that high levels of protein expression were detected in the CNS following intranasal inoculation of recombinant SFV particles expressing a reporter gene, with no vector RNA detected in areas of the CNS and no damage detected in the brains of infected mice (Jerusalmi et al., 2003).
1.3 Chikungunya Virus

In 1952 an outbreak of an arthritic disease of sudden onset was first recorded in the Newala District of Tanzania. The disease and subsequently the alphavirus causing it was given the Swahili name, \textit{chikungunya}, meaning “that which bends up” due to the severe physical incapacitance induced following virus infection (Robinson, 1955). The initial isolation and description of Chikungunya virus came from Ross (1956) following the Newala epidemic in Tanzania during 1952-1953; it was isolated from both humans and mosquitoes. The Ross strain is considered the prototype Chikungunya (CHIKV) strain although several different strains are involved in urban and other epidemics (Powers \textit{et al}., 2000; Fields \textit{et al}., 2001).

![Figure 1.8 Geographic distribution of CHIKV](image)

Countries with red circumference have had reported outbreaks dating from 1956 to July 2005.
Although *Aedes albopictus* is considered to be the primary vector of CHIKV in Asia and a secondary vector in Africa (Jupp and McIntosh, 1981), laboratory studies have indicated that *Aedes albopictus* appears to be a more competent vector than *Aedes aegypti* (Turell *et al.*, 1992, Diallo *et al.*, 1999, Thaikruea *et al.*, 1997).

With a little over 500 published papers on CHIKV one would assume that it was very well characterised, however an overwhelming majority of the work carried out on CHIKV are reports of outbreaks of the virus (Table 1.1), or novel methods of virus detection and diagnosis, and descriptions of the types of mosquito vector involved in transmission. The most recent study not involving the above criteria was carried out by Khan *et al* (2002) who detected the presence of an internal polyadenylation site within the 3’ UTR of the S27 strain of CHIKV. This however has not been observed in any other fully or partially sequenced CHIKV genome, including the Ross strain, 37997 strain and the vaccine strain, and may have arisen due to a history of multiple passage as the S27 strain used in this investigation had been passaged over 50 times using the *Aedes albopictus* clone C6/36 cell line (Khan *et al.*, 2002). Other investigations not related to the reporting of outbreaks of CHIKV include Powers *et al* (2000), who investigated the phylogenetic relationship of several CHIKV strains in relation to other alphaviruses, Blackburn *et al* (1995) who investigated the antigenic relationship between CHIKV and the closely related O’nyong nyong virus (ONNV) and Ranadive and Banerjee (1990) who examined the expression of CHIKV structural proteins in E. coli.

Levitt *et al* (1986) produced an attenuated CHIKV vaccine, used by the US military with controversial consequences, while Simizu *et al* (1984) deduced that unlike in SFV the E3 glycoprotein of CHIKV was not associated with mature virions but released into culture fluids. Much of the earlier work although carried out on CHIKV was common to most alphaviruses with Chanas *et al* (1979a, b) carrying out early biological comparisons between CHIKV and ONNV in the mouse, Precious and Webb (1974) isolated CHIKV from mouse neuronal cell cultures, Davis *et al* (1971) grew CHIKV to high titres in BHK-21 cells, Igarashi *et al* (1970) carried out analyses on protein synthesis and virus formation of CHIKV in infected BHK-21 cells and finally Ross in 1956 who initially isolated and
described the virus. To date, a conclusive characterisation of CHIKV has not been carried out, investigating not only the genome structure and phylogenetic relationship of the CHIKV genome with other alphaviruses, but studying also the *in vitro* effects of infection using different animal cell lines, the *in vivo* effect on an animal model, the detection of virus in cells of the CNS and its relevance to neuropathologies caused by other alphaviruses. In order to get a more complete picture of CHIKV it is also important to determine the efficiency of a range of molecular functions of CHIKV such as its ability to synthesise RNA, and to carry out comparisons between geographically distinct CHIKV strains.

1.3.1 Origins and Strains

Since the first recognised epidemic of CHIKV in Tanzania in 1953, it has been shown that Chik fever is widely distributed in tropical areas in Africa and Asia, producing a febrile and sometimes haemorrhagic fever in humans.

In Africa, it is thought that non-human primates such as monkeys and baboons are responsible for amplifying and maintaining virus circulation. In 1969, Ibadan city in Nigeria experienced the first outbreak of CHIKV fever in the region (Moor *et al.*, 1974). A subsequent serological survey of four ecological zones of Nigeria to detect the presence of antibodies to CHIKV in humans and domestic animals showed the highest percentage of human sera positive for CHIKV in Ibadan city. Possibly due to the climatic conditions in the rainforest zone which seem suitable for the survival of the virus and the maintenance of a high population of the vector (Adesina and Odelola, 1991). The presence of CHIKV antibody in animal sera points to the important role that domestic animals can play in the transmission and maintenance of the virus in Nigeria. Serological investigations have also confirmed the prevalence of CHIKV antibodies in 9 prefectures in the Republic of Guinea (Ivanov *et al.*, 1992); no information was available on the presence of CHIKV in this region before this investigation. An outbreak of febrile illness in the northern province of Sudan occurred in 1989, and antibody investigations indicated the presence of several arboviruses including CHIKV (Watts *et al.*, 1994). The most recent African outbreak occurred in the Democratic Republic of Congo in 1999 to 2000 (Porter *et al.*, 2004) after an absence of 30 years also thought to have been related to a combination of climatic conditions.
In Asia, the pattern of the virus transmission is very different from that seen in Africa and it has been suggested that *Aedes aegypti* is responsible for transmission of virus from human to human. It seems that Asian monkeys have never been implicated in any way in the maintenance and transmission of the virus in this continent, although they develop high titres of viraemia following CHIKV inoculation (Fields *et al*., 2001). Several epidemics have been reported in different areas in Asia (table 1.1) following the first isolation of CHIKV in Tanzania in 1952-1953. CHIKV was also isolated from humans in Thailand and the Philippines in association with haemorrhagic fever in 1958 (Halstead *et al*., 1960). Several outbreaks have also been recognised in India (Chaudhuri *et al*., 1964). Antibody surveys show that CHIKV was also circulating in Yangon, Myanmar in Burma during 1984, and results indicated the association of the virus with haemorrhagic fever (Thein *et al*., 1992). CHIKV fever has been also reported in the Republic of South Vietnam. Clinical features of the disease were described in American soldiers serving in Vietnam in 1966 (Deller *et al*., 1967). A comprehensive list of outbreaks since CHIKV was isolated by Ross in 1952 is described in table 1.1. Recently several outbreaks of CHIKV in Indonesia have been reported via the International Society for Infectious Disease’s Program for Monitoring Emerging Diseases ProMED-mail (http://www.promedmail.org) infecting several thousands of people. A small outbreak was also recently recorded in the Comoros Islands off the South East coast of Africa, with sufferers having previously spent several days in Indonesia.

To date approximately 20 different geographically distinct strains of CHIKV have been isolated. In 2000, Powers *et al*. extensively investigated the phylogenetic relation of these strains and were able divide them into 3 distinct genotypes in relation to their locations: Asian genotype, Central/Eastern African genotype and West African genotype based on the comparison of a 1050bp partial sequence in the E1 envelope glycoprotein. This analysis also proved that the closely related alphavirus ONNV was not a subtype of CHIKV as was previously thought, and it is likely that these two viruses diverged thousands of years ago. The phylogenetic relationship of these CHIKV strains and ONNV are illustrated in figure 1.9.
Figure 1.9 Phylogenetic analysis of CHIKV and ONNV.
Generated by performing a PAUP analysis on the 1050bp partial E1 gene sequence. (This figure has been used with the kind permission of Dr Ann Powers, CDC, Fort Collins, USA)
<table>
<thead>
<tr>
<th>Year of Outbreak</th>
<th>Location</th>
<th>Author(s) and Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952-53</td>
<td>Tanzania</td>
<td>Ross. 1956; Mason and Haddow., 1957</td>
</tr>
<tr>
<td>1958</td>
<td>Entebbe Peninsula, Uganda</td>
<td>Weinbren. MP., 1958</td>
</tr>
<tr>
<td>1960</td>
<td>Upper Uele, Congo</td>
<td>Osterrieth, PE., 1961</td>
</tr>
<tr>
<td>1960</td>
<td>Thailand</td>
<td>Thaikrukea et al., 1997</td>
</tr>
<tr>
<td>1961</td>
<td>Northern Rhodesia</td>
<td>Rodger. L.M., 1961</td>
</tr>
<tr>
<td>1962-64</td>
<td>Thailand</td>
<td>Halstead et al., 1969</td>
</tr>
<tr>
<td>1963</td>
<td>Cambodia</td>
<td>Chastel. C., 1961</td>
</tr>
<tr>
<td>1963</td>
<td>Southern Rhodesia</td>
<td>McIntosh et al., 1963</td>
</tr>
<tr>
<td>1964</td>
<td>Vellore, South India</td>
<td>Chaudhuri et al., 1964</td>
</tr>
<tr>
<td>1965</td>
<td>South Vietnam</td>
<td>Myers et al., 1965; Reuben. R., 1967; Carey et al., 1969</td>
</tr>
<tr>
<td>1965</td>
<td>Ceylon, India</td>
<td>Halstead et al., 1965</td>
</tr>
<tr>
<td>1965-69</td>
<td>Malaysia</td>
<td>Munasinghe et al., 1966; Mendis. NM., 1967</td>
</tr>
<tr>
<td>1966</td>
<td>Senegal</td>
<td>Roche and Robin., 1967</td>
</tr>
<tr>
<td>1967</td>
<td>Taiwan</td>
<td>Clarke et al., 1967</td>
</tr>
<tr>
<td>1967</td>
<td>Vietnam</td>
<td>Deller et al., 1967</td>
</tr>
<tr>
<td>1970</td>
<td>Southern Africa</td>
<td>McIntosh, BM., 1970</td>
</tr>
<tr>
<td>1970</td>
<td>Kenya</td>
<td>Surtees et al., 1970</td>
</tr>
<tr>
<td>1971</td>
<td>Australia</td>
<td>McCrae et al., 1971</td>
</tr>
<tr>
<td>1971</td>
<td>Entebbe Region, Uganda</td>
<td>Matthew and Thiruvengadam., 1973</td>
</tr>
<tr>
<td>1973</td>
<td>Burma</td>
<td>Padbidri and Gnaneswar., 1979</td>
</tr>
<tr>
<td>1973</td>
<td>Barsi, India</td>
<td>Moore et al., 1974; Tomori et al., 1975</td>
</tr>
<tr>
<td>1980-82</td>
<td>Burundi</td>
<td>Rodham et al., 1987</td>
</tr>
<tr>
<td>1982</td>
<td>Indonesisa</td>
<td>Pastorino et al., 2004</td>
</tr>
<tr>
<td>1982</td>
<td>West Senegal</td>
<td>Saluzzo et al., 1983</td>
</tr>
<tr>
<td>1983</td>
<td>Pakistan</td>
<td>Darvish et al., 1983</td>
</tr>
<tr>
<td>1985</td>
<td>Uganda</td>
<td>Kalunda et al., 1985</td>
</tr>
<tr>
<td>1987-89</td>
<td>Malawi</td>
<td>van den Bosch and Lloyd., 2000</td>
</tr>
<tr>
<td>1990</td>
<td>Australia</td>
<td>Harnett and Bucens., 1990</td>
</tr>
<tr>
<td>1991</td>
<td>Thailand</td>
<td>Thaikrukea et al., 1997</td>
</tr>
<tr>
<td>1992</td>
<td>Republic of Guinea,</td>
<td>Ivanov et al., 1992</td>
</tr>
<tr>
<td>1995</td>
<td>Thailand</td>
<td>Thaikrukea et al., 1997</td>
</tr>
<tr>
<td>1996</td>
<td>Kaffrine, Senegal</td>
<td>Diallo et al., 1999</td>
</tr>
<tr>
<td>1998-99</td>
<td>Malaysia</td>
<td>Lam et al., 2001</td>
</tr>
<tr>
<td>1999</td>
<td>Yogyakarta, Indonesia</td>
<td>Porter et al., 2004</td>
</tr>
<tr>
<td>1999-00</td>
<td>Democratic Republic of the Congo</td>
<td>Muyembe-Tamfum et al., 2003; Pastorino et al., 2004</td>
</tr>
<tr>
<td>2001-03</td>
<td>Indonesia</td>
<td>Laras et al., 2005</td>
</tr>
<tr>
<td>2003</td>
<td>West Timor</td>
<td>Rukman and Fountuna; Banks, 2003*</td>
</tr>
<tr>
<td>2003</td>
<td>West Jakarta, Indonesia</td>
<td>Santoso, D., 2004*</td>
</tr>
<tr>
<td>2005 April</td>
<td>West Lombok, Indonesia</td>
<td>Banks, A., 2005*</td>
</tr>
<tr>
<td>2005 April</td>
<td>Comoros Island, E. African Coast</td>
<td>Bannatyne, S., 2005*</td>
</tr>
<tr>
<td>2005 June</td>
<td>Mauritius and Ile de la Reunion</td>
<td>Pierre; Issack, M., 2005*</td>
</tr>
<tr>
<td>2005 July</td>
<td>Tangerang Subdistrict, Indonesia</td>
<td>Price, D., 2005*</td>
</tr>
</tbody>
</table>

Table 1.1 Chronological order of CHIKV outbreaks

* Corresponding submitters to International Society for Infectious Disease’s Program for Monitoring Emerging Diseases ProMED-mail. The global electronic reporting system for outbreaks of emerging infectious diseases & toxins (http://www.promedmail.org)
1.3.2 Structure of CHIKV

CHIKV belongs to the Alphavirus genus of the Togaviridae family, and has been grouped serologically with the SFV subgroup (Calisher et al., 1980). Electron microscopy studies of CHIKV in green monkey kidney (Vero) cells have revealed a structure characteristic of members of the Alphavirus genus (figure 1.10). In thin sections, the virus shows a roughly spherical shape with a diameter of 42 nm, and composed of a 25 to 30 nm core (Higashi et al., 1967).

Figure 1.10 Electron micrograph of purified CHIKV virions

CHIKV virions exhibit typical Alphavirus structure and have a diameter of between 40-60 nm (adapted from Simizu et al., 1984)
The envelope glycoproteins of CHIKV have been analysed using polyacrylamide gel electrophoresis and the results show that the envelope of CHIKV contains two glycoproteins, E1 and E2, which migrate very closely to one another (Igarashi et al., 1970; Simizu et al., 1984). The E1-E2 association of CHIKV is similar to that of SFV glycoproteins, and E1 has haemagglutination activity in both viruses. However, E3 of CHIKV is not associated with virions but released into culture fluids, in contrast to E3 of SFV (Simizu et al., 1984).

1.3.3 Pathogenicity of CHIKV infection

CHIKV is a mosquito-borne virus, and the transmission cycle of the viral infection by mosquitoes begins with the infection of cells of the mid-gut and passes into the hemocoel, eventually reaching the salivary glands (Zytoon et al., 1993) ready to be transmitted when a host is bitten.

In spite of several clinical and epidemiological studies that have been done on CHIKV disease, very little is known of the pathology of CHIKV infection in humans. CHIKV has been described as an acute viral infection, and clinically the infection is associated with high fever of sudden onset, followed by symptoms which include, rigor headache, diarrhoea, vomiting, rash, and severe joint pains, largely confined to the knees which may persist for many months after the fever has subsided (Morrison, 1979; Fields et al., 2001; Adesina and Odelola, 1991) Due to the symptoms being very similar to those caused by Dengue virus (DENV), it is thought that CHIKV fever may have been misdiagnosed as Dengue fever and thus under-reported. During the outbreak of CHIKV fever in Calcutta in India, cases occurred where haemorrhagic manifestations of various grades of severity (Sarkar et al., 1965), which upon histopathological investigation showed a perivascular lymphocytic infiltrate in the upper half of the dermis, and red blood cell extravasation was seen in the superficial capillaries (Morrison, 1979).

As mentioned previously, a live, attenuated vaccine was developed for CHIKV (Levitt et al., 1986), which was shown to be safe for humans. Turell and Malinoski (1992) have demonstrated that it is unlikely that mosquitoes can become infected by feeding on a person inoculated with the live, attenuated CHIKV vaccine due to low viremia produced in
inoculated humans. However, there is a possibility that a live virus vaccine has the potential to revert to a more virulent form. Investigation of the neuropathology caused in mouse-models and further characterisation of CHIKV warrant further analysis; the construction of an infectious clone could also be exploited in the production of novel vaccines. There is no specific treatment for CHIKV fever but symptomatic medications for fever and headache are usually needed, and supportive care with rest is indicated during acute joint symptoms. CHIKV is a large public health problem in Central Africa and South-East Asia and is a medically important virus due to the transitory debilitating symptoms from which infected individuals recover.

1.4 Project Aims

Knowledge of the molecular biology of alphaviruses is based predominantly on studies with three members of the group, Venezuelan equine encephalitis virus (VEE), Semliki Forest virus (SFV), and Sindbis virus (SINV). SINV is the classic prototype strain for studying the molecular basis of alphavirus neurovirulence with most work having been carried out by researchers in the USA. The majority of research on SFV, which shows a greater range and diversity of virulence in the animal model system, has been carried out in Europe.

SFV infects both the adult mouse and the neonate and has a diverse age and strain-dependent pathology including fatal encephalitis, teratogenesis, and virus-induced demyelination, thus providing a useful model for the study of viral neuropathogenesis (Atkins et al., 1985). The existence of several different virulent and avirulent strains of SFV has allowed comparative analysis between them at the molecular level, which, combined with the development of SFV infectious cDNA clone technology, provides a useful model for analysis of the molecular basis of alphavirus neuropathogenesis. Reciprocal chimeras between SFV infectious clones producing virulent and avirulent chimeric infectious virus have proved indispensable in elucidating the gene functions in the SFV genome. Several coding regions of the SFV genome have been assigned functions as a result of these reciprocal exchanges, although the precise influence of the non-coding regions of SFV is not quite clear. The role of the 5' untranslated region (UTR) of SFV is
particularly not well understood. In SINV this region has proved to be important in RNA replication.

This project's original aims included fully sequencing CHIKV in order to construct an infectious clone of CHIKV. Reciprocal chimeras were then going to be constructed in order to ascertain what proteins may be involved in virus-mediated demyelination. However, the infectious virus produced from the SFV-A7 infectious clone (CA7) was shown to kill up to 40% of intranasally infected mice although no deaths were expected. An analysis of the SFV-A7 genome was undertaken to ascertain the reasons behind the observed mortality. Previous unpublished work carried out in our lab suggested that CHIKV did not cause demyelination, however upon detailed analysis in this investigation it was shown that CHIKV did induce demyelination in the brains of infected mice, albeit slightly less than that caused by SFV-A7. Thus constructing reciprocal chimeras between CHIKV and SFV-A7 to determine the proteins potentially involved in virus-mediated demyelination would be unproductive. The aims of the project were therefore adapted to include:

- Use of the avirulent SFV-A7 infectious clone and the virulent SFV4 infectious clone to investigate the function of the SFV 5' UTR in relation to neuropathogenicity.
- Construction of 5' UTR chimeric viruses between SFV-A7 and CA7, pA774 and SFV4 and comparing their rates of replication, the efficiency of RNA synthesis, the survival of infected mice and the subsequent neuropathology caused in the brains of infected mice.
- Fully sequence and characterise the Ross strain of CHIKV in order to further investigate differences in virulence and viral neuropathogenesis with SFV.
- Construct a full length CHIKV cDNA clone for future functional comparative studies with the SFV cDNA clones, and the possible design of a more efficient and safer CHIKV vaccine.
- Collaboration with Dr. Ann Powers (CDC, USA) to investigate the neuropathology between the characterised Ross strain of CHIKV and 6 geographically distinct strains of CHIKV.
Chapter Two

Sequencing and Characterisation of Chikungunya virus, Ross strain.
2. **Sequencing and Characterisation of Chikungunya virus, Ross strain.**

2.1 **Introduction**

Several alphaviruses have been sequenced and characterised to date, however until this project was initiated Chikungunya virus (CHIKV) had only been partially sequenced and submitted to Genbank (Accession no. L37661) by Parker, M.D. (1994). As CHIKV is a medically important virus infecting thousands of individuals in Africa and South-East Asia each year with debilitating symptoms, it was felt that a more detailed characterisation of the virus merited further investigation. The original strain of CHIKV, referred to as the Ross strain (Powers et al., 2000) was isolated in 1953 from the serum of a febrile human following the Newala epidemic in Tanzania (Ross et al., 1956). In order to characterise this virus it was first sequenced and submitted to Genbank (Accession No. AF490259). A series of analyses to investigate properties CHIKV may share with other SFV subgroup alphavirus members was then pursued. A complete sequence analysis and comparison of these findings with other sequenced SFV group members and several in vitro studies were carried out.

Throughout these investigations SFV-A7 was used as a positive control as it is well characterised within our laboratory (Tarbatt et al, 1997, Atkins et al., 1985, 1995). The rate of replication of CHIKV in BHK-21 cells was studied as was the rate of infection in a rat mixed glial cell (MGC) primary culture. As MGCs are composed of several cell types, including astrocytes, neurons and oligodendrocytes, the ability of CHIKV to infect some of these cell types was investigated by immunofluorescence.

The multiplication of virus in the brains of infected BALB/c mice and the survival of these mice when infected by the intranasal and intraperitoneal routes were studied. The neuropathology induced in the brains of infected mice which is discussed in detail in “Chapter 5 – Pathology” was also examined. In collaborating with Dr. Ann Powers (CDC, Fort Collins, USA) comparative studies on the survival of infected mice and the neuropathology caused by infection with seven geographically distinct strains of CHIKV were carried out. Hereafter, the Ross strain of Chikungunya will be referred to as CHIKV with all other strains of Chikungunya described with their strain name.
2.2 Sequencing strategy of CHIKV genome

In an initial experiment, the 3873bp sequence spanning most of the structural polyprotein (26S) of the vaccine strain of Chikungunya virus: 181/25 (Accession No. L37661) was aligned to the published sequences of several alphaviruses. Of these the Gulu strain of O’nyong nyong virus (ONNV, Accession No. M20303) had the closest nucleotide identity with the CHIKV vaccine 26S sequence. Therefore both the CHIKV vaccine 26S sequence and the ONNV Gulu sequence were used as templates to design primers for amplification of CHIKV. Each primer pair was designed to produce a 500-600bp product for ease of sequencing with each overlapping the last such that the primer sites utilised would be incorporated in the overlapping regions.

The strategy involved incorporating an *Eco RI* restriction enzyme (New England Biolabs; NEB, USA) cleavage site at the 5' end of the primer pairs. The amplicon was purified using a Qiagen PCR cleanup Kit (Qiagen, UK) and digested with *Eco RI*. Similarly the cloning vector Litmus 28 (L28; NEB, USA) was linearised using *Eco RI*, and in order to prevent recircularisation its 5' overhang was dephosphorylated using Antarctic phosphatase (NEB, USA). The Amplicons were ligated into L28, transformed in *E. coli* cells, and colonies selected using Blue/White *LacZ* selection marker. The extracted DNA was then sent for sequencing. The resulting sequence was aligned to the template sequence using multiple sequence alignment software Multalin (Laboratoire de Genetique Cellulaire, France), with each overlapping amplicon sequenced, the sequence of the CHIKV genome was deduced.

2.3 5' RACE PCR

RACE PCR is a method by which the PCR technique can be used to amplify the 3' and 5' ends of a cDNA using a small stretch of known sequence within the gene in combination with a primer that is homologous to a "tail" sequence that is attached to either the 5' or 3' ends of the genome. This procedure is made more powerful by the use of nested primers, which reduce non-specific amplification and ensure the production of relatively pure specific product. An overview of this technique is illustrated in figure 2.1.
Figure 2.1 Schematic of 5' RACE PCR procedure.
Primer GSP1 was designed from ONNV and produced an amplicon size of 1986 base-pairs (bp). The nested primer GSP2, designed from CHIKV gave an amplicon size of 248 bp when used in combination with the forward Abridged Anchor Primer (AAP, Gibco BRL, USA) which was then purified and further amplified with GSP2 and the forward Universal Amplification Primer (UAP, Gibco BRL, USA). This was then purified and sequenced to generate the 5’ UTR sequence of CHIKV.
2.4 Phylogenetic Analysis

Comparative analysis of virus gene sequences has enabled us to deduce the evolutionary relationships between viruses. Since originally sequencing the CHIKV genome (AF490259) a Senegalese strain of Chikungunya isolated in 1983 has been sequenced, termed 37997 (AY726732). Other Chikungunya strains have since been partially sequenced namely the structural polyprotein of the Nagpur strain (India, AY424803). The vaccine strain 181/25 (Thailand, L37661) structural polyprotein was originally sequenced in 1994 by Parker, M.D. Recently another Chikungunya strain termed S27 has been sequenced (NC004162), however this sequence was not available at the time of these analyses and is therefore excluded from this investigation. Comparing these sequences with those of other SFV subgroup alphaviruses, in particular the Gulu strain of O'nyong nyong virus (M20303) and the recently updated avirulent A7 strain of SFV (Z48163), allows these viruses to be grouped together in terms of genome sequence identity and allows any differences between each virus on an individual gene level to be recorded.

2.5 Virus growth in vitro

A virus’s ability to grow in host cells is a paramount consideration when investigating the pathology caused to the host. The rate of virus growth in vitro can act as an indication of the severity of the symptoms in infected animals. In this investigation we compare the rate of growth of CHIKV and SFV-A7 in BHK-21 cells and then in a cell line more typical of those infected in vivo — a primary mixed glial cell line produced from neonate rat brains.

2.6 Virus growth in vivo

The ability of SFV4 and SFV-L10 to grow rapidly in neurons results in infected animals dying within 4-5 days post infection (Atkins et al., 1985). However, the avirulent strains of SFV, namely A7 and A774 grow much slower in neurons affording the immune system enough time to be activated resulting in survival of infected animals. Having recorded the level of in vitro virus growth in a primary cell line the next step was to investigate the rate of virus growth in vivo. In order to ascertain the titres of virus produced in the brains of infected BALB/c mice, they were infected intranasally with CHIKV and SFV-A7. Over a course of time points the
animals were sacrificed, their brains removed, homogenised in medium and the virus titres determined by plaque assay.

2.7 Virus RNA synthesis in vitro

In order to investigate virus RNA synthesis, actinomycin D, a chemical that inhibits cellular DNA synthesis so that the RNA synthesis of the virus could be studied, was introduced to infected BHK-21 cells. A radioactive labelled probe $[^3H]$-methyl uridine is added that is incorporated into new strands of virus RNA produced. The amount of virus RNA produced over a series of set time points was measured using a scintillation counter. This analysis was carried out for CHIKV, with SFV-A7 used as a control.

2.8 Cell Tropism of CHIKV

In order to show whether CHIKV infects cells of the central nervous system (CNS), oligodendrocytes in particular (Figure 2.2), an immunofluorescent double-labelling approach was used. Initially anti-SFV4 antibody raised in New Zealand white rabbits was used to label the CHIKV infected cells. Antibodies to SFV4 have been shown to cross-react with other members of the SFV group of alphaviruses (Powers et al., 2000). A biotinylated goat anti-rabbit secondary antibody and a rhodamine-avidin immunofluorescent probe were used to detect the SFV-A7 and CHIKV antibody. In order to see which of the infected cells, were oligodendrocytes, a mouse anti CNPase (2', 3' -cyclic nucleotide 3' -phosphohydrolase) antibody was also used. CNPase is strongly associated with myelinated tissues and is localised in the cytoplasmic membrane of oligodendrocytes and Schwann cells (Reynolds et al., 1989). A fluorescein-conjugated streptavidin probe was then attached to a biotinylated goat anti mouse secondary antibody. This process is illustrated in figure 2.2.
Figure 2.2. Double labelled immunofluorescence of CHIKV infected rat oligodendrocytes. On infection with CHIKV and SFV-A7, a rabbit α SFV4 antibody was used to detect virus antigen, similarly a mouse α CNPase antigen was used to detect CNP in the rat oligodendrocyte. Biotinylated antibodies were then attached to the primary antibodies enabling the addition of rhodamine-avidin (red immunofluorescent label) and fluorescein-conjugated streptavidin (green immunofluorescent label). Oligodendrocytes and virus antigen were then visualised at their respective wavelengths using fluorescence microscopy (Nikon).

2.9 Plaque analysis

When cells are infected with serial dilutions of a virus and overlaid with an agar and growth medium mixture, the results are a series of circular plaques forming on the monolayers where foci of infected cells have died. This technique is generally used to determine virus titre, however, viruses of the same subgroup tend to produce similarly sized plaques and viruses from different geographical origin may differ in their plaque appearance. This is a simple qualitative tool in combination with sequence analysis and phylogeny. The viruses used in this study included SFV4, SFV-A7, ONNV Gulu, CHIKV and 6 geographically distinct strains of CHIKV, one of which had not been definitively classified.
2.10 Materials and methods

2.10.1 Cells

2.10.1.1 Baby Hamster Kidney Cells

The Baby Hamster Kidney 21 (BHK-21; ATCC, USA) cell line was used for virus growth and RNA isolation. Cells were seeded at 1×10^6 ml$^{-1}$ in 75 cm2 plastic tissue culture flasks (Iwaki, Japan) and incubated in 15 ml of BHK-21 medium (Glasgow MEM; Invitrogen, UK), supplemented with 5% (v/v) newborn calf serum (NCS), 5% (v/v) tryptose phosphate broth (Invitrogen, UK), 100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine (Sigma, USA). Cells were maintained at 37°C in a humidified atmosphere of 5% CO$_2$ until confluent for use, storage or passage. Cells were passaged as follows: cell monolayers were washed twice with Dulbecco’s phosphate buffered saline without calcium and magnesium (D-PBS; Invitrogen, UK) and incubated with 0.5% trypsin 5.3 mM EDTA (Invitrogen, UK) at 37°C until cell detachment was evident, typically within 2-3 minutes (min). The flask was tapped to complete detachment and supplemented BHK-21 medium was added to terminate trypsinisation. The resulting cell suspension was aspirated several times to break up cell clumps and split at a 1:3 ratio into new 75 cm2 flasks containing 15 ml BHK-21 medium.

2.10.1.2 Neonate Rat Mixed Glial Primary Cells

Preparation of glial cell cultures was based on the method of Chapman and Rumbsy, (1982) later modified by Gates et al. (1985). Day old neonate rats were sacrificed by decapitation and the forebrains aseptically removed. Individual cerebra were divided along the longitudinal fissure into separate hemispheres and the meninges removed by blotting on sterile filter paper. The tissue was placed in a Petri dish, chopped finely with a scalpel and 2 ml of Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, UK), supplemented with 10% (v/v) foetal calf serum (FCS), 1% (v/v) sodium pyruvate MEM (100 mM) (Invitrogen, UK), 100 U/ml penicillin and 100 µg/ml streptomycin (Sigma, USA) was added. The mixture was lightly pulped using a spatula and a further 6 ml of supplemented DMEM was added and the tissue expelled 5 times through a 19-guage hypodermic needle and 10 times through 21- and 23-guage hypodermic needles respectively. Cells were counted using a
haemocytometer and seeded at a density of 1×10^5 cells per 4 cm^2 well of a two-well chamber slide (Falcon, USA). Cells were maintained at 37°C in a humidified atmosphere of $5\% \text{ CO}_2$, the growth medium was replaced at 3 days post seeding, and every 2 days thereafter until confluence was achieved, typically between 9 and 10 days post seeding.

2.10.2 Viruses

2.10.2.1 Virus Strains

The Ross strain of CHIKV and ONNV strain Gulu were obtained from Dr. V. Deubel, Pasteur Institute, Paris. Seven geographically distinct strains of CHIKV: 37997, 181/25, DAK ArB16878, PO 731460, PH H15483 and SV-0451/96 were obtained from Dr. Ann Powers, CDC, Fort Collins, Colorado, USA. The A7 strain of SFV was obtained from Dr. C. Bradish, Microbiology Research Establishment (MRE), Porton Down, Wiltshire, UK.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Location</th>
<th>Date</th>
<th>Host</th>
<th>Passage History*</th>
<th>Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ross</td>
<td>Tanzania</td>
<td>1953</td>
<td>Human</td>
<td>SM-175, V-1</td>
<td>CHIKV</td>
</tr>
<tr>
<td>37997</td>
<td>Senegal</td>
<td>1983</td>
<td>Ae. furcifer</td>
<td>AP61-1, V-2</td>
<td>CHIKV</td>
</tr>
<tr>
<td>181/25</td>
<td>Thailand</td>
<td>1962</td>
<td>Human</td>
<td>MRC5-18, V-1</td>
<td>CHIKV</td>
</tr>
<tr>
<td>PO 731460</td>
<td>India</td>
<td>1973</td>
<td>Human</td>
<td>V-2, M-1</td>
<td>CHIKV</td>
</tr>
<tr>
<td>PH H15483</td>
<td>Philippines</td>
<td>1985</td>
<td>Human</td>
<td>V-5</td>
<td>CHIKV</td>
</tr>
<tr>
<td>SV-0451/96</td>
<td>Thailand</td>
<td>1996</td>
<td>Human</td>
<td>RMK-1, V1</td>
<td>CHIKV</td>
</tr>
<tr>
<td>DAKAr B16878</td>
<td>C.A.R**</td>
<td>1980</td>
<td>An. funestus</td>
<td>SM-5, BHK-1</td>
<td>SFV, CHIKV</td>
</tr>
<tr>
<td>SFV-A7</td>
<td>Mozambique</td>
<td>1959</td>
<td>Ae. argentinopictatus</td>
<td>SM, BHK-21</td>
<td>SFV</td>
</tr>
<tr>
<td>Gulu</td>
<td>Uganda</td>
<td>1959</td>
<td>Human</td>
<td>SM-1,V-3, BHK-1</td>
<td>ONNV</td>
</tr>
</tbody>
</table>

Table 2.1 Virus strains used in the characterization of CHIKV virus

Adapted from Powers et al., 2000, 2001. * Cell type followed by number of passages in that cell. BHK, baby hamster kidney cells; V, Vero cells; SM, suckling mouse; AP61, *Ae. Pseudoscutellaris* mosquito cells; M, mosquito; MRC5, human lung cells; RMK, rhesus monkey kidney (LLC-MK2) cells. ** C.A.R. Central African Republic
2.10.2.2 Growth and Harvest of virus

Working stocks of the viruses in table 2.1 were obtained by allowing 1 ml of plaque-purified stocks to adsorb onto subconfluent BHK-21 cell monolayers in 75 cm² plastic tissue culture flasks (Iwaki, Japan) for 1 hour (h) at 37°C in a humidified atmosphere of 5% CO₂. A homogenous infection was achieved with rocking movements every 15 min. Virus inoculum was removed after 1 h and 15 ml of supplemented BHK-21 medium was added before a 24 h incubation at 37°C in a humidified atmosphere of 5% CO₂. Between 24 h and 36 h the cell monolayer exhibited cytopathogenic effect (c.p.e) and the supernatant was removed, and virus was harvested To harvest virus, the supernatant was removed, centrifuged at 3,000 x g for 10 min to remove cellular debris, and filtered through a 0.2 μm filter (Pall Life Sciences, USA). The resulting working stock virus, was stored at -70°C in 1 ml aliquots. Virus titre was established by plaque assay, and diluted before administration in vivo.

2.10.2.3 Plaque assays

Viral titres were measured by plaque assay in BHK-21 cells. Cells were seeded at 1 x 10⁵ ml⁻¹ in a total volume of 3 ml per 60 mm² cell culture dish (Iwaki, Japan), incubated at 37°C in a humidified atmosphere of 5% CO₂, and allowed to reach subconfluence. The cells were inoculated in duplicate with 0.5 ml of each serial dilution of working stock virus in D-PBS (Invitrogen, UK) from 10⁻² to 10⁻¹⁰. The infected cells were then incubated for 1 h at 37°C in a humidified atmosphere of 5% CO₂ and rocked every 15 min to ensure homogenous infection. Two dishes were inoculum with 0.5 ml D-PBS alone as negative controls. On removal of the inoculum, equal volumes of 1.8% noble agar (Difco, USA) at 45°C and overlay medium (10X Minimal Essential Medium (MEM) supplemented with 10% NCS, 10% tryptose phosphate broth, 200 U/ml penicillin, 200 μg/ml streptomycin, 4mM L-glutamine and distilled water) at 37°C were mixed and added to the dishes to a final volume of 3 ml per dish. When the agar had solidified, typically within 5 min at room temperature (RT), the plates were incubated for 48 h at 37°C in a humidified atmosphere of 5% CO₂. At 48 hours post-infection (h.p.i) 3 ml of neutral buffered formalin (NBF; BDH, UK) was added to each dish and allowed to fix for 15 min, the NBF and agar were then removed under running tap water. Cells were then stained with 2 ml of crystal violet (Clin-Tech, UK) for 3 min then rinsed under running tap
water. The dishes were left to dry at room temperature and plaques counted against a light background and viral titre expressed as plaque forming units (p.f.u) / ml.

2.10.3 Preparation of Virus DNA

2.10.3.1 Virus RNA isolation

The supernatant of infected BHK-21 cell monolayers in 75 cm² plastic tissue culture flasks (Iwaki, Japan) exhibiting c.p.e was removed, typically 24 h.p.i. To extract virus RNA 1 ml of Trizol reagent (Invitrogen, UK) was added to the infected monolayer and left at R.T. for 2 min. Cells were then detached from the flask using a cell scraper (Nalge Nunc, USA) and incubated in a 1.7 ml microtube (Axygen, USA) for a further 5 min at R.T. 200 µl of chloroform (BDH, UK) were added and the mixture gently shaken for 15 seconds (sec) until emulsified and incubated at RT for a further 15 min. Cells were then centrifuged at 18,400 x g for 15 min at 4°C and the aqueous phase transferred to a fresh 1.7 ml microtube. The RNA was precipitated by the addition of 500 µl of isopropanol (BDH, UK), incubated at R.T. for 5 min and then centrifuged as described above for 10 min, at which point a pellet was visible. The supernatant was removed and the RNA pellet washed by the addition of 1 ml of 70% ethanol (BDH, UK). The microtube was gently shaken and centrifuged as previously described for 10 min, the ethanol was removed using an RNase- / DNase-free pipette (Axygen, USA) and the pellet allowed to partially air-dry at R.T. 100 µl of nuclease-free dH₂O (Promega, USA) was added and the mixture incubated at 50°C on a BT-1 block thermostat (Grant, UK) for 5 min. The RNA was then dissolved by gentle pipetting and 4 µl aliquots were stored at -70°C in 700 µl PCR tubes (Axygen, USA).

2.10.3.2 cDNA amplification

First strand cDNA was synthesised as follows: 1µl of Oligo (dT)₁₈ primer (0.5 µg/µl; Promega, USA) was added to 4 µl of virus RNA (0.25 µg/µl), then heated at 70°C for 5 min, and placed on ice for 5 min. 15µl of a reaction mix containing 4µl of ImProm-II 5x reaction buffer, 1µl dNTP mix (10mM), 20 U RNasin, 2.4 µl MgCl₂ (25mM), 6.1 µl of nuclease free water, and 1 µl of ImProm-II reverse transcriptase, was then added to the 5 µl RNA / Oligo (dT)₁₈ mixture. The total cDNA reaction mixture (20 µl) was then gently vortexed and briefly spun down before being
incubated at 25°C for 5 min, at 42°C for 60 min and at 70°C for 15 min (table 2.4). The cDNA (20μl) was then stored at -20°C until needed for the polymerase chain reaction (PCR). Negative control samples contained 4μl RNAse-free water instead of virus RNA.

2.10.3.3 Primer design

Oligonucleotide primer pairs were designed to be 20-40 basepairs (bp) in length and had approximately 50% G/C content. The sequences of the primers were designed to avoid internal secondary structure and complementary areas of sequence which result in the formation of “primer dimers”. The sequences of the designed primers were specific to the area of DNA template to which they hybridise and produce specific amplicons during PCR. For cloning purposes, an enzyme restriction site was incorporated at the 5' end of each primer, along with three random bases 5' of the enzyme restriction site. The random bases facilitate digestion with the appropriate restriction enzyme. The melting temperatures of the designed primers were typically 2-3 °C above the annealing temperatures chosen for cycling conditions as this reduces non-specific primer binding.

2.10.3.3.1 CHIKV Nonstructural protein primers

The sequence of ONNV Gulu strain shares a 78% nucleotide identity over the structural region of the CHIKV vaccine strain and was used as template to design primers to amplify the CHIKV non-structural coding region. The sequences of the primers designed along with their positions on the ONNV Gulu genome are shown in table 2.2. Amplification of the coding region was carried out by designing 28 pairs of overlapping primers to amplify between 500 and 600bp fragments across the entire length of the genome.

2.10.3.3.2 CHIKV Structural protein primers

Structural primers were designed as described in section 2.10.3.3.1 although the CHIKV structural polyprotein sequence submitted by Parker, M.D. (1994) was used rather than ONNV Gulu virus sequence. The sequences of the primers designed along with their positions are shown in table 2.3.
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer Sequence</th>
<th>Primer position</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSP Fwd 1</td>
<td>ctcgaattcatggctgcgtgagacacagcagctg</td>
<td>(1-21)</td>
</tr>
<tr>
<td></td>
<td>cagaattctacacagallactag</td>
<td>(526-546)</td>
</tr>
<tr>
<td>NSP Fwd 2</td>
<td>cgcgaattcacagtacagcatgtt</td>
<td>(485-500)</td>
</tr>
<tr>
<td></td>
<td>cttgaattctagagctacgcatcgc</td>
<td>(982-1000)</td>
</tr>
<tr>
<td>NSP Fwd 3</td>
<td>cgcgaattcagctacagtctgta</td>
<td>(924-938)</td>
</tr>
<tr>
<td></td>
<td>cagagaatttcagctagctccc</td>
<td>(1462-1480)</td>
</tr>
<tr>
<td>NSP Fwd 4</td>
<td>cagagaattcagctacagtctgta</td>
<td>(1418-1438)</td>
</tr>
<tr>
<td></td>
<td>cagagaattcagctacagtctccc</td>
<td>(1950-1964)</td>
</tr>
<tr>
<td>NSP Fwd 5</td>
<td>gttgaattctagctcctcagctgctacga</td>
<td>(1890-1910)</td>
</tr>
<tr>
<td></td>
<td>gttgaattctagctcctcagctgctacga</td>
<td>(2412-2430)</td>
</tr>
<tr>
<td>NSP Fwd 6</td>
<td>ctcgaattctagctcctcagctgctacga</td>
<td>(2361-2381)</td>
</tr>
<tr>
<td></td>
<td>ctcgaattctagctcctcagctgctacga</td>
<td>(2788-2810)</td>
</tr>
<tr>
<td>NSP Fwd 7</td>
<td>ctcgaattctagctcctcagctgctacga</td>
<td>(2701-2719)</td>
</tr>
<tr>
<td></td>
<td>ctcgaattctacacagctacgag</td>
<td>(3225-3241)</td>
</tr>
<tr>
<td>NSP Fwd 8</td>
<td>gttgaattctagctcctcagctgctacga</td>
<td>(3175-3193)</td>
</tr>
<tr>
<td></td>
<td>gttgaattctagctcctcagctgctacga</td>
<td>(3621-3637)</td>
</tr>
<tr>
<td>NSP Fwd 9</td>
<td>gttgaattctagctcctcagctgctacga</td>
<td>(3529-3544)</td>
</tr>
<tr>
<td></td>
<td>gttgaattctagctcctcagctgctacga</td>
<td>(4051-4065)</td>
</tr>
<tr>
<td>NSP Fwd 10</td>
<td>gtgaattctagctcctcagctgctacga</td>
<td>(3969-3987)</td>
</tr>
<tr>
<td></td>
<td>gtgaattctagctcctcagctgctacga</td>
<td>(4501-4521)</td>
</tr>
<tr>
<td>NSP Fwd 11</td>
<td>gtgaattctagctcctcagctgctacga</td>
<td>(4421-4442)</td>
</tr>
<tr>
<td></td>
<td>gtgaattctagctcctcagctgctacga</td>
<td>(4944-4962)</td>
</tr>
<tr>
<td>NSP Fwd 12</td>
<td>gtagaattcagctcctcagctgctacga</td>
<td>(4851-4867)</td>
</tr>
<tr>
<td></td>
<td>gtagaattcagctcctcagctgctacga</td>
<td>(5370-5385)</td>
</tr>
<tr>
<td>NSP Fwd 13</td>
<td>gtagaattcagctcctcagctgctacga</td>
<td>(5328-5342)</td>
</tr>
<tr>
<td></td>
<td>gtagaattcagctcctcagctgctacga</td>
<td>(5752-5770)</td>
</tr>
<tr>
<td>NSP Fwd 14</td>
<td>gtagaattcagctcctcagctgctacga</td>
<td>(5711-5727)</td>
</tr>
<tr>
<td></td>
<td>gtagaattcagctcctcagctgctacga</td>
<td>(6213-6231)</td>
</tr>
<tr>
<td>NSP Fwd 15</td>
<td>gtagaattcagctcctcagctgctacga</td>
<td>(6173-6187)</td>
</tr>
<tr>
<td></td>
<td>gtagaattcagctcctcagctgctacga</td>
<td>(6567-6583)</td>
</tr>
</tbody>
</table>

Table 2.2 Primers designed from O'nyong nyong virus Gulu to amplify the CHIKV non-structural polyprotein. gaattc: Eco RI restriction enzyme recognition sequence, gtagaattc: Bam HI restriction enzyme recognition sequence (NSP5 Fwd/Rev primers).
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer Sequence</th>
<th>Primer position</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP Fwd 1</td>
<td>cgCgaattctagagaactgctacttgg</td>
<td>(6464-6482)</td>
</tr>
<tr>
<td>SP Rev 1</td>
<td>ctcgaattcagtgcagcgaatgagtc</td>
<td>(6958-6978)</td>
</tr>
<tr>
<td>SP Fwd 2</td>
<td>gtcgaaattccggcgttaggaacccgatag</td>
<td>(6915-6935)</td>
</tr>
<tr>
<td>SP Rev 2</td>
<td>gaggaattctctgcagcaccgagtagctgca</td>
<td>(7461-7477)</td>
</tr>
<tr>
<td>SP Fwd 3</td>
<td>gtagaattctgtcagctggcgaaccgctgcg</td>
<td>(7405-7425)</td>
</tr>
<tr>
<td>SP Rev 3</td>
<td>cgcgaattctgtacgatgagtagcaacctgc</td>
<td>(8053-8073)</td>
</tr>
<tr>
<td>SP Fwd 4</td>
<td>gtagaattctgcgaggtagcacttcaca</td>
<td>(7877-7895)</td>
</tr>
<tr>
<td>SP Rev 4</td>
<td>gaggaattctgtcagctaccacaccggagaga</td>
<td>(8438-8458)</td>
</tr>
<tr>
<td>SP Fwd 5</td>
<td>tgtgaattcagcgcgcagacgatcttta</td>
<td>(8354-8372)</td>
</tr>
<tr>
<td>SP Rev 5</td>
<td>cac gaattcatgcagcggtgccgta</td>
<td>(8956-8972)</td>
</tr>
<tr>
<td>SP Fwd 6</td>
<td>ctcgaattcgcattggaccaacgctgcg</td>
<td>(8881-8897)</td>
</tr>
<tr>
<td>SP Rev 6</td>
<td>gaggaattctaatgtgcaacctgcctacg</td>
<td>(9485-9503)</td>
</tr>
<tr>
<td>SP Fwd 7</td>
<td>ctcgaattctcagatcagcgcgctactgctg</td>
<td>(9353-9373)</td>
</tr>
<tr>
<td>SP Rev 7</td>
<td>cggaattctactgtaggtaggtacgctca</td>
<td>(9774-9793)</td>
</tr>
<tr>
<td>SP Fwd 8</td>
<td>ctcgaattcgcggcctggcttcgacgcctaca</td>
<td>(9692-9711)</td>
</tr>
<tr>
<td>SP Rev 8</td>
<td>gaggaattctcgctgtgctacggcgcctaca</td>
<td>(10136-10156)</td>
</tr>
<tr>
<td>SP Fwd 9</td>
<td>cacgaattctatggaacgctgcggcctgcgta</td>
<td>(10113-10131)</td>
</tr>
<tr>
<td>SP Rev 9</td>
<td>gaggaattctcaattgcgta</td>
<td>(10445-10457)</td>
</tr>
<tr>
<td>SP Fwd 10</td>
<td>cgCgaattctacagcttgaaggtc</td>
<td>(10371-10385)</td>
</tr>
<tr>
<td>SP Rev 10</td>
<td>ctcgaattcagctgaagacgagtgt</td>
<td>(10853-10869)</td>
</tr>
<tr>
<td>SP Fwd 11</td>
<td>tctgaattcagccatttgccccgac</td>
<td>(10735-10751)</td>
</tr>
<tr>
<td>SP Rev 11</td>
<td>tctgaattcaccaccaagcgtgagagg</td>
<td>(11068-11084)</td>
</tr>
<tr>
<td>SP Fwd 12</td>
<td>cgCgaattcctaaacggcagcctgtcgt</td>
<td>(11032-11046)</td>
</tr>
<tr>
<td>SP Rev 12</td>
<td>cgggaattcggccacatattgctccgga</td>
<td>(11515-11532)</td>
</tr>
<tr>
<td>SP Fwd 13</td>
<td>cacgaattcactggtgcggggagg</td>
<td>(11429-11444)</td>
</tr>
<tr>
<td>SP Rev 13</td>
<td>cgggaattctacttctctag</td>
<td>(12001-12013)</td>
</tr>
</tbody>
</table>

Table 2.3 Primers designed from CHIKV Vaccine virus to amplify the CHIKV structural polyprotein. gaattc: *Eco RI* restriction enzyme recognition sequence.
2.10.3.3 CHIKV 5' Nontranslated region (UTR) Primers

The 5' RACE Abridged anchor primer (AAP) and the Universal Amplification primer (UAP) were supplied in the 5'/3' RACE PCR Kit (Roche, Switzerland). The Genome Specific Primers (GSPs) were reverse nested primers designed from the CHIKV (GSP2) and ONNV Gulu (GSP1) genome templates respectively.

AAP: 5'-GGCCACCGCGTGACTAGTACGGGGGGGGGG-3'
UAP: 5'-CUACUACUAGGCCACCGCCTGACTAGTAC-3'
GSP1: ONNV(-)1986 5’-CGGTTCAAAACTCTCGCTC-3’
GSP2: Chik(-) 248 5’-GTCCGGGATCAATTTCCTGCTC-3’

cDNA was prepared using a nested primer designed from ONNV (GSP1, figure 2.1). Newly synthesised cDNA strand then had a homopolymeric tail added to its 3’ end using terminal transferase. The 5’ RACE Abridged Anchor Primer was then used to generate second-strand cDNA. This dsDNA then served as the template for a secondary PCR reaction using a nested gene-specific primer (UAP) and inner primer designed from CHIKV (GSP2). The 5’ RACE PCR was carried out at the CDC (Fort Collins, USA) in accordance to manufacturer’s recommendations, using the same PCR conditions as shown in table 2.4, an overview of this technique was illustrated in figure 2.1.

2.10.3.4 Polymerase Chain Reaction (PCR) thermocycling conditions

PCR was carried out on a Hybaid PCR Express Thermal cycler, the PCR conditions used are described in table 2.4. 1 μl of each amplicon produced was run on a 0.8% (wt/vol) agarose gel (figure 2.3).
Table 2.4 Thermocycling conditions used for PCR. Reverse transcription (RT) step was carried out to generate cDNA using oligo d\(\text{d}(18)\) (Promega, USA) and polyadenylated mRNA template (section 2.10.3.2). The resulting cDNA was then used for subsequent PCR steps described in section 2.10.3.3.5.

<table>
<thead>
<tr>
<th>Cycle Type</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-Step cycle (1 cycle)</td>
<td>denaturing</td>
<td>72° C</td>
</tr>
<tr>
<td></td>
<td>holding</td>
<td>72° C</td>
</tr>
<tr>
<td></td>
<td>annealing</td>
<td>42° C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 min</td>
</tr>
<tr>
<td>Initial cycle</td>
<td>denaturing</td>
<td>95° C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 min</td>
</tr>
<tr>
<td>Step cycle (30 cycles)</td>
<td>denaturing</td>
<td>95° C</td>
</tr>
<tr>
<td></td>
<td>annealing</td>
<td>49° C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>extension</td>
<td>72° C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 min</td>
</tr>
<tr>
<td>Final cycle</td>
<td>denaturing</td>
<td>72° C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 min</td>
</tr>
</tbody>
</table>

Figure 2.3 CHIKV non-structural and structural PCR amplicons were run on a 0.8% agarose gel. 1kb markers are present in lanes annotated 1kb. Bands of expected size (400-600bp) were excised, gel purified, digested with Eco RI, ligated into the Litmus 28 expression vector (NEB, USA) and sent to LARK technologies (U.K) for sequencing.

Lane 13 of the structural amplicons gave no amplification. This was due to the low sequence identity between the 3' untranslated region (UTR) of ONNV and that of CHIKV, this region was subsequently sequenced using SP Fwd 13 primer and an Oligo d\(\text{dT}_{18}\) reverse primer (results not shown).
2.10.3.5 PCR

The first-strand cDNA synthesised as described in section 2.10.3.2 was used to amplify double-stranded cDNA by PCR using the custom made primers and cycle conditions outlined in section 2.10.3.3. PCR primers were designed to incorporate an
Eco RI restriction enzyme (Bam HI in the case of NSP5 fwd / rev primers) at the 5’ end to facilitate cloning and each primer pair was designed to produce a 500-600 bp product for ease of sequencing. Similarly, each primer pair was designed to overlap such that the primer sites utilised would be incorporated in the overlapping regions.

The first-strand cDNA (20μl, approximately 10^5 target molecules of template DNA) was set up in 100 μl volumes in 700 μl sterile microcentrifuge tubes (Axygen, USA) with the following final concentrations: 200 μM cDNA reaction dNTPs, 2 mM MgCl₂, 10x Pfu Polymerase buffer (Mg²⁺ free), 0.1 μM forward and reverse CHIKV or ONNV primers and 2.5 U of Pfu DNA Polymerase (Promega, USA). Negative control samples contained 20 μl of the cDNA amplification negative control described in section 2.10.3.2.

2.10.4 Manipulation of Virus DNA

2.10.4.1 DNA purification I

To purify amplified DNA fragments, 25 μl of loading buffer (33% (vol/vol) glycerol, 0.05% (wt/vol) bromophenol blue, 0.05% (wt/vol) xylene cyanole FF; Promega, USA) was added to each 100 μl PCR reaction and run on a 0.8% (wt/vol) agarose gel (0.8% agarose, 3.0 μl 10 mg/ml ethidium bromide in 40 ml TBE) in 1x TBE (89 mM Tris base, 89 mM boric acid, 2 mM EDTA (pH 8.0)) at 86 milli-amps (mA) for purification using the Promega Wizard Kit (Promega, USA). Fragments were excised from the agarose using a sterile surgical blade, placed in a 1.7 ml microtube (Axygen, USA) and weighed.

A binding buffer (4.5M guanidine isothiocyanate, 0.5M potassium acetate (pH 5.0)) was added at a rate of 3 volumes of buffer to 1 volume of gel (300 μl of buffer to 100 μg of gel) and the mixture incubated for 10 min at 60°C, with vortexing every 3 min. The buffer solubilises the agarose gel slice, and provides appropriate conditions for binding of DNA to a silica membrane in a Wizard Column. The mixture was added to a Wizard column and centrifuged (10,000g, 30 sec). The flow-through was discarded.
and 700 µl of wash buffer (10mM potassium acetate (pH 5.0), 80% ethanol, 16.7 µM EDTA (pH 8.0)) added and centrifuged (10,000g, 30 sec). A further 500 µl of wash buffer was added to remove all traces of agarose and centrifuged (10,000g, 5min). Purified DNA was eluted in 50 µl of pre-heated (60°C) nuclease-free water.

2.10.4.2 Restriction Digestion

DNA was digested with *EcoRI* (*Bam HI* for NSP5 Fwd/Rev amplicon) to create the 5' overhang needed to ligate into the *EcoRI*-linearised Litmus 28 cloning vector (New England Biolabs (NEB), USA) for sequencing. The following reaction mixtures were digested for 2 h at 37°C: 15 µl Purified PCR product, 2 µl nuclease-free water, 2 µl 10X *EcoRI* NEBuffer (150 mM NaCl, 10 mM Tris-HCl, 10mM MgCl₂, 1mM dithiothreitol pH 7.9) and 20U *EcoRI* enzyme (NEB, USA).

2.10.4.3 DNA purification II

Digested reactions were purified using the QIAGEN Nucleotide Removal Kit (Qiagen, USA). 200 µl of Buffer PN which promotes the absorption of DNA fragments greater than 17 bases and less than 10 kilobases (kb) to the silica membrane in the Qiagen elute-column, was added to the 20 µl digested DNA. The mixture was added to the Qiagen elute-column and centrifuged (10,000g, 1 min). The DNA was then washed by adding 750 µl of PE Buffer and centrifuged (10,000g, 1 min). The centrifuge step was repeated without the addition of PE Buffer in order to get rid of any excess buffers. Purified, *EcoRI*-digested DNA was eluted in 20 µl of preheated (60°C) nuclease-free water. Final product was analysed and quantified by electrophoresis of a 1µl aliquot on a 0.8% (wt/vol) agarose gel. A concentration was deduced by comparison of band intensity to a molecular weight 1KB marker (NEB, USA).

2.10.4.4 Preparation of Litmus 28 cloning vector

Litmus 28 (L28) plasmid was linearised (1µg) with *Eco RI* for 2 h at 37°C and the DNA purified as previously described in section 2.10.4.3. The purified DNA was then treated with Antarctic phosphatase (NEB, USA), this catalyzes the removal of 5' phosphate groups from DNA. Without the 5' phosphoryl termini required by ligases these treated plasmids cannot self ligate, thus decreasing the vector background in cloning. 5 units (1µl) of Antarctic phosphatase (in 10mM Tris-HCl (pH7.4), 1mM
MgCl₂, 1 mM DTT, 50% glycerol) were added to 1 µl 10X Antarctic Phosphatase reaction buffer (50 mM Bis Tris-Propane, 1 mM MgCl₂, 0.1 mM ZnCl₂, pH 6.0, NEB, USA) and 1 µg of cut DNA, the reaction was then mixed and incubated at 37°C for 15 min. The reaction was heat inactivated for 5 minutes at 65°C before further DNA purification and ligation.

2.10.4.5 Ligation into L28

Dephosphorylated, Eco RI-linearised L28 was added in a 1:16 ratio to a 700 µl microfuge tube containing 16 µl of each purified Eco RI digested CHIKV amplicon as described in section 2.10.4.3. 2 µl of T4 10X ligase buffer and T4 ligase (Promega, USA) were then added, the reaction was gently vortexed and incubated overnight at room temperature.

2.10.4.6 Preparation of competent E. coli DH5α cells

Escherichia coli (E. coli) strain DH5α cells (NEB, USA) were used for transformation of recombinant Litmus constructs. A 2 ml overnight culture was prepared in L-broth which was used to inoculate an additional 500 ml of fresh L-broth in a 2 litre baffled flask. The culture was incubated at 37°C with shaking (200 revolutions per minute (rpm)) until the cells reached an optical density of 0.45-0.55 at a 600 nanometre (nm) wavelength. The culture was then incubated on ice for 2 h after which the cells were centrifuged at 3,000 x g for 20 min at 4°C. The supernatant was discarded and the bacterial pellet resuspended in 500 ml of titration buffer (100 mM CaCl₂ (Merck, Germany), 70 mM MgCl₂ (BDH, UK), 40 mM NaOAc and placed on ice for 45 min. Cells were pelleted as described above and gently resuspended in 2 x 20 ml ice cold 100 mM MgCl₂. 80% glycerol (BDH, UK) was added drop-wise with gentle swirling to a final concentration of 15% (vol/vol). The cell-glycerol suspension was then aliquoted on ice and snap-frozen in liquid nitrogen and stored at -70°C.

2.10.4.7 Transformation

Competent E. coli DH5α cells were transformed with each L28-CHIKV PCR reaction by incubating 180 µl of competent cells with 20 µl of each plasmid DNA ligation reaction for 1 h on ice, followed by heat shocking of cells for 1 min 30 sec at 42°C. Cells were then cooled on ice for 10 min before being transferred to 800 µl of L broth without drug selection. Cells were allowed to recover for 1 h shaking at 37°C
before the addition of 100 μg ampicillin. Cells were then allowed to grow for a further 1 h. Transformed colonies were then plated onto L-agar plates containing 100 μg/ml ampicillin and 100μl of a 1:1 X-Gal / IPTG mixture and incubated overnight at 37°C.

2.10.4.8 Colony Selection and Linearisation

Isolated colonies of recombinant plasmids (white colonies) were inoculated in 30 ml of L broth containing 100 μg/ml ampicillin. Cells were grown overnight with shaking at 37°C. From each culture a 20 ml aliquot was removed and mixed with 15% (wt/vol) 80% glycerol. These were then stored at -70°C in 1 ml aliquots. The remaining culture was used to purify the plasmid DNA, using the QIAGEN Miniprep Plasmid Purification Kit (Qiagen, UK). This kit is based on a modified alkaline lysis protocol. Cells were harvested by centrifugation (10,000g, 10 min, 4°C). Each pellet was resuspended in 250μl of buffer P1 (10mM EDTA, 100μg/ml Rnase A, 50 mM Tris-HCL, pH 8.0), and transferred to a microfuge tube. Cells were lysed by the addition of 250μl of buffer P2 (200 mM NaOH, 1% (wt/vol) SDS). 350 μl of buffer N3 was added, and mixed gently prior to centrifugation (10,000g, 10 min). The supernatant was applied to a QIAprep column and further centrifuged (10,000g, 1 min). The column was then washed with 500 μl of buffer PB, to remove all trace of nuclease activity. The column was again washed with 750 μl of buffer PE, and centrifuged twice (10,000g, 1 min). Clean DNA was eluted in 30μl of water by centrifugation (10,000g, 1 min). Each DNA was digested for 1 h at 37°C with Eco RI enzyme to confirm correct plasmid. Products were confirmed by mixing a 1μl aliquot with 1μl loading buffer and running this on a 0.8% (wt/vol) agarose gel in TBE at 75 mA.

2.10.4.9 Sequencing and sequencing alignment

PCR products were cleaned using the QIAquick PCR Purification Kit (Qiagen, UK) and eluted in 30μl nuclease-free water. The purified PCR products and 20μl of each primer (0.02μg μl⁻¹) used to amplify the products were sent to LARK Technologies (Essex, UK) for sequencing. Sequence was sent via e-mail 3-4 working days upon receipt of products and primers. Sequences were initially submitted in an online BLAST search (http://www.ncbi.nlm.nih.gov/blast) and subsequently analysed using Redasoft Visual Cloning 2000 software (Redasoft, Canada). Once accurate sequences were determined and added to the CHIKV genome, sequence alignments
were pursued, these were carried out using an online multi-alignment software package termed Multalin (Laboratoire de Genetique Cellulaire, France).

2.10.5 In vitro Analyses

2.10.5.1 CHIKV growth curves in BHK-21 cells

BHK-21 cells were seeded at 1×10^4 ml$^{-1}$ in 6-well plates. Cells were infected at a multiplicity of infection (M.O.I.) of 10 p.f.u / cell in a total volume of 500 μl infection medium for 1 hour, with rocking movements every 15 min to achieve a homogenous infection. Cell culture fluid was harvested at 2, 4, 6, 8, 10, 14, 18, 22 h.p.i and production of virus was quantified by plaque assay as described in section 2.10.2.3. Infection medium alone was used as a mock-infection negative control, each sample was performed and analysed in triplicate.

2.10.5.2 Mixed Glial Cell Viability Assay

To measure growth in cultured cells following SFV-A7 and CHIKV infection, mixed glial cells were seeded at 1×10^4 ml$^{-1}$ in 6-well plates. Cells were infected at M.O.I. of 10^{-2} in a total volume of 500 μl infection medium for 1 hour, with rocking movements every 15 min to achieve a homogenous infection. Infection medium alone was used as a mock-infection negative control. Fresh Dulbecco’s MEM medium was added and the cells were incubated at 37°C in a humidified atmosphere of 5% CO₂.

The viability of CHIKV, SFV-A7 and mock-infected MG cells was determined by trypan blue exclusion. The dye trypan blue (Sigma, USA) is excluded from viable cells, and under bright field microscopy membrane-damaged cells stain blue-violet, whereas healthy, viable cells appear translucent. At 12 h intervals, the medium from SFV-A7, CHIKV and mock-infected control cells was removed and cell monolayers washed twice in Dulbecco’s PBS. Cells were then trypsinised with 500 μl 0.25% (w/v) trypsin / EDTA (Gibco BRL, UK) solution for 5 min at 37°C, the plates tapped to complete trypsinisation and 500 μl Dulbecco’s MEM added to terminate trypsinisation a give a total volume of 1 ml. A 100 μl aliquot of each sample was removed and added to 100 μl 0.45% (w/v) trypan blue solution. A 100 μl aliquot of this mixture was applied to a haemocytometer and viable cells were counted. Cells
were harvested and analysed each 12 hours over a period of 72 hours, each sample was performed and analysed in triplicate.

2.10.5.3 Virus RNA synthesis of CHIKV, SFV-A7 and six geographically distinct CHIKV strains

The rate of RNA synthesis of virus was measured by infecting subconfluent BHK-21 cell monolayers with viruses at a high M.O.I. (10 p.f.u./cell). Virus was allowed to adsorb for 1 h at 37°C in a humidified atmosphere of 5% CO₂, at which point the inoculum was replaced with BHK medium containing 5 μg/ml actinomycin D and reincubated for 2 h at 37°C in a humidified atmosphere of 5% CO₂. The inoculum was then removed and fresh BHK medium containing 5 μg/ml actinomycin D and 1 μCi/ml [³H]-methyl uridine (Amersham Pharmacia Biotech, Sweden) was added. The cell monolayers were returned to 37°C for a further 2 h. Cell monolayers were then washed twice with PBS and dissolved in 2 ml of 1% (w/v) sodium dodecyl sulphate (SDS) to lyse the cells. On adding 2ml of ice-cold 10% (w/v) trichloroacetic acid (TCA) the mixture was allowed to stand on ice for 15 min. The resulting precipitate was collected on glass fibre discs (Whatmann, USA) using a vacuum manifold (Millipore, USA) and washed twice with 4 ml of ice-cold 5% (w/v) TCA and once with 100% ethanol and air-dried. Filters were then placed in plastic scintillation vials into which 4 ml scintillation fluid (ICN, USA) was added prior to counting using a Tricarb 1500 scintillation counter (3 min count/sample). This procedure was carried out in triplicate for each virus at 2, 4, 6, and 8 hours post infection (h.p.i).

2.10.5.4 Plaque Analysis

Plaque assays were performed as described in section 2.3.4 on the 37997, 181/25, DAK ArB16878, PO 731460, PH H15483, SV-0451/96 and Ross strains of CHIKV and the Gulu strain ONNV. The titres were recorded and the size and shape of plaques produced by each virus observed.
2.10.5.5 Immunofluorescence of virus infected oligodendrocytes

Immunofluorescence was used in order to determine the cell tropism for Chikungunya and SFV-A7 in a mixed glial cell population. Of particular interest were oligodendrocytes, a mouse anti-CNP antibody (Sigma, USA) was therefore used to target these cells. CNP (2',3'-cyclic nucleotide 3'-phosphohydrolase) is strongly associated with myelinated tissues and is localized in the cytoplasmic membrane of oligodendrocytes and Schwann cells. A rabbit anti-SFV antibody was used to target any virus present within these cells.

2.10.5.5.1 Production of antibody

SFV-A7 virus antibody was produced by infecting 2 New Zealand white rabbits inter-peritoneally (IP) with 500 μl virus at a titre of 1.0 x 10^6 p.f.u./ml. The rabbits were given a second SFV-A7 virus boost inoculation 14 days after the initial infection and were sacrificed 14 days later. Blood was removed, centrifuged at 700 x g for 10 minutes, the serum supernatant was then removed, aliquoted in 10 μl quantities and stored at -70°C.

2.10.5.5.2 Preparation of cells for immunofluorescent labeling.

Neonate mixed glial cells were grown as described in section 2.10.5.2 and seeded in 2-well chamber slides (Falcon, USA) rather than 6 well plates. At 24 hpi, chambers were removed from the chamber slides as described in manufacturer’s instructions. Slides were fixed in 25 ml of acetone for ten minutes, then washed twice for ten minutes in Phosphate Buffer Saline (PBS; Oxoid, UK). Swine Normal Serum (DAKO, Denmark) was diluted 1 in 20 in PBS and 100μl added to each slide. Strips of parafilm (American National Can, USA) of similar size to each slide were cut, placed on each slide, and placed an a humidified chamber at 37°C for 1hr. The cells were then ready for the addition of the primary antibody.

2.10.5.5.3 Immunofluorescent labeling of virus antigen

100μl primary anti-SFV antibody (Rb α SFV4 diluted 1:1000 in D-PBS) (Invitrogen, UK) was added to each slide, which were then covered with parafilm strips and incubated in a humidified chamber at 37°C for 1hr. Slides were washed twice for ten minutes in PBS-Tween containing 0.05% Tween 80 (Merck), then rinsed twice for 5
minutes in PBS. 15 µl of biotinylated Gt α Rb antibody (DAKO, Denmark) was added to 985 µl of PBS and 100 µl was added to each slide, then covered with parafilm strips and incubated for 30 mins at room temperature. Slides were washed twice in PBS-Tween and PBS as previously described. A 10mM HEPES (GibCo BRL, UK), 0.5M NaCl solution was made up and 5 µl of rhodamine-avidin DCS (Vector Laboratories, USA) was added to 995 µl of it. 100 µl of this was then added to each slide. Slides were then covered with parafilm strips and incubated at room temperature in the dark for 30 mins. Slides were then placed in the HEPES/NaCl solution described above, for ten minutes before being washed in PBS Tween and PBS as previously described. At this stage the avidin was blocked using an avidin/biotin blocking Kit (Vector Laboratories, USA) for 15 minutes, then washed in PBS for 5 minutes, biotin was blocked using the same kit and washed in PBS. The mixed glial cells on the slides were then ready for oligodendrocyte labelling.

2.10.5.5.4 Immunofluorescent labeling of Oligodendrocytes

Slides were blocked and incubated in 1:20 normal goat serum as described previously for swine normal serum in section 2.10.5.5.3. A 1 in 10 dilution of Ms α CNP (Sigma, USA) in PBS was made and 100 µl was added to each slide, which were then covered with parafilm strips and incubated in a humidified chamber at 37°C for 2 h. Slides were then washed in PBS Tween and PBS as described previously. Biotinylated Gt α Ms secondary antibody was then added was described previously and the slides incubated at room temperature for 30 min. Slides were washed and Fluorescin-Conjugated Streptavidin was diluted 1:100 in HEPES/NaCl solution described previously, 100 µl was then added to each slide, which were incubated at room temperature for a further 30 min. Following a 10 min wash in HEPES/NaCl solution and PBS Tween / PBS washes the slides were placed in distilled water for 5 minutes. 25 µl of DAPI (a fluorescent nuclear label) was added to 975 µl of Mowiol, the slides were individually mounted in 60 µl mowiol and cover slips were placed on each slide.
2.10.6 *In vivo* Analyses

2.10.6.1 Infection of Balb/c mice with CHIKV and SFV-A7

Two groups of 10 female BALB/c mice aged 60-80 days were intranasally infected with 20 μl per nostril of SFV-A7 and CHIKV virus with concentrations of 1×10^8 p.f.u / ml. A third group of 10 mice were mock-infected with PBS. The health, clinical signs and time of death were recorded over a 14 day period at which point the mice were reinfected with SFV-L10 to ensure that initial doses of SFV-A7 and CHIKV had been adequate to induce partial immunity. Mice were monitored for a further 6 days and then sacrificed.

2.10.6.2 Virus titres in brains of Balb/c mice infected with CHIKV and SFV-A7

Two groups of 30 female BALB/c mice aged 60-80 days were intranasally infected with SFV-A7 and CHIKV as described in section 2.10.6.1. Brains were aseptically removed from 3 mice from each group at 24 h time points. The brains were placed in a bijous and weighed. An equal weight/volume (w/v) of Dulbecco’s PBS was added, the mixture manually homogenised in a 10 ml homogeniser (Falcon, USA) and placed in a centrifuge tube and spun at 700 x g for 10 min to sediment the debris. The supernatant was removed and placed in a bijou at -70°C until a plaque assay (described in section 2.10.2.3) was be performed.

2.10.6.3 Virus titres in Balb/c brains infected with CHIKV and six geographically distinct Chikungunya virus strains.

Seven groups of 30 female BALB/c mice aged 60-80 days were intranasally infected with 37997, 181/25, DAK ArB16878, PO 731460, PH H15483, SV-0451/96 and CHIKV as described in section 2.10.6.1. Brains were aseptically removed from 3 mice from each group at 24 h time points. The brains were placed in a bijous and weighed. An equal weight/volume (w/v) of Dulbecco’s PBS was added, the mixture manually homogenised in a 10ml homogeniser (Falcon) and placed in a centrifuge tube and spun at 700 x g for 10 min to sediment the debris. The supernatant was removed and placed in a bijou at -70°C until plaque assay as described in section 2.10.2.3 could be performed.
2.10.6.4 Survival of Balb/c mice infected with CHIKV and six geographically distinct Chikungunya virus strains.

Seven groups of 10 female BALB/c mice aged 60-80 days were intranasally infected with 20μl per nostril of 37997, 181/25, DAK ArB16878, PO731460, PHH15483, SV-0451/96 and CHIKV with concentrations of 1 x 10^8 p.f.u/ml. An eighth group of 10 mice were mock-infected with PBS. The health, clinical signs and time of death were recorded over a 14 day period at which point the mice were reinfected with SFV-L10 to ensure that initial doses of SFV-A7 and CHIKV had been adequate to induce partial immunity. Mice were monitored for a further 6 days and then sacrificed.
2.11 Results

2.11.1 Sequence of Chikungunya Ross (CHIKV)

The complete genomic RNA sequence of CHIKV was found to be 11,813 nucleotides in length, including the 5’ untranslated region (UTR), the untranslated junction region and the 3’ UTR and had a typical alphavirus genome organisation. The base composition was calculated using DNAsis MAX analysis software (Hitachi, Japan), and gave the following percentages: 29.63% A, 24.97% C, 25.18% G and 20.27% T. The genome is organised into two open reading frames (ORFs), one containing a non-structural polyprotein (42S RNA) and the other a structural polyprotein (26S RNA). The genetic location of the nonstructural and structural polyproteins was deduced by comparing the amino acid and nucleotide sequences of other alphaviruses with known cleavage sites. The 5’ UTR of CHIKV is 76 nucleotides in length and has 2 stem-loop structures at nucleotide positions 3-25 and 33-70. The region between the two identified ORFs coding for the nonstructural polyprotein and the structural polyprotein is not translated and is referred to as the junction region. In CHIKV it is 65 nucleotides in length spanning from nucleotide position 7502 to 7566. The 3’ UTR is 499 nucleotides in length, it is located at position 11314 and extends until the end of the RNA genome at position 11813. The non-structural ORF is 7425 nucleotides in length, and is initiated by a start codon triplet (ATG) at position 77-79 terminating at a stop codon triplet (TAG) at position 7499-7501. The ORF coding the non-structural polyprotein is 2474 amino acids in length, individual non-structural proteins (NSP1-4) are subsequently formed by proteolytic cleavage. The ORF coding for the structural polyprotein is 3744 nucleotides in length and is initiated by a start codon at position 7567-7569 terminating at a stop codon triplet (TAA) at position 11311-11313. This ORF coding for the structural proteins: Capsid, E3, E2, 6K and E1 is 1248 amino acids in length. In accordance to the genomic organisation of other sequenced alphaviruses, the genome of CHIKV can therefore be considered to be: 5’ cap-nsP1-nsP2-nsP3-nsP4-Junction region-Capsid-E3-E2-6K-E1-poly(A) 3’. The genome sequence of CHIKV is illustrated in figure 2.4 and the individual genes are annotated in figure 2.5.
4381 TAGTGCTACT ATACCCTCCTC TCTCCACAGG TGTATACTCA GGAGGGAAAG ACAGGCTGAC
4441 CACCTGTGTC ATGCAGCCAA GCTCCCTTCA ACCGCAGGAC GAGCGCCGAA CTGGATTTGC
4501 GCGAGGTGTC AGGCGGAAGG GAGGCTGAGT CTGGACTGTC ATGGATGTTC
4561 ACACTCACTC ACGTCGACTC TCTGGGTGAA TGGCAGACTG TGGGTATGGT
4621 CGGATGGATG ACACTGCTCT GGTGACAGCC GTGACTTATG CAGCAGTCAG
4681 CACGACAGCA GAGAATAGAT GTGATAATGC ATTCGCACAG TGGCTCAGCA
4741 CCAACAGAG ACCAAAGATG AAGTGTTTGC ATACACTGGT CGAGGAGATT TGGAGAGATG
4801 GCGACGGGAA TCGCGCATGG AGGAGGACCT TGGCGCTGGT GTGGGATCTT
4861 CTCCTGGGCT ATCCAGCTAG GACCGAGGAA TGGATGATCT ACTGGATGCA
4921 AGCAGGAATT GATGATGCAA AGGACGGGAA CTGGCACTGG GTGGGATCTT
4981 CGGAGGAGAA GAGGAAAGGT GGTGAGAAAT TTGGTTCACT AGAGGAGGAA
5041 ACCGTGAGCT AGGACGCTACT TATGGCTTAC ACTGGGACAG
5101 AGCGAGTTTC GTGACACTGG TGGGACAGG AGGACGGGAA CTGGCGCTGG
5161 TGACCCACCA GCCCTAGGAC AGCCCCTTGGT TGGACTGCT AGGGATGCA
5221 ACGGAGAAC GCGGGAACAG ACGGAGGGAA TGGGACGACT ATGGGATGCA
5281 CAGGAGAGCT GCACCTGGAG CAGGAGGGAA CAGGAGAGCT CAGGAGAGCT
5341 ACAGCTCGGG AGGCAGCTTG ATGCAGCTTG ATGCAGCTTG
5401 GAGGAGAGTA GACCGAGGAA GACGAGGAGT GTTACGCACT ACTGGGACAG
5461 TCACGGGCGC ATCCGCTCTC GTGACAGCTG AGGAGGACCT TGGCGCTGGT
5521 CACGAGGGAA GAGAATAGAT GTGATAATGC ATTCGCACAG TGGCTCAGCA
5581 CGGAGGAGAA GAGGAAAGGT GGTGAGAAAT TTGGTTCACT AGAGGAGGAA
5641 CTAGCTGAGT CTAGCTGAGT CTAGCTGAGT CTAGCTGAGT
5701 ACAACAGAG GCCACAGAGT GGCTGGTCTT ATGGGATGCA
5761 GAGGAGGAGA AGGGAAAGGT GGTGAGAAAT TTGGTTCACT AGAGGAGGAA
5821 CCGGGAGGAA CACGCGCTGC CCGGAGGAA CACGCGCTGC CCGGAGGAA
5881 GAAACACAGA ACTACAGATG CACTACAGATG CACTACAGATG CACTACAGATG
5941 CCGGGAGGAA CACGCGCTGC CCGGAGGAA CACGCGCTGC CCGGAGGAA
6001 GAAACACAGA ACTACAGATG CACTACAGATG CACTACAGATG CACTACAGATG
6061 CGGAGGAGAA GAGGAAAGGT GGTGAGAAAT TTGGTTCACT AGAGGAGGAA
6121 GAGGAGGAGA AGGGAAAGGT GGTGAGAAAT TTGGTTCACT AGAGGAGGAA
6181 GGGGGAGGAGA AGGGAAAGGT GGTGAGAAAT TTGGTTCACT AGAGGAGGAA
6241 GACGACGACG ACAGCAAGAC GACGACGACG ACAGCAAGAC GACGACGACG
6301 CASTCTCTCTC ACTCTCTCTC ACTCTCTCTC ACTCTCTCTC ACTCTCTCTC
6361 ATGAGCAGCA AGAATGTGCT AAGAATGTGCT AAGAATGTGCT AAGAATGTGCT
6421 TTTAAGGAGT TATGGTTAAG TAAATAGATG AGAGGAGGAA AGAGGAGGAA
6481 CCAAATACTG TCTGGCTACC AGGAGAAGG AATGGTGATG TCCAGACAG TACAGAAAGA
6541 GAGAAGTTAG GATGACAGCT CTTCAACGAC CAGACGACG AGTACAGTGA
6601 GACGACGACG ACAGCAAGAC GACGACGACG ACAGCAAGAC GACGACGACG
6661 GAGGAGGAGA AGGGAAAGGT GGTGAGAAAT TTGGTTCACT AGAGGAGGAA
6721 TTTTTGTTTGCC ATGGACAGTG AAGAAGGTAC GACGACGACG AGAGGAGGAA
6781 AGCGCTTCTCT CATAACAGTG CAGAATGTGCT ATTTATAGATG AGAGGAGGAA
6841 AGGTGTTAGG GGTGCTACCT CTTCCCCACA CTGGGACAGC GGAGAGGAA
6901 GAGAAGTTAG GATGACAGCT CTTCAACGAC CAGACGACG AGTACAGTGA
6961 GTTTCCTAACT CTGTTCCTCA ACACACTGCT AAATATCACC ATCGCCAGCC GAGTGCTGGA
7021 AGGCTACCTG CAAAGAGATG CTGCTGACAC CAGACGACG AGAGGAGGAA
7081 AGGTTCTGCC GATGATTTGG TGGGACACAG TGGGACACAG TGGGACACAG
7141 GATCTACATT GTGTTACATT CTTGGCGGAC TCCAGACGAC GAGGAGGAA
7201 GATCATTGTT GATGATTTGG TGGGACACAG TGGGACACAG TGGGACACAG
7261 CTGAGCGGCT GCGCGGCGGA GTGAGCGGCT GCGCGGCGGA GTGAGCGGCT
7321 GCAAGGCGGC GTTACGACTG TGGGAGACAG AAGAAGGTAC GACGACGACG
7381 TAGGTTAGAC GTGGGTCAGT TAGGTTAGAC GTGGGTCAGT TAGGTTAGAC
7441 CATGACGGAT TCTGGGAAAG CAGATGGCTG GTGCACTAAG TGGGACACAG
7501 AGGTGAAGAT TCTGGGAAAG CAGATGGCTG GTGCACTAAG TGGGACACAG
7561 GCTCTTGGAC GAGGACTTGG GATGATTTGG TGGGACACAG TGGGACACAG
7621 TGGACTGCCGC CCGCACTCCT CCAAGCTTAC TGGGCGACAG GAGGAGGAA
7681 GGGCAGACTG GCCAGCGTCT CTGGACAGGT TAAATACTCG AGATGCTGCT
7741 CAGAAAGGAC CAGGAGAGCT GAGAATAAG TGGGAGACAG TGGGACACAG
7801 AAGCAACAGA AAGCAACAGA AAGCAACAGA AAGCAACAGA AAGCAACAGA
7861 CGGCGGCGGA AGGAGATACG GTGATGATTC AAGAAGGTAC GACGACGACG
7921 CAGAGACTCA AGGAGATACG GTGATGATTC AAGAAGGTAC GACGACGACG
7981 CGGAGATACG AGGAGATACG GTGATGATTC AAGAAGGTAC GACGACGACG
8041 AGTGCCATGC TGGGAGACAG AAGAAGGTAC GACGACGACG
8101 ACCGTAGGAT ACAGCAAGAC GAGGAGGAA GCAGACGACG
8161 GCCGCGCTCA CCGACCTGAC GAGGAGGAA GCAGACGACG
8221 CAGGACAGAC GAGGAGGAA GCAGACGACG
8281 GCCGCGCTCA CCGACCTGAC GAGGAGGAA GCAGACGACG
8341 GAAAGGCTGA GTGTGCTTAC CCGAGCGGAA TTGGGACACAG TGGGACACAG
8401 TCCGACCCGC CTTGCTACCG TGGTCTACG CAAAGAGATG CAGCAAGACG
8461 CTTGACCGAC ACGCAGCAAG ATGGACAGCT CTGGGACACAG TGGGACACAG
8521 TCCGATCCTCC GCCAGACGAC GAGGAGGAA GCAGACGACG
8581 CAGAGACTCA AGGAGATACG GTGATGATTC AAGAAGGTAC GACGACGACG
8641 CTAGACCGCA ATGGACAGCT GAGAATAAG TGGGAGACAG TGGGACACAG
8701 ATGGGACAG ATGGGACAG AAGAAGGTAC GACGACGACG
8761 ATACGACTCA AGCGAGGAAA GCAGACGACG
8821 ACTGACGAAG TGGGAGACAG AAGAAGGTAC GACGACGACG
8881 GAGGACGTGC AGGAGATACG GTGATGATTC AAGAAGGTAC GACGACGACG
8941 CCTGCTACCG CCGACCTGAC GAGGAGGAA GCAGACGACG
Figure 2.4 Complete Sequence of the Ross strain of Chikungunya virus.
Sequence submitted to Genbank on 29th March 2002 (Accession Number: AF490259). Individual genes are labelled and individually annotated by normal / bold typeface fonts.
Figure 2.5 Circularised annotated representation of Chikungunya Ross genome. The first open reading frame (ORF) starting at position 77 and ending at position 7488 contains the non-structural genes. The second ORF initiating at position 7567 and terminating at 11310 contains the structural proteins. There are three untranslated regions (UTRs); the 5' UTR (1-76), the junction region (7489-7566) and the 3' UTR (11314-11813). The 3' UTR contains a highly conserved 19 nt sequence element starting at position 11795. Other sequence elements within the 5' UTR, nsP1 and the junction region are not included in this figure but are presented in more detail later in this section.
There are three untranslated regions, the 5' UTR, the junction region lying between both ORFs, and the 3' UTR. Secondary structures of the 5' UTR were predicted for CHIKV, CHIKV 37997 and ONNV Gulu and SFV-A7 using Mfold (version 3.0). CHIKV has two distinct stem loops in its 5' UTR as illustrated in figure 2.6. The nucleotide sequences at the 5' termini of alphaviruses are conserved more in potential secondary structure than in sequence, the conserved secondary structure may be important for virus RNA replication. The 5' UTR of CHIKV spans the first 76 nt of the genome.

Both CHIKV strains share identical secondary structure even though CHIKV 37997 has 3 nucleotide changes: A/G, A/U, A/U at positions 53, 54 and 67 respectively. A cysteine residue is also inserted at position 64 in CHIKV 37997. CHIKV and ONNV share almost complete secondary structure homology within the first stem loop, although differing in structure in the second stem loop, ONNV Igbo-Ora having closest secondary structure with CHIKV than either Gulu or SG650 strains. SFV-A7 shares no recognisable secondary structure with CHIKV or ONNV. The secondary structures at the 5' UTR of both CHIKV and ONNV are very similar and may play an important role in virus RNA replication.

The untranslated junction region of CHIKV was 65 nt in length, nucleotides 7502 to 7566, a 24 nt conserved region was detected between nts 7479 and 7502 (CTTTGTACGCGGTCCTAAATAGG) differing in only 5 nts to that of SFV. This region is necessary to promote transcription of 26S subgenomic RNA.

The 3' untranslated Region was 499 nt in length spanning from 11,314 to the final CHIKV genome nucleotide at position 11,813. A 19nt conserved sequence at the 3' UTR (ATTTTGGTTTTATATTTTC) was observed at position 11,795-11,813 adjacent to where one would expect a poly(A) tract to begin.
Figure 2.6 Stem-loops of CHIKV, CHIKV 37997, SFV-A7, and the Igbo Ora, Gulu and SG650 strains of ONNV
Mfold version 3.0 was used to predict secondary structure of the 5' UTR free energy values are noted in parentheses.
2.11.1.2 Non-structural Genes of CHIKV

The first of the non-structural genes to be processed is nsP1, this is initiated at an ATG motif at position (77-79). nsP1 therefore begins at position 77 ending at position 1681 making it 1605 nucleotides (nt) long and consisting of 535 amino acids (a.a.). Based on information we have for other alphaviruses, nsP1 is thought to be involved with negative strand RNA synthesis and capping of RNA. At a.a. position 31-47 a conserved (among alphaviruses) 17 aa sequence (QVTPNDHANARAFSHA) is present. nsP2 is the largest gene spanning 2394 nt and 798 aa. Beginning at position 1682 and ending at position 4075 it contains helicase and proteinase motifs and is involved in proteolytic cleaving. A three amino acid motif (CWA) of the non-structural proteinase among alphaviruses was also identified in the nsP2 of CHIKV at aa position 478-480. A replicase motif was found (GXXXXGKS, where X represents any amino acid) at position 186-193 in nsP2.

nsP3 begins at nt position 4076, ending at position 5665 making it 1590 nt long and spanning 530aa, it may be involved in RNA synthesis although this remains to be determined. The final nonstructural gene: nsP4 contains the virus RNA polymerase with the Gly-Asp-Asp (GDD) located at position 465-467. nsP4 spans from nt position 5666 – 7498, making it 1833nt long consisting of 611 amino acids. The a.a. percentage identity of each CHIKV gene with those of CHIKV 37997, ONNV Gulu and SFV-A7 is discussed in more detail later in section 2.11.1.4.

2.11.1.3 Structural genes of CHIKV

The capsid protein starts at an ATG codon at position 7567-7569 and continues until nt position 8349, it is 783nt long and consists of 261aa. E3 is a smaller envelope glycoprotein than E1 and E2 only spanning 64 aa and 192 nt, it begins at position 8350 and ends at position 8541. E2 has two possible glycolysation sites at positions 263 and 345 assigned by the sequence Asn-X-Ser / Thr (where X is any amino acid except proline), it is 423 aa in length, beginning at position 8542 and spanning 1269 nt and ending at position 9810. 6K is the smallest of the structural genes consisting of only 61 amino acids and 183 nts, it spans position 9811-9993. Conversely E1 is the largest of the structural genes containing 439 amino acids and 1317 nucleotides, excluding the final TAA opal codon it spans from position 9994 to 11310.
2.11.1.4 Percentage identity in nucleotide and deduced amino acid sequences between CHIKV and other alphaviruses

CHIKV shared the highest nucleotide (nt; 84.82%) and amino acid (aa; 95.54%) identity over the entire coding regions of the genome with the 37997 strain. However, the amino acid sequence identity of the complete structural polyprotein of Nagpur strain of CHIKV shares highest identity with CHIKV (96.54%), this is also true for the Capsid (98.47%) and E2 (96.68%) genes. Over the E3 genes both Nagpur and 181/25 share the highest amino acid identity to CHIKV (93.65%). The 6K gene has highest aa identity between CHIKV and 37997 (95.08%) and E1 with 181/25 (97.23%). nsP3 had the lowest sequence identity of the genes (90.00%), this was also the case for ONNV Gulu (66.73%) and SFV-A7 (51.31%). nsP2 on the other hand shared the highest (97.74%), identity between viruses also the case with ONNV Gulu (91.48 %). Over the entire coding regions of the genome CHIKV had an 85.55% identity with ONNV Gulu compared to only a 67.11% identity with SFV-A7, which had most sequence identity over nsP1 (76.02%). Higher identities were observed over the 5’ UTR than 3’ UTR and Junction regions for all viruses.

2.11.1.5 Phylogenetic analysis of CHIKV and other alphaviruses

The phylogram calculated using bootstrap analysis (x1000) of the complete coding genome sequences (figure 2.7a) clearly separates CHIKV, ONNV and SFV strains, SIN was used as the out-parameter. CHIKV Ross and CHIKV 37997 differ within the CHIKV group. The CHIKV group and ONNV group are clearly separate with the ONNV Gulu strain showing closest similarity to CHIKV. The SFV group is markedly separate from both the CHIKV and ONNV groups. The same trend is observed over the nonstructural polyprotein (figure 2.7b). However, the structural polyproteins of Nagpur and 181/25 (vaccine strain) have also been sequenced and phylogenetic analysis of this region showed that CHIKV is closer to Nagpur and 181/25 than 37997 (figure 2.7c) other trends were similar to the previous two phylograms.

2.11.1.6 Immunofluorescent labeling of virus infected oligodendrocytes

The numbers of mock-infected oligodendrocytes were considerably higher than those infected with either CHIKV or SFV-A7, as less cell death occurred (figure 2.8a). The morphology of mock-infected oligodendrocytes was closer to the natural state of uninfected oligodendrocytes than either of the virus infected cells (figure 2.8b). As
expected, no virus antigen was detected in the mock-infected oligodendrocytes (figure 2.8c) although a small degree of non-specific background staining was observed.

2.11.1.7 Immunofluorescence of CHIKV infected oligodendrocytes.
Fewer cell nuclei could be detected in the CHIKV-infected oligodendrocytes suggesting depletion by virus-induced cell death (figure 2.9a). Infected oligodendrocytes had a more rounded morphology suggestive of apoptosis (figure 2.9b). CHIKV antigen was very apparent on the infected oligodendrocytes, indicating that oligodendrocytes are infected by CHIKV and confirming the cross-reactivity of SFV antibody with CHIKV (figure 2.9c).

2.11.1.8 Immunofluorescence of SFV-A7 infected oligodendrocytes.
Results similar to those found for CHIKV-infected oligodendrocytes were observed in SFV-A7 infected cells. Fewer numbers of cell nuclei were visible than in mock-infected cells (figure 2.10a), infected oligodendrocytes appeared rounded or blebbed indicative of apoptosis (figure 2.10b). SFV-A7 antigen was also detected on the infected oligodendrocytes (figure 2.10c).

2.11.1.9 Growth curves of CHIKV and SFV-A7 in BHK-21 cells
A single cycle of infection was induced by infecting BHK-21 cells at a multiplicity of infection (M.O.I) of 10 p.f.u / cell (figure 2.11). Both viruses replicated in BHK-21 cells reaching a peak titre at 14 h.p.i. SFV-A7 replicated more rapidly than CHIKV, this was reflected in the appearance of cytopathic effect (c.p.e) at 16 h.p.i for SFV-A7 and at 24 h.p.i. for CHIKV. Titres were only comparable from 6 h.p.i (after one cycle of virus replication) as plates were not washed on removal of inoculum and virus detected may have been initial inoculum,

2.11.1.10 Trypan blue exclusion assay of a mixed glial cell culture infected with SFV-A7 and CHIKV.
Both CHIKV and SFV-A7 caused c.p.e in the infected mixed glial cell primary culture (figure 2.12). SFV-A7 caused a higher degree of c.p.e within the first 12 h of infection than CHIKV. At 24 h.p.i. cells infected with SFV-A7 had a reduced level viability compared to CHIKV. At 72 h.p.i a negligible amount of SFV-A7 infected
mixed glial cells remained with over half of those initially infected with CHIKV remaining viable.

2.11.1.11 Viral RNA synthesis in BHK cells

Total viral RNA synthesis was measured in BHK cells for both CHIKV and SFV-A7 (figure 2.12). CHIKV had reduced viral RNA synthesis compared to SFV-A7, with both viruses reaching peak synthesis at 4 h.p.i.

2.11.1.12 Growth curve of CHIKV and SFV-A7 in infected mouse brain following intranasal inoculation.

Virus titres from extracted brains of intranasally infected Balb/c were recorded and are shown in figure 2.14. Both CHIKV and SFV-A7 multiplied efficiently in brain tissue with maximum titres obtained at 5 d.p.i. for both viruses. CHIKV virus was not detected in the brain until 3 d.p.i and cleared by 9 d.p.i. compared to SFV-A7 which was detected in the brain 24 h.p.i and cleared by 8 d.p.i.

2.11.1.13 Survival Curves of CHIKV and SFV-A7

All ten mice in both groups intranasally infected with CHIKV and SFV-A7 survived, however only those mice infected with CHIKV showed slight fur ruffling at 6 d.p.i. The positive control SFV4 showed 100% mortality in mice by day 5. All mice survived challenge with SFV-L10 (figure 2.15).

2.11.1.14 Survival Curves of CHIKV and 6 Geographically distinct strains of CHIKV

All ten mice in each group intranasally infected with CHIKV, 37997, 181/25, DAK ArB16878, PO 731460, PH H15483 and SV-0451/96 survived infection. Mice infected with CHIKV and DAK ArB16878 exhibited clinical signs at 4 d.p.i and 5 d.p.i. respectively, including ruffled fur and slight crouching. Signs of lethargy between days 4 to 6 post infection was observed in CHIKV infected mice but not in mice infected with other strains.
2.11.1.15 Growth curve of CHIKV and 6 geographically distinct strains of CHIKV in infected mouse brain following intranasal inoculation.

Virus titres from extracted brains of intranasally infected Balb/c were recorded in triplicate and are shown in figure 2.16. Both CHIKV and DAK ArB16878 multiplied efficiently in brain tissue with maximum titres obtained at 5 d.p.i.. CHIKV was not detected in the brain until 3 d.p.i and cleared by 9 d.p.i. compared to DAK ArB16878 which was detected in the brain 2 d.p.i and cleared by 8 d.p.i. Other strains of CHIKV were not detected in the brain. On intranasally infecting 5 new groups of 6 mice with 37997, 181/25, PO 731460, PH H15483 and SV-0451/96 using a virus titre 1 log higher than previously used, no virus was detected at the two time points used, 4 d.p.i and 5 d.p.i respectively, suggesting the inability of these 5 strains to grow in the adult murine brain.

2.11.1.16 Plaque Analysis

Plaque assays were performed as described in section 2.3.4 on the 37997, 181/25, DAK ArB16878, PO 731460, PH H15483, SV-0451/96 and Ross strains of CHIKV and the Gulu strain ONNV (figure 2.17). Plaques visible of SFV4 and SFV-A7 were indistinguishable, CHIKV 181/25 (vaccine strain) was unique among the strains examined causing numerous barely visible small plaques. Very little difference was observed between ONNV and 37997, PO 731460, PH H15483, SV-0451/96. CHIKV exhibited the largest plaques of the strains examined with DAK ArB16878 sharing the closest plaque size. DAK ArB16878 appears to have two distinct sizes of plaque suggesting the possible presence of 2 distinct populations.
<table>
<thead>
<tr>
<th>Genome Region</th>
<th>CHIKV 37997</th>
<th>CHIKV Nagpur</th>
<th>CHIKV Vaccine</th>
<th>ONNV Gulu</th>
<th>SFV A7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete coding (nt)</td>
<td>84.82</td>
<td>-</td>
<td>-</td>
<td>75.75</td>
<td>64.21</td>
</tr>
<tr>
<td>Complete coding (aa)</td>
<td>95.54</td>
<td>-</td>
<td>-</td>
<td>85.55</td>
<td>67.11</td>
</tr>
<tr>
<td>5' UTR (nt)</td>
<td>94.80</td>
<td>-</td>
<td>-</td>
<td>82.28</td>
<td>58.82</td>
</tr>
<tr>
<td>nsPolyP (nt)</td>
<td>85.70</td>
<td>-</td>
<td>-</td>
<td>75.64</td>
<td>65.67</td>
</tr>
<tr>
<td>nsPolyP (aa)</td>
<td>95.68</td>
<td>-</td>
<td>-</td>
<td>85.61</td>
<td>69.49</td>
</tr>
<tr>
<td>nsP1 (nt)</td>
<td>87.85</td>
<td>-</td>
<td>-</td>
<td>79.13</td>
<td>62.27</td>
</tr>
<tr>
<td>nsP1 (aa)</td>
<td>97.19</td>
<td>-</td>
<td>-</td>
<td>91.10</td>
<td>76.02</td>
</tr>
<tr>
<td>nsP2 (nt)</td>
<td>86.97</td>
<td>-</td>
<td>-</td>
<td>79.32</td>
<td>66.25</td>
</tr>
<tr>
<td>nsP2 (aa)</td>
<td>97.74</td>
<td>-</td>
<td>-</td>
<td>91.48</td>
<td>72.97</td>
</tr>
<tr>
<td>nsP3 (nt)</td>
<td>82.52</td>
<td>-</td>
<td>-</td>
<td>64.91</td>
<td>57.13</td>
</tr>
<tr>
<td>nsP3 (aa)</td>
<td>90.00</td>
<td>-</td>
<td>-</td>
<td>66.73</td>
<td>51.31</td>
</tr>
<tr>
<td>nsP4 (nt)</td>
<td>84.99</td>
<td>-</td>
<td>-</td>
<td>77.78</td>
<td>69.14</td>
</tr>
<tr>
<td>nsP4 (aa)</td>
<td>96.56</td>
<td>-</td>
<td>-</td>
<td>90.84</td>
<td>75.00</td>
</tr>
<tr>
<td>Junction (nt)</td>
<td>76.81</td>
<td>-</td>
<td>-</td>
<td>61.77</td>
<td>39.71</td>
</tr>
<tr>
<td>sPolyP (nt)</td>
<td>84.48</td>
<td>-</td>
<td>-</td>
<td>78.47</td>
<td>64.59</td>
</tr>
<tr>
<td>sPolyP (aa)</td>
<td>95.27</td>
<td>96.54</td>
<td>96.29</td>
<td>85.42</td>
<td>62.40</td>
</tr>
<tr>
<td>Capsid (nt)</td>
<td>85.44</td>
<td>-</td>
<td>-</td>
<td>89.92</td>
<td>70.75</td>
</tr>
<tr>
<td>Capsid (aa)</td>
<td>96.94</td>
<td>98.47</td>
<td>98.09</td>
<td>88.51</td>
<td>73.79</td>
</tr>
<tr>
<td>E3 (nt)</td>
<td>83.85</td>
<td>-</td>
<td>-</td>
<td>75.00</td>
<td>63.78</td>
</tr>
<tr>
<td>E3 (aa)</td>
<td>92.19</td>
<td>93.65</td>
<td>93.65</td>
<td>82.82</td>
<td>66.67</td>
</tr>
<tr>
<td>E2 (nt)</td>
<td>81.84</td>
<td>-</td>
<td>-</td>
<td>74.07</td>
<td>59.47</td>
</tr>
<tr>
<td>E2 (aa)</td>
<td>92.77</td>
<td>96.68</td>
<td>94.79</td>
<td>81.80</td>
<td>57.45</td>
</tr>
<tr>
<td>6K (nt)</td>
<td>85.79</td>
<td>-</td>
<td>-</td>
<td>76.50</td>
<td>54.65</td>
</tr>
<tr>
<td>6K (aa)</td>
<td>95.08</td>
<td>95.00</td>
<td>95.00</td>
<td>81.97</td>
<td>44.26</td>
</tr>
<tr>
<td>E1 (nt)</td>
<td>86.56</td>
<td>-</td>
<td>-</td>
<td>76.69</td>
<td>61.33</td>
</tr>
<tr>
<td>E1 (aa)</td>
<td>97.08</td>
<td>97.03</td>
<td>97.23</td>
<td>87.93</td>
<td>62.64</td>
</tr>
<tr>
<td>3' UTR (nt)</td>
<td>75.00</td>
<td>-</td>
<td>-</td>
<td>58.05</td>
<td>45.00</td>
</tr>
</tbody>
</table>

Table 2.5 Percentage identity of individual CHIKV genes and other SFV subgroup alphaviruses. Nucleotide identities are in normal typeface, amino acid sequence identities in bold typeface. Only amino acid analyses were carried out between virus structural genes.
Figure 2.7 Phylograms of CHIKV Ross vs other SF group Alphaviruses

Complete genome coding sequence (A), Phylograms generated by performing PAUP analysis on the complete coding sequence (A), the nonstructural polyprotein nucleotide (nt) sequence (B) and the structural polyprotein nt sequence (C). Numbers indicate bootstrap values for groups to the right. The bar indicates horizontal distance corresponding to 1% nucleotide sequence divergence.
Figure 2.8 Immunofluorescence of uninfected oligodendrocytes.

Cell nuclei are counter stained with DAPI (A), while uninfected oligodendrocytes labelled with a fluorescein-conjugated secondary antibody (Ab) and an anti-CNP primary Ab are visible (B). No virus antigen was detected in the uninfected cells when labelled with a rhodamine-conjugated secondary Ab and an anti-SFV primary Ab (C).
Figure 2.9 Immunofluorescence of CHIKV infected oligodendrocytes.

Cell nuclei were counterstained with DAPI (A). CHIKV infected oligodendrocytes labelled with a fluorescein-conjugated secondary antibody (Ab) and an anti-CNP primary Ab are visible (B). CHIKV antigen was detected in the oligodendrocytes when labelled with a rhodamine-conjugated secondary Ab and an anti-SFV primary Ab (C).
Figure 2.10 Immunofluorescence of SFV-A7 infected oligodendrocytes.

Cell nuclei were counter stained with DAPI (A). Oligodendrocytes infected with SFV-A7 and labelled with a fluorescein-conjugated secondary antibody (Ab) and an anti-CNP primary Ab (B). SFV-A7 antigen was detected in the infected oligodendrocytes when labelled with a rhodamine-conjugated secondary Ab and an anti-SFV biotinylated primary Ab (C). Virus detection is less than seen with CHIKV possibly due to cell death.
2.11.1.5 \textit{In vitro} growth of CHIKV virus

Figure 2.11 Growth curves of CHIKV and SFV-A7 in BHK-21 cells

Figure 2.12 Trypan blue exclusion assay of a primary mixed glial cell culture infected with CHIKV and SFV-A7. Cells originated from 12 day-old rat brains.
2.11.1.6 *In vivo* growth of CHIKV virus

![Graph showing viral RNA synthesis in BHK cells](image)

Figure 2.13 Viral RNA synthesis in BHK cells

![Graph showing growth curve of CHIKV and SFV-A7 in infected mouse brain following intranasal inoculation](image)

Figure 2.14 Growth curve of CHIKV and SFV-A7 in infected mouse brain following intranasal inoculation. Time points represent the infectious content of homogenates from 3 mice.
Figure 2.15 Survival curves of Balb/c mice intranasally infected with CHIKV and SFV-A7 with SFV4 and PBS positive and negative controls.
Virus Titres in Balb/c Brains intranasally infected with 7 Geographically Distinct CHIK strains

![Graph showing virus titres in Balb/c brains after intranasal infection with 7 distinct CHIK strains.](image)

Figure 2.16 Titres of virus in brains of Balb/c mice infected intranasally with seven geographically distinct strains of Chikungunya virus.

Brains were sampled in triplicate at each time point for each virus and titred by plaque assaying serial dilutions of brain-homogenates on BHK-21 cells. No virus was seen in the brains of mice infected with five strains of Chikungunya including 37997, 181/25, PO731460, PHH15483, SV-0451/96. Infection was repeated using new mice for these five groups for timepoints day four and five using a virus with a concentration one log higher than previously used. No virus was detected in the brains of these mice. No clinical signs were apparent in any of the mice used. Previous studies showed no viremia following CHIKV infection of some vertebrate hosts (Jupp and McIntosh, 1988). Only DAKAr B16878 and CHIKV grew efficiently in the brains of intranasally infected Balb/c mice. No virus was detected in the blood of Balb/c mice in this study.
Figure 2.17 Plaque Analysis of 7 geographically distinct strains of Chikungunya virus, ONNV, SFV4 and SFV-A7. Large plaque-like feature in the centre of each dish resulted from the addition of medium-overlay and was excluded from any comparisons.
2.12 Discussion

On sequencing the entire nucleotide sequence of CHIKV and comparing the nucleotide and deduced amino acid sequence with other SFV group alphaviruses, several similarities were noted. These included the presence of two stem loops in its 5' UTR which showed greatest similarity between CHIKV and the Igbo Ora strain of ONNV than between CHIKV and other ONNV strains. Two stem loops were present for CHIKV and ONNV strains however four stem loops were present in SFV-A7. The structure of these stem loops may play a role in each virus’ ability to replicate RNA. Other similarities between CHIKV and the SFV group alphaviruses include a conserved amino acid sequence (QVTPNDHANARAFSHLA) at position 31-47 of nsP1, a 24 nt conserved untranslated region within the junction region, and a 19 nt conserved sequence in the 3' UTR terminus adjacent to the poly (A) tract. Helicase, protease and replicase motifs were all also found as expected within nsP2. The CHIKV RNA polymerase motif (GDD) was found in nsP4. Hence, CHIKV appears to be a typical alphavirus from a nucleotide and amino acid sequence stance. On comparing the CHIKV amino acid sequence with that of CHIKV 37997 it was clear that the two strains shared a high degree of sequence identity at 95.54%, however, as only the structural polyproteins of two other CHIKV strains; Nagpur and the 181/25 vaccine strain had been sequenced, they could be compared only over this region. Interestingly, Nagpur had a higher sequence identity over this region than CHIKV 37997 and the vaccine strain, this was even more apparent when a bootstrap analysis (x1000) was carried out showing 37997 to be on a different branch than CHIKV, Nagpur and vaccine strains. Both these latter strains are both considered to be of Asian genotype, whereas the 37797 is West African genotype and CHIKV Central/East African genotype. A more detailed comparison could be made if these strains were to be fully sequenced and the complete genomes compared, a greater divergence in sequence within the non-structural polyprotein than structural polyprotein could explain this finding.

On initiating this investigation it was not know whether CHIKV infected the CNS. It was shown here that CHIKV infects oligodendrocytes and in a parallel study looking at the neuropathology caused in mice intranasally infected with CHIKV ,(discussed in more detail in Chapter 5 “Pathology”) demyelating lesions were observed. These may be due to the direct infection of oligodendrocytes as illustrated in

87
this investigation, although several other mechanisms of virus-induced demyelination may also be involved and are discussed in more detail in Chapter 6 “General Discussion”. The in vitro results obtained in this study have confirmed the ability of CHIKV to multiply efficiently in BHK and mixed glial cells, CHIKV also appears to synthesise RNA at a similar efficiency as SFV-A7 both in vitro and in vivo. An earlier study showed rapid growth of Chikungunya virus in other cell lines including vero cells (Davis et al., 1971). Previous studies have also shown no viremia following CHIKV infection of some vertebrate hosts such as horses, cattle, goats, sheep and various species of birds (Jupp and McIntosh, 1988), it therefore seems likely that CHIKV cannot reach the brain via the blood circulation. In this investigation detection of CHIKV in the brain following intranasal infection demonstrated that CHIKV travelled via the olfactory pathway, using the neuronal route described by Kaluza et al. (1987) for SFV. However it is also apparent that some geographically distinct CHIKV strains seem unable to travel into the brain of intranasally infected mice, this may be due to their passage history and their inability to grow to sufficient titres outside their natural host. The exception to these viruses was DAKAr B16878 which has not been definitively classified as a Chikungunya virus strain within the SFV subgroup and appears to be phylogenetically closer to SFV than CHIKV. On qualitatively analysing the plaque assays for these strains of CHIKV and other SFV subgroup alphaviruses, DAKAr B16878 appeared to have plaques both similar to SFV but also to those of CHIKV, although the neuropathology induced appeared similar but less severe than CHIKV.

It is clear that with over 20 different strains of Chikungunya virus currently isolated, it is a virus that continues to emerge and cause numerous epidemics in Africa and South-east Asia. Although a live attenuated virus (Levitt et al., 1986) exists and may stimulate good immunity, the potential to cause disease in immuno-compromised host or by reversion is present. A new vaccine based on using a Chikungunya virus infectious clone may be more advantageous in efficiently stimulating the immune system and more importantly if based on the SFV vector system would lose the ability to replicate, increasing biosafety. An eventual aim of a system like this would be to generate cheap “one-stop” safe alphavirus vaccine vector that immunised against several alphaviruses, relieving the physical and financial effects of alphavirus epidemics in Africa and Asia.
Chapter Three

The Construction of a Full-length Chikungunya virus cDNA Clone
3.1 Introduction

3.1.1 Alphavirus full-length clones

The construction of full-length cDNA alphavirus clones capable of being transcribed to generate infectious RNA has enabled us to investigate and understand the functions of various genes and their potential roles in causing disease in their hosts (Liljestrom et al., 1991; Santagati et al., 1994, 1995; Tarbatt et al., 1997). While this has proved exciting and very beneficial, other developments involving alphavirus full-length clones have proved equally so, namely the development of the SFV expression vector system. Although the pSP6-SFV4 full-length clone developed by Liljestrom and Garoff (1991) has predominantly been used for molecular analysis studies, it is now regarded not only as a vector of foreign proteins but also as a potential vaccine system. The structural proteins of the SFV genome are removed from the full-length clone and replaced by foreign genes of interest. SFV particles that carry a recombinant RNA molecule undergo only one round of RNA replication in the infected cell and as the structural genes are removed, no progeny virus can be produced. The cell infected with the replicating vector is killed within a few days (Glasgow et al., 1998). A study using the SFV expression system to vaccinate mice against influenza A virus reported influenza-specific humoral and and cell mediated responses (Berglund et al., 1999). Similarly, SFV particles encoding prME or NS1 proteins of louping ill virus protected both mice and sheep from lethal challenge (Morris-Downes et al., 2001; Fleeton et al., 2000).

3.1.3 Chikungunya vaccine

For a vaccine to be beneficial, it must display high efficiency and biosafety. Live attenuated pathogens, while inducing high cellular immune responses and immunological memory, can cause unwanted side effects. On the other hand subunit vaccines are considerably safer but do not always display a high degree of efficiency. An experimental live attenuated CHIKV vaccine exists (Levitt et al., 1986) developed for production for human use. CHIKV strain 15561 was isolated in Thailand and subjected to 18 plaque-to-plaque passages in MRC-5 cultures before CHIKV 181/clone 25 was selected. Although this vaccine induces long-term protection by neutralizing antibody, it is not widely available in the countries most affected by CHIKV epidemics as it was primarily designed with the US military in mind when
developed at the United States Army Medical Research Institute for Infectious Diseases, Maryland, USA (USAMRIID). The development of this vaccine has been the topic of much controversy to the extent that in the developer's testimony to the U.S. Senate in 1988, he felt that it was unsafe (Neil Levitt, personal communication). It has been shown by several groups including our own, that viral vectors offer the opportunity to express a desired antigen in vivo, with potentially less biosafety problems and side effects than attenuated vaccines (Atkins et al., 1996). Systems such as the pSP6-SFV4 full-length clone mentioned above have been developed that do not lead to productive replication in the host and is highly modified to increase biosafety (Fleeton et al., 1999). In order to fully ascertain the functions of various CHIKV genes and their possible roles in causing disease, the construction of a CHIKV full-length clone is evidently the logical and valuable next step towards understanding this virus and the first step in developing an effective and safe vaccine.

3.1.2 Construction of a Chikungunya full-length clone

The construction of the CHIKV full-length clone used the complete genome sequence of the Ross strain of CHIKV as described previously in Chapter 2. A strategy was developed that incorporated the use of two different commercial cloning vectors and the insertion of the CHIKV genome in 5 separate fragments into these vectors. Subsequently the genome was exchanged in 2 large fragments from one vector into the other using a range of restriction enzyme sites within the CHIKV genome. This strategy kept the need for PCR at a minimum, thus reducing the chances of spontaneous mutations materialising within the genome. The PCR that was carried out used a novel type of polymerase that ensured the maximal proofreading fidelity.

3.1.3 TripleMaster PCR system

TripleMaster Enzyme Mix combines the efficiency of Taq DNA Polymerase with the 3′ – 5′ exonuclease activity of a proofreading thermostable enzyme, along with a polymerase-enhancing factor that provides an extremely high extension rate and maximal proofreading assisted fidelity. The error rate of using Taq DNA Polymerase alone in PCR is 2.2×10^{-5} errors per nt per cycle whereas the enzyme mix of the TripleMaster shows fidelity being improved 4 – 5 times compared with Taq. When amplifying CHIKV fragments ranging in size from 1.2 – 3.5 kb, reducing the possible error rate is crucial. Thus, TripleMaster was used throughout this project.
3.2 Materials and methods

3.2.1 Molecular biology techniques used in the construction of a CHIKV full-length clone.

3.2.1.1 Cloning vectors

Two cloning vectors were chosen for the construction of the CHIKV full-length clone. On sequencing the CHIKV genome in 5 fragments each was initially ligated into litmus 28i (L28i; NEB, USA) due to the location of restriction sites in its multiple cloning site (MCS). Fragments were excised and ligated between these vectors until 3 consecutive fragments were in one and 2 in another. At this point another cloning vector was introduced, namely pBluescript SK II (+) (pB; Stratagene, USA). As the 5 fragments spanning the genome did not include the CHIKV 5' untranslated region pB was selected as the location of its restriction sites allowed a strategy to be used that incorporated the insertion of the CHIKV 5' UTR and the fragments from the L28i vectors. pB has also been shown to be a very efficient cloning vector with a T7 promoter capable of high rates of transcription (Dr. Ann Powers, personal communication).

3.2.1.2 Restriction enzymes

Several enzymes were used to excise fragments throughout the construction procedures these were supplied by NEB, USA and can be seen in table 3.1 below along with reaction conditions and components of their 10x buffers. Identical amounts of each enzyme buffer (2 μl), enzyme (20 U), water (2 μl) and sample DNA (0.6 - 0.8 μg) were used for each restriction digestion step. Each digestion step was carried out at 37°C in quintuplicate, pooled and DNA purified using the QIAGEN Nucleotide Removal Kit (Qiagen, USA) to manufacturer’s recommendations. Other enzymes were used for confirmation analysis of successful ligation, only 5 U of enzyme and 0.2 μg of DNA was used for such analyses. Hereafter, all restriction digestion descriptions will be limited in detail to the name of the enzyme used, as the conditions and quantities of reagents are detailed above and in table 3.1.
Table 3.1
Restriction enzymes used in the construction of the CHIKV full-length clone with their respective 10X Buffers (NEB, USA)

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>10X Buffer</th>
<th>Buffer components / Reaction Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bam HI</td>
<td>NEB Buffer 2</td>
<td>150 nM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM dithiothreitol (pH 7.9)</td>
</tr>
<tr>
<td>Bst BI</td>
<td>NEB Buffer 4</td>
<td>50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 1 mM dithiothreitol (pH 7.9)</td>
</tr>
<tr>
<td>Cla I</td>
<td>NEB Buffer 4</td>
<td>50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 1 mM dithiothreitol (pH 7.9)</td>
</tr>
<tr>
<td>Eco RV</td>
<td>NEB Buffer 3</td>
<td>100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl₂, 0.025% Triton-X-100 (pH 7.5)</td>
</tr>
<tr>
<td>Kpn I</td>
<td>NEB Buffer 1</td>
<td>10 mM Bis-Tris-Propane-HCl, 10 mM MgCl₂, 1 mM dithiothreitol (pH 7.0)</td>
</tr>
<tr>
<td>Nde I</td>
<td>NEB Buffer 4</td>
<td>50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 1 mM dithiothreitol (pH 7.9)</td>
</tr>
<tr>
<td>Sac I</td>
<td>NEB Buffer 1</td>
<td>10 mM Bis-Tris-Propane-HCl, 10 mM MgCl₂, 1 mM dithiothreitol (pH 7.0)</td>
</tr>
<tr>
<td>Spe I</td>
<td>NEB Buffer 2</td>
<td>150 nM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM dithiothreitol (pH 7.9)</td>
</tr>
<tr>
<td>Stu I</td>
<td>NEB Buffer 2</td>
<td>150 nM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM dithiothreitol (pH 7.9)</td>
</tr>
</tbody>
</table>

3.2.1.3 Dephosphorylation of linearised L28i and pB cloning vectors

Cloning vectors that were linearised by digestion by more than one enzyme did not need to be dephosphorylated as the 5' and 3' overhangs were not compatible for religation to each other. However, linearised cloning vector (1μg) digested by only one restriction enzyme, was treated with 5 units (1μl) of Antarctic phosphatase (in 10 mM Tris-HCl (pH 7.4), 1 mM MgCl₂, 1 mM DTT, 50% glycerol) and added to 1 μl 10X Antarctic Phosphatase reaction buffer (50 mM Bis-Tris-Propane, 1 mM MgCl₂, 0.1 mM ZnCl₂, pH 6.0. NEB, USA). The reaction was then mixed and incubated at 37°C for 15 min and heat inactivated for 5 minutes at 65°C before further DNA purification and ligation.

3.2.1.4 Ligation of fragments into cloning vectors

L28i and pB were both linearised and dephosphorylated in the case of restriction digestion by one enzyme, or simply linearised by the removal of a region by two different restriction enzymes. Linearised vector was added in a 1:16 ratio to a 700 μl microfuge containing 16 μl of each purified restriction enzyme-digested CHIKV fragment, 2 μl of T4 10X ligase buffer and 1 μl T4 ligase (Promega, USA). The reaction was gently vortexed and incubated overnight at room temperature.
Subsequent reactions involved the excision of ligated fragments from one successful fragment-vector clone being ligated into other successful fragment-vector clones. This is described in more detail for each clone in sections 3.2.3.1 to 3.2.3.5

3.2.1.5 Transformation, colony selection and confirmation analysis

All ligation reactions involving the L28i cloning vector were transformed in competent *E. coli* DH5α cells and selected for as described previously for the sequencing of the CHIKV genome in section 2.10.4.6. Ligation reactions involving the pB cloning vector were transformed in ultra-competent *E. coli* XL-10 Gold cells (Stratagene, USA) following manufacturer’s guidelines. Of the transformed recombinant vectors, typically 5-20 white colonies were selected for each ligation reaction. DNA was extracted and restriction digestion confirmation analysis performed as previously described in section 2.10.4.8 with the appropriate enzyme and 10X buffer.

3.2.1.6 Primer design

CHIKV virus RNA was isolated, cDNA amplified and oligonucleotide primer pairs designed as described previously in sections 2.10.3.1 and 2.10.3.2 respectively. However, the five amplicons produced ranged from 1220 nt to 3401 nt in size, significantly larger than the 500 – 600 nt amplicons typically produced and described in section 2.10.3.3. Five fragments were amplified using the primers 1-5 described in table 3.2. Primer “Fragment 5 Rev” included a “TTCGAA” oligonucleotide sequence at the 5’ end to generate a unique *Bst BI* restriction site for insertion into L28i.

One primer pair termed Fragment 3 / 4 was used later in the construction of the CHIKV full-length clone and produced a 3384 nt fragment containing internal *Cla I* sites at each end, this fragment is discussed in more detail in section 3.2.4.5. The 5’ UTR oligonucleotides incorporated a *Kpn I* site (ggtacc) and a *Bam HI* (ggatcc) at the 5’ and 3’ ends respectively. Both of these sites were flanked by 3 random nucleotides to maximize digestion efficiency and are discussed in more detail later in section 3.2.4.2.
<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5'-3')</th>
<th>Genome Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragment 1 Fwd</td>
<td>ATGGCTGCGTGAGACACA</td>
<td>77-95</td>
</tr>
<tr>
<td>Fragment 1 Rev</td>
<td>TTTATCTCATCATATATGAAGAAGCCGAC</td>
<td>2530-2559</td>
</tr>
<tr>
<td>Fragment 2 Fwd</td>
<td>GCGATGATGCGACCCACCGCTGAGACACCGAC</td>
<td>2000-2029</td>
</tr>
<tr>
<td>Fragment 2 Rev</td>
<td>GTATACACTCCGCTGACACCCACCGCTGAC</td>
<td>4160-4189</td>
</tr>
<tr>
<td>Fragment 3 Fwd</td>
<td>ATGCTCGGGGTGGACTGAGACTGAC</td>
<td>3800-3829</td>
</tr>
<tr>
<td>Fragment 3 Rev</td>
<td>ACCACGCTCAGCCACCCACGCTCAG</td>
<td>7300-7329</td>
</tr>
<tr>
<td>Fragment 4 Fwd</td>
<td>TTGGATGACATGGAAGGACTGACATGAC</td>
<td>7120-7149</td>
</tr>
<tr>
<td>Fragment 4 Rev</td>
<td>TCTGACTGATGGAAGGACTGACATGAC</td>
<td>10631-10660</td>
</tr>
<tr>
<td>Fragment 5 Fwd</td>
<td>GCTTTCAGCCGACCCACCCAGTCGAC</td>
<td>10491-10520</td>
</tr>
<tr>
<td>Fragment 5 Rev</td>
<td>TTTCAATAATTAAAAGAAAATAAACATCTCAA</td>
<td>11782-11813</td>
</tr>
<tr>
<td>Fragment 3 / 4 Fwd</td>
<td>GGATATGCGACATATATGAC</td>
<td>4708-4732</td>
</tr>
<tr>
<td>Fragment 3 / 4 Rev</td>
<td>AACACGCTGACACCTGACGAC</td>
<td>8070-8092</td>
</tr>
<tr>
<td>5'UTR Oligo Fwd</td>
<td>TTGGGTACCTAAATACGACTCGACTACAGGATGCGGACTGAC</td>
<td>1-76</td>
</tr>
<tr>
<td>5'UTR Oligo Rev</td>
<td>CGCGATCCATGGTCATGGATGCTTCTATACTCTTTGTCTCTCTCT</td>
<td>76-1</td>
</tr>
</tbody>
</table>

Table 3.2 Primers designed to amplify the CHIKV genome in five fragments and a 106 nt CHIKV 5' UTR complementary oligonucleotide pair.

3.2.1.7 Polymerase Chain Reaction (PCR)

PCR was carried out following the TripleMaster Long range PCR system (Eppendorf, USA) guidelines, with the following thermocycling conditions; an initial cycle of 2 min at 95°C, followed by 35 cycles of 30 sec at 95°C, 30 sec at 55°C and 5 min extension at 72°C. A final extension time of 15 min at 72°C was added and the samples stored at -20°C until DNA purification could be carried out.

3.2.1.8 DNA purification

All five amplified fragments spanning the CHIKV genome were DNA purified using the Promega Wizard Kit (Promega, USA) as described in section 2.10.4.1. Figure 3.1 illustrates the fragment sizes upon restriction digestion, and the genes each fragment encompasses.
Figure 3.1 Linearised map of Chikungunya Ross genome showing the locations of 5 fragments of the CHIKV genome. (a) Figures b-f show the individual fragments 1-5 with their respective restriction enzyme sites for cloning into the Litmus 28i cloning vector at each end are also shown. Sizes of the fragments are shown below each figure and are inclusive of the entire undigested terminal restriction sites. The first 76 nucleotides of the CHIKV genome 5' UTR were intentionally not incorporated in fragment 1 (elaborated on later in section 3.2.4.2).
3.2.2 Preparation and ligation of CHIKV fragments 1-5 into L28i

3.2.2.1 Preparation of L28i

Litmus 28i plasmid was linearised (1μg) with Eco RV for 2 h at 37°C, the DNA purified as previously described and dephosphorylated. Unlike fragments 2, 3 and 4 which contained EcoRV restriction sites at both 5’ and 3’ ends, fragment 1 contained a Bam HI at its 5’end and an Eco RV site at its 3’ end and fragment 5 contained a Bst BI restriction site at its 3’ end with an Eco RV site at its 5’ end. Preparation of L28i for the insertion of fragments 1 and 5 therefore each required an additional restriction digestion of L28i previously digested with Eco RV, with Bam HI and Bst BI respectively. Conditions of digestion were identical to those used with Eco RV with the exception of the restriction enzymes used and their respective buffers.

3.2.2.2 Restriction Digestion

All five DNA fragments were digested with Eco RV to create the 5’ overhang needed to ligate into the Eco RV-linearised Litmus 28iii cloning vector (New England Biolabs (NEB), USA). The following reaction mixtures were digested for 2 h at 37°C: 15 μl Purified PCR product, 2 μl nuclease-free water, 2 μl 10X NEBuffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10mM MgCl₂, 1mM dithiothreitol pH 7.9) and 20U Eco RV enzyme (NEB, USA). Fragments 1 and 5 were additionally digested with Bam HI and Bst BI restriction enzymes as described for L28i in section 3.2.4. Each digestion for all fragments was done in quintiplicate and pooled.

3.2.2.3 Ligation of CHIKV fragments 1-5 into L28i

Eco RV digested CHIKV fragments 2, 3 and 4 were ligated into dephosphorylated, Eco RV-linearised L28i. Double-digested fragments 1 (Eco RV / Bam HI) and 5 (Eco RV / Bst BI) were ligated into their respective double-digested L28i cloning vectors in the same manner described for the EcoRV single-digested fragments above. Ligation reactions were left at room temperature overnight and subsequently transformed as described in section 3.2.1.5.

96
3.2.2.4 Confirmation analysis of L28i-CHIKV fragment colonies

In order to confirm successful ligation of each of the five CHIKV fragments into their respective restriction-digested L28i cloning vectors, random colonies of each were picked and DNA isolated. The DNA from each L28i-Fragment colony was then digested with the appropriate restriction enzyme.

3.2.2.5 Confirmation analysis of L28i-Fragment 1

DNA was isolated from 4 random transformed L28i-Fragment 1 (LF1, 5064 nt) colonies. These were then double-digested with restriction enzymes *Nde I* (2674, absent in L28i) and *Sac I* (4823, absent in CHIKV). A positive ligation was recorded if 2 DNA bands of 2149 and 2915 nt were observed when run on a 0.8% agarose gel. Figure 3.2 shows fragment 1 inserted in L28i with the relevant restriction enzymes and their respective positions in brackets.

![Diagram of L28i with CHIKV fragment 1 (LF1)](image)

Figure 3.2 L28i with CHIKV fragment 1 (LF1)
3.2.2.6 Confirmation analysis of L28i-Fragment 2

L28i-Fragment 2 (LF2, 4561 nt) was digested with Stu I (3493 and 4340, present once in CHIKV Fragment and once in L28i vector). Positive conformational analysis resulted in the presence of 2 DNA bands of 3714 and 847 nt in size when run on a 0.8% agarose gel. The map of LF2 with relevant restriction enzymes and gene location can be observed in figure 3.3.

Figure 3.3 L28i with CHIKV fragment 2 (LF2)
3.2.2.7 Confirmation analysis of L28i-Fragment 3

L28i-Fragment 3 (LF3, 5922 nt) was digested with Eco RV (2523 and 5622, both sites in CHIKV Fragment 3). Positive conformational analysis resulted in the presence of 2 DNA bands of 2823 and 3099 nt in size when run on a 0.8% agarose gel. The map of LF3 can be observed in figure 3.4.

Figure 3.4 L28i with CHIKV Fragment 3 (LF3)
3.2.2.8 Confirmation analysis of L28i-Fragment 4

Like LF3, L28i-Fragment 4 (LF4, 6218 nt) was digested with *Eco RV* (2523 and 5918, both sites in CHIKV Fragment 4). Positive conformational analysis resulted in the presence of 2 DNA bands of 2823 and 3395 nt in size when run on a 0.8% agarose gel. The map of LF4 can be observed in figure 3.5.

![Diagram of L28i with CHIKV Fragment 4 (LF4)](image)

Figure 3.5 L28i with CHIKV Fragment 4 (LF4)
3.2.2.9 Confirmation analysis of L28i-Fragment 5

L28i-Fragment 5 (LF5, 3992 nt) DNA was double-digested with restriction enzymes Spe I (2461, absent in CHIKV) and Stu I (3771, absent in L28i). A positive ligation was recorded if 2 DNA bands of 1310 and 2682 nt were observed when run on a 0.8% agarose gel. Figure 3.6 shows fragment 5 inserted in L28i with the relevant restriction enzymes and their respective positions in brackets.

![Diagram](image)

Figure 3.6 L28i with CHIKV Fragment 5 (LF5)
3.2.3 Construction of L28i / CHIKV Fragment (LF) intermediates

With the entire CHIKV genome inserted into 5 respective L28i cloning vectors (LF1-5), 1 colony of each was chosen for manipulation, subsequent steps in the construction of a CHIKV full-length clone involved excising the fragments from each clone and constructing full-length clone intermediates in L28i.

3.2.3.1 Construction of LF1-2 intermediate

Fragment 2 was excised from LF2 and LF1 linearised, both with Nde I. Linearised LF1 was dephosphorylated to prevent recircularisation and Fragment 2 was ligated in, with the resulting intermediate termed LF1-2. Confirmation analysis was carried out on LF1-2 using Nde I (2729 and 4412). If Fragment 2 was inserted in the correct orientation 2 bands of 1683 and 5119 nt when run on a 0.8% agarose gel were observed (figure 3.7). In the case of Fragment 2 being inserted in the reverse orientation 2 bands: 413 and 6389 nt in size would have been observed.

![Diagram](image.png)

Figure 3.7 Construction of LF1-2 intermediate resulting from the ligation of Fragment 2 into Eco RV-linearised LF1.
3.2.3.2 Construction of LF1-2 Δ*Nde I* intermediate

By removing the *Eco RV* restriction site at position 4223, only one *Eco RV* site was present at nucleotide position 2485. Fragment 3 could be ligated into LF1-2. This was carried out using the *Nde I* restriction enzyme that cuts LF1-2 at positions 2729 and 4412. The intermediate generated was termed LF1-2 Δ*Nde I* (5119 nt) and was recircularised using T4 ligase (NEB, USA). The excised 1683 nt *Nde I* fragment was DNA purified and stored at -20°C for subsequent reinsertion. A map of LF1-2 Δ*Nde I* can be seen in figure 3.8 below.

![Figure 3.8 Construction of LF1-2 Δ*Nde I* intermediate](image)

103
3.2.3.3 Construction of LF1-2-3 Δ \textit{Nde I} intermediate

LF1-2 Δ \textit{Nde I} was linearised using \textit{Eco RV} and dephosphorylated to prevent recircularisation. Fragment 3 was then excised from LF3 using \textit{Eco RV} and ligated into the \textit{Eco RV}-linearised LF1-2 Δ \textit{Nde I} clone. The resulting intermediate clone, termed LF1-2-3 Δ \textit{Nde I} (8218 nt) underwent confirmation orientation analysis by restriction digestion with \textit{Nde I} (5828) and \textit{Cla I} (either position 3176 if fragment 3 ligated in positive orientation or position 4893 in negative orientation). Positive confirmation resulted in 2 bands, 2652 and 5566 nt in length when run on a 0.8% agarose gel, insertion of Fragment 3 in the reverse confirmation produced two bands of 935 and 7283 nt. Figure 3.9 shows the map of LF1-2-3 Δ \textit{Nde I} with fragment 3 in positive orientation.

![Diagram of LF1-2-3 Δ Nde I](image-url)

Figure 3.9 L28i with CHIKV Fragments 1 and 2 Δ \textit{Nde I} fragment plus Fragment 3 (LF1-2-3 Δ \textit{Nde I})
3.2.3.4 Reinsertion of \textit{Nde I} fragment into LF1-2-3 \& \textit{Nde I} intermediate

LF1-2-3 \&\textit{Nde I} was linearised with \textit{Nde I} (5828) and the 1683 nt DNA purified \textit{Nde I} fragment excised in section 3.2.3.2 was religated using T4 ligase. The resulting clone was termed LF1-2-3 (9901 nt) and the orientation of the \textit{Nde I} insert was checked using \textit{Eco R V} (positions 2485, 5584 and 7322 in positive orientation or 2485, 5584 and 6017 in the negative orientation). Positive orientation resulted in three DNA bands of 1738, 3099 and 5064 nt respectively when run on a 0.8% agarose gel. Negative orientation resulted in three bands of 433, 3099 and 6369 nt in length.

Figure 3.10 shows LF1-2-3 in positive orientation, an open reading frame (ORF) is also depicted in order to show that the ligations of CHIKV fragments 1, 2 and 3 maintained the correct ORF sequence.

\begin{figure}
\centering
\scalebox{0.5}{
\includegraphics{figure3.10.png}}
\caption{L28i with complete CHIKV Fragments 1, 2 and 3 (LF1-2-3)}
\end{figure}
3.2.3.5 Construction of LF5-4 intermediate

An intermediate clone incorporating CHIKV fragment 4 (3395 nt) into LF5 (3992 nt) was constructed by excising fragment 4 from LF4 with Eco RV (at positions 2623 and 5918) and ligating it into an Eco RV (3692)-linearised and dephosphorylated LF5 clone. The resulting clone was termed LF5-4 (7387 nt). Positive orientation was determined by double digestion with Spe I (2461, unique to L28i) and Cla I (6292 in positive orientation, 4487 in negative orientation). Upon running the digested LF5-4 DNA on an agarose gel positive orientation of the fragment 4 insert was detected with bands of 3831 and 3556 nt whereas negative orientation fragment insertion produced DNA bands of 2026 and 5361 nt in length. Figure 3.11 illustrates the positive orientation map of LF5-4.
3.2.4 Construction of pBluescript SK II [+] / CHIKV Fragment intermediates

With fragments 1, 2 and 3 in one L28i vector (LF1-2-3) and fragments 4 and 5 in another (LF5-4) with respective sizes of 9901 and 7387 nt the next step of the full-length clone construction strategy was carried out. pBluescript SK II(+) (pB, Stratagene, USA, figure 3.12) was chosen as the cloning vector for the final full-length clone because of its successful previous use as the parent backbone of an O'nyong nyong (ONNV) full-length clone and because the selection of restriction sites in its multiple cloning site allowed the introduction of the CHIKV 5' UTR (pB-5').

Figure 3.12 pBluescript SK II [+]) vector used for final stages of CHIKV full-length clone construction.
3.2.4.1 Preparation of pBluescript SK II [+] (pB)

A 62 nt region of the pB multiple cloning site (MCS) containing unique restriction sites for *Cla I* and *Eco RV* was removed by pB digestion with *Kpn I* (658) and *Bam HI* (720), which flank either side of the *Cla I* and *Eco RV* sites. The linearised pB cloning vector was then DNA purified and was ready for the ligation of the CHIKV 5' UTR.

3.2.4.2 Production of the CHIKV 5' UTR oligonucleotide

A complementary pair of 113 nt oligonucleotides (table 3.1) were designed to incorporate a *Kpn I* site and an additional T7 promoter immediately preceding the CHIKV 5' UTR nucleotide sequence. CHIKV fragment 1 contained a *Bam HI* restriction site at its 5' end, therefore the oligonucleotide designed for insertion into pB contained this site at its 3' end. Mixed equimolar amounts of each oligonucleotide and a 2x ligation buffer were heated to 94 °C for 5 min and allowed to cool to room temperature to anneal, the reaction was run on 2% agarose gel, extracted, purified and digested with *Kpn I* and *Bam HI*. A map of the oligonucleotide is illustrated in figure 3.13 below.

![Figure 3.13 Oligonucleotide flanked with a Kpn I and Bam HI site at the 5' and 3' ends respectively. Incorporated within these sites was a T7 promoter site and the CHIKV 5' UTR.](image-url)
3.2.4.3 Ligation of CHIKV 5' UTR into pB cloning vector

The Kpn I / Bam HI – digested CHIKV 5' UTR oligonucleotide was ligated into the Kpn I / Bam HI –linearised pB cloning vector and the resulting clone termed pB-5' (figure 3.14). Confirmation analysis was carried out by restriction digestion with Spe I (764, present only in pB) and Kpn I (685) present only in the inserted oligonucleotide. For positive confirmation 2 DNA bands should be observed when run on a 0.8% agarose gel, these are 106 and 2893 nt in length respectively.

Figure 3.14 Ligation of CHIKV 5' UTR into pBluscript SK II [+] vector (pB-5')
3.2.4.4 Construction of pB-5’ plus Fragment 1-2-3 intermediate (pB-5’123)

Fragment 123 was excised from LF1-2-3 using *Bam HI* (9609) and *Spe I* (2423). The resulting clone from this stage was termed pB-5’123 and can be seen in figure 3.15.

![Diagram of pB-5'123](image)

Figure 3.15 pB5’ with Fragment 123 (pB5’123)
3.2.4.5 Construction of pB-5'123 plus Fragment 5-4 intermediate (pB-5'123*45)

pB-5'123 was digested with Cla I (4891) and Spe I (2423), as was LF5-4 at its respective Cla I (6292) and Spe I (4261) sites. The 2468 nt drop-out fragment from p-5'123 containing approximately three quarters of Fragment 3 was discarded (figure 3.16a), the remaining linearised clone intermediate was then termed pB-5'123*. The excised fragment from LF5-4 contained all of fragment 5 and most of fragment 4 and was termed fragment *45 (figure 3.16b). Fragment *45 was then ligated into pB-5'123* and the resulting clone termed pB-5'123*45 (figure 3.16c).
3.2.4.6 Insertion of RT-PCR 3 / 4 *Cla I* Fragment

The region of the CHIKV genome lost in section 3.2.4.5, combining the latter three quarters of fragment 3 and the first 795 of fragment 4 spanned 3201 nt in length. Primers were thus designed to amplify this region (table 3.1), making sure that the forward primer lay upstream of the *Cla I* site of the CHIKV genome at position 4797 and the reverse primer downstream of the *Cla I* site at position 7998. Upon amplifying by RT-PCR a 3384 nt fragment encompassing this region, the amplicon was DNA purified and digested with *Cla I* to produce the 3201 nt fragment (figure 3.17) for insertion into pB-5’123*45 (figure 3.18a). Successful ligation produced a full-length clone containing the entire CHIKV genome, termed pB-5’12345 (figure 3.18b).

Figure 3.17 RT-PCR CHIKV fragment 3 / 4, incorporating regions of fragment 3 and 4 that were lost to allow the ligation of fragment *45 into pB-5' 123*. Fragment was digested with *Cla I* for insertion into pB-5’123*45.
3.2.4.7 Ligation of a Poly (A) tail

An oligonucleotide was designed to incorporate an *Spe I* restriction enzyme site at its 5’ end and a *Sac I* at its 3’ end. A run of 18 adenine residue lay between these two restriction sites, thus incorporating a polyA tract within the CHIKV full-length clone.

3.2.5 Production of RNA from pB-5’12345 CHIKV cDNA full-length clone (pBCHIKV)

10 μg of pBCHIKV cDNA was linearised (14741 nt) with *Sac I* at position 12500 and purified as described in section 3.2.1.2. pBCHIKV DNA concentration was assessed by mixing a 1 μl aliquot with 1 μl loading buffer and running this on a 0.8% agarose gel (wt/vol). The concentration was estimated from this gel by comparing band intensity with that of 5 and 10 μl Lambda (NEB, *Hind III* and *Eco RI*) DNA molecular weight marker.

5 μl of DNA at a concentration of 1μg/μl was added to a reaction mix containing the following: 5 μl DTT (100mM), 5 μl of rNTP capping mix (5 mM rATP, rCTP, rUTP and 0.5 mM rGTP), 5 μl Ribo m7G Cap Analog (5 mM), 10 μl Transcription Optimised 5x Buffer, 50 U Recombinant RNasin Ribonuclease Inhibitor, 40 U T7 RNA polymerase and nuclease free water to give a final volume of 50 μl (Promega, USA). The mixture was lightly vortexed and incubated at 37°C for 1h, at which point an additional 40 U of T7 RNA polymerase was added to the mixture and incubated for a further hour. 5 μl was removed and run on a 1% RNase-free gel to verify RNA quality.

3.2.6 Electroporation in BHK-21 cells

Three 75 cm² tissue culture flasks containing BHK-21 cells approximately 80% in confluence were used for each electroporation. The cell monolayers were washed twice with Dulbecco’s phosphate buffered saline without calcium and magnesium (D-PBS; Invitrogen, UK) and incubated with 0.5% trypsin 5.3 mM EDTA (Invitrogen, UK) at 37°C until cell detachment was evident, typically within 2-3
minutes (min). The flasks were tapped to complete detachment and 10 ml supplemented BHK-21 medium was added. The resulting cell suspensions were aspirated several times to break up cell clumps and centrifuged (1500 rpm, 15 min). Pellets were resuspended in 10 ml D-PBS and centrifuged as before. Each in vitro-transcribed RNA reaction contained 50 μl of CHIKV, SFV4 or D-PBS (SFV4 acting as a positive control and D-PBS as the negative). Cells were resuspended in 700 μl of D-PBS and were added to 50 μl of each RNA and placed on a 0.4 μm electroporation cuvette. The cuvette was then electroporated at 0.85 kV and 25 μF capacitance using a BioRad Gene Pulser II. Following 2 pulses, cells were mixed with 20 ml of fresh BHK medium, transferred to 75 cm² tissue culture flasks and incubated for 24-36 h at 37° C in a humidified atmosphere of 5% CO₂. After this time, flasks were observed under a microscope for signs of the cell layers exhibiting cytopathogenic effect (c.p.e), at which point full-length virus was harvested and passaged a further two times in BHK-21 cells. Virus was filter-purified and titre established by plaque assay. Infectious virus RNA was isolated from infected cell monolayers as described previously in section 2.10.3.1.
3.3 Results

3.3.1 CHIKV genome in 5 Fragments

The CHIKV genome was successfully amplified over 5 Long PCR fragments as shown in figure 3.19 below.

![Figure 3.19 CHIKV genome amplified over 5 fragments](image)

Figure 3.19 CHIKV genome amplified over 5 fragments
0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lane 1: Fragment 1 (2482 nt). Lane 2: Fragment 2 (2189 nt). Lane 3: Fragment 3 (3529 nt). Lane 4: Fragment 4 (3540 nt). Lane 5: Fragment 5 (1322 nt).

3.3.2 CHIKV Fragments ligated into L28i

3.3.2.1 LF1

Confirmation analysis of four CHIKV Fragment 1s ligated into L28i (LF1) colonies by restriction digestion with Nde I and Sac I. Positive ligation was detected in 3 out of four colonies where 2 bands of 2949 and 2149 nt were observed, figure 3.20.

![Figure 3.20 Four random LF1 colonies digested with Nde I and Sac I](image)

Figure 3.20 Four random LF1 colonies digested with Nde I and Sac I
0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-4: LF1 digested with Nde I and Sac I, positive colonies have 2 bands of 2915 and 2149 nt in length. Lanes 1, 3, 4 are positive, Lane 2 is negative.
3.3.2.2 LF2

Confirmation analysis of five CHIKV Fragment 2s ligated into L28i (LF2) colonies by restriction digestion with *Stu I*. Positive ligation was detected in 4 out of 5 colonies where 2 bands of 3714 and 847 nt were observed, figure 3.21.

*Figure 3.21 Five random LF2 colonies digested with *Stu I* 0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-5: LF2 digested with *Stu I*, positive colonies have 2 bands of 3714 and 847 nt in length. Lane 1 is negative Lanes 2 - 4 are positive.*

3.3.2.3 LF3

Confirmation analysis of two CHIKV Fragment 3s ligated into L28i (LF3) colonies by restriction digestion with *Eco RV*. Positive ligation was detected in both colonies where 2 bands of 3099 and 2823 nt were observed, figure 3.22.

*Figure 3.22 Two random LF3 colonies digested with *Eco RV* 0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-2: LF3 digested with *Eco RV*, positive colonies have 2 bands of 3099 and 2823 nt in length. Both lanes are positive.*
3.3.2.4 LF4

Confirmation analysis of six CHIKV Fragment 4s ligated into L28i (LF4) colonies by restriction digestion with Eco RV. Positive ligation was detected in both colonies where 2 bands of 3395 and 2823 nt were observed, figure 3.23.

![Image of gel showing Eco RV digestion of LF4 colonies](image)

Figure 3.23 Six random LF4 colonies digested with Eco RV

0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-6: LF4 digested with Eco RV, positive colonies have 2 bands of 3099 and 2823 nt in length. Lanes 1-3 are positive.

3.3.2.5 LF5

Confirmation analysis of five CHIKV Fragment 5s ligated into L28i (LF5) colonies by restriction digestion 2682 and 1310 nt were observed, figure 3.24.

![Image of gel showing Spe I and Stu I digestion of LF5 colonies](image)

Figure 3.24 Five random LF5 colonies digested with Spe I and Stu I

0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-5: LF5 digested with Spe I and Stu I, positive colonies have 2 bands of 2682 and 1310 nt in length. Lane 5 is positive. Some faint undigested LF5 may also be seen in lane 5.
3.3.2.6 LF1-2 Intermediate

Confirmation analysis of seven LF1-2 intermediate colonies by restriction digestion with *Nde I*. Positive ligation was detected in both colonies where 2 bands of 5119 and 1683 nt were observed (figure 3.25). The 5119 nt LF1-2 Δ *Nde I* fragment was subsequently excised from the gel, purified and religated, the 1683 nt fragment was excised, purified and stored at -20°C until it was religated into LF1-2-3 Δ *Nde I*.

![Figure 3.25](image)

Figure 3.25 Seven random LF1-2 colonies digested with *Nde I*

0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-7: LF1-2 digested with *Nde I*, positive colonies have 2 bands of 5119 and 1683 nt in length. Lanes 1-5 are positive.

3.3.2.7 Religation of *Nde I* fragment into LF1-2-3 Δ *Nde I* Intermediate

One LF1-2-3 Δ *Nde I* Intermediate colony was linearised with *Nde I* and dephosphorylated. The excised *Nde I* fragment from section 3.2.2.6 was prepared for religation into LF1-2-3 Δ *Nde I*. (figure 3.26)

![Figure 3.26](image)

Figure 3.26 LF1-2-3 Δ *Nde I* and *Nde I* fragment from LF1-2.

0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lane 1: undigested LF1-2-3 Δ *Nde I*. Lane 2: *Nde I* digested LF1-2-3 Δ *Nde I*. Lane 3: *Nde I* digested and dephosphorylated LF1-2-3 Δ *Nde I*. Lane 4: 1683 nt *Nde I* fragment excised from LF1-2
3.3.2.8 LF1-2-3

Confirmation analysis of one LF1-2-3 colony by restriction digestion with Xmn I. Positive ligation was detected in both colonies where 2 bands of 8821 and 1718 nt were observed, figure 3.27.

![Gel Image]

Figure 3.27 LF1-2-3 colony digested with Xmn I

0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1: LF1-2-3 digested with Xmn I, positive colonies have 2 bands of 8821 and 1718 nt in length. Lane 1 is positive.
3.3.2.9 LF5-4

Confirmation analysis of three LF5-4 colonies was determined by restriction digestion with \textit{Cla I} and \textit{Eco RV}. Positive ligation was detected in colonies if a 7387 nt band was observed with \textit{Cla I} digests and 2 bands of 3395 and 3992 nt were observed for LF5-4 DNA digested with \textit{Eco RV}, these are illustrated in figure 3.28 below.

![Three LF5-4 colonies digested with Cla I and Eco RV](image)

Figure 3.28 Three LF5-4 colonies digested with \textit{Cla I} and \textit{Eco RV}

0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1, 3, 5: LF5-4 colonies 1-3 respectively digested with \textit{Eco RV}, positive colonies have 2 bands of 3392 and 3395 nt in length. Lanes 2, 4, 6: LF5-4 colonies 1-3 respectively digested with \textit{Cla I}, positive colonies have 1 band, 7387 nt in length.
3.3.2.10B-5'123

On the insertion of Fragment 123 into pB-5’ an intermediate (pB-5’123) was generated, seven random colonies were selected and DNA extracted. Confirmation analysis was carried out using Eco RV. Successful ligation produced 3 bands upon digestion with Eco RV of 5282, 3157 and 1738 nt in length respectively (figure 3.29).

Figure 3.29 Seven pB-5’123 colonies digested with Eco RV
0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-7: pB-5’123 colonies 1-7 digested with Eco RV, positive colonies have 3 bands of 5282, 3157 and 1738 nt in length.
3.3.2.11 pB-5'123*45

The successful ligation of Fragment *45 into the pB-5'123* intermediate, another intermediate (pB-5'123*45) was generated; five random colonies were selected and DNA extracted. Confirmation analysis was carried out using *Eco RV*. Successful ligation produced 3 bands upon digestion with *Eco RV* of 6509, 3239 and 1738 nt in length respectively (figure 3.30).

![Figure 3.30 Five pB-5'123*45 colonies digested with Eco RV](image)

0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-5: pB-5'123*45 colonies 1-5 digested with *Eco RV*, positive colonies have 3 bands of 6509, 3239 and 1738 nt in length.
3.3.2.12 RT- Fragment 3 / 4 (prior to Cla I digestion)

Fragment 3 / 4 was generated by RT-PCR, the primers designed (table 3.1) successfully amplified a 3384 nt amplicon, the pooled cDNA was run on a 0.8 % agarose gel stained with ethidium bromide. Although two smaller bands approximately 1.5-1.7 kb were visible the correct sized fragment was gel extracted, purified and digested with Cla I for ligation into pB-5'123*45. The 3384 nt PCR product can be seen in figure 3.31 below.

![Image of gel](image)

Figure 3.31 Pooled Fragment 3 / 4 PCR amplicons

0.8% agarose gel stained with ethidium bromide, 1kb markers supplied by NEB. Lanes 1-7: pooled fragment 3 / 4 PCR fragment spanning 3384 nt in length.
3.3.2.13 pB-5’12345

On successfully ligating CHIKV fragment 3 / 4 into pB-5’123*45 in addition to a poly A tail the full-length CHIKV cDNA clone was complete. When digested with Eco RV to test orientation of inserts and as a confirmation analysis of ligation, 4 expected bands were seen with sizes ranging from 6510, 3395, 3098 to 790 nt as pictured in figure 3.32a. Full-length cDNA was linearised using the unique Sac I enzyme and reverse transcribed into RNA before being electroporated into BHK-21 cells. SFV4 RNA from the pSP6-SFV4 full-length cDNA clone was reverse transcribed as a positive control, both RNA species can be seen in figure 3.32b.

Figure 3.32 pB-5’12345 CHIKV cDNA (Eco RV-digested, A) and RNA (B)
0.8% agarose gel stained with ethidium bromide, 1kb and λ Marker supplied by NEB.
(A) Lanes 1: pB-5’12345 CHIKV cDNA digested with Eco RV, positive confirmation analysis successfully shows 4 bands, ranging from 6510, 3395, 3098 to 1736 nt in size. (B) Lane 1: 5 µl SFV4 RNA, Lane 2: 10 µl SFV4 RNA, Lane 3: 5 µl pB-5’12345 CHIKV RNA, Lane 4: 10 µl pB-5’12345 CHIKV RNA.
3.4 Discussion

Chikungunya virus (CHIKV) has been responsible for several large epidemics in Africa and Southeast Asia since it was first isolated by Ross (1956) following the Newala epidemic in Tanzania during 1952-1953. A vaccine was developed by Levitt et al in 1986 at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID). However, the live attenuated CHIKV vaccine was shrouded in controversy as the cell type in which it was developed was changed from the master seed to the production seed, and the vaccine partially reverted, as some of the mutations responsible for attenuation reverted back to the original sequence, thus causing disease rather than preventing it in those vaccinated.

With this in mind, the original Ross strain of CHIKV was sequenced and characterised as part of the research included in this thesis. A full length cDNA clone was constructed using a de novo strategy. Several other alphavirus full length clones have been constructed by substituting the virus genome of an existing full-length clone with that of another virus strain. In the case of SP6-CA7 constructed by Tarbatt et al (1997), the virus genome of the pSP6-SFV4 full length clone constructed by Liljestrom et al (1991) was replaced with that of the avirulent SFV-A7. However, in the case of SP6-CA7, the 5' NTR was not substituted with that SFV-A7, and infectious virus produced from what should have been an avirulent, retained a certain degree of virulence. In addition to this, constructing a full length clone de novo allows more choice in deciding which promoter to use and what restriction enzymes to include in the multiple cloning site for subsequent manipulations.

The strategy adopted incorporated the use of two commercially available cloning vectors. Initially the genome was amplified over five large fragments using high fidelity proof-reading enzymes to minimise the error rate of mutations during amplification. More recent strategies involve amplifying an entire genome in one fragment using long range PCR, and although preferable this technique was not yet available at the time of this research. By incorporating each of these five fragments in its own cloning vector (L28i) large quantities of CHIKV DNA were generated with a minimal amount of RNA manipulation, reducing the number of spontaneous errors generated within the genome. These fragments were successfully ligated and orientation of insertions confirmed by restriction digestion. They were subsequently excised from one vector and ligated to the next using a series of intermediates until the first 7121 nt of the first open reading frame (ORF) of the CHIKV genome were
incorporated in one vector (LF1-2-3). The remaining 4610 nt of the genome (including the second ORF) was produced in another L28i vector (LF5-4). An existing infectious clone of another alphavirus that shares a high sequence identity with CHIKV termed O’nyong nyong virus (ONNV) was constructed using the pBluescript SK II [+] cloning vector (pB) that utilises the well characterised T7 promoter. The subsequent steps of the strategy in constructing a CHIKV infectious clone were to combine the CHIKV genome from LF123 and LF54 by inserting them into the pB vector. A full length SFV-A7 cDNA clone constructed in our lab by Tarbatt et al. (1997) was produced by substituting the virulent SFV genome within the pSP6-SFV4 full length cDNA clone constructed by Liljestrom et al. (1991) with that of the avirulent SFV-A7 genome. This was completed relatively effectively; however the 5’ NTR of the virulent pSFV-SFV4 clone was not substituted with that of SFV-A7. This resulted in the infectious virus produced from the construct SFV-A7 clone termed CA7, killing approximately 30% of intranasally infected mice while SFV-A7 produced no mortality in infected mice. It was therefore paramount when constructing the full length cDNA CHIKV clone that a strategy was in place to incorporate the CHIKV 5’ NTR effectively. The pB cloning vector was specifically chosen with this in mind.

By removing 62 nt of the pB multiple cloning site two restriction enzyme sites present in the CHIKV genome, a restriction site absent in CHIKV (Kpn I) and another site present at the 5’ terminus of nsP1 of the CHIKV genome (Bam HI) were able to be manipulated in order to initially incorporate the CHIKV 5’ NTR and subsequently the remainder of the CHIKV genome from LF1-2-3 and LF5-4. The 5’ NTR oligonucleotide pair were designed to incorporate both restriction sites mentioned above. By hybridising the oligonucleotide pair a 113 nt fragment was generated. This fragment included a Kpn I site upstream of a T7 promoter recognition sequence directly adjacent to the 5’ NTR, the 5’ NTR and the first 8 nucleotides of the CHIKV nsP1 that the Bam HI restriction site occupied. Therefore by digesting the fused oligonucleotide with both these enzymes it was successfully ligated into pB.

Downstream from the Bam HI site in pB was an Spe I site. The Spe I site was also present in L28i, 62 nt downstream from the 3’ terminus of the 7121 nt CHIKV fragment in LF1-2-3. The subsequent step was to remove the 7121 nt CHIKV fragment from LF1-2-3 using the Bam HI and Spe I sites in LF1-2-3 and ligating this in frame with the Bam HI site incorporated into the 5’ NTR oligonucleotide. This was
successfully completed and the intermediate vector was termed pB-5'123. In order to insert the remaining 4610 nt of the CHIKV genome into pB-5'123 a large deletion was carried out on both pB-5'123 and LF5-4. By excising and discarding the last 2468 of the CHIKV genome incorporated in pB-5'123 using \textit{Cla I} and \textit{Spe I} the last 3831 nt of the CHIKV genome incorporated in LF5-4 could be excised using both enzymes and ligated into \textit{Cla I} – \textit{Spe I} digested pB-5'123. This was completed successfully and generated an intermediate termed pB-5'123*45, were the asterisk represents the region of CHIKV that was removed.

In order to replace this fragment, primers where designed either side of two \textit{Cla I} sites, naturally occurring in CHIKV and encompassing the removed fragment sequence. RT-PCR was again performed using a high fidelity proof-reading enzyme mix and the fragment successfully amplified and DNA-purified. This was then digested with \textit{Cla I}, as was pB-5'123*45 and subsequently successfully ligated into pB-5'123*45 to generate pB-5'12345. This clone included the entire CHIKV genome directly downstream of a T7 promoter, however as the stability of virus mRNA is thought to depend on the presence of a PolyA tail, an oligonucleotide pair incorporating a \textit{Spe I} site at its 5' terminal and a \textit{Sac I} site at its 3' terminal, a run of 18 adenine residues lay between these restriction sites. \textit{Sac I} was chosen as it is a unique site within the entire pB-5'12345 sequence and it occurs only 34 nt downstream of the terminal \textit{Spe I} site at the end of the CHIKV genome.

To produce RNA from the CHIKV full-length cDNA clone it was linearised using the unique \textit{Sac I} site and reverse-transcribed using a T7 polymerase kit that included a Ribo m7G Cap analog for capping of the 5' terminus. This was successfully completed and RNA was electroporated into BHK-21 cells in order to produce infectious CHIKV virus. However, despite adequate quantities of CHIKV RNA being produced no infectious virus was produced in electroporated BHK-21 cells, and they showed no signs of c.p.e.

There are two main possible reasons for this. Firstly, as the CHIKV genome was amplified in 6 fragments by RT-PCR, despite the quality of high fidelity proof-reading polymerases used there is always a likelihood of some spontaneous mutations in the amplified genome during PCR. Although the cloning strategy used involved minimal PCR, it is possible that a mutation arose that threw the CHIKV RNA genome sequence out of frame, thus preventing the production of proteins needed for virus propagation. A second possibility stems from a step during the construction of
pB5’123, when in order to ligate the 7121 nt CHIKV fragment into pB-5’, an Spe I restriction site 62 nt downstream of the CHIKV genome was utilised. It would follow that in the final full-length cDNA clone these 62 nt belonging to the L28i cloning vector would immediately follow the CHIKV 3’ NTR and precede the poly(A) tail. Frolov et al., (2001) suggested that the 3’ and 5’ ends of the Sindbis genome RNAs must interact to initiate replication. Therefore if the same is true for CHIKV, then possibly the addition of 62 nt after the 3’ NTR could result in a secondary structure change inhibiting possible interaction with the 5’ NTR and preventing RNA replication. In order to deduce what lies behind the lack of production of infectious virus from the CHIKV full-length pB-5’12345 cDNA clone, it should be sequenced and aligned with the CHIKV Ross sequence to check for spontaneous mutations in the genome and to ascertain whether removing the 62 nt from the end of the 3’ NTR is feasible.

The full length cDNA CHIKV clone can be used either incorporated within the SFV expression system or developed into its own expression system. For the design of a CHIKV virus-vector vaccine it will need to be fully sequenced and tested both in vitro and in vivo. On successfully completing this, several possible directions could be followed regarding the production of an efficient and safe CHIKV vaccine. A safe live attenuated virus could be produced from a CHIKV infectious clone. The construction of the full-length CHIKV cDNA clone also allows CHIKV antigens such as the envelope glycoproteins to be easily isolated and inserted into the existing pSP6-SFV4 for expression.

Alternatively, the full-length CHIKV clone could be developed as an expression system enabling the expression of foreign antigens, or reporter genes as has been developed in SFV by Liljeström and Garoff (1994).
Chapter Four

Analysis of the Semliki Forest Virus 5' Untranslated region as a pathogenicity determinant
4.1 Introduction

4.1.1 SFV-induced neuropathogenesis of the murine CNS

SFV elicits different degrees of neurovirulence in mice depending on virus strain, route of administration and the age of the host used. SFV-A7 and SFV-L10 are the prototype avirulent and virulent members of the SFV subgroup. SFV-L10 causes lethal encephalitis 4-5 days post infection (d.p.i) regardless of route of administration and age of mice. It has been shown (Atkins et al., 1985) that virulent strains of SFV such as SFV-L10 induce more extensive damage to neurons in the CNS than avirulent strains such as SFV-A7. The fundamental difference between SFV-L10 and SFV-A7 is the rapidity of the spread of neuronal infection (Balluz et al., 1993). In the case of SFV-L10 this results in a lethal threshold of neuronal damage before the immune system can intervene, whereas SFV-A7 appears to have a partially restricted ability to multiply in neurons, thus allowing the immune system time to intervene and the animal recover (Gates et al., 1985; Fazakerley et al., 1993). Although SFV-A7 is avirulent in adult mice and is asymptomatic, adult survivors show demyelination in the CNS and the virus replicates at least as efficiently as the virulent L10 in cultured cells such as BHK-21 cells (Atkins et al., 1983, 1999)

4.1.2 Virus produced from SFV infectious clones

To date three SFV infectious clones have been constructed. Initially, Liljestrom et al (1991) constructed a cDNA clone derived from SFV-L10 termed pSP6-SFV4, transcription from which produced infectious virus termed SFV4. Although SFV4 has a slight reduction in virulence when compared to SFV-L10, it kills all mice infected intranasally (i.n.) by 5 d.p.i. although only 60-70% of those infected intraperitoneally (i.pi) die. In 1997, Tarbatt et al constructed a cDNA infectious clone of SFV-A7 termed SP6-CA7 by substitution of regions of pSP6-SFV4 with the corresponding regions of SFV-A7. Infectious virus produced from SP6-CA7 termed CA7, was still however partially virulent, killing 20-30% of mice when administered i.n. SP6-CA7 clearly retains a degree of virulence, and is evidently not avirulent as suggested by Taibatt et al (1997). Lastly, in 2000, Tuittila et al constructed another SFV cDNA clone using the SFV-A7[74] avirulent virus and substituting the SFV4 genome of pSP6-SFV4 with that of SFV-A7[74] termed rA7[74]. Infectious virus produced from this infectious clone is termed prA7[74] and
showed similar levels of avirulence as SFV-A7[74], although prA7[74] has been shown to kill 10% of mice infected intranasally (Minna Tuittila, personal communication).

4.1.3 Analysis of SFV genomes

In 1997 Tarbatt et al carried out a sequence comparison over the entire genome of SFV-A7 and SFV4, finding 227 nt changes in the translated regions of SFV-A7, 48 of which resulted in amino acid changes. The 5' UTR was shown to have two nucleotide changes at positions 35 and 42 although the CA7 infectious virus did not have these changes as it was produced from SP6-CA7 which contained the 5' UTR of SFV4. Tuittila et al (2000) carried out sequence comparison over the non-structural protein region between SFV4, rA7[74] and CA7. Comparing these sequences over their entire genomes could prove useful in detecting possible virulence determinants.

4.1.4 Virulence determinants of SFV

Infectious clones have been used successfully to investigate possible virulence determinants within the alphaviruses. Much of the work carried out on SFV and SINV to date has involved two envelope glycoproteins E2 and E1 (Glasgow et al., 1991, 1994; Santagati et al., 1994; Polo and Johnston., 1990). In SFV there are 8 amino acid differences in the E2 glycoprotein between the avirulent SFV-A7 strain and the virulent SFV4 strain. Tarbatt et al (1997) substituted a 2104 nt fragment flanked by two Nde I restriction enzyme sites in SFV4 with that of SFV-A7. This resulted in a substitution of 5 amino acids in E2 and 6 in E1. Virus produced from this chimaeric genome, termed C8930/11033 was administered intraperitoneally into adult mice, only 20% of mice died, compared to 60% of those infected with parental SFV4. All mice infected with SFV-A7 survived. This suggests that E2 and E1 also play an important role in the neurovirulence of SFV.

The presence of the SFV4 5' UTR in the SP6-CA7 infectious clone could explain the 30-40% death rate among intranasally infected mice. The 5' UTR is thought to be an integral part of virus RNA replication. Previous studies have suggested that the 5' UTR may be important as a virulence determinant. Evans et al (1985) showed that a single nucleotide change in the 5' UTR of the Sabin type 3 poliovaccine genome significantly increased neurovirulence in adult mice. Other
investigations involving VEE have also shown that attenuation is partially determined by mutations in the 5' UTR. This appears to be controlled by more than one gene, as only those nt substitutions in the E2 gene combined with those of the 5' UTR resulted in attenuation. There is also evidence to suggest that the 5' UTR is involved in virus replication (Frolov et al., 2001). Thus the rate of synthesis of RNA of each virus might be correlated with rate of survival of host. To further elucidate the possible importance of the 5' UTR as a possible virulence determinant the degree of neuropathology in the brains of mice intranasally infected with different 5' UTR chimaeras was also measured, this is addressed in more detail in Chapter 5 “Pathology”.

4.1.5 Construction of SFV 5' UTR chimaeras

In order to investigate whether the 5' UTR plays a role in determining the degree of virulence in infected adult mice, possibly by its involvement in RNA replication, SFV-5'UTR chimaeras were constructed. Measuring the rate of RNA synthesis combined with monitoring the rate of survival and neuropathology caused among mice infected with infectious virus produced from these cDNA clones could provide an insight into the 5' UTR as an SFV virulence determinant. This involved analysing the sequences of the 5' UTRs and designing reciprocal chimaeras that incorporated the 5' UTR nucleotide differences between virulent and avirulent strains of SFV. Studying the survival rates of and the neuropathology caused in infected adult mice intranasally infected with each chimaera and the infectious virus from the three SFV infectious clones was carried out.
4.2 Materials and Methods

4.2.1 Sequence analysis of SFV genomes

cDNA was produced from virus RNA isolated from BHK-21 cells infected with SFV-L10 using an oligo dT\textsubscript{18} reverse primer (Promega, USA). 100 μl of SFV-L10 cDNA along with 10 μg of pSP6-CA7 were sent to LARK Technologies, UK for sequencing. LARK Sequenced both genomes using a technique called optimised multiplex PCR (Tettelin \textit{et al}, 1999) whereby multiple PCR primers are used in a single sequencing reaction. Both sequences are submitted to GenBank AY112987 (SFV-L10) and Z48163 (CA7). The entire SFV genome sequences of SFV4, L10, CA7 and prA7[74] were analysed using the multiple alignment web-based software Multalin (F. Corpet, INRA Toulouse, France). Nucleotide differences of the coding regions of the genome resulting in amino acid changes were noted with the position of the amino acid change. The untranslated regions for these four SFV strains were also aligned and investigated as possible virulence determinants.

4.2.2 SFV 5' UTR Sequences

Unlike the rA7[74] infectious clone, pSP6-CA7 contains the 5' UTR of ppSP6-SFV4 as this was not removed at the time of construction. Therefore, the 5' UTR of SFV-A7 was sequenced using a 5' RACE PCR Kit (Roche, Switzerland) in accordance with manufacturer's guidelines. The 5' UTRs of SFV-L10, SFV4, CA7, prA7[74], SFV-A7[74] were also sequenced and aligned using Multalin (F. Corpet, INRA Toulouse, France).

4.2.3 Virus strains and infectious clones

The A7 and L10 strains of SFV was obtained from Dr. C. Bradish, Microbiology Research Establishment (MRE), Porton Down, Wiltshire, UK. The pSP6-SFV4 was a gift from Professor P. Liljestrom, Karolinska Institute, Stockholm, Sweden. The A7[74] infectious clone (rA7[74]) was obtained from Dr. Minna Tuittila, Åbo Akademi, Turku, Finland. The SP6-CA7 was constructed in our laboratory by CatherineTarbatt. SFV-L10 and A7[74] were obtained from Professor Harry Smith, Dept. of Microbiology, University of Birmingham, UK.
4.2.4 Preparation of virus DNA

BHK cells were infected with SFV-A7, SFV-A7[74] and SFV-L10 and RNA isolated as previously described for CHIK (section 2.10.3.1). In order to produce infectious virus from which to isolate RNA, pSP6-SFV4, rA7[74] and SP6-CA7 first needed to be linearised, reverse transcribed and electroporated into BHK cells.

4.2.4.1 Spe I linearisation of SFV infectious clones

For the production of SFV viral RNA, each infectious clone was linearised with the Spe I restriction enzyme. This is a unique restriction site in the pSP6-SFV4 infectious clone following the structural protein genes, although an additional Spe I restriction site is present in rA7[74] and SP6-CA7 within E2 at position 9032.

For pSP6-SFV4 a total of 5µg DNA was linearised for 2 h at 37°C in a final reaction volume of 100 µl, containing 10 µl of Spe I buffer (NEB; 50 mM NaCl, 10 mM Tris-HCL, 10 mM MgCl2, 1 mM DTT, pH 7.9), and 5U of Spe I. The reaction was then stopped by incubating the samples in a 65°C for 5 min. DNA was purified using a Qiagen Nucleotide purification kit (Qiagen, UK) as described for CHIK in section 2.10.4.3. For SP6-CA7 and rA7[74] partial digests were carried out using 1µg DNA in a final volume of 20 µl containing 2 µl of Spe I buffer and 1U of Spe I for each infectious clone incubated at 37°C for 5 different timepoints: 5 min, 15 min, 20 min, 30 min and 1 h. Each linearised infectious clone DNA was pooled, giving a final volume of 100 µl and purified as mentioned above. Plasmid DNA concentration was assessed by mixing a 1 µl aliquot with 1 µl loading buffer and running this on a 0.8% (wt/vol) agarose gel. The concentration of plasmid was estimated from this gel by comparing band intensity with that of 0.25 µg and 0.5 µg Lambda (NEB; Hind III and Eco RI) DNA molecular weight marker.

4.2.4.2 In vitro SP6 RNA transcription

For the production of SFV viral RNA, SP6 RNA polymerase, was used to initiate in vitro RNA transcription from the clean SpeI-linearised plasmids. Standard reaction mixtures contained 0.5 µg DNA template, 1 x SP6 buffer [40 mM N-2-hydroxyethylpiperazine-N’-2-ethansulphonic acid-KOH (Hepes-KOH), pH7.4, 6 mM MgOAc, 2 mM spermidine-HCL], 1 mM m7G(5’)-ppp(5’)-G, 5 mM dithiotreitol, 1 mM each rATP, rCTP, rUTP, 500 µM rGTP, 60 U recombinant RNAsin, and 50 U of SP6
RNA polymerase in 50 µl volume. The reactions were incubated at 37°C for 1 h 50 min and transcripts were analyzed by electrophoresis on a 0.6% (wt/vol) agarose gel.

4.2.4.3 Electroporation

BHK-21 cells were propagated as described in section 2.10.1.1. For each electroporation, one 75 cm² tissue culture flask, containing ~80% confluent BHK-21 cells was used. The cell monolayer was washed and trypsinised as previously described. Each flask was resuspended in 10 ml of fresh BHK medium and centrifuged (1500 rpm, 15 min). Pellets were resuspended in 10 ml PBS, and centrifuged as before. Each in vitro-transcribed RNA reaction contained 50 µl of SFV4, SFV-CA7 or SFV-pA7[74] RNA respectively. Cells were resuspended in 700 µl of PBS and was added to 50 µl of each RNA and placed in a 0.4 µm electroporation cuvette. The cuvette was then electroporated at 0.85 kV and 25 µF capacitance, using a BioRad Gene Pulser II. Following 2 pulses, cells were mixed with 20 ml of fresh BHK medium, transferred to a 75 cm² tissue culture flask and incubated for 24-36 h at 37°C in a humidified atmosphere of 5% CO₂.

4.2.4.4 Harvesting SFV infectious virus

Between 24-36 h.p.i the electroporated cell monolayers exhibited cytopathogenic effect (c.p.e), the supernatant was removed and virus was harvested. To harvest virus, the supernatant was removed, centrifuged at 3,000 x g for 10 min to remove cellular debris, and filtered through a 0.2 µm filter (Pall Life Sciences, USA). The resulting virus, was stored at -70°C in 1 ml aliquots. Virus was passaged a further two times and titre was established by plaque assay. Infectious virus RNA was isolated from infected BHK cells monolayers as described previously for CHIK in section 2.10.3.1.

4.2.5 Amplification of SFV 5' UTRs

To amplify the 5' UTR of SFV strains; L10, SFV4, CA7, pA7[74], A7 and A7[74] it was necessary to carry out 5' RACE PCR. An overview of this protocol was described previously in figure 2.1 of Chapter 2 “Sequencing and characterisation of the Ross strain of Chikungunya virus”.

135
4.2.5.1 Primer Design

Primers were designed as outlined previously in section 2.10.3.3. The 5' RACE Abridged anchor primer (AAP) and the Universal Amplification primer (UAP) were supplied in the 5'3' RACE PCR Kit (Roche, Switzerland). The Genome Specific Primers (GSPs) were reverse nested primers designed from the nsP1 of pSP6-SFV4 genome template, although when this region of each SFV strain was aligned the primers were identical for all SFV strains.

AAP: 5'-GGCCACGCGTCGACTAGTACGGGGGGGGGGG-3'
UAP: 5'-CUACUACUAGGCCACGCGTCGACTAGTAC-3'
GSP1: SFV(-) 419 5' - TCCGGGAAGGTGCTGGATAGAG-3'
GSP2: SFV(-) 250 5' - CCAAAATTGATCGAAGCAGGAG-3'

cDNA was prepared using a nested primer (GSP1) designed from pSP6-SFV4. Newly synthesised cDNA strand then had a homopolymeric tail added to its 3'end using terminal transferase. The 5' RACE Abridged Anchor Primer was then used to generate second-strand cDNA. This dsDNA then served as the template for a secondary PCR reaction using a nested gene-specific primer (UAP) and inner primer (GSP2). The 5' RACE PCR was carried out in accordance to manufacturer's recommendations, using the same PCR conditions as shown in table 2.4 (section 2.10.3.3.4).

4.2.5.2 DNA Purification

PCR amplicons were run on a 0.8% (wt/vol) agarose gel at 86 mA and extracted using a sterile scalpel (Swann Morton Ltd, UK). The gel fragments were then placed in a sterile 1.7ml microtube (Axigen) and weighed for purification using the Promega Wizard Kit (Promega, USA). A binding buffer (4.5M guanidine isothiocyanate, 0.5M potassium acetate, pH 5.0) was added at 3 volumes of buffer to 1 volume of gel (300 µl of buffer to 100 µg of gel) and the mixture incubated for 10 min at 60°C, with vortexing every 3 mins. The buffer solubilises the agarose gel slice, and provides appropriate conditions for binding of DNA to a silica membrane in a Wizard Column. The mixture was added to a Wizard column and centrifuged (10,000g, 30 sec). The flow-through was discarded and 700 µl of wash buffer (10mM potassium acetate, pH 5.0), 80% ethanol, 16.7 µM EDTA, pH 8.0) added and
centrifuged (10,000g, 30 sec), A further 500 µl of wash buffer was added to remove all traces of agarose and centrifuged (10,000g, 5min). Purified DNA was eluted in 50 µl of pre-heated (60°C) nuclease-free water. 20 µl of each sample was sent to LARK Technologies (UK) with 5 µl of both forward and reverse primers (0.02 µg/µl) for sequencing.

4.2.5.3 Sequence Alignment

Sequences in both positive and negative orientations were initially processed using ChromasPro software (version 1.22; Technelysium Ltd. Australia). Sequences were then aligned using the online multiple alignment software Multalin (Corpet, F., 1988).

4.2.5.4 Prediction of Secondary structure

The 85 nt 5' UTR sequences of SFV-A7, SFV-L10, and of infectious virus produced from SP6-CA7, rA7[74] and pSP6-SFV4 were processed using MFold version 3.0 (Zuker, M.). Secondary structure was predicted using the default parameters.

4.2.6 Survival of Balb/c mice infected with SFV-A7, SFV-L10 and infectious virus produced from pSP6-SFV4, SP6-CA7 and rA7[74].

Five groups of 10 female Balb/c mice aged 60-80 days (Harlan, UK) were intranasally infected with 40 µl (20 µl per nostril) of 1 x 10^8 p.f.u / ml SFV-L10, SFV-A7 and infectious virus produced from pSP6-SFV4, SP6-CA7 and rA7[74]. A sixth group was mock-infected with D-PBS (Invitrogen, UK). Deaths were recorded over a 14 day period at which point all survivors were re-infected with SFV-L10 to ensure that initial doses of virus were adequate to induce partial immunity.

4.2.7 Virus titres in Balb/c brains infected with SFV-A7, SFV-L10 and infectious virus produced from pSP6-SFV4, SP6-CA7 and rA7[74].

Two groups of 6 female BALb/c mice aged 60-80 days (Harlan, UK) were intranasally infected with 40 µl (20 µl per nostril) of 1 x 10^8 p.f.u / ml SFV-L10 and infectious virus produced from pSP6-SFV4. Three mice were sacrificed from each group at 2 d.p.i and 4 d.p.i respectively. Three other groups of 12 Balb/c mice of the same age were intranasally infected with the same titer and volume of SFV-A7 and
infectious virus produced from SP6-CA7 and rA7[74]. Three mice were sacrificed from each group at 2, 4, 6 and 8 d.p.i respectively. Brains were removed and homogenised as described previously in section 2.10.6.2. Titer of virus in the supernatant of brain homogenate was determined by plaque assay.

4.2.8 Construction of SFV 5' UTR chimaeras

In order for 5' UTR chimaeras to be constructed several steps were required before site-mutagenesis could be carried out. Initially on aligning the sequences of all SFV strains it was observed that no unique restriction enzyme sites were present flanking the 5' UTR. A 2104 bp fragment was removed from the SFV infectious clones between nucleotide positions 8910 and 11014 using restriction enzyme Nde I (NEB, USA). Removing the 2104 bp also removed two restriction sites, Eco RV and Sph I at positions 9537 and 9665 respectively, generating a unique Eco RV site (278) and Sph I (14100) flanking the SFV 5' UTR. These restriction enzymes were then used to remove the 5' UTR from each SFV infectious clone which was ligated into the cloning vector Litmus 38i (L38i; NEB, USA) for site-digested mutagenesis (figures 4.5 and 4.6). For reciprocal 5’ UTR exchanges between pSP6-SFV4 and rA7[74] and between SP6-CA7 and rA7[74] the use of L38i was not necessary as direct exchange and ligation of the reciprocal 5’ UTR fragments could be performed (figures 4.3 and 4.4).
Figure 4.1 Schematic (1 of 2) of strategy used to site-mutagenise SFV infectious clone 5' UTRs to SFV-A7 5'UTR. *SFV Infectious clones (pSP6-SFV4, SP6-CA7 and rA7[74]), SM: Fragment excised for site-directed mutagenesis, FR: Fragment removed (light blue arrows), SM-F and SM-R are the forward and reverse primers (red arrows) containing the 3 nucleotide changes (G, A, T) required to generate SFV-A7 5' UTR sequence.
Figure 4.2 Schematic (2 of 2) of strategy used to site-mutagenise SFV infectious clone 5' UTRs to SFV-A7 5' UTR.
4.2.8.1 Preparation of chimaeras I - Restriction Digestion

4.2.8.1.1 Preparation of SFV infectious clones with restriction enzyme Nde I

DNA was digested with Nde I to remove a 2104 bp fragment between nucleotide positions 8910 and 11014 thereby also removing superfluous Eco RV and Sph I restriction sites at positions 9537 and 9665 respectively. The following reaction mixtures were digested for 2 h at 37°C: 2 μl (1μg / μl) SFV Infectious clone DNA, 15 μl nuclease-free water, 2 μl 10X Nde I NEBuffer (50 mM potassium acetate, 20mM Tris-HCl, 10mM magnesium acetate, 1mM dithiothreitol pH 7.9) and 5 U Nde I enzyme (NEB, USA). The digested reaction mix (20μl) was run on a 0.8% (wt/vol) agarose gel, and both fragments (2104 and 12426 nt) were excised from the agarose using a sterile surgical blade, placed in a 1.7 ml microtube (Axygen, USA) and weighed. Samples were purified and eluted as described previously in section 2.10.4.1. 2 μl of T4 10X ligase buffer and 1U T4 ligase (Promega, USA) were added to 17 μl of each 12426 nt SFV backbone fragment, the reaction was gently vortexed and incubated overnight at room temperature. The recircularised SFV backbone was transformed in E. coli DH5α cells and DNA extracted as described previously in sections 2.4.10.7 and 2.4.10.8. These SFV infectious clones minus a 2104 bp fragment were termed pSP6-SFVΔNde I, SP6-CA7 Δ Nde I and rA7[74] Δ Nde I respectively. The excised 2104 bp fragment was stored at -20°C until subsequent relegation into the chimaeric clones. An overview of this procedure is illustrated in figure 4.5a.

4.2.8.1.2 Preparation of SP6-SFV Δ Nde I infectious clones with Sph I and Eco RV

The following reaction mixtures were digested for 4 h at 37°C: 3 μl (1μg / μl) of pSP6-SFV4 Δ Nde I, SP6-CA7 Δ Nde I and rA7[74] Δ Nde I DNA, 13 μl nuclease-free water, 2 μl 10X Sph I NEBuffer (50 mM NaCl, 10 mM Tris-HCl, 10mM MgCl2, 1mM dithiothreitol pH 7.9) and 5U Sph I and 20U Eco RV enzymes (NEB, USA). The digested reaction mix (20μl) was run on a 0.8% (wt/vol) agarose gel, and both fragments (708 and 11718 nt) were excised from the agarose using a sterile surgical blade, placed in a 1.7 ml microtube (Axygen, USA) and weighed. Samples were purified and eluted as described previously in section 2.10.4.1 (figure 4.5).
Reciprocal pSP6-SFV4 and rA7[74] 708 nt fragments were exchanged into their respective 11718 nt SP6-SFV backbones. 2 μl of T4 10X ligase buffer and 1U T4 ligase (Promega, USA) were added to a mixture of 1 μl of each purified Sph I/Eco RV-digested 11718 nt SFV backbone fragment and 16 μl of the reciprocal 708 nt fragment. The reaction was gently vortexed and incubated overnight at room temperature. Cells were transformed and DNA extracted as described previously. DNA was then digested with Nhe I (12186) to confirm insertion of reciprocal 708 nt fragment. On confirmation of insertion, DNA was linearised using Nde I (8910), dephosphorylated with Alkaline phosphatase and purified as described previously for Litmus 28 in section 2.10.4.4. Infectious virus was produced as described in section 4.2.1.2 and virus RNA isolated as previously described in section 2.10.3.1.

SP6-CA7 / rA7[74] reciprocal chimaeras were produced identically to the pSP6-SFV4 / rA7[74] chimaeras mentioned in section 4.2.8.1.3 above.
Figure 4.3 Strategy used to create reciprocal pSP6-SFV4 / rA7[74] 5' UTR chimaeras. Light blue arrow represents the excision of \textit{Nde I} fragment (A), dark blue arrow represents reciprocal 5' UTR exchange between pSP6-SFV4 and rA7[74] (B). \textit{Nde I} Fragment represented by red bar is reinserted in last step (C).
Figure 4.4 Strategy used to create reciprocal SP6-CA7 / rA7[74] 5' UTR chimaeras. Light blue arrow represents the excision of Nde I fragment (A), dark blue arrow represents reciprocal 5' UTR exchange between pSP6-SFV4 and rA7[74](B). Nde I Fragment represented by red bar is reinserted in last step (C).
4.2.8.2 Preparation of SP6-SFV / SFV-A7 5’ UTR chimaeras

4.2.8.2.1 Restriction digestion of L38i with Sph I and Eco RV

The following reaction mixtures were digested for 4 h at 37°C: 2 µl (1 µg / µl) of L38i DNA, 14 µl nuclease-free water, 2 µl 10X Sph I NEBuffer (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM dithiothreitol pH 7.9), 5 U Sph I and 20 U Eco RV enzymes (NEB, USA). The digested reaction mix (20 µl) was run on a 0.8% (wt/vol) agarose gel, the 2757 nt fragment was excised from the agarose using a sterile surgical blade, placed in a 1.7 ml microtube (Axygen, USA) and weighed. The 57 nt Sph I / Eco RV “dropout” fragment was discarded. The 2757 nt fragment, termed L38i Δ Sph I / Eco RV was then purified and eluted as described previously in section 2.10.4.1. and stored at -20°C until subsequent ligation of pSP6-SFV4 Sph I / Eco RV 708 nt fragment for site-directed mutagenesis.

4.2.8.2.2 Site-directed mutagenesis

A substitution of 3 nucleotides A/G (21), T/A (35) and C/T (42) of the SFV4 5’ UTR to the SFV-A7 5’ UTR genotype was carried out using a QuickChange site-directed mutagenesis kit (Stratagene, USA). The pSP6-SFV4 Sph I / Eco RV 708 nt fragment was ligated into L38i Δ Sph I / Eco RV and ligation confirmed using Nhe I as described previously for the pSP6-SFV4 / rA7[74] 5’ UTR reciprocal chimaeras in section 4.2.2.1.3. The site-directed mutagenesis protocol was followed according to manufacturer’s recommendations using the following oligonucleotide primer (SM-F) and its complementary sequence (SM-R). These were designed to incorporate the 3 site-specific mutations (underlined).

SM-F 5’ CATACGGCAGCAGCAGAATTTGGTTTCAGCTC 3’
SM-R 5’ GAGCTGAAACAAATTCTITTGGCGTCGCGTATG 3’

Following mutagenesis, 6 random clones were picked for sequence selection, DNA extracted and eluted for sequence confirmation by PCR. On positive confirmation of a successful 3 nt site-directed mutagenesis, one clone was selected that contained the A/T/C → G/A/T nt changes.
Figure 4.5 Site-mutagenised clones 1-5 digested with Sph I and Eco RV.
1% agarose gel stained with ethidium bromide. Lane: 1 Kb + 100 bp combined markers, Lanes 2-6: L38i with site-mutagenised 708 nt SFV4 colonies 1-5 digested with Sph I and Eco RV. L38i backbone is 2757 nt in length with drop out site-mutagenised fragment 708 nt in length.
4.2.8.2.3 PCR

PCR was carried out using oligonucleotides designed from L38i flanking each side of the Sph I and Eco RV restriction sites, thus amplifying the 708 nt site-mutagenised region within them using the same PCR conditions described in section 2.10.3.3.4. The following forward (L38i-F) and reverse (L38i-R) oligonucleotide primers were used:

L38i-F 5' ATAGGGGCCCGTGCAATTGAAGC 3'
L38I-R 5' CTCACTATAGGCCCTTGACTAGAGGGTGCAC 3'

DNA was then purified and sent for sequencing as described in section 4.2.5.2.

4.2.8.2.4 Excision of site-mutated SFV-A7 5' UTR and ligation into SP6-SFV Δ Nde I (Δ Sph I / Eco RV) infectious clones.

DNA extracted from the selected clone that contained the three nucleotide mutations described in section 4.2.8.2.2 was digested with Sph I and Eco RV to excise the 708 nt site-mutagenised 5' UTR fragment from the L38i cloning vector. This was carried out in the same way as described previously in section 4.2.8.1.2. The 708 nt site-mutagenised fragment was then purified as previously described and ligated into each of the SFV Δ Nde I (Δ Sph I / Eco RV) infectious clones. Successful ligation was tested using the restriction enzyme Nhe I which for positive ligations gave two bands of 3269 and 9957 nt long, if a ligation was unsuccessful then two bands of 3079 and 8639 were observed.

4.2.8.2.5 Re-ligation of respective Nde I fragments.

DNA was linearised with Nde I and treated with Antarctic phosphatase in order to reduce recirculrisation during the subsequent ligation of each SFV clones respective 2104 nt Nde I fragment, these protocols were carried out as described earlier. To test the orientation of the inserted Nde I fragment in each SFV clone the restriction enzyme Eco RV was used. For a positive orientated ligation two bands of 5271 nt and 9259 nt were observed, in the instance of the fragment inserting in the negative orientation two bands of 4421 and 10109 nt in size were observed.
4.2.8.2.6 PCR confirmation

The sequence of the 5' UTR of each chimaera was ascertained before \textit{in vitro} transcription of the cDNA by PCR. The following primers were designed flanking either side of the 5' UTR.

\begin{align*}
\text{SFV5}'F & \text{ (nt position) } 5'\text{CATTAGGAAGCAGCCCAGTACTAGGTTGAG} 3' \\
\text{SFV5}'R & \text{ (nt position) } 5'\text{CATCATTCTCCTGGGAAGGCGC} 3'
\end{align*}

PCR conditions used are identical to those used previously. DNA was gel-extracted (figure 4.6), purified and sent to LARK Technologies, UK for sequencing.

4.2.8.2.7 Production of infectious chimaeric virus

Infectious chimaeric virus was produced for each of the six 5' UTR chimaeras listed below in an identical way as infectious virus was produced from pSP6-SFV4, SP6-CA7 and rA7[74] as described in section 4.2.8.

\begin{align*}
p\text{SP6-SFV4 + SFV-A7 5'} & \text{ UTR termed SFV4 / A7} \\
p\text{SP6-SFV4 + rA7[74] 5'} & \text{ UTR termed SFV4 / rA7[74]} \\
p\text{SP6-CA7 + SFV-A7 5'} & \text{ UTR termed CA7 / A7} \\
p\text{SP6-CA7 + rA7[74] 5'} & \text{ UTR termed CA7 / rA7[74]} \\
r\text{A7[74] + SFV-A7 5'} & \text{ UTR termed prA7[74] / A7} \\
r\text{A7[74] + pSP6-SFV4 termed prA7[74] / SFV4}
\end{align*}

4.2.8.2.8 Infectious virus RNA isolation and 5' RACE PCR confirmation of 5' UTRs

Infectious chimaeric RNA was isolated (figure 4.7) and 5' RACE PCR carried out on each sample as described previously for all SFV strains in sections 4.2.5.1

4.2.8.2.9 Plaque assay

All Strains of SFV and infectious virus produced from both chimaeric and non-chimaeric SFV infectious clones were titred by plaque assay as described previously for Chikungunya virus in section 2.10.2.3.
Figure 4.6 SFV 5' UTRs

1% agarose gel stained with ethidium bromide. Lane: 1 Kb marker, Lanes 2-7: 5’ RACE PCR-amplified 708 nt SFV DNA. Lane 2: CA7-A7. Lane 3: CA7-rA7[74]. Lane 4: rA7[74]-A7. Lane 5: rA7[74]-pSFV4. Lane 6: pSFV4-A7. Lane 7: pSFV4-rA7[74]. Nomenclature indicates backbone infectious clone with inserted 5’ UTR fragment. 708 nt fragments were gel excised, purified and sent for sequencing.
4.2.8.2.10 Intranasal infection of Balb/c mice

Six groups of 10 female Balb/c mice aged 60-80 days (Harlan, UK) were intranasally infected with 40 μl (20 μl per nostril) of 1 x 10^8 p.f.u / ml infectious virus produced from each of the six chimaeric infectious clones A sixth group was mock-infected with D-PBS (Invitrogen, UK). Deaths were recorded over a 14 day period at which point all survivors were re-infected with SFV-L10 to ensure that initial doses of virus did indeed infect the mice and the concentration of virus administered was adequate to induce partial immunity.

4.2.8.2.11 RNA synthesis of SFV 5' UTR chimaeric virus

The rate of RNA synthesis of virus was measured by infecting subconfluent BHK-21 cell monolayers with viruses at a high M.O.I. (50 p.f.u./cell). Virus was allowed to adsorb in the monolayer for 1 h at 37°C in a humidified atmosphere of 5% CO₂, at which point the inoculum was replaced with BHK medium containing 5 μg/ml actinomycin D and reincubated for 2 h at 37°C in a humidified atmosphere of 5% CO₂. The inoculum was then removed and fresh BHK medium containing 5 μg/ml actinomycin D and 1 μCi / ml [³H]-methyl uridine (Amersham Pharmacia Biotech, Sweden) was added, the cell monolayers were returned to 37°C for a further 2 h. Cell monolayers were then washed twice with PBS and dissolved in 2 ml of 1% (w/v) sodium dodecyl sulphate (SDS) to lyse the cells. On adding 2ml of ice-cold 10% (w/v) trichloroacetic acid (TCA) the mixture was allowed to stand on ice for 15 min. The resulting precipitate was collected on glass fibre discs (Whatmann, USA) using a vacuum manifold (Millipore, USA) and washed twice with 4 ml of ice-cold 5% (w/v) TCA and once with 100% ethanol and air-dried. Filters were then placed in plastic scintillation vials into which 4 ml scintillation fluid (ICN, USA) was added prior to counting using a Tricarb 1500 scintillation counter (3 min count/sample). This procedure was carried out in triplicate for each virus on monolayers at 2, 4, 6, 8 h.p.i. Negative and positive mock-infected controls were used at each time point with the negative control containing no actinomycin D and the positive containing actinomycin D thus allowing the level of background cellular RNA synthesis to be calculated.
Figure 4.7 In Vitro RNA Transcription. 1% agarose gel stained with ethidium bromide. Lanes 1, 6 and 7: 1 Kb marker, Lanes 2-12: RNA from reverse transcribed infectious clones and chimaeric clones: Lane 2: SP6-CA7. Lane 3: pSP6-SFV4. Lane 4: rA7[74]. Lane 5: SP6-CA7/A7. Lane 8: SP6-CA7/rA7[74]. Lane 9: pSP6-SFV4/A7. Lane 10: pSP6-SFV4/rA7[74]. Lane 11: rA7[74]/A7. Lane 12: rA7[74]/SFV4.
RNA was then electroporated into BHK-21 cells and infectious virus observed by cytopathogenic effect (c.p.e) caused. Virus was filter purified and passaged twice in BHK-21 cells before being purified and titred by plaque assay. Purified titred infectious virus was then used to determine the rate of RNA synthesis \textit{in vitro}, to record the survival rates of infected mice and to examine the neuropathology caused in the brains of infected adult female Balb/c mice.
4.3 Results

4.3.1 Analysis of SFV strains

4.3.1.1 Amino acid sequence analysis of prototype virulent and avirulent SFV strains

On sequencing the SP6-CA7 genome the sequence was deposited in Genbank (Accession number: Z48163). This was then aligned with the SFV4 (NC003215) and rA774 (M. Tuittila, personal communication) genome sequences. Sequences were analysed on an amino acid (aa) level with the exception of the three untranslated regions (UTRs): the 5' UTR, the junction region and the 3' UTR.

In the nonstructural polyprotein there were six aa differences between the avirulent and virulent strains in nsP1. The differences most relevant to this investigation were those between the avirulent (CA7 and rA774) and virulent (SFV4) strains as these may indicate the regions involved in SFV virulence. In nsP2 there were twelve aa differences between the virulent and avirulent strains one of these being an aa deletion at position 1258 of the virulent genomes. nsP3 showed the most differences between avirulent and virulent SFV genomes with two major deletions in CA7 and rA774. The first deletion was seven aa in length between positions 1742 and 1730, the second was considerably larger spanning forty aa between positions 1812 and 1852. There were also four aa differences between virulent and avirulent nsP3, compared to two in nsP4. There were no nucleotide differences between the highly conserved untranslated junction region in any of the SFV strains analysed.

Differences between virulent and avirulent SFV strains in the structural polyprotein were considerably fewer than in the non-structural polyprotein. There was one aa difference in the capsid protein and two in the E3 glycoprotein. Of the structural proteins E2 showed most differences between virulent and avirulent SFV strains with five aa differences, two of which were adjacent to each other at positions 545 and 546. The last of the structural proteins to be analysed was E1 which contained four differences between SFV4 and CA7 / rA774. These results are shown in tables 4.1 and 4.2.
<table>
<thead>
<tr>
<th>AMINO ACID POSITION</th>
<th>GENE</th>
<th>SFV4</th>
<th>CA7</th>
<th>prA774</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>nsP1</td>
<td>D</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>96</td>
<td>nsP1</td>
<td>S</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>237</td>
<td>nsP1</td>
<td>C</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>308</td>
<td>nsP1</td>
<td>Y</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>387</td>
<td>nsP1</td>
<td>I</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>427</td>
<td>nsP1</td>
<td>R</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>484</td>
<td>nsP1</td>
<td>V</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>534</td>
<td>nsP1</td>
<td>H</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>596</td>
<td>nsP2</td>
<td>G</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>679</td>
<td>nsP2</td>
<td>V</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>764</td>
<td>nsP2</td>
<td>K</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>765</td>
<td>nsP2</td>
<td>G</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>766</td>
<td>nsP2</td>
<td>T</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>767</td>
<td>nsP2</td>
<td>S</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>768</td>
<td>nsP2</td>
<td>R</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>769</td>
<td>nsP2</td>
<td>E</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>770</td>
<td>nsP2</td>
<td>N</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>771</td>
<td>nsP2</td>
<td>S</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>901</td>
<td>nsP2</td>
<td>A</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>1052</td>
<td>nsP2</td>
<td>V</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>1206</td>
<td>nsP2</td>
<td>9</td>
<td>G</td>
<td>S</td>
</tr>
<tr>
<td>1216</td>
<td>nsP2</td>
<td>F</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>1258</td>
<td>nsP2</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>1259</td>
<td>nsP2</td>
<td>1</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1347</td>
<td>nsP3</td>
<td>1</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>1406</td>
<td>nsP3</td>
<td>A</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>1537</td>
<td>nsP3</td>
<td>F</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>1585</td>
<td>nsP3</td>
<td>N</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1723</td>
<td>nsP3</td>
<td>G</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1742-1749</td>
<td>nsP3</td>
<td>IADLAAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1778</td>
<td>nsP3</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1785</td>
<td>nsP3</td>
<td>L</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>1812-1852</td>
<td>nsP3</td>
<td>RLGRAGAYIFSSDT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GSGHLQQKSVRQNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QCAQLDAVQEEK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>nsP4</td>
<td>D</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>2429</td>
<td>nsP4</td>
<td>R</td>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>

Table 4.1 **Amino acid analysis of SFV Non-structural polyprotein**

Amino acids highlighted in yellow indicate matches between the infectious virus produced from the avirulent SFV infectious clones (ic): CA7 and rA7[74] and differences between them and the virulent SFV viruses. Those in blue show matches between infectious virus from one avirulent ic and the infectious virus produced from the virulent pSP6-SFV4. The SFV viruses shared one amino acid change with prA7[74](1206) and one with CA7(1347).
<table>
<thead>
<tr>
<th>AMINO ACID POSITION</th>
<th>GENE</th>
<th>SFV4</th>
<th>CA7</th>
<th>prA774</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>CAPSID</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>85</td>
<td>CAPSID</td>
<td>N</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>279</td>
<td>E3</td>
<td>A</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>291</td>
<td>E3</td>
<td>V</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>370</td>
<td>E2</td>
<td>V</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>437</td>
<td>E2</td>
<td>K</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>495</td>
<td>E2</td>
<td>K</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>545</td>
<td>E2</td>
<td>N</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>546</td>
<td>E2</td>
<td>M</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>700</td>
<td>E2</td>
<td>V</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>704</td>
<td>E2</td>
<td>V</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>722</td>
<td>E2</td>
<td>V</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>880</td>
<td>E1</td>
<td>A</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>930</td>
<td>E1</td>
<td>R</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>1043</td>
<td>E1</td>
<td>M</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>1134</td>
<td>E1</td>
<td>T</td>
<td>K</td>
<td>T</td>
</tr>
<tr>
<td>1138</td>
<td>E1</td>
<td>N</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>1188</td>
<td>E1</td>
<td>R</td>
<td>K</td>
<td>K</td>
</tr>
</tbody>
</table>

Table 4.2 Amino acid analysis of SFV structural polyprotein

Amino acids highlighted in yellow indicate matches between the infectious virus produced from the avirulent SFV infectious clones (ic): SP6-CA7 and rA7[74] and differences between them and the virulent SFV viruses. Those in blue show matches between infectious virus from one avirulent ic and the infectious virus produced from the virulent pSP6-SFV4. There was only one amino acid change shared between the avirulent rA7[74] and SFV4 at position 1134.

Analysis of the 3’ UTR showed that the SFV4 3’ UTR is 260 nt in length compared to the CA7 and prA774 3’ UTR which is 543 nt in length. There are two major areas of deletion in the virulent 3’ UTR, shown in table 4.3 at positions 11183-11439 and 11541-11619. A nucleotide is also absent from the virulent 3’ UTR at position 11673. Over the remainder of the 3’ UTR there are 6 differences between SFV4 and avirulent SFV strains and an additional nucleotide difference between CA7 and prA7[74] that prA7[74] shares with SFV4 (G/A at position 11726). The CA7 and prA7[74] 3’ UTRs only differ from each other by one other nucleotide at position 11358 as shown in table 4.3.
Table 4.3 Nucleotide analysis of SFV 3' untranslated region

The nucleotide highlighted in green at position 11358 indicates the sole nucleotide difference between CA7 and rA7[74] that was not present in SFV4.

Nucleotides highlighted in yellow indicate matches between the infectious virus produced from the avirulent SFV infectious clones (ic): SP6-CA7 and rA7[74] and differences between them and SFV4. Those in blue show matches between infectious virus from prA7[74] and the infectious virus produced from the virulent pSP6-SFV4. There was only one amino acid change shared between the avirulent rA7[74] and SFV4 at nucleotide position 11726.

4.3.1.2 Sequence of SFV 5' UTR

There were three nucleotides of the 5' UTR at positions 21, 35 and 42 respectively that differed between virulent and avirulent SFV strains (figure 4.9). In SFV-A7 and SFV-A7[74] a cytosine residue was present at position 21 whereas in all infectious virus produced from the three SFV infectious clones an adenine residue was present at position 21. Infectious virus produced from the rA7[74] infectious clone shared an adenine residue with both avirulent SFV strains at position 35, whereas in SFV4 and CA7 this residue was a thymine. Similarly at position 42, prA7[74] shared a common nucleotide with both avirulent SFV strains having a thymine residue where both SFV4 and CA7 had a cytosine residue.
Figure 4.9 Sequence alignment of 5' non translated regions (86 nt in length) of wildtype SFV strains (L10, A7, A7[74]), infectious virus from SFV infectious clones: pSP6-SFV4, SP6-CA7 and rA7[74] respectively. *: infectious virus produced from SFV infectious clones.
4.3.1.3 Prediction of SFV 5' UTR secondary structure

The secondary structure of the first and largest stem-loop between nucleotides 2 and 29 predicted using MFold version 3.0 is identical for all strains of SFV regardless of the A/G nt difference at position 21. The T/A nt difference at position 35 abolished a stem loop from SFV4 and CA7 that is present in SFV-A7, SFV-A7[74] and in rA7[A4]. The T/C nt difference at position 42 made no difference in the secondary structure of the SFV strains. A small stem loop between positions 45-52 followed by a slightly larger one situated between positions 54 and 71 were present in all strains and infectious virus’ 5’ UTRs, as illustrated in figure 4.10.

4.3.1.4 Survival of Balb/c mice intranasally infected with SFV

All mice in each group of 10 infected intranasally (in) with SFV-A7 and SFV-A7[74] survived, while CA7 killed 30% of mice infected on 10 d.p.i and rA7[74] killed 10% of those infected on 12 d.p.i. Both virulent strains killed 100% of mice, with death occurring in mice infected with SFV-L10 at 4 d.p.i and those infected with SFV4 at 5 d.p.i. as shown in figure 4.11.

4.3.1.5 Virus titres in brains of Balb/c mice intranasally infected with SFV

At 2 d.p.i peak virus titres in the brain were observed for rA7[74] and SFV-A7[74] with the latter having a ten-fold lower virus titre. SFV4 and SFV-L10 reached titres between 1×10^8 and 10^9 p.f.u / g respectively by 4 d.p.i, a ten-fold higher titre than rA7[74] and CA7, and approximately a thousand-fold higher than SFV-A7. CA7 reached a peak titre of 1×10^7 p.f.u / g at 6 d.p.i. SFV4, SFV-L10, and SFV-A7 reached peak titres at 4 d.p.i, although as mice infected intranasally with SFV-L10 and SFV4 die between 4 and 5 d.p.i it is possible that like CA7 they reach peak titre at 6 d.p.i. (illustrated in figure 4.12).
Figure 4.10 Secondary structure of SFV 5' untranslated regions. Stem loops predicted using Mfold version 3.0. dG represents optimal energy necessary for stem loop formation (kcal/mole) at 37°C. Nt differences noted at positions 21, 35 and 42 respectively, with only the nt change at position 35 altering the secondary structure of the second stem loop.
Figure 4.11 Survival of Balb/c mice infected intranasally with SFV

Infectious virus produced from pSP6-CA7 and rA7[74] resulted in 30 and 10% mortalities respectively, at 10 and 12 d.p.i. SFV-L10 shows higher virulence than SFV4 causing 100% mortality at 4 d.p.i compared with SFV4 at 5 d.p.i. 10 Balb/c adult female mice aged between 60-80 days were included in each group for analysis. This experiment was repeated twice to ensure results were not unique to individual mice.
Figure 4.12 SFV titres in brains of intranasally infected Balb/c mice.

Mice (n=12 per virus) were infected intranasally with 1×10^8 pfu/ml of virus. Infected brains were sampled in triplicate at 2, 4, 6 and 8 d.p.i. Titres of virus within brain homogenate were measured in triplicate by plaque assay with plaque forming units (p.f.u) per gram (g) being assigned as the measurement scale.
4.3.2 Construction and analysis of SFV 5′ UTR chimeric virus

4.3.2.1 Sequence of SFV chimera 5′ UTRs

The three nucleotides at positions 21, 35 and 42 respectively within the SFV4 5′ UTR (A/T/C) were successfully mutated to those of SFV-A7 (G/A/T). The chimeras: pSP6-SFV4 / A7, SP6-CA7 / A7 and rA7[74] / A7 (where the virus on the right of the (/) symbol represents the genotype of the altered or substituted 5′ UTR) therefore contained G, A and T at positions 21, 35 and 42 respectively. The rA7[74] 5′ UTR containing nucleotides A, A and T at positions 21, 35 and 42 was successfully substituted into pSP6-SFV4 and the reciprocal chimera rA7[74] / SFV4 was also successfully constructed. These results were verified by 5′ RACE PCR and subsequent sequencing and can be observed in figure 4.13.

4.3.2.2 Survival of Balb/c mice intranasally infected with SFV 5′ UTR chimeric virus

All mice infected with infectious virus from SP6-CA7 / A7 and rA7[74] / A7 survived, whereas no reduction in mortality between SFV4 and the infectious virus from pSP6-SFV4 / A7 was observed. Those mice infected with infectious virus from SP6-CA7 / rA7[74] also all survived, however 10% of mice infected with pSP6-SFV4 / rA7[74] died at 4 d.p.i with the remaining dying at 5 d.p.i, thus 10% died a day earlier than usually observed for SFV4. 10% of mice infected with rA7[74] / SFV4 died at 12 d.p.i. compared to all infected with rA7[74] and rA7[74] / A7 having 100% survival rate (figure 4.14).

4.3.2.3 RNA synthesis of SFV strains and SFV 5′ UTR chimeric viruses

Levels of viral RNA synthesis in BHK-21 cells was measured in counts per minute (c.p.m) by a scintillation counter. Cells infected with infectious virus from SP6-CA7 had a c.p.m almost twice as high as SFV-A7 at the peak count of 2 hours post infection (h.p.i) Similarly, virus produced from SP6-CA7/A7 had a peak titre at 2 h.p.i whereas SFV-A7 had a peak titre at 4 h.p.i. Markedly, both SP6-CA7 chimeras had similar growth pattern to CA7 rather than SFV-A7. prA7[74] and rA7[74]/A7 had RNA synthesis levels almost identical to SFV-A7 with a peak titre at 4 d.p.i. The
c.p.m of SFV4-infected cells at 2 h.p.i was almost identical to that of rA7[74]/SFV, whereas pSP6-SFV4/A7 had a similar level of RNA synthesis as SFV-A7. (figure 15). Statistical analyses were carried out on c.p.m for all ten viruses and no statistically significant differences for RNA synthesis between the chimeric viruses and virus produced by the three SFV infectious clones or SFV-A7 was observed.
Figure 4.13 Sequence alignment of 5' non translated regions (85 nt in length) of infectious virus produced from chimeric 5' UTR infectious clones, where the virus on the right of the '/' symbol represents the genotype of the altered or substituted 5' UTR. Infectious chimeric viruses: prA7[74]/A7, CA7/A7 and SFV4/A7 all have the three SFV-A7 5' UTR nucleotide changes. CA7/prA7[74] and SFV4/prA7[74] both contain the rA7[74] 5' UTR genotype with only prA7[74]/SFV4 having the virulent pSP6-SFV4 and SFV-L10 5' UTR sequence. DNA from the chimeric clones was initially sent for sequencing before electroporation into BHK-21 cells. RNA isolated from infectious chimeric virus was amplified using RT-PCR and again sent for sequencing to confirm the mutation and substituted 5' UTR sequences were correct.
Figure 4.14 Survival Curves of Balb/c mice intranasally infected with SFV-5'
UTR chimeric virus

Infectious virus produced from SP6-CA7 / A7 and SP6-CA7 / rA7[74] resulted in
100% survival rate compared to 70% when mice were infected with CA7. Mice
infected with prA7[74] / A7 also showed 100% survival rate compared to 90% when
infected with prA7[74] however the substition of the rA7[74] 5' UTR with that of the
SFV4 5' UTR did not increase the rate of mortality among infected mice. SFV4 / A7
shows no difference in mortality from SFV4 infection, however the reciprocal
rA7[74] 5' UTR substitution caused 10% mortality at 4 d.p.i, a day earlier than
normally seen for SFV4 infection, although was not statistically significant. 10 Balb/c
adult female mice aged between 60-80 days were included in each group for analysis.
Figure 4.15 RNA synthesis of SFV and SFV 5’ UTR chimeric virus (M.O.I. 50) in BHK-21 cells.
4.4 Discussion

On comparing the amino acid sequence of the virulent SFV4 strain to the virus produced from each avirulent infectious clone; CA7 and prA7[74], 50 mutations were found between CA7 and SFV4 and 49 between prA7[74] and SFV4. 32 were located in the non-structural proteins with the remaining 18 in the structural proteins. Other mutations between virulent and avirulent infectious SFV virus included two regions of nsP3 absent in both CA7 and prA7[74] but present in SFV4. The first consisted of 7 amino acids between aa positions 1742 and 1749, the second of 40 amino acids located between positions 1812 and 1852. A 1 aa deletion occurred in SFV4 that was present as an asparagine residue at aa position 1258 in both avirulent viruses. Of most significance in this investigation were the mutations in the non-structural proteins as these may alter the rate of RNA synthesis.

CA7 and prA7[74] shared 8 mutations from SFV4 in nsP1, however in nsP2 CA7 had an additional aa difference to SFV4 compared to prA7[74] which shared an serine residue to SFV4 at position 1206. Conversely, CA7 had an additional isoleucine residue in nsP3 that it alone shared with SFV4 at position 1347, where prA7[74] had a valine residue. nsP4 contained only 2 aa mutations between SFV4 and the avirulent viruses. Overall in the non-structural proteins nsP2 contained the highest number of amino acid mutations between the avirulent viruses and SFV4.

The amino acid mutations located in the nsP1 protein are evenly spaced throughout the protein coding sequence with no mutations located in the extreme N-terminal domain. In addition to this, no amino acid mutations are located at the sites of putative methyltransferase and guanyl transferase motifs, therefore it is probable that these activities are retained by the nsP1 of all three strains of SFV in this investigation. Nonetheless, it could not be ruled out that one or more of the mutations in the nsP1 gene of CA7 and prA7[74] may fall in the RNA recognition site and / or binding site necessary for the initiation of minus-strand synthesis. Hence, conducting an RNA synthesis assay on these viruses was able to confirm if these mutations affect RNA replication.

As mentioned earlier, nsP2 contains the highest number of mutations between SFV4 and the avirulent virus amino acid sequence. CA7 has 15 amino acid differences when compared to SFV4 and an additional amino acid that is deleted in SFV4. prA7[74] has one less mutation than CA7 when aligned to SFV4 as it shares an serine residue with SFV4 at position 1206, it too has a residue at position 1258 that is
absent in SFV4. nsP2 is the most multifunctional protein of the non-structural proteins in alphaviruses and various regions of the gene are required for these functions. The main functions of nsP2 include acting as an autoproteinase which processes the viral non-structural polyprotein by cleaving the nsP1/nsP2 and nsP2/nsP3 bonds, it is also postulated that it functions as an RNA helicase capable of RNA duplex unwinding. nsP2 contains ATPase and GTPase activities, therefore may have RNA binding capacities since NTPase activity is stimulated by single-stranded RNA. It has also been shown to be associated with ribosomes and contains nuclear targeting sequences (Peränen et al., 1990) Sawaicki and Sawicki (1993) also suggested that nsP2 plays a significant role in RNA replication as an accumulation of nsP2 proteases leads to a cessation of minus strand synthesis. Having discussed the many postulated functions of nsP2, it appears that most of these mutations do not fall in regions where they may alter the proteinase functions or NTPase activities. However, the prospect that one or more of these functions may be defective cannot be ruled out.

In nsP3 there are 6 mutations between CA7 and SFV4 and 7 between prA7[74] and SFV4 as CA7 shares an isoleucine residue with SFV4 at position 1347 that prA7[74] does not. CA7 and prA7[74] also have two deleted aa regions in nsP3 that are present in SFV4. nsP3 is a phosphoprotein, although the full function of this gene is not fully known. Studies in Sindbis virus showed that mutations in the nsP3 amino terminal domain caused varying defects in subgenomic RNA synthesis and in negative-strand RNA synthesis (Wang et al., 1991; Rikkonen et al., 1994). It was suggested that mutations in the nsP3 affected only early events in replication and possibly prevented the formation of the initial replication complex that synthesises the negative strand template. Amino acid changes found in the amino-terminus of the avirulent nsP3 may therefore be important in affecting early RNA replication events. As the functions of this gene have not been fully determined it is not yet known what the effect of the two deleted regions may be on the avirulent SFV viruses.

The last of the non-structural proteins; nsP4, is an autoproteinase that cleaves the alanine-tyrosine bond between nsP3 and nsP4. It has been reported that the amino acid residues 58-75 are highly homologous among alphaviruses indicating that the nsP4 protease is specific for alphaviruses (Takkinen et al., 1990). nsP4 also contains the GDD motif that is conserved in RNA polymerases that remains conserved in both prA7[74] and CA7 nsP4 despite 2 amino acid mutations in the gene, hence the polymerase activity should remain stable in these viruses.
There are 50 possible amino acid mutations between the avirulent strains of SFV and SFV4, these may play a role cumulatively or individual amino acid mutations may exclusively influence virulence in SFV.

A surprising development occurred involving the mortality of Balb/c mice intranasally infected with CA7. The SP6-CA7 infectious clone, constructed by Tarbatt et al (1997) by substituting the SFV4 genome of the pSP6-SFV4 infectious clone, constructed by Liljestrom et al (1991) with that of SFV-A7. However, the author was unable to substitute the 5’ NTR of SFV4 with that of SFV-A7. On comparing the mortality rates of Balb/c mice intranasally infected with SFV-A7 and CA7, SFV-A7 killed no mice whereas CA7 caused a mortality rate of between 30 and 40% (Tarbatt, C., unpublished results). An investigation was therefore initiated to study the SFV 5’ NTR as a possible virulence determinant in SFV. Previously, two nt changes in the 5’NTR of CA7 when compared to SFV4 had been demonstrated (Tarbatt et al., 1997). However, on sequencing the 5’ NTR of SFV-A7, SFV-A7[74], SFV4, prA7[74] and CA7, three mutations were observed at positions 21, 35 and 42 respectively. rA7[74] shared the nt at position 21 with SFV4 and CA7, however shared the both nts at positions 35 and 42 with SFV-A7, which differed in all 3 nts to both CA7 and SFV4. rA7[74] has been shown to occasionally kill 10% of Balb/c mice when administered intranasally (Minna Tuittila, personal communication). SFV4 has been shown to efficiently infect neurons whereas in avirulent SFV strains spread is partially restricted in CNS neurons and infection remains asymptomatic (Glasgow et al., 1994). It was postulated that because of the 5’ NTRs probable involvement in the replication of virus RNA, that this factor may be at least partially responsible for higher rates of mortality in mice. On sequencing and predicting the secondary structure of the SFV 5’NTR it was noted that SFV-A7 and prA7[74] shared 4 stem-loop structures, whereas SFV4 and CA7 lacked the second small stem-loop structure in both the avirulent virus 5’ NTRs due to the T/A mutation at position 35.

When mice were infected intranasally with these strains and the titres of virus in the brain determined it was apparent that SFV4 had at a titre over 100 times higher than the SFV-A7 strain and 10 times higher than that of CA7 and prA7[74], indicative of a higher rate of virus replication in vivo.

Reciprocal SFV 5’ NTR chimeras were constructed to further investigate the relation between the 5’ NTR and virus replication. This involved replacing the 5’
NTR of both pSP6-SFV4 and CA7 with those of SFV-A7 and rA7[74]. The 5′ NTR of rA7[74] was replaced with that of SFV-A7 and SFV4. Infectious virus produced was infected intranasally in mice to measure mortality and to analyse differences in neuropathology caused by each and the RNA synthesis of each in BHK-21 cells was determined. No statistically significant difference in rate of RNA synthesis in culture was observed between any of the chimeric viruses. It has previously been shown by our group that virulent and avirulent SFV strains have markedly different abilities to infect neurons and cause death but have similar rates of growth in BHK-21 cells. These results do therefore suggest that in BHK-21 cells, the rate of RNA synthesis has not been significantly affected by the presence of 50 amino acid differences over the SFV genomes. Although extremely challenging experimentally, a study of the rate of RNA synthesis of these chimeras in a primary neuron cell culture merits further investigation.

In mice infected with CA7 and prA7[74] containing the SFV-A7 5′NTR no mortalities were detected, in contrast to CA7 with the rA7[74] 5′ NTR and prA7[74] with the SFV4 5′ NTR which caused the same percentage mortalities as CA7 and prA7[74] alone. Replacing the SFV4 5′NTR with either that of SFV-A7 or rA7[74] did not result in any change in mortality and all mice died by 5 d.p.i. This suggests that although the 5′ NTR may be a virulence determinant it is under the control of more than one gene. The neuropathology of infected mice substantiates these findings, with chimeras that have the SFV-A7 5′ NTR (with the exception of SFV4) showing a marked reduction in severity of lesions in the olfactory bulbs and brain. In the CA7 chimera that had the rA7[74] 5′ NTR, a slight reduction in neuropathology was observed. These results are discussed further in Chapter 5.

This multigenic influence in virulence has previously been investigated by two other groups by combining changes the 5′ NTR and the envelope glycoprotein E2. Kinney et al (1996) carried out mouse challenge experiments with VEE viruses of the virulent Trinidad donkey (TD) strain and its attenuated vaccine derivative (TC-83). Their results indicated that attenuation was partially determined by mutations within the 5′NTR, with mutations in the E2 envelope glycoprotein also playing a role. In a similar investigation on Sindbis (SV), Kobiler et al (1999) showed that substitution of 2 amino acids in E2 of the nonlethal neurovirulent strain of SV (SVN) with Met-190 and Lys-260 of the lethal SVNI strain resulted in the induction of paralysis in 2 and 5-week-old rats. Only substitution of both the 5′ NTR and E2 SVNI determinants
produced virus with virulence properties indistinguishable from those of SVNI parent virus.

Although CA7 with the SFV-A7 5′ NTR has now been attenuated to be virtually indistinguishable from SFV-A7, investigating the role of E2 and 5′ NTR as virulence determinants of SFV would be beneficial. Chimeras have now been constructed in our laboratory that combine reciprocal SFV 5′ NTRs with 6 of 8 amino acid mutations in E2 between SFV4 and CA7 and 2 of 4 mutations in E1. These may be very useful in determining the multigenic nature of virulence determinants in SFV. However as there are 50 amino acid differences between the virulent and avirulent strains of SFV other relevant multigenic combinations also warrant further investigation.
5.1 Introduction

The use of animal models to gain insight into the course and outcome of neurotropic viral infections has aided our understanding of viral neuropathogenesis. Sections of CNS tissue removed from infected animals at a series of time points during infection can generate information concerning the type of lesions produced, their topography and the cell populations involved. This information may then be correlated with any clinical symptoms resulting from viral infection.

5.2 Cells of the Central Nervous System

In order to fully comprehend the mechanisms of viral neuropathogenesis it is first important to understand the basic anatomy of central nervous system (CNS). The CNS can be divided into two entities, the brain and the spinal cord. The brain can be further divided into the brain stem which is an extension of the spinal cord, the cerebellum and the two cerebral hemispheres. At the very front of the brain, the olfactory bulbs can be found. (Carpenter, 1991; Brodal, 1992). Both the brain and spinal cord are suspended in cerebrospinal fluid (CSF) described as a fluid cushion for the CNS. CSF acts not only as a drainage route for the waste products of cerebral metabolism but also allows rapid circulation of substances secreted into the CSF to many brain regions (Segal, 2000). The brain is surrounded by the meninges made up of the pia mater and the arachnoid which constitute the leptomeninges and the dura mater (Smith, 1989).

There are two main categories of cells in the CNS; nerve cells known as neurons and support cells termed neuroglia. The support cells outnumber the nerve cells by approximately ten-fold and can be divided into four categories: astrocytes, oligodendrocytes, microglia and ependymal cells. The functions of these cells differ although they all, in part serve as supporting elements for the neurons while segregating groups of neurons from each other. A representation of these cell types is illustrated in figure 5.1
Figure 51 Diagrammatic representation of the cells of the CNS
An overview of the interaction of the neurons with the neuroglia of the CNS, including astrocytes, oligodendrocytes, microglia and ependymal cells. The axon and myelin sheath of a neuron are also indicated as is the interaction of the astrocytic foot processes with surrounding blood capillaries in the brain. (Adapted from http://www.mhhe.com/biosci/ap/holesentials/student/olc/graphics/hole06ehap_s/other/0298.jpg)
5.2.1 Neurons

Neurons are anatomical and functional units of the central nervous system. Axons clump together in bundles forming nerve fibrils, these in turn also bundle together to form long chains of nerve fibres which make up the nervous system. Individual neurons are composed of three distinct domains: the soma or cell body, the axon and the dendrites (Junqueira et al., 1975; Starr and Taggart, 1989). The neuron is represented in figure 5.2.

The soma is comprised of a nucleus and cytoplasm containing cell organelles such as endoplasmic reticulum (ER), ribosomes and the Golgi apparatus (GA). The nucleus of a neuron is usually centrally located, large and spherical. When the nucleus is examined histologically and stained, chromatin is seen to be dispersed and stains lightly in a web-like pattern compared to the nucleolus, of which there may be several, which stain intensely. Characteristic of the cytoplasm is the large abundance of ribonucleoprotein associated with the rough endoplasmic reticulum (RER) and ribosomes. When viewed by light microscopy, large clumps of RER or Nissl bodies may be seen in some larger neurons, motor neurons in particular (Burns, 1997, Morris, 1987). The GA is prominent in most neurons and is visible as a large loose net surrounding the nucleus. In smaller neurons the GA extends into the base of dendrites (Junqueira et al., 1975). Dendrites are multiple elongated processes extending from the soma to form dendritic trees. These then synapse with other dendrites in order to receive and transmit sensory signals from the environment.

A single tubular axon extends from each neuronal cell body and is responsible for conducting nerve impulses to other cells. Large axons are coated in a fatty insulating sheath called the myelin sheath. This sheath is essential in achieving high speed conduction of nerve impulses. In contrast to dendrites, axons have a constant diameter and do not branch liberally into tree-like structures. Unlike the cytoplasm of the soma, the axonal cytoplasm or axoplasm is poor in organelles. To combat this, new cytoplasm and other constituents are formed in the soma and flow out into the axon (Burt, 1993).

Neurons vary both in size and in their organisation, but they all essentially have the same structure. Neurons found in the olfactory bulbs for example are small and round, whereas those found in the hippocampus are large and pyramidal. Similarly, neurons may be organised into aggregates (nuclei) and laminar formations as is the case for neurons found in the cerebrum and cerebellum.
Figure 5.2 **Diagrammatic representation of a neuron**

The individual neuron is composed of three distinct domains: the Soma, the axon and the dendrites. Within the Soma resides the centrally located, large, spherical nucleus and organelle-containing cytoplasm. Multiple elongated processes extending from the Soma termed dendrites form dendritic branches that synapse with other dendrites to transmit and receive sensory signals. The axon extends from each Soma and is responsible for the conduction of nerve impulses, made faster and more effective by the presence of the surrounding myelin sheath. The terminal buttons of the axon relay and receive sensory signals that pass along the axon. (Adapted from http://www.usm.maine.edu/psy/broida/101/neuron.JPG)
5.2.2 Astrocytes

Astrocytes are the largest of the neuroglial cells in the CNS. Their principal role is to act as “scaffolding” for the neurons of the CNS. Other functions include fluid and ionic homeostasis and antigen presentation. Astrocytes, as their name suggests, are star-like in shape and have long processes. Their nucleus is centrally located and spherical, staining lightly under histological examination. Many of their processes have expanded pedicles, known as vascular feet, at their ends as they allow attachment to blood capillaries. Astrocytes also make a variety of contacts with neurons (Burns, 1997, figure 5.1).

There are two types of astrocytes, those found in the white matter termed fibrous astrocytes, and those in the grey matter termed protoplasmic astrocytes (Kimelberg and Norenberg, 1989). Fibrous astrocytes have long, smooth and slender processes that branch infrequently, whereas protoplasmic astrocytes have many branches and their processes are short and broad. Astrocytes in contact with neurons are thought to be important for the exchange and removal of substances, such as the removal or degradation of certain extracellular neurotransmitters from the synaptic spaces, a build up of which are deleterious to neurons. Astrocytic foot processes surrounding blood capillaries in the brain are thought to be involved in forming the blood-brain barrier (BBB; Brodal, 1992).

5.2.3 Oligodendrocytes

Smaller than astrocytes and with shorter, less numerous processes than other neuroglia, oligodendrocytes are located in both the white and grey matter of the CNS. In the white matter oligodendrocytes appear in rows along the myelinated nerve fibres, whereas in grey matter they are mainly localised in close proximity to the neuronal somas and are referred to as satellite cells.

Typically oligodendrocytes have an irregularly shaped, small, dark, lymphocyte-sized nucleus (Burns, 1997) which contains dense clumps of chromatin. The cytoplasm contains numerous cellular organelles, including in particular, free and attached ribosomes, extensive Golgi apparatus and several mitochondria (Burt, 1993).

The function of oligodendrocytes is the production of myelin that surrounds the axons of the CNS. Schwann cells have a similarity to oligodendrocytes in that they also produce myelin, however Schwann cells are involved in myelination of axons in the peripheral nervous system rather than within the CNS. Another
difference between Schwann cells and oligodendrocytes is that the latter myelinate several axonal segments, whereas Schwann cells myelinate single axonal segments. Myelin in the CNS is composed of oligodendrocyte cell membrane that is spirally wrapped around the axons, layers of which are termed lamellae (Brodal, 1992). The more times an oligodendrocyte cell membrane is wound around the axon the thicker the myelin sheath. Myelin is composed of lipids and carbohydrates including myelin-associated protein (MAP), myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG; Morris, 1987). Detecting oligodendrocytes by immunofluorescence has been achieved by using antibodies against a product of oligodendrocytes termed CNPase.

5.2.4 Ependymal Cells

Ependymal cells are neuroglial cells that line the cerebral ventricles and neural canal. They are closely related to the simple cuboidal epithelial cells of the choroid plexus. Their role is not prominent in most reactions in the brain, however the focal loss of these cells is followed by a compensatory proliferation of subependymal astrocytes. This results in the production of small nodules termed ependymal granulations on the walls of the ventricles giving an appearance referred to as ventricular ependymitis (Morris, 1987, Burns, 1997).

Ependymal cell nuclei stain lightly under histological examination, and the chromatin is evenly dispersed. The cytoplasm has the typical complement of organelles, although has minimal RER. Tight junctions hold the apical and luminal edges of adjacent cells together, although these junctions do not completely surround the ependymal cells, allowing large molecules to move freely between the CSF and the subependymal spaces (Burt, 1993).

Certain viruses, particularly cytomegalovirus (CMV) may produce extensive injury to the ependymal cells, resulting in prominent associated viral inclusions within the cells (Burns, 1997).

5.2.5 Microglia

Microglia have small, elongated, dense cell bodies. Their nuclei contain condensed chromatin and have an elongated shape along the axis of the cell body, thus allowing simple histological identification when compared to other neuroglia cells that possess spherical nuclei. Microglia have a thorny appearance due to their
short processes being covered by numerous small expansions. These cells are not numerous, but can be located in both the white and grey matter of the CNS (Junquiera et al., 1975)

Microglia are in all likelihood derived from circulating monocytes and they function as the major phagocytes in the CNS. When the brain has undergone injury the appearance of microglia changes. The nuclei enlarge and elongate to form rod cells. Microglia containing abundant intracellular lipids are termed gitter cells, and these in turn may aggregate to form microglial nodules.

5.3 Pathology and its Terminology

Similar terminology is used to describe neuropathological processes and outcomes in several different diseases. Inflammation of the brain parenchyma is termed encephalitis, inflammation of the meninges is termed meningitis and inflammation of the spinal cord tissue is termed myelitis. Given that the regions of the CNS are closely joined, more specific terminology such as meningoencephalitis or meningoencephalomyelitis often is applied (Smith, 1989).

Most neurotropic viruses show a tropism for specific cell types leading to lesions characteristic of the infected cell. The types of lesions observed following a viral infection of the CNS are varied and may include necrosis, demyelination, gliosis, and inflammation and spongiform degeneration.

5.3.1 Necrosis

Necrosis refers to the destruction of the neural tissue and frequently is associated with cytotoxic edema. Neuronal necrosis starts with cytoplasmic microvacuolation caused by swelling of both the endoplasmic reticulum and mitochondria. Disappearance of Nissl bodies, condensation of the cell cytoplasm and break up of nuclear material, known as nuclear pyknosis, soon ensues. Basophilic masses appearing on the surface of the neuron correspond to the distortion of small areas of neuronal cytoplasm caused by pressure from swollen astrocytes. The cytoplasm is eventually homogenised and cleared, resulting in the gradual disappearance of neuronal cell bodies (Brodal, 1992).
5.3.2 Demyelination

Demyelination refers to the loss of myelin that surrounds the axons of the CNS. When myelinated fibres are clustered together they appear white in colour and form the white matter of the brain and spinal cord. If only the myelin sheath is damaged nerve function is often restored; this is termed primary demyelination. However, if the underlying axon is damaged, nerve functionality may be permanently lost; this is termed secondary demyelination. Nerve fibres are capable of regrowth and remyelination, however scar tissue (gliosis) often forms and impedes proper growth and recovery (Kimerberg and Norenberg, 1989). Differences in rates of remyelination have been detected in mice of different strains following infection with SFV. For BALB/c mice infected intraperitoneally with SFV-A7, demyelination is maximal at 14 days post infection, at a time where infectious virus has been cleared from the CNS. The lesions are then quickly remyelinated. In contrast, SJL mice similarly infected with the M9 mutant of SFV show demyelinating lesions which may persist up to a year (Donnelly et al, 1997, Smyth et al, 1990).

5.3.3 Gliosis

Gliosis is the most frequent change in response to CNS damage. Injury to the CNS results in an increase in the size and number of astrocytes and proliferation of microglia. This change is often referred to as reactive astrocytosis, gliosis or glial scars. In addition to possessing increased metabolic activity, reactive astrocytes have more processes and glial filaments than normal astrocytes (Kimerberg and Norenberg, 1989).

5.3.4 Inflammatory Lesions

Inflammatory lesions may be localised or disseminated and consist of perivascular cuffing and infiltrates of various leucocytes primarily macrophages, lymphocytes and neutrophils. The composition of the infiltrates frequently depends on the nature of the infection.

5.3.5 Spongiform Degeneration

Spongiform degeneration refers to vacuolation of neuronal cell populations, astrocyte or oligodendrocyte cell cytoplasm, cell processes or myelin sheaths. It is so called due to the spongy vacuolation visible by light microscopy.
5.4 Routes of Infection into the CNS

5.4.1 The Blood-Brain Barrier (BBB)

The BBB is effectively composed of capillary endothelial cells with extensive tight junctions wrapped with astrocytic foot processes. The astrocytic footplates, the tight junctions of the endothelial cells, and the plasma membranes together form a physical barrier to limit substance diffusion or leakage (Junquiera et al., 1975, Brodal, 1992).

Any loss of the tight junctions between the endothelial cells is responsible for reducing the effectiveness of the BBB. In many cases of viral infection, this is due to the direct infection of the endothelial cells. Several other viruses, however, are capable of crossing the BBB by a mechanism similar to the process of substance diffusion while others are chauffeured across the endothelial cells in infected leucocytes (Johnson, 1982).

5.4.2 Haematogenous Route

The majority of CNS infections result from an infectious agent gaining access to the CNS via the hematogenous route. The precise mechanism by which infectious agents may penetrate the BBB is not fully elucidated for all infectious agents, however, the choroid plexus appears to be a major site of entry. Localisation of infectious agents in the vascular component of the choroid plexus leads to spillage of the infectious agents into the CNS (Smith, 1989).

5.4.3 The Neural route

Although most neurotropic viruses infect the CNS via the hematogenous route, a few utilise the neural route or intra-axonal transport. Typically, transport of rabies virus occurs via sensory and motor nerves at the initial site of infection where the virus travels to the anterior horn cells of the spinal cord. Active cerebral infection is followed by passive centrifugal spread of virus to peripheral nerves (Johnson, 1982; Smith, 1989).

It has been shown in several studies that viruses may also penetrate the CNS via the olfactory nerve endings (Kaluza et al., 1987; Balluz et al., 1993). Our group has used the intranasal route of inoculation to investigate the neuropathogenesis of
Semliki Forest Virus (SFV) and Louping Ill Virus (LIV) infections in mice and lambs (Jerusalmi et al., 2003; Keogh et al., 2002; Sheahan et al., 2002). The intranasal route of inoculation is more stringent than the intramuscular, subcutaneous and intraperitoneal routes and more natural than the intracerebral route.

5.4.4 The Olfactory System

The olfactory system is composed of four main structures: the olfactory epithelium, the olfactory nerve, the olfactory bulbs and the olfactory tracts. It is located in the frontal area of each cerebral hemisphere. An illustration of the location of the human olfactory pathway may be seen in figures 5.3A. The olfactory bulb resides in a corresponding site in mice and other vertebrates and is the first processing centre in the olfactory pathway. It has a typical cortical appearance and is composed of six well defined layers. Several types of nerve cells, the most notable of which are the mitral cells, are present in the grey matter of the olfactory bulbs (Carpenter, 1991; figure 5.3B). The neurons of the olfactory bulb direct their axons via the olfactory tract to the cerebral cortex and various nuclei in the vicinity of the temporal lobe (Brodal, 1992; Burt, 1993).

Viruses rely on bipolar neurons to enter the CNS after intranasal administration. Whereas one end of an olfactory neuron is exposed to the external environment of the nasal cavity, the other end terminates in the CNS. The connections of the olfactory epithelium and olfactory bulb are shown in figures 5.3 A and B.

The olfactory epithelium covers both the posterior and superior regions of the nasal cavity and contains three cell types: olfactory neurons, supporting cells and basal cells. The olfactory neurons are bipolar with dendrites extending to the epithelium and an unmyelinated axon contributing to the olfactory nerve. Supporting or secretory cells are interspersed among the bipolar neurons, with basal cells lying between the neurons and supporting cells. The function of basal cells is to form new bipolar neurons and to separate the epithelium from the underlying connective tissue and cartilage of the cribriform plate (Fitzgerald, 1992). An overview of how viruses travel to the brain through the olfactory mucosa, olfactory bulbs and glomeruli is illustrated in figure 5.3. (Sammin et al, 1999, Sheahan et al, 1981, Atkins et al, 1996)
Figure 5.3 Virus infection via the olfactory route

The movement of virus particles from the nasal cavity along branches of the olfactory nerves through the olfactory glomerulus and mitral cells, eventually reaching the brain, is represented by red dots. The direction of travel is illustrated with black arrows.

5.5 Materials and Methods

5.5.1 Intranasal infection of Balb/c mice

Groups of 3 female Balb/c mice per timepoint aged 60-80 days were intranasally infected with 20 μl per nostril of SFV or CHIKV virus with concentrations of 1 x 10^8 p.f.u / ml. The health, clinical signs and time of death were recorded over a 7-14 day period. There were two timepoints at 7 dpi and 14 dpi for CHIKV and SFV strains and one timepoint at 7 dpi only for SFV 5' NTR chimaeras.

5.5.2 Brain Perfusion and Fixation

Mice were deeply anaesthetised with halothane and perfused via the left ventricle with phosphate buffered saline (PBS), followed by 10% formol saline (obtained by diluting 100 ml formaldehyde solution (BDH) 1:10 with H₂O and adding 9 g of sodium chloride (Sigma)) for 5 min. Perfused mice were left overnight in formol saline at 4 °C before the brains and olfactory bulbs were removed intact and processed for paraffin embedding, sectioning and staining.

5.5.3 Paraffin embedding and sectioning

Paraffin embedding and sectioning was performed by Ms. Alex Whelan (Veterinary Pathology Laboratory, University College, Dublin). Excised brains and olfactory bulbs were dehydrated in a series of graded alcohol washes; 50% (vol/vol) alcohol for 60 min, 70% (vol/vol) alcohol for 60 min, 90% (vol/vol) alcohol for 60 min, followed by two 40 min washes in absolute alcohol. Samples were then immersed in a 1:1 absolute alcohol: xylene solution for 60 min before being washed 3 times in absolute xylene, for 40 min / wash. This was followed by four individual immersions in paraffin wax; again each for 40 min. Tissue samples were then mounted in paraffin blocks prior to sectioning. Four to six μm thick paraffin sections were prepared using a microtome, placed on standard microscope slides and fixed with acetone prior to staining.
5.5.4 Histological Staining

Haematoxylin and eosin (H&E) is the most widely used stain for diagnostic histopathology of tissue sections. Haematoxylin is a purple-blue dye that stains DNA, RNA, proteins and other acidic complexes in the cell. As the nucleus of a cell comprises a large quantity of DNA and RNA it appears dark purple following haematoxylin staining. Similarly, the cytoplasm of cells containing significant quantities of ribosomes generates a purple hue termed cytoplasmic basophilia. Eosin is a non-specific dye that predominantly stains basic proteins a pink to red colour, although it does not distinguish between cellular and extracellular proteins (Bancroft and Stevens, 1990). Luxol fast blue is a versatile dye that can combine with many other dyes and is used predominantly for staining myelin. One of the best combinations for use in the study of neuropathology and normal anatomy is Luxol fast blue combined with cresyl violet dye, used for staining neurons (Bancroft and Stevins, 1990).

5.5.5 Pathology Grading System

Coronal sections of each brain collected from five different levels were examined 'blind' and given an estimated score for the severity and distribution of the pathological changes. Individual parameters were given a score ranging from 0 (no visible lesions) to 5 (severe lesions).
5.6 Results

Consistent with previously reported findings for SFV4 and SFV-A7 by our group (Glasgow et al., 1991, 1994; Tarbatt et al., 1997; Jerusalmi et al., 2003), brain lesions were localised primarily in olfactory pathways. Variation in severity of lesions between individual mice and bilateral symmetry was common. Olfactory bulbs, anterior olfactory nuclei, lateral olfactory tracts, pyriform cortex, anterior commissure, hippocampus, thalamus and cingulate cortex were regular sites of pathological change.

Laminar and focal necrotising lesions at 7 dpi were accompanied by vascular congestion, spongiform degeneration and infiltrates of macrophages and lymphoid cells. Laminar areas of neuronal necrosis were most severe in the olfactory bulbs and in the olfactory and pyriform cortex. Multifocal areas of neuronal necrosis with pyknotic nuclei and hypereosinophilic cytoplasm occurred primarily in the thalamus and hippocampus. Affected areas at 14 dpi were characterised by neuronal depletion and gliosis.

Demyelinating lesions were localised primarily in the olfactory tracts. Areas of demyelination at 7 dpi showed decreased staining with luxol fast blue and infiltrates of lymphocytes and macrophages. Astrocytic proliferation, lipid-laden macrophages and lymphoid perivascular cuffing were prominent in areas of demyelination at 14 dpi. Examples of the above lesions are illustrated in figure 5.1.

5.6.1 Chikungunya Virus – Seven geographically distinct strains

5.6.1.1 CHIKV – Ross

7 d.p.i. – Severe (5+) necrotising lesions in 3 of 3 mice
14 d.p.i – Severe (5+) necrotising lesions in 1 of 3 mice; less severe (4+) lesions in 2 mice

5.6.1.2 CHIKV – DaKAR

7 d.p.i. – Moderate (3+) lesions in 3 of 3 mice
14 d.p.i – Moderate (3+) lesions in 2 mice; mild (1+) lesions in 1 mouse

5.6.1.3 CHIKV – 37997

7 d.p.i. – No abnormality detected in 3 of 3 mice
14 d.p.i – Mild (1+) lesions in 1 mouse; no abnormality detected in 2 mice

5.6.1.4 CHIKV – P0731460
7 d.p.i. – Mild (1+) lesions in 1 mouse: no abnormality detected in 2 mice
14 d.p.i – No abnormality detected in 3 of 3 mice

5.6.1.5 CHIKV – 181/25
7 d.p.i. – Mild (1+) lesions in 1 mouse: no abnormality detected in 2 mice
14 d.p.i – No abnormality detected in 3 of 3 mice

5.6.1.6 CHIKV – PH H15483
7 d.p.i – No abnormality detected in 3 of 3 mice
14 d.p.i – No abnormality detected in 3 of 3 mice

5.6.1.7 CHIKV – SV450
7 d.p.i – No abnormality detected in 3 of 3 mice
14 d.p.i – No abnormality detected in 3 of 3 mice

5.6.2 Semliki Forest Virus - 5 Strains

5.6.2.1 SFV-A7 & A7[74]
7 d.p.i – Moderate (3+) inflammatory demyelination in 3 of 3 mice
14 d.p.i – Moderate (3+) inflammatory demyelination in 3 of 3 mice

5.6.2.2 SFV4
4 d.p.i – Severe (5+) necrotising lesions in 3 of 3 mice

5.6.2.3 CA7
7 d.p.i – Severe (5+) necrotising lesions in 3 of 3 mice
14 d.p.i – Severe (5+) necrotising lesions in 3 of 3 mice

5.6.2.4 rA7[74]
7 d.p.i – Severe (5+) necrotising lesions in 2 of 2 mice
14 d.p.i – Severe (5+) necrotising lesions in 3 of 3 mice
5.6.3 SFV 5' NTR Chimaeric Viruses

5.6.5.1 CA7 + A7 5' NTR
7 d.p.i – Mild (2+) inflammatory demyelination in 3 of 3 mice

5.6.5.2 CA7 + rA7[A7] 5' NTR
7 d.p.i – Severe (4+) necrotising lesions in 3 of 3 mice

5.6.5.3 rA7[74] + A7 5' NTR
7 d.p.i – Moderate (3+) inflammatory demyelination in 3 of 3 mice

5.6.5.4 rA7[74] + SFV4 5' NTR
7 d.p.i – Severe (5+) necrotising lesions in 3 of 3 mice
Figure 5.1 Neuropathology in Balb/c mice infected i.n. with CA7, SFV-A7 and CHIKV

(A) Balb/c mouse, CA7, 7 dpi. Spongiform degeneration and demyelination in the anterior commisure. H&E, x 200. (B) Balb/c mouse, SFV-A7, 14 dpi. Focal area of demyelination in the anterior commisure. Luxol Fast Blue, x 200. (C) Balb/c mouse, CA7, 7 dpi. Focal area of spongiform degeneration and neuronal necrosis in the hippocampus. H&E, X200. (C) Balb/c mouse, CHIKV, 14 dpi. Laminar neuronal necrosis and dense infiltrates of lymphocytes and macrophages in the piriform cortex. H&E, x 100.
5.7 Discussion

Pathological examination was carried out to determine whether infections with CHIKV Ross compared to six geographically distinct strains of CHIKV and whether similar pathological changes in the CNS resulted. The neuropathology caused by SFV-5'UTR chimaeras was also investigated to confirm whether SFV4, CA7, and SFV-A7 induced comparable pathological lesions in the CNS, and to determine any involvement of the 5' UTR as a pathogenicity determinant. Histopathology results presented in this investigation demonstrate the changes in the CNS of Balb/c female adult mice infected intranasally with six strains of CHIKV, virulent and avirulent strains of SFV and SFV-5'UTR chimaeras. The intranasal route of inoculation was chosen as it is a more direct natural route for infection of the CNS and results in less variable response than i.p. for SFV-A7 (Sheahan et al., 1996). On comparing the consequences of infection with SFV via the i.n. and subcutaneous routes, Kaluza et al (1987) described the spread of virus through neural axons as one of the possible modes of entry into the brain, and indicated that virus in the olfactory bulbs was detected before other areas of the brain. It is this localisation of lesions in the olfactory pathways that greatly facilitates comparative studies between different virus strains.

Identification of lesions in the brain after i.n. infection confirmed that CHIKV has the ability to use the olfactory pathway and spread through neuronal tracts to reach the brain. However, this was only the case for five of the seven strains of CHIKV, with two strains: SV-0451/96 (Thailand) and PH H15483 (Phillipines) showing no induction of lesions. Three strains: 181/25 (Thailand), PO731460 (India) and 37997 (Senegal) caused mild lesions and one strain moderate lesions (DAKAr B16878, C.A.R). Of these viruses, only DAKAr B16878 and Ross were detected in the brains by plaque assay. The brains of mice infected with the Ross strain (Tanzania) exhibited severe necrotising lesions although mice stayed healthy and survived infection. The presence of necrotic neurons suggests CHIKV infection in the brain, however due to the survival of infected animals it is possible that the rate of multiplication of CHIKV in the neurons enables the immune system to intervene before levels of damage caused clinical symptoms or death. The differences in severity of neuropathology caused by these seven CHIKV strains may possibly be explained by their different passage histories possibly affecting their ability to efficiently infect, replicate in, and/or bud from different cell types in vivo, in addition to possibly differing in neurovirulence in their natural environments.
A restricted rate of multiplication in neurons was also observed for SFV-A7 and SFV-A7[74] which do not cause death in adult mice and produced moderate inflammatory demyelination. SFV4 however caused severe necrotising lesions and produced a lethal threshold of damage to neurons before the immune system could intervene resulting in 100% mortality by 5 d.p.i. CA7 and rA7[74] also caused severe necrotising lesions in infected adult mice, however only 30 and 10% respectively of mice infected with these viruses died.

Interestingly, mice infected with SFV chimaeras of CA7 and rA7[74] that incorporated the 5' UTR of SFV-A7 showed no mortality and a significant decrease in the severity of lesions caused. It was felt that the lesions induced at 7 d.p.i were sufficient for comparison between viruses, thus mice were not examined at 14 d.p.i. The nucleotide sequence of the CA7 and SFV4 5’ UTRs when compared to that of SFV-A7 differed by only three nucleotides. The rA7[74] 5’ UTR differed only by one nucleotide at position 21. From the pathology results, the survival rates and sequence analysis, it appears that substituting an adenine residue at position 21 of rA7[74] with the guanine of SFV-A7 results in a 100% survival rate and a reduction in the severity of inflammatory lesions from severe to moderate. In CA7, all three nucleotides at positions 21, 35 and 42 were replaced with those of SFV-A7. Not only was the survival rate of infected mice increased from 70% to 100% but the severity of necrotising lesions was significantly reduced and pathology similar to that seen for SFV-A7 was observed, including mild inflammatory demyelination and perivascular cuffing localised primarily in the olfactory tracts. Substitution of the CA7 5’ UTR with that of rA7[74] also resulted in a 100% survival rate in i.n. infected mice, although severe necrotising lesions similar to those caused by rA7[A7] were still observed. No differences in mortality were observed between mice infected with rA7[74] and rA7[74] with the SFV4 5’ UTR (two nucleotides at positions 35 and 42 changed to those of SFV4). Similarly, no significant differences in the severity of both laminar and focal lesions in the lateral olfactory tracts, pyriform cortex was observed.

This demonstrates that the 5’ UTR has an important role in a virus's ability to replicate efficiently in different cell types in the murine CNS, resulting in differing severities of neurological damage. Subsequently, the ability of an infected animal's immune system to intervene before levels of damage are too severe, results in an increased likelihood of infected animals surviving infection.
Chapter Six

General Discussion
6.1 General Discussion

Chikungunya virus (CHIK) has been attributed to over forty outbreaks since it was first recorded in Tanzania in 1952. The arthritic disease of sudden onset results in severe physical incapacitance in humans. CHIK is predominantly found in Central and Southern Africa and South East Asia, although cases have also been recorded in Australia. The prototype strain was isolated from both mosquitoes and humans by Ross in 1956 following the Tanzania outbreak of 1952-53, and is termed “Ross” (Powers et al., 2000). Early work carried out on CHIK involved investigating the physical properties of the virus and included electron-microscopy, virus formation, protein synthesis analyses, expression of proteins and biological comparisons to other alphaviruses (Igarashi et al., 1970; Chanas et al., 1979a, b; Simizu et al., 1984 Ranadive and Banerjee, 1990). Blackburn et al. (1995) investigated the antigenic relationship between CHIK and the closely related O’nyong nyong virus suggesting that ONNV was a subspecies of CHIK until Powers et al. (2000) showed through phylogenetic analyses that they were two independent members of the SF subgroup of alphaviruses. In this investigation, the phylogenetic relationships between strains of CHIK, ONNV and SFV were determined over the non-structural and structural proteins, giving a more accurate representation of the degree of similarity between these viruses than earlier investigations.

In 1986 Levitt et al. produced a live-attenuated vaccine which later proved to have partially reverted to the unattenuated form. This was due to the cell type in which it was developed being changed from master seed to production seed. Since no good animal model for CHIK virus infection has yet been described, the long-term aim of this investigation was the development of a system to test potential vaccines.

On initiating this investigation, only the sequence of the structural polyprotein of the vaccine strain of CHIK (181/25) submitted by Parker (1994) was available on Genbank. By aligning this sequence to the same region of the Gulu strain of ONNV, a 78% nucleotide identity was observed. The prototype Ross strain of CHIK was therefore originally sequenced using primers designed from the structural polyprotein of 181/25 and the non-structural polyprotein of ONNV Gulu. New primers were designed from each amplified region of CHIK that was sequenced. The 5’ and 3’ nontranslated regions amplified using 5’-3’ RACE PCR. This was the first complete CHIK genome to have
been sequenced and submitted to Genbank, since then two more complete CHIK genomes have been submitted: the S27 strain (Khan et al., 2002), 37997 (Vanlandingham et al., 2005) and a structural polyprotein sequence of an Indian strain termed Nagpur (Ranadive, 2003). CHIK was subsequently characterised in this investigation, involving an array of studies both in vitro and in vivo. On comparing CHIK to another virus SFV-A7 that is well characterised in our lab we were able to investigate several facets of this virus. Intranasal infection (i.n.) with CHIK caused not only severe necrotizing lesions in the brains of mice but also focal areas of moderate inflammatory demyelination, accompanied with astrocytic proliferation, neuronal depletion and gliosis. When immunofluorescent studies were carried out it was shown that CHIK infects oligodendrocytes just as efficiently as SFV, possibly a cause of the demyelination observed in the brains.

Subsequent analyses of growth in vitro showed that CHIK grew efficiently in BHK-21 cells and efficiently synthesized RNA. To investigate virus growth in cells of the CNS, a primary mixed glial cells culture was established, infected, and cell viability measured. Again, CHIK efficiently infected cells to a similar level as SFV-A7. As alphaviruses are generally thought to be neurotropic viruses, their growth in cell-lines such as BHK-21 or vero cells may not be completely representative of how they function in vivo. An experiment to determine the titres of virus in the brains of i.n. infected mice at daily timepoints over 10 days was carried out. Both CHIK and SFV-A7 reached peak titres in the brain at 5 d.p.i. CHIK initially took longer to produce virus particles in the first 48 h.p.i., but grew at a much faster rate than SFV-A7 from that point and had a marginally higher titre at 5 d.p.i. This surge in virus production could possibly be the explanation for the degree of severity of lesions in the brains of CHIK infected mice being significantly more than those caused by SFV-A7.

An in vivo experiment was pursued to investigate this further by comparing the in vivo virus titres of CHIK six other geographically distinct CHIK strains. The vaccine strain 181/25 and another strain DAKAr B16878 that has been phylogenetically associated with SFV rather than CHIK (Powers et al., 2000) but is thought to be a strain of CHIK were among the 6 strains used. Initially to determine the lethality of these strains groups of mice were infected with each virus, none caused mortality in i.n.
infected mice. Subsequently, brain and blood titres of i.n. CHIK-infected mice were determined. Only two CHIK strains (Ross and DAKAr B16878) produced any virus in the brains of i.n. infected mice, no virus was detected in the blood of any of the mice. The six geographically distinct CHIK strains were supplied by Dr. Ann Powers (CDC, Fort Collins, USA). They have been isolated from mosquitoes following African and Asian outbreaks over the past 45 years. CHIK Ross however has undergone several passages in BHK-21 cells within our laboratory and may have an increased ability to grow \textit{in vivo} in small rodent hosts relative to CHIK strains passaged in mosquito cells. The only other strain of CHIK to be detected in the brain was DAKAr B16878 which although phylogenetically closer to SFV than CHIK, also is the only other one of these strains to have been repeatedly passaged in BHK cells. Other strains were previously grown in \textit{Ae. Pseudoscutellaris} (AP61) mosquito cells, vero cells, rhesus monkey (LLC-MK2) cells and MRC5 human lung cells. CHIK strains also differed in plaque morphology with the 181/25 vaccine strain producing very small plaques when compared to all other CHIK strains. RNA synthesis has no proof-reading activity and can therefore undergo mutations while replicating within the host cell, thereby generating a number of RNA species each differing perhaps by only a single nucleotide change. DAKAr B16878 produced a mixture of small and large plaques suggesting such a mixed population species.

The construction of a full length CHIK cDNA clone was achieved through a combination of reverse transcription and long range PCR. Restriction sites within five PCR fragments spanning the CHIK genome and restriction sites present in two commercially available cloning vectors were subsequently used. Throughout this investigation the amount of RT-PCR carried out was kept to a minimum as to avoid the generation of spontaneous point mutations. At each step of the cDNA clone construction, the orientation and size of successfully inserted fragments was verified by restriction digestion using selected enzymes. On generating a full-length clone, it was reverse transcribed using a T7 promoter to generate full length CHIK RNA. At one stage of the construction of the CHIK clone, 62 nucleotides from the litmus 28i cloning vector were introduced downstream of the virus 3' NTR. This was necessary in order for subsequent construction steps to be completed using the \textit{Spe I} restriction site. RNA was then
successfully reverse transcribed from the cDNA clone and electroporated into BHK-21 cells. However, no infectious virus was produced, there are several possible explanations for this.

Kuhn et al (1992) tested for rates of SIN RNA synthesis in different cell types using 4 mutants with changes in the 5' NTR and 4 with changes in the 3'NTR. They showed that all the mutants had defects in RNA synthesis and that virus production was host-cell dependent with mouse, chicken and mosquito cells responding differently to each change from the wildtype 3' NTR. Therefore the addition of 62 nt to the extreme 3' end of the 3' NTR may have had a similar effect in CHIK RNA synthesis in electroporated BHK-21 cells. Another explanation for the lack of production of infectious virus could be the possible absence of a poly (A) tail. A poly (A) tail was incorporated into the clone using the Spe I and Sac I restriction sites.

The most likely reason for the lack production of infectious virus is the generation of spontaneous point mutations due the genome having been amplified by RT-PCR or during fragment-cloning. A high fidelity proof reading polymerase was used to minimize this. The TaqMaster system developed by Eppendorf for amplification of long PCR fragments used a combination of high fidelity proofreading polymerases, however it still has a rate of error in its proof-reading capacity, albeit considerably lower than polymerase combinations produced by other manufacturers. A single nucleotide mutation in the genome could disrupt the read-through of the CHIK open reading frames, or the deletion of a cleavage site. Similarly, nucleotide mutation(s) could result in amino acid changes with the outcome of a particular protein or proteins not forming the correct physical conformation. In order to verify these possible outcomes and to further develop the CHIK full length cDNA clone for future use as a virus-vector vaccine, it should be sequenced using the latest proof reading polymerases. The sequence should then be aligned with the currently sequenced CHIK strains and any observed mutations reverted to the prototype strain.
The range of virulence caused by differing strains of SFV is broad and includes fatal encephalitis, immune-mediated demyelination, fetal abortion and teratogenesis. Virulent strains of SFV produce fatal encephalitis in the murine CNS irrespective of route of infection or age. This is due to a lethal threshold of damage to neurons before the immune system can intervene. Adult mice infected with avirulent strains of SFV are asymptomatic regardless of the route of infection. SFV-A7 and SFV-A7[74] do however induce immune-mediated T-cell dependent demyelination, thought to occur due to a slower rate of multiplication in neurons, affording the immune system time to intervene effectively. Avirulent strains of SFV are not fatal in adult mice, and only in the fetus and in suckling mice is fatal infection produced.

The multiplication of SFV-A7 has shown to be restricted in neurons, both in vitro and in vivo (Atkins, 1983; Gates et al., 1985; Atkins et al., 1990; Balluz et al., 1993; Fazakerley et al., 1993). Multiplication of SFV-A7 in BHK-21 and glial cells is at least as efficient as SFV4 (Atkins, 1983; Atkins et al., 1990). The possibility exists therefore, that the sequence regions that control neurovirulence for SFV are manifested at the cellular level in the ability of the virus to multiply in neurons and hence cause lethal neuronal damage.

In this investigation, possible neurovirulence and pathogenicity determinants of SFV were examined at a molecular level, initially through sequence comparisons between virulent and non virulent SFV strains and consequently through the production of chimeric viruses and their effects in the adult murine CNS. Previous investigations of pathogenicity determinants of alphaviruses (SFV, SIN, VEE) have predominantly focused on the envelope glycoproteins E1 and E2 (Lustig et al., 1988; Polo et al., 1988; Hahn et al., 1989; Lobigs et al., 1990; Polo and Johnston, 1990; Glasgow et al., 1991; 1994; Kinney et al., 1993; Santigati et al., 1995; Yao et al., 1996). The envelope glycoproteins are intrinsically involved in formation of the spike protein complex and therefore receptor mediated endocytosis, maturation and budding of virus particles. Mutations in E1 and E2 at a molecular level may therefore result in difficulties in virus entry and maturation. Glasgow et al (1991, 1994) showed that attenuating mutations at positions 162 and 168 of the SFV4 E2 glycoprotein affected the maturation and entry patterns of SFV4 in the murine CNS. In a later study, Santigati et al (1995) showed that a
chimera containing 6 of the 8 amino acid mutations in the SFV-A7 E2 protein was attenuated when intraperitoneally (i.p.) into adult Balb/c mice. Tarbatt et al (1997) confirmed this on constructing a SFV4 / A7 chimera that contained all the SFV-A7 amino acid substitutions present in E1 and 4 of the 8 mutations found in E2. When adult Balb/c mice were inoculated i.p., only 3 out of 15 mice died compared to 8 out of 13 when infected with a chimera that did not contain the SFV-A7 substitutions. However, when mice were administered both viruses i.n., no significant differences were seen with no mice surviving. It is therefore likely that the pathogenicity determinants of SFV are polygenic.

The 5' NTR appears to also be an important pathogenicity determinant and is directly involved in RNA synthesis. Several studies have investigated the function of the 5' NTR in alphavirus RNA synthesis and its possible role as a virulence determinant (Garoff et al., 1982; Evans et al., 1985; Kawamura et al., 1989; Kuhn et al., 1992; Kinney et al., 1993; Neisters et al., 1990; Frolov et al., 2001; Gorchakov et al., 2004). The 5' NTR is capable of forming stem loop secondary structures thought to be translational enhancers (Garoff et al., 1982). Frolov et al (2001) suggested that sequences at the 5' end of the RNA genome (including the 51nt CSE in nsP1) and the complementary sequences at the 3' end of minus-strand RNAs play crucial roles in translation and replication of alphaviruses. In SIN when the first stem-loop structure of the 5' NTR was replaced with the SFV 5'-terminal stem-loop structure, all RNAs produced were incapable of replication. Other studies have concentrated on the 5' NTR of alphaviruses to locate pathogenicity determinants. In VEE, a single point mutation in the 5' NTR was shown to attenuate the virulence of the TC-83 strains (Kinney et al., 1993). In SIN, similarly defined point mutations in the 5' NTR were shown to significantly effect viral replication (Neisters et al., 1990). A more recent study, Kobiler et al (1999) showed that a combination of mutations in the 5' NTR and the E2 glycoprotein of SIN that caused no death in rats resulted in a recombinant virus that was fatal to rats. The effect of either 5' NTR or E2 mutations alone did not result in the pathogenic properties in intracranially (i.c.) inoculated rats.

Using an A7 infectious clone termed SP6-CA7, Tarbatt et al (1997) noted that although significantly attenuated, the infectious virus produced from this clone termed
CA7 was found to kill a significant percentage of adult mice when administered i.n. The present investigation subsequently determined by sequencing SP6-CA7 that it still retained the 5' NTR of the original pSP6-SFV4 infectious clone from which it was constructed. Three nucleotides in the 5' NTR of CA7 at positions 21, 35 and 42 were identified to be different from the SFV-A7 sequence, possibly responsible for the difference in the mortality rates seen between CA7 and SFV-A7. In support of this hypothesis were the pathology results observed in mice infected with CA7 and SFV-A7 respectively. At 14 d.p.i, it was noted that of the 70% of mice surviving infection with CA7 showed pronounced neuronal necrosis and demyelination. Although SFV-A7 also caused similar levels of demyelination the severity of neuronal necrosis caused by CA7 was significantly higher than that caused by SFV-A7. This result indicated that the virulence domain may lie in the first 42 nucleotides of the SFV 5' NTR.

As mentioned previously, investigations on the 5' NTR of both SIN and VEE showed that mutations in this region were found to influence the degree of neuroinvasiveness, although it was undetermined whether these mutations acted at a translational level or in RNA synthesis. Studies on poliovirus have determined virulence domains in its 5' NTR (Evans et al., 1985; Kawamura et al., 1989). Changes in the 5' NTR were found to attenuate neurovirulence and have been linked to a translational defect which is specific to neural cells (Haller et al., 1996). As mutations in the poliovirus 5' NTR were found to attenuate in a host-specific manner, the same may be true for SFV-A7. A restricted rate of multiplication in neurons and a reduction in RNA synthesis can be observed in SFV-A7 when compared to virulent strains of SFV (Balluz et al., 1993; FAzakerley et al., 1993). It is therefore possible that mutations on the SFV-A7 5' NTR act in host specific manner, perhaps specific to neural cells. In this investigation, SFV-A7 was found in significantly lower titres in the brains of infected mice contrary to the comparable growth rates in BHK-21 cells. Although in this investigation the differences in RNA synthesis between SFV-5' NTR chimeras in BHK-21 cells were not statistically significant, the RNA synthesis may be very different if assayed in primary neural cell cultures.

Another facet of pathogenicity determinants that should be addressed is the possibility of mutations acting synergistically to give rise to a polygenic phenotype. This
occurrence was observed in VEE where mutations in the 5' NTR of the attenuated vaccine derivative (TC-83) were shown to act in synergy with mutations in the E2 protein to produce increased neurovirulence comparable to that of the virulent Trinidad Donkey (TD) strain (Kinney et al., 1993). A similar result was shown in SIN strain AR339 by McKnight et al., (1996) who noted that a single mutation in the 5' NTR acted in synergy with a single mutation in E2 resulting in a reduction in virulence. Other studies investigating mutants with double mutations in the 5' and 3' NTRs of SIN also showed higher degrees of attenuation than those with single mutations (Kuhn et al., 1992).

The CA7 chimeras with the SFV-A7 5' NTR have shown to be avirulent in mice resulting in 100% survival and cause significantly reduced pathology in i.n.infected adult Balb/c mice. However replacing the 5' NTR of SFV4 with that of SFV-A7 showed no significant difference the SFV4 alone in regard to the severity of the neuropathology induced and the mortality rate.

One of the aims of this study was to investigate the involvement of the 5' NTR in neurovirulence, this was achieved. A set of reciprocal chimeras were also designed (although not tested) to incorporate the SFV 5' NTRs, 6 amino acid changes in E1 and 4 of 8 amino acid changes in E2. It is possible that by substituting these regions in SFV4 with those of SFV-A7 that the mutations may act synergistically to reduce mortality and severity of lesions in infected mice. However, it must not be ruled out that regions other than the 5' NTR, E1 and E2 may act as virulence determinants and these too may warrant further investigation.

There were three primary aims of this investigation: the initial aim was to sequence and characterise the prototype strain of Chikungunya virus (CHIK), termed Ross. Secondly to construct a full length cDNA clone of CHIK Ross for the development of a possible vaccine and as a molecular tool for the location of possible virulence determinants within the CHIK genome. The last aim was to ascertain whether the 5' NTR of SFV was a pathogenicity determinant by creating chimeras between virulent and avirulent strains of SFV. Each of these aims has been achieved.
Chapter Seven

References
7.1 References

202

203

