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Summary

Health impact assessment (HIA) is an important methodological development
within public health. Its purpose is to ensure that health is considered as a part of
all government proposals and policies. While there has been substantial develop-
ment of the HIA methodology within the last 10 years, the issues associated with
monitoring health events at the end stage of an HIA have not received appropriate
attention. This aspect of HIA is vital to the success of HIA as it ensures that any
negative impact on health is detected as soon as possible after the implementation
of a programme or policy.

In order to effectively monitor events within a HIA process an appropriate
method needs to be utilised. The temporal scan statistic is a method that has been
used for the detection of clusters. It has not been utilised as a monitoring tool or
used to detect dips as opposed to clusters but as there are a number of versions of
the scan statistic, it does offer adaptability to cope with different data issues.

The main aims of this thesis were to investigate if it was feasible to monitor
health events within a HIA and to assess the effectiveness of the temporal scan
statistic as a monitoring tool. A number of case studies were utilised in order to
thoroughly investigate these aims.

The scan statistic was found to be a highly competent monitoring tool in all the
case studies considered. In the cases where it was of interest to monitor a negative
health impact such as looking at tram accidents, cancer cases near an incinerator
or clusters of suicide the scan statistic efficiently identified increases in events. On
the other hand when it was of interest to monitor positive health impacts the scan

statistic detected decreases in respiratory deaths after the bituminous coal ban and

i




decreases in road deaths following the introduction of penalty points for speeding.
In the case of penalty points the scan statistic also detected the increase in road
fatalities a few months after the initial decrease.

These examples showed that post-implementation monitoring is a vital stage
in a health impact assessment. It has been shown to be important to monitor both
positive and negative health consequences. By monitoring health events in this
way the unforeseen can be detected and addressed in a timely manner.

In this research, the scan statistic has been shown to be an effective monitoring
tool. It is flexible enough to cope with different types of data, including health
outcomes that are rare and data that have strong seasonal or trend components.
A power analysis was undertaken in order to demonstrate the efficiency of the
scan statistic for this purpose. The binomial scan statistic was found to be the
most efficient version of the scan statistic, both in terms of ease of application and
accuracy.

This research indicates that monitoring is an essential component for all HIAs
and that the temporal scan statistic offers an efficient and flexible tool to employ in
such circumstances. It is recommended that a monitoring tool such as the temporal

scan statistic is implemented within HIAs.




Contents

1 Introduction

1.2.1  Why do a Health Impact Assessment? . . . . . . .. ...
1.2.2 The History of Health Impact Assessment . . . . . . . . .
1.2.3  The Structure of a Health Impact Assessment . . . . . . .

1.2.4  Where should Health Impact Assessment be used?

1.2.5  Health Impact Assessment in Ireland . . . . . . . . . ..
.3 Statistics in Health Impact Assessment . . . . . . . ... .. ...

1.3.1 Possible Benefit of Statistical Tools . . . . ... ... ..

132 StatisticSinHIA . . o .o o5 o nmin 5 wim s 55w s

1.3.3  Discussion of Lack of Statistical Evidence . . . . . . . ..
1.4 Aims and Objectives of the thesis . . . . . . . ... .. ... ...

1.5 Conclusion . . . . . . . .

o

The Scan Statistic

2.1 Introduction . . . . ...




3

2.2 Statistical Methodology for Health Impact
ASSESSTRENT Mew St s el S R s e n G ke ) TR e
2:5: Montorng TooISH 2 o i . 5 sndla 2he & o 5 2w g s mhaHE e
2y “SEANSTALISHC S Lo o 282 e o el N cuny =Ry LT
2.4.1  Where has the Scan Statistic beenused? . . . . . . . . ..
2.5 FNIethodologye s e e S e
2.5.1 The Binomial Scan Statistic . . . . . ... .. ... ...
2.59.:2; - 'The'Sean Statisticonthe:Circle . . . o . . & . s o oo
25.3 RatchetScan Statistic' . - = : = « o o ¢ 5 ¢ 2% < 5 5w o m b
2.5.4 Poisson Scan Statistic . . . ... .. .. ... ...
2.6 Computational Requirements . . . . .. ... ... ... .. ...
2.7 What Window Size? . . . .. ... ... ...,
2:8 WCONCIISION S 4 = = 5 ok & & s o s o bt o a5 ) e 5

Negative Health Impacts

3.1  Monitoring Suicide inIreland . . . . . . . ..o 0000
3.1.1 ~ What is the background to suicide in Ireland? . . . . . . .
3.1.2  Decision Analysis—Who is most at risk? . . . . . . . ..
3.1.3  Monitoring & Evaluation . . . . . .. .. .. ... .. ..
3.1.4 Conclusion . . .. ..o

3.2 Health Impact Assessment of an Incinerator in Ringaskiddy . . . .

321 BRreening . . « « v « w« o v v o1 vk 5 d oww s ow
322  SCOPINZE: = = /s s = 5 @6 5 o s & e a6 s e e
325 Appraisall ¢ o o s s s sE e R e e e e
824 DeciSion ANALYSIS: & o o 50 o a5 0w s & st o o 5

Vi

69
70
70




3.2.,5 Monitoring & Evaluation . . . . .. ... ... ... ... 76
3.3 Health Impact Assessment of a Tram System . . . . . . . .. .. 80
ol  SCIEENING, : w & = 5 5w & 5 & = 5 6o s @ o o 5 b m e 80
5:38 SSCODINOT o Mkt 2o : = sulleys 555wl o slies, ol 20 e 81
8988 A DDLATSALE G ikt B R o R AT L AR g L LS 31
8.3 1DeciSIon ANalySis: & i e b e ey wn e 81
3.3.5 Monitoring and Evaluation . . . . .. ... ... ..... 82
3.3.6  Conclusion of Tramline Example . . . . .. ... .. .. 83
3.4 Conclusion of Negative Health Impacts . . . . . . ... ... .. 83
Positive Health Impacts 85
4.1 HIA of the Bituminous Coal Ban in Dublin . . . . . . . ... .. 86
4.1.1  Screening . . . . ... 86
4,12 SCOPINT < b o s & 55 5 5 = st s sl 5 ot 5 o 5 A o 86
.18 ADPRAISAL . n m e r e S o mem s e E E 2 G 88
4.1.4 Conclusion . . .. ... 99
4.2 Health Impact Assessment of the Penalty Point Introduction in
(=] 2 TG e T S 101
42.1 Screening . . . . ... 101
2 SCOPINE . 5 ar e = = 5 s o o 5 & o e el el e e A 102
423 Appraisal . ... ... 102
424 Decision ANALYSIS « o« « » v 5 5 5 @ 5 50 o 5 0 n e 5 105
4.2.5 Monitoring and Evaluation . . . . . ... ... ... ... 105
426 Conclusion . . ... ... 114
43 CONBIERIIN « o 5 5 95 5% s b & 8 % & ms o x o @b wor 5 % 5w % 115
vii




5

Power Analysis of the Scan Statistic

5.1 Aggregatethedata? . . . . . . . ... ...
T 151 N V(7 {18 I e P
5.1.2  Respiratory Mortality Data . . . . . . ... ... .. ...
S51E3) NG onclusiony = & Wa S h:is it ey et s et St

5.2, Power ANAlYSIS: « == o o & e 0w b st ww e s SE e o
521 CONEIUSION! =5 2.5 6 s ws o 0 55 = 5E m i e e

33" RelativeiCluster Size Affect . . =« « o s 22w o s 5w cim b s s
5.3.1 Conclusion of Relative Cluster Size . . . . ... ... ..

5.4  Overall Conclusion of Power Analysis . . . . . . . ... ... ..

Discussion and Conclusions

6.1 Important findings and original aspects of the work . . . . . . ..
6.1.1 ~ Monitoring in Health Impact Assessment . . . . . . . ..
6.1.2  Scan Statistic as a Monitoring Tool . . . . . . . .. . ..

6.1.3  The scan statistic adjusted to monitor for expected dips . .

6.1.4  Which of the scan statistics performs best? . . . . . . ..
6.2 Limitations . . . . . ...
6.3 Recent DevelopmentsinSean - o .+ v o s v 5 5 o0 vw i owe e -
6.3.1 Syndromic Surveillance . . . . .. ... ...
6.32 TreeMethod . .. ... ... ... ... .........
64 BurthetWork o . . o5 a: 6 505 @ @ 5 o5 ms o s 2 s s o o
625 CONEluSION! = = & & 5 5 4 4@ kit s @ e B s 2SS

Health Impact Assessment Tools

A.l TheSwedishModel . . . . . . . .. ... ... ... .......




A2 ‘Thelen-StepModel . . . . . o v v s v o5 sow v w56 85 o 142

Algorithms & Programs 148
B.1 Simulation of Non-Homogenous Poisson Process . . . . . . . .. 148
B2% VBA EXCElPrograms. & o= o ol it & 4% Sufil = @ 0k gl aE 149
B3 MathematicalPrograms: - & s 2 % e e foslis oo lurs slher s o 152
B.3.1 Poisson Scan Statistic . . . . . ... ... .. 152
B.3.2: ~Binomial/Scan StatiStie . « z = & ol oiiu oo anle f e 155
B.3.3 RatchetScan-Linear. . . . . . . ... ... ....... 156
B34 fRatchet. Sean=ICIPeUIAL . &« « o o w5 = o d b 5w b ada o s 158
Report on Excess Winter Mortality 160
C.1 Methodologies . . . . . .. .. 161
C.2 Methodologies Appliedto IrishData . . . . . ... .. ... ... 163
C.3 Discussion and Conclusion . . . . . . .. ... 177




List of Figures

o

8]
[SS]

[\
(8]

3.1

3.3
34

8D

Proposed Statistical requirements in a Health Impact Assessment .

Spina Bifida Cases in Ireland., 1997 - 1999 . . . .

Spina Bifida Cases in Ireland, 1997 - 1999, scanned with a 91 day
WINAOW . 5 & 2 & & & 3 5 m's a6 5 8 s 6 5 &+ a5

A pictorial representation of data on a circle. . . .

Scanning the Spina Bifida data, using a circular scan statistic. .
Ratchet scan statistic for maximum cluster detection using a win-
dow of I month. . .

Ratchet scan statistic for maximum cluster detection using a win-
dow of 2 months.

Ratchet scan statistic for maximum cluster detection using a win-

dowof 3months. . . . .. ... ..

Monitoring suicide of males 20-29. .

Proposed site of the Ringaskiddy incinerator.

Monitoring of simulated lung cancer cases using a 183 day window.

Monitoring of simulated lung cancer cases using a 365 day window.

Monitoring of tram incidents. . . . .

28

40
41

43

48

49

50

71

78
78
82




4.4
4.5
4.6
4.7
4.8

2.l

Al
A2
A3

A4

.1

€3

C4

C.5

C.6

Deseasonalized daily respiratory data. . . . . . .. . ... .. ..
Using the optimal test for seasonality. . . . . . .. .. ... ...
Using the optimal test for seasonality to detect a dip in respiratory
1Yo 11 o I RO O e R o
Scan statistic for a dip in events, with a window of 1 month.

Scan statistic for a dip in events, with a window of 2 months. . . .
Scan statistic for a dip in events, with a window of 3 months. . . .
Monitoring for a dip in road deaths after penalty point introduction
Monitoring for an increase in road deaths after penalty point in-

troduction . . . . ...

Power of the Scan Statistic to Detect different Cluster Sizes.

TheHealth!@Ouestion: = » & 56« w6 5e & 25w om o5 5 oo
The Health Matrix . . . . . . . . . v v o i e e e e e e e e oo v
The Health Matrix . . . . . . . . . . . . .. . . . . ... .. ...

The Health Matrix . . . . . . . . . . . . .. . . . . . . ... ...

Actual monthly mortality occurrence in Ireland 1989-1993.
Actual monthly mortality occurrence in Ireland 1989-1993.
Actual monthly mortality occurrence in Ireland 1989-1993.
Actual monthly mortality occurrence in Ireland 1989-1993.
Actual and predicted monthly circulatory mortality occurrence in
Ireland 1989-1993 using Model IT . . . . . . . ... ... .. ..
Actual and predicted monthly circulatory mortality occurrence in

Ireland 1989-1993 using equation C.6 . . . . . . . . . ... . ..

X1

11

143
144
145

147

. 164
. 165
. 16U

. 168




C.7 Actual and predicted monthly all cause mortality occurrence in
Ireland 1989-1993 using equation C.6 . . . . . . . . .. . .. ..
C.8 Actual and predicted monthly respiratory mortality occurrence in
Ireland 1989-1993 using equation C.6 . . . . . . . . .. . .. ..
C.9 Actual and predicted monthly all cause mortality rate in Ireland
1989-1993, using equation C.7 and equation C.8 . . . . . . . . ..
C.10 Actual and predicted weekly all cause mortality rate in Ireland

1989-1993, using equation C.7 . . . . . . . ... ... ... ...

X1l




List of Tables

o

o
o

N
(&%)

(9'%)
(OS]

34

4.1
4.2
4.3

44

Expertés Proritization uiSt= b al e B8 S o B el 13

Youth Forum Prioritization List . . . . . . . . . .. A e .. 14

Results of asymptotic simulations, compared with simulations for

different valuesof N. . . . . . .. e 46
Spina Bifida data pooled by month. . . . . . . . . S A ol
Spina Bifida data aggregated to month for the year 1998. . . . . . 33
Clustering of suicides among males in different age groups. . . . . 65
Clustering of suicides among females in different age groups. . . . 65

Seasonal clustering of suicides among males in different age groups. 67

Seasonal clustering of suicides among females in different age

BIOUPS, & o = & = 5 e o % s & Y e SR ¢/
Copycat SNIGIAES: - . « & = st n o s oo o s s w s e e 69
Moving Average Calculation . . . . . . . ... .. e 92
Seasonal index computation . . . . . ... 93
Deseasonalized data computation . . . . . . . . . . A R 94

Average monthly number of road fatalities prior to penalty points. 103

Distribution of Road Fatalities in 2002. . . . . . . . . . . . .. .. 104

Xiil




4.6

H|

5.2

C.1

C3

C4

&

C.8

Results of asymptotic simulations, compared with simulations for

dilferentavalnesioiNGG -5, & 5 st = W SN g B ol F R et o

Power analysis of the scan statistics at o = 0.05 significance . . .

Power analysis of the scan statistics at o = 0.01 significance . . .

Excess winter mortality for Ireland, 1989-1993. Calculated using
the!@ct-Marmethod J5 S H T as. i ey T e =
Excess winter mortality for Ireland, 1989-1993. Calculated using
the.Nayha'method . . .. o w9 e iw il o w o s e % o
Excess winter mortality for Ireland, 1989-1993. Calculated using
the Jan versus Aug method . . . . . . ...
Excess winter mortality for Ireland, 1989-1993. Calculated using
the Dec-Mar methodology. . . . . .. .. .. ... ........
Excess winter mortality for Ireland, 1989-1993. . . . . . . . . ..
Excess winter mortality for Ireland, 1989-1993. Calculated using
EqUALOINEET Su: ol 5 2 S 6 e s w3 e e e e e e
Excess winter mortality for Ireland, 1989-1993. Calculated using
equation C.7 on weekly data . . . . .. ... ... ... ... ..
Excess winter mortality for each county in Ireland, 1989-1993.

Calculated using equation C.7 on weekly data . . . . . . .. . ..

X1V




Chapter 1

A Review of the Use of Statistics in

Health Impact Assessment

1.1 Introduction

Health impact assessment is a combination of procedures, methods
and tools by which a policy, program or project may be judged as to

its potential effects on the health of a population.
- World Health Organization [1]

Health impact assessment (HIA) is a widely researched area that has been shown
to have many benefits. HIA research has concentrated on the social aspects such as
community involvement and awareness. HIA has not been examined or assessed
to any great extent from a statistical viewpoint. There is an obvious gap in HIA
development in terms of sound statistical tools and methods. There is a lack of

statistical know-how in the implementation of HIA and hence there is a lack of




evidence of its success.

This thesis examines the use of the scan statistic as a monitoring tool. The
scan statistic can be used temporally, spatially or spatio-temporally: this thesis
will concentrate on the temporal form of the scan statistic. The use of the scan
statistic specifically for the monitoring of health events and specifically in a HIA
environment will be examined. Furthermore, the statistical requirements of mon-
itoring a HIA will be outlined and an appropriate method will be suggested.

An important stage of a HIA is the monitoring and evaluation phase. However,
little research has been done to suggest how health effects can be monitored post
implementation of a policy. Indeed there is little emphasis on the importance of
monitoring health effects. Using the scan statistic, health effects could be moni-
tored easily, this would mean that negative health impacts are highlighted quickly,
while positive health effects are also recognised thus highlighting the positive im-
pact of a new policy.

Health impact assessment methodology will be explained and examples of
where it has been applied highlighted. Using these examples, the lack of appro-
priate statistical methods will be discussed. The areas in a HIA where different
statistical tools would be appropriate to use will then be considered. In Chapter
2 the scan statistic methodology will be explained in detail and different versions
and applications of the scan statistic will be explained through applied examples.
Chapter 3 and 4 will see the application of the scan statistic as a monitoring tool
to appropriate HIA examples. Initially, cases where a negative impact on health
is observed or expected, and then to where a positive impact is expected and so
monitoring for a decrease in adverse health effects is necessary. Finally, the power

of the scan statistic as a monitoring tool will be assessed.




1.2 Health Impact Assessment

Health impact assessment is an analysis that is carried out to see how a policy,
program or proposal may impact health, and to then capitalise on findings by
minimising any of the negative impacts and enhancing any positive impacts on a
population. It is a combination of methods with the aim of assessing the health
consequences of a policy, project, or program that does not normally have health

as its primary objective.

1.2.1 Why do a Health Impact Assessment?

Governments are composed of many different ministries. Each ministry is con-
cerned with one specific concern relating to the population, be it finance, em-
ployment, agriculture, children etc. This may make for an efficient government.
However, problems arise when the actions of one ministry affect another ministry.
For example, supposing in the ministry of finance it was decided to increase taxes
on farming land. this could impact the ministry of agriculture and perhaps the min-
istry of employment. Health is one of many issues that cuts across the concerns
of different ministries.

The health consequences of progress and its consequent increase in exposure
to various pollutants are often of great interest to the public and at the same time
public awareness about potential environmental hazards is growing. Recently
there have been cases of objections raised to proposed landfill sites in Cork, Tip-
perary and Waterford (2], where the impact on health and the proximity of the
proposed sites to residential areas provided concern.

There are other proposals that the general health of the public does not influence.




A planned dual carriageway route from Athlone to Kinnegad was revised, the
refined route addressing *...engineering concerns as well as economic, environ-
mental and social objections ...” [3] . Health concerns were not included in the
plan for the new road, yet new roads can lead to more traffic which could lead to a
higher incidence of noise pollution, air pollution, traffic accidents and road rage,
all of which can have an impact on health.

Health impact assessment aims to identify possible hazards to health, as well
as highlighting potential benefits. HIA puts health at the forefront of any deci-
sions or policy making, this ensures that health is considered by all sectors and

departments and not just health related areas.

1.2.2 The History of Health Impact Assessment

Environmental impact assessment (EIA) was introduced because the decision tools
used in the planning of large developments only took into account financial cost
and failed to accommodate issues affecting the environment or bio-diversity. In
1969, the Environmental Protection Act [4] was introduced by the United States -
this required an EIA of all projects in the United States of America and of overseas
projects that were funded by the USA. The European Commission followed suit
with a 1985 directive [5] by requiring that all large-scale developments are subject
to an EIA. In 1992 the Environmental Protection Agency [6] was established in
Ireland to oversee EIAs in Ireland.

The importance of human health issues in an EIA was realized at an early
stage [7]. A recognition of the wide range of factors that can impact health, and

the importance to health of non-health policy areas led to calls for healthy public




policy [8] and by implication health impact assessment of policies.
Health impact assessment has been used internationally. Its early use was
confined mostly to aid programs in developing countries. Now its presence is felt

in many countries world-wide, including:
e United Kingdom [9, 10]
e Australia[11, 12]
e Canada [13, 14]

e Sweden [15].

1.2.3 The Structure of a Health Impact Assessment

The structure of a HIA is important and it insures some degree of quality and
comparability between HIAs. Perhaps more important than the HIA method are
the people who should be involved in a HIA.

Obviously it would be sensible to include the proposal decision makers in the
HIA. They will be fully informed of the proposal and should be able to provide
details on all aspects of the proposal which would be important for HIA. There
will also be a public health doctor who will be aware of different health effects.
It is crucial that a HIA expert is involved in all stages of a HIA to ensure that the
correct procedures are followed, this means that the HIA is thorough and that it
will be comparable to other HIAs.

As HIAs are often carried out at community level the inclusion of appropriate
community groups will not only provide valuable insight into the community but

it will also give the community a sense of ownership of the HIA and proposal.




This ensures that the HIA is seen to be at ground level and not something carried
out by government officials who may be thought of as somewhat removed from
the actual community. With the right structure in place the actual format of a HIA
is standard across all types of HIA.

There are three different formats employed in a health impact assessment:

I. Prospective health impact assessments attempt to predict the outcome of a

policy not yet implemented and can be based on the experience of similar

decisions in the past

o

Retrospective health impact assessments look at the effects of policies or

programs that have already been implemented

3. Concurrent health impact assessments happen at the same time as a policy
is implemented and the consequences of the policy are monitored as it is

implemented

It is accepted that a prospective health impact assessment is the ideal form of
a HIA as any negative effects will be highlighted and changes to a proposal can
be made in sufficient time to reduce the possibility of negative effects. With a ret-
rospective health impact assessment, negative impacts to health will already have
occurred and it can be difficult to “undo™ some policies or programs that have
already been implemented. In a concurrent health impact assessment appropri-
ate adjustments can be made to the policy to ensure that negative health impacts
are reduced. However, as the policy or program has been initialized a complete
reversal of the policy might prove to be problematic.

No matter which format of HIA is selected the general method or process of

the HIA will be similar. While different organisations have different matrices
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and tools for conducting HIAs, all HIAs follow a similar set of stages. The five
main stages to health impact assessment are screening, scoping, appraisal, deci-

sion making and, evaluation and monitoring.

1. Screening

Not all policies, programs or projects may require a health impact assessment. At
the screening stage of a HIA such policies or programs can be filtered out. The
health impact of a certain policy may already be well documented: in this situation
it would not be sensible to expend resources collecting evidence for something
that is well documented. During the screening phase it may also be decided that a
particular proposal has a neutral or negligible impact on human health; in such a
case it may be decided that a full health impact assessment is unnecessary.
Screening should be conducted systematically using a set of criteria against
which proposals can be judged, it is useful in the screening phase to use a tool
such as “The Health Question™ which is outlined in the appendix(Figure A.l on
page 144). A robust screening stage will ensure that scarce resources are targeted
towards proposals that will benefit most from a HIA. For selected proposals the
screening stage can provide an important foundation for the conduct of further

stages in the HIA.

2. Scoping

The second stage in a health impact assessment is scoping: here the terms of refer-
ence for the HIA are set. It could be thought of as an administrative “working-out’

phase of the HIA. The following items should be addressed during a HIA [16]:




Elements of the proposal to be assessed - it may not be feasible to address

all elements of a proposal so only the vital parts should be assessed

the proposal’s non-negotiable aspects - it is important to have a list of ‘must
dos™ to ensure that the most important and perhaps impacting aspects are

addressed

aims and objectives of the HIA - while this may seem obvious, it is impor-

tant to know the purpose of the HIA
values underpinning the HIA

the populations or communities affected by the proposal implementation -
especially any vulnerable, marginalized, or disadvantaged groups within the

affected population/community
the geographical area covered
potential health impacts of concern

background information for the HIA (evidence base, HIAs of similar pro-
posals, baseline profile of the population/community, and specific local con-

ditions affecting proposal implementation)
methods to be used during appraisal or risk assessment

timescale for the HIA - again this is important in a prospective HIA to en-

sure that the HIA is completed before implementation of the proposal
management arrangements

work programme




e resources available and required - in terms of human, financial and material
e decision-making forums that may be influenced

e arrangements for the monitoring and evaluation of the HIA and its out-

comes.

The scoping stage is extremely important in setting down the boundaries in a
HIA. While many of the items such as management arrangements and resources
available may be the same from one HIA to the next it is still vital that these items

are discussed in the scoping stage.

3. Appraisal

Appraisal is also referred to as "Risk Assessment’: it is the third major step in a
HIA. The aim of the appraisal stage should be to estimate the potential of a pro-
posal to affect the health of a population once it has been implemented. Potential
positive or negative health impacts can be identified here using quantitative or
qualitative methods.

At this stage the use of statistical methods is important in order o assess pos-
itive or negative impacts on health. Decision analysis and modeling tools can be
essential here to aid the evaluation of health impacts, these will be discussed in
some detail later in this chapter. Cluster analysis methods such as the scan statis-
tic can also be useful here to investigate clusters of specific health events resulting

from a particular proposal.
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4. Decision Making

This fourth stage of the health impact assessment involves the consideration of
the appraisal and then choosing the best option from the given information. The
best option may be the decision of no-action or it may include variations on the
original proposal and ways to minimize possible disadvantages and enhance any
possible advantages to the publics health.

Once a decision has been made it is important that a report is prepared and that
the necessary recommendations are made. The report and recommendations need
to be submitted to decision makers within the decision makers time frame, ensur-
ing that they meet deadlines for scheduled meeiings about the proposal. Although
the report and recommendations will be produced primarily for the decision mak-
ers it is important to disseminate the main findings of the report and recommenda-
tions to all stakeholders. It is important that the content. format and presentation
of the communication is designed according to the needs of the stakeholders and

their preferred way of accessing information.

5. Evaluation and monitoring

Evaluation or implementation outlines the procedure required to implement the
policy and evaluates the health impact assessment. The evaluation of the HIA
process is an important source of learning. It is part of the drive towards qual-
ity improvement and is also vital in quality assurance. Monitoring evaluates the
acceptance and implementation of recommendations: were recommendations fol-
lowed through? - Why? or Why not? It would be naive to assume that all rec-

ommendations in a HIA were automatically implemented. The results of a HIA




are only one of many different factors that will influence decision makers and the
resulting proposal.

Monitoring is vitally important where harmful consequences may have been
predicted but where their exact nature is unclear. This stage will also monitor and
evaluate indicators and health outcomes after a proposal has been implemented.
Monitoring will also detect any unforeseen adverse outcomes, and modifications
can be made to the policy in order to minimize all the adverse consequences.
Monitoring of health effects can be fraught with difficulty as often the predicted
health effects cannot be monitored using routine data. In cases where the health
effects can be monitored then proper monitoring charts need to be available. An
appropriate monitoring method using the scan statistic will be discussed in this
thesis.

All of the examples of health impact assessment that were examined use different
tools and different matrices [17, 15, 13, 18, 19, 12]. Two examples of these tools
are illustrated in Appendix A. However, they all follow a similar method based
on the five stages previously discussed. They all begin with a screening phase
where a policy is examined and it is decided if a health impact assessment will be
carried out. They do this either by using a series of set questions or by meeting
with stakeholders and discussing the issues. They then progress to the scoping
stage where they decide what data are needed, what resources will be needed,
what areas should be studied and who should implement the study. The various
health impacts are then examined and somehow a decision is made as to whether
the impacts are positive or negative and how much they will affect the population
in question. It is at this stage that the different health impact assessment methods

differ. In some situations there are no clear guidelines as to how any decision
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should be made regarding impacts. What is done if there is a strong negative
health impact? What is considered a strong health impact? Does it mean deaths?
Does the new policy need to impact a certain proportion of people? What about a
slight inconveniencing health impact? In other cases there are clear guidelines set

down as to what should be done.

1.2.4 Where should Health Impact Assessment be used?

There are many topics that can be subject to a health impact analysis. It could
be decided to implement health impact assessment for certain policies, or for all
pelicies - excluding unsuitable policies in the screening phase. Examples of where

health impact assessment has been used include:
e Expansion of gambling [20]

e Area renewal housing strategy [21]

Grounding of an oil tanker [22

New roads, bypasses or freeways [23, 24]

Landfill site [25]

Development of an airport. [26]

Prioritization

Health impact assessment could also be used as a prioritization tool. At the Copen-

hagen Consensus [27] a number of the world’s problems were discussed, solutions




to the world’s problems such as hunger, disease, trade barriers and water were an-
alyzed and a cost benefit analysis was carried out to assess the profitability or
the “best value for money” of each proposed opportunity. Each of these solutions
was then ranked by nine leading economists from around the world, and a priori-
tized list was drawn up of the top ten problems and solutions that should be given
financing. The list was prioritized according to the cost benefit analysis and it is

shown in Table 1.1

Ranking Challenge Opportunity

l Diseases Control of HIV/AIDS

2 Malnutrition Providing micro nutrients

3 Subsidies and Trade Barriers Trade Liberalization

4 Diseases Control of Malaria

5 Malnutrition Development of new agricul-
tural technologies.

6 Sanitation and Water Small-scale water technology
for livelihoods.

7 Sanitation and Water Community-managed water
supply and sanitation.

8 Sanitation and Water Research on water productiv-
ity in food production.

9 Government and corruption  Lowering the cost of starting
a new business.

10 Population Migration Lowering barriers to migra-
tion for skilled workers.

11 Malnutrition Improving infant and child
nutrition.

12 Malnutrition Reducing the prevalence of
low birth weight.

13 Diseases Scaled-up basic health ser-

vices.

Table 1.1: Expert’s Prioritization List
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Running parallel to the Copenhagen Consensus was a Youth Forum', repre-

senting postgraduate students from 80 countries around the world. The Youth

Forum was charged with the same task as the experts, they were to prioritize the

world’s challenges and opportunities. The Youth Forum was made up of post-

graduate students from many disciplines including social sciences, politics, law,

business and the health sciences. The students’ prioritized list is in Table 1.2.

Ranking Challenge

Opportunity

1

(S

9
10

Malnutrition

Disease

Governance and Corruption

Education
Conflict

Sanitation and Water
Financial Instability
Subsidies and Trade Barriers

Climate Change

Population Migration

Investment in technology in
developing country agricul-
ture.

Scaled up basic health ser-
vices.

Grassroots  monitoring and
service delivery.

Holistic education model.
International peace fund.

Community managed low
cost water supply.

Change governance structure
of World Bank.

A balanced Doha Round.
Kyoto Agreement.

Active immigration policies.

As is evident from the tables the prioritized lists are very different.

Table 1.2: Youth Forum Prioritization List

The

economists—being economists—prioritized according to the cost benefit analy-

sis, and their prioritized list shows solutions that will give the “best value for

""The author was selected to represent the European Union at the Copenhagen Consensus Youth

Forum




money’. The Youth Forum expressed difficulty with the prioritization process, in-
deed there was much consternation within the proceedings. Many of the delegates
at the Youth Forum argued that the cost benefit prioritization did not consider
“happiness™ or “value of life’. This very different attitude of the Youth Forum is
reflected in their prioritized list.

[t has been argued by Professor Bjorn Lomborg, organizer of the Copenhagen
Consensus, that prioritization is a tool by which to compare and contrast prob-
lems. Cost-benefit analysis is as good a tool as any other to use for this prioritiza-
tion process and Professor Lomborg has argued quite correctly that “we can’t do
everything, so what should we do first’. However, health impact analysis could
be utilized here. Instead of prioritizing by cost efficiency, prioritization could be
done by. for example: number of lives saved or incidence of disease reduced. In-
deed it is possible that other parameters such as happiness or quality of life could
be incorporated and a tool such as one of the HIA matrices outlined in Appendix A
could be utilized.

The idea of health impact fits perfectly with the concept of prioritization. The
purpose of health impact assessment is exactly represented by the quote at the
beginning of the next section which is similar to the goal of the Copenhagen Con-
sensus: both are ideas with the aim of eradicating inequality in the world. All
of the challenges addressed at the Copenhagen Consensus have a direct impact
on health so it makes sense that a health impact assessment be used to prioritize
the challenges and solutions. Furthermore, not all of the challenges could be rep-
resented meaningfully by a cost benefit analysis. For example the challenge of
global warming is a long term problem, an expensive problem to tackle and the

returns are not great but it is something that impacts health. Similarly all of the
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other challenges could easily be prioritized in terms of health.

1.2.5 Health Impact Assessment in Ireland

[HIA] is designed to ensure that all policy makers, especially those
more indirectly involved in the health system, consider the impact
that their decisions might have, both directly and indirectly, on the

health of the population.
-Irish National Health Strategy [28]

One of the goals of the Irish National Health Strategy [28] is to ensure that the
health of the population is at the centre of public policy. Health impact assessment
is a relatively new concept in Ireland, but it is something that is receiving keen in-
terest and will be in practice shortly. It has already been implemented in Northern
Ireland on a number of projects [29]. The All-Ireland Institute of Public Health
has published a number of introductory reports and held a number of workshops
on health impact assessment [30, 31, 32]. The response to HIA in Ireland has
been enthusiastic: the only questions a number of people have about it are “when
can I do one?” or “where can I try this out?”.

In Ireland there are numerous situations where HIA could have been applied.
There has been discussion of proposals for a new runway in Dublin airport: this is
something that could be suitable for a HIA. A similar assessment was carried out
previously in Manchester when the airport was extended [26]. There are many
issues that would need to be considered: for example the noise level for local
residents, traffic disruptions that could lead to excessive stress on commuters. A

full health impact assessment would highlight all possible impacts of a new airport
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on the health of the public. and it would also be important to consider the health
impact while construction work was in progress.

A more topical and controversial issue is that of waste disposal. There have
been numerous cases in the last year of residents objecting to proposed landfill
sites in Waterford, Tipperary, Galway and Laois [2] among others. One study of
a proposed landfill site in Galway examined the following areas before rejecting
the site: landscape. land use, ecology. archaeology, geology and hydrogeology,
traffic, road access, haul distance and development costs [33]: the health of local
residents was noticeably absent.

In Galway there has been controversy over a haiting site for Travellers, which
is located close to a closed landfill site at Carrowbrowne, Co. Galway [34]. Had
Galway Corporation carried out a health impact assessment on the location of the
halting site then perhaps a different location or option for the halting site could
have been chosen and the subsequent High Court case avoided.

There have been heated debates about the proposed incinerator for Cork Har-
bour, with many objections from local residents. If a HIA is carried out, it may
help to ease some of the fears that the residents have. If they are aware of all the
procedures in place to minimise health impacts, and are reassured that their health
will be monitored closely to ensure that there are no negative impacts, this may
help to allay any concerns.

In the case of landfill sites and incinerators a HIA is necessary prior to the final
proposal, as it should highlight any health issues that may arise from the location
of the site. If the assessment is carried out in the initial stages of the proposal a
more suitable location for the landfill site can be found, if necessary. This would

help to reassure concerned residents that all precautions with respect to health are

i



guaranteed.

In order for health impact assessment to be effective it should be a multidis-
ciplinary process, within which a range of evidence about the health effects of a
proposal or policy is considered, within a structured framework. The potential
health impacts of a proposal can be analysed and used to influence the decision

making process [35].

1.3 Statistics in Health Impact Assessment

1.3.1 Possible Benefit of Statistical Tools

In their assessment of the health impact of the Sea Empress oil spill, Lyons et al.
carried out a survey of residents living in urban locations near to the site of the
oil spill [22]. The residents were asked for any symptoms they felt after the oil
spill and these results were compared to a similar town that was not near the oil
spill location. They found that there was an increase in reported prevalence of
headaches, sore throats and sore eyes. However in this study the distance from the
oil spill was not investigated, i.e. if individuals living further away suffered fewer
symptoms. Lyons et al. [22] stated that little was known about long-term health
effects of the oil spill, and there does not seem to have been a follow up to this
study. In this study there was an obvious lack of the monitoring of health impacts
even though concerns over long term impacts had been stressed.

A rapid HIA of foot and mouth disease was carried out in Devon [36], Eng-
land. The study group looked at various issues such as economic and, policy and

social issues: the main health effects studied were mental health and respiratory



problems due to the pyres. The study group carried out qualitative research and
found that there was a risk of increased suicide among farming groups, especially
given the evidence [37] to suggest that farmers rank fourth among occupational
groups with respect to suicide. They found no significant impact on health ser-
vices due to the pyres and increased respiratory problems. Gastro-intestinal illness
was highlighted as a potential result of the contaminated water supplies associated
with the pyres.

The group did recommend that general practitioners (GPs) monitor health ser-
vice utilization in selected areas. However the group did not recommend how the
various health effects should be monitored. They also recommended that a further
health impact assessment should be carried out one year after the foot and mouth
outbreak. If an efficient monitoring system were in place any unusual cluster-
ing of disease or syndromes could be detected at the earliest moment. If there
was a clustering of mental health problems then extra resources could be provided
to help the communities cope with the aftermath of the foot and mouth disease.
While it is suggested that GPs monitor their service utilization, this will not give
an indication of service utilization in the whole area.

A HIA was carried out to look at crime prevention [38]. Crime and burglary
can have a detrimental effect on the physical and mental health of the victim.
The first crime prevention strategy involved securing households with extra locks,
alarm systems and new windows and doors. The HIA was assessed by qualitative
means. The health impacts were found to be mostly positive. However there
were some negative impacts reported in other areas due to fear that criminals
would choose another perhaps easier target. A monitoring system could have

been incorporated with the qualitative assessment which would monitor numbers
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of burglaries and the initiative could then be judged successful if there was a
significant dip in crime levels. If the monitoring system incorporated a spatial
aspect a shift in the target area of criminals could be detected in good time and
new strategies put in place.

These examples show where a HIA could have benefited from some sound
quantitative analysis or a follow-up monitoring system. While these examples
show where HIAs may have been lacking in certain aspects, there has been some

use of statistics in HIA.

1.3.2 Statistics in HIA

A number of quantitative approaches to health impact assessment have been de-
veloped: these are mathematical models for impact analysis. These quantitative
models include PREVENT [39], POHEM [40], Global Burden of Disease [41],

and ARMADA [42, 43].

PREVENT

PREVENT is a mathematical model which was developed by Gunning-Schepers
in 1988. It is a cell-based simulation model that can be used to estimate the health
benefits for a population when there are certain changes in risk factor prevalence
due to trends and interventions over a maximum period of 50 years. The model
can be applied in terms of proportional changes in disease specific incidence and
in terms of absolute changes in such parameters as disease specific and total mor-
tality.

The PREVENT model was used to assess the health impact of increased physi-
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cal activity on coronary heart disease in England and Wales [39]. For the purposes
of the PREVENT model the authors assumed that there was an inverse graded re-
lationship between coronary heart disease risk and physical activity: the hypoth-
esis that had been proposed by Shaper [44]. Two strategies were modelled: the
first was a 25 per cent increase in the proportion of adults who were moderately
active, the second was a similar increase in the proportion that was vigorously ac-
tive. The modelling indicated relatively small reductions in coronary heart disease
death rates. However the health impact was greater for the proposal of increas-
ing moderate activity: a 0.15 reduction in coronary heart disease deaths over 25
years. The model could also show that targeting behaviour change in males over
45 years of age who already took some form of physical activity would provide
the greatest population benefit.

The PREVENT model is limited to applications involving health promotion

interventions and as such is fairly limited in its application to HIA.

POHEM

POHEM [40] is a longitudinal microsimulation model which was designed by the
Health Analysis and Modeling Group of Statistics Canada to simulate the health
status of the Canadian population. Among the data it incorporates are data on risk
factors, disease onset and progression, and health outcomes. It currently models
breast cancer, lung cancer, coronary disease, arthritis and dementia.

The POHEM model creates synthetic populations at birth and provides them
with demographic and labour force characteristics, such as age at marriage, num-
ber of offspring, employment income and divorce. By using simulation techniques

POHEM ages these individuals while exposing them to risk factors and diseases.
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It can therefore be used to reproduce individual characteristics for a population
and generate longitudinal data for a representative sample of a generation. PO-
HEM can be used to evaluate the impact of different risk factors, to assess diag-
nostic and therapeutic options for lung cancer and to evaluate the costs of care for
this disease. Various cost parameters can also be estimated.

The model was used to estimate the direct medical costs of current practice and
new treatments associated with lung cancer in Canada [45]. They found that the
direct medical cost of lung cancer and treatment was just over CAN$528 million.
They also estimated that the cost per year of life gained as a result of treatment
of the disease was approximately CAN$19,450. The authors concluded that the
treatment of cancer was affective from a purely economic viewpoint.

THE POHEM model could be applied in HIA and could be a successful pre-
diction model for HIA. However, at present the POHEM model is limited by Cana-

dian data, but it is a good basis for a more global HIA simulation package.

Global Burden of Disease

The Global Burden of Disease (GBD) [41] has been developed by WHO over the
past decade. The concept of disease burden can be thought of as “a systematic
and internally consistent quantification of health problems of a defined popula-
tion, preferably using a summary measure of population health that integrates
mortality and morbidity information™ [41]. Research on the burden of disease can
provide a sensible basis for implementation and policy development, so it seems
logical that studies on the burden of disease form the basis of health impact as-
sessment research. The primary activity of the GBD has been the development of

comparable, valid, and reliable epidemiological information on a wide range of
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diseases, injuries and risk factors.

De Hollander et al. [46] applied the GBD approach in the Netherlands and
identified a number of environmental hazards for which there was reasonable data
relating to public health outcomes. The number of cases of each disease was
identified and these were converted to disability-adjusted life years (DALY) by
estimates of severity and duration. The results provide a sense of relative impact
for different environmental factors such as water supply and hygiene, occupa-
tional environment and pesticides. The health loss attributable to environmental
exposures was [ound to be relatively small in the Netherlands. Given that the total
annual burden of disease is estimated to be approximately 2.5 million DALYS, in
the Netherlands [47] less than 5% of this disease burden could be attributable to
environmental exposures (excluding accidents). However this figure rises to 12%
when accidents are included.

This method is confined to HIA's looking specifically at discase, so itis limited
as a quantitative HIA method. Any HIAs dealing with disease incidence would

benefit from including this method among their tools in the HIA.

ARMADA

ARMADA [42, 43] is the only one of these four mathematical models that has
been specifically developed for health impact assessment. The model is based on
people moving between different health states until they die. For a given popu-
lation the model uses mortality and morbidity statistics to calculate baseline age
and sex hazard functions. The relative risks, of different levels of exposure to
environmental changes, are incorporated into the model and health status of the

population in the presence of the environmental development is calculated.
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The ARMADA model was applied to a scenario where a new incinerator was
proposed for a town on the south coast of England [43]. The population in close
proximity to the incinerator was approximately 10 000. Using data drawn from
the environmental statement on expected levels of emissions and traffic, and also
data on the wind-plume population for air and chemical exposure, and the city
population for traffic exposure, the extra disease for the incinerator was estimated
to be ‘0.15 of a person’ in 30 years. This figure contrasts with a total mortality
over the whole period of perhaps 60 000 people. It is therefore a low extra level
of death.

There are problems with some of the models outlined above. For exam-
ple there is little understanding of the implication of extrapolating risks between
different populations. McCarthy and Utley [43] stress that the estimates of air
pollution used in the ARMADA model are based on US data during the 1970s-
1990s. Also, impacts may vary greatly between different social groups and this
is not accounted for in the above models. Any other health impacts, aside from
disease, cannot be accommodated by the above models.

However, even given the limitations of the models that have been discussed,
a rough quantitative estimate of a health impact is intuitively more appealing to
policy makers than a qualitative approach, which could perhaps be considered
‘wishy-washy’. Quantitative measures of health impact assessment provide a
means by which different proposals can be compared effectively and efficiently
using bottom line numbers such as number of deaths or disease. It is this type of
evidence that appeals to policy and decision makers.

All of the models discussed above will aid the decision making process and

help in identifying the best proposal in terms of health impacts. However, mon-
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itoring tools are vital once a proposal has been implemented to ensure that the

health impacts remain positive.

1.3.3 Discussion of Lack of Statistical Evidence

Parry and Stevens [48] assessed some of the problems that could be associated
with the current health impact assessment structure as outlined in section 1.2.3.
They highlighted the issue of ineffectual literature reviews and a number of HIAs
that have been carried out did not give an explicit description of the review process,
which could mean that most HIAs have not been informed by a systematic review
of evidence. According to Perry and Stevens these flawed reviews are likely to
result in ... biased and inaccurate effect estimates™ [48].

The next vital part of the health impact assessment is consultation with stake-
holders. Parry and Stevens [48] stressed the importance and benefits of this step,
but they advised caution in the analysis and collection of such data. Any consul-
tations that are carried out need to be performed with extreme stringency in order
to achieve a balanced view.

With the above issues in mind Parry and Stevens emphasised the need for
empirical tests of the predictive process. A number of HIAs that have been ex-
ecuted have been prospective, indeed it is recommended that if at all possible a
HIA should be prospective. However, this requires some sort of follow up. As
stated by Isson [49] “the monitoring of health trends and outcomes will probably
be conducted by officers in an organization or partnership and incorporated into
existing systems for data collection and monitoring™.

It is evident from all the resource articles and web sites dedicated to HIA that
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the focus has been very much on the policy and political aspect of health impact
assessment. Current literature goes far in inventing and describing new models
to carry out health impact assessment. However, these models are all similar in
nature and they appear to mostly outline the roles of different people involved in
a health impact assessment, how much time and money it should cost, and what
policies or programs require a HIA.

An enhancement which has not been used in health impact assessment to date
but which was suggested by Mclntyre and Petticrew [50] is a method to com-
pare quantitatively the different effects of policies. Decision analysis and sys-
tems for weighting evidence have been proposed for environmental impact assess-
ment [S1], but it has not been looked at in relation to health impact assessment.

The Vizayakumar and Mohapatra assessment [51] examined the consequences
of the unchecked use of potentially harmful technology using a method known as
cross impact simulation. They looked at how different variables, such as pollu-
tion, affected population, social pressure, level of use of technology, health care,
pollution control pollution taxes and additional expenditure impacted each other.
They developed a matrix which showed the positive or negative impact that the
variables had on each other. Using this they then simulated various models us-
ing a program in Fortran77. For example for a very basic model they took the
case where the unabated use of potentially harmful technology is dumping pollu-
tants into the environment. It was obvious from the simulation that this scenario
increased the affected population. They also looked at the other variables and
examined how changes in these variables would affect the model.

A similar method applied in the health impact assessment situation could be

very useful. It would mean that a lot more options, with respect to the policy that
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is under analysis, could be tested with little effort required. It would also mean
that the best possible option could be chosen.

In short, current models of health impact assessment tell us what it is, who
should be involved. how long and at what cost. However there has not been
enough work focused on how any analysis should be carried out. It would be
possible to gather all the right stakeholders and have the necessary resources and
still not know the best approach to analyzing the data.

It is clear that a set of analysis tools is needed in order for health impact as-
sessment to achieve it’s maximum potential. Any methods that are used would
need to included a temporal aspect, as this has a heavy bearing on health: carrying
out a health impact assessment based on a single point in time does not make a
lot of sense in most situations. The health of all individuals changes over time
and it is usually a cumulative effect over time that will impact a persons health, so
constant monitoring of appropriate health factors is required.

Another significant aspect to be considered is a spatial impact. When carry-
ing out a health impact assessment it is usually in order to identify the impact
of something such as a landfill site or new road on the individuals living in the
surrounding areas. so obviously spatial analysis is important. How far away from
residential zones does a landfill site need to be located in order not to impact on
health? Or what is the best route for a new road to take so that it maximises a
commuters’ comfort and minimises the local residents” health risks.

Figure 1.1 outlines the health impact assessment procedure as explained previ-
ously. It also suggests where statistical tools should be used and how they should
be used at each stage. In the screening phase, decision analysis tools could be used

as an aid to decide if a health impact assessment is necessary. Decision analysis
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Figure 1.1: Proposed Statistical requirements in a Health Impact Assessment

tools. such as those discussed in section 1.3.2 could be used again in the decision
analysis phase - at this stage decisions have to be made as to what extent a new
policy should be implemented. Decision analysis tools, such as linear program-

ming methods. would help in weighting the important aspects of the policy, thus

ensuring a minimum of negative impacts on health.

In the appraisal phase of a HIA data analysis tools would need to incorpo-
rate spatial, temporal and spatial-temporal aspects. In some circumstances when

the health impact assessment is prospective, then predictive aspects of the data

analysis tools would be important.
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A recurring point at the Sth Annual UK and Ireland HIA conference [52] was
the lack of a monitoring and evaluation phase in health impact assessments, and
the importance of the monitoring and evaluation phase. The monitoring and eval-

uation stage has two different interpretations:

Monitor the Progress of the health impact assessment process and after a health
impact assessment has been implemented evaluate how well it was imple-

mented, or

Monitor the Health Effects to observe positive or negative impact of the change.

The WHO defines monitoring as: *...the periodic oversight of a process, or the
implementation of an activity, ..., so that timely action can be taken to correct the
deficiencies detected.” [53] This definition of monitoring is rarely implemented in
a HIA. The monitoring phase of a HIA is essential to ensuring that any ill-effects
are highlighted immediately and positive health effects are likewise emphasized.
The scan statistic [54] would be useful and could be applied in a health impact
assessment. It involves scanning the data with a moving window and attempts to
detect a tendency of events (e.g. deaths) to cluster. A simple image of the scan
statistic is that of a person sitting on a train looking out the window, the train is
moving and so the window has a constantly changing view. If the person is a
farmer they may be interested in the largest number of cows in a ficld - the largest
number of cows the individual sees from the window at any one time could be
considered a cluster of cows. In the case of the scan statistic a rather arbitrary
window is moved over a time series of data, the largest cluster of cases is of
interest and indicates a tendency of the events to cluster. The scan statistic will be

discussed in more technical detail in Chapter 2.
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There has been some development of the scan statistic as a tool for detecting
clustering in space and time. Using these developments the scan statistic could be
implemented in the appraisal phase. The scan statistic is very flexible and will be
useful in retrospective situations, but it can also be used as a predictive tool and
therefore it would be essential in prospective or concurrent HIAs. The scan statis-
tic is adaptable as a monitoring tool; monitoring of health events could be carried
out in the appraisal stage - if the health impact assessment was retrospective a

retrospective scan could be used.

1.4 Aims and Objectives of the thesis

The aim of this thesis is to evaluate and assess the scan statistic as a monitoring

tool in health impact assessment. The objectives are:

e (o investigate the feasibility of a monitoring tool in health impact assess-

ment:
e (o test the temporal scan statistic under different scenarios:
e (0 assess the use of the scan statistic as a monitoring tool:

e (o compare different versions of the scan statistic:

to investigate the use of the scan statistic for detecting dips in events

Specific Test Applications

e (0 assess the impact the penalty point system is having on road fatalities:



to assess il the bituminous coal ban had a positive impact on respiratory

deaths:

e to investigate il there is any evidence of copycat suicides in Ireland:

to monitor the impact of a new tram system on a city’s population;

e (0 investigate monitoring of cancer cases in the vicinity of an incinerator.

1.5 Conclusion

The method of health impact assessment has been discussed in detail. The need for
statistical methods, specifically monitoring tools, has been highlighted: this has
been confirmed with some examples of HIAs where monitoring tools or statistical
tools could have helped the health impact assessment by providing evidence of
health benefits or negative implication.

Given the lack of evidence of any monitoring being undertaken as part of a
health impact assessment, it seems that work is required in this area. The next
chapter will outline the requirements of a statistical monitoring tool, and the tech-
nical aspects of the scan statistic will be discussed. In following chapters the
appropriateness of the temporal scan statistic as a monitoring tool, especially for

use in a health impact assessment will be considered and illustrated.



Chapter 2

The Scan Statistic

2.1 Introduction

Chapter 1 explained where health impact assessments lacked vital statistical in-
put. This chapter will look at different means of filling the gaps in health impact
assessment by using appropriate statistical tools. As monitoring tools have been

largely neglected, this thesis will focus on their use in a health impact assessment.

2.2 Statistical Methodology for Health Impact
Assessment

HIAs are usually implemented by public health practitioners or by local commu-
nity groups. Therefore in order to encourage the use of statistical methods they
need to be easy to implement and easy to understand.

As HIA covers a very broad spectrum of problems, it will consequently lead to

a broad spectrum of data types, and with that issues with data quality. It is impor-
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tant that the monitoring tool is flexible and does not place numerous constraints
and assumptions on its use, so that it can be applied in different situations where
there are distinct data problems. In the monitoring phase of a prospective HIA,
the tool should have the capability to alert to increases or decreases in the occur-
rence of events. In a retrospective HIA, where a particular programme has had an
impact on health, then the particular tool will need to be competent at assessment
of clusters retrospectively.

The purpose of monitoring for health effects is to alert to an increase in health
impacts in a timely manner. It is important, therefore, that the selected method is
time efficient and alerts to increases or decreases quickly.

If a certain planned programme is thought to have a positive impact on health
then it may be of interest to monitor for a decrease in health events. By showing
that a particular programme reduces certain health events, and by having statistical
evidence of such a decrease, it lends credence to the programme which could then
be implemented elsewhere. It also lends credence to the HIA method - this will

help with future funding for HIAs and ease the implementation of future HIAs.

2.3 Monitoring Tools

An important aspect of monitoring is that the tool can take account of overlapping
time periods. For example suppose that over a S-year period 1991 to 1995 there
are 19 reported cases of cancer. Within this five year period suppose that eight
of the cases fall within a one year period (13" April 1993 to 13" April 1994), it
might be of interest to know if this cluster is unusual: in other words given that 19

cases occurred in 5 years, how unusual is 8 cases in one year?
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A traditional way of solving this problem might be to divide the five years up
into five disjoint one-year periods, and look at the distribution of the maximum
number of cases falling in any one year. However the cluster will not be detected
using this method as the eight cases fall between two disjoint years. The tradi-
tional method of cluster analysis uses disjoint time periods as found in a calendar.
The scan statistic moves away from calendar time periods and analyzes the data

as one continuous time period rather than the specified years or months.

2.4 Scan Statistic

The scan statistic is a method that is used to examine clustering of events over
time, space or both time and space. The method involves the scanning of data
with a window, in search of either the largest number of events in that window,
or the data may be scanned looking for the smallest window that contains a pre-
specified number of events.

If a large cluster of events were observed over a period of time it would be
of interest to know whether the cluster was unusual or due to random factors.
Clusters do occur naturally and not every cluster will be significant or due to some
external reason. The scan statistic is a method that can be used to test whether a
cluster is unusual by looking at the relative frequency of large clusters assuming
that the events are randomly independently distributed.

The following example clearly illustrates the scan statistic. Each point on the
line represents a case of Spina Bifida in the period 1997-1999. The shaded area
within the box represents a window scanning the data. As the window moves

across the time line the number of cases of Spina Bifida within each window is
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counted. The maximum number of cases is then assessed using one of the methods

to be discussed in the following sections.

e ... Q”‘MQJ_*_‘ ’ & & @86

20/8/97 8/3/38 24/9/98 12/4/99

Figure 2.1: Spina Bifida Cases in Ireland, 1997 - 1999

2.4.1 Where has the Scan Statistic been used?

The scan statistic has been utilized in a wide variety of areas that include digi-
tal screening [55] and genetics [56], public health, epidemiology and veterinary
medicine [57]. The scan statistic has also been used in other fields such as ac-
tuary studies, where it was used to examine occurrences of clusters of threshold
exceedances by the individual claims [58]. It has been used in physics to ex-
amine gamma rays and cosmic ray data [59]. The US Department of Justice
has researched the possibilities for using the scan statistic to look at clusters of
crime [60]. The use of the scan techniques generally falls under one of the fol-
lowing headings: temporal, spatial and spatio-temporal.

In a temporal setting the scan statistic has been utilized as a surveillance tool

in a poison control centre, where clustering of carbon monoxide cases were found
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using a temporal scan method [61]. This was the only evidence of the use of the
temporal scan statistic that could be found.

A spatial scan statistic based on the Bernoulli model was used to investi-
gate if there was clustering of bovine tuberculosis in Argentina [57]. It was
also used to investigate spatial differences in breast cancer incidence in Connecti-
cut, USA [62]. Clustering of childhood astrocytoma in Sweden was investigated
and while an increase in incidence was observed there was no significant cluster-
ing [63]. An investigation of the distribution of BSE in Switzerland was carried
out with the use of a spatial scan statistic: clusters of BSE were located in eastern
and western Switzerland [64].

A spatio-temporal method was used to investigate clustering, over time and
space simultaneously. of acute respiratory disease in Norwegian cattle herds [65].
A space-time scan statistic which adjusted for confounding factors was used to
examine clustering of Blowfly strikes in sheep flocks in Australia [66]. To assess
whether an observed excess of brain cancer in Los Alamos, Mexico was a real
cluster, confounding factors such as preselection bias and multiple testing could
be accounted for by using a space-time scan statistic [67].

Clustering of suicide in the US Marines was investigated. Clustering over
time and space was found to be ambiguous while overall suicide rates were lower
than expected, and there was clustering of suicide among ethnic male groups [68].
Research was carried out to investigate if there was any clustering of symptomatic
human pesticide exposures and significant spatial and temporal clustering was
revealed [69]. Turnbull examined spatial and temporal clustering of leukaemia in
New York [70] using the scan statistic.

While there have been many applications of the scan statistic in a spatial and
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spatial-temporal environment as a temporal monitoring tool it has yet to be thor-
oughly assessed. The health impact assessment environment is a challenging op-
portunity to investigate the appropriateness of the scan statistic as a temporal mon-
itoring tool. There are many opportunities for monitoring in HIAs: the scan sta-
tistic could be used to monitor disease, suicide and road accidents among many
other important health impacts.

The scan statistic is a relatively innovative tool, it has been developed and
utilized, particularly in recent years. However, the scan statistic has not been
utilized to any great extent as a monitoring tool. As was outlined in Chapter
I, there is no evidence of monitoring of health effects in HIA, even though it
is purported to be one of the most necessary stages in a HIA. The scan statistic
would appear to be an efficient monitoring tool, specifically because it is quite a

versatile tool.

2.5 Methodology

There are different versions of the scan statistic, and depending on the data avail-
able, either the binomial scan statistic, the scan statistic on the circle, the Poisson
scan statistic or the ratchet scan statistic may be used.

To efficiently explain and illustrate each example, Spina Bifida data will be
used. Spina Bifida is a congenital anomaly: it is the medical name given to a
birth defect in which the spinal column fails to form properly while the baby is
developing in the womb. It is the most common of the “neural tube defects’. The
causes of Spina Bifida are thought to be environmental and genetic. Lack of folic

acid, and incinerators have been linked to Spina Bifida. It is therefore a useful
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illustrative example. The data are from the period 1997 - 1999 (see figure 2.4,
page 35).

In all of the examples in this chapter a scanning window of 91 days or three
months will be used. A scanning window of this length is useful to detect seasonal
clustering. In order to compare the different scan statistic tools the window size
will remain the same. Selection of appropriate window size is an important aspect

of scan statistics that is discussed later in this chapter.

2.5.1 The Binomial Scan Statistic

The classic method for the scan statistic involves counting the number of events
in each time interval. The maximum number of events found could be considered
acluster and is called the scan statistic. Using the classical method the probability
of a large number of events in a given interval is calculated and a decision can then
be made as to whether the cluster is unusual. Neff and Naus [71. 72] published
tables of the probability of a cluster. These tables evaluate the cluster up to a total
sample size (\') of 25.

Wallenstein and Neff [73] further developed the approximation for the dis-
tribution of the scan statistic so that large values of N, total sample size, could
be analysed. Suppose N is the total number of events in an interval of length
T'. Let r denote the ratio of the width w of the window to the total time frame,
T,r = %, and set P(n,N.r) = Pr(m, > n) is the probability of getting the
maximum value n in any window of width 7, given that there is N events in total.
Pr{m, > n) is the probability under the null hypothesis of finding a value m in

a window of width w that is bigger than the cluster n.



There are many approximations available for the computation of P(n; N, 7).
A simple sum of binomial and cumulative binomial probabilities can be utilized [73].
Equation 2.1 shows the Binomial Distribution, b, this represents the probability of
n successes in a total of N events, where the probability of success is . The
window width as a proportion of the total time period is represented by 7.

. N : N
b(n; N,r) = rt(l =)t (2.1)

n

The cumulative sum of probabilities (7}, can then be calculated using equation 2.2,
where again n represents the number of successes, NV is the total number of events

and 7 represents the window width as a proportion of total time.
N
Gp(n; N,r) = Z b(i; N,r) (2.2)
=N

Using these equations Wallenstein and Neff [73] approximated P{n: N.7) as can
be seen in equation 2.5. This approximation of P(n:; N.r) is exact for n > N/2,

w < 0.5, and gives accurate results in other cases.

Pn:N.r) =~ (N—-n-—1)b(n—-1.N.r) (2.3)
—(N —n—1)b(n; N,r)+ 2Gy(m; N,r) 2.4

P(n;N,r) = (nr ! =N —1)b(n;N, )+ 2Gy(m; N, r) (2.5)

This approximation is easy to implement and a result is relatively easy to obtain

using any spreadsheet package such as Excel.
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To illustrate this method the Spina Bifida data, described on page 38 will be
used. To see if there is evidence of seasonal clustering of Spina Bifida cases a
window of 91 days will be used to scan the data. Figure 2.2 illustrates visually
the use of a 91 day scanning window. In the diagram the scanning window has
been centred on the largest cluster. This cluster occurred in 1998, 27" February
to 27" March. There were nine cases of Spina Bifida in this period; in the two
years shown below there was a total of 22 cases of Spina Bifida.

‘ |

————————————— ¢S B
20/8/97 2811/97 8/3/08 16/6/98 24/9/98 2/1/99 12/4/99 21/7/99 29/10/99 6/2/00

Figure 2.2: Spina Bifida Cases in Ireland, 1997 - 1999, scanned with a 91 day
window

Applying the Binomial Scan statistic it is possible to see if a cluster of 9 cases
in a 91 day period is significant. In this example total number of events N = 22,
91

maximum cluster n = 9, window size r = 230 = 0.125.

P(9;22,0.125)

I

(9 x 0.125~1 — 22 — 1)b(9; 22, 0.125)
+2G4(9,22,0.125)

= 0.0332

This cluster is significant at p = 0.033. This could indicate a tendency for Spina

Bifida cases to cluster seasonally.
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2.5.2 The Scan Statistic on the Circle

Often data can be thought of as circular. Events that occur at around the same
time every year could be called cyclical, for example there are many incidents of
sunburn in the summer months, not so many in the rest of the year. If one is inter-
ested in seasonality then the circle scan statistic should be used. Figure 2.3 shows
a pictorial representation of a circular graph, the blue points represent events on a
daily basis; in the graph there is a higher density of blue dots in the winter months,
so perhaps the graph represents cases of respiratory disease. This higher density
begins approximately at the end of November and lasts until approximately mid-

February.
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Figure 2.3: A pictorial representation of data on a circle.

A circular scan statistic scans the data on a circle rather than a line, which
means that seasonality can be detected. Wallenstein et al. [74] proposed a good

approximation to the circular scan statistic. The circular scan statistic, S,, is the
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maximum number of events in any arc of length . The probability of S, > n
is then evaluated (where n is the number of points in 7), conditional on the total
number of points, N, being uniformly distributed on the circle.

Wallenstein, Weinberg and Gould [74] give the following simple approxima-

tion for small probabilities:

e . b(n: N.w)(k — Nw) :
P(S; 2 n) = Po(n; N,w) = a ) (2.6)
w(l —w

where b(n; N, w) is calculated as outlined in equation 2.1. As with the Binomial
Scan, this method can be applied in Excel. However a loss of precision and ac-
curacy could be expected and a computationally more sophisticated package such
as Mathematica will give a higher degree of accuracy.

In order to illustrate the use of the circular scan statistic the Spina Bifida data
will be employed once again. To prepare the data for the circular scan statistic,
the data for the two years must be pooled for each day. This means simply that
the number of Spina Bifida cases on 1 January 1998 is added to the number of
cases that occurred on 1°* January 1999, similarly the number that occurred on 2"¢
January 1998 is added to the number of cases that occurred on 2" January 1999,
and so on for every day of the year. Once the data have been pooled a scanning
window can be selected and the data are scanned. The pooled data and scanning
window are plotted in Figure 2.4, Tn this figure the shaded area represents the
scanning window which has been centred on the maximum cluster.

The maximum value found was 14 cases, found between February and June.
There was a total of 22 cases of Spina Bifida for the two years. A scanning

window of 91 days was used. This cluster was found to be significant as follows,
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Figure 2.4: Scanning the Spina Bifida data, using a circular scan statistic.
where n = 14, N = 22 and w = 0.249:

(32)(0.249)2(0.751)® (14—22x0.249)

Pc(14;22,0.249) =~ 0.249(0.751)

< 0.0000

2.5.3 Ratchet Scan Statistic

The previous two versions of the scan statistic are appropriate to use when data
are available on a daily level. However in many cases original raw data are not
available, but may be available as monthly totals. This can cause problems as
the number of days per month varies from 28 to 31. It is still possible to use the
scan statistic to detect clustering when data are aggregated to month level. To do
this the ratchet scan statistic is used. The ratchet scan statistic is available in a
linear form and in a circular form much like the circular scan statistic discussed in

section 2.5.2.

Circular Ratchet Scan Statistic

Wallenstein et al. [74] proposed the ratchet scan statistic on the circle for large

values. Wallenstein, Weinberg and Gould [74] outlined a method for simulating
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data to estimate the ratchet scan statistic for large numbers. Let ny,ng, ..., N2
be the number of events in each month of the year and N is the sum of all events
(N = 5" n;). S¥isthe sum of k consecutive months, assuming that 4 is the chosen
scanning window, for example suppose a scanning window of 3 months was used
S¥ is the sum of events occurring in January, February and March, similarly S} is
the sum of events in the months February to April. The ratchet scan statistic, T,
is the maximum value of S¥.

To estimate the asymptotic distribution of the ratchet scan statistic, the method
outlined by Wallenstein et al. [74] will be used: the multinormal distribution, with
a mean of 0 and variance of 1 is used. The correlation matrices for scan windows
of one, two and three months are given below as suggested by Wallenstein et

al. [74].

("()/'/'(/‘)./‘/1) = { =L £ 2.7)

04 |i—j|=lori— j| = 11

—0.2 otherwise

s |i—Jjl=1lorli —j| =12
Corr(ri,r7) = % li — j| = 2otfi — j| = 11 (2.9)
Tl otherwise
(2.10)

For a scan window of one month, 200 000 simulations were conducted us-

ing the above correlation matrix and a mean value of 1. These simulations re-
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sulted in vectors (7}, Zy..... Z}|), Z|, was estimated using the formula 7|, =
Z” Z! . Similarly, for a window of size two months, 200 000 vectors of
the form (77, 7j i Z'f“) were simulated, 77, and 77, were estimated using
s S i = 1,2 . Finally, 200 000 vectors of the form (Z}, 73,

. Z3) were simulated for a scanning window of three months, where 7, , =
o F e =128,

Mathematica [75] was used to implement the simulation. For example, given
that 2000 events occur in a year, the number of events that could occur in each
month was simulated. For each of six different values of the total sample size,
N, a multinomial distribution for the twelve months of the year, was simulated
10 000 times. The values of N chosen were 2000, 1000, 500, 250, 100 and 50.
These values were selected in order to give a good spectrum of different sample
sizes, so that differences between large sample sizes and smaller sample sizes can
be ilustrated.

A maximum value for each of the 200,000 multinormal vectors was obtained,

the at"

percentile of the maximum values corresponded to R, the maximum
cluster scan statistic. T"(\'), the maximum cluster size, can then be estimated
using equation 2.11, as outlined by Wallenstein et al. [74].

TE(N) ~—+\/*R’ \/ “(M 2.11)

To test the adequacy of the asymptotic distribution, at o = 0.05, data were
simulated using a multinomial distribution, for N = 2000, 1000, 500, 250, 100
and 50. The maximum clusters were then obtained using windows of size h =

1,2, 3 months. The exact 0.05 critical value was obtained by interpolation of the



two cluster sizes that straddled the critical value. Table 2.1 gives the results of the

simulation study.

Asymptotic Theory Simulation
k NT.(0.05) 205 n PTp>n) PMi>n+1) % T
1 50 9320 0.186 10 0.083 0.028 0.212 10.608
I 100 15.621 0.156 16 0.097 0.045 0.169 16910
1 250: 32.356 0.129 33 0.076 0.042 0.135 33.770
1 500 57.962 0.116 59 0.055 0.038 0.119 59.282
1 1000 106.379  0.106 107 0.061 0.045 0.108 107.687
1 2000 199.258  0.099 200 0.056 0.045 0.100 200.509
2 50 15215 0304 16 0.067 0.027 0.329 16.433
2 100 26.399 0.264 27 0.077 0.039 0.277 27.712
2 250 57.055 0.228 58  0.056 0.037 0.233 58.335
2 500 105.096 0.210 106 0.0610 0.044 0.213 106.653
21000 197.443  0.197 198 0.058 0.047 0.199 198.740
22000 376.858 0.188 377 0.056 0.049 0.189 377.903
3 50 20432 0.409 21 0.065 0.029 0.428 21.422
3 100 36.218 0.362 37 0.056 0.030 0:372 37.223
3 250 80.237 0.321 80  0.072 0.050 0.324 80.995
3 500 150.084  0.300 151 0.051 0.038 0.302 151.093
3 1000 285.475 0.286 286 0.055 0.044 0.287 286.450
32000 550.169 0.275 551 0.050 0.044 0:276.551.019

Table 2.1: Results of asymptotic simulations, compared with simulations for
different values of N.

Table 2.1 shows that the value of 7). obtained using asymptotic theory is sim-
ilar to the value of T estimated using the simulations. However the values do

differ by a factor of approximately 1 across all values of N'. To accommodate this
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difference a correction of +1 is made to the test statistic. Based on this evidence
Wallenstein et al. mapped the ratchet scan onto a statistic whose P-value could be

obtained from graphs using the following equation:

e TE= 1= N .
A\VII'/‘-(I — (l‘/\-) -

where R" is the test statistic. The corresponding p-values can be obtained using
Figures 2.5, 2.6 and 2.7 which were constructed using the simulated data.

The data were smoothed using cubic splines. Figure 2.5 shows the ratchet scan
statistic for a window of one month, values of N > 500 closely approximate the
asymptotic distribution, and so the asymptotic distribution curve is used to esti-
mate the p — value in these situations. When N < 500 the asymptotic distribution
is not as good an estimate, when N = 50 the simulated curve provides a better
estimate of the p-value than the asymptotic curve.

For a window of size A’ — 2 months, the asymptotic distribution seems to
be a good estimate of the p-value for values of N > 500. When N < 500 the
asymptotic distribution is not as good an estimate, when N = 50 the simulated
curve provides a better estimate of the p-value than the asymptotic curve.

When the window size is 3 months, the asymptotic distribution could be used

to read the p-value for all values of N: it is especially accurate for R > 2.7.

Application of the Circular Ratchet Scan Statistic To illustrate the ratchet
scan statistic the Spina Bifida data will be aggregated to month level. Each of
the monthly totals will then be pooled for the two years, as shown in Table 2.2.

Once again a three months scanning window will be used. The largest cluster is
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Figure 2.5: Ratchet scan statistic for maximum cluster detection using a window
of 1 month.
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Figure 2.6: Ratchet scan statistic for maximum cluster detection using a window

of 2 months.
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Figure 2.7: Ratchet scan statistic for maximum cluster detection using a window

of 3 months.
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highlighted in Table 2.2: it consists of 13 cases of Spina Bifida, from March -

May.

Month 1998 1999 Pooled Spina Bifida Cases

Jan 1 0 ]
Feb 1 1 2
Mar 3 1 4
Apr 2 0 2
May 4 3 7
Jun | 2 3
Jul l 0 1
Aug 1 0 |
Sep 0 0 0
Oct 0 0 0
Nov 0 1 1
Dec 0 0 0

Table 2.2: Spina Bifida data pooled by month.

To evaluate the significance of the cluster, equation 2.12 will be used, where

Ty =13, N =22and w = -5

12"

gy 13-1-22x025 o
v/22(0.25)(1 — 0.25) o

Using Figure 2.7 this figure is significant at approximately 0.0008. With the use
of a program in Mathematica the significance was calculated as being between
0.00078 and 0.00084, so the estimate found using the graph is reasonably accu-

rate. Obviously a higher degree of precision can be obtained using Mathematica.
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Linear Ratchet Scan Statistic

The linear ratchet scan statistic is derived in the same fashion as the circular ratchet
scan statistic, outlined in the previous section. The difference between the linear
and the circular is that the circular ratchet pools data from a number of years, the
linear ratchet does not pool the data, so it is similar to the Binomial scan statistic.

Using Spina Bifida data from 1998 a cluster of nine cases was found with a 3
month scanning window, see Table 2.3. In 1998 there was a total of 14 cases. The

test statistic, 1%, is found using equation 2.12 as follows:

. 9—1—14 x0.25
RS 9-1-14x0.25 — 9278 (2.14)
V/14(0.25)(1 — 0.25)

Figure 2.7 indicates that R* = 2.78 is significant at approximately 0.035. Using
Mathematica the more accurate estimate is between 0.019 and 0.021. The graph
and simulated estimate are again sufficiently accurate for the linear scan statistic;
even though the Spina Bifida figures are small the asymptotic distribution gives
a relatively accurate reading. Once the graphs are available the ratchet scan can
be calculated using a calculator. However, as discussed previously the graphs
are used for simplicity sake at the expense of precision. Automated computer

programs would be more precise, time efficient and easier to use.

2.5.4 Poisson Scan Statistic

The versions of the scan statistic that have been looked at so far are all conditional
cases, in that the value of N is known and assumed to be fixed. In many cases

the total value in a specific time frame may be known and assumed random, thus

N
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year Month Spina Bifida Cases

1998 Jan 1
1998  Feb |
1998  Mar 3
1998  Apr 2
1998  May 4
1998 Jun 1
1998 Jul 1
1998  Aug |
1998 Sep 0
1998  Oct 0
1998  Nov 0
1998  Dec 0

Table 2.3: Spina Bifida data aggregated to month for the year 1998.

giving more flexibility. Using the Poisson distribution instead of the Binomial
distribution to estimate the probability of a cluster of events will provide a simple
model of chance variation in time. The conditional probability of a cluster is
denoted by P(h: N, w) and the unconditional probability, based on the Poisson
distribution will be denoted by P*(k: N.w).

There are many approximations for the unconditional probability loosely based
on the Poisson process. A number of these will be outlined, as discussed in Glaz
et al [54]. Newell [76] and Ikeda [77] derived the asymptotic formula in equa-
tion 2.15. This version of the Poisson scan is by far the easiest to implement, and
can be calculated with just a calculator, so for a quick approximation it is very
useful. This formula is useful for cases were F°* is small as the asymptotic con-

vergence is very slow. In the following equation \ is the average number of events
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in any unit interval, / is the cluster size. w is the window width and 7 is the total
time.
=31

PRAT, mil s L—aaplm—s

} (2.15)

Using the Spina Bifida data from 1988 - 1997 the average number of Spina
Bifida cases was estimated to be 0.067 per day. With this information and using
equation 2.15 the probability of a cluster of 13 cases in 91 days out of a total of

730 days will be estimated:

067> (0.125)° 1T,

0y <o 2.16)
(13— 1)t b< e

P*(13;48.91,0.125) = 1 — exp{

A more accurate approximation to the scan statistic, using the Poisson distrib-
ution was derived by Naus [78]. This approximation can be seen in equation 2.17,
While it appears quite complex, this approximation can still be employed, with a

small amount of effort. in a package such as Excel.

P*(k; WL, 1/L) = 1 — Q3(Q3 Q52 (2.17)

where ¥V = Awand L = T/w. Also Q3 = Q*(k;2V¥,1/2) and Q3 = Q*(k;3¥,1/3),

the formulas for Q" (k:2W, 1/2) and Q" (k: 3W, 1/3) are respectively:

Q*(k:27,1/2) = (Fy(k—1,))* — (k= L)p(k; ¥)p(k — 2; )
—(k =1 =U)p(k: W)F,(k - 3:T)

Q*(k:3W.1/3) = (F(k—1:0))% — A, + Ay + A3 — A,
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where:

Ay = 2p(k;W)E(k — L, 0){(k—1)Fp(k — 2;¥) — VEF,(k - 3; %)}
Ay = (0.5p(k; )2{(k — 1)(k — 2)F,(k — 3; %) — 2(k — 2)UF,(k — 4; 1)
+ U2 F(h — 4 W) + U2F,(k — 5; W)}

As = S¥1p2k —r; U)(F,(k — 1; 1))

A ZI 51)(211'—/‘:\I/)p(r:\ll){(r— 1) Fp(r — 2;¥)

i

— U p(2k — U Fy(r — 3 1))

Using the above method in Mathematica the probability of 13 cases of Spina
Bifida falling in a 91 day period in any given 2 years is 0.2899, which is not
significant.

The result contrasts with that found using the Binomial Scan statistic and the

ratchet scan statistic.

2.6 Computational Requirements

In the versions of the scan statistic that were outlined in this chapter it is possible to
implement an approximation of each type in Excel, and in some cases a calculator
will suffice. However, for optimal results, more accurate, powerful computing
methods are required. For each of the Binomial Scan, Ratchet Scan, Circular
Scan and the Poisson Scan there are Mathematica [75] programs available. If
Mathematica is available then using these programs would be preferable and less
time consuming than implementing the scan statistic in a package such as Excel.

There are also a number of websites which do certain scan statistic calculations,
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Kulldorf’s Satscan [79] being one of the more well known sites.

2.7 What Window Size?

In the examples studied in this chapter a three month scanning window was used
in all situations. However as there is no preset window size, any size window
could have been used. The size of window should be chosen based on the data or
type of situation that is to be monitored: a window too small may not be capable
of detecting clusters in some cases, and in other cases windows may be too big
and there may be multiple clusters inside a scanning window - again making the
detection of a single cluster impossible.

There are cases where very small windows are required. Hryhorczuk et al. [61]
used a window of 3 days when they implemented the scan statistic to detect clus-
tering of carbon monoxide poisoning. This is because carbon monoxide outbreaks
are typically acute and usually limited to one or a few days.

Evidence suggests that copycat suicides usually take place within 70 days of
the initial event. Therefore if scanning for copy-cat suicides a window of at least
70 days would be used in order to detect clustering of this type of suicide.

The window size to be used for detection of clusters is totally based on the
situation being studied. In the above examples the events dictated the window
size, carbon monoxide poisoning happens within 2-3 days so a window size any
larger would be futile and would possibly only detect multiple clusters of carbon
monoxide outbreaks, hence the detection of single outbreaks would become im-
possible as each outbreak would become blurred with other outbreaks occurring

within the window.




In general it would be prudent to investigate the data and situation thoroughly
to determine i an appropriate window size is suggested by data. Thus in the
carbon monoxide example, determining window size would require investigation
of the length of carbon monoxide clusters, ie. deciding on the time frame within
which a carbon monoxide cluster occurs, and then setting the window size to an
informed 2 or 3 days.

It is more likely that no optimum window size is known from the data. In
this situation it can be a case of “best educated guess’™ window size. This would
mean not choosing a very short window size for a rare event, or a long window
for something that occurs rather frequently. To help inform the decision making it
is important to examine the frequency of events in the population of interest and
basing the window size on the frequency.

A good base would be to set the window size as 3 months, as this is a nice
proportion of a year. Then examine the frequency of events. if there is likely to be
a large number of events occurring in a three month period (200+) then perhaps a
smaller window should be used, if there is only a small frequency in that window
size (< 2) then perhaps a larger window should be used.

There will also be situations when the window size is dictated by the research
question being asked. For example suppose it is of interest to detect if a particular
event is seasonal, in this case it does not matter what the frequency of events is,
seasonality is the determining factor and so a window size of 3 months should be
used. In other situations it might be of interest to detect clustering of events at
weekends - use a 2 day window, or clustering over a | year period - use a | year
window.

It is possible to apply a variable window width; in this way a fixed window
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width does not have to be specified. One issue with this method is the problem of
multiple testing. However this can be catered for by using the appropriate statistic

to account for the multiple testing or by Monte Carlo simulation.

2.8 Conclusion

The scan statistic appears to be a viable resource to monitor health impacts. There
are a number of versions so if the data are continuous and N (the total sample size)
known and assumed (o be fixed, the Binomial Scan statistic can be used. If N is
known but assumed to be random then the Poisson Scan statistic can be used.
When looking at seasonal events the circular scan statistic is ideal. Aggregated
data can be manipulated using the ratchet versions of the scan statistic.

While many different data types are dealt with using the different versions of
the scan statistic, the scan statistic is relatively easy to implement. For each of the
versions it is possible to get an approximation using a spreadsheet package such
as Excel. For optimal results a computationally more powerful and more accurate
option would be Mathematica.

In the following chapters the versions of the scan statistic discussed here will
be applied in very different situations. The applications of the scan statistic will
illustrate its use in real, applied situations and any problems can be highlighted

and alternatives suggested.



Chapter 3

Negative Health Impacts

One of the most important aspects of health impact assessment is to alert to a
possible negative impact that a proposed policy may have on the health of the
population. While the role of HIAs is to minimise negative health impacts result-
ing from a new policy, sometimes the unforeseen can happen. There are many
industries and technologies such as mobile phone masts, pharmaceutical indus-
tries, genetically modified crops. and, as yet. there is little evidence of the health
impacts that such industries may have in the long term.

There are some instances where there is public uneasiness regarding a new
policy - for example, siting a proposed incinerator, and, although emissions from
incinerators have been reduced and the level of dioxins emitted is now thought to
be minimal, there is still debate and a lack of evidence on the long term health
impacts of even low levels of dioxins. In this situation the public should be reas-
sured that health effects will be closely monitored and any negative effects will
mean that a thorough investigation and enquiry will be launched.

A new transport system might be expected to perhaps increase the health of
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city’s inhabitants. People will no longer have to sit in traffic jams in their cars,
they may get to work faster and this will lead to a stress-free life as they get
to spend more time with their families. However, a new transport system may
increase accidents and introduce new varieties of accidents and thus increase the
frequency and severity of injuries.

By monitoring for certain health events, unforeseen health impacts can be ad-
dressed in a timely manner and measures put in place to correct the occurrence
of these health events. In the case of suicide, there may be copycat suicides ' or
suicide contagions * spread through the press. It is not possible or ethical to carry
out a health impact assessment of the impact of a media report of a suicide, and
whether this media coverage will lead to further suicides. However, perhaps, if
suicides were constantly monitored then a retrospective health impact might be
observed and the necessary health services and provisions put in place.

This chapter will look at monitoring suicides, tram incidents, and cancer cases
near an incinerator. There is an incinerator proposed for Ringaskiddy, Co. Cork.
Monitoring techniques that could be used to monitor cancer cases in Ringaskiddy
will be examined. A new tram started in Dublin in July 2004, with a second line
due to begin October 2004. The feasibility of the monitoring of tram related inci-
dents will be discussed and illustrated. For each of the examples in this chapter,
the framework of health impact assessment will be applied, as outlined in section

1.2.3, page 5.

"The term copycat refers to the tendency of humans to duplicate the behaviour of others. Copy-
cat suicides are defined as duplications or copies of a suicide due to repeated accounts or depictions
of the initial suicide in the media. [80]

A suicide contagion refers to the tendency of one or more person’s suicidal behaviour to
influence another person to attempt or complete suicide. [81]
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3.1 Monitoring Suicide in Ireland

The scan statistic is beneficial for other public health situations. While monitoring
events in a HIA is important there is also a need for public health monitoring in
many areas. The monitoring of suicide will be examined and the use of the scan
statistic as a public health monitoring tool illustrated. While this is not specifically
a "HIA” example, it is a useful example of using the scan statistic as a monitoring
tool.

Suicide is defined by the Centre for Suicide Prevention [82] as “intentional,
self-inflicted death”. Experts in the field suggest that a suicidal person is feeling
so much pain that they can see no other option. They feel that they are a burden to
others, and in desperation see death as a way to escape their overwhelming pain
and anguish. The suicidal state of mind has been described as constricted, filled
with a sense of self-hatred, rejection, and hopelessness. The following were found

to be the most common predictors of suicide [83]:
e Previous suicide attempt
e Mental health - particularly mood disorders such as depression
e Combined mental health and substance abuse issues
e Family history of suicide
e Hopelessness/Helplessness
e Impulsive and/or aggressive tendencies

e Barriers to accessing mental health services
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e Loss (relationships, health, identity status)

e Stressful Life event

e Accessibility to lethal methods, especially guns

e Unwillingness to seek help because of stigma attached to mental health is-

sues and suicidal thoughts

e Exposure to suicide (family, peers, significant others)

e Physical, emotional and sexual abuse

e [egal issues/arrests/incarceration

e Sexual identity conflict

One of the indicators or predictors for suicide is exposure to suicide, so the
suicide of family members. peers or significant others is a negative health impact.
There are reports, that in the wake of the suicide of Kurt Cobain, approximately
60 - 80 of his fans around the world also committed suicide [84].

There is no monitoring of suicides in Ireland, a systematic monitoring sys-
tem could alert to a sudden increase in the number of suicides and perhaps more
preventive strategies put in place to reduce the numbers of suicides. If there is evi-
dence of clustering of suicide it could be indicative of copycat suicides or seasonal
suicides.

A known predictor of suicide is exposure to suicide, so media reporting or
knowledge of a suicide may lead to further suicides. Other health impacts of
suicide could be the impact a suicide may have on family and friends of the victim.

The analysis of the impact of suicide on family members is beyond the scope
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of this thesis. For this illustrative example only clustering of suicides will be

considered.

3.1.1 What is the background to suicide in Ireland?

In 2001 a National Study on Suicide in Ireland was completed. It was published
by the Departments of Public Health on behalf of the Chief Executive Officers
of the Health Boards. Information was gathered on all suicides that occurred in
Ireland in 1997, and for some regions of Ireland the study was extended to 1998.

The study found high rates of suicide among males, who were found to be
five times more likely to commit suicide than females. Young males under the
age of 30 years were found to be particularly at risk. Mental health disorders and
depression were found to be the highest risk factors for any suicide: many of the
victims had visited general practitioners with complaints relating to psychological
symptoms prior to committing suicide.

Unemployment was found to be a high risk factor for suicide, as well as
significant life events such as relationship problems. Misuse of alcohol prior to
committing suicide was a common trait among victims. It should be remembered
that suicide is more prevalent among young people in the population who perhaps
are more likely to misuse alcohol.

Data from the period 1995-1996 will be used to investigate clustering of sui-
cides. The data used was mortality data obtained from the Central Statistics Office
in Ireland. In that period a total of 810 individuals throughout the Republic of Ire-
land took their own lives. Over 35% of these were under 30 years of age, 80%

were male.
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Is there evidence of a clustering of suicides in Ireland? A clustering of sui-
cides could be an indicator of an impact on health. For example a closure of a
number of industrial plants could lead to unemployment and depression which
are risk factors for suicide. Clustering of suicides could be indicative of copycat
suicides; media coverage of suicides, as well as community coping mechanisms,
would then need to be reviewed.

To investigate clustering of suicide in Ireland a window of size 91 days, equat-
ing to approximately three months, was used. A window of this size will detect
any seasonal clustering of suicide. The largest number of suicides in a 91 day
period during the years 1995-1996 was 135. This cluster occurred between the
5" June 1996 and the 3"! September 1996.

The Binomial Scan statistic, as outlined in section 2.5.1 was used to examine
if this cluster was significant. The Binomial scan statistic was chosen in this
instance as it accommodates retrospective situations appropriately: we know the
total number of suicides in the two year period and can assume that this total is
fixed. Applying the Binomial Scan statistic (equation 2.5 page 39 it was found

that the cluster of 135 cases of suicide was significant.

P(135;810,0.124) = (135 x 0.124! — 810 — 1)b(135;810,0.124)

+2G(153,810,0.124)

The above cluster incorporated the entire population. The population will now be
examined stratified by sex and age to investigate if there are certain groups in the

population that cluster significantly.
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The data were split into the following age groups: < 20, 20-29, 30-39, 40-49,
50-64 and 65 years and over. These age groups were selected as it was felt that
they represented the different cycles in an individual’s life. The data were also
stratified by sex.

The window size was again selected to be 91 days for consistency in the analy-
sis. Tables 3.1 and 3.2 show for males and females the maximum cluster size,
total number of suicides and probability for each age stratum. There was only one
significant cluster, males aged 20-29 had a significant cluster of suicides from 31*

May 1996 to 30" August 1996.

Age group Cluster Size  Total Size % Probability

<20 15 63 23.81 > 0.1000
20-29 RE! 189 23.28 0.0026
30-39 26 143 18.18 > (0.1000
40-49 21 115 18.26 > 0.1000
50-64 16 87 18.39 > 0.1000
65+ 14 67 20.90 > 0.1000

Table 3.1: Clustering of suicides among males in different age groups.

Age group Cluster Size Total Size % Probability

<20 4 16 25.00 > 0.1000
20-29 9 28 32.14 > (0.1000
30-39 8 32 25.00 > 0.1000
40-49 8 30 26.67 > 0.1000
50-64 7 31 22.58 > 0.1000
65+ 3 S 33.33 > 0.1000

Table 3.2: Clustering of suicides among females in different age groups.
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Is there evidence of seasonal clustering of suicides? Seasonal clustering of
suicides has been found in many countries. If seasonal clustering of suicides is
apparent, additional mental health resources could be initiated in seasons where
higher suicide rates were expected. Evidence of seasonal clustering would be
helpful in describing the clustering of suicides revealed by section 3.1.1.

In order to investigate seasonal clustering the ratchet scan statistic in sec-
tion 2.5.3 or the circular scan statistic in section 2.5.2 could be used. Data on
a daily basis are available, so the circular scan statistic will be used. The number
of suicides that happened on each day in 1995 and 1996 were pooled: the number
of suicides occurring on the 1° January 1995 was added to the count for the 1¢
January 1996 and so forth. The year 1996 is a leap year, so data for the 29" of
February was omitted for this calculation.

As seasonality is usually considered in terms of a three month period a window
size of 91 days was used to find the maximum cluster. The maximum number of
suicides occurring in any 91 day period was 235, out of a possible 810. Using
equation 2.6 this cluster proved to be non-significant. There is no evidence of
seasonality of suicides among the population of Ireland in the years 1995-1996.

In order to test il there was seasonality among a particular group the data
were divided into the same age and sex strata as before. Tables 3.3 and 3.1.1
show the results, the only group to be significant at a 107 significance level were
males aged 20-29 years, this is the same group that had a significant cluster using
the non-seasonal method. However, when using the binomial scan method a 91
day window was used which would equate to a three month or seasonal scanning

window.
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Age group Cluster Size  Total Size  Probability

<20 24 63 >0.1000
20-29 66 189 0.0572
30-39 45 142 >0.1000
40-49 39 113 >0.1000
50-64 30 86 >0.1000
65+ 2] 66 >0.1000

Table 3.3: Seasonal clustering of suicides among males in different age groups.

Age group Cluster Size Total Size Probability

<20 7 16 >0.1000
20-29 I 28 >0.1000
30-39 14 32 >0.1000
40-49 12 30 >0.1000
50-64 12 31 >0.1000
65+ 4 9 >0.1000

Table 3.4: Seasonal clustering of suicides among females in different age groups.
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Is there evidence of copycat suicides? There has been much discussion on
media coverage of suicide and how it can lead to contagion or copycat suicides.
Increases in suicides rate following media coverage of a suicide have been de-
scribed in both Britain and the USA [85, 86]. It is reported [87] in Britain that
following a widely publicised political suicide, a woman burnt herself to death,
and there was an excess of 60 suicides by burning in the following 12 months.

Past research tends to indicate that copycat suicide means that the same method
of termination is used or copied by a number of different individuals in a short pe-
riod of time. The effects of copycat suicides could be witnessed for a period of up
to 70 days after the initial event [88].

In order to investigate copycat clustering the method used to commit suicide
would need to be known. The type of suicide is available in the form of ICD
codes. The ICD code to identify poisoning by solids or motor vehicle exhaust
fumes are respectively E950 and E952, the ICD code for suicide by cutting is
E956, for jumping it is E957, drowning is E954, for suicide by firearms the ICD
code is E955 and the ICD code is E953 for suicide by hanging or strangulation.
As suicide is a rare event, when cases are subdivided by group it gives fewer cases
so it can be difficult to detect clustering.

To investigate if there is any evidence of copycat suicides in Ireland, clustering
of different methods of suicide was examined, and the data were scanned using a
window of 70 days. Table 3.5 shows the methods used to commit suicide. Hang-
ing was the most frequent method used to commit suicide, followed by drowning
and poisoning.

Using the Binomial scan statistic clustering of hanging was significant: all

ages, sexes and areas were included in this cluster. When the data were stratified
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Method Cluster Total  p-value

Cutting 4 8 >0.1000
Drowning 28 195 >0.1000
Jumping from high place 4 18 >0.1000
Poisoning by other gas - car fumes 12 65 >0.1000
Poisoning by solids or liquids 17 100 >0.1000
Firearms and Explosives L3 71 >0.1000
Hanging, Strangulation, Suffocation 57 330 < 0.05

Table 3.5: Copycat suicides.

by age and sex no clustering was observed. However, by stratifying the data by
sex, age and method of suicide, the values of N become small and this leads to
a power problem as discussed in section 5.3 on page 125, so that in order for a
cluster to be detected as a significant cluster it needs to represent a large proportion
of the total sample.

A suicide contagion is the exposure of suicide in one’s family, network or
through media groups, which leads to thoughts of suicide of suicidal behaviours.
Exposure to suicide is a risk factor for suicide. and so suicide clusters occur, espe-
cially among young adults. A contagion may not necessarily be a copycat suicide,
hence the analysis of clustering of suicides in section 3.1.1 could indicate that
there is evidence of contagion suicide among males aged 20-29, while the cluster

of suicides by hanging could be considered a cluster of copycat suicides.

3.1.2 Decision Analysis—Who is most at risk?

Males aged 20-29 seem to be most at risk of suicide by exposure to suicide through

media, family or peers. This is the only group that showed significant clustering.
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Males aged 20-29 will be used to illustrate a monitoring method that could be

used to monitor suicides.

3.1.3 Monitoring & Evaluation

In order to monitor suicides the Poisson scan statistic will be used. Using data
from 1992-1994 for males aged 20-29, the average number of suicides per day
was found to be 0.22. Using this value the Poisson scan statistic can be used to set
up a monitoring chart.

A window of 91 days will be used as seasonal clustering was found to be
significant. Using the Poisson Scan statistic, as outlined in seciion 2.5.4, thirty
suicides among males aged 20-29 would not be significant (p=0.34). Any cluster
greater than 35 suicides would be a significant cluster (p = 0.04). Using the value
of 35 a monitoring chart can be set up—as in Figure 3.1—any cluster over 35 in this
graph is significant. In August 1996 there is an out of control value which indi-
cates a significant cluster which could be indicative of copycat suicides, suicide
contagion or of some other social reason such as the closure of a large company

and a downturn in the economy.

3.1.4 Conclusion

There is evidence of clustering of suicides in Ireland. There has been no published
evidence of copycat suicides in Ireland. The analysis conducted here suggests that
there is evidence of copycat suicides, and further work is needed to investigate
this cluster. The Poisson scan statistic proved to be an effective monitoring tool

for suicides.
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Figure 3.1: Monitoring suicide of males 20-29.

However, it should be remembered that this is only an initial enquiry and only
suggests some evidence of possible copy cat suicides. Further work would need to
uncover whether there was a highly publicised suicide that resulted in the copycat
cluster. The evidence produced here is not enough to suggest a definite copycat
suicide cluster, each case in the cluster would need to be investigated, it could
be that hanging is a somewhat more ‘accessible’ method of committing suicide.

However, the scan statistic does give enough evidence to suggest further study.
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3.2 Health Impact Assessment of an Incinerator in

Ringaskiddy

3.2.1 Screening

An incinerator could have an impact on public health so a HIA is imperative. As
the proposed incinerator in Ringaskiddy is so controversial, a HIA may help to

ease concerns of worried locals.

3.2.2 Scoping

Incinerators have caused controversy wherever they have been proposed. There
is no agreement on the extent of the risks attributable to incinerators and it is this
that worries residents living in the shadow of incinerators.

Incinerators have been known to cause soft tissue sarcomas [89], adverse res-
piratory effects [90], low sex ratio births [91] and congenital anomalies such as
Spina Bifida and heart defects [92]. However, all of these studies have involved
old incinerators and incinerators within very industrial zones. There is no evi-
dence of a health risk to residents near modern incinerators with low levels of
dioxin emissions. As there is no evidence of a risk near modern incinerators this
is essentially an illustraive example of using the scan statistic as a monitoring tool
in HIA. It should be remembered that even though there is no evidence of a risk
from modern incinerators it does that mean that there is absolutely no risk.

The incinerator in Ringaskiddy is not as yet operational, so essentially this is
a prospective health impact assessment. As the evidence of health risks posed

by incinerators is somewhat contradictory it is vital that monitoring of the vari-
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ous suspected health occurrences in the proximity of incinerators are monitored.
To illustrate a monitoring system for this situation lung cancer will be chosen
because it has been shown that it is a risk factor for inhabitants near older inciner-
ators [90], the Poisson scan statistic will be used to set up the monitoring system.
To implement the Poisson scan statistic the expected incidence of lung cancer in
Ringaskiddy at present is required; the incidence of lung cancer in Ireland will be

used to derive the Ringaskiddy incidence.

3.2.3 Appraisal
Ringaskiddy Area and Population

Ringaskiddy is situated on Cork Harbour, Co. Cork. approximately 13 kilometres
from Cork city, as the crow flies, or 18.7 kilometres by road. Ringaskiddy was
formerly a fishing village but since the building of a ferry terminal has become
an important industrial centre. It has attracted high profile pharmaceutical indus-
tries such as Pfizer Pharmaceuticals as well as some chemical industries such as
Chemical Carbon Group Ltd., among a list of other manufacturing companies.
Approximately 1200 people live in the vicinity of Ringaskiddy and the proposed

incinerator.

Proposal for Ringaskiddy

Indaver Ltd. is proposing to build an integrated waste management facility [93]
in Ringaskiddy. According to their plans, which are publicly available on their
website and in hard copies direct from the company. it will include a recycling

park, a waste transfer station and a waste-to-energy plant. The recycling park is
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an area where the community can bring their recyclable household waste. The
waste transfer station is a place where industrial hazardous and non-hazardous
waste can be sorted and repacked where necessary, and material not suitable for
incineration on site sent to appropriate sites elsewhere.

The waste-to-energy or incineration plant is causing controversy locally and
nationally. The proposal will mean burning waste at high temperatures, in a con-
trolled environment, using the heat to generate electricity. This will reduce the
waste to an ash which will be approximately one tenth of the original volume of
waste, and one quarter of its original weight.

The waste that they propose to incinerate, initially in phase 1. consists of haz-
ardous and non-hazardous waste. Hazardous waste will include solvents produced
by pharmaceutical and chemical plants. Non-hazardous waste from local industry
such as shops, factories, agriculture, hotels and restaurants will be handled in the
plant.

Incineration of waste produces dioxins, which are harmful substances, even
in small quantities. The proposed incinerator for Ringaskiddy will incorporate a
two stage dioxin removal system. This should ensure that dioxins are reduced to
a level below the limit set by European Union legislation.

According to the Environmental Protection Agency’s (EPA) figures, Ireland
produced 220,000 tonnes of reported industrial hazardous waste in 1998, and 62%
of this total was produced in County Cork. The amount of hazardous waste ex-
ported for incineration in 1999 was 61,266 tonnes. The EPA’s National Hazardous
Waste Management Plan states that the quantity of hazardous waste exported for
incineration justifies the construction of a thermal treatment facility for hazardous

waste in Ireland. The Ringaskiddy facility will eliminate the need to export the
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SITE LOCATIO!

Figure 3.2: Proposed site of the Ringaskiddy incinerator.

majority of industrial hazardous waste, such as solvents, for incineration.

The proposed site for the Ringaskiddy waste management facility is identified
in Figure 3.2 [93]. It will be located in the north-eastern corner of the Ringaskiddy
peninsula. The site will occupy an area of approximately 12 hectares. The road
from Ringaskiddy village will form the northern boundary, cliffs along the shore
will form the eastern boundary and on southern and western boundaries there is

agricultural land.
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3.2.4 Decision Analysis

There is no evidence to suggest that the incinerator will be harmful to the resi-
dents of Ringaskiddy. as the incinerator is to be located downwind from the town,
and with constant monitoring of dioxin emissions, the health risk is presumed to
be minimal. However as the long-term effect of exposure to minute amounts of
dioxin is unknown, the health of the inhabitants of the town should be monitored.

Another possible health risk for the residents of the town will be the increased
traffic. There will be a substantial increase in the number of trucks which will
cause air pollution, noise pollution as well as extra traffic and it’s associated
risks. Many of these trucks will also be transporting toxic waste which could
pose another health risk. As data for these health risks is difficult to obtain, for
the purposes of this illustrative example incidence of cancer will be monitored as

a possible health effect of the dioxin emissions.

3.2.5 Monitoring & Evaluation

The incidence of mortality from lung cancer in Cork was 32.69 per 100,000 in
the year 1999. In Ringaskiddy the incidence would be expected to be 0.39 occur-
rences per year. This means that every 10 years four people would be expected to
die from lung cancer in Ringaskiddy, under normal conditions. Similarly, 2 cases
of Non-Hodgkin’s Lymphoma could be expected every 100 years, and 5 cases of
soft tissue sarcomas could be expected every 100 years.

Given that the current incidence of lung cancer in Ringaskiddy can be esti-
mated, as has been done, a monitoring chart could be set up using the Poisson

scan statistic as in section 3.1.3. In order to illustrate the monitoring tool in the
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context of the incinerator example simulated data will need to be employed. As
the rate of lung cancer in the vicinity of the incinerator could be expected to in-
crease, the non-homogenous Poisson process (NHPP) will be used to simulate the
data. NHPP allows for a change in rate over time, an alogrithm used to simulate
the NHPP is given in the Appendix, page 148.

To simulate the data correctly an estimate of the expected increase in lung
cancer incidence is required. Biggeri et al. [94] found an excess of lung cancer
cases, with a relative risk of 6.7, close to the source of an incinerator. This relative
risk did derive from a study in a highly industrial zone with many exposures so
the figure will only be used to illustrate this example of @ monitoring chart. Using
this relative risk a possible scenario can be illustrated. Using this value of relative
risk, the mortality due to lung cancer was simulated using a NHPP for 20 years
after the proposed initial operation of the incinerator on 1°* January 2007.

As lung cancer cases are not frequent, a slightly longer window than has been
used. so far in this thesis, will be employed. A window of hall a year or 183 days
will be used to scan the data. In Ringaskiddy 0.1958 mortalities due to lung cancer
should occur in this period. Using the Poisson Scan statistic as outlined in Chapter
2. section 2.5.4, a critical value of three deaths in lung cancer per 183 days could
be used, as the Poisson scan statistic found that three cases of lung cancer in a 6
month period was significant.

Figure 3.3 shows the simulated data, summed over 183 days. The first out of
control pointed is noted at September 2008, this is approximately 1.5 years post
operation of the plant. so using a window of this size and the Poisson scan statistic
an increase in cancer cases is highlighted quickly.

The window size for this example was selected rather arbitrarily. If a window
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Sum over 183 days

Figure 3.3: Monitoring of simulated lung cancer cases using a 183 day window.

size of 365 days were used (as in Figure 3.4), the critical value would remain at 3,
and the first alert would be at the start of October 2008, approximately the same

time as the 183 day window.

Sum over 1 year
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Figure 3.4: Monitoring of simulated lung cancer cases using a 365 day window.
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If the incinerator does cause an increase in lung cancer then the increase will
be spotted quickly using the scan statistic as a monitoring tool. The monitoring
method used above is efficient. It should be remembered that the simulation used
here assumes that the proposed incinerator in Ringaskiddy will increase the inci-
dence of lung cancer by a relative risk of 6.7, and it also assumes that the increased
risk will occur immediately. It is quite likely that if there is an effect it will be a
cumulative effect and any impact will not be observed for many years. However, if

the monitoring system is in place, any impact will be observed in a timely manner.
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3.3 Health Impact Assessment of a Tram System

A tram system, LUAS, began operation in Dublin on the 1 July 2004, with a sec-
ond tram line going into operation in October 2004. There is little data available
on the incidence of accidents or incidents involving the LUAS trams. However,
there have been a number of media reports of minor collisions.

There is no exact data available on the LUAS incidents. to illustrate how a
tram-incident monitoring chart could be useful a tramline in Houston, Texas will
be used. Data are available on the various accidents and incidents involving the
tram since it began operation in January 2004. This tram will be investigated if it

is possible to monitor tram accidents and if there are any benefits from doing so.

3.3.1 Screening

A health impact assessment has been carried out on a tramline in Merseyside [95].
However as tramlines vary considerably this HIA could not be used as a basis for
a HIA on another tramline. The Merseyside tram has not yet been built or begun
operation so no monitoring of health has taken place.

It is difficult to compare light rail systems, as they tend to vary enormously
according to their length and configuration. For example some tramlines are sep-
arated from road traffic, while in other cities trams and cars share the same lanes.
To get an expected accident rate for the tramline in Houston, a similar tramline
in Sacramento will be used. The tramline in Sacramento has the same length of
on-road track as Houston so it does serve as a somewhat useful example of what

may be expected in terms of accident rate in Houston.
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3.3.2 Scoping

A new tram system will improve the public transportation in a city and therefore
improve access (o facilities such as schools, universities and hospitals. These will
obviously all have positive impacts on health. However a tram system can also be
at the centre of accidents and injuries for passengers, pedestrians and other road
users.

A study undertaken in Gothenburg [96] found that tram injuries were an im-
portant cause of traffic injuries and fatalities among passengers. Most tram in-
juries were found to have occurred at or near a tram stop, so it could be possible

to employ extra safety measures at these high risk locations.

3.3.3 Appraisal

Sacramento has on average 4 accidents per 7.5 miles of tram line every year ac-
cording to the National Transportation Database [97]. This average could be used
in order to monitor the number of accidents on the Houston Metro. The Houston
tram line is approximately 7.5 miles long. so 4 accidents could be expected in a
one year period, according to the Sacramento figure. Using the Poisson scan sta-
tistic, with a window size of a month, a significant cluster is four tram accidents

in | month.

3.3.4 Decision Analysis

The new tram system should go ahead, with monitoring of incidents. If there are
more incidents than expected then a thorough investigation of safety should be

initiated.
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3.3.5 Monitoring and Evaluation

A cluster of tram incidents are indicative that the necessary safety measures are
not in place. Initially a small scanning window should be used to catch a cluster.
A window size of 30 days will be used in this case. The data were obtained from
the Action America [98] website with the permission of the site owner. It indicates
that within the first month, a significant cluster was observed. Figure 3.5 shows
that while there are many significant clusters, there are periods when the number
of accidents in a 30 day period drops. In the last month of monitoring (August)
there have been no significant clusters, which could be indicative of a solving of

teething problems.
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Figure 3.5: Monitoring of tram incidents.
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3.3.6 Conclusion of Tramline Example

The monitoring chart for the Houston Tram illustrates how effective an appropri-
ate HIA with proper monitoring system can be. If this monitoring chart had been
utilized by the light rail company in Houston, safety measures could have been
put in place quicker or an investigation of the rate of accidents may have been

launched sooner.

3.4 Conclusion of Negative Health Impacts

The three example in this chapter were quite different from each other. However,
they were all examples of a health impact assessment where a negative impact on
the health of the public is expected. The monitoring chart in each case showed the
effectiveness of continuously monitoring health events, even after a HIA has been
carried out.

The public health monitoring of suicide is important, especially the detection
of seasonal clusters. A seasonal cluster of suicides was found in males aged 20-
29, this suggests that extra support services should be available in the high risk
months and targeted towards young men. A cluster of suicides by hanging could
be indicative of a copycat suicide problem. However further in-depth investigation
is required to confirm this cluster as copycat suicides.

While the incinerator example was essentially illustrative of a monitoring sys-
tem for HIA, it did show that the Poisson scan statistic is appropriate to use as a
monitoring tool. An important aspect of this example was the rarity of the cancer
events. It was not sensible to use a short window of less than 3 months and so

to accommodate the rare events a window of at least half a year was used. This
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shows that even for rare events the scan statistic is appropriate. It also emphasises
the importance of choosing an appropriate window width, as outlined in Chap-
ter 2. A smaller window would have been futile in this example and would have
resulted in a useless monitoring chart.

In the tram example, the scan statistic was setup to monitor tram accidents
using ‘real-life” data. This illustrated the benefit of a HIA on something apparently
unrelated to health - such as a new transport system. The monitoring within the
HIA detected clustering of accidents, while not all accidents will result in injuries
to people all accidents have the potential to be harmful. This example illustrates

how monitoring LUAS data would be useful.
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Chapter 4

Positive Health Impacts

Not all health impacts will be negative. The advantage of carrying out a health im-
pact assessment on all relevant proposed policies is to make appropriate changes,
so that any negative health impacts can be anticipated and adjustments made. On
the other hand if there are no suspected negative health impacts perhaps a change
can be made so that positive impacts on health can be achieved. Just as suspected
negative health impacts are monitored, it is important that positive health impacts
are monitored to ensure that the expected pluses do occur.

Positive health impacts would be expected when a new hospital is opened, a
pedestrian bridge is built across a busy motorway or a scheme is put in place to
reduce AIDS cases. In this chapter two cases where positive health impacts might
be expected will be examined. The first is examining the effect of the smokey coal
ban in 1990 in various cities around Ireland. The second is examining the effect

of the penalty points introduction for speeding in Ireland.




4.1 HIA of the Bituminous Coal Ban in Dublin

4.1.1 Screening

Bituminous fuel can result in a smog that is a mixture of smoke emitted when
bituminous coal is burned. Bituminous fuel along with exhaust fumes from motor
vehicles are the main sources of smog [99]. In Ireland, 1987 figures for smoke
emissions by fuel showed that 93.58% of coal smoke came from domestic heating
systems, 4.48% from power generation and 1.94% from industrial coal burning.
This indicates that domestic fuel smoke is one of the biggest source of smoke
emissions.

The ban on the sale, marketing and distribution of smokey coal should have a
positive health impact. As the ban will be extended to many other areas a health
impact assessment is imperative. Given that the Solid Fuel Trade Group had prob-
lems with the ban, evidence of positive health impacts could lead the way for a

nation-wide ban.

4.1.2 Scoping

Even at low concentrations smog pollution can result in annoyance, minor eye
irritations, “chestiness” and aggravation of symptoms for asthmatics and people
with sinusitis, bronchitis, colds, flu or other respiratory disorders. At higher levels
smog can be fatal. This is demonstrated by the increase in deaths among people
with respiratory disease during periods of increased smog levels.

In London in the winter of 1952 the “Great Smog” resulted in many casual-

th

ties. From 5" December through 9¢* December 1952 a heavy, motionless layer
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of smokey, dusty fumes from the region’s million or more coal stoves and local
factories settled in the London basin. The undertakers and florists were the first to
be aware of a health problem in the city: they ran out of caskets and flowers [100].

Health officials at the time did not appreciate the magnitude or severity of the
problem, having previously weathered many dense “pea-souper” fogs and smogs.
Hospital admissions, pneumonia reports, applications for emergency bed service,
and mortality followed the peak of air pollution. Mortality remained elevated for
a couple of months after the fog [100]. At least 4000 deaths have been attributed
to the “Great Smog of London™.

In the 1980s, in Dublin, there was a switch from oil to the cheaper and more
widely available solid fuel, mainly bituminous coal, and so the air quality in
Dublin deteriorated [101]. Periods of high air pollution were associated with in-
creased in-hospital respiratory deaths [102]. A study by Clancy et al [103] found
that black smoke concentrations in Dublin declined by 70% after the bituminous
coal ban and that this led to a 15% decrease in respiratory deaths.

Regulations were made in 1990 to ban the marketing, sale and distribution of
bituminous coal in the Dublin area [104]. This intervention meant an immedi-
ate reduction in average monthly particulate concentrations [105]. The ban was
extended to Cork in 1995 and extended to five additional areas in 1998 (Arklow,
Drogheda, Dundalk, Limerick and Wexford). Further extension of the ban to five
new areas (Celbridge, Galway, Leixlip, Naas and Waterford) took place in Octo-
ber, 2000.

The Solid Fuel Trade Group, which represents traders of solid fuel, disagreed
with the Governments proposals for a nationwide ban of bituminous fuel. A nego-

tiated agreement was signed by the Department of the Environment and the Solid
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Fuel Trade Group in 2002 which contained a reduction in the sulphur content of
bituminous coal and petcoke and the extension of the ban on the marketing, sale
and distribution of solid fuels. Amongst the principal features of the negotiated

agreement are:

e Phased increasing penetration of (minimum 25% of total sales) of smokeless
fuels in 8 areas (Athlone, Bray, Carlow, Clonmel, Ennis, Kilkenny, Sligo,

Tralee) from 1 October 2002.

e Outright ban on the sale of bituminous coal in Bray, Kilkenny, Sligo and

Tralee from | October 2003.

e Penetration of smokeless fuel in the remaining towns (Athlone, Carlow,

Clonmel and Ennis) to increase to 75% by 1 October 2004.
y

4.1.3 Appraisal

A positive health impact on respiratory deaths arising from the ban on smokey
coal in Dublin will be investigated. Smog affects the lungs and there is evidence
to suggest that it increases the number of respiratory deaths. Respiratory disease
data are extremely seasonal. Much work has been conducted about the fact that
there is excess winter mortality - in the case of respiratory disease the effects of
winter exacerbate the respiratory deaths.

Appendix C shows a report detailing the problem of excess winter mortality in
Ireland and it also outlines various models which were used to model the excess

winter mortality.
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As there is a larger proportion of people using coal in the winter, due to colder
climate, this may be one cause of more people dying from respiratory diseases.
A result of this may be that when the health impact of smokey coal is looked at,
only a positive impact in the winter months may be found with no impact in the
summer months. People who die of respiratory disease in summer are likely to be

dying as a result of something other than smokey coal and smog.

Seasonal Data

One of the main assumptions of the scan statistic is a constant population at risk
and a constant detection rate of cases. In the case of health events this is often not
the case, and it is important to be able to overcome this restrictive assumption.

Although the ratchet scan has been used to scan seasonal data in previous
sections, it is not appropriate to use when the seasonality is a dominant source of
variation in the data.

There are a number of ways to address seasonal data. Two of the methods of
assessing the data for a cluster will be looked at here. The first method that will be
examined is possibly the simpler of the two methods and involves deseasonalising
the data and then scanning it as outlined in Chapter 2. The second approach uses
a method outlined by Kulldorf [106] which involves fitting an appropriate model
to the data and using a generalized likelihood ratio to test the null hypothesis that
there is no clustering of events. In order to assess these methods they will initially
be used to look for a cluster of events, as in Chapter 3. Then a dip in events will

be monitored.
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Deseasonalised Data Method One way of coping with data that has a strong
seasonal element is to deseasonalise the data. This can be achieved using the clas-

sical moving average method. The method involves the following simple steps:

1. Compute a simple moving average. For example if data are available on a
daily basis, to compute a 365 day moving average, the average of the first
365 days is calculated and then moved on one day, and again the average is

computed over the next 365 days and so on.

[S®]

If the moving average in step 1 was not centred, in this step centre the mov-

ing average by calculating a moving average using groups of 2.

3. Compute the seasonal error component. This can be achieved by dividing

the observed value by the centred moving average, calculated in step 2.

4. Calculate the unadjusted seasonal index. This is the average of the seasonal

error component for each season.

5. Compute the adjusting factor by dividing the unit time by the sum of all

calculated unadjusted seasonal indexes.

6. The adjusted seasonal index is computed by multiplying the unadjusted sea-

sonal index by the adjusting factor.

7. Deseasonalised data are calculated by dividing the original observed data

by the adjusted seasonal index.

These steps are illustrated using the monthly totals of respiratory mortality
data for the years 1991-1992. Data are aggregated at a month level, so moving

average will be calculated over 12 values. The first value for moving average is
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the average of the first twelve months, the second value is the average of the 12
month period from February 1990 to January 1991. The centred moving average
is calculated as the average in groups of two. The percent moving average is
Observed divided by % Moving Average (7 M A). For these first few stages see
Table 4.1

Once the % M A has been calculated then the seasonal index can be calculated.
In this example only two years are being used, normally at this stage the average
Y% M A would be calculated for each month, but since there is only one value of
Y M A for each month in this situation the average is not calculated. The adjusting
factor is calculated by dividing the total number of time units (12 months) by the
sum of the average % M A (12.036). The adjusted seasonal index is computed
by multiplying the adjusting factor by %Al A. The final stage is to divide the
observed data by the adjusted seasonal index to give the deseasonalised data in
Table 4.3.

Figure 4.1 shows the daily data that has been deseasonalised using the method
outlied above, and then summed for a three-month scanning window. As there is
a lot of variation between the seasons even the deseasonalised data are still some-
what seasonal. There does seem to have been a shift downwards in the number of
respiratory deaths in 1987.

Using the Binomial Scan statistic (o investigate any clusters, in this time pe-
riod. prior to the ban on smokey fuel, the largest cluster in a 91 day window was
368 respiratory deaths, which occurred between February and April 1986. The

binomial scan statistic suggests that this is significant.
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yy mm Respiratory Moving Centred Moving % Moving
Deaths Average (MA) Average (CMA) Average (%MA)

90 1 136

90, 2 83

90 3 75

90 4 66

9 5§ 64

9 6 53 69.833

9 7 29 67.250 68.542 0.861

90 8 3 67.667 67.458 0.786

9 9 52 67.583 67.625 0.769

90 10 51 66.750 67.167 0.759

90 11 61 67.167 66.958 0911

90 12 85 67.583 67.375 1.262

91 l 105 67.500 67.542 1.555

91 2 88 66.583 67.042 1.313

91 3 74 67.167 66.875 1.107

91 4 56 67.250 67.208 0.833

91 69 68.167 67.708 1.019

91 6 58 66.250 67.208 0.863

91 7 58

91 8 42

91 9 59

91 10 52

91 11 72

91 12 62

Table 4.1: Moving Average Calculation
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mm &&A_ _Adjusting Factor  Adjusted Seasonal Index

1 1.555 0.997 1.550
2 1313 0.997 1.308
3 1.107 0.997 1.103
4 0.833 0.997 0.830
S 1.019 0.997 1.016
6 0.863 0.997 0.860
7 0.861 0.997 0.858
8 0.786 0.997 0.783
9 0.769 0.997 0.766
10 0.759 0.997 0.757
11 0.911 0.997 0.908
12 1.262 0.997 1257
12.036
Table 4.2: Seasonal index computation
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Figure 4.1:

Deseasonalized daily respiratory data.
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yy mm Respiratory Adjusted Seasonal Deseasonalised

Deaths Index data
90 1 136 1.550 88
90 2 83 1.308 63
90 3 1S 1.103 68
90 4 66 0.830 79
90 5 64 1.016 63
90 6 o8 0.860 62
90 7 59 0.858 69
90 8 53 0.783 68
90 9 52 0.766 68
90 10 51 0.757 67
90 11 61 0.908 67
90 12 85 1.257 68
91 I 105 1.550 68
91 2 88 1.308 67
91 3 74 1.103 67
91 4 56 0.830 67
91 5 69 1.016 68
9] 6 58 0.860 67
91 7/ 58 0.858 68
91 8 42 0.783 54
91 9 59 0.766 77
91 10 52 0757 69
91 11 42 0.908 79
91 12 62 1.257 49

Table 4.3: Deseasonalized data computation

An Optimal Test  Kulldorff and Nagarwalla [106] outline an optimal test sta-

tistic. Let O < ¢, <1y, < ....<1ix < T be the ordered times of the observations.
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The generalised ratio test for testing the null hypothesis against the alternative

rejects Hy for large values of S = max;_,_ v LY, (w), E[Y;, (w)],1; < T — w,

where

Oln(O/E)+ (N —O)In|[(N -0O)/(N —-FE)|, O>F
. (O/E) + ( ( ( l

l 0 otherwise
4.1)

Using equation 4.1 the occurrence of respiratory deaths was simulated ac-
cording to a nonhomogeneous Poisson process. Using these simulated values as
‘observed” values, the likelihood ratio test could be calculated and the probability
of a maximum test statistic calculated. The simulation was repeated 2000 times
using VBA Excel and the code as outlined in the appendix.

For the example of respiratory deaths, a seasonal model as outlined in appen-
dix C was used. This particular model incorporates individuals who are over 35
years of age, died of respiratory illness (ICD code 480-519). in Dublin between
the years 1980-1989. This period of time was used to estimate the parameters of
the model as a ten-year period of time should ensure a good estimate of the sea-
sonality. This period of time is also ten years prior to the introduction of the ban

on smokey fuel. The model for these data is:

Y =2.84 4+ 1.09 cos(=—— ) 4.2)

365.25 365.95

Respiratory deaths over a two year (730 day) period were simulated and this sim-
ulation was repeated 2000 times.

For each of the simulations a window of three months was used as a scanning




window. Once these values were calculated then equation 4.1 was used to estimate
the maximum test statistic for each simulation. The level at which the test statistic
became significant could then be estimated as the test statistic greater than or equal
to 5% of all the maximum values in the simulation. The simulation found that the
test statistic was significant for s" > 6.36, where s is the maximum value found
using equation 4.1 . Using this information the respiratory data can be scanned
for any significant clusters.

The two-year period prior to the smokey coal ban will be scanned for any
significant clustering. This means that for each 3 month period the test statistic
(as given in equation 4.1) is calculated. If the test statistic exceeds 6.36 then a
significant cluster has been found. The test statistic is plotted against time in
Figure 4.2, where a red line represents the significant value.

Figure 4.2 shows that there is a significant cluster of respiratory deaths at the
end of 1989. This corresponds to a period in December 1989 when the smog levels
in Dublin were up to four times the safety limits set by the European Community.
It was this increase in smog levels which sparked governmental debate in the
upper house of the parliament (Seanad Eireann) which led to the bituminous coal

ban the following September [107].

Decrease Since Smokey Coal Ban Introduction?

To investigate if there has been a reduction in respiratory deaths, since the ban
on smokey fuel, Kulldorffs method as outlined in equation 4.1 on page 95 can be
employed. Now if an observed value is significantly less than an expected value

this would indicate a significant dip or decrease in the occurrence of events. The
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Figure 4.2: Using the optimal test for seasonality.

same test statistic can be used.

LIO.E| = O{O(E}+ (N ~Oln[[(N - Q)N - E)|, O<E

0 otherwise
4.3)

To illustrate that the above test statistic will be optimal at detecting dips a
simple scenario will be created. Suppose that in scenario 1 the observed value
is 150, the expected value is 80 and total value is 550. In the second scenario
the observed and expected values have been switched, so the observed value is
80 and the expected value is 150, the total remaining the same. The test statistic

value is approximately the same for the two scenarios. This means that the test
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statistic 1s equally efficient when detecting clusters or dips. Using this method a
good approximation of the significance of a dip in the number of events could be

estimated.

Monitoring for a Dip in Respiratory Deaths

It is of interest to see if the smokey coal ban has resulted in a decrease in respira-
tory deaths. To investigate this possible health benefit a monitoring system will be
devised using Kulldorfs optimal statistic [106]. The smokey coal ban was intro-
duced in September 1990, so a dip should be seen soon after that. The simulations
that were carried out in section 4.1 can be used to pinpoint the value at which the
test statistic is significant. This value can then be used as a type of control limit for
the monitoring graph. For a significance level of 0.05, the appropriate test statistic
is 5.28, this means that 5% of all simulated values were greater than or equal (o
5.28. This is the value that is shown as the control line in Figure 4.3, values falling
above this line indicate a decrease in respiratory deaths.

Figure 4.3 shows the test statistic plotted against date. A three months scan-
ning window was used, scanning for a minimum in this instance rather than a
maximum cluster. The blue dots in the graph represent the time since the ban on
smokey coal was introduced.

In Figure 4.3 any points above the horizontal critical line indicate a significant
decrease in respiratory deaths from the expected. It is obvious in the graph that
there appears to be a significant decrease in respiratory deaths even before the ban
on bituminous coal. The other significant decreases appear in April of 1989 and
April - July 1990. The reason for the decrease in deaths at this point is that the

model that was used overestimated mortality in the summer months. This method
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Figure 4.3: Using the optimal test for seasonality to detect a dip in respiratory
mortality.
is heavily dependent on an accurate model.

It is clear from the graph that the winter of 1991 is the first winter period to
show a significant decrease in respiratory deaths. Hence it can be stated with some

certainty that the ban on bituminous coal had a positive benefit on health.

4.1.4 Conclusion

The respiratory data had a strong seasonal component which meant that some
adjustment had to be made prior to scanning the data. Deseasonalising the data
i1s one approach to taking away a strong seasonal element. Using this method

eliminated the need to specify winter months which is the traditional method of
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looking at excess winter mortality, as outlined in the Appendix.

The other approach taken was to model the data. Then using this model and
an appropriate critical value which had to be estimated, a monitoring chart could
be setup. This method also eliminates the need to specify winter months. This
approach worked reasonably well. However, an extremely good-fitting model is
required in order for the method to function optimally. In reality, it will be near
impossible to fit an accurate model to ‘real’ data, thus applying Kulldorfs Optimal
model will seldom be a good approach to coping with seasonal data. Real data
cannot be modelled accurately from year to year as there are so many factors
impacting on seasonality, it would therefore be more prudent to deseasonalise the
data as discussed in section 4.1.3.

The findings of this analysis agree with the study conducted by Clancy et
al [103]. However, while both studies could detect a decrease in respiratory
deaths. by using the scan statistic the moment that respiratory deaths started to
decrease is known. By correctly setting up the scan statistic as a monitoring
chart immediate benefits are seen, rather than waiting for a number of years to

get enough data to publish results.
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4.2 Health Impact Assessment of the Penalty Point
Introduction in Ireland

The coverage of road accidents in the media is an almost daily occurrence. Head-
lines such as “Seven people die in weekend accidents”, “Five die over weekend
from road accidents™ and “Not enough done to end road carnage™ have become

commonplace amongst all the daily newspapers.

4.2.1 Screening

As part of a new road safety initiative in Ireland, penalty points for speeding were
introduced from the 31°" October 2002. This new initiative meant that any indi-
vidual caught speeding could be awarded up to four penalty points. Penalty points
remain on a driver’s licence for a period of three years, and an accumulation of 12
penalty points in a three-year period will lead to automatic disqualification from
driving for 6 months. In a press release at the time the Minster for Transport,
Samus Brennan TD, stated “Excessive speed is recognised as the most significant
contribution to road accidents ...I am confident that it [penalty points] will as-
sist in reducing the level of road deaths and serious injuries by instilling greater
caution in drivers.” [108]

Penalty points have been introduced subsequently for driving without insur-
ance. As of 1% June 2003 drivers convicted of driving without insurance will
incur five penalty points in addition to a fine imposed by the court. On 25" Au-
gust 2003 penalty points for seat belt offences were introduced. Penalty points for

careless driving was effective from 4" June 2004.



4.2.2 Scoping

The National Roads Authority [109] published a report in November 2003. They
revealed that single vehicle collisions were reported in 30% of all road fatalities.
Single vehicle collisions are linked with speeding and driving under the influence
of alcohol. Drivers were cited by the police as the main contributing factor in 86%
of accidents in 2002. This evidence suggests that penalty points may help change
driver attitude and reduce the carnage on the roads.

Since the introduction of penalty points, more recent press coverage has hinted
at a levelling-off of the effect of penalty points in the reduction of road fatalities.
The scan statistic will be used to investigate if there was any clustering of road
fatalities prior to the penalty point introduction. It will then be implemented as
a monitoring tool to investigate if there was a positive or negative impact on the

number of road fatalities.

4.2.3 Appraisal

The National Road Safety Authority (NRSA) compiles an annual statistical report
on road fatalities and accidents, based on data supplied by the Garda Siochana.
In the last year the method by which the NRSA were informed of non-fatal road
accidents changed. There are teething problems with the new system with the
result that the data are not always entered into the database. Analysis on the non-
fatal road accident data are not possible because the data are unreliable. Road
fatality data are available on the Garda Siochana website. The data are aggregated
by month - further contact with the Road Traffic Bureau revealed that the data are

not available on a daily basis. The Road Traffic Bureau did reveal that the daily

102



rate averaged out at one fatality per day.

Data on monthly totals of road fatalities were obtained from the Garda website.
Table 4.4 shows the average number of fatalities per month for the years 1998
to the introduction of penalty points (November 2002). Available on the Garda
webpage are collision statistics for the years 1968-2002. The probability of being
injured or killed in a serious accident, between 1998-2001, before the introduction
of penalty points, was 0.003, given that an individual was involved in a serious
accident the probability of being killed in the accident was 0.035. Prior to the
introduction of penalty points. the probability of an individual being killed in a

traffic accident was 0.0001.

year  Average
1998 38

1999 34
2000 35
2001 34
2002 33

Table 4.4: Average monthly number of road fatalities prior to penalty points.

Itis of interest to know if the introduction of penalty points for speeding had an
impact on the number of fatalities. The data are grouped by month so the ratchet
scan slatistic is an obvious choice to investigate this health impact. However, the
quantities of road fatalities are large. This results in a large N, annual figure,
thus the asymptotic distribution of the ratchet scan (section 2.5.3, page 43) will be
used. A three-month scanning window will be used.

In the year that penalty points were introduced there was a total of 376 (V)

fatalities on the road. The distribution of these road deaths is in Table 4.5. A
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Month Fatality Frequency

January 85
February 33
March 34
April 32
May 20
June 34
July 42
August 35
September 36
October 31
November 23
December 21

Table 4.5: Distribution of Road Fatalities in 2002.

three-month scan of the data. looking for the maximum cluster, gives a cluster
(T?) of 113 deaths. This maximum cluster of deaths occurred between July and
September of 2002. The ratchet scan statistic was calculated using equation 2.12

(page 47):
113 — 1 — 376(0.25)
v/376(0.25)(1 — 0.25)

R.’i e

= 2.1438 (4.4)

Using the value of 17 obtained in 4.2.3 the probability of a cluster can be
estimated, using Figure 2.7. From the graph the probability of a cluster of 113
fatalities in the year 2002 was approximately 0.12. This was not a significantly
large number of road fatalities prior to the introduction of penalty points. As a
three month scanning window was used, it also indicates that there was no sea-

sonality associated with road fatalies.
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4.2.4 Decision Analysis

There is no evidence of significant seasonal clustering of road accidents. As was
found in the scoping phase of this HIA, many accidents are caused by speeding.
The introduction of penalty points should reduce the number of fatal road acci-
dents. Road accidents should be monitored to ensure that this expected health
improvement happens. To do this the data for the year 2002 will be scanned look-
ing for a dip in traffic accident fatalities. If the penalty points were a success then

a significant dip, post penalty point introduction, should be expected.

4.2.5 Monitering and Evaluation

In order to use the scan statistic to find a dip in the number of road fatalities, the
ratchet scan statistic must first be adjusted so that it will scan for “dips’ rather
than clusters. Just as there can be a cluster of events, where an increase in events
is observed, there can also be a “dip” in the number of occurrences of an event. A
dip would be recognised as being an unusually small number of events occurring.
As a cluster might indicate an increase in something such as cancer cases, a dip

would be a useful indicator in the success of a new health initiative.

Dip in Occurrence of Events

To investigate the possibilities of dips in frequent events, some of the theory al-
ready discussed in section 2.5.3 will be applied. Using the multinormal vectors
that were created to estimate the ratchet scan statistic in section 2.5.3, the mini-
mum value from each (7], Z5..... ZF . ZF,) vector was selected instead of the

maximum that was used before.



Let Df be the ath percentile of minimum ZF, then applying the theory in
Wallenstein et al [74], the following should hold true, where U is the minimum

dip in a given time period:

Sien. . D : [(12 — k) (k)
UNN) = — + VND k)| ——— 4.5
ol V) 12 - )\/ 144 i
To evaluate the adequacy of this asymptotic result at o = .05, the value of

for each of the multinomial vectors was used. The results are given in Table 4.6.
The asymptotic estimates of [/ o; are good approximations of the simulated {7 o5
values.

This finding is somewhat unexpected when Table 2.1 is considered. It shows
the scan statistic values for clusters, in table 2.1 there was a difference of approx-
imately 1. Using this evidence the P-value can be mapped onto the ratchet scan
statistic using the following:

Uk — Nw

D = (4.6)
Nuw. (1 — wy.)

Figure 4.4 shows the ratchet statistic for a dip, over a one-month period. The
asymptotic distribution does not approximate the simulated N curves accurately.
P-values for N = 250-1000 are similar to each other. However the p-values for
an N = 100 are quite different. For a window size of 2 months (see Figure 4.5),
the asymptotic distribution is a better estimator of p-values for N” > 250. Again

if N < 250 then perhaps the curve for N — 100 should be used, or another
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Asymptotic Theory Simulation
k NUW0.05 “52  n P(U>n)PU.>n+1) £ Uo.os

I 50 -0.9806 -0.0196 0 0.1377 - = .
5

1 100 1.0541 0.0105 0.0835 0.0179 0.0149  1.4893
1 250 9.3238 0.0373 10 0.0536 0.0226 0.0395 9.8839
I 500 25.3897 0.0508 27 00791 0.0458 0.0523 26.1261
1 1000 60.3142  0.0603 62  0.0678 0.0462 0.0612 61.1759
12000 134.1128  0.0671 135 0.0509 0.0389 0.0675 134.9250
2 50 1.4434 0.0289 2 0.0709 0.0138 0.0327  1.6340
2 100 6.9228 0.0692 8 0.0953 0.0385 0.0720 7.2025
2 250 26.2603 0.1050 27  0.0651 0.0368 0.1059 26.4664
2 500 61.5455 0.1231 62  0.0536 0.0363 0.1236 61.7919
21000 135.8540 0.1359 137 0.0619 0.0477 0.1362 136.1620
22000 289.7576  0.1449 291 0.0593 0.0491 0.1450 290.0882
3 50 45589 0.0912 5 0.0666 0.0205 0.0928 4.6399
3 100 13.7696 0.1377 14 0.0539 0.0263 0.1386 13.8587
3 250 447431 0.1790 45  0.0505 0.0332 0.1799 44.9711
3 500 99.8880 0.1998 100 0.0512 0.0385 0.1998 99.9055
31000 214.4863 0.2145 216 0.0611 0.0491 0.2151 215.0750
32000 449.7760 0.2249 451 0.0558 0.0480 0.2251 450.2564

Table 4.6: Results of asymptotic simulations, compared with simulations for
different values of N.
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curve sketched in. As was also found for clusters in Chapter 2, the graph for a

window of 3 months (Figure 4.6) shows that the asymptotic distribution is a good

approximation for N > 100.

=N = infinity
N = 2000

N = 1000
N = 500
=—N = 250
——N = 100

Pr(T1<=n)

-3.8

IS

Figure 4.4: Scan statistic for a dip in events, with a window of 1 month.

To see if there is a reduction in fatalities, the three-month window incorpo-
rating November 2002 (the first month of penalty points) is investigated to see if
it indicates a significant dip in road fatalities. The number of fatalities between
September and November 2002 was 90, which is not significant. This is probably
because there are two months in which there were no penalty points included.

Moving on another month, the twelve month monitoring time period is now

January to December 2002. There was a total of 376 fatalities, and the penalty
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Figure 4.5: Scan statistic for a dip in events, with a window of 2 months.

point policy had been enforced for two months. Using a 3 month window and
the most recent time period, October - December, there were 75 fatalities in this
window but this was not significant at p=0.1125.

Moving on another month, the twelve-month period will now be from Febru-
ary 2002 - January 2003, the total number of fatalities in this time span is 361. The
3 month window that will be looked at is the window from November 2002 - Jan-
uary 2003. This is the first time point at which a three month window which only
includes penalty point months can be examined, in other words all the months in
this window are months when penalty points have been enforced.

The three months from November 2002 - January 2003 had a total of 64 fatali-
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Figure 4.6: Scan statistic for a dip in events, with a window of 3 months.

ties. Using the ratchet scan statistic, it was found that this value shows a significant
dip (p=0.0125) in this 3-month period. As these 3 months are the only 3 months
in this time period with penalty points, this is initial evidence that penalty points
seem to be having a positive impact on health.

After three months of monitoring the road traffic fatalities there is evidence
to suggest that penalty points are a success. However it is important to continue
monitoring road fatalities, so that any further positive impact can be reported,
thereby generating further support for the policy. It may be the case that the
number of road fatalities begins to increase; the effect seen after 3 months could

be an initial effect, as people become used to the policy and perhaps see little
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evidence of speed cameras, garda checkpoints etc. The initial effect may wear off
and people may start speeding again, or forget the new policy - it will have been
given a high public profile in the early months.

If continued monitoring for peaks and troughs is carried out then continued
success or failure can be reported and necessary adjustments to the policy put in
place. For example if road deaths continue to decrease, perhaps speeding laws can
be changed. If there are clusters then perhaps more speed cameras can be put in
place and more visibility of police carrying out speed checks.

Figure 4.7 shows Dj (the ratchet scan dip statistic for a three month window)
calculated for a number of months and plotted on a graph. In this way it is possible
to implement the ratchet scan statistic as a monitering tool. A significance level of
P(T3 < n) = 0.10 was chosen; this corresponds to a D3 value of approximately
-2.36. So the shaded area in the graph would represent an ‘alert’ zone, or in this

case a time period when a significant reduction in road accidents was observed.
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Figure 4.7: Monitoring for a dip in road deaths after penalty point introduction
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In the graph, D3 is plotted on the y-axis, and has been calculated as per equa-
tion 4.2.5. Time is plotted on the x-axis. So the value at Dec 2002 for example,
means the value of D calculated for the window from October to December 2002,
using a total time period of January to December 2002. The value at January 2003
would mean the value of D calculated for the 3-month window from November
2002 - January 2003, for the total time period February 2002 - January 2003.

There are two points in the alert zone, which means there were two occasions
when a significant dip in road fatalities was observed. The first significant dip
was between November 2002- January 2003 and it occurred during the first three
months of the penalty points for speeding policy. The second dip occurs during
the next three months (December 2002 - February 2003). There are no further
dips in the data, this implies that there has been no more decreases in the accident
mortality rate which means that the accident mortality rate has leveled off or that
it has increased once again.

The calculation of the ratchet scan statistic involves the total number of fatali-
ties in the most recent three month period and the total number of fatalities in the
most recent 12 months. This means that the ratchet scan statistic for January 2003
involves 3 months of very low fatalities and 9 months of high fatalities - there are
many more high fatality months, so a three month low period will certainly make
a big impact.

By the time the monitoring is at March 2003, there are 5 penalty point months
(low fatality months) and there are 7 non-penalty point months (high fatality
months). The only possibility for obtaining a significant dip at this stage is for
road fatalities to continue decreasing, in other words for the most recent 3 months

to be continually getting smaller.



So from this stage on (March 2003), the graph can used to identify a continuing
significant decrease in road fatalities. A continuing decrease will be alerted by the
values falling in the red zone. A graph monitoring for clusters can also be used
to check that there are no significant clusters of road accidents - which would be
an indication that road fatalities were increasing. If there are no significant dips
or significant increases it means that the road fatalities have decreased and are
stabilized at a lower level and perhaps further changes need to be implemented to
ensure further decreases in deaths on the road.

In Figure 4.8 Rj, the test statistic for a significant cluster was calculated and
plotted on the y-axis, time is on the x-axis and is interpreted as described for the
monitoring for a decrease graph. There is a significant increase in May - July
2003, this seems to indicate that the incidence of road fatalities has increased

again. The initial effect of the introduction of penalty points has worn off.
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Figure 4.8: Monitoring for an increase in road deaths after penalty point introduc-
tion




Penalty points were introduced in June 2003 for having no valid insurance.
If there is a real fear of penalty points another reduction in the number of road
fatalities should have been observed - however as can be seen from the graph,
Figure 4.7, there has been no significant reduction in fatalities.

Wearing of seat belts saves lives. With this in mind, on 25" August 2003 the
Minister for Transport introduced penalty points for not wearing seat. If a person
was found not wearing a seat belt they could incur up to 4 points on their driver’s
license, and the driver of a vehicle will also incur points if there are any individuals
under the age of 17 years not wearing a seat belt or restraint. However, looking
at Figure 4.7, this life saving measure has not reduced the number of lives lost on
the roads of Ireland.

The third set of penaity points were introduced on the 4th June 2004 for care-
less driving. However it is too soon to tell whether this policy will affect the

number of road fatalities.

4.2.6 Conclusion

The monitoring of road fatalities in Ireland was possible using the ratchet scan
statistic. As a decrease in road fatalities was expected after the introduction of
penalty points it was necessary to monitor for this decrease. The monitoring in this
example proved worthwhile. It showed that an initial decrease in road fatalities
was followed by an increase in road fatalities, and this indicates that the penalty

point system is not working in Ireland.
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4.3 Conclusion

In the two examples examined in this chapter it was seen how necessary it is to
monitor for positive health impacts. Evidence of a positive health impact in the
case of the respiratory deaths gives the required evidence to enforce a nationwide
ban on smokey fuel. In the case of the road fatalities it shows that an expected
positive health impact means that the health events should still be monitored. In

this case the monitoring showed that the health benefits were short-lived.




Chapter 5

Power Analysis of the Scan Statistic

The scan statistic has been used in the last two chapters to clarify if clusters or dips
in events were identifiable. In some of the situations it was possible to use more
than one type of scan statistic. In other cases such as the penalty point example,
the available data restricted the possible methods that could be used.

In application of the scan statistic to HIAs there will be cases where the data
available restrict the options for analysis. In such situations the following question
may be asked: “Am I losing important information by having to use a particular
method?” This chapter will examine the impact that any such restriction will have
on the findings of the analysis.

There will likewise be situations when the data allow more than one choice
of statistic. In this situation an appropriate question might be—"“"Which method is
best to use?” The second part of this chapter will examine which method has the
most power to detect clusters. The last section will examine the difference that the

relative size of a cluster can have on marginal significance.



5.1 Aggregate the data?

Often data are only available on an aggregated basis, sometimes weekly, some-
times monthly. In the examples that have been discussed here, the data were
available on a daily basis in most situations. However, there were instances such
as the road deaths, where the data were only available on a monthly basis. An
important consideration might be - what effect does this aggregation have on the
analysis? Is important information being lost? It is not possible to determine what
information has been lost due to aggregation of for example, road deaths. How-
ever, when daily data exist these can be aggregated and the effects of aggregation
in this situation investigated.

Itis still possible to implement the scan statistic on aggregated data; the ratchet
scan statistic was developed for this purpose. However does the ratchet scan lose
power? Perhaps further insight into the data can be gained by aggregating them,

in which case daily data could routinely be aggregated.

5.1.1 Suicide Data

Supposing that the suicide data in Chapter 2 were not available on a daily basis
but the data were only available as monthly totals.

The ratchet scan as outlined in Chapter 2, section 2.5.3 will be used for cluster
detection and a window of three months will be used to scan the data. The largest
cluster is 131 suicides and this cluster occurred between June and September.

Using equation 2.12 in Chapter 2 the test statistic can be calculated as follows:

;131 —1—810(0.25
O Lot el BT (5.1)
/310(0.25)(1 — 0.25)
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This statistic can be used to find the p-value with the help of Figure 2.7 on page 50.
From the graph it is possible to estimate the significance at 0.017.

By aggregating the data to a monthly level in this situation information was
not lost, it was still possible to tell that there was a significant cluster of suicides
between June and September of 1996. However, using the daily data may provide
more accurate information as to the exact time period of the cluster which was

between 5 June 1996 and 3" September 1996.

5.1.2 Respiratory Mortality Data

If the respiratory deaths data had been available only at a monthly level, the first
step may have been to deseasonalise the data as outlined in section 4.1.3.

The twelve months prior to the ban on smokey coal will be examined, Sep-
tember 1989 - August 1990. In that twelve months there was a cluster of 270
respiratory deaths between December and February. This corresponds to the clus-
ter discussed in section 4.1.3, page 94 which was due to a heavy smog. There
were 894 deaths in the 12 months in question. Using equation 2.12, page 47, the
ratchet scan statistic for clusters, 7). can be estimated as follows:

270 — 1 — 890(0.25)

R® = - 3,51 (5.2)
/894(0.25)(1 — 0.25)

From Figure 2.7 this corresponds to a p-value of approximately 0.005. This indi-
cates a significant cluster, which can be explained by a heavy smog in Dublin city
at that time, as discussed in section 4.1.3, page 96.

Continuing with a 3 month window, a dip after implementation of the smokey

coal ban will be investigated. The window that contains the first month of the ban
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revealed 216 deaths. Using equation 4.2.5, page 106 to estimate D3, the ratchet

scan test statistic for a dip in the data.

216 — 896(0.25)
T 1/896(0.25)(1 — 0.25)

= —(.96 (5:3)

Figure 4.6, page 110 tells us that -0.96 is not significant, which is not surprising
as this window contains data from August and July when the ban was not in place.
Moving the scanning window on a little further, so that it incorporates the
months September, October and November, the number of respiratory deaths in
this period was 187 and there was a total of 883 deaths in the 12 month period
December 1989 - November 1990. Evaluating Dj:
187 — 883(0.25)

D5 = - = —2.70 (54)
+/883(0.25)(1 — 0.25)

Dj — —2.70 corresponds to a p-value of approximately 0.05, (Figure 4.6, page 110).
This suggests that there was a significant decrease in respiratory deaths post im-
plementation of the smokey coal ban.

The 12 month period after the implementation of the smokey coal ban was
analysed to investigate an increase in the respiratory deaths. An increase in res-
piratory deaths might indicate that people were not obeying the ban and smokey
coal was in use, or it could mean that the decrease in deaths after the ban was a
fluke. It could also mean that people who would normally die in the winter from
respiratory died at a later point in the year.

The maximum number of deaths in a three month period after the ban on

smokey fuel was 211 which happened between January and March 1991. In the
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twelve months following the ban 809 people died of respiratory disease. This is
not a significant cluster, so it appears that the ban was obeyed. It also indicates
that the respiratory deaths in winter are not some kind of “culling of the weakest’,
an individual who avoids dying of respiratory disease due to smog in winter is

unlikely to die the following summer.

5.1.3 Conclusion

In this case using monthly totals did not lose any important information, but it
made the analysis somewhat more straightforward. The respiratory data were
very variable, which implies that there was a lot of white noise in the daily data.
Thus by using the monthly totals the day to day variability could be factored out.
By doing this there was no loss of important information.

When a scanning window of more than a month is used it is reasonable to
assume that any clusters will be observed whether data are aggregated at a monthly
level or are available at a higher definition such as daily data. In the two examples
a scanning window of three months was used, which is large enough not to hide
clusters. In some cases such as the incidence of carbon monoxide poisoning,
the clustering occurs in a small time frame, within 2-3 days. In such a situation

monthly totals would be useless.




5.2 Power Analysis

In the previous chapters different versions of the scan statistic have been used in

different situations. A variety of different data types were used and a version of
the scan statistic was able to analyse each data set for cluster detection. However
as all the examples were real examples the data were somewhat constraining so
every version of the scan statistic could not be applied to every situation. For
example in the case of accident fatality data which was only available at a monthly
level the Binomial scan statistic could not be applied. As a result comparing the
performance of the Binomial Scan statistic with the ratchet scan statistic could not
be accomplished.

To compare the different scan statistics against each other and find where they
perform best, a simple power analysis was undertaken. Artificial scenarios were
developed and each form of the scan statistic applied to each situation. Using a
multinomial distribution 1000 simulations of {n,n,. ..., N6 b was carried out
for each of the scenarios outlined below, where 7 is the number of events on any
particular day.

Three different scenarios were formulated. The first scenario imitated a situa-
tion where there was a peak lasting one month. The second scenario simulated a
situation where there was a peak that lasted a period of approximately 4 months.
The last scenario simulated a situation where there were two peaks in a year, the
two peaks being more than three months apart. By simulating these three sce-
narios data were created that could be used to check the power of each of the
scan statistics. Each of the scenarios is shown below. in each case P(¢;) is the

probability of an event occuring.




Scenario 1: A peak of one-month duration.

, 0.2136 July
P(e,) =

0.0711 otherwise

Scenario 2: A peak lasting four months.

0.4861 June, July

Pi(-_‘)—

August, September

l 0.1485 otherwise

Scenario 3: Two peaks in the year, more than three months apart.

0.1652 March. Junc
P(es) =

l 0.0659 otherwise

For each of the scenarios total sample sizes N = 10,50, 500 were employed.
Along with the above scenarios the null data set was simulated for 365 days in
order to estimate the critical value. The results of the power analysis are shown in
the tables below.

In each of the tables the value shown is the probability of detecting a cluster.
So given that 1000 simulations were performed the value represents the proportion
of cases where a cluster was detected, given that the cluster was significant aco-
ording to the critical value calculated for the null hypothesis. As the table shows
proportions, any value with a power equal to one has a perfect cluster detection

rate. A power score close to zero indicates poor power, and a high failure rate.
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N=10

Binomial Poisson Circular Ratchet
Scan Scan Scan Scan
Scenario | 0.18 0.18 0.18 0.60
Scenario 2 0.32 0.32 0.32 0.70
Scenario 3 L1 01 0.15 0.60
N =50
Scenario | 0.71 0.46 0.71 0.75
Scenario 2 091 0.79 0.91 0.91
Scenario3 051  0.23 0.51 0.74
- N =500
Scenario I 1.00 1.00 1.00 1.00 |
Scenario 2 1.00 1.00 1.00 1.00
Scenario 3 1.00 1.00 1.00 1.00

Table 5.1: Power analysis of the scan statistics at o = (.05 significance

[S]
5%




N=10
Binomial Poisson Circular Ratchet
Scan Scan Scan Scan
Scenario | 0.18 0.01 0.18 0.60
Scenario 2 0.32 0.07 0.32 0.70
Scenario 3 015 0.01 0:15 0.60
N =50
Scenario | 0.71 0.13 0.46 0.52
Scenario 2 0.91 0.53 0.79 0.79
Scenario 3 0.51 0.03 0.23 0.17
N =500
Scenario 1 1.00 1.00 1.00 1.00
Scenario 2 1.00 1.00 1.00 1.00
Scenario 3 1.00 1.00 1.00 1.00

Table 5.2: Power analysis of the scan statistics at o — 0.01 significance




When N is very small. the ratchet scan statistic appears to be the strongest
of all the versions of scan. In each of the different scenarios, for N — 10 the
ratchet scan statistic appears to be the most powerful, even at a significance level
of o =0.01.

When N — 50 the scan methods seem to perform more equally, with the
exception of the Poisson scan which performs poorly with all scenarios except
scenario 2. The Binomial scan is equally powerful at @ = 0.05 and o = 0.01. The
Circular and ratchet scan statistic do not have the same capability at o = 0.01. If

N is large, all the statistics have a perfect score of 1.

5.2.1 Conclusion

Based on this power analysis the Binomial Scan statistic seems to be the most
consistent of all the tools. However if N is very small (equal to 10), aggregating
the data to monthly totals and applying the ratchet scan statistic seems to be the

best choice.

5.3 Relative Cluster Size Affect

An important consideration of this analysis is the power of the scan statistic. How
big must a cluster be in order for the scan statistic to detect it? Looking at Ta-
bles 3.1 and 3.2 the % column gives the cluster size as a percentage of the total
in each age group. In the case of the male suicide table, males aged 20-29 years
were found to have a significant cluster. However looking at the percentages, the
cluster for this groups represents the same proportion of the total as the cluster for

the group of males aged less than 20 years. Indeed, looking at the female suicide




table the clusters here represent much higher proportions of the total number of
suicides in each group. Could it be that a smaller total size is less powerful at
detecting a cluster? What size of cluster would be required in order for the scan
statistic to be significiant?

Using the Binomial Scan statistic, the power of the scan statistic to detect a
cluster was assessed for different values of the total size N. The values of N
chosen ranged from 10 to 200, to reflect a broad spectrum of sample sizes. Using
arbitrarily selected cluster sizes, n, the level at which the scan statistic detect a
cluster was calculated. Figure 5.1 shows the results of this analysis: the smaller
values of N require that the cluster be a high proportion of the total sample size,
whereas for larger '\ relatively smaller clusters can be detected. From the graph,
the scan statistic appears to lose power at smaller N'. When N = 10 a cluster will
only be detected if it is at least approximately 55% of the total: when N = 200 a

cluster that is only 20% of the total will be detected by the scan statistic.

5.3.1 Conclusion of Relative Cluster Size

Based on this analysis of the relationship between cluster size, total size (N') and
significance we can conclude that if a sample is very large then a cluster that is
perhaps only 20% of the total size will be significant.

However if the total sample size is small, less than 10, then an apparent cluster
of less than 20% of the total will not be a significant cluster. In order for a cluster

to be significant the cluster must represent at least 60% of the total number of

cases in the study.
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Figure 5.1: Power of the Scan Statistic to Detect different Cluster Sizes.

5.4 Opverall Conclusion of Power Analysis

Within this chapter, three separate analysis were carried out. Each analysis was
assessing some form of the ‘power’ of the scan statistic. If data are available on
a daily basis it is best to analyse the data in this format, unless the data are quite
seasonal then aggregating it and applying the ratchet scans statistic would be more
successful than fitting a model to the daily data.

The binomial scan statistic would appear to be the best of all the versions of the
scan statistic examined in this thesis. Not only is it the simplest of all the methods
to apply, but if the numbers are large then it is the most efficient at detecting
clusters.

The other element to impact on the use of the scan statistic is the relative size
of the cluster compared to the overall size of the study. For a very large study

then a cluster need only represent 20% of the total sample size to be significant.
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However when the sample size is smaller (say < 10) then the cluster will need to

be a much larger percentage of the total (> 60% ).
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Chapter 6

Discussion and Conclusions

6.1 Important findings and original aspects of the
work

The aim of the study was to assess the scan statistic as a suitable monitoring tool in
health impact assessment. Monitoring tools have not been implemented in HIAs
to date, so an important aspect of this research was to investigate the possibility of
monitoring in the context of a HIA. Although the scan statistic has been suggested
as an appropriate monitoring tool it had not been utilized or tested rigorously in

practice.
6.1.1 Monitoring in Health Impact Assessment

Suicide

Clustering of suicides was found using the scan statistic. The scan statistic was

found to be an important tool in retrospectively analyzing the data, although there
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was no additional information to suggest what caused the cluster of suicides. A
report was recently written about suicide among young males in Ireland [110].
This report suggested that the suicides were being caused by an increase in alcohol
consumption. This report was published in 2004. Had a monitoring tool been in
place, such as that in section 3.1, the increase would have been detected earlier,
hence earlier provisions made to deal with the problem. As it is the problem has
been identified and it is only now that solutions are being discussed, nearly 10
years later.

An important aspect of this section was the identification of a cluster of sui-
cides by hanging. This is an important finding as there has been no published
evidence of copycat suicides in Ireland to date. While this cluster alone is not
definitive evidence of copycat suicides, it 1s enough warrant further exploration of

the data and discussion of the possibility of copycat suicides in Ireland.

Incinerator Example

There is public concern about incinerators and their impact on health, and there
is contradictory evidence to suggest that modern incinerators emit such small
amounts of dioxins into the atmosphere that there is no threat to health. The in-
cinerator proposed for Ringaskiddy is a modern design; planning permission has
been granted with construction set to begin in January 2007. There is no evidence
to suggest that long-term exposure to even small amounts of dioxin is safe. For
this reason suspected health factors should be monitored as outlined on in sec-
tion 3.3. This is easy to implement and it means that any negative impacts will
be identified quickly. rather than waiting for a large, perhaps noticeable cluster

to occur with undesirable public health consequences. Using the monitoring tool
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it was possible to predict that any increase in lung cancer will be detected early

enough to ensure that appropriate safety measures are put in place.

Tram Example

There was no HIA carried out on a new tram in Houston, Texas. As a tram is
a new road user, people have to adjust to travelling in the city in new ways, and
they need to become accustomed to sharing the road with a large, silent train. The
Houston tram has developed a bad reputation for accidents and it is now known
as the “Wham-Bam Tram’, if there had been a constant monitoring of accidents,
appropriate safety measures could have been put in place before a bad reputation
was earned. The continuing increasing accident rate in Houston could have been
halted, ensuring a safer road for all users.

In this example the benefit of a monitoring system is clear. Had this monitor-
ing system been in place for the Houston tram it is quite likely that better safety
measures would have been put in place sooner. If there is no monitoring system
there is no cut off period to help individuals decide when there has been one too

many accidents.

Smokey Coal

There were issues with the introduction of the ban on bituminous coal, and the
Fuel Trade Group was opposed to the ban. By monitoring the number of respira-
tory deaths a definite decrease in respiratory deaths was observed quickly. Once
the evidence of the benefits is there, it would be unethical not to enforce the ban

in the rest of the country.




Penalty Points

Penalty points were hailed as the answer to the carnage on the roads. By monitor-
ing road fatalities a decrease post implementation of the ban was observed, which
showed that the penalty points did save lives. However, further monitoring has
shown that the death toll on the roads has risen again. Now two years after the
penalty point introduction people are realising that penalty points are not working.
Using the monitoring method this would have been established in a shorter time

frame, and perhaps more checkpoints could have been introduced.

6.1.2 Scan Statistic as a Monitoring Tool

The scan statistic has not been used elsewhere to any great extent as a monitoring
tool. The five examples where it has been applied as a monitoring tool in this
thesis were all very different. In some cases the scan statistic was required to
detect clustering of events: in other cases a drop in the number of events was more
important. In each case the scan statistic was proved to be adaptable and could be

applied with little effort. So how did the scan statistic cope as a monitoring tool?

The Scan Statistic Looking at Suicide Data

In the case of the suicide data, the use of the scan statistic was fairly straightfor-
ward. The binomial and circular scan statistic were employed to test for clustering
retrospectively. Using the Poisson scan statistic enabled the establishment of a
monitoring chart, and the Poisson scan gave a critical value that allowed the set-
ting up of a critical line on a control chart. If the number of suicides in a particular

time frame exceeded the critical line then it indicated a cluster of suicides.



The suicide data were aggregated to a monthly level to examine the possibility
that the ratchet scan statistic would be more informative. It was found that the
suspected cluster still proved significant and no information was lost by aggregat-
ing the data. However, by using the Binomial scan statistic on the daily data the

exact time of the cluster could be identified.

Using the Poisson scan statistic to monitor events

Incinerator data In the case of the incinerator proposed for Ringaskiddy, a
prospective situation, the incinerator is proposed and there is no data on cancer
incidence in close proximity to the incinerator. However, using evidence from
previous studies, the relative risk of cancer around an incinerator could be estab-
lished. As the cancer rate in Co. Cork was known the expected cancer rate in
Ringaskiddy could be estimated. As there was no information available on the
total number of cancer cases the Poisson scan statistic had to be used. Using the
relative risk of cancer around an incinerator, a Poisson scan critical value was
computed and a monitoring chart set up. In order to check the monitoring chart,
data were simulated, using a nonhomogeneous Poisson process, to approximate
what the real life cancer rate would be if the incinerator resulted in the claimed
increase in cancer.

The scan statistic could be adapted to cope with the rare events in this example.
By using a longer scanning window of 6 months or more a monitoring chart could

be set-up that functioned properly.

Tramline data Tramlines differ greatly, and an important factor in the expected

number of incidents for a tram is the amount of shared road. Monitoring a new




tramline for accidents is a prospective or concurrent health impact assessment.
As the tram has not been operating, there are no data available on the expected
number of incidents. In the case of the tram in Houston Texas, a similar tram line
with the same distance of on road use as Houston was used to establish the ex-
pected number of incidents. With this information a monitoring chart with Poisson
critical limits was established and was effective at detecting an increase in tram
incidents.

In many of the cases where daily data were available the Poisson scan statistic
could be used to establish critical limits for a monitoring chart. The monitoring
chart developed using the Poisson critical limits functioned very well in all of the

examples cited above.

6.1.3 The scan statistic adjusted to monitor for expected dips

Penalty point data The penalty point data were the only data that were aggre-
gated to a monthly level, which meant that the ratchet scan statistic had to be used.
Another problem with these data was monitoring for a dip in events rather than a
cluster. To monitor for a dip in events the ratchet scan statistic was adjusted, and
new graphs were created to estimate p-values of significance. Using the adjusted
ratchet scan statistic, a monitoring chart was set up and successfully monitored
the road death data.

In cases where data were only available on a monthly basis the ratchet scan
statistic still performed well as a monitoring tool, the only draw back being that
the every month a new ratchet scan statistic had to be calculated and then a critical

value computed.
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Smokey coal example - coping with seasonality in the scan statistic The
smokey coal ban provided the most problems for the scan statistic. The data for
respiratory deaths were very seasonal, and an assumption of the scan statistic is
that there is a constant population at risk. To use the scan statistic here, the sea-
sonality had to be resolved. A number of different methods were used to cope
with the seasonal trend. The most straightforward method is probably to desea-
sonalise the data. However this can be time consuming. There are a couple of
other strategies that involve the estimation of an appropriate model.

Using Kulldorfs method the data were first modelled and then the model was
used to create simulations, and then a critical value was estimated. This method
requires an accurate model, and a knowledge of simulations, as for each new data
set a new model would need to be derived and simulated. While the method may
be effective with an accurate model getting a model accurate enough would be
near impossible. The need for an accurate model is very limiting especially when
dealing with data that is rarely predictable or compliant enough to be modelled.

Even though the respiratory death data were available on a daily basis, when
aggregated to a monthly level the scan statistic performed more reliably. This is
possibly because at a daily level there is a lot of day to day variation and fitting
an accurate model in this circumstance is difficult. At a monthly level the fitting
of a more accurate model is easier. Calculating deseasonalised data are also less
time consuming. At a monthly level the ratchet scan statistic can be used to scan
the data for dips. Another advantage ol aggregating to a monthly level in this case

is that a model does not need to be fitted and then simulated; the deseasonalised

data can be scanned using the ratchet scan statistic.




6.1.4 Which of the scan statistics performs best?

To investigate which of the scan statistic methods performed optimally a power
analysis was undertaken in Chapter 5 (section 5.2). The binomial, circular, Pois-
son and ratchet scan statistics have never been compared to each other. If there is
the option of using any of the scan statistics, which one should be chosen?

The power analysis showed that, generally, under all the scenarios the bino-

mial scan statistic performed best and was most likely to detect a real cluster.

6.2 Limitations

The scan statistic coped with the various tasks considered in this thesis. The only
limitation was that when the data were highly seasonal, such as in the case of the
respiratory deaths for the smokey coal example, the scan statistic could not be
implemented directly in such an instance. However adjustments can be made to
deseasonalise the data and then proceed as normal.

Another limitation may be that an increasing trend in the data may not be
detected. However, trends can be accommodated by using Kulldorfs method out-
lined in section 4.1.3. If a trend is very slight then monitoring over short time
period may also overcome this problem. Trends can be removed from data using
time series methods.

The biggest limitation in monitoring health events in a HIA or using the scan
statistic is the quality of data. The limitations already discussed here raise dif-
ferent data problems, but overall the quality of data are very important for the
accurate monitoring of health events. Unfortunately when dealing with any type

of health data the quality of data is not going to be optimal. However, as long as
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the limitations of the data are known then they can be addressed to some extent,

this was addressed in chapters 3 and 4.

6.3 Recent Developments in Scan

6.3.1 Syndromic Surveillance

Syndromic surveillance is a topic of much interest at the present time. The scan
statistic is being examined for its benefits in syndromic surveillance. The scan
is being examined with regard to improving its window monitoring shape so that
monitoring along a particular street or river could be incorporated. This would not

be possible currently due to the restrictions of the circular or square windows.

6.3.2 Tree Method

A presentation by Kulldorft [111] outlined possible benefits of a tree-based scan
statistic. This method could be used to look at whether certain occupations are
more at risk to certain diseases. The method involves scanning a tree and consid-
ering all possible cuts on any branch. The likelihood for each cut is calculated,

and the cut with the maximum likelihood is the most likely cluster.

6.4 Further Work

This thesis has outlined the use of the temporal scan statistic as a monitoring tool
in health impact assessment. In some cases a spatial element to the monitoring

process is required. The next stage in this work should be to investigate the incor-



poration of spatial elements into HIA monitoring. The temporal scan statistic has
been shown to be flexible and adaptable - it was applied to five different situations.
However the spatial scan has not been applied as a monitoring tool in a HIA, and
testing of the spatial scan statistic needs to be done so that spatial elements can
be incorporated into a HIA. It would be interesting to compare the performance
of the spatial and temporal scan statistics in these circumstances. The spatial scan
statistic will add extra information to some of the situations that have been dis-
cussed. For example in the case of road fatalities are there areas of the country
that are benefiting from introduction of penalty points? Are there certain roads
where the number of accidents has dropped - perhaps these are roads where there
are speed cameras.

The quantitative monitoring of HIA has been shown to be an important com-
ponent of HIAs. Individuals using a HIA framework should not ignore this vital
step. The benefits have been indicated in the examples explained in this work, and
now it is time to ensure that the method is utilized.

An important step in ensuring the use of the scan statistic as a public health
monitoring tool and the use of monitoring tools in HIA is publication and dis-
emination of the lessons learnt here. While some of the results presented here
have been presented at HIA and public health conferences, presenting the results
of the case studies at smaller public health conferences could have double bene-
fits. The case studies are of general interest to people working in public health,
and the scan statistic methodology used in each case would also be disseminated.
This would enable the concept of public health surveillance to flow throughout the
health boards.

A vital aspect of the development of the scan statistic is the development of
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tools to enable its use. For a monitoring tools to be successtul, automated mon-
itoring of health events is needed. In an ideal set up, an automated monitoring
system would inform the appropriate health official, by e-mail, of an out of con-
trol chart. With a set-up like this there would be little restriction on the number of
monitoring charts in operation.

Further work needs to be done in developing quantitative tools for health im-
pact assessment, while this thesis has focused on the monitoring stage, the other

stages of the HIA process do require quantitative attention.

6.5 Cenclusion

This thesis has shown the efficiency and the practicality of the use of the scan
statistic in health impact assessments. While the general focus has been on the
application as a monitoring tool, the benefits of using the scan statistic to scan for
clusters retrospectively has been highlighted.

The temporal scan statistic had not been tested or used as monitoring tool, the
examples used in this thesis rigourously tested the scan statistic and showed it to
be an effective public health monitoring tool.

We have shown that there is evidence of clustering in suicides in Ireland, par-
ticularly amongst young men. The scan statistic was useful in the detection of a
cluster of suspected copycat suicides. Even when the health impact assessment
is prospective, as was the case with the Ringaskiddy incinerator and the Houston
tramline, it is still possible to use the scan statistic to support an effective moni-
toring system.

The emphasis in a health impact assessment is to reduce negative health im-
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pacts. However it is also important to monitor positive health impacts to ensure
that the expected benefits will not be short-lived. In monitoring the respiratory
data post implementation of the bituminous coal ban, a definite benefit was ob-
served: there was a decrease in respiratory deaths. Monitoring road fatalities
post implementation of penalty points showed a short-lived benefit and it also
highlighted the failure of the introduction of further penalty points for dangerous
driving and no seatbelts.

A power analysis of the temporal scan statistic had not been carried out prior
to the completion of this thesis. The power analysis completed in chapter 5 not
only illustrated what happened when only aggregated data were available but it
compared the various versions of the scan statistic under different conditions, such
as with different total sizes and different possible cluster types. This chapter also
demonstrated the effect that the total sample size has on whether a cluster will be
significant or not.

For ease of application and accuracy the binomial scan statistic was found to
be the preferable version of the scan statistic. It is the easiest of all the methods to
apply and so it should appeal to those without sophisticated statistical packages.
It was also highly accurate at detecting clusters in the power analysis chapter.
However, it did lose some power for very rare events and in such situations the
data should be aggregated and the ratchet scan statistic should be used.

The wide range of topics that have been illustrated in this thesis demonstrate
not only the flexibly of health impact assessment but also the adaptability of the
scan statistic to any situation. This makes the scan statistic ideal for implementa-

tion in a health impact assessment environment.
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Appendix A

Health Impact Assessment Tools

A.1 The Swedish Model

The Swedish model [15] developed for health impact assessment focuses on as-
sessing the impacts of those suffering from health inequalities. This tool mea-
sures the impact of polices on minority groups, and a policy may be seen as more
favourable if it has more beneficial health impacts for a marginalised group. A
key question asked in the health impact analysis is: “How is the health of different
groups affected by the proposed policy decision in question?”

In the Swedish model for health impact analysis there are three tools utilized,
‘the health question’, ‘the health matrix’ and ‘health impact analysis™. Depending
on the complexities of the proposed decision the most appropriate instrument can
be applied.

‘The health question” [15] can be used as a policy audit tool or as a screening
tool and a starting point for scoping. It consists of a list of health impacts (see

Figure A.l), the use of which is supported by the following key determinants of
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health:

o

. democracy/opportunity to exert influence/equality,

S0

. financial security,

3. employment/meaningful pursuits/education,
4. social network,

5. access to health care and welfare services,
6. belief in the future/life goals and meaning,
7. physical environment and

8. Living habits.

"The health matrix™ [15] helps to identify the consequences of a policy pro-
posal on the health determinants listed above. Health impacts are judged and
marked according to their severity by one or more pluses or minuses in the table
shown in Figure A.1. a ‘0" is used to indicate no impact.

Health impact analysis asks key questions that provide a foundation for health
impact assessment prior to decision making. There are seven questions (as in
Figure A.1) and they serve as a useful checklist to ensure that everything has been

addressed and all options considered in the course of the health impact analysis.

A.2 The Ten-Step Model

In Bielefeld, Germany a ten-step model [17] was developed for environmental

health impact assessment. The model is shown in Figure A.4. Project analysis is
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The Health Question

This simple option can be adopted prior to consideration of an individual policy proposal.
It can also be used before collective decisions are made at meetings of local
boards/committees.

Will the proposal promote health development for various groups/the population in

relation to the social environment (e.g. opportunity to exert influence, mutual work
and support)?

Will the proposal promote health development for various groups/the population
with regard to certain risk factors {e.g. the physical environment or living habits)?

Is the proposal consistent with overall municipality/county health targets and
objectives?

Comments/justification:

Alternative proposal:

Our assessment is that:

Figure A.1: The Health Question




The Health Matrix

Prioritized group |Entire population
Long term |Short term|Long term [Short term

Democracy fopportunity to exert
influence/equality

Financial security
Employment/meaningful
pursuits/education

Social network

Access to health care and welfare
services

Belief in the future/life qoals and
meaning

Physical environment

Living habits

Is the proposal in accordance with the overall targets of the municipalityizounty council?

Yes[] Ne[]

Comments/justification

Altemahve proposal

Owr assessment 1s that

Figure A.2: The Health Matrix
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Health Impact Analysis

Health Impact analysis 13 guided by a mumber of key questions. They mavy, for example,
be approjnate to 1aise piior to anal yse s of strategic policy decisions.

General questions

la. What coes the local Public Health Report show regarding the health conditions of
cifferent groups within the municipalityfcounty? Are there groups which are
particularly vulnerable or already expose d to nume rous health nsks, or are there
groups with evident he alth-trend problens?

1b. Are there defined health-policy targets”

estions imked to the matter at hand

2. Are there particular health nisks which canbe expected o decrease or increase as a
result of the proposal? Will impac ts become apparent in the short term (within 5
years) or in the long term

For the cistilbution of ill-health witlun a population, it 15 of decisrve 1mportance
wluch groups are subjected to decreasediincieased health nsks, and whe ther any
decision will affect these groups’ capacity either to deal with cifficulties or, by
contrast, nciease thew vulnerabihty.

[¥S)

4. In what way will the social ervironnent in the local conuautybe affected by the
proposal”

LA

Is there a nsk that a proposal may have a “double™ mapact on certain groups. e that
both their health nsks increase and ther social exsroment detenorates”

6. Are there altemmative policies wluch 1ight 12 sult mbe tter health for exposed groups
ancl the population asa whole?

—d

Suramary

Figure A.3: The Health Matrix




obviously an inquiry of whatever project or policy is to be assessed, independently
of the project analysis a regional and population analysis are carried out. Regional
analysis refers to the physiogeography, meteorology, natural features and land
use, the environmental aspect of the analysis can be seen clearly here. Population
analysis describes the general demography, the health status and the behavioural
patterns.

Combining the regional analysis and the project analysis, predictions about
future pollution is made and this information is then combined with any back-
ground knowledge and the population information to predict the health impact.
Recommendations and evaluations can then be made based on the investigation.

The ten-step model was applied to the enlargement of an existing waste dis-
posal facility in Lower Saxony. The model was also applied to a planned new
highway. Each case included the analysis of alternative options, in the waste
disposal case the alternative being no extension, and in the highway situation al-
ternative locations were assessed. In both of these field applications it was found
that the ten-step model was a success, local health departments that were involved
had positive responses about it, and it was subsequently formally approved by the

German Conference of State Health Ministers.
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1. Project analysis 5

2. Regional analysis
3. Population
analysis
| | 4 Background
W /| situation
5. Prognoss of future
pollution
W W W

6. Prognosis of health nopact

7. Swmary assessment of 1mpac s

!

8 Recommendations

9 Communication

ale
WY

10. Evaluation

Figure A.4: The Health Matrix
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Appendix B

Algorithms & Programs

B.1 Simulation of Non-Homogenous Poisson Process

The non-homogenous Poisson process (NHPP) can be simply explained as being
a Poisson process with a variable intensity defined by the deterministic intensity
function A(7), where [ is time and A is the rate of occurence, in other words the rate
varies over time. The Poisson process assumes stationary increments, the nonho-
mogeneous Poisson process relaxes that assumption so the arrival rate need not be
constant but it can vary with time. A NHPP can model situations where event oc-
currence is subject to changes due to seasonality or trends. Hence it will be useful
to simulate different possible scenarios that could occur due to the presence of an
incinerator.

Simulation of the different scenarios using non-homogenous Poisson Process
was done in VBA for Excel; the code is based on an algorithm developed by
Ross [112]. The method used to simulate the NHPP is known as the thinning

or rejection method. The steps of the algorithm as outlined by Ross [112] for the
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thinning method applied over each subinterval are given below, where ¢ represents
the present time, .J the present interval, / the number of events so far and S(1),
..... S(/) the event times. The algorithm was implemented using VBA for Excel,
and the code is given in Appendix B.2.

Stepd -~ 1 =0, =11 =0

Step 2 Generate a random number U and set X = (—: log(U)

Step3 Ift+ X > 1{,, goto Step 8.

Stepd =1+ X

Step S  Generate a random number U/

Step 6 lt'('</\%l/),set[*]+l

Step7  Go to Step 2

Step8 If.J =k + 1, stop.

Step9 X =(X-t,+)\A.t=t;,J=J+1

Step 10 Go to Step 3

B.2 VBA Excel Programs

The following program, written in VBA Excel, was used to simulate the non-

homogeneous Poisson process.

Option Explicit
Public Function lambdat (tPresTime)
If 0 <= tPresTime And tPresTime < 731 Then

lambdat = 2.8411
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+ 1.0864 » Cos{((2 » (22 / 7} / 365.25) #* tPresTime)
+ 0.6949 = Sin((2 = (22 7 1) [ 365.25) * tPresTime)
Else: lambdat = 100
End If
End Function
Public Function lambdaj(jPresInt)

If 0 <= jPresInt And jPresInt < 731 Then

lambdaj 2.8411
+ 1.0864 x Cos((2 = (22 / 7) / 365.25) * jPresInt)
+ 0.6949 * Sin((2 » (22 / 7) / 365.25) *» jPreslnt)

Else: lambdaj = 100

End If

End Function

Public Function StepTwoX (lambdaj)

StepTwoX = (-1 / lambdaj) * Log(Rnd)

End Function

Sub MixedPoissonProcess ()

Static tPresTime, jPresInt, INumEvnts, EventTime, S

S =20

|
()

tPresTime =
jPresInt = 1

INumkEvnts = 0

|

Dim X
Do

X = StepTwoX (lambdaj(jPresInt))
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If tPresTime + X > jPresInt Then
X = (StepTwoX (lambdaj(jPresInt)) - jPresInt + tPresTime)
* lambdaj (jPresInt) * lambdaj(jPresInt + 1)
tPresTime = jPresInt
jPresInt = jPresInt + 1
Else
tPresTime = tPresTime + X
If Rnd <= lambdat (tPresTime) / lambdaj(jPresInt)
Then
INumEvnts = INumEvnts + 1
S = tPresTime
End If
With Worksheets ("Sheetl") .Range (
.Of fset (INumEvnts, 0) = INumEvnts
End With
End If
Loop Until tPresTime = 731

End Sub




B.3 Mathematica Programs

The following programs are available from Dr. Alan Kelly, SAHRU, for the cal-

culation of the various scan statistics outlined in Chapter 2.

B.3.1 Poisson Scan Statistic

Needs ["Statistics ‘DiscreteDistributions ‘"]

fplx ,psi_] :=NSum[PDF [PoissonDistribution[psi],i], {1,0;x}]

polsPDE [x ,psi ]i:=PDF [Poissenbistributien[psi] ,x]

al[x_,psi_]:=
2+polsPDE [%,psl] #fp (%=1, psi]l* ((X-1)xfp[x-2,081]

= (peixfp(x=3,psi] ))

az2lx ,psi_]:=
(0.5% (poisPDF [x,psi]) " 2)
*( ({x=1)* (x-2) x(£p[x-3,psi]))
- ((2% (x-2) »psixfp[x-4,psi])

+ (peirpsixfp [x—5,psi])) )

a3[x_,psi_]:=NSum|[ (poisPDF [2*x-r,psi])

*(fp[r‘AIPSi}A2)r {rlllx-l}]




adl[x_,psi_]:=
NSum[ (poisPDF [2xx-r,psi] *
polsPDE [r,psi]l)* (((r=1)*fp[r-2,psi])
—(peixfpr=3; psi] ) 4£,2,x~-1}]
g2star[x .,
psi_]:=(fp[x-1,psi] "2)-((x-1)
*POLSPDE [¥,psi]*polsPDFE [x~2,081])

=((x=1-psi)*polSPDF [x;psl]*fp[x—3,ps1] )

g3starlx ppsi_pal a2 ;a3 ;84 ] :=(fp[x=1,psi] 3)

-al+a2+a3-a4

gdstar[x_,psi_,1_,g3star_,g2star_]:=(g3star/g2star) "1

poiscan[k_,psil_,linv ]:=

Module [ {p, aone, atwo, athree, afour, gtwo, gthree, gfour,psi, 1},

1=1/1inv;
psi=psil/1l; x=k;Print ["Number of cases= ",k];
Print ["Average number of cases expected= ",N[psil];

Print ["Period length= ",1];

aone=al[x,psi];Print["al= ",aone];
atwo=a2[x,psi];Print["a2= ",atwo];
athree=a3[x,psi];Print["a3= ", athree];
afour=a4d [x,psi];Print["ad4= ",afour];

gtwo=qg2star([x,psi];Print["g2= ",gtwo];
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gthree=g3star[x,psi,aone, atwo,athree, afour];

Print ["g3= ",gthree];

gfour=qgé4star([x,psi,l,gthree,gtwo];Print
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B.3.2 Binomial Scan Statistic

Needs ["Statistics ‘DiscreteDistributions‘"];

binscan(x_, y_, z_] :=

Module[{w, n, k; bindist, edist, p}, k = x; n =
bindist = PDF[BinomialDistribution[n, w], k];
cdist = 1 - CDF[BinomialDistribution([n, w], k
p = {(kx(l/w) = (o = 1))=xbindist) + (2xedist);
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B.3.3 Ratchet Scan - Linear

<< Statistics‘DiscreteDistributions?;

<< Statistics ™MultabDiscreteDistributiens®

fractmonth =

{34, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}/365.

NBE For m < ¢ - land e 2 m

biapd E [xle b onileiy plip g=

N [PDF [BinomialDistribution[nl, pl]l, x111];

bintail [x2_, n2_, p2_] :=

N[l - CDF[BinomialDistribution[n2, p2], x2]
+.binpdf[x2, #2, p2)ll:;

trinom[583_ ., n3_, p3_, g3_] :=

NS st 8L __(aieayi] — (p8) — (gB)Y)E V]

O — 7=5s3 ilj!(n3—i—j)!

ratlingen([window_, size_, xval_, totval_, period_List]

Module[{m = window, c¢c = size, x = xval, n = totval,
f = period, ¥, s, 81, 82, gij},
Prlnt [m, " "[ C, " "[ X, " ll, n];

Do[qu[ll j] =0 ’ {l/ iy C}I {:]/ 1 C}];

Dolgijli, j] = trinom [1 n, S p(ls]], S £(ls]]],
{i,1,e—=2m+ 1}, {j,i + m,c—m+ 1}];

Do|

qijli,i+ u] = Sumbinpdf {s n, Zj:,.':“l fﬂlﬂ}
ol il Z:JSI'Wﬁﬂl
b, Sk

trinom|r — s,n — s, —==£= — .
SRS Srae

Lir=i




{5,0,2 — 1}] + bintail [1 N TRk _fw} Au,1,m— 1},
{le'—ln%fl—IQ}:

s1 = Suml|bintail[z,n, S " /Hz]]} A, l,e—m+ 1}}:

r=i C

s2 = sumlgigili, 31, {3, 2, € = m & Lk, 431, 1, 3 — 1L}];
upr = Min[1,
sl - Max[Table[Sum[gij[i, Jj],
liede 3 = 23w 30 1 € =@ + 151115

Print ["Upper bound = ", uprl];

k = 1 + Floor[2 s2/sl];

lwr = 2 (k. gl = 32)/ 0k (k & 1);
Print ["Lower bound = ", lwr]

]




B.3.4 Ratchet Scan - Circular

<< Statistics‘DiscreteDistributions?;
<< Statistics‘MultiDiscreteDistributions’®
fractmonth =
{31, 28, 81, 30, 31, 30, 31, 31, 30, 31, 30, 31}/365.
NB For m < ¢ - land ¢ 2 m
binpdexl., - nl., pl_|] &=
N [PDF [BinemialDistribution[nl, pll, x1]]1;
bintail([x2 , n2 , p2 1 :=
N[l — CDF[BinemialDistributien[ng, pa2l, x2]
+ ‘binpdf [x2;, nZ2; p2)l;

trinom(s3_, 03 , p3_, g3 ] &=

_\fE:“3"$‘§ﬁ”37i———Jiﬂ——v(p3)%q3)1(l——(p3)-—(q3)ym7/aq

1=s3 £Lj=s3 i!j/(n3—i—j
mod2[(z , z.] = z; mod2[z_, y_1 = Modl[z, ¥y];

ratcircgen|[window_, size_, xval_, totval_, period_List] :=

Module[{m = window, c = size, x = xval, n = totval,
£ = period, T, rl, sl, s52; giij},
Prlnt [m, " ", C, n ll, X, n H, n]’.

Dolgij(i, 31 =0, {i, 1, c}, {3, 1, c}l;

Dolqijli, j] = trinom |z, n. 37" flimod2[r, ]]], S22 fllmod2[r, c]]]|,

=1 s=) .

{i,1,c —m},{j,i + m, Min[i + ¢ — m, c]};

Dol

qijli.i 4+ u] = Suml[binpdf |s,n, 352" fl[mod2]r, c]]]

r=i+u
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Z:_;'l' 1 fl[mod2[r,c]]]

L=k —”l fllmod2[r,c]]]” 1—

lrinom [J‘ — S, n — S,

L=

! fllmod2[r,c]]] }

e f[mod2[r,c
=itu J U mell)

{s,0,2 — 1}] + bintail {1 n, Zf:;r“l fllmod2]r, (M} Au,1,m—1},
{LlJ'—z@}:
s1 = Sumlbintail[z,n, 37" f[mod2[r, (i} Ah (}} :

s2 = SUquile/ j]/ {J/ 2/ C}I {lr 1I J = l}]l
upr = Min[l, sl - Max[Table[Sum[gij([i, 3JjI,

=

{l/ Ly j_l}] _qu‘]/ j}/ {j/ lr C}}]];
Print ["Upper bound = ", upr];

k =1 + Floor[2 s2/sl];

lwr = 2 (k s1 - s82)/(k (k + 1));
Print ["Lower bound = ", lwr]
]




Appendix C

Report on Excess Winter Mortality

The phenomenon of excess winter mortality is not a modern circumstance, as early
as 1847 Farr [113] described the diagnostic composition of deaths in that year.
That more people die during the winter period than any other time of the year is
a well-documented fact, excess winter mortality has been studied in Italy [114],
Europe [115], Norway and Ireland [116, [17].

It has been reported that poor housing conditions and fuel poverty are the main
contributors to excess winter mortality. A study by Clinch and Healy [116] com-
pared excess winter mortality in Ireland and Norway, it found that the excess was
higher in Ireland due to the poorer housing conditions. Deprivation and rural-
ity should be logical contributing factors to excess winter mortality. However a
number of studies conducted in the United Kingdom have disproved this think-

ing [118, 119, 120]
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C.1 Methodologies

In Germany [121] mortality data were analysed for the period 1946-1995, it was
found that the extent of excess winter mortality had declined, this was attributed to
improvement in central heating of homes and an improved public health service.
In Great Britain [122] it was shown that a lack of central heating in the home was
associated with higher excess winter mortality.

A study conducted by the Eurowinter group [ 1 15] examined some contributing
factors to excess winter mortality in European countries. The Eurowinter Group
estimated the percentage increases in deaths per day per 1°C fall in tempera-
ture below 18°C, by generalised linear modelling. Cause specific data, such as
high mean winter temperature, low living-room temperature and proportion of
people wearing hats, scarves or gloves, from a number of European countries was
analysed using multiple regression. It was found that percentage increases in mor-
tality with fall in temperature were greater in countries with mild winters, these
results concurred with the observation that protective measures against a given
degree of cold were fewer in countries with mild winters. Individuals living in
countries with mild climates do not dress for the weather.

Studies on excess winter mortality have been devised using a range of different
methods. A report on winter mortality published by two statisticians at the Office
of Population Censuses and Surveys made the following point. "There are vari-
ous ways to divide the year so as to study patterns of seasonal mortality and in
particular to define winter deaths”

In Sweden [123] a weighted regression analysis using second-degree polyno-

mials was used to analyse the data. The regional variation in coronary mortality
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and the relation to cold exposure in the 284 Swedish municipalities during a ten-
year period was studied. One weather station in each municipality was chosen and
the temperature recorded five times a day. A cold index was calculated as a loga-
rithm of the number of times the temperature was recorded below a cut-off point
in the ten-year period. Other data collected included social factors, butter sales,
antihypertensive drug sales, smoking prevalence and drinking water parameters.

In Emilia-Romagna, Italy, mortality data from the year 1997 was analysed by
Cordioli et al [114], specifically to look at mortality from ischaemic heart dis-
ease, hypertension, cerebrovascular and respiratory disease in 50-89 year-olds.
Data were collected from the ““Ufficio Risorse Informative” and “Servizio Me-
terologico”. The number of deaths in the following age groups 50-59, 60-69, 70-
79 and 80-89 was recorded for the following ICD codes: IHD 410.0-414.9; HY
401.0-405.9; CV 430.0-438.9, 490.0-493.9. Student’s t test was used to analyse
the data. It was found that cause-specific deaths were responsible for one third of
all deaths and that they increased with age and cold in ER, the maximum number
of deaths being in January.

Moran et al [124] examined excess winter mortality in Ireland. The relation-
ship between meteorological conditions and seasonal morbidity and mortality pat-
terns in the elderly (> 65 years) was examined over a four year period. Climate
data were obtained from Met Eireann for four meteorological stations Dublin,
Cork, Shannon and Clones. The first three stations were chosen because they
are all near large population centres. Average monthly figures for temperature,
rainfall, humidity and wind speed for 1994-1997 were calculated. Regional sum-

mer/winter temperature and mortality ratios were calculated using January and

August data.




Healy and Clinch looked at housing standards and excess winter mortality
in Ireland. They expressed winter as the period between December and March,
and they compared these months with the non-winter months (between April and
November). They found that excess winter mortality from cardiovascular disease

was twice as high in Ireland as Norway [116].

C.2 Methodologies Applied to Irish Data

Seasonal variation in mortality in Moscow [125] was examined by inspecting
crude, smoothed, and deseasonalised trends. Auto-correlation functions were esti-
mated and deaths were regressed against temperature. In order to estimate the ex-
cess winter mortality the additional deaths from October to March were compared
to April to September and expressed as a percentage of the non-winter deaths.
Using their method for calculating excess winter mortality, the Irish excess was

calculated and is shown in table C.1.

Winter period All Cause
(Oct-Mar) Respiratory  Circulatory  Mortality
89 45.51 19.12 17.52
90 57.34 18.43 1783
91 40.41 22.11 18.81
92 48.13 15.19 14.99
93 45.12 12.51 14.57

Table C.1: Excess winter mortality for Ireland, 1989-1993. Calculated using the
Oct-Mar method.

Figure C.1 shows the months that were included as ‘winter’ months in the

Moscow calculation, these months are represented by blue dots on the graph.
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The graph iliustrates that the months used were not always the highest mortal-
ity months for the year, there are many months with mortality counts higher than

the stated ‘winter’ months.
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Figure C.1: Actual monthly mortality occurrence in Ireland 1989-1993.

In Finland [126], seasonal variation over time was examined by looking at the
smoothed daily counts over a period of 35 years. To calculate the excess winter
mortality the cold months, September to March, were compared to the month
with lowest mortality. This method was applied to the Irish context. The results
calculated using data from 1989-1993 are in table C.2. Using this method in the
Irish situation means that the estimate of excess winter mortality could be weaker
than the reality. The mortality rates seem to peak over 2-3 months, using a 7-
month winter period means that the excess will appear smaller than the reality.
Figure C.2 shows the monthly data for the period 1989-93; the mortality rates for

months September to March are highlighted in blue. From the graph it seems that
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the selected winter months are slightly imbalanced, there are many months not

included in the winter calculation that have a higher mortality than months that

have been included as winter months.

All Cause
Mortality

20.58
22.38
21.14
18.00
16.74

Winter period
(Sep-Mar)  Respiratory Circulatory
89 70.71 22.74
90 79.43 25.36
91 71.24 20.33
92 54.93 18.50
93 62.97 17.65
Table C.2: Excess winter mortality for Ireland, 1989-1993. Calculated using the
Nayha method
4000
35004
%3000 =
g -
25004 » . i L
2000 =

0

T T T T T T T T T T T
6 12 18 24 30 36 42 48 54 60 66

Time {month)

Figure C.2: Actual monthly mortality occurrence in Ireland 1989-1993.

Seasonal variations in Norway and Ireland [117] were compared; the excess
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winter mortality was expressed as the difference between the August and January
mortality values. This method makes the assumption the January will have the
peak of mortalities and August will be the month of lowest mortality rate. The
estimates are obtained using the Irish data, they are presented in Table C.3, and
are very different from the estimates previously obtained. The percentage excess
varies hugely from year to year, and while the respiratory mortality case is excep-

tional the excess differs by as much as 200% in some years.

Winter period All Cause
(Jan) Respiratory  Circulatory  Mortality

89 66.39 15.81 16.38

90 252.56 61.31 61.99

91 113.42 40.99 39.06

92 101.63 27.85 3041

93 57.99 30.85 23.53

Table C.3: Excess winter mortality for Ireland, 1989-1993. Calculated using the
Jan versus Aug method

Figure C.3 highlights the peak month and the trough month according to the
method stated by Eng and Mercer [117]. Looking at the 5 year period, 1989-93,
the peak in each year occurs in January (blue dot) three out of five times, the
trough occurs in August (red dot) in just one of the years. This method does not
seem appropriate to use in this situation.

The Office of National Statistics in the United Kingdom has published figures
on the excess winter mortality for the years 1999-2002 [127, 128]. They define
excess winter as deaths occurring in December-March minus the average of the

deaths occurring in the proceeding August to November and the following April
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Figure C.3: Actual monthly mortality occurrence in Ireland 1989-1993.

to July. This method was applied to Irish data, the results obtained are shown
in table C.4. This method uses a tighter definition of winter and so the excess
winter mortality values are larger than previous estimates. It is apparent from the
graph (Figure C.4 that this method has captured most of the peaks in the data.
However, there was a peak in mortalities in November 1993, and while the excess
for the winter of this period was not calculated, an estimate based on the Dec-
Mar methodology would not pick up on that peak and so the excess would be
underestimated.

A more sophisticated method for estimating excess winter mortality was em-
ployed in Bangladesh [129]; trigonometric models were fit to monthly data for
the years 1982-1990. Using similar models the Irish data was examined. The first
model fitted was a simple linear model, as can be expected this model did not

approximate the data very well, it did not model for the seasonality of the data, a

167



Winter period All Cause

(Dec-Mar)  Respiratory Circulatory Mortality
89/90 109.02 31.20 32.80
90/91 5513 29.62 23.71
91/92 58.40 19.36 19.22
92/93 29.98 10.23 11.67

Table C.4: Excess

winter mortality for Ireland, 1989-1993. Calculated using the

Dec-Mar methodology.
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Figure C.4: Actual monthly mortality occurrence in Ireland 1989-1993.

similar result was found in the Bangladesh situation.

Model II used trigonometric techniques. Model II was devised using the fol-
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lowing expression:

)', = U —+ -'))“{ = = -31‘1'1/ + r'))-_).I"_)t (C])

(C.2)

Y, = mortality at time (month) t (C.3)
27

Gy = (‘().\'(E/) (C.4)
2

Ty — sin(ﬁl) (C.5)

Figure C.5 shows model Il fitted to the circulatory mortality data, grouped by
month for the years 1989-1993. The solid black line gives the estimated data.
From the graph it can be seen that this model estimates the data with some ac-
curacy, there are a number of outlier points that have not been predicted well. A
similar situation occurred in the Bangladesh case and the model was adapted to
account for a peak in the data.

To model for the unusual peak that occurred in the winter of 1989/1990 the fol-

lowing model was fitted, following the procedure used by Becker and Weng [129].

Yi = p+ Bot + Bix1e + Baoy + B33 + BTy (C.6)

where:

('()H(%/) ift < 12andt > 13
i

0 otherwise

(

.s‘in(f—fj/) ift < 12andt > 13
Lot

0 otherwise
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Figure C.5: Actual and predicted monthly circulatory mortality occurrence in Ire-
land 1989-1993 using Model 11

T3t =

0 otherwise

sin(22¢) if12<t<13

Tyt =
0 otherwise

Equation C.6 provides a much better fit of the data, as seen in figure C.6, the
error of the model is also greatly reduced. Model III proved to be a better fit for
the respiratory and all cause mortality data also as can be seen in figures C.7 and
C.8. There are other winter periods in the 5-year period chosen that have not been
predicted well, this is clear in the three graphs. The respiratory mortality data

were estimated most accurately by model I1I, compared to the other two data sets,
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it had the largest R-square value and the lowest error rate, and the graph of the

respiratory data justifies this finding.
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Figure C.6: Actual and predicted monthly circulatory mortality occurrence in Ire-
land 1989-1993 using equation C.6

To estimate the excess winter mortality the amplitude is calculated, this is
B2+32

equal to J==5—=>

, where 30.5 is the midpoint of the time interval in months. The
calculated excess winter mortality is a ratio of the mean number of deaths per
month, the calculated value of the excess is shown in table‘C.5. The excess winter
mortality for respiratory diseases is over double the figures for circulatory and all
cause mortality.

Another form of trigonometric modeling was adapted by Gemmell et al‘[130].

The Poisson form of the generalized linear model was used, the offset term used

the expected values, which were computed using simple linear model, and the log
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Figure C.7: Actual and predicted monthly all cause mortality occurrence in Ire-
land 1989-1993 using equation C.6
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Figure C.8: Actual and predicted monthly respiratory mortality occurrence in Ire-
land 1989-1993 using equation C.6

Mortality % Winter Excess
Respiratory Mortality 73:79
Circulatory Mortality 29.59
All cause mortality 28.34

Table C.5: Excess winter mortality for Ireland, 1989-1993.

link took the following form:

In(y;) = acos(wt) + B sin(wt) (C.7)

where w = %, given data are aggregated to a week level.
The excess winter mortality could then be calculated as A = \/a? + 32, the

inclusion of the offset term means that A represents the amplitude of the seasonal



curve expressed as a ratio of the mean number of weekly deaths. The amplitude
is equal to the height of the peak and the depth of the trough of a wave function,
a line can be visualised cutting through the model so that each trough is almost a
reflection of the peak, the distance from the line to the very tip of the peak is the
amplitude, and in this situation it represents the excess winter mortality.

The above methodology was applied to monthly Irish data; the value of w ad-
justed accordingly. The model fitted the data reasonably satisfactorily; the graph
of the fitted and actual values can be seen in figure C.9. There is still the prob-
lem of the peak in the winter of 1989/1990, this was adjusted for using a similar
methodology that was applied in the linear regression technique, this model is
outlined in Model V. The results of the improved fit are seen in figure C.9. These
two graphs show the all cause mortality situation, a similar situation was found

with the respiratory and circulatory mortalities.

In(y;) = axy + Broy + Ox3 + Yy (C.8)

where:

cos(55t) ift < 48andt > 58

Tt =

0 otherwise

sin(22t) ift < 48andt > 58

0 otherwise

T3t =

0 olherwise
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2sin(23t) if48 <t <58

Tt =

0 otherwise
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Figure C.9: Actual and predicted monthly all cause mortality rate in Ireland 1989-
1993, using equation C.7 and equation C.8

Looking at the graph of equation C.8 the peak only fits two extra points, the
rest of the data are not affected by model. As the calculation for excess winter
mortality only includes the parameters of the sin and cos. For the non-peak por-
tion of the data there is little difference in using equation C.7 or equation C.8 to
calculate the excess. Table C.6 shows the excess winter mortality calculated using
equation C.7, the simpler model. The excess winter mortality estimates are lower
than previous methods, but the respiratory computation is still over twice as high

as the other two excess estimates.
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Mortality % Winter Excess

Respiratory Mortality 32.99
Circulatory Mortality 13.44
All cause mortality 12.94

Table C.6: Excess winter mortality for Ireland, 1989-1993. Calculated using equa-
tion C.7

If the data are modeled by week there is a lot more variation to account for,
hence the fitted model will not be as accurate. Figure C.10 shows the respira-
tory data by week of year with the predicted values, which were calculated using
equation C.7, adjusted for weekly data. For the purposes of this analysis week 1
refer to the first seven days of the year 1989, week 2 refers to the next seven days
and so on. From the graph it can be seen that there is a large peak evident, when
the previous model for peak was fitted it did not predict the mortality rate in the
winter of 1989/1990 very accurately. Table C.7 shows the excess winter mortality
calculated using the weekly model. These results are similar to those obtained
using the data aggregated by month; no extra information could be gathered by

modeling the data by week.

Mortality % Winter Excess
Respiratory Mortality 34.41
Circulatory Mortality 14.64
All cause mortality 12.94

Table C.7: Excess winter mortality for Ireland, 1989-1993. Calculated using equa-
tion C.7 on weekly data
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Figure C.10: Actual and predicted weekly all cause mortality rate in Ireland 1989-
1993, using equation C.7

C.3 Discussion and Conclusion

This report has shown a number of different methods that can be used to esti-
mate excess winter mortality. The method used depends very much on the data
available and how well it can be modelled. The methods that predefine winter to
specific months were a bit too restrictive and were shown to predict the winter
months badly. However, in some countries the winter period might occur in set
months every year, in such instances it would be appropriate to use a method that
predefines winter months.

Modelling the data using a trignometric or a Poisson model seemed to work
more successfully. A similar estimate of excess winter mortality was obtained us-

ing daily, weekly and monthly data, from this it can be assumed that the aggrega-

i



tion of data in this case does not affect the result. It should be noted that mortality
from respiratory and circulatory disease is common, so the baseline numbers are
large. If the event is rare then the aggregation level may affect the final result.
Excess winter mortality is a well known phenomenon, the exact extent of it
is questionable. However, using one of the modelling methods that have been
discussed ensures a nonbiased estimate, and provides a reliable method by which
to compare the excess winter mortality for different areas and different times.
Table C.8 shows the excess winter mortality for each county in Ireland, this
was calculated using model C.7. Roscommon has the lowest level of excess winter

mortality while Wicklow has the highest level.
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County % Winter Excess

Roscommon 14.9
Cavan 22.8
Wexford 26.6
Galway 27.2
Longford 27.8
Sligo 28.3
Waterford 28.6
Westmeath 28.8
Louth 31.8
Clare 31.9
Leitrim 32.6
Kilkenny 32.8
Kerry 34.0
Tipperary 34.1
Carlow 34.8
Limerick 34.8
Laois 35.5
Dublin 36.9
Mayo 32
Cork 37.5
Kildare 37.5
Meath 38.6
Monaghan 40.5
Offaly 434
Donegal 43.6
Wicklow 46.7

Table C.8: Excess winter mortality for each county in Ireland, 1989-1993. Calcu-
lated using equation C.7 on weekly data
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