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Summary

The apphcation of 3+1 anisotropic lattices to numerical simulations of hadrons con­

taining heavy quarks is investigated. It is expected th a t using a fine tem poral lattice 

spacing will suppress large mass-dependent errors which afflict discretisations of the 

Dirac action in the heavy-quark sector. An asymmetric discretisation of the Dirac 

action, specially formulated for anisotropic lattice, is used in this work.

Firstly, we consider the non-perturbative tuning of the quark anisotropy parame­

ter in the quenched approximation. The anisotropy is easily tuned to a target value 

of 6.0 at the strange quark mass and shows negligible mass dependence up to the 

charm quark mass.

Secondly, the tuning of the fermion action is studied at one-loop in perturbation 

theory. For finite quark masses, this amounts to a determ ination of the rest mass 

renormalisation and the kinetic mass renormalisation of the lattice quark. The quan­

titative agreement between one-loop perturbation theory and numerical simulation is 

poor. However, much of the discrepancy can be attribu ted  to two-loop effects which 

may be reduced by running on finer lattices or eliminated by performing further 

perturbative calculations.

Finally, we present results for a simulation of static-light hadrons on two-flavour 

dynamical background configurations. A new m ethod was employed to  evaluate 

the light quark propagators at all lattice sites. The resulting increase in statistics 

yields a dram atic improvement in signal compared to conventional point-propgator 

techniques. This study was performed on an anistropic lattice and the tuning of the 

quark and gauge anisotropies on dynamical configurations is described. We outline 

the construction of spatially-extended interpolating operators which are required to 

access orbitally-excited mesons. Numerical results show clear signals for the P-wave 

and D-wave states. The D-wave results may indicate the inversion of orbitally excited 

muliplets with respect to the usual atomic ordering, as has been predicted by quark 

models [56, 57]. Preliminary results are presented for static-light baryons.
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5.5 One-loop corrections to at zero quark mass with and without tad­

pole improvement  82

5.6 One-loop corrections to ju.r, at ^ = 6, as a function of the subtracted

bare quark mass...........................................................................................  82

6.1 Static-light mesons for different orbital angular momenta (L). The

right-most column lists the corresponding channels once hyperfine in­

teractions are included................................................................................  92

6.2 Subduction of the single-valued irreducible representations of S0(3) to

the group of proper cubic rotations, 0 ......................................................... 101

6.3 Irreducible representations of the group of proper cubic rotations listed

with their dimensions and lower lying angular momenta of their con­

stituent states...................................................................................................102

8



Chapter 1

Introduction

Q uantum  Chromodynamics (QCD) is the accepted theory of the strong interaction. 

It describes the interaction of quarks through the exchange of gluons. A defining 

characteristic of QCD is th a t it is a confining theory, i.e., the strong coupling increases 

with decreasing energy scales. For this reason, under normal conditions, individual 

quarks and gluons are not observed in nature, rather they only appear in bound 

hadronic states. In the low-energy regime relevant to hadron physics, a perturbative 

treatm ent of QCD is not valid. However, lattice gauge theory can be used to make 

first-principles QCD predictions in the non-perturbative regime. The purposes of 

these calculations are two-fold. On one hand, lattice calculations will be able to 

confirm th a t QCD does describe the observed hadron spectrum. And secondly, more 

generally, hadronic m atrix elements computed on the lattice will serve as inputs for 

tests of the Standard Model.

The energy scale at which the QCD coupling becomes strong is denoted h.qcD  and 

is approximately 200 MeV. This scale naturally divides the quarks into two distinct 

sets. The light quarks are the up, down and strange quarks and they have masses 

tha t are less than  A q c d , while the charm, bottom  and top quarks have masses that 

are much heavier than  A q c d - The ultim ate aim of the work outlined in this thesis 

is the accurate simulation of heavy quark systems, i.e. hadrons which contain charm 

or bottom  quarks.



This is an exciting time for heavy-quark physics. With regard to precision tests of 

the Standard Model, particular emphasis has been placed on the determination of the 

CKM matrix elements which parametrise the mixing of the quark mass eigenstates 

under the Weak interaction. A precise determination of these quantities will hint at 

sources of CP violation beyond the Standard Model. This will depend on accurate 

experimental data and precise theoretical inputs. The B-factories Babar and Bell are 

currently at the forefront of the experimental effort and additional B-physics data 

will become available when the LHC comes on-line in the near future. Accordingly, 

progress demands increasingly accurate lattice results for the heavy-quark sector. 

The high-precision charm data currently being generated at CLEO-c will test the 

predictive power of lattice QCD to an accuracy of 1 — 2%.

A response to these challenges must include a reappraisal of the techniques of 

lattice QCD, which forms the basis for this report. The research presented here 

concerns novel methods in lattice gauge theory and their application to heavy-quark 

simulations.
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1.1 Thesis outline

The s truc tu re  of the  thesis is as follows:

•  C hap ter 2 describes some of the  generic features of la ttice QCD.

•  T he use of anisotropic la ttices in numerical sim ulations is a t the  heart of the  

work described here, and the m otivation for using anisotropic la ttices and a 

description of the  anisotropic formalism is given in C hapter 3.

•  C hapter 4 reviews a non-perturbative determ ination of the bare anisotropy 

param eter in the fermion action. The study was performed on quenched back­

ground configurations which had previously been tuned for use in glueball spec­

troscopy.

•  An analytic calculation of corrections to  the fermion action a t one-loop in lattice 

p ertu rba tion  theory is described in C hapter 5. This is a generalisation of the 

calculation in Ref. [27] to  anisotropic Symanzik-improved actions. However, 

unlike Ref. [27], this calculation was partially  au tom ated  and tw isted boundary  

conditions were employed to  regulate interm ediate infrared divergences.

•  Finally, C hap ter 6 details a  study of orbitally-excited static-light hadrons on 

N f  =  2 dynam ical background configurations. Similar studies can be found 

in Refs [58, 59]. Those investigations used all-to-all propagators for th e  light 

quark fields in order to  ob ta in  reasonable signals from static-light correlation 

functions. The work described here employed a  new m ethod of optim ally  es­

tim ating  all-to-all propagators, which has been developed by the  T rinL at Col­

laboration  [45]. It was also the  first such study perform ed on a  dynam ical 

anisotropic lattice, and our approach to  operator construction differed from 

previous investigations and was designed to  take advantage of static-light sym­

metries.
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Chapter 2 

QCD on a Computer

2.1 Discretising space-time

In order to study QCD on a computer, continuous space time is approximated by 

a hypercubic lattice of discrete points. For computational reasons, lattice QCD is 

formulated in Euclidean space time. The relative position of each lattice site is given 

by a four-vector x  with components

where is the lattice spacing along the direction denoted and is the number 

of lattice sites along that direction.

The hypercubic lattice possesses a discrete translational symmetry which requires 

that energies and momenta occur in discrete units. The allowed momenta are

Therefore, discretising space-time imposes a momentum cutoff corresponding to the 

minimum physical distance which can be modelled on a discrete grid and the lattice 

acts as an ultra-violet regulator for QCD.

(2 .1)

(no summation)
11 .(^1  L

27rn^
(2 .2 )

12



2.2 Gauge fields on the lattice

The continuum QCD Lagrangian is formulated in terms of the vector potential, 

which lies in the Lie algebra of SU(3). Transferring QCD to a discrete grid reduces 

the symmetries which constrain the continuum theory. It is essential, however, that 

the lattice formulation of QCD possesses an exact gauge symmetry. The loss of gauge 

invariance would mean that the quark-gluon, three-gluon and four-gluon couplings 

and the gluon mass would all have to be independently tuned in a simulation. This 

would make a numerical approach unfeasible.

A theory formulated in terms of the vector potential can possess only an approx­

imate gauge symmetry at finite lattice spacing. In order to preserve an exact gauge 

invariance, the lattice theory is constructed from link variables: parallel transporters 

connecting adjacent sites on the lattice

where fi denotes the unit vector in the direction labelled jj., V denotes path-ordering 

and go is the bare gauge coupling. The link variables are elements of the gauge group 

and under a gauge transformation transform as

link variables around a closed path, known as a Wilson loop, is gauge invariant. 

Lattice actions for the pure gauge sector are constructed from Wilson loops. The 

construction of gauge actions will be discussed in detail in Chapter 3.

/  rx+afif i  \(! j  siiMy)dy]

(2.3)

U^(x) ^  V{x)V^{x)V\x  +  V{x) £ SU{3). (2.4)

This transformation property implies that the trace of the path-ordered product of
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2.3 Quarks on the lattice

The fermionic p a rt of th e  continuum  QCD action in Euclidean space is given by

f  + (2.5)
J  j

where the  sum  over quark  flavours, / ,  is explicit while th e  Dirac and colour indices 

of the  quark  fields, 'ipf, have been suppressed. T he Euclidean-space D irac m atrices 

are herm itian  and satisfy

=  (2 .6 )

and the  covariant derivative is

D^ = d ^ -  igoAf,. (2.7)

Q uarks lie in the  fundam ental representation of the  gauge group and the  vector field

appearing in the  covariant derivative can be w ritten

(2.8)
a = l

where are real-valued and the  m atrices, Aa, are th e  3 x 3  Gell-M ann m atrices. 

Under a  gauge transfo rm ation  the quark  fields and  the  covariant derivative transform  

as

—> V{x)ip{x), 4>{x) —> 'il>{x)V^{x), 

D^i;{x)^V{x)D^' iP{x) ,  V ( x ) e  SU(3). (2.9)

Since the  theory  is relativistic, the  action is invariant under Euclidean transform a­

tions, as well as space inversion, tim e reversal and charge conjugation. In addition.
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for m / =  0 , the action is invariant under chiral transform ations of the form

il}{x) exp(zQ:75) /̂)(a:), •0(x) exp(zo!75), (2.10)

where o: is a  phase and  7 5  is a  herm itian  m atrix  which anti-com m utes w ith the  four 

Dirac m atrices.

In nature , massless quarks do not exist. However, the u, d and s quarks are hght 

enough to  preserve an  approxim ate chiral symmetry. A num ber of the  lightest ob­

served mesons (the pseudoscalar octet) is believed to  be a  set of Goldstone bosons 

generated by th e  spontaneous breaking of an approxim ate SU(3) chiral flavour sym ­

metry.

A naive d iscretisation of th e  fermionic action for a single quark flavour is

=  =  X ^ ^ /(3 ^ ) (7 / .V ^  +  m / ) i / ) / ( x ) .  (2 .1 1 )
X X

The action of the  la ttice  covariant derivative on a quark field is

V^'0(x) =  - ; ^ [ U +  A) -  Ul{x -  -  fl)]. (2.12)

This sym m etrised finite difference operator is anti-herm itian, which is necessary for 

a herm itian  la ttice H am iltonian, and reproduces the continuum  derivative to  0{a^) .  

U nfortunately, this simple discretisation suffers from the fermion doubling problem. 

T h a t is: in four dim ensions, in the  continuum  hm it, th is action describes 16 de­

generate quarks, th e  num ber of quarks doubling w ith each space-time dimension. 

This problem  arises because, on the  lattice, continuum derivatives are replaced by 

finite differences. T he Fourier transform s of these operators are periodic functions 

of m om entum . Therefore, although in the continuum, th e  m om entum -space quark 

p ropagator has a single pole, on the  lattice there are additional poles w ithin the 

allowed range of m om enta. T he presence of these spurious states can make la ttice 

sim ulations unworkable.

15



Theories describing a  bosonic field, 0(x), do not suffer from doublers because they 

can be form ulated in term s of single-step derivative operators

and not the  sym m etrised derivative required to  m ain tain  un ita rity  in the fermionic 

theory. In m om entum  space, the resulting bosonic p ropagators are 27r/a^ periodic 

and do not have unphysical poles in the  la ttice Brillouin zone.

Removing the  doublers is quite problem atic. T heir presence is a  pathology of

the la ttice  and they  are strongly connected to  chiral sym m etry. In fact, the Nielsen- 

Ninomiya no-go theorem  [1] sta tes th a t it is im possible to  construct a fermionic 

action which is sim ultaneously local, translationally  invariant, herm itian, invariant 

under th e  chiral transform ations in Eq. 2.10 and which does not suffer from doubling,

2.3.1 W ilson quarks

To solve th e  doubling problem , W ilson added a  redundan t operato r to  th e  naive

quark action. The W ilson fermion m atrix  is given by

where the  second-order la ttice  derivative is defined as

=  [̂ {̂x -h A) +  -  A) -  2i/'(x)]. (2.15)

This te rm  solves the  doubler problem  by giving an additional mass to  the spurious 

states. For a  free fermionic theory  a t finite la ttice spacing w ith the  W ilson coefficient.

= —  [(p{x + f i ) ~  0(x)],
^ / i

=  — [0(2:) -  4>{x -  A)],
^fj,

(2.13)

(2.14)
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r, set to  unity, the pole m ass of the physical s ta te  is

rriphys =  — ln (l +  atm) (2 .16 )

while the  spatial doubler masses (on an isotropic lattice) are

doubler (2.17)

These heavier doublers are less likely to  contam inate lattice simulations. Their masses 

diverge as the  continuum  lim it is taken; eventually the doublers become infinitely 

heavy and com pletely decouple from the theory.

The elim ination of doublers comes a t a price and the W ilson term  breaks chiral 

sym m etry a t 0{a) .  This is a real problem for light-quark simulations. Therefore, 

th e  alternative staggered formalism, which preserves a rem nant of chiral symmetry, 

is commonly used for light quarks. The staggered formalism is itself problem atic 

because it is not known if it can describe a local field theory, although numerical 

evidence is compelling [2, 3]. There exist formalisms, such as overlap and dom ain 

wall fermions, which satisfy the  G insparg-W ilson definition of chiral sym m etry [4] bu t 

these are very expensive and it will take some time before they can be widely used. 

In the  m eantim e, W ilson-like discretisations can be used in studies of heavy-quark 

system s where the  loss of chiral sym m etry has less of an im pact.
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2.4 Num erical m ethods

On the Euchdean space-time lattice, the QCD partition function is given by

Z q c d  = I  DUDiPDi jexp { - S f \ U , 7 p , , p )  -  S^S' \U))  , (2.18)

where 5 ^ “ and 5 ^ “ are discretisations of the fermion and gauge actions respectively. 

Computationally, the fermionic part of this integral is problematic because it involves 

fields, -0, Ip, which anti-commute. However, these fields only appear in bilinear com­

binations in the fermion action and integration over the quark fields can be evaluated 

explicitly. This leads to the following expression for the partition  function

2 qcd = I  DU Y l  det {M,{U))  exp ( -5 ^ ““ ) .  (2.19)
J  j

More generally, an arbitrary  n-point vacuum expectation value can be written

m O n M  = [  D U l [ d e t { M f { U ) ) J = - i U , M - \ U ) ) e x p { - S ^ S " ' ) ^
^QCD J f

(2 .20)

where the function T  can be expressed in terms of the inverse fermion m atrix and 

the link variables. Such integrals may be evaluated using importance sampling tech­

niques. In this approach, an ensemble of background configurations is generated

according to  the probability density

P( V)  =  n d e t (M X C /) )e x p ( -S g “ {C/)) . (2.21)
/

An estimate of the n-point function is then obtained from the ensemble average of 

the function, T , defined in Eq. 2.20.
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2.5 The quenched approxim ation

The repeated evaluation of the non-local determinant of the fermion matrix, which is 

involved in the generation of background configurations, is computationally intensive 

and, until recently, it has been common practice to set the determinant to a constant 

in lattice simulations. This has the effect of excluding internal quark loops from the 

theory and is known as the quenched approximation.

There are limits on what can be computed in the quenched theory. For example, 

in full QCD, isosinglet mesons receive contributions from disconnected diagrams. 

The vacuum polarisation processes which generate these contributions do not occur 

in quenched QCD. Phenomenological arguments and comparison with experiment 

indicate th a t errors due to quenching are between 10 and 20 percent. In spite of 

this, quenched QCD has proven to be a valuable laboratory where lattice algorithms 

can be developed, where qualitative observations can be made and where systematic 

uncertainties can be studied and understood.

To simulate QCD exactly, internal quark loops need to be included. Because 

of the complexity of simulating full QCD, dynamical effects are still treated in an 

approximate way. For example, only two or three sea quark flavours may be consid­

ered; the contributions of heavier quarks to vacuum polarisation are thought to be 

small and are generally om itted ^  Also, for practical reasons, the mass of the sea 

quarks may differ from the mass of the light valence quarks; this is called partially- 

quenched QCD. However, these approximations are expected to reproduce the bulk 

of the vacuum polarisation effects.

^Recently Nobes [10] h£is proposed a method of including heavy quark vacuum polarisation 
effects without incurring any additional computational costs. This approach uses the framework of 
an effective field theory to compute corrections to the gauge action.
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2.6 Com puting the hadron spectrum

H adron energies are am ong the  easier quantities to  com pute on the  lattice; they can 

be determ ined from the tw o-point correlation function

C(i,p) =  ^e^P-^(f)|C)(x,f)0^(0,0)|Q), (2.22)
X

where O  is an in terpolating operator for the  hadron of interest. Inserting a com plete 

set of energy-m om entum  eigenstates { |n)} yields

C(i,p) =  (2.23)
n  ^

Assuming a discrete energy spectrum , as i ^  oo,

C(i,p) -  (2.24)
z h / j i

where |no) is the  lightest s ta te  which couples to  th e  operator O  and E q is the  cor­

responding energy. Hadronic g round-state  energies can therefore be com puted by

studying the  corresponding two-point functions a t large times.

In practice, one defines an effective mass by, for example,

atMeff(t) =  In p ) )  • (2-25)

At sufficiently large times, the  effective mass converges to  th e  g round-state  energy; 

th is m anifests itself as a  p la teau  in a plot of the  effective mass as a  function of t. 

The coefficients of the sum of exponentials in Eq. 2.23 are real-valued and positive, 

and, in th is case, Mefr converges m onotonically from above. This inform ation is of 

practical significance because, w ith the  exception of the  pion correlator, s ta tistical 

noise in la ttice tw o-point correlators grows w ith t. Therefore, effective m ass p lateaux  

can be noisy and difficult to  resolve to  a  high accuracy; some insight into the  expected
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behaviour of the effective mass can help in determining a plateau.

2.6.1 M eson correlators from point propagators

Among the simplest interpolating operators on the lattice are local meson operators 

which take the form

0 ( x )  = 'il>f{x)rxpg{x), (2.26)

where F is an element of the Dirac algebra and / ,  g are flavour indices. For simplicity, 

we have om itted the possibility of a sum over quark flavours.

To illustrate how the two-point function in Eq. 2.22 may be computed numerically,

we first consider the meson propagator from the origin to another space-time point

X  = > 0,

G{t,x) =  {fi\oix)ô {o)\n) =  {n\ f̂{x)r'4)g{x)'iPg{o)r î}f{o)\n). ( 2 .27)

Wick contracting the quark fields, this function can be reexpressed in terms of fermion 

propagators

G{t, x) =  - {Tr{S f {0 ,  x)rSg{x,  0)Ft)) +  6fg{Tr{rSf{x,  x))Tr{r^Sf{0,0))). (2.28)

Sf {y , x)  is the fermion propagator from x  to y,  which can be computed numerically 

by inverting the fermion m atrix on a given background configuration, Sf{y,X]U)  =  

Mf{y,  x\ U)~^.  The angle brackets denote an average over background configurations. 

The fermion propagator satisfies the hermiticity relation

Sf{x,  y)  =  75-5/(t/, x)t75. (2.29)
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Assuming a flavour non-singlet state, f  ^  g, Eq. 2.27 can therefore be rewritten as

(2.30)

and the meson correlation function at fixed momentum p is given by

C{t,p) =  =  - ^ e " > ' “(r r (7 5 S ;( i ,0 ) '7 5 rS ,( i ,0 )r t )) .  (2.31)

Therefore, the correlator can be constructed from point-propagators connecting the 

origin to all other sites on the lattice. Practically, this amounts to computing a 

single column (in space-time indices) of the inverse fermion m atrix on each gauge 

configuration

This can be done using a conjugate-gradient algorithm.

Conversely, the disconnected contributions to flavour-neutral mesons require Sf{x,  x) 

a t all sites on the lattice. Effectively, this means th a t the inverse of the full fermion 

m atrix must be computed on each background configuration. In this case, standard 

inversion algorithms like the conjugate-gradient m ethod are prohibitively expensive.

In Chapter 6, a new method of stochastically estimating the inverse of the full fermion 

m atrix will be discussed and put to practical use.

X X

(2.32)
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2.7 Sym anzik ’s im provem ent program

In the hm it as the lattice spacing goes to zero, the lattice theory defined by the 

Wilson quark action must reproduce continuum QCD. Although this limit can never 

be reached, at sufficiently small lattice spacing a scaling regime is reached. As the 

lattice spacing is reduced, measurements of physical quantities become independent 

of the details of the lattice formulation and reliable extrapolations to the continuum 

limit can be made.

There are, however, practical restrictions, (outlined in Chapter 3) on the minimum 

lattice spacing which can be used in simulations. One is therefore interested in 

constructing lattice operators which minimise the deviation from scaling at moderate 

lattice spacing.

Symanzik [5, 6] was the first to introduce a systematic method to quantify and 

correct cutoff' effects in a lattice theory. He showed th a t a lattice theory can be 

described by a local effective Lagrangian, consisting of the renormalised continuum 

Lagrangian plus a linear combination of local lattice operators. These operators are 

multiplied by appropriate powers of the lattice spacing, a. In Symanzik’s approach, 

the effective Lagrangian is expanded in powers of the lattice spacing.

non-zero lattice spacing, this expansion has an infinite number of terms, each term  

contains contributions from a finite number of operators perm itted by the lattice 

symmetries. Therefore, in principle, it is possible to eUminate terms of a given order 

in a in the local effective Lagrangian by the inclusion of redundant operators in 

the lattice Lagrangian. At sufficiently small lattice spacing, the dominant lattice 

artifacts are contained in the lower-order terms of the expansion; the coefficients.

where denotes the set of lattice operators of dimension n +  4. Although, at
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are determined by physics above the lattice cutoff and can be computed in 

perturbation theory. Systematically eliminating lattice artifacts order by order in a, 

brings the lattice theory ‘closer’ to the continuum limit. Lattice operators used to 

perform physical measurements can be improved in a similar fashion.

Symanzik studied the 0^ theory [5] and the non-linear sigma model [6] and, in 

these cases, improvement can be implemented such th a t all Green’s functions cal­

culated in the improved theory are closer to the continuum. The extension of this 

program to a gauge theory is more involved. Liischer and Weisz [7, 8, 9] were among 

the first to apply Symanzik’s m ethod to a lattice gauge theory. They found th a t 

it was necessary to relax the improvement conditions. Rather than  demanding the 

improvement of all Green’s functions, they tuned the lattice theory by requiring th a t 

only on-shell quantities be improved. The on-shell improvement program has been 

crucial to the development of lattice gauge theory.
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Chapter 3 

Anisotropic lattice QCD

3.1 M otivation

Conventionally, lattice simulations have been performed on isotropic lattices which 

have the same lattice spacing along each space-time direction. The isotropic formal­

ism is the simplest space-time discretisation scheme. However, there are a number of 

reasons for formulating QCD on anisotropic lattices.

Quantum field theories are extremely complex and are difficult to simulate numer­

ically. In order to accurately model QCD on a computer the lattice spacing should be 

much smaller than  the typical length scales of the system under investigation while 

the lattice must be large enough to accommodate the system. For example, in Wil­

son’s original formulation, lattice spacings as small as 0.05 — 0.1 fm are necessary to 

reliably simulate QCD. Conversely, a spatial volume of approximately (2 fm)^ is re­

quired to realistically model a single meson, while a baryon may need about (3 fm)^. 

The computational cost of a lattice simulation increases linearly with the number of 

grid points. In addition, the algorithms used in the numerical integration undergo 

a ‘critical slowing down’ as the lattice spacing is decreased making this brute force 

approach to error control unfeasible. In many cases the use of improved lattice oper­

ators has made it possible to simulate QCD on much coarser lattices, however, there 

still exist a number of applications where the accuracy of numerical simulations is
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severely constrained by limited computational resources.

Some of these computational limitations can be circumvented by using asymmet­

ric lattices. For example, using a finer lattice spacing in the tem poral direction, at, 

than  in the spatial directions, a^, gives improved resolution of correlation-function 

decays with a minimal increase in computational workload. This offers a particular 

advantage in studies of heavy hadrons where effective mass plateaux rapidly degen­

erate into noise. In particular, the 3 1 anisotropic lattice has been used with great

success in studies of the glueball spectrum [16].

Similarly, 3-1-1 anisotropic lattices have been used in finite tem perature QCD in 

order to  make precise measurements of tem perature-dependent transitions.

Much of this thesis explores the application of anisotropic lattices to the simulation 

of heavy quarks. Simulations of systems containing heavy quarks are problematic 

because discretising the Dirac action leads to lattice artifacts which scale as aniQ 

where m g is the quark mass. Since, in order to control these errors, we require th a t 

a l / m q ,  it is not presently possible to accurately simulate systems containing a 

relativistic bottom  quark using standard discretisations of the Dirac action on an 

isotropic lattice.

Effective theories which do not suffer from large mass-dependent discretisation 

errors have proven more successful. For example, lattice NRQCD (Non-relativistic 

QCD) [11, 12] has been used with particular success in b-quark simulations. The 

effective action can be expanded in an infinite series of operators allowed by the 

symmetries of the lattice. In NRQCD, the action is w ritten as an expansion in 

powers of the velocity of the heavy quark which is small and therefore higher order 

terms are expected to make successively smaller contributions to the quantities of 

interest. The coefficients of the leading order terms in the expansion can be computed 

by matching scattering amplitudes in the effective theory and continuum QCD. This 

matching is usually performed using perturbation theory. Lattice perturbation theory 

is extremely complicated and calculations are not often performed beyond the level 

of one or two loops. The accuracy of the effective theory is therefore limited both

26



by the truncation in the expansion of the effective action and by the perturbative 

determ ination of the expansion coefficients. Also, the continuum limit of lattice 

NRQCD is not well-defined since the effective theory depends on the lattice to provide 

an ultra-violet cutoff. One therefore relies on matching calculations to eliminate 

lattice artifacts and is constrained to work in a window where m ga >  1.

On the other hand, the Fermilab approach [26], which is based on a non-relativistic 

interpretation of the Wilson fermion action, holds over the full range of quark masses 

and does have a well-defined continuum limit. The price one pays for this, is the intro­

duction of a large number of irrelevant terms in the fermion action. The coefficients 

of these terms must be tuned in a mass-dependent way.

Using anisotropic lattices, it appears possible to accurately simulate relativis- 

tic heavy quarks with the computing resources which are currently available. This 

approach uses a discretisation of the Dirac action specifically formulated for the 

3 -t- 1 anisotropic lattice. In this formulation, to lowest order in the strong coupling, 

mass-dependent cutoff effects appear only in the combination atrriQ. These can be 

controlled by making the temporal direction sufficiently fine. Lattice artifacts which 

arise from the discretisation of the spatial directions couple to the three-momentum 

of the heavy quark. Since the heavy-quark momentum is quite small, a relatively 

coarse lattice spacing can be used along the spatial directions.
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3.2 A nisotropic gauge actions

The simplest gauge action is constructed from the smallest Wilson loop allowed on 

the lattice, the plaquette

= Ufj,{x)Ui,{x + fl)Ul{x +  0)Ul{x).  (3.1)

Using Taylor’s theorem, we can express the plaquette as an expansion in powers of 

the lattice spacing

2 2

=  1 +  ia^a^goFf,^ +  0(a®). (3.2)

For link variables in the fundamental representation of SU(3), the Wilson gauge

action on the 3 +  1 anisotropic lattice is written

s "  = T ^ . +  =  ^  /  +  0 (a5 , a?), (3.3)

where

=  R e T r [ l - P y ( x ) l  (3.4)
X  i < j

and

n, =  ^ ^ i R e T r [ l - P , i ( i ) | .  (3.5)
X  i

is the bare anisotropy, at the tree-level = Us/at, and (3 = where, once 

again, qq is the bare coupling constant. It is worth noting th a t the bare coupling 

constant and the lattice spacing are not independent parameters; they are related 

by renormalisation group arguments. Higher values of /3 correspond to finer lattice 

spacings and in the continuum limit qq =  0.

Having detailed the construction of the simplest anisotropic lattice gauge action,
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we now describe the modified gauge action used in our simulations. To improve 

scaling, this action incorporates the modifications described in the following sections.

3.2.1 Symanzik improvement of the gauge action

FYom Eq. 3.3, it is clear th a t in order to remove leading-order discretisation eff'ects 

in the gauge action, operators of dimension 6 must be considered. There are 18 in­

dependent dimension-6 operators which satisfy gauge invariance and the symmetries 

of the anisotropic lattice. All of these can be constructed from linear combinations 

of the plaquettes and 6-hnk loops of the form shown in Figure 3-1.

Figure 3-1: The six-hnk loops required to improve the gauge action to C>(a'*). Only 
the rectangular loop is used in the construction of the anisotropic improved gauge 
action

Because of the large number of allowed operators there is some freedom in the

• Additional terms in the gauge action should remove leading-order 

discretisation effects.

• The implementation of these additional terms in code should not 

significantly slow down the generation of gauge configurations.

• The improved action should retain the good properties of the simpler 

implementation such as reflection positivity. ^

În Euclidean space-time, a function F  of the fields is said to be reflection positive if it satisfies 
( 0  (F ) , F )  >  0, where 0  denotes time reflection and F  is the complex conjugate of F.  The positivity 
of gauge-invariant observables of the lattice theory is required in order to define a positive transfer 
operator connecting adjacent timeslices on the lattice. If full refiection positivity is not realised it 
may still be possible to construct a positive transfer operator over two timeslices. However, the 
spectrum of the corresponding Hamiltonian may contain ghost states, lattice artifacts which can 
adversely affect numerical simulations.

choice of the operator coefficients. The criteria for choosing the coefficients are
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Inclusion of bent-rectangle operators is not compatible with the second criterion 

listed above and the two-time-slice rectangle violates reflection positivity. Unfortu­

nately, it is not possible to exclude all of these operators and remove all O(a^) errors. 

However, since the action is designed for an anisotropic lattice, the improvement 

condition may be relaxed and 0{af)  errors can be ignored.

One action which satisfies the relaxed improvement condition and does not include 

bent-rectangular loops or two-timeslice rectangles is

(3.6)

The six-link terms are

3
X  X

where

Rtiu{x) = U^{x)Uf,{x + jl)Uu{x + 2jl)Ul{x + jl + i>)Ul{x -f- u)Ul{x).  (3.8) 

3.2.2 Tadpole improvement

So far, we have only considered tree-level improvement of the gauge action; calculating 

the improvement coefficients at higher orders in perturbation theory quickly becomes 

extremely complicated. However, there exists a very simple procedure called mean 

field or tadpole improvement which can capture the bulk of these radiative corrections 

and drastically reduce discretisation errors.

The motivation for tadpole improvement came from investigations into the failure 

of early lattice perturbative calculations to reproduce the results of numerical simula­

tions. Although calculations in continuum QCD indicated that perturbation theory
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should be reliable a t la ttice spacings as large as 0.5 fm, large discrepancies were 

observed between sim ulation results and  pertu rbative calculations above 0.05 fm.

Parisi [13] and  Lepage and Mackenzie [14] realised th a t these discrepancies arose 

because of the  choice of the  bare la ttice coupling as the  expansion param eter in 

pertu rba tive  calculations.

Because the la ttice theory  is form ulated in term s of link variables, which have 

an asym ptotic expansion in powers of the  coupling, la ttice Feynman rules include 

an infinite num ber of gluon vertices th a t have no continuum  analogue. These result 

in tadpole interactions which are purely lattice artifacts. Naively, one would expect 

the  contributions of these tadpole interactions to be suppressed by powers of the 

la ttice spacing and, therefore, to  be quite small on m oderately fine lattices. However, 

contracting the  gauge fields in tadpole diagram s generates divergences which cancel 

exactly the  la ttice spacing suppression. Thus, the assum ption th a t rad iative correc­

tions to  the  bare la ttice coupling are small and th a t it is therefore a good expansion 

param eter for pertu rba tive  calculations is incorrect.

T he simple rem edy suggested was to  reform ulate the  la ttice theory in term s of 

rescaled link variables

f/t ^  -  (3.9)
U t  V jq

where

(3 1̂0)

contain m ost of the  tadpole contributions. Tadpole improved lattice operato rs are 

considerably closer to  their continuum  counterparts and fu rther improvement beyond 

the  tree-level is often unnecessary.

The tadpole coefficients can be determ ined directly from sim ulations b u t this 

requires gauge-fixing. In practice, Ug is com puted by inserting a tria l value in to  the

Us{t)  =  {  g R e  TrC/i(i)
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action. This tria l value is varied until it agrees w ith  the  value determ ined from the 

fourth  root of th e  expectation value of the  spatial p laquette

Once Us has been fixed, Ut can be com puted from th e  tem poral plaquette. However, 

on highly anisotropic 3 +  1 lattices, Ut is expected to  be very close to  unity  (this will 

la ter be verified a t 1-loop in pertu rb a tio n  theory) and, in all our sim ulations, we have 

set Ut =  1.

3.2.3 T he addition of an adjoint term

The actions considered so far have been constructed from W ilson loops in the  funda­

m ental representation  of SU(3). However, a general gauge action may involve a sum 

over representations.

Studies using gauge actions containing b o th  fundam ental and adjoint term s have 

shown the  presence of a  line of first-order phase transitions in the  phase space of the 

fundam ental and  adjoint coupling constants [15]. This line crosses the  adjoint axis 

into the  first quadran t of the phase plane a t a  positive value of the  adjoint coupling, 

P a - The line ends in a  second-order phase transition  above the  fundam ental axis. 

T here are no singularities along the  positive fundam ental coupling (/3/r) axis and, 

in principle, it is safe to  take th e  continuum  lim it along th is line. However, some 

values of /3f  typically used in sim ulations are quite close to  the  critical point. The 

results of sim ulations perform ed a t these values of th e  coupling show the  effects of this 

unphysical fixed point. For exam ple, th is was the  reason for the  ‘scalar d ip ’ observed 

in early investigations of the  glueball spectrum  by M orningstar and Peardon [16]. 

They used th e  improved gauge action and anisotropic la ttices w ith ra th e r coarse 

spatial la ttice  spacing (0.2 -  0.4 fm). T hey found th a t the  m ass of the  scalar glueball, 

m easured in la ttice units, fell as th e  spatial la ttice spacing was increased. T he mass 

reached a  m inim um  a t ~  0.25 fm before rising again. T he scalar glueball is the
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lightest mass particle in the pure gauge sector of QCD and the dip was caused by 

the divergence of the correlation length close to the critical point.

To circumvent this problem, an adjoint-like term  constructed from the product of 

two spatial plaquettes separated by a single time-slice

 ̂ ^ ^  1 1 -  ^Re T r P i ^ x ) R e  (x +  i )  \  (3.12)
x , i > j  ^

was added to the action. This operator has an identical expansion in powers of the 

lattice spacing to Clg, to 0{a'^) .  Making the replacement

n , ( 1+u; )n,  -  (3.13)

in the gauge action is therefore compatible with tree-level Symanzik improvement. 

Choosing the free param eter ui to be positive allows us to run simulations below the 

fundamental axis, well away from the critical point. The exact form of the gauge 

action used in our simulations is
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3.3 A nisotropic fermion actions

Initial investigations into the  application of anisotropic lattices to  heavy quark  sim­

ulations considered the anisotropic Sheikholeslam i-W ohlert (SW) action. T he SW 

action differs from th e  W ilson quark action by the  inclusion of an 0 { a )  improve­

m ent term , th e  so-called clover term . In Ref. [17], the  free quark  dispersion relation 

for the  anisotropic SW  action was studied. A t low spatial m om enta, th e  lattice 

energy-m om entum  relation should reproduce the  continuum  relativistic expression, 

E'^ =  -h p^, and m ass-dependent corrections to  th is form were exam ined. It 

was found th a t,  although the  spatial W ilson param eter (rs) can be tuned  to  remove 

large a^TTig errors, a t large anisotropies th is tun ing  can lead to  the  rein troduction  

of doublers in num erical simulations. T he authors conclude th a t anisotropic lattices 

are useful in charm -quark sim ulations, where only a m oderate anisotropy, ^ ~  3, IS 

needed. However, for the SW  action, the  reappearance of doublers spoil sim ulations 

at the  anisotropies required to  accurately sim ulate relativistic 6-quarks.

3.3.1 A nisotropic R otated  Im proved ferm ion A ction  (A R IA )

We use an asym m etric W ilson-type action which has been specifically designed for 

large anisotropies, i.e. ^ >  5. In the  case of the  SW  action, large asiriQ  corrections to  

the  energy-m om entum  relation can arise from the  cross-term  of the  contribu tion  from 

the  spatia l W ilson te rm  and the  bare quark  mass. T he W ilson term  is a  dim ension 

5 operator and  can significantly affect the  low-m om entum  behaviour of the  la ttice 

theory. T he action used in our sim ulations is Sym anzik-im proved and incorporates 

a dim ension 7 operato r to  control spatial doublers. T he contribution  of th is higher- 

order te rm  is strongly suppressed by powers of the lattice spacing and it has a  much 

milder effect on the  low-mom entum analysis th an  the  W ilson term .

To construct the la ttice action, we first consider the  continuum  fermion action
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and apply rotations to  the quark fields

=  [1 -  ^ ( 7 0 ^ 0  -  rn)]il),

= -0[1 -  ^ (7 o -0 o  -  m)]. (3.15)

A t the tree-level, th is is an isospectral transform ation, leaving physical observables 

unchanged; at the quantum level, the Jacobian of th is transform ation does m odify 

the path integral measure, but here we consider only tree-level improvement. The

rotated continuum action is given by

Sr =  '4)rMQlpr

+ loDo^iDi -  m(7iA +

+ 'yiDi'foDo -  + m)}V̂ r

+ 0 { a l ) ,  (3.16)

where M q =  +  For sim plicity, the integral over space-time has been dropped

but i t  is implied. The fermion action can be w ritten  more concisely by introducing

M r  =  Ur 'T iD i  +  ^ 0 0 0  + U r m ,  (3.17)

where =  (1 +  ^ r a t m ) .  Up to  corrections of 0 { a ^ )  the continuum action is

Sr =  i> rM r i)r  ~  (-Dq ~  (3.18)

where the chromoelectric field Fjo is defined as

=  (3.19)

and Gio is given by =  ^[7 ;,,7 i^]-

The la ttice action is constructed by discretising the rotated continuum action.
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Discretising D q yields a Wilson term  which eliminates tem poral doublers, however, 

because this term  is generated by a continuum field rotation, the lattice dicretisation 

is accurate to 0 { a t ) .  Following the work of Hamber and Wu [18], a higher-order 

irrelevant operator is introduced to remove spatial doublers

=  'iprM r'tpr ~  ~  ^  (3.20)
i

where the positive real-valued coefficient, 5, is analogous to the Wilson coefficient, r.

Since this action is intended for use on relatively coarse spatial lattice spacings, to 

eliminate O(a^) cutoff errors an improved discretisation is used for the kinetic terms 

in the spatial directions, 7 iA - Neglecting the link variables, this improved lattice 

derivative is given by

i  +  -  (^ ( i-A ))  -  ^ ['# '(x  +  2 A ) 2 / i ) ]

=  (3^21)

The Hamber-Wu term  is discretised as

1
a
-4 [0 (x -h  A) -  0(x - /i)]-f 60(x)}. (3.22)

The chromoelectric field, Fjo, is constructed from a combination of four plaquettes in 

the i  — t  plane. Including tadpole improvement, it is given by
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where is the quark field anisotropy, at tree-level = ^g, and the clover operator is

C i ( x )  =  U i i x ) U t { x  +  i ) U l i x  +  i ) U l { x )

+ U t { x ) U j  { x  — 2 +  i ) U l { x  — i ) U i { x  — i)

+U\{x  — i)Ul{x — I — i)Ul{x — I — i)Ut{x — i) 

+Ul (x  — i)Ui{x — i)Ut{x +  1 — i)Ul {x). (3.24)

Finally, including link variables and tadpole improvement coefficients, the fermion 

m atrix can be written

I f /  18s
—  ixrvnat +  —

Qt I V  iq
1

+ r +  xjj^x)

2ut
r -  'yo)Ut{x)'ip{x +  t) +  {r +  7o)t/t (x -  t)'i/j{x -  t)

^  M s -  j  Ui{x)'lp{x +  ?) +  ^  M s + ) Uj {x ~  l)lp{x -

) Ui{x)Ui{x +  i ) ^{x  +  2z)

u
^  +  Uj(x -  i)Û i {x ~  2i )^{x -  2i) (3.:

In the remainder of the thesis this asymmetric fermion action is referred to as ARIA. 

The acronym ARIA stands for Anisotropic Rotated Improved Action.
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Chapter 4

Tuning anisotropies in the  

quenched approximation

In the description of Symanzik improvement it was mentioned that, for sufficiently 

fine lattice spacings, the coefficients in a lattice action could be computed perturba- 

tively. However, it is also possible to tune some of the parameters non-perturbatively 

in lattice simulations. Action couplings can, for example, be tuned to restore a con­

tinuum symmetry, such as Euclidean invariance. This approach is preferable to a 

perturbative determination of the action parameters because it can correct for non- 

perturbative effects and because additional corrections to the couplings computed in 

this way only appear at higher orders in the lattice spacing.

The anisotropic formalism introduces two additional parameters, the quark and 

gauge anisotropies, and ^g. As stated in Chapter 3, at the tree-level, these pa­

rameters are equal to the aspect ratio of the spatial and temporal lattice spacings,
dgi.e. ^ = —. When the effects of radiative corrections are included, these parameters 
at

have to be tuned in a self-consistent way so that the renormalised anisotropies, 

measured in simulations agree at some target value. In full QCD simulations this 

is quite a challenge. Because both the quark and gauge anisotropies enter into the 

generation of gauge configurations, they have to be tuned simultaneously. The tuning 

procedure for dynamical fermions will be outlined in Chapter 6.
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Here, we describe how the anisotropy parameters can be tuned in the quenched 

approximation. This is considerably easier than in full QCD because the gluon 

anisotropy can first be tuned by considering the pure gauge sector. Once has 

been fixed, fermions can be introduced and may be determined.

4.1 The gauge anisotropy

In our work, the anisotropy for the pure Yang-Mills sector was determined from the 

static-interquark potential measured along coarse and fine directions [21], In this 

method, the anisotropy is tuned by demanding that the measurements along the 

coarse and fine directions yield the same function of physical distance.

The (coarse) z-direction is chosen to be time and the interquark potentials are 

determined by measuring

where Ŵs5(x, 2) is a Wilson-loop in the coarse directions and Wts{t,z) involves the 

time direction. As  ̂ > 00, Vs{'x,z) —> V ŝ(|x|) and Vt(t,z) Vt{t).

We tune the gauge anisotropy by first choosing a target value and then de­

termining the input, ^g. To determine this input anisotropy, V ŝ(|x|) and Vt{t) are 

computed for a fixed physical distance r =  |x| =  t. The target anisotropy satisfies

For the Symanzik and tadpole improved anisotropic gauge action, this method of

(4.1)

r = rtras = ^rirat, Ur E Z (4 ,2)

and ^g is tuned such that

Vg(̂ Tlj-Clg) . (4 .3)

calculating the anisotropy parameter was compared to the determination from the
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dispersion relation of the torelon in Ref. [22], If the anisotropic formalism is to  be of

any practical use, different determ inations of the anisotropy param eter m ust agree 

to  a high precision, and, in th a t  case, the  results of the  two m ethods differed by a t 

m ost 4%.

4.2 A non-perturbative determ ination of the quark 

anisotropy

To tune the  quark  anisotropy, the  properties of hadronic bound sta tes which contain 

quarks need to  be considered. T he renorm alised anisotropy can, for exam ple, be 

determ ined from the  dispersion relation of a relativistic meson or baryon. In la ttice  

sim ulations, energy and m om entum  appear only in the  dimensionless com binations, 

B  = a tE  and p  =  agp. In term s of these variables, the  relativistic dispersion relation

T he renorm alised anisotropy, is therefore given by th e  slope of the  energy- 

m om entum  relation a t low spatial m om entum .

This section details an investigation into the  calibration of the  quark anisotropy 

param eter using meson dispersion relations. The m ain considerations in th is study  

are

1. The uncertain ty  in the  determ ination of the  anisotropy.

This includes sta tistica l uncertain ty  and system atic errors. In order to  quantify 

system atic errors a num ber of different mesons were considered.

2. The dependence of the  renorm alised anisotropy on the  quark  mass.

O ur principal m otivation for using anisotropic la ttices was to  control mass- 

dependent errors.

IS

(4.4)
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number of configurations 100
Volume 10  ̂ X 120

CLg 0.21 fm
6

a t r r i q -0 .0 4  ,0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5

Table 4.1: Simulation parameters.

4.2.1 Sim ulation details

The param eter values used in this study are summarised in Table 1.

A very fine temporal lattice spacing, at ~  0.04, was used in this study so tha t 

errors were expected to be very small. Therefore, the chromoelectric term in the 

fermion action, which effects 0 { a t )  improvement, was omitted. For consistency, the 

coefficient fir, which multiplies the kinetic terms in the fermion action, was set to 

one. In this case, the quark action does not include field rotations.

A hundred gauge configurations had already been tuned to ^ =  6. The actual 

value of the target anisotropy is not particularly relevant to the tuning procedure and 

we can reformulate the problem in terms of another physical observable, c =  

which we call the speed of light. The bare anisotropy, is tuned so th a t the speed 

of light takes its continuum value of unity. The tuning procedure therefore amounts 

to a restoration of Euclidean invariance.

A broad range of quark masses was used. Bare mass values ranged from atruq =  

—0.04 to atVRq =  1.5 in this study. Since our fermion action breaks chiral symmetry, 

quarks are subject to an additive mass renormalisation. Therefore, the lightest bare 

mass used in this study actually corresponds to a positive renormalised quark mass. 

Physically, this was found to be close to the strange quark mass. At the other end 

of the spectrum, the heaviest quarks used were found to lie above the b-quark.

Dispersion relations were computed for pseudoscalar =  0“ '*') and vector

(1 ) mesons containing degenerate and non-degenerate quark combinations. The
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interpolating operators used were

o f  = ipjii). (4.5)

To enhance the vector signal, contributions to the correlator from the three spatial 

directions were averaged. In the case of non-degenerate quark combinations, one 

quark mass was fixed at atiriq = —0.04. Meson energies were computed for momenta 

2i\n/asNsi where Ng is the number of lattice sites in the spatial directions, at n  =  

(0, 0, 0), (1, 0, 0), (1,1,0) and (1,1,1), averaging over equivalent directions.

4.2.2 C om puting m eson energies

A relativistic meson can propagate backwards in time and on a lattice of finite tem­

poral extent T  and (anti-)periodic boundary conditions, the two point correlator is 

given by

C{t, p) = Y , C n  . (4.6)
n

This correlator is symmetric about t = T /2  and the signal was enhanced by averaging 

C{t, p) about this point. The correlator signal was further improved by averaging 

over four sources at timeslices 0, 30, 60 and 90.

The ground state can be determined from a fit to the correlator in the time interval

1 T
(4.7)

E q — E l  2

where Ei  is the energy of the first excited state of the meson. In this range

C{t, p) ^  Co -f , (4.8)

and ground state energies were determined by fitting to this form.

The fits were done using a minimisation algorithm which takes correlations
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in the da ta  into account. The statistical error in each fit was determined from 1000 

bootstrap samples of the gauge ensemble.

anisotropic lattice, meson energies could be determined to a high precision. Although

a more sophisticated, partially-autom ated approach was used to determine the op­

timal fit ranges. In this approach, the minimum and maximum timeslices of the fit 

were varied independently of each other. A fit was performed on each range and the 

results were plotted in histogram format; the fit values together with error estimates 

were plotted on one axis and the goodness of the fit on the other. Invariably, a 

number of overlapping ranges yielded good fits which were consistent with each other 

within errors. Of these, the optimal fit was tha t which included most timeslices. The 

quality of the fits were finally confirmed by eye.

Figure 4-1 shows effective mass plots for the pseudoscalar mesons containing de­

generate quarks. The upper plot shows effective masses for the lightest quark mass 

for zero momentum and n  =  (1,1,1). The corresponding plot for atrriq =  1.0 is 

shown in the lower figure. Effective mass plots for the non-degenerate quark combi­

nations were equally good and fits to the pseudoscalar correlator included 10 or more 

timeslices. Analogous plots for the vector meson are shown in Fig. 4-2.

4.2.3 C om puting th e  dispersion relation

For a given meson, ground-state energies were computed over the range of spatial 

momenta. The quantity (at£^(p))^ was plotted against (cisP)^, and the speed of 

light, which we denote c, was determined from a fit to the continuum form =

£'^(0) - I -  c^p^. For the momenta considered and over the full range of quark masses 

there were no significant deviations from this form. Fits were performed using the

Because of the improved resolution in the tem poral direction provided by the

reasonable fit ranges could easily be found by simply looking at the effective mass

a tM e d { t )  =  cosh (4.9)
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a,niq = -0.04
Onp = (0,0,0)
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Figure 4-1: Pseudoscalar meson effective mass plots. These illu stra te  th e  good fits 
which are possible for a wide range of quark  masses and meson m om enta. Phys­
ically atrriq =  —0.04 corresponds to  the  strange quark mass while a tir iq  — 1.0 is 
approxim ately equal to  the b-quark mass.

44



0.8

0.6

0.4

0.2

0
0 10 20 30 40 50 60

t/a,
1.65

Hp = (0,0,0)

£ 1.55 
ca

1.45

t/a,

Figure 4-2: Vector meson effective mass plots. These show the same qualitative 
behaviour as the pseudoscalar effective mass plots.
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minimisation algorithm and the error on c was determined using the bootstrap 

algorithm.

4.2 .4  Tuning th e quark anisotropy

Initially, the input anisotropy was chosen to be =  6 and c was determined from 

the pseudoscalar meson containing degenerate quarks with mass atrriq = —0.04.

The exact relation between the bare anisotropy and the measured anisotropy is a 

complicated function of the lattice parameters, which can be written

=  (4.10)

where

^ ? (0 ,0 ,C ,e ,)= -l. (4.11)

To tune the anisotropy, we considered the effect of a small change in the bare 

anisotropy >̂<7 —> keeping the other parameters fixed. The corresponding

change in is

+ + 0{g'^5Q.  (4.12)

For sufficiently small 5^q, the change in is expected to be negligible so th a t the

renormalised anisotropy varies in proportion to ^q. This naive argument suggests

th a t we ‘boost’ the bare anisotropy, making the replacement

(4.13)

Therefore, quark propagators were regenerated using the new input anisotropy =  

6.17 and the energy-momentum relation for the pseudoscalar meson was recomputed. 

The value of c determined from this tuned data  was 1.02 ±  0.01. This result seemed

46



to indicate that the anisotropy could be tuned to high-precision non-perturbatively. 

To check this, c was then measured from the vector dispersion relation. The result, 

c =  0.97(2), is consistent with unity to within 1 sigma.

0.06

0.05

0.04

LU 0.03

0.02

0.01

0 3 4

Figure 4-3: Dispersion relation for the lightest degenerate meson. For the range of 
momenta considered the plot shows no significant deviation from the continuum form 
E'̂  =  hP +  c^p^. The fit yields c =  1.02 ±  0.01

Mass dependence of the anisotropy.

The reader will have noticed a slight discrepancy between the tree-level definition of 

the bare anisotropy  ̂ and the non-perturbative determination. Since the quark 

action has 0{at)  discretisation errors, we expect mass-dependent corrections to the 

relativistic dispersion relation even at the tree level. Even in the isotropic formalism, 

c is modified by mass-dependent corrections so that a hadron’s rest mass, E{0),  is not 

generally equal to its kinetic mass, {d'^E{0)/ .  However, the premise for using 

the anisotropic quark action is that, as long as atrriq <?C 1, mass-dependent errors are 

negligible. This implies that a single determination of the action parameters should
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hold over a range of masses. To test this, was fixed a t 6.17 and c was computed 

for a range of quark masses. Tables 4.2 and 4.3 show the speed of light determined 

from the dispersion relations for each quark mass for both pseudoscalar and vector 

mesons.

Pseudoscalar Vector
0(771, dtMps c X^/Ndf atMv c x V N j ,
-0.04 0.1045^^ 1.02+i 6.3/2 O . I G l t l 0.97l^ 0.66/2
0.10 0.38311^ 0.983i^ 2.8/2 0.39341^ 0.9821^ 2.1/2
0.20 0.5418^^ 0.9951? 0.33/2 0.54721^ 0.9901^ 2.1/2
0.30 0.6887^^ i.oiol? 2.4/2 0.69241^ 0.9971^ 4.5/2
0.40 0.8269^^ 1 . 0 2 2 t l 0.65/2 0.82941^ l.O lll^ 2.3/2
0.50 0.95691^ 1.0351^ 1.3/2 0.95871^ 1.02511 1.6/2
1.00 1.50861^ 1.06911 1.3/2 1.50921^ 1.0721^ 1.2/2
1.50 1.9428^^ 1.075l^ 0.081/2 1.94311^ 1.0721^ 0.058/2

Table 4.2: Ground state  rest masses for pseudoscalar and vector mesons with degen­
erate quarks. The speed of light determined from the dispersion relation for each 
quark mass is shown with the corresponding x^/Ndf.  The errors shown are statistical 
only.

Pseudoscalar Vector
atrrig UtMps c at M y c x V N ,!
0.1 0.26101^ 0.981} 0.23/2 0.28021^ 0.98l^ 0.19/2
0.2 0.34661^ l.O ll^ 0.56/2

00 00 
-1- 1 
T—

1
OCOCOo

0.991^ 0.64/2
0.3 0.42541? 1.021^ 2/2 0.43511^ l.OOl^ 0.45/2
0.4 0.49871? l.O ll^ 1.5/2 0.50561^ 0.991^ 1.4/2
0.5 0.56681^ 1.02l^ 1.7/2 0.57201^ l.OOl^ 1.6/2
1.0 0.85211}^ l.OOl^ 2.6/2 0.854lj 1.021^ 0.62/2
1.5

+ 
1 

o

1.021^ 2.1/2 1.0751} i . o i l ^ 1.8/2

Table 4.3: Ground state  rest masses for pseudoscalar and vector mesons with non­
degenerate quarks. Other details are as for Table 2.

Of the mesons containing degenerate quarks, the lightest mass combinations were 

the noisiest. Non-degenerate combinations, which contain the lightest quark, were 

also noisier than their degenerate counterparts. This is not unexpected; on a given 

set of configurations, relative fiuctuations in the low-lying eigenmodes of the fermion 

matrix, which are relevant to hadronic physics, increase with decreasing quark mass.
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There was no significant difference between pseudoscalar and vector particles for 

a given quark combination at any mass. However, mesons containing degenerate 

quarks showed a stronger mass dependence than non-degenerate particles. This is 

illustrated in figures 4-4 and 4-5. In both cases, the x-axis plots the mass of the 

mesons containing degenerate quarks.

The stronger mass dependence of the degenerate quark combinations arises be­

cause -onium states containing heavy quarks are tightly bound with a small Bohr 

radius and are therefore more susceptible to discretisation effects.

For degenerate quark combinations, the change in c over the range of masses 

considered was ~  9%. In the case of the non-degenerate combinations the relative 

change was about 4%. However, the discrepancy between the two determinations 

only becomes significant for atvriq > 0.5. On this lattice, atrriq =  0.2 is close to the 

charm quark mass and the change in any determination of c over this range is at 

most 3%. This result confirms the feasibility of quenched charm simulations at this 

anisotropy.

In order to perform 6-quark simulations on this lattice, we require atrrig 1. In 

this range, the action couplings must be tuned in a mass-dependent way in order to 

regain continuum QCD. This is the Fermilab approach [26] which has proven success­

ful in studies of the charmonium spectrum and b-physics. We therefore attem pted 

to  retune the anisotropy at a jm , =  1.0.

The dependence of the measured speed of light on the bare anisotropy for both 

pseudoscalar and vector mesons is shown in Fig. 4-6. Note the discrepancy between 

the value of c determined from degenerate and non-degenerate quark combinations 

for each value of the input anisotropy. The value of c determined from the -onium 

states moves closer to its target value of unity while c determined from the non­

degenerate quark combinations moves away from this value. However, once again, 

values computed from pseudoscalar and vector mesons for a given quark combination 

are in agreement. Such an inconsistency was first reported in simulations performed 

with an isotropic clover action in Ref. [19]. The issue was resolved in Ref. [20] which
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^tMps
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StMps

Figure 4-4: The mass-dependence of the speed of hght determined from the pseu­
doscalar dispersion relations for =  6.17. The plot shows mesons with degenerate 
and non-degenerate quark mass combinations. The x-axis plots the mass of the meson 
containing degenerate quarks.

demonstrated that the anomaly could be eliminated by including higher-order mass- 

dependent improvement terms in the quark action.
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Figure 4-5: The mass-dependence of the speed of hght determined from the vector 
dispersion relations with =  6.17. Both degenerate and non-degenerate quark 
combinations are shown.

4.3 Conclusions

In this chapter, we described the non-perturbative tuning of the quark and gauge 

anisotropies. We considered the quenched approximation where this difficult task
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Figure 4-6: The speed of hght measured from pseudoscalar (PS) and vector (V) 
dispersion relations as a function of the bare anisotropy, ^ q . In both  plots the quark 
mass is fixed at a tvriq  —  1.0, which is expected to  lie outside the range of applicability 
of the anisotropic lattice. In spite of this, discrepancies between degenerate and 
non-degenerate quark combinations are only of the order of a few percent.

factorises into two simpler problems.

The tuning of the anisotropy in the pure Yang-Mills sector was outlined; however, 

we focused on the non-perturbative determ ination of the quark anisotropy parameter. 

This was done by demanding th a t meson dispersion relations have the correct rela- 

tivistic form at small momenta. The improved resolution offered by the anisotropic 

lattice allowed us to  compute dispersion relations to  a high precision.
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On the anisotropic lattice, provided atrriq <C 1, mass-dependent cutoff effects 

should be heavily suppressed. We found th a t a single determination of the anisotropy 

at the lightest quark mass a jm , =  —0.04 held up to a tm , 0.5, so tha t lattice 

artifacts were small even for asirig >  1. Over this range, pseudoscalar and vector 

mesons containing both degenerate and non-degenerate quark combinations yield 

consistent results. These results indicated th a t relativistic charm quarks could be 

accurately simulated on this lattice.

We then considered a mass-dependent tuning of the anisotropy at atrUq =  1. In 

this case, we found inconsistencies between degenerate and non-degenerate mesons 

and further improvement of the fermion action is required to simulate at these pa­

ram eter values. However, atrrig =  1 is outside the intended range of applicability of 

the anisotropic action and it should be possible to simulate b-physics using larger 

anisotropies.
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Chapter 5

A perturbative investigation of the 

fermion action

In th is section, we tu rn  our a tten tion  to  an analytic investigation of the  fermion 

action using weak-coupling pertu rba tion  theory. F irst, we review the  properties of the 

fermion action a t the  tree-level. Then, we detail our determ ination  of corrections to  

the  speed of light, m easured from the la ttice  quark dispersion relation, a t the  one-loop 

order. This quark  action has already been investigated a t one-loop in pertu rba tion  

theory in Ref. [28]. T h a t study was perform ed in the  lim it of continuous time, 

at —> 0, ^ > oo, where undesirable 0 { a s m q )  errors are m anifest. T he au thors found 

th a t the  one-loop correction to  the speed of light was alm ost linear in They

were unable, however, to  make any quantitive prediction for th e  m agnitude of this 

correction or to  exam ine the  functional dependence of the  correction on the  bare 

anisotropy. W ith  our work, we aimed to  address these issues.

Furtherm ore, having perform ed a numerical investigation of the  quark action, we 

were in a position to  assess the  validity of one-loop pertu rb a tio n  theory on spatially 

coarse bu t tem porally  fine asym m etric lattices. This is perhaps the  m ost im por­

ta n t point because our ability to  make reliable physical predictions using anisotropic 

lattices depends on the  accuracy of pertu rba tive m atching calculations.

We present results for the  renorm alisation of the  quark rest mass. We also com-
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pute the mass and anisotropy dependence of the speed of hght renormahsation and 

compare with the results of our numerical investigation.

5.1 L attice perturbation  theory

The trouble w ith  lattice perturbation theory

Lattice perturbation theory (LPT) is extremely complicated. Although the lattice 

does provide an ultra-violet cutoff, it is not Euclidean invariant. Loop integrands 

on the lattice are complicated trigonometric functions of momentum and integrals 

can only be evaluated numerically. Also, as we mentioned earlier, because the gauge 

sector of the lattice theory is formulated in terms of link variables, there are an infinite 

number of interaction vertices which have no continuum counterparts but which have 

a significant effect on the physics at finite lattice spacing. Add to this the fact that 

each lattice action defines a different regularisation with different Feynman rules and 

it is easy to understand why, until recently, progress in LPT has been slow, with few 

calculations beyond the one-loop order.

A utom ating Perturbation Theory

To circumvent the difficulties outlined above, a number of groups [23, 24] have in­

vested considerable effort in autom ating perturbative calculations, substituting nu­

merical power for complicated manipulations of lattice integrands. Their software 

is not optimised for a particular lattice discretisation but is designed to be action 

independent. Therefore, once a suite of code to compute a particular quantity has 

been written, the calculation may be repeated for a range of lattice actions. The 

manipulation of loop integrands by hand can be a considerable source of error in 

perturbative calculations. By autom ating this procedure the opportunities for error 

are considerably reduced, allowing for increasingly ambitious calculations involving 

a large number of Feynman diagrams and sophisticated actions.
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Actually, much of the  framework for a  fully au tom ated  approach has been in 

place for some time. In their seminal 1986 paper, Liischer and Weisz proposed an 

algorithm  for autom atically  generating in teraction vertices in the  pure gauge theory. 

Lepage’s numerical in tegrator, VEGAS [25], which is commonly used to  evaluate loop 

integrals has existed for even longer. However, only recently, have com puters become 

sufficiently powerful th a t a  num erical brute-force approach to  L P T  can yield accurate 

results in a range of calculations.

Later, we will describe how we incorporated some of th is au tom ated  framework 

into our study, thereby paving th e  way for more advanced pertu rba tive  investigations.

5.2 Lattice Feynman rules

In order to  perform  pertu rba tive  calculations, it is necessary to  define a  generating 

functional for the la ttice  Feynm an rules. We cannot simply add source term s to  the 

la ttice  partition  function given in Eq. 2.18 as it stands. T here are two reasons for 

this: firstly, it is necessary to  fix a  gauge. A lthough gauge-fixing is not required 

in num erical calculations of physical observables, the  pertu rba tive  expansion is ill- 

defined unless a gauge is fixed. Secondly, one needs to  consider contributions from the 

p a th  integral measure. Since the  pertu rba tive expansion is in powers of th e  coupling 

q q  and hence the gauge fields we m ust reform ulate the  m easure in term s of the 

gauge fields themselves.

G auge fixing

W eak-coupling p ertu rba tion  theory involves an expansion abou t a classical minimum 

of the gauge action. This m inim um  is degenerate w ith  respect to  gauge transform a­

tions and a  gauge m ust be fixed to  remove th is degeneracy. A general gauge fixing 

condition suitable for the la ttice  theory is

a = 1,... ,8,
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where d^, is the left lattice derivative and x “ is an arbitrary scalar field. Fadeev and 

Popov proposed an elegant way of implementing the gauge-fixing condition which 

preserves the path integral measure. This is done by inserting the following expression 

for the identity into the path  integral

1 =  A fp[£/; xj j  D g  S{df;Al  -  x), (5.2)

where g denotes a gauge transform ation, being the gauge transform of A^, and

A f p  is the Fadeev-Popov determinant. Because it is defined in terms of an integral 

over the gauge group manifold, the determ inant is gauge invariant. Therefore, in the 

expectation value of a gauge invariant operator, the integral over the group manifold 

in Eq. 5.2 factors out, leaving

=  ^  J  D U D ^ D ^  A M U ; x ] U ^ { d l : A - x ) e - ^ ' ^ ^ ^ .  (5.3)
X

The Fadeev-Popov determ inant can be rewritten as an integral over Grassman-valued 

ghost fields. The expectation value in Eq. 5.3 must not depend on a particular choice 

of the fields and the delta function can be eliminated by averaging over with a 

Gaussian weighting factor. The gauge-fixed expectation value is then given by

{Oi^p, -ip, U))  =  ^  J  D U D ^ D ^ D W c  0{ ip ,  ip, (5.4)

where S'es =  S'latt +  S p p  +  S q f - The Fadeev-Popov part of the effective action is

S f p  =  Y , ^ { x ) D ; \ A ) J ’{x ) (5.5)
X

where c, c are the spinless but colourful ghost fields and is a discretisation of the 

covariant derivative in the adjoint representation of SU{3) .  The gauge-fixing term  is

'5 ° '' =  E  =  -  E  (5.6)
X X
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where a  is the Gaussian weighting factor.

T he integration m easure

While gauge-fixing is also a feature of continuum perturbation theory, the contribu­

tion of the path-integral measure to Feynman diagrams is purely a lattice artifact. 

The gauge-invariant measure can be written

where DA = Ylxat  ̂ explicit form of -Smeas appearing in the Jacobian is

not required for our calculations and we note only that, as expected, it contributes 

an infinite number of gluon vertices to the lattice Feynman rules and the lowest-order 

vertex is O{go^).

T he L attice G enerating Functional

Drawing on our previous discussions, we find an expression for the lattice generating 

functional including source terms

DU = (5 .7)

Z[J, 7 7 , 77, (̂ , ]̂ =  J  DADi>Di!DcDc exp ^ - 5tot +  ^  + r]ii + i>r] + 

(5 .8)

which contains the total action

‘S 'tot — ‘S'eff - h  S, (5 .9)
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M om entum -space vertices

Our calculations were performed in momentum space and, here, we define the Fourier 

transforms of the lattice variables. These are

J p

7p{x) = f  
J p

{x) = [  (5.10)
h

with similar expressions for the Fadeev-Popov ghost fields. For brevity we have used 

the shorthand notation

where we assume a lattice of infinite extent so that the momentum is continuous.  ̂

Our calculation required the free quark propagator and quark-gluon vertices which 

can be computed by Taylor expanding the fermion action and Fourier transforming 

into momentum space

5, =
X

=  J i(p)SoHp)'P(p)

+ E ^ / / / - 7   w
' •  J p J q J k l

<̂27t  -  9 +  $ { p ) V r { p , q ; k u f J ^ i , a u . . . . ; k r , i j L r , a r ) ' i p { q ) ,  ( 5. 12)

where S o { p )  is the free quark propagator and K- denotes a vertex involving r  glu-

^This is standard practice in many perturbative calculations. We will later consider perturbation 
theory on a lattice which is of finite extent along certain directions; we will then have to redefine 
the Fourier transforms to be consistent with the lattice boundary conditions.
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ons. The subscript 2tt on the delta functions indicates th a t momentum is conserved 

modulo 27r/a^.

We also need the gluon propagator, which can be determined from th a t part 

of the action which is quadratic in the gauge fields only

S g r ' t o  =  0) =  [  A , { k )D ; i { k )A , ( k ) .  (5.13)
Jk

Therefore, the gauge-fixing term  only enters into the perturbative calculation through 

the gluon propagator. W ithout this term, the m atrix appearing in the integrand of 

Eq. 5.13 is singular and the free gluon propagator cannot be computed.

5.3 A tree-level investigation of the fermion action

In our study, we considered the momentum-space quark propagator S{p) given by

atS~'^{p) = a t S o \ p )  + atE(p), (5.14)

where S(p) is the quark self-energy,

OO

n = l

To begin with, we investigated the quark dispersion relation a t the tree-level in 

perturbation theory. We first considered general values of the param eters r and s 

which appear in the action, given in Eq. 3.25.

The dispersion relation is obtained by solving for a pole in the free quark prop­

agator. Equivalently, one can consider the free fermion m atrix in momentum space, 

M{p) =  S q ^{p ). This is simply the Fourier transform  of in Eq. 3.25 w ith the link 

variables and tadpole improvement coefficients set to  unity.
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The energy-momentum relation is obtained by solving

det M  =  0 (5.16)

for E  = —ipo. For a general value of r, this yields two relations

cosh(atJ5'±)
+  ruj(p) \ / { r  + +  ( 1  -  r 2 )( l +  p^)

r'2  —  I  —  1 (5.17)

where u>{p) and p  are defined as

w(p) =  + (6.18)
i

(5.19)

with Pi =  ^  sin(asPj) and P i = -^ sin{asPi/2). As stated in Chapter 3, =  ( l  +  ^Tatmo)

and mo is the bare quark mass. One of these relations describes an unphysical state;

Such states can occur because, for r  7  ̂ 1, the ferrnion m atrix is not reflection positive 

and therefore does not have a positive-definite transfer operator connecting adjacent 

time-slices.

To identify the physical state, we set the spatial momentum and the bare quark 

mass to zero. In this hmit, Eq. 5.17 becomes

Prom this, we deduce th a t E -  is the energy of the physical state and note th a t in 

the limit r  —̂ 1 , the spurious state becomes infinitely massive, corresponding to the 

restoration of full reflection positivity.

Since we are interested in the infrared properties of the fermion action, we expand

it is a remnant of temporal doubling which persists for r  7  ̂ 1 in the fermion action.

cosh(at£'+)

cosh (at £'_) =  1 , (5.20)

(5.21)
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the physical solution in powers of the spatial momentum about p =  0 to give

E H p ) =  M? +  +  0 ( p % (5.22)

The rest mass, M i, and kinetic mass, M 2 , were previously discussed in relation to 

relativistic hadrons. The quark rest mass is

Ml =  — cosh  ̂
a t

+  f i r in o r a t  -  \ / H -  2 iJ ,rm ora t +  
—  1

(5.23)

and the kinetic mass is given by

^ 2  1 / 1  + 2f irm orat +
+  UrUiorat -  \ / l  +  2fj,rmorat +  rnl/ji^ai 

—  1
-  1

(5.24)

These results show tha t, a t the tree level. Mi and M 2  and hence their ratio, i.e. the

speed of light, do not depend on 0 { a s m q )  terms or on the anisotropy,

All of our simulations were performed with r  =  1, which simplifies the analysis

considerably. For this particular choice of r, the dispersion relation is

4sinh
f  E a t \
V 2 1 +  u;(p)

(5.25)

with

Ml =  — ln(l +
at

1 2/ir
A h  ~ m o(2 +  fj,rTnoat)’

(5.26)

(5.27)

where now =  (1 +  ^ a t m o ) .

The free-quark dispersion relation for a massive quark is shown in Figure 5-1. 

In this figure, the anisotropy is — 6, and a t m o  =  0.2 is the bare quark mass.
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The dispersion relation is shown up to the edge of the lattice Brillouin zone. The 

parameter s in the quark action must take a positive value to remove spatial doublers. 

In our work, s was fixed at 1/8 by requiring that the dispersion relation does not 

have a negative slope within the Brillouin zone.

  (1,0,0) axis
 (1,1,0) axis
 (1,1,1) axis
  continuum

1

0.5

0
0 n

aJPl

Figure 5-1: The dispersion relation with =  6, r  =  1 and s =  1/8. In this plot 
atTTiq = 0.2. The dotted and dashed lines indicate quark momenta directed along 
different lattice axes. The line labelled ‘continuum’ is given by = M f -t- p^.

Figure 5-2 shows the deviation of this lattice dispersion relation from the con­

tinuum form for fixed asirig and varying anisotropy. Momentum is directed along 

a single spatial axis. As the anisotropy is increased, corrections to the relativistic 

behaviour are suppressed.

M ass-dependent tun ing o f the ferm ion action

In analogy to the previous chapter, the parameters of the fermion action can be 

tuned by demanding a relativistic dispersion relation for lattice quarks in the infrared 

regime, i.e. by requiring that Mj =  M^. This mass-dependent improvement condition
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Figure 5-2: Deviation of lattice dispersion relations from the continuum form for
a^p < 1 and =  1.0. As in the previous plot, r  =  1 and s  — 1/8. The figure 
clearly shows th a t at the tree-level mass-dependent corrections are suppressed on the 
anisotropic lattice.

was first suggested in Ref. [26].

To simplify improvement, we first redefine the bare quark mass

Tuning the action param eters to satisfy the improvement condition then amounts to 

a redefinition of

which leaves the action unchanged at 0 { a t )  and is therefore consistent with the field 

rotations used to construct the original quark action. Although this implementation 

may seem at odds with our previous study, where corrections to the relativistic dis­

persion relation were absorbed into a redefinition of the bare anisotropy, it is the 

ratio Hr / ^ q  which must be tuned to restore Euclidean invariance. Choosing to  rede-

> mo- (5.28)

(5.29)
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fine fir emphasises the point made earher; that mass-dependent corrections to the 

relativistic dispersion relation are not specific to anisotropic lattices. At non-zero 

quark mass, the speed of light is modified even in the isotropic formalism, and at the 

tree-level corrections to Hr are independent of

5.4 A 1-loop calculation of the quark rest mass 

and speed of light param eter

To proceed beyond the tree-level, we must compute the contributions of the quark self 

energy to the fermion propagator. On the lattice, the dimensionless quark self-energy 

has the following form

a(E(p) =  n^A^,{p)  sm{a^p^)  -|- C{p). (5.30)

As was pointed out by Mertens et al. [27], in a Euclidean-invariant regularisation 

must be independent of the direction //, and Afj, and C are functions of p^. On 

the lattice, the constraints on the form of the self-energy are less strict. However, 

parity and time-reversal symmetry still require that A^i and C be even functions of 

the four-momentum, and invariance under spatial rotations means that, for example, 

^ i(0 ,p , 0 ,0 ) =  .4 2 (0 , 0,p,  0). The explicit form of the free-fermion propagator is given 

in Appendix A. Here, we need only note that the free propagator must have the same 

general form as the self energy, i.e.

atS~^{p) = i'Tf.Vf.ip) sin(a^p^) + M { p ) ,  (5.31)

and that the simple symmetric discretisation of the temporal derivative in this quark 

action gives Vo = 1. For Wilson-like quarks with r =  1, solving for the pole in the
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fermion propagator and setting po =  iE  yields

1 +u;(p) -  cosh(aj£') -  C = , /(I -  sinh^(atE) +  -  Aj)  sin^iasPi),/
(5.32)

where

M{ p, m)  = I -  cos(afPo) +  ^{p)- (5.33)

Setting p =  0 yields an expression for the quark rest mass, Mi,

1 +  0(7710 — C — cosh(atMi) =  (1 — A q) sinh(atMi). (5.34)

Differentiating Eq. 5.32 twice with respect to Pi and imposing the mass-shell condition 

p = (zMi, 0), fixes the kinetic mass in terms of Mi and the parameters of the action. 

For ARIA, we find

These relations were first derived for isotropic lattices in Ref. [27] and generalised 

to anisotropic lattices in Ref. [28]. They are valid at all orders in perturbation theory. 

The precise relationship between Mi, M 2 and the parameters of the action can be 

be determined to any loop-order by expanding these expressions in powers of the 

gauge coupling. In particular, Eq. 5.35 allows us to compute corrections to the quark 

dispersion relation. Note that, in this expression, we have maintained the distinction 

between the action parameter and the physical ratio of scales At the tree-level, 

setting ^ and imposing the relativistic constraint, Mi =  M 2 , leads back to the

gaiMi _  cosh{atMi)
[1 — Ao(zMi, 0)] sinh(aiMi)

( f
+ -77 ^[A(*Mi,0)sinh(atMi) -  C(zMi,0)].

diyO'sPi)
(5.35)
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expression for in Eq. 5.29. Also, it is clear th a t higher-order radiative corrections 

can be absorbed into a redefinition of fir-

Evaluating the self-energy

The remainder of our calculation reduces to a determination of the quark self-energy 

and its derivatives with respect to external momentum at one-loop in perturbation 

theory.

The following Feynman diagrams contribute to the one-loop quark self-energy.

1-loop contributions to the quark self-energy.

Only the first graph, the rainbow diagram, exists in the continuum. The second 

diagram is a tadpole contribution and the third diagram is a counter-term coming 

from mean-field improvement. In order to evaluate these integrals, expressions for 

the free quark and gluon propagators, the l-gluon-2-quark and the 2-gluon-2-quark 

vertices are needed. These were initially calculated by hand and the results were 

verified by repeating the calculation with M athematica.

W ith the Wilson gauge action and the gauge-fixing term  in Eq. 5.6, the choice 

Q! =  1, i.e. Feynman gauge, yields a propagator which is proportional to the identity:

This simplifies perturbative calculations considerably and many calculations involving 

Wilson glue are performed in Feynman gauge only. However, the Symanzik-improved 

gluon propagator is much more comphcated and this simplification no longer arises. 

We therefore calculated the gluon propagator for a general value of a  and were able 

to check th a t physical results were invariant under a change of gauge.
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In practice, loop integrands were constructed from dimensionless vertices, which 

were obtained by multiplying their dimensionful counterparts by powers of the tem ­

poral lattice spacing, Integrals were reformulated in terms of dimensionless loop 

momentum k'̂  =  so tha t, for example, the rainbow contribution to the self­

energy is

a,E™(p) =
I d'^k' r

-Tr Vi{p -  k\p;k' , iJ,)So{p -  k ' )Vi {p\p  -  k ' ; - k ' , u)D^^{k')e J - n  (27t )
( 5 .37 )

where the trace is over colour matrices and the hat symbols on the quark and gluon 

propagators indicate th a t they are dimensionless. Note th a t the limits of integration 

contain no reference to the anisotropy.

Im plem entation in software

In the early stages of this project, the loop integrands were evaluated explicitly using 

M athematica. This involved tying the vertices and propagators together, performing 

the spinor algebra to project out the required components of the self-energy, differen­

tiating with respect to external momenta where necessary, and setting the integrand 

on the mass shell. We then used symmetries of the self-energy to eliminate redun­

dant term s in the integrands. The resulting expressions were w ritten as functions in 

C which served as input for numerical integration packages.

However, these expressions were very unwieldy and difficult to check, even for this 

one-loop calculation. Furthermore, any variation of this calculation would require the 

generation of new expressions. It quickly became clear th a t our time would be better 

spent autom ating the evaluation of the lattice integrands. To th a t end, we wrote a 

suite of code in C-I-+, which can take vertices derived from arbitrary  lattice actions, 

contract the Lorentz indices, manipulate the spin matrices and compute derivatives
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as required.

Our approach is based on th a t in Refs. [33] and [34] and incorporates the following 

features:

In a numerical evaluation of the loop integrals, traces over the relevant spin ma­

trices are evaluated at the outset. Indices labeling the required vertex components 

along with the corresponding trace values are saved and do not have to be recomputed 

each time the integrand function is called in the integration package.

For given four-momenta, derivatives of the integrand are evaluated using auto­

matic differentiation [36] which employs repeated application of the chain rule to 

compute the derivatives of complicated functions. Note tha t, because we do not need 

explicit expressions for the derivatives, we are free to route the external momentum 

as we wish when we evaluate the loop integrals. Optimal routing of the loop momenta 

can significantly assist numerical integration.

These features are implemented in a transparent way using the class and operator 

overloading capabilities of C-l--f-. The result is a versatile suite of software which is 

essentially action independent and can easily be adapted for other calculations. All 

of the results presented here have been computed or checked using this autom ated 

approach.

N um erical Integration

The lattice integrals which did not involve derivatives, were evaluated using the 

adaptive Monte Carlo integration package VEGAS. In all of our VEGAN integrals 

we transformed to hyperspherical coordinates. The Jacobian of this transform ation 

suppresses peaks in the integrands and, in some cases, can drastically improve con­

vergence to the exact solution.

In other more complicated cases, it was better to approximate the loop integrals 

by discrete sums over hypercubic lattices. To eliminate zero-modes in the quark and 

gluon propagators, we applied twisted boundary conditions.
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Twisted LPT

In the pure gauge theory, twisted periodic boundary conditions are implemented by 

requiring th a t the link variables satisfy

U^{x + LO) = n^U^,{x)n l  (5.38)

where L  is the length of the twisted directions denoted jl and i>. Here, we have chosen 

to apply the twist to two directions and we take the other directions to be infinite in 

extent. The twist matrices are constant SU{3) matrices which obey

=  exp (27tz/3 ) =  1. (5.39)

Note th a t these conditions fix the twist matrices up to a unitary transform ation only.

Expanding the link variables in powers of the coupling yields the same boundary

conditions for the vector potential

Af,{x + LD) =  Q,^A^{x)9.l, (5.40)

The Fourier transform of the twisted field is

A,{x) = {3Ly^J2 [
u . Jk\\

(6.41)

with a sum over twisted momenta fci, and the usual integral (sum) over momenta 

k\\ along the other directions. Momentum-dependent colour matrices replace the 

usual Gell-Mann matrices, and, according to Eq. 5.40, these new matrices must satisfy

=  ( 5 .42 )
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This places the following constraint on the momenta in the twisted directions

27rnw _K =  ^ (5-43)

A number of the properties of the matrices are listed in Ref. [9]; the property 

which most concerns us here is

Ffe =  1, if k}_ — 0, mod(3). (5.44)

The usual trace condition on the vector potential, TrA^ =  0, therefore implies th a t

A^ {k )  =  0, if /cx =  0, mod(3). (5.45)

It is easy to see th a t the free gluon propagator on the twisted lattice is

D l Z ' ^ \ k )  =  X k z { k , k ) D , , { k ) ,  (5.46)

where z ( k ,  k)  is a momentum-dependent function which depends on the choice of the 

twist matrices and hence F^; and \ k  is a veto function

(  1 if A:x 7  ̂ 0, mod(3),
Xk =  < (5.47)

[^0 if  k x  =  0, mod(3).

Therefore, the twisted boundary conditions ehminate the zero-mode in the gluon 

propagator.

Twisted LPT proceeds in much the same way as the infinite volume LPT, with the 

integral over the twisted momenta replaced by a sum. In perturbative calculations, 

we do not need to construct the Ffc matrices explicitly, we only need to evaluate 

the relevant traces. The trace over colour matrices then leads to the appearance of 

additional momentum dependent factors in the lattice integrands. The twist matrices 

should therefore be chosen carefully to simplify the integrands as much as possible.
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Wohlert [31] generalised twisted lattice perturbation theory to calculations in­

volving quarks. Drawing on the work of Parisi [32], he attributed to the quark fields 

an additional degree of freedom — smell — so that the quark fields could be repre­

sented as 3 X 3 matrices in smell-colour space. The same arguments presented for the 

twisted gauge fields then hold for quarks except that there is no analogous trace con­

dition on the quark fields which means that zero modes in the quark propagator are 

allowed. These are excluded by applying anti-periodic boundary conditions, so that 

the twisted quark momenta can only occur in half-integer multiples of the effective 

gluon mass, 27t/ (3L).

Discrete summation tends to work quite well for lattice Feynman integrals and the 

convergence of the sums is greatly assisted by the mass gap introduced by the twist. 

However, in order to obtain a final result, it is necessary to remove the infrared cutoff. 

To do this, we repeat our calculations for a number of lattice sizes and extrapolate 

to the infinite volume limit using the asymptotic form [9]

OO

E(p; L) Y.
n = 0

The quantities that we computed were infrared-finite and so =  0.

Tadpole im provem ent

At one-loop, the contribution of mean-field improvement to the self energy is given by 

the difference of the free inverse propagator and the tadpole-improved inverse prop­

agator. The tadpole-improved propagator is determined from the Fourier transform 

of the quark matrix with the link variables set to unity but the tadpole coefficients 

retained; we denote this . The mean-field contribution is

^T.i. (p) ~  ~2 ~  ‘̂ 0 Hp )] • (5.49)
9o
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In this work the mean hnk in Landau gauge was used to define the improvement 

coefficients. The tadpole coefficients can be expanded as

(5.50)

On the 3+1 anisotropic lattice, the one-loop coefficients are given by

(6 .51)

(5 .52)

where the colour factor, Cp =  4/3 for SU{3). Prom the additional powers of 

anisotropy in its denominator, we might expect the one-loop contribution to the

on highly anisotropic lattices. This is exactly what was observed when the coeffi­

cients were evaluated numerically. Table 5.1 shows the one-loop coefficients for a 

range of anisotropies. These one-loop results support our choice of =  1 in the 

non-perturbative investigation.

Hart et al. have computed the Landau-gauge tadpole improvement parameters to 

two-loop order for the Symanzik-improved anisotropic gauge action in the fundamen­

tal representation [35]. Their gluon propagator, which they do not express explicitly 

but rather evaluate numerically, is identical to the one used in this study and our 

values of the one-loop coefficients are in precise agreement with their results.

5.4.1 R est m ass renorm alisation

It is not difficult to compute the quark rest mass to one-loop order. An expres­

sion for the one-loop coefficient in terms of the components of the quark self-energy 

is easily derived from Eq. 5.34 and the resulting loop integrals are straightforward 

to evaluate using VEGAS. However, we first corrected for the additive quark mass 

renormalisation, so that zero bare mass does in fact correspond to massless quarks.

temporal tadpole coefficient to be small relative to the spatial tadpole coefficient
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1 0.06308(1) 0.064644(12)
2 0.08679(2) 0.016933(32)
3 0.09563(2) 0.007365(1)
4 0.09951(2) 0.004076(1)
5 0.10152(2) 0.002584(1)
6 0.10268(2) 0.001784(1)
7 0.10334(2) 0.001306(1)

Table 5.1: One-loop tadpole improvement coefficients for various anisotropies.

The critical quark mass, rr ic , is defined as the bare-mass value which gives M \  =  0. 

From Eq. 5.34, it follows tha t

a t m c  =  C { 0 , 0 ) .  (5.53)

and we can reformulate Eq. 5.34 as

1 -f- a tT U suh  -  Csub -  cosh(atM i) ^  (1 -  ^o) sinh(atM i), (5.54)

where the subtracted bare mass is given by

rrisub =  r n o -  rU c, (5.55)

and Csub —  C  — a t iT ic . Note th a t the physical quark mass vanishes for rU suh =  0. This

reparam etrisation can be absorbed into a redefinition of the bare mass so th a t the 

effective tree-level rest mass is

=  — ln (l -t- atTTisub)- (5.56)

The one-loop correction is then given by

Wo + 1 (5.57)
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e unrotated ARIA
1 -0.0642903(4) -0.023163(14)
2 -0.0333631(3) -0.016544(8)
3 -0.0205977(3) -0.0112296(65)
4 -0.0143917(2) -0.0084007(51)
5 -0.0108892(2) -0.0067190(43)
6 -0.00868868(14) -0.0056192(37)
7 -0.00719597(14) -0.0048389(33)

Table 5.2: Critical quark masses for a range of anisotropies. All the results are 
tadpole-improved. The column on the left contains one-loop coefficients for the action 
used in the numerical study described in Chapter 4. The column on the right contains 
the corresponding values for the rotated quark action. The uncertainties are VEGAS 
error estimates.

Eq. 5.53, which defines the critical mass, is not in closed form so th a t it is difficult 

to compute rric exactly. However, to one-loop precision, we can replace rUsub by the 

original bare mass, mo, when evaluating loop integrals. All the results in this chapter 

are given in terms of the subtracted bare mass.

Table 5.2 shows one-loop critical quark masses over a range of anisotropies. 

Tadpole-improved results for the rotated quark action and the unrotated action used 

in the simulations are given. As expected, corrections to the rotated action are 

slightly smaller. Note, however, the decrease in the magnitude of the critical quark 

masses with increasing anisotropy.

Figure 5-3 shows the one-loop correction to the rest mass as a function of the 

tree-level rest mass for the unrotated action used in our simulations for a range of 

anisotropies. The figure shows tadpole-improved corrections only. The coefficients 

were again evaluated using VEGAS. The external momentum was routed through 

the quark propagator to prevent a pole in the integrand from crossing the real ko  

axis [27]. Corresponding d a ta  are given in Table 5.3. Table 5.4 contains rest mass 

corrections for ARIA for the same bare anisotropy values.

75



0.07

0.02

0.01

-
•   ̂ = 10.06 —
-  ̂ = 3

- ♦  ̂ = 6
0.05 -

-
I

0.04 —
♦

0.03

_ .  *  *

Figure 5-3: Rest mass corrections for the unrotated quark action used in our simula­
tions. The plot shows corrections for three different anisotropies.

5.4.2 Speed o f light renorm alisation

W ith the tree-level value of fXr tuned according to Eq. 5.29, the one-loop coefficient 

can be expressed as

2atM\(0)

, (0)Hr ' )  2 M {

where the kinetic mass renormalisation factor,

]\/fW  , , ( 0)
1 I 7(1) 

o Â 2’(0)
(5.58)

Z m 2 = sinh(atMi)
(5.59)

gives a measure of the difference between Mi and M2 due to radiative corrections. 

To one-loop order Mj^  ̂ and independent of and Eq. 5.58 is a closed

expression for the correction to the action. Explicitly, the one-loop kinetic mass
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^ = 1 ^ =  3 ^ =  6
0 0.000000( 0) 0.000000(0) 0.000000(0)

0.1 0.019283(10) 0.013246(3) 0.009100(1)
0.2 0.030843( 9) 0.018920(3) 0.011394(1)
0.3 0.039171(10) 0.022061(3) 0.012327(2)
0.4 0.045359( 9) 0.023980(3) 0.012917(2)
0.5 0.050011(10) 0.025318(3) 0.013432(2)
0.6 0.053551(10) 0.026396(3) 0.013947(2)
0.7 0.056259(10) 0.027277(3) 0.014480(2)
0.8 0.058353(10) 0.028195(3) 0.015004(2)
0.9 0.060000(10) 0.028920(3) 0.015519(3)
1.0 0.061418(15) 0.029700(3) 0.016029(3)

Table 5.3: Rest mass renormalisation for the unrotated action. These values are 
plotted in Figure 5-3.

renormalisation is

( 1) /
(0) '

1 + cosh -a t  M l(0)

(0 ) £
d{asPiY

[X^^(zMi,0)sinh(atMi°^) -  C^^\iMuO) ,

(5.60)

or, in a form more suited to automated evaluation

7(1)
" A / 2  “

TY
T

d
^(0) 'd{asPi)

+ Z7ocosech j
(0) d \ 7o +  1

(5.61)

For massless quarks, the correction to the dispersion relation is greatly simplified
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o'

^ =  1 e-3 e =  6
0 0.00000(0) 0.00000(0) 0.00000(0)

0.1 0.02417(2) 0.01538(4) 0.01018(1)
0.2 0.03991(2) 0.02299(4) 0.01344(1)
0.3 0.05181(2) 0.02779(4) 0.01506(1)
0.4 0.06108(2) 0.03101(4) 0.01608(1)
0.5 0.06834(2) 0.03328(5) 0.01681(1)
0.6 0.07403(2) 0.03492(5) 0.01738(1)
0.7 0.07846(2) 0.03611(5) 0.01787(1)
0.8 0.08191(2) 0.03704(5) 0.01832(1)
0.9 0.08458(2) 0.03781(5) 0.01869(1)
1.0 0.08657(2) 0.03839(5) 0.01949(1)

Table 5.4: Rest mass renorm alisation for ARIA. All values are coefficients of

and is given by

= eA(0,0)-^o(0,0)

=  —zTr
.71 aE(p) _ 'ypdEjp) 
' 4 d p i  4 d p o

(5.62)
P=(0,0)

which corresponds to  the tun ing  criterion used in Ref. [39]. The partia l derivatives 

appearing in the lower term  in Eq. 5.60 and in Eq. 5.62 are separately  infrared 

divergent w ith  the logarithm ic divergences cancelling in the  full term s. Since the 

lattice theory  approxim ates the  infrared behaviour of th e  continuum , divergences 

only appear through the  rainbow  contribu tion  to  th e  self-energy.

Numerically, such integrals are problem atic. VEGAS cannot handle the  sharp 

peaks in the  lattice integrands. Therefore, it is a good idea to  in tegrate  over k o  ana­

lytically [27, 37, 38]; the  rem aining 3-D integrals can then  be evaluated numerically. 

However, w ith our com plicated gluon propagator th is was not feasible.

The easiest way to  circum vent th is problem  is to  com pute the  one-loop energy for 

a range of small external m om enta and ex tract the  required coefficients from fits to  

polynom ials in the  m om enta. U nfortunately, we were unable to  achieve the  desired 

level of accuracy using th is approach.
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It was therefore necessary to  introduce an infrared regulator to  evaluate th e  in­

tegral. Two different regulators were tried. In the first instance, we introduced a 

small gluon mass, A. We could then  evaluate the  integrals using VEGAS for different 

values of A and ex trapo la te  to  A =  0 w ith a  fit similar to  Eq. 5.48

OO

S(P; ~  (4°^ +  ln(a2A^)) (atA)^". (5.63)
n=0

The gluon mass is a  gauge invariant regulator up to  two-loop corrections allowing us 

to  check the  gauge invariance of for finite A.

This procedure worked quite well for light quarks. However, w ith increasing quark 

mass, peaks in the  quark p ropagator and its derivatives become sharper and inte­

grals are more difficult to  estim ate accurately w ith VEGAS. The extrapolation to  the 

final result therefore becam e increasingly unreliable. In th is case, the possibility of 

im proving the  convergence of the  numerical integration package by subtracting  from 

the  la ttice  integrands suitable analytic expressions was also explored. More specifi­

cally, we followed the exam ple of Ref. [41] and considered continuum-like integrands, 

defined w ithin a  hypersphere contained inside the  lattice Brillouin zone. However, a t 

finite la ttice spacing, these expressions m ust be tuned  to  m atch exactly the compli­

cated low-m om entum  behaviour of the  la ttice integrands. O ur tuning criteria differ 

from those used in Ref. [41] and  suitable expressions were not readily identifiable.

In the  second approach, the  loop integrals were replaced by discrete sums on finite 

lattices. We applied doubly-tw isted periodic boundary  conditions along the  /i =  2, 3 

spatial directions. For the  one-loop integrands considered, the  zero-m om entum  veto 

function in the  tw isted gluon propagator is enough to  elim inate singularities in th e  

la ttice integrands, and we did not have to  resort to  anti-periodic boundary conditions 

to  elim inate fermionic zero modes. The untw isted directions were made sufficiently 

large to  approxim ate the infinite volume limit. To increase the  effective mass gap 

and, hence, improve the  convergence of the m ode sum m ation, we made the  following 

change of variables along these directions: k'̂  0 !^sin(A:^) w ith 0 <  < 1.
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We now present results for at zero quark mass for a range of anisotropies. To 

obtain these results, the rainbow and tadpole contributions were computed together 

on a sequence of lattices. We allowed the extent of the twisted directions to vary 

between 20 and 40 lattice sites. Derivatives with respect to external momenta were 

taken along the untwisted directions, in which case, the colour matrices could be 

chosen such that there were no additional momentum-dependent factors in the twisted 

integrands. With ~  1, varying the extent of the untwisted directions between 100 

and 150 lattice sites had a negligible effect on the results of the mode summation. 

The infinite-volume results were obtained from least-squares fits to the asymptotic 

expansion in Eq. 5.48. To perform the fit, the expansion was truncated after terms 

of 0{l/L'^, ln(L)/Z/^). However, the difference between the asymptotic value and the 

sum for any finite length, L, was a fraction of a percent. Therefore, in practice, to a 

high precision the extrapolation to infinite L was unnecessary.

In Figure 5-4, we plot the one-loop correction for the unrotated asymmetric quark 

action as a function of the anisotropy. The figure shows coefficients obtained using 

both naive and tadpole-improved perturbation theory. The corresponding values are 

given in Table 5.5. The third column contains the contribution of the field rotations 

which can be added to the corresponding values in the preceding columns to obtain 

results for the rotated action. The unimproved coefficients have been rounded to 5 

decimal places. The errors on the values in the other columns are VEGAS estimates.

At finite quark mass, the one-loop coefficient of fir proved much more difficult 

to evaluate. To reduce computation, the results presented here were obtained in 

Feynman gauge where we separated the problematic term in the kinetic mass renor­

malisation into a piece which involves the diagonal elements of the gauge propagator 

and a piece containing contributions from the off-diagonal elements. The off-diagonal 

contribution does not appear in the continuum and is easy to evaluate. The diagonal 

contribution was evaluated using doubly-twisted mode summation. The extent of the 

twisted directions was varied between 14 and 25 lattice sites. This time, the mode 

sums showed a much stronger dependence on the extent of the untwisted directions
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Figure 5-4: One-loop coefficient of H r  at =  0 for the unrotated anisotropic quark 
action. The plot shows results for both naive and tadpole-improved perturbation 
theory.

than  in the case of the massless integrals. To approximate an infinite extent along 

the untwisted directions required about 300 lattice sites. Varying the extent of the 

untwisted directions from 300 to 400 lattice sites affected the results of the sum, at 

most, in the sixth significant digit. The extrapolated results themselves constitute 

only a very small part of the final answers and we ignored this very slight variation 

in our extrapolations to the infinite-volume limit. Table 5.6 contains the one-loop 

coefficients of f i r  for the unrotated anisotropic quark action at an anisotropy of 6. 

The d a ta  is plotted in figure 5-5. The data  shows a mild, slightly non-linear mass 

dependence. The tadpole-improved coefficient changes by less than  0.1 over the range 

of bare mass values considered.
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e fX-p j j iy  with T.I. rotation
1.0 -0.05724 -0.03462(2) 0.016153(6)
1.5 -0.00705 -0.02887(2) 0.005022(3)
2.0 0.01692 -0.02399(2) -0.000043(3)
2.5 0.03048 -0.02027(2) -0.003335(2)
3.0 0.03899 -0.01739(2) -0.004700(2)
3.5 0.04473 -0.01516(2) -0.005984(2)
4.0 0.04882 -0.01344(2) -0.006940(1)
4.5 0.05186 -0.01206(3) -0.007698(3)
5.0 0.05419 -0.01090(3) -0.008296(2)
5.5 0.05603 -0.00996(2) -0.008799(2)
6.0 0.05751 -0.00911(2) -0.008837(3)
6.5 0.05873 -0.00839(2) -0.009582(3)
7.0 0.05975 -0.00782(2) -0.009905(3)

Table 5.5: One-loop corrections to f j . r  at zero quark mass. Results are shown with 
and without tadpole improvement

l ^ r H r  with T.I.
0.0 0.05751(0) -0.00911(2)
0.1 0.02160(7) -0.02053(9)
0.2 -0.00872(9) -0.03087(12)
0.3 -0.03450(13) -0.04013(16)
0.4 -0.05654(15) -0.04834(18)
0.5 -0.07573(18) -0.05585(22)
0.6 -0.09258(19) -0.06274(23)
0.7 -0.10734(23) -0.06896(28)
0.8 -0.12026(24) -0.07451(29)
0.9 -0.13187(25) -0.07969(30)
1.0 -0.14237(26) -0.08469(32)

Table 5.6: One-loop corrections to at ^ — 6, as a function of the subtracted bare 
quark mass.
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Figure 5-5: One-loop coefficient of at ^ = 6 as a function of the subtracted bare 
mass for the unrotated anisotropic quark action. The plot shows results for both 
naive and tadpole-improved perturbation theory.

5.4.3 A com parison w ith sim ulation

At sufficiently fine lattice spacings, radiative corrections are dominated by one-loop 

effects and it should be possible to tune the action couplings perturbatively. We 

therefore compared the perturbative results with the results of the non-perturbative 

study of the fermion action detailed in Chapter 4. However, before we present our 

findings, it is necessary to comment on our definitions of the tadpole improvement 

coefficient. Clearly, the fourth root of the average plaquette, which was used to define 

the tadpole coefficient in our simulation, and the mean link in Landau gauge must 

agree qualitatively. However, it is not clear a priori how precisely these independent 

estimates should agree. Shakespeare and Trottier [29] have compared both tadpole 

renormalisation schemes in quenched simulations. That study involved the NRQCD 

fermion action and an O (a^) tadpole-improved gauge action on isotropic lattices. 

At a lattice spacing of approximately 0.21 fm, they find that the tadpole coefficient
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determ ined from  the average p laquette  agrees w ith th e  m ean hnk com puted num er­

ically to  w ithin abou t 6%.^ T he discrepancy increases on coarser lattices where the 

Landau gauge definition of the  tadpole coefficient is m ore effective in reducing ra ­

diative corrections. A lthough it is not possible to  draw  direct conclusions from th a t 

study, it seems reasonable to  infer th a t on th e  anisotropic la ttice  used in our quenched 

sim ulation, which had a  spatial la ttice  spacing of 0.21 fm, th e  two definitions of the  

tadpole coefficient should differ by no more th a n  a  few percent.

The anisotropic tadpole-im proved coupling used in the  sim ulation was f3 — 2 and 

th e  expectation value of the  spatial p laquette  used to  define the  tadpole improve­

m ent coefficient was (Fy) =  0.3817. If one-loop effects are dom inant, substitu ting  

these values in to  Eq. 5.50 should yield an estim ate for the  one-loop coefficient which 

is consistent w ith the result =  0.10268(2) given in Table 5.1. However, th is 

estim ate yields a value of approxim ately 0.0713 which differs substantially  from the  

pertu rba tive  prediction. This m ism atch again m anifests itself in the  determ ination  

of the critical quark mass. M ultiplying th e  one-loop critical quark  mass coefficient 

by the tadpole im proved coupling used in our numerical investigation yields a critical 

quark mass of —0.0261. On the  other hand, in the  num erical study, a bare m ass of 

cit'iTiq =  —0.04 corresponded to  a  physical value which was close to  the  strange quark  

mass.^

We therefore deduce th a t, on the  spatially  coarse la ttice  used in the quenched 

numerical investigation, the  action coefficients cannot be determ ined to  a satisfacto­

rily high precision using one-loop p ertu rba tion  theory. One may then  ask w hether 

the  discrepancies m entioned above are due to  non-pertu rba tive effects or if they  can 

be a ttr ib u ted  to  higher-order radiative corrections which can be controlled by using 

a finer la ttice  spacing or elim inated by perform ing higher-loop pertu rba tive  calcula­

tions. W ith  regard to  this question, it is possible to  m ake a  few ten tative rem arks.

^The mean link in Landau gauge is slightly smaller than the fourth root of the average plaquette.
^In this case, however, one should also remember that the critical mass is quite sensitive to the 

choice of tadpole renormalisation scheme since the corresponding calculation involves the cancella­
tion of a large tadpole contribution to leave a small remainder.

84



At a  bare anisotropy of two and for bare coupling values < 2, H art et. al [35] 

find excellent agreem ent between the Landau-gauge m ean link com puted a t second 

order in p ertu rba tion  theory  and  the corresponding numerical value. Their results 

differ from ours due to  th e  appearance of the adjoint term  in the  gauge action used 

in our work. In addition, they have not com puted two-loop coefficients for a  bare 

anisotropy of 6 which has been considered here. However, a t an anisotropy of 4, their 

second-order coefficient is approxim ately 10% of the  one-loop coefficient. A similar 

two-loop contribution in our calculations could account for the  discrepancies noted 

above.

Finally, note th a t th e  tadpole-im proved bare coupling has been used to  com pare 

the  pertu rba tive  calculation w ith numerical results. A b e tte r choice of expansion 

param eter m ight be a  renorm alised coupling, determ ined numerically by com put­

ing some suitable physical quan tity  a t the optim al m om entum  scale as outlined 

in Ref. [14], However, because the lattice theory has been form ulated in term s of 

tadpole-im proved links, one expects the bare coupling to  be a  good expansion pa­

ram eter a t m oderate la ttice spacings. The use of a  renorm alised coupling is not 

expected to  change the  results significantly.

5.5 Conclusions

In th is chapter, we investigated th e  properties of the  anisotropic fermion action, b o th  

a t the  tree-level and a t one-loop in pertu rba tion  theory. Unlike the anisotropic SW 

action discussed in Ref. [17], a t th e  tree-level the  dispersion relation for ARIA is free 

of b o th  large errors and doubler effects. Corrections to  th e  dispersion relation 

of order atrriq can be absorbed into a  redefinition of the  ‘speed of ligh t’ param eter,

which m ultiplies th e  kinetic term  in the  fermion action.

Beyond the  tree-level, the speed of light param eter can be tuned  from the quark  

self-energy. This was done a t one-loop in pertu rb a tio n  theory  for bo th  massless 

quarks and finite quark  masses.
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Lattice perturbative calculations are extremely complicated and, to reduce the 

chances for error, the evaluation of the spinor algebra and momentum derivatives in 

the lattice loop integrands was automated.

At finite quark mass, corrections to the dispersion relation were obtained from 

the rest mass and kinetic mass renormalisation factors. The rest mass renormalisa­

tion was straightforward to evaluate. However, the kinetic mass was more difficult 

to calculate numerically because of intermediate infrared divergences. Similarly, cor­

rections in the zero mass limit also exhibit intermediate divergences. To overcome 

such problems, previous studies have integrated over the tem poral loop momentum 

analytically. In our case, because of the complexity of the gauge action, this was 

not practical. In any case, it is not in keeping with an autom ated approach to per­

turbation  theory. To evaluate these loop integrals, we introduced an intermediate 

infrared regulator. A small gluon mass can be used as a gauge invariant regulator for 

the class of diagrams considered in this study. However, more accurate results were 

obtained using mode summation on a lattice with doubly-twisted periodic boundary 

conditions.

Results were presented for the one-loop tadpole improvement coefficients which 

are in exact agreement with the results presented in Ref. [23]. Values for the crit­

ical quark mass and the rest mass renormalisation were determined for a range of 

anisotropies. Finally, we presented one-loop corrections to the speed of light at zero- 

quark mass for a range of anisotropies and for a number of quark masses at a fixed 

value of the anisotropy, ^ =  6.

It had been intended to build on the framework which was developed in this 

calculation and compute additional corrections to the fermion action at one-loop in 

perturbation theory. However, direct comparison between the one-loop perturba­

tive results and the non-perturbative determ ination of the critical quark mass and 

tadpole-improvement coefficient at ^ =  6 did not show quantitative agreement. A 

comparison with a similar calculation indicated th a t the discrepancy may be due 

to two-loop contributions. This argument is by no means conclusive and can only
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be resolved by running on finer lattices or performing second-order perturbative 

calculations. In the next chapter, the non-perturbative determination of the bare 

anisotropies on dynamical background configurations will be described. The inclu­

sion of sea quarks greatly complicates the non-perturbative renormalisation program 

and the possibility of performing precise perturbative calculations on spatially-coarse 

anisotropic lattices would be a great advantage to the development of the anisotropic 

formalism.
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Chapter 6 

Static-light hadrons on a 

dynam ical anisotropic lattice

In this chapter, we describe a study of heavy-hght hadrons in the static quark hmit. 

First, a review is in order. In Chapter 4, we investigated the non-perturbative tuning 

of the quark anisotropy param eter in the quenched approximation. T hat study indi­

cated th a t relativistic charm quark simulations are feasible on the anisotropic lattice 

at ^ =  6. Simulations of the b-quark on spatially-coarse lattices requires the use of a 

larger anisotropy which necessitates a retuning of the action parameters. More work 

is therefore required before we can accurately simulate QCD at the b-quark mass. In 

the meantime, using ARIA, simulations can be performed close to the charm quark 

mass and the results extrapolated to th a t of the b-quark. In studies of hadrons con­

taining a single heavy quark these extrapolations are guided by heavy quark effective 

theory (HQET). More reliable predictions can be made by performing a simulation in 

the static limit where the heavy quark becomes infinitely massive, transforming the 

extrapolation in the heavy quark mass into an interpolation. Simulations of static 

quarks are possible because, in the static limit, the hadron dynamics are independent 

of the heavy quark mass and discretisations of the static quark action do not suffer 

from mass-dependent cutoff effects.

Simulations of heavy-light hadrons in the static limit can yield im portant phys-
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ical results in their own right. Experimentally, little is known of the excited state 

spectrum of mesons and baryons which contain a single b-quark and this is an area 

of immediate applicability for static-hght simulations.

In the static limit, the heavy quark reduces to a static colour source. Jaffe [44] has 

recently proposed that static-light systems be used to investigate colour non-singlet 

states which may exist inside hadrons. This formalism can be used to study the 

contribution of internal quark correlations to the observed properties of hadrons.

6.1 T he sta tic  approxim ation

Heavy-light systems share the following features: the spatial extent of the hadron is 

determined by the light degrees of freedom and is of the order of 1 / A q c d -  Therefore, 

interactions between the heavy quark and the light degrees of freedom typically in­

volve the exchange of soft gluons. On the other hand, the Compton wavelength of the 

heavy quark is approximately l/m g , where mq  denotes the heavy quark mass. This 

is much less than the typical gluon wavelength inside the hadron. Therefore, the light 

degrees of freedom find it difficult to resolve the heavy quark structure. This leads 

to an approximate symmetry where the observable properties of heavy-light hadrons 

are insensitive to the spin and flavour of the constituent heavy quark. In the static 

limit, rriQ  —> oo, this approximate symmetry becomes exact.

Formally, the static limit coincides with the lowest-order term in the 1 / m g  ex­

pansion of the HQET Lagrangian. The effective theory is derived by integrating out 

the heavy quark fields appearing in the QCD Lagrangian. To see how this is done 

consider a single heavy quark moving at the hadron’s velocity, v, and interacting with 

the light constituents of the hadron. The heavy quark is slightly off-shell and has 

momentum

p=^mqv + k, (6.1)
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where k is the residual momentum due to the interactions and is of order A q c d  and 

is a four-vector which, therefore, satisfies = 1. To simplify m atters we work in 

the rest frame of the hadron where ?; =  (1,0). To proceed, the heavy quark field is 

separated into upper and lower components^ h and 0, by

h{x) =  (j){x) = (6.2)

where the projection operators and P_ are given by

(6-3)

By construction, the two-component fields in Eq. 6.2 are parity eigenstates with

7o/i =  h, 7o0 =  - 0 ,  (6.4)

and the heavy quark field can be written

'0h(a:) =  [/i(x) +  0(a:)]. (6.5)

Inserting this expression into the heavy quark part of the QCD Lagrangian and using

the properties of Eq. 6.5 yields

-C//Q =  -  TnQ) iph

=  h iD o h  — ^ { iD o  - h  2mQ)(j)

-\-hi'yiDi(j) +  ^i'yiDih. (6 .6)

The 0 field therefore corresponds to excitations of mass 2mg. It describes virtual 

heavy quark processes which are integrated out to obtain the effective theory. In the 

limit rriQ oo, these processes die away and the heavy-quark Lagrangian is given 

^We assume a non-relativistic realisation of the Dirac matrices.
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by

Atat =  hiDoh. (6.7)

Because heavy-quark pair creation cannot occur, the field h annihilates a quark but 

does not create a static-antiquark. The static quark Lagrangian has a U(l) symmetry 

which relates to the heavy quark conservation. The Lagrangian also has a manifest 

SU(2) symmetry associated with conservation of the heavy quark spin. For Nh heavy- 

quark flavours, this becomes an S\J(2Nh) spin-flavour symmetry.

In HQET, corrections to the static limit are organised as an expansion in k/ruQ ~  

^QCo/f^Q- The next-to-leading order term in the HQET Lagrangian includes a 

contribution from the heavy quark kinetic energy and a spin-spin interaction term. 

For the b-quark t^Qcol'^Q ~  0.1, which indicates that corrections to the static-limit 

are of the order of 10%.

6.2 The static-light energy spectrum

In the continuum, heavy-light hadrons are classified according to their total angular 

momentum and parity, For mesons described by the constituent quark model, 

J  =  S' -I-1/, where S  is the sum of the spins of the constituent quarks and L is the 

orbital angular momentum between them. The parity of these mesons is given by 

P = (-1)^+1.

In the static hmit, the heavy quark spin and hence the total angular momentum 

of the hght degrees of freedom are conserved quantities. Because hadrons which 

differ only in the spin of the static quark are degenerate, it is more appropriate to 

label static-light channels J / ” where denotes the total angular momentum of the 

light degrees of freedom. Table 6.1 lists the S-wave, P-wave and D-wave static-light 

mesons. The column on the right lists the corresponding heavy-light states.

In addition, baryons containing a single static quark can be distinguished by the
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L
0 1 -

2

1i0

1 1 +
2 0+ 1+

1 3 + 
2 1+ 2+

2 3 -
2 1 -  2 -

2 5 -
2

1CO1CM

Table 6 .1: S tatic-light mesons for different orb ital angular m om enta (L). T he right­
m ost colum n lists th e  corresponding channels once hyperfine in teractions are included.

flavour content of their constituent light quarks. This study includes the  static-light 

counterparts  of the  A5 and Ej, baryons which transform  as an isosinglet and  isotriplet 

respectively. T he At has J f  =  0”̂  and for the  E;,, J [  — I"*".

6.3 Static quarks on th e  lattice

T he static-quark  la ttice  action used in our work was first proposed by Eichten and 

Hill [43] and is given by

Sst^t =
X

In position space, the  s ta tic-quark  propagator from a space-tim e point x to  a  point 

y  is given by

G ^ { y , x )  =  e{yo -  xo)5{x -  y)Ul{yo -  £, x ) .. . .[ / /(x o , x )P + . (6.9)

By analogy, we define a sta tic  anti-quark propagator as

x) =  9{yo -  x q )5( x  -  y)C/t(xox)....t/t(yo -  i, x ) F _ .  (6.10)

A lthough the sta tic  quark propagator is inexpensive to  com pute, sim ulations of static- 

light systems are challenging. Using single point propagators for the  light quark  fields 

means th a t the source and sink operators of static-ligh t correlators are confined to  a
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single spatial lattice site. This severely restricts the statistical accuracy with which 

measurements can be made. This restriction is compounded by the fact th a t the 

noise to signal ratio of static-light correlators grows exponentially with increasing 

tem poral separation. For a static-light meson, the rate at which the ground-state 

signal degenerates into noise is given by [40, 42]

RNs{t) =  <y{t)/C{t)  ~  e ( ^ o - ( m . + V ( 0 ) ) / 2 ) i _  ( g

is the measured binding energy of the meson

^0 =  lim { E o - m o ) .  (6-12)
771(5 —>00

V (0) is the static inter-quark potential at zero separation and rriTj is the mass of the 

pion on the lattice. Because the quark mass has been removed from the theory, in 

the static approximation the exponents appearing in two-point correlators are non­

observable energy differences, =  \ \ m T n Q - * < x , { E n  — t t l q ) .  These energy differences 

contain a contribution from the static quark self-energy which diverges linearly with 

the inverse lattice spacing. For the Eichten-Hill action, F(0) =  0 and because of the 

linear divergence of the static-light binding energy, on realistic lattices, £o > m 7r / 2 . 

This leads to the exponential increase in the noise to signal ratio. To ameliorate 

the situation the Alpha collaboration [40] have proposed alternative discretisations 

of the static quark action. The parallel transporter in Eq. 6.8 is chosen so th a t the 

zero-separation interquark potential 1^(0) assumes a positive value and cancels out 

some of the contribution of the binding energy in Eq. 6.11.

We, on the other hand, use a method called dilution [45] to evaluate the light 

quark propagators from all sites on the lattice to all other lattice sites. Using these 

all-to-all propagators allows us to  place source and sink operators for static-light 

correlators at all spatial lattice sites yielding a dram atic increase in statistics. The 

dilution algorithm combines exact inversion of the fermion m atrix with stochastic
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estim ation to optimally evaluate all-to-all propagators.

6.4 C om puting all-to-all propagators

On realistic lattices the fermion m atrix is too large to invert exactly and stochastic 

m ethods must be employed to estimate all-to-all propagators. A naive stochastic 

estim ate of the inverse fermion m atrix is obtained by first generating an ensemble

of Nr noise vectors {?7[i],?7[2] These noise vectors have the same form as the

lattice quark fields and satisfy

= 5af3, (6.13)

where a  and 0  denote the collective quark field indices and the angle brackets denote 

an average over the ensemble. Both Z2 and Gaussian noise vectors will satisfy this 

requirement. For a given gauge configuration, U, one solves for

= M-\U)rj\i]  (6.14)

for each noise-vector in the ensemble. The full inverse fermion m atrix is then approx­

imated by

M ~ \U ) a 0  ~  (V^(a) ® viPy)-  (6.15)

This estim ate only becomes exact in the limit Nr 00. It is not an efficient means 

of computing the full inverse fermion m atrix because it relies on the cancellation of 

0 { \ )  noise to extract a signal which, due to confinement, decays exponentially.

To improve the rate of convergence of the stochastic estim ator we use Z 2 noise 

and partition each original noise vector

i
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where the partitioning is implemented so tha t

=  j -  (6-17)

In the dilution algorithm this partitioning is done in a systematic way. For example, 

time dilution breaks each noise vector into pieces which have support only on a single 

time slice

N t - l

(6.18)
1 = 0

with =  0 i f  i  ^  t . Following this example, the noise vectors may be diluted

in any or all quark field indices. Each original noise vector, r)[r], then provides an 

unbiased estimate of the inverse fermion matrix

® ^, (6.19)
i

where, as in Eq. 6.14

V’f'} = M-'(U)r,jl (6,20)

We then average these estimates over the ensemble. Each component of the Z 2 noise 

vectors has modulus 1 and full dilution on a single noise vector corresponds to the

exact inversion of the fermion matrix. Unlike the naive stochastic estimate, the

dilution algorithm yields the exact propagator in a finite number of m atrix inversions 

and gives more accurate results than  the naive approach with a comparable number 

of inversions. This is clearly illustrated in Figure 6-1. This plot shows the effect 

of tim e dilution on a pseudoscalar correlator computed using quenched background 

configurations on a 12^ x 24 lattice. The expected form of the correlator is given by 

Eq. 4.6. The circular points were obtained using a naive stochastic estimate of the 

inverse fermion matrix. 24 Z 2 noise sources were used for each fermion propagator.
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The diamonds are were obtained from single noise sources which were diluted in time. 

This plot is shown in Ref. [45] and full details of the simulation are contained therein.

U
o

Figure 6-1: A comparison of a  pseudoscalar correlator obtained using a pair of time- 
diluted noise vectors with a naive stochastic estim ate which uses the same number 
of m atrix inversions.

The all-to-all propagator algorithm used in this simulation incorporates an im­

portant additional feature. There is strong evidence to  suggest th a t the low-lying 

eigenmodes of the fermion m atrix play a particularly im portant role in hadronic in­

teractions. This information suggests the the contribution of these low-lying modes 

to the fermion propagator should be computed exactly. This has been incorporated 

into a generalisation of the dilution algorithm in which the  contribution of the lower- 

lying eigenniodes can be evaluated using a truncated spectral sum. The contribution 

of the higher eigenmodes is then estim ated using the dilution algorithm. A suite 

of software has been developed which combines the truncated  spectral sum and the 

diluted stochastic estimate in a seamless manner. The output from this program is 

a set of ‘source’ and ‘solution’ vectors, {rji, ipi}, which are combined to  form the full 

fermion propagator. The exact implementation of the program is described in detail

96

6,r •  no dilution
♦  time dilution

4 -

♦  ♦ ♦  ♦

2 -

♦  ♦  ♦  
♦

♦

Q   I I I I  I  I I  I  I  I  I 1_ _ _ _ _ _ 1_ _ _ _ _ _ 1_ _ _ _ _ _ I  I_ _ _ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ _ I_ _ _ _ _ _ 1_ _ _ _ _ _ I_ _ _ _ _ _ 1 _

0 5 10 15 20
t/a



in Ref. [46].

6.5 Tuning anisotropies on a dynam ical background

So far, we have described the tuning of the anisotropy parameters, and ^ g ,  in the 

quenched approximation. This allowed us to check th a t the mild mass dependence 

of the param eters of the fermion action is maintained beyond the tree-level. For 

physically realistic simulations, however, the anisotropy must be tuned on dynamical 

background configurations. When sea-quark effects are included and can no 

longer be determined separately, since the bare quark anisotropy will enter into the 

generation of gauge configurations through the fermionic determ inant. Therefore, ^ g  

and must be tuned simultaneously so th a t the renormalised anisotropies deter­

mined from the static-quark potential and hadronic dispersion relations agree on the 

target value, The tuned point in the bare anisotropy param eter space is denoted

The measured anisotropies for any set of bare values can be w ritten as Taylor 

expansions about the tuned point. Close to the tuned point, to a good approximation, 

this gives the equation of a plane. For example, the measured quark anisotropy is

«») = e+a({, -  ?,-)+m, -  «»•) (6 .21)

Setting the renormalised quark anisotropy to its target value defines a straight line 

in param eter space

+  =  Q  =  a C g - f3 C g - (6 .22)

Similarly, for the gauge anisotropy one can write

7^? +  — G. (6.23)
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The intersection of these straight hnes gives the tuned point,

In order to solve for the intersection point we need the plane equations which 

define the renormalised anisotropies close to the target value. To do this we measure 

the quark and gauge anisotropies for three points in param eter space which,

guided by the results of the quenched study, we estim ate to be close to the target 

point. These measurements yield the required planar equations.

The tuning procedure is intricate because three measurements must be made 

before the location of the target point can be estimated. The tuning runs may not 

be close enough to the target anisotropy for the planar approximations to hold. In 

addition, if the target point lies outside the area defined by the tuning runs, it may be 

difficult to determine Q  and to the desired precision. The tuning of the dynamical 

configurations used in this study is described in more detail in Ref. [47].

6.6 Power divergences

The power divergence of the static quark self-energy arises because the reduced sym­

metries of the static limit allow the mixing of the derivative term, JiDoh, appearing 

in the static quark action and the lower dimensional operator, hh  [48]. At any rate, 

the exponents of the two-point correlators are not themselves physically meaningful. 

However, these power divergences cancel in the difference of the exponents allowing 

us to compute hadron mass differences.

6.7 Angular m om entum  on the lattice

The angular momentum and parity quantum numbers used to classify hadronic chan­

nels in the continuum correspond to irreducible representations (irreps) of the im­

proper rotation group 0 (3 ), which is a symmetry group of these systems.

The irreducible representations include bosonic (single-valued) and fermionic (double­

valued) representations of dimension 2J+1.  The projection of the angular momentum
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onto some axis, Jz, labels the rows of the representation.

The lattice breaks continuum rotational symmetries and, on a spatially-isotropic 

lattice, 0 (3 ) reduces to the cubic point group Oh and eigenstates of the lattice Hamil­

tonian transform under definite irreducible representations of Oh- States which in the 

continuum have the same quantum  numbers but have different values are, in 

general, separated across the lattice irreps. To reliably extract information from lat­

tice correlators, it is necessary to use hadronic operators which couple strongly to 

particular lattice eigenstates. This is difficult to achieve using operators constructed 

according to continuum symmetries. We therefore construct interpolating operators 

which transform according to the irreps of Oh-

Using these operators, it should be possible to obtain good signals for the lowest- 

lying states in the lattice representations. It is then relatively straight-forward to 

determine the quantum  numbers of these states. The Lattice Hadron Physics Col­

laboration is currently applying this approach to operator construction to the baryon 

spectrum  on a grand scale [49, 50] and the construction of meson operators was 

discussed in Ref [51].

Irreducible representations of Oh

The cubic group Oh can be written as a direct product of two subgroups

Oh = O x { I , Q ,  (6.24)

where Ig denotes the space inversion operator and O is the group of proper rotations 

allowed by the isotropic cubic lattice.

We first consider the irreps of the subgroup O- This group has 24 elements which 

are divided into 5 conjugacy classes. W ith respect to Cartesian coordinate axes with 

the origin at the centre of a cube and the axes parallel to the edges of the cube the 

conjugacy classes and their constituent rotations are

• Cl : the identity class.
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•  C2 : an eight element class consisting of rotations of ±27t/3 about the body 

diagonals of the cube.

•  C 3  : rotations of tt about the coordinate axes (3 elements).

•  C4 : rotations of ± 7t / 2  about the coordinate axes (6 elements).

•  C5 : rotations of ±7t about the planar diagonals of the cube (6 elements).

Because O is a finite group the number of conjugacy classes is equal to the number 

of single-valued irreducible representations. These consist of two 1-dimensional irreps 

labelled A \ and A 2 , a 2-dimensional irrep denoted E  and two 3-dimensional repre­

sentations, Ti and T2 . Matrices for these representations can be found in Ref. [52].

To identify which continuum states can occur in a particular lattice representation, 

we note th a t O is a subgroup of SO(3). Therefore, restricting the irreps of SO(3) 

(labelled by J) to the rotations allowed by the lattice, generates representations for O 

which are, in general, reducible. This method of generating representations is known 

as subduction. The number of times a particular irreducible representation of O, 

labelled by the superscript a , occurs in the subduction of the continuum J irrep is 

given by

where N q is the number of elements of the group, in this case N q = 24, and k labels 

the conjugacy classes of th a t group, is the character of the class k in the lattice 

irrep and x̂ k'  ̂ is the corresponding character in the subduced representation. Note 

th a t the projection formula in Eq. 6.25 only holds for single-valued representations. 

Table 6.2 shows the subduction of the single-valued irreps of S0(3) to the group O 

for low-lying angular momenta.

To determine the fermionic representations of O, its double group must be 

considered. This 48-element group is obtained by adding to O a negative identity
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J Irreducible representation of 0
0 Ai
1 Ti
2 E  + T,
3 A 2 Ti T2

Table 6.2: Subduction of the single-valued irreducible representations of S0(3) to the 
group of proper cubic rotations, O.

corresponding to rotations through 27r. The double group is, therefore, the group of 

rotations in which one returns to the identity only after a rotation through Air. This 

group has 8 single-valued irreps. In five of these, a rotation through 2tt is represented 

by the identity matrix and these representations coincide with the single-valued irreps 

of O discussed above. The remaining three representations are labelled G\, G2 and 

H  and these constitute the fermionic irreps of O. G\ and G2 are 2-dimensional 

representations and H  is 4-dimensional. The full details of the representation matrices 

are not relevant to this discussion, however, we note that the matrices of G\ are 

obtained by restricting SU(2) to the elements of and that, on the lattice, 2- 

component spinors transform according to the G\ representation.

The angular momentum content of these representations can again be determined 

using the projection formula in Eq. 6.25, where N q now denotes the number of el­

ements in and the sum is over the 8 conjugacy classes of the double group. 

Table 6.3 summarises the irreducible representations of O and their low-lying con­

stituent states.

So far, we have considered the irreducible representations of the group of proper 

rotations. However, the extension to Oh is clear: including spatial inversion simply 

doubles the number of irreps. For example, the single irrep R  of the group O corre­

sponds to the irreps and of Oh where the superscript g denotes an even-parity 

representation and u indicates an odd-parity representation.
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Lattice irrep Dimension Continuum irreps
1 0, 4...

^2 1 3, 5...
E 2 2, 4...
T: 3 1,3...
T2 3 2, 3...
Gi 2 1 7

9 ) 2 " ‘

G2 2 T  T
2> 2-"

H 4 3 5 
2> 2-"

Table 6.3: Irreducible representations of the group of proper cubic rotations listed 
with their dimensions and lower lying angular momenta of their constituent states.

6.7.1 C onstructing lattice operators

In this study, we make the static quark symmetries manifest at the outset and con­

struct interpolating operators specifically for the light degrees of freedom. These 

operators are then combined with the static (anti)quark propagator to evaluate static- 

light correlation functions. For example, a two-point function for a hadron containing 

a single static quark is given by

C{t) ~  x ) W \ t ,  0; x)£(0, x)|f)), (6.26)

where is the path-ordered product of temporal links appearing in the static-quark 

propagator and £ is a colour-triplet combination of quark fields and link-variables. 

The projection matrix, P+, appearing in the static-quark propagator is not shown 

because it can be incorporated into the choice of the light interpolating fields.

Under the action of an element, R, of the group 0^  the interpolating operators 

transform according to

U{R)i\‘"^W{R) = ^ i f n l f i R ) * ,  (6.27)
j

where U{R) represents the action of the group element, R, and D̂ °‘'>{R) is the corre­

sponding matrix in the irrep labelled a.

102



To systematically construct interpolating operators for each of the lattice irreps 

we adopt the following procedure:

We identify linearly-independent sets of simple prototype functions which tr ans­

form amongst themselves under Oh- For concreteness, consider the example of a 

static-light meson. In this case, suitable prototype operators are two-component 

spinors representing the light quark which may be displaced with respect to the 

static quark. In the following, we refer to the position of the static quark as the 

origin. The elemental operators are then two-component fields connected to the ori­

gin by a gauge-covariant path. We can use the upper or lower components of the 

four-component Dirac field in the prototype operators, noting th a t switching between 

components simply changes the parity of the representations.

The action of Oh on a set of prototype operators, denoted {0}, generates a rep­

resentation of the group. Interpolating operators for the constituent irreps can be 

formed from linear combinations of the prototype functions. More specifically, con­

sider the following set of operators

The sum is over elements of the double group, O^,  because the projection formula is 

only valid for single-valued representations. O r  denotes the operation of the group

(6.28)

where the projection operator is defined as

(6.29)

element, R, on the set {0} and is the corresponding m atrix in the a  irrep

which has dimension da. One chooses a (non-zero) element, from the set in 

Eq. 6.28 and computes

(6.30)
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The resulting set of operators, {4'^^}, transforms according to Eq. 6.27

For a static-light meson, the simplest interpolating operators are 2-component 

spinors located at the origin. The upper components of the light quark spinor form a 

Gf irrep, while the lower components transform according to the representation. 

Prom Table 6.3 one can see that it is possible to probe the S-wave meson and P- 

wave meson using these operators, however spatially-extended operators are required 

to access other orbital excitations.

The simplest non-local operators can be constructed from the set of six elemental 

operators consisting of light quark spinors connected to the origin by straight-line 

paths of equal length. The paths of these prototype operators are perpendicular to 

the faces of the cube centred at the origin. Prom these basic units, it is possible to 

construct operators which transform according to the Gf, G“, and irreps. To 

construct operators for the Gf and G2 irreps, we used spinors lying along the planar 

diagonals of the cube.

By repeating this for test functions with increasingly complex paths one can 

choose interpolating operators which maximise overlap with the states of interest.

The manipulations of the elemental operators required to project out the irre­

ducible representations were performed using a program written in Mathematica.

6.8 Sm earing and variational techniques

As well as constructing operators which coupled to definite irreducible representations 

of Oh, measurements were further enhanced by smearing the quark fields and link 

variables and applying a variational technique to compute hadron energies.

Quark sm earing

Interpolating operators constructed from point-like quark sources do not generally 

have a good overlap with the low-lying states. This is because, physically, a quark is 

not expected to be restricted to a single point inside a hadron. Operators constructed
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from smeared quark fields can have considerably larger overlap with the physical

states.

In this study, we applied Jacobi smearing to the light quark fields. The smeared 

quark field is given by

where is the number of iterations of the smearing operator and k is a real-valued 

weighting factor. The three-dimensional Laplacian operator is defined as

The smearing procedure is gauge covariant and preserves the Oh symmetry. Smeared 

quark sources are not point-like but have a finite spatial distribution and better model 

the distribution of quarks inside hadrons.

Stout Links

Contam ination by ultraviolet modes is further reduced by smearing the gauge fields. 

Link smearing is similar to quark smearing - each iteration of the smearing algorithm 

adds to each link variable a weighted sum of neighbouring links. For example, spatial 

links may be updated according to

(6.31)

3

A'ip{x) = ^  (Ukip{x + k) + Ul{x -  k) -  2'0(x) j (6.32)

= U^^\x) + pSl^\x) (6.33)

where p is a real-valued weight factor and Si{x) denotes the sum of spatial staples 

going from the lattice site x  to the site x + i

(6,34)
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This sm earing operation preserves the  cubic sym m etries of the  lattice. The com bina­

tion  of links is not, however, an element of SU(3) and th e  sm eared link m ust be pro­

jected  back into the  gauge group w ith each iteration  of th e  sm earing algorithm . The 

projection is non-analytic which can be problem atic for M onte Carlo algorithm s. To 

circum vent th is problem , M orningstar and  Peardon [53] developed a  gauge-smearing 

algorithm  which stays w ithin  SU(3), elim inating the  need for link-variable projection. 

To do this, they  defined the  following m atrix

Qi{x)  =  ^  -  ^ T r , (6.35)

where

Qi{x) =  pSi{x)Ul{x) .  (6.36)

Qi{x)  is herm itian  and traceless and is an elem ent of SU(3). The smearing

operation is given by

U ‘r ^ ^ \ x )  =  exp {iQi{x)) U[ ' ' \ x ) ,  (6.37)

and the  sm eared link, is an element of SU(3). N ote th a t  link sm earing can

be applied a t separate stages of the  sim ulation. On one hand, it enters into the  gen­

eration of gauge configurations and quark propagators. A good choice of smearing 

param eters in th a t case are those which maximise the  expectation  value of the  plaque- 

tte , which renders tadpole im provement unnecessary. In addition, link sm earing may 

be used in the  m easurem ent procedure to  maximise the  overlap of the  in terpolating 

operators w ith the s ta tes  of interest.

In this study, only th e  spatial links were smeared. In principle the  smearing 

algorithm  can be extended to  include tem poral links, however, on tem porally-fine 

anisotropic lattices th is is unnecessary.
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T he V ariational approach

Rather than determining energies from the asymptotic behaviour of a single two- 

point correlation function, we employed a well-known variational technique [54, 55]. 

In this approach, for each channel, a number of different levels of Jacobi smearing are 

applied to the light quark fields and a correlator m atrix is constructed. The energies 

of the low-lying states can then be determined from the eigenvalues of the correlator 

m atrix a t large times.

W ith point propagators additional inversions of the fermion m atrix are required 

for each additional level of smearing. On the other hand, all-to-all propagators facili­

ta te  the use of the variational approach because the fermion propagator is expressed 

in terms of separable fields and smearing is only applied in the evaluation of the 

correlation matrix.
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6.9 Sim ulation details

This study was performed on Â / =  2 dynamical background configurations. These 

configurations were generated using the anisotropic gauge action detailed in Chapter 

2 and ARIA; the links in the fermion action were stout smeared and the gauge action 

was tadpole improved. The bare sea quark mass was set at atruo = —0.057 which 

corresponded to the strange quark mass in the quenched simulation. The anisotropy 

in these simulations was close to six but did require further tuning.

Initially, 250 configurations were generated on an 8  ̂ x 48 lattice. To begin with, 

only static-light mesons were considered. The mass of the light valence quark was 

fixed at the sea quark mass. The light quark propagator was computed using 100 

eigenvectors and a single time diluted noise vector.

First, only S-wave and P-wave mesons were considered. On the lattice, the S-wave 

meson is in the channel while the and are in the and channels 

respectively. The notation used here is the lattice analogue of the continuum J f  

notation, i.e. Gi and H  denote the transformation properties of the light degrees 

of freedom under proper rotations and the superscript denotes the overall parity 

of the meson. As mentioned earlier, extended operators were required for the 

meson and both local and extended operators were used for the G~[ and G]'’ mesons. 

The extended operators were constructed from the set of 6 prototype operators with 

straight-hne off'sets discussed earlier. Both single and double stout-hnk displacements 

were considered. Five levels of Jacobi smearing were applied to the light quark fields 

to construct a variational basis for the correlation matrices. For a given lattice 

representation, each element of the correlation matrix was obtained by averaging 

over the full set of basis operators.

The statistical errors on the resulting effective mass plots were extremely small, 

however, none of the plots showed a plateau. This is clearly illustrated in Figure 6-2 

which plots the effective mass of the lowest-lying state in the G^ channel. The fall-off 

in :he signal at large times is quite unexpected, because in static-light systems only
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the light quark can propagate backwards in time and we expect this to be suppressed 

by gauge symmetry. Note, however, that this drift could not have been resolved in 

data with larger statistical errors.
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Figure 6-2: The effective binding energy for the lowest-lying state in the G\ irrep 
(the S-wave meson) obtained on the 8̂  x 48 lattice. The light quark propagator was 
evaluated using 100 low-lying eigenvectors and a single time-diluted noise vector. 
The drift in the effective binding energy could not have been resolved with poorer 
statistics.

The spatial lattice spacing, determined from the static inter-quark potential and 

confirmed in a study of the charmonium spectrum on the same background config­

urations, was found to be approximately 0.2 fm. This was smaller than had been 

anticipated and we suspected that the spurious drift in the effective masses was due 

to finite-size effects. Therefore, configurations were generated on an 8̂  x 80 lattice 

at the same coupling and sea quark mass. Preliminary measurements showed clear 

plateaux in effective masses. Time constraints meant that only 176 background con­

figurations were generated. This time the light quark propagator was estimated using 

two time-diluted noise vectors.
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The final results for the spectrum  of static-light mesons were obtained using the 

following operators:

Local operators were used for the channel. In this case the use of extended 

operators was found to  have no noticeable impact on the signal. This is consistent 

with the the identification of the lowest-lying state  in the representation with the 

S-wave meson, which has a wave function th a t peaks at the origin. For the G^ and 

channels, single-link displacements were used. Single-hnk displaced operators 

were also used for the H~  channel where we hoped to observe the |  D-wave meson. 

For this channel, we also tested planar-diagonal displacements but obtained a  noisier 

signal. Finally, as stated  earlier, diagonally-displaced operators were required for the 

G 2  representation. In all cases, cleaner signals were obtained by coupling operators 

involving the lower components of the light quark spinor to  a  static quark and in­

terpolating operators which involved upper components of the light quark fields to  a 

static anti-quark. This is expected, of course, if one considers solutions to  the Dirac 

equation in a simple static potential.

Once again, 5 levels of smearing were applied to  the light quark fields to  obtain a 

correlator matrix. For each element of the m atrix, we averaged over all rows in the 

irreducible representation and we also averaged over both systems containing a static 

quark and systems containing a static anti-quark bu t with the same overall quantum  

numbers.

Figure 6-3 shows effective mass plots for the lowest-lying states in each of the 

irreducible representations. Clear signals are evident across all channels. From this 

figure, we draw the following conclusions. The lowest-lying state  in the G^ channel 

can be identified unambiguously as the state. Splittings are observed between 

the lightest states in the and channels we identify as the two P-wave states. 

However, within errors no splitting is observed between the lowest energy states in 

the G 2  and H~  channels. This may indicate th a t the D-wave states are (almost) 

degenerate or th a t the |  D-wave meson which appears in both  channels is, in fact, 

lighter than  the |  state. For heavy-hght mesons, the inversion of orbitally-excited
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multiplets with respect to the ‘standard ordering’ has been predicted by quark mod­

els [56, 57]. In these models, the spin-orbit coupling receives opposing contributions 

from single-gluon exchange and Thomas precession of the light quark in the confin­

ing part of the effective potential. At small inter-quark separation (i.e. low orbital 

angular momentum), one-gluon exchange dominates while at higher orbital angular 

momentum the contribution from Thomas precession takes over. Multiplet inversion
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Figure 6-3: Effective mass plots for the static-light mesons

has been considered in a number of lattice studies of heavy-light mesons, more re­

cently for static-light mesons on dynamical background configurations in Refs [58, 59]. 

The authors of those studies claim to identify non-degenerate D-wave states however 

the splitting between these states is extremely small and it is not clear whether that 

result is statistically significant. In any case, this is an interesting point that merits 

further study.

I l l



M ass-splittings

In the static-hm it, only energy differences are of direct physical significance. In this 

study, hadron mass differences were determined to  a high precision. Fits to the mass 

differences of mesons are shown in figure 6-4 to  figure 6-6. Mass differences were 

determined by fitting to  the ratio of correlators, however, in each case we demanded 

th a t both correlators exhibit individual plateaux in the fit region. Figure 6-4 shows a 

fit to  the energy difference between the P-wave and the S-wave. The fit indicates 

an accuracy of 2% and, in lattice units, yields a value of 0.0481(8). Assuming an 

inverse temporal lattice spacing of at  ̂ ~  6 GeV gives a  result in physical units of just 

under 300 MeV. This is less than  the value of 468(43)MeV obtained in another lattice 

study of the static-light spectrum  [60], but it is not inconsistent w ith quark model 

predictions [61]. Also, we must emphasise tha t, although statistical uncertainties are 

clearly under control, we have not attem pted to quantify systematic errors.

—  a5M = .0481(8)
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Figure 6-4: Mass splitting between the P-wave and S-wave static-light mesons.

112



Figure 6-5 shows the mass-sphtting of the P-wave multiplet which yields =

0.0119(7). Although it appears that a plateau begins at about timeslice 6, this does 

not coincide with the plateau region of the individual states. Finally, the effective

0.05

aj6M = 0.0119(7)X /d.o.f. = 3.3/50.04

0.03

^ - 0.02

I

Ci 0.01 

0

- 0.01
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0 5 10 15 20 25 30

Figure 6-5: Mass splitting between the and P-wave states. The fit is performed 
in the region where both states exhibit a plateau.

energy difference between the lowest-lying state in the H~ channel and the S-wave 

meson is plotted in figure 6-6. The excellent fit, atSM =  0.1073(7), can only be 

achieved because of the fine resolution of the temporal direction.

6.9.1 Static-light baryons

To compute the energies of the static-hght baryons, we used local diquark operators. 

For the A;, channel, operators transforming according to the A\  irrep were used. The 

Eb required operators transforming according to the Tf irrep. These channels can be 

accessed using local operators. The operators used were

CT(A^) = £“̂ V>{C75 ^2, 0 ‘(r») =  (̂ 4̂ ) 1̂ 2. (6-38)
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Figure 6-6: Mass splitting between the lowest-energy state in the H~  channel and 
the S-wave meson. As detailed in the text, we could not positively identify the H~ 
D-wave state.

where C  is the charge conjugation matrix and tjji are the light quark fields. Prelim­

inary results for the static-light baryons were presented at Lattice 2005 [62]. These 

results were obtained on 136 of the background configurations used for the static- 

light mesons. Each light quark propagator was evaluated using a single time-diluted 

noise vector. This time, cleaner signals were obtained by allowing the diquark states 

constructed from the large (upper) components of the light quark fields to prop­

agate forwards in time and by using the lower components of the quark fields in 

the backward propagating states. Figure 6-7 shows the effective binding energies 

of the lowest-lying states in the baryonic (diquark) channels along with the S-wave 

static-light meson. One can clearly resolve splitting between the baryonic states. A 

preliminary estimate of the mass differences between the baryons and the static-light

X /d.o.f. = 1.6/4 aj5M = . 1073(7)
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Figure 6-7: Effective mass plots for the static-light Af, and Et together with the 
static-light S-wave meson.

mesons is, in lattice units,

at5M(Ab) =  0.0684(19), 

at5M{Eb) = 0.0781(24).

The mass differences were, once again, determined by fitting to the ratio of correlators. 

In this case, the ratio of the baryonic correlators was too noisy too allow a rehable fit. 

However, from previous experience with mesons, we expect that using eigenvectors 

and higher levels of dilution for the light quark propagators should greatly improve 

the signals for these states. Prom the difference of the fits, we estimate a baryon 

splitting of 5{Ilb — Afe) ~  60 MeV with a statistical uncertainty of about 40%.

Recently, a number of simulations of static-light baryons have been performed 

with a view to studying diquark correlations. One such study is presented in Ref [63]. 

That study involved a number of quark masses which were lighter than the single
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quark mass used in this investigation. In th a t case, the binding energy differences 

were found to increase with decreasing hght quark masses and those results were not 

inconsistent with our value for the baryon splitting.

6.10 Conclusions

This chapter described a study of the spectrum  of static-light hadrons on dynamical 

background configurations. It combined a number of seemingly disparate topics.

Typically, static-light correlation functions are quite noisy. Using conventional 

point-propagators for the light quarks means th a t source and sink operators in a 

static-light two-point function are restricted to  a few spatial lattice sites. In this 

study, to enhance the signal, all-to-all propagators were used for the light quarks. 

This allowed us to place source and sink operators at each spatial lattice site yielding 

a dram atic increase in statistics.

Our simulation was performed on an anisotropic lattice and we described how the 

quark and gluon anisotropies can be tuned on a dynamical background.

To maximise overlap with the states of interest, we used interpolating operators 

which transform  under the irreducible representations of the lattice symmetry group. 

Oh- By constructing operators specifically for the light degrees of freedom it is possi­

ble to exploit static-light degeneracies to optimally determine hadron mass-splittings.

The focus of the study was the spectrum  of orbitally excited mesons. P-wave and 

D-wave states were considered, most of which can only be accessed using spatially 

extended interpolating operators. All-to-all propagators facilitate the use of non-local 

operators. F\irthermore, by constructing operators specifically for the light degrees of 

freedom, one can exploit static-light degeneracies to  optimally determine the energy 

differences between hadrons.

In our results, one can clearly identify the static-light P-wave states. Excellent 

signals were also obtained for the and H~  channels which contain the D-wave 

states. However, within errors, the lowest-lying states in these channels are degener-
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ate. This might indicate inversion of the D-wave multiplet, which has been predicted 

by phenomenological models but has not previously been observed on the lattice. A 

more conclusive study must include an analysis of systematic errors and will identify 

higher-lying states in each lattice channel. In principle, higher orbital excitations as 

well as radial excitations can be identified by comparing excited states across the 

lattice irreps. In practice, this is a formidable task. However, strong signals for 

the ground states in each channel have been obtained using only time-diluted noise 

vectors, and the excellent signal obtained using a combination of eigenvectors and 

time-dilution on the 8  ̂x 48 lattice indicates th a t progress can be made in this regard 

in the near future.

Finally, we considered static-light baryons which can be accessed using local oper­

ators. The two-point correlators for these channels were significantly noisier than for 

the static-light mesons. However, we are confident tha t clear signals can be obtained 

by using eigenvectors and higher levels of dilution in the evaluation of the light quark 

propagators.
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Chapter 7 

Concluding remarks

Lattice simulations of heavy quark systems, in particular simulations of hadrons 

containing b-quarks, are challenging. However, they are necessary to confirm th a t 

QCD is the true theory of the strong interaction and to search for physics beyond 

the Standard Model.

To overcome practical restrictions, a number of formalisms have been developed 

specifically for the heavy quark sector, these include NRQCD, the Fermilab formal­

ism and HQET. Studies using these approaches have already achieved considerable 

success. The first part of this thesis constituted a feasibility study of an alternative 

approach to heavy hadron simulations, th a t is, the use of temporally-fine anisotropic 

lattices to suppress discretisation effects which scale with the mass of the heavy quark. 

The asymmetric discretisation of space-time introduces two additional parameters 

not associated with the isotropic formalism, the quark and gauge anisotropies, which 

must be appropriately tuned to regain continuum QCD. The anisotropic formalism 

will only be a viable option in heavy-quark simulations if these additional parame­

ters are relatively straight-forward to tune and, as hoped, depend only mildly on the 

quark mass.

The non-perturbative tuning of the anisotropies on quenched background configu­

rations was detailed in Chapter 4. In this case, the gauge anisotropy does not depend 

on the parameters of the fermion action and results for the fermion anisotropy were
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promising, showing negligible variation over a range of quark masses.

Chapter 5 outlined a perturbative investigation of the fermion action. This was 

a preliminary study which laid the foundations for more advanced work. A naive 

comparison between the one-loop perturbative estimate for a simple quantity like 

the spatial tadpole coefficient and the corresponding value determined in a simu­

lation showed poor quantitative agreement. However, it was argued th a t two-loop 

effects could account for such a discrepancy. Therefore, in light of recent advances in 

autom ating lattice perturbation theory, a fully perturbative approach to renormalisa­

tion may still be viable on spatially-coarse anisotropic lattices. This can be tested by 

performing a more comprehensive numerical investigation over a number of different 

lattice spacings and by computing the two-loop corrections explicitly.

The final chapter departed somewhat from the earlier theme and described a 

study of heavy-light hadrons in the static quark limit. Potentially, a lot can be learnt 

from static-light simulations although, conventionally, these have been less accurate 

than other approaches. A new method of computing all-to-all light quark propagators 

was described which yielded a dram atic improvement in the statistical accuracy of 

our results. As well as their obvious relevance to heavy-light spectroscopy, static- 

light simulations may also be used to explore the effect of quark correlations inside 

hadrons.

To summarise, this thesis describes a new toolkit for heavy quark simulations. 

Although much work has already been done in this area, considerable challenges 

remain and the continuing development of novel methods for heavy quark physics is 

of critical importance.
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A ppendix A

Lattice Feynman Rules

The infinite-volume Feynman rules required to compute the one-loop 

energy are as follows:

T he gauge propagator

The inverse free gluon propagator is defined as

where

7 2 /  k̂ af,k.j = — sm '

QtMu -  + k l ' ^  ,

with

ko =  0 ,

ki =  agki, z =  1, 2, 3.

I

quark self-

(A.0.1)

(A.0.2)

(A.0.3)

(A.0.4)



Then

D ^ , u { k )  —  ̂ 2

where is given in Ref [64],

(q G f j L i / i k ^ ^ k ^ k u  +  5 ^ u  klG,0{k)
0

G ^ i / { k )  ^  k ^  ( ^ Q f j . p Q f j . r k f ^  +  Q i x p Q p r k p  +  Q p . T Q p T k f

i ^ i ' p O i i ' T k i ,  Q u p Q p r k p  +  Q i / r Q p r k ^ ^

+ Q n p q u r  ( k l  +  fcp) { k l  +  k f j  +  q ^ r Q u p  ( k l  +  k ^ ^  ( h i  +  }

Q n u Q p r  { j^ p  { . Q u p Q u p  Q ^ i t Q u t )  k p k ^

Qfiu (^Qfipk^k^ + Qp^j-kphp + q u p k j k ^  + Q u r k j k ^  ,

w ith ^  ^  u ^  p ^  T, and  A 4 is given by

^ 4  =  ^   ̂ k ^  9i//j "f" ' y   ̂ k j k ^ ^ q p u  { Q u p Q u t  +  Q u r Q i / p )

p .  p , > u , p > T , { p , T } f ] { f j , , i y } = 0

The fermion propagator

For ARIA, the free fermion p ropagator is given by

S„ip) =  a, ( - n . .T ’.M ^ in ( a ,P , ) + A < W A  _
VE^(^/.sm(a^p^)) + M ^ p ) J

where

2 . 2 /̂  (̂ sPi 1 0 0j s m ( — ) j .  J = l , 2 , 3 ;

i t P o \  , 16s . ^ / a s P j \
 ̂ —  j  +  —  2 ^  sin j  +  ^iratmo.

M p ) =  1,

V^{p)

+III

M( p ) =  2rsin^ f

(A.0.5)

■i)

(A.0 .6 )

(A.0.7)

(A.0.8)

(A.0.9)

(A.0.10)

II



I

!

i

l-G luon-2-Q uark vertex

p, b q, c

Vi{p,q ,k , i i ,a ) = -A ^(p ,g ,

where

\ / j \  ( (̂ tPo +  o.tQ Q \ . . { (i'tPo +  o-tQo\
M P , Q ^ k )  =  7o c o s l  ---------------   l - z r s i n l      1

+  ̂  cos sin(a,A;j)

cos

-i4s 2 sin sm{asPj + asQj) cos

+  ̂  cos <̂oj sin(atA;o)

(A.0.11)

(A.0.12)

atkoV
2  A

n .

(A.0.13)

III



2-G luon-2-Q uark vertex

q, dp, c

T he tem poral vertex is given by

. at . fa t{po + qo)\  atr f  at(Po -  qo)
I'yn — sm I ----------------  I ----— cos ( ---------------2 7 o— sm (A.0.14)

and for spatial m om enta

I'jjliras \ -  sm
asiPj  +  Qj) Qj k  ■

-  ^  sin {asPj +  asqj) ^os ( ^  ^ cos

c , 'asiPj + Qj)\  2 i , f  a ,k-SdsS cos ( ------—— — 1 — 8asS cos [asPj + asQj) cos

dglj

{T \  T̂ ‘}dc

(A.0.15)
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