
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin 

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and 
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing 
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property 
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR 
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources 
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in 
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal 
conventions. Where specific permission to use material is required, this is identified and such 
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the 
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity 
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising 
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific 
use constraints, details of which may not be explicitly described. It is the responsibility of potential and 
actual users to be aware of such constraints and to abide by them. By making use of material from a 
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the 
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the 
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & 
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from 
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or 
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for 
your research use or for educational purposes in electronic or print form providing the copyright owners 
are acknowledged using the normal conventions. You must obtain permission for any other use. 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has 
been supplied on the understanding that it is copyright material and that no quotation from the thesis 
may be published without proper acknowledgement.



Optimum Stability in Control System Design

A dissertation submitted to the University of Dublin 
for the degree of Doctor of Philosophy

Brian Cogan
Trinity College Dublin, November 2006

Department of Electronic and Electrical Engineering.
Trinity College Dublin



' trinity  COLLEGE

0 5 JUL 2007 

l ib r a r y  DUBLIN



Dedication
This thesis is dedicated to my parents, Daniel and Elizabeth, to my wife Bemie, and to my daughter Hannah.



Declaration

I declare that I am the sole author o f this thesis and that all the work presented in it, unless otherwise 

referenced, is my own. I also declare that this work has not been submitted, in whole or in part, to any other 

university or college for any degree or other qualification.

I authorize the library o f the University o f Dublin to copy or to lend this thesis.

Brian Cogi

November 2006



Summary
This thesis develops for the first time a general approach to the design of control systems that 

emphasizes optimum system stability as the primary design criterion. The design method is to select controller 

parameters that place the system’s rightmost eigenvalue as far to the left as possible in the s-plane. When the 

system is operating at this point it is said to be in a state of optimum stability. This method is applied to the 

design of PI and PID controllers as more than 95% of controllers used in industrial applications are either PI 

or PID type (see references in section 6.1.1). The optimum stability design method is developed in the context 

o f the root locus diagram, performance integrals, the Lyapunov matrix equation, and the Routh array and the 

equivalences between these characterizations are explored.

The procedures employed here do not maximise system stability - the purpose is to optimise system 

stability. By placing the rightmost eigenvalue as far to the left as possible we are minimizing the largest time 

constant of the system. We find, by using standard robustness measures, that the performance o f controllers 

designed using these eigenvalue-assigning methods is better than the performance achieved using currently 

available design techniques.

New methods for calculating time-weighted performance integrals and performance sums are 

presented and several classical results are given new and simpler derivations. New methods are given for 

solving the continuous-time and discrete-time Lyapunov matrix equations using the Laplace and Z transforms 

respectively.

Root-locus-based optimum stability is used to design a PID controller for an unstable, non - 

minimum phase process, to design PI and PID controllers for multi-lag processes, and to design a second 

order system. The root locus approach is then extended to the design o f PI controllers for time - delay 

processes. By using standard robustness measures, and by examining time responses, the performance o f the 

designs based on optimum stability is seen to be better than the performance achieved using currently 

available design techniques. A relationship between root-locus-based optimum stability and an exponentially- 

weighted performance integral is also explored.

A method is developed to design PID controllers for multi-lag processes based on optimum stability 

using the Lyapunov matrix equation. This design method is important when there are more than two system 

parameters. In the case o f a problem with two parameters, the Lyapunov method gives the same controller as 

the root locus method.

The idea that optimum stability may be at work in nature is explored in the context o f a model o f the 

human balance control system. The optimum stability criterion is used to select parameters for this model via 

the Nyquist diagram and the Lyapunov matrix equation.

Optimum stability is also interpreted in the context of the Routh array. It is shovm that this technique 

produces the same controllers as the root-locus-based method. Controllers are designed for an unstable, non

minimum phase process, for multi -lag processes, and a study is made o f the n -let polynomial.

Another controller design approach, based on the Maximum Power Transfer Theorem from standard 

linear AC circuit theory, is described. Controllers designed using this method are compared to controllers 

designed using optimum stability from root locus, among other criteria.
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Chapter 1: Control System design methodologies

1.1 Introduction

The purpose o f this chapter is to give a description o f the controller design methodologies developed 

in this thesis. Figure 1.1 shows the controller design methods developed, the processes to which they were 

applied, and where in the thesis each method is discussed.

1.2 Optimum stability from root locus

The root locus based controller design methodology described in this thesis has analytic and 

geometric manifestations. The root locus diagram provides the arena for the geometric manifestation. 

Specifically, the problem is to find those values for the system parameters that place the rightmost eigenvalue 

as far to the left as possible in the complex plane. These parameter values are then selected as the system’s 

nominal design parameters. Putting the rightmost eigenvalue is as far to the left as possible is a balancing act 

that is performed within the context o f the system dynamics. When a system has one or two design parameters 

this balancing act is done with the aid o f the root locus diagram. A Lyapunov matrix equation based 

optimization procedure, described in section 1.4 is used for systems with more than two design parameters. 

By placing the rightmost eigenvalue as far to the left as possible we are minimizing the largest time constant 

l / | j |  where |^ |,  called the degree o f stability [1] o f the system, is the distance from the rightmost eigenvalue 

to the imaginary axis.

The merits and demerits o f this approach will be discussed and a case is made for adopting the root 

locus based design methodology in many cases. For example, concentration on optimum stability makes for a 

trade-off between certain performance measures e.g. fast transient response and good disturbance rejection. 

This trade-off is not unreasonable for process control applications in particular.

In at least one interesting general case i.e. a second order system comprising integral control o f a 

first order lag in section 4.1.2, the root locus based controller design methodology described in this thesis has 

an analytic manifestation also. Specifically, the analytic problem is to find the system parameters that

f  CO

minimise the performance integral exp(ar?)
dejt) 

dt

signal. A method for calculating this integral in developed in 2.4.2.

e \ t )  + \  
CO.

d t , where e{t) is the system’s error

In the examples considered, when a system is in a state of optimum stability there are invariably 

several real eigenvalues at the same rightmost point. This leads to a very convenient method for calculating 

the system parameters for optimum stability. For example, if  there is a triple real eigenvalue at the rightmost 

point 5 = -c r then the characteristic polynomial has the factorization p{s) = f  (5)(5 + cr)’ = 0 and we can 

also write p'{s) = 0 and p"{s) = 0 . This observation is used frequently to calculate system parameters.
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Several authors have used root locus techniques to choose parameter values for controllers. Wang et 

al. [2] and Mann et al. [3] develop tuning methods for PID controllers that place the closed-loop poles at a 

breakpoint in the root locus. Normey-Rico et al. [4] present a solution to the mobile robot path tracking 

problem by selecting parameter values that lead to a double real pole on the root locus. Basilio and Matos [5] 

tune PI and PID controllers by selecting parameter values that lead to a critically damped system. In doing 

this they sometimes places the rightmost eigenvalue as far to the left as possible. In addition nominal 

parameter values that place the rightmost eigenvalue as far to the left as possible are selected in [6-11].

1.3 Optimum stability using performance integrals

A system is said to be robust if  it behaves in an acceptable manner when subjected to changes in the 

process or the environment. Dorf [12, 13] points out that classical techniques may be used to design 

controllers that are robust in the sense that they minimise an interal performance measure. In this thesis

integral performance measures such as J  = \ ex p (a f) is^ (0  + ̂ l  I i^^fare used. Power [14]
[ co l\ dt ) \

considered a similar performance integral with no time weighting: J  = \ ie ^ (0  + -V | \d t  as did
•"> [ (o„ \  dt )  \

Grayson [15] and Gibson [16].

Gibson [16] points out that performance integrals that minimise the square o f the error alone can 

result in systems with insufficient damping. He then points out, however, that if the derivatives o f the error are 

included then this stricture does not apply. Gibson [16] also remarks that if a system has a persistent, residual,

f ® ?acceptable error then performance integrals with polynomial time weighting such as ^ ^ t " e { t ) d t ox

£  t\e{t)\dt go to infinity. This criticism does not apply to performance integrals with exponential time

weighting as such integrals decay to zero as / —>• oo .

Grayson [15] remarks that the value o f a performance integral depends on the initial conditions and 

he describes this as a disadvantage. However, this dependence on initial conditions actually allows a 

performance integral to reflect the system performance for different disturbance types e.g. impulsive, step, 

sloping etc. For this reason the dependence on initial conditions is actually a strong point o f performance 

integral and affords an ability to distinguish, for example, when a system has a good step input response but a 

poor impulse disturbance response.

1.4 Optimum stability using the Lyapunov matrix equation

Optimum stability using the Lyapunov matrix equation is used frequently in this thesis. The approach taken 

was motivated by the following corollary in Kalman and Bertram [17]:

Corollarv 3.2: For the continuous time, free, linear, stationary dynamic system = Ax(<)the real
dt

parts o f  the eigenvalues o f a constant matrix A are < cr if and only if given any symmetric positive definite 

matrix Q there exists a symmetric positive definite matrix L which is the unique solution o f the set o f 

«(« + 1)/2 linear equations: -2o"IL + A^L + LA = -Q
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The proof o f  this Corollary is obtained very easily by substituting ( A - c r l ) in to  the Lyapunov 

M atrix Equation A^L + LA  = - Q  and rearranging the terms. This gives

(A -C T l)^L  + L ( A - c r I ) =  A'^L + L A - 2 <tI L  = - Q

The significance o f  this Corollary here is that it can be used as part o f  an eigenvalue location 

optim ization procedure as described next.

As a  gets more and more negative, the eigenvalues o f  (A  -  cri) shift to the right by an am ount equal 

to c r . (Also, as a  gets more and more positive, the eigenvalues o f  ( A - c r l )  shift to the left by an amount 

equal to a ). So by making a  more and more negative and at the same time solving 

A ^L  + L A - 2 ( t I L  = - Q  for L and checking to see if  L is positive definite, we can establish that a  that 

m akes L no longer positive definite. We now know where the rightm ost eigenvalue o f  the characteristic 

equation  corresponding to A is.

This procedure for finding the rightmost eigenvalue may be described as follows:

take Q  to be the Identity matrix, I

take cr to be a small, negative number

select an initial set o f  parameters - for example, (a,b,k^,k„)

use the characteristic equation to create the com panion form  o f  the matrix A

solve A^L + L A - 2 c r I L  = - Q  for L

check if L is positive definite

if  L  is positive definite then decrease a  a little

solve A^L + L A - 2 <j I L  = - Q  again for L

check if  L  is positive definite

continue decreasing a  until L  is no longer positive definite

record the final value o f  a  at which L  is positive definite as this is the location o f  the rightmost 

eigenvalue o f  A for the selected param eters {a ,b , k^ , k„) .

This procedure is effectively a ftinction that takes (a,b,k^,k„)  as an input and gives <r as an output. 

I f  this procedure is treated as a function then an optim ization algorithm  can be used to find that input 

(a ,b, k^ ,kg)  that makes the output cr as negative as possible. This optim ization procedure was implemented 

by using an add-on for M athem atica called Global Optimization [18]. O ther packages failed to find a global 

optim um  or exceeded the memory resources o f  the computer. The value o f  the Lyapunov matrix equation 

m ethod is that it works for a system when several parameters have to be chosen simultaneously.
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1.5 Optimum stability from the Routh-Hurwitz Criterion

The Routh array may be used to find domains o f stability simply by going through the usual 

calculations and requiring that no entry be less than zero [19], When these domains are drawn in parameter 

space, the centroid is chosen as the design point. This procedure has been used by many designers, for 

example [8, 9], although, as illustrated in section 8.4.2, it must be used with caution. This caution is 

necessary, as a flat parameter plane does not contain the complete information about the dynamics of the 

system. A height parameter is also necessary to obtain a complete picture. A useful measure for this height 

parameter is the distance from the imaginary axis to the rightmost eigenvalue, also called the margin of 

stability [1]. The optimum operating point is now a point on the top of a hill in the parameter-plane -  margin- 

of-stability space. As this space has a characteristic topography, the best operating point may not be the 

centroid of the parameter plane as viewed form above.

When the Routh array for a characteristic polynomial is calculated, the columns contain functions of 

the system parameters. An interesting property o f the Routh array, described in chapter 9, is that some o f the 

entries in these columns go to zero when the system parameters have their optimum stability values i.e. the 

same values that are optimal according to the root locus. This fact is exploited in chapter 9 and column entries 

are used to find the parameters that lead to optimum stability.

1,6 Optimum stability from the Nyquist diagram - optimizing gain and 

phase margins

It is frequently possible to draw a tangent to the Nyquist diagram from the origin and then draw an 

arc from the point o f tangency to the real axis. The point on the real axis obtained in this way corresponds to 

an optimum phase margin point [20]. Optimum phase margin design was used, for example, by Power in the 

study of inertially damped instrument servomechanisms [21]. Ho et al. [22] give tuning rules for PID 

controllers that simultaneously optimise Gain and Phase Margin. Phase margin optimization is applied in 

section 8.3.

The range o f parameter values that results in stable behavior may be gleaned from the Nyquist 

diagram. Simultaneous minimisation o f sensitivity and the optimisation o f Gain Margin is discussed in [23].

It is sometimes mentioned that Gain and Phase margins are not reliable indicators of robustness [24, 

25]. However, these reservations seem only to apply to contrived systems such as the following controller 

C(s) and process G(s) fi'om [25]:

C ( . ) = i ^ ,  ( . > 1 )  and G ( .)=  ( ^ ^ 3 . 3 ) ( . . t 0 . 5 5 ) ( l . y . l . 5 . . 1 )  
a s - I  (3.3i + l)(0.555 + l ) ( s '+ 1.55+ 1.7)

Conclusions drawn about robustness from Gain and Phase Margin values depend on the shape of the 

Nyquist plot and some discretion needs to be exercised.
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1.7 The maximum power transfer theorem - another setting for 

optimality

Some years ago [26] I proved that nonlinear resistive loading o f  a series-wound, self-excited DC 

generator driven by a wind turbine, in such a way as to optimise power transfer fi'om wind to electrical load, 

resulted in a very well damped dynamic response to varying wind speeds. This prompted me to explore 

whether there might be some other favorable consequences for control lying unexploited in results on 

optimum power transfer. Chapter 7 presents a resulting new idea for tuning PI and PID controllers for a class 

o f  asymptotically stable processes, discovered by viewing the Maximum Power Transfer Theorem o f linear 

AC circuit theory as a relation in a single loop, negative feedback system. This approach brings together ideas 

from the cognate subjects o f Circuit Theory and Control Theory, continuing an old but often overlooked 

tradition (Truxal, [27]). It is a contribution to the many methods already available for designing PI and PID 

controllers -  see for example[28] and [29].
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Chapter 2 describes procedures for calculating performance integrals and performance sums within a 

unified framework provided by the Kronecker product and MacFarlane’s procedure. MacFarlane’s procedure 

is simplified and extended to discrete time systems.

Chapter 3 describes a root-locus-based optimum stability approach to design a PID controller for a 

second order, unstable, non-minimum phase process. The controller designed using root locus based optimum 

stability is of lower order than a controller and it results in a system with better performance than the 

system using the / /„  controller.

In chapter 4 two controller design methodologies are described -  one that uses root locus based 

optimum stability and the other based on minimising an exponentially weighted performance integral.

Chapter 5 shows that systems with controllers that were designed for multi-lag processes using either 

Lyapunov based optimum stability or root locus based optimum stability exhibit greater robustness margins, 

and smoother response characteristics than systems with controllers designed using currently available 

methods. General formulas were given for root-locus-based optimum stability design for a PI controller, and a 

restricted class o f PID controller, for process G(5) = kj !{s + b)" .

Chapter 6 presents a new procedure for the design o f PI controllers for an integrator with time delay 

and for general FOLPD process. By calculating gain margins, phase margins, delay margins, and plotting 

various response curves we see that the controllers that were designed using optimum stability are, by these 

standard measures, superior to controllers designed using currently available techniques.

Chapter 7 describes a new idea for tuning PI and PID controllers based on analogy with the 

maximum power transfer theorem from linear AC circuit theory. The approach is one that specifies the phase 

margin and the frequency at which it is effective. Explicit formulas are derived for calculating the max’- 

power-transfer-based PI controller parameters for the process G{s) = l(s + b)"’ .

A model o f the human balance control system is studied in chapter 8. Four parameters are selected -  

one for each major control loop. Nyquist analysis is used to select pairs o f parameters that lead to Optimum 

Phase Margin but this is a graphical procedure and therefore approximate. The Lyapunov matrix equation was 

used to select all four parameters simultaneously -  these parameters give optimum eigenvalue location.

A new procedure for designing controllers using the Routh array is described in chapter 9. This 

method is shown to be equivalent to the root-locus-based optimum stability method and leads to controllers 

that are identical to the root locus based controllers.

Chapter 10 describes new methods for solving the continuous-time and the discrete-time Lyapunov 

matrix equations based on the Laplace transform and the Z transform respectively.

1.9 Publications

B. Cogan, B. and A. M. dePaor, “Optimum stability and minimum complexity as desiderata in feedback 
control system design” in IF AC Conference on Control Systems Design, Bratislava, Slovakia, 2000.

A. M. dePaor and B. Cogan, “Making a connection; PI and PID Controller Tuning by analogy with the 
Maximum Power Transfer Theorem o f Circuit Theory”, Journal o f Electrical Engineering, vol. 55, n.9-10, 
pp. 277-280, 2004.

7



Chapter 2: A unified treatment of control system performance 

measures for continuous and discrete time system

2.1 Introduction

The purpose o f this chapter is to investigate methods for calculating performance measures. A design 

methodology studied in this thesis requires that the rightmost eigenvalue be as deep into the left-half plane as 

possible when the parameters have their nominal values. This design point often corresponds to a triple or 

quadruple breakpoint in the root locus. An objection that might be raised against this design strategy is that 

the sensitivity o f the eigenvalues is at a maximum when the root locus crosses the real axis. We are then 

designing systems whose eigenvalues are very sensitive at the nominal parameter values and this may degrade 

the system performance. One way to address this concern is to use a performance measure to give a 

quantitative indication of the performance o f the system at the design point. We can then calculate the 

performance measure at the design point and see if this eigenvalue sensitivity is manifested as degradation in 

performance o f the system. Indeed, such a performance measure is defined in section 1.3. Analytically, the 

performance measure is found to have a unique minimum. When plotted against system parameter the curve is 

seen to have a broad, flat, shape around the design point. This indicates very acceptable system behavior for 

these parameter values despite the eigenvalue sensitivity.

The treatment o f control system perfomiance measures is unified in the sense that MacFarlane’s 

original procedure for the calculation performance integrals [30] is used to produce new and simple 

derivations of well known and important results. MacFarlane’s procedure, rooted in Lyapunov stability 

theory, is seen here to provide a general framework for the design of control systems and for the study of 

control system performance. Since optimality principles, and specifically optimal stability, are central issues 

in this thesis a thorough study of this procedure and these novel extensions is essential.

MacFarlane derived a general method for the calculation of performance integrals for continuous 

time systems [30] and then recast this procedure in Kronecker product form [31]. MacFarlane’s original 

procedure is used in section 2.2 to derive his own Kronecker product equation. Symmetries in the solution are 

exploited in a new way in section 2.2.2 in order to minimise the number o f calculations required. This method 

is simpler than those proposed by MacFarlane [30] and by Chen and Shieh [32]. A new method for 

calculating performance integrals with exponential time weighting is described in section 2.4.

Barnett derived a general formula for calculating performance sums for discrete time control systems 

[33]. Jury derived a recurrence relation for calculating the same performance sums [34]. In section 2.5 Jury’s 

recurrence relation is shown to be a manifestation, in discrete time systems, o f MacFarlane’s original 

continuous time procedure. Barnett’s formula is derived again in a new and simple way in section 2.6. In 

addition, an entirely new procedure for calculating these performance sums is also given in section 2.6. A new 

role for Stirling numbers o f the Second Kind in these calculations is described in section 2.7. A new method 

for calculating performance sums with exponential time weighting is described in section 2.10.
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2.2 Kronecker product method for calculating performance integrals

The fo llow ing series o f  Lyapunov equations arises when applying M acFarlane’s procedure -  see [30] and 

Appendix A .4  o f  this thesis.

A ’̂L, + L| a  =  - Q  , A'^Lj + L^A = - L , , A'^Lj + L jA  = - L ^ , A'"L4 + L 4 A  = - L j  etc. etc.

In order to develop another approach to these calculations w e can take the fourth formula: 

- L j  = A ^L 4 + L 4 A  and substitute this into -L ^  = A^Lj + L , A to express L j in terms o f  L 4 . W e now  can 

use this expression to express L, in terms o f  L 4 . And finally use this expression to express Q  in terms o f  

L 4 . Exam ples o f  the equations thus obtained are:

A'^L, + L ,A  =  - Q

- ( A ’')^ L 2 -2 A ^ L 2 A -L 2 A ^  = - Q

(A ^ 'f Lj + 3 (A ’')^L3A + 3A ^L3A ' + L 3A ’ = - Q

- ( A ' ' ) ‘'L 4 - 4 (A ^)^L 4A - 6 (A '')^ L 4A^ - 4 (A '')L 4A ’ - L 4A ‘‘ =  - Q  and so  on...

Follow ing this procedure a general expression relating Q to L„ is found to be;

Z ( - i r f " l ( A ' r ' L . A ' . Q  (2.1)
;=o \JJ

where are binom ial coefficients.

r *  'i  TFor exam ple, to calculate * ( t ) Q \ ( t ) d t w e  could so lve (2 .1 ) for L 4 and then w e could  

calculate: £  = ( - l ) ‘' 3 !x^(0 )L 4x (0 ) .

M ansour et al. [35] derive Q  =  X ( “ 0" • ( ^ ^ )  ' i-®- equation (2 .1 ) o f  this thesis, and
y=o \ j )

states that it may be solved  for but does not say how this could be done.

Equation (2 .1 ) is a matrix equation that is linear in the unknown matrix L „ . A  typical term in this 

equation consists o f  the product o f  the matrix L„ flanked by A  and A^ raised to som e power. Such triple 

products o f  matrices may be rewritten in a convenient form using the fo llow ing property o f  the Kronecker 

product [36]:

A L B  = Y  then: (B^(8 >A)L =  Y

where A  <8 > B represents the Kronecker product o f  the m atrices A  and B and L a colum n vector 

that is constructed from L by turning the rows o f  L  into colum ns and stacking them on top o f  each other - 

similarly for Y .

For exam ple, using Kronecker products, the solution to the continuous tim e Lyapunov Matrix 

Equation A ^L + L A  =  - Q  is obtained by solving (A^ +  A ^ )L  =  - Q  for the entries in the vector L

and then constructing the matrix L . A lso , the solution to the discrete time Lyapunov Matrix Equation 

A^L A  -  L =  - Q  is obtained from (A^ ®  A^ - 1 ®  I)L  =  - Q  in the sam e way.

In order to derive an expression for time weighted performance integrals in a new way w e can use 

the Kronecker product to rewrite equation (2 .1 ) as:
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(-0" J
A further simpHfication is possible when the following equation is taken into account:

^  ” ( a ' o a "-')^  = ( a '‘ ® i + i ® a '') '’
7=0 W y  

So finally we can write:

( - 1 ) " [ a ^ 0 I  + I< 8 )A ''J l „ = Q  (2.2)

Equation (2.2) is MacFarlane’s Kronecker product formula [31], The derivation given here is simpler than 

MacFarlane’s derivation and is rooted in his own original method [30]. To apply this formula to calculate

= £  t"x^{t)Q\{t)dt we solve(-1)""^' [ a ’̂ ® I + I®  A^J L = Q for the entries in the matrix L and then

calculate J„ = ( - l ) '’" '« !x^(0 )L x(0 ).

The original imbedding o f the Lyapunov equations into each other is now manifested in terms of 

Kronecker products like: [ a ^ ® I  + I® A ^ J  i.e. the solution to the Lyapunov equation A^L + LA  = -Q  

raised to the power of n .

2.2.1 Condition for the existence of solutions for equation (2.2)

One may write equation (2.2) as L„ = ( - l )  ” [A^ ® I + I0 A ^ ] '" Q o n ly  if [A^ ® I + 1® A ^]is

invertable. The condition for the invertability o f [ A^ ® I + 1 ® A^ ] may be derived as follows.

Let v,.® v^be an eigenvector o f [ A ^ ® I  + I ® A ^ ]  where v,. andv . a r e  the eigenvectors of 

A^ belonging to the eigenvalues /I, and A -respectively [36].

[A ''®  I + 1 ® A*”][v,. ® v , ] = [A^'® I] [ V. ® V , ] + [I ® A''][V,. ® V, ]

=  A^v,. ®  I V . +  I V,. ®  A ^ v  . =  ®  v .̂ + /ly  V, ®  v  . = ( / ! ; +  /I, )[v , ®  V J .

So [A^ ® I+  I ® A^] is invertable if and only if  all possible combinations o f (A, + A.) 5^0. This 

requirement on A that ensures A^L + LA  = -Q  has a unique solution is a well-known result that was derived 

originally by Lyapunov [37]. One implication o f this result is that if  A is Hurwitz there will always be a 

solution to A^L + L A = -Q  as (Z. + X .) can never be equal to zero in that case.

2.2.2 A new method for reducing the number of equations to be solved to a 

minimum

MacFarlane [30] gives a solution to the continuous time Lyapunov matrix equation 

A"^L + LA  = -Q  as 1 = B ' q where the matrix B , an f  (« + 1) x -| (« + 1) matrix, is formed from the matrix A 

by following an algorithm. This algorithm exploits the symmetry o f L in order to reduce the number of 

equations to be solved to a minimum. He then states that in general l„ = B“" q where is the contracted 

vector solution to A^L„+L„ A = - L„_ , . Performance integrals can be calculated using this L„ without 

recursively solving a series o f Lyapunov equations. MacFarlane’s algorithm was simplified by Chen and 

Shieh [32]. Another algorithm that exploits the symmetry of L to reduce the number o f equations to be
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solved to a minimum is given next. This new algorithm is simpler to implement than those proposed by 

MacFarlane [30] and by Chen and Shieh [32].

Solving MacFarlane’s Kronecker product equation (-1)" ® I + 1 (8) J L = Q for L requires 

solving equations in unknowns. However, by exploiting the symmetry of L the number of equations to 

be solved may be reduced from to {̂n + 1). If L is written with only those elements along and above the 

main diagonal we get a contracted form of L that we shall call . L̂ , is a column vector with

— (« + l) elements. With « = 4 is:

‘ 14

‘ 33 

V ^4 y

We can write L, in terms of L as follows: L = EL,

Here E is a 4  ̂by — (4 +1) matrix that expands into L . The equation L = EL  ̂for the case where « = 4 is:

f / n l ' 1 0 0 0 0 0 0 0 0 o '

In 0 1 0 0 0 0 0 0 0 0

/ ,3 0 0 1 0 0 0 0 0 0 0

/ ,4 0 0 0 1 0 0 0 0 0 0

' 4 , 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

h. 0 0 0 0 0 1 0 0 0 0

h. 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0

In 0 0 0 0 0 1 0 0 0 0

h. 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

"L 0 0 0 1 0 0 0 0 0 0

1.2 0 0 0 0 0 0 1 0 0 0

^43 0 0 0 0 0 0 0 0 1 0

k^44 y . 0 0 0 0 0 0 0 0 0 1 .

‘ 34

L

A general procedure for constructing the matrix E is given in section 2.2.3.

Equation (2.2) becomes (-1)" [ a  ̂® I + 1 <S) A^ J EL^ = Q . We can now contract Q by multiplying 

both sides of this equation by E'^to give:

(-1 )" e '‘[ a ' ' 0 I  + 1 (8 )A ''Je L = E ''Q  (2.3)

However, E^Q is not quite . For example, if n = 4 , E^Q is given by:
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£̂ 0̂ =

1̂1 
29|2 

29,3 
2^14

<iu

2̂ 23 
2^24

2^34

%4

It would o f course be possible to solve this minimal set o f equations keeping in mind the presence of 

the factors o f 2 on some of the elements o f E^Q . However, it is preferable to correct this and to do so it is

n n
necessary to premultiply both sides equation (2.3) by a —(/? +1) by ~ ( ” +1) matrix D that has the following

structure in the case where n = 4:

1 0 0 0 0 0 0 0 0 o'

0 1
2

0 0 0 0 0 0 0 0

0 0 1
2

0 0 0 0 0 0 0

0 0 0
1
2

0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0
1
2

0 0 0 0

0 0 0 0 0 0
1
2

0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0
1
2

0

0 0 0 0 0 0 0 0 0 1.

A general procedure for constructing the matrix D is given in section 2.2.4.

Now, DE^Q is equal to . Finally, we can now write the -^(n +1) equations in ^ { n  +1) unknowns as:

( -1 )" D E ^ [a ' '® I  + I(8>A'‘] " e L^ = Q , (2.4)

The method adopted in this thesis for calculating performance integrals is (i) solve equation (2.4) for 

(ii) construct the symmetric matrix L and finally (iii) calculate

j " {t)Q\{t)dt = ( -1 )" ' n ! x’’(0) L x(0), w = 0,1,2....
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2.2.3 Constructing the matrix E

The product: LL^ gives a by —(« +1) matrix that, when m = 4 is given by:

L U  = (^11 ^12 ^ 3  ^14 hi hi hi h} hi hi)

II ^ l / l 2 lu 13 / „ / | 4 In 22 / 11/23 Inhi luhi luhi liih i]

In II A 2^12 In 13 hlhi In 22 L h i Inhi hihi Inhi liihi

lu II ^ 3 ^ 2 hi 3 U i / |3 22 l\ihi l\ihi Inhi l\ihi U i i

L II hihi hi 13 iJ m / |4 22 hihi IJ ii l\ihi IJ ii liihi

ĥ II h\hi ^21 13 h\hi ^2, 22 I J ii h A i I J ii hihi hihi

hi II hi^n hi 13 hihi hi 22 hihi hihi hihi hihi hihi

hi II hi^n hi 13 hihi hi 22 hihi hihi hihi hihi h iL

hi II hihi hi 13 hihi hi 22 hihi hihi hihi h ihi hi la

II h\hi /31 13 h\hi h. 22 h\hi h\hi h\hi hihi hihi

hi II hihi ^32 13 hihi hi 22 hihi hihi hihi hihi h ila

hi II hihi ^33 13 hihi hi 22 hihi hihi hihi hihi h ila

hi II hiki hi 13 hihi hi 22 hihi hihi hihi hihi h ila

II ĥ lM h, 13 h\hi /41 22 U i i h\hi hJii hihi h Ja

hi II hihi hi 13 hihi hi 22 hihi hihi hihi h ihi h ila

hi II hiki hi 13 hihi hi 22 hihi hihi hihi hihi h ila

<^44 II hihi la 13 ^uhi la 22 lah i lah i U i i luhi la la  >

= ('A)

To define a procedure for deriving E from LL^ we first define a function ijkl ■

=

 \ i i = k  andj  = l 
V*/

i f ! = / and j  = k and i ^ j
Vw

otherwise

where > 0 and /„ > 0 . So now we have:

(2.5)
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(2 .6 )

where 1̂ 1̂  is a typical member o f LL^ and e.ju is as defined in equation (2.5). It is not necessary to say to 

which vector or /„ belongs (i.e. L o r L^) to apply equation (2.6).

2.2.4 Constructing the matrix D

To develop a strategy for constructing the matrix D we first write the product E^Q(E^Q)^ or

?ii

2̂ 13
2^,4

"<i'22
2 fe

2?24
?33

2̂ f34
4̂4

(^11 2^12 2g'|3 2 q'|4 ^22 2^23 2^24 Q'33 2^34 <744)

2^^i i ‘7i2 2 ^ ,,q ',3 2^11^14 2 ^ 1 1^23 2^11^24 9 ||9 3 3 2 9 ,,934 9 i i 944

2^12^1. 4^12912 4 ^ ,2 9 ,3 49,2^14 2^12^22 4^12^23 4^12924 2^12^33 4 9 |2934 29 ,2944

2^,3^n 4^13^12 4^13914 2 ^ 'n f o 4^13^23 4^13^24 2^n^^j3 49,3934 29,3944

2914^11 4q ',49 ,3 4914^14 2q',4922 4 9 ,4^23 49 ,4^24 2 ^ 'l 4 f e 49,4934 29,4944

^22^11 2?22^I2 2 f e 9 |4 <722 ̂ 22 2 f e ^ 2 3 2922^24 ^22^33 2922934 922944

2923*711 4^23 <?I2 4923?I3 4 f e ? | 4 2^23922 4 f e f e 4^23 <724 2 f e ? 3 3 4923934 2923944

2 ^ 2 4 9 i | 4^24912 4924?13 4^24914 ^^2A^22 4^24^23 4^24924 2924*733 4924934 2924944

933^11 2933^12 933^22 2^33923 2 ‘733‘724 933^33 2933934 933944

2^34911 4934^12 4^T349|3 4934^14 2^34922 4^34923 4934^24 2^34933 4934934 2934944

?4 4 ? 1 . 2 ^449 .2 2944^ .3 2<7449i4 ? 4 4 f e 2^44923 2944^24 944^33 2944934 944944

To define a procedure for deriving D from E^Q(E^Q)^ we first define a function S.ijU •

^ijkl —
H ,(iu

i f /  = j = k = l

\ i i  = k  andJ = l and i ^  j

otherwise

(2.7)

where q̂ j > 0 and > 0 . So now we have

0  = d,.XQ{¥jQY (2 .8 )
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where is a typical member o f E^Q(E^Q)^ and S.j,̂  is as defined in equation (2.7). Just as for the 

procedure described in section 2.2.3 for constructing the matrix E, it is not necessary to say to which vector 

9i; O'" belongs (i.e. E^Q or (E^Q)^) to apply equation (2.8).

2.2.5 Notes on the matrices E and D

(a) Upper triangular entries in both L and Q matrices were used above when constructing and . Lower 

triangular entries could also have been used. If this had been done, the same rules for constructing E and D , 

i.e. equations (2.6) and (2.8), apply. The resulting E and D matrices that would be obtained then are those 

given above turned upside down.

(b) It was not in fact necessary to use the product; LL^ to create the matrix E as the product o f any two

vectors of lengths and -^(m + 1) lead to the same matrix. Similarly, the matrix D could have been built up

from the product o f any two vectors with the same lengths as E^Q and (E'^Q)^ . The vectors L , , E^Q ,

and (E^Q)^ were used in the derivations above as they arose naturally.

2.3 Example of calculating time weighted performance measures by 

using equation (2.4)

D(s )

conlroller process

R(s ) E(s ) U(s )
Y(s )

k{s  + a)

Figure 2.1 A PI controller and a process in a unitary gain, negative feedback loop

A PI controller C(s) = is to be designed for the process G(s) = (^_2)(^+i) • The characteristic

equation for the system is p{s) - s ^  - s ^  + Qk  -  2)5 + 3ka . If we want the nominal value o f k to place all three 

eigenvalues at the same point, say s = - Z  then we can equate coefficients: 

- s ^ + ( 3 k - 2 ) s +  3ka =(s + A f  to find the appropriate values for a, k and for A .  Doing this results in 

/I = - j , k  = ^  and a = - ^  .

The following root locus diagrams illustrate the evolution o f  this breakpoint at a triple eigenvalue.
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-0.5
2 0 21

R eal

Figure 2.2 Root locus for p ( s ) = s { s - \ ) { s  + 2) + 3k{s + a)  with a  = 1 /70

triple eigenvalue

-0.5
22 1 0 1

Real

Figure 2.3 Root locus for p{s)  = s{s - 1)(5 -t- 2) -i- 3k{s  a )  with a = 1 / 63 - this is the critical value o f  a that

results in a breakpoint at a triple eigenvalue.

Also, for a step disturbance D{s)  = 4  with R{s) = 0 the initial conditions are found to be

(0) = (0 ,0 , -3 )  as follows.

E(s) =
-G{s)

l + Cis)G(s) 

-3

D(s) ; substituting for C(5) = - ^ ^ ^  , G(s)  = (^_2 )(^+i)  ̂ and £ )(i) = 7  gives 

This is the Laplace Transform  o f  the solution toE(.s) = — r
s - s  + (3k-  2)s + 3ka

d^€ ds
+ - 2 ) — +3ka = d . So we may derive another expression for E{s) as follows;

(s’£ (s) -  i"e(0) -  se'(O) -  e''(0)) -  (s^E{s) -  5e(0) -  e'(0)) - I -  (3/t -  l \ s E ( s )  -  e(0)) 3kaE{s) = 0 giving:
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E(s).
5^e(0) + (e'(0) -  e(0)) + e*(0) -  e'(0) + (3^ -  2)e(0)

s - s  + (3k -  2)s + 3ka

Equating coefficients in these two expressions for E(s) gives x’ (̂O) = (e(0),e'(0),e'(0))'^ = (0,0,-3)'^.

r*  "X TWe can now calculate the performance integral =J^ ? x (<)Qx(?)rf< for the system in Figure 2.1 

when it is subjected to a step disturbance D { s ) . First we construct L  , , and E , using equation (2.6):

lu 
L

' I n l u l u ]

L  = /2> I 22 I n

^^31 1,2 3̂3 >

L  = E =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

where L  = E L „ .

Next we construct Q  , , and D , using equation (2.8):

/  \

1̂1

<713

Q = 2̂2 . Q. =
2̂3 

3̂1 

3̂2

?11 ?12 1̂3
Q = 2̂1 (}22 2̂3

^̂ 31 3̂2 3̂3

( \ 0 0 0 0 0"

9 |2 0 1
2 0 0 0 0

9 i3 , D =
0 0 1

2 0 0 0

922 0 0 0 1 0 0

? 2 3 0 0 0 0 1
2 0

.0 0 0 0 0 1.

where DE^Q = .

 ̂ 0 1 0^ i 0 o'
For this calculation: A  = 0 0 1 and we take: Q 0 0 0

^-0.037 -0.333 - IJ .0 0 0.

, Q

0
0
0
0
0
0
0

vO.

Qc =

0
0
0
0

vOy

Here Q is positive semi-definite and can be factored as Q = 0

vOy

( l  0 0) = p p ^ . Since ( A , p ^ )  form an

observable pair the necessary and sufficient condition for the asymptotic stability o f the system described by 

A  is that L  , the solution to A ^L  + L A  = -Q  , is positive definite [38].

17



Solving equation (2.4) forL^ =

'  218.32  

922.64 

1053.63 

3986.72  

4613.2  

5382.07

one may construct L =

^218.32 922.64 1053.63^

922.64 3986.73 4613.22

1053.63 4613.22 5382.09

Finally, using x^(0) = (0 ,0 ,-3 )  we find that = £  ?^x^(?)Qx(r)c/? = ( - l ) ‘'3!x^(0)Lx(0) = 290633 . 

We can use MacFarlane’s procedure to check this calculation. We first have to solve a series o f  four 

Lyapunov equafions to get L4 and then calculate = £  f^ x^ (f)Q x(fy /= (-l)*'3 !x’̂ (0 )L 4x(0 ) .

 ̂ 6.1875 15.1875 13.5 ^

15.1875 47.2501 45.5626A^L, + L |A  =  -Q  gives L, =

 ̂ 13.5 45.5626 45.5626^

A £ i O O  ^ O n £ .  0 - 5  C'i  ̂ a \

A ^ L j+ L jA  = -L | gives =

24.4688 82.6876 83.5314 

82.6876 303.751 318.938 

83.5314 318.938 341.72

A^Lj + Lj A  = - L j  gives Lj =

A '̂L  ̂ + A = - L j gives =

V

78.0469 303.75 330.329'

303.75 1230.19 1366.88

330.329 1366.88 1537.74^

 ̂ 218.32 922.642 1053.63

922.642 3986.73 4613.22

1053.63 4613.22 5382.09y 

So now we can calculate J 3 = £  ( t ) Q \ ( t ) d t  = (-l)''3!x'^(0)LjX(0) = 290633, as before.

2.4 Two methods for calculating exponentially weighted performance 

integrals

We find in section 4.1 that exponentially weighted performance integrals have a deep relationship with root 

locus based optimum stability design for a class o f  second order system. We therefore need to develop a 

method for calculating these integrals as such a method is not available in the literature. In the following two 

sections I give two methods for calculating these integrals.

2.4.1 Exponentially weighted performance integrals in terms of an infinite sum of 
matrices
We know fi-om Appendix A.4 that MacFarlane’s procedure may be written as:

J“ f"x''(OQx(/)c/r = (-l)"*'«!x''(0)L„^,x(0)whereA''L„„ +L„^,A = -L„ andL„ = Q , n = 0 ,l,2 ...

It is interesting to note that an expression for an exponentially weighted performance integral may 

now be derived directly from this equation. Using MacFarlane’s formula we get:

00

for« = 0 £  — x ^ (;)Q x (r) t//= -X ^(0)L |X (0) where A '^L,+L,A  = - Q
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forn  =  l £  =  x^(0 )L 2 x ( 0 ) where A ^L 2 + L 2 A  =  - L ,

fo r«  =  2 £  —  x^(r)Qx(?)«^? = -x ^ (0 )L 3 x (0 )  where A ^ L j+ L 3 A  = - L 2 a n d s o o n .. . .
Jo 2 !

A dding these equations w e get:

rJo

,
\ + t + —  + — + —  + ... 

2! 3! 4!
{ t )Q x{ t )d t  =  x ^ (0 ) [ -L , + L j  - L j  + L ,. . .]x (0 )

So, £  e'x(0Qx(0<^^ =  x ^ (0 )[“ L| + L j  - L j  + L 4 ...]x (0 ) where L p L jjL jjL ^ .-.a re  solutions to the series o f

Lyapunov matrix equations A^L„^, +L„^,A  =  -L „  and L„ = Q .  A  more elegant and tractable procedure for 

calculating such integrals is described in section 2.4.2.

2.4.2 Exponentially weighted performance integrals in terms of the Lyapunov 

matrix equation

In this thesis w e occasionally  need to calculate the exponentially w eighted performance integral:

y = J ^  e x p (a 0 x ^ (0 Q x (0 ^ f  = £  e x p f ^  jx(r)'^Q x(r)expf ^  j^/f.

This may be done as follow s. I f  x (O is  the solution o f  =  A x (/)  then x ( f ) . e x p ^ ^ j  is the solution o f

—  = I A  + — I ]x (? ) . This can be seen as follow s. The solution to =  A x (f)  is x ( 0  =  e x p (A /)x (0 ) .
d t  \ 2 dt

M ultiply both sides o f this solution by expl |to get

a
exp | — t  |x ( 0  =

a
expi - t

a
expl - t 0

expl

e x p l - t

exp (A ;)x (0 )

=  exp | y I^J6xp(A /) x(0)

= expf A + Y l j f x ( 0 )  provided [ y l / j a n d  (A ?) comm ute, as they do.

So, by analogy with the procedure described in Appendix A .4 w e have:

e x p ( c i f ? ) x ^ ( O Q = x^( 0 ) L x (0 )  where L  is the solution to A + — I L + L A +  — I = - Q
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It is important to note that, for the integral £  ex p { a t ) x ^ ( t )Q \{ t )d t  to converge, we must have: 

lim (exp (f f)x(?) = 0 . This means that A + — I must have all o f  its eigenvalues in the left ha lf plane. Thisy 2 j
cc

means in turn that all the eigenvalues o f  A must lie to the left o f  the line ^  in the (cf,co) plane.

It is interesting to note that com bining this result with the one obtained in section 2.4.1 we can see 

that the solution t o [ A  + - i l j  L  + L f A  + - j l j  = - Q  may be written as the infinite sum:

L  =  [ -L , + L , - L 3 + L ,...] =  £ ( - i y  L̂ . (2.9)

where the ' 5  are solutions to A^L^ + A = , where L„ = Q  .

An entirely different derivation o f  the procedure for calculating the exponentially weighted

perform ance integral is given in section 10.3.

2.5 Calculating discrete time system performance measures - a new 

derivation of Jury’s procedure

B arnett [33] derived an explicit formula for calculating performance sums for discrete time control

systems: 5',. = ^ ^ 'x [ Q x ^  =xj x„ where A'^L.^, A -  L,^, = L , , L„ = Q and the coefficients are 

given by 'j o '- '* ) '  ■

Jury and Gutman [34] derived a recurrence relation for calculating the same perform ance sums:

|^ rx ' '(A :) Q x (A :) = x ''( 0 ) J  J [ ' ’C / " ‘^ ( - iy " 'A ’‘*L,A*] + ( - l ) ' 'L ,]x ( 0 ) .  He expressed £ r x ^ ( / t ) Q x ( y t )  in
*=0 i=o y=i k=o

00

terms o f  w here 7  > 1 so we can calculate ^A '"x^(/:)Q x(A :) as a recurrence relation.
k = 0

00

B arnett’s and Jury’s methods involve calculations such as: = ^ k ^ x l Q \ ^ .  = xJ(6 L 4 - I 2 L 3 + 7 L 2 -L ,)X o
* = 0

00

^ 4  = ^ A :‘'x [Q x j = x J ( 2 4 L j - 6 OL4 + 5 OL3 -1 5 L j+ L |)X (, where A '^ L jA -L , = L„, A ^^L jA -L ^ = L , ,or
k=0

A^Lj  A -  Lj  = L 2 e t c . , etc.

Later, M ansour et al. [35] derived both Jury’s and B arnett’s results using different methods.

In this section, the calculus o f  finite differences [39, 40] is used to derive Jury’s recurrence relation. 

B arnett’s formula is also derived by a new  method in section 2.6. Neither Barnett [33], Jury and Gutman [34]
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or Mansour et al. [35] used finite differences in their derivations - they all gave different, and more difficult 

derivations for their results than the methods described here.

A new and simple method for calculating performance sums for discrete time control systems is 

given in section 2.6. This method uses a new number triangle with many interesting properties.

In the following derivation the function F(jc(A:)) = (A:-l)"x^(A:)L,x(A^) is defined and used in the 

first step in the calculation of performance sums for discrete time control systems. This function is analogous 

to the function V{x{t)) = ?"x^(f)L,x(?) used by MacFarlane [30] when calculating performance integrals for 

continuous time control systems. Special cases with n=0,l,2, and 3 are given in Appendix B.

Consider the system x(A: + l) = Ax(/:) where all the eigenvalues o f  A lie inside the unit circle. Define

CO

a family o f  performance sums as = ^ r x ' ’(A:)Qx(A:).
k=0

X

The performance sum = ^ k " \ ^ { k ) Q x { k )  may be evaluated as follows:
k=0

First take K|(x(/:)) = (A: - l ) '’x^(A:)L,x(A:)

Then AF, (x(A:)) = A[(A: -1)" ](x^ (/t)L,x(/t)) + { k - 1)" A[x'' (A:)L, \{k)] + A[(k - 1)" ]A[x'' (^)L,x(/t)]

Recall that: A [ ( k - \ y ]  = {{k + \ ) - i y  - { k - l ) "  ={k" - { k - \ ) " )

AV,(\{k)) = { k ' ' - { k - [ y ) x ^ i k ) h , x { k )  + { k - \ Y [ \ ^ i k  + \ )L, \{k + l ) - x ^ ( k )h ^ \ ( k ) ]

+ { k " - i k - \ y ) [ x ' ' { k  + l)L,x(A: + 1) -  x^(A:)L,x(A:)]

= k" x^{k)h^x{k ) - {k  -1)" x^{k)h^x{k) + { k - 1)" x^(k  + l)L,x(A: + 1 )- 

(k -1)" x^(A:)L,x(A:) + k"x^{k  + l)L,x(A: + \ ) - ( k - 1)" x^(k + l)L,x(A: + 1) -  

k" x^(k)L,^\{k) + {k - \ y  (k)L,^x{k)

= k" x^ {k + 1)L|X(A: +1) -  -1)" x^ (^)L] x(A:)

= k " \ ^ ( k  + l)L,x(A: +1) - [ r  + ^  "C /" - '( -1 V  ]x"'(A:)L,x(A:)
7= 1

= k"[x^{k  + l)L,x(A: +1) -  x^(A:)L,x(A:)] -  ̂  " C /" '"  (-1 ) ' x''(A:)L,x(A:)
j = i

= k" (A:)[ A^'L, A -  L, ]x(k) -  ̂  ( -1 ) ' x’’ (A:)L, x(k)

= -k "x ^  (*)[Q]x(A:) -  X  (-1)^ x^ (A:)L, x(^)
y=i

Rearranging terms gives:

k^x^ (k)[Q]x{k) = -AF, {x{k)) -  X  ''Cjk"-' ( - ly  x^ (^)L ,x{k)
y=i

X  r  x̂  W[Q]X W  = -  X  A (x(^)) -  X  X  1V WL, )
*=0  *=0  *=0  J = ]

Recall that:

AF, (x(A:)) = k ”x^(k + l)L,x(/t + l ) - ( k - 1)” x'' (k)h,x{k)

X  A F, (x{k)) = f ^ k " x ^ { k  + \)L,x{k + \ ) - Y ( k - i y  x^ (^)L ,x(^)
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The expression ^A F,(x(X:)) may be evaluated term by term as follows:
t=0

(^ = 0) A (x(0)) = 0 -  (-1)" (0)L, x(0)]

(A: = l) AF,(x(l)) = l"x ''(2 )L ,x (2 )]-0

(A: = 2) A (x(2)) = 2" x^ (3)L, x(3)] -1" x^ (2)L, x(2)]

(A: = 3) A K, (x(3)) = 3" x’’ (4)L, x(4)] -  2" x"" (3)L, x(3)]

(^ = 4) A F, (x(4)) = 4" x^ (5)L, x(5)] -  3" x^ (4)L, x(4)]

(k = 5) A F, (x(5)) = 5" (6)L,x(6)] -  4" x^ (5)L, x(5)]

Adding these terms gives:

XAF,(x(A:)) = -(-irx ^ (0 )L ,x (0 )]
k = 0

So now we have:

J r x ^ (* )Q x (/: )= -£ Z [" C ,-t" -^ (- iy * " W L ,x (^ )]  + (-irx" (0 )L ,x (0 )
* = 0  * = 0  j = \

= - Z  Z [  (-1)^ x^ (A:)L, x(A:)] + (-1)" x^ (0)L, x(0)
* = 0  j= \

= ( -  ly  x^ (0) *L, A‘ x(0)] + ( -  D" x^ (0)L, x(0)
* = 0  y=i

= -x ^ (0 )X  E [  (-1 ) ' A^ ‘ L, A‘ ] + ( - I ) ” L, ]x(0)
* = 0  j= \

So we can now write:

J  k"x^ (A:)[Q]x(A:) =x^ (0) J  X [  "C ,1”- ' (-1)^^' A^ * L, A* ] + (-1)" L, ]x(0) (2.10)
A = 0  k = 0  j= \

QO

We have expressed ^/:"x^(^)[Q ]x(A :)in terms o f w here« > !  and y > l .  So we can now calculate
k= 0

30

^A:''x^(^)[Q]x(A:) as a recurrence relation.
k=0

Taking « = 0 as a first case we know from Appendix B .l :

oo

^ x ^ (/:)[Q ]x (^ ) =X^(0)L|X(0) where A ^ L ,A -L , = - Q .
*=0

Taking « = 1 in equation (2.10) we get:

Y,k x^(k)[Q]x{k)  =x^ (0) A^ *L, A* ]x(0) -  x^(0)L,x(0)
/t=0 *=0

CO

to evaluate x^(0)^[A ^*L ,A *]x(0) we will first expand the summation:
*=0

CO

x^ (0 )^ [A ^ ' *L, A* ]x(0) = x'' (0)[L, + A^'L, A + A^^L, A ' + A "L , A ’ + ...]x(0)
A=0

we notice that if we let A^L^A -L ^  = -L , and substitute for L, we get:

= x^ (0)[(L2 -  A^'LjA) + A ’’ (L^ -  A^'LjA)A + A'"  ̂(L^ -  A^'L^A)A^ + A”  (L^ -  A^L^A)A^ + ...]x(0)

= x'̂  (0)[L2 ]x(0) -  x^ (0)L| x(0) = x^ (0)[Lj -  L, ]x(0) as required.
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Taking « = 2 in equation (2.10) we get:
00 QD 00

^  (/t)[Q]x(A:) =x'‘ ( 0 ) ^  [2/tA'' * L, A* ]x(0) -  x̂ ' ( 0 ) ^  [A ”  L, A ‘ ]x(0) + x'' (0)L, x(0)

= x ^ (0 ) [2 (L 3 -L 2 ) ] - (L ,)  + L,]x(0) 

=  x ' ‘ ( 0 ) [ 2 L 3 - 3 L 2 + L , ] x ( 0 )

where we have used the result for n = Q, and n = 1

Taking « = 3 in equation (2.10) we get:

x"'(A:)[Q]x(A:) =x’"(0) ,[^C,A:'a ''*L,A* - 'Q i t  A''*L,A* + 'Q A ^ '^L jA ^l-L , [x(0)

= x^'(0) ,[3A:^A^‘L,A* -3A: A''*L,A* + A ''‘L ,A * ]-L , [x(0)

= x'' (0)[3[2L, -  3L, + L J  - 3[Lj -  L  J  + -  L, ]x(0)

= (0)[6L, - 1 2L, + 7L , -  L, ]x(0)

where we have used the results for « = 0, n = \ , and n = 2.  We can continue like this for all n. Equation 

(2.10) is Jury’s recurrence relation [34] for calculating performance sums for discrete time control systems.

2.5.1 A note on one difference between discrete time and continuous time systems

It is interesting to note that the new derivation given here highlights why the formula for the discrete 

time case is different to the formula for the continuous time case. In deriving the formula for the continuous 

time case MacFarlane [30] starts by calculating the derivative o f a product. This is given by:

d x y  dx dy 
— — = y —  + x —  

dt dt dt

Similarly, the discrete time case starts with the calculation o f the finite difference o f a product. The 

finite difference o f a product is given by:

A(.ry) = (Ax)y + ^(A^) + AxAy .

So there is an additional term i.e. AxAy in the formula for finding the finite difference o f  a product. 

The fundamental mathematical difference between continuous time systems and discrete time systems that 

makes the calculation o f performance measures for discrete time systems harder is the presence o f the term 

Ax:A_v in the formula for the finite difference o f a product. There are more terms in the formula for 5, than 

there are in the formula for because o f the presence of this AxAj  ̂term.

2.5.2 A note on solving embedded discrete time Lyapunov equations

The series o f discrete time Lyapunov equations encountered above is:

A ^ L ,A -L , = - Q ,  A ^ L jA -L j = -L | , A ^ L jA -L j = -L j  , A ^ L ^ A -L 4  = -L j  etc. etc.

As for the continuous time case, we can back substitute for L 3 in the third equation and for L j in the 

second equation and so on.

Examples o f the equations obtained by this back substitution procedure are:
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A '^ L ,A -L , = - Q

- ( A ’’)^L2A^ + 2 A % A - L j  = - Q

(A"' L j A^ -  3( a '' L j A^ + 3 A^'Lj A  -  L , = - Q

- (A ^ '/L ^ A "  + 4 (A '‘)^L4A’ -6 (A '')^ L ,A ^  + 4 A ^ L ,A - L ,  = - Q

Follow ing this procedure a general expression for - Q  in terms o f  L„ is found to be:

;=o \ J  J
X (-ir '* '  . (A^nL„(Ar^ =-Q

As for the continuous time case, this matrix equation is linear in L „ . Using the Kronecker product it may be 

transform ed to the following form:

( n \
. [ ( A ^ r '® ( A ^ r ^ ] L „ = - Q  

/=0  V j )

Finally, this may be sim plified to:

( - i r ' [ A " '® A ' '- I ( 8 ) l ] ' ’L„ = - Q  (2.11)

As for the continuous tim e case we can employ matrices E  and D to reduce the num ber o f  

equations to be solved to a minimum. The methods for constructing the E and D m atrices are the same as 

described in sections 2.2.3 and 2.2.4. Using these matrices, the reduced version o f  equation (2.11) becomes:

( - 1 ) " 'D E ^ [ A ''® A '’ - I ® I ] " E L ^  = - Q ,  (2.12)

The structure o f  equation (2.12) is identical to that o f  equation (2.4) - the equivalent equation for the 

continuous time case. Here we have the solution to the discrete time Lyapunov matrix equation raised to the 

pow er o f  n. However, unlike its continuous time analogue (i.e. equation (2.4)) equation (2.12) does not have 

an application in the calculation o f  perform ance indices.

2.5.3 A note on the condition for the existence of solutions for equation (2.11)

One may write equation (2.11) as L„ = -{A^ 0  A '^ - I® I] " " Q o n ly  if  [ A '^ ® A ^ -1 ® 1 ]  is 

invertable. The condition for the invertability o f  [ A^ ® A^ - 1 (8> 1] may be derived as follows.

Let V,. ® v^ be an eigenvector o f  [A'^ ® A ^ - 1 0 1 ]  where v,. and are the eigenvectors o f  

A ’̂ belonging to the eigenvalues >1, and respectively.

[  A ’’ 0  A '' - 1 ®  I][ V,. ®  V J  =  [A'" ®  A '' ] [  V,. ®  V J  -  [I ®  I][ V,. 0  V , ]

= [A^v, 0 A " v , ] - [ I v ,  0 1 v , ]  =[A,v, 0 A .v , ] - [ v ,  ® v j  =[A,/l, -l][v ,. ® v , ]

So [ A ^ ® A ^ - I ® I ]  is invertable and A ^ L A - L  =  - Q  has a unique, symmetric solution L  , i f  and only if 

all possible com binations o f  *  1.

2.6 A new and simple method for computing the Barnett-Jury 

coefficients using a number triangle

As m entioned in section 2.5 Barnett [33] , Jury et al [34], and others [35, 41] derived m ethods for 

com puting perform ance sums for discrete time control systems. In this thesis, the coefficients 6̂ . that occur in

these equations will be called Bam ett-Jury coefficients and the equations called Bam ett-Jury equations.
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It has not been remarked upon elsewhere that the Bam ett-Jury coefficients also occur in another 

context. Take the integers and write them in a column. Then beside that column write a column o f  those 

integers to some power. In subsequent columns, write the difference between each pair o f  entries in the 

previous column. Exam ples o f  such arrays o f  numbers are given in Figure 2.4.

/• =  !

n n‘ ,-L
1 1 i

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

1 =  2  

n
1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

2!

13

15

17

19

/• = 3 

n
1 1

2 8

3 27

4 64

5 125

6 216

7 343

8 512

9 729

10 1000

3!
i

7
12

19 6
18

37 6
24

61 6
30

91 6
36

127 6
42

169 6
48

217 6
54

271

'i' 4' 'i'

4!

1 = 4

n n'' y = 2 7 = 3  7 = 4  y = 5 
1 1

2 16

3 81

4 256

5 625

6 1296

7 2401

8 4096

9 6561

10 10000

i
15

65

175

369

671

1105

1695

2465

3439

50

110

194

302

434

590

770

974

60

84

108

132

156

180

204

i

24

24

24

24

24

24

1 = 5

n n’
1 1

2 32

3 243

4 1024

5 3125

6 7776

7 16807

8 32768

9 59049

10 100000

J = 2  7 = 3  7 = 4  7 = 5  7 = 6

31

211

781

2101

4651

9031

15961

26281

40951

'L 4̂  

180

570

1320

2550

4380

6930

10320

14670

390

750

1230

1830

2550

3390

4350

360

480

600

720

840

960

5!
i

120

120

120

120

120

Figure 2.4 Columns o f  integers raised to powers o f  1 to 5. Subsequent columns show the differences between 
pairs o f  figures in the previous columns. The top row o f  each array (in bold) consists o f  Barnett - Jury

coefficients.
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It will be shown below that the first row o f each o f the arrays in Figure 2.4, highlighted in bold type, consists 

o f  Bamett-Jury coefficients (ignoring signs for the moment). Writing the first row of each o f  these arrays as a 

number triangle give:

1
1 1 

1 3 2
1 7 12 6

1 15 50 60 24
1 31 180 390 360 120

Figure 2.5 A number triangle for generating the Bamett-Jury coefficients

By inspection o f Figure 2.5 a scheme for generating this triangle suggests itself This scheme is illustrated in 

Figure 2.6.

f 0  0'
1

1

7 6

15 50 60  24

1 31

1 63

1 127 1932 10206  (2520 (» 31920  20160  5040

1 255  6050  46620  166824  317520  332640  181440  40320

1 511 1 8 ^ 0  204630  1020600  2739240  4233600  3780000  1814400  362880

180 390  360  120

602  2520  720

Figure 2.6 Generating a number triangle similar to Pascal’s triangle but with the diagonals weighted as shown. 
For example 2x3  + 3 x 2  = 12 and 4x2100 + 5x3360 = 25200 etc. etc. This scheme allows one to calculate 

the Bamett-Jury coefficients for any value o f i . Coefficients from / = 0 to i = 9 are given in this figure.
Jury [42] gives coefficients up to / = 10.

As in Pascal’s triangle, calculating a new row is done by using the numbers in the previous row. The 

difference in this case is that the numbers in the previous row are weighted before adding them together. If 

these diagonal weighting factors are all set to 1 then this triangle becomes Pascal’s triangle.
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Jury [42] g ives values for the coefficients in the expansions for 5,- =  , / =  1 to / =  1 0 ,
k = 0

00

There is a typographical error in his expansion for = ^ A ^ '“x [Q x j - the coefficient for L 4 is given  as
t=0

877500  -  it should be 874500. A ll the other coefficients g iven  by Jury agree with those calculated using the 

number triangle in Figure 2.6.

It w ill be shown below  that in making this array, one is actually performing the calculation using 

Barnett’s equation. In [34] Jury proposes performing these calculations by using Pascal’s triangle for 

( x - , w eighting the entries appropriately and then sum ming the rows. Jury’s procedure sim ply generates a 

single row o f  the number triangle in Figure 2.5. For exam ple, i f  / =  4  Jury’s procedure generated the fifth row  

in Figure 2.5 as illustrated in Figure 2.7.

1x1" =  1

1 x 2 “' -1x 1 "  =  15

1x3" -2 x 2 "  1x1" =  50

1x4" -3 x 3 "  3 x 2 "  -1 x 1 "  =  60

1x5" -4 x 4 "  6x3"  -4 x 2 "  Ix l"  =  24

Figure 2.7 Jury’s method [34] for calculating b.j with i =  4 .

The number triangle proposed in Figure 2.5 is sim pler to generate and autom atically g ives the 

coefficients for all i.

The indexing protocol used next is chosen so that the general formulas derived coincide with those 

derived by Bam ett [33], In order to keep track o f  the indices, the number triangle is written out again with  

indexing terms indicated.

p  =  l

/ p  =  2

/• = 0 1 p  =  3

/ =  1 -> 1 1 / p  =  4

j = 2 -> 1 3 2

j = 3 —> 1 7 12 6 /

/ = 4 -> 1 15 50 60 24

j = 5 ->  1 31 180 390 360 120

T t T t T T
7 =  1 7 =  2 7 = 3 7 = 4 7 = 5 7 = 6

Figure 2.8 Indexing protocol used in this section

To derive the relevant properties o f  the number triangle write out a general triangle for n‘ .
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j =  2 j = 3 j = 4 j =  , + l

i i i

cvT 1^

C»y 1 OjX CVT+r-T

y - 2 '

4 ‘ - 2 x 3 ‘ +2'

-ncoXcfr+coXcvTir^-  .
1-' i -1
£ ( - • ) ’ 0 - s ) ' = i !

(  s )

4 ‘ - y

5 ' - 2 x 4 ' + 3 '

5 ' - 3 x 4 ' + 3 x 3 ' - 2 '  . . g ( - i y p - ‘](j + i -s) '  =
r:  ̂ I S J

5‘ - 4 '

6' -  2 X 5' + 4'

6 ' - 3 x 5 ' + 3 x 4 ' - 3 '

6 ' - 5 '

7 ' - 2 x 6 ' + 5 '

7 ' - 3 x 6 '  + 3 x 5 ' - 4 '  .

7 ' - 6 '

8' -  2 X 7' +  6'

8 ' - 3 x 7 ‘ +  3 x 6 ' - 5 '
■

8‘ - 7 '

9' - 2 x 8 '  +  7'

9 ' - 3 x 8 ' + 3 x 7 ' - 6 '  .
§ ‘ - " f

9 ' - 8 ‘

10' - 2 x 9 '  +8'

1 0 ' - 3 x 9 ' + 3 x 8 ' - 7 '  .

10 ' - 9 '

Figure 2.9 Finite difference array for n‘

The first row o f  Figure 2.9 replicates exactly the calculation scheme that was suggested by Jury [34].

Also, the general term for the first row i.e. I > is also the general term derived by Barnett
,=0  I  5  J

[33] for |6,̂ | - that is the Bam ett-Jury coefficients but without the signs. Repeating the previous example, if

i = 4 the first row is shown in Figure 2.10.

1x1* = 1x1" =1

I x 2 * - l x l ‘ = l x 2 ‘' - l x l ‘' = 1 5

l x 3 ‘ - 2 x 2 *  +1x1* = 1 x 3 ' - 2 x 2 ' +  1x1“ = 50

1x4* - 3 x 3 *  + 3x2* -1x1*  = 1 x 4 " - 3 x 3 ' +  3 x 2 ' - 1 x 1 '  =60

1x5* - 4 x 4 *  + 6x3*  - 4 x 2 *  +1x1* = 1 x 5 " - 4 x 4 “ + 6 x 3 “ - 4 x 2 “ + 1x1“' = 24

Figure 2.10 Top row o f  Figure 2.9 with i = 4
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Figure 2.10 is as found above in Figure 2.7 using Jury’s procedure directly. So, we now know that 

for at least i = 1,2,3, and 4 ,  the top row o f  Figure 2.9 will replicate Jury’s procedure and it will generate the 

correct coefficients.

It remains to prove that the rule for generating row ; +1 in Figure 2.6 from row i is valid for all ; .  

W riting out the first five rows o f  the num ber triangle indicates haw to write general term for different rows 

and diagonals.

I x T

I x l '  l x 2 ' - l x l ‘

1x1^ l x 2 ^ - l x l ^  I x 3 ^ - 2 x 2 ^  + l x l ^
1x 1’ l x 2 ’ - l x l ’ I x 3 ’ - 2 x 2 ’ + l x l ’ 1 x 4 ’ - 3 x 3 ’ + 3 x 2 ’ - 1  x l ’

1x1* l x 2 ‘ - l x l *  I x 3 " - 2 x 2 ‘ + l x l ‘ 1 x 4 ' - 3 x 3 * + 3 x 2 ' - l x l ‘ 1 x 5 * - 4 x 4 * + 6 x 3 ' - 4 x  2 ' + 1  x 1*

Figure 2.11 Top row o f  Figure 2.9 with i=0,I,2 ,3 ,4

For the purpose o f  this analysis I ’ll use the symbol = to indicate that the equality is being checked.

^  f / > - l
term  from row i diagonal p = 7  , ( - 1)̂

j = 0

{ p - s ) ‘ = term 1

r

term  from row i diagonal p+ 1 =  E ( - i r (p + 1- 5)' = term 2

r

term  from row i+1 diagonal p+1 = ^ ( - 1)̂

I f  the rule for generating the triangle is true in general, then the following identity must be true: 

p x te r m l (p + l )x te r m 2  term 3

( p ) Z ( - i r  ‘ ( P - s y  + ( p + i ) £ ( - i r  ^ ( p + i - ^ y  =
5= 0

i i

p

I
s=0

( / p + i - ^ y

First the limits o f  the summ ation in term  1 may be rewritten to give:

p X term 1
i

(p + l )x term 2 term 3

( p ) Z ( - i r ' s ~ \
( p + i - ^ y  + ( p + \ ) ^ i - i y  ^  i p + i - s y  = £ ( - i r

5=0

P

S
s=0

( p + i - ^ y

This identity may be established term by term by following (p+1) steps shown in Table 2.1.
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term 1 + term 2 = term 3

Step 1 — term 2 with s = 0 = term 3 with s = 0

Step 2 term 1 with s = 1 + term 2 with s = 1 = term 3 with s = 1

Step 3 term 1 with s = 2 + term 2 with s = 2 = term 3 with s = 2

• • • • • •

• • • • • •

Step p term 1 with s = p - 1 + term 2 with s = p - 1 = term 3 with s = p - 1

Step (p + 1 ) term 1 with s = p + term 2 with s = p = term 3 with s = p

Table 2.1 Illustration of the scheme used to show that the rule for generating row / +1 in Figure 2.9 from row
i is valid for all i .

Step 1 is as follows: 

(p +1) X term 2
i

term 3
i

vOy
ip+iy = ( - 1)“

vOy
(P + 1)

/•+1

Step 2 to Step (p+1) are as follows:

p X term 1 (p + l)xterm  2
i

term 3
4-

( p ) X ( - i r '  , (p + i- :* ) ' + ( /> + i)X ( - i ) “ ( p + i - - ') '  =
x=l V / s=l J ■?=!

P (  0  —  1

(/7 + 1- 5)/ + l

5=1

p  f  ^  \ \
\ S - l

J = l 

PZ
n —n  P

V V  s=i

s = \

 ̂d\ P ( d\ \ ’’
y S )  \ ^ S ) p

5 =  1 5 =  1 v^y
( p + l - s ) ‘1+1

J = l
(-ir‘>-r

+ (-ir +(-iy 1 '
? /-
= Z(-ir

p . tr IS

i p  + \ - s )

K - i r
5=1

( p - l ) !  , p! , (/> -!)!

5 =  1

(5 -1 )!(/?-5 )! 5!(/7-5)! 5!(/7-5)!

9
+ /7!+(;7-1)!

T t S \ ( p - S ) \

5=1(5-1)!(p -5 )!

' Z ( - i y [ - ( p - i ) ' . s + p \ + ( p - \ y . ]  = " ^ { - i n p - m p + i - s )
5=1 5=1

So the rule for generating row i +1 from row i is valid in general and not just for the specific cases 

given above.
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2.7 A relationship between Barnett-Jury coefficients and Stirling 

Numbers of the Second Kind

There is a close relationship between the Bamett-Jury coefficients and Stirling Numbers of the Second Kind. 

Stirling numbers, named for the Scottish mathematician Sir James Stirling (1692-1770), are denoted by

1
and are given by the expression [43]: = —  y ](- l) '"  *

m!*=o
k" . is the number of ways of partitioning

n elements into m non-empty subsets. For example the set {1,2,3} can be partitioned into three subsets in 

one way: {{1,},{2},{3}}; into two subsets in three ways: {{1,2},{3}},{{1,3},{2}}, and {{1},{2,3}}; and into 

one subset in one way: {{1,2,3}}. Adopting Barnett’s notational convention the expression for becomes:

= ■
O ' - i " { j  - s ) ‘ The numbers can be written as a number triangle:

/ = 0 -> 1
i = 1 1 1
i = 2 -> 1 3 1
i = 3 -> 1 7 6 1
i = 4 1 15 25 10 1
i = 5 1 31 90 65 15 1

t t t t t t

7= 1 J = 2 7 = 3 7 = 4 7 = 5 7 = 6

Figure 2.12 Stirling Numbers of the Second Kind written as a number triangle. An indexing protocol for the

rows and columns is indicated.

If the Bamett-Jury coefficients multiplied by the factor: l / (y - l ) !  then the Stirling numbers of the 

second kind result. Alternatively, if the Stirling numbers of the second kind are multiplied by (y '-l)! then the 

Bamett-Jury coefficients result. This may be written as: (y -1 )! = b̂ j . Incorporating the signs we can

say: ( - i r > - 0 ' - l ) !  =b„

For example, in the / = 4 row the Stirling numbers are 1,15,25,10,1. If these are multiplied by the 

appropriate factors we get: lxO! = l ,15x11 = 15, 25x21 = 50, 10x31 = 60 and 1x41 = 24 giving the / = 4 

row of Bamett-Jury coefficients. So we can write, for i = 4 for example:

\  = x J ( 2 ( - i y ' '0 - - l ) ! S “ L,)x„ (2.13)
* = 0  7=1

Or in general:
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n+ l

S. =Si-x[Qx, =xJ(X(-l)'*'"(y-l)!S“ L,)x,
*=0 j= l

Equation (2.13) is the first time that a discrete time performance sum has been written explicitly in terms of 

Stirling Numbers o f the Second Kind.

The Bamett-Jury coefficients have several properties that seem to have gone unnoticed elsewhere.

One such property is studied in the next section.

2.8 Proving a property of Barnett-Jury coefficients using Stirling 

Numbers of the Second Kind

If the signs o f the coefficients are included in the number triangle, the sum across each row appears to be 

zero, except for the first row. This may be seen as follows:

=  1 

=  0 
=  0

6 =  0 
24 = 0

-360  120 = 0
1 -63  602 -2100 3360 -2520 720 = 0

31920 -20160 5040 = 0

Figure 2.13 Number triangle o f Bamett-Jury coefficients with signs included. This is used to illustrate that all 
rows, except the first, sum to zero. This property is not remarked upon in the literature and may have been

unnoticed up to now.

For example, in the Barnett -  Jury formulas this works as follows:

00

^ k ^ x l Q x ^  = X q (-L ,+ 7 L 2 - I 2 L 3 + 6 L 4 )X() and -1  + 7 -1 2  + 6  = 0
* = 0

00

=xJ ( L , -15L 2+50L 3-60L 4+24L 5)X q and 1-15  + 5 0 -6 0  + 24 = 0

1
-1 1

1 -3 2
-1 7 -12

1 -15 50 -6 0
-1  31 -180 390

-63 602 -2100 3360
127 -1932 10206 -25200

* = 0

Proof If we introduce the signs into the general expression for the Bamett-Jury coefficients we get: 

by = (-1)'^^"‘^ ( - 1 ) ^  U  • The observation that we are trying to prove may be written: = 0 .
5=0 j= i

We know fi'om section 2.7 that: ( - l) '^ ^ " '(y - l) !  SV® = by so if:

(2-14)
7=1

then we can say ^^by  = 0 . Equation (2.14) is in fact a known property o f Stirling number of the Second Kind
y=i

(+1
[43] so we can indeed write: ^^b^  = 0 .

y=i
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2.9 Further interesting and novel properties of the Barnett-Jury 

coefficients

1+1

A trivial corollary =Ois that the sums comprising of every second term in each row are equal.
7=1

Examples of this in rows 6, 7 and 8 are as follows:

1 + 180 + 360 = 541 = 31 + 390 + 120
1 + 602 + 3360 + 720 = 4683 = 63 + 2100 + 2520

1 + 1932 + 25200 + 20160 = 47293 = 127 + 10206 + 31920 + 5040

Other properties of the Bamett-Jury coefficients are that the coefficient of L,.̂ i is always /! and the 

coefficient of L,. is always (/ + l)!/2 . These results may be derived from properties of combinatorial 

coefficients.

Presumably the Barnett-Jury coefficients have other useful applications and interesting properties.

2.10 A method for calculating exponentially weighted performance 

sums

JU

Consider = ^ e “^x^(A:)Qx(A:) where x̂ .̂ , = Ax^
*=0

We can write this as;
k=0

{k) Q \{k)

Let y{k) = e^ \{k)

Then y(A: + l) = e2^* '̂^x(A: + l)
a. oL

= e^e^ \ \ ( k )

= { e ^ \ ) e  - x(k)

= i e " \ ) y (k )

00 ^

Now we have = ^ y ^ ( k ) Q y ( k )  where y(A: + l) = (e^ A)y(^)
k= 0

^ 5 „ = y " ( 0 ) L y ( 0 )

= |^ e “*x''(A:)Qx(A:) = x '’(0)L x(0) (2.15)
*=0

a  _  ^
where L is the solution of (e ̂  A )L(e ̂  A) -  L = -Q

iZ.
For convergence of this infinite sum we require that A) has all o f its eigenvalues in the unit circle. Note: If

a. a.
A is an eigenvalue of A then is an eigenvalue of A . (2.15) is derived differently in section 10.5.
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2.11 Summary of results in this chapter

Performance integrals for continuous and discrete time control systems have been described. 

Procedures for calculating these performance integrals have been developed within a unified framework 

provided by the Kronecker product and MacFarlane’s procedure [30]. MacFarlane’s procedure has been 

simplified and extended to discrete time systems. All new procedures have been presented in a way that may 

be implemented easily using standard computer programs.

f  *  TTo calculate =J^ t " \  (?)Qx(/)J? the well-known continuous time control systems performance

integrals for the s y s t e m = Ax(?) we solve (-1)" D E^Ta^ ® I + 1® A ^1 EL^ = for the entries in the 
dt

matrix L and then calculate = |^  ?"x^(/)Qx(?>/? = (-1)"*'«! x '^(0)Lx(0).

00

The methods for calculating S„ = ^ k " \ ^  { k ) Q \ { k ) , the family o f discrete time control system
*=0

performance sums for the system \ { k  +1) = A \{ k )  proposed by Jury [34] and Barnett [33] and Mansour [35], 

are simplified by using the number triangle given in section 2.6. The coefficients that arise in these 

calculations have several interesting properties that have not been remarked upon before -  including a 

relationship with Stirling numbers o f the second kind. These properties are described in section 2.7.

The number o f equations to be solved when calculating or may be reduced to a minimum by 

the use o f the E and D matrices described in section 2.2.2, 2.2.3, and 2.2.4.This method is simpler than that 

derived by Chen and Shieh [32].

A proof is given in section 2.2.1 that (-1 )"^ '[̂ A'̂  ® 1 + 1 0  A^ J L = Q is solvable if  and only if

all possible combinations o f  { A - + A . ) ^ 0 .  A  proof is given in section 2.5.3 that

(-1)"[A^ <8>Â  - 1® !]""■'£, = -Q  is solvable if and only if all possible combinations o f /I, A. 5^1.

Expressions for exponentially weighted performance integrals and sums were derived in sections 

2.4.1, 2.4.2, and 2.10.

2.12 Suggestions for future work

(i) Investigate why the coefficients in =xf(/t)(-L 2 + 14L3-36L^ + 24L5)x,(A:) [33] i.e. {1,14,36,24} are 

available from row 3 ({1,7,12,6}) o f the new number triangle proposed in section 2.6 by simply multiplying

the Barnett-Jury coefficients by j  to get: y X - l ) I, 5 j
(ii) Prove that, ignoring signs, and taking the second number in each row the new number triangle in section 

2.6 we get the sequence 1,3,7,15,31,63,... - these are Mersenne numbers i.e. numbers o f the form 2' - 1 .

(iii) Prove that the first two numbers in each row o f the new number triangle in section 2.6 are uneven -  the 

remaining numbers in each row are even.

(iv) Prove that the coefficient o f L,,., is always /! and the coefficient of L, is always (/ + 1)!/2 .
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Chapter 3: Using root locus based optimum stability to design 

a controller of minimum complexity for an unstable, 

non-minimum phase process

3.1 Introduction

The deceptively simple problem of designing a single-loop, error-actuated feedback system is considered 

anew. Fundamental concepts only are invoked. Minimum controller complexity achieves arbitrary eigenvalue 

assignment. Optimum stability places the rightmost eigenvalue as deep in the left half plane as possible. 

Desirable side conditions confer static disturbance rejection and unity static gain between reference input and 

process output. Root loci show that any system designed to have all eigenvalues equal is optimally stable with 

respect to variation of any design parameter from its nominal value. In a cautionary vein, gain and phase 

margins are used to compare a design arrived at here with an overly complex one yielded by the H* approach.

3.2 A desirable controller structure

The following analysis illustrates how very desirable system behavior (the “two common secondary 

requirements” listed below) is obtained simply by including a pole at the origin in the transfer function of the 

controller. Silva et al. [44] refer to this as “the magic of integral control”. This controller structure is used in 

the following sections.

D(s)

conlroller process

R(s) E(s) Y(s)U(s)F(s)
H(s)

Figure 3.1 Negative feedback system where R(s) = reference input, U(s) = controller output, Y(s) = system
output, D(s) = disturbance input.

The fundamental requirement of the controller C(s) is, of course, that the system described by the 

characteristic equation p(s) = A(s)H(s) + k|k2F(s)B(s) must be stable. Two common secondary requirements 

are:

(a) the static gain between process output and reference input should be 1 i.e. = 1

(b) the static gain between process output and disturbance input should be 0 i.e. (0) = 0
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These two secondary requirements are met by ensuring that the controller has a pole at s = 0:

(a) W ( , ) -  -  k,k,F(s)B{s)
l + G{s)C(s) A(s}His) + k,k,F(s)B(s)

Static gain = (0) =
k^k^F{0)BiO)

A(0)H(0) + k^k^F{0)B{0)

Static gain W^^(0) can be made equal to l if  H(0) = 0. This may be achieved if H{s) = s H ( s ) .

l + G(s)C(s}
k^B{s)H{s)

 ̂  ̂ k,k^F{s)B{s) A{s)H{s) + k,k^F{s)B{s) 
Ais)H{s)

Static gain = (0) =
A{0)H(0) + k,k^F(0)B(0)

Static gain (0) can be made equal to 0 if H(0) = 0. This may be achieved if H{s) = s H ( s ) .

k F{s)
So, in general, if a controller is designed with the following structure: = — we are assured

sH{s)

of unity static gain between process output and reference input, and zero static gain between process output 

and disturbance input.

are monic polynomials and C(s) and G(s) are proper rational functions. The characteristic equation for this 

system is: P{s) = sH{s)A{s) + k^k2 F{s)B(s).

If the orders of H(s), A(s), F(s) and B(s) are: c-1, p, c, and q {< p ) , respectively, then the order of 

P(s) is p + c and it has 1 + c + (c-1) = 2c free parameters (i.e. 1 for k j , c for F(s), and (c-1) for H(s)). If 

2c = p + c , (that is, if c = p => the order of F(s) = the order of A(s)), then P(s) is of order 2c and it has 2c 

free parameters and one has complete discretion about eigenvalue placement.

So, H(s) need never be of degree greater than c-1 and the controller need never be of degree greater

than c.

A criticism that can be made of the //„  design process is that it can produce controllers that are of 

orders that are higher than necessary. For example, [24] gives a sixth order //„  controller for a second order

3.3 The minimum order necessary for a controller

This section shows that the order of the controller transfer function need at most be equal to the 

order of the transfer function of the process. This fact is used in the following sections.

Say C(s) = kj is a controller for the process G{s) = /r, where H(s), A(s), F(s), and B(s)
sH(s)  A(s)
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process whereas, within the context of the theory developed in this thesis, and as demonstrated in section 3.5, 

a second order controller suffices -  this second order controller is said to be o f minimum complexity.

3.4 controllers can be fragile and of high order

Keel et al. [24] examine the stability margins of several controllers from the literature. (These controllers 

have been designed using / / j , , and other methods.) These controllers are found to be very fragile in the

sense that tiny perturbations to the coefficients o f the controller destabilise the control system. An inexactly 

realised controller will cause the entire control system to be unstable.

The following process for which Keel et al. [24] develop controller designs is from Doyle et al. [45]:

G(s)= (3.1)
s - s - 2

- a second order, unstable process (pole at s = 2) with non-minimum phase (zero at s = 1).

In [24] a sixth order controller for (3.1) is found to have a Gain Margin o f 0.9992 and a Phase 

Margin of 0.1681 degrees. To quote from their paper “This means, roughly, that a reduction in gain o f  one 

part in one thousand will destabilise the closed loop system” . They then go on to design a simple first order 

controller “placing closed poles on a circle o f radius 4 2  spaced equidistantly in the lefl-half plane.” This 

controller has Gain Margin 0.794 and Phase Margin -9.887 degrees. This new system can tolerate a gain 

reduction o f 21 % and the Phase Margin is improved by a factor o f 60. It does not have the desirable side 

conditions referred to in section 3.2.

In the following section, a second order controller is designed for (3.1) from optimum root locus 

considerations and the dynamics o f this controller compared to that o f the sixth order H „ controller and 

Keel’s first order controller.

3.5 Root locus based design for a controller and a new procedure for 

calculating system parameters

(3.1) is an unstable process (pole at s = 2) with non-minimum phase (zero at s = 1). The difficulty in 

designing a controller for it derives from the presence o f a branch between the points (1,0) and (2,0) in the 

right half o f the s-plane.

A controller for (3.1) can be synthesized using the root locus definition o f optimum stability. The 

controller must impose a topology on the resulting system root locus that overcomes the presence o f the 

branch on the positive real axis.

Referring to Figure 3.1, suppose one requires a second order stabilising controller that gives, 

simultaneously, (i) unity static gain between Y(s) and R(s); and (ii) zero static gain between Y(s) and D(s) 

and (iii) is o f minimum order to allow complete discretion about eigenvalue placement. The pole at the origin 

o f  the following controller, and the four parameters ( a,  p ,  y,  k ), ensure such behavior:

,3 2)
s { s - y )
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A controller with the same structure appears in section 5.4 where it is shown to be a PID controller 

with a low-pass filter in the D channel. The aim now is to find the values o f { a , / i , y , k )  which will make the 

system optimally stable in the root locus sense i.e. rightmost eigenvalue is as far to the left as possible.

The characteristic equation for the system in Figure 3.1 consisting o f the controller in (3.2) with the 

process in (3.1) is:

p(5) = 5 (s - ; ') (5  + l) ( s - 2 )  + ̂ ( j-Q r)(s  + y0)(s-l) (3.3)

There are four system eigenvalues -  two process eigenvalues and two controller eigenvalues. In the 

paper by Keel and Bhattacharyya [24] they assign all the eigenvalues to the same location (which therefore 

must be real and negative.) This is very profound for this study as it means that the resulting p(s) has the 

optimum stability property with respect to every system parameter - not just for a , j3 ,y ,k  - but also for the 

positions o f the poles and zeros and the gain constant o f the process. As any parameter passes through its 

nominal value, all others being held at theirs, the rightmost eigenvalue penetrates as deeply as possible into 

the left half plane. This observation follows at once from root locus considerations: if all eigenvalues are 

placed at the same location, that must be a common 2p”' order eigenvalue at the breakpoint on the loci for 

variation o f each system parameter in turn, with all others held at their design values. As has been already 

referred to in section 1.2 assigning all eigenvalues to the same location also leads to a very convenient way of 

solving for the controller parameters a , P , y , k . It is important to appreciate that this method, though only 

illustrated here, generalizes readily to any order o f  process.

Expanding and collecting terms in (3.3) gives; 

p{s)  = [5 '' - 5  ̂ - 2 j^ ]  + ;'[-5'^ + s  ̂ + 2 i]  + ^[j^ - s ^ ]  +A^(y0-a)[5^ - s ]  + ka/^  [l-'S ]

Or: pis)  = p ^ (5) + r  pi,{s) + kp^(5) + k { P - a ) p j (5 ) + ka p p ^ (s )

Let p ( s )= ( s  + 2 y  i.e. all o f the eigenvalues o f (3.3) are at s = - 2  when a , p , y  and k have their nominal 

values.

T h e n ,- ^  = 4(5 + 2)^ ; - ^  = 12(5 + 2)^ ; and ^  = 24(5 + 2) . 
ds ds ds

All four equations:p(5) = 0 ; —  = 0 ; — ^  = 0;and — ^  = 0 are simultaneously satisfied at s = -2. As
ds ds ds

mentioned in section 1.2, this gives a very usefiil way to find the unknovm system parameters.

First o f all we will solve for y , k , k ( P  - a ) ,  and k a 0 . We get four simultaneous equations in these parameters 

and parameter groups:
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At s = -2  equation (3.4) becomes:

8 -12 6 3
-14 16 -5 -1
14 -1 4 2 0
-6 6 0 0

7 ^-16 '
k 36

k ( P - a ) -5 6

) . kaP ) . 5 4 ,

r r  ] '41 .5 ' '0.314463'
k

k ( P - a )
=

50.5
35

. This gives : p
r

= 1.00753
41.5

. 16 . . 50.5 ,

(These parameter values are derived using the Jeltsch-Fichera array in section 9.6.)

So the controller in (3.2) becomes;

, 50 .5(5-0 .3  14463)(5 + 1.00753)
C(5) = ----------------;---- ——---------------------------------------------- (3.5)

i( s -4 1 .5 )

It is interesting to note that the controller in equation (3.5) is unstable with non-minimum phase as is 

the process for which it was designed -  given by equation (3.1). Also, the controller from [24] for the 

process given by equation (3.1) is unstable.

For nominal controller and process parameters; p{s) = {s + 2)*. A root locus diagram for (3.3) with 

any one of the parameters a , p , y  or ^ a s  a variable will have a quadruple eigenvalue at the breakpoint at 

s = -2  just at the nominal value o f that parameter. This means that all four eigenvalues are at s = - l  when 

the parameter has its nominal value. At that point, the rightmost eigenvalue is as deep into the left half plane 

as possible and the system is optimally stable in the root locus sense. At any value other than the nominal 

value there is at least one eigenvalue to the right of 5 = - 2 .  It is important to note that this must also apply 

not only to the controller parameters but also to the process parameters.

The root loci are given in Figure 3.2, Figure 3.3, Figure 3.4, and Figure 3.5 with the parameters

scaled such that the characteristic equation (3.3) becom esp(s)  = N{s)-v

K

K
^nom ^ (•s) and the quadruple

eigenvalue appears at the breakpoint s = -2  when
V  nom J

=  1 .
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3.2 Root locus of (3.3) with or as parameter. There is a quadruple eigenvalue at the leftmost breakpoint.
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Figure 3.3 Root locus of (3.3) with p as parameter. There is a quadruple eigenvalue at the leftmost
breakpoint.
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Figure 3.4 Root locus of (3.3) with /  as parameter. There is a quadruple eigenvalue at the leftmost breakpoint.
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Figure 3.5 Root locus of (3.3) with k as parameter. There is a quadruple eigenvalue at the leftmost
breakpoint.

j . X k ( s - a ) { s + B )  .  and the controller C(s) = ---------------
s - s - 2  s { s - y )

The transfer function of the process G(5) = —̂ ^  and the controller C(5) = ------ ;---------------- - is:

G (.)C (.) ^ ■^■M1i 1X.-0-31446_3)(.. 1.00753) 
s(5-41.5)(5-2)(5  + 1)

A Nyquist Plot of equation (3.6) is given in Figure 3.6.
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R e a l

Figure 3.6 Nyquist plot for equation (3.6)

From Figure 3.6 the Phase Margin is -6 degrees -  the negative sign meaning a permitted swing of the 

(-1,0) point in the clockwise direction. Although modest by convention, this is an improvement by a factor of 

36 on the / /„  design. This is an improvement on the / /„  design but not as good as the alternative first-order 

controller considered in [24]. However, the first order controller suggested in [24] does not have the 

additional features o f the second order controller designed above, such as: (i) unity static gain between y and 

r; (ii) zero static gain between y and d; (iii) complete control over eigenvalue placement; and, crucially, (iv) 

independence o f process parameters.

In order to illustrate the improvement in robustness of the system with the controller in (3.5) over the 

system with the sixth order / /„  controller from [24] , we consider this transfer function in an error actuated 

loop with a pure proportional controller K, then asymptotic stability exists for 0.8715875 < K < 1.232892. 

This means that the "k" in the optimally stable design (nominal value is 50.5) may vary between 43.9<k<62.1 

i.e. it may be increased by 23% or decreased by 14.7% before losing asymptotic stability.

3.6 Discussion and conclusions

A root locus based optimum stability approach was used to design a second order controller for a second 

order, unstable process with non-minimum phase. The design procedure developed in section 3.5 is general 

and is used repeatedly in this thesis. The performance of the controller using root locus was compared to a 

sixth order controller fi'om the literature that was designed using //„  methods. The controller designed using 

root locus based optimum stability is o f lower order than the / /„  controller and it results in a system that is 

more robust and with very much enhanced performance when compared to the system using a / /„  controller.
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Chapter 4: Root locus based optimum stability and a 

relationship with a class of exponentially weighted 

performance integrals

The purpose o f  this chapter is to validate the use of root locus based optimum stability in the design o f control 

systems. This is done (a) by showing in the cases o f a second order process that design using root locus based 

optimum stability is related to the minimization o f a stringent performance integral and (b) by showing that 

controllers designed using this method are superior to controllers designed by another popular approach. In 

the process, a deep relationship is explored between controllers that are designed by minimising this 

performance integral and “eigenvalue assigning” controllers that are designed using ideas from root locus 

based optimum stability. Specifically, it is shown that when the performance integral is a minimum then the 

rightmost eigenvalue is a far to the left as possible and vice versa. The performance integral utilized is the 

integral o f functions o f the square o f the error and its derivative with exponential time weighting. The 

relationship between these two controller design methodologies is explored in the context of a standard 

second order system. An illustrative example of the design o f  a PI controller for an unstable is also given.

4.1 A second order system

4.1.1 Design for a second order system using root locus based optimum stability

Second order systems are o f great use in control engineering as many interesting processes are of second 

order. In addition to this, second order systems are routinely used as a first approximation when modelling 

higher order systems [46].

E(s)R(s) Y(s)

Figure 4.1 An example o f a second order system

Here is the undamped natural frequency and ^  is the damping ratio. Given , root locus considerations 

will be used to find the value o f the parameter 4” required to put the rightmost eigenvalue o f the characteristic 

equation as far to the left as possible. The closed loop transfer function for the system in Figure 4.1 is

^(■S) X r, , , • • • • = = -r;--------   . So the characteristic equation is:
R(s) +2Co)„s + (ô
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p{s) = s^ +0)1 2(^co^s = { s -  jco^ ){s + jco^) + 2(^o)^s . The root locus for p {s)  w ith ^  as param eter is;

JO)- axis

Sem icircle of 
radius (0 „

+jco,

<7 -  axis

O p tim u m
sta b ility  p o in t 4* =  1

~ J Q ) ,

Figure 4.2 Root Locus o f  p{s) = { s -  jco^ )(s + jco„ ) + It^co^s w ith 4" as param eter

The optim um stability point is where the rightmost eigenvalue is as far to the left as possible. So ^  = 1 makes 

this system optim ally stable in the root locus sense. W hen = \ the characteristic equation becomes 

p{s) = s^ + 2co„s + co] = i s  + ( o „ f .

4.1.2 Design for a second order system by minimising a performance integral

For the system in Figure 4.1, a unit step input R{s) = — gives E {s)  = ^ — -  - the Laplace
S 5 +2l^(0„S + C0„

Transform  o f  the solution to
d^e(t)

dt^

de{t)

de{t) de{0)
+ 2t^co„ + CD„e(l) = 0 with e(0) =  l a n d  = 0 . So, if  x

dt dt •̂ 2( 0 .

and x^{t) = e{t), andA :2(0= -------  the equations o f  m otion o f  the system in Figure 4.1 m ay be written as;
dt

d \
~dt

0 1
X or d \{ t )

dt
= A x (0  with initial conditions x(0) =

"1^

vOy

f *  TM inim ising the perform ance integral J„ , =J^ exp(a ,O x  (OQi T^{t)dt with Q, =
1 0 

0 0
proves not

to be a satisfactory approach in this case. M inimising leads to two possible values for or,. The first, 

«i = +2co^, leads 7^, = 1 /0  at ^  = 1. The second, a , = , leads to an expression for 7^, that does not

have a unique m inim um  at 4" = 1.
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However, using =
1 0 

0 - T
V

f  *  Tin exp(«2 ?)x (OQ 2 ^{t)dt leads to the integral

y „ , = j ; e x p ( a , o | e ^ ( 0 + ^ [ ^ ]  ]dt (4.1)

Equation (4.1) proves to be an appropriate performance integralas it leads to a physically admissible 

value for ^  i.e. ^  = 1, as well as to an expression for J ^ 2  ^^at has a unique minimum at ^  = \ ■

We know from section 2.4.2

=x"'(0)Lx(0) w h e r e |A  + ̂ I  L + L A + ̂ 1 = -Q2 (4.2)

provided | A + ̂ I  | has all of its eigenvalues in the left half plane. (To simplify the notation in what follows 

we set a j = a  and --^a)

Equation (4.2) gives = L̂  ̂ =

makes J„ a minimum we calculate
dC 5^

2[(f)^-2C «„(f) + «„^][2^^y„-a]' 

a^-6a4-^„+(4 + 8<-̂ )ft;-

To find the value of ^  that

- a '  + 6a o); + 8̂ <y„

Calculating this derivative and equating to zero gives a = ±-y/4&) (̂24’̂  -1 ) . From the Root Locus 

considerations in section 4.1.1, we have that optimum stability is obtained at = 1. This gives a = ± lco„.

a .
The characteristic equation of |^A + y l j  with a  = +l(o^'\s s +2(4'-l)<y„5 + 2 ( l-4 ’)«w„ = 0 .  But 

this implies that, for asymptotic stability, > 1 and 4" < 1 • So or = +2cô  is not a possibility.

The characteristic equation of A + — 1 with a = -2a>„ is + 2(4" + l)^y„5 + 2(^ + \)col = 0. This
V 2 y

implies that, for asymptotic stability, So a  = -2co„ makes the integral J„a  minimum and is a

physically admissible choice.

So, for the second order system being discussed, = £  exp(a?)'| ^^(0 +
1 (de(t) it has a

cô  V dt

unique minimum at «  = -2co„ and ^  = 1. This is the same value of 4” that was obtained fi'om the root locus 

approach by putting the rightmost eigenvalue as far to the left as possible.

2 x 2 x - i  + l 7
The value of 4ty„ at = 1 may be calculated as: 4<y„  ̂ —  = — = 1.75 .
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The plot o f against ^  given in Figure 4.3 illustrates this minimum.

4 J„ Wn

1.95

1.85

1.75

1 2 53 4

Figure 4.3 Plot o f against 4” showing a minimum of at 4J^a>„ = 1.75 at = 1

We can see Figure 4.3 that the minimum of4J^«„ has a smooth, broad shape. Two observations may be 

made about this. First, it implies that the root locus design is robust to variations in . For example, as 

varies from 1 to 4, then4J„«y„ varies only from 1.75 to 1.85. So a 400% change in ^  leads to a less than 6 

% change in A. second observation that may be made about this graph is in relation to the sensitivity of 

the eigenvalues at the design point. Root locus based optimum stability leads to a choice o f design parameters 

that place the eigenvalues o f the system at a breakpoint in the root locus - the point o f maximum eigenvalue 

sensitivity. The robustness o f the design seen here shows that the sensitivity o f the roots at the optimum 

stability point is irrelevant to the robustness o f the system at that point. So, designing a system with maximum 

eigenvalue sensitivity has lead to a robust design and not to a degradation o f performance.

4.2 PI controller design for the unstable process g(5) = i/(5-i)

Two design methods for a PI controller for a simple first order process are considered. The first design is 

based on optimum stability in the root locus sense. The second design is based on finding the controller 

parameters that minimise a certain stringent performance integral. These two designs are seen to be identical.

4.2.1 Design for a PI controller for the process G(s) = l / ( 5 - l )  using root locus based 
optimum stability
The central idea in this method is to choose the system parameter that puts the rightmost eigenvalue 

as far to the left as possible [47], That is, we design an eigenvalue-assigning controller. As an example o f this 

method. Figure 4.4 shows a PI controller C{s) and a simple first order process G (5 ).
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D(s)

PI c»ntroller p rocess

R(s) E(s) U(s) Y(s)

Figure 4.4 PI controller and a first order unstable process in a unitary negative feedback control system.

The root locus o f the characteristic equation p(5) = s ( s - l )  + ^(5 + a) for fixed a > 0  with varying k 

includes a circle o f radius r = yJa(a + \) centered on the zero at ( - a ,0 ) .

circle of radius 

r = ^ a ( a + V )1

0

1

£ •nc

-3 ■2 0
Real

Figure 4.5 Root locus of p(s)  = 5 (5  -1 )  + k{s + a) with k as parameter

From Figure 4.5 we can see that the rightmost eigenvalue is as far to the left as possible at the point 

. Choosing the design point at 5̂ ,̂ gives optimum stability (in the root locus sense) with respect to

variations in . At the characteristic equation becomes:

p(s)  = [s + a + -^Ja{a + \ ) f  = + 2[a + -^a{a + l) ] i + [a + ^a{a  +1)]^.

Equating coefficients gives: A: = (1 + 2a) + 2yja{a + 1) and a = — (A: -1)^.
4k
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If  we choose as our design point = - b  then the characteristic equation becomes

(5  + b y  = 5  ̂ + 2bs + b ^ . Equating coefficients we get ^  = 1 + 2b and a =b^  /(I + 2b)  as our controller

parameters.

For the purposes o f  this illustrative example we make the entirely arbitrarily choice o f  = - 2  as

the design point i.e. the rightmost eigenvalue is as far to the left as possible at s  = - 2 .  This gives:

4
(i’ + 2)^ = s ( s - 1 )  + k{s  + a ) . This in turn gives k = 5 and ^re the values for (k,a) that put the rightmost

4
eigenvalue as far to the left as possible. So C(5) = 5 + —is the PI controller designed for the process 

G(5) = 1 /(s - 1 )  using considerations o f  optim um stability.

4.2.2 Design for a PI controller for the process G(5) = l / ( 5 - l ) b y  minimising a 

performance integral

To get an indication o f  the perform ance o f  the controller in the exam ple above we need to calculate a 

perform ance measure. W e shall follow the conventional m ethod [14, 48] and choose our state vector as

, , , de(t) d^ei t )  , , ,  ̂  ̂ , ■ .
X =  { e ( t ) , -------- , ------ 5— , — } where =  e { t ) , the error signal.

dt dt

First we need to calculate the initial conditions. Take R(s)  = 0 and recall that the Laplace Transform 

o f  a step disturbance is D{s) = \ ! s .  Then the Laplace Transform  o f  the error e(t) is given by:

- I  d^e de Ak
E(s )  = ^ ------------------------ . E(s) is the Laplace Transform  o f the solution to: — + 1) —  + —  e = 0 with

s + { k - \ ) s  + 4 k / 5 dt dt 5

appropriate initial conditions. The Laplace Transform  o f  this differential equation is:

2
[5  £ ( s ) - 5 ’e (0 ) -e (0 ) ]  + (A :-l) [5 £ (5 )-e (0 )]  + — £'(5) = 0 So another expression for the Laplace Transform

o f  the error is: E{s)  = — 1M 21 Equating numerators in the two expressions for £ ( 5 ) we
5 +(A:-1)5 + 4A^/5

have: e(0) = 0,e(0) = - 1 .  Substituting e(t) = x^{t),-------- = X2 {t) gives
dt dt

de(t)  d \
de(t)

dt

with

initial conditions x(0) =
 ̂ 0 ^ 

v-1.
W e want to choose a perform ance integral for the response o f  the above system to a step disturbance. 

Also, we want to see if  this perform ance integral has a minimum at the param eter values chosen i.e. at A: = 5 

and a = 4 /5  .

f * "1Polynomial-time weighted perform ance integrals such as (1 + a / ) ^  { t ) d t  and

r ®  2 2(1 + a,? + a^t )e { t ) d t  proved unsuitable for this particular problem  as they do not have a minimum in the
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permitted range i.e. the range of values o f  k that give asymptotic stability. However, the performance integral

= £  exp(«O x^(O Q i with Q, = vO 0, proved to be appropriate.

dJ..The integral was calculated and then — — = 0 was solved to give a  = -2 .4  and or = - 4 .  The
dk

a
latter solution puts the eigenvalues o f  | A + y l  | onto the imaginary axis and so was rejected as it would

cause J„ to  diverge. At a  = - 2 A  ,J ^  = £  exp{at)x^{t)Q^ \ {t)dt  = -
5/4

We see that
[{3 3/5 ) - k ] [ k -{17/5)]

is a function o f k so we can write J „ { k ) . Mathematica [49] gives the minimum value o f J„{k)  = 0.488 at 

A: = 5 . So the value o f k that minimises J^{k)  is the same value o f k that puts the rightmost eigenvalue as for 

to the left as possible, which in this case was chosen to be at s = - 2 .  The plot o f J„{k)  against k given 

below shows this unique minimum clearly.

43. 5 5 . 5 6 6 . 5

Figure 4.6 Plot o f  J„{k) = £  ex p (-2 .4 0 x  '^(OQi \{t)dt  against k.

The plot in Figure 4.6 shows, that the criterion of optimality that puts the rightmost eigenvalue as far 

to the left as possible (i.e. using k = 5 as parameter value) is equivalent to minimising
poo _

y„(A:) = exp(-2 .4 /)x  (OQi \ { t ) d t . This is the same observation that was made for the plot of

against ^  in Figure 4.3. We now have reassurance o f a minimised system performance measure 

complemented by the intuitively satisfying concept o f optimum eigenvalue location.

A further observation may be made regarding this plot o f {k) against k- it has a smooth, broad 

shape. For example, as k varies from 4.5 to 5.5, J^{k)  varies between 0.54 and 0.488. So a 22% variation in 

the design parameter k leads to less than 10% change m J ^ { k ) . As stated after Figure 3, this implies that the 

sensitivity of the roots at the optimum stability point is irrelevant to the robustness o f the system at that point. 

So, designing a system with maximum eigenvalue sensitivity has again not lead to a degradation o f 

performance.
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4.2.3 Comparison between the PI controller from optimum stability and a PI 
controller derived from the centroid of a stability region

Figure 4.7 shows a section o f the region o f  points in the {k,a)  plane that lead to stability for the control

system in Figure 4.4.

centroid

optimum stability pol it

Figure 4.7 The gray region is part of the stability domain for the system in Figure 4.4.

Some authors choose the centroid o f the region o f stability as their design point. One drawback with 

selecting the centroid as the design point is that the stability region may be an infinite band so it is not 

possible to define the centroid. This is the case with the example considered here. However, it is possible to 

define a region o f interest and select its centroid as the design point. The diagram above shows where the 

centroid o f such a region is. It also shows the location o f the optimum stability point. At first sight the 

location of the optimum stability point appears to be perilously close to the edge o f the region o f stability. 

However, when a comparison is made o f the reference responses and the disturbance responses o f the two 

systems it is seen that the optimum stability point behaves in a superior way as described next.

First the stability margins for the centroid system are GM=0.25, PM=42.1. Whereas the stability 

margins for the optimum stability system are GM=0.20, PM=69.5. The GM for the centroid design is slightly 

better than for the optimum stability design but the PM for the optimum stability design is far superior to that 

for the centroid design.

Figure 4.8, Figure 4.9, and Figure 4.10 show the optimum stability design responses (solid) and the 

centroid design responses (dashed) for the system in this example.
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Figure 4.8 Step Reference responses for system in Figure 4.4 -  optimum stability design in solid, centroid
design in dashed.

arrplitude stgp Disturbance Responses

0.15
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tirre

Figure 4.9 Step Disturbance responses for system in Figure 4.4 -  optimum stability design in solid, centroid
design in dashed.

arrplitude Inpulse Disturbance Responses

0.6

0.4

0.2

- 0.2

Figure 4.10 Impulse Disturbance responses for system in Figure 4 .4 - optimum stability design in solid,
centroid design in dashed.

The disturbance responses and the reference responses show that the PI controller designed using 

optimum stability is superior to the PI controller that was designed by using the centroid of a stability region 

as the design point. The appeal o f the centroid as a design point is simply its maximum distance from the 

stability boundary. However, this fails to take into account the degree o f stability o f the point. The optimum 

stability design point has the virtue o f not only being in the stability region but o f occupying a point o f 

optimum stability.
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4.3 Conclusions

Two controller design m ethodologies were described -  one that uses root locus based optim um  stability and

r® Tthe other based on minimising perform ance integrals o f  the form e x p (« 0 *  • The values for

Q  and f o r a  are problem  specific. Root locus is used to make the minimum value o f  a  as large as possible. 

Two examples have been used to illustrate that the controllers obtained in both cases are identical. The first 

example was o f  a second order system and the second example was o f  a PI controller for a specific process.

In both o f  the examples a plot o f  the perform ance integral against the system param eter exhibits a smooth 

broad shape with a unique minimum point. This means that the system is robust to large variations in the 

design param eter as this result in small variations in the perform ance integral. This implies in turn that 

designing a system with maximum eigenvalue sensitivity does not lead to a degradation o f  performance.

In addition, the step reference response, the impulse disturbance response, and the step disturbance response 

o f  the optim um stability PI controller are shown to be superior to a PI controller that was designed by using 

the centroid o f  a stability region as the design point. The appeal o f  the centroid as a design point is simply its 

distance from the stability boundary. However, this fails to take into account the degree o f  stability o f  the 

point. The optim um stability point has the virtue o f  not only being in the stability region but o f  occupying a 

point o f  optim um stability.

4.4 Suggestions for future work

Investigate the range o f  controller and process combinations for which the perform ance integral is 

calculable.
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Chapter 5: PI and PID controller tuning using root locus 

based optimum stability

5.1 Introduction

Optimum stability considerations are used in this chapter to design PI and PID controllers for a variety of 

processes. The performance o f these controllers is compared to that of controllers from the literature.

Throughout this chapter, systems o f the type illustrated in Figure 5.1 are used.

D(s)

controller process

R(s) E(s) U(s) Y(s)
C(5) G(s)

Figure 5.1 Unitary negative feedback control system.

5.2 PI controller design for multi-lag processes

5.2.1 Ziegier-Nichois tuning for PI controller for G(5) = l/(5 + l)‘'

In 1942 Ziegler and Nichols [50] introduced tuning rules for several controllers, including the PID 

controller. Others [7, 22, 51-54] have also derived tuning methods for PID controllers as described in 

Appendix D.

It is assumed in Ziegler-Nichols designs that the closed loop system is asymptotically stable for pure 

proportional control for 0 < k  <k^ (where is called the ultimate sensitivity) and for k = k^ the system 

sustains a harmonic oscillation with period T^. The Ziegler-Nichols tuning parameters are: k = 0.45^„ and

7 ^ = 0 .83r„. The characteristic equation o f the process G(s) = l / ( s  + l) ‘' with proportional control is

p(s)  = (s +1)'' + A:. The root locus o f this equation is given in Figure 5.2.
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-2 - 1.5 -0  5 0.5
R e a l

Figure 5.2 Root locus o f  p{s )  = (5  -i-1)”* -n A: with k as parameter.

From the root locus in Figure 5.2 one may see;<y„ =2n lT ^  = 1 z=> = 2 n . Also,

Ziegler-Nichols parameters are therefore/: = 0.45(4) = 1.8and 7) = 0 .83(2;r) =  5.215 .

The Ziegler-Nichols controller is: C(5) = 1.S 1-t-
1

5.215.?
5.2155-1-1

5.2155
and the characteristic

(5.1)equation for the system in Figure 5.1 is p(s )  = 5.2155(5-1-1) -(-1.8(5.2155-1-1)

Gain and Phase Margins for this system are 1.8 and 36°.

5.2.2 Fine-tuning of the Ziegier-Nichols PI controller for the process

G(s)  = 1 /(5 -t- O'* using root locus

Equation (5.1) may be rewritten with a fine-tuning term k included as follows: 

p ( 5 )  = 5.215 5 ( 5 - I-1 ) ' -I-A: 1.8(5.215 5 -t-1)

A root locus diagram equation (5.2) is given in Figure 5.3.

(5.2)

1

0.5

0

0.5

1
2 ■1,5 ■1 - 0.5 0 0.5

R ea l

Figure 5.3 Root locus for ^ (5) = 5.2155(5-1-1)^-1-^1.8(5.2155-i-l) with k  as parameter.
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It can be seen from Figure 5.3 that optimum stability in the root locus sense occurs when the real, left-moving, 

negative root has the same value o f cr as the two right-going, complex roots. It is difficult to estimate when 

this happens from the diagram, but it may be found by solving p(s) for different values o f k and comparing the 

roots. When k = 0.947, Mathematica’s NSolve command gives the following roots o f p(s); -0.1461, - 

0.1463 ± j  0.752, -1.78 ± j 0.798.

So, the rightmost eigenvalue o f the Ziegler-Nichols design is as far to the left as possible when k = 0.947. 

Substituting this value back into p(s) gives:

p(5) = 5.2155(5 + 1) ' +1.7(5.2155 + 1) (5.3)

with Gain Margin = 1.9 and Phase Margin =41“ -  improvements on the standard Ziegler-Nichols design.

5.2.3 PI controller for the process G(s)  = l/(5 + l)‘' from root locus based optimum 

stability

A PI controller C(5) = Â(5 + a ) /5  for the process G (j) = 1/(s +1)“ may be designed using root locus based 

optimum stability. The characteristic equation for the system is:

p{s )=s{s  + \ f + k { s  + a) (5.4)

The evolution of the root locus topology o f (5.4) with a shows that a critical value o f a results in a 

breakpoint in the root locus at a triple root. Figure 5.4, Figure 5.5, and Figure 5.6 show the root locus for 

(5.4) with k as parameter and with a = 0 .4 , a = 0.64 (the critical value), and a = 0.8 .

1

0 5 -

01 0
(Oe

-0 5 -

/

/
-a

\
■2 •1 5 -0 5

R eal
0.5

Figure 5.4 Root locus for (5.4) with k  as parameter and with a = 0 .4 , which is below the critical value. The 
system has not yet reached a state o f optimum stability.

55



1

triple e ig en v alu e

---, . ,-M , , -...................  1 1 ---- , -- , -- - ... ---- - ------

k

, . , T—I— ,—
-2  -1 5  -1 - 0.5  0  0 5  1

Real

Figure 5.5 Root locus for (5.4) with k as parameter and with a = 0.64 showing the breakpoint at a triple 
eigenvalue. This critical value of a , along with the corresponding value for k , allows us to design the PI

controller that leads to optimum stability.

0.5

0

- a

0.5

1
2 15 - 0.51 0 0.5 1

Real

Figure 5.6 Root locus for (5.4) with k as parameter and with a = 0.8 . The system has moved away from a
state of optimum stability.

We know from section 1.2 that at the triple eigenvalue in Figure 5.5 the following equations hold in 

addition to (5.4):

p'{s) = (s + [y+4s{s + l f + k  = 0 (5.5)

p"{s) = S(s + \ f + \ 2 s { s  + l f  =0  (5.6)

2
Solving (5.6) fors gives 5 = -1 or 5 =  which is the location of the triple eigenvalue.

56



2
Substituting 5 = into (5.5) gives k = 0.216 .

2
Substituting s = and k = 0.216 into (5.4) gives a = 0.64 .

So the PI controller that has been designed for the process G(s) = 1 /(i + O'* using considerations of optimum

^... . , 0.216(5 + 0.64) 0.138 ^ •stability IS C(5) = ------------------- = 0.216 + --------- . (These controller parameter values are also obtained using
5 s

a Lyapunov matrix equation method described in section 8.4.2 and a Jeltsch-Fichera array method in 9.8.)

5.2.4 Other methods for tuning PI controllers

Ho et al. [52, 55] write down the following equations from the definitions of gain and phase margins; 

arg\C{jco^ )G{jco^ ) \ = -7i 4 ,  = , . ^ . ,

C(jco^ )G(jco^) = 1 <t>̂= arg [C (7<ŷ  )G{jco^)] + ;r

where ^^d are designer specified gain and phase margins; cô  is the frequency at which the Nyquist

curve has a phase of -7t (i.e. the phase crossover frequency); and cô  is the frequency at which the Nyquist

curve has an amplitude of 1 (i.e. the gain crossover frequency). When a PI controller is designed using this 

approach one obtains four highly nonlinear equations in four unknowns ( cô , cô  ,T, and k). These equations

may be solved numerically or approximate analytic solutions are also possible. These approximate analytic 

solutions depend on noticing that: arctan jc * (|x| < 1) and a rc ta n x * -^ ;^ - -^  (|x| > 1). Ho’s

controller for the process G{s) = 1 /(i + 1)** is given in Table 5.1.

Fung et al. [56] give a method for tuning PI controllers using the same starting point as Ho et al. [52, 55] but 

solve the equations by graphing them and reading the intersections off the graph. The controller from [56] for 

the process G(i) = l/(5 + l)‘' is given in Table 5.1.

5.2.5 Comparison of PI controllers for the process G(s) = I /(5 + O'*

The four controller design methods described in sections 5.2.1 to 5.2.4 are now compared. Table 5.1 shows 

that the controller designed using optimum stability gives improved gain margin and phase margin compared 

to controllers designed using Ziegler Nichols tuning, Fung’s method, or Ho’s method.
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year Design Controller
Gain Margin 

(absolute)

Phase Margin

1942
fine-tuned Ziegler- 

Nichols [50]

0.326
C(5') = 1 .7+-------

s
1.9 41°

1995 Ho et al. [52, 55] C(s) = 1.112+®'^^^
s

2.6 61°

1998 Fung et al. [56]
0 297

C(5) = 0.848 +
s

3 60°

2006
Root locus based 

optimum stability
C(5) = 0.216+®'^^^

5
7.2 71°

Table 5.1 Comparison of the performance o f four PI controllers designed for the process G{s) = 1 /(5 + 1)"*.

Reference response, step disturbance response, and impulse disturbance response curves are given in 

Figure 5.7, Figure 5.8, and Figure 5.9.

Another PI controller for the process G (i) = 1 /(5 +1)" that could have could have been included in 

Table 5.1 is C{s) = 0.76 + 0 .36/5 from Panagopoulos and Astrom [57]. This controller and process lead to a 

system with Gain Margin of 2.73 and Phase Margin of 48.7° and time domain performance comparable with 

the systems proposed in [50, 52, 55, 56] so it was not included.

fine-tuned Ziegler-Nichols

•Fung Ho

“  0.8 

Q .I 0.6
■optimum stability

0.4

0.2

0 10 20 30 40 50
Time

Figure 5.7 Step reference responses for systems using the four controllers in Table 5.1. The controller 
designed using root locus based optimum stability results in the smoothest response, with no overshoot and

the fastest settling time.
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0 10 20 30 40 50
T im e

Figure 5.8 Step disturbance responses for systems using the four controllers in Table 5.1. The controller 
designed using root locus based optimum stability results in the smoothest response and the fastest settling

time, but it has the most overshoot.

optim um  stability

fine-tuned Z ieg ler-N icho ls

Fung
m

• o Ho

a.e
CO

- 0,2
0 10 20 30 40

T im e

Figure 5.9 Impulse disturbance responses for systems using the four controllers in Table 5.1. The controller 
designed using root locus based optimum stability results in the smoothest response, with greatest overshoot

but the fastest settling time.

From Figure 5.7, Figure 5.8, and Figure 5.9 we can see that the Ho, Fung, and Ziegler Nichols 

designs give more oscillatory responses (which, o f course, is built in to the Ziegler Nichols method [50]) but 

in the case of the disturbance responses they give reduced initial overshoot. This is an illustration o f the trade

off between stability and performance referred to in section 1.2. Table 5.1 shows that the controller designed 

from optimum stability results in very much improved gain margin and phase margin values.
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5.2.6 Generalised root locus based optimum stability approach for designing a PI 

controller for the multi-lag process G(s) = kj l(s + b)"'

This section gives a derivation o f  the parameters for a PI controller C{s)  = k^{s + a ) / s  for the multi

lag process G{s) = k̂  !{s + b)"" using the optimum stability design approach.

The characteristic polynomial for the system is p{s )  = s{s  + b)” + (■? + a) = 0 . If we take k =  k̂ k.̂  we get:

p{s)  = s{s + b) '"+k{s  + a) = Q (5.7)

Differentiating (5.7) gives:

/?'(5) = {s + b y - '  {b + 5(w +1)) + A: =  0 (5.8)

Differentiating (5.8) gives:

p"{s) = m{s + b)'"'  ̂{2b + s{m +1)) = 0 (5.9)

‘̂ h t

(5.9) gives: 5 = ---------- (5.10)
(/w + 1)

(5.10) is the location o f  the triple eigenvalue and the point o f  optimum stability.

Substituting (5.10) into (5.8) gives: k =  b'"{—— ( 5. 11)
V /n  +  U

Substituting (5.10) and (5.11) into (5.7) gives:

4/>/ma =  7 5.12
(m + \ f

Using (5.11) and (5.12) one may design a PI controller C{s)  = k^{s + a ) I s  for the process G(s) = !{s + b)"'

and thereby obtain a system with optimum stability.

5.3 PID controller  designs for m ulti-lag processes

The performance o f  PID controllers for the processes G{s)  = 1 / ( i  + 1)"* and G (i) = 1 /(s +1)’ from the literature

is compared to that o f  PID controllers designed using ideas from optimum stability.

5.3.1 Ziegler-Nichols tuning for a PID controller for the process G{s)  = 1 /(̂  +1)"*

The PID controller has the form:

C(5) =  k
(  1  ̂1 +  —  + sT. 

sZ

where k = gain o f  proportional channel; =  the derivative action time; 7̂  = the integral action time.

Say the transfer function o f  the process to be controlled is G{s) = ^ - one o f  the proposed

benchmark processes from Astrom and Hagglund [58]. The Ziegler-Nichols tuning parameters are: k =  0.6A:„, 

T; = 0.57; , and = 0.25T. =  0.125f„

The root locus diagram in Figure 5.2 gives: <»„ = 1 => 7̂  = 2;r => 7] =7V . Also 7̂  = 7 t !  A . And „̂ = 4 .

The Ziegler-Nichols controller designed from ultimate sensitivity is:
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The characteristic equation o f  this controller with G (i)  = 1 /(s +1)'' is

p (5) = 5(5 + l)‘'+ 1 .8 8 5 |^ 5 + - j  (5.13)

The Ziegler-Nichols PID controller constrains the param eters in a particular way. In Z iegler-N ichols 

design we have = T J  A so there are only two independent param eters - k  and 7^. However, this is the 

structure required for root locus based design as we can fix one param eter and study root locus topology for

different values o f  the other parameter. Root locus based design would not be possible with three parameters.

An approach based on the Lyapunov matrix equation as described in section 1.4 or the Jeltsch-Fichera array 

as described in 9.8 would be required.

5.3.2 Fine-tuning the Ziegler-Nichols PID controller for the process

G(5) = 1 /{5 + O'* using root locus

Fine-tuning o f  the Ziegler-Nichols controller is possible using root locus. Introducing a fine-tuning 

variable, , into (5.13) gives:

p{s)  = s(s + 1)" -t- /t(l.885)|^s + - j  (5.14)

The root locus o f  (5.14) with k  as param eter is given in Figure 5.10.

2

0

2
-0.5 0 0.52 15 1 1
Re a l

Figure 5.10 Root locus o f  /?(5) = 5(5 -1- 1)"*-i-A^(1.885)(5-i-2/;r)^ with k  as param eter

It is possible to estimate graphically that the rightm ost eigenvalue o f  the Ziegler-N ichols design is as far to the 

left as possible when k  = 0.566.  Using k  = 0.566 in (5.14) gives a fine-tuned Ziegler-N ichols controller

i s  + 2/ 71' f
C (s) = 1.067-̂ -̂--------- — and the improved system response characteristics shown in section 5.3.3.



5.3.3 Dynamics of Ziegler-Nichois and fine-tuned Ziegler-Nichois controllers

Z ie g l e r - N i c h o l s

Q .I 0.6 f in e - t u n e d  Z i e g l e r - N i c h o l s

0.4

0.2

150 5 10 20
T im e

Figure 5.11 Step reference responses for Ziegler Nichols and fine-tuned Ziegler Nichols systems. The fine- 
tuned Ziegler Nichols system has less overshoot and is smoother than the Ziegler Nichols system.

0.5

f in e - t u n e d  Z i e g l e r - N i c h o l s

'Z i e g l e r - N i c h o l s

0

T i m e

Figure 5.12 Step disturbance responses for Ziegler Nichols and fine-tuned Ziegler Nichols systems. The fine- 
tuned Ziegler Nichols system has larger overshoot but is smoother than the Ziegler Nichols system
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Figure 5.13 Impulse disturbance responses for Ziegler Nichols and fine-tuned Ziegler Nichols 

systems. The fine-tuned Ziegler Nichols system has slightly larger overshoot but is smoother than the standard

Ziegler Nichols system.

5.3.4 Discussion of the Ziegler-Nichois and flne-tuned Ziegler-Nichols controllers
Comparing the response curves given in Figure 5.11, Figure 5.12, and Figure 5.13 we can see that he fine- 

tuned Ziegler Nichols controller produces more desirable behavior than the standard Ziegler-Nichols design. 

Also the Gain Margin (GM) o f the Ziegler Nichols system is only 3 whereas the GM o f the fine-tuned Ziegler 

Nichols system is 5.4. The Phase Margin (PM) of the Ziegler Nichols system is only 42° whereas the PM of 

the fine-tuned Ziegler Nichols system is 63.7“.

5.3.5 Generalised root locus based optimum stability approach for designing a PID 

controller for the process G{s) =  /{s+b)"'

k ( s  + aV  2
Consider the restricted class o f PID controllers C (5 )= —̂----------- with T. = — and derivative action time

s a

1 kj
T, = —  . The characteristic equation for this PID controller and the process GCs') = -------—  is:" 2 0  y y >

p{s) = s(s + b)'" +k{s + a f . (5.15)

where k = k^kj and b > 0 .

To show illustrative examples o f typical root loci o f (5.15) we anticipate the root-locus-based 

optimum stability design method described next to say that k^ =1, b = l, m = S  gives A:, = 0.287, a = 0.545 ; 

and = 1, b = \, m = 9  gives A, = 0 .3 ,a = 0.5 .

The root locus with respect to A: o f  (5.15) with m even {m =8) , k 2 = \, b = l is given in Figure 5.14.

The root locus with respect to A o f (5.15) with w odd {m = 9 ) , k ^ = l ,  b = \ is given in Figure 5.15.
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1

triple eigenvalue

Figure 5.14 Root locus of equation (5.15) with m = 8 , with respect to k . This diagram is to illustrate a root 
locus based design method. The nominal value o f the parameter k  is chosen as that value that results in a 

breakpoint at a triple eigenvalue. This is called a point o f optimum stability in the root locus sense.

(5
C
OI

-05
triple e igenvalue

2 15 -05 0 051
Real

Figure 5.15 Root locus o f equation (5.15) with m = 9 , with respect to k . This diagram is to illustrate a root 
locus based design method. The nominal value o f the parameter k  is chosen as that value that results in a 

breakpoint at a triple eigenvalue. This is called a point o f optimum stability in the root locus sense.

We can see from Figure 5.14 and Figure 5.15 that for even and odd values o f m , the root locus of 

(5.15) has a breakpoint at a triple eigenvalue. These diagrams also illustrate the property b >  a . I will now 

derive a general method for calculating the parameters for a PID controller C(5) = A:, (s + aY  / 5 for the 

process G{s) -  k^ !{s + b)"' that leads to a system with optimum stability.
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In general, if  there is a triple eigenvalue at q in the root locus then the characteristic equation must 

factorize as p{s)  = f { s ) { s  + q f  at that point s = - q  where f { s )  is a polynomial o f  order ( m - 2 ) . So we 

have p ( - q )  = 0 , p ' ( - q )  =  0 and p " { - q )  =  0 . This gives at s = - q  : 

p(s )  =  5 (5  + b)’” + k{s + aY

= N̂  (s)  + k{s + aY  = 0  at s =  - q  

p ’{s) = N 2 (s) + 2k{s + a)  = 0 at s = - q  . 

p"(s) = N^(s) + 2k = 0  at s = - q  .

p ' i s )  = 0 => A: = -
N,{s )

(5.16)

p'(s)  = O ^ N ^ { s ) -  Nj {s){s + a) = 0

=  (s + a) (5.17)

p{s)  = 0=> (s) -  (s + a Y  = 0

N,(s)
(5.18)

Equating (5.17) and (5.18) gives 2 ,̂(̂ )
N, i s )

( N , ( s ) y  = 2 N , { s ) N , ( s )

{ N , ( s ) f  - 2 N , { s ) N , { s )  = 0 (5.19)

where N^{s) = s i s  + h)'", N 2 {s) = {{m + \)s + b)(s + b)"' ‘ , and N^{s) = m{{m + l)s + 2b){s + b)"

In general, equation (5.19) becomes

(m^ - l ) s^  + 2 b ( m - l ) s - b ^  = 0 (5.20)

As an example o f  the use o f  this method we design a PID controller for the process G (s) = 1/(5 +1)’ . 

Equation (5.20) gives:

8O5' +16  6 5 - / ) '  =  0 . (5.21)

With b =  l ,  equation (5.21) gives 5 = -0 .2 5  or 5 = 0 .05 . Since we are considering a stable system the 

negative breakpoint is the relevant one. Substituting 1 > b = \ ,  and s = -0 .2 5  into equation (5.16) gives 

A, = 0 .3003. We can now find a =  0.5 from equation (5.17) or (5.18). The resulting PID controller designed 

using root locus based optimum stability for the process G(s)  = 1 /(5 +1)’ is:

C(5):
0.3003(5 + 0.5)'

(5.22)
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5.3.6 PID controller for G(s) = l/(5 + l)^ derived by various methods in the literature

X 0.2837(5 + 0.8319)^  ̂ , . .  ^The PID controller C(5) = ---------------------------  was derived using the algorithm described in section 5.3.5.

f  0.289 1
The PID controller C ( 5 )  = I  0.778 + -------- + 0.556 I  was derived using the algorithm described in section 1.4.

This is a three term PID controller and it places the rightmost eigenvalues o f the system at -0.55 ± yO.18 and 

-0 .55 ± y'0.41.

Ang et al. [59] discuss PID controllers designed by the software package PIDeasy [60] . They use PIDeasy to 

design the PID controller C(5) = 0 .8 3 fl+ - ^ ^  + 0.435 j for the process G(5') = 1/(5 + !)“'.

Stefani et al. [61] describe the two CHR methods for tuning PID controllers that were published in 1952 by 

Chein, Hrones and Reswick [62]. The CHR methods uses the unit step response of the open-loop process to 

estimate values for two time parameters - and . The “overdamped” CHR method is used here in

preference to the “20% overshoot “ method as the former leads to smoother time responses and better 

robustness margins -  PM of 42.4°and GM of 2.7 compared to PM o f 21.1“ and GM o f 1.7.

The open-loop unit step response for the process l / ( i  + 1)“' is given in Figure 5.16.

15

1

05

0

Tim e

Figure 5.16 Open-loop unit step response for the process G{s) = 1/(5 + !)“ . The values of = 1.2 5 and 
= 4.8 s allow the design o f a CHR-type PID controller.

From Figure 5.16 we have = 1.2 s and T  = 4.8 j  . Using [61], these values allow us to calculate

k  = 2.4, 7̂  = 4.8 s and = 0.6 5 . So the “overdamped” CHR PID controller is C(5) = 2.4 I - I  h  0 . 6 5
4,85
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5.3.7 Comparison of five PID controllers for the process G(s) + 1/(5 + 1)‘*

In this section we summarise the properties of the four controllers designed in sections 5.3.1 to 5.3.6

year Design Controller
Gain

Margin

Phase

Margin

1942,

2006

Fine-tuned Ziegler- 

Nichols [50]
, 1.067f 2 V

5.38 63.7°

1952 Chein et al. [62] C(5) = 2.4| 1-1- * -^0 .6 5 ] 
L 4.85 )

2.72 42.4°

2005 PlDeasy [59] C(s) = 0.83| 1-t- * + 0 .4 3 5 ] 
1 0.3835 )

5.21 62.5°

2006

Lyapunov equation 

based optimum 

stability

C(5) = 0.778| 1-1- '  -1- 0 .7155 ] 
1, 2.695 J 8.63 68.9“

2006
Root locus based 

optimum stability
, 0.2837(5-1-0.8319)^ 

C(5) =
5

11.7 72.5°

Table 5.2 Comparison of four PID controllers for the process G{s) = 1/(5 + O'*. The PID controller designed 
using root locus based optimum stability shows considerably enhanced robustness margins.

1.4

CheIn etal
PlDeasy

1.2

0.8
root locus based optimum stability

0.6
Lyapunov equation based optimum stability

0.4
fine-tuned Ziegler-Nlchols

0.2

0
5 15 20 25 300 10

Time

Figure 5.17 Step reference responses for system using the five controllers in Table 5.2. The controller 
designed using optimum stability from the Lyapunov equation results in the smoothest response, with no 
overshoot and the fastest settling time. The response with the controller designed using root locus based 

optimum stability is smooth and has no overshoot but has a longer settling time than the Lyapunov equation
based controller.
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Figure 5.18 Step disturbance responses for system using the five controllers in Table 5.2. The controller 
designed using optimum stability from the Lyapunov equation results in a smooth response with no 

undershoot and the fastest settling time. The controller designed using root locus based optimum stability is 
also smooth and has no undershoot but has greater overshoot than the Lyapunov equation based controller.
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Figure 5.19 Impulse disturbance responses for system using the five controllers in Table 5.2. The controller 
designed using optimum stability from root results in the smoothest response with least undershoot and the

fastest settling time.

5.3.8 Discussion

Systems with controllers that were designed for the process G{s) = 1 /(5 -i-1)'* using either Lyapunov based 

optimum stability or root locus based optimum stability exhibit greater robustness margins, and smoother 

response characteristics than systems with controllers designed using a selection of other methods from the 

literature. Systems with controllers designed using optimum stability tend to exhibit greater peak disturbance 

responses.
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5.3.9 PID controllers for the process G(s) = l/(s  + l)’ designed by various methods

15

0.5

0

T il n e

Figure 5.20 Open-loop unit step response for the process GCs) = l/(s  +1)’ . The values of = 2.0 s and 
= 5.4 s allow the design of a CHR-type PID controller.

As in section 5.3.6 the “overdamped” CHR method is used here in preference to the “20% overshoot “ 

method as the former leads to smoother time responses and better robustness margins -  PM o f 59.5“ and GM 

of 2.4 compared to PM o f 26.9® and GM o f 1.5.

From Figure 5.20 we have = 2.0 5 and T = 5.4 s - using [61] these values allow us to calculate

=1.62, T . = S A s  and = 1.0s . So the “overdamped” CHR PID controller is C(s) = 1.62 1 + -
1

5.4s
- +  s

Karimi et al. [63] give the controller C(s) = 1.35|^1 + + 1.27s | , designed using Bode’s Integral, for the

process G(s)  = 1 /(s +1)’ .

0.4
The standard Ziegler-Nichols PID controller for the process G(s) = l/(s  + l)’ is C(s) = I.73 + ̂ -  + 1.87s .

s

Using the general formulas in section 5.3.5 we can use root locus based optimum stability to design the PID

controller C(s) =
0.2688(5 + 0.7403)^

for the process G(s) = 1 /(s +1)^.

Two controllers can be designed using the Lyapunov matrix equation method described in section 1.4. One 

controller has transfer function C, (s) = 0.475 + 0.1657 / s + 0.350 Is and the system has a single, real, 

rightmost eigenvalue at -0.48, the rest o f the eigenvalues are complex and deeper into the left half plane. The 

second controller has transfer function C j(s) = 0.515 + 0 .169/s + 0.425s . There is a pair o f real, rightmost 

eigenvalues for this system at -0.382 and -0.389, the rest of the eigenvalues are complex and deeper into the 

left half plane. Controller C, (s) is used for comparison with other designs. The response curves for systems 

using these two controllers are compared in Figure 5.21.
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Figure 5.21 Step reference, step disturbance, and impulse disturbance responses for the two systems with PID 
controllers designed for the process G{s) = 1 /(I + s f  using Lyapunov based optimum stability. One controller 

(system responses in blue) has transfer function C,(5) = 0.475+ 0.1657/s  + 0.35015 and the system has a 
single, real, rightmost eigenvalue at -0.48, the rest o f the eigenvalues are complex and deeper into the left half 

plane. The second controller (system responses in red) has transfer function 
C2(5) = 0.515 + 0.169/5 + 0.4255 . There is a pair o f real, rightmost eigenvalues for this system at -0.382 and 
-0.389, the rest o f the eigenvalues are complex and deeper into the left half plane. Controller C, (5) is used

for comparison with other designs in Table 5.3.

5.3.10 Comparison of six PID controllers for the process G(5) = l/(5 + l)̂

year Design Controller
Gain Margin 

(absolute)

Phase

Margin

1942 Ziegler-Nichols [63]
0.4

C(5) = 1.73 + ---- + 1.875
5

2.29 52.1°

1952 Chein et al. [62] C(5) = 1.62+ —  + 1.625
s

2.43 59.5°

2003 Karimi et al. [63] c(5 ) = 1.35 + ®'"^^+1.715
s

2.95 50.1“

2006

Lyapunov matrix 

equation based 

optimum stability

C, (5 ) = 0 .4 7 5 + +  0.355
s 6.50 70.0°

2006

Lyapunov matrix 

equation based 

optimum stability

C2(5) = 0.515+^'*^^+0.4255
s 6.58 71.2°

2006

Root locus based 

optimum stability 

controller

, 0.2688(5 + 0.7403)^ 
C(5) =

5
7.08 70.9°

Table 5.3 Comparison o f six PID controllers designed for the process G(s) = 1 /( i + 1)’ . The controller 
designed using root locus based optimum stability has the best gain margin and excellent phase margin.
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The results in Table 5.3 show that the PID  controllers designed using optimum stability shows considerably 

enhanced robustness measures. Using controller Ĉ  (s') results in a single, real, rightmost eigenvalue at -0.48, 

the rest o f the eigenvalues are complex and deeper into the left half plane. Using controller Q  (5 ) gives a pair 

o f real, rightmost eigenvalues at -0 .382 and -0 .389, the rest o f the eigenvalues are complex and deeper into 

the left half plane. The robustness margins for are slightly better than C,(s) but Figure 5.21 shows that

the response graphs for both controllers are indistinguishable. Controller C, (s) is used for comparison with 

other designs.

•Bode's integral m ethod

-Z ieg ler-N ichols

C h ein  e ta l

CD

•Lyapunov bas ed  optim um  stability
0.4

root locus b a s e d  optim um  stability

0 5 10 15 20 25 30
T im e

Figure 5.22 Step reference responses for systems using five controllers from Table 5.3. The controllers 
designed using optimum stability result in the smoothest response, with no overshoot and the fastest settling

time.

root locus b a s e d  optim um  stability

0.6 Lyapunov bas ed  optim um  stability

0.5

C hein  e ta l
Bode's integral m ethod

0 5 10 15 20 25 30
T im e

Figure 5.23 Step disturbance responses for systems using five controllers from Table 5.3. The controllers 
designed using optimum stability result in a smooth response with the greatest initial overshoot but the fastest

settling time.
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Figure 5.24 Impulse disturbance responses for systems using five o f  the controllers in Table 5.3. The 
controllers designed using optim um stability result in the sm oothest response with greatest initial overshoot 

but with the least undershoot and the fastest settling time.

5.3.11 Discussion

Systems with controllers that were designed for the process G(5) = 1 / ( i  -i-1)* using either Lyapunov based 

optimum stability or root locus based optim um stability exhibit greater robustness margins, and smoother 

response characteristics than systems with controllers designed using a selection o f  other methods from the 

literature. These characteristics seem to be obtained at the expense o f  other possible measures -  such as 

settling time. Systems with controllers designed using optim um stability tend to exhibit greater peak 

disturbance responses.

5.4 PID controller design for the double integrator process

D(s)

processcontroller

R(s) E(s) U(s) Y(s)

Figure 5.25 A second order controller and the double integrator process.

72



The double integrator process G(i) = 1/s^ is of interest as it is used when modelling single degree 

of freedom translational and rotational motion [64] including physical processes such as the attitude control 

of a satellite or a rolling ball on a tilting beam [65].

A Ziegler Nichols PID controller for the double integrator process [66] is:

22 (5 + 1)̂
C(5) = - (5.23)

The characteristic equation for the system in Figure 5.25 is p{s) = s^(s + a) + (bjS^ +b^s + b^). If we 

put all the eigenvalues of p{s) at 5 = - l  then the characteristic equation becomes 

/>(5) = (5 + 1)“'= 5 '“'+ 4 5 ^ + 6 s^+45 + 1. Equating coefficients we get = 1,6, = 4 , =  6 ,a = 4 so an 

alternative controller is:

C{s) =
6s + 4s +1 

s(s + 4)
(5.24)

The controller C(s) ^ b,s +b,s +  b n in Figure 5.25 is actually a PID controller with a low-pass filter
s{s + a)

in the D channel. It is common practice to introduce such a filter [4]. The presence of this filter avoids 

saturating the controller when the input changes rapidly. It also limits the susceptibility of the controller to 

measurement noise. This PID structure can be seen more clearly afler rearrangement of terms:

C(s) = K T
1 + - ^  +  -

sT,
s \ + asT.

= K T
1 + - ! -  +  -

S
a

s 1S H------
ccT,

= K

2 1 1 1s +  S + - S  + -
ccT.

s
-  +  —

s + -
a Z

= K
1 + -  ls" + 

a
1

5 +  -

aT,

bjS^ +b^s+b„ 
s(s + a)

The parameter values for the PID controller are:

a =  —  => r ,  =  —  
aT j a a

K _ ocTJ,
1  + J _  aT,+T,
T aT, a ‘

b ,  1 ^  ^  b ,  \>-L = -  + r  =-!--
bo a bo a

bj _ a
1 +  -  

a
1 ah

b^a bg

ab„
b \  d  b n

K
a T J ,

■ K = b a a T J . ^ K = - ^
bo a

b -if b s -̂ -b + 4^ +1
The parameters for the PID controller C(s) = —-------^ ^  = --------------  may be calculated as follows:

s(5 + a) s{s + 4)
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aa
1
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27

1
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15
16 ■

The system with a Ziegler Nichols controller in equation (5.23) was found to have better time 

responses and robustness margins than the system with a controller designed using optimum stability (5.24). 

Response curves for the system in Figure 5.25 with the Ziegler Nichols controller and the controller designed 

using optimum stability in equation (5.24) are given in Figure 5.26.

1.5

1

0 5

0
0 5 10 15

1

0.8

0.6

0.4

0.2

0

Time
5 10

Time
15

0.6

0.4

0.2

0

- 0.2

-0.4
0 5 10 15

Time

Figure 5.26 Step reference response, step disturbance response, and impulse disturbance response for the 
system in Figure 5.25 with a Ziegler Nichols controller given by equation (5.23) (in blue) and the controller 

given by equation (5.25) (in red) designed from optimum stability.

This can be easily remedied by simply choosing a system with a controller that is designed to place 

all the eigenvalues further to the left than initially selected. The controller in equation (5.24) puts the system 

eigenvalues at 5 = -1 . By trial and error we find that it is necessary to design a controller that places all the 

system eigenvalues at 5 = -4  in order to improve on the performance of the Ziegler Nichols controller in 

(5.23). When all of the eigenvalues are at s = -A the characteristic equation becomes 

p(s) = 5 '' - I-16i^ H- 96s^ -I- 2565 -1- 256 . Equating coefficients we find a controller designed using optimum 

stability:

965 ^ - 1- 2565 -1-256
C ( 5 )  =  -

5 (5  -I-16)
(5.25)
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Figure 5.27 Step reference response, step disturbance response, and impulse disturbance response for the 
system in Figure 5.25 with a Ziegler Nichols controller given by equation (5.23) (in blue) and the controller 

given by equation (5.25) (in red) designed from optimum stability.

The response curves in Figure 5.27 show the improved behavior o f the system in Figure 5.25 when a 

controller that places the systems eigenvalues at s = -4  is used.

The system in Figure 5.25 with the Ziegler Nichols controller given by equation (5.23) has Gain Margin 

0.159 and Phase Margin 57.3'*. The same system with the controller designed using optimum stability given 

by equation (5.25) has Gain Margin 0.2 and Phase Margin 43.6®. So the controller designed using optimum 

stability shows slightly improved Gain Margin but a smaller Phase Margin.

The response curves in Figure 5.27 show that, in spite o f the smaller Phase Margin, the controller 

designed using optimum stability leads to shorter settling times and, in the case o f step disturbance and 

impulse disturbance, reduced overshoot.

5.4.1 Performance integral for the system in Figure 5.25
To illustrate a difficulty with calculating exponentially weighted performance integrals for some 

systems we return for the moment to the controller in equation (5.24). If we replace the “6” in

, 6 5 ^+ 4 i + l 6 (5 ^ + |5  + {) ,  • ,
C (5 )= --------------- = -------------- — with a variable parameter k, then the characteristic equation becomes

s{s + 4) s{s + 4)

p ( i)  = 5^(s + 4) +A (̂5  ̂+ j5  + { ) . This should have optimum stability for k = 6,  at the quadruple 

breakpoint: i  = -1 .

r® j.
To calculate the exponentially weighted performance integraU^ = x(0  Q\{t )dt  v/e first

choose Q =

'1  0 0  0 '

0 0 0 0
0 0 0 0

,0  0 0 0^

, D{s) = -  and R{s) = 0 .

We can now write: E{s)

So E{s) =
(5 + 4) (5 + 4)

5^(5 + 4) + A:(5  ̂ + | 5  +  | )  5 “ + 4 5 ^  + f a ^  + - Y 5  +  I
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2 d e .
'dt

d^e. d^e d^e H p

5^e(0) + 5 " —  (0) + 5  ̂  (0) + ̂  (0) + 45'e(0) + 4  ̂—  (0) + 4 — (0) + foe(O) + —  (0) + 1 ̂ e(O) 
d r  dr dt dt  ̂ dt

de d^ e d^e
This gives: e(0) = 0 ,— (0) = 0 ,— (0) = 0 ,— (0) = 1 

dt dt  ̂ dt^

So the differential equations for e(t) maybe written:

'  0 1 0 0  ' '  e ( 0 )  ' 'O'
0 0 1 0 e ' ( 0 ) 0

II

0 =
0 0 0 1 e " ( 0 ) 0

- k  

\  f>
- 2 k

3 - k - 4 .e"(0)J .1 .

d \
~dt

This means that = x^(0)Lx(0) = where (A + y l)^ L  + L (A  + y l )  = -Q  .

Solving for and calculating = 0 at  ̂= 6 gives a  = 1.9824, a  = 1.99118 , and a  = 2.00441
dk

minimise . Unfortunately, the denominator o f with k = 6.0 is extremely sensitive to a  so when 

or = 1.9824 the denominator of is 7 .69x10'’’ and when or = 1.99118 the denominator o f is 

6.60x10'^°. The values k = 6.0 and a  = 1.9824 lead to a minimum = 3 .8 3 x lO '\ The large parameter 

values and the extremely sensitive dependence of on a  indicate that there is something wrong with using 

this integral as a performance indicator.

example Q =

To follow this particular line o f inquiry would require selecting different structure for Q , for

O 0 0 O'
0 \/(ol 0 0
0 0 0 0 
0 0 0 0

. This in turn requires us to select a value for o)„, the underdamped natural

frequency. There is no obvious method for selecting o)„ here so this approach was abandoned.

5.5 Summary of results in this chapter

Root locus based optimum stability was used to design PI controllers for the sample process G(s) = 1 /(s +1)“ . 

Root locus based optimum stability and Lyapunov matrix equation based optimum stability was used to 

design and PID controllers for the sample processes G{s) = 1 /(i + 1)**, G{s) = 1 /(s +1)*, G(i) = 1 / .

General formulas were given for:

(a) root locus based optimum stability design for a PI controllers for process G(s) = kj f{s + b y



(b) root locus based optimum stability design o f a restricted class o f PID controllers for process 

G(s) = k^/{s + b)'".

The performance o f these systems was compared to that of systems from the literature. It was seen 

that controllers designed using optimum stability methods produce systems with enhanced performance 

compared to controllers designed using the other methods.

A root locus method for fine-tuning the standard Ziegler-Nichols controller parameters was 

described in sections 5.2.2 and 5.3.2. - the resulting controller out-performs the original with respect to 

significant performance criteria.

5.6 Suggestions for future work

Apply the methods presented to other benchmark processes from [58].
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Chapter 6: PI controller design for processes with time delay 

using the root locus method

6.1 A procedure for designing PI controllers for general first-order lag 

plus time-delay process

6.1.1 Introduction

This chapter describes a general procedure for the design o f a PI controller for a general first-order 

lag plus time-delay (i.e. FOLPD) process. We derive two equations that allow the designer to calculate the PI 

controller parameters using only the process parameters. The central idea of this general design

procedure is to use the root locus method to select the system parameters that put the system’s rightmost 

eigenvalue as far to the left as possible in the complex plane. These parameters are chosen as the system’s 

nominal design parameters. When the system is operating at this point it is said to be operating at a point of 

optimum stability in the root locus sense. The procedure presented here is an extension to the root locus based 

procedure for designing controllers for delay-free processes that has been described previously in [20, 47, 67] 

and in chapters 3, 4, and 5 above. There are many advantages to designing controllers for time-delay systems 

from the optimum stability perspective and these are described below.

The study o f time-delay systems began in the 18‘*' century with the work o f  such luminaries as Euler, 

Lagrange, and Laplace [68]. Since the 1930s [69-71] control engineers have recognized the importance of 

time delays in process models and have developed techniques for designing controllers for these processes. 

Motivated by the widespread use of PI controllers [72] and the importance o f time delays in process models, 

the problem o f tuning a PI controller for a process with time delay has been o f interest for over sixty years 

[71]. The open-loop step response o f the first-order lag plus time-delay (FOLPD) process: 

k
G(5) = - ^ ^  (6.1)

r r j

is shown in Figure 6.1, where k^ is the steady state process gain, L is the time delay of the process, and T is 

its time constant.
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Figure 6.1 Open loop step response, or the “process reaction curve”, for the FOLPD process
G(s) = e"*’ / ( i  +-j) .A  step input is applied to the process at / = 0 and after a delay o f 6 s the process begins 

to respond. The speed o f response is dictated by the time constant of the process. After one time constant, 
which is 4 seconds, the response reaches (1 -  ) = 0.63 o f the final value. After about 30 s the process has
settled down to a new operating point. Reaction curves of this shape are typical o f many industrial processes 
[72] including processes as diverse as the air intake on a turbojet engine [73] and chemical mixing tanks or 
reaction vessels [73]. The problem of designing PI controllers for processes with this type of reaction curve

has been under scrutiny for over sixty years [71].

In this section 1 develop a root locus method to select controller parameters that place the system’s 

rightmost eigenvalue as far to the left as possible in the complex plane. We derive equations that allow the 

designer to calculate these parameters using the process parameters , L, and r.

6.1.2 Root locus diagrams for a PI controller and a general FOLPD process

Classical root locus plotting rules [48] can be extended to systems with time delay as described in

[74] and [75]. The characteristic polynomial for a typical time-delay system is given by 

p(s)  = N{s) + kM{s)e~' ' ' , '^hevQ N(^s) and M{s)  are polynomials in s = a  + jco and L is the time delay. 

N{s)  and M{s)  are of degree n and m , respectively, with m < n  A n  root locus terminology, the poles and 

zeros of the root locus are given by the roots o f N{s) = 0 and M{s)  = 0 , respectively. The gain A: is a real 

number.

Root loci for time-delay systems are symmetrical about the real axis, but unlike the delay-free case, 

the number o f branches is infinite. Setting k = 0 ,  the branches start at the poles and at cr = -oo . Setting 

k = +0 0 , the branches terminate at the zeros and at cr = + oo. Branches that do not terminate at a zero 

approach cr = +oo along asymptotes. These asymptotes are infinite in number and are parallel to the real axis. 

An example of a root locus diagram for a time-delay system is given in Figure 6.2.
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Figure 6.2 An illustrative example o f  a root locus diagram for a time-delay system. The system used has 
characteristic equation p{s) = s + ke~^ = 0 with k as parameter. There is a pole at 5 = 0 and a branch starts 

at this pole when k = 0.  This branch meets another branch coming from a  = -oo to form a breakpoint. These 
two branches then cross the imaginary axis and approach cr =  oo . There is an infinite number o f other 

branches that start at cr =  -o o  and approach <j =  oo along asymptotes that are parallel to the real axis. Root 
loci for time-delay systems are symmetrical about the real axis but, unlike the delay-free case, the number of 
branches is infinite. The branches nearest to the real axis, called the primary branches, are the critical ones 

when considering stability since they are the first to cross the imaginary axis with subsequent crossings taking
place at higher values of k .

The PI controller used here has the transfer function C (i) = A:, ^1 + —j , where k̂  is the gain o f the

proportional element, k̂  F  is the gain o f the integrator element, and F  = \ /T, ,  where is the reset time of

k -
the controller [75]. An equivalent form for PI controllers is C{s) = k + — , where k  is the gain o f the

s

proportional element and k̂  is the gain o f the integrator element. The transfer function for a FOLPD process

is given by (6.1). Figure 6.3 shows a PI controller connected to a FOLPD process in a negative feedback 

configuration.

D(s)

FOLPD
processPI controller

R(s) E(s) U(s) Y(s)s+F
SH—

Figure 6.3 PI controller and a first-order lag plus time-delay process (FOLPD).
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Letting k = k,k^, the characteristic polynomial o f the system becomes p{s) = s { s + —) + ke  "‘'{s + F ) . To
T

simplify the derivations below we use the scaled variable q = sL and consider the scaled characteristic 

equation

p(q) = q{q + - )  + kLe-%q + F L)  = Q . (6.2)
r

The dependence of the root locus o f (6.2) on the product FL  shows the existence of a critical value 

of FL  that results in a breakpoint in the root locus at a triple root. As will be shovra later, this triple root 

occurs where the rightmost eigenvalue is as far to the left as possible. Formulas for calculating the parameters 

that result in the triple root and therefore produce an optimally stable system are also derived later. We 

calculate that, for example, if L = 1 and r  = 5 , then the critical value for FL  is 0.28845 .

Figure 6.4, Figure 6.5, and Figure 6.6 show the root locus plots for (6.2) with L = \, r  = 5 and with 

FL = 0.25, FL  = 0.28845, and F L  = 0.3 respectively. Only those branches nearest to the real axis, the 

‘primary’ branches, are shown. The primary branches are the critical branches when considering stability 

since they are the first to cross the imaginary axis with subsequent crossings taking place at higher gains [74],

[75]. A relationship between , the gains at which the branches cross the imaginary axis, and the values

of CO at the crossing points, can be established by returning for the moment to the unsealed characteristic

polynomial. The gain condition is = |A:| = |i | 5 + —exp(crL)/|i + F | ; using it we can see that values of
r

1̂1 when the branches cross the imaginary axis are given by = co ^o / I ^}o}  ̂+ F^ . Since the

numerator of the expression for is o f order CÔ  and the denominator is o f order , it is clear that

larger values o f CO imply larger values of •

FL = 0.25 is just below the critical value. The primary branches o f  the corresponding root locus of 

(6.2) are given in Figure 6.4. The primary branches o f the root locus o f (6.2) at the critical value o f FL  , that 

is FL = 0.28845, are shown on Figure 6.5. The two leftmost breakpoints on Figure 6.4 have coalesced to 

form a triple root.
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Figure 6.4 Primary branches o f  the root locus for p(q)  = q[q + L /r)  + kL{q + FL)e~“' = 0 with k  as 
parameter, Z, = 1, r  = 5 , and FL  = 0.25, which is just below the critical value. In addition to the branches that 

start at the poles at = 0 and q = - L l r , and end at the zero at ^ = - F L  , there is an infinite number of 
branches that start at c r  = - g o  and end at ct = + o o  . One o f this infinite number of branches approaches the 

zero at ^ = - F L  and meets the branch going in the opposite direction forming the leftmost breakpoint.

0  5

(9
C

triple eigenvalue
- 0.5

•1.5 0 0.5- 0.5 1
Real

Figure 6.5 Primary branches o f  the root locus for p{q) = q[q + Lf r )  + kL{q + FL)e~'' = 0 with k  as 

parameter, Z- = 1, r  = 5 and FL  at the critical value FL = 0.28845. A single branch that originates at 
a  = -oo meets the two branches that originate at the poles at ^ = 0 and q ^ - L j v . Here three eigenvalues 
have coalesced to form a single point. The rightmost eigenvalue is as far to the left as possible at this point 

and the system is said to be optimally stable in the root locus sense. Optimum stability design gives nominal 
parameters that place the system’s operating point at this triple eigenvalue.
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As FL  becomes larger, the real breakpoints to the left o f the zero cease to exist. For example, at 

L = 1, r  = 5, and FL = 0.3 the primary branches o f the root locus o f (6.2) are shown in Figure 6.6.
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0.5
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•0.5

•1

•1 5 •1 -0 5 0 G.5

Figure 6.6 Primary branches o f the root locus for p{q) = q[q-\- L ! t ) + kL{q + FL)e  = 0 with 

L = I, r  = 5,FL = 0.3 and with k  as parameter. Here FL  is just above the critical value, the triple root 
evident in Figure 5 is gone, and the rightmost eigenvalue is no longer as far to the left as possible. The branch 
that originates at o’ = - q o  now terminates at the zero at ^ = - F L  . The branches that start at the poles ^ = 0

and ^ = simply approach cr = -f-oo along asymptotes.

6.2 Exploiting the triple eigenvalue

The procedure described here is an extension to the one described in section 1.2.

When there is a triple eigenvalue at q = - a  in the root locus, the scaled characteristic equation

p{q) = q{q + —) + kLe~‘'{q + F L)  = 0 must have the factorization 
r

p{q)=(q  + a f f { q )  = Q,  (6.3)

where f { q )  has an infinite number o f roots. Differentiating (6.3) with respect to q  gives

p \ q ) = { q  + a f [ i f i q )  + f ' m q  + a)] = 0 . (6.4)

Differentiating (6.4) with respect to q gives

p ”{q) ={q + a)[6f{q) + 6{q + a ) f ' ( q )  + {q + a f / ’(q)] = 0 . (6.5)

The equations p ( - a )  = 0, p '{ - a )  = 0, and p"{~a) = 0 , being (6.3), (6.4), and (6.5) evaluated at q = - a  , are

the key to the following derivation o f the PI controller design equations.
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6.3 Root locus based design for a PI controller for a general FOLPD 

process

We now show how to choose the design parameters for the PI controller C(5) in Figure 6.3 using root locus 

based optimum stability. We deduce from studying Figure 6.4, Figure 6.5, and Figure 6.6 that the 

characteristic equation for the system in Figure 6.3 has a triple root when the parameters are such that the 

rightmost eigenvalue is as far to the left as possible. We know from (6.3), (6.4), and (6.5) that the 

characteristic equation and its first two derivatives are equal to zero at this root. We now apply this idea to 

(6.2). (6.2) and its first two derivatives are rearranged to obtain

kLe"
-q \  q + ^  

(q + FL)
( 6 .6 )

kLe'
- 2 \ 2 q  + - 

( \ - q - F L )

and

kLe-"  =  -

{ 2 - q - F L )

(6.7)

(6 .8 )

(6.6), (6.7), and (6.8) will now be solved for the three unknowns F,k ,  and q . Equating the right hand sides of

(6.6) and (6.7) gives

F L .  . (6.9)
L + Lq + l q r  + q r

Equating the right hand sides o f (6.7) and (6.8) gives

FL =
2 L - L q  + 2r + 2 q T - 2 q  r  

L + 2 r + 2^r
(6 . 10)

Equating (6.9) and (6.10) gives the following cubic in q

q'  ̂+\ 4 + — ]^ + 2[ 1 + — =  0 . (6 . 11)

The three roots o f (6.11) are

(6 . 12)
I t

84



Root is extraneous since it gives different values for kL  in (6.6), (6.7), or (6.8) and leads to a negative 

value for k  and to instability. However, q^ is the physically allowable root since it gives a positive value for 

k and asymptotic stability. Substituting q^ into (6.9) or (6.10) gives

FL =
5 + —  |. 

2 t ) \
2 +  -

I t  4r^

2 +  -
4 r '

- 1

(6.15)

Substituting for q  ̂ and F L  in (6.6), (6.7) or (6.8) gives

(6.15) and (6.16) may be used to design the PI controller in Figure 6.3 using only the process parameters 

k.^,L, and r .  The controller parameters obtained using (6.15) and (6.16) lead to a system that is optimally 

stable in the root locus sense.

6.3.1 Comparing designs from optimum stability with designs from performance 
integrals

Wade and Johnson [76] study the performance o f PI controllers for the four FOLPD processes G{s) = ------
5 + 1

parameterized by the time delay L ,  where L takes on the values 0.25 s, 0.5 s, 1.0 s, and 2.0 s. Each 

controller is designed by finding the values for the controller parameters (A^p,^,) that minimize a performance

integral. Ten performance integrals are used in [76] and a controller is considered to be well designed if  it 

results in a system that is robust but not too conservative. A design is considered to be robust but not too 

conservative if  the system’s gain margin (GM) is > 2.25 dB and its phase margin (PM) is in or very near the 

range 20" < PM < 65“ . Using these performance measures [76] concludes that the best controller designs

result from the time-weighted performance integrals ~ Jo

px -

J,es2  ̂ , = Jg (ex p (2 a? )-l)  e { t ) d t , where e{t) is the error signal and a  is fixed at the value 1.5 [76].



Table 6.1 gives the {kp,k,) values for the four controllers designed using (6.15) and (6.16), and for the eight 

best controllers from [76].

k
Controller C{s) — k + — 

s
e~^

Process G (5 ) =
5 +  1

Controller

design

criterion

Controller

parameters
L = 0.25 L = 0.5 II o L = 2.0

minimize

I  T ^ A E

1.84 0.85 0.59 0.48

k. 1.85 0.85 0.48 0.26

minimize 2.18 1.44 0.89 0.55

k. 1.96 1.08 0.56 0.27

optimum

stability

1.66 0.77 0.37 0.21

ki 2.14 0.81 0.37 0.20

Table 6.1 PI controller parameters for the best eight controllers from [76] and from root locus based optmum 
stability. PI controller parameters are selected either by minimizing the performance integrals

“ Io JiEsi I (exp(2orO -l) ^^(0^^. where e{t) is the error signal and a  is fixed at

or = 1.5 [76], or using (6.15) and (6.16), which are derived from optimum stability
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Controller

C(5)=^ + -  
s

Process G {s )  = ------
s  +  1

Controller

design

criterion

L = 0.25 II p 1/1 II b L = 2.0

GM PM DM GM PM DM GM PM DV GM PM DM

minimize

J  2I T ^ A E

3.41 63.48 0.60 3.70 65.65 1.35 2.95 66.14 2.29 2.46 69.43 4.29

minimize
2.92 61.57 0.50 2.32 59.72 0.80 2.13 63.91 1.63 2.23 70.04 4.02

optimum

stability
3.64 57.80 0.56 4.02 66.13 1.46 4.27 68.92 3.27 3.99 68.06 6.05

Table 6.2 Comparison between the robustness measures of PI controllers designed by three different methods.

Table 6.2 shows the results for twelve controllers - the eight best of forty controllers from [76] designed by 

selecting controller parameters that minimize the performance integrals = £  and

f  “  1JjEsi^ , = (exp(2«0“ l) ^ > where e{t) is the error signal, and a  is fixed at the value 1.5 [76], and

the four controllers designed from optimum stability using (6.15) and (6.16). Gain margin (GM in absolute 

units), phase margin (PM in degrees), and delay margin (DM in seconds) - that is, the additional delay which 

if added in cascade with the forward path would bring the system to the boundary of stability - are used to 

quantify robustness.

From Table 6.2 we can conclude that for a time delay of 0.25 s the GM for controllers designed from (6.15) 

and (6.16) is larger than that achieved by all forty controllers presented in [76]. The PM and DM for the 

controllers designed from (6.15) and (6.16) are a little smaller than the best controllers in [76]. For time 

delays of 0.5 s, and 1.0 s the GM, PM, and DM for controllers designed from (6.15) and (6.16) are larger that 

the best of the forty controllers in [76]. For time delay of 2.0 s the GM and DM of the controllers designed 

from (6.15) and (6.16) are larger than the best controllers in [76]. Also, for time delay of 2.0 s the PM of the 

controller designed from (6.15) and (6.16) (68.06°) is smaller than the PMs of the best controllers in [76] 

(69.43° and 70.04°) and is nearer to the range of PMs (20“ < PM < 65“) considered by [76] to produce a 

good design.
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In Table 6.2 the values for GM, PM, and delay margin (DM) were calculated using both Mathematica’s 

Control System Professional [77] and Program CC [78]. Although the values obtained from these two 

programs agreed with each other, they did not always agree with those reported in [76].

The conclusions we draw from Table 6.2 apply only to the forty PI controllers designed in [76] using ten 

performance integrals and the four PI controllers designed from (6.15) and (6.16). We cannot make the claim 

that (6.15) and (6.16) will always produce the best controllers, but we can say, for the specific processes 

considered, that the designs based on them are superior to the those based on ten commonly-used 

performance integrals.

Figure 6.7 illustrates the different time responses obtained with controllers designed using performance 

integrals and the controllers designed using (6.15) and (6.16). Figure 3 shows where the reference input (R(s)) 

and the disturbance input (D(s)) are applied.
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Figure 6.7 Step response and impulse response curves for various controller designs. Red cur\ e is for 

minimum t^\e{t)\dt controller; green curve is for minimum  ̂ = £  (exp(2af)-l)

controller, where e{t) is the error signal and a  is fixed at a  = 1.5 [76]; black curve is for the controller 
designed from optimum stability considerations using (6.15) and (6.16). (a) Impulse disturbance responses for 
L = 0.5 . (b) Impulse disturbance responses for Z, = 1.0 . (c) Step disturbance responses for L = 2.0 . (d) Step 
reference responses for L = 2.0 . We can see that the controllers designed from optimum stability result in 

systems with smoother response curves, less undershoot and overshoot, and settling times that are comparable
the best confrollers in [76].
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6.3.2 Comparing designs from optimum stability with designs from stability region 
methods

k-
[79] and [44] consider the problem o f designing a PI controller C{s) = k  +—  for the process

G{s).
l + 7s

e ^ . They derive an algorithm for determining the sets o f  points in the {k ,k.) plane that lead

to system stability. The stability region for a PI controller with G(s) = —-— e ' ,  a sample process from [79]
5 + i

and [44], is shown in Figure 6.8. 

ki
3.5

2.5

centroid

optimal stability point
0.5

60 2 4 8

Figure 6.8 Stability region for the sample system consisting o f the controller C(5) = k +—  and the process
5

1
G (i) = —-— e '" . The red region represents points that lead to system stability. Three possible controller

5 + i
design points are indicated. The centroid o f the region, the point (3,1) used as an example design point in [79] 
and [44], and the optimum stability point. Performance measures show that the fact that the optimum stability 

point is nearest to the stability boundary is irrelevant. Indeed the centroid leads to the poorest performance 
even though it is furthest from the stability boundary. This poor performance is due to the fact when selecting 

a design point the designer must not only consider stability but also the degree o f stability o f the point. The 
system designed with parameter values chosen at the centroid is less stable (in the root locus sense) than one 

designed with parameter values at the optimum stability point.

In [79], [44] the point {k^,k^) = (3,1) is used as an example design point for a PI controller for the process

1
G{ s ) =—-— . The design point (A ,^ ,) = (1.659,0.535) is found using (6.15) and (6.16). Yet another

5 + i

design point that has an intuitive appeal is the centroid o f  the stability region (A: ,̂^,.) = (3.4,1.2). The

intuitive appeal o f the centroid is the fact that it is as deep into the stability region as possible. This intuition is 

incorrect and the appeal o f the centroid as a design point is unfounded. When selecting a design point within
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the stability region the designer must check the degree o f stability of the point. The robustness measures for 

the three designs are given in Table 6.3.

k
controller C(s) -kp+ — 

1
process G{s ) = — -—

^ +  i

Robustness measures

Controller design 

criterion

Controller

parameters
GM (absolute) PM (degrees) DM (seconds)

example

controller o

II 
II

2.0 40.10 0.90

centroid o f region 

o f stability

^ , = 3 . 4  

yt,. = 1 . 2
1.76 32.60 0.65

optimum stability

^ ^ = 1 . 6 6  

k, =  0 .5 4
3.65 57.80 2.26

Table 6.3 Controller parameters, GM (gain margin), PM (phase margin), and DM (delay margin) for the 
example controller from [79] and [44], the controller designed with parameter values at the centroid of the 

region o f stability, and the controller design based on optimum stability. The enhanced robustness measures 
show the effect o f using the parameters derived from optimum stability.

From Table 6.3 we see that the design point that results in the worst performance is the centroid whereas the 

design point that results in the best performance is the one derived from (6.15) and (6.16). The example 

design point = (3,1) mentioned above is close to the centroid but is biased towards the point given by

(6.15) and (6.16). The bias o f the example design towards the point given by (6.15) and (6.16) might explain 

the fact that the robustness measures for the example design are better than the centroid design but not as 

good as the design obtained from (6.15) and (6.16). The example design point from [79] and [44], the 

centroid, and the design point from (6.15) and (6.16) are all shown on the stability region in Figure 6.8.

The response curves in Figure 6.9 compare the performance of the example controller, the centroid controller, 

and the controller designed from (6.15) and (6.16). Figure 6.3 shows where the reference input (R(s)) and the 

disturbance input (D(s)) are applied.
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Figure 6.9 Step response and impulse response curves for systems with various controller designs. The red 
curve is for the system with a controller that has parameter values selected at the centroid o f the region o f 

stability. The green curve is for the system with the example controller. The black curve is for the system with 
a controller designed from optimum stability, (a) Step reference responses, (b) Step disturbance responses, (c) 

Impulse disturbance responses. These diagrams illustrate the fact that, with the exception o f the step 
disturbance response (b), optimum stability based design has similar settling times to the two other designs, 
and lead to smoother responses and less undershoot and overshoot. In the case o f (b) the optimum stability 
design response is smooth but has a higher overshoot than the other designs. The initial oscillations in these 

plots are artefacts o f the Fade approximation to the pure time delay.

6.4 Discussion of PI controller designed using optimum stability for 

the FOLPD process

For the examples considered, and using standard robustness measures, we can say that for time delays o f  0.25 

s and greater controller designs based on (6.15) and (6.16) are superior to controllers designed using standard 

performance integrals or domain o f stability considerations.

In the case o f controllers designed using parameters at the centroid o f a stability region, it seems that the 

appeal o f the centroid as a design point is simply its maximum distance from the stability boundary. However, 

the choice o f the centroid as a design point fails to take into account the degree o f  stability o f the system at 

that point. The design point found using (6.15) and (6.16) has the advantage o f not only being in the stability 

region but o f  occupying a point o f optimum stability in the root locus sense. The robustness measures and 

response curves show the enhanced performance obtained by using the optimum stability point as a design 

point rather than the centroid.
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In addition to their simplicity and ease of use (6.15) and (6 .16), the fundamental design equations, emphasize 

the role o f the ratio L j r . In particular, it is not the magnitude of the delay that dictates the system 

performance but the ratio between the delay and the time constant o f  the process.

The design approach described in this chapter does not try to optimize the settling time. The settling time 

depends on the location o f all the poles and all o f the zeros. Since a time-delay system has an infinite number 

o f poles, the problem o f optimization o f the settling time would almost certainly be intractable. By placing the

rightmost eigenvalue as far to the left as possible we are minimizing the largest time constant , where |

is the distance from the rightmost eigenvalue to the imaginary axis. |«y| is called the “degree of stability” [1]

o f the system. Our results indicate that minimizing the largest time constant has a favorable effect on the 

settling time.

6.5 The analytic root locus method for designing controllers for 

systems with time delay and a relationship with the Lambert W 

function

In this section I introduce an analytic method for designing controllers for time delay systems that is 

equivalent to the geometric method described earlier in this chapter. This analytic method can be used to 

design controllers for time-delay processes that lead to systems with optimum stability in the root locus sense.

We have two ways to plot root loci for time delay systems -  the one based on the Bendrikov- 

Teodorchik equation [80] and the other is based on plotting rules [75] used earlier in this thesis.

There is nothing in the derivation o f the Bendrikov-Teodorchik equation (also called the root locus 

equation) that excludes terms with factors such as . Recall that the root locus equation [80] is given by: 

Re{A^(5)} Im{M(5)} -R e{M (5)} Im{A^(5)} = 0 (6.17)

Equation (6.17) describes a set o f curves in the (cr, co) plane and it may be derived from the requirement that 

A: is a real number. These curves are the root locus o f the characteristic equation: 

p(s)  = N{s)  + k M{ s )  - 0 for -oo < k  < x i .

I begin the section with an illustrative example of plotting root loci using the analytic method and

then in section 6.5.2 I apply this analytic method to the problem of PI control o f  an integrator with time delay.

Finally, in 6.5.5 I draw attention to potentially very useful equivalence between equation (6.17) and 

the Lambert W function.

6.5.1 Illustrative example of the analytic method from Palm [75]

Plot the root locus o f the characteristic equation:

/7(5) = N{s) + k M ( s )  = s + ke-^^ = 0  (6.18)

Here the root locus equation (6.17) gives:

{coCos{o}T) + a  Sin{coT)) = 0 (6.19)

Equation (6.19) can be simplified to give:
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coCos{coT) + crSin(coT) = 0 (6.20)

Figure 6.10 shows equation (6.20) plotted in the {ct, co) -  plane (with T = 1). Figure 6.10 agrees with the plot 

derived from plotting rules by Palm [75]

w -axis

15

10

5

CM 
[ 

11 2 4

-1 0

-1 5

Figure 6.10 Root locus for the time delay system with characteristic polynomial p{s) = s + ke ’ from [75]. 
The equation for branches o f this root locus was derived using the Bendrikov-Teodorchik equation and it is 

the same as the one derived from plotting rules in [75],

6.5.2 Analytic method for designing PI controllers for an integrator with time delay

Processes modeled as an integrator with time delay are encountered in the literature. For example,

g -0 .2 s

the process G{s) =  is used by Normey-Rico et al. [4] as a model of a mobile robot.

A PI controller C(s) = ^(5 + F ) / s  and an integrator with time delay has characteristic equation:

p{s) = s^ +k( s  + F)e-’’̂  = 0  (6 .21 )

Equation (6.17) gives the following root locus equation for p(s)  for -oo< k < x  :

(o{2Fa + a^ + 0)^ )Cos{coT) + ( Fa^  +a^ -  Fco^ + aco^ )Sin{coT) = 0 (6.22)

Checking for the case T = Q gives the root locus equation: m(2F<j + <r̂  + ) = 0 . We get co = Q (as usual)

or 2 F a  + a^ +co^ =Q i.e. a circle with radius F  and centre ( - F ,0 ) .  This is also found using geometric

methods. We can also see using the analytic method that this circle is part o f  the root locus for

(oT = In n , n = 0,1,2,... because Cos^coT) = 1 andSin{coT) = 0 at these points.

Rearranging (6.21) gives:

f c ( 5 ) = ^ ^  (6.23)
F  + s
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d Jciŝ
Calculating ---------= 0 gives s{Ts^ + (F 7  +1)5 + 2F)  = 0 . This in turns gives possible breakpoints

ds

- \ - F T - y j T ^ F ^ - 6 F T  + \ - I - F T +  y j T ^ F ^ - 6 F T +  \ ^ •
at: s = 0,s = ------------------------------------- ,s = --------------------------------------- . We have 5 e  'Ji if  F  is such that

27’ 2T

T^F^ -  6FT  +  1 =  0 . This happens at the critical value o f F  given by:

^  0 . 171572875... , , , , ,
F =   ------------ ( 6 .24)

5 .8284271247...
We can ignore the other possible value for F , i.e. F  = -------------  , as it leads to instability.

(6.25)

We also have critical value o f s at which the breakpoint occurs:

- \ - F T
s = -----------

I T

Finally, substituting equation (6.25) into (6.23) we can calculate the critical value o f k as follows:

( H / T )

 ̂ {\ + F T f  
critical 2T(FT — \)

At T = \ equation (6.24) gives: F  = 0.1715...; equation (6.25) gives 5 = -0 .5 8 5 7 ...; equation (6.26) gives

k  = 0.4611... These values agree with the ones obtained using the method described in 6.1 and 6.2.

6.5.3 Evolution of the root locus for different values of F -  illustration o f the triple 

eigenvalue

For F  = 0.15 i.e. F is below the critical value, the root locus equation (6.22) is:

co{03a+  +  aP' )Cos(m ) +  (0.1 5(T̂  +<t  ̂ -  0.15<ŷ  +  crcô  )Sin{co) =  0 (6.27)

Equation (6.27) is plotted in Figure 6.11.

For F  = 0.171572875 i.e. F is at the critical value, the root locus equation (6.22) is:

<y(0.343146cr+o-' W ) C o i( ty ) + (0.171573cr" +(t^ -0.171573ft>^ +CTCO^)Sin((o) = 0 (6.28)

Equation (6.28) is plotted in Figure 6.12.

For F  = 0.18 i.e. F is above the critical value, the root locus equation (6.22) is:

«y(0.36cr+o-^ +«y^)Co5(<y) + (0.18cr^ +a^ - 0 .1 8 « ' +aco^)Sin{o)) = 0 (6.29)

Equation (6.29) is plotted in Figure 6.13.
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Figure 6.11 Primary o f the root locus for the characteristic equation for a PI controller with an integrator 
process with time delay T = l, p(s) = + k{s + F )e '” = 0 . In this diagram F  = 0.15 which is just below the
critical value.

0.5

- 1.5 0 .5

- 0.5

- 1.5

Figure 6.12 Primary branches o f the root locus for the characteristic equation for a PI controller with an 
integrator process with time delay T = l, p{s) = +k(s + F)e'^  = 0 . In this diagram F  = 0.17157 - which is 

the critical value. There is a triple eigenvalue at the breakpoint and the system is in a state of optimum
stability at this point.
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Figure 6.13 Primary branches o f the root locus for the characteristic equation for a PI controller with an 
integrator process with time delay T = l, p ( j)  = 5^+A:(5 + = 0 . In this diagram F = 0 .1 8  which isjust

above the critical value.

Figure 6.11, Figure 6.12, and Figure 6.13 show the evolution of the root locus of with the parameter 

F  . The existence o f a triple eigenvalue is evident in Figure 6.12.

6.5.4 An example of the gain equation

The gain equation [80] for equation (6.17) is:

^  Re{jV(5)} Re{M(^)} + lm{N{s)} Im{M(^)}
[Re{M(5)}]‘ +[Im{M(5)}]'

For example, in the case of the root locus equation (6.22), the gain equation (6.30) becomes:

k { F ^ + 2 F a  + a^  +ft>^) + /" ( F c r ^  +cr^ -Feo^ +aco^)C os{o)T)-/ '’co{2F<7+ +(o^)Sin{(oT) = 0 (6.31)

The curve described by (6.31) is orthogonal to the root locus curve described by equation (6.22). 

When a value o f k  is selected, the gain curve (6.31) intersects the root locus curve (6.22) at the locations of 

the eigenvalues for that value o f  k  [80].

6.5.5 A relationship between the Bendrikov-Teodorchik equation and the Lambert 

W function

The Lambert W function is the solution to equation (6.32):

z = f^^(z)e'*'‘-'* (6.32)
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- 2 k -

Figure 6.14 Plot ofthe Lambert W function from [81],

Figure 6.14 is very reminiscent o f the root locus plot for time delay system in Figure 6.10.

The root locus equation for Figure 6.10 is given by equation (6.33):

(oCos(coT) + aSin(coT) = 0 (6.33)

Equation (6.33) may be rewritten as:

(oCot{coT) + a  = 0 (6.34)

Lambert W function is usually written in a form that is similar to equation (6.34) [81].

The knowledge that there is a relationship between the root locus equation for some time-delay 

systems and the Lambert W function appears not to be appreciated and could be very useful as this function 

appears in the analysis o f many systems [82].

6.6 Calculating performance integrals for time delay systems

In this section I examine a method for calculating performance integrals o f  the type:

= j ;e x p ( « o |e ^ W  + ̂ [ ^ ]  (6.35)

for time-delay systems. In sections 4.1.2 and 4.2.2 the performance integral given by equation (6.35) was 

found to have a minimum at the same parameter values that put the rightmost eigenvalue as far to the left as 

possible. It would be interesting to investigate if this also occurs in time-delay systems but one must first 

develop a method to calculate these integrals.

Parseval’s Theorem states:
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<•» 1 r y®
f ( t ) g { t ) d t=   F{s)G{-s)ds  where F(5') is the Laplace transform of / ( / )  and G(5) is the Laplace

Jo 2;r

Transform o f e(r) i.e. F (s) = X {/(/)}  and G(5) =X{g(?)} • So, we have: f  f ^ { t ) d t = - ^ y  F {s)F {-s)ds
Jo 2 k  j

Tocalculate f we use f t‘'e^{t)dt = - ^ V  F{s)E{-s)ds  where F{s) =£.[t''e{t)\ = { - \ y  ^
Jo Jo ’ ds''

f ” (“ O’ r-'" d'‘E(s)So we can rewrite this integral as: f e  {t)dt = -------   E(-s)ds
^  Jo 2 ;ryJ->“ ds"

If we want to use Parseval’s Theorem to evaluate an integral like: £  exp(at)^e^ {t)^dt we first write

r*f a Ythe integral as: j txp(— t)e(t)  ̂ dt and then use can use Parseval’s Theorem to say:

lo 2 ^ i - 7» |lo  |exp(50exp(Y 0«^(^V ?||^5

1 r;*
i K j

= —  E{s -  - ) £ ( - 5  -  - ) d s

This result is already in the literature - see for example [83] and [84]. I have calculated these 

integrals using the Lyapunov matrix equation approach described by [85] and compared my results with the 

residue approach used by [83] and found that the two answers agree. However, these are the only examples 

o f performance integrals for time delay systems that I could find. 1 could not find a description o f how to 

calculate performance integrals for time delay systems o f the type:

J .  = |;e x p « „ ) |e -< ,)  + ^ [ ^ )  ]d,

If we want to use Parseval’s Theorem to evaluate we first write the integral as: 

^ = f > x p ( a o | e ^ ( 0  + ̂ [ ^ ]  ] d t = \ \ x v { a t ) e \ t ) d t ^ ^ j \ M a t ) { ^ ^  dt

i»CD

The first o f these integrals i.e. t \p { a t ) e '  { t )d t , has already been evaluated above.

The second integral is rewritten as:

i f  <" '> (^1 ■"
We can now use Parseval’s Theorem to rewrite this as:

d t \ \d s
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1
- j f ”  £ ( 5 - - ) £ ' ( - 5 - - ) r f 5 +  f ”  —  
, - | J - y o o  9 '  '  9 ' '

a  , a  ̂ 1 cx ̂  , cc ̂
{ s - —)E {s— -)-e {0 ) { - s - —) E ( - s - —)-e{Qi)

2 2 2 2
ds

2;ry [ ' 2

We can now write:

l p j “ cc a  ~ cc '  cc
J„ =  f 2 £ ( 5 ----) E { - s ------) + E { s ----- ) E { - s ----- )

Where: Jl{e{t)} = E{s) ■■
B(s)

and E{s) =

(6.36)

A(s) cJ„^(.s)

Equation (6.36) was not used to calculate as there was no clear way to select the initial conditions.

6.7 Conclusions

This chapter presents a new procedure for the design of PI controllers for general FOLPD processes. 

This procedure is based on the root locus method and a concept o f optimum stability. We choose as our 

design point those parameter values that place the rightmost eigenvalue as far to the left as possible in the 

complex plane and we derive (6.15) and (6.16), two simple equations that allow the designer to calculate the 

controller parameter values using the process parameters only. W'hen the controller parameter values are such 

that the system’s rightmost eigenvalue is as far to the left as possible we say that the system is operating at a 

point o f optimum stability in the root locus sense. We then apply this method to the design o f PI controllers 

for specific FOLPD processes that are presently discussed in the literature. We compare PI controllers that 

were designed using optimum stability with PI controllers that were designed using a variety o f performance 

integral and domain of stability considerations. By calculating gain margins, phase margins, delay margins, 

and plotting various response curves we see that the controllers that were designed using optimum stability 

offer, by these standard measures, enhanced performance when compared with the other controllers. The 

procedure presented extends a root-locus-based design procedure for delay-free processes described 

previously in chapters 3 ,4 , and 5, and in references [20] and [47].

We also describe the application of the analytic root locus to the design o f a PI controller for an integrator 

with time delay and draw attention to a relationship between the root locus equation for a system with time 

delay and the Lambert W function.

6.8 Suggestions for further work

Investigate the application o f the apparent link between Lambert W functions and the root locus for time- 

delay systems mentioned in section 6.5.5.

Evaluate equation (6.36) (possibly using step functions as initial conditions) and see if  the parameter values 

that minimise it are the same parameter values that put the rightmost eigenvalue as far to the left as possible.
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Chapter?: PI and PID controller tuning by analogy with the 

Maximum Power Transfer Theorem of Circuit Theory

7.1 Introduction

Some years ago [26] 1 proved that nonlinear resistive loading o f a series-wound, self-excited DC generator 

driven by a wind turbine, in such a way as to optimise power transfer from wind to electrical load, resulted in 

a very well damped dynamic response to varying wind speeds. This prompted me to explore whether there 

might be some other favorable consequences for control lying unexploited in results on optimum power 

transfer. This chapter presents a resulting new idea for tuning PI and PID controllers for a class of 

asymptotically stable processes, discovered by viewing the Maximum Power Transfer Theorem o f linear AC 

circuit theory as a relation in a single loop, negative feedback system. This approach brings together ideas 

from the cognate subjects of Circuit Theory and Control Theory, continuing an old but often overlooked 

tradition (Truxal, [27]). It is a contribution to the many methods already available for designing PI and PID 

controllers -  see O ’Dwyer [28] and Datta et al. [29] for literature reviews.

Figure 7.1 shows a single-loop linear electric circuit, operating in steady state under sinusoidal 

excitation at angular frequency m radians per second.

E
 <-----

Z(Ja))

a

Figure 7.1 Single-loop electric circuit, to illustrate maximum power transfer theorem

The upper case quantities such V as are phasor (complex number) representatives o f real sinewaves. 

Thus, K = |F |exp (yZ F ) is the phasor representative of the sinusoidal voltage v = |K|sin(<y? + Z K ) . The 

source has sinusoidal em f and internal impedance Z(jco) or, as we shall more conveniently characterise it 

below, admittance Y(jo)) = I jZijco) , where Z{ja>) = r + yxohms. The Maximum Power Transfer Theorem 

states that, in order to maximise the mean power delivered to the load over any integral number of cycles, the
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load impedance should have the value {ja>) = r - j x ,  i.e., it should be the complex conjugate o f the source 

impedance. In terms o f source admittance, Y {j c o )= [r -  jx]![r^ + x ' ] , this leads to magnitude and phase 

conditions

| Z , ( » |  = l / |r ( » |  and ZZ,{jco)  = ZY(jco)  (7.1)

Equation (7.1) gives the magnitude and phase relationships that must exist between the source admittance and 

the load impedance for maximum power transfer to occur between the source and the load.

From Figure 7.1 we write the relations 

V = Z,{jco). l

1 = Y{jco).E (7.2)

E  = U - V

Equation (7.2) may be represented by the single-loop error-actuated feedback system shown on Figure 7.2 

(see, for example, the same idea in a different context, D ’Azzo and Houpis [86]).

Figure 7.2 Electric circuit as a feedback loop 

Figure 7.2 suggests that, in designing the controller C{s) for the process G{s) in Figure 7.3, we might 

explore the counterpart o f equation (7.1), i.e., we might examine the possibility o f specifying a design angular 

frequency a) in such a way that:

| C ( » |  = l/|G(y^y)| (7.3)

ZCUco) = ZGijco)

D(s)

controller process

R(s) E(s) U(s) Y(s)

Figure 7.3 Single-loop feedback control system
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Equation (7.3) shows that on invoking this idea, the gain o f the controller would be the inverse of 

that of the process under control, at the chosen design frequency, and the phase shift introduced by the 

controller would be equal to that introduced by the process. In the section 7.4 a comparison is made between 

three controller designs - one based on an exploration of this idea, another on a root-locus based optimum 

stability, and a third due to Datta et al. [29].

7.2 Preliminary development of the theory

In this initial presentation, both for analytical convenience and for ease o f comparison with a case study by 

Datta et al.[29], attention is restricted to process transfer functions o f the form:

k.
G{s)=- (7.4)

(s + b T

with k^ ,b>Q  and m is a positive integer. Equation (7.4) represents a cascade o f m identical first order lags, 

each with time constant 1/b. The method applies to any asymptotically stable process, but this particular 

process offers the advantage o f comparison with other designs.

For economy in notation, controller transfer functions are taken to have the form:

C{s) =
k^{s + a)”

(7.5)

with A:,,a > 0 and n = 1,2.

The case n = 1 corresponds to PI control with integral action time T| = 1/a: 

C{s) = k, = k̂
s

-  ^-a. sT,_

The case n = 2 gives a restricted class o f PID control with 7] = — and derivative action time Tj = —
a 2a

C(s) = k, is + a f
=  k ,

s +2as + a
= 2ak, 1 +  —  + — s = 2ak^ 1 H-------V T.s

s -  2aa

It is interesting to note that in the PID case (i.e. n = 2)  we have Tj = 7 ' / 4 . That is actually the classical 

Ziegler-Nichols relation [50] between 7  ̂ and T.. As already stated in section 5.3.1 the Ziegler-Nichols PID 

controller is not a true three-term controller. In Ziegler-Nichols design we have /4  so there are only

two independent parameters - k  and T.. However, this is the structure required for root locus based design as 

we can fix one parameter and study root locus topology for the other parameter. Root locus based design 

would not be possible with three parameters.

It is convenient, and immediately interpretable in terms of Nyquist stability theory [48], to base our design 

procedure on choosing co so that:

ZG{jco) = - ^  + ̂  (7.6)

with the angle (/>, {0 < ^  < ;r} to be specified by the designer. For an asymptotically stable G(s) with G(0) > 0, 

such a choice is always possible. This leads, via equations (7.4) and (7.6) to:

102



ZG (,V ., = - £ . |

- 1 1= -m  tan —

I <y 1 71 - d )
=> tan I  —  I  = - - - - - --

2m

=><y = 6 tan ^  j  (7.7)

Equation (7.6) and the second line o f equation (7.3): ZC{jo))  = ZG (jo))  give:

ZC{jco) = - -  + ̂
2 2

^  -1 r  ^= ----- + « tan —
2 U

, ( C o \ 7C 7 t d>
or « tan  — -----= ------ + — (7.8)

U  J 2 2 2

Therefore:

CO (  (b
— = tan —  
a 2«

CO
a

tan,
. 2«

Finally, using equation (7.7) to substitute for <y we can evaluate the first controller parameter as:

tan ----- -

tan —
\ 1 n .

The first line o f equation (7.3): \C{jco)\ = \j\G{jco)\ now yields:

k,{cô +â r  ̂ {cô +b̂ r^
CD

Once the phase margin ^an d  the controller structure (i.e. PI with « = 1 or PID with n = 2 )  have been chosen 

and CO has been evaluated from equation (7.7) and a from equation (7.9), A:, follows from equation (7.10). 

We know the values o f k^,b  and m from the process transfer function G{s) = k2 /{s + b)'". An explicit 

equation for the second controller parameter, k^, can be derived from equation (7.10) as follows:

103



These design equations give:

ZG{jco)C{jco) = -7z-v<j) (7.12)

Since \G( jco)C{jco)\ = 1, equation (7.12) shows that the procedure works because the system has a specified 

phase margin ((>, effective at the design angular frequency (o, which is extracted from the Nyquist diagram of 

G(jco) at the phase angle given in equation (7.6). Specification o f the phase margin— a classical robustness 

measure— is valuable, as it often gives sensitive control o f the amount of damping in a system.

7.3 Comparison of PI and PID controller designs for the process 

G(5) = i/(5 + i)̂  based on maximum power transfer

k  1
Choose the process G{s) = ̂ ^ ^  i.e. = 1, and w = 3 . Specify the phase margin <I> = k I A,.

This leads Xo co = ta n ( ; r /8) = 0.4142. The resulting controllers are:

PI: ^ ( ^ ) ^ 0 4 8 5 3 ( £ j^  (7.13)

p iD ^ ^ (^ )^  0 1 1 6 5 ( ^ ^ 2 ^  (7.14)

Responses o f the process output to unit step reference and disturbance inputs are shown in Figure 7.4.



1.5

PI and  PID

1

0.5

PI and  PID

0

-0.5 -|— '— '— '— '— I— '— '— '— '— I— '— '— '— '— I— '— '— '— '— I— '— '— '— '— I— '— '— '— '—
0 5 10 15 20 25 30

Time

Figure 7.4 Responses o f third order system under PI and PID control

In Figure 7.4 we see that PI and PID control are almost indistinguishable. This may at first sight seem 

surprising. However, the gain margins are so large— 6.507 for PID control (equivalent to 16.267 dB), and 

4.121 (equivalent to 12.300 dB) for PI—that the dominant indicator of damping is the phase margin, and this 

is the same, n/4, in both cases.

The frequency responses o f C(s)G(s) are shown on Figure 7.5. These confirm asymptotic stability using the 

Nyquist criterion [48].

- 0.1

CIS
c

PID

-0.5
1.5 1 -0.5 0

Real

Figure 7.5 Open loop frequency response loci for the same systems as shown in Figure 7.4.

105



7.4 Comparison of PID controller designs based on optimum stability, 

max power transfer, and centroid of stability region for the process

G(5) = 1/(5 + 1)*

k-,
We now consider PID control o f the process G{s) = -— with k 2 =b = \ and m = 8 . An interesting study

of this system has been made by Datta [29] using optimum stability ideas in a parameter space. They wrote 

the PID controller transfer function in the form

C{s) = k ^ + k j s  + k , s  (7.15)

For each chosen value o f k^ they plotted a triangular domain o f asymptotic stability in the (^, ,/r^) plane.

They noted the radius o f the largest circle that would just fit in this domain. They then searched for the value 

of kp which maximised this radius, and chose as design parameters the values of k̂  and kj  at the centre o f this

largest circle, along with the corresponding value of k^.  They found A:^= 1.32759, A:, =0.42563,

kj = 5.15291. Corresponding process output responses to unit step reference and unit step disturbance, which 

are not shown by Datta et al. [29] are on Figure 7.7 and Figure 7.8.

In applying the present design idea to this process, we chose the phase margin ^  = 56.04“ = 0.9781 radians. 

(This specific value was motivated by comparison with an optimum stability design below.) The resulting 

“max power transfer” PID controller is:

C(.) = 0 -1 ^3 6 (^ 0 ^ 4 5 3 )-

Responses are compared on Figure 7.7 and Figure 7.8.

We also compare the present design with a PID controller based on a root locus-inspired principle of 

optimum stability [8, 9, 10], i.e., that the rightmost eigenvalue should, subject to structural relations between 

system parameters, lie as deep in the left half plane as possible.

k (s "t" ci)- k
The characteristic equation for the PID controller C{s) = —-----------  and the process G(s) =  is:

5 (s + b)

p{s) = s(s + b f  + k(s + a Y . (7.17)

where k = k^kj. The root locus of equation (7.17) with respect to k  is given in Figure 7.6.
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Figure 7.6 Root locus o f equation (7.17) with respect to k . This diagram is to illustrate a root locus based 
design method. The nominal value of the parameter k  is chosen as that value that results in a breakpoint at a 

triple eigenvalue. This is called a point o f optimum stability in the root locus sense.

Following the general method described in section 5.3.5 the resulting root locus based optimum stability PID

„ . , 0.2874(5+ 0.5453rcontroller is: C(5) = ---------------------------  (7.18)
5

which differs only in gain from the “max power transfer” controller in equation (7.16). The fact that the gain 

in equation (7.18) is less than in equation (7.16) could not readily have been predicted before its calculation.

We have just computed that the value a = 0.5453 gives a triple eigenvalue in the root locus o f the 

characteristic equation, plotted with respect to k  , and deduced that designing for the value o f k  which places 

three eigenvalues at this breakpoint confers optimum stability. In this example, but not in all that we have 

studied, optimum stability yields real, equal, dominant eigenvalues— three in this case— thus generalizing the 

idea o f critical damping in a second order system.

Once optimum stability considerations had led to the value of a = 0.5453 the corresponding phase margin ^ 

and gain k̂  were evaluated as follows. In this case n = 2,  and m = S s o  equation (7.9) gives:

aJ!L±\ t a n f i l f ' l

'”(3;;] “ (4]
Given that a = 0.5453 equation (7.19) may be solved for ^ by rearranging it as:
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Equation (7 .20) may be evaluated iteratively and converges to g ive ^ =  56.04" =  0.9781 radians. 

Alternatively, the equation may be solved using Mathematica [49]. K now ing (j> w e can now  use equation  

(7 .11 ) to g ive =  0 .4 6 3 6 .

The root locus o f  the characteristic equation with respect to k  is shown on Figure 7.6. For =  1, 

1̂ = 0 .2 8 7 4  (optimum stability, as in equation (7 .18)) the triple rightmost eigenvalue lies at the breakpoint, 

5 =  -0 .2 7 9 1 ,  whereas for A:, =  0 .4636  (optimum power transfer analogy, equation (7 .16 )) the rightmost 

eigenvalues form the com plex pair s =  -0 .1420  ±  0 .2159 .

It is interesting to note from Figure 7.7 that the optimum power transfer analogy and root locus-based  

optimum stability g ive the same settling time o f  approxim ately 30 seconds, but that the latter has no 

overshoot. The parameter plane idea invoked by Datta et al. g ives quite an underdamped response, w hich has 

not settled in 100 seconds. With regard to disturbance rejection, as portrayed on Figure 7.8, the optimum  

power transfer analogy gives tighter control than root locus-based optimum stability, but at the expense o f  

undershoot. The output excursion is more restricted with the Datta et al.[4] controller, but at the expense o f  a 

much longer settling time.

P re sen t design  (phase  margin 0.978 radians)

-Datta e t al - centroid of region of stability0.6

Root locus-based  optiinum stability

0.2

0 3010 20 40 50 80 70 80 90 100
T im e

Figure 7.7 Comparison o f  three PID designs for eighth-order process, step reference input
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Figure 7.8 Comparison o f three PID designs for eighth-order process, step disturbance input

7.5 Summary of results

A new idea for tuning PI and PID controllers has been presented, based on analogy with the maximum power 

transfer theorem from linear AC circuit theory. The approach has been identified as one that specifies the 

phase margin and the frequency at which it is effective. It has been illustrated by designs for third order and 

eighth order members o f a restricted class o f asymptotically stable processes, considered by Datta et al. [4]. 

Explicit formulas, involving the process parameters only, were derived for calculating the PI controller 

parameters for the process G{s) = A:, /(s + 1)” . In the case m = 3, it is interesting to note that the performances 

o f the PI and PID controllers are indistinguishable, both for reference input following and for disturbance 

rejection, despite significant differences in gain margin. In the case m = 8, the performance is similar in time 

scale to, though distinguished in overshoot (reference tracking) and undershoot (disturbance rejection) from, 

controllers designed by a root locus-based optimum stability approach. Controllers designed by an optimum 

parameter space approach [4] give a much more oscillatory behavior and longer settling time.

An interesting observation is that the controller designed by using max power transfer considerations: 

C(5) =0.4636(5 + 0.5453)^ /5  is very similar to the one designed from root locus based optimum stability 

considerations C(^) = 0.2874(5 + 0.5453)^ / s - the difference being in the value o f the gains.

7.6 Suggestion for furtlier work

Investigate the similarity between the controller in equation (7.16), designed from max power transfer, and 

the controller in equation (7.18), designed using root locus based optimum stability.
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Chapter 8: Nyquist and Lyapunov based optimum stability in 

modeling the control of balance during quiet standing

8.1 Introduction

Dizziness is one o f  the most common complaints that patients bring to their doctors with about 40% 

o f adults experience clinically significant dizziness at some time in their lives [87] - this makes the study of 

the human balance control system an important one. Analysis o f unsupported standing has been o f  interest for 

some time and has received much attention from engineers, e.g. see [88].

Maintaining balance requires the brain to utilize inputs from at least three systems - the visual 

system, the muscular system, and the vestibular system [87]. The vestibular organs o f  the inner ear consist of 

two major subsystems. The first subsystem consists of semicircular canals that are filled with a liquid and 

when the head is nodded up and down tiny pressure differences between the ends o f the canal generates a 

signal to the brain that indicates angular acceleration. So the semicircular canals sense rotational movement. 

A second subsystem - the otolith apparatus -  consists of a pebble-sized bone embedded in a jellylike 

substance and floating on hairs. These hairs project out o f sensory cells and the signal from those hairs that 

report the greatest load from the otolith is accepted by the brain as the “down” direction. The otolith 

apparatus responds to linear accelerations; it senses linear motion and orientation with respect to gravity.

In [8] de Paor et al. present a model of the human balance control system during quiet standing and 

determine regions o f stability using Routh-Hurwitz and Nyquist techniques. They then chose the operating 

point for their model to ensure optimum stability in the sense that this point is at the centroid o f the region of 

stability thus optimizing Vector Margin [20]. By assuming that the human balance control system is a 

compromise between optimally stable visual / somatosensory and optimally stable vestibular designs, a very 

close match is found between the predictions o f their model and data gathered from subjects. Also, the 

authors o f [8] excited their model with Gaussian random noise and compared its behavior with data collected 

from subjects and found an excellent correlation.

In this chapter a model o f the human balance control system is developed. This model is a 

modification o f the model described by de Paor et al. [8]. A tenth order characteristic equation with four 

parameters arises in the modified model o f the human balance control system. Two methods based on 

optimum stability are used to select these operating parameters. The first method, described in section 8.3, 

involves setting two parameters to zero and then selecting the remaining pair o f parameters using the Nyquist 

diagram. In this way, pairs o f  parameters that give an optimum phase margin are selected as the design 

parameters. An alternative parameter selection method based on the Lyapunov equation is used in section 8.4. 

This method allows the selection o f all four parameters simultaneously and is based on using the Lyapunov 

equation to optimize eigenvalue location. A comparison is then made between the behavior o f  the model at 

operating points derived from optimum vector margin [8], optimum phase margin, and optimum eigenvalue 

location.
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8.2 The characteristic equation of the model

The fundamental physical model used in [8] is the inverted pendulum and an average human being 

[89] with mass 74.2kg, height o f  centre o f  gravity 0.93m, moment o f  inertia for saggital sway 73.27kgm^. A  

block diagram showing the transfer functions o f  the various components is given in Figure 8.2.

c.o.g.

Figure 8.1 Human body represented by a single-link inverted pendulum free to move only about the ankle.
The centre o f  gravity (c.o.g.) is at a length h from the ankle. The body is maintained in an upright position by

a torque about the ankle that opposes the torque due to the weight o f  the body.

Taking clockwise as positive, we can write the equation o f  motion o f  the model in Figure 8.1:

d'^9 d 6  -
J —  = m gh S i n {0 ) - F  —  - f ,  (8.1)

at at

dO
where F —  is the viscous torque due to stretching o f  the muscles and is the torque due to contraction o f  

dt
2 *

the muscles. For small 6  (8.1) becomes + — —  -  0  = . On substituting the parameter values
dt^ J  dt J  J

F  0  d  0
given above and using — = 2 from [90] (8.1) becomes — r  + 2 ------- 9 .240 = - /^  - where is the torque

J  dt dt

per unit moment o f  inertia. This may be written in transfer function form as: + 2s -  9 .24] 6{s)  = - /^  (5 ) or

[(s + 4 .2 )( s -2 .2 ) ]0 (5 )  = - / , ( s ) .

Figure 8.2 shows the block diagram o f  a model o f  the human balance control system. This model is 

essentially the one developed Delaney [91] except that Delaney used a 150ms time delay in the vision loop 

and zero time delay in the path to the upper summing point. In the model used here, the 150ms delay is 

redistributed between the vision loop (1 15ms) and the path to the upper summing point (35ms). This is in line 

with results in the literature [90].
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9(s)

1
( i + 4 . 2 X 5 - 2 . 2 )

9 = angle with respect 
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 > ---------------
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/

delay 1SO ms

muscle

U +0.07 53 J

first order 
Pade approximCion to 
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somatosensory

f.

L-

/ ,

delay 35 ms
| ' l-0 .0175s'j 
l l  + 0.0175sj

(1+O.O5753J

first order 
, Pado approximtion to 

35 ms time delay

1- 0 .05755^

first order 
Pade appfoxlmtion to 

115 ms time delay
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delay 115 ms

A
otoliths

2ft„(l+0.l5)(l-0.163’) 
(1+J.3j)(1 + 0 65)

semicircular canals

1U.(1+0.35)(3)
(l+8.3s)(l+0.b)

Figure 8.2 Block diagram of the human balance control system. The controller consists of four feedback loops 
that model the semicircular canals, otolith, vision, and somatosensory systems. The transfer functions for 

these four subsystems are taken from [91] although the time delays have been modified. The control loops are 
combined into a single transfer function ff,{s) that represents the muscle torque per unit moment of inertia 

about the ankles. (a,b,k^,kg) are the four parameters that must be selected.

The transfer function /^ (i) that represents the restoring torque about the ankles may be built up as follows;

\\k^{\ + 03s){s) 2fco(l + 0 .b)(l-0 .165^) ^ n -0 .0 5 7 5 j  ̂ r i-0.0175.y^
' ~ ( l  + 8.35)(l + 0.l5) (1 + 5.35)0 + 0.65) U  + 0.05755j^ “ “ U  + O.OI755J

/ s  = a s  + f , \  / ,
( 1-0.0755  ̂
U + 0.0755 J (I +  O.O85)

fs
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Combining these transfer functions gives:

/6 =
l l k ( l  + 03s)(s)  2;t„(l + 0 .l5 )(l-0 .1 6 5 ')  1-0.05755 ,

---------------------------------- H----------------- 0
1- 0 .01755  ̂
1 + 0.01755.(l + 8.3s)(l + 0 .b )  (1 + 5.35)(1 + 0.65) 1 + 0.05755

(j)  represents the muscle torque per unit moment o f inertia about the ankles.

The disturbance transfer function is h<5) = -----------------
l+g(^)/6(^)

The characteristic polynomial is: p{s) = 1 + g(5) ff,{s)

+ 0 5
11-0.0755

1 + 0.0755 (1 + 0.085)

(8 .2 )

8.3 Selecting pairs of parameters to optimise phase margin on the 

Nyquist diagram

8.3.1 Nyquist analysis with visual / somatosensory system only active

With =k f ^ =0 , i.e. the subject might have brain damage and receives no information from the inner ear;

p(5) reduces to p^{s) + ap^{s) + bp-^{s) = Q. If a is fixed then p{s)  may be rearranged to give:

- + 1 = 0 . Two series o f Nyquist plots were created using Mathematica [92]. From these plots,-bp2{s)
p^{s) + ap,{s)

two tables o f values o f a and h were drawn up. One set o f results was generated by fixing a and then 

reading that value o f h that gave optimum phase margin from the Nyquist plot of p,, = )•

procedure was repeated by fixing h and taking a for optimum phase margin from the Nyquist plot of 

p . = p ^ ! [ p ,  + hp-^y These results are summarised in Table 8.1. Figure 8.3 shows a sample Nyquist diagram.

Im

0 . 0 2

0 . 0 1

- 0 . 1 - o . o e - 0 . 0 4 - 0 . 0 2

- 0.01

Figure 8.3 Nyquist diagram for = p-^j{^p^+ap^^, a = 5.0 so b = M 0.08 = 12.5 at optimum phase margin.
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The two sets o f a and b values obtained in this way are given in Table 8.1 and they are plotted in the 

stability region on the parameter plane in Figure 8.4.

a b b a

3 10.75 10 5.56

3.5 11.24 11 5.62

4 11.76 12 5.95

4.5 12.25 12.5 6.33

5 12.50 13 6.45

5.5 13.89 14 6.62

6 14.71 14.5 6.76

6.5 15.38 15 7.04

7 16.67 15.5 7.19

7.5 17.24 16 7.24

8 18.18 16.5 7.58

8.5 19.23 17 7.69

9 20.83 17.5 7.81

9.5 21.74 18 8

10 22.22 19 8.26

10.5 26.32 20 8.47

Table 8.1 Optimum phase margin points - Visual / Somatosensory System only active. 

b

40

30

20

10

a
2 4 6 8 10 12 14 16

Figure 8.4 Stability region shown in green for p(s) with = 0 . Optimum phase margin points from
Table 8.1 are shown as black dots.

8.3.2 Nyquist analysis with vestibular system only active
With a = b  = 0 (i.e. the subject has no visual or other sensory clues) p{s)  reduces to

p(s)  = p^{s) + kgPj{s) + k^p^{s) . Just as for the a and b parameters above, two series o f Nyquist plots were 

created. From these plots two tables o f values o f and k^ were drawn up. One set o f results was generated 

by fixing k„ and reading that value o f k^ that gave optimum phase margin from the Nyquist plot of 

Pk -  P^l iPq'^KPi) -  This procedure was repeated by fixing and taking k^ for optimum phase margin
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from the Nyquist plot of = p^/ip^ +k^Pt). The two sets of and k^ values obtained in this way are 

given in Table 8.2. These values are plotted in the stability region on the [k^,kf^) parameter in Figure 8.5.

0̂ K k. K
6 9.35 8.5 4.44

6.5 9.43 9 5.26

7 9.62 9.5 6.45

7.5 9.71 10 7.69

8 9.80 10.5 8.93

8.5 9.90

9 10.0

9.5 10.2

10.5 10.31

11 10.42

11.5 10.53

12 10.64

12.5 10.75

13 10.87

Table 8.2 Optimum phase margin points - Vestibular System only active.

30

25

20

15

10

5

2 4 6 8 10 12 14

Figure 8.5 Stability region shown in green for p(s) with a = b  = 0 . Optimum phase margin points from Table
8.2 are shown as black dots.

8.3.3 Dynamics of the model when two pairs of operating points are combined
Pairs of operating points obtained for (a,b) and {k^,kg)’were combined to form sets of points

(a,b,k^,kg). Some of these combinations lead to a characteristic equation that has roots in the right half 

plane: this is due to the simplification used when the two cases of a = b = 0  and k  ̂ = k ^ = 0  were studied. 

Other combinations lead to a stable system: the nineteen combinations of (a,b,k^,kg) from Table 8.1 and 

Table 8.2 that lead to a stable system are given in Table 8.3.
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a b K K
location of 
rightmost 
eigenvalue

5.56 10.0 8.5 4.44 -0.07
5.56 10.0 9.0 5.26 -0.08
5.56 10.0 9.5 6.45 -0.07
5.56 10.5 9.35 6.0 -0.06
5.56 10.5 9.43 6.5 -0.05
5.56 10.5 9.62 7.0 -0.01
5.56 10.5 9.71 7.5 -0.0009
5.56 10.5 8.5 4.44 -0.07
5.56 10.5 9.0 5.26 -0.07
5.56 10.5 9.5 6.45 -0.03
5.62 11.0 8.5 4.44 -0.07
5.62 11.0 9.0 5.26 -0.08
5.95 11.5 8.5 4.44 -0.07
5.95 11.5 9.0 5.26 -0.05
5.95 12.0 8.5 4.44 -0.07
5.95 12.0 9.0 5.26 -0.01
6.33 12.5 8.5 4.44 -0.07
6.45 13.0 8.5 4.44 -0.05
6.63 13.5 8.5 4.44 -0.01

Table 8.3 Nineteen combinations o f parameters (a, ft, from Table 8.1 and Table 8.2 that lead to stability. 
The values for (a,b) were obtained by setting = k,, =0  and finding the values o f (a,b) that give optimum 
phase margin. The values for were obtained by setting a = b = 0 and finding the values of {k^.,k„)

that give optimum phase margin. These combinations o f points are very artificial; there is no relationship 
between the pairs o f points other than they lead to characteristic polynomials with eigenvalues in the left half 
plane. Nature would select the operating point as a set o f four rather than in pairs. The operating points in this

Table lead to very oscillatory impulse responses.

We select the point ( a , = (5.56,10.0,8.5,4.44) from Table 8.3 and show its impulse response in 

Figure 8.6. The impulse response is very oscillatory -  a feature o f all nineteen operating points in Table 8.3.

a.e
OJ

-0 2
0 155 10 20

Time

Figure 8.6 Impulse response for the system in Figure 8.2 with {a,b,k^,k„) = (5.56,10.0,8.5,4.44) - parameters 
selected by from Table 8.3. This is the least oscillatory impulse response using parameters in Table 8.3.
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The settling time for the impulse response in Figure 8.6 is quite long -  about 20 seconds. So the 

point (a,b,k^,k„) = (5.56,10.0,8.5,4.44) from Table 8.3, a combination o f optimum phase margin points that 

gives the best impulse response, has lead to a system that is stable but not to one with behavior that 

corresponds to our experience.

In [8] the authors explored the possibility that human balance is governed by a compromise between 

optimum stability visual / somatosensory and optimum stability vestibular designs. Guided by this, they derive 

two points from a combination o f vector margin and root locus techniques. These points are: 

P(l) ={a,b,k^,kf,) = (6.763,14.76,0,0) and P(2) = {a,b,k^,k„) = (0 ,0,14,7.3). Three operating points for the 

system were taken at P = P(\) - g{P{2) -  P{\)) for g = 0, 0.3, and 0.8. The resulting operating points are: 

(a,b,k^,k^) = (6.76,14.76,0,0); (4.73,10.33,4.2,2.19); (1.35,2.95,11.2,5.84). Although their analysis applies 

only to their model and not to the modified version studied here, it is still interesting to see the behavior o f  the 

modified model at these points. The impulse response o f the system at the point corresponding to g  = 0.3 is 

given in Figure 8.7.

0 .25  -

Q .
Ere

0 .05  -

- 0 .05  -

0 2 3 4 5 6 7
Time

Figure 8.7 Impulse responses for the system at the operating point (a,b,k^,kg) = (4.73,10.33,4.2,2.19) from 
[8]. This point was selected in [8] by recalling that human balance is governed by a compromise between 

optimum stability visual / somatosensory and optimum stability vestibular designs. When 
{a,b,k^,k^) = (4.73,10.33,4.2,2.19) the rightmost eigenvalues o f the quiet standing polynomial is at -0.07.

When (a,b,k^,k„) = (4.73,10.33,4.2,2.19)the rightmost eigenvalue o f the characteristic polynomial 

is at -  0.07. An excellent response is obtained when (a,b,k^,kg) = (4.73,10.33,4.2,2.19) and recovery o f the 

upright position is achieved in about 4 seconds. This is better than the 20 seconds required when the point 

(a,6 , A:„) = (5.56,10.0,8.5,4.44)obtained from optimum phase margin considerations, is used. However, 

the second point (a ,6 ,^^,/:(,) = (1.35,2.95,11.2,5.84) given by [8] leads to a highly oscillatory impulse 

response in the modified model.
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Using the point (a, 6 , =  (4.73,10.33,4.2,2.19) as a starting point o f an optimization routine 

leads to (a,b,k^,kg) = {5.0,9.5,4.0,2.0) with impulse response given in Figure 8.8. The impulse response in 

Figure 8.8 is very smooth and recovery takes place in about 3 or 4 seconds. The operating point 

{a,b,k^,kg) = (5.0,9.5,4.0,2.0) seems to make to model behave in a very realistic way.

0.25

01
■ a

Q .
E
(TJ

0.05

0.05
0 2 3 5 74 6

Time

Figure 8.8 Impulse response for the system at the operating point (a,h,k^,k„) = (5.0,9.5,4.0,2.0). This point 
was arrived at by using an optimization routine with starting point (a,h,k^,k„) = (4.73,10.33,4.2,2.19) [8], 

When (a,h,k^,kg) = (5.0,9.5,4.0,2.0) the rightmost eigenvalues o f  the quiet standing polynomial is at -0.07.

8.4 Selecting all four parameters simultaneously

There are at least two approaches to the problem o f selecting all four parameters simultaneously and 

not in pairs as in the previous sections. One approach is to derive a stability region in a four-dimensional 

parameter space (a,b,k^,k„) and use the centre o f the largest hyper-sphere that could be drawn in this region 

used as a design point. A similar problem arises when one studies a polynomial whose coefficients may take 

any value from a given range. The resulting polynomials are represented as points in an n-dimensional 

polynomial-coefficient space. Those points that correspond to Hurwitz polynomials form a stability region. 

Ackermann [93] , Soh [94], and Bhattacharyya [95] describe how to draw the largest hyper-sphere in such a 

region. Bhattacharyya’s approach was implemented without success in section 8.4.1.

Another approach is to use an optimization algorithm in combination with the Lyapunov matrix 

equation to select a design point that optimizes eigenvalue location. This method turned out to be quite 

successful and it is described in section 8.4.2.

8.4.1 Optimum vector margin design

Bhattacharyya et al. [95] describe a procedure for calculating the radius of the largest stability 

hypersphere that can be dravra around a point in parameter space. This procedure proved to be too unwieldy. 

Even though the parameter space has only four dimensions, the polynomial is o f tenth order and, in this case, 

Bhattacharyya’s procedure leads inexorably to calculations involving polynomials of order 52. This method 

was abandoned as such polynomials are very prone to rounding errors when evaluated.
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8.4.2 Optimum stability using the Lyapunov matrix equation

The optimization algorithm described in 1.4 was applied to equation (8.2) to find sets o f parameters that place 

the rightmost eigenvalue as far to the left as possible. In this case, the optimization algorithm is used to 

emulate evolution and adaptation in nature. Many applications o f this algorithm resulted in systems with the 

rightmost eigenvalue at -0.11 and Table 8.4 shows a selection o f the associated system parameters. In an 

attempt to make a selection from these parameters I have included the ITSE as an auxiliary criterion. Some of 

the results obtained are given in Table 8.4.

a b K * 0

00

ITSE: jre^(Oc/?
0

3.57 13.68 0.59 2.39 0.984

3.89 10.04 2.58 7.94 0.208

4.29 10.82 2.74 7.15 0.080

4.73 10.04 1.58 4.17 0.127

5.42 13.21 2.23 5.56 0.031

6.17 10.11 1.89 8.27 0.137

6.49 13.30 3.08 9.47 0.20

6.91 12.11 4.12 12.31 0.019

7.33 8.12 3.94 11.65 0.081

8.39 13.0 2.51 6.99 0.014

9.39 11.22 1.77 5.09 0.024

9.98 13.77 2.74 7.62 0.017

11.43 9.78 3.20 12.65 131.49

Table 8.4 A selection o f operating points that lead to Optimum stability with both the Visual / Somatosensory 
System and the Vestibular System active. These points were derived from the Lyapunov matrix equation and 
each set of parameters place the rightmost eigenvalue at -0.11. The model predicts that many people, each 
with different values for (a,b,k^,k„), will all have the same “sense ofbalance”. This is indeed what one 
experiences in everyday life. The ITSE parameter is included to allow one to select a set o f parameters.

operating point 

{a,b,k^,k^)

location of

rightmost

eigenvalue

ITSE
peak deflection of 

impulse response

settling time of 

impulse response 

(approx.)

(5.0,9.5,4.0,2.0) -0.07 0.022 0.28 10s

(8.39,13.0,2.51,6.99) -0.11 0.014 0.22 10s

Table 8.5 The operating point with the lowest ITSE from Table 8.4 - {a,b,k^,kf,) = (8.39,13.0,2.51,6.99) is 
compared with the operating point (a,b,k^,k( ,) -  (5.0,9.5,4.0,2.0) from section 8.3.3. The operating point 

form Table 8.4 has an eigenvalue further to the left, a lower ITSE figure and a lower peak impulse deflection 
than the operating point {a,b,k^,k^) = (5.0,9.5,4.0,2.0). The operating point from Table 8.4 and 

{a,b,k^,k„) = (5.0,9.5,4.0,2.0) have comparable settling times.

119



Table 8.5 returns for the moment to the operating point (a,b,k^,k^) = (5.0,9.5,4.0,2.0) and compares its 

impulse response, as shown in Figure 8.8, with the impulse response o f the operating point with lowest ITSE 

from Table 8.4.

0.3

( 5 .0 , 9 . 5 , 4 . 0 , 2 .0 )

0.25

( 8 . 3 9 , 1 3 .0 , 2 . 5 1 , 6 .99 )
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Figure 8.9 Impulse responses for the operating point with the lowest ITSE from Table 8.4 - 
(a,b,k^,kfi) = (8.39,13.0,2.51,6.99) and the operating point (a,h,k^,kf,) = (5.0,9.5,4.0,2.0) from section 
8.3.3. The operating point form Table 8.4 has a lower peak impulse deflection than the operating point 

(a,b,k^,k„) = (5.0,9.5,4.0,2.0). The operating point from Table 8.4 and (a,b,k^,k„) = (5.0,9.5,4.0,2.0) have
comparable settling times.

Time responses for three systems are shown in Figure 8.10, Figure 8.11, and Figure 8.12. These 

figures show impulse disturbance responses that illustrate the best, intermediate, and worst designs from 

Table 8.4.

0.3

( 4 . 7 3 , 1 0 . 04 , 1 . 5 8 , 4 . 17 )

a.
E
C T J ( 8 . 39 , 1 3 . 0 , 2 .5 1 , 6 . 99 )

0 5 10 15 20 25 30
T im e

Figure 8.10 Impulse response for the system at two operating points from Table 8.4 - 
(a,ft,yfc,,/t„) = (8.39,13.0,2.51,6.99) and ( a , A : ^ , ) = (4.73,10.04,1.58,4.17).

120



0.3

( 4 .2 9 , 1 0 .8 2 ,2 . 7 4 , 7 . 15 )

(6 .4 9 , 1 3 .3 0 ,3 . 0 8 ,9 .47 )

— I—

10
’— I—

15
T im e

— I—

20
— I—

25 30

Figure 8.11 Impulse response for the system at two operating points from Table 8.4 - 
= (6.49,13.30,3.08,9.47) and ( a ,6 ,/t,,A:„) = (4 .29,10.82,2.74,7.15).
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Figure 8.12 Impulse response for the system at the operating point ( a , b , k ^ , k g )  =  (11.43,9.78,3.3,12.65) from 

Table 8.4. The oscillatory behavior is due to a com plex pair o f  eigenvalues ( -0 .1 8 ±  y'0.66) near to the real

eigenvalue at -0 .11 .

Two results are immediately apparent from  Table 8.4. First, the rightm ost eigenvalue has been 

shifted to the left o f  that obtained by dePaor [8 ]. dePaor’s param eters [8] placed the rightm ost eigenvalue at -  

0.07 whereas the param eters obtained in this study place it at -0 .1 1 . Thus, the magnitude o f  the shortest time 

constant has been increased by a factor o f  1.6.

A second result apparent from Table 8.4 is that many com binations o f  (a,6 ,/r^ ,^„) were found to 

have the optim um stability property. Finding multiple sets o f  parameters, each giving the same stability
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margin, indicates in this case that the underling mathematical model is sound. The model predicts that many 

people, each with different values for {a,b,k^,k^), will all have the same “sense of balance”. This is indeed 

what one experiences in everyday life. A mathematical model of the human balance control system that was 

optimally stable for a single set of parameter values and that predicted different values of stability margin for 

every person would not agree with our experience.

Initially it might seem counterintuitive that systems with the same index of stability exhibit 

completely different ITSEs and impulse response curves. However, it has to be bom in mind that the time 

response depends not only on the location of the rightmost eigenvalue but also on a complicated interaction 

among the whole constellation of all the poles and all the zeros -  this is especially evident in this system as it 

has many eigenvalues. Although the results obtained in previous chapters are very encouraging, the present 

analysis can serve as a note of warning that, in systems with many poles and zeros, simply placing the 

rightmost eigenvalue as far to the left as possible is not sufficient to guarantee a good time response. Any 

single quality indicator on its own is not a reliable predictor of performance.

8.5 Summary of results in this chapter

A model of the human balance control system has been studied. When the three time delays in the model are 

replaced by 1*‘ order Fade approximations the model’s characteristic polynomial is order ten. It is necessary 

to select four parameters -  one for each major control loop. Nyquist analysis was used to select pairs of 

parameters that lead to Optimum Phase Margin but this is a graphical procedure and therefore approximate. 

The Lyapunov matrix equation was used to select four parameters simultaneously -  these parameters gave 

optimum eigenvalue location. The parameters selected using Nyquist analysis tended to lead to systems that 

are underdamped and have very oscillatory impulse responses. Parameters derived from the Lyapunov matrix 

equation and optimum eigenvalue location, gave impulse responses that were fare less oscillatory and settled 

down after about 6 seconds to 10 seconds.

8.6 Suggestions for future work

One could carry out the same analysis on the models derived above, as was done by de Paor [8] i.e. 

excite the system with Gaussian Random noise and compute the autocorrelation functions of the outputs. A 

comparison of these results with data gathered from subjects could then be made. A more accurate match 

would indicate better parameters. The parameter tuning and the inclusion of “mild non-linearities” referred to 

by dePaor[8] could also be done.

It would also be very interesting to adapt the methods of [93]and [94] and use it to choose a true 

optimum vector margin operating point from the four dimensional ( a , s t a b i l i t y  region. The distance 

from the rightmost eigenvalue to the real axis dictates the topography of the interior of the stability region and 

this must be taken into account when choosing an operating point within the region. This would result in a 

five dimensional problem in {a,b,k^,k„,a) -space.
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Chapter 9: Optimum stability from the Routh array and the 

Jeltsch-Fichera array

9.1 Introduction

In this chapter I explore the use o f the Routh and Jeltsch-Fichera arrays for designing systems with 

optimum stability. (The Routh array can be used in synthetic mode as discussed in Appendix E.)

An advantage o f root locus diagrams is that they indicate the degree o f stability o f a point and not 

only whether it is stable or not. The Nyquist diagram also indicates the degree of stability in the form o f Gain 

and Phase Margins. On the other hand, the Lyapunov matrix equation and the Routh array, in the standard 

form, give only a criterion for stability and no indication o f the degree o f stability. It is possible to introduce 

degree-of-stability information into the standard Routh Array and into the Lyapunov equation by making very 

simple changes to their form. For example, as was seen in section 8.4.2, solving the Lyapunov matrix 

equation (A + a Y  L + L(A + cr) = -Q  rather than A^L + LA = -Q  . In this chapter I explore the properties 

o f the Routh array and the Jeltsch-Fichera array of p(s  + <r) = 0 rather than p{s) = 0 . As in the case o f the 

modified Lyapunov equation, <r is a measure o f the degree o f stability o f the system.

9.2 Some properties of the Routh and Jeltsch-Fichera arrays 

9.2.1 Constructing the Routh and Jeltsch-Fichera arrays
In 1979 Jeltsch [96] published a version o f the Routh array that avoids division and is optimal in the sense

that the rate o f growth o f  the entries in the array is minimised. Such arrays are usually called Jeltsch arrays. 

However, in 1995 Jeltsch [97] found that Fichera [98] had already discovered this array in 1947. For this 

reason the name Jeltsch-Fichera array will be used to describe these arrays in this thesis.

The absence of division that characterises the entries in the Jeltsch-Fichera array turns out to be

convenient in this thesis as will be seen below.

For f ( s )  = a„s" +bgs"'' + a^s"~  ̂+b^s"~^ + .... the Routh array may be constructed as follows:

, J  = 1,2,3... with the initial conditions , r̂ j =bj_^ , j  = 1,2,3...

For f { s )  = a„s" +bf,s" ' +a^s"  ̂+b^s"  ̂+ .... the optimal fraction free Routh array (i.e. the Jeltsch- 

Fichera array) may be constructed as follows;

, j  = 1,2,3... where rf,
I f o r / = 2,3,... 

for i = 4,5,...
- 3 .1

with the initial conditions , =r,j = 1,2,3...
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9.2.2 Stability from the Jeltsch-Fichera array
A point worth remembering about the Jeltsch-Fichera array is that the number of sign changes in the left hand 

column does not indicate the number o f eigenvalues in the right half plane [19].

For example, the Routh array for 5“ + 5’ -12^^ - 2 8 ^ - 1 6  = (5 + 2)^(5 + 1 )(5 -4 ) is:

1 -12 -16

1 -28

16 -16

-27 

-16

So k, the number of sign changes in the left hand column, is ^ = K (l,l,16 ,-27 ,-16) = 1 - where F is a 

function, defined on a list o f numbers, which returns the number o f changes o f sign in the list. So, there is 1 

eigenvalue in the right half plane. (In fact, the appearance o f a negative sign anywhere in the Routh array 

indicates instability [19], and the number of sign changes in the first column gives the number o f eigenvalues 

in the right half plane.)

The Jeltsch-Fichera array for s'* + -  I2s^ -  285 -1 6  is:

1 -12 -16

1 -28

16 -16

-432 

6912

In this case, to find the number o f eigenvalues in the right half plane you have to calculate:

k = f |^ 1 ,1 ,^ ,  ~  ̂ again that there is 1 eigenvalue in the right half plane. Note that

, , 16 -432 6912^ . . ^ ^ ^ ^ t. u1,1,— ,------- , ---------  IS m fact the iirst column 01 the Routh array.
1 16 -4 3 2 J

To find the number o f eigenvalues in the RHP from the Jeltsch-Fichera array, you have to divide a 

member by the previous one and look at the number variations in signs o f this sequence.

In general, Barnett [19] gives:

k  = V ^01  > ^ 11’

V «ii «2i y
(9.1)

for the Jeltsch-Fichera array.
n.

is in fact the first column o f the Routh array.

As a more general example, consider p{s) = (s + c)(s^ +es + d^ ) ^ . The first column o f the Jeltsch- 

Fichera array o f this polynomial is:
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1

c + 2e

2e{c^ +d^ + 2ce + e^)

2 e (2 t /V  + c \ d ^  +e^) + 2c^e{d^ +e^) + c ( d ‘̂ + 3 ( /V  +e^))

4d^e‘'{c^ +d^ +ce Y  

4cd^e \c^  +d^ + c e y  

Using equation (9.1) we get:

( ,   ̂ 2e{c^ +d^ + 2 ce  + e^) ^
l ,c  + 2e ,— i

c + 2e
2 e(2 c /V  + c \ d ^  +e^) + 2c"e{d^ +e^) + c{d^ +3d^e^ + e ‘*))

2e{c^ +d^ + 2 c e  + e^)

__________________ 4d^e\c^ +d^ + c e f __________________

2e{2d^e^ + c \ d ^ + e ^ )  + 2c^e{d^ + ) + c{d^ + M^e'  + e")) ’

4cd*'e\c^ +d^ + c e f
 ̂ 4 d ^ e \ c ^ + d ^ + c e f  ^

but this is equal to the first column o f  the Routh Array:

1

c + 2e

2e{c^ +d^ + 2 ce  + e^) 
c + 2e

2c^V  + c \ d ^  +e^) + 2c^e(d^ +e^) + c(d* +3d^e^ +e^)

(c^ +d^ +2 ce  + e^)

________________ 2d^e\c^  +d'^ + c e f ________________

2 c /V  +c^{d^ +e^) + 2c^e(d^ +e^) + c(d^ + 3 ^ /V  + e ')

cd^

So one can go back and forward between the Routh and Jeltsch-Fichera arrays very easily.

9.3 Optimum stability, the principal minors of a Hurwitz matrix, and 

the Jeltsch-Fichera array

Barnett [19] shows that the first column o f  the Jeltsch-Fichera array is com posed o f  the leading principal 

minors o f  the Hurwitz matrix. For example, the Jeltsch-Fichera array for 

p (5) = 5 “ + 5 ^ - 1 2 5 ^ - 2 8 5 - 1 6  = 0 is:

1 -12 -16

1 -28

16 -16

-432 

6912
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Also, the Hurwitz matrix for p{s) is H =

^1 -28 0
1 -12 -16
0 1 -28 0
0 1 -12 -16

. The principal minors of H are: H, = 1,

1 -28
1 -1 2

=16, H , =
1 -28 0
1 -12 -16
0 1 -28

= -432 and H, = H = 6912.

Say H is an m x m  Hurwitz matrix for a characteristic polynomial and H = ,

are the m principal minors of H . Say also that there is a p-fold optimum stability point 

for the system polynomial. Then we now know from [19] and from section 9.5 that at this optimum stability 

point the following p principal minors of H will be equal to zero: = 0,  H„_, = 0 , = 0 ’ = 0 ,

This property of Hurwitz matrices provides another method for determining the system parameters 

that ensure optimum stability. It was not pursued in this thesis, as it is equivalent to the Jeltsch-Fichera array 

approach.

9.4 Optimum stability, the Jeltsch-Fichera array, and the Routh array

The Routh and Jeltsch-Fichera arrays both display an interesting property when the system described 

by the characteristic equation is optimally stable in the root locus sense. This property may best be illustrated 

by examples.

Example 1: The Routh and Jeltsch-Fichera arrays for p, (s') = (s + a)(s + h f

The first column of the Routh array for the polynomial p, (s) = {s + a){s + h f  is:

1
a + 3b

b{2a^ +9ab + Sb^) 
a + 3b 

S b \ a + b f  
3a^ +9ab + 8b^ 
ab^

Assume that both a and b are in the left half plane and that a is ftirther to the left than b .

The polynomial /j, (5 ) has a triple root at s = - b . This is the optimum stability point in terms of root locus. If 

we shift the jco -  axis to the left as far as the point s = -b  we are effectively considering the polynomial 

(s + cr) = /?, ( s - b ) . At this point b = 0 and the first column of the Routh array becomes:
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1

a

0
0
0

We see that the three entries in the “tail” of the first column o f the Routh array have gone to zero.

The first column of the Jeltsch-Fichera array for the polynomial (5) = (5 + a)(5' + bf is:

1

a + 2)b

b{2,a^ + 9ab + %b^)

W \ a + b f

% a b \a + b f

At the point /> = 0 the first column o f the Jeltsch-Fichera array becomes:

1
a
0
0
0

We see that the three entries in the “tail” o f the first column o f the Jeltsch-Fichera array have gone to zero 

also.

Example 2 : The Routh and Jeltsch-Fichera arrays for Pjis) = (5  ̂+ as+b){s + c f

The first column of the Routh array for the polynomial (5) = + h){s + c)^ is:

1
a + 3c

ab + 3a^c + 9ac^ + 8c  ̂
a + 3c

c(8a^c^ + 8c^ + 3fl  ̂(3fec + 8c^) + a{3b^ +1 \bc^ + 24c^)) 
ab + 3a^c + 9ac^ + 8c’
8ac^ {b + c{a + c))^

8 a 'c ' + 8c’ + 3 a ' (36c + 8 c ') + aQb^ +1 \bc^ + 24c") 

bc^

Assume that all the roots of (5) are in the left half plane and that the roots o f (s^ + as + b) are further to the 

left than c . The polynomial P2 (s) has a triple root at s = - c  . This is the optimum stability point in terms o f 

root locus. If we shift the jco -  axis to the left as far as the point s = - c v / e  are effectively considering the 

polynomial (■s + o') = P2 (•s -  c ) . At this point c = 0 and the first column o f the Routh array becomes:
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1

a
b

0
0
0

We see that the three entries in the “tail” o f the first column of the Routh array have gone to zero.

The first column o f the Jeltsch-Fichera array for the polynomial P2('^) = +as+b){s + c f  is:

1
a + 3c

ab + + 9ac^ + 8c’

c(8a ’c ' + 8c’ + 3 a ' (36c + 8c ’ ) + aQb^ +1 \bc^ + 2Ac^))

8ac’ (ft + c(a + c))’

%abc^ {b + c{a + c ) f

At the point c = 0 and the Jeltsch-Fichera array becomes;

1

a
ab

0
0
0

We see that the three entries in the “tail” o f the first column of the Jeltsch-Fichera array have gone to zero 

also.

Example 3 : The Routh and Jeltsch-Fichera arrays for ^ 3(5) = {s^ + + fe)(5 + c)'*

The first column o f the Routh array for the polynomial (5 '  + as + b){s + c)* is:

1

a + 4c

ab + 4 a 'c  + 16ac' + 20c’ 
a + 4c

4c(5a’c ' +16c’ +4a^c(b + 5c") + a(b^ +6bc^+29c^)) 
ab + 4a^c + \6ac^ + 20c’

c \\6 a ^c ^  + 16c'’ + a \2 9 b c^  + 64c~*) + 4a^(5fe'c +1 Ibc^ -t-24c’ ) + a(5Z)’ + llb^c^  + 4 \bc^ + 64c"))
5 a ’ c '  + 1 6 c ’  +  4 a ' c ( Z )  - I -  5 c '  ) + a{b^+6bc^+ 29c* )

16ac’(fe-t-c(a + c))‘'
16a V  + 16c’ + a\29bc^  +64c“) + 4a'(5Z)'c + 17Z)c’ +24c’ ) + a(5Z>’ + 22Z)V +4\bc* +64c") 

be*

At this point c = 0 and the first column o f the Routh array becomes:
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1
a
b

0
0
0
0

We see that the four entries in the “tail” of the Routh array have gone to zero.

The first column o f the Jeltsch-Fichera array for the polynomial {s^ + as + b)(s + cY  is:

1
a + 4c

ab + 4a^c + l 6ac^ + 20c^

4c(5aV  +16c' +4a^c(b + 5c^) + a{b^ + 6Z)c' + 29c"))
4c\\(ia*c^ +\ 6c ' + (29bc^ + 64c“ ) + 4 a \5 b ^c  + l Ibc^ + 24c’ ) + + llb ^c^  + 4 I ĵc" + 64c'’))
64ac*’ (6 + c(a + c))"
64abc'°{b + c(a  + c))"

At the point c = 0 and the first column o f the Jeltsch-Fichera array becomes:

1

a
ab
0
0
0
0

We see that the four entries in the “tail” o f the first column o f the Jeltsch-Fichera array have gone to zero 

also.

A trend is becoming apparent in these arrays. If an eigenvalue has multiplicity n then the last n terms 

in the first column o f both the Routh and Jeltsch-Fichera arrays become equal to zero when one shifts the jo) 

- axis onto the multiple eigenvalue. In the optimum stability studies so far in this thesis we have chosen to 

place the operating point at a multiple eigenvalue. A different method for choosing the design parameters is 

now apparent i.e. choose those parameters that make the last n terms in the first column o f the Routh or 

Jeltsch-Fichera arrays o f p(,s + <r) = 0 equal to zero.

We will see in the next section that it is not only the last n terms in the first column but also the last n 

terms in every column o f the Routh and Jeltsch-Fichera arrays go to zero.
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9.5 The last n entries of all of the columns the Routh and Jeltsch- 

Fichera Arrays vanish at an optimum stability point

In this section r.j will be used to indicate the entry in the 7'* column of the Routh array and n.j will be 

used to indicate the i"' entry in the y'* column of the Jeltsch-Fichera array.

We have found that the Routh Array for a system that is optimally stable in the root locus sense has a 

peculiar feature. Specifically, if the characteristic equation is of the form p{s) = {s + a-)” then the last n 

entries in each column of the array is zero. This results in a family of non-linear equations in the system 

parameters and a  that may be solved for those values that lead to optimum stability. The reason behind this 

peculiarity is explored below.

The Routh Array is usually written out for polynomial p(s) with constant coefficients, in order to 

introduce degree of stability information we can write out the Routh Array for p(s + <t) = 0 . The value of 

(T that makes a left column entry in the array equal to zero is a measure of the degree of stability of the 

polynomial.

We know from elementary calculus that for any polynomial

p(s) = a ^ { x - a Y  +a„_^{x-ay^' +... + a , {x -a )  + a„(x-a)  we can write: ^  where p"‘\ a )  is the
k\

k''' derivative of p(s) evaluated at s = a .

For example, if

p{s) = { s -  cr)'' + a(s -  erf + /?(s -  e rf + c (s -c r)  + c/

= s‘‘ + (a-4cr)s^ + (6cr^ - 3 aa  + 6)s^ + (-4cr^ + 3acr^ - 2ba + c)^ + {a* - acr' + ha^ - c a  + d)

we notice that the coefficients are:

_ 4  _ _ 3  , j _ _ 2

0 !
■ = a  - a a  +ba - c a  + d

^   ̂ -  -4a^ +3aa^ - 2 b a  + c
1 !

=  6<t -3acr + 6
2 !

3!

4!

= a -4 c r  

=  1

So we can write the equation p{s) = ( s - a f  + a (s - ( j f  + b{s - a )  + c { s - a )  + d  as:
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4! 3! 2! 1! 0!

The first two rows o f the Routh array for p{s)  become: 

P^'\-CT)
4! 2! 0!

3! 1!

I ,  ,  ,  . ,  ^  • • ^ - 1 , 1  ^ - 2 , ; + l  ^ 1 - 2 , 1  ^ - I J + l  u  • .  jThe Routh algorithm tor creatmg entries k  = ------------------------   —  may be pictured as:

^i-2J+l ■

We can see immediately that if, for example, —— = 0 and ^  = 0 , then these two zeros propagate

along the bottom of the array causing the last two entries in each column go to zero.

We know from section 1.2 that if, for example, there is a triple breakpoint in the root locus at s = - a  the 

characteristic equation becomes, for example:

p{s)={s + a f  =0  at 5 = - a  (9.2)

Differentiating equation (9.2) gives: p'(-s) = 3(5+ a)^ = 0 at5 = - a  (9.3)

Differentiating equation (9.3) gives: p"{s)=6{s + a) = 0 a ts  = - a

In general, if  the order o f the characteristic equation n is even, and there is a threefold breakpoint in 

the root locus then the top right hand comer o f the Routh array looks like:

1- 2,1

1- 1,1

r  .' i j  '
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''1,5-5 ''1,5-4 ''1,5-3 '"1,5-2 '"1,5-1=° 'i

'2 ,5 -5 ''2,5-4 ''2,5-3 ''2,5-2 ''2,5-1 = ° 0

' 3, f -7 3̂, f -6 '"3,5-5 ''3,5-4 ''3,5-3 '" 3 ,5 -2 = ° '"3, -̂1 = ° 0

4̂,^-7 ' 'M -e ''4,5-5 '"4,5-4 ''4,5-3 '" 4 ,5 -2 = ° 0 0

5̂, f -7 ''5,5-6 ''5,5-5 '"5,5-4 '"5,5-3 = ® '" 5 ,5 -2 = ° 0 0

6̂,fl-7 ''6,5-6 ''6,5-5 ''6,5-4 '"6,5-3 = 0 0 0 0

^7,^-7 ''7,5-6 ''7,5-5 '7 ,5 -4  ^ '"7,5-3 = ® 0 0 0

8̂, f -7 ''8 ,5 - 6 ''8,5-5 ^8,5-4 " ^ 0 0 0 0

'9,^-7 '■9,5-6 '"9,5-5 " ® ''9 ,5 - 4 = 0
0 0 0 0

0 0 0 0 0

Figure 9.1 Routh array for a polynomial p{ s  + cr) = 0 o f  order n (even) with a triple eigenvalue at s = - a . 
Those entries in the upper right comer that are zero propagate down the array causing the last three entries in

each column to go to zero.

We can see from Figure 9.1, and from the method for constructing the Routh array, that for a polynomial o f 

even order the last three entries in each column become zero at a point o f  optimum stability.

If n is odd, and there is a threefold breakpoint in the root locus then the top right hand comer o f  the Routh 

array looks like:

''l,^ ''1,^ ''i,V

'■2, ^ ''2,^ ''2,^ 2̂,-â '■2.^ ''2,^ = ° '■2,^

0
II 0

'■4,^

II 0 II 0 0

''5,^ ''5,^ 0 0

'6 ,^ 0 0

'■7,^

0
II 0 0 0

0 0 0

^9 0=11 2
0 0 0 0

^10,^ 0 0 0 0

' 1 1 0 0 0 0 0

Figure 9.2 Routh array for a polynomial p{ s  + cr) = 0 o f  order n (odd) with a triple eigenvalue at s = - a . 

Those entries in the upper right comer that are zero propagate down the array causing the last three entries in
each column to go to zero.
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Again we can see from Figure 9.2, and from the method for constructing the Routh array, that for a 

polynomial of odd order the last three entries in each column becomes zero at a point o f optimum stability. In 

general, if  there is an p-fold breakpoint in the root locus o f a characteristic polynomial then the last p entries 

in the Routh array o f that polynomial go to zero.

There is a close relationship between the Routh Array and the Jeltsch-Fichera array. In particular, if 

is the i"' entry o f the first column o f the Routh array then the /'* entry in the first column o f the Jeltsch- 

Fichera array is n,, = ^ . So if r.̂  = 0 then m,. , = 0 . Generally if r.j = 0 then = 0 so if the last p entries

of a tail o f the Routh array vanish then the last p entries o f the corresponding tail o f the Jeltsch-Fichera array 

will vanish too.

In the following sections it will be seen that the entries o f the Routh array contain quotients that can 

become indeterminate at the optimum stability point. This problem is not encountered with the Jeltsch-Fichera 

array as it does not contain quotients.

9.6 PID controller for an unstable, non-minimum phase process

 C^)(5 +
Section 3.5 uses root locus based optimum stability to design a PID controller C (i) = --------------------  for the

s { s - y )

s — Iunstable, non-minimum phase process G{s)  = —--------- . We can now use the Jeltsch-Fichera array to design
s - s - 2

C ( s ) . The characteristic polynomial o f the system is given by equation (9.4);

p(s)  = s{s - / ) { s  + l)(s -  2) + k{s - a ) { s  + /3){s -1 )  (9.4)

As in section 3.5 we have p{s)  = ( 5  + l Y  so our optimum stability point is a four-fold eigenvalue at s = - 2 .

Forming the Jeltsch-Fichera array for p{s + a )  = p { s - 2 )  = 0  we now know that the last four entries in each

column are equal to zero. Each term in a non-linear express in a , p , y  and k but they can be solved as 

follows.

n 2i= 0  gives:

k = y  + 9 (9.5)

Substituting (9.5) into 9/j,2-i-3«22+«i3= 0 gives:

/  = 41.5 (9.6)

We now have = 50.5 . Substituting  ̂= 5 0 .5 ,/ = 41.5 into «,2=0 gives:

fi = —  + a  (9.7)
50.5

Substituting (9.7) into ~  ̂ gives;

5 0 .5 « U  3 5 a -1 6  = 0 (9.8)

Solving (9.8) gives a  = 0.314463 and a  = -1.00753.

We select the positive value for a  to get:

a  = 0.314463 (9.9)
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Substituting (9.9) into (9.7) gives:

/? = 1.00753 (9.10)

The values for a , f i , y  and k  obtained here are the same values obtained in section 3.5 using root locus.

9.7 Stability domain and optimum stability point for the n-let 

polynomial

Typically, some o f the coefficients o f a characteristic equation are made up from system parameters. For 

example, the characteristic equation p{s) =s{s^ +\)  + k{s^ + f )  is encountered in the n-let effect [99]: the 

magnification o f torque generated by a paralysed muscle in response to electrical stimulation by segmenting 

the stimulating pulses optimally in time. Stability domains are regions in parameter space that are made up of 

points that correspond to parameter values that make the characteristic equation Hurwitz. One way o f finding 

stability domains is to use the Routh array for p{s) = s(s^ +1) + k(s^ + / )  as follows:

1 1
k k f

1 - /  

k f

This system is asymptotically stable (and p{s)  is Hurwitz) if and only if all the entries in the left hand column 

are positive. This means that A: > 0 , /  <1 and /  > 0 .

Picking various value of /  and experimentation with root locus analysis with k  as parameter shows that

p(5) has a triple root at the optimum stability point. At this point p{s)  = Q, - ^ ^ ^  = 0 , and
ds

~  = 0 simultaneously. Solving these equations gives { k , f )  = (V 3,4) and 5 = -  l/V3 .
ds

Plotting the Routh array information and the Root locus information in the { k , f )  parameter plane gives:

f= l

Figure 9.3 Stability region in the (A:,/) for the polynomial p(s)  = s (s^+\ )  + k{s^ + / ) .  The optimum 

stability point (>/3,1/9) derived from root locus is shown.
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Note that in this case there is no centroid to choose as a design point so the method adopted by Datta [29] and 

others cannot be used here.

The Routh array indicates that the stability domain is the band of points bounded by k = 0,

/  = 1, and /  = 0 . Root locus indicates that the point ( k , f )  = (Vs, is significant but there is nothing in the 

Routh array of p{s) = s{s^ +1) + k(s^ + f )  to indicate what is so special about the point ( k , f )  = (Vs, . This

is because some critical information has been omitted from consideration in the Routh approach. That critical 

information is the margin of stability of each point. We not only need to know if a point is stable but also how 

stable it is. The margin of stability can be included in the Routh array by considering the polynomial 

p{s + cr) = 0 rather than simply p{s) = 0 . Writing out the Routh array for p{s + cr) = 0 gives:

1 3cr"-2crA: + l
k-ZcT +k<y^-<T+kf

(k -  3<j)(3cr  ̂ -  2ak  +1) -  (-<r^ + ka^ -<y + k f )
{k-7>a)

-c r’ + ka^ -  a  + k f

Looking at each term in the left hand column one can see by inspection;

/r-3(T = 0at k - y / i  , a  = --j^

{ k - 3 a ) ( 3 a ^ - 2 a k  + \ ) - { - c r ^ + k a ^ - c r  + k f )  . j   ̂ , p; t r \ -------------------------- -— ----------------------- —  IS undefined at k = yJ3 , a  = —W, f  =-j
{ k - 3 a )  S ' J

+ ka^ -  a  + k f  = 0 at k = yj3 , a  = f

In this simple case it is easy to see that the parameter values that make each term equal to zero are the same 

terms that ensure optimum stability in the sense of root locus. There is one difficulty with the term

{ k - 3 a ) { 3 a ^ - 2 a k  + \ ) - { - a ^  +ka^ - a +  k f )  . . .  , r- . , R  i -t’i.- i.-------------------------------------------------------------- as this m undefined at k =yJ3 , a  = —k . This may be
( k - 3 a )

overcome by considering the Jeltsch-Fichera array for p{s + cr) = 0 as follows:

1

k - 3 a

k ~  f k - 2 a - 2 k ^ a  + Ska^ - 8cr’

- ( f k  -  cr(l -  k a  + a^ )){2k^a + k{ - \  + f  -  8cr^) + 2{a + 4cr^))

The second, third, and fourth and entries in the Jeltsch-Fichera array all equal zero at k
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9.8 Generalised Routh array based optimum stability approach for 

designing a PI controller for the process g (s ) = / { s + b y

The characteristic equation for the combination o f a PI controller C (i) = Â ,(5 + a ) / s  and the process 

G{s) = k2 /{s + b)"' is = 5 ( 5  + ̂ ))'" + A:(5  + a) where ^ = ^ ,^ 2  ■ In section 5.2.6 we found that the following

1 j  u • u i- Abmparameters lead to a system with optimum stability: a  = ----------, k  = b   and a = ---------  .
( ot +  1 )  V " J  +  l j  ( w  +  1)

For example, for the process G(5 ) = 1 2 / ( 5  + 5)* these formulas give the PI controller parameters

k = 13452.7 and a =1.975 . The optimum stability point is cr = -1.111.

We can construct the Jeltsch-Fichera array for p (5  + cr) = 0, cr < 0 and, knowing that the last three

entries o f each column are equal to zero at the optimum stability point, derive these values again as follows.

«24 = 0  => cr = -1 0 /9 .

= 0 => k = 67258.7 => A:, = 13452.7 .

/I25 = 0 ^  a = 1.975 .

So the PI controller derived from the Jeltsch-Fichera array is the same as the one derived from root

locus. PI controllers for other processes o f the type G{s) = k^ /{s + b)” can be designed in this way. This is 

another method, equivalent to the root locus method, for designing a system with optimum stability.

9.9 Summary of results in this chapter

A new procedure for designing controllers using the optimum stability approach is described. This method, 

based on the Routh array, is equivalent to the root-locus based optimum stability method and leads to 

controllers that are identical to the root locus based controllers.

9.10 Suggestions for future work

Apply the Routh array controller design approach to systems with other benchmark processes [58].
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Chapter 10: Transform Methods for solving the Lyapunov 

matrix equations with applications

10.1 Introduction

When calculating performance integrals we frequently have to solve either the continuous time or the 

discrete time Lyapunov matrix equation. The purpose of this chapter is to describe a new method for solving 

these equations.

Several new results are presented in this chapter. Also, a new method is used here to derive a known 

result i.e. [83, 100, 101] on the use of Laplace Transforms in calculating performance integrals (described in 

section 10.2). It is an advantage of the new derivation procedure described here that some novel extensions 

are very natural and obvious. For example, previous authors did not extended their results to general time 

weighting. This is done in section 10.2.2. Another new result, in section 10.4, shows how to solve the 

continuous time Lyapunov Matrix Equation using the Laplace Transform. Also, section 10.5 shows how to 

solve the discrete time Lyapunov Matrix Equation using the Z  Transfonn. Finally, these results are extended 

to the calculation of performance sums for discrete time systems in section 10.6.

One advantage of the method described here is that once a single Lyapunov Matrix equation has 

been solved, an infinite number of related Lyapunov Matrix equations have also been solved also. Another 

benefit of the approach taken here is that it allows one easily to study how the eigenvalues of L , the solution 

to the Lyapunov Matrix equation + L A = - Q , are related to the eigenvalues of A , the system matrix.

10.2 Calculating time weighted performance integrals using the Laplace 

transform

10.2.1 Performance integrals with polynomial time weighting using the Laplace 
transform

Loo [100], Ramar and Ramaswami [101], and Zhuang and Atherton [83] ([100] was simplified by Power 

[102]) pointed out that the following Theorem allows one to calculate time weighted performance integrals 

using Laplace Transforms:

(/)} = (-!)"
A d" ^

Vds"y
X,{e^{t)} where £,{e^{t)} is the Laplace Transform of the square of the error signal.

' 0 1 0 > r i 0 o'
For example: Let A = 0 0 1 ,Q = 0 0 0

-27 -27 -19J .0 0 0.

, x(0) = (1,0,0)

Using MacFarlane’s procedure we get £  { t )Q \ { t )d t  = (-l)^x^(0)L4x(0) = 1.01806.

Using the Laplace transform approach we first get:

r* 5’ +765“ +19405^+194965^+655025 + 91476
( t )Q \ { t )d t  = —--------;---------- ------------- r------------ ;--------------------------

5" + 76 j’ +19405“ + I955O5'  +685805^+1362965 + 104976
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r® 1 TIn this case we want to calculate f x (0Qx(0<^^ • so we use the above Theorem to get

   _____        .04976
= 1.01806

i.e. the same answer as the MacFarlane approach.

10.2.2 Performance integrals with general time weighting

If g(t) is a polynomial in t then £{g{ t ) f ( t ) }  = g \ —— ]-£{/(0} [103]. We can use this to calculate a
^ d s j

performance integral that is weighted by any function that can be expressed as a power series in “f ’. This was 

not pointed out in [100], [101] or [83].

f l  1 r ”  f U )Another Theorem that says: , provided lim^ exists [103].
[t  J t

So, provided the limit exists, this would allow us to calculate performance integrals that punish 

severely those errors that occur early on. As time progresses, the errors would matter less and less. I don’t 

know an application where such a performance integral would be of value.

10.3 Analytic Solutions to the Lyapunov matrix equation

Malkin [ 104] pointed out that if A is Hurwitz then

( 1 0 . 1)

is a solution to:

A^L + LA = -Q

This can be seen by substituting (10.1) into (10.2) to get:

( 10 .2 )

= e^"'Qe^'\ = 0 - Q  = -Q
lo

Malkin’s [104]result may now be extended to show that

(10.3)

is a solution to

(10.4)

This also can be shown by substituting (10.3) into (10.4) as follows:
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= 0 - Q  = -Q
0

So (10.3) is a solution to (10.4).

In section 2.4.2 we derived a method for calculating exponentially weighted performance integrals

f *  Texp(-or?)x Q \ d t . The analysis above is another way to derive this result. That is,

r Texp(-arf)x QTuit = x  (0 )L x(0) where L is the solution to:

10.4 Using the Laplace transform to solve the continuous time 

Lyapunov matrix equation

We can write L = J ^ e ' ' 'e  ' Q e ' d t  i.e. the solution to equation (10.4), as the Laplace

Transform: and we can calculate these integrals by looking up tables. So by altering Malkin’s

integral to look like a Laplace transform we can solve (10.4) by looking up tables.

For example, if we call the state transition matrix e*' = <I) =
V^2l ^22 y

and if Q =
1 0

then

we can write L =X{<I>^QO} =£.
<D î + 0 ^ 1  

v0)„0,j+02,(l>22
^ 11^12  ' * ■ ^ 21*^22 

0 ^ 2  + 0 ^ 2
So, for example,/, I =X {0 n +0^2ij

All the results in the following sections can be derived from this. Also, if we now let 5 = 0 we have the 

solution matrix for + LA  = - Q .

' 1 0 . 0 ^
0 0 . .  _ j.

As another example if  Q  = then the performance integral e x ( t)Qx(t )dt  may be

.0  . . 0,

f *  _ » 9 7written as e “ x, ( t ) d t . This last integral is reminiscent o f the Laplace Transform o f x, (/) provided we say 

a  = 5 . So we can write £  e '" 'x^(f)Q x(/)rf/ = £  e~"xf(t)dt =£.{x^(t)Qx{t)}  =X{xf(/)} •

From section 2.4.2 we know that given a continuous time linear system = Ax{t ) , if  A is
dt

Hurwitz, we can write £  e'^ ' x^{t)Qx{t)dt  = x^(0)Lx(0) where L is obtained fi"om equation (10.5).

These facts suggest that the Lyapunov matrix equation (10.5) may be solved using Laplace 

transforms. (The converse is also true but less interesting i.e. you can calculate the Laplace transform of 

certain functions using the Lyapunov matrix equation.)
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N ote that in the expression different Q ' s  g ive different combinations o f  solutions. For

exam ple, i f  all q,j = 0  except g',, = 1 then { t ) Q \ { t )  =  {t) =  e rror^{ t ) . H ow ever, i f  Q  =  1 then

x ^ ( 0 Q x ( 0  +  • So, depending on the structure o f  Q ,  the Laplace transform o f  different

combinations o f  the solutions to

these ideas.

d \ { t )

dt
: A x (f) are solutions to (10.4). The follow ing exam ples illustrate

10.4.1 Example 1 - Laplace transform solutions to the continuous time Lyapunov 

matrix equation

Solve the Lyapunov matrix equation L + A j  = - Q  with A  =

using Laplace Transforms. N ote that different x (0 )'5  (i.e. different initial conditions) may be used to pick o ff

" 0 P O'
and Q =

. -2  -IJ .0  0 ,

different entries in L . So ( l  0 )L  = / | i ;  (0  l ) L  =1^  ̂ and (l  l ) L  =  + 2 /,2 + ^ 2 2  g i^ in g /ij
V®/  V V  V /

and from symmetry o f  L w e also have / j , .

Calculating the state transition matrix

The state transition matrix <I>(0 g ives a solution vector for any initial condition: x(?) =  <D(Ox(0) • may 

be found by calculating either <!)(/) =X"' {(^l -  A ) ' ' } or cD(?) =  e ^ ' .

f  e"  [7C o5(4) + ^Sin{%]

- 4 e ~ ' S i n { ^ )
[ - 7 C o s ( %  +

C alculating/, I

f  JC, (0 ^
' \ j C o s { %  +  V 7 5 /n (4 - ) ] '

To find take x (0 ) =
.Oj

to get the solution vector x ( 0  = =

U sing Laplace Transform Tables w e find: 

£ { x f { t ) }  = x [ ( { e - "  [7C o5(4^ ) + V 7 5 m ( 4 ) ] ) ' j  =
s  + 3 5 +  6 

+35^ + 1 0 s+ 8

So now  w e have (0} = = x^(0)Z ,x(0) = (l 0 )L
_   ̂ _  s + 3 s  + 6 

~  ~  s^+35^ + 10s + i

This agrees with the /,, found by solv ing  ( A - - | I ) ^ L  + L ( A - - | I )  =  - Q  directly.
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Calculating

To find /,, take x(0) =

Using Laplace Transform Tables, we find:

\ 2 '

'0^

.1 /
to get the solution vector x(f) =

2e' '-Sin(%

£{x, \ t ) }=£-
s + 3^ +IO5 + 8

So now we have £{x,^(;)} = £  ^ "xf{t)dt = x^(0)Lx(0) = (O l)L
vly 5 +35 +IO5 + 8

Again, this agrees with the 1̂2 found by solving (A - - |I ) ^ L  + L (A --H ) = -Q directly. 

Calculating /j, (which, from the symmetry of L , is equal to )

If we take x(0) =
vl/

we get the solution vector

\(t) = Xtit)
V^2(0y

+ V *  [7C os(%  + V7S,„(4)]

-4e‘=5m(#)
'  - 1 e "  [ - 7 Co5(4^) + V ? 5 /« (4 )]  

Using Laplace Transform Tables, we find;

X{x,^(0}=X 2e’^5 /«(4) + ^7Cos{^)  + \ f7S in{^ ) j s^+5s + \2 
+ 35  ̂+IO5 + 8

We know (l 1)L 

5̂  + 55 + 12

vly

2/„ =

—  /|1 +  2/|2 +  I22

s +35 + 6

2/.2=(1 1)L
^1̂

vl/
/i I I2 2 .

25 + 4

5^+35^+105  + 8 5^+35^+105  + 8 5^+35^+105  + 8 5^+35^+105  + i

So /.-j If, ■ 5 2
5’ + 35 ' + 1 0 5  + 8

So the solution to | A - - ^ l l  L + l ( A- -^I  | = - Q  with A =
'  0 r '1 O'

and Q =
.-2  - I .0 0,

is:

L = 1
(5 + 1 ) (5 '+25  + 8)

5 +35 + 6 5 + 2
(10.6)

5 + 2 2 ^

The matrix L given by equation ( 10.6 ) indeterminate at the roots of (5  + 1)(5  ̂+ 25 + 8) i.e. at 

5  = - 1 , 5  = -1  + j y j l . The explanation for this is as follows. We know from section 2 .2.1 that the solution to

A - - ^ l j  L + l |^A--^I j  = -Q  exist except when a combination of eigenvalues of A - I  j  sum to zero

i.e (A;+/l^.) = 0 . The eigenvalues of ^ A - -^ l j  are {X^,X2 ) = ^ ( - \ - j y j l  - s , - \  + - s ) . All possible

combinations of these eigenvalues are: A^+ \ = - \ - j 4 l  - s  , A^+X2 = - \  + j 4 l - s  and A^+A2 = - \ - s .
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So solutions do not exist i f  any o f  these sums is zero i.e. at s  = - l ,  5 =  - l  - y V ?  or at 5  = - 1  +  yV ? . But 

these are just the roots o f  (1 + + 25 + 8 ) .  So w e w ould not expect L  to be defined at these values o f  s.

10.4.2 Extending Example 1 to infinitely many Lyapunov Matrix Equations

5  =  0  => L =

5  = 1 => L =  —  
22

5  = 2 => L =  —  
48

f l  ± \
4 4
X i

V4 4 7

'10 3

3 2

16 4^

4 2

is the solution to A^L + L A  =  - Q  where A  =
0 1

-2  -1

is the solution to A^L + L A  =  - Q  where A  =

V

is the solution to A^L + L A  =  - Q  where A  :
/

'  0 1 ' 1
2 0"  ̂ 1 

2 1 '

. - 2 - K 0 1
27 - 2 3

27

'  0 1 ( \ o ' f - l 1 ^

. - 2 -1 > .0 1 . - 2 - 2 .

Since A  is Hurwitz this process can continue indefinitely as a non-Hurwitz A  w ill never result from forming

A -  — I I - the real parts o f  the eigenvalues w ill just get more and more negative.

10.4.3 Example 2 - Laplace transform solutions to the continuous time Lyapunov 

matrix equation

Solve I A - - ^ l j  L + l [ A - - ^ I  | = - Q  with A  =
( - 6  1 ^ '1 O'

, and Q  =
1 - 2  - 3 j .0  1.

using Laplace Transforms. W e

must calculate Laplace transforms like: £  e "x'^(/)Qx(r)c/r = £  + x \ { t ) ] d t  =Ji {x^{t )  + x \ { t ) }

In this case, 0 (? )  =X"' {(5 I -  A ) ' ' } = e~̂ '
2 - e '  - \  + e'

2 - 2 e '  - \  + 2e'

C alculating./, I

= «!>(?)
r n

= e
' 2 - e ' '

.^ 2 (0 , . 0 ^ . 2 - 2 e ' ,
/ m  2 /  \  2 / \ »  + 1 5 5  +  6 6so /,, =£{x^ {t)  + x^(t)}  =  -

(5 + 8)(5 + 9 )(5 + 10)

Calculating L

- l  + e' 

- \  +  2e’
so /22 = £ { j c ' ( 0  + Ji:2 (0 } =

5^+215  + 114 
(5 + 8)(5 + 9 )(5 + 10)

Calculating /,2  (=  /21)

'x ,(0 ' rr
= e-̂ '

' 2
= <&(0

.1 . 2 -
= e so

^21 = ^ 1 2  =U£{ x f { t )  + x l ( t ) } - l , , - l ,A = -------- ---------------
" 2  ̂ ' (5 + 8)(5 + 9)(5 + 10)

W e now  have L =  -
1

(5 + 8)(5 + 9)(5 + 10)
5^+155  + 66 - (5  + 18)

- (5  + 18) 5  ̂+ 215 + 114
is the solution to



As already seen in Example 1, this matrix become indeterminate for certain values o f  s, i.e. at 

s = - 8 , - 9 ,  or - 1 0 .  The explanation for this is identical to that given in Example 2. We know from section

2.2.1 that the solution to ^ A - - ^ l j  L + L ^ A - - ^ l j  = - Q  exist except when a combination o f  eigenvalues o f

A - ^ l j  sum to zero i.e. (A^+Aj)  = 0 .  In this case the eigenvalues o f  |^ A --^ lj  are

s s
= ( - 5 -  —, - 4 - —) .  All possible combinations o f  these eigenvalues are: / l , + A |= - 1 0 - 5  ,

^  = - 8 - i  and /I, + A2 = - 9 - s  . So solutions do not exist if  any o f  these sums is zero i.e. at \  = - 1 0 ,  

5 = - 8  or at s = - 9 .  But these are just the roots o f  {s + 8)(5 + 9)(s + 1 0 ) .  So we would not expect L to be 

defined at these values o f  s.

10.4.4 Extending Example 2 to infinitely many Lyapunov Matrix Equations

5 = 0 => L =

5 = 1 => L =

^ J l  __L
120 40

40 120

41 19
495 990

19 68
990 495

5 1

is the solution to A^L + L A = -Q  where A  :
-6 1 
-2 -3

is the solution to A^L + LA  = - Q  where A =
' - 6 1 ^

f  1 
2 o '

II

f  [\ 1 \  
2 ‘

. - 2 - 3 . lo 1
2 J

1 1

6 6  6 6 is the solution to A^L + L A  = - Q  where A =
r - 6  1 ' o ' ' - 7  1 '

1 4 . - 2  - 3 . .0  1. . - 2  - 4 ,
5 = 2 => L :

~ 66 33

Since A is Hurwitz this process can continue indefinitely as a non-Hurwitz A will never result from forming

A -  — I I - the real parts o f  the eigenvalues will just get more and more negative.

10.4.5 Example 3 - Laplace transform solutions to the continuous time Lyapunov 

matrix equation

A, 0 

vO
Q =

1 0
Solve I A - ^ l l  L + L f A - ^ l l  = - Q  with A

vO l y

Transforms.

Note in this case: <I>(0 :
e'^ 0

0 e'^
. Also, the eigenvalues o f  A are

using Laplace

Calculating,/, I

= <D(<)loj so /„ = £ { x f ( t )  + xl { t ) }  =
1

( 5 - 2 ^ )
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Calculating t„  

= <D(0
.  . .(O'] f  0 ^

so  / 2 2  = £ { x f { t )  + x l { t ) }  =
1

V'' / ( S - 2 X , )

Calculating / , 2  =  /j,

= <D(0
r n

=
j.•^2(0.

So L =

1
5-2A,

0

so /2, (= /,2 ) = (f) + -  /22 ) = 0

. The eigenvalues o f  L are  ̂ =
5 - 2/1, s - 2 A ^

I f  s  = 0 then w e have the

s - 2 A ^

standard result that the eigenvalues o f  L are /y,  ̂ = 

10.4.6 Discussion

-2/1, -2 /} ,

The fact that it is possib le to solve the Lyapunov matrix equation using the Laplace transform is 

interesting. A lso , this procedure is analytical rather than numerical as, for exam ple solv ing equation (2 .4 ) (i.e.

(-1 )"  D E ^ [ a  ̂ 0 1  + 1®  EL^ = Q c) fo*’ L or using Barnett and Storey’s method [105] so there are no

problem s with rounding errors.

One advantage o f  the Laplace transform method o f  solution is that once you have solved  the 

Lyapunov matrix equation for one matrix A  you have solved  it for an infinite number o f  related A 's  .

Barnett’s method [105] for solving the Lyapunov matrix equation requires only the inversion o f  A  . 

The Laplace Transform method described above requires solv ing the differential equation (by calculating  

j y '  { { s i  -  A )" '} or by som e other means) and calculating numerous objects that look like £ . { x l (0 }  ■ So there 

is no computational advantage. It may be possib le to get around this by using a canonical form for the matrix 

A  and deriving a corresponding canonical form for the matrix L .

Looking at these results another w ay, w e have a means for solving ordinary differential equations by 

solv ing the Lyapunov matrix equation.

10.5 General solution to the discrete time Lyapunov matrix equation  

using the 2  transform

A  set o f  results that are entirely analogous to those derived above for the continuous time Lyapunov  

matrix equation may now  be derived for the discrete time Lyapunov matrix equation.

L = (10 .7 )

is a solution to the continuous time Lyapunov matrix equation (10 .2 ). Equation (1 0 .7 ) has the structure

t ^(sta te  transition
L =

•'“ 1̂ m atnx

^state transition^

m atnx
d t ,

This suggests that the equation
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L = Z
state transition 

matrix

T
State transition

matnx

could be a solution to the discrete time Lyapunov matrix equation;

A ^L A -L  = -Q  (10.8)

In the discrete time case we have \ (k) = A*x(0) so we can regard A‘ as the discrete time version of the state 

transition matrix. So we assume that
CO

L = ^ ( A ’')*QA* (10.9)

is a solution to (10.8). We substitute (10.9) into (10.8) to get:

A'' f  (A^')‘ QA* 1A -  ̂  (A^ )* QA*

= ^[(A^)*"'QA *^' - ( A ’')*QA*]

= A^'QA - Q + (A '')^QA' -  A^'QA + (Â ' f  QA’ -  (A '') 'Q A '....

=  - Q

CO

So, L = ^ (A ^ )* Q A ‘ is indeed a solution of A '^L A -L  = - Q . LaSalle [106] derives this result in

a different way. It is interesting to note that the solutions to the continuous time and discrete time Lyapunov 

matrix equations have identical structures.

As in the continuous time case, we can now say that if (10.9) is the solution to (10.8) then

L = ^ g -^ (A '')* Q A ‘ = |] e '= ’(A'')*Qe'^*A* (10.10)
*=0 /t=0

is a solution of

(e‘^’A '')L (e '^*A )-L  = - Q . (10.11)

But ^e-*^' (A'‘)*QA‘ =2{(A '')‘QA*} i.e. the 2  transform of (A'‘)*QA‘ . So 2{(A'')*QA*} is a solution
*  =  ()

of (e”̂ ’A^)L(e~^*A)-L = -Q  . Choosing different ^ '5 results in different Lyapunov matrix equations so, 

when we have solved one Lyapunov matrix equation we have solved an infinite number of related Lyapunov 

matrix equations.

We can solve (10.11) using Z  -transforms and then let 5 = 0 to find the solution to (10.8). As for 

the continuous time case described in section 10.4, we need to find the state transition matrix here too. In the 

discrete time case this means we have to calculate (A^)*or (A)* before we can solve the discrete time 

Lyapunov matrix equation. Alternatively, the state transition matrix in a discrete time control system may be 

calculated s follows [ 107] A* = 2  ' '  {(zl -  A)“‘ z ) .

We met (10.11) before in section 2.10 in the context of exponentially weighted performance sums. 

Here, we have derived again the formula for calculating the exponentially weighted performance sums but 

this time using the Z  transform.

It is nice to see that the Laplace Transform can solve the continuous time Lyapunov matrix equation 

and the Z  Transform can solve the discrete time Lyapunov matrix equation.
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10.6 Calculating time weighted performance sums using z  transforms

Jury [108] gives the following identities that are analogous to those found in the continuous time case:

ifZ { /(0 }  = F (z )th en  \ Z { t f { i ) \  = - T z ^ F { z )  and Z{t'^f{t)\  = - T z ^ F ^ { z )  where F^{z)=Z{t'‘' ' f { t )}
dz dz

where k > Q and an integer. As for the continuous time case these identities can be used to calculate time

weighted performance sums for the discrete time case.

10.7 Suggestions for future work

(a) Makila [109] has shown that the standard unilateral Laplace transform may be used to solve initial value 

problems for linear constant coefficient differential equations with jump discontinuities (steps) in the input.

■ d^y ,  d^y -^ d y   ̂d̂ u , ,  ̂ ^An example o f such an equation is: — r + 3— ^  + 3 — + v = 2 — - - u  , where u{t) = 1 for f < 0 , and
dr dr dt dr

u{t) = 4 for t > 0 . It would be interesting to see if the methods described in this chapter extend to these 

problems.

(b) Time weighted performance integrals may be evaluated using the Routh array [110, 111] so it should be 

possible to find a link between Laplace transforms and the entries in the Routh array.

(c) Investigate the Matrix Laplace Transform described by MacFarlane [112] and the Matrix Z  - transform 

described by Jury [34], and see if one has solved every Lyapunov Matrix equation once the solution to one 

equation is known.
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Chapter 11: Summary and Conclusions

Procedures for calculating perform ance integrals were developed within a unified framework 

provided by the K ronecker product and M acFarlane’s procedure [30], M acFarlane’s procedure has been 

sim plified and extended to discrete time systems. All new procedures have been presented in a way that may 

be implemented easily using standard com puter programs.

The methods for calculating discrete time control system perform ance sums for the system 

x{k  +1) = A x(^) proposed by Jury [34] and Barnett [33] and M ansour [35], are sim plified by using the 

number triangle given in section 2.6. The coefficients that arise in these calculations have several interesting 

properties that have not been rem arked upon before -  including a relationship with Stirling numbers o f  the 

second kind. These properties are described in section 2.7.

The num ber o f  equations to be solved when calculating or may be reduced to a minimum by 

the use o f  the E and D matrices described in section 2.2.2, 2.2.3, and 2.2.4.This m ethod is sim pler than that 

derived by Chen and Shieh [32].

Expressions for exponentially weighted perform ance integrals and sums were derived in sections 

2.4.1, 2.4.2, and 2.10.

A root locus based optim um  stability approach was used to design a second order controller for a 

second order, unstable process with non-minimum phase from Doyle [45]. The perform ance o f  the controller 

using root locus was com pared to a sixth order controller from the literature designed using / /„  methods. 

The controller designed using root locus based optim um stability is o f  lower order than the / / „  controller 

and it results in a system that is more robust and with very much enhanced perform ance when com pared to the 

system using a / / „  controller.

In chapter 4 two controller design methodologies were described -  one that uses root locus based 

optim um  stability and the other based on minimising perform ance integrals o f  the form 

f *  rexp(or<)x ■ The values for Q  and f o r a  are problem  specific. Root locus is used to make the

minimum value o f  or as large as possible. Two examples were used to illustrate that the controllers obtained in 

both cases are identical. The first example was o f  a second order system and the second example was o f  a PI 

controller for a specific unstable process. In both o f  the examples a plot o f  the perform ance integral against 

the system param eter exhibits a smooth broad shape with a unique minimum point. This means that the 

system is robust to large variations in the design param eter as this result in small variations in the 

perform ance integral. This implies in turn that designing a system with maximum eigenvalue sensitivity does 

not lead to a degradation o f  performance.

In addition, the step reference response, the impulse disturbance response, and the step disturbance 

response o f  the optim um  stability PI controller are shown to be superior to a PI controller that was designed 

by using the centroid o f  a stability region as the design point. The appeal o f  the centroid as a design point is 

simply its distance from  the stability boundary. However, this fails to take into account the degree o f  stability 

o f  the point. The optim um  stability point has the virtue o f  not only being in the stability region but o f 

occupying a point o f  optim um  stability.

147



It was shown that systems with controllers that were designed for multi-lag processes using either 

Lyapunov based optimum stability or root locus based optimum stability exhibit greater robustness margins, 

and smoother response characteristics than systems with controllers designed using a selection of other 

methods from the literature. However, systems with controllers designed using optimum stability tend to 

exhibit greater peak disturbance responses.

General formulas were given for root locus based optimum stability design for a PI controller, and a 

restricted class o f PID controller for process G(s)  = /(s + b)"'. A root locus method for fine-tuning the

standard Ziegler-Nichols controller parameters was described in sections 5.2.2 and 5.3.2. The resulting 

controller outperforms the original Ziegler-Nichols design.

Chapter 6 presents a new procedure for the design o f PI controllers for general FOLPD process. 

Equations (6.15) and (6.16) are derived - two simple equations that allow the designer to calculate the 

controller parameter values using the process parameters only. This method is applied to the design o f PI 

controllers for specific FOLPD processes that are presently discussed in the literature and compare PI 

controllers that were designed using optimum stability with PI controllers that were designed using a variety 

o f performance integral and domain o f stability considerations. By calculating gain margins, phase margins, 

delay margins, and plotting various response curves we see that the controllers that were designed using 

optimum stability offer, by these standard measures, enhanced performance when compared with the other 

controllers.

The application of the analytic root locus to the design o f a PI controller for an integrator with time 

delay is described and attention drawn to a relationship between the root locus equation for a system with 

time delay and the Lambert W function.

A new idea for tuning PI and PID controllers was presented, based on analogy with the maximum 

power transfer theorem from linear AC circuit theory. The approach has been identified as one that specifies 

the phase margin and the frequency at which it is effective. It has been illustrated by designs for third order 

and eighth order members o f a restricted class o f  asymptotically stable processes, considered by Datta et al. 

[4]. Explicit formulas, involving the process parameters only, were derived for calculating the max power 

transfer based PI controller parameters for the process G{s) = !{s + b y . Controllers designed by an

optimum parameter space approach due to Datta et al. [4] give a much more oscillatory behavior and longer 

settling time.

An interesting observation is that the controller designed by using max power transfer considerations 

is very similar to the one designed fi'om root locus based optimum stability considerations - the difference 

being in the value o f the gain.

A model o f  the human balance control system was studied and four parameters selected -  one for 

each major control loop. Nyquist analysis was used to select pairs o f  parameters that lead to Optimum Phase 

Margin but this is a graphical procedure and therefore approximate. The Lyapunov matrix equation was used 

to select all four parameters simultaneously -  these parameters gave optimum eigenvalue location. The 

parameters selected using Nyquist analysis tended to lead to systems that are underdamped and have very 

oscillatory impulse responses. Parameters derived from the Lyapunov matrix equation and optimum
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eigenvalue location, gave impulse responses that were fare less oscillatory and settled after about 6 seconds to 

10 seconds.

A new procedure for designing controllers using the Routh array was described. This method is 

shown to be equivalent to the root-locus based optimum stability method and leads to controllers that are 

identical to the root locus based controllers.

New methods to solve the continuous-time and discrete-time Lyapunov matrix equations were 

described; these methods employ the Laplace transform and the Z  transform respectively.

11.1 Suggestions for further work

Several suggestions for further work were made in sections 2.12, 4.4, 5.6, 6.8, 7.6, 8.6, 9.10, and 10.7. Other 

suggestions are:

Controller design based on other possible definitions o f optimum stability. For example, using the circle 

criterion where the radial distance from the centre o f the circle to the Nyquist diagram is to be as large as 

possible.

Controller design based on optimum stability using Lyapunov functions. This would involve the synthesis of 

systems to satisfy a Lyapunov function V , where dV id t  is as negative as possible. The use of Lyapunov 

theory to synthesize systems has received some attention [15, 113, 114] and the notion o f synthesizing a 

control system that makes d V /d t  as negative as possible is mentioned by Kalman and Bertram [17] and by 

Brogan [107].
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Appendix A: Performance integrals

A.l The need for performance integrals

A standard way o f designing robust control systems is to choose controller parameters that optimise 

a performance measure [12, 13]. Integrals o f the time-weighted error squared such as:

/„ = £  t" X ^ (t )Qx(t)dt  = £  t" e^{t)dt , where Q ■■

^ 1 0 . 0  
0 0 . 0

, is the state vector in phase variable

^0 0 0 0;

form, the error squared signal is given by e^(t) = x  ^ { t ) Q x ( t ) , are well-established performance measures. 

Although these integrals have been used since the 1940’s they are still relevant today -  see for example 

Ackermann [93] , Wade and Johnson [76], and Albertos and Sala [115]. Procedures for calculating these 

integrals have been described elsewhere [30, 105] as well as in section 2.2.

Some authors follow Anderson and Moore [116] and include the process input «(?)in the

i»oo _  T _
performance integral to get f { t ) [ x  { t)Qx(t)  + u ( t )Ru( t) ]d t  -where the m atrices^ and are problem

specific and f ( t )  is a time weighting function. Their intention is to choose !7(/)to minimise this integral and 

thereby design a controller that is optimal in that sense. The approach taken in this paper, and by many 

authors such as Wade and Johnson[76], Visioli [117], Zhuang and Atherton [118], Dan-Isa and Atherton 

[119], Ho et al. [22], and Astrom et al. [120], is to set u{t) = 0 and concentrate on minimisation of the time- 

weighted error squared signal alone. Choosing parameters that minimise some performance measure is a 

standard way of designing robust control systems. Also, performance measures may be used to give a figure 

o f merit to the design o f a system. When used along with other indicators such as step input response, 

disturbance rejection, settling time, overshoot, etc., they give a design method or else a method for assessing a 

deign methodology. System performance may be assessed objectively by using an index o f performance such

r® 7 7as e (t)dt or te (t)dt as a quality index -  where e{t) = error.

Ackermann [93] refers to such measures as being o f great importance and he uses these measures 

routinely as a performance indicator [121]. Datta et al. [29] list the minimisation o f such integrals as one of 

the three new controller design techniques. Albertos and Sala [115] describe optimization strategies, 

including the minimisation o f  such performance integrals, as “..a powerful strategy with significant impact in 

practice” and “ ...o f  extraordinary importance in general control theory”.
i»oo -  J»oo -

Performance integrals such as te (t)dt or exp(af)^ ( t ) d t , where e(t) is the error signal, may 

be considered as system norms. These integrals are norms in the sense that they give a measure of the distance

f  ® 7between the desired output and the actual output. An integral such as te (t)dt satisfies the three 

requirements o f a norm (for ? > 0 )  i.e. it is a real number; it is either 0 or positive; it is only zero if  e(t) = 0 .
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(These integrals converge iff  e{t) —> 0 as i —> qo ). I f  the distance represented by such an integral is m inimised 

then the behaviour o f  the system is optim ised with respect to that norm. Designing control systems to 

minimise such norms is a long established approach [30, 122-124], It is shown in section 4.1 that, in some at 

least one interesting and general case, the root locus approach is actually a  graphical technique that minimises

f *  f  2 ^the system n o rm y  = J^ e x p (a O j^  (0  + — 2 ■̂ ^̂ 1 i d t . This criterion minimises the accum ulated time- 
d t )

weighted sum o f  the square o f  the error plus the square o f  its derivative. A discussion o f  the use o f  

perform ance integrals in control system design is given in section A.2.

A.2 Using performance integrals to design a controller

The following is an outline o f  a controller design procedure based on the m inimization o f  a perform ance

integral.

k-
(a) Choose a controller structure such as a PI controller; C{s) = k + —  .

s

(b) Find the vector o f  initial conditions jc(0) corresponding to the stimulus being studied.

(c) Evaluate /„ - this will be a function o f  the controller parameters , A:,) .

(d) Find those values o f  controller param eters A:, ) that minimise /„ .  We now have the controller

param eters ( k^ , k . )  that minimise /„ in response to the stimulus chosen in step (b).

A.3 Overview of the literature on performance integrals

In 1965 M acFarlane [112] gave many references for the history o f  the problem  o f  calculating perform ance 

integrals for continuous time systems, starting in 1887 with Volterra. However, he does not mention 

perform ance m easures for discrete time systems, as work on this topic did not begin until 1970.

A.3.1 Performance integrals for continuous time systems 
1943

f  *  ?Hall [122] proposes e (t)dt  as a perform ance in tegral- where e (0  = error.

1951

f  ®Nims [123] proposes the tim e-weighted perform ance integral: te(t )dt

1953

Graham  and Lathrop [125] com pared eight figures o f  m erit for the transient response o f  Linear Tim e 

Invariant systems. These figures o f  m erit include dt, £  t^e^(t)dt ,etc.  This

paper created great interest in ITAE  = £  • The ITAE does not penalise large initial errors as m uch as

long duration transients. G raham  and Lathrop [125] used analogue com puter studies to derive tables o f  

standard transfer functions that minimise the ITAE for different inputs.
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1954

Westcott [124] provides a detailed study o f the performance integral: £  te^{t )dt  

1961

Schultz and Rideout [126] provide a comprehensive survey o f the work to that date and ciscusses 

performance measures for systems with random inputs.

1963

MacFarlane [30] gives a solution to the continuous time Lyapunov matrix equation A^L + L A = -Q a s  

1 = B^' q where the matrix B , an f (n  + l)x y (/i + l) matrix, is formed from the matrix A by folkwing an 

algorithm. This algorithm exploits the symmetry o f  L in order to reduce the number of equatiois to be 

solved to a minimum. He then states that in general 1„ = B“" q where is the contracted vector solution to 

A^L„ + L„A = L„_|. Performance integrals can be calculated using this L„ without recursively .'olving a 

series o f Lyapunov equations. MacFarlane’s algorithm was simplified by Chen and Shieh [31]. Their 

approach was misunderstood initially [127, 128] and up to now has been considered to be the most efficient 

possible by, for example, Gajic and Qureshi [129].

In section 2.2.2 o f this thesis a different algorithm is given that exploits the symmetry o f L lo reduce 

the number o f equations to be solved to a minimum. This algorithm is simpler than those proposed by 

MacFarlane [30] and by Chen and Shieh [32],

1964

P. C. Parks [130] expresses the system matrix in Schwarz canonical form. He then integrates the Lyapunov 

function V = -2b lx l  [17] and shows how to calculate x^{t)dt . He then

^ 0 0  -  -  .

calculates t x  (t)dt, and t x  (t)dt for a second order system by first integrating by parts and then using

the Lyapunov equation approach again. He is actually using an early version MacFarlane’s procedure [30] 

independently of MacFarlane.

J. E. Diamessis [131, 132] also expresses the system matrix in Schwarz canonical form. He then changes 

variables from a: to w using x  = Using the idea o f a moment generating function from probability

theory he then derives an expression for t x  {t)dt that is similar to that derived by Parks [130].

1966 and 1967

Lehoczky [111] and Csaki and Lehoczky [110] show how to calculate the following integrals using the 

second, third, fourth etc. columns o f the Routh array: /„ = x {t)dt, ix {t)dt, and

f ® 2 2? X { t )d t  where x(t) is a solution to a differential equation o f degree n. Ramar and Ramaswami [101] 

describe a generalisation o f this.
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1967

f * 2H. M. Power [133] puts the system matrix into Routh canonical form and then calculates x {t)dt by 

calculating V = - I b ^ x l , and then integrating both sides. He extends this result to integrals such as

30 / ____ \ k  aj / ____ \ k

S. G. Loo [100] writes F{s) = f e'"t'‘x^(t)dt = ^ -------- f t ‘‘x^(t)dt = ^ . He then regards F{s)  as
“ /i=0 °  k=0

a moment generating function for the integrals . He can then write = F(0) and = (-1)*F**’(0), 

A: = l,2 ,3-- where is the k'*’ derivative o f F  evaluated at 5 = 0 . This procedure is identical to that

used by Diamessis [131, 132]. A simplification o f Loo’s procedure was given by Power [102],

1969

MacFarlane [31] uses Kronecker Products and Kronecker Sums [36, 134, 135] to evaluate a wide range of 

functionals o f the dynamical behaviour o f continuous time linear systems. In particular, he gives the following

-00 ('• + !)
expression for the integral; = (-1) r!(A ©  A) *'̂ "''’x(0)® x(G ). Where ® represents the

Kxonecker product and 0  represents the Kronecker sum. This formula is derived in section 2.2 in a simple 

way. MacFarlane [31 ] extends this result to general time weighting functions that can be expressed as a power 

series in t . MacFarlane’s own original procedure [30] is used in section 2.4.2 to provide a new derivation for 

this equation.

1971

Anderson and Moore [116] discuss the design o f closed loop systems using of integrals o f the type

r® T Texp(2aO{x (f)Q x(0 + u They study the problem o f choosing a control law (i.e. a form for

u (0 )  that minimises this integral. The problem addressed in this thesis is that o f choosing a point in the 

parameter plane that minimises a similar integral that has u(t) = 0 .

1984

Nishikawa et al. [136] choose PID parameters so as to minimise the exponentially weighted performance 

integral = £  [hx{t)e^ 'fd t  where Ax{t) = error and is chosen to suit a particular process.

1987

j»oo ,
Hwang [137] says that, when ?is large, performance integrals such as /  = J  ̂ ; x (r)Qx(O^^fcan place too 

much weight on the tail o f  the impulse response. He suggests the use o f an additional term such as exp(-aO

r *  /t Tto mitigate this effect and advances t exp(-a/)x  {t)Q\{t)dt  as a performance integral. He then describes a 

method for calculating these measures for the discrete time case.
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1994

<•00 ^
Cai and W ang [138] minimise J(j£:,0 = J^ {e(x,0exp(A:0} when designing the control loop in a high

perform ance switching mode power supply. He introduces the exponential term in order to improve the 

transient response and to accelerate the convergence o f  his algorithm. He reports that this method results in: 

system stability, response time increased by a factor o f  2, and disturbance rejection im proved by up to 30%.

2004

[115] dem onstrates that the perform ance integral J  = e^“'[x ’" (0 Q x (0  + u^(0Ru(/)]<^^ can be used if  a

minimum exponential stability e '" ' , ( a > 0 )  is desired. For this integral to be finite a solution must be 

obtained such that x{t)  and u{t) ’’...a re  bounded in the norm M e '“' (M  an unknown constant).” He also

30

defines the discrete time perform ance sum ^  + u[ R u^) and states that this leads to a
k = 0

system response bounded hy  M  J3‘‘, < \ , a  = ^ >  1).

This study

Two expressions are derived for the exponentially weighted performance integral in section 2.4. An entirely 

different method for calculating performance integrals with generalised time weighting is given in section 

10.2.2.

A.3.2 Performance sums for discrete time systems 
1970

M an [139] derives the following formula for a time weighted perform ance sum for linear discrete time

» » r
systems: A ^ 'L ,A ']x (0 )w h ere  S . A = S . He does not

i = 0  1=1 /= 1

00

give a general expression for b.jbui  he gives exam ples up to =JCg(6 S 4  - 1 2 S j + 7 S j - S ,)x „
k = 0

where S, is given by S, -  A'^S, A = Q  , Sj -  A ^S 2 A = S, etc. etc.

1974

Barnett [33] improves the formula due to M an [139] by deriving a general expression for b^. using Kronecker 

products and by finding the sum o f  an infinite series o f  matrices. He derives the following formula for the

Y b LZ -i V j X(, where A^L,^, A -  = L , , L„ = Q andtime weighted perform ance sum: J.  = ^ ^ 'x [ Q x j  = x j
i=0 1_ >1

the coefficients 6 .̂ are given by = ( - ^ ( - l y   ̂j(y  -  s ) ' .

CO

Their procedures involve calculations such as: = Y . k ' x l Q x ,  =x„ (24Ls - 6 OL4  + 50L j -  ISL^ + L , )x„
*=0

where A^L, A -  L, = L „ , A ^L 2 A -  L j = L , , A'^Lj A -  L j = L 2 etc. , etc.
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A new derivation for B arnett’s formula based on finite differences [39, 40] is given in section 2.6. A novel 

and simple m ethod for calculating the coefficients b̂ j is given in section 2.6.

1975

Jury [34] derives a recursive method to calculate for calculating the b .j’s for M an’s [139] result. This process

is derived in a new way in section 2.Sand sim plified greatly in section 2.6. He also extends the result to 

quadratic sums with more general time weighting.

1979

M ansour [35] derives tim e weighted perform ance sums for continuous and discrete time systems using the 

transform ation to Schwartz m atrix form. He then estimates the abscissa o f  stability o f  continuous time systems 

and the margin o f  stability o f  discrete time systems as functions o f  the time weighted perform ance sums for

different initial conditions. He derives (0) XX(-ir"̂ -'0'-yr
1 = 1  j = 0

r i - r I
. j , i x(0) where

=  L , . This is an elaboration o f  a formula due to M an [139] and was also derived by Barnett

[33] and Jury and Gutman [34].

1984

Fukata and Tam ura [41] derive results sim ilar to those in [139], [33] [34] and [35 ]. 

He extends these results to sampled data systems.

1998 - this study

The procedures described above for calculating the perform ance sum for discrete time control systems were 

still in use in 1998 by, for example, Al-Sunni and LEwis [140].

As m entioned above references [33-35] derived com plicated expansions for J , = ^ ^ 'x [ Q x ^  . A
*=0

simple and novel number triangle that may be used to calculate the coefficients in these expansions is given in 

section 2.6.

A new derivation for B arnett’s formula based on finite differences [39, 40] is given in section 2.6.

An entirely different an novel procedure for calculating perform ance sums with general time 

weighting based on Z  -transform s is described in section 10.6.

A.4 MacFarlane’s procedure for calculating performance integrals

A procedure to calculate perform ance integrals using the Lyapunov M atrix Equation is described by 

M acFarlane [30]. An example o f  the application o f  this procedure is given below. This detailed exam ple is 

given here in order to dem onstrate clearly M acFarlane’s procedure for continuous time systems as an entirely 

analogous procedure is developed in section 2.5 for discrete time systems.

Consider the system = A \{ t)  and the initial conditions x ( 0 ) . 
dt
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Note: i f  Q =

f l 0 . o '

0 0 . 0

• 
O

• 
o

lo 0 0 0^

then \ { t Y Q \ ( t )  = {errorY =e^{t).

r® TThe classical Integral o f Time x Squared Error (ITSE) for this system is J  = t x  { t )Qx{ t ) i t  and itJ 0

may be evaluated as follows.

Let V, = rx ^ (0 L ,x (0 -  

dV
Then — !- = x ^ (0 L ,x (0  + ? [x ''(0 (A ^L , + L, A )x (0 ] . 

dt

Let A^L, + L, A  = -Q  (call this the “ first Lyapunov equation” )

So = x ^ (r)L |X (0 -^x ^ (0 Q x (0  
dt

Now integrate both sides o f this last equation from 0 to oo :

L imV.{t ) -VAQ)=  f " x ' '( O L ,x ( f y f -  V t x ^ ( t ) Q \ { t ) d t
l- * a o  Jo Jo

I f  the system is asymptotically stable then every component in x(?) is a superposition o f  decaying 

exponentials. Therefore x^(?)L|X(f) is a superposition o f decaying exponentials and these w ill domnate the 

polynomial t term. So LimV^{t) = Lim{t ( t )L f \ { t ) )  = 0 . Also; F|(0) = 0 . So the LHS = 0 and we have:
/-> o o  t-*a o

x \ t ) h , x ( t ) d t  = j ° t x ’' { t )Q\ { t )d t  = ITSE 

Then /rS 'f  can now be written as £  x^(/)L|X(/)i;?/

Now, let Fj = x ^ (r)L 2 x(/)

dt
Then x^^(A^L 2 + L jA )x

Let A  L j  + L j  A  = - L ,  (call this the “ second Lyapunov equation” ) 

dV
So — ^ = -x^(r)L .x (? )

f ® TNow, integrate this last equation from 0 to t» to get Li/n F, (?) -  (®) "  *  {t)\j{x{t)dt
t - * x )  Jo

As before, Lim (\^  ( / )L 2 x(/)) = 0 .
t-*c o

For ? = 0, -(^2(0) = - x^(0)L2x(0) .

Therefore: x’'(0 )L jX (0 ) = (t)L^x(t)dt = ITSE

So, MacFarlane’s procedure [30] for calculating, for example, the ITSE consists o f solving 

A ^ L ,+ L |A  = -Q  for L , ; then solving A ^ L 2 + L j A  = - L ,  for ; then calculating 77’5 £ '= x^(0)L2x(0). It 

is not necessary to solve the equations o f motion in order to do these calculations. It is sufficient to known the 

initial conditions and to solve two imbedded Lyapunov equations.

In general, MacFarlane’s procedure may be written as:
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f^"x"(O Q x(ry? = (-l)"^'«!x"(0)L„„x(0) where A"L„„ +L„„ A = -L„ and L„ = Q, « = 0,1,2...

x(0) is the vector of initial conditions, and L„^, is the solution to the Lyapunov matrix equation

definite [38]. Different structures for Q may be used to combine the error signal and its derivatives e.g. using

^0 0 0 0 Oj

An important feature to note is that given the initial conditions and the matrix Q then is unique 

because the solution to the Lyapunov Matrix equation is unique. It is this uniqueness of /„ that makes it a 

useful performance measure.

Our interest in these integrals arises from this intimate connection which we have found between minimisation 

of exponentially weighted performance integrals and a principle of optimum stability which involves, in the 

continuous-time case, choosing nominal system parameters that place the rightmost eigenvalue as deep in the 

left half plane as possible, subject to structural relations between system parameters. Thus, root locus methods 

give us a graphical procedure for optimizing a  - and therefore the degree of stability. That is, we can use root 

locus methods to make the minimum absolute value of a  as large as possible. Optimum stability is discussed 

in [20, 47, 67].

A^L„^i + A = -L„ [129] for the dynamical system — = A x (;) . The matrix Q may be positive semi-
dt

' 1 0  0 . 0 '  

0 1 0 . 0  
Q =  0 0 0 . 0

. . . .  0
/„ leads to the integral: £  t" e^(t) + dt .

1
1
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Appendix B: New derivation of the discrete time system 

performance sums5„ for n=0,l,2 and 3

In the following derivations the function F(jc(A:)) = (^-l)''x^(A:)L|X(A:)is defined and used in the 

first step in the calculation o f performance sums for discrete time control systems. This new function is 

analogous to the function V{x{t)) = {t)h^\{t) used by MacFarlane [30] when calculating performance

integrals for continuous time control systems.

Consider the system x(^ +1) = A \ { k )  where all the eigenvalues o f A lie inside the unit circle. Define

30

a family o f performance sums as S„ = .
i=0

B.l Discrete time system performance sums with n = 0

00

The performance sum may be evaluated as follows: = ^x^(A:)Qx(A:) = x^(0)L,x(0) where
*=0

A'^L, A -  L, = -Q  . This may be shown as follows.

First let F(x(^)) = x^(^)L ,x (^ )

Then AV(x{k)) = V( \{k  +1)) -  V(\(k) )

= X̂ (A: + 1)L|X(A: + 1)-X ’"(A )̂L|X(A:)

= [ Ax(/r)]'‘ L, [ Ax(A:)] -  x’’ (k)L, x{k)

= x’’(/t)[A ''L ,A -L ,]x(A :)

= -x^{k)Qx{k)

S g = ' ^ x ^  (k)Qx{k) = - ^ [ x ^  (A: + 1)L| x(^ +1) -  x'' (^)L, x(^)]
*=0 A=0

= 4 -x "(0 )L ,x (0 )] = x"(0)L,x(0)

So, to evaluate Sg we must first solve A ’̂ L .A -L , = -Q  for L, and then calculate 

Sg = X^(0)L|X(0). Ogata [141] derives this result in a different way.

B.2 Discrete time system performance sums with n = 1

00

The performance sum S, may be evaluated as follows: 5, = ^ k x ^ ( k ) Q x ( k )  = x^(0)[L2 -L ,]x (0 )
*=0

Where A ^ L ,A -L , = - Q  and A ^ L jA -L j = - L , . This may be shovra as follows:
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First take F, (x(k)) = ( k -  l)(x'' (A:)L,x(A:))

Then A F, (x(/t)) = ^[k  -  l](x"' (A:)L, x(A:)) + (A: -1 )A[x'‘ (/t)L, x(k)] + A[A -1 ]A[x '̂ (A:)L, x(k)]

= x’" (A)L, x(k)  + -  l)[x^ (A + 1)L| x(^ +1) -  x^ (^)Li x(A)] + (x^(^ + l)L, \ { k  +1) -  x^ (A:)L, x(A:))

= x^ (A:)L, x(A:) + { k - 1)([ Ax(A:)]'' L, [ Ax(A:)] -  x^ {k)L,x{k))  + ([ Ax(A:)]'' L, [ Ax(A:)] -  x^ (A:)L, x{k)) 

= x^ (/t)L, \ {k )  + { k -  l)x'' (yt)( A^'L, A -  L, )x{k) + x"' (A:)( A^L, A -  L, ) \{k)

= x ^ ( k ) ^ x ( k ) - ( k  -  l)x''(A)[Q]x(A:) -  x''(^)[Q]x(A:)

= x'' (k)L,x{k) - k x ^  (A:)[Q]x(A:) + x^ {k)[Q]x{k) -  x^ (k)[Q]x(k)  

k  x^ {k)[Q]x{k) = x^ (A:)L| x{k) -  AFj (x(A:))

’̂ k x ^ { k ) [ Q ] x { k )  = x^{k)L,x{k)  -  ̂  AFj (x(A:))
*=0 k=0 k=0

00 00 00

To evaluate ^A-x^(A:)[Q]x(A:) we will first find ^x^(A:)LiX(A:) and then ^AF,(x(A:))
A=0 * = 0  * = 0

From Example 1: ^x^(/:)L iX (/:) = x^(0)L2x(0) where A ^ L ,A -L , = - Q  and A ^ L ^ A -L j = - L , .
i t = 0

CO

Now to find: ^A Fj(x(A :)).
/t=0

AF,(x(A-)) = x^(A)L,x(Ar) + (A-l)[x^(A: + l)L|X(A  ̂+ l)-x'^(A:)L|X(A)] + (x'^(A + l)L|X(A + l)-x^(/r)L |X(A))
30

^A F ,(X (A :))  =  X ' '(0)L ,X(0)-X ' '(1)L ,X (1) + X''(0)L,X(0) + X ''(1 )L |X(1)-X ' '(0 )L |X (0)
*=0

+x''(l)L |X(l) + (0 )x ''(2 )L ,x (2 )-(0 )x ''(l)L ,x (l) + x ^ (2 )L ,x (2 )-x ''(l)L ,x (l)

+X'‘(2)L,X(2) +  (1)X'‘(3 )L ,X (3)-(1 )X ' '(2 )L ,X (2)  + X ' '(3 )L |X (3) -X ^ (2)L ,X (2)

+x^(3)L,x(3) + (2 )x^(4 )L ,x (4 )-(2 )x ’'(3)L,x(3) + x ''(4 )L ,x (4 )-x ''(3 )L ,x (3 )

+x^(4)L,x(4) + (3)x"(5)L ,x(5)-(3)x"(4)L ,x(4) + x"(5 )L ,x (5 )-x"(4 )L ,x (4 )

.(all terms cancel except x^(0)L,x(0))

= x’̂ (0)L,x(0)

So now we can write:

f,kx^(k)[Q]x{k)  = X x ^ (A :)L ,x W -|;A F ,(x (A ))
k = 0  k = 0  *=0

= x^(0)L2x( 0 ) - x''(0 )L ,x(0)

= x ^ (0 )[L ,-L ,]x (0 )

QO

So 5, = ^  A: x^ {k)Qx{k) = x ^ (0)[Lj -  L, ]x(0)
k=0

So, to evaluate 5, we must first solve A ^ L .A -L , = - Q f o r  L, and then solve A ^L jA -L ^  = -L ,  for L j . 

We can then calculate 5, = x^(0)[Lj - L ,  ]x (0 ).

B.3 Discrete time system performance sums with n = 2

ao

The performance sum 5^ = ^ k ^ x ^  {k)Qx{k)  may be evaluated as follows:
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= ^/:^x^(/r)Qx(A:) = x^(0)[L, - 3Lj +2L3]x(0). Where we first solve A ^ L ,A -L , = - Q f o r  L , , then
k=0

solve A ^ L jA -L j = - L ,  for L j and finally solve A ^ L jA -L j = - L j  for L j .

This may be shown as follows.

First take V̂ (x(A:)) = ( k - 1)̂  x^(A:)L,x(^)

Then A V̂ (x(k)) = A[(k - 1 ) ' ](x'’ (A:)L, x(A:)) + (A: - 1 ) ' A[x"’ (A:)L, x(A:)] + A[(k - 1)̂  ]A[x'' (k)L, x(k)]

Recall that: A[(A:- 1)^] =  A[A:' - 2A: + 1] =  ((k + 1)' - 2(k + l) + l ) - ( k ^ - 2 k + 1) = 2 k - I

A V , (x(A:)) = (2k -  l)x^ (A:)L, x(A:) + (A: - 1)̂  [x^ (k  + l)L jx(k  + 1) -  x^ (A:)L,x(A:)] + (2k  -  l)[x^ (k  + 1)L,x(A: + 1) -  x^ (A:)L,xl 

= 2k x ^ (A:)L,x(A:) -  x^(A:)L,x(A:) + (k^ - 2 k  + l)[x^(k  + l)L,x(A: +1) -  x^(A:)L,x(A:)]

+(2k -  l)[x^ (k + l)L,x(A: +1) -  x^ (k)L, x(k)]

= 2k xJ (A:)L,x(A:) -  x^ (A:)L,x(A:) +  k^x^ (k  +  l)L,x(/: + 1) -  A:̂ x̂  (/:)L,x(/:)

- 2 k  x^ (k  + 1)L, x(A: +1) + 2A: xJ (A:)L, x(k)  + x^ (/: + 1)L, x(A: +1) -  x^ (A:)L, x(k)

V2k x^ (k  + 1)L, x(k + \ ) - 2 k  x^ (k)V.{x(k) - x ^  (k-\- l)L,x(A: + 1) + x^ (A^)Li x(A )̂

AV^ (x(k)) = 2k x^ (A:)L,x(A:) -  X^(A:)L|X(A:) + k^x^(k  + l)L,x(A: +1) -  A:^x^(A:)L,x(A:)

= 2k  x^ (A:)L,x(A:) -  x^ (A:)L, x(A:) + k^ [x^ (k  + 1)L, x(A: +1) -  x^ (Â )Li x(A:)]

= 2k x^ (k)lu^x(k) -  x^ (k)\.^x(k)  + k W  (k)[A^\.^A -  L, ]x(A:)

= 2k x^ (A:)L, x(k) -  x^ (A:)L, x(A:) -k'^x^  (A:)[Q]x(A:)

Rearranging terms gives: A:^x^(A:)[Q]x(A:) = 2A:x^(A:)L,x(/:)-x^(A:)L,x(A:)-AF,(x(A:))

00 CO 00 00

S o : ^  A:' x^ (A:)Qx(A:) = 2 ^ ^  A: x"" (A:)L, x(A:) -  x"' (A:)L, x(k)  -  X  ̂  (* (^ ))
jt=0 k=0 *=0

00 00 00

To evaluate ^A:^ x^(A:)Qx(A:) we will first find 2^A:x^(A:)L,x(A:) then ^x^(A:)L,x(A:) and finally
k= 0 k= 0  *=0

Z A r,(x (A :)) .
k=0

00

From Example 2 we have 2^A:x^(A:)L,x(A:) = 2x^(0)[Lj -L 2]x(0)
*=0

00

From Example 1 we have ^x^(A:)L,x(A:) = x^(0)L2x(0)
t=o

00

It remains to calculate ^AFi(x(A:))
4=0

A (x(A:)) = 2k x^ (A:)L, x(A:) -  x^ (A:)L, x(A:) + k^x^ (k  + 1)L, x(k  +1) -  A:̂  x^ (Â )Li x(A:)
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XAF,(x(i)) = -x^(0)L,x(0)
k=0

+2x^ (1)L, x(l) -  x"" (l)L ,x(l) + x’" (2)L,x(2) -  x  ̂(1)L, x(l)

44x  ̂(2)L, x(2) -  x"" (2)L, x(2) + 4x^ (3)L, x(3) -  4x^ (2)L, x(2)

+6x"' (3)L, x(3) -  x"" (3)L, x(3) + 9x^ (4)L, x(4) -  9x^ (3)L, x(3)

+8x  ̂(4)L, x(4) -  x’̂ (4)L, x(4) +16x^ (5)L, x(5) - 1 6x^ (4)L, x(4)

 (all terms cancel except -  x^(0)L,x(0))

= -x^(0)L,x(0)

Gathering terms together we get:
00 00 00 GO

x^(k)Qx(k) = 2^A :x^(^)L ,x(A :)-^x^(/:)L ,x(A :)-^A F',(x(^))
k=0 k=0 k=0 k=0

= 2x^ (0)[L3 -  ]x(0) -  x  ̂(0)L2x(0) + x  ̂(0)L, x(0)

= x"" (0)[2L3 -  2Lj -  L 2 + L, ]x(0)

= x"'(0)[2L3-3L2+L,]x(0)

= x"'(0)[L, - 3L 2+ 2L3]x(0)

So, to evaluate S'jwe must first solve A ^ L ,A -L , = -Q fo r  L , , then solve A^L2A - L 2 = -L , for Lj and

finally solve A^L3A - L 3 = -L j  for L3. We can then calculate S2 = x^(0)[L, - 3L 2 + 2 L j]x (0 ).

B.4 Discrete time system performance sums with n=3

00

The performance sum 3̂ = ^A:^x^(A:)Qx(A:) may be evaluated as follows:
* = 0

53 = x ^ (0 )[-L ,+ 7L2- I 2L 3+ 6L4]x(0) . Where we solve A ^ L ,A -L , = - Q  for L ,; solve 

A^L2A - L 2 = -L , for L2; solve A^L3A - L 3 = - L 2 for L3; and finally solve A^L4A - L 4 = - L 3 forL4 .

This may be shown as follows.

First take FJ (x(A:)) = ( k - 1)̂  x  ̂(A:)L, x(A:)

Then AFj (x{k)) = A[(A: -1)^ Kx"" ()t)L,x(A:)) + ( k - 1)̂  A[x  ̂(A:)L,x(A:)] + A[(A: -1 )' ]A[x"' (A:)L,x(A:)]

Recall that:

A[(A:-1)^] = A[k  ̂ -3k^ + 3 k - I ]  = ((k + i f  - 3{k + 1)̂  + 3(k + 1 ) - 1 ) - (k  ̂- 3k  ̂ + 3 k - l )  = 3k  ̂- 3 k  + l

AF,(x(yt)) = (3k^ - 3 k  + l)x"'(A:)L,x(A:) + (k  ̂ - 3k  ̂+ 3 k - l)[x '’(k + l)L,x(A: + 1 ) - x""(k)h^x(k)]

+(3k^ - 3 k  + l)[x’" (k + 1)L, x(k +1) -  x"" (yt)L,x(A:)]

= 3k  ̂x^(k)l^iX{k)-3kx^(A:)L,x(A:) + x (̂A:)L,x(A:) + k^x^(k + l)L,x(A: + 1 ) - k^x^(Ar)LiX(A:)

-3k^x^ (k + 1)L, x(k +1) + 3k  ̂x  ̂(^)L, x(A:) + 3k x  ̂(k + 1)L, x(^ +1) -  3A: x  ̂(A:)L, x{k)

-x^ (k + l)L,x(A: +1) + x  ̂(A:)L,x(A:) + 3k^x^ (k + l)L,x(^ +1) -  3k^x^ (A:)L,x(A:)

-3 k  x  ̂(Jk + 1)L, x(A: +1) + 3A: x  ̂{k)L.  ̂x(k) + x^(k + 1)L, x(A: +1) -  x  ̂(^)Li x(^)

Cancelling terms gives

AV,ix(k)) = 3k  ̂x^(A:)L,x(A:) - 3k x^(k)l.^x(k) + x"̂  ()t)L,x(k) - k^x^(A:)L,x(A:) + k^x^(k + 1)L,x(k + 1)

= 3A:̂  x^(k)l.^x(k) - 3k x^(A:)L,x(A:) + x^(k)^x(k)  + k^[x^(k + 1)L,x(k +1) - x"'(A:)L,x(A:)]

= 3k  ̂x  ̂(A:)L,x(k) -  3k x  ̂(A:)L,x(yt) + x  ̂(A:)L,x(k) + k W  (A:)[A^'LA -  L]x(A:)

= 3k  ̂x  ̂(A:)L,x(A:) - 3k x^(k)^x(k)  + x"'(A:)L,x(A:) - k\'^ik)[Q]x(k)
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Rearranging terms gives:

k \ ^  (A:)[Q]x(A:) =  (A:)L,x(A:) -  3A: x"' (A:)L,x(A:) + (/t)L ,x{k)  -  AK, (x(k))

So:

X  ( ^ ) [ Q ] x (* )  =  3 ^ ( * ) Li x ( ^ )  -  3 X  ^  (^ )L ,x (A :) +  £ ]  x^ (A:)L,x(A:) -  ^  AF, (x ( /:) )
*=0 k=0 k=0 k=0 k=0

00 X 00

To evaluate ^A:^x^(A:)[Q]x(A') we will first find 3'^k^  (k )h ^\ { k ) , then 3^A:x^(/:)LiX(A:), then
*=0 k=0 k=0

CO »

^x^(A:)L,x(A:) and finally ^A F,(x(A :)).
A=0 A=0

From Example 3 we have 3^A:^ x^(A:)L,x(/:) = 3x^(0 )[L 2 - 3L3 + 2L 4]x(0 )
k=0

00

From Example 2 we have 3^/:x^(A:)LiX(/:) = 3x^(0 )[L3 - L 2]x(0 )
*=0

XI

From Example 1 we have ^X^(A:)L|X(^) = x^(0 )L 2x(0)
k=0

CO

It remains to calculate ^A F|(x(A :))
*=0

7 Af^(x(A:)) = 3k^ x ^ { k ) L X k ) - 3 k x ^ ( k ) L , x ( k )  + x ^ { k ) L , x ( k ) - k \ ^ ( k ) h , x ( k )  + k \ ^ ( k  + l)L,x(/t +1)
/

X a K,(x (/:))  =  x^ ( 0 ) L ,4 0 )
*=0

+ 3 X ^(1 )L ,X (1 )-3 X ’‘(1)L ,X (1) +  X ''(1 )L |X (1 )-X ''(1 )L ,X (1 ) +  X ^ (2 )L |X (2 )

+  12X’'( 2 ) L |X ( 2 ) - 6 X ''( 2 ) L |X ( 2 )  +  X'‘(2 ) L ,X ( 2 ) - 8 X ''( 2 )L ,X ( 2 )  +  8X ''(3 )L |X (3 ) 

+ 27X '’(3 )L |X (3 ) - 9 x ^ ( 3 ) L ,x ( 3 )  +  x '‘(3 )L ,x (3 )  -  2 7 x ''( 3 ) L ,x ( 3 )  +  2 7 x ''( 4 ) L ,x ( 4 )  

4 4 8 x '‘ ( 4 ) L |X ( 4 ) - 1 2 x ' ‘(4 )L |X (4 )  +  x ’‘( 4 ) L ,x( 4 ) - 6 4 x ' ' ( 4 ) L , x(4 )  +  6 4 x ' ' ( 5 ) L ,x (5 )

 (all terms cancel except x'^(0)Z,,x(0))

=  X^(0)Z,|X(0)

Gathering terms together we get:

X ex^{k) [Q]x{k)  = 3 X x" W L ,X{k) - s f ^ k x ^ (A:)L,x(k)  + Jx^(^)L ,x(A :) -  ^  AK,(x(^))
*=0 *=0 it=0 *=0 *=0

=  x^ (0)[3(L2 -  3Lj + 2 L 4 ) -  3(L3 -  L j  ) +  L j  -  L, ]x (0 )

= x ^ (0 )[-L , + 7 L 2 - 1 2Lj + 6 L , ]x(0)

So, to evaluate 5 jw e first solve A ^ L .A -L , = - Q  for L , , solve A^L 2 A - L 2 = - L ,  for L j , solve

A ^ L jA -L j = - L 2 for Lj and finally solve A ^ L ^ A -L 4 = - L 3 for . We can then calculate

00

53 = Y , k ' x ^  (k)[Q]x{k)  = x''(0)[-L , + 7 L j -1 2 L j + 6 L J x ( 0 ) .
t =0

In general, to calculate S j  we need to know S j _ , , S j _ 2 , . . . S ^ .
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Appendix C: and //„ norms

Control system design methodologies are rooted in classical ideas such as the Nyquist diagram, Bode 

plots, the Routh array etc. For example, controller design is an analytic method that has a manifestation in 

the Nyquist and Bode diagrams. Specifically, technique is an analytic method for finding either (i) the 

peak gain value of the Bode magnitude plot or (ii) the distance in the complex plane from the origin to the 

farthest point on the Nyquist plot of G{jco){\A2\ -  where G(5) = C (5 l-A )^ 'B  is the transfer ftinction

d \matrix of the linear, time-invariant, stable system —  = Ax + Bu, y = C x .
dt

C.l A note on terminology

The use of the letter H  in is a reference to fact that these objects are norms in Hardy spaces.

These spaces are named after the English mathematician G.H.Hardy (1877-1947). On the other hand, Stein

[143] wonders if the "//"m ight also stand for “Hype”.

C.2 System norms

The chief measures of robustness are the gain and phase margin [144] . Some other useful measures 

are descried in this section. A general feedback control system may be represented as follows [25, 45, 145, 

146] .

Figure C.l Block diagram for a general feedback control system.

P is the linear time invariant process to be controlled (the inputs to P and the outputs 

fi-om P are, in general, vector-valued functions)

K is the controller

Y  is the vector of sensor measurements 

U is the vector of inputs generated by K 

W in the vector of all exogenous inputs to P 

Z is the vector of variables we wish to control
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The general control problem is to design a controller that will keep the size o f the variable, z, small 

in the presence o f w. So the size o f the closed loop transfer function from w to z is to be small. Appropriate 

measures o f the size o f a transfer function need to be defined and such measures are called system norms [45], 

This analytic approach to controller design can be more useful than the geometric approach in the case of 

multivariable systems where graphical methods may fail.

C.2.1 -  norm controllers and error minimization

Let G(5) = C (5 l-A ) - 'B  be transfer function matrix o f a linear, time-invariant, stable system given

by —  = Ax + Bu, y = C x . The / / j  norm o f G(s), denoted by Hg Î  , is defined [25, 45, 145, 146] as:

P i=12k

where cr, denotes the singular value, G” {jco) is the complex conjugate transpose of G{ j c o ) , and r is the 

rank o f G^ j c o ) . The //^ control problem is to find a controller that stabilises the process and minimises the 

/ / j  - norm o f the transfer matrix from w to z.

Alternatively [147], the //j-optim al control problem is to find a controller such that the 2-norm of

the integral square error (ISE) measure, £  , is minimised for a specific input. Integral square error

measures and other performance measures are discussed in chapter 2.

C.2.2 Computing the norm

If is the controllability Gramian o f (A ,B) (i.e. is the solution o f AL^ -i-L^A^ = -B B ^) and 

L„ is the observability Gramian o f (A ,C) (i.e. is the solution to A^L„ + L^A = -C ^ C ) then:

||G (5)||^ =[rrace(CL^C’")]2 =  [ ? r a c e ( B '‘L o B )]2

This procedure for computing the norm involves the solution of linear Lyapunov equations and 

can be done without iteration. Examples o f these calculations and o f controller synthesis are given in [25, 

45, 145, 146, 148].

C.2.3 Physical interpretation of the norm

If  G(s) is the transfer function o f a system driven by independent, zero mean, unit intensity white 

noise, then the sum of the variances of the outputs is the square o f  the norm. So, the / / j  norm of G(s) gives 

an exact measure o f the power or signal strength of the output o f a system driven with unit intensity white 

noise.
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C.2.4 //„ - norm controllers and error minimization
Each member o f a set o f inputs to system produces a corresponding error. The //„  optimal 

controller is designed to minimise the worst error that can arise from any input in the set.

The norm o f an error signal can be expressed as [147] min||e(r)||^ = minsup|5(yty)W^(y<y)|
^  ^  O)

where, min means the minimum over all controllers, S{jco) is the sensitivity function and fV{jco) is a
c

designer specified, frequency-dependant weighting function. So the / /„  - optimal controller minimizes the 

maximum magnitude o f the weighted sensitivity function over frequency range , or in mathematical terms, 

minimises the oo - norm of the sensitivity function weighted by W{Joj) [149].

According to Boyd et al. [150] “The //„  norm arises in control theory as a measure o f disturbance 

rejection...”.

Green and Limebeer [145] say that “ //„  optimal control is a frequency domain optimization and 

synthesis theory that was developed in response to the need for a synthesis procedure that explicitly addresses 

questions o f modeling errors.” Later he says: “ //„  control problems can be cast as constrained minimisation 

problems. The constraints come from an internal stability requirement and the object we seek to minimise is 

the infinity norm o f some closed-loop transfer function.”

Ackennann [142] and others [45, 147] state that the / /„  norm o f G(s) may also be viewed as (i) the 

peak gain value of the Bode magnitude plot or (ii) the distance in the complex plane from the origin to the 

farthest point on the Nyquist plot o f G(jco).

Panagopoulous and Astrom [57] have shown that design is related to classical design and 

specifically to the Nyquist diagram.

We could also say that the / /„  norm is the largest gain o f the system taken over all frequencies.

L etG (i) = C (5 l-A ) - 'B  be transfer function matrix of a linear, time-invariant, stable system. The 

/ /„  norm o f G(s), denoted by ||G(5)|^ , is defined [25,45, 145, 146] as :

||G (5 4  = su p c r„ ^ [G (y « )]
0)

where sup is the supremum (or least upper bound), and [G(yft>)] is the largest singular value of 

G ( » . S o  \\G(s)\l is the supremum o f the function [G(y<y)] . The / /„  norm is the maximum value of

<y^  [G(y<y)] over all frequencies .

C.2.5 Computing the //„ norm

Consider the transfer function G(5) = C (5 l-A )" ‘B , with A stable. I f / > 0 ,  then||G||^ < ; 'i f f  the

Hamiltonian matrix H =
1 TA —

r
-C^C  - A ^  ,

compute a b o u n d /o n  ||g||^ such that |g ||^  < / .  To find ||g |^  select a y > 0  and test if H has

eigenvalues on the jc o - a x is . If it does, increase and recompute the eigenvalues o f H . If it does not have

has no eigenvalues on the j c o -a x is .  This fact allows us to
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these eigenvalues then decrease y  and recompute the eigenvalues o f  H . This iteration is continued until 

Ymm calculated to the desired tolerance. Examples o f  these calculations and o f  / / „  controller synthesis are 

given in [25, 45, 145, 146, 148]. The / / „  control problem is to find a controller that stabilises the process 

and minimises the - norm  o f  the transfer matrix from w to z.

Com puting the - norm o f  a transfer function or synthesizing / / „  - norm  controllers may be done 

using commercial software such as M atLab [151], or freeware such as OPT [152] or Scilab [153]. Many 

algorithms are based on a search m ethod and Boyd et al. [154, 155] have described a very efficient bisection 

algorithm for calculating / / „  norms.

C.2.6 Physical interpretation of the//„ norm
The norm has a physically meaningful interpretation for the system y(s) = G(s)u(s) [156]. When

a system is driven with a unit magnitude sinusoidal input at a specific frequency, [G (y«y)] is the largest 

possible output size for the corresponding sinusoidal input. So the / / „  norm is largest possible amplification 

over all frequencies o f  a unit sinusoidal input. That is, it quantifies the greatest increase in energy that can 

occur between the input and output o f  a given system.

C.2.7 Advantages and disadvantages of using the //„ norm to design controllers
Some o f  the benefits o f  design are as follows [157];

1. The synthesis problem  has well defined stability and robustness properties which can easily be 

predicted once the system is specified.

2. Design iterations, which enable trade offs to be achieved, can easily be accomplished.

3. For certain given classes o f  uncertainty, robustness margins can be guaranteed and the steps in going 

from the uncertainty to the optimal problem are straightforward.

4. Software is readily available in most commercial packages and users do not need a high degree o f  

skill.

5. The links to LQG solutions often enable stochastic properties to be optimised in addition to 

robustness.

Some o f  the disadvantages with design are as follows [157]:

1. Robust solutions may not give adequate transient responses or other properties and hence often such 

requirem ents have to be relaxed. The reason for using the approach is therefore less obvious in 

this case.

2. Although it is not necessary to understand the theory to be able to use the packages, it is a daunting 

prospect to try to understand the underlying theory without the help o f  formal courses.

3. Although problem s are theoretically tractable it is not clear that the physical robustness 

problem s match the theoretical problem  posed.

4. The maximization o f  stability and robustness margins is a rather more com plicated problem  than the 

sensitivity minimisation / / „  design problem  suggests.
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Two further disadvantages, described by Keel et al. [24] are:

5. / / „  techniques produce controllers o f  higher order than necessary -  Keel describes an example o f

how design technique produce a sixth order controller for a second order process. See section 

3.4.

6. / / „  techniques produce fragile controllers -  Keel shows how a controller for a test process

produces a closed loop system that becom es unstable if  the gain is reduced by one part in a thousand - see

section 3.4.

In [158] Cam pos-Delgado and Zhou point out that;

7. “ ...there  is no guarantee from the current state-of-the-art design techniques [sic, including the

technique] that the controllers obtained through these techniques are stable themselves.” This is a 

problem  as: “ ... unstable controllers tend to be highly sensitive to model uncertainties, unmodelled 

nonlinearities, and sensor/actuator faults.”

Ho and Lin remark in [159]:

8. “ ..design o f  the optim al or robust PID controller is a com putationally intractable task using / / „  and

f i  -  synthesis design techniques.”

and in Ho et al. [160] say:

9. “Indeed most o f  the optim ization techniques o f  m odem  optim al control including and Z,,

Optimal and / /  cannot be directly used in applications because they cannot accom modate fixed 

structure controllers such as PID.” So these controller design methodologies cannot accom modate 

constraints on the controller order or structure.

Finally, Paganini [161] remarks:

10. “In terms o f  disturbance rejection -  optimal control favors allpass closed-loop transfer functions, 

paying the price o f  increased sensitivity over a large bandwidth to reduce sensitivity at the worst 

frequency, a poor choice under the broadband disturbances o f  most real-world applications. This 

problem  can be alleviated by frequency-weighted , but weight selection becom es a largely ad 

hoc procedure, attem pting to “distort” into a measure o f  the response to broadband n o ise ...”

This is an inevitable consequence o f  the / / „  design approach o f  making the worst-case frequency response as

good as possible -  the focus is directed away from the other, possibly m ore likely, inputs.
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Appendix D: History and present state of tuning rules for PI 

and PID controllers

D.l Introduction

PI and PID controllers are very common in industry. For example, Ho [22] reports that more than 

90% o f control loops for process control systems in Japan are of the PID type. However, most o f these 

controllers are badly tuned [54]. So the development o f a simple method that can be used to tune a PID 

controller to a process in order to achieve desired closed loop performance has been o f great practical interest 

for many years. Several software products designed specifically for tuning PID controllers are available 

[162].

The history o f PID controllers is given by Bennett [163] and an interesting retrospective by Ziegler 

and Nichols appeared in 1993 [164]. There are several excellent summaries of the progress made to date on 

PID controller tuning and applications. Lelic and Gagic [165] presented a guide to over 300 articles on PID 

controllers that were published in various journals between 1990 and 1999. O ’Dwyer [28] has described the 

tuning rules that were proposed between 1942 and 2005 for PI and PID controllers for processes with time 

delay. In addition, Johnson and Moradi [ 166] and Astrom and Hagglund [72] provide very recent reviews of 

the area. The future of PID control is discussed by Astrom and Hagglund in [167, 168].

D.2 Ziegler -Nichols

D.2.1 Some general comments on Ziegler-Nichols tuning
Systematic tuning o f P, PI, and PID controllers started over 60 years ago in 1942 with Ziegler and Nichols 

[50]. Although the Ziegler-Nichols tuning rules are generally considered to be heuristic and empirical, a 

frequency domain interpretation o f these rules has been given by dePaor [169]. He has found, for example, 

that a system tuned by the ultimate sensitivity method is guaranteed to have closed loop stability and adequate 

phase margin.

Generally, the advantages o f the Ziegler-Nichols tuning methods are that they:

(a) produce a system with a “reasonable” response rather than one with a response that is “optimised” in some 

sense [170].

(b) do not require a model o f the process itself but relies on obtaining parameters from the process step 

response or from the value o f gain that makes the process marginally stable

(c) are easy for process operators to remember and apply, as an operator does not require any familiarity with 

transfer fiinctions.

(d) generally result in systems with good disturbance rejection.

On the other hand, the disadvantages o f the Ziegler-Nichols tuning methods are that they:

(a) were developed in the context o f a particular PID controller i.e. Taylor’s Fulscope 100 controller. Ziegler 

and Nichols did not intend that their values should not be used for any other PID configuration [170].

(b) produce values that are intended only as a good starting point for a search for “better” parameter values.
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(c) are not suitable for many processes, including those having only dead time or a very large ratio o f dead 

time to first order time constant [170],

(d) can result in a closed-loop system that are sensitive to parameter variations and with damping of ^  s  0.2 

which is too small for many applications [171] as it results in a high percent overshoot.

(e) produce systems that are sensitive to model uncertainty [120].

(f) give no systematic means to adjust the parameters in order to reduce overshoot on the closed loop step 

response.

(g) result in systems where the control signal is high which may lead to actuator saturation.

D.2.2 Ziegler-Nichols method based on process reaction curves
This method consists placing the process in an open loop without a controller and following these steps [5]:

1) obtain the process step response

2) draw the steepest tangent to the response

3) estimate the tangent’s slope R and the lag time L - the intercept of the tangent with the time axis

4) calculate k^,  k. and kj  from Table D.l to get C(5) = A(l + 7’̂ 5 + l/7)5')

Controller k T,

P MRL — —

PI 0.9 IRL 3.3Z, —

PID 1.21 RL 2L L / 2

Table D.l Ziegler-Nichols Tuning rules [50] for P, PI, and PID controllers based on the process reaction
curve of the process.

In using this method, only one test is required; the system is not brought close to instability during the test. 

However, it is suitable only for processes with monotonic step response. Also, it can be difficult to estimate 

the parameters accurately from the process reaction curve.

D.2.3 Ziegler-Nichols method based on ultimate sensitivity
This method consists placing the process in a closed loop with the controller and following these steps [14]:

1) leave k̂  and kj  constant, vary until the system is marginally stable and behave like a harmonic

oscillator with period T . At this point k ^ =  , the “ultimate sensitivity” .

2) calculate k^,  A, and kj  from Table D.2.

Controller

P S J 2 — —

PI 0.45 0.83 r —

PID 0.65„ <A:p <5„ r/2 r / 8

Table D.2 Ziegler-Nichols tuning rules [50] for P, PI, and PID controllers based on ultimate sensitivity.
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The following point is important to note in the context o f this thesis. By virtue o f the fact that the 

system is tuned to a marginally stable state and then deliberately brought away from this critical point, this 

tuning method introduces a “degree of stability” in the root locus sense. So, intrinsic to this tuning method is 

the introduction o f a root locus type stability margin. This might explain the Ziegler Nichols parameters often 

lead to a response that is superior to, for example, parameter plane methods. This is investigated further in 

section 4.2.3

In practice, it is not often prudent to drive a process to the limit of stability. Also, the assumption that 

the process will behave in this fashion excludes commonly encountered processes such as [169]:

G(^) = — - — , G{s) = -----------------, G{s) = - ^  and G{s) = — - — with a,Z7,^,L > 0 .  Finally, system
(s + a) (s + a)(s + b) s ( s - a )

oscillations due to hysteresis or to a saturating element can be mistaken as the stability limit and the incorrect 

value of found. Usually several trials are required to find .

D.2.4 Minimizing performance integrals
Zhuang and Atherton [83, 118, 172] integral performance integrals to design PID and other

r *  7controllers. They also describe a method for evaluating the integral [t'e^t)] dt for time delay systems. 

Dan-Isa and Atherton [119] describe a MATLAB [151] based program they have written to evaluate the
30

integral J  {t' 'e{t)fdt and the sum ^[^''e(Ar)]^ .
** *=0

Nishikawa et al. [136] choose PID parameters so as to minimise the exponentially weighted 

performance integral where hx{t) = error and is chosen to suit he particular

process in question.

Astrom et al. [120] express load disturbance rejection in terms o f the integrated error due to a load 

disturbance in the form o f a unit step at the process input i.e. J e{t)dt .

D.2.5 Specifying Gain Margin and Phase Margin
[22, 52, 53, 55] and [56] have propose alternative tuning methods for PI and PID controllers. These 

consist o f [22, 52, 53, 55] deriving approximate analytic expressions for and for the first-order lag plus

,
time-delay process G(s) =  e ' in terms o f user specified Gain Margin and Phase Margin values.

l + 5r

Alternatively, graphical methods are used by [56] to find k  and T..

Between 1999 and 2001 Liu and Daly described three methods for tuning PID controllers for a 

number o f industrial systems with time delay. Their first [173] is a frequency domain method that applies a 

minimax optimization procedure simultaneously to analytic expressions for gain margin, phase margin, cross

over frequency and steady state error. Their second [174] is a time domain tuning approach that uses

00 *
MATLAB’s [151] optimisation algorithms to minimise the integral |  e^{t)dt or the sum ^ e ^ ( k ) .  Their

“ k= 0

third method [175] is a blend o f the first two.
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D.2.6 Nyquist diagram
Munro’s [176] method consists of using Mathematica [177] to create thousands of Nyquist plots for 

the closed lop system. His method is to grid over one PID parameter and then scan the other two. For each set 

of three parameters he uses a Nyquist plot to decide whether the closed loop system is stable or not. In this 

way he can create spaces for all stabilising PID controllers. An operating point may then be chosen within this 

space.

Munro’s method is numerically intensive and does not indicate “a degree stability” for each point so 

there is no guide as to which point to choose within the space of stabilising controllers.

D.2.7 //„ - norm
As traditional //„  controller design places no constraint on controller complexity it must be adapted 

to produce controllers of a desired structure such as a PID controller. One approach is to carry out a brute 

force optimal search the set of all stabilizing PID controllers for a given process [29], Computationally 

efficient methods are still a subject of research and one such computationally efficient method is described by 

Ho [178]. In terms of CPU time, Ho’s search method is ten time more efficient than Datta et al. [29].

Panagopoulos and Astrom [57] have shown that traditional method for designing PID controllers 

[120] are related to designed using methods. Specifically, they show that the requirement that the be 

a minimum is equivalent to requirement that Nyquist curve of the loop transfer should lie outside a contour 

which encloses the critical point. They give an explicit formula for this contour and show that it is bounded 

internally and externally by circles, which are related to the maximum of the sensitivity function and the 

complementary sensitivity function. Thus they establish a relation between classical design conditions and 

//„  robust control.

D.2.8 Stable polyhedra in parameter space
Datta et al. [29] use a generalization of the Hermite-Biehler theorem to develop a procedure for 

plotting sets of all stabilising PID controllers for a given process. These sets are presented as convex 

polygons in parameter space. Munro [176] and Munro and Solyemez [179] develop an equivalent procedure 

based on the Nyquist criterion. Ackermann [180] generalizes the previous results and offers a third method 

for plotting these polygons. He then chooses the centroid of a polygon as an operating point and claims that 

its distance from the stability boundary is an indication of robustness.

However, this approach is flawed as described, for example, in section 6.3.2, and consideration needs to 

be given to the degree of stability of the operating point. Unfortunately, this turns the three-dimensional 

parameter space into the four-dimensional {k^,k.,kj,a) space. The robust operating point is then

a global maximum of a surface in this four-dimensional space.
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Appendix E: Number triangles and performance measures

In 1963 P. C. Parks [130] presented the following polynomials :

5  +

S^+0)^S + 0)l 

+ CÔŜ  + + co]

+ CÔŜ  + ‘icols^ + 2cols + col 

+ CÔ Ŝ  + ^cols^ + 2)Colŝ  + Zcols + col 

+ cô ŝ  + Seals'̂  + ^o)ls^ + + 3o)ls + col

+ coj^  + (iQ)ls^ + Scols'  ̂+ 10fy 5̂  ̂+ 6o)ls^ + Acols + co]

5 * + +  Icols  ̂ +  +  XOcolŝ  + 4cols +  col

Figure E.l Polynomials from [130] that minimise the ISE for “zero steady state step error systems”.

If the frequency is normalized these polynomials become:

5 + 1 

5̂  + 5 + 1 

5 + 5  + 2.S + 1 

5" +5^ +35^+25 + 1 

5̂  + 5" + 45  ̂+ 35  ̂+ 35 + 1 

5̂  + 5̂  + 55“ + 45  ̂+ 65  ̂+ 35 + 1 

5'  + 5^ + 65'  +55 '̂ +IO5' + 65'  +45 + 1 

5* + 5’ + 75'  + 65'  +I5s^ +IO5'  +IO5'  +45 + 1

Figure E.2 Polynomials from Figure E.l with normalized frequency.

Parks synthesizes these polynomials from the Routh array by choosing a column of 1 ’s as the first 

column, calculating the rest of the Routh array, and then reading off the polynomials from the first two rows. 

An example of such an array is:

1 4 3
1 3 1
1 2 0
1 1 0
1 0 0
I 0 0

Figure E.3 Routh array that is synthesized by first choosing a column of 1 ’s as the leftmost column and then
calculating the rest of the array in the usual way.

Figure E.3 is the Routh Array for the polynomial: P(s) = 5^ + 5'’ +45^ +35^ + 35 + 1. These polynomials are 

optimal in the sense that, for example, the transfer fiinction ~ minimises the ISE or



|»Qo j, poo 2
Jq = X (j)Q \{t)dt = e {t)dt performance integral for a zero steady state step error system. Examples of 

the zero state unit step responses of these transfer functions are given in Figure E.4.

step reference for 1 /(s + s  + 1)

step reference for 1/(s + s  + 7s  + 6s +15s  +10s  +10s + 4 s  + 1)

0.5

0 10 20 30 40 50
Time

Figure E.4 Zero steady state unit step responses for the polynomials synthesized by Parks [130] using the
Routh array as illustrated in Figure E.3.

Figure E.4 shows the zero steady state unit step responses for: 

1

1
and

5* + 5  ̂ + 7 /  + 65  ̂ + 155"* + 105  ̂ + 105  ̂ + 4 5  +  1 

number triangle [181]:

5 + 5  + 1

The coefficients of these polynomials form an interesting

1 +

1 = 1
1 + 1 = 2

1 + 1 + 1 = 3
1 + 1 + 2 + 1 = 5

1 + 1 + 3 + 2 + 1 = 8
1 + 1 + 4 + 3 + 3 + 1 = 13

1 + 1 + 5 + 4 + 6 + 3 + 1 — 21
+ 1 + 6 + 5 + 10 + 6 + 4 + 1 = 34
1 + 7 + 6 + 15 + 10 + 10 + 4 + 1 = 55

. . . Z ’ • . • t

Figure E.5 Coefficients of the polynomials in Figure E.2 arranged as a number triangle. This figure illustrates 
the fact that the coefficients sum to form Fibonacci numbers. This number triangle has been studied elsewhere 

[181] and it was generated using the Routh array by Parks [130], albeit without the intention of generating
Fibonacci numbers.

This number triangle and the following properties have been noted elsewhere [181]:

The sequence “ 1, 3, 6, 10, 15....” is made of triangular numbers.

The sequence “ 1,4, 10 ...” is made of tetrahedral numbers.
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Summing across the rows gives F„ - the Fibonacci numbers.

The following method of construction of another interesting number triangle has not, to my 

knowledge, been noted elsewhere. If the Routh array is used again in synthetic mode but this time with the 

first column being a sequence of 1 ’s ending in a “2” then the following type of array results:

1 5 5
1 4 2
1 3 0
1 2 0
1 0 0
2 0 0

Figure E.6 Routh array that is synthesized by first choosing a column of I ’s ending in a “2” as the leftmost
column and then calculating the rest of the array in the usual way.

Figure E.6 gives the polynomial: P(5) = 5̂  + 5'“’ + 55̂  + 4^^ + 55 + 2 . Examples of the zero state unit step 

responses of the transfer functions = 1/P{s) are given below.

0.7
step reference response for 1/(s + s + 2)

0.6

0.5

Q .

I  0.3 step reference response fori/(s + s  +7s + 6s +14s + 9s + 7s + 2)

0.2

0 10 20 30 40 50
Time

Figure E.7 Zero steady state unit step responses for the polynomials synthesized using the Routh array as
illustrated in Figure E.6.

Figure E.7 shows the step reference responses for the transfer functions: —;— -̂---- and
5 + 5  + 2

 2 T ;----------- . These polynomials were synthesized using the Routh array with the
5’ + 5 ^ + 7 5 ' + 65 ' ' + 1 4 5 ' + 95 ' + 7 5  + 2 ^ ^

right column consisting of a series of I ’s ending with a 2 as illustrated in Figure E.6. These responses settle
down a little more slowly than the Parks polynomials in Figure E.4.

If the process illustrated in Figure E.6 is repeated and the coefficients of the resulting polynomials 

arranged in a triangle then you get the number triangle in Figure E.8.
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1 = 1
1 + 2 = 3

1 + 1 + 2 = 4
1 + 1 + 3 + 2 = 7

1 + 1 + 4 + 3 + 2 = 11
1 + 1 + 5 + 4 + 5 + 2 = 18

1 + 1 + 6 + 5 + 9 + 5 + 2 = 29
+ 1 + 7 + 6 + 14 + 9 + 7 + 2 = 47
1 + 8 + 7 + 20 + 14 + 16 + 7 + 2 = 76

t
k

Figure E.8 A number triangle generated from the coefficients of polynomials that were synthesized using the 
Routh array with the leftmost column consisting of a column of I ’s ending with a 2 as illustrated in Figure 

E.6. This figure illustrates that the coefficients of these polynomials sum to form Lucas numbers. This number 
triangle is already known [181] but has not been calculated before using the Routh array.

The number triangle in Figure E.8 is already known [181] but has not been calculated before using 

the Routh array. The sum across the rows of the number triangle in Figure E.8 gives L„ - the Lucas numbers.

This suggests that there may be a relationship between Cauchy Indices, Lucas numbers, and Fibonacci 

numbers.

The relevance of these facts to this thesis is that sometimes the systems modeled by polynomials 

synthesized in this way behave very well and, in the case described by Parks [130], minimise the ISE index. 

The polynomials synthesized by dePaor [182] seem to minimise a very stringent performance measure. 

dePaor [182] has described the synthesis of polynomials using the Routh array with the first column given by 

binomial coefficients. An example of such an array is:

1 M  I L
^ 5 5

5 13 1
10 6 0
10 1 0
5 0 0
1 0 0

Figure E.9 Routh array that is synthesized by first choosing a left hand column consisting of binomial
coefficients [182].

The synthesized Routh array in Figure E.9 gives the Pascal-Routh [182] polynomial:

P{s) = s^ + 55" + f  5 '  + 135'  + ^ 5  + 1

The zero state unit step response of these Pascal-Routh polynomials is excellent and their behavior is far 

superior to that found in Parks polynomials. Examples of the zero state unit step responses of these transfer 

functions =l/P (5)  are given below.
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40 5010 20 30

t; ijne

Figure E.IO Zero steady state unit step responses for the polynomials synthesized by dePaor [182] using the
Routh Array as illustrated in Figure E.9.

These Pascal-Routh polynomials, synthesized by dePaor [182], seem to minimise a very stringent 

performance measure. Similar behavior was noticed when the first column of the Routh array consisted of a 

pattern of numbers that begins with a 1, become larger in the middle, and then becomes 1 again e.g. 

1,5,5,5,5,5,1. It would be interesting to investigate this in detail and to discover which performance measure 

they satisfy.

This could lead to novel method for control system synthesis. A performance measure is selected and this 

could correspond to a first column for the Routh array. We can then synthesize a transfer function that 

minimises the corresponding performance measure.
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Appendix F: Highlights of the history of Stability Theory

In 1867 Thomson and Tait [183] stated: “There is scarcely a question in dynamics more important 

for Natural Philosophy than the stability or instability of motion”. Some authors have given part of this story 

[184]. A list of some of the high points in the development of stability theory is given below.

Newton (1686) - stability of the sun - moon - earth system and of the solar system 

Laplace (1783) - stability of the solar system

Sturm (1829) -  a method for finding the number of real zeros of a polynomial between given limits 

Cauchy (1831) -  Cauchy Index method for counting the number of zeros (with positive real parts) of 

a polynomial in a given domain

Sturm (1836) -  introduces the Sturm Sequence for calculating the Cauchy Index

Cauchy (1837) -  complete solution to the problem of counting the number of zeros of a polynomial

in a given domain

Airy (1840) - velocity control of a telescope

Hermite (1854) - criterion for deciding on the signs of the real parts of the roots of a polynomial 

Maxwell (1857) - stability of the rings of Saturn 

Maxwell (1868) - stability of governors

Kronecker (1869) -  formula for the number of zeros of a polynomial in a domain 

Vyshnegradskii (1876) - stability of governors

Routh (1877) - algorithm for deciding on the signs of the real parts of the roots of a polynomial - this 

is a tabular scheme for calculating the number of changes of sign in a Sturm sequence.

Poincare (1881) - stability of the solar system; general problem of the stability of motion 

Lyapunov (1892) - general problem of the stability of motion

Hurwitz (1895) - criterion for deciding on the signs of the real parts of the roots of a polynomial

Synge (1924) -  the stability of motion and the geometry of geodesics in Riemannian space [185]

Nyquist (1932) - stability criterion for feedback amplifiers

Harris (1942) - extension of the Nyquist criterion to feedback control systems

Hall (1943) - extension of the Nyquist criterion to feedback control systems

Bode (1945) - fi'equency response method

Evans (1948, 1950) - root locus method
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