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TRINITY COLLEGE DUBLIN

Abstract
School of Computer Science and Statistics

Doctor of Philosophy

Personal Privacy and Online Systems

by Pól Mac Aonghusa

A significant portion of the modern internet is funded by commercial return from

customised content such as advertising where user interests are learned from users’

online behaviour and used to display personalised content. Privacy becomes a concern

when personalisation reveals evidence of learning about sensitive topics a user would

rather keep private. Examples of potentially sensitive topics we consider include

health, finance and sexual orientation.

In this thesis we develop novel technologies allowing users to improve control

over their personal privacy. We consider three aspects of privacy protection here: i)

detecting evidence of unwanted profiling, ii) assessing the potential impact of a threat,

and, iii) a flexible framework to help users to take control the flow of information used

in personalisation.

We model online systems as black-box adversaries with unknown internal workings

but with an objective to maximise commercial utility. In a black-box environment

absolute measures of privacy are problematic and so our formalism builds on a notion

of privacy relative to a baseline. The relative models we develop have the advantage

of being learn-able from observation of the black-box system and so can be readily im-

plemented as practical technologies for privacy threat detection, analysis and privacy

defence which we validate against data from well-known, real-world online systems.

HTTP://WWW.TCD.IE
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2 Chapter 1. Introduction

“I actually think most people don’t want Google to answer their questions.

They want Google to tell them what they should be doing next.”
Eric Schmidt, then Executive Chairman Google LLC, and now of Alphabet, (Jenkins

Jr., 2010)

1.1 Context

In the interview quoted above, Eric Schmidt goes on to suggests that because Google

knows “roughly who you are, roughly what you care about, roughly who your friends

are”, its algorithms could helpfully remind you what groceries you need to buy when

passing a shop, (Jenkins Jr., 2010). At first glance this seems like a very useful trade-

off; user data collection allows Google Search to be helpful in a personally aware

way.

In reality, profiling also allows Google to learn about possible user interests, prefer-

ences and behaviours and so display targeted content tuned to attract user attention.

Web search users seem to prefer a degree of personalised content, (Panjwani et al.,

2013). Personalisation can, however, also reveal evidence of bias in the machine learn-

ing algorithms used to recommend content. Studies have shown that Google displayed

ads for high-income jobs preferentially to men much more to women; and that advert

related to arrest records were significantly more likely to appear when searching for

names or college fraternities associated with African Americans, (Damm, 2019; Amit

Datta et al., 2015).

Privacy becomes a concern when personalised content displays evidence of a pref-

erence towards topics a user considers sensitive and so wishes to keep private. The

central question we ask in this thesis is – how can we detect, assess and control

machine learning inference threatening privacy in web search? Our approach is to

analyse inputs to, and outputs from, a search engine for evidence of inference toward

sensitive topics. Rather than ask how a search engine generates personalised content,

we treat search engines as black-boxes with hidden internal workings so that our work

can be compared with verification of fairness and detection of unwanted inference in

machine learning.
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We take the view that personal privacy is not fixed, but rather it is fundamentally

an ongoing risk management exercise where there are no absolute guarantees. Just

as search engines adapt and learn, individuals must take ongoing responsibility to

adapt, evaluate and manage their own balance between privacy and utility. Protect-

ing user privacy is a practical trade-off between the needs of users to avoid unwanted

personalisation and an Internet business model underpinned by personalisation. In

answering our central question a crucial balance must be struck between empowering

users with capabilities to detect, assess and limit privacy threats arising from per-

sonalisation while recognising the the necessity of maintaining a level of personalised

content to sustain the free-to-use Internet ecosystem.

1.2 Motivation

Our specific interest is in privacy in web search. We are interested in evidence of

unwanted learning only with respect to topics of interest defined by an individual user.

We seek evidence of specific biases in choosing personalised content with respect to

specific, private topics rather than in detection of general learning in the underlying

algorithms employed by the search engine. When a topic is not regarded as private

by a user it is not of interest.

We organise user interests into two categories for the purposes of our analysis

and illustrated in Figure 1.1. The green box on the right of Figure 1.1 represents

the subset of interests that an individual is happy to discuss in public. Privacy is

not a concern when personalised content refers to public topics. There are also topics

where an individual would rather keep her interests private, represented as the red box

on the right of Figure 1.1. When online services respond with personalised content

related to topics in the subset of private interest then privacy is a concern.
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Figure 1.1: Balancing Personalisation with Privacy.

For illustration purposes, we have included examples of profiling by the online

system in the middle section of Figure 1.1. Our approach, however, is to treat online

services as black-boxes that do not reveal their internal workings except through the

outputs produced by the black-box in response to individual user inputs.

The following informal example of an interaction illustrates potential concerns

with personalisation during a Google Search. The interaction is performed on a

laptop through a standard web browser. Before beginning, we remove obvious traces

of local state such as browser history, cookies and caches. An anonymous user is used

and IP address is constant through the interaction. In this way, observed changes

in personalised content can be reasonably associated with active profiling during the

interaction by Google search. During the interaction we ask a range of uninteresting

queries about everyday topics such as weather, traffic and music to represent public

interests. We mix occasional queries among the public queries about a specific private

topic – “cancer” at intervals of 1 private query to every 2–3 public, uninteresting

queries.

After every fourth private query about cancer, we issue a fixed “probe” query – it is

the query “symptoms” in the example. We choose symptoms because it is sufficiently

generic that Google could associate many medical conditions with it besides cancer.

We compare what adverts appear as a result of the probe query in Figure 1.2.

An inspection of the search results in each of the sub-figures confirms that the

probe query retrieves generic results – mostly related to symptom checkers. By con-

trast, personalised adverts build up through the interaction until adverts related to
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(a) First Probe (b) Second Probe

(c) Third Probe (d) Fourth Probe

Figure 1.2: Changes in personalised adverts at successive probe
queries for the topic “Cancer”.

cancer pervade each response page. Even though queries about cancer are interleaved

with uninteresting queries about everyday topics, the search engine has successfully

identified a sensitive topic among the noise of general queries. Comparing the non-

specific nature of the search results with the specific nature of the personalised, advert

content suggests that by analysing personalised content, such as adverts, we might

reasonably hope to spot evidence of profiling with respect to interests we regard as

private.
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1.3 Scope and Limitations

Our objective in this research is to demonstrate feasibility and utility of approaches

with the minimum technical overhead. Our choice of underpinning techniques and

technologies is chosen deliberately to be simple to comprehend and to implement.

Accordingly we have chosen a PC-based browser platform for implementation and

experimental evaluation. We elected to avoid mobile devices because of added com-

plexities of implementation and to avoid concerns with hidden tracking and sharing,

(Razaghpanah et al., 2018). We leave consideration of mobile web search to future

research.

It seems reasonable to assume that a for-profit commercial search engine selects

page content to maximise its expected revenue. This means that when a search engine

infers that a particular advertising topic is likely to be of interest to a user, and so

more likely to generate click through and sales, it is obliged to use this information

when selecting which adverts to display. Since a revenue maximising search engine

acts to display adverts associated with topics it detects are most interesting to the

user, the potential exists to detect search engine learning via analysis of changes in

the choice of displayed adverts and to inform the user of this learning.

Conversely, our work excludes the situation where the system does not reveal its

hand through personalised content. The latter could happen when the system is not

capable or is unwilling to personalise its output - for example when the real motive

is data collection for undisclosed background processing or security analysis. These

specific situations are left as cases best addressed by the law and through strong

and active governance. We also exclude situations where hyper-personalisation at

individual level is required, such as systems to support medical consultations, security

or defence.

Our focus here is on privacy concerns arising from inference by the search engine

resulting from explicit user web search interactions. Online systems, including search

engines, gather data from many sources to produce personalised content. We consider

direct identification techniques, such as IP tracing or browser finger-printing to be

outside the scope of our current analysis. Implicit profiling effects due to Geo-location,
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for example, also effect personalised content. Simple changes from one IP range to

another can change the advert content of search results as Figure 6.1 in Chapter 6

illustrates. When creating personas for testing purposes we have tried to provide

the minimum possible profiling information required for registration. We specifically

avoided potentially revealing demographic information, such as age and gender for

example, to isolate system learning effects from variations in profile demographics in

so far as possible.

All of the technologies used here were implemented with open source tools and

written in the Python language. The Natural Language Processing Bag-of-Words

model we use is among the simplest possible that facilitates obtaining useful exper-

imental results. More sophisticated language models, for example using n-grams or

word embedding, will likely improve the capabilities of the tools. We focus on text-

based advert content appearing on web search result pages. Our approach is to spot

changes in frequency of occurrence of keyword features associated with topics we have

defined as sensitive. By comparing keyword frequencies with baseline values learned

from training data we hope to detect evidence of bias towards sensitive topics. We

describe the training and verification setup used to learn baseline values of keyword

frequencies in detail in experimental sections.

Exact reproducibility of results from experiment to experiment is difficult in a

dynamic learning environment such as web search so that our results are presented

as average effects over several experimental iterations. Personalised content varies

from iteration to iteration, and in some cases personalised content may not appear at

all. Programatic interaction with a web search engine is technically challenging. Web

search engines have developed a sophisticated array of tools to to detect automated

users. When inspected, a portion of search engine result pages with no personalised

content occurred when our programs activated a search engine feature such as a

CAPTCHA or other challenge. These events happened irregularly, depending on

machine and network load, and so could not be reliably controlled programatically.

When detected, we excluded the corresponding result page from the subsequent anal-

ysis phase as we observed such challenges to be relatively rare in real-world human
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interactions.

Search engines are a convenient and openly available source of personalised con-

tent, but not the only online service that profiles users. A significant portion of

modern online systems profile users to boost commercial return through improved

personalised content. In Chapter 6 we extend our analysis to include openly available

examples data sources for TripAdvisor and Amazon to illustrate how the techniques

we develop can be extended beyond search engines.

1.4 Contributions and Structure of this Thesis

Figure 1.3: Structure of this Thesis.

The main technical content in this thesis are contained in Chapters 4-6. Prelimi-

nary chapters contain introductory material, a perspective of the contribution of this

thesis in the context of related work and state of the art, and a chapter introducing

the common notation to be used in the formal sections of Chapters 4-6.
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In Chapter 4 we investigate how a user who, knowing what topics they deem to be

sensitive, can construct a classifier to detect potential privacy concerns by analysing

personalised content appearing on output from a search engine. The formalism we

develop identifies possible privacy concerns relative to a baseline level. The baseline is

learned from training examples such as historical results. In this chapter we develop

the mathematical formalism from which we implement and test a classifier using

both Google and Bing as examples of search engines. The main contributions in this

chapter are

A novel definition of individual privacy we call ϵ-Indistinguishability that is com-

patible with existing privacy models and readily implementable as a practical

user technology

An effective method for detection of privacy threats across a sequence of obser-

vations by collecting and comparing responses to a sub-sequence of preselected

probe queries

A fast, scalable estimator of ϵ-Indistinguishability, we call PRI (”PRivacy for

Individuals”).

An extensive measurement campaign showing that evidence of adaptation is

easy to detect for a wide range of sensitive topics.

In Chapter 5 we extend the work in the previous chapter on detecting privacy

concerns to address how to assess the degree of threat associated with a detection.

The privacy model we use is based on plausible deniability of interest in topics. The

formalism we develop is implemented and tested against the Google search engine in

this case. Contributions in this chapter include

A formal definition of Plausible Deniability in web search allowing users to test

if they can reasonably deny their interest in topics they regard as sensitive.

A tool called PDE (“Plausible Deniability Estimator”) implementing our for-

mal definition of Plausible Deniability.
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Extensive experimental validation that the PDE tool is effective in detecting

threats to Plausible Deniability even when user queries are obfuscated through

injection of high levels of noise.

A novel defence for Plausible Deniability, called the Proxy Topic Defence in this

paper, that is observed to provide protection in 100% of tests.

In Chapter 6 we develop a prototype system demonstrating how a search engine

might provide privacy preserving services to users with minimal disruption. To show

that the prototype can be applied across a broad range of systems we test the pro-

totype using openly available data containing hotel reviews from TripAdvisor and

product reviews from Amazon - in addition to testing with Google Search. Contri-

butions in this chapter include

A novel proxy agent framework we call 3PS for Privacy Preserving Proxy

Service, where a user may protect their interests in sensitive topics from un-

wanted personalisation by submitting queries though a pool of group identities

called Proxy Agents.

A formal definition of personalisation utility and privacy detection in a plau-

sible deniability compatible with the 3PS setting. We show that user privacy

need not come at the cost of reduced utility in personalised services when ag-

gregated group information represented by the proxy agent pool is sufficient for

personalisation.

Privacy preserving algorithm for selecting group membership of proxy agents

users can run locally to find the group identity best matching their interests

without revealing their interests.

An extensive campaign of experimental verification using openly available data-

sets to confirm the privacy guarantees provided by 3PS and that our method

of selecting group membership is both accurate and converges rapidly.

Material contained in this thesis has been published separately as follows:
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Pól Mac Aonghusa et al. (2016). “Don’t Let Google Know I’m Lonely”. In:

ACM Transactions on Privacy and Security 19.1, pp. 1–25

P Mac Aonghusa et al. (2018). “Plausible Deniability in Web Search; From

Detection to Assessment”. In: IEEE Transactions on Information Forensics

and Security 13.4, pp. 874–887

Pól Mac Aonghusa et al. (2018). “3PS - Online Privacy through Group Identi-

ties”. In: Submitted - IEEE Transactions on Information Forensics and Security
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Chapter 2

Related Work

2.1 Data Collection in the Online World

In 1965 the US Government decided to build the first ever “Data Center” to organise

over 750 million tax returns, 175 million fingerprints of citizens, 14 million records of

civilian security clearance vetting by the Defence Department and 8 million records

of people who applied for Government jobs, into a single search-able database, (Alle

et al., 1966).

In the intervening years since 1965, our ability to collect individual data has

exploded, so that the 1965 project seems modest compared to the scale of today’s

online data collection. It is estimated that in 2016 as much data was produced as in

the entire history of humankind up to 2016. By 2026 it is estimated that there will be

150 billion networked measuring sensors – approximately 20 sensors for each person

on the planet – and that by 2026 the amount of data generated on the Internet will

double every 12 hours, (Helbing et al., 2017).

The financial investment required to sustain the levels technology required to

store, organise and process data at this scale has resulted in a situation where a

small number of companies can dominate in specific activities. For example, in 2018,

over 70% of all web searches worldwide are estimated to have been through Google

Search, the nearest competitor, Bing, is estimated to have 7% of web search volumes,

(NetApplications, 2018).

There is pressure on commercial companies to evolve increasingly sophisticated

data collection capabilities - and to respond when their ability to collect is threatened,
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(Sivakorn et al., 2016). In the case of Google, major algorithm changes such as

Caffeine, (Peng et al., 2010), Social Search, (Heymans, 2009) and Search Plus, Your

World, (Singhal, 2012), included additional sources of background knowledge from

Social Media, improved filtering of content such as Panda, (Slegg, 2015), to counter

spam and content manipulation. In 2018, an estimated 52.2% of all website traffic

worldwide came from mobile devices, (Statistica, 2019). Google introduced its “Speed

Update” for web search on mobile to all users in July 2018, (Wang et al., 2018), and

within days, announced the inclusion of Mobile Landing Page Speed Score in the

Google Ads, (Osmani et al., 2018).

Much of the free–to–use Internet is free largely because it is under-pinned by a

de facto business model of gathering and analysing data about user interests and be-

haviours to produce targeted commercial content. Some numbers help illustrate how

important targeted commercial content is. Facebook earned an average of US$4.65

per user from personalised content such as advertising and promoted posts in the

second quarter of 2017, according to the Economist (Economist, 2017). By compari-

son, an average of just US$0.08 per user came from direct fees such as payments for

games.

We classify data collection as either implicit or explicit for our purposes here.

Implicit collection includes data gathered without requiring direct user input. For

example, capturing details of the underlying hardware and software by fingerprinting

a device. Implicit data collection activities also include activities such as network

packet inspection and tracing. Mobile devices in particular provide opportunities

for enhancing Geo-location based data collection. Data collected implicitly has been

covered extensively in the research literature and is known to be highly revealing

of individual behaviours, (Bielova, 2017; Binns et al., 2018; Englehardt et al., 2016;

Narayanan et al., 2017). We adopt the approach that implicit data collection is an

inevitable consequence of being online. When implicit data collection effects person-

alisation we assume it manifests through effects observed in personalised output.

Explicit data collection arises through deliberate user actions – such as submit-

ting a search query to Google Search. The importance of explicit data collection is
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evidenced by practices such as the use of intrusive pop-ups to force users to consent

to accept cookies since the introduction of GDPR, (Burgess, 2018). We take explicit

data collection arising from deliberate actions of the user as a controllable aspect of

the interaction between user and system. We are interested in understanding how a

user can control explicit data collection to quantify and ultimately regulate personal

profiling by during interactions with learning systems.

2.2 Privacy and Societal Risks of Profiling

Privacy as a normative concept is deeply rooted in economic, legal and philosophical

discussion, (Nissim et al., 2018; Solove, 2006; Swanson, 1992). The literature is vast

and, though interesting, is beyond the scope of our focus here on privacy in the context

of online data collection and subsequent profiling through machine learning. Our

concern is that data collected may be misunderstood, contain errors or be sensitive

to an individual. Processing may introduce errors or be less exact than intended.

Researchers and practitioners are increasingly warning against the naive usage of

internet data collection for profiling, (Olteanu et al., 2018), and documenting the

consequences such as adverts connecting socio-economic status with race, (Speicher

et al., 2018), or adverts associating criminal behaviour with individual ethnicity,

(Sweeney, 2013).

By 1966, the US Government project to collect and process data was dropped be-

cause of concerns about invasion of privacy on what, in 1965, was regarded as a ”vast”

trove of data, (Alle et al., 1966). Today, a small number of commercial companies

dominate data collection and processing on the Internet resulting in so-called “digital

oligarchies”, (Andriole, 2017). When personal data is collected without transparent

purpose it erodes the ability to define the boundaries between what is, and is not,

private. Purposes which, when revealed, can cross the line from “helpful” to “un-

wanted”. This was highlighted in 2017, when an Australian news website revealed

that Facebook offered advertisers the ability to target teenagers suffering “moments

of psychological vulnerability”. By monitoring posts, photographs and interactions

Facebook was profiling teenagers who felt “worthless, insecure, stressed, defeated,
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anxious and like a failure”, (Whigham, 2017). Transparency of purpose and process-

ing employed in complex profiling algorithms used by online systems speaks directly

to topical concerns with transparency of machine learning in general.

Societal concerns resulting from over-collection and lack of transparency in col-

lection and subsequent processing of data are reflected privacy legislation, such as

the EU GDPR (European Union, 2016). GDPR specifically mandates minimisation

in the collection of, access to, and transparent processing of data as basic principles

of privacy protection. The practical consequences of GDPR are now being felt with

overly broad collection and non-transparent data processing risking exposure to leg-

islative action for commercial companies. In January 2019 the first GDPR fine was

announced in Portugal, (Monteiro, 2019). The majority of the fine was imposed for

breaches of principles of data minimisation and subsequent data processing. Also

in January 2019, the French Data Regulator (CNIL) announced a EUR 50M fine

against Google under GDPR consent rules, (Ram et al., 2019). In this case, lack of

transparency was a principle concern, with CNIL stating that “It is not possible to

be aware of the plurality of services, websites and applications involved in these pro-

cessing operations (Google search, YouTube, Google Home, Google Maps, Playstore,

Google Pictures . . .) and therefore of the amount of data processed and combined”.

Concerns with potential bias in personalisation by machine learning fall into two

broad categories in the literature.

Discrimination Concerns over negative consequences associated with personalisa-

tion on Google Search adverts have been identified over several years (Guha

et al., 2010; Sweeney, 2013). Our work identifies potential grounds for discrim-

ination in Chapter 5 where we find strong evidence of profiling with respect to

health status and sexual orientation. Our findings correspond with recent re-

sults identifying potential bias in online advertising by analyzing explanations

provided by systems for selection of advertising content, (Andreou et al., 2018;

Speicher et al., 2018).

Restriction Restricting access to content via a so-called filter bubble,(Pariser, 2011),

and explored in the case of Google Search in (Hannák et al., 2017). In a filter



2.2. Privacy and Societal Risks of Profiling 17

bubble, a user cannot access subsets of information because the recommender

system algorithm has decided it is irrelevant for that user. Recent work has

explored algorithmic frameworks to reduce filter bubbles, (Celis et al., 2019),

and towards formalizing notions of fairness in machine learning, (Naudts, 2018).

Detection and assessment of privacy concerns by analysing changes in content

are similar to the techniques used to analyse filter bubbles. Our work here

offers, therefore, a potential, additional perspective on filter bubbles for future

research.

Privacy concerns can be viewed in terms of two major factors – awareness of a

sensitive social situation, and, the ability of an individual to control the social situa-

tion, (Boyd, 2012). The importance of reasonable agency or control over appropriate

flow of information is discussed extensively in the legal and social science fields. The

importance of individual agency over personal information flow was discussed in a

critique of the nothing to hide defence for widespread surveillance in (Solove, 2007).

Individual privacy and its social consequences are discussed in (Bennett, 2011; Boyd,

2012), where agency or control over appropriate disclosure is identified as a key con-

cern. Recent legislation, such as the General Data Protection Regulation (GDPR),

requires that personal data must be adequate, relevant and limited to what is neces-

sary in relation to the purposes for which those data are processed, (European Union,

2016). In this context, broad collection of user data without transparent purpose in

online interactions with everyday online systems is a particular concern for individual

privacy.

Given concerns with transparency and purpose of data collection, assisting indi-

viduals to detect and assess privacy risks is fundamental to protection. Users are

concerned about their privacy on the Web but do not always reflect this concern in

their online behaviours, (Alessandro Acquisti et al., 2015). In (Pujol et al., 2015),

in-the-wild measurements of user interactions with Ad blocking technologies suggest

that users overwhelmingly accept default settings and do not install updates such as

white-lists. Consequently technologies for user privacy must be effective, but also

unobtrusive and simple to maintain. In comparison with users, online systems have
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proven alert and adaptable in responding to attempts to protect privacy at individual

user level. Stateful (cookie) and stateless (fingerprinting) tracking are widespread on

the web. In (Bielova, 2017; Binns et al., 2018; Englehardt et al., 2016; Narayanan

et al., 2017) separate studies of 1 million websites reveal widespread data exchange

among third parties, stateful tracking from third-party cookie spawning and stateless

fingerprint-based tracking. In (Binns et al., 2018) users are observed to be tracked

by multiple entities in tandem on the web.

We ascribe to the view that personal privacy requires active engagement from

users. In (Ramakrishnan et al., 2001) in concluding remarks, the authors state that

“the ideal deterrents are better awareness of the issues and more openness in how

systems operate in the marketplace. In particular, individual sites should clearly

state the policies and methodologies they employ with recommender systems”.

We propose three principles of personal privacy desirable in interactions with

online systems, comparable with the “Principles for Accountable Algorithms and a

Social Impact Statement for Algorithms” from the ACM FAT/ML website, (FATML,

2019), and intended to be agnostic with respect to implementation choices.

Detection of Privacy Concerns An individual user should be able to detect evi-

dence of unwanted personalisation with respect to topics they regard as sensitive.

In particular a user should be allowed to define what they regard as sensitive or

non-sensitive topics without having to share details of their interests with other

parties.

Plausible Deniability of Interests When presented with content regarded as in-

appropriate or discreditable, a user may wish to deny their interest in the con-

tent. A user should be able to assess their ability to plausibly deny interest in

sensitive topics they have defined.

Reasonable Agency A user should be able to exercise reasonable agency over pri-

vacy choices during interactions. Here the requirement is for reasonable control

meaning that the expectation of privacy must be appropriate to the context. A

person registering with an online dating site must accept a reasonable conclu-

sion is they have some interest in dating. Without further information it is not
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reasonable to say whether their interest is in academic research or in seeking a

date. So that this person can reasonably expect content related to the dating

site - but not related to their personal dating preferences.

2.3 Privacy Models and Risk

We consider a setup where a search engine does not seek to identify users as individu-

als, but rather it seeks to determine likely user interest in topics it deems commercially

valuable. We model machine learning of behaviours, interests and preferences as a

process of labelling an individual with respect to topic categories. Privacy provides

a formal framework to investigate the strength of association between labels and

individuals without requiring knowledge of how the association has arisen. When

evidence of association between labels and individuals is detected it corresponds to

detection of learning in the underlying algorithms employed by the search engine. A

privacy concern is detected when labels are associated with an individual the individ-

ual regards as sensitive. Quantifying the strength of association with sensitive labels

corresponds to assessing the degree of risk in potential privacy threats. Detection and

assessment of privacy concerns are therefore related to inference in machine learning,

and more generally to fairness, accountability and transparency in machine learning,

(FATML, 2019), and our contributions can be framed within the broader context

of verification fairness and analysis of inference in machine learning, (Olhede et al.,

2016, 2018).

Our privacy model is based on the notion of plausible deniability. Informally,

user activity observed by the search engine exhibits plausible deniability when, with

high probability, it is consistent with the user being interested in any one of several

topics at least one of which is not sensitive for the user. That is, the patterns of

user activity supports reasonable doubt about the user’s actual interest in a given

sensitive topic. Plausible deniability to counteract the impact of personalisation is

examined in (Cummings et al., 2014) for the case of a privacy aware user who knows

they are being observed. The authors show that, no matter what the behaviour of the

user is, it is always compatible with some concern over privacy. In this way the user
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can offer their awareness of privacy concerns as a general alibi to justify any range of

preferences. Technologies enabling plausible deniability for web search are addressed

in the literature. In (Avi Arampatzis et al., 2013) alternative, less revealing queries

are mixed with sensitive topic queries to obfuscate true user interest. In (Arampatzis

et al., 2011) queries with generalised terms are used to approximate the search results

of a true query, which is never revealed.

We will compare privacy models we use to other privacy models in current use.

Two examples we will draw on are k–anonymity and differential privacy. Privacy

as a form of hiding in the crowd, where an attacker cannot associate an individ-

ual with less than k records in a data set, was first formalised as k-anonymization

in (Sweeney, 2000). Since its original introduction a variety of refinements such as

l-diversity, (Machanavajjhala et al., 2006) and t-closeness, (Li et al., 2007), have ad-

dressed weaknesses with the original definition. Differential privacy, (Dwork, 2006),

is a formal framework for privacy preserving statistical queries over databases. Differ-

ential privacy has been criticised, (Bambauer et al., 2013), and implementations have

been criticised for being opaque, (Tang et al., 2017). Differential privacy has been

included in commercial products by Apple, (Apple, 2017) and Google, (Erlingsson

et al., 2014).

2.4 Privacy and Web-search Profiling

Mechanisms for privacy protection from web-search profiling have been extensively

covered in the literature. An early approach is to obfuscate or mask queries from

the system by injecting non-sensitive query terms as “noise” within which to hide

or distort sensitive queries. The essential challenge in this type of approach is to

define a practical method of selecting “noise” query terms to provide a verifiable level

of anonymity while not overly upsetting overall utility,(Domingo-Ferrer et al., 2009;

Howe et al., 2009; Peddinti et al., 2011; Sánchez et al., 2013). Query obfuscation and

masking is addressed in (Ahmad et al., 2016), where user queries are hidden within

a stream of at least k ‘cover queries’ to provide a form of k-anonymity. PEAS, (Petit

et al., 2014, 2015), combines obfuscation and a proxy to also provide unlink-ability



2.4. Privacy and Web-search Profiling 21

between user and query. In (Ahmad et al., 2016) user queries are hidden within a

stream of at least k ‘cover queries’ to provide a form of k-anonymity. PWS, (Balsa et

al., 2012), and TrackMeNot, (Howe et al., 2009; Peddinti et al., 2011), inject distinct

noise queries into the stream of true user queries during a user query session, seeking

to achieve acceptable privacy while not overly upsetting overall utility.

An alternative approach is to apply encryption and multi-party computation tech-

niques to process sensitive user queries, leveraging techniques from the privacy pre-

serving data mining domain. Protecting users from individual re-identification of-

ten combines encryption, hashing and noise addition on the local user machine. A

common challenge in this type of approach is that it can be computationally pro-

hibitive and require substantial user management for locally maintained dictionaries

of queries, features or URLS accessed by the user. For example, in (Z. Erkin et

al., 2011, 2010), the authors propose to encrypt privacy sensitive data and generate

recommendations by processing them under encryption. Approaches of this type typ-

ically rely on a user, or a learning algorithm, being able to identify which queries are

sensitive, and trust in the service provider to perform query processing under secure

encryption.

In the recommendation systems literature privacy technologies have largely fo-

cused on how to incorporate privacy into the recommendation process itself. In (Bat-

maz et al., 2016), random perturbation of data is used to develop privacy-preserving

frameworks for collaborative filtering methods. In (Boutet et al., 2016), profile ob-

fuscation together with a randomised dissemination protocol are employed. Another

approach is to distribute the recommendation process by including a trusted inter-

mediate agent between user and back-end system, such as (Aïmeur et al., 2008). In

(McSherry et al., 2009), differential privacy is incorporated into the algorithms used

in the Netflix prize competition to produce privacy preserving recommendations. Our

work compliments this body of research in that provide technologies that can verify

the effectiveness of privacy embedded in the recommendation process by monitoring

the outputs.
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Raising user awareness has been extensively investigated in the literature. A sig-

nificant body of research exists to capture user activity and then provide feedback on

where information is flowing. Popular browser add-ons, such as Mozilla Lightbeam,

(Mozilla, 2016), and PrivacyBadger, (EFF, 2018), facilitate active user awareness of

possible privacy and consent issues by helping understand where user data is shared

with third parties through the sites they visit. XRay, (Lecuyer et al., 2014), reports

high accuracy in identifying which sources of user data such as email or web search

history might have triggered particular results from online services such as adverts.

Active consensual sharing of personal data is investigated in (Fredrikson et al., 2011)

through an in-browser capability, called RePriv, allowing a user to select which por-

tions of their personal data they wish to share with requesters. Data collection on

mobile devices is also a concern. Tracking or profiled advertising without consent

on the Android platform is addressed in (Razaghpanah et al., 2018), with undoc-

umented services, previously unknown to mainstream advertising and white-listing

services constituted over 10% of third party tracking.

Website proxy services offer privacy preserving access to mainstream search en-

gines on the Internet. Two of the better known are DuckDuckGo hosted in the US

on Amazon Web Services, (Inc, 2018), and StartPage hosted privately in the Nether-

lands, (Holding BV, 2018). Functionally both are similar, encrypting traffic via https,

and employing POST and re-direct techniques to obfuscate requests. Both claim to

relieve so-called filter-bubbles, (Pariser, 2011), by aggregating results from several

source systems. In both DuckDuckGo and StartPage the proxy user profile adopted

by users of both systems is global. Personalised content such as advertising that is

displayed on search result pages is correspondingly generic. The 3PS prototype we

develop in Chapter 6 also provides proxy access to web search, but differs in allowing

a user to dynamically adopt a group profile that is closest in interest to their personal

interests.

In our approach, we regard online systems as black-boxes with unknown internal

workings and state. Modelling a system as a black-box is well established in system

testing, (Limaye, 2009), and is mentioned in the context of privacy, (Anupam Datta,
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2014; Hannák et al., 2017). Grouping users behind intermediate or proxy layers

is a well studied privacy technique. Protecting the sensitivity of user data, and

particularly of user profiles exposed to the online system, by grouping users behind a

proxy layer is defined as Level 2 Privacy in the classification scheme of online privacy

approaches in (Shen et al., 2007).

Evaluation of privacy technologies in the wild is surprisingly underrepresented

in the literature. Our choice of Google Search as a live target for our work was

motivated by this imbalance by using a live setup where possible. Where evaluations

have been performed, it appears to be largely for direct evaluation of browser privacy

plugins, perhaps reflecting the difficulty of performing these experiments where more

sophisticated setup is required. Effectiveness of privacy defences in the wild was

evaluated by (Peddinti et al., 2011) in the case of TrackMeNot where the authors

demonstrate that by using only a short-term history of search queries it is possible

to break the privacy guarantees of TrackMeNot. In (Ling et al., 2012), the authors

demonstrate an effective attack to detect the communication relationships between

TOR users. The importance of background information in user profiling is explored in

(Petit et al., 2016) where a similarity metric between known background information

and queries is shown to identify 45.3% of TrackMeNot and 51.6% of GooPIR queries.

Anti-tracking is an ongoing area of research and recently in (Pan et al., 2015) an anti-

tracking browser called TrackingFree was reported to be effective at disrupting all of

the trackers in the Alexa top-500 list. Self-regulation has also proven problematic, in

(al, 2012), six different privacy tools, intended to limit advertising due to behavioural

profiling, are assessed. The tools assessed implement a variety of tactics including

cookie blocking, site blacklisting and Do-Not-Track (DNT) headers. DNT headers

were found to be ineffective in tests at protecting against adverts based on user

profiling.

We conclude with a cautionary word to the reader. In questions of online privacy,

the adage caveat emptor (“let the buyer beware”) applies. Examples of unsubstanti-

ated and misleading claims of enhanced individual privacy by providers of technology

are unfortunately all too common, (Blue, 2016; Day, 2018). Concerns about objective
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evaluation of the claims by providers of such technologies have attracted the atten-

tion of Government, where the need for “Awareness and education of the users …”

is identified in (Santa, 2010) as a key step to building trust and acceptance of pri-

vacy technologies. Our contribution in this work is deliberately structured as formal

followed by experimental. In this way we aim to provide a firm foundation under-

pinning ensuing experimental results, avoiding confusing claims, albeit at the risk of

mathematical density.
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Chapter 3

General Setup
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3.1 Formal Setup

3.1.1 Black-box Models

We consider a setup where users interact with a system S , such as a search engine,

by issuing a query as input and receiving an output in response. Each interaction

between a user and S consists of an input–output pair, referred to as an input–output

interaction. We gather a sequence of consecutive input-output interactions between

a user and S into a session. We sometimes refer to the input–output interactions in

a session as steps. To improve readability, set operator notation is sometimes used to

indicate operations on sequences where there is no scope for confusion.

We assume that user inputs and system outputs are each decomposable into fea-

tures. For example, when modelling a user querying movies or hotels the input

features might consist of keywords, or if assigning ratings the features might consist

of integers. An ordered list of features with no duplicate entries is called a dictionary.

We let DX and DY denote the dictionary containing valid input features to S , and

valid output features generated by S respectively. Individual features are indicated

thus, θX
i , i = 1, . . . |DX| and θY

j , j = 1, . . . |DX| so that θX
i indicates the ith feature in

DX and θY
j the jth feature in DY. We let X and Y denote the sets of possible valid

inputs and outputs comprised of combinations of features from DX and DY respec-

tively, and the set of valid input–output interactions is Z := X × Y . Input–output

interactions may repeat during a session and so sessions are represented as sequences

of input–output interactions.

The system S is treated as a black-box with internal state unknown to users.

Our assumption is that S uses its internal state, which includes knowledge of user

interests, when producing personalised outputs for individual users, thereby poten-

tially revealing something about its internal state. Given a sequence of user inputs we

observe corresponding system outputs and try to spot evidence of learning of topics

the user considers private.

The Basic Black-box Model for user–system interaction is illustrated in Figure 3.1.
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Figure 3.1: Overview of the Basic Black-box Model

Definition 1 (Basic Black-box Model) The Basic Black-box Model consists of

two interacting components {U , S }

• An online system S for which only inputs to, and outputs from, S are observ-

able to users, while details of the internal workings of S are hidden.

• A set U of users who can submit input to, and receive corresponding output

responses from, S .

We also define a Proxy Black-box Model by extending the Basic Black-box Model

whereby users access the system through a pool of group identities referred to as

proxy agents. This is illustrated schematically in Figure 3.2.

Definition 2 (Proxy Black-box Model) The Proxy Black-box Model consists of

three interacting parties denoted {U , P , S } as follows:

• An online system S for which only inputs to, and outputs from, S are observ-

able while details of the internal workings of S are hidden.

• A set P of Proxy Agents. Proxy agents function as Group Identities, routing

user queries to, and output responses from S . P is sometimes referred to as

the Proxy Agent Pool.

• A set U of users can submit input to, and receive corresponding output responses

from, S via the group identities provided by the proxy agents in P.



28 Chapter 3. General Setup

Figure 3.2: Overview of the Proxy Black-box Model

In the Proxy Black-box Model the proxy agent pool is assumed controlled by the

back-end service. One key reason for doing this is to ensure that proxy agents are

recognised as genuine users by the back-end system. If not recognised as bona fide

users the proxy agents may be flagged as a bot or robot and so trigger defences, such

as “captchas”, or even be blocked. Other than acknowledging the proxy agents as

legitimate users, the Proxy Black-box Model is intended to be backwards compatible

not requiring significant engineering changes in the back-end system.

3.1.2 Modelling Interactions

It is convenient to discretise the time variable and a non-negative integer k ∈ {1, 2, . . .}

is used to track input–output interactions in both the Basic Black-box Model and

Proxy Black-box Model and refer to input–output interactions at step k. The sequence

of input–output interactions generated by the users in U to step k is denoted

Zk = (z1, . . . zk) ∪ Z0 (3.1)

where z1 is the first input–output interaction between users in U and S during the

session and zk is the kth input–output interaction between users and S for k ≥ 1. The

quantity Z0 denotes prior background knowledge gathered from U at the beginning

of the session.
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For an individual user labelled with u ∈ U the sequence of input–output interac-

tions between u and S is denoted by

Zu,k = (zu,1, . . . zu,k) ∪ Zu,0 (3.2)

where Zu,0 is the background knowledge available about user u at the beginning of

the session.

The sequence of input-output interactions submitted to a proxy agent labelled by

p ∈ P from the set of users in U is denoted Zp,k.

Zp,k = (zp,1, . . . zp,k) ∪ Zp,0 (3.3)

where Zp,0 is the background knowledge available to proxy agent p at the beginning

of the session.

Let Pu ⊂ P denote the subset of proxy agents used by user u up to step k. The

input-output interactions submitted by user u through proxy agent p ∈ Pu to step

k are contained in the sub-sequence

Zu,p,k = (z ∈ Zu,k : ιp(z) = 1) (3.4)

where indicator function ιp equals 1 for input-output pairs submitted via proxy p and

0 otherwise.

3.1.3 Topic Labelling

Each user u has a private labelling function lu : Z −→ C which associates input-

output interactions in Z with topic labels selected from a private, user-defined set of

labels C = {c0, c1, . . . cK}. Each user can have different labels so that C can change

by user. When necessary we will write Cu when we need to emphasise which user

has chosen a particular set of topic. We omit the subscript u from Cu otherwise for

notational clarity.

We adopt the convention that the label c0 is identified with a catch-all “non-

private” category while the remaining elements in C \ {c0} label individual “sensitive”
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topics such as “health” or “finances”. The user labelling function lu is itself private

and labels every input–output interaction in Zu,k, with at least one topic from C.

Often we are simply interested in whether an input-output interaction is private or

not for a user, and so we define the indicator function Iu : Z −→ {0, 1} with Iu(z) = 1

when lu(z) = c, c ∈ C \ {c0}, i.e. when an input–output interaction is labelled with

a private topic by user u, and Iu(z) = 0 otherwise. We assume that user labelling

functions are well-behaved in the following sense.

Assumption 1 (Meaningful Labelling) An input-output interaction which is la-

belled as non-private by a user is truly non-private for that user e.g. the user would

be content for it to be shared publicly.

Assumption 1 requires users to strike their own balance between utility and privacy

as discussed in the third principle introduced in Section 1. The low risk strategy of

simply labelling every input-output interaction as private implies that the user may

not be able to use the system at all. For example, if the system is a dating service,

the knowledge that a person uses the system necessarily reveals their interest in such

a service. A user choosing to use the system cannot include such system-level topics

in their set of private topics. The implicit statement in Assumption 1 is that users

form an individual judgement regarding the inference capabilities of observers and to

accept a degree of risk associated with this judgement call proving incorrect.

The sequence Z c
u,k := (z ∈ Zu,k : lu(z) = c) denotes the sub-sequence of input–

output interactions the user labels with topic c ∈ C, and, Z sens
u,k :=

∪
c∈C\{c0} Z

c
u,k

denotes the sub-sequence of input–output interactions labelled as private.

Let Zu,c
k := (z ∈ Zk : lu(z) = c) and Zu,sens

k :=
∪

c∈C\{c0} Z
u,c
k . The sequence

Zu,sens
k contains items from users other than u. Consequently, while Zu,sens

u,k ⊆ Zu,sens
k ,

it is not generally the case that Zu,sens
k is a sub-sequence of Zu,k.

When a user decides a topic is private it is a personal decision. We want to

capture the flexibility a user has to choose their own private topics while avoiding

subjective words like “embarrassing” or “awkward” in assigning topics as private. We

will, however, use the term “sensitive topic” to describe topics that the user regards

as private. Our intention is to avoid having to repeat phrases like “topics the user
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regards as sensitive” in favour of the simpler term “sensitive topic”. Describing a

topic as a sensitive topic should be interpreted accordingly, rather than attaching

any subjective or emotional meaning to the term ”sensitive”. We will also use terms

like “sensitive query” to indicate a query about a topic labelled as private by a user.

3.1.4 Bag–of–Words Text Model

We take inputs and outputs to be comprised of text from a natural language, such

as English, and provide some brief background on tools from Natural Language Pro-

cessing we will use later. For a full treatment, using the Python language, see (Bird

et al., 2009).

The first preprocessing step is to extract personalised text appearing on a result

page as a single block of text and tokenise it into individual words by using white-

spaces and punctuation as token separators. Common, uninformative, high-frequency

stop-words are removed and stemming is performed to remove common prefixes and

suffixes. The result is a sequence of tokens or fragments of words occurring in the

original text. We will sometimes refer to tokens as keywords or features. Tokens

extracted from the input are gathered into a dictionary, denoted DX := (θX
1 , θX

2 , . . . )

where θX
j is the jth token in DX. Tokens extracted from the output are added to a

dictionary DY := (θY
1 , θY

2 , . . . ) and θY
j denotes the jth token in DY.

We adopt a standard bag–of–words language model (Weikum, 2002) where fea-

tures in an input–output interaction are modelled as being drawn independently with

replacement and ignoring order according to the mixture model, (Hofmann et al.,

1998),

P(z ∈ Ak|z ∈ Bk)

=
|DX |

∑
i=1

|DY |

∑
j=1

P(z ∈ Ak|{θX
i , θY

j } ∈ z)P({θX
i , θY

j } ∈ z|z ∈ Bk) (3.5)

where Ak and Bk are sequences of input–output observations.

In the bag–of–words model, an input x is mapped to a count-vector ϕX(x) ∈ Z|DX |

where the ith component ϕX
i (x) of ϕX(x) is equal to the number of occurrences of i’th
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feature θX
i in input x. Similarly, output y returned by S in response is mapped to

count-vector ϕY(y) ∈ Z|DY |. An input–output interaction z = (x, y) is mapped to

count-vector (ϕX(x), ϕY(y)).

3.2 Experimental Setup

3.2.1 General Setup

In this section we describe the common experimental setup with Google Search.

Google Search is used as the principal source of data experiments. We also de-

scribe supplementary data sources we make use of occasionally. In Chapter 4 we

also report measurements and experimental results taken from Bing Search. We use

an identical setup for data collection from both Google and Bing Search for direct

comparison purposes. The intention is to provide additional context in Chapter 4 to

illustrate concepts and confirm experimental findings. In Chapter 6 we use supple-

mentary data to show how the techniques there can be extended to systems other

than search engines. We describe these supplementary data sources in more detail in

Section 3.2.3.

Data was collected using Linux virtual machines located in a University do-

main supporting several thousand users. Custom scripts were written to automate

query execution and response collection. These scripts used Python, BeautifulSoup,

(Richardson, 2016), for HTML processing and Phantomjs, (Friesel, 2014) for browser

automation. The Python SciKit toolkit, (Pedregosa et al., 2012), was used for text

preprocessing. Numeric processing was performed using the NumPy numerical pro-

cessing toolkit, (Idris, 2012; Oliphant, 2006).

3.2.2 Web Search Assigning Topic Categories and Queries

For web search, we select twelve user interest categories to study, detailed in Table 3.1.

Of the eleven sensitive topics, (i) ten are sensitive categories associated with subjects

generally identified as causes of discrimination (medical condition, sexual orienta-

tion etc) or sensitive personal conditions (gambling addition, financial problems etc),
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see for example (Equal Opportunity Commission, 2014; European Union, 2010) (ii) a

further sensitive topic is related to “London” as a specific destination location, provid-

ing an obviously interesting yet potentially sensitive topic that a search engine might

track, (iii) the last topic is a non-sensitive category, labeled other, which is based on

the top-50 queries taken from Google Trends (Google Trends, 2018), providing the

catch-all other topic representing topics that are not sensitive. The queries selected

from Google Trends for the non-sensitive topic do not contain terms appearing in any

of the sensitive topic queries.

Category Keywords

anorexia nerves eating disorder body image binge diet weight lose fat

bankrupt
bankrupt insolvent bad credit poor credit clear your debts insolvency payday

insolvent any purpose quick cash benefits low income

diabetes diabetes mellitus hyperglycaemia blood sugar insulin resistance

disabled disabled special needs accessibility wheelchair

divorce divorce separation family law

gambling addiction
uncontrollable addiction compulsive dependency problem support counselling

advice therapist therapy help treatment therapeutic recovery anonymous

gay (homosexuality) gay queer lesbian homosexual bisexual transgender LGBT dyke queen homo

location (London) london england uk

payday loan default unsecured debt consolidate advice payday cheap

prostate cancer prostate cancer PSA male urethra urination

unemployed job seeker recruit search position cv work employment

other
Select the top-50 queries on Google Trends as examples of non-sensitive queries,

excluding terms appearing in sensitive topics.

Table 3.1: Categories and associated keyword terms

For each category, apart from other, a keyword list is created by extracting asso-

ciated terms from curated sources including Wikipedia (common terms co-occurring

on the category page) and Open Directory Project (pages and sub-topics associated

with a category). These are detailed in Table 3.1. Candidate search queries are then

generated for each category by drawing groups of one or more keywords uniformly
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at random with replacement from the keyword lists. These candidate queries are

manually augmented with common words (and, of etc) to yield queries resembling

the English language. In this way a keyword such as fat, for example, might be

transformed into a query “why am i so fat”. Non-sensical or overly robotic queries

are removed by manual inspection. For the other category, queries are taken from

the top-50 on Google Trends.

[01] ! keywords: london england uk

[02] ! probe: help and advice

[03] help and advice

[04] ! wait 7

[05] weather forecast for london

[06] ! wait 5

[07] find hotels in london city

[08] ! wait 3

[09] help and advice

[10] ! wait 7

[11] cheap hotels in london

[12] ! wait 10

[13] hotels in regents park cheap

[14] ! wait 7

[15] marriott courtyard regents park

[16] ! wait 4

[17] help and advice

[18] ! wait 7

[19] things to do london next week

[20] ! wait 5

[21] regents park hotels

[22] ! wait 7

[23] get cheap london show tickets

[24] ! wait 7

[25] shows on london now

[26] ! wait 5

[27] tickets london shows

[28] ! wait 7

[29] help and advice

Table 3.2: Example query script. Numbers in square brackets in-
dicate line numbers for readability. The command !wait n instructs
the Python script to wait n seconds. The script is run sequentially

and is split into two columns here to save space.

According to (Lioma et al., 2018) a search session consists on average of three

query submissions. To construct sequences of queries for use in user sessions, a

predefined probe query is inserted at intervals of 1 − 5 queries so that there are 3

topic-specific queries on average between instances of a probe query. In this way we

obtain twelve “scripts” of queries. Each script consists of between 25 − 40 queries
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including the inserted probe queries. A user session then consists of a single iteration

of a single script run from beginning to end. An example script is shown in Table 3.2.

3.2.3 Supplementary Data Sources

In Chapter 6, in addition to using experimental data from Google Search, the following

experimental data from supplementary real-world sources are used in experiments.

Hotels Tripadvisor hotel reviews containing hotel review titles, review bodies and

lowest price per room downloaded from, (Hongning Wang et al., n.d.), and consisting

of over 1.6 million hotel reviews. Queries consisting of words extracted from review

titles are used as inputs and detailed review bodies represent outputs.

Products Product review titles, review bodies and overall rating scores downloaded

from, (Hongning Wang et al., n.d.), containing Amazon product reviews for 6 types

of merchandise and consisting of over 2.2 million product reviews. Words appearing

in product review titles are used as query inputs and outputs review bodies.

Default topics for experiments were defined as follows from each of the supplementary

experimental data-sets.

Hotels Five topic categories are defined by dividing the lowest price per room into

equally spaced ranged, namely 0 := [0, 110], 1 := (110, 220], 2 := (220, 330], 3 :=

(330, 440], 4 := (440, 550], 5 := (550, ∞). Reviews are then labeled according to the

lowest price.

Products The overall rating score is used to define topic categories, namely very

dissatisfied (Topic 1) to very satisfied (Topic 4). Topic 0 is used to indicate no rating

was given so there are 5 topic categories in total.

When experiments are performed requiring a larger number of topics than those

above, the Hotels data-set is divided into a larger number of topic categories by

specifying different lowest price ranges. In this way it is possible to create a variety

of topic categories automatically by re-grouping the data into finer price categories to

create more topic categories. The Hotel data-set was chosen for convenience since the
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categories are defined by numeric, price-per-room, ranges and so it is straightforward

to programatically define more categories by changing the numeric ranges.
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Chapter 4

Detecting Privacy Concerns
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4.1 Introduction

How far should we accept promises of privacy in the face of personalised profiling? In

particular, we ask how can we improve detection of sensitive topic profiling by web

search engines.

We consider the Basic Black-box Model described in Section 3.1.1 with users

directly accessing a search engine S such as Google or Bing. Inputs are web-search

queries submitted to the search engine and outputs are the corresponding response

pages containing several components including personalised adverts. We investigate

how a user who, having a number of sensitive topics they wish to keep private, can

detect potential privacy concerns by analysing personalised content appearing on

output from a search engine. The formalism we develop identifies possible privacy

concerns relative to a baseline level. The baseline is learned from training examples

such as historical results.

We begin by developing a formal privacy model for a novel definition of indi-

vidual privacy we call ϵ-Indistinguishability that is compatible with existing privacy

models. To show ϵ-Indistinguishability is readily implementable as a practical user

technology we implement a fast, scalable estimator of ϵ-Indistinguishability, we call

PRI (”PRivacy for Individuals”). The PRI estimator looks for changes relative to

a baseline to detect privacy threats. Consequently, we introduce an effective method

for detection of privacy threats across a sequence of observations by collecting and

comparing responses to a sub-sequence of preselected probe queries.

We end this chapter by showing that evidence of adaptation is easy to detect

for a wide range of sensitive topics in an extensive measurement campaign. Google

is the main search engine we consider, however we also show results using Bing for

comparison in this Chapter to illustrate that our techniques are applicable more

broadly than to a single search engine.
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4.2 Privacy Model

We adopt an indistinguishability definition of disclosure risk, tailored to the context

of the Basic Black-box Model:

Definition 3 (ϵ-Indistinguishability) ϵ-Indistinguishability is satisfied by a user

session Zu,k with respect to a sensitive topic c ∈ C, if there exists a privacy parameter

ϵ > 0 such that

e−ϵ ≤ Mu,k(c) ≤ eϵ (4.1)

where

Mu,k(c) :=
P(Iu,c

u = 1|Zu,k)

P(Iu,c
u = 1|Zu,0)

(4.2)

where Iu,c
u is an indicator random variable with value 1 when u is interested in topic

c and 0 otherwise So that the evidence available for interest in sensitive topic c at

step k having knowledge of the full history Zu,k cannot differ from the evidence at the

beginning of the session by more than an amount determined by ϵ.

Given the sequence of observations Zu,k associated with a user, our aim is to

(1) estimate whether ϵ-Indistinguishability has been violated for any of the sensitive

categories in C, and (2) identify which of these sensitive categories have been learned,

with high probability in both cases.

4.3 Using Probe Queries to Simplify Estimation

Estimating Mu,k(c) is challenging since it depends on the full user session history up

to step k. To simplify the task we assume that the user issues a pre-defined probe

query at intervals during the session. In brief, a probe query should be plausible in

relation to a sensitive topic so that it does not suggest a change of topic to the search

engine; a probe query should also be ambiguous so that the search engine has several

possible adaptations to the probe query. In Section 4.6.1 experimental probe query



40 Chapter 4. Detecting Privacy Concerns

selection is discussed, where selecting high-frequency terms appearing on multiple

result pages, while taking care to avoid obviously revealing terms, is shown to be

a practical method of probe selection. In practice, a probe query might be issued

in an automated manner by the user’s browser and the response processed in the

background so as not to disturb the user.

We make the following assumptions when using probe queries.

Assumption 2 (Sufficiently Informative Responses) At each step k at which a

probe query is issued

P(Iu,c
u = 1|Zu,k)

P(Iu,c
u = 1|Zu,0)

=
P(Iu,c

u = 1|Zk = zk,Zu,0)

P(Iu,c
u = 1|Zu,0)

(4.3)

where Zk = zk denotes the event that input–output interaction zk is observed at step k

of the session. So that it is not necessary to explicitly use the full search history up to

step k as background knowledge during the current session when estimating Mu,k(c)

as the current session history is fully reflected in the response to the probe query at

step k.

Assumption 2 greatly simplifies estimation as it means we do not have to take account

of the full search history, but requires that the response to the probe query reveals any

search engine learning of interest in sensitive category c which has occurred. Methods

for the selection of an appropriate probe query that tends to elicit revealing responses

are discussed in detail in Section 4.6.1.

Our next assumption follows from the observation in Section 4.1 that a commercial

system, such as a search engine, is obliged to use information about user interests when

selecting which adverts to display. For an input–output observation z := (x, y) ∈ Zu,t

let ω(z) = a where a ∈ y is the advert content on the output y. Let Au,k :=

(ω(z) : z ∈ Zu,k) denote the sequence of advert content appearing on input–output

interactions in Zu,k. Let Au,c
u,k := (ω(z) : z ∈ Zu,c

u,k ) denote the sequence of advert

content appearing on input–output interactions in Zu,c
u,k . Let Au,0 := (ω(z) : z ∈ Zu,0)

be the sequence of advert content in the background knowledge Zu,0. Let Au,c
u,0 :=

(ω(z) : z ∈ Zu,c
u,0) denote the sequence of advert content appearing on input–output
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interactions in Zu,c
u,0. We assume that the labelling function lu is consistent with the

function ω in the sense that lu(z) = lu(ω(z)) = lu(a), with the obvious abuse of

notation where there is no scope for confusion, so that advert content appearing in

input–output interactions can be labelled using lu.

Assumption 3 (Revealing Adverts) In the response by S to the probe query at

step k it is the adverts on the response page at step k which primarily reveal learning

of sensitive categories by S . Therefore, since the probe query input is fixed,

Mu,k(c) :=
P(Iu,c

u = 1|Ωk = ak,Au,0)

P(Iu,c
u = 1|Au,0)

(4.4)

where Ωk = ak denotes the event that advert content ak is observed in response at step

k. Consequently, only the advert content on the output in response to a probe query

needs to be analysed.

When Mu,k(c) > eϵ or Mu,k(c) < e−ϵ for any k ∈ K then ϵ-Indistinguishability is

violated. To ensure that the converse holds, namely that when e−ϵ ≤ Mu,k(c) ≤ eϵ

for all k ∈ K so that ϵ-Indistinguishability is satisfied, we also need the following

assumption.

Assumption 4 (Sufficiency of Sampling) When e−ϵ ≤ Mu,k(c) ≤ eϵ for the sub-

set of probe query steps K in a session then e−ϵ ≤ Mu,k(c) ≤ eϵ for every step

k ∈ {1, 2, · · · } in that session. That is, when ϵ-Indistinguishability is satisfied at the

sub-sequence of steps K at which the probe query is issued then it is satisfied at all

steps and ϵ-Indistinguishability holds.

In practice it can be difficult to verify whether Assumption 4 holds or not. When we

cannot rely on Assumption 4 then, as already noted, violations where Mu,k(c) > eϵ or

Mu,k(c) < e−ϵ for k ∈ K are still informative of disclosure risk, and so measurements

taken at k ∈ K should be regarded as an underestimate, or lower bound, of disclosure

risk for the user.
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4.4 Bayesian Estimator

Empirical estimators for quantities in (4.7) can be defined in the following way. As-

sume the availability of a training data set T consisting of labelled advert content

from input–output interactions. Approximate the prior evidence at the beginning of

the query session empirically with T - that is Ẑ0 = T . By applying the natural lan-

guage processing techniques described in Section 3.1.4 to T we produce a dictionary

of advert keywords DA. From the definition of ϵ-Indistinguishability in (4.4):

Mu,k(c) :=
P(Iu,c

u = 1|Ωk = ak,Au,0)

P(Iu,c
u = 1|Au,0)

(4.5)

(a)
=

|DA|

∑
j=1

P(Iu,c
u = 1 | θA

j ∈ ak,Au,0)P(θA
j ∈ ak |Ωk = ak,Au,0)

P(Iu,c
u = 1|Au,0)

(4.6)

(b)
=

|DA|

∑
j=1

P(θA
j ∈ ak | Iu,c

u = 1,Au,0)P(θA
j ∈ ak |Ωk = ak,Au,0)

P(θA
j ∈ ak|Au,0)

(4.7)

where equality (a) follows from applying the discrete bag–of–words model, (3.5),

using the output features in the dictionary DA since we consider adverts contained

in outputs only in the case of a probe query by Assumption 3. Equality (b) follows

from Bayes’ Theorem.

With DA the block of advert content a appearing on a result page is mapped to

its count-vectorised form ϕY(a). The i’th component of the count-vectorised form,

ϕY
i (a), is equal to the number of occurrences of the keyword feature θA

i ∈ DA in

the advert output a. We apply regular Laplace Smoothing to the count-vectorised

form ϕY(a), (Manning et al., 2008), to avoid divide by zero under-flows in subsequent

computations when there are sparse occurrences of keywords in a training sequence.

Laplace smoothing resolves this problem by adding a factor λ > 0 to each keyword

count so that ϕY
i (a) −→ ϕY

i (a) + λ.

Let ni(a) denote the frequency with which keyword θA
i occurs in count-vectorised

advert output a. That is,

ni(a) =
ϕY

i (a)

∑|DA|
j=1 ϕY

j (a)
(4.8)
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and we can define estimators for the quantities in (4.7) as follows

P̂(θA
j ∈ ak |Ωk = ak,Au,0) = nj(ak) (4.9)

P̂(θA
j ∈ ak | Iu,c

u = 1,Au,0) =
∑a∈T u,c nj(a)

NT c , NT c
=

|DA|

∑
j=1

∑
a∈T u,c

nj(a) (4.10)

P̂(θA
j ∈ ak|Au,0) =

∑a∈T nj(a)
NT , NT =

|DA|

∑
j=1

∑
a∈T

nj(a) (4.11)

where T u,c ⊆ T is the subset of training data labelled with topic c ∈ C by the

labelling function lu. Combining these estimators with (4.7) results in the following

estimator for Mu,k(c):

M̂u,k(c) =
NT

NT c

|DA|

∑
j=1

(
∑a∈T u,c nj(a)
∑a∈T nj(a)

nj(ak)

)
(4.12)

where ak is the advert content from a probe query at step k.

We refer to the expression for M̂u,k(c) as the PRI estimator.

4.5 Example

θA
i P̂(θA

j ∈ a | a ∈ Au,0,Au,0) P̂(θA
j ∈ a | a ∈ Au,c

u,0,Au,0)

c = prostate c̄ = other

prostat, cancer 5
12

5
12 0

possibl, learn, here 1
6

1
6 0

treat, suffer 5
12

1
4

1
6

risk 5
12

1
6

1
4

revers, natur, lifetim 1
6 0 1

6

Table 4.1: Illustrative example estimator values.

Consider the following illustrative example. Let C = {prostate} (i.e. we have

a single sensitive category), label non-sensitive category c̄ as other and suppose the
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training set (after text pre-processing) is,

T =
{
(prostate, {prostat cancer possibl risk learn here}),

(prostate, {prostat cancer suffer treat}),

(other, {diabet treatment suffer discov revers natur}),

(other, {discov lifetim risk diabet})
}

Dictionary DA therefore consists of the terms {prostat, cancer, diabet, discov, pos-

sibl, learn, here, treat, risk, suffer, revers, natur, lifetim}. Values of the associated

probability estimators are given in Table 4.1.

An advert with text terms (after filtering)

y = {patient choos safer treat here}

is observed. Since the terms patient, choos, safer do not appear in the training data

set – only the terms treat, here contribute to M̂u,k(c). We have ni(y) = 1
5 for

θA
i ∈ {treat, here} and so M̂u,k(c) = 8

25 = 0.32 for c = prostate. For comparison,

M̂u,k(c) = 2
25 = 0.08 for c = other. The advert in this example is in fact taken from

the Google result page for a probe query during a session where the user is carrying

out searches related to prostate cancer. The high value for M̂u,k(c) when c = prostate

is therefore as expected.

4.6 Experimental Setup

4.6.1 Selecting Informative Probe Queries

Pre-defined “Probe Queries” are issued during a query session as a way to gather

responses from the search engine for comparison. The first query in any session

is always a probe query so that we have a baseline for comparison. Responses to

subsequent instances of a probe query are then compared to the responses obtained

from the initial, baseline, probe query to look for changes. A probe query is required

to be sufficiently informative that it could reveal adaptation in the user-search engine
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interaction (Assumption 1), but should not overly disturb the search engines responses

to user queries (so as to preserve the utility of the search engine for the user). To meet

these requirements we propose that a good probe query should possess the following

general characteristics:

Ambiguity It should be meaningful with respect to the sensitive topic but allow

more than one interpretation, so allowing the search engine to choose from a

variety of plausible topics.

Consistency It should be consistent with the user’s information requirement so as

not to disturb search engine learning. The probe should not “surprise” the

search engine.

Candidate probe query keywords were identified as follows. Each of the scripts in

Table 3.1 was executed three times, without probe queries, and collecting the response

pages. We filtered the text in the response pages by stemming terms and removing

stop-words. Next term frequency analysis of the filtered terms was performed and

the top 10 terms identified, see Table 4.2. For comparison, we also report the same

results for Bing Search.

It can be seen that the top-4 words appearing in both Google and Bing search

results are {help, advice, symptom, cause} and that these are significantly more

frequent than lower ranked terms. Additionally these terms are in the top-5 for each

of Google and Bing individually. We use these keywords to form two probe queries:

“symptoms and causes” for disease and medical topics and “help and advice” for

non-medical topics.

As a rough test of the ambiguity requirement for a probe query discussed in

Section 4.3, we used the number of results indicator provided by each search engine.

We recorded the number of results N(c) returned from querying for sensitive topic c

and also the number of results N(c, pj), j = 1, 2 returned when each of the candidate

probe queries is appended to the queries for topic c (with p1=“symptoms and causes”

and p2 =“help and advice” ). We expect N(c, pj) < N(c) since the extra query

text will narrow the query to some extent. However, we would like to avoid this

narrowing being too great, e.g. we would certainly like to avoid N(c, pj) = 0. The



46 Chapter 4. Detecting Privacy Concerns

Google Bing Both

Rank Term TF Term TF Term TF

1 help 4.37 help 4.62 help 4.49

2 advice 4.32 advice 3.45 advice 4.02

3 symptom 1.81 symptom 2.38 symptom 2.04

4 cause 0.90 check 0.77 cause 0.82

5 homecare 0.60 cause 0.68 person 0.53

6 offer 0.54 person 0.60 checker 0.49

7 person 0.48 plan 0.58 check 0.48

8 answer 0.48 checker 0.58 sign 0.45

9 gamble 0.44 sign 0.57 offer 0.43

10 checker 0.43 hiv 0.56 homecare 0.37

Table 4.2: Top-10 candidate probe terms with term frequency (TF)
of occurrence.

values measured are reported in Table 4.3 for Google. Also reported in this table is

the ratio P̂(c | pj) =
N(c,pj)

N(c) . It can be seen that P̂(c | p1) = 0 for the bankrupt topic

and has a low value for gambling, gay and unemployed. In contrast, for these topics

P̂(c | p2) has a fairly high value. This therefore indicates the use of the “help and

advice” probe query for non-medical topics rather than the “symptoms and causes”

probe query, which seems intuitive. Based on Table 4.3 the “help and advice” probe

query also seems reasonable for use with medical topics, and P̂(c | p1) (corresponding

to the “symptoms and causes” probe) is also reasonable for these topics. Again, this

is as might be expected.

4.6.2 User Click Emulation

To reduce the appearance of robotic interaction, the script automation program in-

serts a random pause of 1 to 10 seconds between queries, see Table 3.2 for an example.

After remaining 5 seconds on a clicked link page, the browser “back” button is invoked

to navigate back to the search result page.

To emulate user clicking, we adopt the following user click model. Given the

response page generated in response to a query, for each search result and advert we
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p1 = ’symptoms and causes’ p2 = ’help and advice’

Topic = c N(c) N(c,p1) P̂(c|p1) N(c, p2) P̂(c|p2)

anorexia 28.5 0.834 3% 1.78 6%

bankrupt 86.9 0.434 0% 48.6 56%

diabetes 267 66.5 25% 114 43%

disabled 506 26 5% 159 31%

divorce 185 11.1 6% 79.7 43%

gambling 103 0.526 1% 30.6 30%

gay 782 9.53 1% 119 15%

location (London) 1930 72.2 4% 373 19%

payday 70.3 45.9 65% 6.57 9%

prostate 83.3 14.7 18% 12.5 15%

unemployed 54.8 0.619 1% 48.1 88%

Table 4.3: Approximate result numbers returned by Google on dif-
ferent topics and for different choices of probe query. Counts are in

units of millions.

calculate the Term-Frequency (TF) of the visible text with respect to the keywords

associated with session interest category, see Table 3.1. When any keyword term

associated with a topic is present the item is clicked, otherwise it is not clicked. We

automate this by clicking when score TF > 1.0, indicating that a keyword term is

present. As mentioned in Section 4.3, search results in response to probe queries are

not clicked.

4.6.3 Web Search Data Collection

Scripts were executed daily in the morning and evening over 28 days. We took a

number of precautions to minimise interactions between runs of each script – cleaning

cookies, history and cache before and after scripts, terminating the session and logging

the user out, and waiting for a minimum of twenty minutes between runs to ensure

connections are reset or timed out. All scripts were run for 3 registered users and 1

anonymous user, and for both the Google and Bing search engines, yielding a data

set consisting of 37, 134 queries and response. Registered users were created with the
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Training Data Sets Test Data Sets

Name Nqueries Nprobes Nqueries Nprobes

Bing 1,051 367 10,970 3,795

Google 1,343 451 14,669 4,488

Table 4.4: Summary of training and test data sets. Nqueries is the
number of user search queries and Nprobes the number of probe queries

for which data was collected.

minimum profile information required by Google and Bing so that demographic data

such as gender and date of birth were not provided.

The data was partitioned into training and test data sets, see Table 4.4. The

test data contains 28 separate runs of each of the 12 test scripts. For training and

performance evaluation we labeled all queries in a session with the intended topic

of the session as given by the query script used. For example, all queries from a

session about prostate are labeled as prostate or sensitive, including probe queries.

In this respect the labels capture the intended behaviour, rather than attempting an

individual interpretation of specific query keywords during a user session.

4.6.4 Feature Selection: Adverts or Links?

Search result pages contain multiple content types, in particular search links and

adverts. For the collected data sets Table 4.5 summarises the percentage change in

the text of search links and adverts for each of the interest categories and for each

search engine. Also shown is ± the standard error in the mean. It can be seen that

link text changes very little, less than 3% for Google and 5% for Bing. In contrast it

can be seen that the advert text is much more dynamic with 12.4% − 65.5% of the

advert text changing for Bing and 17.3% − 39% for Google.

This supports Assumption 3, namely that it is the adverts which primarily reveal

personalised learning by the search engine and are the most discriminating element

for probe comparison.
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Bing Google

Topic Advert Link Advert Link

anorexia 65.4% ± 7.7% 3.6% ± 0.3% 34.8% ± 1.5% 0.9% ± 0.2%

bankrupt 15.8% ± 1.5% 5.0% ± 0.3% 39.0% ± 2.5% 2.0% ± 0.3%

diabetes 49.4% ± 12.5% 3.9% ± 0.3% 39.5% ± 1.7% 0.9% ± 0.2%

disabled 12.4% ± 1.0% 3.5% ± 0.2% 17.3% ± 1.7% 2.1% ± 0.3%

divorce 15.8% ± 1.7% 4.7% ± 0.4% 22.1% ± 2.5% 2.9% ± 0.5%

gambling 15.7% ± 1.3% 4.0% ± 0.2% 34.2% ± 1.7% 1.8% ± 0.3%

gay 13.8% ± 1.3% 4.0% ± 0.2% 34.3% ± 1.8% 2.4% ± 0.3%

location 16.3% ± 1.5% 4.8% ± 0.3% 25.3% ± 2.1% 2.4% ± 0.4%

payday 17.4% ± 1.4% 3.9% ± 0.2% 29.7% ± 1.7% 1.4% ± 0.3%

prostate 52.6% ± 6.8% 3.7% ± 0.3% 34.6% ± 1.4% 0.9% ± 0.2%

unemployed 14.3% ± 1.2% 4.5% ± 0.3% 22.8% ± 1.8% 2.9% ± 0.5%

other 17.8% ± 27.9% 3.7% ± 0.2% 27.5% ± 1.5% 1.4% ± 0.2%

Table 4.5: Average percentage content change per instance of probe
query, grouped by topic and search engine.

4.7 Experimental Results

As already discussed, our approach is to issue a sequence of probe queries interleaved

at steps k ∈ K amongst the user queries. We then use the PRI estimator to esti-

mate M̂u,k(c), for k ∈ K based on the response to each probe query and then look

for significant changes in these M̂u,k(c) values. To determine whether changes are

significant, for each topic c ∈ C, we use the mean ± three standard deviations to

define a confidence interval (the mean and standard deviation are estimated using

the training data). The choice of three standard deviations is taken after perform-

ing verification testing on the training data before testing. Choosing the number of

standard deviations to use is a balance – too small a number of standard deviations

generates excessive “False Negatives” while too large a number of standard deviations

results in a larger number of “False Positives”.

We use the Google Search experimental data collection setup as Chapter 3. We

also collect experimental data from Bing Search, for this chapter only, using the same
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setup as for Google Search to demonstrate our approach in action for search engines.

4.7.1 Sensitive – Non-sensitive Detection

We begin by evaluating the performance of this approach for detecting whether learn-

ing of any sensitive topics has taken place or not during a query session, without trying

to specify which sensitive topics are involved. For this we use the catch-all other topic

c̄. Namely, when the estimate M̂u,k(c̄) lies outside its confidence interval during a user

session we take this as rejecting the hypothesis that no learning of sensitive topics

has occurred during that session. We standardise a query session to consist of the

first 5 probe queries in a run for the purposes of analysis.

(a) Expect gambling, de-
tect other.

(b) Expect gambling, de-
tect gambling.

Figure 4.1: Illustrating detection of learning for a user session on
topic gambling. Shaded areas indicate the confidence interval for M̂u,k
for the other topic in the upper figure, and for the gambling topic in

the lower figure. Google search engine.

The plots in Figure 4.1 illustrates this procedure for a user session on the topic

gambling with the Google search engine. It can be seen from Figure 4.1(a) that

M̂u,k for the other topic (i.e. c̄) quickly leaves its confidence interval as the session

progresses (probe 1 is detected as other, however the other probe queries {0, 2, 3, 4}

lie outside the other confidence interval). In comparison, it can be seen from Fig-

ure 4.1(b) that M̂u,k for the gambling topic (i.e. the topic which matches the user

session) stays close to the confidence interval throughout the user session. The cor-

responding results for the Bing search engine are shown in Figure 4.2 and exhibit
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(a) Expect gambling, de-
tect other.

(b) Expect gambling, de-
tect gambling.

Figure 4.2: Illustrating detection of learning for a user session on
topic gambling. Shaded areas indicate the confidence interval for M̂u,k
for the other topic in the upper figure, and for the gambling topic in

the lower figure. Bing search engine.

similar behaviour.

Table 4.6 summarises the detection performance on a full set of Bing and Google

test data. We declare a positive detection when at least one probe query in a session

of 5 probes is detected as sensitive. For user sessions on sensitive topics it can be seen

that the detection accuracy is high. For Google, 100% of user sessions on a sensitive

topic reject the hypothesis that no learning of the sensitive topic by the search engine

has taken place and so are identified as sensitive. For Bing the corresponding detection

rate is 91%. Recall that this hypothesis testing is being carried out based purely on

the adverts in the response pages to user queries, and the queries themselves are not

being used. We manually inspected a sample of the user sessions, confirming the

results of Table 4.5, that the displayed adverts consistently change significantly over

the course of user sessions on sensitive topics. It is therefore reasonable to conclude

that learning by the search engine has indeed occurred. That is, the rejection of the

hypothesis that no learning has occurred that is reported in Table 4.6 appears to be

justified.

Table 4.6 also shows the percentage of user sessions which are sensitive but which

are flagged as non-sensitive, which can be interpreted as the false negative rate. For

Google, no sensitive sessions are classed as non-sensitive, and for Bing 9% are classes
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Predicted

Bing Google

Sens. Non-sens. Sens. Non-sens.

Expected
Sensitive 91% 9% 100% 0%

Non-sensitive 1% 99% 1% 99%

Table 4.6: Measured detection rate of search engine learning of at
least one occurrence of one or more sensitive topics during a 5 probe

session.

as non-sensitive. Also shown in the table is the percentage of user sessions which are

non-sensitive but are flagged as sensitive, which can be interpreted as the false positive

rate. This is low at 1% for both search engines. A manual inspection of the data

shows that the first probe in a session can be misdetected sometimes, demonstrating a

topic lag effect after there is a change in topic. The influence of the first probe makes

it difficult to distinguish sensitive/non-sensitive based on observation of a single step.

We will discuss mis-detection in detail in Section 4.7.5.

Overall, the results in Table 4.6 indicate that the proposed approach can correctly

identify potential privacy concerns for sensitive topics while keeping noise levels from

false positive detection low.

We comment briefly on the difference in Table 4.6 in the measured False Negative

rates for the two search engines. This difference is at least partially explained by

two factors. The first is that Bing seems to be slower at adapting to changes in

session topic than Google, see Section 4.7.5. This apparent difference in adaptation

rate is also observable by comparing Figures 4.1(b) and 4.2(b), noting the differences

in behaviour of the confidence intervals for the gambling topic. The second factor

is differences between the search engines in the range and diversity of the available

adverts across the various topics. For example, analysis of our test data shows that

Google has on average 3.3 unique adverts per probe across all topics whereas Bing has

a lower average of 1.7 unique adverts per probe. This suggests that Google’s dominant

position in the search market means it may have a larger advert pool allowing more

finely tuned fitting of adverts to detected topics of interest.
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True Detect 100% 98% 100% 99% 99% 99% 98% 99% 99% 99% 99%

True Other 100% 91% 93% 93% 98% 95% 100% 87% 92% 96% 97%

False Detect 0% 9% 7% 7% 2% 5% 0% 13% 8% 4% 3%

False Other 0% 2% 0% 1% 1% 1% 2% 1% 1% 1% 1%

(a) Bing
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True Detect 100% 100% 96% 100% 100% 100% 100% 99% 99% 99% 100%

True Other 96% 96% 92% 100% 100% 100% 100% 100% 100% 100% 100%

False Detect 4% 4% 8% 0% 0% 0% 0% 0% 0% 0% 0%

False Other 0% 0% 4% 0% 0% 0% 0% 1% 1% 1% 0%

(b) Google

Table 4.7: Measured detection rate of search engine learning of in-
dividual sensitive topics.

4.7.2 Individual Sensitive Topic Detection

We now evaluate the detection performance for individual sensitive topics. For each

sensitive topic c studied, when (i) the estimated M̂u,k(c) lies inside the confidence

interval for that topic and (ii) M̂u,k(c̄) lies outside the confidence interval for the

catch-all other topic (i.e. c̄), then we say that we cannot reject the hypothesis that

learning of topic c has occurred.

Table 4.7 summarises the detection performance for the Bing and Google test data

for each of the sensitive topics studied. When evidence of learning of sensitive topic

c is detected and the user session is on topic c then we label this a “True Detect”,

otherwise we label this a “False Detect”. Conversely, when no evidence is found of

topic c then when the user session is in fact on topic c we label this a “False Other”,

otherwise we label this a “True Other”. Again, recall that the hypothesis testing

here is being carried out based purely on the adverts in the response pages to probe

queries.

In the Google results in Table 4.7(b), it can be seen that “True Detect” and
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“True Other” results range from 96− 100% across all sensitive topics. “False Detect”

results, corresponding to false positives, lie in a range of 0 − 8%. “False Other”

results, corresponding to false negatives, are in the range 0− 4%. We note that topics

such as bankrupt and payday tended to share adverts related to financial services,

see next section, making these topics harder to distinguish from one another. This

data therefore provides strong support for the assertion that detection of individual

sensitive topics is indeed feasible with Google.

Table 4.7(a) presents the corresponding results for Bing. The “False Detect”

results, corresponding to false positives, tend to be higher than for the Google data.

We note that the responses for some sensitive topics overlap in terms of advert content

and are not readily differentiated in our data for Bing search (as already noted, in

our data set we find that Bing displays fewer unique adverts than Google). Since our

test classifies all non-sensitive topics as other then sensitive topics that share adverts

with other may increase the number of false positives. Overall, the detection rate for

individual sensitive topics is notably high (exceeding 98%) and the false positive rate

remains below 10% except for the location topic.

We next test whether probe queries can themselves generate significant levels of

false positive sensitive topic detection. We constructed a test script consisting of

randomly selected queries from Google Trends into which we injected the previously

selected probe queries. This randomised script was executed for both Bing and Google

and for each of our user configurations. Relevant result items appearing on non-probe

queries were clicked. In total 1, 264 probe queries were tested for both Bing and

Google using the PRI framework. Tests yielded a 0% sensitive topic detection rate

for any sensitive topic in combinations of search engine and users. We conclude that

the selected probe queries do not themselves generate a significant amount of false

sensitive topic detection.

4.7.3 Topic Similarity and Topic Confusion

Intuitively, we expect that some sensitive topics are similar in the sense that similar

adverts tend to be associated with each. For example, the adverts prompted by the



4.7. Experimental Results 55

bankrupt topic, which relates to insolvency, might be expected to have some overlap

with the payday topic, which relates to short-term loans.

We can gain some insight into this via the M̂u,k(c) estimates for each topic. Fig-

ure 4.3 shows the average M̂u,k(c) measured for each topic c vs the user session topic.

That is, cell (i, j) shows the average M̂u,k(c) measured value attained by topic j when

running query scripts for reference topic i. Each cell is heat-mapped within its row,

from brightest for maximum value to darkest for lowest value per row, to improve

readability. Figure 4.3(a) shows results for the Google data and Figure 4.3(b) for the

Bing data.

For the Google data, it can be seen that the maximum element in each row and

column is the diagonal element, as expected from the results presented in the previous

section. However, it can also be seen that the payday topic has a significantly higher

M̂u,k(c) value than other topics for user sessions on the bankrupt topic. Similarly, the

bankrupt topic has a significantly higher M̂u,k(c) value for user sessions on the payday

topic. Less pronounced, but still evident, is that all health related topics tend have

a higher M̂u,k(c) value whenever the user session is on a health topic. For example,

diabetes and prostate have elevated M̂u,k(c) values for user sessions on anorexia.

For the Bing data in Figure 4.3(b) it can be seen that the results are more compli-

cated. As with Google, the adverts for the payday and bankrupt topics show correlated

behaviour. Similarly, the adverts for health-related topics tend to be correlated. How-

ever, the Bing adverts for the disabled, divorce, gambling, gay and unemployed topics

also exhibit significant correlation. This is consistent with the results in Section 4.7.2

where it was observed that topics for Bing appear less readily distinguishable, possibly

due to the smaller size of the pool of available adverts.

While the existence of correlation among topics is itself unsurprising, the fact that

the proposed approach for detecting search engine learning is able to uncover this

correlation provides additional support for the effectiveness of the approach. It also

suggests that the potential exists to use the approach to infer additional information

from displayed adverts. We explore this further in the following sections.
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(a) Google

(b) Bing

Figure 4.3: Average M̂u,k(c) measured by topic.
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Topic – % Increase in M̂u,k(c)

anorexia 49% divorce 153% payday 62%

bankrupt 30% gambling 108% prostate 451%

diabetes 417% gay 158% unemployed 62%

disabled 57% location 63% other 233%

Table 4.8: Percentage increase in M̂u,k(c) by topic for click versus
non-click. Google search data.

4.7.4 You click – therefore – I learn!

In addition to entering queries, users provide feedback to the search engine via the

links that they click. Since clicking is an active step, we might expect it to influence

search engine learning. Separate sets of non-click data were collected by running a

single iteration of all of the test scripts on both search engines with user clicking

turned off. Table 4.8 shows the percentage change in the average M̂u,k(c) score for

each test topic with and without user clicking of relevant search results. It can be

seen that all topics had higher M̂u,k(c) values when the user clicks on relevant links,

suggesting that user clicks are actively used by the search engine for learning.

4.7.5 Time to Learn?

Inspection of the test data reveals that correct topic identification sometimes lags by

one to two probes at the start of a new user session. This accounts for approximately

70% of cases where “False Detects” and “False Other” results are encountered in test-

ing. Examination of these cases provides insight into the observed speed of learning,

and the potential consequences for noise based privacy defences. Letting X denote

the random variable counting the number of consecutive mis-classifications occurring

together, then dividing by the total number of mis-classifications we can estimate

the probability that X = 1, X = 2, etc. This data is shown in the first column of

Table 4.10. It can be seen that there are no runs of more than two mis-classifications
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Number of Consecutive

Mis-classifications (X)

Probe ID of First

Mis-classification (Y)

Bing Google Bing Google

Pr(X = 1) 0.23 0.95 Pr(Y = 1) 0.92 0.98

Pr(X = 2) 0.77 0.05 Pr(Y = 2) 0.03 0.01

Pr(X = 3) 0.00 0.00 Pr(Y = 3) 0.04 0.01

Pr(X = 4) 0.00 0.00 Pr(Y = 4) 0.00 0.00

Pr(X = 5) 0.00 0.00 Pr(Y = 5) 0.00 0.00

Table 4.9: Recall rate by probe query excluding successive probe
queries – Google.

and the average length of a run of mis-classifications is,

E [X; Bing ] = 1.77 (4.13)

E [X; Google ] = 1.05 (4.14)

Letting Y be a random variable indicating the probe sequence number where a

“False Detects” or “False Other” event first occurs, Table 4.10 reports the estimated

probability that Y = 1, Y = 2, etc. As expected the overwhelming majority for

“False Detects” and “False Other” events happen on the first probe in a session, with

Pr(Y = 1) > 0.90 for both Bing and Google.

The data in Table 4.10 therefore suggests that Google search takes an average

of 1.05 probe queries and Bing takes an average of 1.77 probe queries to re-calibrate

learning after a topic change. On average probe queries in the test data were issued

after 4 user queries. Hence, Google appears to adapt to a new topic in approximately

4 queries, while Bing requires approximately 7 queries. Rapid re-calibration can also

be seen in Table 4.9 by looking at sensitive topic classification recall for Google when

successive probe queries are excluded from the calculation. When every probe query

is included true positive recall is 62%. True positive accuracy improves once the first

probe query is excluded and stabilises at 66% thereafter. The false positive rates are

low in all cases, falling to 0% when the first three probes are excluded.

This means that a privacy defence based on random topic changes achieved, for
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Include
All

Exclude
k = 1

Exclude
k = 1, 2

Exclude
k = 1, 2, 3

True
Positive 62% 66% 66% 66%

False
Positive 1% 1% 1% 0%

Table 4.10: Estimated probabilities of mis-classification of various
lengths and probe number of first mis-classification in a session.

Predicted
Bing Google

Sensitive Non-sensitive Sensitive Non-sensitive

Expected
Sensitive 83% 0% 100% 0%

Non-
sensitive 17% 100% 0% 100%

Table 4.11: Measured detection rate of search engine learning for an
anonymous user.

example, by injecting spurious queries, could prove to be ineffective unless the spuri-

ous queries are repeated at intervals of less than every 4 real queries for Google and

7 for Bing. This is a considerable overhead.

4.7.6 Logged-in vs Anonymous

We collected data for user sessions both when the user is logged-in and when the user

is anonymous. As already noted, we clean local caches and user session data between

each user session.

Figure 4.4 shows the average M̂u,k(c) measured for each topic for the Google

search engine when the user is not logged in. It can be seen that this shows a

similar overall pattern to Figure 4.3(a), suggesting the search engine is successful at

identifying sensitive topics even in the case of an anonymous user.

Table 4.11 shows the corresponding measured rates for sensitive/non-sensitive

topic detection, which can be compared to Table 4.6. Table 4.12 shows the detection

rate for individual topics, which can be compared to Table 4.7. It can be seen that

the detection rates are similar to the results presented previously for logged-in users.
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Figure 4.4: Average M̂u,k(c) by topic. Anonymous user, Google test
data

In particular the True Detection rate for individual topics is high e.g. 97 − 100% for

Google.

We conclude that anonymity seems to provide little protection within an individ-

ual query session. The results of Section 4.7.5 show that the users previous search

history is not really required to infer the topic of a sessions, the session itself is enough.

4.7.7 Comparison with Other Estimators

We also compare the performance of PRI with alternative implementations using

Naive Bayes and Support Vector Machine as sensitive topic detectors. Compari-

son of PRI with alternative implementations was performed by taking results from

Multinomial Naive Bayes (NB) and Linear SVM (SVM) classifiers to estimate the

probabilities in (4.2) and so provide alternative estimations of M̂. The intent of the

comparison is to determine which of the NB, PRI and SVM estimators detect privacy

threats, using the definition of M̂, for test items previously labeled as sensitive or

non-sensitive.
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True Detect 100% 95% 100% 98% 100% 100% 96% 100% 100% 98% 100%

True Other 100% 83% 86% 86% 100% 100% 100% 75% 100% 100% 100%

False Detect 0% 17% 14% 14% 0% 0% 0% 25% 0% 0% 0%

False Other 0% 5% 0% 2% 0% 0% 4% 1% 0% 2% 0%

(a) Bing
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True Detect 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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(b) Google

Table 4.12: Measured detection rate of search engine learning of
individual sensitive topics for an anonymous user.

Figure 4.5: Comparison of Naive Bayes, PRI and Support Vector
Machine estimators. (as Threat Detection Rate by Topic)
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All inputs and calculations of M̂ were performed in an identical manner for all

classifiers. A common test data set was constructed by selecting 5,500 result pages

for each sensitive topic and then randomly selecting an additional 5,500 result pages

labeled for the non-sensitive topic from the Search data set. In this way each sensitive

topic had a balanced verification data set of 11,000 labeled items. Each verification

data-set was divided randomly into 20% − 80% test–training sets and calculations

repeated 5 times for 5-fold verification of each of the NB, PRI and SVM estimators.

The Multinomial Naive Bayes and Linear SVC modules from the Python Sklearn

package were used to construct the NB and SVM estimators, (Pedregosa et al., 2012).

After common preprocessing each of the NB, PRI and SVM classifiers were trained

and probability estimates captured for the 5-fold test data-sets. A threat is declared

“detected” if the calculated value of M̂ for the sensitive topic exceeds 1.0. Precision

of sensitive topic threat detection is shown by topic in Figure 4.5 for the NB, PRI

and SVM approaches.

The results Figure 4.5 indicate that that the PRI estimator detects significantly

more true-positive detection results than either of the NB or SVM estimators for all

sensitive topics tested. The initial detection sensitivity of each of these estimators is

influenced by the labelling assigned to examples in the training set. We adopt the

perspective that privacy tools should err on the side of caution so that high detection

sensitivity in the initial “out of the box” stage is a prudent approach. In a real-world

application of PRI the user would provide incremental training examples over time

reflecting their tolerance of privacy risk and so tune PRI.

4.8 Conclusion

With ϵ-Indistinguishability as a practical model for detection of user privacy risk, we

show that this is readily implementable with available open tools that are simple to

apply and provide highly accurate results. An appealing aspect is the use of openly

available resources – Bing and Google search – a feature often missing in traditional

privacy research where concerns over data disclosure limit access to potentially sen-

sitive test data sources.



4.8. Conclusion 63

Using Bing and Google Search, we demonstrated that by monitoring changes in

the adverts displayed in the response to probe queries we are able to accurately detect

evidence of learning for a range of sensitive topics in over 98% of cases. Topics stud-

ied include medical conditions (cancer, anorexia etc), sexual orientation, disability,

bankruptcy and unemployment. Our method is accurate, with typical false detection

rates of less than 10% (and less than 1% for many sensitive topics).

We also show that detection rates remain high for anonymous users, suggesting

that search engines learn quickly; even without search history as background knowl-

edge. Our experiments suggest that search engines have an ability to learn user

interests quickly. Our estimation of search engine adaptation rates indicate that

sensitive topic learning is detectable after as few as 3 − 4 queries on average.

Finally we compare PRI with privacy detectors constructed using common, openly

available, machine learning classifiers. We show that PRI is more accurate in cor-

rectly detecting privacy concerns.
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Chapter 5

Assessing Threats - Plausible

Deniability
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5.1 Introduction

When unwanted personalisation suggests we are interested in sensitive topics a natural

reaction is to deny interest. To be credible, our denials should be plausible – so that

with high probability, our action is consistent with interest in any of several topics.

When is denial of our interest in topics plausible? What defences can we deploy to

protect our ability to deny interests in a plausible manner? In this chapter we extend

the work of Chapter 4 on detecting privacy concerns to address the question of how

to assess the degree of threat associated with a detection.

We begin this chapter by formalising the notion of plausible deniability of in-

terest in topics during web search we call (ϵ, m)–Plausible Deniability. Our inten-

tion is to allow users to test if they can reasonably deny their interest in topics

they regard as sensitive. To show this we implement aan estimator called PDE

(“Plausible Deniability Estimator”) implementing (ϵ, m)–Plausible Deniability. We

also show that (ϵ, m)–Plausible Deniability is compatible with ϵ-Indistinguishability

so that much of the machinery of PRI from Chapter 4 can be reused to implement

PDE.

In the experimental section we show that PDE effectively detects threats to plau-

sible deniability even when user queries are obfuscated through injection of high levels

of noise. A particular concern uncovered during experiments is that profiling with

respect to topics such as secual orientation and financial status are least plausibly de-

niable in our tests. We also introduce a novel defence for plausible deniability, called

the Proxy Topic Defence here, that is observed to provide protection in 100% of tests.

We report result in this chapter for the Google search engine only for conciseness and

clarity as our results are similar for Bing.

5.2 Plausible Deniability

The setup we consider is that of general users of a commercial, for–profit search

engine. The relationship between the users and the search engine is based on mutual

utility where both parties obtain something useful from the interaction users get useful
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information and recommendations – while the search engine gets an opportunity to

“up- sell” to users through targeted content such as advertising. As a commercial

business, the search engine recognises cost per user interaction and responsiveness of

service are critical to competitiveness. Accordingly content based on user profiling

is intended to adapt dynamically to the changing interests of users. When a user

detects threats to her privacy we assume she wishes to assess her ability to plausibly

deny her interest in compromising content and so avoid awkward social implications.

We consider the Basic Black-box Model where users access a search engine S

directly. Inputs are web-search queries submitted to the search engine and outputs

are the corresponding response pages containing personalised content such as adverts.

For a subset A ⊆ C let Zu,A
u,k = {z ∈ Zu,k : lu(z) ∈ A} denote the subsequence of

observations user u has labelled for any of the topics in A at step k.

We formalise the notion of (ϵ, m)–Plausible Deniability tailored to the context of

the Basic Black-box Model as follows

Definition 4 ((ϵ, m)–Plausible Deniability) A user with interest in a topic c ∈ C

is said to have (ϵ, m)–Plausible Deniability for the sequence of interactions Zu,k :=

(z1, . . . zk) ∪ Zu,0, if there is a set of topics A ⊆ C \ {c}, such that

e−ϵ < Dk(c,A) < eϵ (5.1)

with |A ∪ {c}| = m, and

Dk(c,A) =
P(Zk = zk, . . . Z1 = z1|Iu,c

u = 1,Zu,0)

P(Zk = zk, . . . Z1 = z1|Iu,A
u = 1,Zu,0)

(5.2)

where Iu,c
u is an indicator random variable with value 1 when u is interested in topic c

and 0 otherwise, Iu,A
u is an indicator random variable with value 1 when u is interested

in any topic in A and 0 otherwise, and Zj = ζ, j = 1, 2, . . . denotes the event that

input–output interaction ζ ∈ Zu,j is observed at step j of the session.

The privacy parameters ϵ > 0 and m > 1 in Definition 4 are chosen by the user. For

(5.2) to be well-defined, all probabilities are assumed to be non-zero. In practice, this
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is not a significant restriction since categories with zero probability can be gathered

into the catch-all topic c0.

Given the sequence of observations associated with a user, our aim is to (1) esti-

mate whether (ϵ, m)–Plausible Deniability has been violated for one or more of the

sensitive categories in C (and so the user cannot reasonably deny interest in one or

more of these categories), and (2) identify which of these sensitive categories has been

affected, with high probability in both cases.

Expression (5.2) in Definition 4 can be rewritten as

Dk(c,A) =
k−1

∏
j=0

P(Zk−j = zk−j | Iu,c
u = 1,Zu,k−j−1)

P(Zk−j = zk−j | Iu,A
u = 1,Zu,k−j−1)

(5.3)

=
k−1

∏
j=0

dk−j(c,A) (5.4)

where the step (5.3) results from applying the chain-rule for conditional probability

to the RHS of (5.2), and

dk−j(c,A) :=
k−1

∏
j=0

P(Zk−j = zk−j | Iu,c
u = 1,Zu,k−j−1)

P(Zk−j = zk−j | Iu,A
u = 1,Zu,k−j−1)

(5.5)

is the incremental change in (ϵ, m)–Plausible Deniability at step k − j.

5.2.1 Comparison with Other Anonymity Measures

Intuitively, Definition 4 is similar to k–anonymity in that an observer can only explain

observations to within a set consisting of at least k := m topics with probability

bounded by the choice of ϵ. Definition 4 differs from regular k–anonymity in requiring

both upper and lower bounds on (5.2) since evidence of loss of interest in a sensitive

topic may be as revealing as evidence of increase of interest.

Definition 4 can also be compared with a slightly weaker form of Differential

Privacy. Informally, making an observation should not make S significantly more,

or less, confident of user interest in a particular sensitive topic.
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From (5.5) the incremental change due to a single observation Zj = zj is

P(Zj = zj | Iu,c
u = 1,Zu,j−1)

P(Zj = zj | Iu,A
u = 1,Zu,j−1)

=
P(Iu,c

u = 1 | Zj = zj,Zu,j−1)

P(Iu,A
u = 1 | Zj = zj,Zu,j−1)

(5.6)

by applying Bayes Theorem. Since (5.5) is bounded above and below for at least

m − 1 other topics in A when Definition 4 holds, it follows that

e−ϵ <
P(Iu,c

u = 1 | Zj = zj,Zu,j−1)

P(Iu,A
u = 1 | Zj = zj,Zu,j−1)

< eϵ (5.7)

for at least m − 1 other topics in A – but not necessarily for all topic vectors. In

which case we say that m–Differential Privacy holds for ϵ > 0 whenever Definition 4

holds, meaning that for any topic c it is impossible to distinguish it from at least

m − 1 other topic vectors in in A. This is a slightly weaker statement of Differential

Privacy from the usual global definition.

5.2.2 Testing for Plausible Deniability

The next result provides the necessary connection to apply ϵ-Indistinguishability from

Chapter 4 to (ϵ, m)–Plausible Deniability.

Proposition 5.2.1 If ϵ-Indistinguishability holds for a topic c and on a subset A ⊆ C

for ϵ > 0 at step k and at the initial step 1, then (4ϵ, m)–Plausible Deniability holds

so that

e−4ϵ < Dk(c,A) < e4ϵ

for m ≤ |A|. Furthermore,

Dk(c,A) =
Mk(c)
Mk(A)

M1(A)

M1(c)
(5.8)

where Mk(A) and M1(A) denote values of (4.2) taken over the set of topics in A.
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Proof For a topic c ∈ C, assume ϵ-Indistinguishability holds at c and on A ⊆ C \ {c}

for ϵ > 0. From (5.5)

dk(c,A) :=
P(Zk = zk | Iu,c

u = 1,Zu,k−1)

P(Zk = zk | Iu,A
u = 1,Zu,k−1)

=
P(Iu,c

u = 1 | Zk = zk,Zu,k−1)

P(Iu,c
u = 1 | Zu,k−1)

P(Iu,A
u = 1 | Zu,k−1)

P(Iu,A
u = 1 | Zk = zk,Zu,k−1)

(5.9)

=
P(Iu,c

u = 1 | Zk = zk,Zu,k−1)

P(Iu,c
u = 1 | Zu,0)︸ ︷︷ ︸

(a)

P(Iu,c
u = 1 | Zu,0)

P(Iu,c
u = 1 | Zu,k−1)︸ ︷︷ ︸

(b)

× P(Iu,A
u = 1 | Zu,k−1)

P(Iu,A
u = 1 | Zu,0)︸ ︷︷ ︸

(c)

P(Iu,A
u = 1 | Zu,0)

P(Iu,A
u = 1 | Zk = zk,Zu,k−1)︸ ︷︷ ︸

(d)

(5.10)

=

(a)︷ ︸︸ ︷
Mk(c)

(c)︷ ︸︸ ︷
Mk−1(A)

Mk−1(c)︸ ︷︷ ︸
(b)

Mk(A)︸ ︷︷ ︸
(d)

(5.11)

where (5.9) follows from Bayes Theorem. Expressions (a) – (d) (5.10) and (5.11)

come directly from the definition of Mk in (4.2).

Applying (5.4) results in

Dk(c,A) =
Mk(c)
Mk(A)

M1(A)

M1(c)
(5.12)

So that (5.8) holds.

Since individual elements in (5.12) satisfy ϵ-Indistinguishability for ϵ > 0 it follows

that (4ϵ, m)–Plausible Deniability holds as required. ■

By establishing a value of ϵ for which a collection of topics A that satisfies ϵ-In-

distinguishability, (4ϵ, m)–Plausible Deniability follows with, at least, m = |A|. This

is a minimum guarantee, as there may be topics for which ϵ-Indistinguishability fails

but (4ϵ, m)–Plausible Deniability holds.

In later experiments we test whether the user can plausibly deny whether or not

observed actions can be uniquely associated with interest in a given sensitive topic

c1 versus interest in “any other” topic c0 = C \ {c1} so that m = 2. From (5.2) the
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expression for (ϵ, m)–Plausible Deniability at step k is

Dk(c1, c0) =
P(Zk = zk, . . . Z1 = z1|Iu,c1

u = 1,Zu,0)

P(Zk = zk, . . . Z1 = z1|Iu,c0
u = 1,Zu,0)

(5.13)

Proposition 5.2.2 If (ϵ, m)–Plausible Deniability holds for {c1, c0} with ϵ > 0 and

m = 2 then

ϵ∗ :=
∣∣∣∣log

(
Mk(c1)

Mk(c0)

M1(c0)

M1(c1)

)∣∣∣∣ (5.14)

is a lower bound for the best possible achievable level of (ϵ, m)–Plausible Deniability.

Proof If (ϵ, m)–Plausible Deniability holds for ϵ > 0 then

|log(Dk(c1, c0))| < ϵ (5.15)

and | log(Dk(c1, c0))| is a lower bound for all ϵ > 0 where (ϵ, m)–Plausible Deniability

holds. ■

Proposition 5.2.2 will be used later to create an estimator for ϵ∗ that can be

measured in experiments. From now on we simplify our discussion to the case m = 2

and so experimental results are reported for the two-topic case accordingly.

The following result connects (ϵ, m)–Plausible Deniability to variation in proba-

bilities

Proposition 5.2.3 If (ϵ, m)–Plausible Deniability holds for {c1, c0} with ϵ > 0 and

m = 2 then

|P(Zk = zk, . . . Z1 = z1|Iu,c1
u = 1,Zu,0)− P(Zk = zk, . . . Z1 = z1|Iu,c0

u = 1,Zu,0)|

≤
∣∣∣∣log

(
Mk(c1)

Mk(c0)

M1(c0)

M1(c1)

)∣∣∣∣ (5.16)

Proof If (ϵ, m)–Plausible Deniability holds for ϵ > 0 the result follows from Propo-

sition 5.2.1, Proposition 5.2.2 and by applying Lemma 1 in the Appendix to (5.2).

■
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5.3 Implementation

5.3.1 The PDE Estimator

Substituting the PRI estimator M̂k, from Chapter 4, into (5.14) gives the PDE
estimator

ϵ̂∗,k =

∣∣∣∣∣log

(
M̂k(c)
M̂k(c0)

M̂1(c0)

M̂1(c)

)∣∣∣∣∣ (5.17)

From Proposition 5.2.2, the PDE estimator in (5.17) can be interpreted directly as the

best possible level of (ϵ, m)–Plausible Deniability a user can claim in the case m = 2.

We report the maximum value of PDE measured by probe step in our experiments

to show the worst possible (ϵ, m)–Plausible Deniability scenario for the user. We also

report the median value of PDE as a representative bound for approximately 50%

of the samples. An example of reporting is shown in Table 5.1 for the reference topic

“gay”.

Table 5.1: Measured ϵ̂∗,kfor Reference Topic versus Any Other Topic,
reported as “max (median)”, by Probe Query Sequence

Reference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

gay 64 (33) 47 ( 5) 72 (25) 48 (25) 48 (19)

For example, from Table 5.1, a reported maximum value of PDE of 47% in the

second column indicates that the difference in probabilities that the user is uniquely

interest in the reference topic versus being interested in any other topic is at least

47% in the worst case by probe step 5. The median value of 25% in parentheses in the

Probe 3 and 4 columns indicates that the difference in probabilities can be expected

to be at least 25% in 50% of cases by probes 3 and 4. Overall the results suggest

that (ϵ, m)–Plausible Deniability is unlikely to constitute a reasonable defence in this

case.

Reported values of PDE may increase, or decrease, during a session as individual

queries are judged as more, or less, revealing by the PDE estimator. Inspection of the

query scripts generated for the topic ci = Gay, for example, shows that the queries
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associated with probe step 3 are same sex relationships and how do i know if I’m

gay, both of which appear revealing. The queries from the test script corresponding

to probe steps 4 and 5 are HIV symptoms, HIV treatment, HIV men and aids men

which may not point as distinctly to specific interest in the ci = Gay as they could

reasonably be associated with health concerns.

The zeroth probe in a session is always run first, before any other query, to

establish a baseline PRI score for the session. As a result the measured PDE values

for the zeroth probe is always 0 for both maximum and median values and is not

reported in our results.

One popular approach to designing defences of (ϵ, m)–Plausible Deniability is to

attempt to hide in the crowd. For example, by injecting varying degrees of noise in

the stream of observations in the hope that S will not detect the true sub-stream of

sensitive events. In Chapter 4 it was observed that varying click patterns is seen to

change the absolute volume of adverts appearing on a page. As both user clicks and

queries are potential indicators of user interest for an observer we test injected noise

from both queries and clicks as possible defence strategies.

An alternative tactic is to invert the previous approach by instead attempting

to hide in plain sight. By choosing a non-sensitive proxy topic, chosen to attract

personalised content the user can then carefully hide true, sensitive queries in a stream

of proxy topic queries. By demonstrating clear interest in a proxy non-sensitive topic

the user may tip the balance of probability toward the proxy topic by drawing the

attention of the observer S .

5.4 Experimental Results

We use the same experimental data collection setup as Chapter 3.

5.4.1 Establishing a Baseline

We begin with a sequences of queries, interleaved with probe queries, in what we term

a “no click, no noise” model. Here there is no injected noise and no items are clicked

on any of the search results pages. This model provides a baseline, where the queries
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alone are available to the recommender to learn about a user session as it progresses.

Measurements of PDE for all topics using the “no click, no noise” model are shown

in Table 5.2. For the topics Anorexia, Diabetes, Prostate, Bankrupt, Divorced, Gay the

Table 5.2: Measured ϵ̂∗,kfor Reference Topic versus Any Other Topic,
reported as “max (median)”, by Probe Query Sequence

Reference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

anorexia 56 (52) 56 (52) 56 (52) 56 (52) 56 (52)

bankrupt 1 ( 1) 55 (43) 55 (39) 58 (48) 56 (48)

diabetes 40 (38) 40 (38) 40 (38) 40 (38) 40 (38)

disabled 9 ( 9) 9 ( 9) 9 ( 9) 40 (40) 40 (33)

divorce 41 (31) 75 (65) 56 (46) 79 (68) 79 (68)

gambling 16 (12) 18 (16) 66 ( 4) 57 (17) 18 ( 3)

gay 64 (33) 47 ( 5) 72 (25) 48 (25) 48 (19)

location 10 ( 2) 11 ( 3) 11 (10) 18 ( 7) 18 ( 9)

payday 2 ( 2) 2 ( 2) 21 ( 2) 2 ( 2) 2 ( 2)

prostate 52 (17) 52 (17) 52 (17) 52 (17) 52 (17)

unemployed 7 ( 5) 7 ( 6) 7 ( 6) 13 ( 7) 7 ( 7)

(a) No Click, No Noise

reported results are high, indicating lack of plausible deniability for each of these top-

ics. It is concerning that personal circumstances, health status and sexual orientation

appear to be the most revealing topics according to our experiments. In the case of

the topic Disabled there is more cause of concern about (ϵ, m)–Plausible Deniability

as the session progresses. On inspection of the associated query script this appears to

be again related to the specificity of the queries at each probe step. At the beginning

of this script the queries are related to availability of services – for example, locations

of disabled parking – while later queries are more specific to named conditions – for

example, treatment for spina bifida.

The topics {Location, Payday, Unemployed} appear among the topics of least con-

cern from the perspective of (ϵ, m)–Plausible Deniability. Both of the topics Payday

and Unemployed asked queries about availability of social support services whereas

queries for the topic Bankrupt asked about availability of paid professional services
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such as lawyers and accountants. It is perhaps an illustration of the motivations of

a for-profit service where users seeking social supports are of less interest than users

seeking expensive paid services.

Overall, measurements of PDE in experiments appear to agree with expectations

from inspection of the underlying queries. Our results suggest that queries are a

strong signal to the observer of user interest, and that estimates from PDE appear

to distinguish queries that are strongly revealing of specific topic interest from more

generic queries where plausible deniability is clearer.

5.4.2 The Effect of Random Noise Injection

We now consider the impact of injecting non-informative queries chosen at random

from our popular query list into a user session. We simply refer to these as “random

noise” queries. We consider three levels of random noise queries for testing purposes:

“Low Noise” The automation scripts select uninteresting queries uniformly at ran-

dom from the top-query list and inject a single random noise query after every topic-

specific query so that the “signal-to-noise ratio” of sensitive to noise queries in this

case is 1 : 1.

“Medium Noise” Here the automation scripts inject two randomly selected queries

after each topic-specific query for a signal to noise ration of 1 : 2.

“High Noise” In this noise-model with the highest noise setting, three random noise

queries are injected, resulting in a signal-to-noise ratio of 1 : 3.

Note also that the automation scripts were configured to ensure the relevant num-

ber of noise queries was always injected immediately before each probe query. Our

intention was to construct a “worst case” for detection of learning, where probe

queries are always separated from sensitive user queries by the specified number of

noise queries.

Table 5.3(a-c) shows the measured PDE values for Low, Medium and High levels

of noise respectively for the “no click” model. The PDE values for all levels of noise

are similar to the “no click, no noise” baseline values in Table 5.2.
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Table 5.3: Measured ϵ̂∗,kfor Reference Topic versus Any Other Topic,
reported as “max (median)”, by Probe Query Sequence

Reference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

anorexia 54 (45) 54 (45) 54 (45) 54 (45) 54 (45)

bankrupt 16 ( 9) 56 (50) 52 (39) 54 (45) 56 (45)

diabetes 46 (35) 46 (35) 46 (35) 46 (35) 46 (35)

disabled 9 ( 3) 9 ( 8) 9 ( 7) 33 ( 7) 40 (32)

divorce 13 ( 7) 123 ( 8) 54 ( 8) 85 ( 6) 85 ( 6)

gambling 18 (16) 18 (16) 52 (18) 18 (10) 18 (18)

gay 73 (61) 73 (70) 76 (46) 79 (74) 79 (70)

location 18 (16) 18 (10) 18 (10) 18 (10) 18 (10)

payday 3 ( 2) 3 ( 2) 4 ( 3) 4 ( 3) 4 ( 3)

prostate 21 (16) 21 (16) 21 (16) 21 (16) 21 (16)

unemployed 7 ( 3) 7 ( 3) 13 ( 9) 13 ( 9) 13 ( 9)

(a) No Click, Low NoiseReference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

anorexia 55 (53) 53 (53) 53 (53) 53 (53) 53 (53)

bankrupt 11 ( 8) 48 (33) 51 (43) 52 (38) 52 (38)

diabetes 38 (38) 38 (38) 38 (38) 38 (38) 38 (38)

disabled 4 ( 4) 8 ( 7) 1 ( 1) 40 (36) 40 (36)

divorce 19 ( 9) 65 (31) 44 (31) 72 (50) 72 (50)

gambling 18 (16) 18 (17) 18 (18) 31 ( 3) 18 (10)

gay 89 (68) 89 (69) 88 (64) 93 (73) 93 (64)

location 18 (10) 18 (10) 18 ( 7) 18 ( 7) 10 ( 7)

payday 6 ( 3) 6 ( 3) 6 ( 3) 6 ( 2) 6 ( 1)

prostate 32 (14) 32 (14) 18 (13) 18 (13) 18 (13)

unemployed 13 ( 5) 13 (10) 13 ( 7) 13 ( 9) 7 ( 4)

(b) No Click, Med NoiseReference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

anorexia 48 (48) 48 (48) 48 (48) 48 (48) 48 (48)

bankrupt 16 (10) 65 (51) 65 (48) 65 (49) 65 (49)

diabetes 41 (38) 41 (38) 41 (38) 41 (38) 41 (38)

disabled 9 ( 9) 9 ( 9) 9 ( 5) 9 ( 7) 9 ( 8)

divorce 41 (27) 75 (38) 56 (22) 75 (29) 75 (29)

gambling 21 (16) 21 ( 3) 21 ( 4) 29 (16) 18 ( 4)

gay 86 (64) 86 (64) 80 (43) 94 (59) 94 (59)

location 10 (10) 8 ( 8) 8 ( 8) 18 (13) 18 (13)

payday 3 ( 2) 4 ( 2) 4 ( 2) 4 ( 2) 3 ( 1)

prostate 17 (15) 17 (15) 17 (15) 17 (15) 17 (15)

unemployed 10 ( 7) 13 ( 7) 13 ( 7) 13 ( 7) 13 ( 7)

(c) No Click, High Noise
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Overall, there is no consistent reduction in values across all topics for all noise

levels, indicating that injecting random noise queries does not have a consistent

effect. In some cases, such as topic Gay, measured values of PDE increase for

all noise levels indicating that noise injection worsens the user’s ability to assert

(ϵ, m)–Plausible Deniability.

These results indicate that even the “High Noise” model fails to reduce the mea-

sured values of PDE in a coherent way, so that injecting random noise has not

improved plausible deniability significantly with any consistency. We conclude that

injection of random noise, even at substantial levels, is not observed to provide a

useful defence for plausible deniability in our experiments.

5.4.3 The Effect of Click Strategies

We now consider whether it is possible to disrupt search engine learning by careful

clicking of the links on response pages. Intuitively, from the search engine’s point

of view, clicking on links is a form of active feedback by a user and so potentially

informative of user interests. This is especially true when, for example, a user is

carrying out exploratory search where their choice of keywords is not yet well-tuned

to their topic of interest. Previous studies have also indicated that there is good reason

to believe that user clicks on links are an important input into recommender system

learning. In Chapter 4, user clicks emulated using the “Click Relevant” click-model

were reported to result in increases of 60% – 450% in the advert content, depending

on the “Sensitive’ topic tested.

We consider four different click strategies to emulate a range of user click be-

haviours:

“No Click” No items are clicked on in the response page to a query. This user click-

model does not provide additional user preference information to the recommender

system due to click behaviour. This click model is used in the baseline measurements

presented in Sections 5.4.1.

“Click Relevant” Given the response page to a query, for each search result and

advert we calculate the Term-Frequency (TF) of the visible text with respect to the
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keywords associated with the test session topic of interest. When TF > 0.1 for an

item, the item is clicked, otherwise it is not clicked. This user click-model provides

relevant feedback to the recommender system about the information goal of the user.

“Click Non-relevant” TF is calculated for each item with respect to the category of

interest for the session in question as for the “Click Relevant” click-model, except that

items are clicked when the TF score is below the threshold and so they are deemed

non-relevant to the topic, that is when TF ≤ 0.1. This user click-model attempts to

confuse the recommender system by providing feedback that is not relevant to the

true topic of interest to the user.

“Click All” All items on the response page for a query are clicked. This user click-

model gives the recommender system a “noisy” click signal, including clicks on items

relevant and non-relevant to the user’s information goal.

“Click 2 Random Items” Two items appearing on the response page for a query

are selected uniformly at random with replacement and clicked.

In all cases, when uninteresting, noise queries are included in a query session, the

relevant user click-strategy is also applied to the result pages of these queries. In this

way we hope to avoid providing an obvious signal to the recommender system that

might differentiate uninteresting queries from queries related to sensitive topics. Items

on the result page in response to probe queries are not clicked so that the probe query

does not provide any additional information to the recommender system. Measured

values of PDE are shown in Table 5.4. As random noise injection had no observable

effect on measurements of PDE for different click models in experiments, only the

“No Noise” results are presented here for space reasons.

Taken overall, the results in Table 5.4(a) for the “non-relevant click, no noise”

model suggest clicking on non-relevant advert items is the best strategy of the click

models tested. The only difference between the “non-relevant click” model and other

click models is that non-relevant items only are clicked, whereas in other click models

it is possible that relevant items are clicked. It seems reasonable to postulate that

clicking on relevant items provides “fine-tuned” feedback about user interests which
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Table 5.4: Measured Plausible Deniability versus any other tested
topics as probability of interest, by Probe Query Sequence when the

true topic of interest is “Other” with range (µ ± 3σ)

Reference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

anorexia 59 (50) 59 (50) 59 (50) 59 (50) 59 (50)

bankrupt 16 ( 8) 65 (42) 65 (36) 59 (40) 54 (38)

diabetes 36 (36) 36 (36) 36 (36) 36 (36) 36 (36)

disabled 7 ( 4) 7 ( 4) 9 ( 9) 40 ( 4) 40 ( 7)

divorce 30 (24) 30 ( 9) 30 ( 9) 30 ( 8) 30 ( 8)

gambling 6 ( 0) 18 (16) 32 (16) 18 (16) 18 ( 5)

gay 92 (51) 92 (77) 78 (51) 94 (72) 94 (80)

location 18 (18) 10 (10) 10 (10) 18 (10) 18 (10)

payday 2 ( 2) 2 ( 2) 3 ( 2) 3 ( 2) 2 ( 2)

prostate 17 (17) 17 (17) 17 (17) 17 (17) 17 (17)

unemployed 13 ( 2) 13 ( 4) 13 ( 7) 13 ( 7) 7 ( 6)

(a) Click Relevant, No Noise

Reference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

anorexia 18 ( 5) 22 (12) 26 ( 5) 31 (13) 32 ( 6)

bankrupt 57 ( 3) 53 (36) 50 (34) 43 (33) 48 (36)

diabetes 4 ( 2) 13 ( 8) 11 ( 8) 5 ( 3) 11 ( 2)

disabled 5 ( 2) 6 ( 2) 9 ( 3) 29 (10) 26 ( 8)

divorce 49 (25) 51 (33) 49 (30) 43 (29) 43 (29)

gambling 6 ( 2) 18 ( 4) 36 (24) 35 (13) 31 (13)

gay 36 (33) 75 (33) 51 (32) 39 (20) 31 (27)

location 9 ( 2) 11 ( 1) 7 ( 2) 6 ( 2) 9 ( 1)

payday 3 ( 3) 3 ( 1) 4 ( 2) 3 ( 2) 4 ( 3)

prostate 55 (38) 68 (36) 65 (48) 61 (48) 64 (42)

unemployed 9 ( 1) 6 ( 6) 7 ( 1) 9 ( 4) 5 ( 2)

(b) Click Non-relevant, No Noise
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Table 5.4: (Continued) Measured Plausible Deniability versus any
other tested topics as probability of interest, by Probe Query Sequence

when the true topic of interest is “Other” with range (µ ± 3σ)

Reference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

anorexia 66 (57) 66 (57) 66 (57) 66 (57) 66 (57)

bankrupt 51 (42) 51 (42) 51 (42) 55 (46) 56 (46)

diabetes 35 (35) 35 (35) 35 (35) 35 (35) 35 (35)

disabled 9 ( 9) 9 ( 9) 9 ( 9) 31 (31) 31 (31)

divorce 30 ( 8) 73 (54) 54 (34) 100 (49) 100 (49)

gambling 3 ( 1) 16 (16) 53 (11) 16 ( 6) 6 ( 2)

gay 69 (65) 77 (73) 70 (60) 82 (75) 81 (71)

location 18 (10) 10 ( 6) 10 ( 6) 14 (10) 18 ( 7)

payday 2 ( 2) 2 ( 2) 2 ( 2) 2 ( 2) 2 ( 2)

prostate 17 (17) 17 (17) 17 (17) 17 (17) 17 (17)

unemployed 4 ( 4) 7 ( 7) 7 ( 7) 7 ( 7) 7 ( 6)

(c) Click All, No Noise

Reference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

anorexia 50 (12) 27 ( 9) 26 ( 9) 36 (10) 33 (11)

bankrupt 5 ( 3) 43 (33) 39 (37) 36 (35) 38 (35)

diabetes 38 ( 6) 18 ( 7) 17 ( 5) 17 ( 7) 11 ( 5)

disabled 2 ( 1) 4 ( 1) 5 ( 3) 39 (25) 40 (25)

divorce 24 (17) 37 (31) 37 (31) 35 (25) 35 (25)

gambling 24 ( 0) 7 ( 4) 54 (23) 33 (23) 68 (20)

gay 68 (68) 68 (65) 54 (52) 46 (36) 47 (42)

location 8 ( 8) 8 ( 8) 8 ( 8) 8 ( 8) 8 ( 8)

payday 4 ( 1) 2 ( 2) 4 ( 2) 4 ( 3) 4 ( 4)

prostate 59 (57) 67 (62) 58 (56) 60 (54) 51 (44)

unemployed 4 ( 3) 8 ( 3) 10 ( 4) 3 ( 2) 10 ( 1)

(d) Click 2 Random Items, No Noise
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is more informative for the observer. Clicking on non-relevant items may divert

attention to a modest degree, but not to the extent of masking the sensitive topic

revealed by the query.

Comparing the baseline “No Click” PDE observations in Table 5.2 each of the

subtables in Table 5.4 shows similar lack of consistency to the noise injection models.

In our experiments there is no consistent change observed in PDE across topics due

to variation in the click patterns tested. As with the noise injection case, there are

sporadic increases and decreases in values of PDE but the lack of overall consistency

makes using click models as a defence impractical.

It would appear in summary, that clicks transmit information to the observer, but

not as consistently as does a revealing query. Consequently none of the user click-

models tested appear to change the baseline level of plausible deniability associated

with the query in a predictable way so that there is no globally discernible pattern

with which to construct practical defence tools based on clicks.

5.4.4 The Effect of Proxy Topics

The next privacy protection strategy we consider is the introduction of proxy top-

ics. In this case sequences of queries, with each sequence related to a single proxy

topic which is not sensitive for the user but capable of attracting personalised advert

content, are injected into a user session. The idea here is that each such sequence

of queries emulates a user session where the proxy topic is the topic of interest. In

this way we hope to misdirect learning by the search engine of user interests. The

results in Section 5.4.2 are relevant here since they suggest that isolated, individual

queries – such as randomly selected noise queries – tend not to provoke search engine

learning. Our hope is that this can be exploited by inverting the notion of random

noise injection so that individual sensitive queries are injected as the noise in proxy

topic sessions. Isolated sensitive queries will hopefully not provoke learning whereas

the larger number of uninteresting proxy sessions will. In this way we can misdirect

learning by the observer.

In out tests the following proxy topics are used:
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Tickets Searching for tickets for events in a well-known local stadium

Vacation Queries related to a vacation such as flights and accommodation.

Car Searches by a user seeking to trade in and change their car.

and related queries are constructed by selecting related keywords through the same

process as was used for the sensitive topics.

Table 5.5: Measured Plausible Deniability versus any other tested
topics as probability of interest, by Probe Query Sequence when the

true topic of interest is “Other” with range (µ ± 3σ)

Reference
Topic Probe 1 Probe 2 Probe 3 Probe 4 Probe 5

all topics 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0) 0 ( 0)

(a) All Click and Noise Models

Proxy topic query scripts where constructed by selecting a sensitive topic, and

then selecting an uninteresting proxy topic from the list of 3 proxy topics. Having

decided on a sensitive query we wish to issue, we select at least three and no more

than four queries related to the proxy topic from a prepared list of proxy topic queries.

We next randomly shuffle the order of the selected sensitive and proxy topic queries.

In this way there is always a subgroup of at least two proxy topic queries next to each

other in each query session. Finally, for testing purposes, we place a probe query

before and after each block of 3-4 proxy + 1 sensitive queries to measure changes in

PRI score. We repeat this exercise using the same proxy topic until a typical query

session consisting of 5 probe queries is created.

Data was collected for 2, 300 such proxy topic sessions. This included each of the

sensitive topics and each of the click models described in previous sections. The same

PRI and PDE setup, including the same training set, as before was used to process

the search results.

Measured detection rates are shown in Table 5.5. The measured probability calcu-

lated from PDE is 0 for all topics and for all click-models tested. That is, we find it is

possible to claim full plausible deniability of interest in all of the topics tested. Since
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our detection approach is demonstrated to be notably sensitive to observer learning

in earlier sections, we can reasonably infer that this result is not due to a defect in

the detection methodology but rather genuinely reflects successful misdirection of the

search engine away from sensitive topics.

This result is encouraging, especially in light of the negative results in previous

sections for other obfuscation approaches. It suggests use of sequences of queries

on uninteresting proxy topics may provide a defence of plausible deniability. The

trade-offs for the user include the overhead of maintaining proxy topics and associ-

ated queries and the additional resources required to issue proxy topic queries in a

consistent way. However since both of these tasks were readily automated during our

testing it seems reasonable that these trade-offs could be readily managed by software

in a way that is essentially transparent to the user.
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6.1 Introduction

Limiting online data collection to the minimum required for specific purposes is man-

dated by modern privacy legislation such as the General Data Protection Regulation

(GDPR) and the California Consumer Protection Act. This is particularly true on-

line where broad collection of personal information represents an obvious concern for

privacy. We challenge the view that broad personal data collection is required to

provide personalised services.

By first developing formal models of privacy and utility, we show how users can

obtain personalised content, while retaining an ability to plausibly deny their inter-

ests in topics they regard as sensitive using a system of proxy, group identities. We

show that, while some utility loss is an inevitable trade-off for improved privacy, user

privacy need not destroy utility when aggregated group information is sufficient for

personalisation. From our formal models we implement a proxy agent framework we

call 3PS for Privacy Preserving Proxy Service, where a user may submit queries

though a pool of group identities called Proxy Agents. We introduce a privacy pre-

serving algorithm for selecting group identities that users can run locally to find the

group identity best matching their interests without revealing their interests.

We end with an extensive experiment on a prototype implementation, using

openly accessible data sources, we show that 3PS provides personalised content to in-

dividual users over 98% of the time in our tests, while protecting plausible deniability

effectively in the face of worst-case threats from a variety of attack types. We test

the prototype with Google Search, maintaining consistency with previous chapters.

To illustrate potential applicability beyond web search, we also test our prototype

on hotel reviews from TripAdvisor and product reviews from Amazon using openly

available data.

6.2 Privacy and Threat Model

Our interest is in privacy attacks where an attacker seeks to infer topics of likely

interest to users of online systems. An attacker is successful when users are unable
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to deny their interest in a topic on the balance of probabilities. Here attackers have

access to input–output interactions Zatt,k ⊆ Zk. By analysing Zatt,k the attacker

attempts to estimate topics that are of likely interest to u. The privacy model here

is plausible deniability, allowing users to reasonably deny that observations are solely

associated with topics they deem sensitive. We formalise plausible deniability in our

context as follows:

Definition 5 (δ-Plausible Deniability) A user u can plausibly deny their input–

output observations are associated with topics they deem sensitive if 1

P(z ∈ Zu,c
k |z ∈ Zatt,k) ≤ δ (6.1)

where the deniability parameter, δ, is chosen by u and Zatt,k is the background knowl-

edge of an attacker at step k of a session.

This differs from the (ϵ, m)–Plausible Deniability model introduced in (P Mac Aonghusa

et al., 2018) where an individual user claimed plausible deniability because an input–

output observation from that user could be associated with any of several topics.

Observe that

P(z ∈ Zu,c
k |z ∈ Zatt,k)

(a)
≤

P(z ∈ Zu,c
k ∩ Zk)

P(z ∈ Zk)

P(z ∈ Zk)

P(z ∈ Zatt,k)
(6.2)

(b)
=

P(z ∈ Zu,c
k |z ∈ Zk)

P(z ∈ Zatt,k|z ∈ Zk)
(6.3)

where inequality (a) follows from the facts that P(z ∈ Zu,c
k |z ∈ Zatt,k) = P(z ∈

Zu,c
k ∩Zatt,k)/P(z ∈ Zatt,k) and Z att

u,k ⊆ Zk, and equality (b) follows since Zatt,k ⊆ Zk.

Hence, for δ-plausible deniability to hold it is sufficient that

P(z ∈ Zu,c
k |z ∈ Zk) ≤ δP(z ∈ Zatt,k|z ∈ Zk) (6.4)

1In this case P(z ∈ Zu,c
k |z ∈ Zatt,k) denotes P(∃m : lu(Zatt,k(k)) = 1, m ∈ {1, 2, . . . }).
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From (6.4), when an observer has access to all of the observations in the system so

that Zatt,k = Zk and P(z ∈ Zatt,k|z ∈ Zk) = 1 then it is sufficient to have P(z ∈

Zu,c
k |z ∈ Zk) ≤ δ for δ-plausible deniability to hold. In the case that the observer is

able to make observations at a more local level, so that P(z ∈ Zatt,k|z ∈ Zk) = π < 1,

then (6.4) implies that P(z ∈ Zu,c
k |z ∈ Zk) ≤ δπ is required for δ-plausible deniability

to hold. Consequently, unless the user can plausibly deny that they contributed to

Zatt,k, we have

Observation 6.2.1 (Power of Observers) Observers represent more powerful threats

when they have access to more localised sequences of input–output interactions so there

is some trade-off involved in locality versus deniability.

6.2.1 Comparison with Other Privacy Models

In the group identity setup considered here, the intention is to deny interest by hiding

sensitive user activity in the overall activity of users of shared group identifiers. The

setup here can be compared with other privacy models. We show briefly how this

is done in the cases of two common models of privacy, Differential Privacy, (Dwork,

2006), and Individual Re-identification, (Sweeney, 2000).

Re-identification

Re-identification risk occurs when an attacker, possessing observations Zatt,k, can

assert that sensitive input–output interactions generated by user u are identified with

probability greater than 1 − ϵ for 0 < ϵ ≪ 1. In other words, when

P(z ∈ Zu,c
k ∩ Zu,k|z ∈ Zatt,k) > 1 − ϵ (6.5)

for 0 < ϵ ≪ 1.

If δ-plausible deniability holds (6.1) guarantees

P(z ∈ Zu,c
k ∩ Zu,k|z ∈ Zatt,k) ≤ δ (6.6)
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since Zu,c
k ∩Zu,k ⊆ Zu,c

k . Consequently (6.1) prevents re-identification of those sensi-

tive input–output interactions with probability at least 1 − δ.

Differential Privacy

Recall that a query mechanism M : D −→ R satisfies (ϵ, γ)-differential privacy

(Dwork, 2006) if, for any two sequences D1,D2 ∈ D of length n differing in one

element, and any set of output values S ⊆ R, we have

P(M(D1) ∈ S) ≤ eϵP(M(D2) ∈ S) + γ (6.7)

One important class of mechanisms are those where sequences in D are first per-

turbed, e.g., by adding noise, and then queries are answered. It is this approach

which is effectively adopted here, with the perturbations being introduced by the

randomness of the process generating the input–output interactions. An attacker

observes a sequence of input–output interactions and seeks to associate a label with

one or more input–output interactions, namely whether or not they were likely to be

generated by a target user u and are sensitive for that user. Consider therefore the

query Mz(Zk) = lu(z) i.e. which labels input-output pair z as 1 when it is sensitive

for user u and labels it 0 otherwise. This is a worst case query in the sense that it

assumes the attacker knows the labelling function lu, and when this is not the case the

labelling accuracy will obviously be degraded. Let D1,D2 ∈ D be two input-output

sequences such that D1(k) = D2(k), k = {1, . . . , n} \ {j} where D1(k) denotes the

k’th element of sequence D1 and similarly for D2(k) i.e. sequences D1 and D2 are

identical except for the j’th element. Mechanism Mz is (ϵ, γ)-differentially private

provided

p1 ≤ eϵ p2 + γ, p2 ≤ eϵ p1 + γ (6.8)

1 − p1 ≤ eϵ(1 − p2) + γ, 1 − p2 ≤ eϵ(1 − p1) + γ (6.9)
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where

p1 := P(lu(D1(j)) = 1), p2 := P(lu(D2(j)) = 1) (6.10)

are the probabilities that input-output pair j in sequence D1, respectively D2, is

labelled sensitive by user u. For sequences satisfying the δ-plausible deniability

condition (6.1) we have p1 ≤ δ and p2 ≤ δ. It can be verified that the (ϵ, γ)-

differential privacy conditions (6.8)-(6.9) are therefore satisfied for ϵ ≥ 0 and γ ≥

max{δ, 1 − eϵ(1 − δ)}.

6.2.2 Other Linking Attacks

The privacy model described here is concerned with attacks at the application layer

that seek to link input–output interactions and associated topics to individual user

interests. Linking attacks targeting other vectors are also possible.

One vector for attack is for the service provider to attempt to place cookies or

third-party tracking content on the web pages viewed by a user. Within the EU, the

GDPR rules require that users be explicitly informed of such actions and must take a

positive step to opt in. Hence attempts at such tracking seem like a relatively minor

concern. Outside the EU, existing tools for blocking third-party trackers can be used,

leaving the setting of unique identifying first party cookies as the main concern. This

can be mitigated by standard approaches e.g. by activists maintaining lists of cookies

that can be safely used (similar to existing lists of malware sites, trackers and so on)

and users blocking the rest.

Another possible vector of attack is to record the IP address of the user browser,

and thereby try to link the ratings back to the individual user. However, due to the

widespread use of techniques such as VPN or NAT, use of IP addresses as identi-

fiers is unreliable. Users also have the option of using tools such as TOR to further

conceal the link between the IP address revealed to the server and the users iden-

tity. Such tools are the subject of an extensive literature in their own right and are

complementary to the present discussion.
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6.2.3 Providing Personalisation

The challenge is to construct an implementation which satisfies Definition 5, thereby

providing δ-plausible deniability to users, while also providing an effective person-

alised service. Our prototype implementation, called 3PS, is based on the Proxy

Black-box Model introduced in Chapter 3. The backend system S is assumed to

generate recommendations for a proxy agent based on profiling interests in topics as

it would for any other user. In a shared proxy setup users inherit the shared profile

of the proxy agent they choose. A user accessing S via the pool of proxy agents and

wishing to obtain good recommendations should therefore choose the proxy agent

whose interests most closely match their interests. As an example, Figure 6.1a and

Figure 6.1b show the results of issuing the query “cheap flights” through two different

proxy agent setups. The choice of query is deliberately intended to trigger commer-

cial advertising for illustrative purposes. In Figure 6.1a the proxy agent is dedicated

to Google Search users located in a single country, Ireland. In Figure 6.1b the proxy

agent is a web-proxy gateway shared by Google Search users from many countries.

The response via the proxy agent in Figure 6.1a contains significantly more content

than the proxy agent in Figure 6.1b. Content in Figure 6.1a is also more localised to

the region of the user, as illustrated by the Google flight search box outlined in red on

the figure and in the Ireland “.ie” domains on other results. Content obtained from

the shared proxy agent in Figure 6.1b by contrast reflects the regional settings of the

proxy agent rather than the user – in this case, UK currency and websites appear in

the adverts.

To obtain personalised content, each user chooses a proxy agent closest to their

interests in the sense that it is a solution to

min
p∈P

∑
c∈C

|P(z ∈ Zu,c
u,k |z ∈ Zu,k)− P(z ∈ Zu,c

u,k |z ∈ Zp,k)|

s.t. P(z ∈ Zu,c
k |z ∈ Zp,k) ≤ δ (6.11)

where Zp,k denotes the input–output interactions of all users with proxy p. The

constraint in (6.11) ensures that δ-plausible deniability holds for an observer with
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Figure 6.1: Examples of Google Search adverts for individual and
shared user profiles.

(a) Google Search Adverts for an individual user

(b) Google Search Adverts for a shared proxy user

access to Zp,k.
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6.2.4 Threat Models

By varying the observations, Zatt,k, available to an observer it is possible to model

classes of attack encompassing the system itself and observers with access to more

localised background knowledge. We introduce two observer classes we will use in the

remainder of this paper.

Privacy Against A Global Observer

A global observer denotes an attacker where Zatt,k = Zk. That is, with access to all of

the input–output interactions for the entire system up to the present step k. A global

observer does not have knowledge of the user labelling function lu but can try to

cluster the observed input–output interactions to infer topics of likely interest. This

class of attacker encompasses the system itself, external parties such as advertising

partners and attackers obtaining data by hacking of the system. Provided (6.1) holds

for Zatt,k = Zk then a user has δ-plausible deniability against global observers.

Privacy Against A Proxy Observer

We also consider a proxy observer, namely a global observer who also has knowledge

of the set of proxy agents Pu ⊂ P used by user u. Hence, a proxy observer knows

that the input–output interactions Zu,k generated by user u are contained in the

subsequence

Zatt,k = (z ∈ Zk : ιp(z) = 1, p ∈ Pu) (6.12)

where indicator function ιp equals 1 for input–output interactions submitted via proxy

p and 0 otherwise. From Observation 6.2.1, a proxy observer is a more powerful

attacker than a global observer by having access to more localised data. Provided

(6.1) holds with Zatt,k given by (6.12) then a user has δ-plausible deniability against

proxy observers.
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6.3 Prototype Implementation

In this section we describe an experimental implementation of a backend recom-

mender system accepting text queries as inputs and producing text-based outputs.

It is not intended to be a fully working system but rather a proof of concept im-

plemented as software that is sufficient to demonstrate the feasibility of 3PS and to

illustrate how personalisation and privacy verification might be implemented. In the

prototype implementation the internal state of simulated users, proxy agents and the

backend system can be inspected for measurement during test. This allows us to con-

veniently compare probability estimators during experiments that would be private

in a production system.

6.3.1 Personalisation

Expression (3.5) from the Bag–of–Words model can be applied directly to (6.11) so

that

P(z ∈ Zu,c
u,k |z ∈ Zu,k)− P(z ∈ Zu,c

u,k |z ∈ Zp,k)

=
|DX |

∑
i=1

|DY |

∑
j=1

P(z ∈ Zu,c
u,k |{θX

i , θY
j } ∈ z)︸ ︷︷ ︸

(a)

×

P({θX
i , θY

j } ∈ z|z ∈ Zu,k)︸ ︷︷ ︸
(b)

−P({θX
i , θY

j } ∈ z|z ∈ Zp,k)︸ ︷︷ ︸
(c)

 (6.13)

and the minimisation element of (6.11) becomes a calculation over the term labelled

(c) in (6.13). We will return to the constraint element of (6.11) later.

Term (6.13)(a) is the only element of the RHS of (6.13) that depends on knowledge

of the user labelling function lu. Since (6.13)(a) and (6.13)(b) do not depend on Zp,k

they can be estimated privately by u. To allow (6.13) to be privately by a user, it is

sufficient for each proxy agent p ∈ P to release the probability distribution (6.13)(c)

publicly. With this a user can construct (6.13).

Expression (6.13) consists of matrix multiplications of matrices of size |DX| ×

|DY|. The proxy selection condition in (6.11) can be solved efficiently in practice by



6.3. Prototype Implementation 95

estimating the various probabilities.

6.3.2 Estimating Probabilities

To estimate probabilities in our prototype implementation, user u applies their private

labelling function lu to label each input–output pair {x, y} ∈ Zu,k for topics in C. Let

U c
u,k and V c

u,k denote the labelled inputs and outputs of Zu,c
u,k respectively. Apply count-

vectorisation to each element of U c
u,k and V c

u,k and gather the result into count-matrices

Ac and Bc of size |U c
u,k| × |DX| and |V c

u,k| × |DY| respectively. Since |U c
u,k| = |V c

u,k|,

the quantity Nc = AT
c Bc is of dimension |DX| × |DY|. Nc is the count co-occurrence

matrix of input–output interactions of input–output features in Zu,k labelled for topic

c. The ij–element of matrix Nc, denoted Nc,ij, is the co-occurence count of the features

{θX
i , θY

j } in Zu,k labelled for topic c ∈ C. We apply regular Laplace Smoothing,

(Manning et al., 2008), to avoid divide by zero underflows in subsequent computations

when there are sparse occurrences of keywords in Zu,k. Laplace smoothing resolves

this problem by adding a factor λu > 0 to each keyword count so that Nc,ij −→

Nc,ij + λu. The quantity

P̂({θX
i , θY

j } ∈ z|z ∈ Zu,c
u,k ) =

Nc,ij

Nc

Nc =
|DX |

∑
i=1

|DY |

∑
j=1

Nc,ij (6.14)

is then an estimator for P({θX
i , θY

j } ∈ z|z ∈ Zu,c
u,k ). Similarly, an estimator for

P({θX
i , θY

j } ∈ z|z ∈ Zu,k) is given by

P̂({θX
i , θY

j } ∈ z|z ∈ Zu,k) =
Nij

N
(6.15)

N = ∑
c∈C

Nc, Nij = ∑
c∈C

Nc,ij

and

P̂(z ∈ Zu,c
u,k |z ∈ Zu,k) =

Nc

N
(6.16)
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is an estimator for the probability of an observation being labelled for topic c.

Let O have components Oij(z) given by

Oij(z) =


1 if ϕX

i (x) > 0 and ϕY
j (y) > 0 for z = {x, y}

0 otherwise

and define

Oc,ij := ∑
z∈Zu,c

u,k

Oij(z), Oc :=
|DX |

∑
i=1

|DY |

∑
j=1

Oc,ij

and, O := ∑
c∈C

Oc

so that an estimator for P(z ∈ Zu,c
u,k |{θX

i , θY
j } ∈ z) is

P̂(z ∈ Zu,c
u,k |{θX

i , θY
j } ∈ z) =

Oc,ij

Oc
(6.17)

and an estimator for P(z ∈ Zu,k|{θX
i , θY

j } ∈ z)

P̂(z ∈ Zu,k|{θX
i , θY

j } ∈ z) =
∑c∈C Oc,ij

O
(6.18)

For a proxy agent p, let Up,k and Vp,k denote the inputs and outputs in Zp,k

respectively. Apply count-vectorisation to each element of Up,k and Vp,k and gather the

result into count-matrices C and D respectively of size |Up,k| × |DX| and |Vp,k| × |DY|

respectively. The quantity M = CTD, of dimension |DX| × |DY|, is the count co-

occurrence matrix of input–output interactions of input–output features in Zp,k, to

which Laplace smoothing is applied. We estimate P({θX
i , θY

j } ∈ z|z ∈ Zp,k) for each

proxy agent p as

P̂({θX
i , θY

j } ∈ z|z ∈ Zp,k) =
Mij

M
, M =

|DX |

∑
i=1

|DY |

∑
j=1

Mij (6.19)

and Mij denotes the ij–element of matrix M.
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Expressions (6.15), (6.17) and (6.19) can then be combined, to estimate the RHS

of (6.13) for each user u.

In our experimental setup, it is convenient to estimate plausible deniability di-

rectly from the definition (6.1) as

∆u,c
att,k := P̂(z ∈ Zu,c

k |z ∈ Zatt,k) =
|z ∈ Zatt,k : lu(z) = c|

|z ∈ Zatt,k|
(6.20)

The probability of user u observing an input–output pair labelled with topic c when

accessing S through proxy agent p is P(z ∈ Zu,c
p,k |z ∈ Zp,k). This is estimated in our

experimental setup as

P̂(z ∈ Zu,c
p,k |z ∈ Zp,k) =

|z ∈ Zp,k : lu(z) = c|
|z ∈ Zp,k|

(6.21)

and P(z ∈ Zu,c
u,k |z ∈ Zu,k), the probability of user u observing an input–output pair

labelled with topic c when accessing S directly is estimated as

P̂(z ∈ Zu,c
u,k |z ∈ Zu,k) =

|z ∈ Zu,k : lu(z) = c|
|z ∈ Zu,k|

(6.22)

We measure the estimated utility loss incurred by user u as a result of selecting

proxy agent p, using (6.21) and (6.22), as

∆Uu,c
p,k :=

1
2 ∑

c∈C
|P̂(z ∈ Zu,c

u,k |z ∈ Zu,k)− P̂(z ∈ Zu,c
p,k |z ∈ Zp,k)| (6.23)

that is, the total variation between the sensitive topic probability estimator the user

would calculate if they used S directly and the probability estimator of the topic

calculated by the proxy agent they used.

6.3.3 User Estimate of Privacy Threat

The challenge for a user in checking (6.1) is that it requires knowledge of Zu,c
k by user

u. So that u is required to know the history of input–output interactions for each

sensitive topic c for all users in the 3PS system.
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In the prototype implementation we use the approach that each user u has defined

a set, Θu,c
u,k ⊆ DX × DY, for each sensitive topic c, consisting of input–output keywords

whose presence means an input–output observation is labelled as sensitive by u. In

experiments, Θu,c
u,k, is selected for each user u and topic c using the training data to

choose the keyword pairs for which

Θu,c
u,k(α) =

{
{θX

i , θY
j } : {P̂(z ∈ Zu,c

u,k |{θX
i , θY

j } ∈ z) > α
}

(6.24)

where 0 < α ≤ 1 is a parameter chosen using cross-validation.

For each topic c define the associated indicator function over observations z ∈ Zk

and {θX
i , θY

j } ∈ Θu,c
u,k(α), as

ιcα({θX
i , θY

j }|z) =


1 if {θX

i , θY
j } ∈ z

0 otherwise
(6.25)

That is, the indicator function labels an observation as sensitive if it contains an

input–output keyword pair from Θu,c
u,k(α) and non-sensitive otherwise. Using the bag-

of-words model to combine this with the published estimator P̂({θX
i , θY

j } ∈ z|z ∈ Zp,k)

provided by each proxy agent we get an estimator for P(z ∈ Zu,c
k |z ∈ Zp,k) given by

P̂α(z ∈ Zu,c
k |z ∈ Zp,k) =

∑
|DX |
i=1 ∑

|DY |
j=1 ιcα({θX

i , θY
j }|z)P̂({θX

i , θY
j } ∈ z|z ∈ Zp,k)

∑c∈C ∑
|DX |
i=1 ∑

|DY |
j=1 ιcα({θX

i , θY
j }|z)P̂({θX

i , θY
j } ∈ z|z ∈ Zp,k)

(6.26)

In a real-world setup it is up to the user to decide how to select Θu,c
u,k. For example,

the PRI tool developed in (Pól Mac Aonghusa et al., 2016) and (P Mac Aonghusa

et al., 2018) allows a user to analyse input–output observations for privacy threats

and so assess which keyword pairs are more or less revealing of sensitive topics. In

this way tools such as PRI can provide information to assist in constructing Θu,c
u,k in

a real-world setup.
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6.4 Experimental Setup

6.4.1 General Setup

In our experimental setup in this chapter we continue with Google Search as our main

source of data. We also report results using the supplementary datasets described in

Section 3.2.3. Topics are assigned in the usual way for Google Search and using the

topics described in Section 3.2.3 for the supplementary datasets so that C is defined for

each dataset used. Before an experimental run each user and proxy agent simulated

during the experiment is allocated a topic of interest from C. When a user or proxy

agent is allocated the non-sensitive, catch-all topic c0 we will say the user or proxy

agent is randomly initialised meaning that they have no interest in a specific sensitive

topic. We call the percentage of proxy agents in P or users in U that have been

randomly initialised the diversity of P or U . During experiments we will typically

report results for 0%, 50% and 100% diversity in P and/or U .

At the start of each experimental run, each user and each proxy agent is allocated

initial data consisting of input–output pairs from the test dataset labelled for their

allocated topic of likely interest, referred to as background knowledge. Each user and

proxy agent in the simulation has a copy of the common dictionaries DX and DY from

S . Next, each user and each proxy agent estimates initial values of the probabilities

in Section 6.3.2 from the initial background knowledge using DX and DY. We refer

to these probabilities as the internal state of the user or proxy agent. An input query

is a keyword in DX drawn from Θu,c
u,k(α = 0.5) at random by u.

Users select a proxy agent best matching their allocated topic of interest by solving

(6.11). When a proxy agent receives an input query from a user it passes it directly to

S . Since the set of topics is known to S in our experiments, S creates a personalised

response by solving c∗ = arg max c∈C P̂(z ∈ ZS ,c
p,k |{θX

i } ∈ z), to find the topic of

maximum likely interest from C given the input it received, and then selecting an

output labelled for c∗. The resulting output is returned to the proxy agent. The

input–output interaction pair is added to the background knowledge of the proxy

agent and its internal state is updated with new probability estimates. The output is
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routed to the requesting user and the same input–output interaction is added to its

background knowledge and its internal state and probability estimator are updated.

Background knowledge is not shared among users and proxy agents. When a user

switches to a different proxy agent during an experimental run, the user history of

input–output interactions does not transfer to the new proxy agent so that individual

proxy agents see only the history of interactions from users accessing S through it.

A full reset is performed between test runs by re-initialising the entire setup.

6.4.2 Revealing Keyword Pairs

Test data was preprocessed using the text processing described in Section 6.3.2 to

produce dictionaries DX and DY for each dataset. A range of dictionary sizes from

50 to 1000 features was assessed by selecting random subsequences Ak ⊆ Zk and

choosing the dictionaries that minimise

|P̂(z ∈ Ak|z ∈ Zk)

−
|DX |

∑
i=1

|DY |

∑
j=1

P̂(z ∈ Au,c
k |{θX

i , θY
j } ∈ z)P̂({θX

i , θY
j } ∈ z|z ∈ Zk)| (6.27)

From this we selected |DX| = 250 and |DY| = 500 for our experiments.

The distribution of keyword pairs in samples drawn from each of the three test

datasets is shown in Figure 6.2 by topic. Average values were calculated by taking 10

samples each of 10, 000 items from each of the test datasets. Error bars in Figure 6.2

indicates variance from sampling. In the case of all datasets and for all topics, the

co-occurrence frequency of the majority of keyword pairs fall below 0.3. The rarest

keyword pairs by topic, and hence the most revealing, have co-occurrence frequencies

greater than 0.5. These keyword pairs comprise less than 10% of the total keyword

pairs, suggesting that the most revealing keyword pairs form a small subset in the

case of all datasets.
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Figure 6.2: Frequency of co-occurence of keyword pairs by topic
averaged over samples from all datasets, sample variation is shown as

error per topic

6.5 Experimental Evaluation

6.5.1 Topic Diversity and User Numbers

We assess the effects of topic diversity and user numbers for the case consisting of

a single proxy agent and a single sensitive topic. We denote the senstive topic c1 so

that C := {c0, c1} where c0 is the catch-all topic. A single proxy agent setup means

Zk := Zp,k so that results here apply to both proxy and global observers. Tests were

repeated with 0%, 50% and 100% of users having cu = c0 and the remainder having

cu = c1. We report results for 10, 50 and 100 users for compactness. Results are

averaged by dataset and error about the mean is shown as a shaded region. Plausible

deniability, from (6.20), and utility loss, from (6.23), averaged over users, are shown

in Figure 6.3. Plausible deniability is plotted in the first row and utility loss in the

second row.

From (6.1), a user has better plausible deniability for lower values of δ since δ is

an upper bound. Our results suggest that increasing user numbers decreases δ and

so improves plausible deniability but only when users have varied interests. Once

users have a diverse range of interests, increasing the number of users is observed to

accelerate improvement in plausible deniability. For utility loss, increasing volumes of

users without specific interests is observed to increase utility loss. When all users of
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Figure 6.3: Effect of topic diversity among users on plausible deni-
ability and utility loss for a single proxy agent with initial fixed topic
interest by user diversity and number of users (A step is an input–

output pair event)

a proxy agent have no specific topic interests so that diversity is high this is reflected

in increased utility loss relative to topic c1 as one might expect.

6.5.2 Personalisation Performance

In 3PS users select proxies closest to their interests but the responses generated by

proxy agents also change as users submit queries via them. We would like this joint

selection/update process to converge so as to achieve good personalisation perfor-

mance. In this section we use our prototype implementation to evaluate this process.

Experimental setups with proxy pools of sizes 3 ≤ |P | ≤ 30 and numbers of users

10 ≤ |U | ≤ 120 were configured for each of the test datasets. We initialise proxy

agents in P randomly so that there is no automatic choice of best proxy agent–user
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match. Users are allocated a sensitive topic as their target topic from the set of top-

ics in each of the test datasets. Each user applies (6.11) to select a proxy agent best

matching their target topic by enumerating each proxy agent in P in turn. Users

only submit queries related to the their allocated topic of interest so that noise due to

diverse topic interests of users is controlled in the setup here to focus on convergence

properties. Once a proxy agent is selected a user issues a query related to their topic

of interest and the internal states of users and proxy agents are updated accordingly.

Results are reported as averages over |P | and |U | and topic for compactness and

shown in Figure 6.4.

The measured accuracy of (6.11) for proxy agent selection is shown in the LHS plot

of Figure 6.4. Proxy agent selection is deemed to be accurate when a user chooses

a proxy agent whose allocated topic of most likely interest matches the allocated

target topic of the user. The RHS of Figure 6.4 is the utility loss, calculated from

(6.23), taken at each input–output step. For visual clarity, standard error is shown

for the average utility loss over all datasets. Utility loss is high and accuracy is low

Figure 6.4: User to Proxy Agent Selection Accuracy (LHS) and
Utility Loss (RHS) averaged over all experimental datasets

initially reflecting the fact that the initial internal state of proxy agents is randomly

set. Convergence to the proxy agent with closest interests is observed to happen
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quickly for all data sources, achieving at least 93% accuracy for all datasets after 3

iterations with a corresponding average utility loss of 20%. When averaged over all

data sources the average accuracy is 98% after 3 input–output steps. The utility loss

is also observed to decrease for all topics over time, reaching an average across all

datasets of 0.18 after 3 input–output iterations and 0.0002 by iteration 20.

Users are observed to select the correct proxy agent with greater than 90% accu-

racy, and to reject all proxy agents with 100% accuracy if there is no suitable proxy

agent available. Overall, in experiments where the ratio of users to proxy agents was

increased from 1 : 1 to 30 : 1, the utility loss is observed to decrease more slowly as

the average number of users attaching to each proxy agent increases. When the ratio

of users to proxy agents was 30 : 1, for example, the average utility loss on step 1 was

0.67. Convergence to a low utility loss was also observed to be rapid, even at high

user to proxy agent ratios, reaching 0.18 ± 0.02 after 4 input–output steps when the

user to proxy agent load factor was 30 : 1.

The number of topic categories was also varied by regrouping the Hotel dataset.

High proxy agent selection accuracy was consistently observed, with accuracy of

greater than 90% after step 3. The utility loss was also observed to decrease rapidly

to less than 0.20 ± 0.02 after 4 input–output steps, reaching minimum of less than

0.01 by iteration 20 on average over all topics.

Overall, the results suggest that the proxy agent selection method converges

rapidly and accurately, providing a high degree of personalisation. Utility loss also

decreases rapidly as more topic specific input–output events are observed. This is

consistent across the test datasets, and for a range of user–to–proxy agent ratios,

suggesting that the proxy agent selection mechanism performs well across a variety

of setups.

6.5.3 Plausible Deniability

We next assess the degree of plausible deniability protection available to users with

respect to a proxy observer when there are multiple proxy agents. We also assess how

diversity in user topic interests influences plausible deniability and utility loss. Since
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a proxy observer is at least as powerful as a global observer the results here provide

worst-case bounds in the face of a global observer. Experimental setups with proxy

pools of sizes 3 ≤ |P | ≤ 30 and numbers of users 10 ≤ |U | ≤ 120 were configured

for each of the test datasets. Each proxy agent p ∈ P was allocated a topic cp ∈ C

as their topic of interest. Each user u ∈ U was allocated with a target topic of

interest cu ∈ C with setups of 0%, 25%, 50%, 75% and 100% of users having cu = c0 to

model various levels of diversity of topic interests among users. Results are reported

as averages over |P | and |U | and topic for compactness and shown in Figure 6.5 and

Figure 6.6.

In Figure 6.5 we show measurements of estimated level of plausible deniability.

We show estimates of ∆u,c
p,k calculated directly from (6.20), together with the values

of the estimator (6.26) calculated using Θc(α) as the set of sensitive keywords. To

model the situation where the user has partial or censored dictionaries DX and DY

in experiments, we show measurements for values for α ∈ {0.25, 0.5, 0.75}.

Figure 6.5: Plausible deniability by topic averaged over all datasets,
topics, sizes of proxy agent pool and number of users. Expression (A)
indicates use of (6.20), and Expression (B) use of (6.26) with value of

α shown.

The results shown in Figure 6.5 indicate that plausible deniability is observed

to improve monotonically as diversity of user interest in topics increases. This is

true when either (6.20) or (6.26) are used as estimators, for all values of α. The

estimated value using (6.26) is consistently lower than the corresponding estimation

from (6.20) for all values of α tested. Figure 6.6 illustrates the trade-off between
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Figure 6.6: Utility Loss averaged over all datasets, topics, sizes of
proxy agent pool and number of users. Expression (A) indicates use

of (6.20), and Expression (B) use of (6.26) with value of α shown.

improved privacy and utility loss. Increasing utility loss is observed in all cases as the

fraction of users with diverse topic interests increases as the “signal-to-noise” ratio of

coherent interests to random interests decreases. This is observed when either (6.20)

or (6.26), for all values of α, are used as estimators. Using (6.26) is observed to under-

estimate utility loss over all datasets tested. In this case (6.26) should be taken as a

best-case guarantee of utility loss and that the actual utility loss will be higher. We

note that the ultimate assessment of utility loss is up to the user - if they do not like

the personalised content they receive then they can switch to another proxy agent,

or stop using the system entirely.

6.5.4 Defending Privacy

We consider a proactive privacy defence strategy of injecting random queries. Between

“true” queries a user issues “noise” queries to every member of the proxy agent pool

other than their selected best matching proxy agent about topics other than their

allocated topic of interest. This defence is motivated by the observation earlier that

increased diversity of topic interests among users is reported to increase plausible

deniability. By controlling the level of noise injection we hope to limit the associated

utility loss. In practice this kind of injection of obfuscating, uninteresting, “noise”

queries can be performed in the background by users.
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Figure 6.7: Plausible deniability for different diversity levels in the
proxy agent pool for various topic-to-noise ratios. Results are average

by topic and over all datasets.

Experimental setups with proxy pools of sizes 3 ≤ |P | ≤ 30 and numbers of

users 10 ≤ |U | ≤ 120 were configured for each of the test datasets. Each proxy agent

p ∈ P was allocated a topic cp ∈ C as their topic of interest. Each user u ∈ U was

allocated with a target topic of interest cu ∈ C with setups of 0%, 25%, 50%, 75% and

100% of users having cu = c0 to model various levels of diversity of topic interests

among users. After a sensitive, true input for topic cu was issued to a chosen proxy

agent, a noise query was constructed where input keywords were drawn at random for

topics other than the sensitive user topic cu, and issued to all proxy agents in the pool,

except the last chosen proxy agent. To assess the effect of issuing different amounts

of noise queries mixed with true queries, “Topic–to–Noise” ratios of 50%, 100% and

200% were also used. So that, for example, in the case of a true-to-noise ratio of

200%, 2 noise queries are issued for every 1 true queries on average by a user. Results

are reported as averages over |P | and |U | and topic for compactness and shown for

measurements of plausible deniability in Figure 6.7, and for utility loss in Figure 6.8.

The first plot in each case shows the case when there is 0% diversity of topic interest

in the proxy agent pool as a baseline.

With the random noise injection strategy plausible deniability against a proxy

observer improves steadily during an experimental run for all levels of topic diversity

in our experiments. For all levels of topic diversity, adding more noise results in faster
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improvement in plausible deniability as expected intuitively. As the topic diversity

in the proxy agent pool increases, less random noise is required to produce the same

changes in plausible deniability as do larger random noise levels. Intuitively this is

to be expected since topic diversity is an indication of the variation in topic interests

among users. Standard error in the mean, shown as shaded regions is small, indicating

that improved plausible deniability is observed with high confidence for all datasets.

Utility loss, shown in Figure 6.8, increases initially and achieves stable levels after

Figure 6.8: Utility loss for different diversity levels in the proxy agent
pool for various topic-to-noise ratios. Results are average by topic and

over all datasets.

5 − 10 input–output steps with the cases where topic diversity is highest reaching a

stable level quickest. Standard error is small in the case of all datasets, suggesting

the average values plotted reflect expected behaviour with high confidence.

The plausible deniability and utility loss results for 0% topic diversity are a worst-

case. Even in this case the utility loss at levels of random noise up to 100% the utility

loss is 20% after 20 steps - compared with an improvement in plausible deniability

from 100% to 60% on average. As topic diversity increases the improvements in plau-

sible deniability are larger than the associated utility losses in all cases. Taken overall,

our results suggest that the benefits to privacy of adopting a strategy of random noise

injection outweigh the associated utility losses, with the greatest benefits occurring

when the privacy risk from low topic diversity is highest. Run as a background task,

injecting random noise by all users in a controlled manner provides a mechanism for
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enforcing effective topic diversity in the proxy agent pool with corresponding benefits

for privacy.

6.6 Discussion

The results of the random proxy injection defence in our experiments suggest that

once a user is alert to diversity, the 3PS setup can provide balance of probability

plausible deniability of topic interests. The method of choosing revealing keyword

pairs outlined in Section 6.3.3 provides a practical bound on plausible deniability and

is straightforward to apply in practice. In a production setting a browser plug-in

could automatically suggest new keywords for inclusion by the user in local keyword

dictionary extensions.

To apply (6.1) in practice, a user also needs a way of confirming that proxy

agents are being truthful about the probability estimators it publishes. The notion

of probe queries, introduced in Chapter 4, allows a user to test the behaviour of

black-box systems without revealing sensitive interests. By checking input–output

interactions users can label the observation as sensitive or not and adjust their view

of revealing keywords. The techniques introduced in Chapter 4 can be used to check

for observations that vary from the values expected from (6.26), indicating possible

concerns with the estimators distributed by that proxy agent.

Choosing Θu,c
u,k to estimate plausible deniability requires care. From (6.26) it fol-

lows that

P̂α(z ∈ Zu,c
k |z ∈ Zatt,k) < P̂β(z ∈ Zu,c

k |z ∈ Zatt,k)

when 0 < α < β ≤ 1. Choosing α = 1 to include as many keywords as possible

in Θu,c
u,k is the safest threat detection strategy in our setup here. We have assumed

here that there is no incentive for dishonesty neither is there any malicious poisoning

nor accidental corruption in our setup. In a real-life, production setup when DX or

DY are partially complete, poisoned or deliberately censored, a user may choose any

input–output keywords for Θu,c
u,k. We note that the techniques introduced in (P Mac
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Aonghusa et al., 2018; Pól Mac Aonghusa et al., 2016) provide tools to test when

input–output keywords indicate privacy concerns that could be adapted to assist a

user with constructing Θu,c
u,k.

While our experiments suggest that 3PS can provide acceptable levels of plau-

sible deniability with low utility loss, our results also emphasise the importance of

maintaining adequate vigilance to prevent interests in sensitive topics from leaking

and taking care to avoid overly revealing content that might compromise plausible

deniability when user interests are known.

Our implementation is a prototype and so results should be taken as a first step.

Scaling 3PS to a full product environment will pose engineering and business chal-

lenges. Our approach is intended to be easily integrated into the technology stack of a

search engine. However introducing a group identity as an intermediary will result in

disruption to personalisation since personalisation in 3PS is based on the cumulative

profile of group identities rather than specific details of individual users. In effect the

web search engine risks loosing utility by being able to serve less personalised content

to group identities. The challenge in the wild that our prototype is unable to answer

is whether a balance between the loss of utility and improved privacy of users is a

viable tradeoff in a production setting.
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7.1 Discussion

In the principles proposed in Chapter 1 we introduced three aspects of personal

privacy as a guiding structure for this thesis. In Chapter 4 we showed how users

of search engines could detect potential privacy threats from personalisation. In

Chapter 5 we built on the work in Chapter 4 to show how users could estimate risks

to privacy from plausible deniability. Together the work in these chapters provides

a set of tools allowing users to monitor and assess aspects of personal privacy. In

Chapter 6 we addressed our third privacy principle through an architecture of group

user identities, indicating that enabling users to assert agency over their personal

privacy is possible.

Although the systems considered here are complex, our work suggests that per-

sonal privacy need not be difficult or opaque for users. The black-box models we

employ enable a formal approach to user privacy while allowing the implementation

details of systems to remain private. Our experimental results indicate that, even

with the assumption of a black-box system, the PRI and PDE techniques allow

users to detect and assess potential risks to their online privacy without tipping off

the back-end system. The ability to detect and verify quietly, without significant im-

pact on the back-end system, also allows our tools to work in a way that is compatible

with fair-usage of these systems.

Both of the PRI and PDE techniques were implemented with readily available

software tools and verified using accessible data from search engines. The 3PS proto-

type implementation was built from openly available software tools and was specif-

ically designed to minimise retro-fitting impact on existing systems. We believe the

approach of using open software and verifying with readily available data to be a fea-

ture often missing in traditional privacy research where concerns over data disclosure

limit access to potentially sensitive test data sources.

While our work is intended to be minimally disruptive to the in situ technologies

involved, there is a trade-off between utility – the degree of exact personalisation –

and privacy – the degree to which a user can deny interest in private topics. In the

case of 3PS, for example, users adopt group identities so that personalisation will be
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based on the group profile rather than specific knowledge of the user. In this sense,

privacy defences pose a risk to the underlying business model assumption that more

specific personalisation implies higher click-through revenue. It remains for future

research to determine if this trade-off is acceptable to systems.

Our results in Chapter 6 with 3PS show that, in fact, much less personal data

collection is required for adequate personalisation than is generally believed. This has

significant implications for online providers in light of legislation such as GDPR that

requires data to be limited to that which is proportionate to the purpose of collection.

The fast-convergence and high accuracy of the proxy agent selection method, observed

in our experiments indicate that 3PS can provide a safe and scalable solution that

requires little retro-fitting to work with existing systems. It suggests that Internet

system providers can adapt the techniques here to provide privacy preserving services

for users at little or no cost of disruption.

In beginning this work our view was that detecting personalisation threats from

adaptation would require complex solutions given the complexity of the underlying

systems. In fact, our results indicate that evidence of adaptation is easy to find and

to assess for privacy threats. The realisation that personalisation is mandated in

commercial online systems to maximise shareholder value means that such systems

are forced to reveal their hand despite their black-box nature. This suggests that

there is an “Elephant in the Room” for privacy in the face of sophisticated, modern,

commercial internet systems. Namely, focusing on personal de-identification is to risk

missing the larger threat of distinguishability. Our observation in Chapter 4 that such

sensitive topic profiling persists, even for anonymous users, helps to further underline

the nature of the privacy threat.

7.2 Future Research

As previously mentioned, detection and assessment of privacy concerns are related

to inference in machine learning, and more generally to fairness, accountability and

transparency in machine learning, (FATML, 2019). There is scope for future research
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to further investigate online privacy within the broader context of verification fairness

and analysis of inference in machine learning, (Olhede et al., 2016, 2018).

Our work excludes the situation where the system does not reveal its hand through

personalised content. The latter could happen when the system is not capable or

is unwilling to personalise its output. For example, when the real motive is data

collection for undisclosed background processing or security analysis. These specific

situations are left for future research, and perhaps best addressed by the law and

through strong and active governance rather than through technology alone.

Our focus here is on privacy concerns arising from inference by the search engine

resulting from explicit user web search interactions. Online systems, including search

engines, gather data from many sources to produce personalised content. Direct

identification techniques, such as IP tracing or browser finger-printing are outside

the scope of our current analysis. Implicit profiling effects due to Geo-location, for

example, also effect personalised content. Investigating how explicit, implicit and

other data collection techniques interact, especially in growth platforms like mobile

devices, is another area for future research.

Search engines are a convenient and openly available source of personalised con-

tent, but not the only online service that profiles users. A significant portion of

modern online systems profile users to boost commercial return through improved

personalised content. In Chapter 6 we extended our analysis by including openly

available examples data sources for TripAdvisor and Amazon to illustrate how the

techniques we develop can be extended beyond search engines. Our work here, though

promising, is a prototype and much work remains to be done to demonstrate the fea-

sibility of our results in a production setting.

Future avenues of research include: looking beyond search engines to other recom-

mender systems where content types other than adverts may provide better content

for adaptation detection in the case of other recommender systems; extending our

techniques to incorporate more complex user interaction models; constructing effec-

tive user privacy defences by exploiting observations of topic similarity and confusion

encountered in our experiments, and, investigating how our tools perform performs
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for different models of contextual advert selection such as semantic or sense-based

techniques that employ non-keyword based selection techniques to select adverts.

The Natural Language Processing Bag-of-Words model we use is among the simplest

possible that facilitates obtaining useful experimental results. More sophisticated

language models, for example using n-grams or word embedding, will likely improve

the capabilities of the tools. We focus on text-based advert content appearing on

web search result pages. Other sources of personalised content, such as images, and

pop-up suggestion cards on mobile devices, could also be investigated to provide

finer-grain insight into individual privacy.

7.3 Concluding Remarks

We conclude with a note of caution to the user. Our experiments indicate that online

systems such as search engines are able to identify user interests with high accuracy,

exploit multiple signals, filter out uninteresting noise queries and adapt quickly when

topics change. Furthermore learning appears to be sustained over the lifetime of

query sessions. The power and sophistication of these systems make designing a

robust defence of user privacy non-trivial.

Overall our results point towards a situation, where online system capability is

continuously evolving in response to technical advances and developments in user

behaviours. In this setting, even if our technologies were to become widely deployed

then we can reasonably expect search engines to respond with more sophisticated

learning strategies. Our results also point towards the fact that explicit input from

the user, such as search queries, plays a key role in search engine learning. While

perhaps obvious, this observation reinforces the user’s need to be circumspect about

the queries that they ask if they want to avoid search engine learning of their interests.

The importance of personal responsibility concerning privacy is pervasive in our

work here. Our results strongly suggest that the need to maintain a level of en-

gagement and alertness with respect to individual online privacy is an unavoidable

feature of online existence. However good privacy technologies become, we should

not become complacent. The decision to engage and to take action is, unavoidably,
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a personal responsibility and personal judgements regarding risk seem intrinsic to

discussions of privacy.

In conclusion we view this work as a starting point towards practical user privacy

in the face of ever-evolving and more powerful online systems. The results presented

here are relevant for the billions of users of everyday online systems, policy-makers

and privacy watchdogs and, of course, for online system providers under increased

scrutiny to demonstrate their commitment to improved user privacy.
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Appendix

Lemma 1 For x, y, ϵ ∈ R+ with 0 < x, y < 1

e−ϵ <
x
y
< eϵ =⇒ |x − y| < ϵ (1)

Proof Assuming the left hand side of (1) holds

e−ϵ <
x
y
< eϵ ⇐⇒ ye−ϵ < x and y > xe−ϵ

=⇒ y(1 − ϵ) < x and y > x(1 − ϵ) (Since e−x > 1 − x)

⇐⇒ y − x < yϵ and x − y < xϵ

⇐⇒ y − x < ϵ and x − y < ϵ (Since x, y < 1)

⇐⇒ −ϵ < x − y < ϵ ⇐⇒ |x − y| < ϵ
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