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Summary of the thesis 

Smoking is the leading cause of preventable death worldwide, causing 6 million deaths every year 

(WHO, 2011). Most people try smoking for the first time in adolescence (O’Loughlin et al., 2014),  

making this a critical period for research regarding risk factors for progressing into nicotine 

addiction. As with other substance use disorders, much is known about how nicotine-induced 

changes in neurotransmitter systems and sensitivity to drug- and non-drug rewards lead from 

recreational to habitual and finally to compulsive use. Differences in personality, life history, 

environment, behavioural responding, and neurobiology between non-smokers, smokers, and 

smokers who manage to quit are also known. However, there is very little evidence as to what pre-

existing neurobiological factors make adolescents vulnerable to smoking behaviour. 

Using a large sample of 548 14-year old non-smokers, machine learning was used to predict 

smoking behaviour in the next four years. The analysis framework was chosen based on a rigorous 

empirical examination of 13 machine learning analysis pipelines for use with neuroimaging data. 

This revealed that the Elastic Net (Zou & Hastie, 2005), a form of regularized regression, allows use 

of large quantities of correlated variables in prediction models without the decline in accuracy seen 

with other approaches when large amounts of data are examined. Of the participants, 59 became 

regular smokers before age 16, and 33 became regular smokers before age 18. Using only MRI and 

fMRI data prediction accuracy was poor. Using personality, life history, psychopathology, substance 

use, and family/peer environment, classification into smoking trajectories was good with only a 

small reduction in accuracy when neuroimaging and non-imaging measures were combined. In line 

with previous research, behavioural and trait impulsivity were strong predictors of smoking. 

Extending previous knowledge, the ability of impulsivity metrics, particularly novelty-seeking, to 

predict smoking behaviour differed strongly by age of smoking onset. The absence of behavioural 

expressions of impulsivity such as conduct disorder was hypothesized to be a protective factor 

delaying onset of smoking. 

Using fMRI measures of reward processing, inhibitory control, affective processing, and 

mathematical and semantic processing, a predictive phenotype indicating risk for smoking onset 

between the ages of 16 and 18 emerged. The presence of deficits in processing of facial affect 

indicated by altered activity in regions including the temporal pole was a predictor of future 

smoking, and is consistent with previous accounts linking similar deficits to future binge-drinking 

behaviour (Whelan et al., 2014). Grey matter volume in the temporo-parietal junction and function 

of associated networks including the default-mode-network were also observed as risk factors for 

smoking. The primary finding regarding atypical brain function putting adolescents at risk for 

smoking was seen in networks underlying reward processing and cognitive control. Reduced 

sensitivity to cues signalling non-drug rewards in regions involved in attribution of saliency – 
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including the orbitofrontal cortex (OFC) and anterior cingulate, and increased activity in these 

regions upon receipt of a reward were strong indicators for long-term smoking risk. To further 

examine this effect, functional connectivity patterns of the reward system were examined in a 

sample of 206 14-year old adolescents who had already begun smoking. A Psychophysiological 

Interaction analysis coupled with Elastic Net regression revealed patterns of altered ventral 

striatum functional connectivity associated with lifetime frequency of smoking. Adolescents who 

had smoked more showed stronger functional connectivity between reward system nodes 

including the OFC and the ventral striatum. In addition, heightened smoking frequency was 

associated with lower functional connectivity between reward system nodes and regions involved 

in cognitive control and inhibition, including the right inferior frontal gyrus. 

To determine whether reward-related changes in cognitive control and sensitivity to rewarding 

stimuli would still be evident after adolescence and when using a different behavioural measure, a 

sample of adult smokers, non-smokers, and ex-smokers was recruited. Participants completed the 

Iowa Gambling Task (Bechara et al., 1994), which is known to engage the same brain regions for 

which smoking-related effects were found in the previous studies. Behavioural responses in this 

task indicate reinforcement learning, sensitivity to positive and negative feedback, and ability to 

anticipate future outcomes. These elements of task performance were quantified using 

computational models. As conclusively proving the validity of such models is challenging, EEG data 

from a separate sample was used to confirm the neurobiological validity of computational model 

calculations. Findings showed that both smokers and ex-smokers displayed strong preferences for 

immediate rewards with a disregard for the long-term negative consequences of choices.  

A phenotype characterized by reduced anticipatory sensitivity to non-drug reinforcers and 

increased attribution of salience when receiving non-drug rewards is suggested. This phenotype 

appears to put adolescents at risk for future smoking, has an association with smoking frequency, 

and persists in adulthood and after smoking cessation. The use of predictive modelling was shown 

to be a valuable tool to extend knowledge of aetiology and pathophysiology of maladaptive 

behaviour. The combination of neuroimaging and psychometric data made it possible to create a 

holistic model of smoking risk that took into account diverse facets of psychological, 

neurobiological, and environmental vulnerabilities. The neurobiological insights and behavioural 

indicators of decision-making and executive function identified here as risk factors for smoking 

behaviour have the potential to be translated into cognitive training or neurofeedback tools to be 

used in prevention or intervention efforts. Given the demonstration of the neurobiological validity 

of computational models of cognitive mechanisms, such tools could be used as cost-effective 

means of approximating reward system function in risk assessment or progress monitoring.  
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1.1. Predictors and correlates of smoking behaviour 

In Europe 16% of all deaths among individuals aged 30 years or older can be attributed to 

tobacco (WHO, 2012). On average 27.3% of people over the age of 15 in European countries smoke 

tobacco (WHO, 2015a). By age 24, about 75% of individuals have tried at least one cigarette, but 

the majority of young adults smoked their first cigarette before the age of 16 (O’Loughlin et al., 

2014; von Ah et al., 2005). While figures vary, multiple reports estimate that at least a quarter of 

individuals who try smoking will go on to become regular smokers (Wellman et al., 2018; Von Ah et 

al., 2005). While large-scale smoking prevention and cessation efforts have resulted in a relative 

decrease in smoking rates over the last decade (WHO, 2015b), there is little evidence for the 

efficacy of smoking prevention strategies targeting children and adolescents (de Kleijn et al., 2015; 

Wiehe et al., 2005; Lantz et al., 2000; Thomas, McLellan & Perera, 2015). Given additional 

emergent risk in this group due to new substance-use related technologies such as e-cigarettes 

(Pearce et al., 2017; Perkins, Karelitz & Michael, 2015), substantial efforts to better understand 

adolescent smoking behaviour are warranted. 

Smoking is a complex multi-stage behavioural phenomenon that is challenging to define 

and categorize. The cognitive-developmental model of smoking postulated by Leventhal et al. 

(Hirschman, Leventhal & Glynn, 1984; Leventhal & Cleary, 1980) suggests that there are four stages 

of smoking: A preparatory stage in which perceptions about smoking and smokers are formed, 

initiating smoking behaviour through smoking of the first one or two cigarettes, experimental or 

irregular smoking, and finally smoking maintenance (i.e. regular smoking behaviour). Although an 

understanding of how individuals progress through these stages is important to understanding the 

risk factors for becoming and staying a smoker, studies investigating smoking behaviour are 

overwhelmingly cross-sectional in design. While most studies define smoking behaviour based on 

established measures such as the Fagerström test for nicotine dependence (FTND; Heatherton, 

Kozlowski, Frecker, & Fagerström, 1991), there is nevertheless wide variety in the group inclusion 

parameters used across studies. While some studies include only smokers meeting criteria for 

nicotine addiction and individuals who never initiated smoking, other studies also include 

individuals who initiated smoking but never progressed to regular use. This diversity in populations 

allows for some exploration of differences between individuals at different stages of the smoking 

pathway. However, the unique set of risk factors and vulnerabilities leading to progression from 

one stage of smoking to the next can only be dissociated from any effect smoking itself may have 

on behaviour and brain function through longitudinal studies. Compared to cross-sectional studies 

the number of longitudinal studies in this area is very small. Nevertheless, there have been studies 

following the development of smoking behaviour from childhood to adolescence (Kellam, 

Ensminger & Simon, 1980; Burt et al., 2000), from childhood to adulthood (Stewart & Livson, 
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1966), over shorter periods during adolescence (Collins et al., 1987), from adolescence to young 

adulthood (Cherry & Kiernan, 1976; Sieber & Angst, 1990; O’Loughlin et al., 2014), and from young 

adulthood to later in life (Barefoot et al., 1989). These studies identify what factors are associated 

with progression and non-progression from one stage of smoking behaviour to the next, 

disentangling cause and effect of smoking behaviour. There have also been a number of studies 

specifically investigating the trajectories of smoking behaviour in adolescence and young adulthood 

(Chassin et al., 2000; Colder et al., 2001; Soldz & Cui, 2002; White et al., 2002; Audrain-McGovern 

et al., 2004a). Using various clustering methods these studies all identified at least three distinct 

groups of adolescent smoking trajectories: non-smokers, occasional or experimental smokers, and 

heavy regular smokers. Most studies also distinguished between those regular smokers who began 

smoking early in adolescence, and those who began at a later age. Colder et al. (2001) and Audrain-

McGovern et al. (2004a) also differentiated between trajectories based on how quickly adolescents 

moved from initiation to regular use. These longitudinal assessments of smoking patterns indicate 

that not only is it possible to clearly separate individuals who progress from one stage of smoking 

behaviour to the next from those who do not, the age and speed at which progress from each 

stage to the next takes place is important in understanding pathways of adolescent smoking.  

In the following, longitudinal and cross-sectional studies will be reviewed with regard to 

what factors associated with progressing from non-smoking to smoking initiation, to smoking a 

second cigarette, to becoming a regular smoker, and to smoking cessation are observed. 

1.1.2. Smoking stage 1: Trying the first cigarette 

1.1.2.1. Risk-taking and impulsivity 

Smoking in adolescents motivated to engage in non-normative behaviours is facilitated 

through risk-taking or sensation-seeking and impulsivity. Risk-taking and “sensation seeking” are 

often used to refer to the same facet of impulsive behaviour. While these constructs are not well 

defined in the literature, studies using different tools to measure these or closely related traits 

generally find differences between smoking trajectories. In college-age adults, self-reported 

impulsivity and sensation-seeking as recorded using the Minnesota Multiphasic Personality 

Inventory (MMPI) were associated with higher risk of beginning to smoke at least one year later 

(Lipkus et al., 1994). Multiple studies have also found established smokers to score higher than 

never-smokers on the Zuckerman Sensation Seeking scale, with effects found for total scores, 

disinhibition, experience seeking, and thrill and adventure seeking (Rezvanfard et al., 2010; 

Mitchell, 1999; Balevich, Wein & Flory, 2013; Harmsen et al., 2006). A longitudinal study 

investigating smoking trajectories from adolescence to adulthood found that higher levels of 

disinhibition increased the risk not only of being a smoker, but also of being a regular compared to 
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an occasional smoker (White et al., 2002). Similar findings were made by Balevich et al. (2013), who 

found smokers, experimenters, and never-smokers to all significantly differ in their disinhibition 

scores. However, a cross-sectional study found no difference in disinhibition between light and 

never-smokers (Rezvanfard et al., 2010), which may mean that disinhibition plays a larger role in 

continued smoking than smoking initiation. In contrast to disinhibition and other facets of risk-

taking and sensation seeking, studies have found that novelty seeking, as measured by the 

Temperament and Character Inventory (TCI, Cloninger et al., 1994) can distinguish between regular 

smokers and non-smokers but generally not between smoking trajectories, although regular 

adolescent smokers may have higher novelty seeking than experimenters (Audrain-McGovern et 

al., 2004a; 2009; Dinn, Aycicegi & Harris, 2004). Light and experimental young adult and adolescent 

smokers do not appear to differ from never-smokers on novelty seeking (Audrain-McGovern et al., 

2004a; Rezvanfard et al., 2010).  

Risk-taking, sensation-seeking, and novelty-seeking can all be considered aspects of trait 

impulsivity. Using the Barratt Impulsiveness Scale (BIS, Patton, Stanford & Barratt, 1995), multiple 

studies have found established smokers to score higher than non- or never-smokers on measures 

of impulsivity (Rezvanfard et al., 2010; Mitchell, 1999; Balevich, Wein & Flory, 2013; Skinner, Aubin 

& Berlin, 2004). When degree of smoking was evaluated, a number of studies have found that 

heavy smokers scored significantly higher on the BIS than light smokers or experimenters, with no 

difference in scores between light smokers and non- or never-smokers (Rezvanfard et al., 2010; 

Balevich, Wein & Flory, 2013). In a study evaluating abstinent individuals with alcohol use disorder, 

current smokers were more impulsive than ex-smokers, and there was some evidence to suggest 

that degree of smoking is associated with impulsivity (Skinner, Aubin & Berlin, 2004). Of the BIS 

subscales, only motor impulsivity has been frequently found to differentiate between heavy 

smokers and other smoking or non-smoking groups (Rezvanfard et al., 2010; Mitchell, 1999; 

Balevich, Wein & Flory, 2013). While scores on the BIS do not appear to be associated with 

smoking initiation, both heavy and light smokers show significantly higher scores on the 

venturesomeness subscale of the Eysenck Personality Inventory (Eysenck, Pearson, Easting & 

Allsopp, 1985) than never-smokers (Rezvanfard et al., 2010), indicating a relationship between this 

trait and smoking initiation. The same pattern was not found in an earlier study (Dinn, Aycicegi & 

Harris, 2004). However, both of these studies found that smokers scored significantly higher than 

never-smokers on the impulsiveness subscale, although Rezvanfard and colleagues (2010) found no 

effect for smokers scoring below 7 on the modifed Fagerström Tolerance Questionnaire (Prokhorov 

et al., 1998) compared to never-smokers, indicating a relationship between this trait and level of 

nicotine dependence. The degree to which trait impulsivity is a risk factor for smoking initiation 
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specifically is therefore unclear, but the evidence supports a strong role of trait impulsivity and risk-

taking in continued smoking behaviour. 

1.1.2.2. Environmental factors 

Leventhal and Cleary (1980) propose that the perceived prevalence and social acceptability 

of smoking, the perceived characteristics of smokers, and the perceived consequences of smoking 

contribute to the preparatory set that puts youth at higher or lower risk of smoking initiation. In 

line with this theory, a longitudinal study by Collins and colleagues (1987) found that smoking 

initiation in the next 4 months in 7th graders was predicted by higher perceived prevalence of 

smoking and an assumption of social approval of smoking. Wellman and colleagues (2018) suggest 

that exposure to an environment where smoking is normative, such as presence of smokers in the 

home, may remove a sense of violation of social norms associated with smoking and therefore 

remove a large deterrent to smoking. In addition to normalizing cigarette smoking, the presence of 

smokers in a child’s direct environment also leads to less negative attitudes toward smoking and 

less aversion or disgust of cigarette smoke (Cameron, 1972). These attitudes may in turn influence 

the choice of smoking or non-smoking peers, potentially reinforcing risk factors for future smoking 

behaviour. There is evidence that peer smoking (Hirschmann, Leventhal & Glynn, 1984 ; Pederson, 

1997; Audrain-McGovern et al., 2004a/b, Mayhew et al., 2000; O’Loughlin et al., 2014), parental 

smoking (Pederson, 1997; Mayhew et al., 2000; Tyas & Pederson, 1998; Wellman et al., 2018), and 

sibling smoking (Pederson, 1997; Flay et al., 1994; Tyas & Pederson, 1998; Duncan et al., 1996) are 

associated with smoking initiation. While the effect of peer smoking on initiation appears to be 

robust, there have been variations in findings relating to family member smoking and smoking 

initiation. Hirschman, Leventhal and Glynn (1984) failed to find an effect of parental smoking on 

trying a cigarette, and a recent study by Wellman and colleagues (2018) reported that sibling 

smoking was only associated with smoking initiation for children of mothers with moderate to high 

education level. Findings from this study also indicate that lower socio-economic status and 

maternal education level are associated with higher incidence of risk factors such as family 

member smoking and absence of a smoking ban in the home, indicating that there may be some 

shared variance among the effect of parent or sibling smoking and other variables such as 

economic environment on risk for smoking initiation. 

A robust link between smoking initiation and adolescent environmental stress factors has 

been uncovered. Adolescents who would subsequently initiate smoking in the next year reported 

significantly higher stress of school attendance, family conflict, parental control, and school 

performance than adolescents who remained non-smokers and adolescents who were already 

smokers (Byrne, Byrne & Reinhart, 1995). There is some evidence that smoking, along with other 
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substance use, may be used by adolescents as a coping response to deal with stress (Mates & 

Allison, 1992). The presence of so-called ‘broken-home indicators’ such as parental separation by 

age 19, not having lived with parents (particularly between ages 1 and 6 years old), and being 

adopted also predicted smoking behaviour (Sieber & Angst, 1990; Covey & Tam, 1990; Tyas & 

Pederson, 1998; Ellickson et al., 2001). However, there is no evidence that these ‘broken-home 

indicators’ pose a risk specifically for initiation of smoking, compared to experimentation or 

maintenance of smoking. On the other hand, low actual or perceived academic performance is 

associated specifically with risk of smoking initiation (Pederson, 1997; Audrain-McGovern et al., 

2004a/b; Mayhew et al., 2000; Ellickson et al., 2001; Soldz & Cui, 2002; Wellman et al., 2018). 

Failure to succeed in normative patterns of behaviour (in school, work, or socially) has been linked 

to substance use in a theory put forward by Kaplan and colleagues (Kaplan, Martin & Robbins, 

1984). The authors suggested that self-devaluing experiences in an individual’s membership group 

would lead to a loss of motivation to conform to normative patterns of behaviour. A modest link 

observed between low self-esteem and likelihood of smoking is also consistent with this theory 

(Koval et al., 2000; Byrne & Mazanov, 2001). Motivation to engage in other patterns of behaviour 

that may reinforce a sense of self-worth may thus be increased in some adolescents. The low 

academic achievement and the higher tolerance for deviance observed in adolescents who begin 

smoking (Mayhew et al., 2000; Pederson, 1997; Chassin, 2000) may be factors contributing to a 

common developmental pathway leading toward substance use and smoking behaviour. Indeed, 

higher alcohol consumption in adolescence is associated with increased risk for smoking initiation, 

and vice versa (Pederson, 1997; Ellickson et al., 2001; Soldz & Cui, 2002), indicating that most 

adolescents who begin smoking have a generally more favourable attitude toward deviant or 

antisocial behaviour. In the same vein, hostility and antisocial behaviour have been linked to 

smoking initiation (Lipkus et al., 1994; Kellam, Enslinger & Simon, 1980), which is consistent with an 

account of adolescent smoking as an expression of rebellion. Longitudinal studies in adolescents 

(Collins et al., 1987; Burt et al., 2000) and young adults (Barefoot et al., 1989) have found that 

higher scores on measures of rebelliousness are associated with smoking initiation. The notion that 

rebelliousness is a predictor of smoking initiation (rather than level of smoking) is supported by a 

study by Mayhew et al. (2000), who found tolerance for deviance and antisocial behaviour to be 

associated only with smoking onset and not higher level of smoking. Pederson (1997) also found 

rebelliousness and low social conformity to meaningfully distinguish ever- from never-smokers. 

1.1.2.3. The adolescent brain and risk for addiction 

It is clear that impulsivity and a favourable attitude toward risk-taking are associated with 

increased risk for smoking behaviour. These traits are at their peak during adolescence 

(Brändström, Sigvardsson, Snylander & Richter, 2008; Steinberg, Graham, O’Brien, Woolard, 
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Cauffman & Banich, 2009). A number of neurobiological models have attributed this to a difference 

in the balance between different brain systems in adolescence. The dual-system model (e.g. 

Steinberg, Albert, Cauffman, Banich, Graham & Woolard, 2008), the triadic model (Ernst, Pine & 

Hardin, 2006) and the imbalance model (Casey, Jones & Hare, 2008) all explain the heightened 

impulsivity and risk-taking in adolescence with respect to the reward system and the cognitive 

control systems. Among the structures involved in cognitive control are the dorsolateral prefrontal 

cortex (dlPFC) which is one of the most important executive control regions (Alvarez & Emory, 

2006), the orbitofrontal cortex (OFC) which has been attributed a role in saliency and value 

attribution (O’Doherty, 2004), the anterior cingulate cortex (ACC) which has been implicated in 

selective attention (Alvarez & Emory, 2006), and the right inferior frontal gyrus (IFG) which has 

been established as a central region in behavioral inhibition (Chikazoe, Konishi, Asari, Jimura & 

Miyashita, 2007; Aron et al., 2014). There are many interacting regions involved in reward 

processing (see Haber & Knutson, 2010). Among these regions, the ventral striatum (VS) is 

particularly important. The VS receives dopaminergic input from the ventral tegmental area (VTA) 

and is connected to frontal areas such as the orbitofrontal and ventromedial cortices. The VS is not 

only central to processing reward-related stimuli, but also plays a key role in integrating affective 

and cognitive information, and in action selection and motivation (Floresco, 2015). Along with 

decreases in impulsive choice from adolescence to adulthood, activation in the VS during reward-

related decision making decreases and activations in prefrontal cognitive control regions have been 

shown to increase with age (Christakou, Brammer & Rubia, 2011). The functional connectivity 

between the VS and prefrontal cortex (PFC) during reward outcomes also increases over the course 

of adolescence (Van den Bos, Cohen, Kahnt & Crone, 2012).  

The evidence supports a biologically based account of higher sensitivity to positive 

reinforcements and lower cognitive control over affective responding in adolescence. Furthermore, 

there is also evidence for an effect of the presence of peers on activity of the reward system in 

adolescents (Blakemore & Robbins, 2012), indicating that adolescents additionally show 

heightened vulnerability to peer pressure. Given these insights into the vulnerabilities specific to 

the adolescent developmental period it is unsurprising that adolescence is a time of increased risk 

for impulse-control disorders, including addiction (Chambers, Taylor & Potenza, 2003; Giedd, 

Keshavan & Paus, 2008), with the most common addiction in adolescence being nicotine (Young 

Corley, Stallings, Rhee Crowley & Hewitt, 2002). The biological insights into the mechanisms 

predisposing adolescents to initiate smoking and the mechanisms that contribute to continued 

smoking behaviour and addiction (see 1.1.4.) can be harnessed using modern neuroimaging 

technologies to establish high-risk profiles based on biological data. The neurocircuitry of addiction 
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is described further in 1.1.4.1, and concepts and opportunities in the area of creating biologically-

based models of substance use risk will be explored further under point 1.2. 

1.1.3. Smoking stage 2: Experimental smoking 

Having a positive experience (e.g., experiencing relaxation) when first smoking a cigarette 

has been associated with an increased risk of current smoking, daily smoking, nicotine 

dependence, and cue-induced cravings for a cigarette (Ursprung, Savageau & Difranza, 2011). 

Klein, Sterk and Elifson (2013) found that more than half of their participants found the experience 

of smoking their first cigarette more negative than expected, and disliked the taste. However, three 

quarters reported feeling calm and relaxed after their first cigarette. Negative attitudes toward 

smoking and negative experiences trying the first cigarette are protective factors against trying a 

second cigarette (Hirschmann, Leventhal & Glynn, 1984). Audrain-McGovern, Nigg, and Perkins 

(2009) suggest the ‘sensitivity model’, which posits that innate higher sensitivity to the drug will be 

associated with a higher pleasurable response but also possibly with stronger adverse effects upon 

first exposure. Contrary to this hypothesis, Hughes, Rose and Callas (2000) found that former 

smokers, never-smokers, and current smokers did not differ on any subjective ratings of nicotine 

gum during a double-blind trial, although exposure to nicotine decreased tension in current 

smokers but not the other groups. Another theory proposes that the way in which adolescents 

respond to unfamiliar bodily sensations may influence their experience of cigarette smoking, with 

individuals who are more likely to interpret foreign physiological sensations as negative being less 

likely to enjoy their first smoking experience, and thus also being less likely to smoke again 

(Leventhal & Cleary, 1980). 

Beside the influence of the subjective experience of first smoking a cigarette, the factors 

associated with further smoking experimentation are very similar to the risk factors outlined above 

for smoking initiation, although specific evidence for the factors associated with progressing from 

initiation to experimentation but not regular smoking is scarce. However, the available data 

confirms that peer and sibling smoking are predictive of trying a second cigarette (Hirschmann et 

al., 1984), and that risk-taking and rebelliousness are associated with higher cigarette use at short-

term follow-up in adolescents who had recently initiated smoking (Collins et al., 1987). It is possible 

that the same preparatory set that leads adolescents to try smoking as a form of rebellion also 

encourages further involvement in behaviours that reinforce a self-image as someone who engages 

in rebellious and deviant activities. It is likely that this perspective is closely related to smoking in 

the peer environment, and that the subjective experience of smoking may play a lesser role in the 

decision to continue smoking for those adolescents for whom smoking serves the purpose of 

shaping how they see themselves. Indeed, Hirschman and colleagues (1984) provide some support 
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for the hypothesis that those who progress quickly from the first to the second cigarette are likely 

to smoke for reasons related to life stressors and the positive mood-related effects of smoking, 

while those who progressed more slowly were likely influenced more by peers and their smoking 

behaviour was less sensitive to negative sensations while smoking. 

1.1.4. Smoking stage 3: Smoking maintenance 

While research on reasons why adolescents move from the first to the second cigarette is 

scarce, there is an abundance of research investigating factors associated with regular smoking 

behaviour. Most important to understanding why individuals become addicted to nicotine is an 

understanding of how nicotine impacts the body and mind, and how the use of nicotine and other 

substances alter behavioural and brain mechanisms leading to dependence. 

1.1.4.1. Neurocircuitry of nicotine addiction 

In the brain, nicotine binds to nicotinic acetylcholine receptors (nAChRs). Receptors in the 

VTA are particularly important in the rewarding effect of nicotine (Corrigall et al., 1994). Rapid 

desensitization of GABA neurons and longterm potentiation of glutamatergic neurons caused by 

nicotine exposure act upon ventral tegmental area (VTA) dopamine (DA) neurons to cause a net 

increase in DA activity in the nucleus accumbens (NAcc) of the VS. This is known to be perceived as 

a rewarding sensation (Mansvelder, Keath & McGehee, 2002). Chronic treatment with nicotine in 

rats resulted in upregulation of nAChRs availability in the substantia nigra and VTA (Visanji et al., 

2006; Ryan & Loiacono, 2000). Human smokers also show a significant upregulation of nAChRs 

compared to non-smokers (Wuellner et al., 2008). nAChRs have at least three specific states: (1) 

Non-conducting or resting in the absence of an agonist, (2) Active or open upon exposure to an 

agonist, and (3) desensitized upon sustained exposure to an agonist (Changeux, Devillers-Thiery & 

Chemouilli, 1984; Buisson & Bertrand, 2001; Wang & Sun, 2005). While the number of nAChRs 

increases with chronic exposure to nicotine, these receptors may not actually be functional. In line 

with the observation that chronic exposure to nicotine results in increased behavioural tolerance, 

studies have found that upregulation in nAChR availability was accompanied by the down-

regulation of receptor function (Marks, Grady & Collins, 1993). Further studies also observed 

reduced binding potential of D1 receptors in the VS of smokers compared to non-smokers (Dagher 

et al., 2001). Dani and Heinemann (1996) suggested that smokers begin to experience withdrawal 

and craving when the desensitized nAChRs are unoccupied for extended periods of time (i.e. during 

abstinence) and thus recover to a state of responsivity again. They suggest that an abnormally high 

number of active and unoccupied nAChRs may cause the sense of discomfort and dysphoria 

experienced by smokers during withdrawal, which is mediated by smokers maintaining a near 

complete saturation (and thus desensitization) of nAChRs throughout the day (Brody et al., 2006; 
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Benowitz, 2008). Reports of the first cigarette after extended periods of abstinence, such as 

overnight, being the most pleasurable (Russell, 1989) are consistent with this hypothesis. 

Smoking is thus associated with a rewarding sensation, and discontinuation of smoking 

after sufficiently consistent exposure to nicotine is associated with negative effects. The rewarding 

sensation associated with nicotine and other drugs is distinctly different from that associated with 

natural rewards, as the nicotine-induced dopaminergic input to the NAcc does not show a 

habituation or satiation effect in the same way that natural rewards such as food do (Di Chiara, 

2002). Furthermore, animal studies have shown that DA transmission within the shell and core of 

the NAcc is differentially affected by exposure to drug (ethanol) compared to natural (sucrose) 

rewards (Bassareo et al., 2017). Learning theory accounts of addiction state that compulsive drug-

seeking behaviours emerge as drug-using behaviours shift from being purely goal-directed (i.e. 

motivated by the positive effects of drug use) to being conditioned, habitual behaviours. That is, 

prolonged drug use will lead to the cues and behaviours that precede drug use becoming 

conditioned stimuli themselves, with drug use behaviours, rather than the effects of the drug, 

becoming the conditioned response (i.e. Pavlovian-instrumental transfer). The strong positive and 

negative reinforcing properties of drugs of abuse lead to acute drug administration greatly 

accelerating the process of habit learning when compared to natural rewards (Hogarth et al., 

2013). The subregions of the NAcc play a crucial role in conditioned responding and habit learning. 

Animal studies have found that sensitization to nicotine is associated with reduced dopamine 

transmission in the NAcc shell and increased transmission in the NAcc core (Cadoni & Di Chiara, 

2000).  Findings relating to the distinct roles of NAcc core and shell confirm that this shift in DA 

activity within the NAcc is associated with the formation of drug-related stimulus-response 

associations. In rats, inactivation of the NAcc core reduced Pavlovian-instrumental transfer, i.e. the 

increased instrumental responding that takes place with exposure to a conditioned cue previously 

paired with a reward (Corbit et al., 2001; Hall et al., 2001). However, animals with NAcc shell 

lesions exhibit normal transfer. These findings are consistent with an account that suggests that 

the NAcc shell is crucial in establishing associations between reinforcers and learned goal-directed 

behaviours, while the NAcc core is involved in retrieval and expression of learned instrumental 

responding to primary and secondary reinforcers (Di Chiara, 2002; Everitt & Robbins, 2013). 

Increased DA transmission in the NAcc core in rats sensitized to nicotine can thus be interpreted as 

an expression of the shift from goal-directed, to habitual drug-seeking. 

Hogarth and colleagues (2013) state that the transition of drug use from goal-directed to 

habitual behaviour reflects “a loss of intentional regulation of behaviour”, since the learned 

stimulus-response associations are no longer contingent upon the effect of the drug itself, and 

circumvent explicit motivation and choice. Animal studies have shown that nicotine (and other 
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drug) use moves from being a goal-directed activity that is sensitive to devaluation to being 

insensitive to devaluation with prolonged exposure (Zapata, Minney & Shippenberg, 2010; Corbit, 

Nie & Janak, 2012; Clemens et al., 2014). As drug-cues become conditioned stimuli they elicit 

anticipatory DA release that is expressed as drug craving (Volkow, Koob & McLellan, 2016). This 

effect was observed in smokers in a study that found that occasional smokers showed higher 

ventral and dorsal striatum reactivity to cues for monetary than cigarette rewards, while 

dependent smokers showed equivalent reactivity to both types of cues, linked to subsequent 

motivation to obtain a reward (Bühler et al., 2010). In humans, neuroimaging evidence points 

toward dissociable roles of the ventral and dorsal striatum in relation to reinforcement learning, 

with the VS being recruited in both instrumental and Pavlovian conditioning and the dorsal 

striatum playing a larger role in implementing behaviour based on instrumental learning 

(O’Doherty et al., 2004). These findings prompted the theory put forward by Everitt and Robbins 

(2005) that transition from goal-directed to habitual drug seeking behaviours is accompanied by a 

transition from more ventral to more dorsal striatal control over responding. Based on animal 

studies, a shift in involvement of the dorsomedial striatum to the dorsolateral striatum with the 

shift from goal-directed to stimulus-response behaviour has also been observed (Balleine, Delgado 

& Hikosaka, 2007; Zapata, Minney & Shippenberg, 2010; Corbit, Nie & Janak, 2012; Everitt & 

Robbins, 2013). Evidence of enlarged putamen in substance users and their biological siblings (but 

not recreational users) suggests that differences in the dorsal striatum may precede substance use 

and pose a vulnerability for developing an addiction (Ersche et al., 2012, 2013a). However, there is 

also evidence that prolonged smoking abstinence results in a recovery of DA synthesis capacity in 

the dorsal striatum, which is significantly lower in current than in non-smokers (Rademacher et al., 

2016). Aspects of reward learning, while altered during addiction, may thus be recovered in 

abstinence. 

In addition to the striatum, regions central in the rewarding effects of drugs of abuse 

include the basolateral amygdala (BLA) and the OFC. The BLA is thought to encode motivationally 

salient representations of reward-value, and sends unidirectional excitatory input to the NAcc and 

dorsomedial striatum, regulating DA activity in the NAcc (Wassum & Izquierdo, 2015). Specifically, 

projections from the BLA to NAcc appear to underlie the ability to use outcome value to guide 

instrumental actions, and are crucial in Pavlovian-Instrumental Transfer (Shiflett & Balleine, 2010). 

The OFC is thought to play a role in attribution of saliency and valuation (O’Doherty, 2004), and 

activity in ventromedial frontal regions including the OFC and ventral ACC has been interpreted to 

reflect drug craving (Volkow et al., 2011). There is considerable evidence that the OFC plays a role 

in affective value attribution to a wide range of primary and (abstract) secondary reinforcers, and 

codes both reward and punishment (Kringelbach & Rolls, 2004). Dependent smokers exhibited 
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significantly less OFC activation during anticipation of monetary rewards than occasional smokers, 

suggesting a reduction in sensitivity to non-drug rewards (Bühler et al., 2010). Substance 

dependent individuals also show a significant decrease in grey matter volume in this region (Ersche 

at al., 2013a). The OFC and ventromedial PFC project primarily to the rostral striatum, including the 

NAcc (Haber, 2016). Other regions that project to the striatum include the dorsal ACC (dACC) and 

the dlPFC (Haber, 2016). The ACC is thought to be associated with drug-related attentional bias 

(Goldstein & Volkow, 2011), and is activated for pain, negative affect, and cognitive control 

functions (Shackman et al., 2011). Furthermore, the anterior insula and ACC are part of the so-

called ‘salience network’ (Menon & Udin, 2010) which integrates information from internal and 

external sources to guide behaviour. In substance dependent individuals, a significant decrease in 

grey matter volume in the ACC has been observed (Ersche et al., 2013b). The dACC has been 

suggested to play a role in high-level cognitive control functions (Heilbronner & Hayden, 2016), and 

to subserve inhibitory control functions (Luijten et al., 2014). Resting state functional connectivity 

(rsFC) between the dACC and striatum is negatively associated with nicotine addiction severity 

(Hong, Gu & Yang, 2009), underlining that reduced dACC involvement is central in progression 

toward increased nicotine addiction. Interestingly, there is evidence that rsFC in the dACC-VS and 

extended amygdala circuit is also associated with a gene variant associated with smoking (Hong et 

al., 2010), possibly making function of this system a vulnerability marker for nicotine addiction. The 

medial prefrontal cortex (mPFC) has also been highlighted as a key region involved in addictive 

behaviours. The mPFC encodes the subjective and actual value of rewards (Kable & Glimcher, 2009; 

Niv & Montague, 2009; Haber & Knutson, 2010; Chib et al., 2009), and biases healthy individuals 

toward more conservative choices when making decisions under risk (Clark et al., 2008). Animal 

studies have shown that stimulation of the mPFC reduced cocaine-seeking behaviour (Levy et al., 

2007), while mPFC lesions increased cocaine-seeking behaviour (Weissenborn, Robbins & Everitt, 

1997). Furthermore, higher rsFC of the mPFC is associated with craving in smokers (Janes et al., 

2014). 

A popular account of why some individuals are more likely to develop an addiction 

suggests that pre-existing structural or functional differences in brain regions associated with 

reward learning or cognitive control make certain individuals more sensitive to the pleasurable (or 

adverse) effects of drug use (Audrain-MvGovern, Nigg & Perkins, 2009). A series of studies carried 

out by Ersche and colleagues set out to investigate the existence of an intermediate phenotype, or 

‘endophenotype’ that makes some individuals more susceptible to addiction and compulsive drug 

use than others. For these studies a group of largely cocaine dependent individuals was recruited, 

as well as their biological siblings who were not users, a group of non-addicted casual cocaine 

users, and non-using non-addicted control subjects. In line with findings regarding substance use 
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initiation, casual and addicted users showed significantly higher sensation seeking and disinhibition 

than non-using groups (Ersche et al., 2010; 2013a). However, both the addicted and non-addicted 

siblings showed significantly higher levels of trait impulsivity than controls, although impulsivity 

was significantly higher among the using than non-using siblings (Ersche et al., 2010; 2013). 

Simultaneously, siblings and users both showed impaired inhibitory control compared to controls, 

which was associated with reduced fiber tract density in regions adjacent to the right IFG (Ersche et 

al., 2012). Further studies have also shown reduced grey matter volume and density in smokers 

compared to controls in frontal regions including the PFC, ACC, and OFC, and in subcortical 

structures including the cerebellum (Brody et al., 2004; Gallinat et al., 2006; Kuhn, Schubert & 

Gallinat, 2010). Ersche and colleagues found that addicted and non-addicted siblings also showed 

significantly enlarged amygdala and putamen, and significantly reduced grey matter volume in the 

posterior insula and postcentral and superior temporal gyri compared to controls and recreational 

users (Ersche et al., 2012; 2013a). The insula has been implicated in interoceptive processing 

(Naqvi & Bechara, 2009), and there is evidence that damage to the insula disrupts nicotine 

addiction (Naqvi et al., 2007). Findings from these studies support an account of the etiology of 

addictive behaviours whereby those who have certain deficits in prefrontal cognitive control 

networks (such as the right IFG) and an increased sensitivity to reward (subserved in part by the 

striatum and extended amygdala) are at an increased risk of developing compulsive drug-seeking 

behaviour. While there is evidence of some dose-related structural brain differences in smokers 

(Gallinat et al., 2006), the brain regions described above are important targets for investigations 

into the neural basis of addiction, and may be promising biomarkers for substance use predictions 

(see point 1.2). 

1.1.4.2. Smoking maintenance to manage mood and as a coping mechanism 

As discussed previously, acute life stressors have a strong impact on smoking initiation. In a 

similar manner in which stress has been proposed to facilitate smoking as a coping behaviour, it 

has also been suggested that smoking may be used as self-medication to cope with mental ill 

health. Indeed, individuals with mental illness (including among others psychotic, anxiety and 

depressive disorders) are about twice as likely to smoke, and consume a disproportionately large 

percentage of all cigarettes smoked (Grant et al., 2004; Lasser et al., 2000; Lawrence, Mitrou & 

Zubrick, 2009). Furthermore, smokers with co-occurring mental illness appear to respond 

differently to cessation efforts than the general population (Le Cook et al., 2014). In adolescence, 

anxiety and depression are among the most common mental health issues. Research has shown 

that anxiety disorders are not associated with progression from initiation to daily smoking (Rohde 

et al., 2004), with daily smoking onset (Clark & Cornelius, 2004), or with current smoking 

(Upadhyaya et al., 2003) in adolescents. While there is little evidence for a link between anxiety 
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disorders and smoking, there is clear evidence for a relationship between depressive disorders and 

smoking. In adolescence, smoking is associated with increased rates of depression (Upadhyaya et 

al., 2003), and higher scores for depression in adolescents are associated with higher likelihood of 

smoking (Koval et al., 2000). To untangle the question of cause and effect there have been 

numerous longitudinal studies investigating smoking behaviour and depressive symptoms. 

There is some evidence to suggest that adolescents with major depression are no more 

likely to initiate smoking than their non-depressed peers (Kandel, 1996, as cited in Breslau et al., 

1998). However, adolescents who have ever smoked score higher for depression than never-

smokers (Pederson, 1997). Furthermore, Patton et al. (2006) found that for individuals who had 

not been daily smokers as teens the presence of persisting symptoms of depression and anxiety 

was the clearest predictor of nicotine dependence in young adulthood, resulting in a 6-fold 

increase of risk. And more generally, depressiveness is associated with non-specific substance use 

12 years later (Sieber & Angst, 1990). It must be noted that these studies do not specifically 

support a role of depressive symptoms in smoking initiation. Rather, it appears that the presence 

of major depressive disorder may be associated with the progression from smoking initiation to 

daily smoking (Breslau et al., 1998; Rohde et al., 2004). However multiple studies did not find 

depressive disorders to be predictive of future smoking (Clark & Cornelius, 2004; Goodman & 

Capitman, 2000). An interaction effect of dopamine transporter gene and depression with smoking 

progression has been identified (Audrain-McGovern et al., 2004c), and there is some evidence that 

a history of depression in smokers is associated with greater reduction in reward responsiveness 

upon acute nicotine withdrawal, which may contribute to increased risk for relapse in this 

population (Pergadia et al., 2014). 

There is also considerable support for the notion that depression emerges subsequent to 

smoking behaviour (Luger, Suls & Vander Weg, 2014). Teenagers who are daily smokers have 

slightly higher rates of psychiatric morbidity than other adolescents (Patton et al., 2006). 

Adolescents who are smokers are also up to four times as likely to be depressed at 1-year follow-

up, with some evidence for a dose-response relationship (Goodman & Capitman, 2000; Steuber & 

Danner, 2006; Covey & Tam, 1990; Rezvanfard et al., 2010). Breslau and colleagues (1998) found 

that from age 19, individuals who were daily smokers at baseline were significantly more likely to 

develop major depression for the first time. However, they report that part of this effect may be 

accounted for by baseline history of alcohol use disorder and early conduct problems, indicating 

that smoking itself was likely not causal in the development of major depressive disorder, but was 

rather a symptom of the same mechanism that produced other maladaptive behaviours and 

possibly resulted in psychopathology later in life. Rodriguez, Moss et al., (2005) found that the 

relationship between depressive symptoms and smoking behaviour in adolescence differs 
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depending on the severity of depressive symptoms. For adolescents with high depressive 

symptoms smoking may act to ammeliorate symptoms to a certain extent, while the reverse may 

be true for adolescents with moderate depressive symptoms. Rezvanfard et al. (2010) also found 

depressive symptoms to be a significant distinguishing feature between heavy and light smokers.  

There is some evidence that depressed smokers are more likely to smoke to reduce negative affect 

(Lerman et al., 1996), and that smokers with a history of depression do indeed show more reward 

sensitivity than non-smokers with a history of depression (Janes et al., 2015a). This fits with 

Mathew et al.’s (2017) theory that in depressed persons low positive affect and high negative 

affect each represent distinct states that are conducive to smoking maintenance. 

Overall the evidence does not conclusively support a causal role of depressive symptoms in 

smoking behaviour, but it appears that smoking may be used to ameliorate negative affect, or that 

depressed smokers may be less likely to quit. Furthermore, there is evidence that the degree to 

which negative mood increases the rewarding effect of smoking is associated with certain DA and 

opioid genes, indicating that there is a genetic component in the susceptibility to the reinforcing 

effects of smoking to regulate mood (Perkins et al., 2008). 

1.1.4.3. Behavioural impulsivity, inhibitory control, and craving in smokers 

A facet of impulsivity which has been widely studied in addicted populations is impulsive 

action – i.e. behavioural impulsivity that is not governed strictly by conscious choice processes. A 

group of tasks which measure this type of impulsive responding includes the Stop Signal Task (SST) 

and the Go/No-Go Task (GNG). In these tasks, participants are asked to respond as quickly as 

possible to a standard stimulus and to withhold responding to a different and less common 

stimulus. Participants’ ability to withhold responding to the less common stimulus is used as a 

measure of the ability to exert inhibitory control over automatic responding. In the case of the SST 

the ability to stop an already initiated behaviour is assessed. These tasks require both management 

of response conflict and processing of response errors. A review of studies using these inhibitory 

control paradigms to compare smokers and non-smokers found that in the absence of behavioural 

differences, smokers showed significantly lower activity in brain regions involved in inhibitory 

control, including the ACC and the right IFG (Luijten et al., 2014). Using EEG, differences between 

smokers and non-smokers were also found regarding the P3 and N2 potentials. Both the P3 and 

the N2 have been found to be measures of the unexpectedness of an outcome (Fuentemilla et al., 

2013; Holroyd et al., 2004; Holroyd et al., 2011). While the N2 (which has its neural origin in the 

dACC) is lower in individuals with addictions, findings have been conflicting regarding the P3 

(Luijten et al., 2014). The insula and putamen are also involved in inhibitory control during GNG in 

smokers. While connectivity between the putamen and ACC is increased during inhibitory control 
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in all individuals, smokers exhibit higher functional connectivity between the anterior putamen and 

right insula (Akkermans et al., 2016), which may indicate less efficient recruitment of this network, 

or use of alternative strategies. While longitudinal studies assessing whether deficits in impulsive 

action tasks and associated neural activity precede smoking onset are lacking, it is possible that 

individuals with structural or functional deficits in inhibitory control networks are more vulnerable 

to smoking initiation. 

1.1.4.3.1. Delay Discounting 

Choice impulsivity is another popular measure of behavioural impulsivity frequently used 

with smoking and substance-using populations. A widely used measure of choice impulsivity is 

delay (or temporal) discounting (DD). DD refers to the diminished value of a reward as a function of 

the temporal delay of its receipt. This is a measure of impulsivity that combines reward-processing, 

decision-making, and episodic future thinking. Typically participants are asked to choose between a 

smaller but immediate, or a larger but temporally delayed reward. Both monetary rewards, and 

rewards in the form of the drug of abuse are commonly used in DD tasks with substance users. DD 

is a trait-like characteristic that is fairly stable over time (Peters & Büchel, 2011). The medial OFC, 

VS, and posterior cingulate cortex are involved in processing of subjective rewards in this task 

(Kable & Glimcher, 2007). Multiple studies have found that DD can distinguish between smokers 

and non-smokers but not between smoking trajectories when smoking is defined based on quantity 

or frequency of smoking (Audrain-McGovern et al., 2009; Johnson, Bickel & Baker, 2007; Mitchell, 

1999). On the other hand, at least two studies have also found that heavy smokers, defined based 

on level of dependence on cigarettes, show significantly higher temporal discounting than both 

light and never-smokers (Rezvanfard et al., 2010; Sweitzer et al., 2008). Sweitzer and colleagues 

(2008) found that DD only showed a relationship with level of nicotine dependence defined based 

on the Fagerström Test of Nicotine Dependence (Fagerström, 1978), but not with cigarettes 

smoked per day. As there is some evidence that DD may be an indicator of risk of fast progression 

into smoking behaviour once a regular habit is developed (Audrain-McGovern et al., 2004b), DD 

appears to be associated with level of dependence and compulsive use rather than quantity of use. 

Evidence that established adult smokers discount monetary and cigarette rewards significantly 

more than both never- and ex-smokers further confirms a role of DD in smoking maintenance 

(Bickel, Odum & Madden 1999; Sweitzer et al., 2008). Observations that light and heavy smokers 

discount cigarette rewards more than other outcomes (Johnson, Bickel & Baker, 2007), that 

elevations in DD in smokers are strongest for immediate rewards (Mitchell & Wilson, 2012), and 

that DD increases with acute abstinence (Field et al., 2006) also support the hypothesized role of 

this facet of impulsivity in the maintenance of smoking behaviour. 
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1.1.4.3.2. Iowa Gambling Task 

A further highly relevant area of impulsivity that has been investigated with smoking and 

other substance using populations is decision making under risk and under uncertainty. The Iowa 

Gambling Task (IGT; Bechara et al. 1994) is a popular measure of decision making under ambiguous 

conditions. The IGT is an experience-based partial information paradigm that involves participants 

choosing among four decks of cards. Each deck yields an average monetary (or point) win and loss, 

with two of the four decks yielding a net gain over multiple trials (advantageous/good decks), and 

the other two decks yielding a net loss (disadvantageous/bad decks). Of the advantageous and 

disadvantageous decks respectively one deck results in less frequent but larger losses than the 

other deck. The participants’ goal is to maximize monetary or point gain after 100 trials. Although 

not all studies found an effect of smoking on IGT performance (Buelow & Suhr, 2014; Businelle et 

al., 2009; Lejuez et al., 2003; Harmsen et al., 2006), adolescents who had smoked in the past week 

performed significantly worse on this task than never-smokers (Xiao et al., 2008). Furthermore, 

both non-smokers and ex-smokers outperformed current young adult smokers on a variation of the 

IGT (Briggs et al., 2014).  There is also some evidence that nicotine dependence moderates poorer 

IGT performance in opiate addicts compared to control smokers and non-smokers (Rotheram-

Fuller et al., 2004). Rather than failure to learn reward contingencies, differences in task 

performance between smokers and non-smokers may be due to an increased tendency to favour 

large rewards among smokers (Ert, Yechiam & Arshavsky, 2013). There is also evidence that 

awareness of reward and punishment contingencies is lower among current smokers (Briggs et al., 

2014). Valuation of outcomes is central to IGT performance, and it is known that performance in 

the IGT relies strongly on the ventromedial PFC (vmPFC, Bechara et al., 1994), which is thought to 

underlie this process (Chib et al., 2009). In a study investigating the performance of individuals with 

substance use disorder (SUD) on the IGT compared to healthy controls and patients with vmPFC 

lesions, Bechara et al. (2001) found that performance of the SUD group was intermediate to the 

other two groups, indicating that deficits in vmPFC function in SUD may be an important factor in 

reduced IGT performance. Work by de Wit et al. (2009) has demonstrated that the vmPFC is 

activated more strongly during behaviours involving goal-directed action than during habitual 

responding, making altered vmPFC function a possible target for future investigations into risk for 

smoking behaviour.  

1.1.4.3.3. Monetary Incentive Delay Task 

Both DD and IGT measure not only impulsive responding, but also reward processing. Since 

addictions and compulsive behaviours are established primarily as a result of rewarding effects of 

substances like nicotine, reward processing is a central area of investigation in addiction research. 

In both DD and IGT participants make deliberate choices that will result in some type of rewarding 
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or non-rewarding outcome. While choice patterns in these tasks can reveal a lot about the altered 

nature of reward processing in smokers and other SUD populations, it is difficult to disentangle the 

stages of decision-making, anticipation, and receipt of the reward. A straightforward way to 

investigate participants’ anticipatory processing and processing of outcomes in isolation from each 

other is made possible by the Monetary Incentive Delay Task (MID; Knutson, Westdorp, Kaiser & 

Hommer, 2000).  In this task participants are presented with a cue signifying whether they will have 

the opportunity to receive a reward, lose points/money, or receive only visual feedback. After 

presentation of this informative cue, participants are asked to respond as fast as possible to a 

target stimulus, and feedback on what outcome was received is presented on the next screen. The 

task is designed in such a way that participants receive the more favourable outcome (a reward, 

positive feedback, or no loss) on two thirds of all trials. The paradigm has the distinct advantage of 

temporally separating anticipation and receipt of outcomes, making it possible to examine the 

activation patterns associated with each separately. VS activity is observed during the anticipation 

of rewards in the MID (Adcock, Thangavel, Whitfield-Gabrieli, Knutson & Gabrieli, 2006; Knutson, 

Fong, Bennett, Adams & Hommer, 2003). Other regions associated with reward anticipation in this 

task include the dorsal striatum, cuneus, thalamus, ACC, ventromedial PFC, OFC, insula, and 

midbrain (Haber & Knutson, 2010; Van Leijenhorst, Zanolie, Van Meel, Westenberg, Rombouts & 

Crone, 2010). Studies comparing performance of smokers to controls on the MID have found no 

significant behavioural differences between groups (Rose et al., 2013; van Hell et al., 2010; Luo et 

al., 2011). However, fMRI studies have found lower anticipatory activity in the dorsal striatum for 

gain compared to loss (or no reward) in smokers compared to non-smokers (van Hell et al., 2010). 

Lower dorsal striatum activation in anticipation of rewards has also been observed in a group of 

smokers acutely exposed to nicotine compared to placebo (Rose et al., 2013). Furthermore, both 

smokers and cannabis users showed attenuated NAcc activity during outcome anticipation (van 

Hell et al., 2010; Rose et al., 2013). A dose-response effect of even a small number of lifetime 

smoking occasions on VS activity during reward anticipation in adolescents has been shown (Peters 

et al., 2010). Taken together these findings indicate that exposure to nicotine mediates the 

involvement of the striatum in anticipatory reward processing. Differences in anticipatory striatal 

recruitment between smokers and non-smokers have also been shown to be associated with 

latency to reward receipt, with smokers showing significantly lower striatal responses in 

anticipation of delayed rewards, moreso than immediate rewards (Luo et al., 2011). Given the 

findings of increased temporal discounting in smokers, the observed differences in striatal function 

during the MID task may be part of the same mechanisms responsible for altered reward 

processing in smokers. Despite a wealth of studies investigating responses to positive and negative 

feedback, the outcome phase of the MID has not been as keenly studied with smokers as 
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anticipatory reward processing. However, there is evidence that both smokers and cannabis users 

exhibited increased activity in the caudate compared to controls during feedback (van Hell et al., 

2010), and smokers exposed to acute nicotine show greater middle frontal gyrus and cingulate 

activity for successful compared to unsuccessful trials than controls (Rose et al., 2013). In the 

absence of studies comparing brain activity during the MID between smokers and ex-smokers, or 

longitudinally between individuals who will go on to become smokers or remain abstinent, it 

remains unclear whether the clear differences between smokers and non-smokers in striatal 

function during this task emerge before or after smoking initiation. 

1.1.4.3.4. Smoking cue paradigms 

A group of behavioural paradigms that investigates impulsivity and cognitive processes 

directly in relation to smoking employ stimuli or cues that are related to smoking behaviour. The 

level of self-reported craving when exposed to smoking cues is highest for smokers, and higher in 

ex-smokers than controls (Zanchi et al., 2015). Cue-elicited craving is associated both with the 

amount of money smokers are willing to pay to smoke, and duration of subsequent puffs from a 

cigarette (Gass & Tiffany, 2017). Despite a wealth of research assessing behavioural cue-reactivity 

in smokers in laboratory studies, it is possible that these studies have limited ecological validity 

(Shiffman et al., 2015). However, a subset of cue-reactivity studies in smokers examines not only 

behavioural responding, but also brain responses to smoking cues. Smokers show higher ACC, PFC, 

dorsal striatum, insula, and precuneus activity to smoking than neutral cues (Janes et al., 2015b; 

Engelmann et al., 2012). These regions are all known to play a role in the formation and 

maintenance of addictive behaviours. Resting-state and task-related functional connectivity 

research targeting these brain regions has revealed an association between smoking behaviour and 

connectivity of the anterior insula and ACC. When compared to non-smokers, smokers show higher 

activity in the ACC when exposed to smoking-cues (Zanchi et al., 2015) with activity here being 

associated with nicotine dependence severity (McClernon, Kozink & Rose, 2008). Furthermore, 

“real-time” neurofeedback to reduce ACC activity to smoking cues was associated with reduced 

self-reported craving (Li et al., 2013). Smoking-cue related functional connectivity between the 

right anterior insula and ACC is significantly lower in current and ex-smokers than in non-smokers 

(Zanchi et al., 2015), which signals that smoking may be preceded by or cause lasting dysfunction in 

the salience network. However, coupling of anterior insula and dACC during rest is also associated 

with greater smoking cue-related activity in the visual cortex, PFC, and putamen in smokers (Janes 

et al., 2015b), and abstinent smokers show higher rsFC of the insula with the ACC, dlPFC, vmPFC 

and precuneus than non-abstinent smokers (Yang et al., 2014). These finding show that a network 

of regions including the ACC, insula, and PFC plays a role in craving or inhibitory control of drug-

seeking impulses, consistent with the suggested role of anterior insula and ACC in salience 
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attribution and behavioural control. A further brain region that has proven to be important in cue-

elicited drug craving is the precuneus.  The strength of smoking-cue induced craving is significantly 

associated with the strength of connectivity between the right anterior insula and precuneus 

(Moran et al., 2015), and precuneus activation to drug cues is significantly associated with severity 

of dependence for both nicotine and alcohol (Courtney et al., 2014). Findings of increased 

precuneus activity to drug-cues in multiple SUD populations have prompted the suggestion that 

the precuneus underlies exteroceptive processing which influences cue-elicited craving (De Witt et 

al., 2015), and therefore interacts with the network of anterior insula, ACC, and PFC. 

1.1.5. Smoking cessation 

A number of neuropsychosocial factors involved in smoking maintenance have been 

discussed. These include most notably mood-related benefits that may result in smoking being 

used by way of a coping or self-medication mechanism, a shift of smoking behaviour from being 

goal-directed to becoming habitual, and dysfunction in the ability of cognitive control mechanisms 

to prevent reward-oriented and impulsive responding. Given these factors that serve to maintain 

smoking behaviour, differences in psychological profiles, behaviour, and brain function between 

current and ex-smokers have the potential to illuminate what factors can aid in smoking cessation. 

1.1.5.1. Behavioural correlates of smoking cessation 

Studies employing the behavioural paradigms discussed above in relation to smokers have 

also been used to examine whether performance in these tasks is associated with successful 

smoking cessation. Evidence from the IGT shows that while performance on the task does not 

differ between current and former smokers, former and non-smokers’ awareness of reward 

contingencies of decks in the IGT is higher than that of smokers, and their ability to adapt to 

altered reward contingencies is also significantly better (Briggs et al., 2014). Higher cognitive 

flexibility in former compared to current smokers has previously been demonstrated in a study 

using a Stroop colour-word naming task (Nooyens et al., 2008). However, findings from this study 

indicate that those adults that smoked at baseline but not at follow-up already had greater 

cognitive flexibility than continued smokers even before quitting, indicating that cognitive flexibility 

and adaptability may be factors that predispose smokers to have greater odds of successful 

smoking cessation. Differences between current and former smokers have also been observed in 

the DD task, where ex-smokers and non-smokers both discount delayed rewards less than current 

smokers (Bickel, Odum & Madden, 1999; Sweitzer et al., 2008). However, it is unclear whether 

differences in DD emerge after smoking cessation or precede a successful quit attempt. 

Surprisingly, these differences in DD do not extend to health outcomes, which may have 

implications for the effectiveness of health-education based interventions (Odum, Madden & 
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Bickel, 2002). Ex-smokers also perform differently from smokers on the GNG task. Ex-smokers are 

more successful at inhibiting responses than current smokers while simultaneously responding 

more slowly than current and non-smokers (Nestor et al., 2011). While, again, it is unclear whether 

this effect preceded smoking cessation, these findings indicate that ex-smokers may engage in 

inhibitory control in a more cautious or conservative manner. In contrast to other behavioural 

measures, differences between current and former smokers in reactivity to smoking cues are more 

clearly linked to successful smoking cessation. Munafo and colleagues (2003) found that current 

smokers showed significantly more interference than former smokers on a Stroop colour-naming 

task with smoking-related words. Interference on this task has also been used to successfully 

classify smokers who will remain abstinent from those who will relapse (Janes et al., 2010a), with 

attentional bias toward smoking-related words being associated with likelihood of relapse (Waters 

et al., 2003). Level of interference has been found to be associated with polymorphism in the 

serotonin transporter gene in former but not in current smokers (Munafo, Johnstone & 

Mackintosh, 2005), indicating that reactivity to smoking cues and likelihood of cessation (Munafo 

et al., 2004) may be associated to some degree with genotypic factors. Furthermore, level of 

interference among smokers was associated with their combined scores on the Eysenck Personality 

Questionnaire (Revised) (EPQ-R) (Eysenck and Eysenck, 1994) subscales for extraversion and 

neuroticism (Munafo et al., 2003). There is some evidence for a dose-dependent relationship 

between smoking and these personality dimensions (Cherry & Kiernan, 1976), which may indicate 

that sensitivity to smoking cues and certain personality characteristics reflect a shared state that 

can change with smoking cessation, or change in which may facilitate smoking cessation.  

1.1.5.2. Psychological correlates of smoking cessation 

Given that all ex-smokers were once smokers, there is substantial overlap in psychological 

and environmental traits between current and former smokers. However, those traits in which ex-

smokers do differ from current smokers either predispose them to be more likely to successfully 

quit, or emerge after smoking cessation. A number of studies have highlighted significant 

differences between current and former smokers on measures of impulsiveness and inhibition. In a 

sample of alcoholics undergoing treatment, ex-smokers scored significantly lower than current 

smokers on the BIS, including the motor impulsivity, cognitive impulsivity, and non-planning 

subscales (Skinner, Aubin & Berlin, 2004). A study using data from adults who were part of British 

birth cohorts found that higher childhood self-control as reported by teachers was associated with 

lower likelihood of becoming a smoker, as well as greater likelihood of successful cessation (Daly et 

al., 2016). Furthermore, smoking status at 20-year follow-up was associated with measures of 

impulsivity in a large longitudinal cohort study, with those who quit smoking scoring significantly 

lower than current smokers on a measure of sensation-seeking at baseline (Lipkus et al., 1994). 
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Furthermore, ex-smokers in this sample also scored lower on a measure of hostility than current 

smokers at baseline. Given that hostility and sensation-seeking, as well as other measures of 

impulsivity are known to also predict smoking initiation, it seems that a certain psychological 

profile not only entails a heightened risk of becoming a smoker, but is also associated with 

subsequent higher risk of remaining a smoker and not quitting successfully. Other personality 

factors for which the relationship with smoking cessation is less clear include neuroticism and 

extraversion. Although both extraversion and neuroticism have been associated with smoking 

initiation and with current smoking (Cherry & Kiernan, 1976; Sieber & Angst, 1990; Eysenck et al.,  

1960; Eysenck, 1963; Munafo, Zettler & Clark, 2007; Hakulinen et al., 2015), these traits appear to 

be differentially associated with cessation and show a function of age. There is evidence that older 

adult smokers score higher on neuroticism but not on extraversion than older adult non-smokers 

(Terracciano & Costa, 2004). In a population sample, only neuroticism showed an association with 

likelihood of cessation and risk for relapse (Hakulinen et al., 2015). However, a longitudinal study 

investigating the relationship between personality, age, and smoking cessation found that while 

neuroticism was not associated with cessation, extraversion was associated with cessation only in 

older adults (Munafo & Black, 2007). Further studies evaluating neuroticism and extraversion 

alongside level of nicotine dependence and use in a longitudinal fashion across age groups will be 

necessary to illuminate the relationship of these variables to smoking cessation. 

Psychopathology and life stressors may play a large role in failure to quit smoking if 

smoking is used at least in part to manage mood. While still showing higher rates of depression 

than non-smokers, ex-smokers nevertheless show reduced rates of depression compared to 

current smokers (Wiesbeck et al., 2007; Perez-Stable et al., 1990; Luger, Suls & Vander Weg, 2014). 

Based on findings that individuals with a history of depressive symptoms were more likely to 

attempt quitting but less likely to successfully quit (Green & Pope, 2000; Anda et al., 1990; 

Glassman et al., 1990) it can be concluded that depression is a significant barrier to smoking 

cessation. There is also evidence that smoking cessation is associated with a decrease in depressive 

symptomatology, whereas relapse is associated with an increase in symptoms (Rodriguez-Cano, et 

al., 2016). While the causality linking relapse and depressiveness is not clear, the treatment of 

depression alongside cessation efforts will likely have a positive effect on cessation success. 

1.1.5.3. Neuroimaging correlates of smoking cessation 

There is considerable neuroimaging evidence that reactivity to smoking cues and other 

types of stimuli is a strong indicator of smoking cessation success. A number of studies have used 

smoking cue paradigms to examine brain activity before participants attempted to quit. A study 

evaluating success during 8-week abstinence found that reactivity to smoking cues compared to 
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reactivity to neutral cues in the insula, ACC, amygdala and putamen among other regions was 

higher in participants who would relapse (Janes et al., 2010a). Another study found that abstinence 

over a 1-month period was associated with stronger amygdala and VS activity to smoking than 

neutral cues at baseline and the opposite effect after one-month abstinence (McClernon et al., 

2007). This is consistent with findings of lower NAcc activity to smoking cues in ex-smokers than 

current smokers (Nestor et al., 2011) and evidence of a negative relationship between VS reactivity 

to smoking cues and craving (McClernon et al., 2008). Furthermore, those who successfully abstain 

for 4 months also show higher amygdala reactivity to smoking-cessation messages than relapsers 

(Jasinska et al., 2012), confirming that amygdala activity to both smoking and smoking-cessation 

stimuli is an important predictor of cessation success. Like smoking-related interference effects 

(Munafo, Johnstone & Mackintosh, 2005), amygdala activity to smoking cessation messages is 

mediated by a polymorphism in a serotonin transporter gene (Jasinka et al., 2012). The above 

studies suggest that those who remain abstinent over short periods show increased activity to 

smoking cues compared to neutral cues in a network including the amygdala and striatum, while 

those who relapse show a diminished difference in reactivity to smoking and other cues. 

Furthermore, amygdala reactivity to cessation messages is a predictor of cessation success, 

indicating that the emotional saliency of both smoking and cessation messages are key factors in 

whether smokers will be able to quit successfully. Mihov and Hurlemann (2012), in a review of 

studies investigating amygdala function in smokers, suggested that blunted amygdala reactivity 

may be a marker of reduced harm avoidance behaviours, which is consistent with accounts of 

increased amygdala activity to smoking cues being associated with abstinence success.  

Versace and colleagues (2014) also investigated the relationship between smoking-cue 

reactivity and subsequent abstinence using a different analysis approach than prior studies. The 

authors clustered smokers into groups based on their brain activity in a network of regions in which 

activity was significantly stronger for smoking, pleasant, or unpleasant cues compared to neutral 

cues. This resulted in two groups with different levels of activity to evocative cues in regions 

including the cuneus and precuneus, as well as a number of parietal and occipital regions. The 

group that showed higher activity in this network to pleasant stimuli and lower activity to smoking 

stimuli had significantly higher rates of long-term (6 month) abstinence, and lower rates of 

depression, sadness, anxiety, or anger. Since the precuneus has been thought to underlie 

exteroceptive processing, this group may have had higher sensitivity to non-smoking rewards and 

may therefore have been less susceptible to smoking for mood-related benefits. Lower grey matter 

volume in the cuneus has also been shown in smokers who manage to remain abstinent for one 

month (Froeliger et al., 2010), indicating that differences in cuneus and precuneus between 

smokers who relapse and those who do not may predate uptake of smoking behaviour. Versace 
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and colleagues (2014) also found differences in dorsal striatum activity to smoking stimuli between 

groups, with the group with lower cessation rates showing higher activity in the dorsal striatum to 

cigarette compared to other stimuli, and the opposite effect being observed in the other group. 

Higher grey matter volume in the putamen was also observed in relapsers (Froeliger et al., 2010), 

again indicating a possible pre-existing vulnerability to smoking relapse.  

As in current smokers, regions of the salience network have also been strongly implicated 

in studies of cue-reactivity investigating cessation success. In a smoking Stroop task subjects who 

relapsed showed more interference when presented with smoking-related words, and interference 

was associated with insula, dACC, hippocampus, and amygdala activity (Janes et al., 2010a/b). 

However, only insula activity remained significant in a model predicting cessation success (Janes et 

al., 2010a). In smokers who had successfully quit, significantly higher activity in the ACC and insula 

to smoking cues was observed (Nestor et al., 2011) which is consistent with findings that only ex-

smokers and not current smokers show higher insula activity to smoking cues than non-smokers 

(Zanchi et al., 2015). While these findings point toward a possible role of the insula and ACC in 

compensatory processing in ex-smokers, they also appear to contrast with data indicating that 

insula and ACC activity to smoking cues is associated with relapse in smokers attempting to quit 

(Janes et al., 2010a). Further investigations show that rsFC between the (posterior) insula and 

precentral and postcentral gyri is greater in smokers who remain abstinent at 10-week follow-up 

compared to those who relapsed (Addicott et al., 2015), and that rsFC of the insula is greater in 

acute nicotine abstinence (Yang et al., 2014). These results indicate that more effective 

communication of interoceptive signals from the insula may facilitate management of abstinence 

and craving. However, the contrasting findings relating to activity of the salience network in 

smokers about to quit and in former smokers warrant further investigation. 

When comparing current to former smokers, a study by Nestor et al. (2011) also highlights 

a role of frontal regions associated with cognitive control in successful smoking cessation. 

Established ex-smokers exhibit significantly higher PCC and dlPFC activity than current smokers 

during an attentional bias paradigm, which may indicate lower recruitment of prefrontal executive 

control regions to visual cues in current smokers. Furthermore, activity in the ACC during stop trials 

in the GNG task was significantly higher in ex-smokers than in current smokers, again pointing to 

differences in general inhibitory processing in ex-smokers compared to current smokers. In 

contrast, both current and former smokers showed lower activity than controls in the left IFG, right 

temporal regions, parahippocampal gyrus and anterior insula during stop trials in the GNG task. In 

the absence of longitudinal evidence it is unclear whether these functional deficits predated 

smoking.  
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Overall, the neuroimaging evidence paints a picture of some lasting deficits in inhibitory 

control functions in current and former smokers, alongside substantial differences in how smokers 

who will subsequently quit smoking, or have successfully quit, process smoking and other 

rewarding stimuli. The ACC, insula, and amygdala have been implicated consistently across studies 

as areas in which connectivity and function are indicators of cessation success. While the dorsal 

and ventral striatum have also been highlighted in many studies comparing current and former 

smokers, evidence as to how striatal function and striatal projections facilitate abstinence or are 

altered as a function of abstinence is as yet undetermined. 

1.2. A role for neuroimaging biomarkers and predictive modelling in 

understanding nicotine addiction 

Given sufficient knowledge about the predictors and causes of developing, maintaining, 

and failing to cease smoking, the targeted prevention of smoking in youth and the effective 

implementation of personalized cessation programs in current smokers is possible. Examples of 

predictive modelling to achieve improved preventative care and treatment for psychiatric and 

behavioural disorders are presented in Figure 1.1., with relevant examples for prevention of 

smoking and cessation treatments shown in panels 1 and 3 respectively. In this section the current 

approaches to smoking prevention are briefly reviewed, followed by a detailed examination of how 

predictive modelling can be used to improve patient care in psychiatry. 

1.2.1. Studies evaluating adolescent smoking prevention strategies 

The majority of smoking prevention programmes take place in schools, as this is the most 

convenient way to reach adolescents. Strategies to prevent or reduce adolescent smoking typically 

emphasize the health outcomes of smoking, attitudes toward smoking, or ability to recognize and 

resist social pressures to smoke. Among school-based smoking interventions, those focusing on 

social reinforcement and resisting social pressures appear to be most effective (Lantz et al., 2000). 

Peer-led interventions have also shown success in reducing rates of regular smoking onset in a 

Romanian sample (Lotrean et al., 2010) and in a Dutch sample (Dijkstra et al., 1999). Success has 

also been reported using an implementation intention intervention. Adolescents who signed an 

agreement detailing how they would respond to offers of cigarettes and committing not to smoke 

in certain locations and throughout a certain period of time smoked significantly less over the next 

two years than adolescents who completed a self-efficacy intervention (Conner & Higgins, 2010). A 

similar concept that is used in many European schools is the ‘smoke-free classroom’ program, in 

which students sign a contract committing themselves not to smoke and win prizes if successful. A 

meta-analysis by Isensee and Hanewinkel (2012) found this approach to be effective in smoking 

prevention.  
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Results from interventions that attempted to modify high-risk behaviours associated with 

smoking have also been reported. Kellam and Anthony (1998) employed a ‘good behaviour’ 

intervention targeting disruptive and aggressive classroom behaviour, and an intervention utilizing 

an enriched curriculum to improve low academic achievement in first and second grade students. 

Both interventions reduced smoking during follow-up (up to age 14). While the academic 

intervention showed a modest effect in reducing smoking behaviour at most subsequent data 

collection points, the ‘good behaviour’ intervention appeared to target an earlier antecedent of 

teenage smoking behaviour, with greater effects seen when youth were 10 years or older. 

Interestingly the greatest effect of the ‘good behaviour’ intervention was seen among boys who 

were already low in aggressive and disruptive behaviour, indicating that this group benefitted from 

reinforcement of positive behaviour at a young age. Similar interventions were found to only 

reduce the risk of being offered tobacco, not the risk or latency to smoking initiation (Wang et al., 

2012). An interaction effect of this type of intervention and a polygenic risk score has also been 

found, with increasing intervention success in individuals with the presence of a polygenic marker 

(Musci et al., 2015). Despite the apparent effectiveness of prevention programs in childhood and 

adolescence, the effect of these prevention programs may only be a delay in smoking onset (Lantz 

et al., 2000). 

There is evidence that school-based interventions show higher success when paired with 

mass media (radio and television) interventions (Flynn et al., 1992; 1994; Worden et al., 1996). 

However, media campaigns have a higher chance of being effective if they are large-scale and 

tailored to a specific target group (Lantz et al., 2000). There are examples of large-scale community 

interventions showing success in reducing tobacco use (Pentz et al., 1989; 1992; Biglan et al., 

1999), and Saffer and Chaloupka (1999) report that comprehensive bans on tobacco advertising 

could reduce consumption by about 6%. Increased cigarette prices and restrictions on smoking in 

public places and schools also appear to be an effective deterrent to youth cigarette consumption, 

while limits on youth access to tobacco appears to have little impact (Chaloupka & Grossman, 

1996). However, not all studies report significant reductions in smoking as a result of community-

wide efforts (Kristjansson et al., 2010). 
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Figure 1.1. Schematic representation of applications for predictive modelling in psychiatry. ERSP: Event-related spectral perturbation; ITC: Inter-trial coherence; PFC: 

Prefrontal cortex; MRI: Magnetic resonance imaging; MCI: Mild cognitive impairment; AD: Alzheimer’s Disease; ADHD: Attention deficit hyperactivity disorder; SSRI: 

Selective serotonin reuptake inhibitor; MDD: Major depressive disorder. [1] Anokhin & Golosheykin, 2016; [2] Mahmood et al., 2013; [3] Moradi et al., 2014; [4] 

Qureshi et al., 2016; [5] Nieuwenhuis et al., 2016; [6] Janes et al., 2010a; [7] Khodayari-Rostamabad et al., 2013. 
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1.2.2. Targeting smoking risk factors and identifying predictors 

By attempting to target behavioural risk factors for smoking, Kellam and Anthony (1998) 

and subsequent studies removed the focus of their interventions from smoking behaviour itself. 

They observed that there are meaningful individual difference factors in how adolescents respond 

to such interventions. A similar approach has also been used to prevent or reduce adolescent 

alcohol use. In their study Conrod et al. (2013) administered interventions targeting anxiety 

sensitivity, hopelessness, impulsivity, and sensation seeking to students high in one of these traits, 

and subsequently found significantly lower alcohol use in these students compared to controls. 

Given the shared risk for substance use and other antisocial behaviour that is associated with traits 

such as sensation seeking and rebelliousness, interventions targeting these domains and other 

known predictors of future smoking and substance use is a promising avenue for reducing problem 

behaviours.  

While many risk factors for smoking are well established, the majority of studies fail to 

confirm that these variables can predict future smoking. In an applied setting, only those variables 

that can generate some information about the outcome of interest for an individual are useful. This 

outcome may be the projected age of smoking onset or simply whether or not an individual is likely 

to try smoking. Without the knowledge that a personality trait or behavioural dimension has the 

ability to predict a future outcome, any intervention targeting this trait is based to a large extent on 

speculative inference. 

The majority of studies in psychological, social, and health sciences fail to determine 

whether variables are truly predictive of outcomes. This is due to a number of factors in study 

design and analysis strategy. Among these are the use of cross-sectional study designs and 

inferential statistics (see glossary). By definition, cross-sectional studies cannot establish causation 

and therefore cannot identify whether variables are predictive of an outcome. However, even 

longitudinal studies may fail to establish predictive utility if their statistical analysis approach is 

inferential in nature. Most studies investigating smoking divide their sample into groups based on 

smoking status and then compare characteristics of these groups. Statistical significance between 

groups is quantified based on group means and within-group variance (see Lo et al., 2015 for a 

discussion). Differences will therefore be strongest between groups with high within-group 

homogeneity. Good predictors, on the other hand, capitalize on heterogeneity within the entire 

sample to generate an outcome estimate. While variables that significantly differ between groups 

may also be good predictors, this is not necessarily the case, and vice versa (Arbabshirani et al., 

2017; Dubois & Adolphs, 2016; Lo et al., 2015; Moutoussis et al., 2016; Yahata et al., 2017).  



40 
 

Improvements and further developments in the area of smoking prevention will likely rely 

on research identifying predictors of smoking behaviour that can be addressed and targeted 

through interventions such as cognitive skill building or stress management. Furthermore, 

predictive modelling also has the potential to reveal what interventions and treatments are most 

likely to work for an individual (see Figure 1.1). Being able to estimate the likelihood that an 

individual will respond to a particular treatment or intervention is the basis for precision medicine, 

and for the integration of diagnosis and therapeutics, or ‘theranostics’ (Yahata et al., 2017). Based 

on predicted treatment response or disease course, clinicians can personalize treatment plans and 

avoid or delay costly, arduous, and possibly ineffective treatments. In the case of nicotine 

addiction, the cost of failing to identify and prevent or treat cigarette smoking is often death. Early 

identification of smoking risk and targeted treatment would therefore have a great impact on the 

quality of life of patients, and on the economic and personal cost of healthcare to the individual 

and society.  

1.2.3. The potential of biological data to indicate smoking risk 

In other domains of medicine, predictive models for estimation of treatment efficacy, risk 

assessment, and prognosis are routinely employed by medical professionals, and advocated by 

policymakers (Damen et al., 2016). Over the last decade, for example, cancer and heart disease are 

two specific areas in which biologically based (predictive) models, or biomarkers, have been used 

for purposes of screening, diagnosis, staging, prognosis, treatment selection, and monitoring 

(Ludwig & Weinstein, 2005; Jaffe, Babuin & Apple, 2006; Braunwald, 2008). Rather than replace 

the clinician, these biomarkers provide a measure that can supplement clinical decision-making 

(Steyerberger, 2009; Moons et al., 2012a). In order to be clinically useful, a biomarker needs to 

augment existing diagnostic/prognostic criteria. That is to say, the estimate of a future event (or 

current condition) based on the biomarker, or adding the biomarker to current methods, needs to 

be better than the estimate based on current methodology alone. A key element of why 

biomarkers are so desirable in medicine is that they provide an objective estimate. This has the 

potential to reduce bias in clinical decision making. In psychiatry, the incorporation of biological 

evidence into diagnosis, prognosis, and treatment selection could improve the quality of healthcare 

which patients receive (Gabrieli et al., 2015). The National Institute of Mental Health acknowledged 

this in their ‘Research Domain Criteria’ (RDoC; www.nimh.nih.gov/research-

priorities/rdoc/index.shtml) almost a decade ago. The RDoC framework assumes that (1) mental 

disorders are disorders of brain circuits, (2) neuroscientific methods can identify these dysfunctions 

in vivo, and (3) genetic and imaging data will yield biomarkers that can augment clinical 

management (Insel et al., 2010). Some examples of how neuromarkers could be used in psychiatric 

healthcare are shown in Figure 1.1. 
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The behavioural deficits observed in smokers and SUD populations have been linked to 

structure and function of brain networks subserving inhibitory control, reward processing, 

attentional control, and executive function. Using neuroimaging it may be possible to highlight 

biological markers that make adolescents more or less likely to engage in risky behaviours such as 

smoking and other substance use. Knowledge of such biological risk factors would be the first step 

in establishing highly personalized preventative programs that aim to give adolescents the tools to 

compensate for their identified deficits in behavioural control. The field of biomarker research 

investigating behavioural and mental health outcomes is still young, but is becoming increasingly 

relevant as neuroimaging techniques improve and the shortcomings of preventative medicine in 

addressing addiction and other mental health issues become more apparent. Below a review of 

research into predictive biological markers of addiction and substance use disorder is provided, 

focusing on (1) what requirements biomarkers for psychiatric or behavioural outcomes must fulfill 

and how these requirements can be met, (2) what research into neuroimaging biomarkers 

(hereafter ‘neuromarkers’) of substance use disorders has been conducted to date, and (3) what 

the developmental pipeline of a neuromarker should look like. 

1.2.3.1. Biomarkers for behavioural and mental health outcomes 

A mechanistic approach to the search for clinically relevant neuromarkers in psychiatry 

posits that an understanding of the pathophysiology of a condition, such as addiction, is necessary 

to develop biological tests (Pine & Leibenluft, 2015), and priority should be given to neuromarkers 

that more closely describe mechanisms that cause psychopathology. Developing prognostic tests 

assessing the risk for future psychopathology would certainly be facilitated by a better 

understanding of the neurobiology of psychiatric disorders (Insel et al., 2010; Kapur, Phillips & 

Insel, 2012). However, one could argue that psychiatry is a special case: given the complexity of the 

human brain, mechanistic approaches may not be tractable. Therefore, a pragmatic approach, in 

which a neuromarker is justified by its utility, suggests that priority should be given to 

neuromarkers that are clinically useful rather than those that necessarily link brain structure or 

function to symptomatology (Paulus, 2015). Pragmatic and mechanistic approaches are to some 

extent complementary: discovery of a neuromarker (e.g., brain activity that predicts recovery), may 

lead to a new focus on proximal mechanisms, or possible pharmacological agents (Doyle, Mehta & 

Brammer, 2015).  

Regardless of whether or not a mechanistic or pragmatic approach is used, psychiatric 

imaging prediction findings must be both accurate and generalizable in order to benefit individual-

level psychiatric assessment (Kapur, Phillips & Insel, 2012). Studies that aim to predict outcomes 

require a particular set of statistical tools (Gabrieli, Ghosh & Whitfield-Gabrieli, 2015). There is a 

rich neuroimaging literature examining psychiatric pathology. Psychiatric neuroimaging research 
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typically involves a group of patients, and a group of healthy control participants (normally 

matched to the patient group in terms of various demographic characteristics). These are 

compared in terms of their brain structure or function. The typical sample size of a neuroimaging 

study from a single laboratory does not exceed 100 participants. In contrast, neuroimaging 

datasets typically include hundreds – if not thousands – of voxels (see glossary) or regions of 

interest (ROIs, see glossary), particularly when data from multiple modalities are used (such as MRI 

and electrophysiological recordings or positron emission tomography). MRI and fMRI data are 

usually analysed by carrying out statistical significance tests on each voxel. This type of analysis is 

referred to as mass-univariate analysis, as it involves conducting a massive number of tests for 

each analysis. When groups of patients and control participants are being compared, an ANOVA or 

t-test (see glossary: Inferential statistics) will usually be carried out at each voxel. To account for 

the high risk of false positive findings (see glossary), mass univariate analyses are ordinarily 

reported using corrected statistical significance thresholds. This approach has produced important 

insights into the neuropathology underlying many psychiatric conditions including addiction (e.g. 

Luijten et al., 2017); schizophrenia (e.g. Crossley et al., 2015); social anxiety disorder (e.g. Bruehl, 

Delsignore, Komossa & Weidt, 2014), Attention deficit hyperactivity disorder (ADHD; e.g., Plichta & 

Scheres, 2014), and anorexia nervosa (Gaudio et al., 2016). However, there are considerable issues 

in terms of reliability, generalizability, and reproducibility with this type of analysis framework in 

terms of identifying neuromarkers. Regression and machine learning methods are able to capture 

the complexity of neuroimaging data and are thus preferable statistical tools when identifying 

possible predictive variables (see Box 1, top panel, for a brief description of some commonly used 

methods).  
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Box 1. Tools and terminology for outcome prediction 

Examples of Machine Learning Classifiers  

Support Vector Machines (SVM) generate decision functions (or hyperplanes), which separate 

datapoints from separate classes in a multidimensional representation with the largest margin 

possible. These functions can be used to classify new datapoints. 

Random Forests use large amounts of decision trees grown using random subsamples of the 

dataset to generate a decision function based on the most commonly used classification functions 

across decision trees. 

Regularized Regression penalizes regression weights in a regression model to reduce overfitting. 

Examples are the Lasso method which favors sparse models, Ridge regression which shrinks 

coefficient values rather than excluding variables, and the Elastic Net (19), which combines these 

two approaches. 

Quantifying Replicability: Common resampling procedures 

Bootstrapping: Repeating an analysis by randomly sampling with replacement to estimate sample 

distributions or accuracy. 

Cross-validation (CV): Division of a dataset into training and test sets. The training set is used to 

generate a model which is subsequently applied to the test data. The test set can be comprised of 

one observation (Leave-one-out cross-validation, LOOCV), or of one of k equal partitions of the 

dataset (k-fold cross-validation).  

Nested cross-validation: Multiple layers of CV are used, making it possible to define model 

parameters or select input variables using CV on a portion of the data (the training data), and to 

carry out a generalizability test using the remainder of the data (the test data). 

Feature Selection methods 

Filter methods select variables based on factors such as their correlation with the outcome 

variable.  

Wrapper methods evaluate the quality of subsets of features, thereby accounting for the 

importance of feature interaction effects. 

Embedded methods combine feature selection and function optimization. Regularization methods 

such as the Elastic Net are the most common type of embedded feature selection algorithms.  

Random Label Permutation quantifies the baseline classification level of a classifier by repeating 

the analysis with randomly assigned outcome labels. This provides an exact estimate of the effect 

size and significance of a model. 
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In practical terms, a good biomarker needs to be workable – it must be reasonably simple 

and quick to obtain the data necessary to compute the biomarker, so that clinicians can realistically 

implement the measures in assessments (Hahn et al., 2016). It is easiest to implement unimodal 

models (see glossary) in new settings, as they do not require multiple imaging protocols or 

modalities. A measure that is easy and practical to include in an assessment protocol should also be 

low in personal and economic cost. Paying for an MRI scan for the sake of a small improvement in 

diagnostic accuracy may not be worthwhile. Yet, as Gabrieli and colleagues (2015) point out, a 

neuromarker may provide sufficient improvement in diagnostic or prognostic accuracy to be a cost-

effective option. If the human and economic cost associated with failing to provide an intervention, 

delaying treatment, or administering a treatment that is ineffective can be prevented or reduced, 

then administering an MRI may be more economical than the alternative. However, Gabrieli et al. 

(2015) also note that to be clinically useful the question that must be answered is not solely 

whether one particular intervention or treatment is likely to work, but which treatment out of a 

number of treatment options is likely to be the most beneficial for the patient. Another practical 

concern is that the imaging protocol necessary for calculation of the neuromarker must be robust 

to slight deviations in data collection or preprocessing procedure. That is to say, broadly similar 

results should be obtained when different clinicians or professional health-care providers 

administer the test, or when different participants view similar stimuli thought to engage the same 

sensory or cognitive processes (Dubois & Adolphs, 2016). Furthermore, a good biomarker must 

have good construct validity. A classifier which purports to identify individuals with Alzheimer’s 

disease should also perform reasonably well identifying individuals with mild cognitive impairment, 

but should have no relevance when separating unipolar from bipolar depression.  

The use of appropriate performance metrics alone is not sufficient to guarantee the 

reliability of findings. Insufficient sample size is a key issue associated with lack of reproducibility 

and low power (Button et al., 2013). Small samples, particularly when combined with a large 

number of predictors, can result in apparently accurate predictions reflecting the idiosyncrasies of 

the sample and failing to generalize to other cases from the same population (this is generally 

referred to as ‘overfitting’; Whelan & Garavan, 2014). Large samples, possible through multi-site 

imaging initiatives like the Alzheimer’s Disease Neuroimaging Initiative (ADNI, Jack et al., 2008), 

IMAGEN (Schumann et al., 2010), EU-AIMS (Murphy & Spooren, 2012; Loth et al., 2016), and 

the Adolescent Brain Cognitive Development Study (NIH) can help to guard against overfitting. 

However, collapsing data across multiple data collection sites is a non-trivial task that can add 

additional confounding factors into the dataset. Differences between different cohorts from the 

same population can have much larger effect sizes than differences between groups within the 

population (i.e., typically developing and individuals on the autism spectrum, Plitt et al., 2015). 

Testing prediction models either on an entirely new cohort or on ‘held-over’ data from within 
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the sample can quantify overfitting, as can resampling methods such as bootstrapping or cross -

validation (see Box 1, lower panel, for a brief description of common resampling measures).  

1.2.3.2. Review of biomarkers and predictive neuroimaging models used for substance 

use outcomes 

The aim of this section is to provide an insight into the utility of imaging data as a 

prognostic tool for substance use outcomes. Studies are included if they used analysis frameworks 

appropriate for prediction (i.e. regression or machine learning procedures), and utilized functional 

or structural magnetic resonance imaging (MRI) data. Studies are reviewed if they evaluated 

treatment outcomes or disease trajectory. Details on the samples used, clinical outcome measures, 

and analysis procedures (including resampling techniques where available) are presented in Table 

1.1. The metrics which are used to quantify the goodness-of-fit of the prediction models 

throughout the text are outlined in Box 2. 

 

Box 2. Accuracy Metrics 

 Elements in the positive 

class (generally the 

patient group) 

Elements in the 

negative class 

(generally the non-

patient group) 

 

Elements 

classified as 

positive 

True positive 

rate/Sensitivity/Recall: 

Correctly classified 

positive elements 

False positive rate: 

Incorrectly classified 

negative elements 

Positive Predictive Value 

(PPV)/Precision: Proportion of 

elements classified as positive which 

were elements of the positive class. 

Elements 

classified as 

negative 

False negative rate: 

Incorrectly classified 

positive elements 

True negative 

rate/Specificity: 

Correctly classified 

negative elements 

Negative Predictive Value (NPV): 

Proportion of elements classified as 

negative which were elements of the 

negative class. 

The Receiver Operating Characteristic (ROC) curve tracks true and false positives during 

classification, and the area under the curve (AUC) for this plot is the primary evaluation metric 

used for classification performance, with larger AUC values denoting better classification. 

Accuracy refers to the percentage of cases which were correctly classified overall. If both classes 

contain the same amount of observations this value is the mean of sensitivity and specificity. 

The odds ratio (OR) is a measure of how likely the outcome is given the presence or absence of a 

single predictor variable, with OR>1 indicating that the predictor is positively associated with the 

outcome and OR<1 indicating that the predictor is negatively associated with the outcome. 
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Table 1.1. Specifics of samples and outcome measures for all reported studies. 

 Disorder Modality Resampling  Analysis 
method 

Outcome measure Prediction sample Generalization 
sample 

Mahmood 
et al., 2013  

SU fMRI during a behavioral 
inhibition task 

none Hierarchical 
multiple 
regression 

CDDR scores at 18-month follow-up n=41 baseline light 
substance users; 
n=39 baseline heavy 
substance users 

none 

Jacobus et 
al., 2013  

SU (cannabis) structural MRI none Hierarchical 
linear 
regression 

CDDR scores at 18-month follow-up n=47 baseline 
cannabis users; n=49 
baseline non-users 

none 

Schuckit et 
al., 2016  

SU (alcohol) fMRI during viewing of 
affective faces 

none Backward 
elimination 
regression 

Alcohol use and alcohol-related problems 
including DSM-IV abuse and dependence 

n=114 none 

Whelan et 
al., 2014  

SU (alcohol) structural MRI and fMRI 
during the Monetary 
Incentive Delay Task, 
Behavioral inhibition, and 
viewing of affective faces 

nested 10-
fold CV 

Elastic Net 
Regression 

European School Survey Project on 
Alcohol and Drugs scores regarding 
lifetime alcohol use and lifetime 
drunkenness episodes at age 16 (2 years 
after baseline) 

n=121 future binge-
drinkers; n=150 
continuous 
abstainers 

none 

Falk et al., 
2011  

SU (nicotine) fMRI during viewing of 
smoking-cessation ads 

none Multiple 
regression 

Difference between baseline CO 
measurement and CO measurement after 
1 month 

n=28 none 

Chua et al., 
2011 

SU (nicotine) fMRI during tailored 
smoking-cessation 
messages 

none Logistic 
regression 

Abstinence: absence of reported (7 day) 
smoking at 4-month follow-up 

n=42 relapsers; n=45 
quitters 

none 

Janes et al., 
2010a  

SU (nicotine) fMRI during viewing of 
smoking-related and neutral 
stimuli 

LOOCV Discriminant 
function 
analysis 

Smoking slip: any smoking for <7 
consecutive days or once a week in non-
consecutive weeks at any point for 8 
weeks after smoking cessation 

n=9 with slips, n=12  
abstinent 

none 

Paulus et 
al., 2005  

SU (metham-
phetamine) 

fMRI during a 2-choice 
prediction task 

LOOCV Linear 
discriminant 
analysis 

Relapse: any use of methamphetamine 
after one year 

n=18 relapsers, n=22 
abstainers 

none 

        

LOOCV, Leave-one-out cross-validation; CV, cross-validation; SVM, Support Vector Machine; PCA, Principal Component analysis; CDDR, Customary Drinking and Drug Use Record 
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A number of studies have attempted to predict future SU, particularly in adolescence, 

which is a key risk period for substance misuse. BOLD activity during behavioral inhibition in 16- to 

19-year olds was associated with drug use occasions and dependency symptoms at 18-month 

follow-up (Mahmood et al., 2013). However, these findings were only significant in adolescents 

who already exhibited heavy SU. Similarly, fractional anisotropy was only associated with SU in 

adolescents with high (but not low) baseline cannabis use (Jacobus et al., 2013). Future SU has also 

been examined in typical adult drinkers (Schuckit et al., 2016). Functional MRI data collected during 

viewing of emotional face stimuli was associated with alcohol problems 5 years later, while 

accounting for the level of responsiveness to alcohol established at baseline. However, none of 

these studies used any generalizability tests, limiting their utility in developing neuromarkers or 

gaining mechanistic insights. 

  

Figure 1.2. AUC values (in %) for each domain individually, and when each domain was excluded, as 

reported in Whelan et al. (2014). 

The largest investigation of adolescent future substance use to date comes from the 

IMAGEN study (Schumann et al., 2010). MRI data from 14-year old non-drinkers, as well as life 

history, personality, cognitive, and demographic measures were used to predict binge-drinking at 

age 16 (Whelan et al., 2014). 73% of abstainers and 66% of future binge drinkers were correctly 

classified (64% precision, 93% recall, AUC=.75). Brain measures which predicted future binge 

drinking included markers of brain structure, as well as functional activation during reward 

processing, behavioral inhibition, and affective face processing. Repeating the analysis with each 

domain on its own yielded the highest AUC value for the history domain, followed closely by 

personality (see Figure 1.2). The brain-only prediction ranked third, reaching an AUC value of .63. 

Excluding each domain iteratively revealed that excluding life history resulted in the largest drop in 

accuracy, followed by that resulting from excluding all brain measures (see Figure 1.2). This is 
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currently one of the only studies which has examined the predictive value of different assessment 

domains in this manner, providing a clear quantification of the added value of each. 

Two studies predicting smoking cessation outcomes used fMRI data gathered during 

viewing of smoking-cessation messages. The amount of variance in change of smoking behaviour 

after one month which was explained by self-reported intentions and self-efficacy was 

approximately 15%, which was increased to 35% by including activation of the medial PFC during 

viewing of video advertisements designed to encourage smokers to quit (Falk et al., 2011). A study 

that examined the efficacy of individually tailored messages using fMRI also implicated the medial 

PFC (Chua et al., 2011), activity in which predicted smoking cessation after 4 months, while 

controlling for the number of cigarettes smoked at baseline. Neither of these studies included 

generalization tests, making it difficult to draw conclusions from these findings. A further study 

used performance on an emotional Stroop task and fMRI recorded while viewing smoking-related 

and neutral images to evaluate the efficacy of various smoking interventions (Janes et al., 2010a). A 

model including Stroop interference reaction times and accuracy, as well as anterior insula and 

dorsal ACC activation predicted whether smokers remained abstinent over 8 weeks or had smoking 

slips with 79% accuracy. 74% accuracy was reached with only Stroop interference effects and insula 

activation. Results from a brain-only or behavioral-only analysis were not reported, but Stroop 

interference effect was significantly associated with insular and dorsal ACC activity, which suggests 

that the contribution of imaging measures may have been small. 

Finally, one study examined relapse in methamphetamine users participating in a 28-day 

inpatient program using fMRI recorded during decision-making under uncertainty (Paulus, Tapert & 

Schuckit, 2005). Relapse after one year was predicted with 90% accuracy (94% sensitivity and 86% 

specificity). Sociodemographic characteristics, baseline symptoms, and substance use 

characteristics did not significantly differentiate between relapsers and abstainers, but the 

predictive power of these variables was not reported. The high prediction accuracy reached in this 

study is an indication of the potential of imaging data to contribute to clinical prognosis in SU 

treatment. 

Of the eight studies predicting measures of SU reported here, only three used resampling 

procedures (Whelan et al., 2014; Janes et al., 2010a; Paulus, Tapert & Schuckit, 2005) and none 

used a generalization sample. Only one study included more than 20 participants in each group 

(Whelan et al., 2014). It is notable, however, that in the case of SU non-brain variables provided 

robust predictions, suggesting that neuroimaging may not have great potential to augment clinical 

prognoses.  While mean prediction accuracy, where reported, was quite high (70% in Whelan et al., 

2014 and 90% in Paulus et al., 2005), the utility of outcome prediction based on brain variables 

compared to prediction based on non-brain variables were not always evaluated. Where these 
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results were reported, they suggest that brain measures may account for up to 35% of the variance 

in SU outcomes (Falk et al., 2011), but it is unclear whether neuroimaging measures can explain 

some of the variance not accounted for by other measures. While some of these findings 

undoubtedly represent some degree of unwarranted optimism, studies that were able to 

successfully predict clinical outcomes using only brain variables (e.g.; Paulus, Tapert & Schuckit, 

2005) support the conclusion that neuroimaging has the potential to be an important tool in 

psychiatric prognosis in the area of SU.  

In contrast to quantitative prediction accuracy, the practical clinical utility of predictions 

depends on the cost of misclassification (or ‘regret’). That is, the specificity of prognostic tools 

should be higher for invasive and/or risky interventions. Inaccurate prognoses can lead to waste of 

time and resources on treatments that result in little or no improvement and may entail adverse 

consequences (e.g., medication side-effects). Therefore, even prediction models with high accuracy 

may not be suitable for clinical use due to the magnitude of the regret. Predictions that do not 

benefit the clinician directly may nevertheless reveal information about mechanisms of disease and 

of recovery (Pine & Leibenluft, 2015). With increased understanding of the pathophysiology of a 

psychiatric disorder comes the possibility of developing tools that test behavioral or cognitive 

domains related to the disease mechanisms uncovered using neuroimaging, which would eliminate 

the heavy economic burden of conducting neuroimaging as part of psychiatric assessments 

(Gabrieli & Ghosh & Whitfield-Gabrieli, 2015; Boksa, 2013). The ability to translate domains 

assessed using functional neuroimaging to less costly tools should therefore be considered when 

designing a study. However, as illustrated by the example of adolescent SU initiation, other 

demographic variables are a much cheaper and more informative tool than neuroimaging in some 

cases (Whelan et al., 2014). A careful consideration of the relative added value of neuroimaging 

measures in comparison to other tools is therefore necessary when embarking on research 

intended to identify a biomarker. The value of adding neuroimaging to a predictive model also 

including other assessment domains should remain a key consideration when attempting to use 

neuroimaging for outcome prediction (see Figure 1.2.).  

1.2.3.3. Neuromarkers – a recipe 

The studies reviewed here sought to predict psychiatric outcomes rather than developing 

specific predictive neuromarkers. Many researchers and clinicians have discussed the reasons and 

possible solutions for the discrepancy between neuroscientific research and clinical applicability 

(Arabshirani et al., 2016; Dubois & Adolphs, 2016; Feldstein Ewing, Tapert & Molina, 2016; Gabrieli 

et al., 2015; Gillan & Whelan, 2017; Insel et al., 2010; Pich et al., 2014; Savitz, Rauch & Drevets, 

2013; Stringaris, 2015; Kapur, Phillips & Insel, 2012; Yahata et al., 2017). Four areas are consistently 

identified as targets for improvement in translational neuroscientific research: (1) the statistical 
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approaches used in neuroscience, (2) the need for larger population-based samples, (3) a lack of 

mechanistic understanding of psychiatric neuropathology, and (4) the need for a move away from 

the often ill-defined phenomenological (see glossary) diagnostic criteria in psychiatry. In this 

section these issues will be addressed, outlining methods that imaging prediction studies can adopt 

to increase the generalizability and replicability of results. Each point will be addressed by 

describing methods which are already being used in the field to improve neuromarker research. 

This section will be structured to follow the lifecycle of neuromarker development, focusing on the 

following elements: Study design, analysis frameworks, statistical tools, and the extended 

development pipeline of a neuromarker. 

1.2.3.3.1. Study designs 

Dubois and Adolphs (2016) likened big data in neuroscience to accelerators in particle 

physics or telescopes in astronomy – a necessary tool for scientific progress (for a discussion of the 

role of big data in psychiatry see also Gillan & Whelan, 2017). Large samples are achievable 

through multi-site imaging initiatives and consortia like the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI, Jack et al., 2008), IMAGEN (Schumann et al., 2010), EU-AIMS (Murphy & 

Spooren, 2012; Loth et al., 2016), the Adolescent Brain Cognitive Development Study (NIH), the 

Human Connectome project (Van Essen et al., 2012), and ENIGMA (Thompson et al., 2014). 

However, not all data from these initiatives are publicly available. Another option to achieve 

large sample sizes is data-sharing, possible through data-sharing facilities such as NeuroVault 

(neurovault.org, Gorgolewski et al., 2015) and OpenfMRI (openfmri.org, Poldrack et al., 2013).  

Large studies like IMAGEN not only gather neuroimaging data, but also gather information on 

genetics, demographics, and life history. This makes it possible to examine psychopathology in a 

holistic manner (Paus, 2010), under the rubric of ‘population neuroscience’. By taking into 

consideration information from other domains, neuromarkers can more meaningfully 

contribute to our understanding of the etiology of psychopathology. 

Many large datasets include participants with a wide range of symptoms. Yet, studies using 

these data to identify neural signatures associated with mental disorders often select a fairly 

narrow subset of cases and matched controls. Although strictly controlling for variables such as 

age, socio-demographic circumstances, symptoms, or medication use gives the experimenter 

greater control and greater clarity over the source of an effect, restrictions on study inclusion also 

restrict the utility of findings. That is to say, stricter inclusion criteria also narrow the range of 

circumstances in which a model will be useful and applicable (Woo et al., 2017). Considering this 

restriction on how a model can be useful in practice, the models and neuromarkers that will have 

the highest clinical significance will be models that take into account the heterogeneity within the 

population (Moons et al., 2012a; Woo et al., 2017; Yahata et al., 2017). This is particularly 
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important when attempting to predict clinical outcomes such as future psychopathology. Large 

datasets make it possible to create neuromarkers that provide information about how an 

individual’s brain activity differs from the population average. This provides insight into how linear 

variations in brain structure and function are associated with changes in a variable of interest on a 

spectrum which includes the population-mean and pathological manifestations. In comparison to 

case-control studies, this individual-difference approach would mark a move toward creating 

neuromarkers for certain symptom clusters or processing domains, rather than for specific 

diagnoses.  

Attempting to identify neural signatures of individual types of processing or behaviour can 

be seen as a ‘component process’ approach (Woo et al., 2017, p.371). This would ideally result in a 

set of models which capture brain structure or function associated with a particular variable that 

linearly varies across the population. A number of such models could then be combined to identify 

specific populations. This approach would be very valuable in terms of risk assessment, such as 

early identification of adolescents at risk for future psychopathology. An example of this could be 

ADHD and substance use disorder. Both individuals with ADHD and individuals with substance use 

disorder often show poor inhibitory control. A neuromarker that measures inhibitory control 

should therefore provide similar estimates for these two groups. Identifying an adolescent’s level 

of inhibitory control based on a neuromarker can therefore provide a measure of risk of 

maladaptive behaviours involving poor inhibitory control, but will not provide any information 

about how this may manifest. The component process approach is thus very well suited to 

addressing certain types of research questions, but not particularly useful for other questions, such 

as predicting response to treatment. 

1.2.3.3.2. Statistical tools for neuromarker development 

Recognition of the limitations of the typical univariate group-difference approaches to 

neuroimaging research has led a large number of authors in psychology and neuroscience to 

emphasize the importance of moving away from explanatory and univariate analysis procedures 

and towards multivariate outcome prediction (Gabrieli et al., 2015; Poldrack, 2011; Jollans & 

Whelan, 2016; Woo et al., 2017). In the past decade the number of neuroimaging studies using 

multivariate methods has grown rapidly (Woo et al., 2017), and there is a strong recognition of the 

importance of this approach (Bray et al., 2009; Wolfers et al., 2015; Jollans et al., 2016; Gillan & 

Whelan, 2017). The divergence of findings using classic univariate compared to multivariate 

methods is demonstrated by two recent meta-analyses summarizing neuroimaging studies of 

unipolar depression: There was a notable lack of significant differences in brain activity during 

emotional or cognitively challenging tasks associated with unipolar depression using traditional 

group comparison studies (Mueller et al., 2017); However, a meta-analysis of studies using a 
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multivariate approach to classify patients with major depressive disorder and healthy control 

subjects found an average classification accuracy of around 75% for functional MRI (Kambeitz et al., 

2016).  

When using multivariate analysis methods, it is of great importance that the analysis 

protocol include some measures to prevent overfitting. The most fundamental of these is that a 

model must be tested on a previously unseen sample in order to obtain a realistic estimate of 

model accuracy. This step is crucial, as it is the most effective way to gauge how well a model will 

perform with other individuals from the same population. Using a separate dataset is the gold 

standard in terms of assessing external validity. However, a more easily accessible method is cross-

validation (CV). One of the most frequently used methods is leave-one-out CV (LOOCV; e.g. Clark et 

al., 2014; Duff et al., 2012; Niehaus et al., 2014), or leave-k-out CV (e.g. Wang, Goh, Resnick & 

Davatzikos, 2013). A somewhat less computationally expensive method is k-fold CV (e.g. Whelan et 

al., 2014). When using CV it is imperative to ensure that the observations used to validate the 

model (the test set) remain statistically pure and do not at any point overlap with the observations 

used to create the model (the training set; Cawley & Talbot, 2010). Another tool that is important 

in quantifying in-sample generalizability is bootstrapping. Bootstrapping improves the stability of a 

model by randomly sampling the dataset with replacement multiple times in order to minimize the 

effect of outliers and estimate the true population mean (Hall & Robinson, 2009).  In particular, 

bootstrapping provides a measure of how reliable and consistent coefficient estimates or feature 

metrics are with datasets that have a low signal-to-noise ratio (see glossary) and high 

multicollinearity. Bootstrap aggregation (bagging) has previously been used with large genetic 

datasets, and showed significant improvements over standard (non-bagged) methods in terms of 

model accuracy and stability (Abeel, Helleputte, Peer, Dupont & Saeys, 2010). Both cross-validation 

and bootstrapping can be considered ‘resampling’ procedures, and are standard tools used in 

Machine Learning.  

Another important step which should be implemented when working with high-

dimensional neuroimaging data is dimensionality reduction. Dimensionality reduction simply refers 

to the reduction of the number of variables that will be used to create a model. Dimensionality 

reduction approaches can be broadly categorized into ‘feature selection’, and ‘feature extraction’ 

methods. Feature selection takes the existing input features and strategically removes those 

features that will, or are most likely to, contribute little to the accuracy of the model. Some of the 

most common feature selection approaches that integrate dimensionality reduction into the 

analysis framework are regularization methods, which penalize model complexity as a part of 

function optimization. Examples of these methods include Ridge, Lasso, and Elastic Net 

regularisation (Zou & Hastie, 2005). The Elastic Net has gained popularity among neuroimaging 
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researchers in recent years, and has been successfully used in a number of large studies (e.g. 

Chekroud et al., 2016; Whelan et al., 2014).  

In contrast to feature selection, feature extraction methods such as principal component 

analysis (PCA) and independent component analysis (ICA) are very familiar to neuroimaging 

researchers. Data scientists in other domains routinely use feature extraction techniques to map 

features onto higher-level summary variables to reduce the dimensionality of the dataset. Feature 

extraction always involves creating a new set of features from the original input variables, which 

normally makes the model difficult to interpret. It is therefore very complicated to evaluate 

whether a model is neurophysiologically plausible when feature extraction methods are used. 

While feature extraction methods often results in an improvement in model accuracy, they have 

largely been avoided by neuroimaging researchers when seeking to identify neuromarkers.  

Finally, despite efforts to guard against overfitting, there may nevertheless be a degree of 

unwarranted optimism in any model. Establishing whether a model produces results that are 

significantly better than chance is therefore not possible using traditional p-values. Rather, an 

empirical significance threshold should be established using a null model. To generate a null model, 

random data (that is to say random features, a random dependent variable, or both) are put 

through the exact same analysis procedure as the real, non-random data. The level of accuracy 

achieved by the analysis framework using random data is compared to the accuracy of the model 

with real data, and this acts as a measure of the optimism inherent in the analysis framework. 

1.2.3.3.3. The neuromarker development pipeline 

The developmental pipeline for neuromarkers in psychiatry should be very similar to the 

standard drug development pipeline. Woo et al., (2017) and Moons et al. (2012a/b) have laid out 

this developmental pipeline for biomarkers, making specific recommendations and providing a 

tangible way to evaluate how close to clinical applicability biomarkers are. The number of 

participants required increases the further along the road to clinical applicability a model is (Moons 

et al., 2012b; Woo et al., 2017). Initial exploratory studies typically have small sample sizes and 

modest resources, but the findings from these studies can be used to justify investing a higher 

amount of resources for further research and development (Gabrieli et al., 2015; Woo et al., 2017).  

At this stage it is advantageous to pursue many different avenues in terms of modalities and 

functional tasks in order to find the approach that best predicts the outcome. Generally, the most 

efficient approach to biomarker development will take into consideration what we already know at 

every stage of the development pipeline (Moons et al., 2012a). In the initial stages of neuomarker 

research this may take the shape of selecting functional imaging tasks to use based on previous 

research. When analysing the data, this may include the use of targeted feature engineering as 

suggested by Hahn et al. (2016). Woo et al (2017) estimated that around 450 models in the 
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exploratory stage of development had been published in January 2016 relating to mental disorders 

(excluding substance use).  

After the initial creation of a biomarker, the next step is the application of the model to an 

independent sample. This serves the purpose of initial generalizability testing. Biomarker models 

should be treated as shareable research product, to be updated, validated, and amended by other 

research groups (Woo, et al., 2015; Hahn et al., 2016; Moons et al., 2012b). While unimodal 

models are easiest to test in other laboratories, generalization studies (see glossary) should also 

examine what additional measures can enhance a model (Moons et al., 2012b). Multiple unimodal 

models can effectively be integrated using strategies such as ‘voting’, ‘boosting’, or other ensemble 

methods (Hahn et al., 2016; see glossary). In fact, combining multiple modalities in a single model 

typically results in higher model accuracy. Despite being more difficult to implement in new 

settings than unimodal models, multimodal models (see glossary) are also preferable from a 

theoretical perspective when attempting to describe the neurobiology underlying a given outcome 

(Ahmed et al., 2017; Bray et al., 2009; Gabrieli et al., 2015; Woo et al., 2017).   

Finally, the ultimate test of the clinical utility of a biomarker should be large-scale 

randomized control trials, evaluating outcomes for patients who were assessed using traditional 

methods and patients who were assessed with the help of the biomarker (Moons et al., 2012b). 

This step will serve as a measure of how much use of the biomarker actually contributes to patient 

care in an applied healthcare setting. At this point weighing up the cost and the benefits of the 

biomarker will determine whether it is suitable for integration into healthcare settings. 

1.2.3.3.4. Summary 

In this section the tools necessary to develop neuromarkers for mental disorders were 

discussed. Studies that seek to identify or test neuromarkers must take into consideration that the 

population from which their sample is drawn will also be the only population to which findings can 

be expected to generalize. Furthermore, it is imperative that researchers make use of freely 

available large datasets or collect data from large samples. Studies that include a large number of 

participants with a wide range of symptoms, and collect not only imaging data but also genetics, 

demographic data, and so on have the potential to produce the most clinically useful findings. 

Whether researchers use supervised or unsupervised analysis methods will depend on the 

question which they seek to answer. Supervised learning is preferable when a definitive outcome 

(such as relapse or disease course) is known, whereas unsupervised learning may be more 

beneficial when the outcome is not so clear (such as subtypes of diagnostic categories). For 

supervised learning approaches, rigorous generalization testing through resampling methods is 

crucial. Reducing the number of features included in the model through feature selection can help 

to prevent overfitting. Other dimensionality reduction strategies are available, but researchers 
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should be aware of the practical and theoretical implications of choosing them. Significance should 

be established using null models. To reach clinical applicability, neuromarkers must undergo 

extensive generalization testing in other laboratories, with other populations, in combination with 

other biomarkers, and finally in randomized controlled trials. Due to many researchers’ reluctance 

to use neuromarkers established in other research groups, most neuromarkers have not 

undergone generalization tests using other samples.  

1.3. The thesis 

The aim of this thesis is to initiate development of a model identifying a high-risk 

phenotype for nicotine addiction. Taking into consideration the continued high prevalence of 

nicotine use among adolescents and young adults and the high mortality burden associated with 

smoking, the focus of the studies contained within this thesis is on adolescent smoking onset and 

smoking frequency. Using data from the IMAGEN project, a large longitudinal multi-site study 

(Schumann et al., 2010), predictors of future smoking in non-smoking adolescents, and alterations 

in brain function in current adolescent smokers are identified using machine learning techniques. 

As an empirical validation of various machine learning algorithms and analysis pipelines for 

neuroimaging data is lacking in the literature, a detailed examination of how analytical approaches 

borrowed from the field of machine learning can be used to ideally interrogated neuroimaging data 

is carried out in Chapter 2 – ‘Quantifying performance of machine learning analysis pipelines for 

neuroimaging data’. The analysis methods identified as most effective for use with neuroimaging 

data are used in the subsequent studies. 

In Chapter 3 – ‘Predicting adolescent smoking using neuropsychosocial risk indicators’, 

predictive models of future smoking behaviour are developed taking into consideration variables 

from the majority of domains discussed as factors thought to contribute to smoking behaviour in 

section 1.1. These included measures of personality with a strong focus on trait impulsivity, 

assessment of psychopathology including depression, ADHD, and CD, present and past alcohol and 

other drug use, family circumstances, and behavioural assessment of delay discounting, inhibitory 

control, and working memory. Grey matter volume and fMRI activity during the Stop Signal Task, 

the Monetary Incentive Delay Task, and measures of response to affective facial stimuli and 

processing of semantic and mathematical information are also used. In line with previous findings 

regarding the utility of neuroimaging measures compared to measures from domains such as life 

history and personality for prediction of future substance use (Whelan et al., 2014), the 

contribution of neuroimaging and psychometric predictors is evaluated separately and in 

combination. 

In line with a strong role of reward sensitivity and altered reward processing identified as a 

factor associated with substance use in the literature, and as a predictor of smoking identified in 
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Chapter 3, change in reward system function associated with adolescent smoking frequency is 

evaluated using an analysis of ventral striatum functional connectivity and a machine learning 

protocol in Chapter 4 – ‘Ventral striatum connectivity during reward anticipation in adolescent 

smokers’. As in Chapter 3, the data used here is drawn from the IMAGEN study, allowing a direct 

comparison between studies in terms of the assessment protocol. 

Based on the insights into predictors and correlates of adolescent smoking gained in 

Chapters 3 and 4, the final study reported in this thesis seeks to examine the extent to which the 

identified deficits in reward system function in future and current adolescent smokers can be 

observed in adult smokers and in ex-smokers. This final study: ‘Altered reward sensitivity in current 

and former smokers: evidence from computational modelling of decision-making under uncertain 

conditions’ also examines alternative methods of assessing deficits in reward processing, applying 

cost-effective behavioural and EEG assessments. The task paradigm used in this study, the Iowa 

Gambling Task (IGT), is known to engage regions of the reward system identified as critical nodes 

associated with adolescent smoking in the previous studies, and is thus suitable as a behavioural 

tool to identify possible dysfunction in these regions. In addition to examining behavioural task 

performance of present and past smokers, the utility and neurobiological validity of computational 

models of the cognitive processes employed in the IGT is also assessed. Such alternative 

interpretations of behavioural data are a possible approach to identify component processes in 

pathological expressions of reward system abnormality. 

Findings are discussed separately regarding development of predictive models and insights 

into the pathophysiology associated with smoking behaviour. The novel empirical perspective on 

use of machine learning approaches in neuroimaging research and the practical implementation of 

such tools is discussed in the context of their use in Chapter 3. Findings from Chapters 3, 4, and 5 

are evaluated with consideration to how network-based deficits regarding reward processing and 

cognitive control predispose adolescents to begin smoking, are associated with current nicotine 

use, and are observable even after smoking cessation. 
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Chapter 2 - Quantifying performance of machine learning 

analysis pipelines for neuroimaging data 
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2.1. Introduction 

An increasing number of projects and consortia are now collecting large neuroimaging 

datasets. These include IMAGEN (Schumann et al., 2010), the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI, Jack et al., 2008), the Human Connectome project (Van Essen et al., 2012), 

ENIGMA (Thompson et al., 2017), and the 1000 Functional Connectomes project (Biswal et al., 

2010), in addition to data-sharing facilities such as NeuroVault (neurovault.org, Gorgolewski et al., 

2015), OpenfMRI (openfmri.org, Poldrack et al., 2013), and the Neuroimaging Informatics Tools 

and Resources Clearinghouse (NITRC; Kennedy, Haselgrove, Riehl, Preuss, & Buccigrossi, 2016). 

These sources of high-dimensional imaging data offer exciting opportunities to produce 

generalizable and reproducible research findings in arenas such as predicting disease trajectories, 

or linking behavioural and personality factors to functional and structural imaging data. As large 

samples become more commonplace in neuroimaging, analytical tools developed for data science, 

such as machine learning, are more frequently applied to neuroimaging data (Woo et al., 2017). A 

wide variety of studies have used machine learning algorithms to classify individuals based on 

structural or functional imaging data, using among other algorithms Support Vector Machines (e.g. 

Costafreda et al., 2009; Davatzikos et al., 2011; Koutsouleris et al., 2012), Random Forest (e.g. Ball 

et al. 2014, Ramirez et al., 2010), and Naïve Bayes classifiers (e.g. Adar et al., 2016; Wang, 

Redmond, Bertoux, Hodges & Hornberger, 2016; Zhou et al., 2015). There have also been 

successful efforts to predict continuous outcome variables, mostly using Relevance or Support 

vector regression, in arenas such as predicting age (Dosenbach et al., 2010; Franke et al., 2010; 

Mwangi et al., 2013), cognitive ability (Stonnington et al.,2010), language ability (Formisano et al., 

2008), and disease severity in patients with major depression (Mwangi et al., 2012). While they 

have been increasingly used in neuroimaging research, none of these algorithms were specifically 

developed for neuroimaging data, which have high dimensionality, inherent multicollinearity, and 

typically small signal-to-noise ratios. Below we briefly review important considerations when 

analysing large neuroimaging datasets, and how machine learning methods may address these 

issues. 

2.1.1. Outcome prediction  

Several authors have emphasized the importance of moving away from explanatory and 

univariate analysis procedures and towards multivariate outcome prediction in psychology and 

neuroscience (Gabrieli et al., 2015; Jollans & Whelan, 2016; Poldrack, 2011; Westfall & Yarkoni, 

2016). Using regression approaches, effective outcome prediction requires that accurate outcome 

estimations can be achieved for new cases. Prediction models exploit between-subject 

heterogeneity to make individual-level predictions. Good predictors may thus not emerge as 

significantly different between groups (Lo et al., 2015). Embracing machine learning for outcome 



59 
 

prediction would significantly contribute to the generalizability and reproducibility of neuroimaging 

research, and improve the ability of neuroimaging to explore individual differences (Dubois & 

Adolphs, 2016). There are several methods used to estimate and improve the generalisability of a 

regression model. Most common among these is cross-validation (CV). Here, the dataset is split 

into a ‘training set’, and a ‘test set’. Models are developed using only the training set, and model 

performance is assessed using the test set. The training and test set must be kept separate for all 

analysis steps (Cawley & Talbot, 2010). Typically this split is carried out multiple times, alternating 

which data points fall into the test set. While many neuroimaging studies use test sets comprised 

of only one observation (leave-one-out CV; e.g. Brown et al., 2012; Clark et al., 2014; Duff et al., 

2012; Niehaus et al., 2014), larger test sets (leave-k-out; e.g. Wang et al., 2013; Whelan et al., 

2014) are preferable as they provide more accurate model performance estimates (Kohavi, 1995). 

When CV is used to assess model performance it serves a purely descriptive purpose, producing a 

realistic estimate of out-of-sample model fit. However, CV can also be used to provide an out-of-

sample estimate of model performance within the regression framework itself. This estimate can 

then be used to optimize parameters for the regression model. When multiple layers of CV are 

used for internal and external validation of model performance this is referred to as ‘nested’ CV. 

2.1.2. Prediction with neuroimaging data 

Depending on the resolution, single MRI images can contain from 100,000 to a million 

voxels. As sample sizes in neuroimaging are often modest, the number of variables (‘features’) 

entered into a regression model typically exceeds the sample size. A higher ratio of features to 

cases increases the tendency of the model to fit to noise in that sample (i.e. overfitting; see Whelan 

& Garavan, 2014 for a discussion specific to neuroimaging). Overfitting will result in the model 

fitting poorly when it is applied to a new dataset. Even when using a smaller number of regions of 

interest (ROIs) instead of voxels, combining multiple data sources (such as neuroimaging data and 

cognitive data or demographics), imaging modalities, or conditions will result in a large number of 

features. Two strategies are commonly adopted for dealing with high-dimensional data: dimension 

reduction and regularization. A further method useful for neuroimaging data is bootstrap 

aggregation (bagging). 

2.1.2.1. Dimension reduction 

Reducing the number of features in a regression model, i.e. dimension reduction, will 

almost always be beneficial for attenuating overfitting when working with neuroimaging data. A 

wide array of techniques to reduce the number of features in a dataset is available. Some of these 

methods, such as principal and independent component analysis, have long been standard tools in 

neuroscience. Mwangi, Tian, and Soares (2014) described many dimension reduction techniques, 
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and reviewed their application to neuroimaging data. Dimension reduction techniques can be 

separated by whether they preserve the original values of features, whether they consider each 

feature in isolation or not, and whether they are unsupervised (using only the feature values) or 

supervised (using the feature and dependent variable values). The dimension reduction techniques 

that are often favoured with machine learning approaches in neuroimaging studies are feature 

selection techniques (supervised methods that do not alter the original feature values). Feature 

selection methods can broadly be categorized into ‘filter’ methods, ‘wrapper’ methods, and 

embedded methods (see Chandrashekar and Sahin, 2014). Filter methods are unimodal, 

considering each feature individually. Wrapper methods are multimodal, considering subsets of 

features. In contrast to filter and wrapper approaches, embedded methods integrate feature 

selection directly into optimization of the regression model.  

In neuroimaging, good outcome predictions may rely on large feature sets, as any cognitive 

or behavioural variable of interest will most likely be best explained by a network of spatially 

correlated brain regions. Good regression models with neuroimaging data may therefore include 

interaction effects between features. To account for this, the feature selection methods that 

should be used with neuroimaging data will consider feature sets rather than individual features. 

Accordingly, previous work has shown that both wrapper methods (Tangaro et al., 2015) and 

embedded methods (Tohka, Moradi, Huttunen & ADNI, 2016) are preferable to filter methods with 

neuroimaging data. Furthermore, as neuroimaging data have an inherently low signal-to-noise 

ratio, the individual predictive power of each voxel or ROI can be expected to be quite small. It may 

therefore be advantageous to consider complex regression models that allow for the inclusion of 

some predictors with low effect sizes. 

2.1.2.2. Regularization 

Regularization is a method that attenuates overfitting by penalizing the size of the 

regression weights as model complexity increases. Regularization is often achieved through the L1-

norm or the L2-norm. The L1-norm, as implemented in the Least Absolute Shrinkage and Selection 

Operator (LASSO), penalizes regression weights based on their absolute size, and results in sparse 

models (i.e., some regression weights can be set to zero). The L2-norm (also known as Ridge 

Regression or Tikhonov Regularization) penalizes regression weights based on their squared size, 

and does not result in sparse models. However, with highly multicollinear data (such as 

neuroimaging data) neither L1- nor L2-norm regularization are ideal because the large number of 

non-zero coefficients in models using the L2-norm is unable to produce parsimonious solutions, 

and the L1-norm is inadequate in accounting for highly correlated groups of predictors (Ogutu, 

Schulz-Streeck & Piepho, 2012; Mwangi, Tian & Soares, 2014). The Elastic Net (EN; Zou & Hastie, 

2005) combines L1-norm and L2-norm regularization, and has the advantage of being an 
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embedded feature selection algorithm, and thus produces a sparse solution in which groups of 

correlated features are included or excluded. The Elastic Net has gained popularity among 

neuroimaging researchers in recent years, and has been successfully used in several studies with 

large samples (e.g. Chekroud et al., 2016; Whelan et al., 2014).  

2.1.2.3. Bootstrap aggregation (bagging) 

The low signal-to-noise ratio of neuroimaging data calls for a tool to increase the stability 

of findings and reduce error in outcome estimates. Stability can be estimated using bootstrapping 

(Efron & Tibshirani, 1997), where the dataset is randomly sampled with replacement many times to 

minimize the effect of outliers and estimate the true population mean (Hall & Robinson, 2009). Like 

CV, bootstrapping serves a purely descriptive purpose when used to estimate population metrics. 

However, a related approach termed bootstrap aggregation (bagging; Breiman, 1996), uses 

bootstrapping to improve stability within the model optimization framework. Bagging uses 

bootstrapped samples to generate multiple estimates of a calculation or metric, and an aggregate 

of these estimates is created. These aggregated estimates can be used instead of singular outcome 

estimates at every step of the analysis. Bagging has previously been used for embedded feature 

selection with large genetic datasets and showed significant improvements over standard non-

bagged embedded methods in terms of model accuracy and stability (Abeel, Helleputte, Peer, 

Dupont & Saeys, 2010). Bagging is an effective way to decrease error, particularly with datasets 

that have a low signal-to-noise ratio and high multicollinearity (Zahari, Ramli & Mokhtar, 2014).  

2.1.3. Researcher degrees-of-freedom 

Another important consideration when carrying out prediction analyses is the objectivity of 

findings. This issue is not confined to neuroimaging research, and has been an important concern 

in the psychological sciences over the past decade. Flexible or ‘exploratory’ analysis introduces a 

high risk of false positive results or overestimated effect sizes (Button et al., 2013). Predetermined 

analysis pipelines and analytical decisions aid in producing reproducible results. The tendency for 

researchers to screen data before data collection is completed, to carry out multiple iterations of 

analyses without reporting the findings (e.g., with and without covariates), or to tweak parameters 

for group inclusion to better represent the problem has been termed ‘researcher degrees of 

freedom’ (Simmons, Nelson, & Simonsohn, 2011; Loken & Gelman, 2017; Westfall & Yarkoni, 

2016). In the case of machine learning frameworks, the researcher input can potentially be greatly 

reduced, limiting the room for subjectivity and reducing the researcher degrees of freedom. To 

enhance objectivity, the role of the researcher should be confined to collecting and preparing the 

best data possible to describe the problem of interest, based on domain knowledge (Dubois & 
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Adolphs, 2016). Dimension reduction, model building, and parameter optimization do not require 

researcher input, and should be data-driven. 

2.1.4. This study 

Here, the impact and efficacy of various machine learning tools for use with large 

neuroimaging datasets is assessed. An empirical evaluation of the extent to which feature selection 

and resampling procedures affect results is conducted. The effect that data dimensionality has on 

accuracy is quantified by varying both sample size and number of features. Using simulated 

neuroimaging data with varying predictor effect sizes as well as real neuroimaging data, this study 

first compares performance of the Elastic Net, standard multiple regression, a state-of-the-art 

Machine Learning Toolbox for imaging data (PRoNTo, Schrouff et al., 2013), and an implementation 

of the popular ‘Random Forest’ method available in Matlab. Furthermore, an assessment of how 

the addition of bagging and feature selection affects the accuracy of results from simulated and 

real data is carried out, using an embedded feature selection approach developed with the 

intention of minimizing researcher degrees of freedom. Based on previous work, it is anticipated 

that both feature selection and regularization will improve predictions for datasets with large 

feature sets by creating less complex models, and that bagging may reduce overfitting for small 

samples by reducing the effect of outliers. 

2.2. Method 

2.2.1. Machine Learning protocol 

The following regression methods were tested: Multiple Regression (MR), Gaussian Process 

Regression (GPR), Multiple Kernel Learning (MKL), Kernel Ridge Regression (KRR), Elastic Net (EN), 

and Random Forest (RF). In MR it is assumed that the output variable is a linear combination of all 

input variables, and regression weights are determined for each variable based on this assumption. 

GPR is a non-parametric probabilistic Bayesian method that uses a predefined covariance function 

(‘kernel’) to optimize the function of input values describing the output. GPR and MR are non-

sparse methods and may thus not be suitable for very high-dimensional data. Furthermore, 

choosing the kernel in GPR appropriately for neuroimaging data may prove challenging. The MKL 

approach implemented used here uses the L1 norm to create a sparse combination of multiple 

kernels (Rakotomamonjy et al., 2008). KRR uses a kernel to make ridge regression (regularization 

via the L2 norm) non-linear (Shawe-Taylor & Cristianini, 2004). KRR can be thought of as a specific 

case of GPR but lacks the ability to give confidence bounds. EN combines the L1 and L2 penalties to 

arrive at a linear solution. For MR, GPR, MKL, KRR, and EN each input feature is assigned a weight, 

which may be zero when regularization is used (EN and KRR). This is not the case for RF. Rather, 
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decision trees are grown based on the input features and the output, and the predicted outcomes 

from multiple trees are aggregated using bootstrap aggregation. 

The analysis steps outlined below were implemented in MATLAB 2016b using custom 

analysis scripts for EN, MR, and RF, and the PRoNTo Toolbox for GPR, MKL, and KRR. Analysis 

scripts used are available at github.com/ljollans/RAFT. 

2.2.1.1. Nested cross-validation 

The dataset is initially divided into 10 CV folds. The entire analysis is performed 10 times, 

using 90% of the dataset (the training set) to create a regression model which is then tested on the 

remaining 10% of the data (the test set). Within the training set, additional ‘nested’ CV with 10 

partitions is used for feature selection, and for optimization of model parameters. The final 

(optimized) model from each CV fold is used to make outcome predictions for the test set (10% of 

the data) and the accuracy of predictions for the entire dataset is used to quantify model fit (see 

Figure 2.1).  

 

 

Figure 2.1. Representation of the nested cross-validation framework. 

2.2.1.2. Feature selection  

An embedded feature selection method that uses prediction accuracy and the stability of 

model performance across subsets of the sample to learn and to adapt the prediction model is 

used. Initial feature ranking is used to define feature subsets, and nested CV is used to assess how 

stable findings are when different subsets of the data are used to examine them. The key element 

of this method is an embedded thresholding step, which adjusts the criterion for feature selection 

according to the performance of feature subsets. A detailed explanation of this feature selection 

method is provided in Appendix A. 
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2.2.1.3. Bootstrap aggregation 

All calculations other than the final outcome prediction are validated using 25-fold 

bootstrap aggregation (bagging, see Figure 2.2). Instead of performing the analysis once using all 

data, summary datasets are created by randomly sampling on average two thirds of the data in 

each iteration. Results from each iteration are aggregated using the median value.  

2.2.1.4. Model Optimization 

Of the algorithms that were tested (other than those in the PRoNTo toolbox) only the 

Elastic Net has model parameters to optimize. The Elastic Net uses two parameters: λ and α. Alpha 

represents the weight of lasso vs. ridge regularisation which the Elastic Net uses, and λ is the 

regularization coefficient. Both Lasso and Ridge regression apply a penalty for large regression 

coefficient values, but Lasso regularization favours models with fewer features, making it more 

prone to excluding features. Here, five values of λ and α are considered. For each model, the 

features that were excluded by the Elastic Net are noted, and features are removed after the 

model optimization step if the Elastic Net removed them in more than half of all bagging iterations. 

 

 

Figure 2.2. Analysis framework using bagging and nested cross-validation. CV: Cross-Validation. 
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2.2.1.5. Model validation 

After the nested CV step, the combination of parameters (where applicable) that resulted 

in the model with the lowest prediction error is identified for each nested CV partition. Prediction 

error is quantified using root mean squared error. The optimal model parameters from each 

nested CV partition are used to identify what parameters will be used to create the final prediction 

model in each main CV fold, using the most frequently occurring values across nested CV folds. The 

evaluation of model fit is carried out using the complete vector of outcome predictions from all CV 

folds. 

2.2.2. Data 

2.2.2.1 Constructing simulated data 

The analysis methods were tested on simulated datasets, built to resemble real 

neuroimaging datasets in terms of the between-feature correlations, and the range of correlations 

between features and the outcome variable. Data from the IMAGEN study (Schumann et al., 2010) 

were used to evaluate the range of between-feature correlations and predictive strength of 

imaging data for a psychometric variable (IQ measured using the WISC-IV; Wechsler, 2003). These 

neuroimaging data were extracted using 97 regions of interest (ROIs) based on the AAL atlas 

(Tzourio-Mazoyer et al., 2002). These ROIs included 90 masks from the standard 116 ROI AAL atlas 

excluding all masks for the cerebellum and vermis. An aggregated mask including the entire vermis, 

and a left and right aggregated mask for the cerebellum were used. Additional masks for the left 

and right subthalamic nuclei were also included, as well as masks for the left and right ventral 

striatum, with masks for the caudate and putamen altered to exclude the ventral striatum. The 

same data were also extracted using 278 ROIs from an atlas based on functional parcellation (Shen 

et al., 2013). Data from three functional tasks and grey matter volume were combined, resulting in 

2224 ROIs (for the 278 ROI atlas) and 970 ROIs (for the 97 ROI atlas) for 1846 participants. The 

functional tasks were an affective face processing task (contrast images for affectively neutral and 

angry faces compared to a control stimulus, and angry compared to neutral faces), the stop signal 

task (contrast images for successful and unsuccessful response inhibition), and the Monetary 

Incentive Delay task (contrast images for anticipation and receipt of large compared to small or no 

reward). For each atlas these data were combined into one data matrix. 

Correlation coefficients for correlations between features (within and between contrasts) 

and between features and the continuous outcome variable were determined in MATLAB (see 

Figure 2.3). Simulated data were constructed to mirror these correlation strengths as closely as 

possible, while achieving variation in predictor strength between data types. Simulated Data were 

constructed as follows: 
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1. Predictor and outcome creation. A random matrix X the size of the intended dataset was created 

(i.e. 2000 observations by 1000 features). A vector b representing beta weights, and a vector Y 

representing the continuous outcome variable were created such that X*b=Y.  

2. Inter-ROI correlation clusters. A covariance matrix was created that was used to create a small 

number (ca. 33) features that were strongly correlated with each other using the mvnrnd function 

in MATLAB. The correlation coefficients for these Inter-ROI correlations were between r=.2 and 

r=.8, peaking at r=.6. This process was repeated 30 times, to create 30 ‘clusters’ of features that 

were strongly correlated with other features in the same cluster and only weakly correlated with 

features outside the cluster. 

3. Whole-brain correlations. The same process used in step 2 was used to create one matrix the 

size of X with features that were all correlated with each other at r=.25 on average. 

4. Dataset creation. The layers of data created in step 1, 2, and 3 were combined using different 

weighting for each layer to achieve some variation in predictor strength (i.e. the final dataset was a 

weighted summation of all three data layers). The range of correlations between features and 

between features and the outcome was manipulated to produce datasets with small to moderate 

predictor effect sizes (Simulatedsmall), and datasets with strong predictor effect sizes (SimulatedLarge; 

see Figure 2.3).  

 Figure 2.3. Correlation strength by percentage of features for correlations between features (Inter-

ROI correlations) and between features and the outcome variable (ROI-outcome) for real 

and simulated datasets. ES: effect size. 
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2.2.2.2. Real MRI data.  

To test whether findings transfer to real-world imaging data two real neuroimaging 

datasets were selected. First, a dataset from the IMAGEN study (Schumann et al., 2010) that 

included data from 967 participants was selected. The linear outcome variable used was the score 

on the block design subscale of the WISC-IV (Wechsler, 2003). Data drawn from Grey matter 

volume (GMV) and the Global Cognitive Assessment Task (GCA, Pinel et al., 2007) were used. In the 

GCA task participants were presented with visual and auditory stimuli for short sentences (e.g. ‘We 

easily found a taxi in Paris’), subtractions (e.g. ‘Subtract nine from eleven’), and motor instructions 

(e.g. ‘Press the left button three times’). Maps for subtractions and sentence presentations were 

used. Data from the two GCA contrasts and for GMV were extracted using the same functionally 

defined atlas used to create simulated data (Shen et al., 2013). A total of 834 ROIs were used. Note 

that the data from the GCA task were not used to establish the correlation coefficients to construct 

simulated datasets (see 2.2.2.1.). Based on previous work examining the relationship between 

intelligence and neuroimaging findings (Deary, Penke & Johnson, 2010) this dataset was presumed 

to have low-moderate effect sizes and was thus termed Imagingsmall. 

The second real neuroimaging dataset was comprised of 1360 structural T1 MRI images 

drawn from a number of sources: the Nathan Kline Institute Rockland Sample - Release 1 (NKI; 

Nooner et al., 2012), the Information eXtraction from Images dataset (IXI; http://www.brain-

development.org), and the Southwest University Adult Lifespan Dataset (SALD; Wei et al., 2017). 

These data are freely available online through either NITRC.org or http://www.brain-

development.org. Data from the same 97 grey matter ROIs based on the AAL atlas described above 

were extracted. The linear outcome variable used was participants’ age, which has been shown to 

have a moderate-large effect size (Cole et al., 2017). This dataset was thus termed Imaging large. 

2.2.2.3. Evaluation of dataset size 

For each analysis simulated datasets (Simulatedsmall and Simulatedlarge) were generated with 

2000 observations and 1000 features, and subsets of these data were randomly sampled. 

Simulated data were constructed with the following sample sizes: 75, 200, 400, 750, 1000, and 

2000. The size of the input feature set (regions of interest) was varied using the following number 

of features: 75, 200, 400, 750, or 1000. Therefore, analyses were carried out across 30 dataset 

sizes. The maximum number of features and observations for simulated data was chosen to be 

comparable in dimensionality to the real neuroimaging data while also offering some insight into 

how an increase in sample size may affect findings.  
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For Imagingsmall, random subsampling of the dataset (N=967 and 834 ROIs) at the following 

sample sizes was carried out: 75, 200, 400, 750, and 967. The features were subsampled at 75, 

200, 400, 750 and 834 features. Therefore, analyses were carried out at 25 dataset sizes.  

Imaginglarge (N=1360 and 97 ROIs) was subsampled only in the domain of sample size, using 

the following sample sizes: 75, 200, 400, 750, 1000, and 1360. This resulted in analyses being 

carried out at 6 dataset sizes. 

2.2.3 Regression machine performance 

Analyses for each approach at each cell (i.e. each sample and feature set size) and for each 

data type were carried out 10 times.  

2.2.3.1. Comparison of regression machines 

To directly compare performance of different machines for each data type, the results of 

all analysis iterations for all six algorithms within each cell were combined, and the quintiles of this 

distribution were calculated. Based on the median prediction accuracy of each algorithm within 

that cell it was determined into which quintile the performance of that algorithm fell, thereby 

determining a ranking of algorithms on a scale of 1 to 5 for each cell. For a clearer representation 

of rank, those algorithms that had negative median prediction accuracy (i.e., zero results) were 

assigned rank zero within each cell. 

2.2.3.2. Bagging and Feature Selection 

To evaluate whether performance of regression algorithms could be improved through the 

addition of bagging and/or embedded feature selection (FS), analyses for MR and EN were also 

carried out with bagging and/or FS, and RF was also carried out with FS. A series of t-test at each 

sample and feature set size was conducted to examine whether embedded FS and/or bagging 

significantly changed results. FS and bagging were not tested with GPR, KRR, and MKL, as these 

approaches were implemented through the PRoNTo toolbox. 

2.2.3.3. Regularization 

A series of Pearson’s correlations between the strength of regularization used by EN (i.e. λ 

value) and prediction accuracy was carried out. For each analysis iteration the mean λ across CV 

folds was used as the regularization value for that analysis in the correlation. Correlations were 

carried out across all analysis iterations and within each cell. The mean rather than the median 

value was used since the median values for analyses with one of the real neuroimaging datasets 

(ImagingLarge) were equal for all analyses (at six sample size subsets) for analyses with feature 

selection. However, the patterns for mean and median values were similar across data types.  
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2.3. Results 

2.3.1. Regression Machine performance 

Median out-of-sample model performance (i.e., correlation between prediction for the test 

set and truth) for all regression algorithms is shown in Figure 2.4. 

There was a clear effect of predictor effect sizes on prediction accuracy, with both 

SimulatedLarge, and ImagingLarge predicting more accurately with all analysis methods than 

SimulatedSmall, and ImagingSmall. 

RF had the least amount of variation between data types, although it produced poorer 

predictions for datasets with large sample and feature set sizes relative to the other algorithms 

with all data types except ImagingLarge. The strongest variation in prediction accuracy between data 

types was observed for GPR, KRR, and MKL. These methods produced lower predictions than other 

approaches for ImagingLarge and failed to produce significant results at any sample and feature set 

size for SimulatedSmall and ImagingSmall. However, KRR and GPR produced predictions similar to 

other approaches for SimulatedLarge. 

The degree to which increases in sample and feature set size affected accuracy varied by 

analysis method and data type, but except for MR and MKL the highest prediction accuracy was 

always achieved for datasets with the largest sample size and highest feature set sizes within each 

data type. For MR, the ‘curse of dimensionality’ was observed for SimulatedLarge, SimulatedSmall, and 

ImagingSmall, such that models including a larger number of features than samples failed due to 

overfitting. This effect was also observed for feature sets up to 400 features with RF for 

Imagingsmall. For MKL, SimulatedLarge data indicated that predictions declined when the sample size 

exceeded N=400 and more than 200 features were included.  

While some predictions at small sample sizes reached significance with SimulatedLarge and 

ImagingLarge, predictions were generally most successful if the sample size was at least N=200, and 

ideally no less than N=400.  
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Figure 2.4. Median out-of-sample performance by sample size and analysis algorithm (SimulatedLarge, SimulatedSmall, ImagingLarge and ImagingSmall). RF: Random Forest; 

MR: Multiple Regression; EN: Elastic Net; MKL: Multiple Kernel Learning; KRR: Kernel Ridge Regression; GPR: Gaussian Process Regression.  Colour bars show the 

cross-validated Pearson’s R value. Note that value ranges differ between plots for different data types. 
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Figure 2.5. Quintile rank of prediction accuracy by sample size and analysis algorithm for SimulatedLarge, SimulatedSmall, ImagingSmall, and ImagingLarge. Shown ranks are 

the quintile into which the median prediction accuracy for each method within each data type and cell fell across the distribution of all analysis iteration for each data 

type and cell. RF: Random Forest; MR: Multiple Regression; EN: Elastic Net; MKL: Multiple Kernel Learning; KRR: Kernel Ridge Regression; GPR: Gaussian Process 

Regression. Colour bars and plot colouring show the rank from zero to five. 
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2.3.2. Comparison of Regression machines  

Quintile ranks largely mirrored results observed in 2.3.1. (see Figure 2.5).  

2.3.2.1. Dataset: SimulatedSmall 

RF had a high ranking across all cells with N≥200. EN ranked highest for datasets with 

N≥750. For datasets with 400 or more features and between 200 and 750 observations RF and EN 

performed similarly with somewhat better performance for RF. EN performed very poorly with 

small samples, particularly when the feature set was small. While MR ranked below RF and EN for 

almost all sample and feature set sizes, accuracy for ML for N=75 and up to 200 features was 

higher than for RF and EN. MKL, KRR, and GPR ranked below the other approaches in all cells, 

except for MKL at N=400 and 75 features. 

2.3.2.2. Dataset: ImagingSmall 

Quintile ranks for ImagingSmall were very similar to results for SimulatedSmall. EN ranked 

highest for N≥400, but performed poorly with small samples. Ranks for MKL, KRR, and GPR were 

zero for all dataset sizes. There was a trend toward higher performance of MR with smaller feature 

sets and higher performance of RF with larger feature sets. 

2.3.2.3. Dataset: SimulatedLarge 

GPR showed the highest average ranking overall. In comparison to other methods, RF 

ranked lowest across cells. The ‘curse of dimensionality’ effect was evident in the rankings for MR, 

which performed broadly similar to KRR and EN when the sample size exceeded the feature set 

size, but showed distinctly poor performance (comparable to RF) when the number of features 

exceeded the sample size. EN, KRR, and GPR ranked very similarly for datasets with N>400, but EN 

ranked lowest with small feature sets. KRR and MKL both ranked above other approaches for small 

datasets with more features than observations, and performed better with small sample sizes than 

EN. Both GPR and EN performed poorly for datasets with small samples and small feature sets. MKL 

performed very poorly for datasets with large samples, particularly when the number of features 

was also large.  

2.3.2.4. Dataset: ImagingLarge 

Despite lacking information about the effect of feature set size, data from ImagingLarge 

repeated the finding of low performance of MKL, KRR and GPR compared to the other approaches. 

Unlike with other data types, both RF and MR outperformed EN at larger sample sizes. Given the 

similarity in median performance at larger sample sizes for EN, MR, and RF this was due to only 

very small differences in accuracy (see Figure 2.4). Furthermore, RF performed equal to or better 
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than all other algorithms for datasets with N<1000, while MR performed best for datasets with 

N=1000. 

2.3.3. Change in prediction accuracy from Feature Selection and bagging 

Changes in prediction accuracy from adding embedded FS, bagging, or both in combination 

were evaluated (see Figure 2.6). Mean performance of RF, MR and EN with FS and/or bagging (see 

Figure 2.7) and quintile ranks recalculated to include analyses with FS and/or bagging (see Figure 

2.8) showed considerable effects of FS and bagging on algorithm performance. Ranks for the 

original six algorithms (see Figure 2.5) showed little change for ImagingSmall, SimulatedLarge and 

ImagingLarge. For SimulatedSmall ranks for RF, MR, and EN were reduced as MR and EN with bagging 

and/or FS ranked equal to or higher than the original approaches. Across data types the rank of RF 

improved as RF with FS ranked very low for all data types except ImagingLarge, and MR with FS and 

bagging ranked very low for SimulatedLarge and ImagingLarge.  

2.3.3.1. Random Forest (RF) 

The addition of embedded FS did not improve prediction accuracy of RF for any dataset 

size or data type. Significant decreases in prediction accuracy were observed for SimulatedSmall 

when at least 200 features and N≥750 were used, and for ImagingSmall with 750 or more features 

and N≥400. In the quintile ranking of all analysis approaches RF with FS ranked very highly for 

ImagingLarge, in the absence of any significant changes in prediction accuracy. In contrast, RF with FS 

ranked very low for all other data types. 

2.3.3.2. Multiple Regression (MR) 

Feature selection. There were some small improvements in prediction accuracy for MR as a 

result of adding embedded FS with all data types. For SimulatedSmall and ImagingSmall improvements 

occurred with N≥750, and for SimulatedLarge and ImagingLarge improvements occurred with N=75 

with additional small improvements up to N=400 for ImagingLarge. For SimulatedSmall MR with FS 

ranked higher than MR in the quintile ranking for almost all dataset sizes with more than 200 

observations and features, and for most datasets with 400 or more features with ImagingSmall. 

Examination of the relationship between feature set size and accuracy at each sample size revealed 

that these differences in accuracy were due to a reduction of the ‘curse of dimensionality’ effect 

observed with MR, evidenced by non-negative correlations between number of features and 

accuracy (see Figure 2.9). Quintile ranks for SimulatedSmall also showed that rank of MR with FS was 

higher than rank of MR for datasets with N=75 and more than 75 features. At larger sample sizes 

rankings and observed correlations between feature set size and accuracy were very similar, 
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indicating no effect of the feature selection step on performance. With ImagingLarge ranking of MR 

with FS was higher than ranking for MR for N<400, and lower for larger samples.  

Bagging. When bagging was used, prediction accuracy for MR also showed improvements 

for all data types except ImagingSmall. For SimulatedSmall there were some improvements for N≥400 

and 1000 features and for N=400 and 75 features, and higher quintile ranks for MR with bagging 

compared to MR without bagging at almost all dataset sizes. For SimulatedLarge improvements 

occurred for datasets with N>75 and at least 400 features when the number of features was equal 

to or larger than the sample size. These cells overlap to a large extent with the dataset sizes for 

which the ‘curse of dimensionality’ effect was observed (see Figure 2.7). Examination of the 

correlations between feature set size and accuracy revealed that bagging drastically increased this 

correlation for SimulatedLarge, resulting in an almost complete disappearance of the ‘curse of 

dimensionality’ effect when evaluating algorithm performance (see Figure 2.9). For ImagingLarge 

improvements as a result of bagging occurred at N=75 and were thus similar to those seen for FS. 

Feature selection and bagging. When both FS and bagging were used performance of MR 

for SimulatedSmall showed some small improvements for datasets with N=400 to N=1000 and 200 or 

more features, and quintile rank for MR with FS and bagging was higher than rank for MR at almost 

all dataset sizes with N>75. Performance of ImagingSmall was also improved at the largest dataset 

size (N=967 and 834 features), while performance was reduced at N=750 and 75 features. As with 

SimulatedSmall, quintile ranks for MR with FS and bagging were higher than ranks for MR for most 

cells with N>75, when 400 or more features were used. For SimulatedLarge performance was 

improved for N=400 and 400 to 750 features, but performance decreased for datasets for which 

the sample size was larger than the number of features with 200 or more features and N>400. 

Similarly, performance for ImagingLarge was reduced for datasets with N>200, and quintile ranks for 

MR with FS and bagging were lower than those of MR in most cells for both SimulatedLarge and 

ImagingLarge, although ranks for datasets with N<400 were higher in some cells. For all data types 

the number of features showed a reduced correlation with prediction accuracy when MR was 

combined with both FS and bagging (see Figure 2.9). For SimulatedLarge and ImagingLarge this caused 

reduced accuracy compared to MR alone when sample sizes exceeded feature set sizes. 

2.3.3.3. Elastic Net (EN) 

Feature selection. For SimulatedSmall and ImagingSmall the addition of FS to EN resulted in 

significant reductions in accuracy for datasets with N>400 and 400 or more features. For 

SimulatedSmall there was a small improvement from FS at N=75 and 75 features.  While quintile 

ranks for both SimulatedSmall and ImagingSmall were reduced for EN with FS compared to EN for 

N>400, quintile ranks at small sample sizes were higher for EN with FS than for EN in some cells. 
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Examination of the relationship between feature set size and accuracy revealed that the addition of 

FS reduced the positive correlation between number of features and accuracy, which accounts for 

reduced EN performance with large datasets when FS was used (see Figure 2.9). For SimulatedLarge 

there was a small improvement in accuracy from FS at N=1000 and 750 features. Despite only a 

small significant change in prediction accuracy, quintile ranks indicated that EN with FS 

outperformed EN in almost all cells for SimulatedLarge, with EN with FS ranking highest among all 

analysis approaches for almost all cells with N≥400 and 200 or more features. While FS also 

reduced the correlation between feature set size and accuracy for SimulatedLarge, the correlation 

remained at r~.5 for N≥400, which is comparable to the correlations observed for SimulatedSmall 

and ImagingSmall without FS. No significant differences were observed for ImagingLarge, and quintile 

ranks for EN with FS and EN were largely the same for this data type. 

Bagging. The addition of bagging to EN only resulted in a significant change in accuracy for 

ImagingSmall at N=967 and 400 features, where accuracy was reduced. While quintile ranks for EN 

with bagging were lower than ranks for EN in most cells for ImagingSmall, ranks for the other data 

types were similar between EN and EN with bagging. However, for both SimulatedSmall and 

ImagingSmall EN with bagging ranked highest and equal to EN alone for N≥750 and large feature set 

sizes (400 or more for SimulatedSmall and 834 for ImagingSmall). Examination of the relationship 

between feature set size and accuracy revealed only a very small difference in correlations for EN 

and for EN with bagging (see Figure 2.9). 

Feature selection and bagging. When both FS and bagging were used performance of EN 

with SimulatedSmall and ImagingSmall was again significantly reduced for datasets with N>400 and 400 

or more features, as was the case for EN with FS only. Similarly, the correlation between feature 

set size and accuracy was also reduced for SimulatedSmall and ImagingSmall when both FS and bagging 

were used (see Figure 2.9). With SimulatedSmall quintile ranks for EN with bagging and FS were 

higher than for EN with just FS and lower than for EN alone. Ranks at large dataset sizes were 

higher for EN with only bagging than for EN with bagging and FS. For ImagingSmall quintile ranks of 

EN with bagging and FS were lower than ranks for EN only and EN with FS. However, ranks for EN 

with bagging and FS were higher than for EN with only bagging in most cells. As with both bagging 

and FS individually, the combination of both bagging and FS did not result in any significant 

changes in accuracy for ImagingLarge. However, the quintile ranking showed that for ImagingLarge EN 

with both bagging and FS ranked very poorly at the largest sample size (N=1000). While 

SimulatedLarge had shown a small improvement in accuracy for large datasets with FS, and no 

significant change for bagging, the addition of both bagging and FS resulted in a decrease in 

accuracy for the largest dataset sizes, i.e. N=2000 and 1000 features. The quintile ranking for 

SimulatedLarge indicated lower rank for EN with bagging and FS in almost all cells compared to EN 
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with FS, lower performance in some cells than EN with bagging, and some improvement at small 

feature set sizes compared to EN alone. Unlike FS alone, FS in combination with bagging did not 

result in a reduction of the correlation between feature set size and accuracy for SimulatedLarge (see 

Figure 2.9), which accounts for the higher quintile rank of analyses with FS in many cells with 

N≥400. 
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Figure 2.6. Significant improvement or decrease in median prediction accuracy (p<.005) from adding embedded Feature Selection (FS) and/or bagging to analyses 

with Random Forest (RF), Multiple Regression (MR), and Elastic Net (EN). Colour bars and plot colouring show the difference in median correlation between prediction 

and truth between standard analyses for each algorithm and analyses with FS and/or bagging. 
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Figure 2.7. Mean out-of-sample performance by sample size and analysis algorithm for Random Forest (RF), Multiple regression (MR), and Elastic Net (EN) with and 

without bagging and embedded feature selection (FS). Colour bars show the cross-validated Pearson’s R value. 
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Figure 2.8. Quintile rank of prediction accuracy with and without embedded feature selection (FS) and/or bagging by sample size and analysis algorithm for 

SimulatedSmall, ImagingSmall, SimulatedLarge, and ImagingLarge. Shown ranks are the quintile into which the median prediction accuracy for each method within each data 

type and cell fell across the distribution of all analysis iteration for each data type and cell. RF: Random Forest; MR: Multiple Regression; EN: Elastic Net; MKL: 

Multiple Kernel Learning; KRR: Kernel Ridge Regression; GPR: Gaussian Process Regression. Colour bars and plot colouring show the rank from zero to five. 
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Figure 2.9. Correlation between feature set size and prediction accuracy for all analysis approaches and data types. RF: Random Forest; MR: Multiple Regression; EN: 

Elastic Net; MKL: Multiple Kernel Learning; KRR: Kernel Ridge Regression; GPR: Gaussian Process Regression; FS: Feature Selection. 
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Figure 2.10. Mean regularization strength for the Elastic Net (EN) with and without bagging and/or embedded feature selection (FS). 
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2.3.3.3. Regularization weight 

For all data types except ImagingLarge, when dataset size was not considered, there were 

negative associations between regularization weight and prediction accuracy for the standard EN 

and EN with bagging. That is, lower prediction accuracy was associated with higher regularization 

(see Table 2.1). For ImagingLarge the lowest regularization strength was chosen for all analyses with 

the standard EN or EN with bagging (see Figure 2.10), and high prediction accuracy was achieved 

for all analyses. When FS was used the correlation strength for all data types was low, with a 

significant negative correlation for EN and FS only being observed for SimulatedSmall. For EN with 

both FS and bagging SimulatedSmall and ImagingLarge showed a significant negative correlation 

between regularization strength and prediction accuracy, while SimulatedLarge showed a significant 

positive correlation.  

Table 2.1. Correlation coefficients between mean regularization weights across cross-validation 

folds and model performance for the Elastic Net including only non-zero models. 

 

Examination of regularization strength by sample size (see Figure 2.10) revealed that there 

was a clear effect of sample size on regularization strength for SimulatedSmall and ImagingSmall when 

FS was not used, which is consistent with very low prediction accuracy at small sample sizes. For 

SimulatedLarge the pattern of higher regularization strength for cells that also showed low accuracy 

was also observed for EN without FS. 

When FS was used the size of the regression weights was greatly reduced, as can be seen 

by the difference in scales for plots with and without FS in Figure 2.10. While there were some 

variations in regularization strength associated with dataset size and therefore also with prediction 

accuracy (see Table 2.1), variations in regularization strength for analyses with FS were minor 

compared to analyses without FS. Of note is an observed cluster of higher regularization strength 

for SimulatedLarge for EN with FS at N~750 and around 400 features. Evaluation of the percentage of 

 SimulatedSmall ImagingSmall SimulatedLarge ImagingLarge 

Elastic Net -.556* -.785* -.765* .000 

Elastic Net & bagging -.587* -.575* -.722* .000 

Elastic Net & Feature Selection -.259* -.039 .174 -.274 

Elastic Net & Feature Selection, bagging -.278* -.094 .314* -.501* 

*p<.001 
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features that were selected by FS based on dataset size revealed that the median number of 

selected features for datasets with N≥400 and between 200 and 750 features was often 

approximately 100%, which effectively negates the FS procedure. Although it is not entirely clear 

why the percentage of selected features was higher in this cluster than in other cells with FS, the 

high regularization strength in these cells is in line with the higher regularization weights seen in 

analyses without FS than in analyses with FS.  

2.4. Discussion 

Analytical tools developed for data science have become frequently used in neuroimaging 

(Woo et al., 2017), but none of these tools were specifically developed for neuroimaging data. With 

the small samples, large feature sets, and low signal-to-noise that are characteristic of 

neuroimaging data, prediction models built using neuroimaging data are at a high risk of 

overfitting. In this paper, the merit of six different linear regression approaches for prediction 

analysis was empirically evaluated and compared using simulated and real neuroimaging data for 

the first time. Results showed that Gaussian Process Regression, Multiple Kernel Learning, and 

Kernel Ridge Regression implemented in the Pronto toolbox (Schrouff et al., 2013) could produce 

good predictions, but failed when effect sizes were small regardless of sample size. The Elastic Net 

on the other hand emerged as the most flexible and reliable regression machine. The Elastic Net 

created the most accurate prediction models independent of absolute predictor effect sizes, and 

across many sample and feature set sizes. Predictions were always improved when sample size was 

increased, but across all analyses an ideal minimum sample size of about 400 emerged as 

necessary to achieve reliable results. At smaller sample sizes and for datasets with weak effect sizes 

modest improvements in accuracy could be made using an embedded feature selection method. 

Another approach designed to increase model performance – bootstrap aggregation – could 

counteract the decline in standard Multiple Regression model accuracy with more predictor 

variables than observations. However, given adequate dataset sizes and using the Elastic Net, 

neither feature selection nor bootstrap aggregation improved findings significantly, and indeed 

resulted in substantially increased computational time for all analyses and reduced accuracy for 

some models. 

The central observation of this study was that different types of linear regression 

approaches provide widely different results, and that these results are differently affected by 

sample size, number of predictors, and the ratio of signal to noise in the data. Previous meta-

analyses by Kambeitz and colleagues (2015, 2016) have shown that not only the outcome to be 

predicted, but also the type of neuroimaging data that is used has a strong effect on the maximum 

performance of a model. Findings in the present study confirmed that when using multivariate 

regression methods, the expected size of the effect and effect sizes for individual predictor 
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variables are the most important criteria for selection not only of minimum sample size, but also 

selection of the analysis approach. However, across simulated and real neuroimaging data of 

varying effect sizes the Elastic Net had the highest median prediction accuracy for datasets with 

400 or more features and observations. For smaller feature sets, variations of Multiple Regression 

resulted in better model fit.  

When both the sample and feature set size were small, the MATLAB implementation of 

random forest also showed some promise. A key difference between Random Forest and many 

other regression methods is that the contribution of individual predictors is not easily, or at all, 

determinable from a completed model. While it has been debated in the literature whether the 

main goal of neuroimaging prediction should be predicting an outcome as accurately as possible, or 

identifying when and where data contain information about an outcome (Paulus, 2015; Pine & 

Leibenluft, 2015), the readability of neuroimaging prediction models is an important aspect of 

model development. The ability to scrutinize the contribution of individual neuroimaging predictors 

allows researchers to verify the neurophysiological plausibility of the model, while also enabling 

future research to consider which variables are strong or poor predictors of an outcome in the 

development of further experiments, studies, and prediction models (Woo et al., 2017; Jollans & 

Whelan, 2018). While some methods make it possible to gain insight into the contribution of 

individual predictors to the prediction model using random forest (Palczewska et al., 2014), these 

are computationally expensive, and present findings indicate that the scenarios in which Random 

Forest would substantially outperform the Elastic Net are very limited. 

For the Elastic Net, which was found to show the most consistent performance across 

effect sizes and dataset sizes, an effect of a certain size could be retrieved with approximately 

equal accuracy at varying sample sizes by altering the number of input features. Given smaller 

sample sizes, inclusion of a larger feature set is thus one approach to improve model performance. 

Crucially, findings also indicated that preselection of variables for inclusion in the model did not 

improve performance and indeed resulted in lower model accuracy in some cases. It is therefore 

suggested that neuroimaging researchers refrain from preselecting regions of interest or contrasts 

of interest before implementing multivariate regression models. This will allow researchers to 

conduct analyses including variables that have not previously been linked to an outcome of 

interest, in the knowledge that the contribution of other predictors will not suffer from the 

inclusion of more exploratory variables. This possibility is of importance considering that most of 

the neuroimaging literature to date reports only univariate and frequentist findings which may not 

translate to predictive utility (Lo et al., 2015). An important note here is that, based on this study, 

the determination that dimensionality reduction (other than regularization) does not appear to be 

necessary for neuroimaging models can only be made when region of interest data are used, and 



85 
 

when sample sizes exceed a certain minimum threshold. Voxel-wise analyses and analyses with 

very small sample sizes are likely to benefit from some additional dimension reduction, as was 

shown by findings regarding accuracy for very small samples using the embedded feature selection 

approach. 

 

Figure 2.11. Example computational time and prediction accuracy for a sample simulated dataset 

from SimulatedSmall with N=400 and 1000 features. 

There was evidence for a beneficial effect of embedded feature selection on results at 

small sample sizes for both the Elastic Net and Multiple Regression. Through feature selection the 

association between the number of features and model performance tended to shift toward zero, 

reducing the ‘curse of dimensionality’ effect for Multiple Regression, but also counteracting the 

positive relationship between feature set size and model performance at large sample sizes for the 

Elastic Net. For the Elastic Net the feature felection step greatly reduced the need for 

regularization, as seen by very small regularization weights for analyses after feature selection. Any 

significant improvements in model performance because of embedded feature selection were not 

consistent or strong enough to recommend use of this approach, particularly considering the 

computational expense. Time needed to run Elastic Net analyses with N=400 and 1000 features 

was approximately 18 seconds (see Figure 2.11) for the standard Elastic Net (r=.25) compared to 

225 minutes for the Elastic Net with the embedded feature selection approach (r=.15).  

In contrast to embedded feature selection, there was strong evidence for the utility of 

bootstrap aggregation to improve prediction accuracy with Multiple Regression. This approach 

strongly counteracted the ‘curse of dimensionality’ effect for Multiple Regression. Indeed, for half 

of all cells with fewer than 400 features or a sample size of N<400 Multiple Regression paired with 

25-fold bootstrap aggregation performed in the highest quintile for the simulated and real 
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neuroimaging data with weak effect sizes. There was no significant effect of bootstrap aggregation 

on performance of the Elastic Net, and quintile ranks for analyses with and without this method 

were largely similar. Given the relatively small increase in time required for computations when 

bootstrap aggregation was used (see Figure 2.11) it may then be worthwhile including this method 

with a view to increasing model stability. However, given a robust cross-validation framework, as 

was used in the analyses presented here, it appears that bootstrap aggregation may not be a 

necessary addition to Elastic Net analyses. 

There are some important limitations to the generalizability of findings in this study. While 

there were strong commonalities across results for the real neuroimaging dataset examined here 

and results achieved using data simulations, there was some indication that not all characteristics 

of real neuroimaging data were sufficiently accounted for in the simulations. In particular, there 

was higher accuracy for analyses with Random Forest for the real compared to the simulated 

datasets. Further examination of Random Forest and other regression methods such as Support 

Vector Machines for neuroimaging data are warranted. Furthermore, only ROI data rather than 

voxelwise analyses were considered in this study. While this decision was based on the intention of 

creating models that are easily interpretable, findings also do not necessarily translate to models 

with a strongly increased feature set size, and the characteristics of voxel as compared to ROI data 

are likely quite different in terms of the between-feature correlations and predictor strengths.  

Finally, based on previous findings that non-brain variables are much better predictors of 

phenotypic outcomes than neuroimaging data (Whelan et al., 2014), identifying the best methods 

to integrate imaging and non-imaging data in prediction analyses will be a crucial step in biomarker 

development. 

2.5. Conclusions 

Findings in this study have shown that the choice of analysis approach for linear regression 

analyses has a large impact on the accuracy of the resulting regression model. The size of the 

sample and number of predictors are important factors that determine which analysis approach 

will have the greatest success in extracting meaningful information from a neuroimaging dataset. 

Results in this study indicate that datasets with at least 400 observations have the highest 

likelihood of uncovering meaningful findings. Furthermore, increasing the number of ROI variables 

for inclusion in a model will improve results, eliminating the need for the researcher to preselect 

variables for inclusion. When at least 400 observations and 400 or more predictor variables are 

included in the analysis, regularized regression via the Elastic Net was shown to be the best analysis 

approach for ROI data. When the sample or feature set size is smaller, standard Multiple 

Regression supported by bootstrap aggregation showed the best performance in this study. 
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Chapter 3 - Predicting adolescent smoking using 

neuropsychosocial risk indicators 

  



88 
 

3.1. Introduction 

The majority of adolescents will try smoking at some point (O’Loughlin et al., 2014). The 

crucial component important in understanding and possibly preventing, harmful cigarette use is 

the progression from initial experimentation to regular smoking behaviour. Known correlates of 

adolescent smoking include environmental factors, psychological factors, and aspects of brain 

function.  

Adolescents are more likely to smoke again after their first cigarette if they had a positive 

experience smoking and are exposed to peers or siblings who smoke (Hirschmann, Leventhal & 

Glynn, 1984). Smoking has also been suggested to be a coping mechanism for adolescents dealing 

with life stressors such as family conflict or academic pressure (Byrne, Byrne & Reinhart, 1995; 

Mates & Allison, 1992; Pederson, 1997; Audrain-McGovern et al., 2004a/b; Mayhew et al., 2000; 

Ellickson et al., 2001; Soldz & Cui, 2002; Wellman et al., 2018). Depression and other mental health 

issues also show a strong association with smoking behaviour (Upadhyaya et al., 2003; Koval et al., 

2000; Grant et al., 2004; Lasser et al., 2000; Lawrence, Mitrou & Zubrick, 2009).  

There is a robust link between smoking behaviour and heightened trait impulsivity 

(Rezvanfard et al., 2010; Mitchell, 1999; Balevich, Wein & Flory, 2013; Skinner, Aubin & Berlin, 

2004; Audrain-McGovern et al., 2004a; 2009; Dinn, Aycicegi & Harris, 2004), with some evidence 

that impulsivity precedes smoking behaviour (Lipkus et al., 1994; White et al., 2002). Smokers also 

differ from non-smokers on some measures of action impulsivity (Audrain-McGovern et al., 2009; 

Johnson, Bickel & Baker, 2007; Mitchell, 1999). During tasks measuring impulsive responding, 

smokers have lower recruitment of brain regions involved in inhibitory control (Luijten et al., 2014). 

Smokers also process rewards and punishments differently than non-smokers (van Hell et al., 2010; 

Rose et al., 2013; Luo et al., 2011). The brain regions that have been implicated most strongly in 

impulsivity and reward processing in relation to substance abuse are the anterior cingulate gyrus 

and insula (Akkermans et al., 2016; Zanchi et al., 2015), the ventral striatum (Peters & Büchel, 

2010; Nestor et al., 2011; van Hell et al., 2010; Rose et al., 2013), the amygdala (Janes et al., 

2010a/b; Mihov & Hurlemann, 2012), and the orbitofrontal cortex (Bühler et al., 2010; Gallinat et 

al., 2006; Kühn, Schubert & Gallinat, 2010). 

The majority of studies examining factors associated with regular smoking are cross-

sectional in nature, making it impossible to establish causation. Although there have been some 

longitudinal studies tracking adolescent smoking behaviour (Kellam, Ensminger & Simon, 1980; 

Burt et al., 2000; Stewart & Livson, 1966; Collins et al., 1987; Cherry & Kiernan, 1976; Sieber & 

Angst, 1990; O’Loughlin et al., 2014), the typical group comparisons employed in these studies are 

not necessarily able to identify factors that are predictive of future smoking (Lo et al., 2015). The 

knowledge of what risk factors increase the likelihood of future smoking behaviour is important in 
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developing prevention programs with a high chance of succeeding. Multivariate Regression and 

Machine learning tools are preferable to standard inferential statistics in outcome prediction 

(Bzdok, Altman & Krzywinski, 2018; Lo et al., 2015), and findings are most reliable with large 

samples (Woo et al., 2017; Jollans et al., 2016). 

In this study, data from the IMAGEN study (Schumann et al., 2010), a large European multi-

site neuroimaging initiative with more than 2000 participants in the first wave of data collection 

was used. At age 14 participants took part in a battery of neuroimaging and behavioural tasks, and 

completed a large number of measures assessing social context, personality, and psychological 

wellbeing. Data on substance use and smoking behaviour was also collected at age 14, 16, and 18. 

The Elastic Net (Zou & Hastie, 2005), a type of regularized regression previously successfully used 

to predict binge drinking behaviour in this population (Whelan et al., 2014), was used to predict 

future smoking behaviour based on baseline neuroimaging and psychometric data. 

3.2. Method 

3.2.1. Characteristics of the IMAGEN Study 

A large sample of 14-year olds was recruited at eight recruitment sites. Adolescents 

completed an extensive battery of psychiatric and neuropsychological assessments, including 

magnetic resonance imaging (MRI). Participants completed follow-up assessments after two and 

four years. Details of the full study protocol and data acquisition are provided elsewhere 

(Schumann et al., 2010). 

3.2.2. Participants 

548 participants from the IMAGEN study were included. All participants had neuroimaging 

and psychometric data from baseline, as well as data on smoking behaviour and substance use 

from follow-up 1 (age 16) and follow-up 2 (age 18). Characteristics of the sample at baseline are 

provided in Table 3.1. Participants were classified into the following groups: continuous non-

smokers (NS) who remained non-smokers at all three time points, early onset smokers (EOS) who 

were non-smokers at baseline but smokers at follow-up 1 and 2, and late onset smokers (LOS) who 

were non-smokers at baseline and the first follow-up but smokers at the second follow-up. 
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Table 3.1. Characteristics of the sample 

 

3.2.3. MRI data collection 

3.2.3.1. MRI Data Acquisition 

Full details of the MRI acquisition protocols and quality checks have been described 

previously, including an extensive period of standardization across MRI scanners (Schumann et al., 

2010). MRI acquisition was carried out at the eight assessment sites with 3T whole body MRI 

systems made by several manufacturers (Siemens: 4 sites, Philips: 2 sites, General Electric: 1 site, 

and Bruker: 1 site). To ensure comparability of MRI data acquired on these different scanners, 

image-acquisition techniques using a set of parameters that were held constant across sites and 

were compatible with all scanners were used. 

Structural MRI. High-resolution anatomical MRI scans were acquired, including a 3D T1-

weighted magnetization prepared gradient echo sequence (MPRAGE) based on the ADNI protocol 

(Jack et al., 2008). Structural MRI processing included data segmentation and normalization (to the 

Montreal Neurological Institute template) using the SPM 2 optimized normalization routine. Gray 

matter images were modulated, facilitating comparisons of volumetric, rather than tissue 

concentration differences. Overall values for total grey matter volume, total white matter volume, 

and ratio of grey to white matter volume were used as covariates in the prediction analyses. 

Functional MRI. Standardized hardware for visual and auditory stimulus presentation 

(NordicNeurolabs, Bergen Norway, http://www.nordicneurolab.com) was used at all sites. BOLD 

functional images were acquired with a gradient-echo echoplanar imaging (EPI) sequence using a 

relatively short echo-time to optimize imaging of subcortical areas. Details of the fMRI task 

paradigms and resulting contrast images are provided below. 

3.2.3.2. Stop Signal Task (SST) 

The SST required participants to respond to regularly presented visual ‘go’ stimuli (arrows 

pointing left or right) but to withhold motor response when the go stimulus was followed by a 

 NS (n=456) EOS (n=59) LOS (n=33) 

Age 14.46 (.43) 14.33 (.46) 14.39 (.34) 

Sex 53.51% female 55.93% female 27.27% female* 

Pubertal Development 

Status 

3.56 (.76) 3.59 (.72) 3.42 (.75) 

Socio-economic status 18.40 (3.53) 18.20 (3.57) 17.65 (3.24) 

* significantly less than NS (p=.0035) and EOS (p=.0078) 
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‘stop’-signal (an arrow pointing upwards). Stopping difficulty was manipulated by varying the delay 

between the onset of the go arrow and the stop arrow (stop-signal delay, SSD) across trials using a 

previously described tracking algorithm (Rubia et al., 2005). A task block contained 400 go trials 

and 80 stop trials with variable delay. Stop trials occurred on average on 20% of trials. Stimulus 

duration in go trials was 1000 ms. In stop trials go stimulus presentation duration varied (0–900ms 

in 50 ms steps) in accordance with the tracking algorithm (initial delay for the stop signal was 250 

ms). Contrast images for successful inhibitions (“stop success”) and unsuccessful inhibitions (“stop 

fail”) were calculated, both vs. an implicit baseline (i.e., they were compared to the successful Go 

trials; this method has previously been used in Whelan et al., 2012). SST behavioural task 

performance (number of correct and incorrect responses for GO and STOP trials) was also included 

in the analysis. 

3.2.3.3. Monetary Incentive Delay (MID) Task 

Participants completed a modified version of the MID task (Knutson, Westdorp, Kaiser & 

Hommer, 2000), involving small and large possible gains. Unlike in the original MID task this version 

did not include loss trials due to time constraints related to other assessments in this large-scale 

study. This modification was deemed appropriate since prior studies have shown the same pattern 

of ventral striatum response during reward anticipation and anticipation of loss avoidance (Bjork et 

al.  2008; Wrase et al. 2007; Beck et al. 2009; Yau et al. 2012). On each trial, the amount of points 

that could be won on that trial was signalled by a cue, displayed for 4 to 4.5 s. Participants could 

win a reward by responding as quickly as possible to a target stimulus presented after a random 

time interval. Responses were made by means of a button press, after which feedback was 

presented. The response and feedback phase lasted a total of 2 s. The response interval was 

dynamically adjusted so that subjects won on two thirds of all trials. Trials were separated by a 3.5 

to 4.15 s inter-trial interval, during which a fixation cross was presented. The cue stimuli were a 

circle with two lines signalling a large reward (10 points), a circle with one line signalling a small 

reward (2 points), and a triangle signalling no reward. Contrast images were calculated from large 

minus small win, and large minus no win in the anticipation phase and in the feedback phase of the 

task. 

3.2.3.4. Faces Task 

The Faces task involved passive viewing of 2- to 5-s black-and-white video clips that 

displayed faces in movement with ambiguous (emotionally ‘‘neutral’’) or angry facial expressions, 

and control (non-biological motion) stimuli (Grosbras & Paus, 2006). The control stimuli consisted 

of black-and-white concentric circles of various contrasts, expanding and contracting at various 

speeds, roughly matching the contrast and motion characteristics of the face clips. The stimuli 
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were presented through goggles (Nordic Neurolabs, Bergen, Norway) in the scanner and 

subtended a visual angle of 10o by 7o. The video clips were arranged into 18 s blocks with each 

block including seven to eight video clips. Five blocks of each biological-motion condition (neutral 

and angry faces), and nine blocks of the control condition (circles) were intermixed and presented 

to the subject in a 6-minute run. Contrast images were calculated from angry and neutral faces vs. 

the control condition, and from angry faces vs. neutral faces. After the scanning session, 

participants completed a recognition task in which they were presented with three of the faces 

previously presented in the scanning session and two novel faces. Recognition success was 

included in the analysis. 

3.2.3.5. Global Cognitive Assessment (GCA) Task 

In the GCA task (Pinel et al., 2007) participants were presented with visual and auditory 

stimuli for short sentences (e.g. ‘We easily found a taxi in Paris’), subtractions (e.g. ‘Subtract nine 

from eleven’), and motor instructions (e.g. ‘Press the left button three times’). Over the 5-minute 

sequence each stimulus type was presented 10 times followed by 10 horizontal and 10 vertical 

flashing checkerboard patterns. Visual and auditory stimuli were each presented over the space of 

1.2 to 1.7 sec. Maps for auditory and visual sentences and subtractions were calculated. 

3.2.4. Self-report, parent-report, and experimenter measures 

The majority of psychometric measures were administered to participants and/or a parent 

using the computerized assessment platform Psytools and were completed either at home or at 

the research institute. Psytools presented questionnaire items and response alternatives on a 

computer screen. The reliability of individual data was checked in a two-stage procedure: Before 

every task, adolescents were asked to report on the current testing context including questions 

about their attentional focus and the confidentiality of the setting. Potentially problematic testing 

situations were followed-up by research assistants face-to-face in a confidential setting. 

Any missing data were imputed based on the mean for participants of the same sex at the 

same data collection site. Variables for which more than 150 participants were missing data were 

excluded. The 150 missing datapoint threshold was chosen based on inspection of the proportion 

of missing elements across all predictors. Variables in which all participants had the same value 

were excluded. These were mostly measures of psychopathology present in none of the 

participants (e.g. a diagnosis of PTSD), or items assessing use of illicit substances that were not 

applicable to any of the participants (e.g. heroin use).  Variables that had no variation in the values 

for any two groups (e.g. EOS and LOS all had a score of zero on this variable) were also excluded to 

ensure that all variables could be used in all analyses, resulting in a total of 1105 variables (of 2008 

variables originally considered for inclusion) being used in the subsequent analyses. The highest 
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proportion of missing data was among the parent-reported psychiatric symptoms and parent-

reports for own substance use. An average of 60.19 variables were imputed for each participant 

(meanNS=58.59, meanEOS=73.69, meanLOS=58.12). 

3.2.4.1. Smoking and Substance use 

Adolescent and parent smoking, alcohol, and cannabis use were measured using self-

report on the ‘European School Survey Project on Alcohol and Other Drugs’ questionnaire (ESPAD, 

Hibell et al., 1997), the ‘Fagerström Test for Nicotine Dependence’ (FTND; Heatherton et al.,1991), 

and the ‘Alcohol Use Disorders Identification Test’ (AUDIT; Saunders et al., 1993). Substance use 

measures were excluded for participants who gave an indication to have known or taken the sham 

drug ‘Relevin’. Parents also completed the ‘Michigan Alcoholism Screening Test’ (MAST; Selzer, 

1971) and the ‘Drug Abuse Screening Test’ (DAST; Gavin et al., 1989, Skinner & Allen, 1982). 

3.2.4.2. Personality 

Adolescents and parents completed the 60-item ‘Neuroticism-Extraversion-Openness Five-

Factor Inventory’ (NEO-FFI; Costa & McCrae, 1992), the novelty-seeking subscale of the 

‘Temperament and Character Inventory – Revised’ (TCI-R; Cloninger, et al. 1999), and the 

‘Substance Use Risk Profile Scale’ (SURPS; Woicik et al., 2009).  

The NEO-FFI measures five broad dimensions of personality based on the Five-Factor 

Model of personality (Costa & McCrae, 1995): Extraversion, Agreeableness, Conscientiousness, 

Neuroticism, and Openness to Experience. Extraversion measures preference for engaging in social 

interaction.  Agreeableness measures empathy, compassion and tendency for co-operation rather 

than self-interest. Conscientiousness measures tendency to exercise self-discipline and preference 

for planned over spontaneous behavior. Neuroticism mesures emotional lability and tendency to 

experience anxiety and low mood. Openness to experience measures creativity, intellectual 

curiosity, and tolerance for change. 

The Novelty seeking scale of the TCI-R is composed of four sub-scales. Exploratory 

Excitability contrasts with ‘stoic rigidity’ and reflects sensation-seeking and novelty-seeking 

behaviors. Impulsiveness describes behavior on a dimension from impulsivity to reflection and 

captures elements of emotional reactivity and unreflective, careless behavior. The Extravagance 

subscale assesses overspending behavior and poor planning. Disorderliness reflects disorganized, 

uncontrolled, and antinormative behaviour. 

The SURPS assesses personality traits that confer risk for substance misuse and 

psychopathology. This scale measures four distinct and independent personality dimensions : 

anxiety sensitivity, hopelessness, sensation seeking, and impulsivity. Anxiety sensitivity is 
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characterized by the fear of symptoms of physical arousal. Hopelessness is identified as a risk factor 

for the development of depression and characterized by dismal feelings. Sensation seeking is 

characterized by the desire for intense and novel experiences. Impulsivity involves difficulties in the 

regulation (controlling) of behavioral responses.  

3.2.4.3. Life history and prenatal factors 

Adolescents completed the ‘Bully’ Questionnaire (BULLY; Olweus, 1996), which assesses 

whether the participant has had any experiences of being bullied by peers or taking part in bullying 

someone else. In the research institute the researcher administered the Life-Events Questionnaire 

(LEQ; adapted from Newcomb et al., 1981) to adolescents. For each of 39 items the desirability 

(valence) and occurrence in the past year or over the participants’ lifetime of a certain event was 

recorded. The items are categorized into the following domains: ‘family’, ‘accident’, ‘distress’, 

‘autonomy’, ‘deviance’, ‘sexuality’ and ‘other’. 

Parents completed the ‘Pregnancy and Birth’ Questionnaire (PBQ, adapted from Pausova 

et al., 2007) in self-report. The PBQ assesses exposure of the child to potentially harmful conditions 

and substances before and during pregnancy. These include maternal substance use, 

medical/physical conditions of child and mother, and nutrition after birth.  

3.2.4.4. Demographic measures 

Sex, exact age, pubertal development status, handedness, and dummy-coded data 

collection site were used as covariates in all models. 

Pubertal development status was self-reported by adolescents using the Puberty 

Development Scale (PDS, Petersen, Crockett, & Richards, 1988). This scale provides an eight-item 

self-report measure of physical development based on the Tanner stages with separate forms for 

males and females. For this scale, there are five categories of pubertal status: (1) prepubertal, (2) 

beginning pubertal, (3) midpubertal, (4) advanced pubertal, (5) postpubertal. Participants 

answered questions about their growth in stature and pubic hair, as well as menarche in females 

and voice changes in males. 

A socioeconomic status score was calculated for each participant based on the sum of the 

following variables: Mother’s Education Score, Father’s Education Score, Family Stress 

Unemployment Score, Financial Difficulties Score, Home Inadequacy Score, Neighborhood Score, 

Financial Crisis Score, Mother Employed Score, Father Employed Score. 
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3.2.4.5. Psychopathology 

Participants’ psychopathology was assessed using the ‘Development and Well-Being 

Assessment’ Interview (DAWBA; Goodman et al., 2000) and the ‘Strengths and Difficulties’ 

Questionnaire (SDQ, Goodman, 1997; 1999), completed by both adolescents and their parents 

about the participant. The DAWBA assessment was based on ICD-10 and DSM-IV psychiatric 

diagnoses, and both computer prediction and assessments of responses by a clinician were 

completed for each participant.  Individual symptoms such as behavioural tics or self-harm were 

also recorded based on parent report and included in the analysis. 

3.2.4.6. Cognitive and behavioural measures 

Participants completed the Monetary Choice Questionnaire (MCQ; Kirby, Petry, & Bickel, 

1999), assessing temporal discounting of delayed rewards. Based on choices in the MCQ a value 

representing the degree to which delayed rewards are discounted by the participant was 

calculated. 

Participants also completed the Passive Avoidance Learning Paradigm (PALP; Castellanos-

Ryan, Rubia & Conrod, 2010). In this task subjects learn to respond to “good” numbers for 

monetary reward (point gain) and withhold responding to “bad” numbers to avoid punishment 

(point loss). A series of numbers is presented on screen, and participants must learn whether they 

should respond or not. The task is administered in the following three conditions: (1) Responding 

to a “good” number is rewarded and responding to a “bad” number is punished; (2) Responding to 

a “good” number is rewarded and not responding to a “bad” number is rewarded; (3) Not 

responding to a “good” number is punished and responding to a “bad” number is punished. After 

task practise participants completed 10 blocks of the task. In each block each of eight two-digit 

numbers (4 “good” and 4 “bad”) were presented once for each condition. 

Participants also completed the Cambridge Neuropsychological Test Automated Battery 

(CANTAB). The CANTAB battery has been described in detail in previous publications (Sahakian & 

Owen, 1992; Robbins et al. 1994). The CANTAB included the following games:  the ‘Pattern 

Recognition Memory’ task, in which participants were required to identify whether they had 

previously been shown a particular pattern;  the ‘Spatial working memory’ task, in which 

participants were required to touch a series of squares on a screen to find a hidden ‘token’ and 

avoid revisiting already examined boxes;  the ‘Rapid visual information processing’ task, in which 

participants watched a series of digits on screen and were required to identify a particular pattern; 

and the ‘Affective Go-no-Go’ Task, in which participants were asked to respond only to words that 

belong to one of four categories: Positive, anxiety-related, depression-related, or neutral. For the 

CANTAB tasks measures of response time, errors, and task strategy were included. 
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3.2.5. MRI data processing 

fMRI data from the following contrasts were used, resulting in a total of 1330 MRI and 

fMRI variables: SST (Stop success, stop failure), GCA (Auditory math, visual math, auditory 

sentences, reading sentences), Faces (neutral vs. control, angry vs. control, angry vs. neutral), MID 

(anticipation of large vs. small win, anticipation of large vs. no win, feedback large vs. small win, 

feedback large vs. no win). 

Grey matter volume data and fMRI data from all contrasts were extracted for 95 regions of 

interest (ROIs). This included 86 masks from the Automated Anatomical Labelling (AAL) atlas 

(Tzourio-Mazoyer et al., 2002), three aggregated masks based on the AAL masks for the entire 

vermis, and for the left and right cerebellum. Custom masks for the bilateral ventral striatum, and 

the caudate and putamen excluding the ventral striatum were also included. 

Any missing data were imputed based on the mean for participants of the same sex at the 

same data collection site. Participants who were missing all data for any of the included contrasts 

(or grey matter) were excluded from further analysis. 

3.2.6. Smoking behaviour classification 

Scores on the ESPAD are ranked as follows: 0: no lifetime use, 1: 1 to 2 uses, 2: 3 to 5 uses, 

3: 6 to 9 uses; 4: 10 to 19 uses, 5: 20 to 39 uses, 6:40 or more uses. Adolescents were defined as 

smokers at each timepoint if they scored 6 for the lifetime scale and at least 3 for the past month 

scale. Non-smoking was defined as a maximum score of 1 on the lifetime scale and 0 on the past 

month scale. Mean ESPAD scores for these measures for each group are reported in Table 3.2.  

Table 3.2. ESPAD scores by group, mean (SD) 

 

3.2.7. Elastic Net analysis 

Prediction models were created for the following group comparisons: (1) NS vs. EOS, (2) NS 

vs. LOS, (3) NS vs. EOS/LOS, (4) EOS vs. LOS. Separate analyses were carried out using only 

neuroimaging data or psychometric data (unimodal models), or neuroimaging and psychometric 

data (multimodal models). All analyses were carried out using the Elastic Net (Zou & Hastie, 2005). 

 Baseline smoking Follow-up 1 smoking Follow-up 2 smoking 

 Lifetime Month Lifetime Month Lifetime Month 

NS 0.028 (.16) - 0.120 (.32) - 0.250 (.43) - 

EOS 0.440 (.50) - 6 3.661 (.90) 6 4.152 (.78) 

LOS 0.121 (.33) - 0.515 (.50) - 6 3.636 (.82) 
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The Elastic Net is an implementation of regularized regression, which is used to attenuate 

overfitting by penalizing the size of the regression weights. In this study we combined the Elastic 

Net with nested cross-validation to determine the ideal parameters for each cross-validation fold. 

The optimal model parameters were identified based on the F1 score for analyses with balanced 

groups (EOS vs. LOS), and based on recall (i.e. percentage of smokers correctly classified) for all 

other analyses. The F1 score is a metric combining precision (i.e. percentage of smokers among 

participants classified as smokers) and recall. 

For each comparison, 20 prediction models with different cross-validation fold allocations 

were created and results were aggregated across iterations. All analyses were carried out using 

actual group membership as the outcome variable, in addition to a random-label permutation of 

group membership to create a null-model. Findings were determined to be significant if F1 score 

and Area under the curve (AUC) obtained using the real group assignment were significantly higher 

than F1 score and AUC obtained using a random group assignment. Predictors for each model are 

said to pass the significance threshold and are reported if the frequency with which the predictor 

was selected by the Elastic Net across models and the mean absolute beta weight were larger than 

the 95th percentile for the null models and actual models. For items with binary responses from the 

LEQ and DAWBA questionnaires (such as lifetime occurrence of an event or presence of a 

behaviour or symptom) the number of participants from each group who endorsed the item are 

reported to allow for a determination whether effects may have been driven by a small number of 

positive responses. 

Cannabis use was identified as a strong predictor of future smoking. Of the 1833 

participants included in the IMAGEN study who satisfied the smoking inclusion criterion at baseline, 

34 had tried cannabis (of 165 participants who had tried cannabis overall). Of these 34 participants 

12 did not return for follow-up assessments. The remaining 22 participants did not differ in 

reported lifetime smoking or cannabis use from the 12 participants who were lost to the study. 

After excluding participants due to missing datapoints four participants who had tried cannabis at 

baseline remained in the sample. Of these, three fell into the EOS group and one into the LOS 

group. As smoking cannabis often also involves use of tobacco, analyses were carried out with and 

without the inclusion of variables measuring cannabis use. The results with and without the 

inclusion of cannabis use as a predictor varied only very slightly, and all discrepancies are reported 

in Appendix B. 

3.3. Results 

The unimodal neuroimaging models only reached significance for the prediction of LOS 

compared to NS, with 57 significant predictors of which 6 were also seen in the multimodal model. 

Classification for the unimodal psychometric and for the multimodal models was significant for all 
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group comparisons (see Table 3.3, Appendix B.1 for models without cannabis predictors). Recall 

(the rate of correctly classified smokers) was above two thirds for all unimodal psychometric and 

multimodal analyses (see Figure 3.1).  

Based on inspection of the number of features that passed the predictor significance 

threshold in all null models and actual models (mean .04% for null models and mean 2.7% for 

actual models) the approximate false discovery rate was ~1.5%. For both psychometric and 

neuroimaging data the predictors that were significant followed a similar pattern in the unimodal 

and multimodal models (see Table 3.4) and in the models with and without cannabis predictors 

(see Appendix B.2). For the models comparing NS and EOS no predictors survived the comparison 

with the null models, despite good performance of the models. For analyses excluding cannabis 

predictors there were significant psychometric predictors of EOS compared to NS, which are 

reported in Appendix B.4. The ten strongest predictors for each model are reported in Table 3.5 

(see Appendix B.3 for analyses excluding cannabis predictors). 

Table 3.3. Mean AUC and F1 score for all analyses 

 

Table 3.4. Number of predictors of each type that were significant for each analysis 

 Neuroimaging model Psychometric model Multimodal model 

 AUC F1 score AUC F1 score AUC F1 score 

EOS vs. NS 0.478 0.212 0.841** 0.485** 0.799** 0.461** 

LOS vs. NS 0.557** 0.173** 0.715** 0.224** 0.706** 0.253** 

EOS/LOS vs. NS 0.510 0.296 0.787** 0.489** 0.770** 0.491** 

EOS vs. LOS 0.444 0.530 0.623** 0.590** 0.574* 0.567* 

* p<.0005; **p<.00005 

 Neuroimaging predictors Psychometric predictors 

 Multimodal model Multimodal model*  Unimodal model 

EOS 0 0 (0) 0 

LOS 8 15 (3) 27 

EOS/LOS 3 80 (34) 34 

EOS vs. LOS 26 59 (29) 34 

*Number of psychometric predictors significant in both the unimodal psychometric and multimodal models in 

brackets 



99 
 

 

 

Figure 3.1. Recall (% of positive class correctly identified) and Specificity (% of negative class correctly identified) for all models. Positive class is the smoker 

group for analyses ‘EOS’, ‘LOS’, and ‘EOS/LOS’. For analysis ‘EOS vs LOS’ positive class is LOS. EOS: Early-onset smokers; LOS: Late-onset smokers. 
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Table 3.5. Ten predictors with highest absolute regression weights for all significant models 

  LOS EOS/LOS EOS vs. 

LOS 

TCI-R 

 Novelty-seeking - - -.052 

 Disorderliness (‘I am not very good at talking my way out of trouble 

when I am caught doing something wrong’) 

- - -.067 

 Exploratory excitability (‘I am slower than most people to get 

excited about new ideas and activities’) 

- - -.049 

DAWBA 

 Parent: popularity - - -.063 

 Parent: Recent deliberate self-harm - .030 - 

 Teacher: other psych. development concerns - - .088 

 ADHD clinical rating -.161 - - 

 ADHD hyperactive-impulsive clinical rating -.174 - - 

ESPAD 

Alcohol 

 Lifetime drunkenness occasions - .031 - 

 Past month drunkenness occasions - .030 - 

Cannabis 

 First cannabis use - -.037 - 

 Lifetime cannabis use - .037 - 

 Past year cannabis use - .037 - 

 Past month cannabis use - .031 - 

 Past week cannabis use - .031 - 

Inhalants 

 Past year inhalant use - .028 - 

 Past month inhalant use - .055 - 

Family variables 

 Parent: ‘Gets help and support when stressed’ .146 - - 

 Parent lifetime cocaine use -.126 - - 

Parent variables 

 NEO-ffi parent: Neuroticism (‘At times I have been so ashamed I just 

wanted to hide’) 

- - -.058 

Neuroimaging variables 

 GCA1: Heschl’s gyrus, L -.148 - - 

 GCA1: Heschl’s gyrus, R -.123 - - 
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 GCA1: Superior temporal gyrus, L -.143 - - 

 GCA1: Rolandic operculum, L -.133 - - 

 SST (stop success): Cerebellum, R - - .049 

 SST (stop failure): Amygdala, L -.124 - - 

 MID1: Medial orbitofrontal cortex, L - - -.055 

 MID1: Inferior frontal gyrus, pars triangularis, L - - -.051 

 MID2: Posterior cingulate cortex, L -.135 - - 

 Faces1 : Posterior cingulate cortex, R - - .058 

The positive class for ‘EOS’, ‘LOS’, and ‘EOS/LOS’ is the smoker group and LOS for ‘EOS vs. LOS’. GCA1: GCA 

auditory sentences; MID1: MID task anticipation of large win minus no win; MID2: MID task feedback large 

win minus small win; Faces1: Faces task, angry affective facial stimuli minus control stimuli.  

3.3.1. Neuroimaging predictors 

3.3.1.1. Grey matter volume 

In the unimodal model only, lower volume in the right supramarginal gyrus predicted LOS 

compared to NS. LOS compared to EOS was predicted by lower volume in the left inferior parietal 

lobule in the multimodal model. 

3.3.1.2. SST (see Table 3.6, Figure 3.2) 

Stop success: In the unimodal model LOS compared to NS was predicted by higher activity 

in the right OFC. Higher activity in the orbital extension of the right MFG and SFG also predicted 

LOS compared to EOS in the multimodal model. LOS compared to EOS was also predicted by higher 

activity in the left calcarine fissure, cuneus, angular and lingual gyrus, superior occipital gyrus, and 

in the right cerebellum in the multimodal model. 

Failed stopping: In both the unimodal and multimodal models LOS compared to NS was 

predicted by lower left amygdala activity. In the unimodal model only, LOS compared to NS was 

predicted by lower left superior temporal pole activity and higher left inferior occipital gyrus and 

right postcentral gyrus activity. Higher activity in the right paracentral lobule predicted EOS/LOS 

compared to NS in the multimodal model. 
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Figure 3.2. ROIs significantly predicting smoking status during successful and failed response 

inhibition in the SST. 

 

Table 3.6. Significant neuroimaging predictors from the Stop Signal Task 

 

  

Task contrast  LOS EOS/LOS LOS vs. EOS 

Unimodal Multimodal Multimodal Multimodal 

Failed stopping Paracentral lobule, R   0.0092  

Postcentral gyrus, R 0.0285    

Amygdala, L -0.0537 -0.1248   

Superior temporal pole, L -0.0282    

Inferior occipital lobe, L 0.0337    

Stop success Orbital extension of IFG, R 0.0292    

Orbital  extension of MFG, R 0.0404   0.0349 

Orbital  extension of SFG, R 0.0367   0.0388 

Angular gyrus, L    0.0253 

Calcarine fissure, L    0.0288 

Cuneus, L    0.0373 

Lingual gyrus, L    0.0305 

Superior occipital lobe, L    0.0245 

Cerebellum, R    0.0491 
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3.3.1.3. MID task (see Table 3.7, Figure 3.3) 

Anticipation of large vs. no win: In the unimodal model only, LOS compared to NS was 

predicted by lower activity in the right ACC, orbital extension of the MFG, superior temporal pole, 

and the vermis. Lower activity in the bilateral ACC and orbital extension of the MFG, left IFG pars 

triangularis and olfactory gyrus also predicted LOS compared to EOS in the multimodal model. 

Anticipation of large vs. small win: In the unimodal model only, LOS compared to NS was 

predicted by lower activity in the left ACC, orbital extension of the MFG and medial SFG. 

Feedback for large vs. no win: In the unimodal model only, LOS compared to NS was 

predicted by higher activity in the left paracentral lobule. Higher activity in this region also 

predicted EOS/LOS compared to NS in the multimodal model. In the unimodal model higher activity 

in the bilateral caudate and anterior and middle cingulum, and lower activity in the left PCC and 

bilateral middle temporal gyrus predicted LOS compared to NS. Further predictors of LOS 

compared to NS in the unimodal model were higher activity in the left medial SFG, right SFG, right 

paracentral lobule and bilateral SMA, and lower activity in the left calcarine fissure and Heschl’s 

gyrus. 

Feedback for large vs. small win: In both the unimodal and multimodal models LOS 

compared to NS was predicted by lower bilateral PCC activity. In the unimodal model, LOS 

compared to NS was also predicted by lower activity in the left SMA and higher activity in the right 

ACC, right inferior occipital gyrus, and the vermis. Higher activity in the vermis and left orbital 

extension of the MFG also predicted LOS compared to EOS in the multimodal model. 
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Figure 3.3. ROIs significantly predicting smoking status during anticipation and feedback for large 

compared to small reward and large compared to no reward in the MID task. 
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Table 3.7. Significant neuroimaging predictors from the Monetary Incentive Delay Task 

Task contrast  LOS EOS/LOS LOS vs. EOS 

Unimodal Multimodal Multimodal Multimodal 

Anticipation: 

Large win vs. no 

win 

Medial OFC, L    -0.0553 

Medial OFC, R    -0.0397 

Olfactory gyrus, L    -0.0299 

Orbital  extension of the 

MFG, R 

-0.0286    

IFG, pars triangularis, L    -0.0512 

Anterior cingulate, L    -0.0337 

Anterior cingulate, R -0.0276   -0.0332 

Superior temporal pole, R -0.0262    

Vermis -0.0352    

Anticipation: 

Large win vs. 

small win 

Medial SFG, L -0.0281    

Medial OFC, L -0.0303    

Anterior cingulate, L -0.0365    

Feedback: Large 

win vs. no win 

Medial SFG, L 0.0268    

SFG, R 0.0330    

Paracentral lobule, L 0.0318  0.0116  

Paracentral lobule, R 0.0421    

SMA, L 0.0318    

SMA, R 0.0337    

Anterior cingulate, L 0.0289    

Anterior cingulate, R 0.0284    

Middle cingulate, L 0.0258    

Middle cingulate, R 0.0258    

Posterior cingulate, L -0.0300    

Caudate, L 0.0311    

Caudate, R 0.0368    

Heschl's gyrus, L -0.0260    

Middle temporal gyrus, L -0.0472    

Middle temporal gyrus, R -0.0328    

Calcarine fissure, L -0.0263    

Feedback: Large 

win vs. small win 

Orbital  extension of the 

MFG, L 

   -0.0236 

SMA, L -0.0262    

Anterior cingulate, R 0.0270    

Posterior cingulate, L -0.0444 -0.1359   

Posterior cingulate, R -0.0414 -0.1074   

Inferior occipital lobe, R 0.0282    

Vermis 0.0711   0.0397 
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3.3.1.4. Faces task (see Table 3.8, Figure 3.4) 

Neutral faces vs. control: In the unimodal model only, LOS compared to NS was predicted 

by higher activity in the right PCC and left orbital extension of the SFG, and lower activity in the left 

inferior temporal gyrus. 

Angry faces vs. control: In the unimodal model only, LOS compared to NS was predicted by 

higher activity in the right PCC. Higher activity in the bilateral PCC also predicted LOS compared to 

EOS in the multimodal model. In the unimodal model, LOS compared to NS was also predicted by 

higher activity in the right caudate and ventral striatum, and in the left gyrus rectus, and by lower 

activity in the left inferior parietal lobule and postcentral gyrus. LOS compared to EOS was 

predicted by lower activity in the left middle and superior temporal pole and middle temporal 

gyrus in the multimodal model. 

Angry vs. neutral faces: In the unimodal model only, LOS compared to NS was predicted by 

lower activity in the right orbital extension of the SFG, and higher activity in the right ventral 

striatum, right middle occipital gyrus, bilateral parahippocampal gyri and right hippocampus. 

Higher activity in the left parahippocampal gyrus also predicted EOS/LOS compared to NS in the 

multimodal model. 

 

 

 

 

 

Figure 3.4. ROIs 

significantly 

predicting smoking 

status during the 

affective face viewing 

paradigm for 

affectively neutral or 

angry faces 

compared to control 

stimuli or for angry 

compared to neutral 

face stimuli. 
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Table 3.8. Significant neuroimaging predictors from the Affective Face processing Task 

 

3.3.1.5. GCA task (see Table 3.9, Figure 3.5) 

Visual math: Activity in the insula was a significant predictor of LOS compared to NS in both 

the unimodal and multimodal models, but the direction of the effect differed such that lower left 

insula activity was predictive of LOS in the multimodal model, and higher bilateral insula activity 

was predictive of LOS in the unimodal model. In the unimodal model, higher activity in the right 

caudate and putamen also predicted LOS compared to NS. In the multimodal model differentiating 

smoking trajectories higher right putamen activity also predicted LOS compared to EOS. 

Listening to sentences: In both the unimodal and multimodal models LOS compared to NS 

was predicted by lower activity in left Heschl’s gyrus and the superior temporal gyrus. Lower 

activity in the right Heschl’s gyrus and left Rolandic operculum were predictive of LOS compared to 

Task contrast  LOS EOS/LOS LOS vs. EOS 

Unimodal Multimodal Multimodal Multimodal 

Neutral faces vs. 

control stimuli 

Posterior cingulate, R 0.0259    

Orbital  extension of the 

SFG, L 

0.0263    

Inferior temporal gyrus, L -0.0253    

Angry faces vs. 

control stimuli 

Posterior cingulate, L    0.0291 

Posterior cingulate, R 0.0292   0.0586 

Inferior parietal lobule, L -0.0306    

Postcentral gyrus, L -0.0274    

Caudate, R 0.0252    

Gyrus rectus, L 0.0256    

Ventral striatum, R 0.0269    

Middle temporal gyrus, L    -0.0350 

Middle temporal pole, L    -0.0296 

Superior temporal pole, L    -0.0261 

Angry faces vs. 

neutral faces 

Orbital  extension of the 

SFG, R 

-0.0299    

Hippocampus, R 0.0304    

Middle occipital lobe, R 0.0364    

Parahippocampal gyrus, L 0.0394    

Parahippocampal gyrus, R 0.0485    

Ventral striatum, R 0.0291    
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NS in the multimodal model only. In the unimodal model higher activity in the left inferior occipital 

gyrus and lower activity in the right parahippocampal gyrus also predicted LOS compared to NS. 

LOS compared to EOS was predicted by lower activity in the left precentral gyrus in the multimodal 

model. 

Reading sentences: In the unimodal model only, lower activity in the right olfactory and 

supramarginal gyri predicted LOS compared to NS. Lower activity in the right inferior parietal lobule 

and left orbital extension of the MFG predicted LOS compared to EOS in the multimodal model.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. ROIs 

significantly 

predicting smoking 

status during visual 

and auditory 

presentation of 

sentences and 

visual presentation 

of mathematical 

stimuli during the 

GCA task. 
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Table 3.9. Significant neuroimaging predictors from the Global Cognitive Assessment Task 

 

3.3.2. Substance use (ESPAD) (Appendix C.1) 

3.3.2.1. Alcohol 

EOS/LOS compared to NS was predicted by higher alcohol use in the unimodal and 

multimodal models. This included higher lifetime, past year, and past month drunkenness 

occasions, higher level of drunkenness at the last drunkenness occasion, and earlier first occasion 

of being drunk and of drinking spirits. In the multimodal model EOS/LOS compared to NS was also 

predicted by higher lifetime bingeing occasions, and by higher lifetime and past year drinking 

occasions.  

Earlier first occasion of drinking wine predicted LOS compared to NS in the unimodal model 

and EOS/LOS compared to NS in the multimodal model. Higher number of drinks typically 

consumed when drinking predicted LOS compared to NS in the unimodal model and EOS/LOS 

compared to NS in the unimodal and multimodal models. 

Task contrast  LOS EOS/LOS LOS vs. EOS 

Unimodal Multimodal Multimodal Multimodal 

Listening to 

sentences 

Precentral gyrus, L    -0.0296 

Parahippocampal 

gyrus, R 

-0.0270    

Rolandic operculum, L  -0.1337   

Heschl's gyrus, L -0.0261 -0.1486   

Heschl's gyrus, R  -0.1237   

Superior temporal 

gyrus, L 

-0.0259 -0.1430   

Inferior occipital lobe, L 0.0328    

Reading 

sentences 

Olfactory gyrus, R -0.0264    

Orbital  extension of 

the MFG, L 

   0.0250 

Inferior Parietal lobule, 

R 

   -0.0270 

Supramarginal gyrus, R -0.0276    

Visual 

arithmetic 

Insula, L 0.0281 -0.1077   

Insula, R 0.0256    

Caudate, R 0.0292    

Putamen, R 0.0293   0.0262 
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3.3.2.2. Cannabis 

EOS/LOS compared to NS was predicted by earlier first use of cannabis and higher lifetime 

and past year cannabis use in the unimodal and multimodal models. In the multimodal model 

higher past month and past week cannabis use also predicted EOS/LOS compared to NS. 

3.3.2.3. Drugs of abuse 

Ever having heard of ‘Coke’, ‘Heroin’, ‘MDMA’, or ‘Narcotics’ predicted EOS compared to 

LOS in the multimodal model. However, self-report of ever having wanted to try any drugs of abuse 

predicted EOS/LOS compared to NS in the multimodal model. 

Ever having heard of Inhalants predicted NS compared to LOS in the unimodal model and 

EOS compared to LOS in the unimodal and multimodal models. Past year and past month inhalant 

use predicted EOS/LOS compared to NS in the multimodal model. While inspection of the data 

revealed that participants in all groups had used inhalants in the past year, past month use was 

reported by only one participant each from the two smoker groups. 

3.3.3. Personality (Appendix C.2) 

In the multimodal model EOS/LOS compared to NS was predicted by parents describing 

their child as ‘lively’. 

3.3.3.1. TCI-R 

Novelty-seeking: In both the unimodal and multimodal models higher scores on the TCI 

novelty-seeking scale predicted EOS/LOS compared to NS, and EOS compared to LOS. No effect for 

LOS compared to NS was observed. As novelty-seeking was one of the strongest predictors of EOS 

compared to LOS and is widely used in the literature a series of two-sample t-test were carried out 

to further evaluate this effect. Inspection of the data revealed that the EOS group had significantly 

higher values for novelty-seeking than the NS group (p=10*10^-12, t=6.96) and the LOS group 

(p=.0019, t=3.19), but the NS and LOS groups did not significantly differ (p=.0255, t=2.24). 

Disorderliness: Higher scores on the disorderliness subscale of the TCI novelty-seeking scale 

predicted EOS/LOS compared to NS and EOS compared to LOS in unimodal and multimodal models. 

In both models, endorsement of the item ‘I often break rules and regulations when I think I can get 

away with it’ predicted EOS/LOS compared to NS, and in the multimodal model endorsement of 

the item ‘I am not very good at talking my way out of trouble when I am caught doing something 

wrong’ predicted NS compared to EOS/LOS. This latter item also predicted LOS compared to NS in 

the unimodal and multimodal models. In the multimodal model endorsement of the item ‘I can 

usually do a good job of stretching the truth to tell a funnier story or to play a joke on someone’ 
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and disagreement with the item ‘Even when most people feel it is not important, I often insist on 

things being done in a strict and orderly way’ also predicted EOS compared to LOS. 

Exploratory excitability: In both the unimodal and multimodal models LOS compared to 

EOS was predicted by lower scores on the exploratory excitability scale, and endorsement of the 

item ‘I am slower than most people to get excited about new ideas and activities’. In the 

multimodal model LOS compared to EOS was also predicted by endorsement of the item ‘I 

conversations I am much better as a listener than as a talker’.  

Extravagance: EOS/LOS compared to NS was predicted by higher scores on the 

extravagance scale, lower endorsement of the item ‘I am better at saving money than most 

people’, and higher endorsement of the item ‘Because I so often spend too much money on 

impulse, it is hard for me to save money - even for special plans like a vacation’ in the unimodal and 

multimodal models. Endorsement of the latter item also predicted LOS compared to NS in the 

unimodal model. In the multimodal model EOS/LOS compared to NS was also predicted by 

endorsement of the item ‘I often spend money until I run out of cash or get into debt from using 

too much credit’ and disagreement with the items ‘I enjoy saving money more than spending it on 

entertainment or thrills’ and ‘Some people think I am too stingy or tight with my money’. LOS 

compared to EOS was predicted by endorsement of the item ‘I am much more reserved and 

controlled than most people’ and disagreement with the item ‘It is fun for me to buy things for 

myself’ in the multimodal model. 

Impulsiveness: LOS compared to EOS was predicted by endorsement of the TCI 

impulsiveness subscale item ‘I like to think about things for a long time before I make a decision’ in 

the multimodal model. 

3.3.3.2. NEO-ffi 

Agreeableness: Lower scores on the NEO-ffi agreeableness scale predicted LOS compared 

to NS in the unimodal model and LOS compared to EOS in the unimodal and multimodal models. 

LOS compared to NS was also predicted in the unimodal model by lower parent-reported 

politeness in the DAWBA, and by lower endorsement of the NEO-ffi agreeableness item ‘I try to be 

courteous to everyone I meet’ and higher endorsement of the items ‘If I don’t like people, I let 

them know it’ and ‘If necessary, I am willing to manipulate people to get what I want’. EOS/LOS 

compared to NS was predicted by lower endorsement of the NEO-ffi item ‘I generally try to be 

thoughtful and considerate’ in the multimodal model.  

Conscientiousness: EOS/LOS compared to NS was predicted by lower scores on the 

conscientiousness scale of the NEO-ffi and by lower endorsement of the following items in the 
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unimodal and multimodal models: ‘I work hard to accomplish my goals’, ‘I am a productive person 

who always gets the job done’, and ‘I strive for excellence in everything I do’. In the multimodal 

model EOS/LOS compared to NS was also predicted by endorsement of the item ‘I never seem to 

be able to get organized’. Parents’ characterization of their child as ‘Keen to learn’ and ‘Does 

homework without reminding’ also predicted NS rather than EOS/LOS in the multimodal model. 

However, parents characterizing their child as taking care of their appearance predicted LOS 

compared to NS in the multimodal model. 

Neuroticism: EOS compared to LOS was predicted by endorsement of the NEO-ffi 

neuroticism scale item ‘I often feel helpless and want someone else to solve my problems’ and 

disagreement with the item ‘I am seldom sad or depressed’ in the multimodal model. 

Openness:  In both the unimodal and multimodal model endorsement of the NEO-ffi 

openness scale item ‘I am intrigued by pattern I find in art and nature’ predicted EOS compared to 

LOS. Endorsement of the item ‘I often try new and foreign foods’ predicted EOS/LOS compared to 

NS in the multimodal model, while endorsement of the item ‘I have a lot of intellectual curiosity’ 

predicted LOS compared to EOS in the multimodal model. 

3.3.3.3. SURPS 

Sensation seeking: Summary scores for the SUPRS sensation seeking scale and 

endorsement of the item ‘I would like to learn how to drive a motorcycle’ predicted EOS/LOS 

compared to NS in the unimodal and multimodal models. Endorsement of the item ‘I would like to 

skydive’ predicted LOS compared to NS in the unimodal model and EOS/LOS compared to NS in the 

multimodal model. Endorsement of the item ‘I enjoy new and exciting experiences even if they are 

unconventional’ predicted EOS/LOS compared to NS in the multimodal model. Endorsement of the 

item ‘I am interested in experience for its own sake even if it is illegal’ predicted EOS/LOS 

compared to NS in the multimodal model, EOS compared to LOS in the unimodal and multimodal 

models. 

Impulsiveness: EOS/LOS compared to NS was predicted by scores on the SURPS 

impulsiveness scale in the multimodal model. 

Anxiety sensitivity: LOS compared to EOS was predicted by lower scores on the anxiety 

sensitivity scale of the SURPS in the unimodal and multimodal models. In the multimodal model 

LOS compared to EOS was also predicted by lower endorsement of the items ‘I get scared when I’m 

too nervous’ and ‘I get scared when I experience unusual body sensations’. LOS compared to NS 

was also predicted by lower endorsement of the latter item in the unimodal model. 
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3.3.3. Life history (LEQ) (Appendix C.3) 

The number of participants from each group who endorsed each of the significant LEQ 

predictors (for occurrence in the past year or lifetime), or rated the emotional valence of an event 

as neutral or positive are shown in table 3.10. 

NS compared to LOS was predicted by adolescents reporting on the LEQ that they had ever 

‘found religion’ in the multimodal model.  

 

Table 3.10. Number of participants from each group who endorsed significant LEQ predictors 

 NS (%) EOS (%) LOS (%) 

Ever ‘found religion’ 168 (36.84) 21 (35.59) 7 (21.21) 

Valence*: family member accident/injury 17 (3.72) 1 (1.69) 3 (9.09) 

Valence*: self accident/injury 12 (2.63) 3 (5.08) 5 (15.15) 

Ever: self accident/injury 63 (13.81) 9 (15.25) 10 (30.30) 

Past year: Death in family 94 (20.61) 23 (38.98) 7 (21.21) 

Ever: started going out with a boy/ girlfriend 193 (42.32) 39 (66.10) 26 (78.78) 

Ever: broke up with with a boy/ girlfriend 147 (32.23) 32 (54.23) 23 (69.69) 

Past year: started going out with a boy/ girlfriend 117 (25.65) 28 (47.45) 22 (66.66) 

Past year: broke up with with a boy/ girlfriend 82 (17.98) 18 (30.50) 19 (57.57) 

Valence*: ‘stole something valuable’ 106 (23.24) 11 (18.64) 15 (45.45) 

Past year: Parent changed jobs 83 (18.20) 18 (30.50) 10 (30.30) 

Valence*: Parent changed jobs 435 (95.39) 58 (98.30) 29 (87.87) 

Past year: Parent remarried 2 (0.43) 0 (0.00) 2 (6.06) 

*Figures for valence items refer to the number of participants who rated their feelings about the 

item as ‘neutral’, ‘happy’, or ‘very happy’. Remaining participants rated their reponse as ‘unhappy’ 

or ‘very unhappy’. 

3.3.3.1. Accident scale 

LOS compared to EOS was predicted by more positive reported valence for the idea of a 

family member or the adolescent themselves sustaining a serious injury or being involved in a 

serious accident in both the unimodal and multimodal models. Valence of sustaining a serious 

injury or accident themselves also predicted LOS compared to NS in all models. Examination of the 

data revealed that a larger portion of the LOS group than in the other groups had selected that 

their emotional response to these events would be ‘neutral’ rather than negative. Ever having 
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sustained a serious accident or injury predicted LOS compared to EOS in the multimodal models 

and LOS compared to NS in the unimodal model.  

Having experienced a death in the family in the past year predicted EOS/LOS compared to 

NS in the multimodal model. 

3.3.3.2. Sexual and romantic experience scale 

Summary scores on the sexuality scale of the LEQ for the past year predicted LOS 

compared to NS in the unimodal model and EOS/LOS compared to NS in the unimodal and 

multimodal models. The summary score for lifetime occurrence of items in this scale predicted 

EOS/LOS compared to NS in the multimodal model. 

Having ever started going out with a boyfriend or girlfriend and ever having broken up 

predicted LOS compared to NS on the unimodal model and EOS/LOS compared to NS in the 

multimodal model. Having started going out with a boyfriend or girlfriend in the past year 

predicted LOS compared to NS in the unimodal model and EOS/LOS compared to NS in the 

unimodal and multimodal models. Having broken up with a boyfriend or girlfriend in the past year 

predicted LOS compared to NS in the unimodal model, EOS/LOS compared to NS in the multimodal 

model and LOS compared to EOS in the unimodal and multimodal models.  

3.3.3.3. Deviance scale 

Positive reported valence for the item ‘stole something valuable’ predicted LOS compared 

to EOS in the multimodal model. Valence for the item ‘got in trouble at school’ predicted EOS/LOS 

compared to NS in the multimodal model and LOS compared to NS in the unimodal model. 

3.3.3.4. Relocation scale 

Self-report that a parent changed jobs in the past year predicted EOS/LOS compared to NS 

in the multimodal model. More positive reported valence associated with the idea of a parent 

changing jobs predicted EOS compared to LOS in the unimodal and multimodal models. 

3.3.4. Demographic measures 

EOS/LOS compared to NS was predicted by lower self-reported academic performance in 

the past term in the unimodal and multimodal models. Self-report of ever having gotten poor 

grades in school predicted EOS compared to LOS in the multimodal model.  

3.3.5. Behaviour and psychopathology (Appendix C.4) 

The number of participants from each group who endorsed each of the significant DAWBA 

items relating to maladaptive behaviour or psychiatric symptoms is reported in table 3.11. This 
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includes only items that had binary ‘Yes’/’No’ response options or response options in the form of 

‘None’/’Somewhat’/’A lot’ when referring to the presence of behaviours or symptoms. 

 

Table 3.11. Number of participants from each group to whom significant DAWBA predictors applied 

 NS 

(n=456) 

EOS 

(n=59) 

LOS 

(n=33) 

Teacher expressed concerns about psychological development 13 1 3 

Any report of 'I took part in bullying another student/ peer at 

school’ 

63 13 3 

Any report of 'I hit, kicked, pushed, shoved around, or locked a 

student/ peer indoors.' 

31 4 6 

Any parent-report of past year lying 100 28 11 

Any parent-report of past year staying out late 70 27 7 

Any parent-report of often lying or cheating 116 32 13 

Any parent-report of past year ignoring rules/ disobedience 57 20 5 

Any parent-report of past year truancy 18 11 1 

Any parent-report of past year starting fights 30 13 2 

Any parent-report of past year starting stealing 28 10 1 

Parent-reported past month sadness 119 30 7 

Parent-report of recent deliberate self-harm 1 3 0 

Parent-report of any deliberate self-harm 23 10 2 

Computer prediction for separation anxiety (DSM-IV) 34 5 0 

Parent-report of self-blame for overeating 40 7 1 

 

LOS compared to EOS was predicted by parent-report that a teacher had expressed 

concerns about the child’s psychological development that did not fall under the areas assessed by 

the DAWBA (phobias, anxiety disorders, mood disorders, ADHD, conduct disorders, eating 

disorders, tics) in the unimodal and multimodal models.  

3.3.5.1. Antisocial behaviour and peer relationships 

In both the unimodal and multimodal models EOS compared to LOS was predicted by 

computer predictions of conduct disorder based on self-report, and self-report of having taken part 

in bullying another student or peer. In the unimodal model EOS compared to LOS was also 
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predicted by self-report of having ‘hit, kicked, pushed, showed around, or locked up a student/ 

peer indoors’. 

In the multimodal and unimodal models EOS/LOS compared to NS was also predicted by 

computer predictions of conduct disorder based on parent report, and parent-report of staying out 

late and lying in the past year, as well as often lying or cheating. In the multimodal model EOS/LOS 

compared to NS was also predicted by parent-report of ignoring rules or being disobedient, lying, 

truancy, and starting fights in the past year. Self-reported truancy in the past month predicted EOS 

compared to LOS in the unimodal and multimodal models. LOS compared to NS was predicted by 

lower parent-report of stealing in the past year in the multimodal model. 

The summary score for parent-reported peer problems on the SDQ predicted NS compared 

to EOS/LOS in the unimodal and multimodal models. Parent-report that the child ‘related better to 

adults than peers’ also predicted NS compared to EOS/LOS in the multimodal model. Parent-report 

that the child is popular predicted EOS compared to LOS in the unimodal and multimodal models. 

Self-report that they had ever ‘found a new group of friends’ predicted adolescents being NS 

compared to LOS in the unimodal model and EOS compared to LOS in the multimodal model.  

3.3.5.2. Depression (DAWBA) 

EOS compared to LOS was predicted by parent report of the child being sad in the past 

month. Any future smoking compared to NS was predicted by reports of the child recently or ever 

having engaged in deliberate self-harm. 

3.3.5.3. ADHD (DAWBA) 

In the multimodal model LOS compared to NS was predicted by lower clinical ratings for 

ADHD overall and for ADHD hyperactive-impulsive type symptoms.  

3.3.5.4. Eating disorder symptoms (DAWBA) 

In the unimodal model EOS compared to LOS was predicted by parent-report of the 

adolescent blaming themselves a lot for overeating. 

3.3.6. Cognitive and behavioural measures 

During the PALP, any future smoking was predicted by more omission errors during the 

third block using positive reinforcement for selection of correct numbers and avoidance of 

incorrect numbers in the multimodal model. LOS compared to EOS was predicted by more 

omission errors under the same reinforcement scheme in the second block in the multimodal 

model. 
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3.3.7. Parents and family environment 

3.3.7.1. Family situation (Appendix C.4) 

3.3.7.1.1. Broken home indicators. LOS compared to EOS was predicted by living with the 

biological father and with just one family rather than between homes or in alternative 

arrangements in the unimodal and multimodal models. In the unimodal model LOS compared to 

EOS was also predicted by not living with a stepfather. Compared to NS, LOS was also predicted by 

a parent having remarried in the past year, in both the unimodal and multimodal models.  

3.3.7.1.2. Parenting. Parent-report that the child ‘gets help and support when stressed’ 

predicted LOS compared to NS in the unimodal and multimodal models, and predicted LOS 

compared to EOS in the unimodal model. Parent report that the child often ‘gets blamed unfairly’ 

by family members was predictive of EOS rather than LOS in the unimodal and multimodal models, 

and having consistently applied rules predicted LOS compared to EOS in the multimodal model and 

in the unimodal model when cannabis predictors were excluded.  

3.3.7.1.3. Family relationships. Parent-report that the child likes being involved in family 

activities predicted NS compared to EOS/LOS in the multimodal model. However, self-report of 

having been bullied by a family member also predicted NS when compared to LOS in the 

multimodal model. 

Computer predictions indicating the presence of separation anxiety based on self-reported 

symptoms predicted EOS compared to LOS in the unimodal and multimodal models. 

3.3.7.1.4. Family life. In the model comparing EOS and LOS, EOS was predicted by self-

report that the family had ever had money problems in the unimodal model, while LOS was 

predicted having gotten an own TV or computer in the past year in both the unimodal and 

multimodal models. However, in the same comparison parent-report of the financial difficulties 

being a family stressor predicted LOS compared to EOS in the multimodal model. 

Parent report of family stress due to the neighbourhood or the neighbours predicted EOS 

compared to LOS in the multimodal model.  

Parent report that their partner was stressed predicted LOS compared to EOS in the 

multimodal model, and report that the partner had shown a loss of interest in usually enjoyable 

activities predicted LOS compared to NS in the unimodal model and LOS compared to EOS in the 

unimodal and multimodal models. 
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3.3.7.2. Parent NEO-ffi (Appendix C.5) 

Agreeableness: LOS compared to EOS was predicted by lower parent endorsement of the 

NEO-ffi agreeableness scale item ‘I would rather cooperate with others than compete with them’ in 

the multimodal model. EOS/LOS compared to NS was predicted by higher parental endorsement of 

the item ‘Often, people aren’t as nice as they seem to be’ in the multimodal model. 

Extraversion: LOS compared to EOS was predicted by parental endorsement of the NEO-ffi 

extraversion scale item ‘I often feel as if I’m bursting with energy’ in the multimodal model. 

Neuroticism: Parental endorsement of the NEO-ffi neuroticism scale item ‘at times I have 

been so ashamed I just wanted to hide’ predicted EOS compared to LOS in the unimodal and 

multimodal models. In the multimodal model EOS compared to LOS was predicted by higher 

parental indication of feeling ‘very sad, miserable, unhappy or tearful’ in the previous 4 weeks. 

3.3.7.3. Parent TCI-R (Appendix C.5) 

Extravagance: EOS compared to LOS was predicted by parent endorsement of the TCI 

extravagance subscale item ‘It is fun for me to buy things for myself’ in the multimodal model. 

Impulsiveness: LOS compared to EOS was predicted in both the unimodal and multimodal 

models by parental endorsement of the TCI impulsiveness subscale item ‘I usually think about all 

the facts in detail before I make a decision’. 

3.3.7.4. Parent SURPS (Appendix C.5) 

In the multimodal model parental endorsement of the SUPRS item ‘I often don’t think 

things through before I speak’ predicted EOS/LOS compared to NS.  

3.3.7.5. Parent substance use (Appendix C.5) 

Alcohol: Adolescent report that a parent had ever abused alcohol, and parent report that a 

member of the family had ever complained or worried about their drinking predicted LOS 

compared to NS in the multimodal model. Higher parent self-reported quantity of drinks consumed 

when drinking predicted EOS compared to LOS in both the unimodal and multimodal models. 

Smoking: Parental smoking in the past month predicted LOS compared to NS in the 

unimodal model and EOS/LOS compared to NS in the multimodal model.  

Higher current maternal smoking occasions and higher daily smoking predicted LOS 

compared to NS in the unimodal model. EOS/LOS compared to NS was predicted by higher 

maternal occasions of smoking, the mother ever having regularly smoked, and earlier maternal 

smoking initiation in the multimodal model. In the unimodal and multimodal models EOS/LOS 
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compared to NS was predicted by higher frequency of cigarettes smoked daily, more smoking 

occasions in the year before pregnancy, and higher daily smoking in the year before pregnancy. 

Cocaine: In the multimodal model NS compared to LOS was predicted by parent-report of 

ever having used cocaine, lifetime use occasions, and self-report of being able to stop using or 

refrain from using cocaine. Inspection of the data revealed that parents of 15 participants in the NS 

group and of four participants in the EOS group had reported ever using cocaine. 

3.3.7.6. Prenatal factors (Appendix C.5) 

EOS/LOS compared to NS was predicted by the mother having been exposed to second-

hand smoke at a later stage of pregnancy in the multimodal model.  

LOS compared to EOS was predicted by the mother having been given leave from work 

because of her pregnancy in the unimodal and multimodal models. 

3.4. Discussion 

 In this study, a machine learning algorithm capable of classifying groups based on a large 

number of variables was used to predict future smoking behaviour in adolescents, and to identify 

risk profiles for different adolescent smoking trajectories. Structural and functional neuroimaging 

data, personality, life history, psychopathology, behavioural factors, family environment, and 

parental predictors of future smoking onset were identified. The findings in this study show that 

neuroimaging data can be used as an indicator of risk for smoking behaviour at age 18 but show 

little utility for prediction of earlier smoking onset. A general risk profile for future smoking in 

adolescents was identified, as well as distinct risk profiles for adolescents who start smoking before 

or after age 16. Any future smoking was predicted by variables such as alcohol use, novelty seeking, 

and life stressors. Adolescents who self-reported antisocial behaviour and unstable family 

environments were more likely to commence smoking in the next two years, while initiating 

smoking more than two years later was predicted by brain activity in reward and inhibitory control 

networks, and by atypical affective processing and processing of auditory language stimuli. 

Anxiety sensitivity distinguished between those likely to take up smoking at an earlier age 

compared to later in adolescence. This heightened negative reaction to unusual or unexpected 

physiological sensation was previously identified by Hirschman and colleagues (1984) as a possible 

factor differentiating adolescents who smoke because of external influences such as peer pressure 

from those who smoke due to factors such as mood-related effects of smoking. In this study, those 

who remained non-smokers and those who took up smoking at an earlier age had higher anxiety 

sensitivity. In line with the hypothesis put forward by Hirschmann and colleagues (1984) it is 

possible that early-onset smokers simply had a more positive experience when first smoking than 
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individuals with equal levels of anxiety sensitivity who did not take up regular smoking, or that their 

smoking behaviour was motivated more by external factors than by the physiological sensation of 

smoking.  Those who became late-onset smokers, in contrast, are likely to represent a population 

for which the physiological sensations associated with cigarette smoking are a strong reason to 

engage in smoking behaviour. 

A further factor differentiating early-onset smokers from late-onset smokers was higher 

parent-report of the child being sad or depressed in the past month at baseline. Self-report of 

‘often feeling helpless’ and sad or depressed also predicted falling into the early- rather than the 

late-onset smoking trajectory. These variables specifically distinguished individuals as likely to have 

earlier onset of smoking behaviour, but parent-report of any deliberate self-harm was a strong 

predictor of any future smoking. While the link between depressive symptoms and smoking 

behaviour is not well understood, there is evidence that major depression is associated with 

progression to regular smoking (Breslau et al., 1998; Rohde et al., 2004), and that smokers with 

depressive symptoms are more likely to smoke to reduce negative affect (Lerman et al., 1996). A 

possible interpretation of this finding is that the presence of depressive symptoms plays a role in 

the progression to regular smoking behaviour. Based on the differences in depressive symptoms 

between smoking trajectories, depressiveness may play a larger role in early smoking onset than 

late smoking onset or be an acute risk factor for prompt onset of smoking behaviour. However, an 

important consideration given the findings of this study is that rather than depressiveness playing a 

role in the causation of smoking behaviour, deliberate self-harming behaviour may share an 

etiological pathway with smoking. While reasons for adolescent self-harm are varied (Scoliers et al., 

2009), the presence of various possible life stressors as predictors of early-onset smoking in this 

study points toward the possibility that both self-harming behaviour and smoking arise as a result 

of life history and environmental stressors. Having recently experienced a death in the family 

predicted early-onset smoking. Any future smoking was also predicted by the frequency of recent 

notable life events in general as assessed by the LEQ, and specifically by a parent’s recent change 

of jobs, and starting or ending romantic relationships. Life stressors are therefore an important 

predictor of becoming a smoker in the (near) future, and other stress-related maladaptive 

behaviours may emerge prior to smoking onset. 

The pattern of results observed in this study suggests that many variables that predicted 

early-onset smoking may not have been indicators of earlier age of onset, but rather of sooner 

smoking onset. As such, many of the predictors specific to the early-onset smoking trajectory may 

be regarded as ‘acute risk factors’, while those specific to the late-onset trajectory can be thought 

of as ‘long-term risk factors’. The higher prediction accuracy of a psychometric-only model for 

predicting early-onset than late-onset smoking can thus also be attributed to the temporal 
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dimension inherent in some of the measures employed at baseline in this study. Questions 

regarding events in the past year in the ‘Life Events questionnaire’, or recent psychopathology 

assessed using the DAWBA can be expected to have a larger effect size when predicting events in 

close temporal proximity. On the other hand, more stable environmental factors, such as family 

structure, are not subject to change with the passage of time in the same manner. 

A set of predictors that can be characterized as ‘broken home indicators’, including 

whether the child lives in a traditional nuclear family environment with two biological parents 

rather than in other circumstances predicted early- compared to late-onset smoking. Broken home 

indicators have previously been linked to future adolescent smoking behaviour (Sieber & Angst, 

1990; Covey & Tam, 1990; Tyas & Pederson, 1998; Ellickson et al., 2001). Becoming an early-onset 

smoker compared to a late-onset smoker was also predicted by lower levels of parent-support, 

which is consistent with previous research that found those adolescents who started smoking early 

and remained smokers to have lower levels of family support (Chassin et al., 2000). High parental 

support is a protective factor (Wills, Windle & Cleary, 1998). The importance of family relationships 

for smoking risk in adolescence was also underlined by any future smoking being predicted by 

parent-report that the child does not enjoy being involved in family activities. There was evidence 

in this study that various family stressors such as financial worries or increased stress and apathy in 

the parent’s partner were associated with future smoking, but these factors will require further 

investigation. 

Current parental (particularly maternal) smoking predicted any future smoking behaviour. 

While some studies have failed to find an effect of parent smoking on adolescent smoking and 

suggested that similarities in cigarette use between parents and children were likely to be 

accounted for by their genetic relatedness (Hirschman, Leventhal & Glynn, 1984; Boomsma et al., 

1994), effects of parent smoking on adolescent smoking and substance use behaviour have been 

observed in several studies (Pederson, 1997; Mayhew et al., 2000; Tyas & Pederson, 1998; 

Wellman et al., 2018). Being exposed to smoking behaviour is likely to lead to a normalization of 

smoking and to reduce negative perceptions, thereby facilitating the initiation of smoking 

behaviour (Wellman et al., 2018; Cameron, 1972). Similarly, other substance use – particularly 

alcohol and cannabis – was strongly linked to future smoking in this and other studies (Audrain-

McGovern et al., 2004a/b, 2009; Dinn et al., 2004; Rezvanfard et al., 2010). In this study parental 

alcohol use and self-reported curiosity about trying other drugs of abuse predicted smoking 

behaviour. Like environmental exposure to smoking, exposure to other substances may serve to 

reduce a sense of violation of social norms otherwise associated with smoking. Interestingly, falling 

into the late-onset smoking trajectory was predicted by lower exposure and awareness of illicit 

substances, which likely acts as a protective factor delaying onset of smoking behaviour. Late-onset 
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smoking was also predicted by problematic alcohol use by a parent, which may have acted as a 

deterrent to substance use. 

Engaging in non-normative behaviours including substance use has been hypothesized to 

be linked to failure to succeed in normative patterns of behaviour (Kaplan, Martin & Robbins, 

1984). Rebelliousness and low social conformity have been linked to elevated risk of smoking 

behaviour in adolescents across several studies (Pederson, 1997; Collins et al., 1987; Burt et al., 

2000). As observed in many previous studies (Pederson, 1997; Audrain-McGovern et al., 2004a/b, 

2009; Mayhew et al., 2000; Ellickson et al., 2001; Soldz & Cui, 2002; Wellman et al., 2018), low 

academic performance was predictive of future smoking. Additionally, more positive feelings about 

getting in trouble at school also predicted smoking, indicating low motivation to respect rules. A 

number of other self-reported statements indicating a high tolerance for deviant or even illegal 

behaviour also predicted smoking. In particular, short-term smoking risk was predicted by 

experiencing trouble with the law in the past year, and with reporting that illegality would not be a 

deterrent to engaging in behaviours for the sake of the sensation or experience. While measures of 

impulsive behaviour were predictive of all smoking in this study, novelty-seeking and antisocial 

behaviours were predictive specifically of early-onset smoking. This is a departure from previous 

studies using group-comparisons, in which novelty-seeking was found to be increased in early and 

late-onset adolescent smokers compared to non-smokers (Audrain-McGovern et al., 2004a; Dinn, 

Aycicegi & Harris, 2004), with no differences between different smoking groups (Audrain-

McGovern et al., 2009). Both conduct disorder and high novelty-seeking in adolescence have been 

linked to young adult substance dependence (Palmer et al., 2013). Previous work in antisocial 

early-onset alcohol use disorder has identified that novelty-seeking appears to be associated with 

conduct disorder and antisocial behaviour rather than with substance use (Finn et al., 2002). This is 

consistent with the finding that novelty-seeking and antisocial behaviour appear to form a 

symptom cluster that is specific to the early-onset smoking trajectory. Novelty-seeking has also 

been linked to atypical reward processing and the dopamine system. Finn et al. (2002) suggested 

that novelty-seeking is associated with paying more attention to rewards, and research in 

individuals with Parkinson’s disease has shown an effect of dopaminergic medication on novelty-

seeking (Bodi et al., 2009). Furthermore, evidence of the functional basis of conduct disorder 

points to abnormalities in the orbitofrontal cortex and associated motivation networks (Rubia et al. 

2009).  

While novelty-seeking was more strongly associated with early-onset smoking, sensation-

seeking showed a stronger effect for late-onset smoking. Sensation-seeking has previously been 

found not to be associated with conduct disorder, but with specific measures of pathological 

substance use such as binge drinking, with this relationship possibly being mediated by reward 
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response bias (Castellanos-Ryan, Rubia & Conrod, 2010). In this study, higher reward response bias 

in the passive avoidance learning paradigm predicted late-onset smoking. The fMRI predictors 

found for late-onset smoking during the MID task also point toward altered function of the 

frontostriatal reward pathway as signifying late-onset smoking risk. The frontostriatal reward 

pathway projects to the ventromedial PFC, including the ACC and OFC. These regions have been 

attributed a role in value attribution and value encoding (O’Doherty, 2004; Kable & Glimcher, 2009; 

Niv & Montague, 2009; Haber & Knutson, 2010; Chib et al., 2009), and reduced activity may reflect 

a disruption in the frontostriatal cortical network, and a deficit in the ability to generate outcome 

expectancies (Feil et al., 2010; Haber, 2016). Disruption of ACC and OFC activity is associated with 

impulsive responding (Volkow & Fowler, 2000). In this study, lower activity of the ACC, mPFC and 

OFC during anticipation of large compared to small and no reward predicted late-onset smoking 

compared to early-onset and non-smoking. Higher activity in these same areas during the outcome 

phase predicted late-onset smoking, which is in line with an account of higher sensitivity to 

rewards being a risk factor for addictive behaviours (Ersche et al., 2010; 2012; 2013a). During the 

outcome phase of the MID task, lower activity in the temporal cortex also predicted late-onset 

smoking. Activity in the middle temporal gyri is associated with cue-induced nicotine craving 

(Smolka et al., 2006), and reduced activity in this region may be an indicator of reduced valuation 

of natural reinforcers. A further pattern observed in the MID task was that late-onset smoking was 

predicted by increased activation in the paracentral lobule and SMA, and reduced activity of the 

posterior cingulate cortex (PCC, a node of the default-mode network) during reward outcomes, 

indicating increased activity of a task-positive attention network. This pattern was specific to the 

comparison of large rewards compared to no rewards, which reinforces a conclusion that higher 

attention paid to reward outcomes generally predicts late-onset smoking. Previous work has also 

found that during reward anticipation, functional connectivity of the nucleus accumbens with the 

paracentral lobule and SMA was increased in individuals with familial risk for alcoholism, and that 

this was associated with sensation-seeking (Weiland et al., 2013). Predictors assessing sensation-

seeking, parent alcohol abuse and heightened activity in these regions for reward outcomes were 

all stronger for late- than early-onset smoking, making this cluster of predictors a possible target 

for future work identifying a high-risk phenotype specific to a late-adolescent onset smoking 

trajectory. 

A facet of executive function that is closely related to reward sensitivity is inhibitory 

control. Late-onset compared to early-onset smoking was predicted by higher activity during 

successful response inhibition in the left cuneus, superior occipital gyrus, lingual gyrus, angular 

gyrus, and calcarine fissure. These regions were identified to show increased functional 

connectivity with the putamen during inhibitory control in a previous study (Akkermans et al., 
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2016). In this study, lower volume in the angular gyrus and adjacent regions predicted late-onset 

smoking compared to early-onset smoking. Increased activity in the angular gyrus during an 

inhibitory control task has previously been found to predict future substance use and dependence 

symptoms, with an indication that this effect was driven by high-frequency rather than low-

frequency users (Mahmood et al., 2013). It is therefore likely that lower angular gyrus volume 

alongside increased angular gyrus activity during inhibitory control is a marker of a phenotype that 

puts some adolescents at high risk for long-term substance use.  

During the Stop signal task higher activity in the occipital lobe, PFC, and cerebellum also 

predicted late-onset smoking compared to early-onset smoking during successful inhibitory 

control, pointing toward a pattern of compensatory activity. Increased cerebellar activity during 

response inhibition has previously been observed in cocaine users (Hester & Garavan, 2004), and a 

similar compensatory mechanism has also been observed in alcoholics (Desmond et al., 2003) and 

in individuals with schizophrenia (Meyer-Lindenberg et al., 2001; Schlösser et al., 2003). Activity in 

the right vlPFC, including part of the right IFG also predicted late-onset smoking compared to non-

smoking. The right vlPFC has been robustly linked to inhibitory control functions (Levy & Wagner, 

2011). Previous work has shown greater engagement in regions overlapping with those that 

predicted smoking in this study for inhibitory control functions in individuals with high impulsivity 

(Horn, Dolan, Elliott, Deakin & Woodruff, 2003). Given the distinctions between facets of 

impulsivity that were predictive of different smoking trajectories, a more detailed exploration of 

how domains of impulsiveness are associated with brain activity during behaviour inhibition may 

be necessary. Notably, the same predictors seen for successful inhibition did not emerge for failed 

inhibition. However, increased activity in the paracentral lobule and postcentral gyrus during failed 

inhibition predicted any smoking compared to non-smoking. Activity in the postcentral gyrus has 

previously been found to be increased for active versus inactive trials (Menon, Adleman, White, 

Glover & Reiss, 2001) and for failed versus successful inhibitory control (Garavan, Ross, Murphy, 

Roche & Stein, 2002) in Go-NoGo task paradigms. Compared to non-smoking, smoking thus 

appears to be predicted by increased effort for successful response inhibition, and greater 

engagement of a response-active set during failed inhibitory control. Furthermore, a strong 

predictor of late-onset smoking was lower amygdala activity during failed stop trials. The amygdala 

is primarily linked to inhibition in the context of affective processing, but animal studies have also 

shown that amygdala lesions impair acquisition of learned associations and impact visual attention 

(Holland, Han & Gallagher, 2000). Lower activity of the amygdala may thus contribute to poor task 

performance and lower chance of successful inhibitory control. Further exploration of the link 

between amygdala function and non-affective inhibitory control is required. 
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Apparent deficits in affective processing were observed to predict late-onset smoking 

during affective face viewing. The PCC and temporo-parietal junction are known to be related to 

self-related attribution of emotion during affective face viewing (Schulte-Ruther, Markowitsch, Fink 

& Piefke, 2007), and activity in the temporo-parietal junction has been related to deficits 

representing mental states in autism spectrum conditions (Lombardo, et al., 2011). Lower activity 

in the left temporal lobe - including much of the temporal pole (TP), and higher activity in the PCC 

predicted late-onset smoking compared to early-onset smoking. The TP is known to play a role in 

emotional processing and facial recognition (Olson, Plotzker & Ezzyat, 2007), and TP activity is 

associated with both anger and anxiety (Lorberbaum et al., 2004). Reduced activity for angry facial 

expression in this region could therefore be associated with a deficit in emotion recognition. 

Reduced TP activity to angry face stimuli was previously found to predict future binge drinking in a 

sample drawn from the same population as this study (Whelan et al., 2014), and may thus be a 

general indicator of substance use risk. Furthermore, lower agreeableness – a facet of which is 

empathy – was also found to selectively predict late-onset smoking. Previous work has established 

that there is a link between fMRI activity to affective facial stimuli and agreeableness (Haas, 

Omura, Constable & Canli, 2007). Atypical processing of angry facial cues and low agreeableness 

may therefore both be facets of a specific developmental pathway putting individuals at risk for 

smoking and may be associated with parent-report that a teacher had expressed concerns about 

the child’s psychological development, which predicted late-onset smoking. Higher activity during 

angry face viewing compared to affectively neutral and control stimuli in the right ventral striatum, 

caudate, and hippocampus, and in the parahippocampal gyri also predicted late-onset smoking. 

Damage to the ventral striatum is associated with impaired recognition of anger (Calder et al., 

2004). Sensitization to angry facial cues occurs in the hippocampus (Strauss et al., 2005), and 

increased responding to emotional cues in the hippocampus and parahippocampal gyri has been 

observed in patients with anxiety disorders (Etkin & Wager, 2007). However, activity in the striatum 

and hippocampus did not differentiate significantly between smoking trajectories, making it 

possible that this effect is not unique to the late-onset trajectory.  

A predictive effect of fMRI activity in language-processing regions during exposure to 

language stimuli was also found. During auditory presentation of sentences in the Global Cognitive 

Assessment task, late-onset smoking was predicted by lower activity in regions including 

Wernicke’s area and the auditory cortex, as well as the parahippocampal gyrus. Findings relating 

parahippocampal activity to language processing have mostly focused on visual representations of 

language (Jouen et al., 2015), but there is also some evidence for an association between 

connectivity of the parahippocampal gyri and auditory hallucinations (Alderson-Day et al., 2015). 

Higher activity in occipital regions known to show task-related functional connectivity to the 
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anterior temporal lobe region which is central to semantic processing (Jackson et al., 2016) also 

predicted late-onset smoking. Taken together, these results suggest that abnormalities in the 

processing of auditory language stimuli may be a risk-factor for future smoking behaviour. The 

relatively strong effect seen for affective face processing and the lower fMRI activity seen for 

semantic processing may be part of a specific cluster of developmental traits that are associated 

with using nicotine as a form of self-medication or self-regulation later in adolescence. 

3.4.1. Discussion of methodology 

This is one of the first studies to show that combining neuroimaging data with data from 

another modality, specifically psychometric self-report and behavioural data in a machine learning 

framework is a viable and beneficial way to gain insight into the aetiology and developmental 

precursors of a maladaptive outcome. The neuroimaging predictors of the smoking outcome 

identified in this study largely expressed cognitive and developmental domains that could be linked 

to non-imaging predictor variables. In future studies of this nature an evaluation of variable 

clusters, correlation structures, or factors in the combined neuroimaging and non-imaging data 

may be beneficial to help examine the themes in resultant sets of predictor variables. However, 

such an analysis step should be incorporated into the analysis protocol as a variable creation or 

variable selection step to avoid post-hoc examination of the already analysed data. 

An unusual analytical decision in this study was to include not only summary values for 

various personality and life-history questionnaires, but to also include responses to individual 

items. As scores for individual items and summary scores including these items are highly 

correlated, including both types of variables carries the risk of failing to discover an important 

effect because the variance of said effect was shared between multiple predictor variables. 

However, in this study only a minority of features and of significant predictors were summary 

scores, while a majority were responses to individual items. A notable example of how including 

individual questionnaire items was beneficial in this study comes from the NEO-ffi ‘Openness’ 

scale, where responses to individual items showed opposite effects when classifying early- and 

late-onset smokers. These facets of the ‘Openness’ trait would not have been discovered through 

inclusion of only the summary value, which itself was not significant in this study. However, to be 

consistent with previous research the inclusion of summary scale values nevertheless remained 

useful. The constructs of ‘novelty-seeking’ and ‘sensation-seeking’ for instance emerged as 

predictors alongside individual variables that formed part of these summary scores. This made it 

possible to compare results from this study to previous research using these constructs. Stratifying 

variables in a way that allows interpretation of ‘main effects’ may be a useful way to deal with this 

issue in the future. With similar large datasets that include many highly correlated variables use of 

an alternative dimension reduction approach to ensure model sparsity may be warranted. One 
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such method is sparse canonical correlation analysis (sCCA; Hardoon & Shawe-Taylor, 2011), which 

was shown to effectively select sparse feature projections that maximize correlations with the 

outcome of interest in large datasets. Further work determining whether sCCA can enhance Elastic 

net regularization or may even be a superior approach for large psychometric and neuroimaging 

datasets may be worthwhile. 

Finally, while neuroimaging data alone were not able to achieve predictions with high 

accuracy, the inclusion of neuroimaging variables in multimodal models proved that neuroimaging 

variables contribute meaningfully to the prediction of smoking outcomes. However, the inclusion 

of neuroimaging variables alongside other predictors always resulted in a small decrease in AUC 

values. While broadly the same set of non-imaging predictors were identified in the unimodal and 

multimodal models in this study, the extension of the variable set through inclusion of additional 

data alters the composition of the variable space which the Elastic Net evaluates. As the majority of 

neuroimaging features were found not to be informative in predicting smoking outcomes, the 

inclusion of the entire neuroimaging data set resulted in the inclusion of many features not 

associated with the outcome in the model (i.e., effectively adding noise), which is the probable 

cause of the slight reduction in model performance. Examination of specificity and recall revealed 

that neuroimaging models had much poorer recall than non-imaging models, likely due to the 

combination of relatively small sample size of the smoking groups and lower signal-to-noise ratio in 

the neuroimaging compared to non-imaging data. When neuroimaging variables were included in 

multimodal models the recall values were also lowered, although specificity increased modestly in 

all models. The changes in specificity and recall are likely a direct result of the change in the 

proportion of predictors to noise in the feature space and would likely be counteracted by an 

increase in sample size. Further evaluation of the limits for variable inclusion with the Elastic Net 

and the consequences of combining data types or altering the amount of noise in Elastic Net 

models will be necessary. 

3.5. Summary 

The predictors of early-onset smoking and of late-onset smoking that emerged in this study 

point toward distinct etiological pathways toward smoking behaviour. A stronger effect of 

biological predisposition was observed in adolescents who began smoking in late adolescence than 

in those who took up smoking at an earlier age. At age 14, recent stressful life events, novelty-

seeking, antisocial behaviour, and having engaged in other substance use were strong predictors of 

taking up smoking in the next two years. Living in a household with a non-traditional family 

structure was also predictive of starting to smoke regularly by age 16. Beginning to smoke after age 

16 was predicted by variables suggesting disruption to the frontostriatal reward network, reliance 

on compensatory processes for behavioural inhibitory control, atypical language processing, and 
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deficits in affective processing. Alongside this functionally defined risk profile, late-onset smoking 

was predicted by what may act as a set of protective factors against smoking for at least two more 

years, including low exposure to illicit substances and a supportive family network. This study offers 

insights into how age of smoking onset is associated with environmental, psychological, and 

neurobiological risk factors. Furthermore, this study provides a demonstration of how machine 

learning can be used to combine neuroimaging and psychometric variables to allow for important 

mechanistic insights into the biological basis of adolescent cigarette smoking while also identifying 

and confirming indicators of smoking risk. The aspects of altered reward processing identified using 

fMRI in this study are a promising target for development of early risk-assessment tools capitalizing 

on insights from neuroimaging but utilizing more cost-effective cognitive testing. Paradigms such as 

the PALP task measuring reward response bias may prove to assess similar cognitive domains as 

those in which deficits were found to be associated with smoking risk. Based on further studies 

evaluating the similarity in risk estimates obtained from neuroimaging and non-imaging measures 

of the identified processing domain, the neurobiological insights from this study may form the basis 

of more easily administered self-report or behavioural tools. 

In comparison to previous cross-sectional studies, this longitudinal examination of smoking 

risk identified a number of new risk factors associated with smoking onset, as well as confirming 

the importance of previously identified risk and protective factors. A key insight gained in this study 

relates to the relationship of novelty-seeking to smoking behaviour, which was previously thought 

to be associated with all adolescent smoking (Audrain-McGovern et al., 2004a; 2009 ; Dinn, 

Aycicegi & Harris, 2004), but was shown here to be a risk factor specific to one smoking trajectory 

over another. A further important behavioural indicator of smoking risk identified in this study but 

previously not observed in the literature was the presence of self-harm behaviours in adolescent 

future smokers. The neurobiological risk factors for smoking behaviour identified in this study gave 

a perspective on predisposing vulnerabilities in adolescents who would go on to become smokers, 

but also highlighted that the role of biological predisposition compared to acute environmental 

factors may be an important differentiation when examining the etiological pathways leading 

adolescents to smoke. The interplay between environmental and neurobiological factors in the 

development of smoking behaviours and changes in the influence of each domain requires further 

investigation using larger samples and additional follow-up assessments. However, as the first 

longitudinal study to evaluate a breadth of functional neuroimaging variables in relation to 

adolescent smoking outcomes, this study was able to identify a number of important associations 

between reward-related and inhibitory control related brain function and smoking risk. Based on 

the evidence for dysfunction in the reward system predicting adolescent smoking behaviour, 

further investigation of the link between adolescent smoking and reward system function is 
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warranted. In the following chapter reward processing in adolescents who have tried smoking is 

examined. As reward processing involves several interacting regions (see Haber & Knutson, 2010), 

a functional connectivity approach is adopted to investigate network-based changes in reward 

processing associated with smoking frequency.  
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Chapter 4 - Ventral striatum connectivity during reward 

anticipation in adolescent smokers 
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4.1. Introduction 

Adolescence is a period of substantial behavioral and brain changes and of heightened 

propensity for risk-taking. Adolescence is also a time of increased risk for impulse-control 

disorders, including addiction (Chambers, Taylor & Potenza, 2003; Paus, Keshavan & Giedd, 2010). 

The most common addiction in adolescence is nicotine (Young Corley, Stallings, Rhee Crowley & 

Hewitt, 2002). Smoking is the leading cause of preventable deaths in the U.S., and nearly one in 

five adults is a smoker (U.S. Department of Health and Human Services, 2014). Next to alcohol, 

nicotine is one of the most widely available addictive substances, meaning that it is much easier for 

adolescents to try cigarette smoking than other drugs. Adolescent smoking differs widely in its 

frequency and regularity, but can broadly be categorized into four smoking trajectories: 1) 

Adolescents who start smoking at an early age and go on to become regular smokers, 2) individuals 

who follow the same path but initiate smoking at a later age, 3) adolescents who experiment with 

smoking but don’t become addicted or stop smoking, and 4) non-smokers (Audrain-McGovern et 

al., 2004a,; Chassin, Presson, Pitts & Sherman, 2000; Mayhew, Flay & Mott, 2000).  

While the behavioral and personality differences between adolescents in different smoking 

trajectories are subtle and difficult to pinpoint, the differences between adolescent smokers and 

non-smokers are well established: Adolescent smokers show increased novelty seeking, reduced 

harm avoidance, and increased choice impulsivity (Audrain-McGovern et al., 2004a/b; Wills, Windle 

& Cleary, 1998). In the previous chapter novelty-seeking was also established as an important 

predictor of future smoking behaviour in adolescents. However, these traits are not only 

characteristic of adolescent smokers compared with non-smokers, but also of adolescents 

compared with adults (Brändström, Sigvardsson, Nylander & Richter, 2008; Steinberg, Graham, 

O’Brien, Woolard, Cauffman & Banich, 2009). A number of neurobiological models have attributed 

these characteristics of the adolescent developmental period to a difference in the balance 

between different brain systems in adolescence. The dual-system model (e.g. Steinberg, Albert, 

Cauffman, Banich, Graham & Woolard, 2008), the triadic model (Ernst, Pine & Hardin, 2005) and 

the imbalance model (Casey, Jones & Hare, 2008) all distinguish between the reward system and 

the cognitive control systems. Among the structures involved in cognitive control are the 

dorsolateral prefrontal cortex (dlPFC) which is one of the most important executive control regions 

(Alvarez & Emory, 2006), the orbitofrontal cortex (OFC) which has been attributed a role in saliency 

and value attribution (O’Doherty, 2004), the anterior cingulate cortex (ACC) which has been 

implicated in selective attention (Alvarez & Emory, 2006), and the right inferior frontal gyrus (IFG) 

which has been established as a central region in behavioral inhibition (Chikazoe, Konishi, Asari, 

Jimura & Miyashita, 2007; Aron et al., 2014). 
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In the previous chapter activity of the OFC and ACC during a reward processing paradigm 

were among the strongest predictors of future smoking behaviour in adolescence. Functional MRI 

activity during reward processing in adolescents is thus indicative of future smoking behaviour. 

Reward processing involves many interacting regions (see Haber & Knutson, 2010). Among these 

regions, the ventral striatum (VS) is particularly important. The VS receives dopaminergic input 

from the ventral tegmental area and is connected to frontal areas such as the orbitofrontal and 

ventromedial cortices. The VS is not only central to processing reward-related stimuli, but also 

plays a key role in integrating affective and cognitive information, and in action selection and 

motivation (Floresco, 2015). Along with decreases in impulsive choice from adolescence to 

adulthood, activation in the VS during reward-related decision making decreases, and activations in 

prefrontal cognitive control regions have been shown to increase with age (Christakou, Brammer & 

Rubia, 2011). The functional connectivity between the VS and prefrontal cortex (PFC) during 

reward outcomes also increases over the course of adolescence (Van den Bos, Cohen, Kahnt & 

Crone, 2012). Furthermore, ventral striatal dopamine D2 receptor availability was associated with 

alcohol cue-induced activation in the ACC and medial prefrontal cortex, confirming a role for 

dopamine in VS-medial prefrontal interactions (Heinz et al., 2004). 

In adult smokers, lifetime tobacco use is associated with structural brain alterations in both 

the reward and cognitive control systems (Gallinat et al., 2006; Zhang, Salmeron, Ross, Geng, Yang, 

& Stein, 2011). Furthermore, adult smokers show reduced connectivity between the striatum and 

anterior cingulate cortex (ACC), associated with the severity of nicotine dependence (Hong et al., 

2009). While these findings suggest a role of long-term chronic cigarette smoking in brain deficits 

in these systems, there is robust evidence linking the VS to adolescent impulsivity and smoking. VS 

hypoactivity during reward anticipation can be observed in adolescents with ADHD compared to 

control subjects (Scheres, Milham, Knutson & Castellanos, 2007), and is associated with risk-taking 

bias in typically developing adolescents (Schneider et al., 2012). It appears that VS activity is 

negatively associated with impulsivity, independent of age (Ripke et al., 2012). VS hypoactivity can 

be seen in dependent adult smokers compared to occasional smokers (Bühler et al. 2010) and is 

associated with level of nicotine use in adults (Rose et al., 2013). Importantly, a reduction in VS 

activation during reward anticipation has also been observed in adolescents prenatally exposed to 

nicotine (Müller et al., 2013) and in adolescent smokers (Peters et al., 2011). Furthermore, Peters 

et al. reported that ventral striatal activity during reward anticipation was negatively correlated 

with smoking frequency in adolescents. These findings point toward a possible deficit in the 

processing of rewarding stimuli in individuals who are at risk for developing nicotine dependence. 

Whereas the majority of studies to date have used measures of regional changes in Blood 

Oxygen Level Dependent (i.e., BOLD) activation to examine differences between substance using 
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groups and non-users, a number of recent studies have used BOLD to evaluate differences in brain 

connectivity between these groups. However, the majority of these studies have focused on 

resting-state connectivity (Fedota & Stein, 2015). Compared with resting state measures of 

functional connectivity, examining differences in connectivity in relation to specific conditions, such 

as different reward cue types, has the potential to be more informative with regard to differences 

in reward processing. For instance, a study examining reward cue reactivity in smokers found 

greater functional connectivity between the left insula and a widespread network including the 

OFC, ACC, and dorsal striatum during smoking compared to food cues (Claus, Blaine, Filbey, Mayer 

& Hutchison, 2013).  While examining smokers’ reactivity to smoking cues is a valuable tool for 

understanding the mechanisms of craving and relapse in addicted smokers, the way in which non-

smoking rewards are processed has the potential to offer more insight into factors associated with 

smoking initiation and smoking trajectories in adolescents. 

A task which has widely been used to examine generalized reward processing in the 

context of functional magnetic resonance imaging (fMRI) is the Monetary Incentive Delay (MID) 

task (Knutson, Westdorp, Kaiser & Hommer, 2000). The paradigm has the distinct advantage of 

temporally separating anticipation and receipt of positive or negative outcomes, making it possible 

to examine the activation patterns associated with each separately. VS activity is observed during 

the anticipation of rewards in the MID (Adcock, Thangavel, Whitfield-Gabrieli, Knutson & Gabrieli, 

2006; Knutson, Fong, Bennett, Adams & Hommer, 2003). Other regions associated with reward 

anticipation in this task include the dorsal striatum, cuneus, thalamus, ACC, ventromedial PFC, OFC, 

insula, and midbrain (Haber & Knutson, 2010; Van Leijenhorst, Zanolie, Van Meel, Westenberg, 

Rombouts & Crone, 2010).   

Here, the association between adolescent smoking frequency and functional connectivity 

in the VS during anticipation of large rewards compared to no reward in the MID task is examined, 

using Psychophysiological Interaction (PPI) analysis (Friston et al., 1997).  A powerful machine 

learning procedure is employed to examine the connectivity patterns associated with smoking. 

Such approaches have previously been used to investigate adolescent binge-drinking (Whelan et 

al., 2014) and intelligence (Jollans et al., 2015). This approach has the potential to detect relatively 

subtle differences, while guarding against spurious findings, using both cross-validation and 

random-label permutation. 206 adolescents from a large multisite study were included, with a 

wide spectrum of nicotine use. As the aim of this study was to identify effects associated with 

smoking frequency rather than with smoking initiation, only adolescents who had smoked on three 

or more occasions in their lifetime at the point of data collection were included. In line with a 

recent review examining resting state functional connectivity in nicotine addiction (Fedota & Stein, 

2015), which concluded that disruptions in nicotine addiction appear to be focused on the salience 
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network as well as frontal cognitive control systems, it was hypothesized that frequency of smoking 

would be associated with reduced VS connectivity to fronto-parietal cognitive control regions 

(Garavan & Weierstall, 2012) and increased connectivity to regions associated with salience or 

valuation of stimuli, such as the anterior cingulate and orbitofrontal and insular cortices (Seeley et 

al., 2007). 

4.2. Method 

4.2.1. Characteristics of the IMAGEN Study 

A large sample of 14-year old adolescents was recruited at eight recruitment sites. 

Adolescents completed an extensive battery of psychiatric and neuropsychological assessments, 

including fMRI. Details of the full study protocol and data acquisition are provided elsewhere 

(Schumann et al., 2010). 

4.2.2. Participants 

Participants were a subset of 206 adolescents from the multisite study (110 female). 

Further information on the distribution of smoking frequency is provided in Table 4.1, and other 

details about the sample are provided in Table 4.2. 

4.2.3. Substance use 

Lifetime smoking, alcohol, and cannabis use were measured using the European School 

Survey Project on Alcohol and Other Drugs questionnaire (ESPAD, Hibell et al., 1997), which was 

administered using the computerized assessment platform Psytools. Psytools presented 

questionnaire items and response alternatives on a computer screen. The reliability of individual 

data was checked in a two-stage procedure: Before every task, adolescents were asked to report 

on the current testing context including questions about their attentional focus and the 

confidentiality of the setting. Potentially problematic testing situations were followed-up by 

research assistants face-to-face in a confidential setting. Exclusion criteria for substance use 

measures included an indication that the participant was in a hurry, somebody was watching, or an 

indication to have known or taken the sham drug Relevin. Scores on the ESPAD are ranked as 

follows: 0: no lifetime use, 1: 1 to 2 uses, 2: 3 to 5 uses, 3: 6 to 9 uses; 4: 10 to 19 uses, 5: 20 to 39 

uses, 6:40 or more uses. Participants were included if they had a score of 2 or higher on the ESPAD 

item measuring lifetime smoking. ESPAD scores for lifetime smoking are reported in Table 4.1.  
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Table 4.1. Distribution of smoking frequency across the sample. 
 

 

 

 

 

 

 

 

 

 

Table 4.2. Characteristics of the sample 

*p<0.003125, p value corrected for multiple comparisons using Bonferroni correction 

Lifetime smoking occasions n 

ESPAD score ESPAD range  

2 3 to 5 57 

3 6 to 9 37 

4 10 to 19 32 

5 20 to 39 20 

6 40+ 60 

 Mean SD Correlation with nicotine use 

   r p 

Age 14.58 0.46 0.11 0.13 

Socioeconomic Status 17.50 4.36 -0.16 0.025 

Pubertal Development Status 3.66 0.70 0.13 0.065 

WISC-IV Perceptual Reasoning 103.66 12.97 -0.01 0.92 

WISC-IV Verbal Comprehension 107.80 13.79 -0.10 0.13 

ESPAD Lifetime Alcohol use  3.21 1.63 0.26 0.0002* 

ESPAD Lifetime Cannabis use  0.64 1.45 0.21 0.0029* 

SURPS Anxiety Sensitivity 2.24 0.49 -0.14 0.045 

SURPS Impulsivity 2.60 0.42 -0.05 0.44 

SURPS Hopelessness 1.93 0.40 0.02 0.77 

SURPS Sensation Seeking 2.80 0.54 -0.08 0.22 

TCI-R Disorderliness 23.71 4.33 0.07 0.26 

TCI-R Exploratory Excitability 33.44 4.74 0.03 0.70 

TCI-R Extravagance 30.79 6.02 0.04 0.52 

TCI-R Impulsivity 27.82 5.01 -0.06 0.41 

TCI-R Novelty Seeking 115.77 14.43 0.05 0.47 
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4.2.4. Psychometric Data 

4.2.4.1. Wechsler Intelligence Scale for Children 

Participants completed a version of the Wechsler Intelligence Scale for Children WISC-IV 

(Wechsler, 2003), of which the following subscales were included: Perceptual Reasoning, consisting 

of Block Design (arranging bi-colored blocks to duplicate a printed image) and Matrix Reasoning (a 

series of colored matrices are presented and the child is asked to select the consistent pattern 

from a range of options); and Verbal Comprehension, consisting of Similarities (two similar but 

different objects or concepts are presented and the child is asked to explain how they are alike or 

different) and Vocabulary (a picture is presented or a word is spoken aloud by the experimenter 

and the child is asked to provide the name of the depicted object or to define the word). 

4.2.4.2. Substance Use Risk Profile Scale 

The Substance Use Risk Profile Scale (SURPS; Woicik, Stewart, Pihl, & Conrod, 2009) 

assesses personality traits that confer risk for substance misuse and psychopathology. This scale 

measures four distinct and independent personality dimensions; anxiety sensitivity, hopelessness, 

sensation seeking, and impulsivity. The anxiety sensitivity dimension is characterized by the fear of 

symptoms of physical arousal. The hopelessness dimension is identified as a risk factor for the 

development of depression and characterized by dismal feelings. The sensation seeking dimension 

is characterized by the desire for intense and novel experiences. The impulsivity dimension involves 

difficulties in the regulation (controlling) of behavioral responses.  

4.2.4.3. Temperament and Character Inventory 

The novelty seeking scale of the Temperament and Character Inventory – Revised (TCI-R; 

Cloninger, 1999) was administered. The Novelty seeking scale is composed of four sub-scales. 

Exploratory Excitability contrasts with ‘stoic rigidity’ and reflects sensation-seeking and novelty-

seeking behaviors. Impulsiveness describes behavior on a dimension from impulsivity to reflection 

and captures elements of emotional reactivity, and unreflective, careless behavior. The 

Extravagance subscale assesses overspending behavior and poor planning and is believed to reflect 

a tendency to approach reward cues. Disorderliness reflects disorganized, uncontrolled, and 

antinormative behavior. 

4.2.4.4. Puberty Development Scale 

The Puberty Development Scale (PDS; Petersen, Crockett & Richards, 1988) was used to 

assess the pubertal status of the adolescent sample. This scale provides an eight-item self-report 

measure of physical development based on the Tanner stages with separate forms for males and 
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females. For this scale, there are five categories of pubertal status: (1) prepubertal, (2) beginning 

pubertal, (3) midpubertal, (4) advanced pubertal, (5) postpubertal. Participants answered questions 

about their growth in stature and pubic hair, as well as menarche in females and voice changes in 

males.  

4.2.5. Functional MRI 

4.2.5.1. Monetary incentive Delay Task 

Participants completed a modified version of the MID task, involving small and large 

possible gains. On each trial, the amount of points that could be won on that trial was signaled by a 

cue, displayed for 4-4.5 s. Participants could win a reward by responding as quickly as possible to a 

target stimulus presented after a random time interval, by means of a button press, after which 

feedback was presented. The response and feedback phase lasted a total of 2 s. The response 

interval was dynamically adjusted so that subjects won on 66% of all trials. Trials were separated by 

a 3.5-4.15 s inter-trial interval, during which a fixation cross was presented. The cue stimuli were a 

circle with two lines signaling a large reward (10 points), a circle with one line signaling a small 

reward (2 points), and a triangle signaling that no reward could be gained.  22 trials per condition 

were completed, resulting in 66 total trials. Task stimuli and timings are presented in Figure 4.1. 

4.2.5.2. fMRI Data Acquisition 

Full details of the magnetic resonance imaging (MRI) acquisition protocols and quality 

checks have been described previously, including an extensive period of standardization across MRI 

scanners (Schumann et al., 2010). MRI Acquisition Scanning was performed at the eight 

assessment sites with a 3T whole body MRI system made by several manufacturers (Siemens: 4 

sites, Philips: 2 sites, General Electric: 1 site, and Bruker: 1 site). To ensure a comparison of MRI 

data acquired on these different scanners, image-acquisition techniques were implemented using a 

set of parameters compatible with all scanners that were held constant across sites, for example, 

those directly affecting image contrast or fMRI preprocessing.  Standardized hardware for visual 

and auditory stimulus presentation (NordicNeurolabs, Bergen Norway, 

http://www.nordicneurolab.com) was used at all sites. BOLD functional images were acquired with 

a gradient-echo echoplanar imaging (EPI) sequence using a relatively short echo-time to optimize 

imaging of subcortical areas. For the MID, 300 volumes consisting of 40 slices were acquired for 

each subject. Scanning time for this task was a total of 11 minutes. 

4.2.5.3. fMRI preprocessing and analysis 

Briefly, the functional imaging processing was as follows: Time series data were first 

corrected for slice-timing, then corrected for movement, non-linearly warped onto MNI space 
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using a custom EPI template, and gaussian-smoothed at 5mm-full width half maximum. Nuisance 

variables were also added to the design matrix: estimated movement was added in the form of 6 

additional regressors (3 translations, 3 rotations). These analysis steps were carried out in SPM8. 

All subsequent analyses were conducted in SPM12.  

In a general linear model (GLM), three separate regressors were defined to estimate the 

neural activation associated with the monetary cue types: No-win, Small-win, and Big-win. Six 

movement parameters for each participant were also included in the individual models. Two 

contrasts were estimated using this GLM: A T-contrast between two conditions (Big-win minus No-

win), and an F-contrast to identify the sources of signal of interested and remove noise.  

Two spherical ROIs with 3mm radius were defined in the left and right VS, centered at MNI 

coordinates [-12, 10, -10] and [12, 10, -10]. The mean BOLD signal from these ROIs was extracted 

using the Volume of Interest (VOI) time series, and then adjusted by the F contrast (i.e. the effect 

of interest). For the right and left VS separately the extracted signal time series was defined as the 

physiological regressor, and the main effect of conditions (Big-win minus No-win) was defined as 

the psychological regressor. The PPI variable representing the regressors of interest was built using 

the PPI toolbox in SPM. After computing the PPI variable, a variable indicating the PPI interaction 

term and a variable indicating the original ROI time series were generated for each subject. 

Subsequently, the interaction term and the original ROI time series together with estimated 

movement parameters were specified in a GLM model. These were estimated to model the task-

dependent interaction (changes of connectivity) between the VS and other voxels. Data from this 

PPI were extracted from predetermined ROIs and used in the machine learning analysis.  
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Figure 4.1. Stimuli and timings in the MID Task. Cues signaling the task condition (no reward, small reward, large reward) were displayed for 4-4.5 s. The response 

and feedback phase lasted a total of 2 s. Trials were separated by a 3.5 - 4.15 s inter-trial interval. 
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4.2.6. Functional connectivity analyses 

4.2.6.1. Functional connectivity during reward anticipation  

A one-sample t-test to identify clusters in which functional connectivity for reward 

anticipation differed significantly from zero was conducted in SPM12. Data acquisition site, sex, and 

PDS were also entered into the analysis as nuisance covariates. The family-wise error (p<.05) was 

corrected for by using an uncorrected p-value of 0.001 in combination with a minimum cluster 

extent of 14 contiguous voxels, calculated using SPM. 

4.2.6.2. Functional connectivity associated with smoking frequency 

Data from 92 ROIs based on the AAL atlas (Tzourio-Mazoyer et al., 2002) and two masks for 

the subthalamic nuclei (x=-12, y=-10, z=-5; x=12, y=-13, z=-5), as well as lifetime alcohol and 

cannabis use, data acquisition site, sex, and pubertal development status were entered into the 

analysis. Data were z-scored. The analysis procedure is a variation on that shown in Figure 2.2 in 

chapter 2 and can be seen in Figure 4.2. A similar approach has previously been used by Whelan et 

al. (2014) and Jollans et al. (2015). To assess the effect of lifetime smoking on VS connectivity, two 

regularized multiple regression analyses for the left and right VS seed were carried out in Matlab 

R2014a, via the Elastic Net (Zou & Hastie, 2005). Regression with Elastic Net regularization is an 

example of a sparse regression method, which imposes a hybrid of both L1- and L2-norm penalties 

(i.e., penalties on the absolute (L1 norm) and squared values of the β weights (L2 norm)). This 

allows relevant but correlated coefficients to coexist in a sparse model fit, by doing automatic 

variable selection and continuous shrinkage simultaneously, and selects or rejects groups of 

correlated variables. Least absolute shrinkage and selection operator (LASSO, Tibshirani, 1997) and 

ridge regression (Hoerl & Kennard, 1970) are special cases of the Elastic Net.  

10-fold nested cross-validation was used, in which 10 separate regression models were 

generated, with the beta weights for all parameters being generated on 90% of the dataset (the 

training set), and tested on 10% of the dataset (the test set). Within the test set, additional 10-fold 

cross-validation was used to identify the optimal Elastic Net parameters α and λ. Alpha represents 

the weight of lasso vs. ridge regularization which the Elastic Net uses, and λ is the regularization 

coefficient. 

Additionally, 50-fold bootstrap aggregation was applied to introduce an additional level of 

stability (Breiman, 1996). That is, parameter optimization was repeated 50 times, using sampling 

with replacement (i.e., on average two thirds of the data in each iteration). The results from all 

iterations within each training fold were then averaged. In addition to bootstrap aggregation this 

entire analysis procedure was repeated 50 times, and the results (correlation coefficients and beta 
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weights) were averaged across all 50 iterations of the analysis procedure. Overall, this yielded 500 

sets of beta weights, from 10 cross-validation folds across 50 analysis iterations. Beta weights were 

averaged for each variable. 

Two null models were also computed using the same method. For these, the same analysis 

procedure was carried out using random label permutations with the same dataset (i.e., subjects 

were randomly assigned to ESPAD scores). These null models yielded average beta weights of 

0.018 and 0.016, and average correlation coefficients of r=-0.006 and r=-0.01. Based on the null 

models, the threshold for reporting ROIs was set at a minimum absolute beta weight of 0.048 this 

was the 95th percentile of the distribution of beta weights in the null models). The reporting 

thresholds for the minimum frequency with which ROIs should be included in the regression 

models across iterations was set at 84% (left) and 81% (right, this was the 95th percentile of the 

distribution of occurrence frequency across iterations in the null models). 

 

 

Figure 4.2. Machine Learning analysis procedure. The machine learning analysis was carried out in 

two stages: (1) The optimal Elastic Net parameters for each main cross-validation (CV) fold were 

identified using nested CV within each main CV fold. Bootstrap aggregation was used in this step. 

(2) The optimal Elastic Net parameters for each main CV fold were applied to the full training set 

(90% of the data) to generate beta weights for all input variables. These beta weights were then 

used to generate outcome predictions for the remaining, untouched 10% of the dataset in each 

main CV fold. The goodness-of-fit was estimated using the outcome predictions for the entire 

dataset. 
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4.3. Results  

A series of Spearman’s rank correlations were conducted (see Table 4.2). Using Bonferroni 

correction for multiple comparisons, lifetime smoking was significantly positively correlated with 

alcohol and cannabis use.  

4.3.1. VS connectivity during reward anticipation 

A number of cortical and subcortical clusters showed altered functional connectivity with 

the VS during anticipation of a large reward vs. no reward. Clusters with significantly increased or 

decreased functional connectivity are reported in Table 4.3 and shown in Figure 4.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. ROIs for which VS 

connectivity was altered during 

anticipation of large reward vs. no 

reward. 

 

4.3.2. Changes in VS connectivity associated with lifetime smoking 

There was a significant association between lifetime smoking and both right (mean r=.27) 

and left (mean r=.21) VS functional connectivity.  ROIs which passed the thresholds for absolute 

beta weights and frequency of occurrence across cross-validation folds determined using the null 

models are reported (see Table 4.4. and Figure 4.4 for ROIs associated with lifetime smoking). 
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Table 4.3. Clusters which showed significant changes in functional connectivity with the VS during 

anticipation of a large reward vs. no reward 

 

  

x y z k max t  

Clusters with increased functional connectivity 

Left VS 

-6 -1 64 27 4.27 Supplemental Motor Area (L) 

12 20 37 15 4.15 Middle Cingulum (R) 

6 11 61 22 4.15 Supplemental Motor Area (R) 

Right VS 

24 -70 -11 16 4.12 Fusiform Gyrus (R) 

Clusters with decreased functional connectivity 

Left VS      

-30 -91 -11 138 7.30 Inferior Occipital Gyrus (L) 

27 -94 1 105 6.24 Middle Occipital Gyrus (R) 

-42 26 25 16 3.80 IFG, triangular part (L) 

Right VS 

-27 -91 -11 68 6.00 Inferior Occipital Gyrus (L) 

33 -88 -11 59 4.98 Inferior Occipital Gyrus (R) 

R: right; L: left; k; cluster extent; IFG: Inferior Frontal Gyrus 
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Table 4.4. ROIs for which functional connectivity with the VS during anticipation of a large reward 

vs. no reward was associated with lifetime nicotine use 

 Left VS  Right VS  

 Beta weight % of CV folds Beta weight % of CV folds 

Gyrus Rectus (R) 0.105 93.2 0.305 100 

SFG, orbital part (R)   0.191 93.6 

MFG, orbital part (L)   0.077 84.6 

SFG, medial part (L)   -0.251 86.6 

Olfactory gyrus (L)   -0.325 93.4 

IFG, opercular part (R)   -0.176 92.4 

IFG, orbital part (R) -0.099 91.8   

Amygdala (R)   0.323 90.4 

Thalamus (R)   0.150 89.6 

Caudate (R)   0.076 81.2 

Posterior Cingulate (L)   0.184 88.0 

Posterior Cingulate (R) 0.238 88.6   

Precentral gyrus (R)   0.337 93.6 

Supramarginal Gyrus (L) 0.381 84.8   

Supramarginal Gyrus (R)   -0.311 95.4 

Angular Gyrus (R)   -0.138 89.6 

Inferior parietal lobule (L) -0.201 84.0   

Superior occipital gyrus (R)   -0.245 83.0 

Lingual gyrus (L)   -0.100 82.6 

Middle Temporal Pole (L) -0.281 85.0   

Middle Temporal Pole (R)   -0.146 84.4 

Superior Temporal Pole 

(R)  

 

-0.204 96.0 

Cerebellum (R)   -0.144 92.8 

CV: Cross-validation; R: right, L: left; SFG: Superior frontal gyrus; MFG: Middle frontal gyrus; IFG: 

Inferior Frontal Gyrus 
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Figure 4.4. ROIs for which 

functional connectivity (FC) with 

the ventral striatum (VS) during 

anticipation of a large reward vs. 

no reward was associated with 

lifetime smoking. 
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4.4. Discussion 

A Psychophysiological Interaction (PPI) analysis of a large (n=206) sample of adolescent 

smokers has produced two key findings with respect to adolescent smoking frequency and 

functional connectivity with the VS during anticipation of rewards: (1) a positive association within 

the reward system; specifically, between the VS and OFC and amygdala, (2) a negative correlation 

between the reward system and inhibitory control and attention networks; specifically, between VS 

and the right IFG, inferior parietal cortex, and medial PFC. Smoking frequency was also not 

significantly associated with measures of impulsivity or novelty seeking, which is in line with 

previous studies that were not able to distinguish between adolescent smokers in different 

smoking trajectories on the basis of novelty-seeking or choice impulsivity (Audrain-McGovern et al., 

2004a; 2009). 

Smoking frequency was associated with an increase in connectivity between the OFC and 

VS. The VS can indirectly modulate frontal cortical activity, by means of the thalamus. However, the 

ACC, mPFC and OFC also provide direct input to the VS (Cohen et al., 2011; Haber & Knutson, 

2010). The OFC has previously been implicated in a study comparing occasional and dependent 

smokers (Bühler et al., 2010). This study found that dependent smokers exhibited significantly less 

orbitofrontal activation during anticipation of monetary rewards than occasional smokers, 

supporting the finding of altered function of this region associated with frequency of smoking. 

Interestingly, the same study also reported increased activity during reward anticipation in the 

right medial OFC and gyrus rectus in short-term abstinent compared to non-abstinent smokers, for 

monetary and cigarette rewards (Bühler et al., 2010). In line with the proposed role of the OFC in 

attribution of saliency and valuation (O’Doherty, 2004), the finding of increased striatal 

connectivity with these same medial orbitofrontal regions associated with smoking frequency 

suggest that adolescent smoking is associated with generalized increased reward valuation; similar 

to the pattern demonstrated during nicotine withdrawal by Bühler and colleagues.  

Thalamus-VS connectivity was also positively associated with smoking frequency. The 

thalamus has been highlighted as an important region in incentive processing in adolescents and 

adults, along with the insula (Cho et al., 2013). Cho et al. (2013) suggest that interoceptive 

information from the insula, and alerting signals about opportunities for incentive processing from 

the thalamus converge in the nucleus accumbens (NAc), which forms part of the VS. Considering 

findings of increased activation in the thalamus during reward anticipation in alcoholics (Wrase et 

al., 2007), the finding of increased connectivity between the VS and thalamus points toward a 

heightened sensitivity toward salient external stimuli. Increased functional connectivity between 

the bilateral VS and the contralateral posterior cingulate cortex (PCC) was also observed, 

associated with smoking frequency. A general role for the PCC in directing the focus of attention 
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internally or externally, and in determining the width or breadth of the attentional focus has been 

proposed (Leech & Sharp, 2014), which is consistent with its role as a central node of the default-

mode network (DMN, Buckner et al., 2008). In monkeys PCC activity was also found to be mediated 

by actual and expected reward value (McCoy et al., 2003), and in humans the PCC has been shown 

to play a role in integrating motivational information and spatial attention (Mohanty et al., 2008). 

Along with the OFC, the PCC showed heightened activation during motivationally salient cues in 

humans (Mohanty et al., 2008), which suggests that the heightened functional connectivity 

between the VS and PCC may reflect a similar effect of heightened attention to highly valued and 

motivationally salient events as the heightened connectivity with the OFC. 

In line with previous research which found that smokers show less IFG activity than non-

smokers to negative emotional images (Froeliger et al., 2013), functional connectivity between the 

VS and right IFG was negatively associated with smoking frequency. The right IFG is a central region 

for response inhibition (Chikazoe, Konishi, Asari, Jimura & Miyashita, 2007; Aron et al., 2014) and 

attentional control (Hampshire, Chamberlain, Monti, Duncan & Owen, 2010). The right IFG can also 

be considered part of a ventral frontoparietal attention network, which further includes the 

inferior parietal cortex and supramarginal gyri (Corbetta et al., 2008). This network plays a role in 

attentional shifting and filtering sensory input according to behavioral relevance. A strong negative 

association between smoking frequency and VS connectivity to regions in the medial PFC (mPFC) 

was also observed. Studies of patients with lesions to the mPFC have shown that this region is 

involved in decision-making under risk, biasing healthy individuals toward more conservative 

choices (Clark et al., 2008). Taken together with the finding of increased connectivity between the 

VS and OFC, the deficit in right IFG, inferior parietal (and superior occipital) cortex, and  mPFC 

connectivity is consistent with the imbalance model’s account of an over-active motivational 

system, receiving heightened input from regions central in the valuation of stimuli, and not being 

reigned in sufficiently by an underactive inhibitory control system and a deficit in directing 

attention toward behaviorally relevant stimuli.  

In addition to the above-mentioned ROIs, there was a significant association between 

smoking frequency and functional connectivity between the VS and the amygdala. Connectivity 

between the right VS and the right amygdala has been found to be associated with the relevance of 

stimuli (Ousdal, Reckless, Server, Andreassen & Jensen, 2012). This is consistent with present 

findings of higher VS connectivity to regions associated with salience and valuation of stimuli. VS 

connectivity to the adjacent bilateral temporal poles on the other hand showed a strong negative 

association with smoking frequency. A previous study found that adult smokers’ level of nicotine 

dependence was positively associated with activation in the temporal pole and insula during 

presentation of smoking compared to food cues (Claus et al., 2013). While the majority of studies 
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examining temporal pole function have focused on social cognition and emotion processing, there 

is some evidence that the temporal pole could serve as a hub integrating emotional and sensory 

cues (Fan et al., 2014; Pehrs et al., 2015; Olson et al., 2007). Furthermore, reduced grey matter 

volume in the temporal pole has been reported in cocaine users (Albein-Urios et al., 2013), making 

this region a promising target for further investigation in substance use.  

While PPI analysis is a valuable tool for identifying functional differences in connectivity, it 

is not able to identify anatomical or structural alterations in connectivity. Conducting PPI in 

conjunction with tractography (e.g., Cohen, Elger & Weber, 2008) would allow the identification of 

structural differences associated with functional connectivity alterations in smokers. Furthermore, 

PPI analyses often suffer from a lack of power, particularly when event-related tasks are used 

(O’Reilly, Woolrich, Behrens, Smith & Johansen-Berg, 2012). However, low power is a chronic 

problem in neuroimaging research (Button et al., 2013). In this study this issue was addressed by 

using a large sample, and a very rigorous analysis protocol. Cross-validation and bootstrapping are 

valuable tools for guarding against false positives (Whelan & Garavan, 2014) and identifying true, 

but small, effects. In addition, the random-label permutation (null model) approach which was 

adopted is an effective means of quantifying the validity of results.  

In conclusion, the use of a PPI analysis in conjunction with a robust machine learning 

approach identified differences in VS connectivity during reward anticipation associated with 

adolescent smoking frequency. The increased functional connectivity between the VS and OFC and 

PCC with increased cigarette use suggests that adolescent smoking may be associated with 

increased attribution of salience to reward-related stimuli. Furthermore, the finding of reduced 

functional connectivity between the VS and the right IFG, mPFC, and inferior parietal cortex with 

increased smoking indicates a deficit in inhibitory control and attentional orienting. Taken 

together, these findings paint a picture of increased valuation of rewards, alongside difficulties 

inhibiting behavior, and possibly a deficit in the integration of sensory and motivational cues in 

adolescent smokers. Notably, present findings extend the literature showing differences in the 

neural networks underpinning reward processing between adolescent smokers and non-smokers, 

showing that reward processing also differs between different adolescent smoking trajectories. 

While it is not possible to deduce whether these differences in VS connectivity preceded smoking 

initiation, the link between reward-related activity in the VS and adolescent impulsivity supports 

the conclusion that differences in VS connectivity may pose a risk for adolescent smoking. Future 

longitudinal studies should evaluate whether VS connectivity can be established as a predictive 

biomarker of substance use risk in adolescence. 
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Chapter 5 - Altered reward sensitivity in current and former 

smokers: evidence from computational modelling of 

decision-making under uncertain conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

________________________________________________________________________________ 

Publications: 

Jollans, L., Whelan, R., Venables, L., Turnbull, O. H., Cella, M., & Dymond, S. (2016). Computational 

EEG Modelling of Decision Making Under Ambiguity Reveals Spatio-Temporal Dynamics of 

Outcome Evaluation. Behavioural Brain Research, 321, 28-35. DOI: 

10.1016/j.bbr.2016.12.033.  



150 
 

5.1. Introduction 

Although it has been well established that smokers and non-smokers differ in various 

aspects of trait impulsivity (Audrain-McGovern et al., 2004a, 2009; Dinn, Aycicegi & Harris, 2004; 

Rezvanfard et al., 2010; Mitchell, 1999; Balevich, Wein & Flory, 2013; Skinner, Aubin & Berlin, 

2004), many behavioural paradigms measuring aspects of impulsive responding and sensitivity to 

positive and negative outcomes fail to find significant differences between groups. However, 

although there appear to be no behavioural differences between smoking groups in paradigms 

including the Stop Signal task (SST) and Monetary Incentive Delay Task (MID), strong and consistent 

differences in brain activity during these paradigms have been recorded between groups (Luijten et 

al., 2014; Rose et al., 2013; van Hell et al., 2010; Luo et al., 2011). The previous chapters showed 

that these differences in fMRI activity during the SST and MID task are also associated with future 

smoking behaviour and can predict smoking in adolescents. Brain differences observed during such 

behavioural task paradigms are typically interpreted to reflect differences in intangible and 

qualitative aspects of cognition. Such features of cognitive processing can also be estimated using 

computational models of behavioural responding. These models conjecture determining factors in 

the response or decision-making process that are not apparent from objective measures. 

Computational models of choice behaviour have the potential to illuminate aspects of pathological 

behaviour, and give insight into maladaptive cognitive processes. A model which accurately reflects 

a cognitive process might be expected to show a relationship to measures of brain function during 

execution of this cognitive process. Should it be possible to prove a neurobiological basis of a 

computational models of cognitive processes based on only behavioural responding, use of such 

models may be a viable alternative to more costly imaging studies for certain applications. 

Given the role of reinforcement learning and sensitivity to positive and negative outcomes 

in the development of substance use behaviours, a behavioural paradigm assessing these domains 

has the potential to give insight into abnormalities in reward-related decision making in smokers 

compared to non-smoking groups. In the two previous chapters the MID task was used to evaluate 

anticipation of, and response to rewarding outcomes. However, the MID task is not a good 

measure of how behaviour is adapted based on positive or negative outcomes, as the single 

behavioural measure of behaviour change in the MID is response time. Furthermore, the individual 

trial outcomes in the MID task are manipulated to ensure a sufficient amount of trials with each 

outcome type. An examination of reward- and punishment-related behaviour and reinforcement 

learning requires a different task framework. A measure that has been widely used to examine 

reinforcement learning and reward sensitivity in healthy and pathological populations is the Iowa 

Gambling Task (IGT; Bechara et al. 1994). The IGT relies on participants learning from reward and 

punishment to maximize rewards over the course of the task, and allows insight into how 
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participants respond to outcome valence and outcome magnitude. During the IGT participants 

choose among four decks of cards. Each deck yields an average monetary (or point) win and loss, 

with two of the four decks yielding a net gain over multiple trials (advantageous/good decks), and 

the other two decks yielding a net loss (disadvantageous/bad decks). Of the advantageous and 

disadvantageous decks respectively one deck results in less frequent but larger losses than the 

other deck. The participants’ goal is to maximize monetary or point gain after 100 trials. 

Advantageous performance on the IGT is based on approximations of long-term consequences 

rather than exact calculations (Christakou et al., 2009), and choice behavior typically shifts across 

trials as participants learn to make more advantageous selections with increasing knowledge of the 

outcome contingencies (Gansler et al., 2011). Inferior performance on the IGT has been observed 

in several substance using groups (Petry, Bickel, & Arnett, 1998; Verdejo-Garcia et al., 2007; Mazas, 

Finn, & Steinmetz, 2000; Grant, Contoreggi, & London, 2000). Findings relating to the effect of 

smoking on IGT performance are unclear (Buelow & Suhr, 2014; Businelle et al., 2009; Lejuez et al., 

2003; Harmsen et al., 2006). However, there is some evidence that adolescents who had smoked in 

the past week performed significantly worse on the IGT than never-smokers (Xiao et al., 2008), and 

that both non-smokers and ex-smokers outperformed current young adult smokers on a variation 

of the IGT (Briggs et al., 2014).   

There exists a large and sophisticated literature using computational modelling to examine 

aspects of task performance in the IGT (e.g. Busemeyer and Stout, 2002; Ahn et al., 2008, 2011; 

Fridberg et al., 2010; Worthy et al., 2013). This is not the case for many other experimental 

measures of response to reward and punishment, including the MID task. Previous work has used 

computational modelling of IGT performance to examine characteristics of choice behaviour in 

substance using groups (Yechiam et al., 2005; Fridberg et al., 2010; Ahn et al. 2014), considering 

factors such as the attention given to outcome valence (i.e., to wins vs. losses), how the recency of 

feedback affects future decisions, and how choices are influenced by experience (i.e., to what 

extent choices are random). Models of behaviour in the IGT assume that the valence experienced 

on each trial informs a probabilistic choice mechanism, and shapes outcome expectation and 

prediction error on subsequent trials. Computational models of task behaviour thus estimate 

individuals’ subjective experiences of the task and task-expectations, rather than objective task 

outcomes (Yechiam et al., 2005). Furthermore, the parameters used in the models of choice 

behaviour can be used to examine how populations differ in terms of their decision-making 

processes (Cella et al. 2010; Yechiam et al., 2005). Considering the inconsistent results across 

studies examining the effect of smoking on IGT performance, use of a computational modelling 

approach to identify qualitative elements of decision-making that differ between groups in this task 

may provide some insight into whether and how smokers, non-smokers, and ex-smokers differ in 

their approach to decision-making under ambiguous conditions. This may in turn provide some 
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insight into the processes guiding increased impulsive responding and differences in reinforcement 

learning between smoking and non-smoking groups. 

In addition to behavioural and computational studies, the IGT has also been a target for 

neuroimaging studies investigating the neural underpinnings of adaptive decision-making 

(Christakou et al., 2009; Gansler et al., 2012). While both computational modelling and 

neuroimaging studies of the IGT endeavor to describe factors underlying task behaviour, the two 

approaches have not been combined to establish whether computational models of the IGT have 

an observable link to brain function. There is a large body of work investigating reinforcement 

learning using EEG (e.g. Sambrook & Goslin, 2015), and the high temporal resolution of event-

related potentials (ERPs) is conducive to an examination of the temporal dynamics of decision-

making. Previous work has shown that ERPs associated with the anticipation and processing of wins 

and losses are sensitive to the valence, magnitude, and likelihood of the outcome (Holroyd et al. 

2004, 2011; Hajcak et al. 2005; Wu and Zhou 2009; Talmi et al. 2012; Fuentemilla et al. 2013). 

Given a model-based estimate of subjective choice and outcome value, aspects of the ERP 

associated with less objective trial outcomes could also be evaluated. For this, a trial-by-trial 

evaluation of ERPs is necessary, which departs from the typical procedure of averaging over trial 

types employed in most EEG studies (e.g., Hajcak et al. 2006; see Larsen and O’Doherty, 2014, for 

an exception).  

This study contrasts the three most successful computational models of choice behaviour 

currently available for the IGT: The Prospect Valence Learning (PVL) model with a decay 

reinforcement learning rule (PVL-Decay), the PVL model with a delta learning rule (PVL-Delta), and 

the Value Plus Perseverance (VPP) model. The fit of these models to a group of non-smokers, a 

group of ex-smokers, and a group of current smokers is evaluated. Based on the best-fitting model 

the model parameters reflecting qualitative aspects of decision-making are extracted and 

compared between groups. To examine whether there is an observable neurobiological basis to 

these models, associations between model-based regressors and EEG data collected during the 

task are examined in a separate sample of control subjects. In this sample, participants’ subjective 

appraisal of their chosen deck and prediction errors are estimated using the best-fitting model, and 

this subjective evaluation component is applied as a trial-by-trial regressor to each participant’s 

EEG data with the goal of identifying elements in the ERP that are ostensibly associated with 

subjective outcome appraisal. Taken together these analyses will show (1) how IGT choice patterns 

differ between smoking and non-smoking groups, (2) what computational model can best account 

for these choice patterns, (3) whether the model that accounts best for behavioural data has a link 

to neurobiological activity during the task, and (4) how model-based quantifications of the 

cognitive processes utilized in the IGT differ between smoking and non-smoking groups. 
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5.2. Methods 

5.2.1. Participants 

5.2.1.1. Smoking, non-smoking, and ex-smoking groups 

Participants were drawn from two separate data collection protocols with slight variations 

in demographic and smoking assessment. In both protocols participants self-identified as current 

smokers, former smokers, or non-smokers. For participants who classified themselves as current or 

former smokers, past month and lifetime smoking was assessed using the following scale to 

measure cigarette use: 0: no use, 1: 1 to 2 uses, 2: 3 to 5 uses, 3: 6 to 9 uses; 4: 10 to 19 uses, 5: 20 

to 39 uses, 6:40 or more uses. Ex-smokers (n=22, 11 female, 11 male) reported a score of 6 for 

lifetime cigarette uses, having ever smoked daily, and a maximum score of 2 for past month 

smoking. Current smokers (n=51, 26 female, 1 genderqueer, 24 male) reported scores of 4 or 

higher for past month smoking. Lifetime smoking and daily smoking was assessed for only a subset 

of this group (n=24), for which scores for lifetime smoking were also 6. Of the remaining 27 

participants for which lifetime use was not assessed, 21 said they sometimes chain-smoked, 26 said 

they sometimes smoked more than they intended, 26 said they sometimes felt they needed 

cigarettes to help them function, and 26 said they sometimes made special trips to get cigarettes. 

A group of non-smokers was also recruited (n=59, 36 female, 1 genderqueer, 22 male). All 

participants from the first data collection protocol (including all ex-smokers, 25 non-smokers and 

24 smokers) were between the ages of 18 and 21. Participants from the second data collection 

protocol had a wider age range, with the 27 smokers varying in age from 18 to 61 (mean age = 26.4 

years, SD = 8.2 years) and the 34 non-smokers varying in age from 18 to 37 (mean age = 24.4 years, 

SD = 6.6 years). 

5.2.1.2. EEG sample 

Twenty healthy, right-handed adults (9 female), 19 to 38 years old (mean age = 24.9 years, 

SD = 4.8 years) participated.  

5.2.2. Iowa Gambling Task 

A computerized variant of the original IGT (Bechara et al. 1994) was used, in which 

participants were instructed to select cards from four concurrently available decks (labeled A, B, C 

and D). Deck locations were randomly varied across participants. Trials were preceded by a 2-s 

choice appraisal interval, during which choices could not be made, as the four individual decks and 

the text, “Please consider your choice” appeared on screen. After this, choices were made using 
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the mouse (the cursor was centered at the start of every trial). An initial ‘loan’ of 1000 virtual 

money, ($ for the smokers, non-smoker, and ex-smoker groups, £ for the EEG sample) displayed at 

the bottom of the screen, was updated immediately following choices accompanied by text stating 

the amount of money gained and/or lost. Decks varied in their net outcome and frequency of loss 

outcomes (see Table 5.1). Decks that had a net positive outcome were termed ‘advantageous’ 

decks (Deck C and D), and decks with a net negative outcome were termed ‘disadvantageous’ 

decks (Deck A and B). Decks A and C resulted in frequent small losses while decks B and D resulted 

in infrequent larger losses. Onscreen feedback was displayed for 10s, before a 2s inter-trial interval. 

The task ended after 100 trials.  

Table 5.1. Win and loss contingencies of all decks in the IGT 

 

5.2.3. Computational models of behavioural data  

The deck chosen on trial t is denoted D(t). The reward received on each trial is denoted 

R(t), and the loss on each trial is denoted L(t), such that if deck B (a disadvantageous deck) were 

chosen on trial t = 9 (i.e. D(9) = D2) then R(D(9)) = 100 and L(D(9)) = 1250. The total monetary 

outcome on each trial is denoted X(t), such that X(9) = - 1150 in the example above. 

An approximation of the subjective valence u(t) on trial t is calculated based on X(t) using 

the prospect utility function in the PVL-Decay model, the PVL-Delta model, and the VPP model: 

𝑢(𝑡) = {
𝑋(𝑡)α 𝑖𝑓 𝑋(𝑡) ≥ 0

= −𝜆 ∗ |𝑋(𝑡)|α 𝑖𝑓 𝑋(𝑡) < 0
   [1] 

Subjective valence u(t) is calculated using a shape parameter α, and a loss aversion 

parameter λ. High values of α indicate high sensitivity to feedback. Lower values of λ indicate less 

sensitivity to losses, with values smaller than 1 indicating lower sensitivity to losses than to gains. 

The subjective valence value u(t) is used to calculate the expected valence Ev(t+1)j for the selected 

deck j on the following trial using a learning rule. The PVL-Delta model and the VPP model use a 

Delta Learning rule to calculate expected valence: 

𝐸𝑣𝑗(𝑡 + 1) = 𝐸𝑣𝑗(𝑡) + 𝐴 ∗ 𝛿𝑗(𝑡) ∗ (𝑢(𝑡) − 𝐸𝑣𝑗(𝑡))  [2] 

Deck A B C D 

Win (per trial) 100 100 50 50 

Loss (per 10 trials) 1250 1250 250 250 

Loss frequency 5/10 1/10 5/10 1/10 

Loss range 150-350 1250 25-75 250 
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Here, A is a recency parameter (or learning rate) that determines how previous experience 

with the chosen deck j is weighted in comparison to the most recent deck selection. Higher values 

of A indicate that the most recent outcome has a high influence on expectations for future 

outcomes with this deck, while low values indicate lower influence of the most recent outcome 

and higher influence of previous experience. The recency parameter can also be understood as a 

measure of how quickly or slowly past outcomes are forgotten. The Delta learning rule only 

updates the expected valence of the selected deck j on each trial, as expressed through the dummy 

variable 𝛿𝑗(𝑡) that is 1 if deck j is chosen on trial t and 0 otherwise. The decay reinforcement 

learning rule used in the PVL-Decay model updates expected valence values for each deck on every 

trial: 

𝐸𝑣𝑗(𝑡 + 1) = 𝐴 ∗ 𝐸𝑣𝑗(𝑡) + 𝛿𝑗(𝑡) ∗ 𝑢(𝑡)  [3] 

Here A is also a parameter accounting for the recency of past outcomes, but is better 

conceptualized as a decay rate. Low values of A indicate rapid decay of expected outcomes for the 

selected and unselected decks on each trial, while high values of A indicate a lower rate of 

discounting outcome expectancies, or slower forgetting. For the PVL-Decay and PVL-Delta models 

the expected valence value Evj(t+1) for each deck j is used as input into a Softmax action-selection 

rule to calculate the probability Pr[D(t+1)=j] that deck j will be selected on the next trial: 

𝑃𝑟[𝐷(𝑡 + 1) = 𝑗] =
𝑒

𝜃(𝑡)𝐸𝑣𝑗(𝑡+1)

∑ 𝑒𝜃(𝑡)𝐸𝑣𝑘(𝑡+1)4
𝑘=1

  [4] 

The sensitivity θ is assumed to be trial-independent and set at 3c-1. The consistency 

parameter c quantifies to what extent participants make choices in accordance with the expected 

valence for each deck. High values of c indicate more deterministic and consistent choice patterns, 

while low values of c indicate more random or exploratory choice behaviour. 

Unlike the two PVL models, the VPP model includes a measure of perseverance Pj which 

considers the likelihood of selecting deck j again based on outcome valence: 

Chosen deck:  𝑃𝑗(𝑡 + 1) = {
𝑘 ∗ 𝑃𝑗(𝑡) + 𝜀𝑝𝑜𝑠  𝑖𝑓 𝑋(𝑡) ≥ 0 

𝑘 ∗ 𝑃𝑗(𝑡) + 𝜀𝑛𝑒𝑔  𝑖𝑓 𝑋(𝑡) < 0
 [5] 

Unchosen decks:   𝑃𝑗(𝑡 + 1) = 𝑘 ∗ 𝑃𝑗(𝑡) 

The parameter k is a decay rate parameter similar to the parameter A in [3]. Parameters 

εpos and εneg indicate likelihood to persevere in choosing deck j despite or because of positive or 

negative outcomes respectively. Negative values of εpos/εneg indicate a tendency to switch to a 

different deck after receiving positive/negative feedback, while positive values of εpos/εneg indicate 

that positive/negative feedback reinforces perseverance in choosing the same deck again on the 
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subsequent trial. Perseverance and expected valence values are combined to calculate the overall 

value Vj of each deck: 

𝑉𝑗(𝑡 + 1) = 𝜔 ∗ 𝐸𝑣𝑗(𝑡 + 1) + (1 − 𝜔) ∗ 𝑃𝑗(𝑡 + 1) [6] 

The reinforcement learning parameter ω indicates to what extent choice behaviour relies 

on reinforcement learning (Ev) rather than on the perseverance heuristic (P). High values of ω 

indicate higher reliance on reinforcement learning while lower values of ω indicate higher reliance 

on the perseverance heuristic and lower reliance on reinforcement learning. In the VPP model the 

overall deck value Vj(t+1) is used as input into the same Softmax action-selection rule in the same 

way as Evj(t+1) is used in the two PVL models: 

𝑃𝑟[𝐷(𝑡 + 1) = 𝑗] =
𝑒

𝜃(𝑡)𝑉𝑗(𝑡+1)

∑ 𝑒𝜃(𝑡)𝑉𝑘(𝑡+1)4
𝑘=1

  [7] 

Previous studies have found that the PVL-Delta model has the best post-hoc fit using the 

Bayesian Information criterion (BIC), while the PVL-Delta model shows the best simulation 

performance, being able to account for a variety of choice patterns, and the VPP model shows the 

best fit using a Bayesian factor (Steingroever et al., 2014; 2016; Ahn et al., 2014). 

5.2.4. Model fitting 

The hBayesDM package (Ahn, Haines & Zhang, 2017) was used to fit all models. hBayesDM 

is an R package designed to fit computational models of reinforcement learning and decision 

making using hierarchical Bayesian analysis. Markov Chain Monte Carlo (MCMC) sampling is used 

for posterior inference. Three simultaneously run MCMC chains were used for each parameter, 

and convergence was assessed visually and using the R̂ statistic (Gelman & Rubin, 1992). R̂ values 

close to 1.0 indicate that all chains have successfully converged to their stationary distributions, 

while values above 1.1 indicate inadequate convergence. MCMC chains were initialized randomly, 

and a total of 3000 samples including 2000 burn-in samples were collected. Models were fit 

separately for each group, as group-level parameter values are used in the hierarchical Bayesian 

model fitting framework. As suggested by Steingroever, Wetzels, and Wagenmakers (2016) 

performance of the models was assessed when making predictions for the next trial based on 

previous choices (post-hoc fit) as well as the performance of the models when making predictions 

about choice behaviour without information about previous deck selections (simulation). As this 

feature was not available in the hBayesDM package at the time of this study, simulation 

performance was assessed using custom MATLAB scripts and the parameter values extracted from 

the hBayesDM fit, and using the procedure described in Appendix B of Ahn, Busemeyer, 

Wagenmakers, and Stout (2008). 
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The PVL-Decay and PVL-Delta models often show convergence difficulties. In line with 

previous work (Steingroever et al., 2014) five chains instead of three were run when convergence 

difficulties were observed, and subsequently parameter values were extrapolated using the three 

chains with least deviance. This was done for the PVL-Decay models for all groups, and for the PVL-

Delta models for the smoker and non-smoker groups.  

5.2.5. Parameter comparison 

Model parameters for the best-fitting model were compared between groups for the 

smoker, non-smoker, and ex-smoker groups by assessing overlap of the parameter distributions 

using the interval between the 5th and 95th percentile of group distributions as the criterion. A 

similar approach to establishing differences in value distributions based on Bayesian model fitting 

was used by Wiecki, Sofer and Frank (2013). 

5.2.6. EEG recording 

EEG data were recorded in a sound-attenuated room using the ActiveTwo Biosemi™ 

electrode system from 134 electrodes (128 scalp electrodes) organized according to the 10-5 

system (Oostenveld and Praamstra 2001), digitized at 512 Hz.  

5.2.7. EEG analysis 

5.2.7.1. EEG data processing 

EEG preprocessing and artifact rejection was performed using the Fully Automated 

Statistical Thresholding for EEG artifact Rejection toolbox (FASTER; 

http://sourceforge.net/projects/faster; Nolan et al. 2010), implemented in EEGLAB (Delorme and 

Makeig 2004) under Matlab 7.12. EEG data were filtered (1–95 Hz, with a notch filter at 50 Hz). 

Epoch length was initially set to -3 s to 2 s for the outcome evaluation phase (marker set to onset 

of outcome). EEG data from one participant was excluded due to poor data quality. 

EEG data were processed in SPM8 (http://www.fil.ion.ucl.ac.uk/spm). Data from each 

participant were transformed into two-dimensional sensor-space (interpolated from the 128 scalp 

channels), over peri-stimulus times from -100–600 ms for the feedback processing phase, thus 

producing a three-dimensional spatio-temporal characterization of the ERP. Baseline was corrected 

from 100 ms before cue presentation. The EEG timeseries data were subsequently parcellated 

based on both spatial and temporal domains. Data were averaged in 64 spatial bins, and across 

time segments of 25.4 ms (resulting in 23 time bins in the outcome phase). 
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5.2.7.2. Outcome measures 

For each participant, three variables were used as regressors in a general linear model with 

the parcellated data from the phase of the same trials: the valence and the magnitude of the 

outcome (objective outcome measures), and the trial-by-trial choice probability for the selected 

deck calculated using the best-fitting model. The temporal and spatial properties of associations 

between regressors and the EEG timecourse across the whole outcome interval were examined. 

Associations between valence, magnitude and choice probability and two ERP components that 

consistently occur following feedback, the Feedback-related negativity (FRN) and the P3, were 

examined. 

5.2.7.3. Significance testing 

A linear regression was carried out for each regressor individually. This resulted in a beta 

weight being generated for each regressor and each bin. The same calculations were also carried 

out using a random permutation of the model regressors (i.e. the values of each regressor were 

shuffled), which resulted in a baseline, or ‘null’ distribution. For each regressor and each of the bins 

a one-sample t-test was carried out using the beta values for each participant, as well as the beta 

values from the random label permutations. For each regressor the bins in which the test statistic 

was larger than the 95th percentile of the distribution of test statistic values for the beta weights 

generated using random label permutations were deemed significantly associated with the 

regressor. A simplified representation of the analysis framework is shown in figure 5.1.  

 

Figure 5.1. Simplified representation of the analysis framework used to determine which Spatio-

temporal bins of the EEG were significantly associated with one of the trial-by-trial regressors. 
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5.3. Results 

5.3.1. Behavioural task performance 

Over the entire task the percentage of choices from disadvantageous decks was 

significantly higher than that of advantageous decks for both ex-smokers and smokers, but not 

non-smokers or the EEG sample (see Table 5.2, Figure 5.2). The percentage of selections from 

frequent loss decks was significantly lower than from infrequent loss decks for all groups except ex-

smokers. Groups did not significantly differ (p<.005) in their percentage overall choices from 

frequent/infrequent loss decks, advantageous/disadvantageous decks, or from the four individual 

decks. 

Table 5.2. Percentage of choices from disadvantageous and infrequent loss decks for all groups 

*p<.005 for t-test comparison with other deck choice frequency 

Ex-smokers made significantly more choices from disadvantageous decks than non-

smokers in the fourth block of 20 trials (MeanEx=13.09, MeanNon=9.20, p=.004). In the first task 

block the EEG sample chose deck A (disadvantageous with frequent losses) significantly less than 

the ex-smoker group (p=.0044, MeanEx=6.40, MeanEEG=4.63) and deck B (disadvantageous with 

infrequent losses) significantly more than the smoker group (p=.0027, MeanSmo=5.94, 

MeanEEG=8.26). In the third task block ex-smokers chose deck D (advantageous with infrequent 

losses) significantly less than smokers (p=.0008, MeanEx=2.54, MeanSmo=4.84), non-smokers 

(p=.0018, MeanNon=4.62) and the EEG sample (p=.00008, MeanSmo=6.10). No other significant 

differences emerged at the p<.005 level.  

5.3.2. Post-hoc model fit 

Across all participants post-hoc fit was best for the PVL-Delta model (see Table 5.3) 

although within the groups post-hoc fit for the PVL-Delta model was only better than fit of the VPP 

model in the smoker group. 

 Disadvantageous deck 

Mean (Standard Deviation) 

Infrequent loss decks 

Mean (Standard Deviation) 

Ex-smokers 64.50 (28.70)* 54.86 (22.27) 

Smokers 57.86 (26.04)* 56.98 (24.09)* 

Non-smokers 52.22 (20.13) 57.49 (21.66)* 

EEG sample 52.15 (13.09) 59.05 (9.66)* 
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Table 5.3. Post hoc and simulation fit and model comparison for all models in all groups 

  Mean 

AIC 

Mean BIC AIC Comparison with 

PVL-Decay model 

AIC Comparison with 

PVL-Delta model 

Mean Square 

Deviation (MSD) 

MSD Comparison with 

PVL-Decay model 

MSD Comparison with 

PVL-Delta model 

Smokers 

(n=51) 

PVL-Decay 738.74 750.16 - - .2055 - - 

PVL-Delta 560.30 570.72 t=3.23; p=.0021 - .2002 t=1.04; p=.3087 - 

VPP 903.07 923.91 t=3.00; p=.0041 t=6.16; p=1*10^-7 .2009 t=0.64; p=.5233 t=1.62; p=.1191 

Non-smokers 

(n=59) 

PVL-Decay 640.99 651.41 - - .2052 - - 

PVL-Delta 709.46 719.88 t=1.10; p=.2739 - .2161 t=2.34; p=.0224 - 

VPP 618.96 639.80 t=0.36; p=.7183 t=2.24; p=.0289 .2032 t=0.53; p=.5977 t=2.55; p=.0132 

Ex-smokers 

(n=22) 

PVL-Decay 778.44 788.86 - - .2123 - - 

PVL-Delta 812.54 822.96 t=0.47; p=.6428 - .2063 t=1.43; p=.1569 - 

VPP 634.47 655.31 t=2.21; p=.0377 t=3.07; p=.0058 .2174 t=1.01; p=.3129 t=0.13; p=.8918 

EEG data set 

(n=19) 

PVL-Decay 994.48 1004.90 - - .1946 - - 

PVL-Delta 701.20 711.62 t=4.77; p=.0001 - .2263 t=3.12; p=.0059 - 

VPP 508.87 529.71 t=7.77; p=3*10^-7 t=4.48; p=.0002 .2046 t=1.67; p=.1112 t=2.53; p=.0206 

All 

participants 

(n=151) 

PVL-Decay 738.85 749.27 - - .2050 - - 

PVL-Delta 673.06 683.48 t=1.88; p=.0615 - .2106 t=1.96, p=.0507 - 

VPP 703.32 724.16 t=0.98; p=.3271 t=0.94; p=.3479 .2047 t=0.13, p=.8934 t=1.93, p=.0543 
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Figure 5.2. Deck choices and simulation performance of the VPP, PVL-Decay, and PVL-Delta models for the ex-smoker, non-smoker, current smoker, and EEG 

control participant group. Loss frequency is presented through line color, with black lines indicating infrequent loss decks. Mean reward value of the decks is 

presented through line style, with dashed lines indicating advantageous decks.  
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5.3.3. Simulation fit 

As suggested by Steingroever, Wetzels, and Wagenmakers (2015), 100 iterations of the 

procedure to obtain simulated choice probabilities for each participant were completed (see Figure 

5.2). Fit was determined based on Mean square deviation (see Figure 5.3, Table 5.3). Across all 

participants the VPP model had the best simulation fit although the PVL-Delta model had the best 

simulation fit in the smoker and ex-smoker group and MSD for the PVL-Decay model was lowest in 

the EEG sample. 

 

Figure 5.3. Mean square deviation indicating simulation error for all models by task block. 

 

Based on the post-hoc and simulation fit, data from both the VPP and PVL-Delta models 

were used to carry out parameter value comparison between the ex-smoker, smoker, and non-

smoker groups. The evaluation of the expression of model-based regressors in the EEG timecourse 

was also carried out using the VPP and PVL-Delta models. 

5.3.4. Model Parameter comparison 

5.3.4.1. PVL-Delta model parameters 

There were no differences in the group-level distributions of model parameters for the 

PVL-Delta model (see Figure 5.4, Table 5.3). 

5.3.4.2. VPP model parameters 

Ex-smokers had higher values of α (outcome sensitivity) than non-smokers. Smokers had 

higher values of ω (reinforcement learning) than ex-smokers and non-smokers (see Figure 5.5, 

Table 5.3). 
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Table 5.3. VPP and PVL-Delta model parameter value medians (Interquartile range) by group 

 

 

Figure 5.4. PVL-Delta model parameter value distributions for all groups.  

 Smokers (N=53) Non-smokers (N=59) Ex-smokers (N=25) 

VPP model parameters 

α: outcome sensitivity 0.890 (0.640) 0.484 (0.194) 1.511 (0.130) 

λ: Loss aversion 0.031 (0.013) 0.057 (0.022) 0.015 (0.003) 

A: recency 0.130 (0.196) 0.389 (0.484) 0.484 (0.285) 

K: Decay rate 0.430 (0.322) 0.434 (0.321) 0.479 (0.129) 

εpos: Impact of gain 3.956 (14.312) 8.162 (21.832) 6.787 (5.639) 

εneg: Impact of loss -4.478 (20.961) -0.141 (15.315) 4.170 (14.483) 

ω: Reinforcement learning 0.913 (0.003) 0.852 (0.035) 0.872 (0.012) 

c: Consistency 0.993 (0.027) 0.688 (0.222) 0.686 (0.047) 

PVL-Delta model parameters 

α: outcome sensitivity 1.061 (1.779) 0.502 (0.336) 1.230 (0.899) 

λ: Loss aversion 0.014 (0.016) 0.218 (0.249) 0.022 (0.016) 

A: recency 0.134 (0.341) 0.271 (0.654) 0.265 (0.304) 

c: Consistency 1.124 (0.328) 0.908 (0.704) 0.890 (0.583) 
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Figure 5.5. VPP model parameter value distributions for all groups. 
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5.3.2. Associations between outcome measures and the EEG timecourse 

5.3.2.1. Bins associated with objective trial outcomes  

Valence was significantly associated with the ERP in 201 bins throughout most of the 

outcome processing interval, up to approximately 500ms after feedback presentation (see Figure 

5.6). The largest number of significant associations between the ERP and valence occurred 

between 279ms and 457ms after feedback presentation in central and anterior scalp locations, 

although there were also many significant associations between 102ms and 178ms after feedback 

presentation in right central and anterior scalp locations. The ERP was significantly associated with 

outcome magnitude in 53 bins, of which most fell within the first 150ms of feedback presentation. 

Outcome magnitude and valence were both associated with activity in 18 bins. These included two 

right posterior bins between 25ms and 102ms, six right anterior bins between 279ms and 356ms, 

three right and three left anterior bins between 356ms and 432ms, and four left posterior bins 

between 457ms and 483ms. Both outcome magnitude and outcome valence were also associated 

with activity in separate posterior scalp locations between 533ms and 559ms after feedback 

presentation. 

5.3.2.2. Bins associated with choice probability 

The VPP model choice probability was significantly associated with the ERP in 43 bins, with 

the majority of significant associations falling between 127ms and 279ms in left and midline scalp 

locations, and between 406ms and 533ms in central and anterior locations. The PVL-Delta model 

choice probability was significantly associated with the ERP in 38 bins in midline and right scalp 

locations between 25ms and 102ms, in midline and left scalp locations between 127ms and 279ms, 

and in similar central and anterior locations to VPP choice probability between 406ms and 533ms. 

There were 13 bins in common between the two choice probability variables. Two of these bins in 

a left anterior scalp location between 152ms and 178ms were shared by outcome valence. In 

addition, both probability variables were associated with activity in a left posterior bin between 

254ms and 279ms, with three left anterior bins between 431ms and 483ms, with five right central 

bins between 431ms and 533ms, and with one left anterior bin between 558ms and 584ms. The 

non-shared bins for each probability variable fell within similar time ranges and scalp locations as 

the shared bins. 

5.3.2.3. Bins associated with objective variables and choice probability 

PVL-Delta choice probability and both objective outcome measures were significantly 

associated with the ERP in the first 100ms of the outcome phase in a right posterior bin. Both VPP 

and PVL-Delta choice probability and objective outcome valence were significantly associated with 
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two left anterior bins between 152 and 178ms. VPP choice probability and valence were also both 

associated with two additional left anterior bins in this time interval, and with three left anterior 

bins between 432 and 457ms. VPP choice probability and outcome magnitude were both 

associated with a left central bin between 381 and 406ms. 

5.3.3. Associations between outcome measures and predefined ERPs 

5.3.3.1. Feedback related Negativity (FRN) 

Based on the observed EEG signal (see Figure 5.6, top panel), the FRN was defined as the 

interval between 178ms and 355ms. During the FRN time interval, outcome valence was associated 

with 77 bins, and outcome magnitude was associated with 7 bins (see Figure 5.7). VPP choice 

probability was associated with 9 bins, and PVL-Delta choice probability was associated with 7 bins. 

During this time interval, none of the bins with which PVL-Delta or VPP choice probability were 

associated were shared with bins associated with magnitude or valence, However, both choice 

probability variables were associated with activity in a left posterior bin between 254ms and 

279ms. 

5.3.3.2. P3 

Based on the observed EEG signal (see Figure 5.6, top panel), the P3 was defined as the 

interval between 355ms and 482ms. During the P3 time interval, outcome valence was associated 

with 89 bins and outcome magnitude was associated with 15 bins (see Figure 5.7). VPP choice 

probability was associated with 15 bins, and PVL-Delta choice probability was associated with 12 

bins. None of the bins associated with PVL-Delta choice probability during this time interval were 

shared by magnitude or valence, while activity in a left anterior bin between 381ms and 406ms was 

associated with VPP choice probability and magnitude, and activity in three left anterior bins 

between 431ms and 457ms was associated with VPP choice probability and valence. Furthermore, 

the majority of the shared associations of PVL-Delta and VPP choice probability fell within this time 

interval. 
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Figure 5.6. ERPs in each temporal bin from anterior to posterior, averaged over scalp bins from left 

to right and percentage of spatial bins from left to right in which each regressor was significantly 

associated with the ERP. 
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Figure 5.7. Feedback Related Negativity (FRN) ERP component with activation averaged across the 

FRN timecourse (178ms after feedback to 355ms after feedback) and P3 ERP component with 

activation averaged across the P3 timecourse (355ms after feedback to 482ms after feedback), and 

percentage of time bins during the FRN and P3 time intervals with which each regressor was 

significantly associated. 
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5.4. Discussion 

In this study differences in choice behaviour between smokers, ex-smokers, and non-

smokers in the IGT were observed. The different choice patterns between groups revealed 

variations in fit of computational models of IGT behaviour between groups. As reported in previous 

research, the PVL—Delta model provided good simulation-fit to atypical choice patterns 

(Steingroever, Wetzels & Wagenmakers, 2014) – in this case choice behaviour in the smoker and 

ex-smoker group. However, the VPP model fit better to choice behaviour in the healthy control 

samples. Despite superior fit of the VPP model to data from non-smoking groups, the expression of 

model-based regressors in the EEG of a control sample was similar for the PVL-Delta and VPP 

models, allowing conclusions about the validity of both models based on the observed shared 

effects. Examination of differences in parameter values of the PVL-Delta and VPP models 

supported an account of reward-based reinforcement learning as a trait that differs between 

current or former smokers and non-smokers. 

Despite numerous studies showing no differences in IGT task performance between 

smoking and non-smoking groups (Buelow & Suhr, 2014; Businelle et al., 2009; Lejuez et al., 2003; 

Harmsen et al., 2006), this study revealed a clear pattern of atypical decision-making in both 

current and former smokers in this task. Unlike the non-smoking groups, both current and former 

smokers in this study showed a higher proportion of choices from disadvantageous decks than 

from advantageous decks throughout the task. Previous examinations of differences in 

performance of smokers and non-smokers on the IGT have indicated that differences in task 

performance may be due to an increased tendency to favour large rewards among smokers (Ert, 

Yechiam & Arshavsky, 2013). This study extends this conclusion to former smokers, suggesting that 

differences in reward-based feedback learning persist after smoking cessation. Furthermore, only 

former smokers showed no preference for decks with infrequent losses, indicating reduced 

sensitivity to negative outcomes. The three groups evaluated in this study thus show three distinct 

patterns of choice behaviour: Ex-smokers favor decks with large immediate gains with low 

sensitivity to frequency of losses; Current smokers favor decks with large immediate gains and 

avoid decks with frequent loss outcomes; Non-smokers do not favor decks with large immediate 

gains but avoid decks with frequent losses. Comparison with previous studies showed that the 

choice pattern of the ex-smoker group here was similar to that of cannabis users and the choice 

pattern of smokers showed similarities to that of abstinent heroin users, while the choice pattern 

of the non-smoker group was comparable to that observed in healthy controls in past studies 

(Fridberg et al., 2010; Ahn et al., 2014; Worthy et al., 2013). 

Based on previous work, the PVL-Delta model shows the ability to generate good 

simulation performance, and to adapt to different choice strategies well (Ahn et al., 2008; 
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Steingroever et al., 2013; 2014). The best-fitting model based on post-hoc fit in this study was the 

PVL-Delta model, while the best-fitting model based on simulation fit was the VPP model. However, 

model fit varied across groups, with superior simulation fit of the VPP model for the non-smoking 

groups (showing the typical choice pattern seen in healthy control subjects), and superior fit of the 

PVL-Delta model for the smoker and ex-smoker group (showing atypical choice patterns). Although 

the prediction of choice patterns based on VPP simulations adequately recovered rank-order of 

decks for all but the ex-smoker group, PVL-Delta simulations provided somewhat better 

estimations of the change in choice patterns over the course of the task. 

To determine whether there was any observable link between model-based value 

calculations and brain function during the task, the trial-by-trial values for choice probability 

calculated by the PVL-Delta and VPP models were used as regressors in a GLM of the EEG 

timecourse during the feedback processing interval alongside outcome valence and outcome 

magnitude. Of the 294 total bins for which significant effects were observed 257 were associated 

with only one regressor, indicating that the three elements of feedback processing evaluated here 

(outcome valence, outcome magnitude, and subjective outcome expectations) show distinctly 

different temporal properties in terms of their expression in the ERP. Furthermore, the ERPs 

associated with model-based estimations of subjective choice probability showed little overlap with 

the time interval of the FRN, which is generally considered to be associated with prediction error 

(Nieuwenhuis et al. 2004; Fuentemilla et al., 2013). However, the majority of bins associated with 

model-based regressors fell within the time interval of the P3 ERP. Previous research has found 

that the magnitude of the P3 ERP increases with the subjective unexpectedness of the task 

outcome (Fuentemilla et al., 2013; Mars et al., 2008). The findings in this study suggest that model-

based outcome probability estimates reflect an aspect of subjective outcome likelihood processing 

that occurs during a later stage of the P3 time interval than processing associated with objective 

outcome variables. Previous work has also found that variations in P3 amplitude are associated 

with individual differences in risk attitudes (Fuentemilla et al., 2013). In the context of the IGT, risky 

deck choices (i.e. deck selections where the associated choice probability value was comparatively 

low) may have similarly resulted in higher P3 amplitudes. Overall, the finding of an association 

between the P3 and PVL-Delta/VPP model choice probability supports a link between the model-

based choice predictions and neurobiological indicators of feedback processing, lending some 

biological validity to inferences made based on these models of choice behaviour.  

The VPP and the PVL-Delta model showed very similar patterns of association with the ERP, 

indicating that the aspect of decision-making captured in trial-by-trial calculations by these models 

is largely the same. Despite the apparent similarity in the post-hoc choice probability estimates 

based on the ERP findings, the parameter values used to calculate the post-hoc choice probability 
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estimate were not entirely consistent. Most notably, the parameter α reflecting outcome 

sensitivity showed clear group differences in the VPP model but not in the PVL-Delta model. In the 

VPP model, ex-smokers had higher values of the outcome sensitivity parameter than non-smokers, 

suggesting higher sensitivity to feedback. In addition, both ex-smokers and non-smokers had lower 

values of the reinforcement learning parameter ω than smokers in the VPP model, indicating that 

the perseverance heuristic was incorporated into model calculations to a greater extent in the ex-

smoker and non-smoker group than in the smoker group (see function [6]). Although the weighting 

of reinforcement learning was still a great deal higher than that of the perseverance heuristic in all 

groups, the greater incorporation of the additional perseverance calculation (function [5]) into VPP 

choice selection in the ex-smokers and non-smokers may account for the group differences in the 

outcome sensitivity parameter in the VPP but not in the PVL-Delta model despite similar trial-by-

trial values for both models. Given strong evidence in favour of the VPP model over the PVL-Delta 

model when using a Bayes factor (Steingroever et al., 2016) and overall stronger evidence for the 

VPP model given simulation fit in this study, it is reasonable to conclude that the parameter values 

generated using this model better reflect actual aspects of choice behaviour in the IGT. 

The group differences seen in VPP parameter values between smoking groups were 

consistent with a generally accepted account of smokers (and ex-smokers) as more driven by 

reward outcomes with less regard for negative consequences. The differences observed here 

clearly highlighted differences between non-smokers and former smokers in sensitivity to 

feedback. The absence of group-difference effects for the current smoker group suggests that this 

heightened sensitivity to feedback may be a general risk factor for smoking that is attenuated 

through smoking behaviour. Alternatively, this trait could in some way have facilitated successful 

cessation in the ex-smoker group. The conclusion that heightened sensitivity to feedback is a trait 

of both current and former smokers is supported by findings from neuroimaging studies 

investigating risk factors for compulsive drug-seeking behaviour that suggest that deficits in 

prefrontal cognitive control networks and increased sensitivity to reward put individuals at high risk 

for addictive behaviours (Ersche et al., 2010; 2012; 2013a/b).  

While not statistically significant, values for the loss aversion parameter in the PVL-Delta 

and VPP models also appeared to be higher for non-smokers than ex-smokers and smokers, 

indicating that the increased sensitivity to feedback in the ex-smoker group may be stronger for 

gains than for losses. Worthy and colleagues (2013) previously observed that the number of 

choices from deck B was negatively associated with loss aversion. The high proportion of deck B 

choices among ex-smokers thus reinforces the conclusion that ex-smokers show heightened 

sensitivity to reward in this study. Using the same computational modelling approach used in this 

study, reduced loss aversion compared to control subjects has previously been found among a 
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heroin user group with similar choice patterns as the smoker group in this study (Ahn et al. 2014). 

Given the similarity in choice patterns and the suggested variations in loss aversion between 

current or former smoker and non-smokers it is possible that differences in loss aversion between 

substance using and non-using populations may be a general feature, and even a predisposing 

factor for some addictions.  

A further aspect of decision-making in the IGT for which differences between the current 

smokers and non-smoking groups were found was the reliance on the perseverance heuristic. 

Based on this finding, the current smoker group relied almost entirely (or to a greater extent than 

the non-smoking groups) on the calculation of expected choice value Ev(t+1)j for each deck j to 

determine subsequent choices, whereas the other groups took into account the perseverative 

strength of each option to a greater extent. A possible account of the higher reliance on the 

expected choice value in smokers comes from a previous study using a subset of this data that 

found self-reported awareness of reward and punishment contingencies to be lower among 

current smokers than ex-smokers and non-smokers (Briggs et al., 2014). Employing the 

perseveration heuristic which determines whether the choice strategy should be changed or not 

based on outcome valence may require higher awareness of the long-term contingencies of the 

decks. Since the parameters used to calculate perseveration strength were not distinct between 

groups, reliance on the perseveration heuristic and its relationship to awareness of deck 

contingencies will require further investigation. 

An important limitation of this study was that the variation in age ranges between groups 

and the use of self-reported smoking behaviour rather than breath CO monitoring limits the 

genaralizability of findings. As this study has shown that computational modelling of the IGT is a 

valid and informative approach to examining reward-related decision making in smokers and non-

smokers, future work with larger samples and stricter inclusion criteria is warranted. A further 

limitation that should be addressed in future work is that differences in variables other than 

smoking behaviour, such as substance use or socioeconomic status were not considered in this 

study. As the IGT was created as an ecologically valid measure of decision-making these variables 

are likely associated with task performance. Bechara et al. (2001) found that the ability to hold 

gainful employment was the biggest predictor of IGT task performance in a substance using group 

(Bechara et al., 2001). In contrast to other substance use disorders, there is little support for the 

notion that smoking is causal to unemployment or absenteeism (Henkel, 2011), making this 

variable unlikely to confound findings in a study of IGT performance in smokers. However, as SUD 

populations have high smoking rates, and loss of functionality (such as inability to hold 

employment) is more commonly associated with SUD than smoking, the discrepancies in findings 

relating to IGT task performance of smokers between studies and differences between groups in 
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the present study could be related to differences in other substance use. In the absence of studies 

specifically examining whether there is a dissociable effect of smoking compared to other 

substance use on IGT performance it remains unclear to what extent smoking itself is associated 

with IGT performance in populations that also show other substance use. Future studies should 

consider possible differences between smoking and non-smoking groups in employment and other 

substance use when examining IGT performance.  

Furthermore, the definition of smoking groups used in this study limits the inferences that 

can be drawn as to the differences between the smoker and ex-smoker group. Given the different 

measures used to assess smoking in the two different samples used here, there is a possibility that 

the ex-smoker group were all stronger smokers before quitting than the individuals in the current 

smoker group were at the time of the study. A further subdivision of smoking samples into heavy, 

casual, and ex-smokers or a longitudinal study design including attempted smoking cessation in 

future research would provide further insight into the possible interaction of nicotine dependence 

severity, cessation status and IGT performance. 

This study showed that the currently available models of choice behaviour in the IGT still 

show some deficits in accounting for all possible choice patterns. However, this study also showed 

that it is possible to link regressors from computational models of the IGT to brain activity to 

identify neural representations of subjective choice appraisal, which fall in line with established 

accounts of outcome evaluation. Clear qualitative differences in how decision-making is influenced 

by reward and punishment were observed in current smokers, former smokers, and non-smokers. 

Results indicate that the heightened sensitivity to rewards in smokers that is routinely observed 

using neuroimaging measures is also evident for former smokers when using a computational 

modelling approach. Given the demonstrated link between ERPs during outcome evaluation and 

model-based calculations of choice probability, future work should consider incorporating trial-by-

trial measures of physiological responding into assessment protocols using the IGT to further 

examine the correlates of model-based estimations of subjective decision-making components. 
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Chapter 6 – Discussion 
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6.1. Summary of empirical findings 

The aim of this thesis was to explore precursors, risk factors, and correlates of smoking 

behaviour using a variety of populations and analysis approaches. Previous knowledge of neural, 

psychological and environmental factors associated with smoking was extensively reviewed in 

Chapter 1, followed by a detailed examination of how analytical approaches from the field of 

machine learning can benefit classification and prediction of psychiatric pathology.  Chapters 1 and 

2 addressed how neuroimaging data can be adequately interrogated using machine learning 

approaches. Utilizing these insights, a holistic model predicting future smoking in healthy 

adolescents was developed in Chapter 3. In line with a role of reward-related neuroimaging 

predictors of adolescent smoking identified in Chapter 3, the relationship between smoking 

behaviour and functional connectivity of the reward system was further examined in Chapter 4. 

Moving from adolescent to adult smoking behaviour, Chapter 5 examined the potential of 

computational models of reward-related decision making to further illuminate cognitive processes 

underlying complex choice behaviour, and compared outcomes of such cognitive models between 

smokers, non-smokers, and former smokers. 

6.1.1. Summary of findings relating to machine learning analysis frameworks (Chapter 2, 

Chapter 3) 

In Chapter 2 simulated and real neuroimaging data were used to evaluate which out of six 

selected linear regression algorithms provided the best fit to the data, and whether results could 

be improved through use of an embedded feature selection algorithm and/or bootstrap 

aggregation. The primary finding in Chapter 2 regarding the application of machine learning 

algorithms to neuroimaging data was that success largely depends on the amount of data available, 

with a sample size of N=400 emerging as a lower limit for necessary sample size. Across dataset 

sizes and evaluated data types the Elastic Net produced the best results. Gaussian Process 

Regression and Multiple Regression with embedded feature selection and/or bootstrap 

aggregation performed equally well or better than the Elastic Net in some cases (i.e. for some 

dataset sizes and data types) but produced much lower model fit for other cases. When used in 

Chapter 3 to predict group membership of adolescent smokers, the Elastic Net produced good 

predictions for data from psychometric and behavioural sources, but prediction accuracy using only 

neuroimaging data was poor despite both datasets having approximately equal size. When both 

neuroimaging and psychometric data were combined model fit was comparable to that of 

psychometric data alone, showing that data from different sources and modalities can be 

successfully combined in one model without compromising model fit. 
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6.1.2. Summary of findings relating to the prediction of adolescent smoking (Chapter 3) 

The examination of smoking behaviour in a sample of 548 14-year old adolescents from 

the IMAGEN study (Schumann et al., 2010) revealed that psychological, environmental, and 

neuroimaging factors significantly contribute to risk of future smoking onset. Notably, 

neuroimaging variables were only identified as useful predictors of long-term smoking risk (i.e., 

between two and four years after baseline), while risk of becoming a regular smoker within the 

next two years was described best by a set of variables encompassing behaviour, personality, and 

psychopathology.  

A set of core variables were predictive of any future smoking, regardless of when regular 

smoking commenced. These included alcohol and other substance use, as well as maternal 

smoking currently and before pregnancy. Low conscientiousness, high impulsiveness, and antisocial 

behaviour also predicted smoking. One of the strongest predictors of smoking was parent-report of 

deliberate self-harming behaviour over the adolescents’ lifetime. Sensation-seeking and experience 

with romantic relationships had stronger predictive utility for late-onset smoking (LOS) than for 

early-onset smoking (EOS), while alcohol use, conduct disorder symptoms, self-harming behaviour 

and novelty-seeking had higher predictive utility for EOS. In addition, only LOS was predicted by 

low ADHD symptoms and low agreeableness. An unstable or unsupportive family environment was 

a risk factor for EOS. Adolescents who reported high ‘anxiety sensitivity’ reflecting fear or 

nervousness surrounding unfamiliar physiological sensations were more likely to be EOS or remain 

non-smokers (NS) than become LOS.  

Low grey matter volume in the right IPL/TPJ was predictive of LOS compared to both NS 

and EOS. Adolescents who had low activity in this region while reading sentences and adolescents 

who had high activity in this region during successful response inhibition were more likely to 

become LOS than EOS. During failed response inhibition, low activity in the amygdala and TP 

among other regions predicted LOS compared to NS. High activity in the OFC during successful 

response inhibition also predicted LOS compared to EOS and NS. During reward anticipation in the 

MID task LOS compared to EOS and NS was predicted by low activity in the ACC and OFC. During 

the outcome interval of the task higher activity in the ACC and lower activity in the PCC, as well as 

higher activity in the paracentral lobule/SMA and caudate predicted LOS compared to NS. During 

affective face viewing LOS compared to EOS and NS was predicted by higher activity in the PCC. 

Low TP activity also predicted LOS compared to EOS, and high VS and hippocampal activity 

predicted LOS compared to NS. Low activity in the bilateral temporal lobe while listening to 

sentences, and high activity in the right dorsal striatum for visual arithmetic predicted LOS 

compared to NS. 
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6.1.3. Summary of findings relating to reward system connectivity and adolescent smoking 

(Chapter 4) 

In a sample of 206 adolescents from the IMAGEN study (Schumann et al., 2010) who had 

smoked between two and more than forty times in their life, lifetime alcohol and cannabis use 

were significantly associated with smoking frequency, but demographic measures or measures of 

physiological anxiety sensitivity, impulsivity, or novelty-seeking were not. 

During anticipation of large compared to no rewards in the MID task lifetime nicotine use 

was significantly correlated with functional connectivity between the VS and a number of cortical 

and subcortical regions. Connectivity of the VS with the contralateral PCC was positively associated 

with smoking, while connectivity with the contralateral TP was negatively associated with smoking. 

Connectivity of the bilateral VS with the right IFG and of the right VS with the left medial SFG and 

olfactory gyrus was negatively associated with smoking. Connectivity of the bilateral VS with the 

OFC was also positively associated with smoking. For the left VS connectivity with the ipsilateral 

SMG was positively associated with smoking, while connectivity of the right VS with the ipsilateral 

SMG/AG and of the left VS with the ipsilateral IPL was negatively associated with smoking. For the 

right VS, connectivity with the right amygdala, thalamus, caudate, and cerebellum was positively 

associated with smoking, and connectivity with the right superior occipital lobe and left lingual 

gyrus was negatively associated with smoking. 

6.1.3. Summary of findings relating to differences in model-based characterization of 

reward related decision-making in current, former, and non-smokers (Chapter 5) 

During reward/loss-based decision making under uncertain conditions in the IGT adult 

smokers, non-smokers, and ex-smokers showed distinctly different choice strategies. Both current 

and former smokers favoured choices that resulted in immediate large rewards, and both smokers 

and non-smokers avoided choices that resulted in frequent loss outcomes. While choice behaviour 

in all participants changed as they gained knowledge of the long-term consequences of their 

choices, only the non-smokers adapted their choice behaviour to prioritize long-term positive 

outcomes during the task.  

Fitting three computational models of the IGT to participants’ choice patterns showed that 

the ability of these models to capture change in choice strategies over the course of the task was 

limited. Nevertheless, examination of the electrophysiological correlates of model-based 

estimations of trial-by-trial choice likelihood showed that both the VPP and the PVL-Delta model 

capture aspects of decision-making that can be observed in EEG recordings. The expression of the 

model-based choice likelihood value overlapped with the well-known P3 ERP and was seen later in 

the outcome evaluation interval than the expression of objective outcome characteristics. 
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Based on the confirmation of the biological relevance of the PVL-Delta and VPP models and 

their objective fit to the data, individual model parameters were evaluated and compared between 

groups. Based on the distribution of parameter values between groups, ex-smokers were more 

sensitive to the magnitude of outcomes than non-smokers, while smokers placed higher 

importance on the direct reinforcement value of outcomes than ex-smokers and non-smokers. In 

the context of differences in choice behaviour between groups these differences in model 

parameters confirm lower sensitivity to losses and higher importance placed on high rewards in ex-

smokers (and possibly current smokers) compared to non-smokers. Findings also indicate that 

smokers’ choice behaviour was less influences by awareness of long-term outcomes than that of 

ex-smokers and non-smokers. 

6.2. General Discussion 

6.2.1. Discussion of findings concerning predictors and correlates of smoking behaviour 

The brain undergoes profound changes during adolescence, resulting in altered behaviour 

and cognition (Dahl & Forbes, 2010; Crews, He & Hodge, 2007). While adolescents do not suffer 

from a deficit in the logical ability to weigh risks and benefits of behaviours, their decisions are 

motivated to a larger extent by the urge for immediate gratification, pleasure, and reward than 

those of adults (Reyna & Farley, 2006; Beyth-Marom et al., 1993; Steinberg, 2008). A measurable 

expression of this is increased novelty seeking, reduced harm avoidance, and increased choice 

impulsivity in adolescence (Brändström, Sigvardsson, Nylander & Richter, 2008; Steinberg, Graham, 

O’Brien, Woolard, Cauffman & Banich, 2009). Models of adolescent brain development attribute 

these characteristics to a deficit in the regulatory ability of cognitive control regions over reward-

based motivational drives in adolescence (Steinberg, Albert, Cauffman, Banich, Graham & Woolard, 

2008; Ernst, Pine & Hardin, 2005; Casey, Jones & Hare, 2008; Casey, 2015). The result of the 

developmental imbalance between these brain systems has been characterized as an inability to 

pay attention to stimuli that are not salient when salient or emotionally evocative stimuli are 

present (Blakemore, 2008). Findings from the studies contained within this thesis pointed toward 

development of smoking behaviour being closely associated with altered function of cognitive 

control and reward networks, differences in which may persist after smoking cessation. 

Altered structure and function of the reward systems is associated with initiation, 

maintenance, and cessation of smoking, as discussed in 1.1.4.1. The reward processing paradigm 

used to examine alterations in reward system function and possible deficits in reward processing 

evident before smoking onset was the MID task, discussed in 1.1.4.3. During anticipation of 

rewards in this task activity is observed in the ventral and dorsal striatum, the ACC, mPFC, OFC, and 

the thalamus among other regions (Adcock, Thangavel, Whitfield-Gabrieli, Knutson & Gabrieli, 
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2006; Knutson, Fong, Bennett, Adams & Hommer, 2003; Haber & Knutson, 2010; Van Leijenhorst, 

Zanolie, Van Meel, Westenberg, Rombouts & Crone, 2010). Consistent with the known dose-

response relationship between VS function during reward anticipation and smoking (Peters et al., 

2011; van Hell et al., 2010; Rose et al., 2013), differences in functional connectivity of the VS during 

reward anticipation were associated with current smoking, but striatal activity during reward 

anticipation was not predictive of future smoking behaviour.  

In contrast, findings from the anticipation phase of the MID task showed that reduced 

activity in the ACC and OFC was predictive of future smoking behaviour, indicating not only that 

adolescents will begin smoking but also at which age regular smoking will begin. The ACC and OFC 

have both been shown to be sensitive to the motivational salience of stimuli and are thought to be 

involved in the development and maintenance of drug-seeking behaviour (Dom, Sabbe, Hulstijn & 

van den Brink, 2005). Reduced grey matter volume has been found in the ACC and medial OFC in 

smokers compared to non-smokers (Brody et al., 2004; Kuhn, Schubert & Gallinat, 2010). 

Furthermore, smokers show increased ACC activity to smoking cues compared to non-drug cues 

and associated with nicotine dependence severity (Janes et al., 2013, 2015b; Engelmann et al., 

2012, Zanchi et al., 2015; McClernon, Kozink & Rose, 2008). Dependent compared to occasional 

smokers also show reduced OFC activity to non-drug rewards (Bühler et al., 2010). Engagement of 

the ACC and OFC to reward cues can thus be interpreted as reflecting sensitivity to a reward, in line 

with a role of the ACC in salience attribution (Menon & Udin, 2010) and attentional bias (Goldstein 

& Volkow, 2011), and of the OFC in encoding value and saliency (O’Doherty, 2004; Kringelbach & 

Rolls, 2004). In line with evidence for changes in the OFC associated with nicotine use (Kuhn, 

Schubert & Gallinat, 2010) functional connectivity of the VS with OFC regions during reward 

anticipation was also associated with smoking frequency.  

Some evidence suggests a genetic component in connectivity of the VS and ACC to the 

amygdala and in associated smoking risk (Hong et al., 2010). While no effect of smoking frequency 

on VS connectivity with the ACC was found, increased functional connectivity of the VS with the 

amygdala was associated with smoking frequency. The VS receives input from the BLA, which is 

known to be involved in encoding motivational salience and guiding instrumental action (Wassum 

& Izquierdo, 2015; Shiflett & Balleine, 2010). Altered amygdala function in smokers has not been 

extensively studied, with the majority of studies investigating amygdala function in association with 

smoking cues (Mihov & Hurleman, 2012). However, significantly enlarged amygdala volume has 

been found in dependent substance users and their biological siblings but not in casual recreational 

users (Ersche et al., 2012; 2013a), suggesting that the amygdala is implicated in a high-risk 

phenotype for substance use. Considering the known role of the amygdala, OFC, and ACC in 

attribution of salience to drug and non-drug stimuli, atypical activity during the anticipation of non-
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drug reward cues in these regions can be interpreted as a deficit in reward sensitivity. As this effect 

was observed as a pre-existing risk factor and in adolescents the majority of which were likely not 

yet nicotine dependent, this extends a previous understanding of reduced sensitivity to natural 

reinforcers occurring as a result of substance use (Koob & LeMoal, 2005) to show that such deficits 

are also a pre-existing vulnerability for substance use.  

Since altered ACC function was observed only as a predictor of future smoking with no 

effect of current smoking frequency, ACC function may be a specific risk factor for smoking 

initiation. The ACC is one of the cortical areas with the densest dopaminergic innervations (Gaspar, 

Berger, Febvret, Vigny & Henry, 1989). Reduced activity in the ACC for anticipation of non-drug 

rewards in non-addicted individuals may therefore be associated with altered dopaminergic 

activity. Dopamine D2 receptor availability has previously been linked to impulsivity (Trifilieff & 

Martinez, 2014) and the reinforcing effects of drugs of abuse (Volkow et al., 1999; Nader & Czoty, 

2005; Thanos et al., 2005; Yoder et al., 2005). Furthermore, high D2 receptor availability in the ACC 

and OFC in individuals with high familial alcoholism levels have been interpreted as a protective 

factor against substance use disorders (Volkow et al., 2006). Further longitudinal examinations of 

DA activity and D2 receptor availability in adolescents who will go on to become smokers will be 

necessary to fully examine this effect. 

DA release in the striatum and associated changes in reward-related behaviour have been 

observed as a result of transcranial magnetic stimulation of the mPFC (Cho et al., 2015). Effects 

seen for both future smokers and current smokers showed that the OFC and mPFC have 

dissociable roles in reward anticipation. While functional connectivity of the VS with the OFC was 

increased in association with smoking frequency, connectivity with the mPFC was decreased. 

Furthermore, a predictive effect of mPFC activation that was specific to anticipation of rewards of 

different magnitudes was observed, with reduced mPFC activity to large compared to small reward 

cues predicting late-onset smoking. The mPFC is known to bias individuals toward less risky 

choices, as shown in a lesion study using a gambling task (Clark et al., 2008). Furthermore, 

repetitive transcranial magnetic stimulation of the mPFC was shown to influence preference for 

large and delayed rather than immediate and small rewards in a temporal discounting task (Cho et 

al., 2015). Reduced mPFC engagement and reduced mPFC functional connectivity with the VS may 

thus reflect reduced cognitive control over reward system function for motivationally salient cues 

in present and future adolescent smokers. 

Further evidence for reduced cognitive control over reward system response to reward 

cues associated with adolescent smoking can be seen in altered connectivity between the VS and 

the ventral frontoparietal attention network (vFPAN; Corbetta et al., 2008; Corbetta & Shurman, 

2002). During anticipation of rewards in the MID task reduced functional connectivity of the VS and 
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the IPL, cerebellum, and right IFG associated with smoking frequency was observed. Activity in 

none of these generally right-lateralized regions thought to be part of the vFPAN (Vossel, Geng & 

Fink, 2014) predicted smoking during reward anticipation. However, reduced activity in the left IFG, 

which has been attributed a similar role in inhibitory control as the right IFG (Swick, Ashley & 

Turken, 2008; Chikazoe, Konishi, Asari, Jimura & Miyashita, 2007; Aron et al., 2014) predicted late-

onset smoking compared to early-onset smoking. Lacking evidence for reduced engagement of a 

frontoparietal attention network in reward anticipation as a marker of future smoking risk, and 

previous research showing altered IPL function to natural and drug cues in substance dependent 

individuals (Garavan et al., 2000) indicate that altered reward-related function of the IPL and 

attention networks may emerge subsequent to substance use initiation.  

A further region which has been found to show changes associated with substance use and 

for which a reward-related predictive effect was also indicated is the TP. The TP is an important 

region involved in social cognition and emotion processing but is also suggested to serve as a hub 

integrating emotional and sensory cues (Fan et al., 2014; Pehrs et al., 2015; Olson et al., 2007). 

Increased TP activity associated with nicotine dependence has previously been found for smoking 

cues (Claus et al., 2013). Reduced activity of the right superior TP for anticipation of large 

compared to no reward predicted late-onset smoking, and smoking frequency was associated with 

reduced VS functional connectivity to the same region and the bilateral middle TP during reward 

anticipation. The relationships between smoking behaviour and TP activity to drug- and non-drug 

reward cues established in the studies presented here and in previous research, and findings of 

altered TP structure in substance users (Albein-Urios et al., 2013) indicate that TP changes are 

partially a result of substance use. However, the observed predictive effect of right superior TP 

function during reward anticipation and the identification of the same region as showing changes 

in functional connectivity associated with smoking frequency indicates that pre-existing differences 

in TP recruitment are also a vulnerability for smoking behaviour.  

In addition to the breadth of findings regarding anticipation of reward outcomes in the 

MID task, several findings regarding activity in response to receiving reward outcomes emerged. 

Adolescents who displayed increased task-related attention and outcome valuation were more 

likely to become late-onset smokers than to remain non-smokers. Compared to non-smoking, late-

onset smoking was predicted by reduced bilateral PCC and middle temporal gyrus activity, 

indicating reduced default-mode network (DMN; Buckner, Andrews-Hanna & Schacter, 2008) 

recruitment. Furthermore, late-onset smoking was predicted by increased paracentral lobule and 

SMA activity when receiving rewarding outcomes, indicating higher recruitment of a task-active 

network. Increased ACC activity also predicted late-onset smoking compared to non-smoking, 
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indicating that reduced valuation of stimuli in the anticipation phase was followed by increased 

attention and valuation of stimuli when receiving reward outcomes.  

Findings in Chapter 5 indicate that elements of the reward system dysfunction identified as 

a predictor of future smoking are still evident after smoking cessation. In the IGT, smokers and ex-

smokers failed to learn to avoid choices that would result in large loss outcomes, and favoured 

choices with large immediate gains. Advantageous performance in the IGT is known to depend on 

vmPFC function (Bechara et al., 2001). The ACC and VS are also engaged in IGT performance (Li et 

al., 2010). The failure of smokers and ex-smokers to learn from disadvantageous choices may 

therefore reflect persistence of deficits in reward system function and continued heightened 

valuation of large positive non-drug outcomes after smoking cessation. Ex-smokers in particular 

were characterized by increased sensitivity to positive outcomes and an apparent insensitivity to 

negative outcomes. Examination of model parameters and results from a past study using a subset 

of the same data (Briggs et al., 2015) indicated that current smokers have a reduced awareness of 

the likely future reward or punishment outcomes of their choices, which may reflect a similar 

effect of dysfunction in reward anticipation as was observed during the MID task in adolescent 

current and future smokers. 

The phenotype of altered reward sensitivity associated with smoking behaviour suggested 

by these results may be common to multiple impulse control disorders. A strong overlap between 

risk for future substance use and CD is suggested. In line with previous research showing that CD is 

a strong risk factor for adolescent substance use (Disney et al., 1999; Fergusson, Horwood & 

Ridder, 2007) adolescents for whom the presence of CD was indicated were also at high risk of 

becoming smokers before age 16. CD is associated with increased risky decision-making and 

insensitivity to negative consequences (Fairchild et al., 2009a; Sonuga-Barke et al., 2016). CD and 

antisocial behaviour can therefore be conceptualized as a set of traits that fall at the extreme end 

of the typical increase in risk-taking and insensitivity to negative consequences that is seen in 

adolescence. The choice patterns of smokers and ex-smokers in Chapter 5 were also similar to 

those seen in adolescents with CD/ODD (Schutter et al., 2011), and the apparent reduction in 

sensitivity to negative outcomes in ex-smokers is similar to patterns of outcome valuation seen in 

children with ODD (Humphreys & Lee, 2011). Along with other maladaptive behaviours and 

symptoms, CD and substance use may thus be an expression of a common high-risk phenotype 

characterized by deficits in cognitive control over motivational impulses. Based on findings 

regarding temporal discounting in adolescents with CD (White et al., 2014), Sonuga-Barke and 

colleagues (2016) suggested that CD/ODD may be characterized by a “present-oriented 

motivational style”. Given findings of deficits in anticipating future reward outcomes as a predictor 

and correlate of smoking this conclusion may be adapted and extended to characterize individuals 
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at risk for smoking and possibly other impulse control disorders as having a “present-oriented and 

reward focussed motivational style”.  Despite the apparent overlap in the adolescent phenotypes 

associated with CD and risk for substance use, an evaluation of factors associated with 

externalizing disorders in adolescents from the IMAGEN study found that substance use and 

CD/ADHD show dissociable associations with facets of impulsivity and reward sensitivity 

(Castellanos-Ryan et al., 2014). The link between CD in adolescence and subsequent substance use 

disorders will require further investigation. 

Based on the known link between disordered conduct and smoking, interventions targeting 

disruptive and aggressive classroom behaviour have previously reduced rates of smoking in 

adolescents who were already low in this type of behaviour (Kellam & Anthony, 1998). However, 

such interventions have been suggested to only reduce environmental exposure to smoking (Wang 

et al., 2012) and to delay smoking onset (Lantz et al., 2000) rather than eliminate a causal risk 

factor for adolescent smoking. The evidence suggests that antisocial behaviour and the associated 

tolerance for deviance seen here as risk factors for early-onset smoking are predominantly risk 

factors for smoking initiation (Mayhew et al. 2000). Present findings also indicate that novelty-

seeking - like antisocial behaviour and CD - is a risk factor for initiating smoking behaviour rather 

than risk for becoming dependent. Previous research has shown that while non-smokers and light 

or experimental smokers do not appear to differ on novelty seeking, regular adolescent smokers 

have higher levels of novelty seeking than non-smokers and experimenters (Audrain-McGovern et 

al., 2004a; 2009; Dinn, Aycicegi & Harris, 2004; Rezvanfard et al., 2010). Findings from Chapter 3 

and Chapter 4 extend this knowledge to show that frequency of smoking in 14-year-olds is not 

associated with novelty-seeking when a spectrum of smoking including relatively low levels is 

examined, but that novelty seeking at age 14 is predictive of adolescents becoming regular 

smokers before age 16. Notably this trait also differentiated between smoking trajectories, and is 

thus not a universal predictor of adolescent smoking, but rather a specific indicator of early 

adolescent smoking risk. Similarly, many of the variables differentiating between adolescents who 

would take up smoking before or after age 16, such as the identified ‘broken home’ indicators 

could be conceptualized as catalysts triggering earlier initiation of a maladaptive behaviour. Like 

the absence of antisocial behaviour and CD, the presence of a stable home environment and lack 

of exposure to illicit substances are likely protective factors that contribute to the delay of smoking 

onset. Interestingly another strong predictor of late-onset smoking was the absence of ADHD 

symptoms, which can also be interpreted as a protective factor given the high rate of co-

occurrence of smoking and ADHD (McClernon & Kollins, 2008). 

ADHD and CD have been shown to have dissociable underlying neurobiology, with deficits 

in ADHD lying predominantly in the area of inhibitory control and attention, and deficits in CD more 
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so in the domain of affect regulation and motivation (Rubia, 2011). However, the presence of both 

ADHD and CD symptoms predicted onset of regular smoking before the age of 16 rather than later 

smoking-onset. While the neurobiological evidence did not allow any conclusions about 

neurobiological factors predicting early-onset smoking compared to non-smoking, predictors of 

late- compared to early-onset smoking allowed some insight into deficits in brain function that may 

be related to these other impulse control disorders. The previously discussed negative relationship 

between anticipatory OFC and ACC activity and age of smoking onset is in line with disorder-

specific reward-related hypoactivation of the OFC in individuals with CD (Rubia et al., 2009). In 

addition, an ADHD-specific hypoactivation of the PCC for rewards was observed in the same study 

(Rubia et al., 2009), which is similar to the predictive effect of PCC hypoactivation for reward 

outcomes in the MID task for late-onset smoking compared to non-smoking. Despite the presence 

of ADHD symptoms being counter-indicative of late-onset smoking risk, some of the underlying 

deficits of these disorders may thus nevertheless be shared. 

Individuals with ADHD symptoms show deficits in inhibitory control, as measured using 

paradigms such as the SST (O’Halloran et al., 2018; Whelan et al., 2012). While the regions 

identified as predictors of smoking status during the SST did not overlap with those previously 

identified to differ in adolescents with or without ADHD from the IMAGEN study, there was 

substantial overlap between predictors of smoking behaviour in the SST and networks found to 

differ in adolescents with or without substance use experience (Whelan et al., 2012). Whelan and 

colleagues (2012) found that increased substance use experience was associated with reduced 

activity in the OFC during successful response inhibition. High activity in a corresponding set of OFC 

regions during successful inhibitory control predicted initiating regular smoking more than two 

years later compared to not smoking or beginning to smoke at an earlier age. Given the known 

relationship between activity in the OFC during successful response inhibition and substance use, 

increased OFC activity may be considered a protective factor associated with delay of smoking 

behaviour. 

Predictors of late-onset smoking during the SST also further indicate that altered activity of 

the vFPAN is a risk-factor for future smoking behaviour. Increased activity during successful 

behavioural inhibition in the AG and cerebellum was predictive of becoming a late-onset rather 

than an early-onset smoker, and increased activity in the right IFG was predictive of becoming a 

late-onset smoker rather than remaining a non-smoker. This is in line with an account of the vFPAN 

responding to unexpected changes in sensory input and infrequent target stimuli (Vossel, Geng & 

Fink, 2014; Igelström et al., 2017). The heightened recruitment of the vFPAN during successful 

inhibitory control suggests reliance on compensatory mechanisms during behavioural inhibition as 

a risk factor for smoking behaviour two to four years later. A specific node of the vFPAN and DMN 
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for which structure and function emerged as particularly informative with regards to prediction of 

smoking behaviour was the IPL/TPJ including the SMG and AG. The IPL/TPJ was the only region for 

which grey matter volume predicted future smoking, with lower volume predicting late-onset 

smoking compared to both early-onset smoking and remaining a non-smoker.  

Atypical recruitment of regions forming part of the DMN predicted smoking during 

processing of semantic stimuli in the GCA task. The core regions of the DMN are the IPL, mPFC, 

PCC, hippocampal formation and lateral temporal cortex (Buckner, Andrews-Hanna & Schacter, 

2008). Late-onset smoking compared to both early-onset and non-smoking was predicted by low 

activity of the IPL while reading sentences, and reduced activity of the parahippocampal and 

superior temporal gyri predicted late-onset smoking compared to non-smoking while listening to 

sentences. These findings appear in line with an account of reduced DMN activity (i.e. increased 

task-based attention) during semantic processing as predictor of future smoking behaviour. It 

should be considered though that the temporal region in which lower activity predicted smoking 

overlapped with the auditory cortex and Wernicke’s area. This may indicate lower reliance on, or 

lower recruitment of these regions. Further investigation of the relationship between semantic 

processing in early adolescence and subsequent substance use will be necessary to fully determine 

the nature of this effect. 

While viewing affective facial stimuli, activity in DMN nodes also predicted future smoking. 

However, these differences in activation may have reflected processes other than DMN 

recruitment. During viewing of angry faces compared to control stimuli the IPL, PCC, hippocampal 

formation and lateral temporal cortex all showed a predictive effect for late-onset smoking. Activity 

in the IPL has previously been linked to evaluation of emotional expressions in a similar face 

processing paradigm, and postcentral gyrus activity has been linked to valence and intensity of 

emotional expressions (Sarkheil, Goebel, Schneider & Mathiak, 2013). The observed predictive 

effect of low activity in these regions for late-onset smoking thus suggests a deficit in emotion 

recognition and processing of affective facial stimuli consistent with the effects seen in the 

striatum and hippocampus for this task. Activity in the PCC and left temporal region including the 

temporal pole were the only predictors of late- compared to early-onset smoking in the face 

processing paradigm, with increased PCC activity and reduced left temporal activity predicting late-

onset smoking. The role of the PCC in internally focussed attention (Schulte-Ruther, Markowitsch, 

Fink & Piefke, 2007) and the role of the TP in affect processing (Lorberbaum et al., 2004) suggest 

that atypical processing of angry affect is not only indicative of future smoking risk but also of 

future smoking trajectory. Furthermore, impaired recognition of facial expressions has also been 

observed in adolescents with CD (Fairchild et al., 2009b) and altered TP activity during this task also 

predicted adolescent binge-drinking (Whelan et al., 2014; albeit also in the IMAGEN sample), 
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allowing the conclusion that altered affect processing may be a general characteristic of adolescent 

impulse control disorders and risk factor for future adolescent substance use. 

6.2.2. Discussion of findings relating to machine learning analysis frameworks   

In addition to revealing factors associated with smoking behaviour, the studies contained 

within this thesis also provided a demonstration of the utility of machine learning approaches for 

psychological and neuroimaging applications. While both Chapter 4 and Chapter 5 used variations 

of multivariate regression approaches as part of data analysis, Chapter 3 provides a large-scale 

example of the potential for machine learning applications for use in the psychological sciences. 

The empirical evaluation of machine learning analysis frameworks for neuroimaging applications in 

Chapter 2 showed that, in line with calls for larger sample sizes in neuroimaging research, success 

of machine learning methods in neuroimaging largely depends on the amount of data available. 

Increasing sample size is an effective step to increase power in neuroimaging research (Button et 

al., 2013), and this also holds true for machine learning applications. Crucially, the findings in 

Chapter 2 also revealed that the number of predictor variables has an equally large impact on the 

ability of a machine learning model to retrieve an effect in a neuroimaging dataset. Increases in 

both the number of observations (i.e. sample size) and the number of features resulted in 

improved prediction accuracy when an imbalance in the number of features compared to the 

sample size was adequately addressed through dimension reduction. In a standard multiple 

regression framework this was achieved using an embedded preselection of features. However, 

solutions that were equal to and better than those achieved using this modified multiple regression 

framework were achieved by using a regularized regression approach: The Elastic Net (Zou & 

Hastie, 2005). The suitability of the Elastic Net to neuroimaging data can be attributed to its 

constituent regularization approaches: LASSO and Ridge Regression. While LASSO serves to reduce 

the size of the feature set, Ridge Regression is able to accommodate multicollinearity in the 

dataset. Theoretically, the Elastic Net can retrieve the features that best describe the optimization 

problem regardless of the size of the feature set (de Mol, de Vito & Rosasco, 2009). Chapter 2 

confirmed that larger feature sets do indeed result in better predictions, but the generalizability of 

this finding to voxel-wise neuroimaging data or datasets with many more features should be 

further explored. 
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Table 6.1. Elastic Net Parameters and Correlation (Pearson’s R) with AUC and F1 values by data type 

*p<.0005 **p<.00005  

Following findings in Chapter 2, Chapter 3 included both a large sample size (N>500) and 

more than 1000 features in every analysis. However, results in Chapter 2 and Chapter 3 confirmed 

that effect sizes determine prediction accuracy more so than dataset size. Nevertheless, as shown 

in Chapter 3, combining data from different modalities – such as MRI and psychometric data – and 

with different effect sizes does not necessarily result in less precise models. In fact, including MRI 

data alongside psychometric measures in Chapter 3 made it possible to determine what MRI 

predictors contributed most strongly to the outcome while maintaining a high level of prediction 

accuracy. Findings from simulated and real neuroimaging parameters in Chapter 2 showed that 

higher regularization (λ) in the Elastic Net was associated with lower model accuracy. This is 

supported to a limited extent when examining the regularization strength and associated AUC 

values for neuroimaging data in Chapter 3, where a negative but non-significant correlation 

between λ and AUC was observed (see Table 6.1). Based on these findings, data with weak effects 

result in larger λ values being chosen by the Elastic Net. In contrast, when examining λ values and 

correlations between λ values and AUC values for the analyses including psychometric data, a 

different pattern was observed. Larger λ values were in fact associated with higher AUC values for 

the multimodal models, and λ values had no significant relationship to the more informative F1 

scores for any data type. These findings show that the regularization strength selected by the 

Elastic Net is dependent not only on the feature effect size and size of the effect discoverable in 

the data, but also on the type of data that is used to create the model. In Chapter 3 the 

psychometric and multimodal datasets, unlike the neuroimaging dataset, combined features drawn 

from sources that are minimally dependent (e.g. parent report of stressors in their romantic 

relationship and child reaction times in a behavioural paradigm). The correlation strength between 

features in the datasets used in Chapter 3 are shown in Figure 6.1., demonstrating that the degree 

of intercorrelation in the neuroimaging dataset was higher than in the datasets including 

 Neuroimaging 

data (1330 

variables) 

Psychometric 

data (1105 

variables) 

Neuroimaging & 

Psychometric data 

(2435 variables) 

Mean λ 0.914 1.096 1.187 

Mean α 0.378 0.130 0.220 

Correlation between AUC value and λ (r) -0.238 0.305 0.432* 

Correlation between AUC value and α (r) -0.542** -0.277 -0.399* 

Correlation between F1 score and λ (r) 0.109 0.296 0.291 

Correlation between F1 score and α (r) 0.680** 0.196 0.197 



188 
 

psychometric data. Low inter-correlation among features implies possible large variation in the 

utility of individual features. This may account for higher regularization and a positive relationship 

between regularization strength and model performance. 

 

Figure 6.1. Histogram of Pearson’s R values for correlations between variables of the same or different data 

type used in Chapter 3. A: Inter-correlations between all neuroimaging variables; B: Inter-correlations 

between all psychometric variables; C: Correlations between all neuroimaging variables and all psychometric 

variables. 

Examination of the α values (extent to which LASSO compared to Ridge regression is used) 

can also shed some light on the differences in how the Elastic Net handles different data types. 

Higher values of α correspond to LASSO regression being used to a greater extent, and models thus 

being sparser. As can be noted by the average α values for the different data types (see Table 6.1), 

the proportion of LASSO regularization was highest for neuroimaging data and lowest for 

psychometric data. Furthermore, higher α values were associated with lower AUC values for all 

analyses including neuroimaging data, and with higher F1 scores for the neuroimaging-only 

models. Unlike trends observed for regularization strength, the relationship of α values to AUC 

values is thus independent of data type. The strong positive relationship between α values and F1 

score for neuroimaging data appeared to be driven by higher α values for analyses comparing the 

two smoking groups, which were more balanced in size than other groups and therefore also had 

substantially higher F1 scores. 

6.2.3. Limitations 

The studies reported in this thesis were limited in the amount of demographic variabels 

that were assessed. While there was a measure of socio-economic status in the IMAGEN study, 

race or ethnicity was not assessed. There is some evidence that ethnicity has an effect on 

likelihood of initiating smoking, with Whites being more likely to start and maintain smoking than 

Black, Hispanic, Asian, or multiracial individuals (Tyas & Pederson, 1998; Mayhew et al., 2000; 

Ellickson et al., 2001). Of students in an American university, Asian students were most likely to 

never smoke, Latino/Hispanic students were most likely to try cigarettes, and White students were 

equally likely to be never-smokers, triers, and regular smokers (Balevich, Wein & Flory, 2013). 
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Whites have also been found to be more likely than other ethnic groups to smoke regularly in 

adolescence (Kollins et al., 2005; Upadhyaya et al., 2003).  While these effects appear somewhat 

consistent across studies, it must be stressed that the degree to which these findings may be 

expected to translate to other contexts and communities is limited, as the intersection between 

ethnicity and other factors and their effect on likelihood of smoking is unclear. Furthermore, race 

effects have not been observed in all studies (Hirschmann, Leventhal & Glynn, 1984). Nevertheless, 

since race effects were not examined in the studies reported here, findings can only be expected to 

generalize well to European majority white populations. 

Another facet of smoking risk among adolescents that was not accounted for here was 

peer smoking. There is strong evidence that peer smoking is a risk factor for smoking onset 

(Hirschmann, Leventhal & Glynn, 1984 ; Pederson, 1997; Audrain-McGovern et al., 2004a/b, 

Mayhew et al., 2000; O’Loughlin et al., 2014). In smoking and other substance use prevention the 

importance of peer pressure is often given substantial emphasis and school-based programs aiming 

to prevent youth smoking coach youth to recognize and resist external pressures to smoke 

(Thomas, McLellan & Perera, 2015). While peer pressure is a powerful factor associated with 

smoking, unsuccessful interventions targeting peer pressure point toward a more complex set of 

circumstances surrounding initial experiences with smoking (Onrust et al., 2015). Further studies 

examining adolescent smoking trajectories using predictive modelling should include an 

assessment of peer smoking and peer substance use, as these variables may be specific risk factors 

for early-onset smoking compared to late-onset smoking.  

Finally, a set demographic variable that was not examined in depth in the studies reported 

here was sex and gender. Although being female emerged as a predictor of EOS compared to LOS 

in models without cannabis predictors in line with some previous findings (Mayhew et al., 2000; 

White et al., 2002), the assessment and definition of sex and gender in the IMAGEN study made 

inference based on this dimension challenging. Unlike in the study reported in Chapter 5 where 

participants self-reported their gender identity, the IMAGEN study (used in Chapter 3 and 4) only 

assessed apparent gender at baseline. Both self-identified gender and genetic sex (including the 

possible presence of intersex participants) were only accounted for at a later point during IMAGEN 

data collection and IMAGEN data processing and could therefore not be incorporated into the 

studies contained within this thesis. In addition to capturing the domain of gender rather than sex, 

the assessment of the sex/gender dimension in Chapter 5 differed from that used in the IMAGEN 

study in that multiple participants listed a gender identity other than female or male. Biological sex, 

gender of upbringing, and gender identity may have a strong impact on smoking and other 

substance use behaviour, but these domains should be accounted for separately and consistently 

in future research to ensure broad validity of findings. 
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6.2.4. Summary 

The neuroimaging, psychological, behavioural, and environmental factors determined to 

be predictors or correlates of smoking behaviour painted a picture of adolescent smoking that 

partially overlaps with established accounts of adolescent smoking but also extended previous 

knowledge of factors associated with age of smoking onset. The primary insight into the etiology of 

smoking behaviour gained through the studies contained within this thesis came from the area of 

non-drug reward processing. Overall, a phenotype of reward system dysfunction is suggested 

whereby those at risk for smoking show reduced valuation of cues signalling natural reinforcers, 

indicated by ACC, OFC, and mPFC function. Reduced functional connectivity of reward system 

nodes with cognitive control regions is also associated with smoking frequency and may predate 

smoking onset. Reduced valuation or awareness of future reward outcomes and increased 

sensitivity to rewards is seen before smoking onset and persists until after smoking cessation. It is 

suggested that this phenotype may be part of a common etiological pathway of adolescent impulse 

control disorders that also includes CD. The presence of a number of protective factors that delay 

onset of smoking behaviour in adolescents in the late smoking onset trajectory despite presence of 

this high-risk phenotype is indicated. Structure and function of the IPL/TPJ and function of the 

associated vFPAN was found to predict smoking trajectory. Cognitive training designed to address 

deficits in inhibitory control and cognitive control over motivational impulses is a plausible avenue 

for preventative measures, similar to suggested uses in treatment of substance addiction (Garavan 

& Weierstall, 2012). 

6.3. Conclusion 

The search for biomarkers of behavioural and psychiatric outcomes has been accompanied 

by debate over what the primary focus of such biological models should be. A call for pragmatism 

and maximization of the practical utility of biological models of psychiatric outcomes (Paulus, 2015) 

stands opposite the perspective that mechanistic insight into pathophysiology gained through 

biological models has the greatest benefit for improvement of clinical care (Pine & Leibenluft, 

2015). Given the correct analytical framework, these goals can be unified. With this purpose in 

mind, Elastic Net regression was identified as the method best suited for development of 

neuroimaging regression models among the approaches tested here. Using the use-case example 

of identifying those at risk for future substance use, this and previous projects (Whelan et al., 2014) 

revealed that despite appropriate study design, sample size, and analysis approach, neuroimaging 

data alone has as yet limited ability to improve judgements of risk for future pathology. However, 

modelling neuroimaging data in combination with self-report and behavioural testing revealed 

mechanistic insights into a neurobiologically defined high-risk phenotype that was shown to be 

consistent with deficits in currently and previously substance using individuals. As highlighted in 
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chapter 1, biomarkers of any outcome are only useful if they can augment current methods of 

assessing risk or of preventing and dealing with maladaptive or pathological outcomes. The 

example of smoking outcome prediction demonstrated clearly that functional and structural MRI 

do not contribute to a significant improvement in the accuracy of estimating smoking outcomes. 

However, the additional goal of improving assessment, treatment, and prevention through 

improved understanding of the neurobiological and cognitive mechanisms underlying development 

of psychopathology inherent in psychiatric biomarker research was well served with the approach 

used here. While not presently a reliable risk marker in isolation, highly informative structural and 

functional neuroimaging indicators of risk for future pathology can be identified in multimodal 

studies. Identification of component processes known to be risk indicators (Woo et al., 2018) and 

translation of these known vulnerabilities into cost-effective psychometric measures or cognitive 

models based on behavioural observation is a viable pathway to capitalize on results from 

multimodal predictive studies using neuroimaging measures.  

The insights into neuroimaging and psychometric predictors of adolescent smoking and 

correlates of smoking frequency gained using the Elastic Net fall at the early end of development of 

a useful predictive model. Despite abundant literature on adolescent smoking, there is a lack of 

previous studies using predictive modelling and machine learning with regard to adolescent 

substance use. This makes further research validating findings from the studies presented here 

imperative. By using data from the same population as a previous study examining a similar 

outcome (Whelan et al., 2014) present findings have already revealed areas of commonality 

between predictors of smoking and binge drinking. The next step toward developing a viable tool 

for smoking and substance use risk assessment is the replication of effects seen in the studies 

presented here in a different sample. The predictive utility of a subset of the most informative 

variables including the IPL/TPJ, OFC, mPFC, ACC, and TP should be evaluated in a different sample, 

and variables should be added or removed to improve model performance in subsequent studies. 

The research reported in this thesis used a wide lense to examine the cognitive 

neuroscience of cigarette smoking: Beginning with a prospective view of psychological, behavioural 

and neurobiological risk profiles for smoking in adolescence, including an examination of the 

relationship between function of the reward system and adolescent frequency of smoking, and 

concluding with an exploration of the cognitive aspects of reward-related reinforcement learning in 

adult current, ex-, and non-smokers using a computational approach to the interrogation of 

behavioural data. A central focus of this work was the validation and empirical evaluation of the 

analytical tools used in each study. A thorough investigation of the merits of the machine learning 

method chosen for the prediction of future smoking behaviour was carried out, and the 

computational modelling approach used to describe differences in reinforcement learning between 
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smoking groups was validated using a separate dataset and EEG recording. The use of multiple 

neuroimaging modalities, a diverse set of behavioural paradigms and psychological measures, and 

the choice of populations representing specific stages of progression into smoking behaviour in this 

work has made it possible to gain a well-rounded perspective of deficits associated with cigarette 

smoking.
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Glossary 

Neuromarker: A neuromarker is a biomarker based on neuroscientific data, such as neuroimaging. 

Neuromarkers are biological indicators of the presence or progression of a disease or condition. They are 

generally statistical models that provide an objective estimate of how likely it is that a given condition is 

present. Neuromarkers can consist of a single variable, or be complex multivariate models. 

Brain imaging terms 

Voxel: A voxel can be thought of as a three-dimensional pixel. Voxels are the smallest units in three-

dimensional brain images obtained using MRI. 

Region of interest (ROI): ROI is a term used in neuroimaging to describe data which contain information about 

a specific area of the MRI image. ROIs will often correspond to predefined regions within the brain, such as 

the amygdala or the hippocampus. Data within an ROI are typically averaged for inclusion in statistical tests. 

Signal to noise ratio (SNR): In imaging, SNR refers to the ratio of signal within the data to the background 

‘noise’. In brain imaging terms this represents the strength of the signal coming from the brain itself, such as 

from the BOLD signal, compared to the (random) background noise which is of no interest. SNR is normally 

low in neuroimaging. 

Psychological terms 

Symptomatology: For mental disorders, symptomatology refers to observable and self-reported symptoms 

which an individual experiences. This may include physiological and psychological symptoms. 

Phenomenology: In psychology, phenomenology refers to the description of an individual’s experience, and is 

dissociated from objective reality. 

Neurotype: A neurotype or biological subtype of a disorder or condition is a subset of the population that 

shows particular characteristics of brain structure or function. 

Statistical and machine learning terms 

Inferential statistics: The t-test is a test of the statistical hypothesis that two samples are drawn from the 

same population. The underlying assumption of the t-test is that data from the same population would 

follow a normal distribution. T-tests are often used to test whether there are statistically significant 

differences between two groups. Generally, an Analysis of variance (ANOVA) is the extension of the t-test to 

multiple groups. ANOVAs test for differences in group means. 

Model (Statistical model): A statistical model refers to the formal description of the generation of data. 

Statistical models can be thought of as mathematical representations of theories. Statistical models usually 

describe the relationship between one or more independent variables (such as neuroimaging data), and 

some dependent variable of interest (such as symptomatology). The multivariate models referred to 

throughout the thesis typically have multiple input variables that are weighted depending on how strongly 

they contribute to the description of the dependent variable. The weighted input variables are then 
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combined in a mathematical equation that results in an estimate of the outcome variable. Variable weigths 

are referred to as β (beta) weigths. 

Unimodal and multimodal models: Unimodal models include only data from one modality, such as a single 

type of neuroimaging data. Multimodal models include data from more than one modality. 

Ensemble methods: Ensemble methods make it possible to use multiple statistical models to create a 

summary model. Examples of this approach are ‘voting’, and ‘boosting’. Ensemble methods often combine 

results from multiple models into a new model, weighting inputs to create a superior estimate than would 

have been achievable using each model on its own. 

False positive: False positive results are findings which indicate that something is true, when it is in fact not 

true. False positives are often used to describe the results of classification studies, where a member of the 

negative class (typically control participants) may be erroneously classified as a member of the positive class 

(typically patients). 

Sensitivity & Specificity: Sensitivity refers to the number of cases from the positive class (typically patients) 

that were correctly identified by the model, and specificity refers to the number of cases from the negative 

class (typically control participants) that were correctly identified. 

Area under the curve of the receiver operating characteristic curve (AROC/AUC): The AROC refers to the 

integral of the receiver operating characteristic curve (ROC). The AROC is a frequently used metric of model 

fit for classification models and logistic regression. The ROC curve tracks the rate of true and false positive 

classification of the model. The true and false positive values are on a continuum where the extremes are the 

instances when all cases are classified as elements of one class. Higher AROC values denote better model fit, 

and a higher rate of true than false positive classification. The maximum AROC value is 1, with .5 representing 

chance performance. 

Generalization study/test: A generalization study uses a sample that is independent of the dataset that was 

used to create a model. The generalization study is used to test how well a model performs when it is applied 

to a different sample. 
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Referenced model parameters 

 

 

Elastic Net λ Regularization strength 

 α Extent of LASSO compared to ridge regularization being used. 

Alpha=1 corresponds to just LASSO being used, α=0 

corresponds to just ridge being used. 

Prospect utility function (all IGT 

models) 

λ Loss aversion 

α Sensitivity to feedback 

Delta learning rule (PVL-Delta and 

VPP model) 

A Recency parameter 

Decay reinforcement rule (PVL-

Decay model) 

A Decay rate 

Perseveration function (VPP 

model) 

k Decay rate 

εpos Perseverance value of positive outcomes 

εneg Perseverance value of negative outcomes 

ω Reinforcement learning parameter 

Softmax action-selection rule (all 

IGT models) 

c Consistency parameter 
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Appendices 

Appendix A.  Feature Selection protocol 

The feature selection method used in Chapter 2 is termed ‘Adaptive feature thresholding’, 

or Regularized Adaptive Feature Thresholding (RAFT) when used with the Elastic Net (see Figure 

D.1). The code for all analyses described here is available at github.com/ljollans/RAFT. Below the 

analysis steps involved in RAFT are described. 

Appendix A.1. Nested cross-validation 

The dataset is initially divided into 10 cross-validation (CV) folds. The entire analysis is 

performed 10 times, using 90% of the dataset (the training set) to create a regression model 

which is then tested on the remaining 10% of the data (the test set). Within the training set, 

additional ‘nested’ cross-validation with 10 partitions is used to support the analyses at the 

feature selection and model optimization level. Subsequently, results from all 10 CV folds are 

aggregated. The frequency with which a variable is found in models from different CV folds is used 

as a measure of its robustness. 

Appendix A.2. Threshold creation 

Each feature of the dataset is individually evaluated to assess its utility in predicting the 

target variable. A simple linear or logistic regression model is applied to the nested training set 

(81% of the total data) for that feature and the target variable, and the resulting regression 

weight is used to make outcome predictions for the nested test set (9% of the total data). The 

prediction error is quantified using root mean squared error for linear regression, and the F1 

score for logistic regression. These values are referred to as feature merit. 

Based on the range of merit values, a set of ten feature merit thresholds is created 

separately for each CV fold. These thresholds serve the purpose of ranking the features. The 

highest and lowest thresholds are determined based on the feature merit distribution of each CV 

fold, and the remaining eight thresholds are evenly distributed between them. The thresholds 

were chosen as follows: 

At each merit threshold (tmerit) and for each nested CV partition n (within main CV 

partition m) there is a subset 𝑠𝑚,𝑛 of features f which have smaller feature merit than that 

threshold. 

𝑠𝑚,𝑛(𝑡𝑚𝑒𝑟𝑖𝑡) = {𝑓|𝑚𝑒𝑟𝑖𝑡𝑚,𝑛(𝑓) < 𝑡𝑚𝑒𝑟𝑖𝑡} 
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A set of ten stability (or ‘occurrence’) thresholds (tstability) is also used to determine the 

stability of merit values for each feature across nested CV partitions (within the main CV fold). 

Feature stability 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚,𝑡𝑚𝑒𝑟𝑖𝑡
(𝑓) is quantified as the number of nested CV partitions n in 

which the feature’s merit value is lower than a given merit threshold. 

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚,𝑡𝑚𝑒𝑟𝑖𝑡
(𝑓) = |{𝑛|𝑓 ∈ 𝑠𝑚,𝑛(𝑡𝑚𝑒𝑟𝑖𝑡)}| 

The ten prediction error thresholds and ten stability thresholds jointly define 100 new 

summary datasets 𝐷𝑚(𝑡𝑚𝑒𝑟𝑖𝑡 , 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) for each CV fold m. These summary datasets include all 

features that had a smaller prediction error value than tmerit in the number of CV partitions 

specified by tstability. 

𝐷𝑚(𝑡𝑚𝑒𝑟𝑖𝑡 , 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) = {𝑓|𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚,𝑡𝑚𝑒𝑟𝑖𝑡
(𝑓) ≥ 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦} 

The merit thresholds are chosen separately for each main CV fold based on the range of 

merit and feature stability across the sample. The most liberal merit threshold tmerit(min) is chosen 

such that in each main CV fold m there remains at least one feature which is common to all 

nested CV partitions, i.e. tmerit(min) is the smallest prediction error value (i.e. highest merit) at 

which the following is true: 

𝐷𝑚(𝑡𝑚𝑒𝑟𝑖𝑡(𝑚𝑖𝑛), 10) ≠ ∅ 

The strictest merit threshold tmerit(max) is set as the lowest possible prediction error value 

(i.e. the highest merit) at which every nested CV partition n of the main CV fold m still contains at 

least one feature that has a smaller prediction error value (i.e. higher merit) than that threshold. 

That is, tmerit(max) is the smallest prediction error value at which the following is true: 

|{𝑛|𝑠𝑚,𝑛(𝑡𝑚𝑒𝑟𝑖𝑡(𝑚𝑎𝑥)) ≠ ∅}| = 10 

Taken together tmerit and tstability define how high the individual predictive power of each 

feature in the knowledge base is, and how sTable 2.the results with each feature are across 

different subsets of the sample. The creation of these thresholds serves the purpose of 

integrating the choice of the criterion used to select features from the filtering step into model 

selection, eliminating researcher input at this point. 
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Figure D.1. Analysis protocol for the Elastic net with embedded feature selection and 

bootstrap aggregation.  

Appendix A.3. Threshold Optimization  

The 100 feature sets that are created in the first analysis step (from 10 stability thresholds 

and 10 merit thresholds) are used as inputs into the selected algorithm. This approach was tested 

using Multiple Regression, Random Forest, and the Elastic Net. In the following section, the model 

optimization and validation process is described for the Elastic Net. 

The Elastic Net uses two parameters: λ and α. Here, five values of λ and α each are 

considered, resulting in the creation of 25 models with each feature set, for a total of 2500 

models. For each of these models, the prediction error is quantified using root mean squared 

error for linear regression and the F1 score for logistic regression. For each model, an updated 

feature set d is saved, which excludes any features that were excluded by the Elastic Net.  

𝑑𝑚,𝑛(𝑡𝑚𝑒𝑟𝑖𝑡 , 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦, 𝛼, 𝜆) ⊆ 𝐷𝑚(𝑡𝑚𝑒𝑟𝑖𝑡 , 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) 

Appendix A.4. Bootstrap aggregation  

Calculations in the thresholding and model optimization step are validated using 25-fold 

bootstrap aggregation (bagging). Instead of performing the analysis once using all data, summary 

datasets are created by randomly sampling on average two thirds of the data in each iteration. 

Results from each iteration are aggregated using the median value. A feature is removed after the 
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model optimization step if the Elastic Net removed the feature in more than half of all bagging 

iterations.  

Appendix A.5. Model validation 

After the model optimization step, the combination of model parameters and thresholds 

which resulted in the model with the lowest prediction error is identified for each nested CV 

partition n. The optimal model parameters and thresholds from each nested CV partition are used 

to identify what parameters will be used to create the final prediction model in each main CV fold 

m, using the most frequently occurring values of α, λ, tmerit and tstability. To select the features to 

include in the final model for each CV fold, the stability of all features that were included in the 

updated feature sets at the optimal prediction error and stability thresholds is re-calculated.  

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚(𝑓) = |{𝑛|𝑓 ∈ 𝑑𝑚,𝑛(𝑡𝑚𝑒𝑟𝑖𝑡 , 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 , 𝛼, 𝜆)}| 

Only the features that were included in at least as many of the ten models with optimal 

parameters as specified by the optimal stability threshold are used to create the feature set for 

the final model.  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑡𝑚 = {𝑓|𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚(𝑓) ≥ 𝑡𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦,𝑓𝑖𝑛𝑎𝑙(𝑚)} 

It is possible that this implementation of the stability threshold does not leave any 

features for inclusion in the model (i.e. the addition of the stability threshold restriction to the 

other parameters rules out all potential features). Should this be the case the closest possible 

parameter combination is used to create the feature set.  

This feature set is used as input into the Elastic Net, using the optimal values for α and λ, 

and the entire training set (90% of the data). The beta weights generated by the Elastic Net are 

subsequently used to make outcome predictions for the final unseen portion of the data (10%). 

Each CV fold m is used to make outcome predictions for 10% of the data, and the evaluation of 

overall model fit is carried out using the complete vector of outcome predictions from all CV folds. 
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Appendix B. Smoking group classification results without inclusion of cannabis predictors 

Appendix B.1. Classification performance 

Table B.1. Mean AUC and F1 score for all analyses 

Appendix B.2. Significant predictors and predictor overlap with analyses including cannabis predictors 

Table B.2. Number of predictors of each type that were significant for each analysis 

 

  

 Psychometric model  Multimodal model  

 AUC F1 score AUC F1 score 

EOS 0.840** 0.489** 0.809** 0.469** 

LOS 0.714** 0.223** 0.695** 0.253** 

EOS/LOS 0.784** 0.487** 0.771** 0.489** 

EOS vs. LOS 0.630** 0.600** 0.571* 0.564* 

* p<.0005; **p<.00005 

 Neuroimaging predictors, joint 

model 

Psychometric predictors, 

multimodal model (shared 

with unimodal model) 

Psychometric predictors 

 With 

cannabis 

Shared 

between 

models 

Without 

Cannabis 

With 

cannabis 

Shared 

between 

models 

Without 

Cannabis 

With 

cannabis 

Shared 

between 

models 

Without 

Cannabis 

EOS 0 0 0 0 (0) 0 0 (0) 0 0 30 

LOS 8 0 0 15 (3) 0 0 (0) 27 19 20 

EOS/LOS 3 3 3 80 (34) 75 (33) 80 (33) 34 31 33 

EOS vs. 

LOS 

26 24 26 59 (29) 56 (25) 59 (25) 34 26 29 
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Appendix B.3. Ten predictors with highest absolute regression weights for models with and without cannabis 

predictors 

Table B.3. Ten predictors with highest absolute regression weights for all models  

  EOS LOS EOS/LOS EOS vs. LOS 

  NC* C NC* C NC C NC 

TCI-R 

 Novelty-seeking .046 - - - .027 -.052 -.060 

 Disorderliness (‘I am not very good at talking my 

way out of trouble when I am caught doing 

something wrong’) 

- - - - - -.067 -.075 

 Exploratory excitability (‘I am slower than most 

people to get excited about new ideas and 

activities’) 

- - - - - -.049 - 

NEO-ffi 

 Agreeableness (‘If necessary, I am willing to 

manipulate people to get what I want’) 

- - -.043 - - - - 

SURPS 

 Anxiety sensitivity - - - - - - -.051 

 Anxiety sensitivity (‘I get scared when I 

experience unusual body sensations’) 

- - -.037 - - - - 

DAWBA 

 Parent: polite - - -.036 - - - - 

 Parent: popularity - - - - - -.063 -.067 

 Parent: Recent deliberate self-harm - - - .030 .030 - - 

 Parent: Lifetime deliberate self-harm .048 - - - .023 - - 

 Teacher: other psych. development concerns - - - - - .088 .071 

 Parent: 12-month truancy .048 - - - - - - 

 Parent: 12-month starting fights .044 - - - - - - 

 Parent: 12-month staying out late .042 - - - - - - 

 ADHD clinical rating - -.161 - - - - - 

 ADHD hyperactive-impulsive clinical rating - -.174 - - - - - 

ESPAD 

Alcohol 

 Age of first getting drunk - - - - -.024 - - 

 Lifetime drunkenness occasions .052 - - .031 .032 - - 

 Past month drunkenness occasions .065 - - .030 .032 - - 

 Degree of drunkenness at last occasion .050 - - - .028 - - 

 Number of drinks needed to get drunk .047 - - - .027 - - 

Cannabis use 

 First cannabis use - - - -.037 - - - 
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 Lifetime cannabis use - - - .037 - - - 

 Past year cannabis use - - - .037 - - - 

 Past month cannabis use - - - .031 - - - 

 Past week cannabis use - - - .031 - - - 

Inhalant use 

 Has heard of inhalants - - -.041 - - - - 

 Past year inhalant use .059 - - .028 .030 - - 

 Past month inhalant use - - - .055 .053 - - 

LEQ 

 Sexual/Romantic events scale, past year  - - .041 - - - - 

Broke up with boy/girlfriend in past year - - .050 - - - - 

Started relationship in past year - - .046 - - - - 

 Valence: sustaining a serious injury or accident - - .055 - - - - 

Family variables 

 Parent: ‘Gets help and support when stressed’ - .146 - - - - - 

 Parent: Parents’ partner has shown loss of 

interest in usually enjoyable activities 

- - .035 - - - - 

Parent variables 

 Current maternal daily smoking quantity - - .037 - - - - 

 Parent lifetime cocaine use - -.126 - - - - - 

 NEO-ffi parent: Neuroticism (‘At times I have 

been so ashamed I just wanted to hide’) 

- - - - - -.058 -.067 

Neuroimaging variables 

 GCA1: Heschl’s gyrus, L - -.148 - - - - - 

 GCA1: Heschl’s gyrus, R - -.123 - - - - - 

 GCA1: Superior temporal gyrus, L - -.143 - - - - - 

 GCA1: Rolandic operculum, L - -.133 - - - - - 

 SST (stop success): Cerebellum, R - - - - - .049 .054 

 SST (stop failure): Amygdala, L - -.124 - - - - - 

 MID1: Medial orbitofrontal cortex, L - - - - - -.055 -.051 

 MID1: Inferior frontal gyrus, pars triangularis, L - - - - - -.051 -.052 

 MID2: Posterior cingulate cortex, L - -.135 - - - - - 

 Faces1 : Posterior cingulate cortex, R - - - - - .058 .059 

The positive class for ‘EOS’, ‘LOS’, and ‘EOS/LOS’ is the smoker group and LOS for ‘EOS vs. LOS’. C: with 

cannabis predictors; NC: without cannabis predictors; GCA1: GCA auditory sentences; MID1: MID task 

anticipation of large win minus no win; MID2: MID task feedback large win minus small win; Faces1: Faces 

task, angry affective facial stimuli minus control stimuli. *Results from unimodal model.  
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Appendix B.4. Discrepancies between significant predictors in models with and without cannabis predictors 

The predictors reported in this section cover all discrepancies between predictors in models with and 

without cannabis predictors. Effects for all predictors not mentioned here were the same for the models with 

and without cannabis. 

B.4.1. Neuroimaging predictors 

B.4.1.1. Grey matter volume 

LOS compared to EOS was predicted by lower volume in the left inferior parietal lobule in the multimodal 

model with cannabis predictors and by lower volume in the right angular gyrus in the multimodal model 

without cannabis predictors. 

B.4.1.2. Monetary Incentive Delay Task 

Activity in the orbital part of the left MFG during feedback for large vs. small wins was no longer a significant 

predictor of LOS compared to EOS in the model without cannabis predictors. 

B.4.1.3. GCA task 

In addition to the predictors identified in the models with cannabis predictors, higher activity in the right 

middle temporal pole while reading sentences predicted LOS compared to EOS in the analysis without 

cannabis predictors. 

B.4.2. Substance use (ESPAD) (Appendix C.1) 

In the unimodal model without cannabis predictors EOS compared to NS was predicted by lifetime, past year 

and past month drunkenness occasions, higher level of drunkenness, higher drunkenness threshold, higher 

quantity of alcohol consumption when drinking, and earlier first drunkenness and first drinking spirits. 

When cannabis predictors were excluded from the model, higher lifetime inhalant use and earlier first use of 

inhalants were significant predictors of EOS/LOS compared to NS in the multimodal model, while higher past 

year inhalant use predicted EOS compared to NS in the unimodal model. EOS/LOS compared to NS was also 

predicted by higher past year inhalant use in the unimodal model without cannabis predictors. 

B.4.3. Personality (Appendix C.2) 

B.4.3.1. TCI-R 

Novelty-seeking: In the unimodal model without cannabis predictors EOS compared to NS was predicted by 

higher scores on the novelty seeking scale. 

Disorderliness: Higher scores on the disorderliness subscale of the TCI novelty-seeking scale and the items ‘I 

often break rules and regulations when I think I can get away with it’ and ‘I am not very good at talking my 

way out of trouble when I am caught doing something wrong’ predicted EOS compared to NS in the 

unimodal model without cannabis predictors.  

Exploratory excitability: When cannabis predictors were excluded responses to the item ‘I am slower than 

most people to get excited about new ideas and activities’ were no longer significant predictors in the 
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unimodal model predicting EOS compared to LOS. When cannabis predictors were excluded EOS compared 

to LOS was no longer predicted by the exploratory excitability summary score in the unimodal model. 

Extravagance: EOS compared to NS was predicted by higher scores on the extravagance scale, lower 

endorsement of the item ‘I am better at saving money than most people’, and higher endorsement of the 

item ‘Because I so often spend too much money on impulse, it is hard for me to save money - even for 

special plans like a vacation’ in the unimodal model without cannabis predictors.  

B.4.3.2. NEO-ffi 

Agreeableness: When cannabis predictors were excluded the item ‘If I don’t like people, I let them know it’ 

was no longer a significant predictor of LOS compared to NS. 

Conscientiousness: EOS compared to NS was predicted by lower scores on the conscientiousness scale of the 

NEO-ffi and by lower endorsement of the following items in the unimodal and multimodal models: ‘I work 

hard to accomplish my goals’, ‘I am a productive person who always gets the job done’, and ‘I strive for 

excellence in everything I do’.  

B.4.3.3. SURPS 

Sensation seeking: Summary scores for the SUPRS sensation seeking scale and endorsement of the item ‘I 

would like to learn how to drive a motorcycle’ predicted LOS compared to NS in the unimodal model when 

cannabis predictors were included. Endorsement of the item ‘I am interested in experience for its own sake 

even if it is illegal’ predicted EOS compared to NS in the unimodal model without cannabis predictors. 

B.4.4. Life history (LEQ) (Appendix C.3) 

When cannabis predictors were excluded EOS/LOS compared to NS was predicted by the overall summary 

score for events in the past year on the LEQ. 

When cannabis predictors were excluded valence for a family member experiencing an accident or illness 

was no longer a significant predictor of LOS compared to EOS. Ever having sustained a serious accident or 

injury was no longer a significant predictor in the unimodal model predicting LOS compared to NS when 

cannabis predictors were excluded. In the unimodal model without cannabis predictors EOS compared to NS 

was predicted by having experiences a death in the family in the past year. 

When cannabis predictors were excluded ever having broken up with a boyfriend/girlfriend predicted 

EOS/LOS compared to NS in the unimodal model. 

In the unimodal model without cannabis predictors EOS compared to NS was predicted by having gotten in 

trouble with the law in the past year and more positive valence for getting poor grades in school. 

B.4.5. Demographic measures 

In line with the gender differences between groups, being female predicted EOS compared to LOS in the 

unimodal and multimodal models and in the multimodal model when cannabis predictors were excluded. 
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B.4.6. Behaviour and psychopathology (Appendix C.4) 

Parent-report that a teacher had expressed concerns about the child’s psychological development that did 

not fall under the areas assessed by the DAWBA (phobias, anxiety disorders, mood disorders, ADHD, conduct 

disorders, eating disorders, tics) was no longer a significant predictor of LOS compared to EOS in the 

unimodal model when cannabis predictors were excluded. 

B.4.6.1. Antisocial behaviour and peer relationships 

Self-reported bullying in the multimodal model for EOS and LOS was no longer a significant predictor when 

cannabis variables were excluded, and hitting, kicking or otherwise physically attacking or injuring a peer was 

also no longer a significant predictor of EOS compared to LOS in the unimodal model. However, computer 

predictions of conduct disorder and parent-report of starting fights, staying out late, and truancy in the past 

year predicted EOS compared to NS in the unimodal model without cannabis variables. 

In the multimodal model without cannabis predictors parent-reported truancy in the past year predicted EOS 

compared to LOS. 

Self-report that they had ever ‘found a new group of friends’ predicted adolescents being NS compared to 

LOS in the unimodal model without cannabis predictors. 

B.4.6.2. Depression (DAWBA) 

Ever having engaged in deliberate self-harm predicted EOS compared to NS in the model without cannabis 

predictors. 

B.4.6.3. ADHD (DAWBA) 

In the multimodal model without cannabis predictors EOS compared to LOS was predicted by higher parental 

report of the adolescent losing ‘things s/he needs for school or games’ in the past 6 months. In the unimodal 

model without cannabis predictors EOS compared to LOS was also predicted by the clinical rating for any 

indication of ADHD. 

B.4.7. Parents and family environment 

B.4.7.1. Family situation (Appendix C.4) 

Broken home indicators. Compared to NS, LOS was no longer predicted by a parent having remarried in the 

past year in the unimodal model without cannabis predictors. 

When cannabis predictors were excluded EOS compared to LOS was also no longer predicted by whether the 

adolescent was living with just one family and whether they were living with a stepfather in the unimodal 

model. 

Parenting. In the unimodal model without cannabis predictors parent-report that the child ‘gets help and 

support when stressed’ was no longer a significant predictor of LOS compared to NS. In the multimodal 

model without cannabis predictors EOS compared to LOS was predicted by higher parent report that the 

child would be likely to seek help from family and friends. 
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Family life. Parent report of family stress due to the neighbourhood or the neighbours no longer predicted 

EOS compared to LOS in the multimodal model without cannabis predictors. 

B.4.7.2. Parent TCI-R (Appendix C.5) 

Extravagance: EOS compared to LOS was no longer predicted by parent endorsement of the TCI 

extravagance subscale item ‘It is fun for me to buy things for myself’ in the multimodal model when cannabis 

variables were excluded. 

B.4.7.3. Parent SURPS (Appendix C.5) 

In the unimodal model without cannabis predictors parental endorsement of the SUPRS item ‘I often don’t 

think things through before I speak’ predicted EOS compared to NS.  

B.4.7.4. Parent substance use (Appendix C.5) 

Alcohol: When cannabis predictors were excluded EOS/LOS compared to NS was predicted by parent-

reported frequency of alcohol use in the multimodal model. When cannabis predictors were excluded NS 

compared to LOS was also predicted by parents reporting that they had never ‘been arrested, even for a few 

hours, because of drunken behaviour (other than driving)’ in the unimodal model. 

Smoking: When cannabis predictors were excluded parental past month smoking no longer predicted LOS 

compared to NS. In the unimodal without cannabis predictors maternal smoking occasions no longer 

predicted LOS compared to NS.  

B.4.7.5. Prenatal factors (Appendix C.5) 

In the multimodal model without cannabis predictors EOS/LOS compared to NS was predicted by the variable 

assessing whether the mother had been exposed to second-hand smoke at all during pregnancy. 
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Appendix C. Regression weigths, Chapter 3 

Appendix C.1. Regression weights for ESPAD items, Chapter 3 

 With cannabis predictors Without cannabis predictors 

Multimodal model Unimodal model Multimodal 

model 

Unimodal model 

LOS EOS/ 

LOS 

EOS vs. 

LOS 

LOS EOS/ 

LOS 

EOS vs. 

LOS 

EOS/ 

LOS 

EOS vs. 

LOS 

EOS LOS EOS/ 

LOS 

EOS vs. 

LOS 

ESPAD 

alcohol 

How many times IN YOUR WHOLE 

LIFETIME have you had five or more drinks 

in a row? 

- 0.010 - - - - 0.012 - - - - - 

'On how many occasions IN YOUR WHOLE 

LIFETIME have you been drunk from 

drinking alcoholic beverages? 

- 0.031 - - 0.034 - 0.033 - 0.052 - 0.036 - 

On how many occasions OVER THE LAST 

12 MONTHS have you been drunk from 

drinking alcoholic beverages? 

- 0.020 - - 0.019 - 0.022 - 0.036 - 0.022 - 

'On how many occasions OVER THE LAST 

30 DAYS have you been drunk from 

drinking alcoholic beverages? 

- 0.030 - - 0.034 - 0.033 - 0.066 - 0.038 - 

'Please indicate on this scale from 1 to 10 

how drunk you would say you were the 

last time you were drunk 

- 0.026 - - 0.028 - 0.028 - 0.051 - 0.031 - 

'How many drinks do you usually need to - 0.026 - - 0.028 - 0.027 - 0.047 - 0.030 - 
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get drunk? 

'When did you FIRST get drunk from 

drinking alcoholic beverages?' 

- -0.023 - - -0.026 - -0.025 - -0.039 - -0.027 - 

'When did you FIRST drink spirits (at least 

one glass)? 

 -0.020 - - -0.022 - -0.019 - -0.025 - -0.023 - 

When did you FIRST drink wine (at least 

one glass)? 

- -0.009 - -0.034 - - -0.010 - - -0.035 - - 

'On how many occasions IN YOUR WHOLE 

LIFETIME have you had any alcoholic 

beverage to drink? 

- 0.011 - - - - 0.012 - - - - - 

'On how many occasions OVER THE LAST 

12 MONTHS have you had any alcoholic 

beverage to drink? 

- 0.010 - - - - 0.011 - - - - - 

'How many drinks containing alcohol do 

you have on a TYPICAL DAY when you are 

drinking? 

- 0.022 - 0.030 0.025 - 0.022 - 0.025 0.032 0.026 - 

ESPAD 

cannabis 

First cannabis use - -0.037 - - -0.046 - - - - - - - 

Life cannabis use - 0.037 - - 0.046 - - - - - - - 

Month cannabis use - 0.031 - - - - - - - - - - 

Week cannabis use - 0.031 - - - - - - - - - - 

Year cannabis use - 0.037 - - 0.046 - - - - - - - 

ESPAD 

inhalants 

Have you ever heard of inhalants? - - -0.040 -0.042 - -0.042 - -0.037 - -0.042 - -0.042 

First inhalant use - - - - - - -0.010 - - - - - 

Life inhalant use - - - - - - 0.010 - - - - - 
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Month inhalant use - 0.056 - - - - 0.053 - - - - - 

Year inhalant use - 0.028 - - - - 0.031 - 0.060 - 0.040 - 

ESPAD 

drugs of 

abuse 

“Have you ever heard of coke” - - -0.029 - - - - -0.031 - - - - 

“Have you ever heard of heroin” - - -0.029 - - - - -0.029 - - - - 

“Have you ever heard of MDMA” - - -0.028 - - - - -0.029 - - - - 

“Have you ever heard of narcotics” - - -0.032 - - - - -0.033 - - - - 

'Have you ever wanted to try any of the 

drugs mentioned in the previous 

questions? 

- 0.015 - - - - 0.017 - - - - - 

ESPAD 

other 

'Which of the following best describes your 

average grade in the end of the last term? 

- 0.016 - - 0.019 - 0.016 - - - 0.020 - 

I took part in bullying another student/ 

peer at school. 

- - -0.033 - - -0.046 - - - - - -0.052 

'I hit, kicked, pushed, shoved around, or 

locked a student/ peer indoors 

- - - - - 0.040 - - - - - - 

'I have been bullied by a family member 0.111 - - - - - - - - - - - 

'During the LAST 30 DAYS how many whole 

days of school have you missed because 

you skipped or ”cut”? 

- - -0.041 - - -0.047 - -0.039 - - - -0.046 
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Appendix C.2. Regression weights for TCI-R, NEO-ffi and SURPS items, Chapter 3 

 With cannabis predictors Without cannabis predictors 

Multimodal model Unimodal model Multimodal model Unimodal model 

EOS/LOS EOS vs. 

LOS 

LOS EOS/LOS EOS vs. 

LOS 

EOS/LOS EOS vs. 

LOS 

EOS LOS EOS/LOS EOS vs. 

LOS 

TCI-R 

summary 

scores 

Disorderliness 0.017 -0.047 - 0.019 -0.040 0.017 -0.042 0.036 - 0.019 -0.043 

Exploratory excitability - -0.046 - - -0.051 - -0.045 - - - - 

Extravagance 0.022 - - 0.026 - 0.022 - 0.032 - 0.027 - 

Novelty seeking 0.027 -0.053 - 0.031 -0.043 0.027 -0.061 0.047 - 0.031 -0.047 

TCI-R items 'I am much more reserved and controlled than 

most people 

- -0.030 - - - - -0.031 - - - - 

I often spend money until I run out of cash or get 

into debt from using too much credit. 

0.011 - - - - 0.012 - - - - - 

I enjoy saving money more than spending it on 

entertainment or thrills. 

0.009 - - - - 0.009 - - - - - 

'I often break rules and regulations when I think I 

can get away with it.' 

0.020 - - 0.023 - 0.020 - 0.026 - 0.024 - 

'I like to think about things for a long time before I 

make a decision. 

- -0.031 - - - - -0.030 - - - - 

'I can usually do a good job of stretching the truth 

to tell a funnier story or to play a joke on someone. 

- -0.027 - - - - -0.027 - - - - 

I am better at saving money than most people. 0.021 - - 0.026 - 0.021 - 0.030 - 0.027 - 

I am slower than most people to get excited about 

new ideas and activities. 

- -0.049 - - -0.046 - -0.047 - - - - 
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Some people think I am too stingy or tight with my 

money. 

0.013 - - - - 0.013 - - - - - 

'I am not very good at talking my way out of 

trouble when I am caught doing something wrong. 

0.011 -0.067 - - -0.069 0.011 -0.076 0.035 - - -0.072 

Because I so often spend too much money on 

impulse, it is hard for me to save money - even for 

special plans like a vacation. 

0.021 - 0.032 0.025 - 0.020 - 0.027 0.034 0.026 - 

'It is fun for me to buy things for myself - -0.026 - - - - -0.027 - - - - 

NEO-ffi 

summary 

scores 

Agreeableness - -0.027 -

0.033 

- -0.042 - -0.027 - -0.032 - -0.046 

Conscientiousness -0.016 - - -0.020 - -0.017 - -0.026 - -0.020 - 

NEO-ffi items 'I am intrigued by the patterns I find in art and 

nature' 

- -0.030 - - -0.042 - -0.034 - - - -0.046 

'I often try new and foreign foods' 0.014 - - - - 0.013 - - - - - 

'I work hard to accomplish my goals' -0.020 - - -0.024 - -0.018 - -0.029 - -0.024 - 

'I try to be courteous to everyone I meet' - - -

0.032 

- - - - - -0.032 - - 

'I am seldom sad or depressed' - -0.024 - - - - -0.027 - - - - 

'I generally try to be thoughtful and considerate' -0.012 - - - - -0.012 - - - - - 

'I am a productive person who always gets the job 

done' 

-0.015 - - -0.018 - -0.015 - -0.029 - -0.018 - 

'I often feel helpless and want someone else to 

solve my problems' 

- -0.026 - - - - -0.027 - - - - 

'I have a lot of intellectual curiosity' - 0.024 - - - - 0.024 - - - - 
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'If I don’t like people, I let them know it' - - -

0.027 

- - - - - - - - 

'I never seem to be able to get organized' -0.014 - - - - -0.013 - - - - - 

'If necessary, I am willing to manipulate people to 

get what I want 

-0.017 - -

0.045 

-0.022 - -0.016 - - -0.043 -0.022 - 

'I strive for excellence in everything I do -0.017 - - -0.023 - -0.017 - -0.029 - -0.023 - 

SURPS 

summary 

scores 

Anxiety sensitivity - -0.041 - - -0.047 - -0.051 - - - -0.051 

Impulsiveness 0.009 - - - - 0.009 - - - - - 

Sensation seeking 0.019 - 0.028 0.024 - 0.019 - - - 0.025 - 

SUPRS items I would like to learn to drive a motorcycle 0.022 - 0.035 0.026 - 0.021 - - 0.034 0.027 - 

'I get scared when I’m too nervous - -0.027 - - - - -0.026 - - - - 

I am interested in experience for its own sake even 

if it is illegal. 

0.011 -0.031 - - -0.039 0.012 -0.029 0.032 - - -0.040 

'I get scared when I experience unusual body 

sensations 

- -0.027 -

0.038 

- - - -0.026 - -0.038 - - 

'I would like to skydive 0.010 - 0.028 - - 0.011 - - - - - 

I enjoy new and exciting experiences even if they 

are unconventional 

0.010 - - - - 0.010 - - - - - 

  



- 7 - 
 

Appendix C.3. Regression weights for LEQ items, Chapter 3 

 With cannabis predictors Without cannabis predictors 

Multimodal model Unimodal model Multimodal model Unimodal model 

LOS EOS/LOS EOS vs. 

LOS 

LOS EOS/LOS EOS vs. 

LOS 

EOS/LOS EOS vs. 

LOS 

EOS LOS EOS/LOS EOS vs. 

LOS 

LEQ summary 

scores 

All past year life events - - - - - - 0.009 - - - - - 

Lifetime sexuality - 0.015 - - - - 0.016 - - - - - 

Past year sexuality - 0.016 - 0.042 0.018 - 0.017 - - 0.042 0.019 - 

LEQ past year 

experiences 

'Got in trouble with the law' - - - - - - - - 0.026 - - - 

'Death in family' - 0.011 - - - - 0.011 - 0.028 - - - 

'Parent changed jobs' - 0.011 - - - - 0.010 - - - - - 

'Got own TV or computer' - - 0.045 - - 0.042 - 0.047 - - - 0.042 

'Started going out with a 

girlfriend/boyfriend' 

- 0.018 - 0.046 0.021 - 0.018 - - 0.047 0.022 - 

'Broke up with boy/ girl-friend' - 0.013 0.042 0.049 - 0.044 0.014 0.043 - 0.050 - 0.044 

'Parent remarried' 0.095 - - 0.155 - - - - - - - - 

LEQ lifetime 

experiences 

Found a new group of friends' - - -0.044 - - - - -0.045 - - - -0.037 

Family had money problems' - - - - - -0.037 - - - - - -0.036 

'Started going out with a 

girlfriend/boyfriend' 

- 0.015 - 0.033 - - 0.015 - - 0.033 - - 

Got poor grades in school' - - -0.024 - - - - -0.027 - - - - 

'Broke up with boy/ girl-friend' - 0.016 - 0.034 - - 0.016 - - 0.035 0.017 - 

Found religion' -

0.102 

- - - - - - - - - - - 
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'Serious accident or illness' - - 0.025 0.028 - - - 0.026 - - - - 

'Parent abused alcohol' 0.107 - - - - - - - - - - - 

LEQ valence 'Family accident or illness' - - 0.033 - - 0.037 - 0.031 - - - - 

'Stole something valuable' - - 0.047 - - - - 0.046 - - - - 

'Parent changed jobs' - - -0.034 - - -0.040 - -0.035 - - - -0.041 

'Got in trouble at school' - 0.009 - 0.034 - - 0.010 - - 0.034 - - 

Got poor grades in school' - - - - - - - - 0.027 - - - 

Serious accident or illness' 0.096 - 0.047 0.054 - 0.055 - 0.045 - 0.055 - 0.059 
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Appendix C.4. Regression weights for DAWBA items, Chapter 3 

 With cannabis predictors Without cannabis predictors 

Multimodal model Unimodal model Multimodal model Unimodal model 

LOS EOS/LOS EOS vs. 

LOS 

LOS EOS/LOS EOS vs. 

LOS 

EOS/LOS EOS vs. 

LOS 

EOS LOS EOS/LOS EOS vs. 

LOS 

ADHD ADHD (Clinical rating, DSM-IV) -0.162 - - - - - - - - - - -0.081 

ADHD hyp-imp (Clinical rating, 

DSM-IV) 

-0.175 - - - - - - - - - - - 

ADHD: Loses things  - - - - - - - -0.024 - - - - 

Conduct disorder / 

ODD / Antisocial 

behaviour 

Conduct disorder (Computer 

prediction, DSM-IV & ICD-10) 

- - -0.032 - - -0.037 - -0.035 - - - -0.036 

Conduct disorder  - 0.016 - - 0.019 - 0.017 - 0.031 - 0.020 - 

Ignores rules/disobedient 

(past 6 months) 

- 0.011 - - - - 0.011 - - - - - 

Lies (past year) - 0.009 - - - - 0.009 - - - - - 

Fights (past year) - 0.014 - - - - 0.014 - 0.044 - - - 

Stays out (past year) - 0.024 - - 0.030 - 0.023 - 0.042 - 0.031 - 

Steals (past year) -0.097 - - - - - - - - - - - 

Truancy (past year) - 0.020 - - - - 0.021 -0.024 0.048 - - - 

SDQ: Lies, cheats  - 0.017 - - 0.020 - 0.017 - - - 0.021 - 

Depressive 

symptoms 

Sad (past 4 weeks) - - -0.027 - - - - -0.030 - - - - 

Deliberate self-harm recently  - 0.031 - - - - 0.031 - - - - - 

Deliberate self-harm ever  - 0.023 - - - - 0.024 - 0.048 - - - 

Family environment About respondents partner: - - 0.029 - - - - 0.027 - - - - 
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Stressed  

About respondents partner: 

Loss of interest 

- - 0.037 0.033 - 0.040 - 0.037 - 0.036 - 0.041 

Child gets help and support 

when stressed 

0.146 - 0.028 0.028 - - - 0.028 - - - - 

Child gets blamed unfairly  - - -0.043 - - -0.049 - -0.044 - - - -0.052 

Child has consistently applied 

rules  

- - 0.041 - - - - 0.041 - - - 0.037 

Family stresses: Financial 

difficulties  

- - 0.037 - - - - 0.038 - - - - 

Family stresses: Neighbours or 

neighbourhood 

- - -0.024 - - - - - - - - - 

Likely to seek help from family 

and friends  

- - - - - - - -0.025 - - - - 

Living with parents  - - -0.044 - - -0.046 - -0.048 - - - - 

Adults in household 1: 

Biological father  

- - 0.036 - - 0.037 - 0.035 - - - 0.037 

Adults in household 1: 

Stepfather  

- - - - - -0.044 - - - - - - 

Parent rating of 

child’s positive 

attributes 

Lively  - 0.009 - - - - 0.010 - - - - - 

Keen to learn  - -0.012 - - - - -0.012 - - - - - 

Does homework without 

reminding  

- -0.012 - - - - -0.013 - - - - - 

Likes to be involved in family - -0.009 - - - - -0.009 - - - - - 
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activities  

Takes care of appearance  0.100 - - - - - - - - - - - 

Polite - - - -

0.036 

- - - - - -

0.036 

- - 

Parent rating of 

child’s peer 

relationships (SDQ) 

Relates better to adults than 

peers  

- -0.014 - - - - -0.014 - - - - - 

Peer problems score  - -0.019 - - -0.023 - -0.018 - - - -0.024 - 

Popular  - - -0.063 - - -0.045 - -0.068 - - - -0.044 

Anxiety Separation anxiety (Computer 

prediction, DSM-IV) 

- - -0.044 - - -0.057 - -0.045 - - - -0.062 

Eating disorder Blames self a lot for 

overeating  

- - - - - -0.036 - - - - - -0.038 

Other 

developmental 

concerns 

Teacher has complained to 

parent of other concerns  

- - 0.088 - - 0.141 - 0.072 - - - - 
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Appendix C.5. Regression weights for all items completed by  parents about themselves, Chapter 3 

 With cannabis predictors Without cannabis predictors 

Multimodal model Unimodal model Multimodal model Unimodal model 

LOS EOS/LOS EOS vs. 

LOS 

LOS EOS/LOS EOS vs. 

LOS 

LOS EOS/LOS EOS vs. 

LOS 

LOS EOS/LOS EOS vs. 

LOS 

AUDIT 'How often do you have a drink containing alcohol? - - - - - - - 0.009 - - - - 

'How many drinks containing alcohol do you have 

on a typical day when you are drinking? 

- - -0.038 - - -0.046 - - -0.036 - - -0.047 

ESPAD 'Have you ever used cocaine? -

0.115 

- - - - - - - - - - - 

'On how many occasions in your lifetime have you 

used cocaine ? 

-

0.126 

- - - - - - - - - - - 

'Can you get through the week without using 

cocaine (unless you require it for medical reasons)? 

-

0.115 

- - - - - - - - - - - 

'Are you always able to stop using cocaine when you 

want? 

-

0.115 

- - - - - - - - - - - 

Past month smoking - 0.013 - 0.027 - - - 0.013 - - - - 

MAST 'Does any member of your family ever worry or 

complain about your drinking? 

0.103 - - - - - - - - - - - 

'Have you ever been arrested, even for a few hours, 

because of drunken behaviour (other than driving)? 

- - - - - - - - - -

0.033 

- - 

PBQ 'Has the MOTHER ever smoked a cigarette on 

occasion or on a regular basis? 

- 0.012 - - - - - 0.013 - - - - 

'At the present time, does the MOTHER smoke - 0.015 - 0.029 - - - 0.014 - - - - 
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every day, on occasion, or not at all? 

'At what age did the MOTHER start smoking 

cigarettes? 

- 0.010 - - - - - 0.010 - - - - 

'How many cigarettes does the MOTHER smoke per 

day? 

- 0.015 - 0.038 0.018 - - 0.016 - 0.038 0.018 - 

'Before pregnancy, i.e. 12 MONTHS beforehand, did 

the MOTHER smoke every day, on occasion, or not 

at all? 

- 0.017 - - 0.021 - - 0.017 - - 0.022 - 

'How many cigarettes did the MOTHER smoke per 

day before pregnancy? 

- 0.014 - - 0.018 - - 0.015 - - 0.019 - 

'Was the father or other person living with the 

MOTHER smoking during her pregnancy IN THE 

PRESENCE of the MOTHER? 

- - - - - - - 0.009 - - - - 

At which stage of the pregnancy did they smoke this 

number of cigarettes? 

- 0.009 - - - - - 0.009 - - - - 

'During pregnancy, was the MOTHER granted leave 

from work because of pregnancy? 

- - 0.025 - - 0.043 - - 0.026 - - 0.044 

NEO-

ffi 

'I would rather cooperate with others than compete 

with them' 

- - -0.030 - - - - - -0.032 - - - 

Often people aren’t as nice as they seem - -0.013 - - - - - -0.012 - - - - 

'I often feel as if Im bursting with energy' - - 0.025 - - - - - - - - - 

'At times I have been so ashamed I just wanted to 

hide 

- - -0.058 - - -0.055 - - -0.068 - - -0.058 

TCI-R 'I usually think about all the facts in detail before I - - -0.041 - - -0.037 - - -0.041 - - -0.038 
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make a decision. 

Even when most people feel it is not important, I 

often insist on things being done in a strict and 

orderly way. 

- - -0.030 - - - - - -0.036 - - - 

'In conversations I am much better as a listener than 

as a talker 

- - 0.026 - - - - - 0.026 - - - 

'It is fun for me to buy things for myself - - -0.028 - - - - - -0.025 - - - 

SURPS I often don’t think things through before I speak. - 0.011 - - - - - 0.011 - - - - 
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Appendix D. Journal papers 

Appendix D.1. Journal review paper about use of neuroimaging machine learning models for psychiatric 

applications 
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Appendix D.2. Journal review paper about use of biomarkers for psychiatric applications 
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Appendix D.3. Journal paper investigating ventral striatum functional connectivity in adolescent smokers. 
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Appendix D.4. Journal paper investigating EEG signal corresponding to elements of computational models of 

the Iowa Gambling Task. 
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