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4.2.7 Permeability	Assay	

To	 determine	 paracellular	 permeability,	 FITC-labelled	 dextran	 (10	 mg/mL;	

Invitrogen)	 was	 added	 into	 the	 lower	 chamber	 of	 the	 well,	 and	 10	 µL	 aliquots	

removed	from	the	upper	chamber	over	a	24	h	period.	Fluorescence	was	measured	in	

the	 aliquots	 using	 a	 fluorimeter	 (ex	 λ:	 485	 nM,	 em	 λ:	 535	 nM;	 ThermoFisher	

Scientific,	 Fluoroskan	AscentFL)	 to	quantify	FITC-dextran	movement	 (permeability)	

through	the	endothelial	monolayer.		

4.2.8 ELISA	

Levels	of	IL1βb	and	TNFα	in	the	culture	medium	post	macrophage	polarisation	were	

quantified	 using	 a	 human	 IL-1β	 ELISA	 MAX™	 deluxe	 set	 (sensitivity	 0.5	 pg/mL;	

Biolegend)	 and	 a	 TNF-α	 Duoset®	 ELISA	 (sensitivity	 15	 pg/mL;	 R&D	 systems).	

Conditioned	 medium	 was	 diluted	 with	 assay	 diluent 1:10	 and	 assayed	 as	 per	 the	

manufacturer’s	 instructions. The	intra	and	inter	assay	coefficients	of	variation	were	

<10%.	 

4.2.9 PP2A	Phosphatase	activity	assay	

PP2A	phosphatase	activity	was	determined	using	a	PP2A	immunoprecipitation	assay	

kit	 according	 to	 the	 manufacturer’s	 protocol	 (PP2A	 Immunoprecipitation	

Phosphatase	Assay	Kit;	Merck	Millipore).	In	brief,	cells	were	lysed	with	modified	RIPA	

buffer,	and	100	µg	of	protein	incubated	with	4	µg	of	anti-PP2A	(C	subunit,	clone	1D6)	

and	protein-A-agarose.	The	agarose	bound	samples	were	centrifuged	at	1,500	RPM,	

incubated	with	malachite	green	and	the	absorbance	read	at	λ	620	nm.	Phosphatase	

activity	was	expressed	as	a	percentage	of	 the	 free	phosphate	of	 the	 test	 samples	 to	

that	of	the	control	samples.		

4.2.10 Data	and	Statistical	Analysis	

RT-PCR	 data	 was	 normalised	 to	 GAPDH	 Ct	 values	 and	 western-blot	 data	 was	

normalised	to	β-actin	protein	abundance.	All	data	were	normalised	to	the	appropriate	

controls	 and	 expressed	 as	 a	 ratio	 or	 percentage	 excluding	 ELISA	 data,	 which	 was	

expressed	as	a	concentration	(pg/mL).	Data	were	analysed	using	ANOVA	(one	or	two-

way)	with	post	hoc	 analysis	 (Bonferroni)	or	an	unpaired	 t	 test	as	appropriate.	Data	

are	 represented	 as	 a	 mean	 ±	 S.E.M.,	 and	 a	 value	 of	 P	 <	 0.05	 was	 set	 to	 indicate	

statistical	significance.	
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4.3 Results	

4.3.1 Macrophage	Polarisation	

Differentiation	 of	 Mθ	 macrophages	 to	 an	 M1	 phenotype	 was	 verified	 through	

measurement	of	TNF-α	and	IL-1β	levels.	In	M1	polarised	macrophages	TNF-α	and	IL-

1β	 mRNA	 expression	 were	 increased	 by	 8.3 ± 0.8 fold and a 52.3 ± 2.2 fold (P < 

0.05;Figure	 4.2A and B) respectively compared to the unpolarised macrophages (Mθ 

macrophage). In conditioned medium from the M1 polarised macrophages TNF-α and IL-

1β abundance was higher than in conditioned medium form Mθ macrophages (P < 

0.05;Figure	 4.2C and D). Furthermore, polarisation of the monocytes caused a visual 

morphological change to a dendritic shape (Figure	4.1). 
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Figure	4.1:	M0	and	M1	morphology.	

Peripheral	 blood	mononuclear	 cells	were	 isolated	 from	human	whole	 blood.	 After	 7	

days	 incubation	 the	 adherent	 rounded	Mθ 	macrophages	 (A)	 are	 thoroughly	washed.	

Polarisation	 of	 Mθ 	 macrophages	 to	 an	 M1	 phenotype	 (B)	 was	 achieved	 by	 24	 h	

exposure	to	LPS	(100	ng/mL)	and	IFN-γ 	(20	ng/mL).	

	 	

A 

B 
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Figure	4.2:	Quantification	of	TNF-α	and	 IL-1β 	mRNA	expression	abundance	 in	

Mθ  and M1 macrophages.		

PBMCs	were	 exposed	 to	 LPS	 (100	 ng/mL)	 and	 IFN-γ 	 (20	 ng/mL)	 for	 24	 h	 to	 initiate	

polarisation	 to	 the	 M1	 (pro-inflammatory)	 phenotype.	 TNF-α	 and	 IL-1β 	 mRNA	

expression	 (A	 and	 B)	 was	 quantified	 by	 RT-PCR	 and	 normalised	 to	 GAPDH	 and	

represented	 as	 a	 mean±	 S.E.M	 fold	 increase.	 TNF-α	 and	 IL-1β 	 abundance	 in	 the	

peripheral	 blood	 mononuclear	 cell	 (PBMC)	 culture	 media	 (C	 and	 D)	 was	 quantified	

using	ELISA	and	presented	as	mean	±	S.E.M	pg/mL.	*	 Indicate	significance	of	P	<	0.05	

(n=5)	and	were	analysed	using	an	unpaired	Student	t	Test.	
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4.3.2 Effect	of	Mθ  and	M1	macrophages	on	PP2A	in	hBMEC	

	

PPP2CA	 mRNA	 expression	 in	 hBMECs	 was	 unaltered	 when	 co-cultured	 with	 Mθ	

macrophages	 compared	 to	 hBMEC	 in	 mono-culture.	 However,	 co-culture	 with	 M1	

macrophages	caused	a	43	%	increase	in	the	mRNA	expression	of	PPP2CA	compared	

to	hBMEC	in	mono-culture,	and	a	36	%	increase	compared	to	those	co-cultured	with	

Mθ co-culture	 (P	 <	 0.05;	 Figure	 4.3A).	 Co-culture	 of	 the	 hBMECs	with	Mθ and	M1	

macrophages	did	not	alter	 the	abundance	of	PP2Ac	compared	 to	hBMECs	 in	mono-

culture	(Figure	4.3B).	Mθ	macrophages	caused	an	increase	in	PP2Ac	activity	by	14%	

in	 hBMEC	 compared	 to	 hBMEC	 mono-culture	 (P	 <	 0.05).	 However,	 in	 hBMEC	 co-

cultured	 with	 M1	 macrophages	 PP2Ac	 activity	 decreased	 by	 26%	 and	 35%	

respectively	 compared	 to	 hBMEC	 in	 mono-culture	 and	 those	 co-cultured	 with	 Mθ	

macrophages	(P	<	0.05;	Figure	4.3C).		

4.3.3 Effect	 of	Mθ 	 and	M1	macrophage	 on	 post-translational	 modification	 of	 PP2A	

and	their	modifiers	in	hBMEC.	

As	 PP2Ac	 activity	 in	 hBMEC	was	 altered	 independently	 of	 a	 change	 in	 PP2Ac	

abundance,	 I	 investigated	 the	 effect	 of	 Mθ 	 and	 M1	 macrophages	 on	 the	

phosphorylation	and	methylation	status	of	PP2Ac,	which	are	well	documented	

to	modulated	 its	activity	 [682].	 Interestingly,	 co-culture	of	hBMEC	with	Mθ 	or	

M1	macrophages	 increased	the	abundance	of	phosphorylated	PP2Ac	by	~60%	

in	 hBMEC	 compared	 to	 hBMECs	 in	 mono-culture	 (P	 <	 0.05;	

	

Figure	 4.4A).	 Although	 Mθ  macrophages	 did	 not	 alter	 the	 abundance	 of	

demethylated	PP2Ac	in	hBMEC,	M1	macrophages	caused	a	2.8	fold	increase	in	

pPP2Ac 

Demethylated	PP2Ac 

PME-1 

LCMT-1 

β-actin 
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the	demethylation	of	 PP2Ac	 compared	 to	hBMEC	alone	 and	 those	 co-cultured	

with	Mθ  (P < 0.05; 	

Figure	4.4B).	To	explain	the	alteration	in	methylation	state,	PME-1	and	LCMT-1	

abundance	were	also	quantified.	The	abundance	of	PME-1	was	unaltered	when	

hBMEC	were	co-cultured	with	the	Mθ 	or	M1	macrophages	compared	to	those	in	

mono-culture	( 	

Figure	4.4C).	While	 the	 abundance	of	 LCMT-1	was	not	 affected	 in	hBMECs	 co-

cultured	 with	 Mθ 	 macrophages,	 it	 abundance	 decrease	 by	 70%	 and	 56%	

compared	upon	co-culture	with	M1	macrophages	compared	to	those	in	mono-

culture	 or	 co-cultured	 with	 Mθ  macrophages respectively	 (P	 <	 0.05;	

	

Figure	4.4D).		
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Figure	4.3:	Effect	of	hBMEC,	Mθ 	and	M1	macrophage	24	h	co-culture	on	PP2A.		

PPP2CA	mRNA	expression	was	determined	by	RT-PCR	normalized	to	GAPDH	Ct	values	

(A).	 PP2Ac	 abundance	 was	 determined	 by	 western	 blot	 normalised	 to	 β-actin	

expression	(B)	and	PP2Ac	activity	was	determined	by	an	immunoprecipitation	activity	

assay,	data	represented	as	a	percentage	of	activity	(C).	All	data	sets	are	presented	as	a	

mean	± 	 S.E.M	relative	 to	 the	hBMEC	only	sample.	Data	was	analysed	using	a	one-was	

ANOVA	 with	 post	 hoc	 analysis	 (Bonferroni).	 Horizontal	 bars	 represent	 statistical	

significance	(P	<	0.05)	(n=5).	
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Figure	4.4:	Effect	of	hBMEC,	Mθ  and M1 macrophage 24 h co-culture on PP2A post-

translational modifications;  

Phosphorylation	(A)	and	demethylation	(B)	and	modifiers	PME-1	(C)	and	LCMT-1	(D).	

Abundance	was	determined	by	western-blot,	normalised	 to	β-actin,	 represented	as	a	

mean	± 	S.E.M	relative	to	the	hBMEC	alone	samples.	Data	was	analysed	using	one-way	

ANOVA	 post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	 statistical	 significance	 (P	 <	

0.05),	(n=5).		
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4.3.4 Mθ 	and	M1	macrophages	alter	abundance	and	expression	of	VE-cadherin	

In	hBMEC	co-cultured	with	Mθ	macrophages	the	abundance	and	mRNA	expression	of	

VE-cadherin	was	increased	by	60	%	and	2.8	fold	respectively	compared	to	hBMEC	in	

mono-culture	(P	<	0.05;	Figure	4.5A-C).	In	contrast,	co-culture	with	M1	macrophages	

decreased	 abundance	 of	 VE-cadherin	 decreased	 by	~	 40%	 and	 >60%	 compared	 to	

hBMECs	in	mono-culture	and	those	co-cultured	with	Mθ	macrophages	respectively	(P	

<	0.05;	Figure	4.5A,	C).	VE-cadherin	mRNA	expression	was	 increased	by	2.6	 fold	 in	

hBMEC	co-culture	with	M1	macrophages	(P	<	0.05;	Figure	4.5B).		

As	 OA	 decreased	 VE-cadherin	 abundance	 in	 chapter	 3	 (Section	 3.3.4)	 through	

increased	 proteasomal	 degradation,	 I	 investigated	 if	 this	 mechanism	 was	 also	

applicable	to	the	effect	of	M1	macrophages	on	VE-cadherin	abundance	in	hBMEC.	In	

hBMEC	 co-cultured	 with	 Mθ	 macrophages	 MG132	 did	 not	 alter	 the	 Mθ	 induced	

increase	 in	 VE-cadherin	 abundance	 (Figure	 4.5C).	 However,	 in	 hBMEC	 co-cultured	

with	M1	macrophages	MG132	(2	µM)	prevented	the	macrophage	induced	decrease	in	

VE-cadherin	abundance	(Figure	4.5C).	
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Figure	4.5:	Effect	of	Mθ 	and	M1	macrophage	co-culture	(24	h)	on	VE-cadherin	in	

hBMEC.		

VE-cadherin	abundance	was	determined	by	western	blot	normalised	to	β-actin	(A),	VE-

cadherin	mRNA	expression	was	determined	by	RT-PCR	normalised	to	GAPDH	Ct	values	

(B).	 The	 role	 of	 proteasomal	 degradation	 on	 M1	 induced	 loss	 of	 VE-cadherin	

abundance	 (C).	 Proteasomal	 degradation	 was	 inhibited	 using	 MG132	 (2	 μM).	 Data	

represented	 as	mean	 ± 	 S.E.M	 relative	 to	 the	 hBMEC	mono-culture	 sample.	 Data	was	

analysed	 using	 one-way	 ANOVA	 post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	

statistical	significance	(P	<	0.05),	(n=5).		
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4.3.5 Overexpression	of	PP2A	reverses	the	loss	of	VE-Cadherin		

Transfection	of	hCMEC/D3	cells	with	pPP2Ac	increased	PP2Ac	abundance	by	~2	fold	

(P	<	0.05;	Figure	4.6A)	compared	to	Untx,	mock	transfected	and	pCMV6	transfected	

cells	(empty	vector).	This	was	accompanied	by	a	>4	fold	increase	in	PP2Ac	activity	(P	

<	0.05;	Figure	4.6B)	compared	to	the	un-transfected	and	transfection	control	groups.	

In	 hCMEC/D3s	 transfected	 with	 pPP2Ac,	 co-culture	 with	 Mθ	 macrophages	 did	 not	

alter	the	abundance	of	VE-cadherin	compared	to	those	in	mono-culture	in	the	mock	

and	 pCMV6	 groups	 (Figure	 4.7).	 In	 hCMEC/D3	 cells	 co-cultured	 with	 M1	

macrophages,	 mock	 transfection	 and	 transfection	 with	 pCMV6,	 VE-cadherin	

abundance	was	 decrease	 by	~70%	 compared	 to	 hCMEC/D3s	 in	mono-culture	 (P	 <	

0.05;Figure	 4.7).	 However,	 in	 the	 hCMEC/D3	 pPP2Ac	 transfected	 group,	 co-culture	

with	 M1	 macrophage	 did	 not	 alter	 VE-cadherin	 abundance	 compared	 to	 those	 in	

mono-culture	(Figure	4.7)	and	was	58.7	and	60.6%	higher	than	in	the	corresponding	

pCMV6	 and	 mock	 transfected	 groups	 (P	 <	 0.05;	 Figure	 4.7).	 Transfection	 of	

hCMEC/D3	cells	with	the	empty	vector	pCMV6	or	pPP2Ac	did	not	alter	VE-cadherin	

abundance	compared	to	mock	transfected	cells	in	mono-culture.	
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Figure	 4.6:	 Confirmation	 of	 PP2A	 overexpression	 and	 associated	 increase	 in	

PP2Ac	activity.		

hCMEC/D3s	were	transfected	with	a	pCMV6	PP2Ac	plasmid	and	the	relevant	controls;	

mock	and	empty	pCMV6	vector	for	72	h.	PP2Ac	abundance	was	quantified	by	Western-

blot	 and	 normalized	 to	 β-actin	 (A).	 PP2A	 activity	 was	 determined	 by	 PP2Ac	

immunoprecipitation	activity	assay	(B).	Data	are	represented	as	mean	±	SEM	relative	

to	 the	 Untx	 control;	 n=5;	 analysed	 using	 one-way	 ANOVA	 with	 post	 hoc	 Bonferroni	

analysis.	*	Represents	statistical	significance	(P	<	0.05).	
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Figure	 4.7:	 Investigating	 the	 effect	 of	 PP2A	 overexpression	 on	 pro-

inflammatory	loss	of	VE-cadherin	in	hCMEC/D3s.		

Cells	were	transfected	with	a	pCMV6	pPP2Ac	plasmid	and	the	relevant	controls;	mock	

and	 empty	 pCMV6	 vector	 for	 72	 h.	 Transfected	 cells	 were	 co-culture	 samples	 were	

incubated	 with	 Mθ 	 and	 M1	 polarised	 macrophages	 for	 a	 further	 24	 h.	 VE-cadherin	

abundance	 was	 quantified	 by	 Western-blot	 and	 normalised	 to	 β-actin.	 Data	 are	

represented	 as	mean	 ±	 SEM	 relative	 to	 the	mock	 transfected	 control;	 n=5;	 analysed	

using	 one-way	 ANOVA	with	 post	 hoc	 Bonferroni	 analysis.	 Horizontal	 bars	 represent	

statistical	significance	(P	<	0.05).	
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4.3.6 M1	macrophages	increase	endothelial	cell	permeability		

	

Co-culture	of	hBMEC	with	M1	macrophages	increased	paracellular	permeability	over	

a	24	h	time-course	compared	to	the	hBMEC	in	mono-culture	or	co-cultured	with	Mθ	

macrophages.	 This	 increase	 was	 first	 detected	 at	 18	 h	 (4.7	 fold)	 and	 continued	 to	

increase	over	the	24	h	period	compared	to	the	those	in	mono-	and	Mθ-	co-culture	(P	<	

0.05;	 Figure	 4.8A).	 In	 hBMEC	 co-cultured	 with	 Mθ	 macrophages	 paracellular	

permeability	 did	 not	 alter	 over	 the	 24	 h	 epoch	 compared	 to	 hBMEC	 alone	 (Figure	

4.8A).	The	summary	data	(area	under	the	permeability	time	curve)	showed	that	M1	

macrophage	 increased	 paracellular	 permeability	 of	 hBMEC	 by	 2.6	 fold	 increase	

compared	 to	hBMEC	alone	or	 in	 co-culture	with	Mθ	macrophages	 (P	<	0.05;	Figure	

4.8B).		

4.3.7 Overexpression	of	PP2A	reverses	M1	increase	in	endothelial	permeability	

Co-culture	of	hCMEC/D3s	with	M1	macrophages	increased	paracellular	permeability	

compared	to	hCMEC/D3s	in	mono-culture	or	co-cultured	with	Mθ	macrophages.	This	

was	 first	 detected	 at	 18	 h	 and	 continued	 to	 increase	 for	 the	 duration	 of	 the	

experiment	 (P	 <	 0.05;	 Figure	 4.9A).	 Over	 the	 same	 period,	Mθ macrophages	 in	 co-

culture	 with	 hCMEC/D3	 did	 not	 alter	 paracellular	 permeability	 compared	 to	

hCMEC/D3s	in	mono-culture	(Figure	4.9A).		

In	 hCMEC/D3s	 cells	 transfected	 with	 pCMV6-AC-PP2A,	 co-culture	 with	 M1	

macrophages	 did	 not	 alter	 paracellular	 permeability	 compared	 to	 those	 in	 mono-

culture	or	co-cultured	with	Mθ	macrophages	over	the	24	h	time	period	(Figure	4.9.C).	

However,	 in	 mock	 transfected	 cells,	 co-culture	 with	 M1	 macrophages	 increased	

paracellular	 permeability	 by	 ~43%	 at	 18	 h	 and	 continued	 to	 increase	 for	 the	

remaining	duration	of	the	experiment	relative	to	those	in	monoculture	or	co-cultured	

with	Mθ macrophages (P < 0.05; Figure	4.9B). Similarly, in hCMEC/D3 cells transfected 

with pCMV-6 (empty plasmid), M1 macrophages increased paracellular permeability 

compared to those in mono-culture or co-cultured with Mθ macrophages (P < 0.05; Figure	

4.9D). 	
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Figure	 4.8:	 Effect	 of	 hBMEC,	 Mθ  and M1 macrophage 24 h co-culture on brain	

microvascular	cell	permeability.		

The	movement	of	a	FITC-labelled	dextran	measured	permeability	over	24	h	through	a	

monolayer	 of	 endothelial	 cells	 seeded	 on	 a	 transwell	 plate.	 hBMECs	 were	 cultured	

alone	and	as	a	co-culture	with	Mθ  and M1 macrophage (A), this data was summarized as 

the AUC normalised to the hBMEC alone sample (B). Data	 was	 normalised	 to	 the	 first	

time	point	of	 the	hBMEC	alone	 sample	 (mean	±	SEM;	n=5).	 *	P	<	0.05	and	horizontal	

bars	 represents	 significant	 differences	 from	 the	 relevant	 controls;	 two-way	 ANOVA	

with	post	hoc	Bonferroni	analysis.			
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Figure	4.9:	PP2A	overexpression	and	associated	effect	on	permeability.		

hCMEC/D3s	were	transfected	with	a	pCMV6-PP2Ac	plasmid	and	the	relevant	controls;	

mock	and	empty	pCMV6	vector	for	72	h.	Permeability	was	measured	by	the	movement	

of	a	FITC-labelled	dextran	over	24	h	through	a	monolayer	of	endothelial	cells	seeded	

on	 a	 transwell	 plate.	 hCMEC/D3s	 (untransfected	 (A),	 Mock	 Transfected	 (B),	 pCMV6	

transfected	 (C)	and	pPP2Ac	 transfected	 (D))	were	 cultured	alone	and	as	a	 co-culture	

with	 Mθ  and M1 macrophage. Data	 were	 normalised	 to	 the	 first	 time	 point	 of	 the	

hCMEC/D3s	 alone	 sample	 (mean	 ±	 SEM;	 n=5).	 	 Samples	 were	 analysed	 by	 two-way	

ANOVA	with	post	hoc	Bonferroni.	
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4.4 Discussion	

It	 is	 well	 regarded	 that	 the	 loss	 of	 VE-cadherin	 is	 associated	 with	 an	 increase	 in	

vascular	permeability,	which	can	be	induced	by	inflammation.	The	previous	chapter	

demonstrated	that	 inhibtion	of	PP2A	is	associated	with	 loss	of	VE-cadherin	 in	brain	

microvascular	 endothelial	 cells,	 however	 it	 remains	 to	 be	 established	 if	 this	 is	

relevant	 to	patho/physiological	 conditions.	To	establish	 this,	 a	hBMEC/macrophage	

co-culture	model	was	utilised	as	an	in	vitro	model	of	neuroinflammation.	In	this	study	

I	demonstrate	that	Mθ	and	M1	macrophages	differentially	modulate	PP2A	activity,	Mθ	

activates	while	M1	macrophages	inhibits..	M1	macrophages	increase	phosphorylation	

and	 decrease	 methylation	 of	 PP2Ac,	 consistent	 with	 a	 loss	 of	 activity	 through	

disruption	of	the	holoenzyme	in	hBMECs.	Loss	of	LCMT-1	is	most	 likely	responsible	

for	the	demethylation	of	PP2Ac	as	PME-1	was	not	altered.	In	line	with	the	results	of	

study	 1,	 loss	 of	 PP2A	 induced	 proteasomal	 degradation	 of	 VE-cadherin.	 Over-

expression	 of	 PP2A	 prevented	 the	 proteasomal	 loss	 of	 VE-cadherin	 induced	 by	 co-

culture	 of	M1	macrophages	with	 hBMEC.	As	 anticipated,	 co-culture	 of	 hBMECs	 and	

hCMEC/D3s	 with	 M1	 macrophages	 increased	 paracellular	 permeability,	 an	 effect	

prevented	by	over-expression	of	PP2Ac.		

The	presence	of	Mθ	and	M1	macrophages	provide	unique	results	when	investigating	

the	 association	 of	 PP2A	 and	 VE-cadherin.	 Co-culture	 models	 have	 facilitated	 the	

development	of	in	vitro	models	with	greater	relevance	to	the	in	vivo	state	[683-685].	

Mθ	macrophages	 increase	 both	PP2A	 and	VE-cadherin	 abundance	 compared	 to	 the	

mono-culture	 suggests	 a	 protective	 role	 of	 resident	 unstimulated	 macrophages.	

Highlighting	the	need	to	consider	the	Mθ	co-culture	when	investigating	the	effect	of	

M1	macrophages.	 Studies	 have	 previously	 shown	 similar	 roles	 of	 perivascular	 and	

peripheral	 macrophages	 in	 supporting	 the	 integrity	 of	 the	 brain	 endothelial	 layer	

(bovine	and	human	cell	lines	investigated)[686].		

	

The	Mθ	macrophage-induced	increase	in	PP2A	activity	is	not	a	result	of	an	increase	in	

PP2A	 abundance,	 as	 abundance	 remains	 unaffected	 in	 both	 co-culture	models	 (Mθ	

and	M1).	PP2A	is	a	highly	stable	protein	with	a	long	half-life	(13-17	h)	and	frequently	

abundance	remains	unaltered	[463,	687].	The	M1	induced	loss	of	PP2A	is	likely	due	to	

altered	assembly	or	blockage	of	 the	active	 site.	Although	M1	macrophages	 increase	
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the	expression	of	PP2A	mRNA	this	is	not	translated	to	protein	abundance,	suggesting	

it	may	be	blocked	by	an	miRNA,	for	example	miR-183	[513].		Previous	investigations	

into	 the	 role	 of	 PP2A	 in	 co-culture	 models	 demonstrated	 a	 decrease	 in	 PP2A	

abundance	 during	 inflammation.	 However	 all	 investigations	 have	 focused	 on	 the	

effect	of	PP2A	 in	 the	 inflammatory	 cells	 such	as	THP-1,	 glial,	 astrocytes	 cells	 in	 the	

periphery	 and	 brain.	 [598].	 Increasing	 PP2A	 activity	 is	 associated	 with	 an	 anti-

inflammatory	 and	 neuroprotection	 in	 a	 Parkinson’s	 disease	 model	 [688,	 689].	 By	

comparison	 the	present	 study	 is	 the	 first	 study	 to	 focus	on	PP2A	 in	 the	endothelial	

cell	in	a	co-culture	model.		

Another	 aspect	 that	 has	 previously	 not	 been	 investigated	 is	 the	 post-translational	

modification	of	PP2A	in	an	inflammatory	co-culture	model.	M1	macrophages	induce	

an	 increase	 in	 phosphorylated	 PP2A,	 supporting	 the	 loss	 of	 PP2A	 activity.	

Interestingly	hBMECs	in	the	presence	of	Mθ	macrophages	also	induces	an	increase	in	

phosphorylated	 PP2A,	 which	 did	 not	 attenuate	 PP2A’s	 increase	 in	 activity.	 One	

potential	 explanation	 is	 the	 both	 increased	 phosphorylation	 and	 demethylation	 is	

needed	 for	 the	M1	 induced	 loss	 of	 PP2Ac	 activity.	 In	 comparison	Mθ	macrophages	

increase	PP2Ac	alone	without	effecting	PP2Ac	activity.	The	loss	of	methylation	is	due	

to	 loss	 of	 LCMT-1	 in	 M1	 co-culture	 samples,	 facilitating	 PME-1	 to	 remove	 methyl	

groups	 from	 PP2Ac	 without	 the	 opposing	 re-methylation.	 This	 has	 not	 previously	

been	 investigated	 in	 a	 similar	 model	 however	 knockdown	 LCMT-1	 studies	 in	 rat	

glioma	cells	demonstrated	a	negative	effect	on	PP2A	activity	 [514,	535].	The	down-

regulation	 of	 LCMT-1	 in	 COS7	 and	 HeLa	 cells	 also	 determined	 that	 altering	 the	

methylation	status	of	PP2A	alters	the	assembly	of	the	PP2A	holoenzyme	[514].	This	

loss	of	LCMT-1	has	been	suggested	as	a	 contributing	 factor	 in	 the	 loss	of	PP2A	and	

resulting	 phosphorylation	 of	 tau	 in	 Alzheimer’s	 disease	 (mouse	 neuroblastoma	 cell	

studies)[622,	623].	Adding	to	this,	the	activity	of	PME-1	and	LCMT-1	may	determine	

the	cellular	localisation	of	PP2A,	as	LCMT-1	is	predominantly	located	in	the	cytoplasm	

and	PME-1	in	the	nucleus	[690,	691].	Contradictory	to	our	findings,	an	investigation	

into	endothelial-mesenchymal	transmission	in	HUVECs	demonstrated	that	TGF-β	did	

not	alter	PP2Ac	methylation	and	phosphorylation	of	PP2A.	However	this	was	after	72	

h	 incubation,	 making	 it	 difficult	 to	 compare	 the	 findings	 of	 both	 studies	 [692].	

Hyperglycemia	 (4	 days),	 often	 associated	 with	 a	 pro-inflammatory	 response,	 also	

increases	 in	 PP2A	methylation	 and	 activity	 in	 BAEC.	 However,	 as	 in	 our	 study	 the	
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activity	and	methylation	of	PP2Ac	was	reversed	by	PP2Ac	 inhibitor,	OA	[693].	Both	

studies	highlight	that	PP2A	activity	and	methylation	may	fluctuate	after	24	h	and	may	

be	 of	 interest	 in	 future	 studies.	 As	 there	 are	multiple	 proteins	 responsible	 for	 the	

phosphorylation	of	PP2A	it	was	outside	the	remit	of	this	study.			

The	 hBMEC	 and	 macrophage	 co-culture	 model,	 as	 previously	 mentioned,	

demonstrated	a	protective	role	of	Mθ	macrophages	on	endothelial	 integrity	through	

the	 increase	 in	 VE-cadherin	 abundance.	 Similar	 to	 the	 effect	 of	 OA	 (10	 nM)	 in	 the	

previous	chapter,	M1	macrophages	increase	mRNA	level	of	VE-cadherin,	which	does	

not	correlate	to	the	decrease	in	protein	levels.	This	may	be	due	to	a	rapid	degradation	

of	 VE-cadherin	 or	 the	 presence	 of	 a	 miRNA	 for	 example	 miR-27	 preventing	 the	

transcription	 of	 VE-cadherin	 [643].	 Similar	 to	 our	 findings,	 use	 of	M1	macrophage	

associated	 inflammatory	 cytokines	 induces	 VE-cadherin	 relocation;	 increase	

transendothelial	 migration	 and	 BBB	 permeability	 in	 mouse	 brain	 microvascular	

endothelial	 cells	 and	 hBMECs	 [233,	 694-696].	 The	 co-culture	 model	 in	 this	 study	

further	supports	 the	role	of	VE-cadherin	during	an	 inflammatory	attack	on	the	BBB	

and	association	with	increased	paracellular	permeability.		

As	previously	discussed	VE-cadherin	contains	multiple	phosphorylation	sites	on	the	

carboxyl-tail.	 Considering	 the	 association	 of	 attenuated	 PP2A	 activity	 and	 VE-

cadherin	 loss	 future	 investigations	 are	 required	 to	 determine	 a	 potential	

phosphorylation	site	for	PP2A	to	target	in	the	presence	of	M1	macrophages.	Greater	

focus	 has	 been	 on	 the	 tyrosine	 sites	 [256,	 678,	 679].	 Blocking	 VE-cadherin	 Y658	

and/or	Y685	phosphorylation	has	been	shown	to	prevent	the	inflammatory	mediator	

bradykinin,	induced	permeability	and	endocytosis	of	VE-cadherin	[327].	While	less	is	

known	 about	 the	 effect	 of	 VE-cadherin	 Serine/Threonine	 phosphorylation,	 in	

particular	the	Ser665	residue	in	an	inflammatory	model	[325,	326].	A	previous	study	

in	human	brain	endothelial	cells	suggests	the	Ser665	is	targeted	by	PP2A.	Their	results	

show	that	the	inhibition	of	PP2A	increases	Ser665	phosphorylation	associating	with	an	

increase	 in	 microvascular	 permeability	 [221].	 Highlighting	 Ser665	 as	 a	 potential	

avenue	for	future	work.	

Our	results	suggest	a	vital	role	of	PP2A	in	maintaining	the	protective	endothelial	layer	

in	the	BBB	against	inflammation,	as	demonstrated	with	the	overexpression	of	PP2Ac	

attenuating	the	M1	induced	increase	in	permeability.	Conversely,	other	studies	have	
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suggested	 that	 an	 increase	 in	 PP2A	 is	 associated	 with	 inflammation	 and	 induced	

vascular	 permeability.	 Human	 pulmonary	 endothelial	 and	 mouse	 skeletal	

microvascular	endothelial	studies	showed	an	increase	in	PP2A	after	LPS	stimulation	

[652],	 however	 when	 PP2A	 was	 inhibited	 there	 was	 no	 reversal	 in	 LPS	 induced	

expression	 of	 ICAM-1	 [697].	 Propofol	 has	 been	 used	 to	 treat	 hyperglycaemia	 and	

hypoxia/reoxygenation.	 Its	 anti-inflammatory	 effects	 and	 benefits	 to	 endothelial	

function	have	been	 linked	 to	 its	 inhibitory	effects	on	PP2A	 in	HUVECs	 [698-700].	A	

study	 carried	out	on	 rat	BMECs	also	 suggests	 an	adverse	effect	of	PP2A,	where	 the	

increase	 is	 PP2A	 was	 associated	 with	 an	 increase	 in	 permeability	 [701].	 Further	

supported	by	the	in	vitro	and	vivo	studies	using	absorbate	to	decrease	PP2A	resulting	

in	 an	 associated	 protection	 against	 vascular	 leak	 during	 septic	 insult	 [702,	 703].	

Occludin	 studies	 have	 also	 demonstrated	 an	 increase	 in	 PP2A	 associated	 with	 an	

increase	 in	 permeability	 and	 the	 pharmacological	 inhibition	 of	 PP2A	 reversed	 the	

observed	effects	[651,	704].	However	none	of	the	above	studies	were	carried	out	 in	

hBMECs,	and	the	differing	cells	may	address	the	conflicting	findings.			

Our	results	highlight	a	potential	role	of	PP2A	in	regulating	both	VE-cadherin	surface	

abundance	 and	 degradation.	 Considering	 the	 findings	 from	 this	 and	 the	 previous	

chapter,	it	can	be	concluded	that	M1	macrophages	and	OA	(10	nM)	both	result	in	the	

proteasomal	degradation	of	VE-cadherin	 in	hBMECs.	Supported	by	previous	studies	

demonstrating	 that	 phosphorylated	 E-cadherin/VE-cadherin	 stimulate	 its	 removal	

from	 the	 membrane	 through	 clathrin-mediated	 endocytosis	 [317].	 Also	 a	 study	

carried	 out	 on	 ovarian	 cancer,	 which	 utilises	 an	 endothelial	 cell/macrophage	 co-

culture	 model	 reported	 the	 role	 of	 the	 apoptosis	 signal	 regulating-kinase	 1	 in	

stimulating	 proteasomal	 degradation	 of	 VE-cadherin	 [705].	 In	 conjunction	 with	

PP2As	association	with	VE-cadherin	abundance	suggests	an	important	role	of	kinase	

and	 phosphatase	 activity	 in	 regulating	 VE-cadherin	 surface	 abundance	 and	

degradation.		

Considering	 the	 anti-inflammatory	 effect	 of	 PP2A	 shown	 in	 the	 literature,	 it	 has	

become	 a	 target	 for	 pharmacological	 modulation	 [605,	 706,	 707].	 We	 have	

demonstrated	 that	 over-expressing	 PP2A	 reverses	 the	 M1	 induced	 loss	 of	 PP2A	

activity,	 VE-cadherin	 abundance	 and	 increased	 permeability.	 Tristetraprolin	 is	 an	

anti-inflammatory	gene	regulator,	in	vivo	and	in	vitro	demonstrates	that	is	it	is	also	an	
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agonist	 of	 PP2A,	 contributing	 to	 its	 anti-inflammatory	 effect	 [708].	 The	 potential	

therapeutic	benefit	was	demonstrated	in	rat	subarachnoid	haemorrhage	in	vivo	study	

resulting	 in	 a	 neuroprotective	 and	 anti-inflammatory	 effect	 of	 Tristetraprolin	 and	

increased	 PP2A	 [709]	 A	 recent	 publication	 also	 demonstrated	 that	 LPS	 induced	

endothelial	 cell-monocyte	 interaction	 was	 reduced	 by	 resolvin	 D1	 through	 the	

blocking	 of	 H2O2	 inactivation	 of	 PP2A	 [710].	 Both	 therapies	 have	 the	 potential	 to	

reverse	M1	induced	loss	of	VE-cadherin	and	increased	permeability.	

In	 conclusion,	 the	 present	 study	 has	 unveiled	 a	 strong	 association	 between	 PP2A	

activity,	VE-cadherin	and	permeability	in	the	presence	of	macrophages	(summarised	

in	 Figure	 4.10).	 Highlighting	 the	 supportive	 role	 of	 Mθ	 macrophages	 through	 the	

increase	 of	 VE-cadherin	 and	 PP2A	 activity.	 Also	 demonstrating	 the	 M1	 induced	

increase	 in	hBMEC	permeability	 correlating	with	 the	 loss	 of	VE-cadherin	 and	PP2A	

activity.	 Most	 likely	 M1	 macrophages	 attenuate	 loss	 of	 PP2A	 activity	 through	

holoenzyme	 disassembly.	 Supported	 by	 the	 increase	 in	 phosphorylated	 PP2A	 and	

demethylation	 induced	by	M1	macrophages.	The	ability	of	PP2A	over	expression	 to	

reverse	M1	induced	VE-cadherin	 loss	provides	strong	evidence	to	the	beneficial	use	

of	 PP2A	 stimulators	 against	 inflammatory	 effects.	 Alternatively,	 this	 study	 suggests	

that	 targeting	 LCMT-1	 and	 PP2A	methylation	may	 also	 potentially	 reverse	 the	 M1	

induced	 effects.	 Our	 results	 provide	 further	 insight	 into	 damage	 incurred	 during	

Neuroinflammation	 and	diseases	 such	 as	Alzheimer’s,	which	 are	 already	 associated	

with	a	loss	of	PP2A	in	the	brain.			
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Figure	 4.10:	 Schematic	 overview	 of	 PP2A	 modulation	 and	 VE-cadherin	 in	

Human	 Brain	 Microvascular	 Endothelial	 Cells	 in	 a	 Macrophage	 Co-culture	

Model.	

Mθ 	macrophages	cause	an	increase	in	the	PP2Ac	activity	and	increase	in	VE-cadherin	

and	without	effecting	cell	permeability.	M1	macrophages	proteasomal	degradation	of	

VE-cadherin	and	increase	in	endothelial	cell	permeability.	

	

	 	

A 
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Chapter	5	

5 Effect	of	Okadaic	Acid	and	CIP2A	on	the	VE-Cadherin	

Interactome	in	Brain	Microvascular	Endothelial	cells		
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5.1 Introduction	

VE-cadherin	modulates	 the	 integrity	 of	 the	 blood	 brain	 barrier	 through	 binding	 of	

accessory	proteins	to	its	cytosolic	tail	which	stabilises	the	VE-cadherin	interactome	at	

the	 cell	 surface	 [711].	 These	 accessory	 proteins	 include	 P120,	 α,	 β	 and	 γ-catenin	

[712].		

Regarding,	 P120,	 it	 binds	 to	 a	 specific	 peptide	 sequence	 Y645CEEGGGE652,	 in	 the	

juxtamembrane	 region	 of	 VE-cadherin	 [323,	 617,	 713]	 to	 form	 a	 connecting	 bridge	

between	the	cell	surface	and	actin	filaments	through	which	VE-cadherin	regulates	cell	

morphology	[714-716].	Additionally,	P120	 is	an	 important	regulator	 in	VE-cadherin	

expression	 and	 internalisation	 and	 supports	 its	 adhesion	 to	 the	plasma	membrane.	

P120	 mediates	 internalisation	 of	 VE-cadherin	 by	 inhibiting	 RhoA	 [318]	 and	 Src	

activity,	 Loss	 of	 P120	 reduces	 VE-cadherin	 membrane	 abundance	 and	 increases	

endothelial	permeability	[321,	715,	717].	

Binding	 of	 α-catenin	 to	 VE-cadherin	 is	 involved	 in	 membrane	 to	 actin-filament	

regulation	 through	 direct	 binding	 to	 the	 β-catenin/VE-cadherin	 interactome	 [718-

720].	β-Catenin	 is	a	multifaceted	protein	 in	endothelial	cells,	whose	 inclusion	 in	 the	

VE-cadherin	interactome	is	essential	for	adheren	junction	strength	[721].	In	addition	

to	 this,	 unbound	 β-catenin	 can	 translocate	 from	 the	 membrane	 to	 the	 nucleus	 to	

mediate	the	Wnt	signalling	cascade	and	alter	gene	transcription	[722].		

Importantly,	the	composition	and	stability	of	the	VE-cadherin/catenin	interactome	is	

regulated	 by	 phosphorylation.	 For	 example,	 an	 increase	 in	 phosphorylation	 of	

tyrosine	residues	in	VE-cadherin	and	its	accessory	proteins	result	in	disassembly	and	

loss	 of	 the	 VE-cadherin	 interactome	 from	 the	membrane	 and	 actin	 rearrangement	

[723].	More	specifically,	phosphorylation	of	Tyr658	and	Tyr731	prevents	the	binding	of	

P120	and	β-catenin	respectively,	disrupting	endothelial	barrier	 integrity	[678,	724].	

Interestingly,	 amino	 acid	 sequence	 analysis	 of	 the	 intracellular	 domain	 of	 VE-

cadherin	has	uncovered	a	highly	conserved	region	adjacent	to	the	P120	binding	site,	

which	has	a	unique	serine-threonine	cluster,	distinct	 from	other	 classical	 cadherins	

[325].	 This	 region	 contains	 Ser665,	 whose	 phosphorylation	 results	 in	 increased	 VE-

cadherin	 internalisation	 through	 the	 induction	 the	 Src-VAV2-Rac-PAK	 pathway	

following	exposure	to	VEGF	[326].	
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Not	 surprisingly,	 several	 tyrosine	 phosphatases	 including	 SHP2	 [725,	 726],	 DEP-1,	

PTP1B	[323,	727,	728]	and	VE-PTP	[729]	have	been	linked	to	maintenance	of	the	VE-

cadherin	interactome	by	preventing	its	phosphorylation.	However,	 few	studies	have	

investigated	the	role	of	Ser/Thr	phosphatases	in	the	regulation	of	VE-cadherin	and	in	

particular,	 the	 role	 of	 PP2A	 in	 mediating	 its	 internalisation	 and	 interaction	 with	

accessory	proteins.		In	the	previous	chapters	I	have	shown	that	PP2A	plays	a	key	role	

in	 regulating	 VE-cadherin	 abundance	 in	 response	 to	 pharmacological	 inhibition	 of	

PP2A	 and	 during	 co-culture	 of	 brain	 microvascular	 endothelial	 cell	 with	 pro-

inflammatory	macrophages.	However,	the	mechanism	by	which	PP2A	modulates	this	

remains	 to	 be	 established.	 Therefore,	 the	 aims	 of	 the	 present	 chapter	 were	 to		

delineate	 the	 mechanism	 by	 which	 PP2A	 modulates	 VE-cadherin	 abundance	 with	

regard	to	its	 interaction	with	the	key	accessory	proteins	P120,	α	and	β-catenin,	and	

proteasomal	degradation.	
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5.2 Materials	and	Methods	

5.2.1 Cell	culture	

Human	brain	microvascular	 endothelial	 cells	 (hBMECs;	 cell	 systems,	WA,	USA)	 and	

HCMEC/D3	 (gifted	 from	 Dr	 M.	 Campbell,	 Trinity	 College	 Dublin)	 were	 cultured	 in	

EndoGRO-MV	 culture	 medium	 containing	 5%	 foetal	 bovine	 serum,	 supplemented	

with	 100	 U/mL	 penicillin	 and	 100	 mg/mL	 streptomycin.	 hBMECs	 medium	 also	

contained	 ciprofloxacin	 (10	 µg/mL).	 Cells	 were	 exposed	 to	 OA	 (10	 nM)	 for	 the	

relevant	experiments.	In	order	to	investigate	VE-cadherin	internalisation	endothelial	

cells	were	exposed	to	chlorpromazine	hydrochloride	(10	µg/mL)	for	30	mins	prior	to	

OA	(10	nM)	exposure	and	a	further	24	h.	Cells	were	maintained	at	37	oC	in	a	humified	

atmosphere	containing	5%	CO2.	hBMECs	were	used	up	to	passage	10.		All	experiments	

were	performed	under	serum	free	conditions.	

5.2.2 Determination	of	Protein-Protein	Interactions	-	Pull-down assay	

In	brief,	cultured	endothelial	cells	were	 lysed	freeze-thawing	(X3)	 in	3	mL	modified	

RIPA	 buffer	 (section).	 Following	 clarification	 by	 centrifugation	 (12,000	 RPM),	 the	

supernatant	 was	 incubated	 with	 1	 µg	 of	 mouse	 control	 IgG	 and	 20	 µl	 of	 agarose	

conjugate	 protein	 A/G-agarose	 (25%	 v/v)	 and	 incubated	 at	 4°	 C	 for	 30	 minutes.		

During	this	time	mouse	anti-human	VE-cadherin	antibody	(2	µg)	was	incubated	with	

500	 µg	 of	 total	 protein	 for	 1	 h	 at	 4°	 C.	 20	 µl	 of	 suspended	 (25%	 v/v)	 agarose	

conjugate	 protein	 A/G	 was	 then	 added	 to	 the	 Ab/protein	 suspension	 and	 mixed	

overnight	at	4°	C.	Following	collection	of	the	beads	by	centrifugation	(12,000	RPM	for	

5	mins)	 the	 protein/agarose	 pellets	were	washed	 in	 PBS	 and	 resuspended	 in	RIPA	

buffer.	 The	 immunoprecipitates	 (standardised	 to	 1	 µg/µL	 of	 protein)	 were	 the	

separated	by	electrophoresis	and	normalised	to	total	VE-cadherin	abundance.			
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5.2.3 Western	blotting	

Cells	were	lysed	in	modified	RIPA	buffer	(Tris-base	50	mM,	NaCl	150	mM,	EDTA	2mM	

and	 NP-40	 0.5	 %	 v/v),	 supplemented	 with	 the	 protease	 inhibitor	 cocktail	

SIGMAFASTTM	 and	 the	 phosphatase	 inhibitors	 sodium	 orthovanadate	 (2	 mM)	 and	

sodium	 fluoride	 (5	 mM).	 Samples	 (20	 µg	 protein)	 were	 boiled	 for	 1	 min	 in	 LDS	

sample	buffer	(LDS	5%,	Tris	HCl	1M,	Glycerol	50%,	bromophenol	blue	2.5	mg,	phenol	

red	2.5	mg,	 ficoll	400	5%	and	β-mercaptoethanol	10	%)	and	placed	immediately	on	

ice.	 Samples	 were	 separated	 using	 SDS	 PAGE	 (8%	 gel)	 and	 transferred	 to	 a	 PVDF	

membrane	using	 a	 semi-dry	 transfer	 system	and	 transfer	 buffer	 (Tris-base	50	mM,	

glycine	40	mM,	methanol	20%	v/v,	SDS	0.037%	w/v,	dH2O).	Membrane	were	blocked	

using	blocking	buffer	(TBS-T	(Tris-base	10	mM,	NaCl	100	mM	and	HCl	1	M	and	0.1%	

Tween-20)	 containing	 5%	 dried	 skimmed	 milk)	 for	 1	 h.	 Membranes	 were	 probed	

overnight	 at	 4	 oC	 with	 1o	antibodies	 directed	 against	 VE-cadherin,	 PP2Ac,	 pPP2Ac,	

dimethyl-PP2Ac,	 PME-1	 or	 LCMT-1	 (Santa	 Cruz),	 and	 extensively	washed	 in	 TBS-T	

prior	 to	 probing	 for	 1	 h	 with	 a	 polyclonal	 goat	 anti-mouse	 HRP	 conjugated	 2o	Ab	

(Dako).	Membranes	were	washed,	detected	using	chemiluminescence	(3.2	µL	of	30%	

hydrogen	peroxide/	6	mL	of	250	mM	Luminol,	90	mM	4-	iodophenyl	boronic	acid	and	

100	mM	Tris-HCl)[681]	and	images	captured	on	a	Fusion	FX	imaging	system	(Vilber	

Lourmat).	Membranes	were	stripped	using	(62.5	mM	Tris-HCl,	2%	SDS	and	<	0.02%	

β-mercaptoethanol)	and	re-probed	with	an	anti-β-actin	HRP	conjugated	antibody.	All	

antibodies	were	diluted	(1:1000,	excluding	anti-β-actin	(1:3000))	in	blocking	buffer.	

Densitometric	 analysed	 was	 performed	 using	 the	 Bio1D	 software	 and	 density	

normalised	to	β-actin.	The	molecular	weight	of	the	target	proteins	were	determined	

from	an	EZ-RUNTM	molecular	weight	ladder	(Fischer	Scientific,	Dublin,	Ireland).	
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5.2.4 Cell	transfection	and	Overexpression	of	PP2Ac	and	CIP2A	

hCMEC/3s	 were	 seeded	 in	 T75	 flasks	 (2	 x	 106	 cells	 per	 well)	 24	 h	 prior	 to	

transfection.	 Transfection	 was	 carried	 out	 in	 serum	 free	 opti-mem	 (1	 mL;	 Sigma)	

using	TransIT-X2	 (40	µL;	Mirus).	 The	 transfection	 reagent,	 plasmids	 and	opti-MEM	

mixture	was	incubated	at	room	temp	for	30	mins.	Cells	were	transfected	for	72	h	with	

a	 pcDNA3.1	 CIP2A	 plasmid,	 pCMV-6	 PP2Ac	 plasmid,	 pcDNA3.1	 or	 pCMV-6.	

Overexpression	 of	 CIP2A	 and	 PP2Ac	were	 confirmed	 in	 previous	 sections	 (Section	

3.3.5	 and	 Section	 4.3.7).	 pcDNA3.1,	 pCMV-6	 and	 mock-transfection	 (transfection	

reagent	only)	were	included	in	all	experiments	as	controls.	

5.2.5 Data	and	Statistical	Analysis	

Western-blot	data	was	normalised	to	β-actin	or	VE-cadherin	for	immunoprecipitated	

samples	 to	 determine	 relative	 protein	 abundance.	 All	 data	were	 normalised	 to	 the	

appropriate	 controls	 and	 expressed	 as	 a	 ratio	 or	 percentage.	 Data	 were	 analysed	

using	 ANOVA	 (one	 or	 two-way)	 with	 post	 hoc	 Bonferroni	 analysis	 or	 an	 unpaired	

Student	t	test	as	appropriate.	Data	are	represented	as	a	mean	±	S.E.M.,	and	a	value	of	

P	<	0.05	was	set	to	indicate	statistical	significance.	

  



 

	 PAGE	|	136	

5.3 Results	

5.3.1 Effect	of	Clathrin	mediated	inhibition	on	OA	induced	VE-cadherin	attenuation	

In	hBMEC,	OA	(10	nM)	decreased	VE-cadherin	abundance	by	>56%	compared	to	the	

Untx	and	DMSO	controls	(P	<	0.05).	Chlorpromazine	hydrochloride	(CPZ;	10	µg/mL)	

prevented	the	loss	in	VE-cadherin	resulting	from	exposure	to	OA	(0.46	±	0.11	v	1.09	±	

0.05;	P	<	0.05;	Figure	5.1).	CPZ	alone	or	in	combination	with	DMSO	did	not	alter	the	

abundance	of	VE-cadherin.	OA’s	loss	of	VE-cadherin	was	also	significant	compared	to	

the	CPZ	alone	and	combination	with	DMSO	(P	<	0.05;Figure	5.1).		

5.3.2 PP2A	modulation	on	VE-cadherin	Ser665	Phosphorylation	

OA	 (10	nM)	 elicited	 approximately	 a	 fold	 increase	 (P	<	0.05;	 Figure	5.2A,	B)	 in	 the	

abundance	 of	 phosphorylated	 (Ser665)	 VE-cadherin	 in	 hBMEC	 and	 hCMEC/D3	 cells	

compared	 to	 their	 corresponding	 Untx	 and	 DMSO	 groups.	 DMSO	 did	 not	 alter	

abundance	 of	 Ser665	 phosphorylated	 VE-cadherin	 compared	 to	 the	 Untx	 group	 in	

either	cell	line.		

	

In	 hCMEC/D3	 transfected	 with	 pcDNA3.1	 CIP2A	 the	 abundance	 of	 Ser665	

phosphorylated	VE-cadherin	was	doubled	compared	to	the	empty	vector	pcDNA3.1,	

mock	 and	 untransfected	 groups	 (P	 <	 0.05;	 Figure	 5.2C).	 In	 keeping	 with	 this,	

overexpression	 of	 PP2A	 decreased	 the	 abundance	 of	 Ser665	 phosphorylated	 VE-

cadherin	 by	 ~60%	 compared	 to	 the	 pCMV6,	 mock	 and	 untransfected	 groups	 (P	 <	

0.05;	 Figure	 5.2D).	 Mock	 transfection	 and	 transfection	 with	 pcDNA3.1	 or	 pCMV6	

plasmids	did	not	alter	abundance	of	Ser665	phosphorylated	VE-cadherin.	
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Figure	5.1:	 Investigation	 into	 the	role	of	Clathrin	Mediated	endocytosis	on	OA	

(10	nM)	induced	loss	of	VE-cadherin	abundance	after	a	24	h.		

Clathrin	 mediated	 endocytosis	 was	 inhibited	 using	 chlorpromazine	 hydrochloride	

(CPZ;	 10	 µg/mL).	 VE-cadherin	 abundance	 was	 determined	 by	 Western-blot	 and	

normalised	to	β-actin.	Data	are	represented	as	relative	expression	to	the	Untx	(-	CPZ)	

sample	(mean	±	SEM;	n=5).	Samples	were	analysed	using	a	one-way	ANOVA	with	post	

hoc	Bonferroni.	P	<	0.05	taken	to	indicate	significant	differences	and	are	represented	

by	horizontal	bars.	
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Figure	5.2:	Effect	of	PP2A	modulation	on	Ser665	modulation	of	VE-cadherin.		

VE-cadherin	 was	 immunoprecipitated	 from	 whole	 cell	 lysate	 with	 VE-cadherin	 Ab	

bound	 to	 sepharose	 beads.	 pVE-Cadherin	 (S665)	 abundance	 was	 determined	 by	

Western-blot,	 normalised	 to	 VE-cadherin.	 hBMECs	 (A)	 and	 hCMEC/D3s	 (B)	 were	

treated	with	OA	(10	nM)	for	24	h	to	inhibit	PP2A.	PP2A	was	also	inhibited	by	the	over-

expression	of	CIP2A	in	hCMEC/D3	for	72	h	(C)	and	PP2A	activity	was	increased	by	the	

over-expression	of	PP2A	 (D).	Data	are	 represented	as	 a	mean	± 	 S.E.M	 relative	 to	 the	

Untx	 sample.	 Data	 were	 analysed	 using	 one-way	 ANOVA	 post	 hoc	 (Bonferroni).	

Horizontal	bars	represent	statistical	significance	(P	<	0.05;	n=5). 	
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5.3.3 Effect	of	PP2A	inhibition	on	α-Catenin	abundance	

In	 hBMECs	 exposure	 to	 OA	 for	 24	 h	 resulted	 in	 a	 73%	 and	 79%	 loss	 in	α-Catenin	

abundance	compared	to	Untx	and	DMSO	groups	respectively	(P	<	0.05;	Figure	5.3A).	

OA	 also	 resulted	 in	 a	 loss	 of	 α-Catenin	 compared	 to	 Untx	 (-27.52%)	 and	 DMSO	

(32.85%)	in	hCMEC/D3s	(P	<	0.05;	Figure	5.3B).	DMSO	did	not	alter	the	abundance	of	

α-Catenin	compared	to	Untx.	In	hCMEC/D3	cells,	mock	or	pcDNA3.1	transfection	did	

not	 alter	 the	 abundance	 of	 α-catenin	 compared	 to	 the	 Untx.	 However,	 CIP2A	

overexpression	elicited	a	>	50%	loss	of	α-catenin	abundance	compared	to	the	Untx,	

mock	and	pcDNA3.1	groups	(P	<	0.05;	Figure	5.3C).	
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Figure	5.3:	Effect	of	inhibition	of	PP2A	on	abundance	of	α-catenin.			

hBMECs	 (A)	 and	 hCMECs	 (B)	 were	 exposed	 to	 OA	 (10	 nM)	 for	 24	 h	 to	 inhibit	 PP2A	

activity.	The	effect	of	PP2A	inhibition	was	confirmed	by	the	over-expression	of	CIP2A	

for	72	h	(C).	α-catenin	abundance	was	determined	by	Western-blot,	normalised	to	β-

actin,	represented	as	a	mean	± 	S.E.M	relative	to	the	hBMEC	alone	samples.	Data	were	

analysed	 using	 one-way	 ANOVA	 post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	

statistical	significance	(P	<	0.05;	n=5). 	
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5.3.4 Effects	of	PP2A	modulation	on	β-catenin	abundance	

Exposing	hBMECs	and	hCMEC/D3s	to	OA	(10	nM)	or	DMSO	for	24	h	did	not	alter	the	

abundance	of	β-catenin	compared	 to	 the	Untx	group	 (Figure	5.4A	and	B).	Similarly,	

overexpression	 of	 CIP2A	 in	 hCMEC/D3s	 did	 not	 alter	 abundance	 of	 β-catenin	

compared	 to	Untx.	Mock	 transfection	and	 transfection	with	pcDNA3.1	had	no	effect	

on	β-catenin	abundance	(Figure	5.4C).		

5.3.5 Effects	of	PP2A	modulation	on	P120	abundance	

OA	(10	nM)	decreased	P120	abundance	by	57.98%	and	77.93%	in	hBMEC	compared	

to	 the	 Untx	 and	 DMSO	 groups	 respectively	 (P	 <	 0.05).	 DMSO	 did	 not	 alter	 the	

abundance	of	P120	compared	to	Untx	(Figure	5.5A).	In	hCMEC/D3s,	OA	reduced	P120	

abundance	compared	to	the	Untx	(-38.6)	and	DMSO	(-45.8%)	groups	(P	<	0.05;	Figure	

5.5B).	Similarly,	in	hCMEC/D3s	overexpression	of	CIP2A	reduced	P120	abundance	by	

50%	(P	<	0.05;	Figure	5.5C)	compared	to	untreated,	mock	transfected	and	pcDNA3.1	

transfected	 groups.	 Mock	 and	 pcDNA3.1	 transfection	 for	 72	 h	 did	 not	 alter	 the	

abundance	of	P120	compared	to	the	Untx.		
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Figure	5.4:	Effect	of	PP2A	inhibition	on	abundance	of	β-catenin.		

	hBMECs	 (A)	 and	 hCMECs	 (B)	 were	 exposed	 to	 OA	 (10	 nM)	 for	 24	 h	 to	 inhibit	 PP2A	

activity.	The	effect	of	PP2A	 inhibition	was	confirmed	by	 the	overexpression	of	CIP2A	

for	72	h	(C).	β-catenin	abundance	was	determined	by	Western-blot,	normalised	to	β-

actin,	and	presented	as	a	mean	± 	S.E.M	relative	to	the	hBMEC	alone	samples.	Data	were	

analysed	 using	 one-way	 ANOVA	 post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	

statistical	significance	(P	<	0.05;	n=5).	
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Figure	5.5:	Effect	of	PP2A	inhibition	on	the	total	abundance	of	P120.		

	hBMECs	 (A)	 and	 hCMECs	 (B)	 were	 exposed	 to	 OA	 (10	 nM)	 for	 24	 h	 to	 inhibit	 PP2A	

activity.	The	effect	of	PP2A	inhibition	was	confirmed	by	the	over-expression	of	CIP2A	

for	 72	 h	 (C).	 P120 abundance was determined by Western-blot, normalised to β-actin, 

represented as a mean ±  S.E.M relative to the hBMEC alone samples. Data were analysed 

using one-way ANOVA post hoc (Bonferroni). Horizontal bars represent statistical 

significance (P < 0.05; n=5). 
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5.3.6 α-Catenin	binding	to	VE-cadherin	post	PP2A	modulation.		

In	hBMECs,	OA	(10	nM	 for	24	h)	 reduced	α-catenin	bound	 to	VE-cadherin	by	69	%	

and	 74	%	 compared	 to	 the	 Untx	 and	 DMSO	 groups	 respectively	 (P	 <	 0.05;	 Figure	

5.6A)	 Combination	 of	 OA	 and	MG132	 prevented	 the	 loss	 of	 VE-cadherin	 bound	α-

catenin	 (P	<	0.05;	Figure	5.6A),	 returning	 it	 to	baseline.	 In	hCMEC/D3,	OA	 (10	nM)	

tended	 to	 decrease	 (~30%)	α-catenin	 bound	 VE-cadherin	 abundance	 compared	 to	

the	 Untx	 and	 DMSO	 groups,	 however	 it	 failed	 to	 reach	 significance	 (Figure	 5.6B).	

Combining	 MG132	 (2	 µM)	 and	 OA	 (10	 nM)	 increased	 the	 abundance	 of	α-catenin	

bound	 to	 VE-cadherin	 compared	 to	 the	Untx	 (124.9%)	 and	DMSO	 (99.82%).	When	

compared	 to	 the	 OA	 alone	 the	 addition	 of	 MG132	 increased	 the	 abundance	 of	 α-

catenin	 attached	 to	 VE-cadherin	 by	 227.93%	 (P	 <	 0.05;	 Figure	 5.6B).	 hCMEC/D3s	

were	mock	transfected	for	72	h	which	did	not	alter	the	abundance	of	α-catenin	bound	

to	 VE-cadherin	 compared	 to	 the	 Untx.	 CIP2A	 was	 overexpressed	 resulting	 in	 a	

56.15%	loss	in	α-catenin	compared	to	the	empty	vector	pcDNA3.1	and	a	~50%	loss	

compared	to	the	Untx	and	mock	transfected	samples	(P	<	0.05;	Figure	5.6C).		

	

5.3.7 β-Catenin	binding	to	VE-cadherin	after	PP2A	modulation		

OA	inhibits	the	binding	of	β-catenin	to	VE-cadherin	by	43.99%	and	51.92%	compared	

to	the	Untx	and	DMSO	samples	respectively	in	hBMECs	(P	<	0.05).	Combination	of	OA	

and	MG132	results	in	a	149.59%	increase	in	β-catenin	expression	relative	to	OA	alone	

(P	<	0.05).	There	was	no	alteration	in	VE-cadherin	bound	β-catenin	expression	when	

comparing	 the	combination	of	OA	and	MG132	 to	Untx	and	DMSO	(Figure	5.7A).	OA	

(10	 nM)	 exposure	 to	 hCMEC/D3s	 resulted	 in	 the	 loss	 of	 β-catenin	 bound	 to	 VE-

cadherin	by	~60%	compared	to	the	Untx	and	DMSO	samples	(P	<	0.05).	The	addition	

of	 MG132	 reversed	 this	 disassociation	 resulting	 in	 a	 ~70%	 increase	 in	 β-catenin	

abundance	compared	to	the	Untx	and	DMSO	samples	and	>120%	increase	compared	

to	OA	 (10	 nM)	 alone	 (P	 <	 0.05;	 Figure	 5.7B).	 CIP2A	 overexpression	 in	 hCMEC/D3s	

resulted	in	a	69.28%	loss	in	β-catenin	associated	with	VE-cadherin	compared	to	the	

pcDNA3.1	 empty	 vector.	 The	 loss	 of	β-catenin	was	 73.13%	 and	 75.97%	 loss	when	

compared	to	the	Untx	and	mock	transfected	(P	<	0.05;	Figure	5.7C).		
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Figure	5.6:	Effect	of	PP2A	inhibition	on	α-catenin	abundance	in	the	VE-cadherin	

interactome.		

hBMECs	 (A)	 and	 hCMECs	 (B)	 were	 exposed	 to	 OA	 (10	 nM)	 for	 24	 h	 to	 inhibit	 PP2A	

activity,	cells	were	also	treated	with	a	combination	of	OA	(10	nM)	and	MG132	(2	µM)	to	

prevent	proteasomal	degradation.	The	effect	of	PP2A	inhibition	was	confirmed	by	the	

overexpression	 of	 CIP2A	 for	 72	 h	 (C).	 VE-cadherin	 was	 immunoprecipitated	 from	

whole	cell	lysate	with	VE-cadherin	Ab	bound	to	sepharose	beads.	α-catenin	abundance	

was	determined	by	western-blot,	normalized	to	VE-cadherin,	represented	as	a	mean	± 	

S.E.M	relative	 to	 the	hBMEC	alone	samples.	Data	was	analysed	using	one-way	ANOVA	

post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	 statistical	 significance	 (P	 <	 0.05),	

(n=5). 	

Untx  DMSO OA OA + 
MG132

0.0

0.5

1.0

1.5

2.0

α-
Ca

te
ni

n 
Ab

un
da

nc
e

(n
or

m
al

is
ed

 to
 V

E-
ca

dh
er

in
)

Untx  Mock pcDNA3.1 CIP2A
0.0

0.5

1.0

1.5

α-
Ca

te
ni

n 
Ab

un
da

nc
e

(n
or

m
al

is
ed

 to
 V

E-
ca

dh
er

in
)

Untx  DMSO OA OA + 
MG132

0

1

2

3

4

α-
Ca

te
ni

n 
Ab

un
da

nc
e

(n
or

m
al

is
ed

 to
 V

E-
ca

dh
er

in
)

A

C

B

	

α-Catenin 

VE-cadherin 
	

	 α-Catenin 

VE-cadherin 

α-Catenin 

VE-cadherin 



 

	 PAGE	|	146	

	

Figure	5.7:	Effect	of	PP2A	inhibition	on	β-catenin	abundance	in	the	VE-cadherin	

interactome.		

hBMECs	 (A)	 and	 hCMECs	 (B)	 were	 exposed	 to	 OA	 (10	 nM)	 for	 24	 h	 to	 inhibit	 PP2A	

activity,	cells	were	also	treated	with	a	combination	of	OA	(10	nM)	and	MG132	(2	µM)	to	

prevent	proteasomal	degradation.	The	effect	of	PP2A	inhibition	was	confirmed	by	the	

overexpression	 of	 CIP2A	 for	 72	 h	 (C).	 VE-cadherin	 was	 immunoprecipitated	 from	

whole	cell	lysate	with	VE-cadherin	Ab	bound	to	sepharose	beads.	β-catenin	abundance	

was	determined	by	western-blot,	normalized	to	VE-cadherin,	represented	as	a	mean	± 	

S.E.M	relative	 to	 the	hBMEC	alone	samples.	Data	was	analysed	using	one-way	ANOVA	

post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	 statistical	 significance	 (P	 <	 0.05),	

(n=5).   
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5.3.8 P120	binding	to	VE-cadherin	post	PP2A	modulation.	

OA	 did	 not	 alter	 P120s	 binding	 to	 VE-cadherin	 when	 exposed	 to	 OA	 or	 the	

combination	of	OA	and	MG132	 in	 either	 endothelial	 cell	 lines	 compared	 to	Untx	or	

DMSO	(Figure	5.8A	and	B).		

Mock	transfection	of	hCMEC/D3s	for	72	h	prior	to	VE-cadherin	pull	down	also	did	not	

alter	 the	 abundance	 of	 P120	 associated	 with	 VE-cadherin	 compared	 to	 the	 Untx	

control.	 Finally	 this	 abundance	 was	 not	 altered	 when	 hCMEC/D3s	 were	

overexpressed	with	CIP2A	and	PP2A	or	their	corresponding	empty	vectors	pcDNA3.1	

and	CMV-6	(Figure	5.8C).	
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Figure	5.8:	Effect	of	PP2A	inhibition	the	binding	of	P120	to	VE-cadherin.			

hBMECs	 (A)	 and	 hCMECs	 (B)	 were	 exposed	 to	 OA	 (10	 nM)	 for	 24	 h	 to	 inhibit	 PP2A	

activity,	 cell	 were	 also	 treated	 with	 OA	 (10nM)	 and	 MG132	 (2	 µM)	 to	 prevent	

proteasomal	 degradation.	 The	 effect	 of	 PP2A	 inhibition	 was	 confirmed	 by	 the	

overexpression	 of	 CIP2A	 for	 24	 h	 (C).	 VE-cadherin	 was	 immunoprecipitated	 from	

whole	cell	lysate	with	VE-cadherin	Ab	bound	to	sepharose	beads.	P120	abundance	was	

determined	 by	 western-blot,	 normalized	 to	 β-actin,	 represented	 as	 a	 mean	 ± 	 S.E.M	

relative	to	the	hBMEC	alone	samples.	Data	was	analysed	using	one-way	ANOVA	post	hoc	

(Bonferroni).	Horizontal	bars	represent	statistical	significance	(P	<	0.05),	(n=5).	
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5.3.9 PP2Ac’s	association	with	VE-cadherin	after	PP2A	modulation.	

OA	 (10nM)	decreases	 the	binding	of	VE-cadherin	 to	PP2Ac	by	43.36%	and	49.53%	

compared	 to	 the	Untx	and	DMSO	respectively	 in	hBMECs	 (P	<	0.05).	Combining	OA	

with	MG132	 reversed	 the	 disassociation	 of	 PP2Ac	 from	 VE-cadherin	 by	 increasing	

PP2Ac	abundance	by	166.74%	compared	to	OA	alone	(P	<	0.05,	Figure	5.10A).	PP2Ac	

also	 binds	 to	 VE-cadherin	 in	 hCMEC/D3s.	 24	 h	 exposure	 of	 hCMEC/D3s	 to	 OA	 (10	

nM)	resulted	in	a	65.52%	and	63.46%	loss	in	PP2A	abundance	bound	to	VE-cadherin	

compared	 to	Untx	 and	DMSO	 respectively	 (P	 <	 0.05).	MG132	prevented	 the	 loss	 of	

PP2Ac’s	 association	 with	 VE-cadherin	 resulting	 from	 OA	 (Figure	 5.10B).	 Mock	

transfection	of	hCMEC/D3’s	and	 transfection	with	 the	empty	vectors	pcDNA3.1	and	

CMV-6	did	not	alter	the	association	of	PP2Ac	with	VE-cadherin	compared	Untx.	While	

over	expression	of	CIP2A	reduced	PP2Ac	binding	by	>50%	compared	to	the	control	

samples;	Untx,	Mock	and	pcDNA3.1	(P	<	0.05;	Figure	5.10C).		
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Figure 5.9: VE-cadherin binding to PP2Ac and how modulation of PP2Ac 

activity effects their interaction.  

VE-cadherin	 was	 immunoprecipitated	 from	 whole	 cell	 lysate	 with	 VE-cadherin	 Ab	

bound	 to	 sepharose	 beads.	 PP2Ac	 abundance	 was	 determined	 by	 western-blot,	

normalised	to	VE-cadherin.	hBMECs	(A)	and	hCMEC/D3s	(B)	were	treated	with	OA	(10	

nM)	for	24	h	to	inhibit	PP2A,	cells	were	also	treated	with	a	combination	of	OA	(10	nM)	

and	MG132	 (2	µM)	 to	 prevent	 proteasomal	 degradation.	 PP2A	was	 also	 inhibited	by	

the	 over-expression	 of	 CIP2A	 in	 hCMEC/D3	 for	 72	 h	 (C).	 Data	 are	 represented	 as	 a	

mean	± 	 S.E.M	 relative	 to	 the	 Untx	 sample.	 Data	was	 analysed	 using	 one-way	 ANOVA	

post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	 statistical	 significance	 (P	 <	 0.05),	

(n=5).		 	

Untx  DMSO OA OA + 
MG132

0.0

0.5

1.0

1.5

2.0
PP

2A
c A

bu
nd

an
ce

(n
or

m
al

is
ed

 to
 V

E-
ca

dh
er

in
)

Untx  DMSO OA OA + 
MG132

0.0

0.5

1.0

1.5

2.0

PP
2A

c A
bu

nd
an

ce
(n

or
m

al
is

ed
 to

 V
E-

ca
dh

er
in

)

Untx  Mock pcDNA3.1 CIP2A
0.0

0.5

1.0

1.5

PP
2A

c A
bu

nd
an

ce
(n

or
m

al
is

ed
 to

 V
E-

ca
dh

er
in

)

A

C

B

	

PP2Ac 

VE-cadherin 
	

	 PP2Ac 

VE-cadherin 

PP2Ac 
VE-cadherin 



 

	 PAGE	|	151	

5.3.10 The	effect	of	PP2A	modulation	on	VE-cadherin	Interactome	Ubiquitination		

OA	(10	nM)	exposure	to	hBMECs	prior	to	VE-cadherin	pull-down	resulted	in	a	>90%	

increase	in	ubiquitin	expression	compared	to	the	Untx	and	DMSO	pull-down	samples	

(P	<	0.05).	DMSO	had	no	effect	(Figure 5.10A).	In	hCMEC/D3s	OA	(10	nM)	increased	

the	 abundance	 of	 ubiquitin	 associated	 with	 the	 VE-cadherin	 pull-down	 by	 ~110%	

compared	 to	 the	 Untx	 and	 DMSO	 samples	 (P	 <	 0.05).	 DMSO	 had	 no	 effect	 (Figure 

5.10B).	

Overexpression	 of	 hCMEC/D3s	 with	 CIP2A	 resulted	 in	 a	 ~95%	 increase	 in	 the	

ubiquitination	 of	 the	 VE-cadherin	 interactome	 compared	 to	 the	 Untx,	 mock	 and	

pcDNA3.1	transfected	samples	(P	<	0.05)	while	mock	and	pcDNA3.1	did	not	alter	the	

abundance	of	ubiquitin	(Figure 5.10C).	PP2A	was	also	overexpressed	in	hCMEC/D3s	

however	this	did	not	alter	the	ubiquitin	attached	to	the	VE-cadherin	pull-down.	The	

mock	and	CMV-6	samples	also	had	no	effect	compared	to	the	Untx	(Figure 5.10D).	
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Figure 5.10: Effect of PP2A activity modulation on ubiquitination abundance on 

VE-cadherin and its binding proteins.  

VE-cadherin	 was	 immunoprecipitated	 from	 whole	 cell	 lysate	 with	 VE-cadherin	 Ab	

bound	 to	 sepharose	 beads.	 Ubiquitin	 abundance	 was	 determined	 by	 western-blot,	

normalised	to	VE-cadherin.	hBMECs	(A)	and	hCMEC/D3s	(B)	were	treated	with	OA	(10	

nM)	for	24	h	to	inhibit	PP2A.	PP2A	was	also	inhibited	by	the	over-expression	of	CIP2A	

in	hCMEC/D3	 for	72	h	 (C)	 and	PP2A	activity	was	 increased	by	 the	overexpression	of	

PP2A	in	hCMEC/D3s	(D).	Data	are	represented	as	a	mean	± 	S.E.M	relative	to	the	Untx	

sample.	 Data	 was	 analysed	 using	 one-way	 ANOVA	 post	 hoc	 (Bonferroni).	 Horizontal	

bars	represent	statistical	significance	(P	<	0.05),	(n=5).		
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5.3.11 The	effect	of	PP2A	overexpression	on	VE-cadherin	accessory	proteins		

Overexpression	 of	 PP2Ac	 to	 counteract	 the	 effects	 of	 OA.	 PP2A	 overexpression	 did	

not	 alter	 the	 abundance	 of	α	 and	β-catenin	 (Figure	 5.11A	 and	 B)	 but	 did	 however	

result	in	a	>130%	increase	in	P120	abundance	compared	to	the	Untx,	mock	and	CMV-

6	transfections	(P	<	0.05;	Figure	5.11C).	

5.3.12 	The	effect	of	PP2A	overexpression	on	the	VE-cadherin	interactome		

Overexpression	of	PP2A	resulted	in	a	2.1	fold	increased	association	of	α-catenin	with	

VE-cadherin	compared	to	the	relevant	empty	vector	CMV-6	(P	<	0.05).	This	increase	

is	 similar	 to	 the	 2.0	 and	 2.4	 fold	 increase	 when	 compared	 to	 the	 Untx	 and	 mock	

transfection	controls	respectively	(P	<	0.05;	Figure	5.12A).	

PP2A	 overexpression	 resulted	 in	 a	 66.85%	 increase	 in	 β-catenin	 abundance	

compared	to	its	empty	vector	control	(P	<	0.05),	this	increase	is	74.94%	and	56.45%	

compared	to	the	Untx	and	mock	transfection	controls	(P	<	0.05).	The	mock	and	empty	

vector	 transfections	 did	 not	 alter	 the	 abundance	 of	 β-catenin	 associated	 with	 VE-

cadherin	compared	to	the	Untx	sample	(Figure	5.12B).			

PP2A	 overexpression	 increased	 the	 binding	 of	 P120	 to	 VE-cadherin	 by	 >	 130%	

compared	to	the	Untx,	mock	and	CMV-6	transfected	samples	(P	<	0.05;	Figure	5.12C).	

Finally	the	over	expression	of	PP2A	increased	the	abundance	of	PP2A	binding	to	VE-

cadherin	by	~2.5	fold	compared	to	the	Untx,	mock	and	CMV-6	transfections	(P	<	0.05;	

Figure	5.12D).	Mock	and	empty	vector	control	CMV-6	did	not	alter	the	abundance	of	

P120	and	PP2A	binding	to	VE-cadherin	compared	to	the	Untx	(Figure	5.12C	and	D).	
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Figure	5.11:	Effect	of	PP2Ac	overexpression	on	VE-cadherin	accessory	proteins.	

	hCMEC/D3s	 transfected	 with	 a	 pPP2A-c	 plasmid	 for	 72	 h	 to	 overexpress.	 α 	 (A),	 β-

catenin	(B)	and	P120	abundance	(C)	was	determined	by	western-blot,	normalised	to	β-

actin.	Data	 are	 represented	 as	 a	mean	± 	 S.E.M	 relative	 to	 the	Untx	 sample.	Data	was	

analysed	 using	 one-way	 ANOVA	 post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	

statistical	significance	(P	<	0.05),	(n=5).	
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Figure 5.12: Effect of PP2Ac overexpression on VE-cadherin interactome 

integrity.  

hCMEC/D3s	 transfected	with	 a	 pPP2A-c	 plasmid	 for	 72	 h	 to	 overexpress	 PP2Ac	 and	

increase	 PP2A	 activity.	 VE-cadherin	 was	 immunoprecipitated	 from	whole	 cell	 lysate	

with	 VE-cadherin	 Ab	 bound	 to	 sepharose	 beads.	 α 	 (A),	 β-catenin	 (B)	 and	 P120	

abundance	(C)	was	determined	by	western-blot,	normalised	to	VE-cadherin.	Data	are	

represented	as	 a	mean	± 	 S.E.M	 relative	 to	 the	Untx	 sample.	Data	was	analysed	using	

one-way	 ANOVA	 post	 hoc	 (Bonferroni).	 Horizontal	 bars	 represent	 statistical	

significance	(P	<	0.05),	(n=5).	
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5.4 Discussion	

This	 study	 has	 given	 us	 a	 unique	 look	 at	 how	 PP2A	 may	 regulate	 the	 accessory	

proteins	 associated	 with	 VE-cadherin,	 while	 also	 investigating	 the	 VE-

cadherin/Catenin	 interactome	 (summarised	 in	 Figure	 5.13).	 Brain	 endothelial	 cells	

exposure	to	OA	(10	nM)	(previously	shown	to	inhibit	of	PP2A	activity;	section	3.3.2)	

has	 resulted	 in	 an	 associated	 loss	 in	 P120	 and	 α-catenin	 without	 affecting	 the	

abundance	 of	β-catenin.	My	 investigations	 into	 the	 composition	 of	 the	 VE-cadherin	

interactome	provides	evidence	that	PP2A	binds	to	VE-cadherin	and	the	inhibition	of	

PP2Ac	activity	induces	disassociation	of	PP2A.	OA	(10	nM)	and	CIP2A	overexpression	

is	also	associated	with	the	dissociation	of	α	and	β-catenin	from	VE-cadherin	without	

effecting	P120	binding.	However,	 the	disassociation	of	α-catenin	may	be	due	 to	 the	

loss	of	whole	cell	lysate	abundance.	As	we	confirmed	PP2A	binds	to	VE-cadherin,	its	

inhibition	 and	 disassociation	 may	 be	 responsible	 for	 the	 increase	 in	 Ser665	

phosphorylation,	 associated	 increase	 in	 ubiquitination	 and	 internalisation	 through	

clathrin-mediated	 endocytosis.	 Preventing	 proteasomal	 degradation	 stabilises	 the	

VE-cadherin	interactome	suggesting	PP2A	may	also	the	labelling	of	α	and	β-catenin,	

targeting	 them	 for	 degradation.	 With	 the	 aim	 of	 reversing	 the	 above	 effects,	

increasing	PP2A	has	the	ability	to	stabilise	the	VE-cadherin	interactome	by	increasing	

the	association	of	α	and	β-catenin	to	VE-cadherin.	

There	 are	 two	 known	 methods	 of	 VE-cadherin	 endocytosis;	 clathrin	 and	 caveolae	

mediated.	 Clathrin	mediated	 endocytosis	 is	 the	more	 dominant	 method	 first	 to	 be	

utilised	by	the	cell	[332,	730].	The	results	of	this	study	suggest	that	clathrin	mediated	

is	the	sole	method	of	OA	(10nM)	induced	endocytosis	of	VE-cadherin.	This	increase	in	

endocytosis	 is	 also	 associated	 with	 an	 increase	 in	 the	 ubiquitination	 of	 the	 VE-

cadherin	 interactome.	 Contrary	 to	 the	 findings	 of	 this	 study,	 P120	 has	 been	

designated	as	a	key	regulator	of	VE-cadherin	degradation.	Its	disassociation	results	in	

the	endocytosis	of	VE-cadherin,	induced	by	the	Kaposi	sarcoma-associated	ubiquitin	

ligase	 K5,	 which	 target	 two	membrane	 proximal	 lysine	 residues	 for	 ubiquitination	

[324].	 The	 transmembrane	 ubiquitin	 ligase	 of	 Kaposi	 Sarcoma,	 K5/Mir-2	 has	 also	

been	 linked	 to	 the	 ubiquitination	 and	 proteasomal	 degradation	 of	 not	 only	 VE-

cadherin	 but	 also	 α,	 β	 and	 γ-catenin	 [731].	 Although	 total	 abundance	 of	 P120	 is	

decreased	after	OA	(10	nM)	exposure,	there	is	no	alteration	in	the	abundance	bound	
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to	VE-cadherin	 indicating	 that	P120	 is	not	a	key	 regulator	 in	OA	 (10	nM)	mediated	

degradation.	

This	 study	 has	 focused	 on	 the	 specific	 regulation	 of	 the	 Ser665	 site	 on	VE-cadherin.	

Gavard	and	Gutkind	 first	described	 the	 importance	of	 this	phosphorylation	site	and	

its	role	in	VEGF	induced	recruitment	of	β-arrestin	and	subsequent	internalisation	and	

degradation	of	VE-cadherin	[325].	This	group	further	highlighted	a	potential	role	 in	

PP2A	in	targeting	the	Ser665	site	[221].	In	conjunction	with	our	results	we	hypothesis	

that	the	phosphorylation	of	Ser665	is	a	determining	factor	for	VE-cadherin	endocytosis	

regulated	by	PP2A	similar	to	the	regulation	by	β-catenin	recruitment	[732].		

	

Loss	of	accessory	proteins	has	been	associated	with	the	degradation	of	VE-cadherin.		

As	discussed	above	the	loss	of	P120	results	in	the	internalisation	of	VE-cadherin	and	

an	 increase	 in	 permeability.	 [321,	 715,	 717].	 With	 regards	 to	 the	 findings	 of	 this	

study,	OA	 (10	nM)	and	CIP2A	overexpression	 is	 associated	with	a	decrease	 in	 total	

P120	 abundance.	 An	 array	 of	 studies	 has	 been	 carried	 out	 into	 the	 role	 of	 P120	 in	

regulating	 the	protein	expression	of	other	proteins	 including	VE-cadherin.	However	

the	regulation	of	P120	abundance	is	not	well	documented	and	to	our	knowledge	this	

it	the	first	study	to	show	the	effect	of	OA	(10	nM)	and	CIP2A	overexpression	in	P120	

degradation.		

	

Previous	studies	have	highlighted	the	phosphorylation	of	P120	at	Ser879.	Such	as	the	

transmigration	of	cancer	cells	mediated	by	thrombin	exposure	has	been	linked	to	the	

phosphorylation	 of	 Ser879	 [733].	 PKCα	 has	 also	 been	 shown	 to	 activate	 P120	 by	

phosphorylating	 the	 Ser879	 motif	 in	 response	 to	 LPS	 or	 thrombin.	 Resulting	 in	 the	

disassembly	 of	 the	 VE-cadherin	 interactome.	 Preventing	 this	 phosphorylation	

resulted	 in	 the	protection	of	mouse	 lung	vessels	 from	thrombin	damage	[734,	735].	

Together	 suggesting	 a	 potential	 PP2A	 target	 for	 the	 down-regulation	 of	 P120	

however	 does	 not	 explain	 how	 P120	 and	 VE-cadherin	 interaction	 remained	

unchanged.		
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α-catenin	 is	also	a	key	regulator	of	 the	VE-cadherin	 interactome.	The	results	of	 this	

study	strongly	suggest	that	not	only	does	the	inhibition	of	PP2A	(through	OA	(10	nM)	

and	 overexpression	 of	 CIP2A)	 result	 in	 loss	 if	 total	 α-catenin	 abundance	 but	 also	

results	 in	the	disassociation	from	VE-cadherin.	Previous	research	has	 indicated	that	

α-catenin	within	the	VE-cadherin	interactome	undergoes	phosphorylation	[736-740].	

An	increase	in	Tyr	phosphorylation	of	α-catenin	by	inhibition	of	SHP-2	is	associated	

with	VE-cadherin	disassociation	[710,	726,	741].	However	with	regards	to	potential	

targets	 for	 PP2A,	 phosphoproteomic	 screening	 in	 both	 human	 and	mouse	 samples	

unveiled	 multiple	 phosphosites,	 most	 commonly	 S641	 (mouse-[742,	 743]	 human-	

[744-746]).	 Following	mass-spectrometry	 investigations	 four	 clustered	 Ser	 and	Thr	

residues	 between	 the	 linker	 and	 c-terminal	 region	 in	 α-catenin,	 which	 undergo	

phosphorylation	 were	 confirmed.	 This	 sequence	 area	 is	 highly	 conserved	 between	

species	 [747-749].	 Investigations	 into	 the	 role	 of	 kinases	 in	 the	 regulation	 of	 these	

residues	determined	 that	 the	Ser641	 is	phosphorylated	by	CK2,	which	promotes	 the	

phosphorylation	 of	 Ser652,	 Ser655	 and	 Thr658	 by	 CK1	 [750].	 However	 the	 role	 of	

phosphatases	remain	undetermined	and	this	 is	 the	 first	study	suggesting	PP2A	as	a	

potential	regulator.		

	

The	 results	 of	 this	 study	 suggest	 that	 an	 increase	 in	 α-catenin	 phosphorylation	

associated	with	 inhibition	of	PP2A	 through	OA	 (10	nM)	and	CIP2A	over-expression	

results	 in	 its	 degradation	 and	 disassociation	 from	 the	 VE-cadherin	 interactome.	

However	OA	(10	nM)	did	not	alter	α-catenin	binding	to	the	VE-cadherin	interactome	

in	hCMEC/D3s	over	24	h	and	this	disparity	requires	further	investigation.		

	

Extensive	research	has	been	carried	out	into	the	association	of	PP2A	and	β-catenin	in	

regards	to	WNT/β-catenin	signalling	pathway	[751-753]	but	nothing	is	known	about	

their	association	into	the	assembly	of	the	VE-cadherin	interactome.	β-catenin	has	an	

array	 of	 roles	 in	 cell	 signalling	 and	 regulation,	 theses	 role	 change	 from	 cell	 to	 cell	

type,	 dependent	 on	 the	 primary	 role	 of	 the	 cell	 and	 the	 cell	 fate	 [754]. This	 study	

provides	compelling	evidence	that	PP2A	does	not	effect	total	abundance	of	β-catenin	

however	PP2A	does	regulate	binding	of	β-catenin	to	VE-cadherin	and	the	regulation	
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of	 endothelial	 monolayer.  Previous	 studies	 have	 suggested	 that	 β-catenins	 are	

strongly	regulated	by	its	phosphorylation	status	[755].	The	specific	point	at	which	β-

catenin	is	phosphorylated	determines	the	function	and	fate	of	β-catenin.	Focusing	on	

particular	 targets	 for	PP2A,	 the	phosphorylation	of	 Ser834,	 Ser836	or	Ser842	has	been	

shown	 to	 increase	 the	 binding	 of	β-catenin	 to	 E-cadherin,	 contradicting	 the	 results	

seen	in	this	study	[756,	757].	However	phosphorylation	of	Ser846	by	CK1	results	in	the	

loss	of	binding	and	internalisation	of	E-cadherin	[738].	The	Ser45/Thr41	sites,	found	at	

the	 plasma	 membrane	 attenuates	 the	 VE-cadherin–dependent	 cell-cell	 junction	 to	

increase	endothelial	cell	permeability	[758].	Cleavage	of	VE-cadherin	as	a	result	of	the	

presence	of	ovarian	cancer	microparticles	also	increases	β-catenin	disassociation	and	

phosphorylation	 of	 Ser552	 and	 Ser657,	 translocation	 of	 β-catenin	 to	 the	 nucleus	 for	

gene	 activation	 or	 the	 phosphorylation	 of	 Ser33-37	 and	 Thr41-Ser45	 resulting	 in	 the	

proteasomal	degradation	of	β-catenin	[759].	Together	these	studies	provide	potential	

targets	 for	PP2A	activity	on	β-catenin	to	support	the	results	of	 this	study.	However,	

further	studies	are	required	to	determine	which	site	is	involved	in	PP2As	regulation	

of	β-catenins	dissociation	from	VE-cadherin.	

 

An	 alternative	 view	by	Konstantoulaki	et	al	who	have	demonstrated	 that	 thrombin	

injury	 decreased	 the	 phosphorylation	 of	 VE-cadherin	 and	 β-catenin,	 which	 caused	

interactome	 disassembly.	 The	 study	 does	 not	 however	 investigate	 which	

phosphorylation	sites	may	be	involved	suggesting	it	may	be	alternative	site	to	those	

involved	in	the	role	of	PP2A	in	brain	microvascular	integrity	[760].		

	

The	 overexpression	 of	 PP2A	 resulted	 in	 the	 increase	 binding	 of	 VE-cadherin	 with	

P120,	α	 and	β-catenin	along	with	 increased	PP2A	binding.	This	 suggests	PP2A	as	 a	

potential	 therapeutic	 target	 to	 prevent	 VE-cadherin	 loss	 and	 interactome	

disassembly.	 Forskolin	 used	 for	 its	 anti-leukemic	 effect	 also	 causes	 an	 increase	 in	

PP2A	 activity	 [761],	 Noda	 et	 al	 demonstrated	 that	 forskolin	 also	 increases	 VE-

cadherin	 abundance,	 cell-cell	 adhesion	 and	 stabilises	 the	 VE-cadherin	 to	 actin	

filament	connection	[762].		
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In	 conclusion,	 this	 study	 highlights	 a	 vital	 role	 for	 PP2A	 in	 the	 regulation	 of	 VE-

cadherin	and	 the	VE-cadherin	 interactome	 (summarised	 in	Figure	5.13).	This	 study	

has	 provided	 multiple	 potential	 targets	 to	 prevent	 the	 disassembly	 of	 the	

interactome.	Beginning	with	the	Ser665	phosphosite.	The	regulation	of	 the	accessory	

proteins	need	further	investigations	as	to	which	protein	alteration	is	at	the	beginning	

of	a	cascade	of	events	or	are	multiple	events	required	before	permeability	is	induced.	

A	localised	target	may	be	the	induction	of	PP2Ac	activity	to	increase	α-	and	β-catenin	

interaction	with	VE-cadherin	or	 the	prevention	of	degradation	or	 internalisation	as	

this	maintained	endothelial	cell	integrity.	

	 	



 

	 PAGE	|	161	

	

 

	
Figure	5.13:	Schematic	summary	of	the	effect	of	OA	(10	nM)	and	CIP2A	on	the	

VE-cadherin	interactome.	

OA	(10	nM)	resulted	in	an	associated	loss	in	P120	and	α-catenin	without	affecting	the	

abundance	 of	 β-catenin	 in	 brain	 endothelial.	 PP2A	 binds	 to	 VE-cadherin	 and	 the	

inhibition	 of	 PP2Ac	 activity	 induces	 disassociation	 of	 PP2A.	 OA	 (10	 nM)	 and	 CIP2A	

inhibit	 PP2A	 activity	 and	 dissociate	 α 	 and	 β-catenin	 from	 VE-cadherin	 without	

effecting	P120	binding.	PP2A	 inhibition	 increases	Ser665	phosphorylation,	 increase	 in	

ubiquitination	and	internalisation	through	clathrin-mediated	endocytosis.		
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Chapter	6	

6 Conclusion	and	Future	Direction	
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6.1 Conclussion		

PP2A	 is	 the	 most	 abundant	 phosphatase	 in	 the	 brain.	 It	 plays	 an	 integral	 role	 in	

cellular	function	and	hence	why	I	have	investigated	its	potential	role	in	regulating	VE-

cadherin	 abundance	 and	 downstream	 paracellular	 permeability.	 VE-cadherin	 is	 a	

critical	 component	 of	 the	 functioning	 endothelium,	 connecting	 neighbouring	

endothelial	 cells	and	attenuating	paracellular	permeability.	Throughout	 this	 thesis	 I	

have	both	 increased	and	decreased	PP2A	activity	resulting	 in	a	related	alteration	 in	

VE-cadherin	 abundance	 and	 permeability	 of	 brain	 microvascular	 endothelial	 cells	

(hBMEC	 and	 hCMEC/D3).	 The	 loss	 of	 PP2A	 activity,	 through	 the	methylation	 of	 its	

catalytic	 subunit	 by	 PME-1	 and	 loss	 of	 LCMT-1,	 results	 in	 phosphorylation	 of	 VE-

cadherin	 (Ser665).	 Although	 further	 work	 is	 required	 to	 determine	 what	 the	 initial	

step	of	the	sequence	of	events	is,	I	have	determined	that	loss	of	PP2A	activity	results	

in	 VE-cadherin	 interactome	 disassembly	 and	 proteasomal	 degradation.	 The	 co-

culture	model	suggests	that	a	similar	mechanism	is	involved	in	the	pro-inflammatory	

induced	increase	in	microvascular	permeability.	

	

Loss	 of	 PP2A	 has	 previously	 been	 linked	 to	multiple	 neurological	 diseases	 such	 as	

Alzheimer’s	disease.	I	have	recreated	this	with	the	use	of	pharmacological	modulators	

(OA),	 overexpression	 of	 endogenous	 inhibitors	 (CIP2A	 and	 SET)	 and	 the	 pro-

inflammatory	(M1)	macrophages.	CIP2A	and	SET	overexpression	was	used	to	support	

the	effects	of	OA	on	human	brain	microvascular	endothelial	cells,	while	also	adding	

physiological	relevance.	PP2A	activity	was	not	attenuated	due	to	a	loss	of	abundance,	

but	instead	was	a	result	of	post-translational	modification	of	the	catalytic	subunit.	OA	

and	M1	macrophages	induced	a	 loss	of	LCMT-1,	resulting	in	reduced	methylation	of	

Leu309	 and	 preventing	 efficient	 binding	 of	 the	 catalytic	 and	 scaffolding	 unit	 to	 the	

PP2Ac	active	site.	Supported	by	previous	studies	in	which	LCMT-1	is	down-regulated	

in	 COS7	 and	 HeLa	 cells	 resulting	 in	 the	 increase	 in	 PP2A	 methylation	 and	 loss	 of	

activity	 [514,	 533,	 691].	 PME-1	 opposes	 the	 effect	 of	 LCMT-1.	 As	 PME-1	 remained	

unaffected	by	OA	and	M1	macrophages,	PME-1	continued	to	remove	the	methyl	group	

from	the	PP2Ac	motif	(TPDYFL)	unopposed	[532].	

	

OA	 and	 M1	 also	 induced	 phosphorylation	 of	 the	 PP2Ac	 Tyr307	 contributing	 to	 the	

attenuation	 of	 activity.	 Phosphorylation	 of	 PP2Ac	 has	 previously	 been	 shown	 to	
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prevent	the	assembly	of	the	PP2A	holoenzyme	[466,	467].	Although	not	determined	

in	 the	present	 study,	 PKC	 and	GSK-3β	 can	phosphorylate	PP2Ac	 [464,	 514,	 515].	 It	

would	be	of	interest	to	investigate	the	mechanism	by	which	OA	and	M1	macrophages	

induced	phosphorylation	of	PP2Ac	in	future	studies.		

	

The	established	loss	of	PP2A	activity	led	us	to	conclude	an	association	between	PP2A	

activity	 and	 VE-cadherin	 abundance.	 In	 the	 first	 study,	 OA	 (10nM)	 reduced	 the	

abundance	 of	 VE-cadherin	 to	 an	 undetectable	 level.	 Previous	 studies	 have	

demonstrated	 that	OA	 results	 in	 the	 redistribution	of	VE-cadherin	 in	 epithelial	 and	

endothelial	cell	 lines.	However,	these	studies	exposed	cells	to	a	 lower	concentration	

of	OA	(5	nM),	this	along	with	the	different	cell	lines	may	provide	an	explanation	as	to	

why	VE-cadherin	is	not	lost	[620,	627].	The	use	of	CIP2A	and	SET	further	support	the	

association	between	inhibition	of	PP2A	activity	and	the	loss	of	VE-cadherin.		Previous	

studies	 into	 CIP2A’s	 effect	 on	 E-cadherin	 in	 renal	 and	 laryngeal	 carcinoma	 cells	

support	our	findings	[638,	639].	However,	this	is	not	the	case	in	a	previous	report	on	

SET,	 where	 an	 increase	 in	 SET	 expression	 was	 associated	 with	 an	 increase	 in	 E-

cadherin	abundance	[576].	This	disparity	may	be	attributed	to	the	use	of	different	cell	

lines,	 all	 of	 which	 were	 cancer	 cell	 lines	 (clear	 cell	 renal	 cell	 carcinoma,	 laryngeal	

cancer	and	human	colon	carcinoma)	and	requires	further	investigation.	As	a	result	of	

this,	 CIP2A	 was	 chosen	 as	 the	 primary	 endogenous	 inhibitor	 in	 subsequent	

investigations.			

	

I	further	reveal	how	PP2A	alters	both	post-translational	modification	of	VE-cadherin	

along	 and	 the	 VE-cadherin	 interactome.	 Although	 I	 have	 not	 determined	 what	 the	

sequence	of	 events	are,	 I	provide	 further	understanding	 into	 the	mechanism	of	VE-

cadherin	degradation.	Inhibition	of	PP2A	activity	(through	CIP2A	and	OA)	results	 in	

the	phosphorylation	of	VE-cadherin	Ser665.	 In	 conjunction	with	 the	M1	macrophage	

induced	loss	of	VE-cadherin,	Ser665	phosphorylation	acts	as	a	potential	target	for	the	

loss	of	M1	induced	loss	of	VE-cadherin.	My	data	also	show	that	the	over-expression	of	

PP2A	both	reduces	Ser665	phosphorylation	and	reverse	M1	induced	VE-cadherin	loss	

supporting	these	findings.	
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Gavard	 and	 Gutkind	 demonstrated	 that	 the	 Ser665	is	 involved	 in	β-arrestin	 induced	

internalisation	 of	 VE-cadherin	 [325].	 Loss	 of	 PP2A	 and	 phosphorylated	 Ser665	 also	

results	 in	 the	 breakdown	 of	 the	 VE-cadherin	 interactome.	 	 Inhibition	 of	 PP2A	 by	

CIP2A	 and	 OA	 results	 in	 the	 loss	 of	 α-catenin	 and	 P120	 abundance	 in	 the	 brain	

microvascular	endothelial	cell.	Adding	to	this	I	show	using	a	VE-cadherin	pull-down	

assay,	 that	 inhibition	 of	 PP2A	 caused	 disassociation	 of	α	 and	 β-	 catenin	 from	 VE-

cadherin,	while	P120	remained	bund.	Eventually	resulting	in	the	degradation	of	both	

VE-cadherin	and	P120.	This	was	supported	by	a	previous	immune-precipitation	study	

of	 the	Bα	 subunit	 of	 PP2A.	 Supporting	 our	 finding	 that	 PP2A	binds	 to	 VE-cadherin	

and	 β-catenin,	 more	 resulting	 in	 increased	 phosphorylation	 of	 β-catenin	 at	 Ser552	

[620].	Considering	β-catenin	 is	not	degraded	following	 inhibition	of	PP2A	it	may	be	

translocated	to	the	nucleus,	where	it	has	a	role	in	regulating	transcription.	Previous	

reports	demonstrated	the	binding	of	PP2A	to	β-catenin,	and	phosphorylation	of	both	

VE-cadherin	 and	 β-catenin	 prevents	 their	 assembly	 [113,	 763].	 Interestingly,	 a	

potential	 target	 for	 PP2A	 on	 β-catenin	 is	 Ser552.	 	 Ser552	phosphorylation	 causes	 β-

catenin	disassociation	from	the	cell	membrane	and	increases	transcriptional	activity,	

which	conflicts	with	our	findings	[620,	764,	765].	Also	a	structural	investigation	into	

E-cadherin	 and	β-catenin	 binding	 suggests	 that	 phosphorylation	 of	 Ser684	promotes	

the	binding	of	VE-cadherin	to	β-catenin	[757].	The	disparities	in	β-catenin	regulation	

through	 phosphorylation	 require	 further	 investigation,	 specifically	 the	 involvement	

of	PP2A.	My	results	still	provide	further	insight	into	PP2A’s	association	with	the	VE-

cadherin	 interactome	and	degradation,	unveiling	a	potential	mechanism	 for	 the	M1	

induced	 loss	 of	 VE-cadherin	 and	 induced	 permeability,	which	 also	 requires	 further	

investigation.		

	

As	evident	from	the	use	of	MG132	(proteasomal	degradation	inhibitor),	loss	of	PP2A	

activity,	through	PP2A	inhibitors	and	presence	of	M1	macrophages,	is	associated	with	

the	 proteasomal	 degradation	 of	 VE-cadherin.	 	 Supported	 by	 previous	 reports,	 VE-

cadherin	 is	 internalised	by	clathrin-mediated	endocytosis	 [317,	325,	766].	Followed	

by	 the	 ubiquitination	 of	 VE-cadherin	 and	 its	 associated	 proteins.	 Although	

determining	the	ligase	responsible	for	VE-cadherin	degradation,	a	previous	study	has	

suggested	the	involvement	of	the	K5	ligase	[324].			
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The	 overall	 physiological	 relevance	 to	 our	 findings	 is	 PP2As	 association	 with	 VE-

cadherin,	 which	 has	 a	 resulting	 effect	 on	 hBMEC	 paracellular	 permeability.	 Early	

studies	attributed	OA	 induced	permeability	 to	 its	alteration	 in	 the	cells	 cytoskeletal	

structure.	 OA	 caused	 morphological	 changes	 to	 endothelial	 and	 epithelial	 cells.	

Initially	attributed	to	the	depolymerisation	and	destabilisation	of	microtubules	along	

with	 the	 phosphorylation	 of	 PP2A	 sensitive	 microtubule-associated	 proteins	 [767,	

768].	 The	 study	 carried	 out	 by	 Kasa	 et	 al	 demonstrated	 that	 OA	 (5nM)	 not	 only	

altered	cytoskeletal	structure	in	pulmonary	endothelial	cells	but	also	resulted	in	the	

redistribution	of	VE-cadherin	and	β-catenin	 from	the	membrane	 to	 the	cytosol.	The	

role	 of	 PP2A	 was	 confirmed	 by	 depletion	 of	 the	 Bα	 subunit,	 which	 altered	 both	

cytoskeleton	and	induced	permeability	in	pulmonary	endothelial	cells	[620].	Studies	

conflicting	with	our	results	demonstrated	that	OA	(5nM)	altered	BPAEC	morphology,	

without	effecting	permeability	[654].	While	in	HPECs,	OA	does	not	affect	cytoskeleton	

arrangement	 or	 permeability	 [769].	 This	may	 be	 explained	 by	 the	 use	 of	 lower	OA	

concentrations	(5nM	compared	to	10nM	used	throughout	this	thesis).		

	

As	 expected	 M1	 macrophages	 increased	 paracellular	 permeability	 of	 human	 brain	

microvascular	endothelial	cell.	As	 the	M1	macrophage	 induced	effect	coincides	with	

the	 effects	 of	 PP2A	 inhibitors	 we	 suggest	 PP2A	 as	 a	 mediator	 of	 M1	 induced	

permeability.	 Supported	 by	 the	 depletion	 of	 Bα,	 which	 both	 mimicked	 and	

exacerbated	the	effect	of	thrombin	in	pulmonary	endothelial	cells	[620].		

	

As	 PP2A	 is	 associated	 with	 the	 attenuation	 of	 VE-cadherin,	 and	 importantly	 the	

physiologically	relevant	M1	macrophage	induced	loss	of	VE-cadherin.	Combating	this	

may	 have	 a	 therapeutic	 advantage.	 PP2A	 stimulators	 are	 already	 used	 to	 treat	

neurological	 dysfunction.	 Our	 results	 demonstrate	 FTY-720	 increases	 both	 PP2A	

activity	and	VE-cadherin	abundance.	Considering	LCMT-1	is	responsible	for	the	 loss	

of	PP2A	activity	and	FTY-720	increases	LCMT-1	abundance,	FTY-720	may	potentially	

reverse	 the	adverse	effects	associated	with	 loss	of	PP2A	activity.	Overexpression	of	

PP2Ac	 in	 the	 co-culture	model	 attenuated	 the	M1	 induced	 loss	 of	 VE-cadherin	 and	

increase	 in	 permeability.	 Targeting	 PP2A	 to	 benefit	 the	 integrity	 of	 the	 endothelial	

cell	 is	 supported	 by	 the	 previous	 investigations	 demonstrated	 that	 the	

overexpression	of	PP2A	(both	the	catalytic	and	structural	subunit)	has	the	ability	to	
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reverse	thrombin	and	nocodazole	 induced	endothelial	dysfunction	and	cytoskeleton	

rearrangement	[770].		

	

Overall,	the	results	of	this	thesis	demonstrated	a	strong	association	of	PP2A	activity	

and	abundance	of	VE-cadherin	(as	summarised	 in	Figure	6.1).	Gaining	physiologically	

relevant	 understanding	 on	 how	pro-inflammatory	macrophages	 regulate	 PP2A,	 VE-

cadherin	and	 induce	permeability.	The	 inhibitors	of	PP2A	(OA,	CIP2A	and	SET)	and	

M1	 macrophages	 stimulate	 the	 PP2Ac	 demethylation	 and	 phosphorylation,	

decreasing	 PP2A	 activity.	 Reduced	 PP2A	 activity	 results	 in	 the	 increased	

phosphorylation	of	VE-cadherin	(Ser665)	and	disassociation	of	PP2A,	α-	and	β-	catenin	

from	 the	 VE-cadherin	 interactome.	 VE-cadherin	 undergoes	 clathrin	 mediated	

endocytosis,	 ubiquitination	 and	 proteasomal	 degradation	 associated	 with	 loss	 of	

PP2A	activity.	P120	and	α-catenin	are	also	degraded	as	a	 result	of	PP2A	 inhibition.	

This	 series	 of	 events	 results	 in	 an	 increase	 in	 endothelial	 cell	 paracellular	

permeability.	 Alternatively,	 Mθ	 and	 overexpression	 of	 PP2A	 results	 in	 increased	

methylation	 and	 dephosphorylation	 of	 PP2Ac	 consistent	 with	 increased	 PP2A	

activity.	 As	 PP2A	 activity	 is	 maintained,	 so	 is	 the	 composition	 of	 the	 VE-cadherin	

interactome,	 thus	 maintaining	 endothelial	 barrier	 integrity.	 This	 novel	 insight	 into	

the	role	of	PP2A	in	the	regulation	of	the	VE-cadherin	interactome	not	only	suggest	a	

potential	 mechanism	 for	 M1	 macrophage	 induced	 regulation	 but	 also	 provide	

potential	therapeutic	targets	for	the	prevention	of	endothelial	barrier	dysfunction.	
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Figure	6.1:	Summary	of	PP2A	modulation	and	presence	of	macrophages	on	PP2A’s	regulation	of	

VE-cadherin	in	human	brain	microvascular	endothelial	cells.		

OA,	 CIP2A,	 SET	 and	 M1	 macrophages	 stimulated	 the	 demethylation	 and	

phosphorylation	 of	 PP2A,	 in	 turn	 decreasing	 PP2A	 activity.	 Reduced	 PP2A	 activity	

results	 in	 the	phosphorylation	of	VE-cadherin	 (Ser665)	and	disassociation	of	PP2A,	α-	

and	 β-	 catenin	 from	 VE-cadherin.	 VE-cadherin	 undergoes	 clathrin	 mediated	

endocytosis,	 ubiquitination	 and	 proteasomal	 degradation.	 P120	 and	 α-catenin	 are	

degraded	as	a	result	of	PP2A	inhibition.	This	results	in	an	increase	in	endothelial	cell	

paracellular	permeability.	Alternatively,	Mθ 	and	overexpression	of	PP2A	results	in	an	

increase	in	PP2A	activity	through	the	methylation	and	dephosphorylation	of	the	PP2A	

catalytic	subunit.	As	PP2A	activity	is	maintained,	so	is	the	integrity	of	the	VE-cadherin	

interactome.	Thus	maintaining	endothelial	barrier	integrity.	
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6.2 Future	direction	

Throughout	the	work	presented	in	this	thesis	which,	investigates	the	role	of	PP2A	in	

regulating	 VE-cadherin	 in	 human	 brain	 microvascular	 endothelial	 cells,	 several	
questions	arose	which	warrant	further	investigation.		

As	phosphorylation	of	the	Ser665	increased	during	the	inhibition	of	PP2A	and	loss	of	

VE-cadherin,	 it	 is	 of	 particular	 interest.	 Point	mutation	 analysis	would	determine	 if	
the	phosphorylation	of	this	site	is	responsible	for	the	degradation	of	VE-cadherin	and	
disassociation	of	α-	and	β-	catenin.	Also	with	regards	to	the	macrophage	co-culture,	

the	potential	involvement	of	Ser665	phosphorylation	still	remains	unknown.		

Looking	at	the	overall	role	of	PP2A	in	the	human	brain	microvascular	endothelial	cell.	
Carrying	 out	 a	 phosphoenrichment	 and	 proteomic	 study	 into	 the	 phosphorylated	

proteins	 after	 PP2A	 inhibition.	 In	 particular	 to	 determine	 if	 the	 phosphorylation	 of	
P120,	 α-	 or	 β-	 catenin	 is	 altered	 after	 PP2A	 inhibition	 or	 any	 other	 junctional	
proteins,	which	may	be	contributing	to	the	increase	in	paracellular	permeability	and	

seeking	the	ubiquitin	ligase.	
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