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Abstract

The growing demand for portable applications such as cellular phones, portable digital 

assistants (PDAs) and notebooks has resulted in a requirement for integrated circuits (ICs) 

which consume less power while delivering the same performance as non-portable 

appliances, hi addition, the low-power implementation of non-portable circuits has several 

advantages, notably a marketing advantage in terms of energy efficiency and reduced 

manufacturing costs because of cheaper packaging.

The focus of this thesis is the application of high-level low-power VLSI design methods 

to a hardware implementation of Render's algorithm which converts a camera signal of red, 

green and blue into a human perception-based code of hue, saturation and intensity. The aim 

was to consider the circuit implementation of the algorithm on a block-by-block basis in order 

to identify in each block potential avenues along which power savings can be made, and to 

produce a power-efficient high-level circuit design targeted to an Application Specific 

hitegrated Circuit (ASIC). The most commonly used approach for power reduction in VLSI 

circuits is to minimise the supply voltage. However, with ASICs voltage scaling is only 

applicable within a very limited range. Therefore, this thesis concentrates on the minimisation 

of the power consumption by reducing the active capacitance of the circuit. This required a 

high-level power estimation tool capable of assessing the power consumption at the earliest 

possible design stage, and therefore led to the development a tool that can rapidly measure the 

active capacitance of a design from a VHDL netlist.

Following the completion of the high-level low-power design, simulation of the 

implementation was done using a range of real image data. The results from these tests 

demonstrated that the design introduced no degradation in perceptual quality. Furthermore, 

the final design showed significant power reduction when compared to a direct ASIC 

implementation or to a version programmed on a Digital Signal Processing Integrated Circuit 

(DSP IC).
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1 Introduction

The development of electronics has been fuelled by the invention of the transistor by Bardeen 

and Shockley over 50 years ago [Rior97], The initial technical hurdles faced by these pioneers 

included the development of suitable semiconductor materials and the fabrication of reliable 

devices. These challenges were quickly solved and were superseded by the demand for circuit 

integration. This lead to the introduction of the first commercial integrated circuit (IC) in the 

early 1960s. In 1965 G. E. Moore observed that most integrated circuits had approximately 

doubled in complexity each year since 1959 [Moor65], Consequently he formulated Moore’s 

Law, which predicts a doubling of the complexity of ICs every 18 months. The validity of this 

observation has been demonstrated by the constant increase in integration density over the 

last three decades. This has lead to the presence of ICs in virtually all consumer appliances. 

At the same time, computers capable of performing millions of operations per second are 

already in most households. These computers are based on ICs which themselves contain 

millions of transistors and operate at frequencies of up to IGHz, The growth in usage of 

computing systems has resulted in a demand for portable systems with comparable 

performance to their non-portable counterparts. However, the inclusion of portability in high 

performance systems has presented a new challenge. The battery operation time is limited by 

the power consumption of the system. Also in non-portable systems, reliability and 

fabrication costs are adversely affected by the power consumption. Therefore, power 

consumption has now become the third design challenge, in addition to speed and integration 

complexity. Much research effort continues to be expended in the development of techniques 

aimed at reducing power consumption at all levels of circuit design. This thesis addresses the 

challenges of low power design by investigating the implementation of an image processing 

system. For this purpose, Kender’s algorithm for the faster computation of hue [Render] was 

chosen as the vehicle to demonstrate the applicability of high-level low power design 

methods.

Humans process a variety of information, which can be divided into general categories 

such as speech, images and other data. To provide a human interface, electronic systems have 

to process data in forms which reflect the human sensory systems of sight and sound. Audio 

data has a low information content and can therefore be easily processed with current
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technology. Video however, has a much higher information content. This places much higher 

requirements on image processing systems. The most obvious one is the high computational 

throughput data required. However, when such systems are implemented in integrated form, 

the area and power consumption become limiting factors in the performance of the system. 

With the high integration density of current semiconductor technology the area constraint is 

of lesser importance. The combined effect of high throughput and increased system 

integration can cause excessive levels of power density resulting in reduced reliability, 

overheating and premature system failure. To address these issues, the designer is faced with 

the task of including the power consumption of such systems as a primary design objective. 

To achieve this, the design community must introduce new methods aimed at reducing the 

power consumption. This is also the objective of this thesis. To make this work generally 

applicable, the more computationally demanding problem of video processing was selected as 

a suitable vehicle for the investigation into low power design, hi this way, the results obtained 

in this thesis may be directly transferred to other, less computationally intensive applications. 

The model used to study these power characteristics is introduced in the following section.

Video and image signals are usually recorded using the three primary colours of light, red, 

green and blue (R, G, B). Signal representation in red, green and blue is useful for image 

recording and image visualisation using a monitor as this is the natural format of all images. 

However, the RGB representation of images has disadvantages when the image signal 

requires manual modification. This is because human perception of images is not based on 

the three primary colours, but rather on the physical perception of three different quantities. 

These quantities are hue, saturation and intensity. Hue is the pure spectral colour of a pixel (a 

pixel is the smallest segment of a picture). The saturation is the purity of a colour and 

indicates how much ‘white’ a colour contains. The intensity of a colour simply describes its 

brightness.
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Figure 1.1: The Hue, Saturation, Intensity Model of Human Perception of Colour

Figure 1.1 shows the geometric representation of this hue, saturation and intensity (HSI) 

model. In this model, hue is represented by an angle on the outer circle. The three primary 

colours are distributed evenly over 360°. Red is assigned an angle of 0°, while green has an 

angle of 120° and blue has an angle of 240°. All other colours are found between these points. 

The achromatic axis, which is also called the grey scale, is found in the centre of the hue 

circle. This is because all shades of grey are an even mixture of all three primary colours.

The saturation of a colour is defined as the purity of a colour and therefore shows the 

amount of white contained in that pure spectral colour. To represent hue and saturation, a 

vector pointing to the pure spectral colour is used, where the magnitude of this vector 

indicates the saturation. A vector pointing to the perimeter of the circle represents a pure 

spectral colour. For example, an input signal of R=B and G=0 will result in a pointer to 315°
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(Magenta). Because the magnitude of G is zero, there is no white contained in the 

representation of magenta and therefore the length of the vector is one. A vector with a small 

magnitude indicates the closeness of the pixel to be represented to the achromatic scale.

The intensity perception of a colour is represented in the HSI model by a second pointer, 

orthogonal to the hue-saturation vector. Because all colours fade either into pure white or 

black when the intensity is increased, or decreased, these points are the tips of two triangles 

with a base equal the magnitude of the saturation.

The RGB to HSI transformation is widely used in the field of automatic pattern 

recognition. The HSI representation allows the extraction of pure colour information from 

images taken under various lighting conditions as it is independent of the ‘brightness’ of an 

object. Examples of this include the computer assisted detection of cancer [HamaOO] or the 

automatic detection of facial features, such as automatic lip segmentation [Liev99] [Sobo98]. 

The same principle can be applied to quality control of fruits, where the HSI space is 

investigated for areas which should not be present in a ideal fruit such as dents or insect 

stings on the surface of vegetables [CalvOO]. Furthermore, after removing the lighting 

information it is possible to detect hand signals given by a human supervisor by automatically 

detecting skin areas using hue. Examples for such systems are described in [Wu99] and 

[Beck98]. Also, in the generation of colour representations for maize crop analysis it is 

possible to examine the images of maize in more detail using the HSI model than RGB 

[Ahma96]. The transformation into HSI is also used in the extraction of depth information in 

stereo colour images. Here, it is possible to extract regions of low and high intensity or low 

saturation which can then be treated like achromatic regions by the block matching 

algorithms [Kosc96]. Other applications for the HSI model are in the automatic restoration of 

paintings, separating cracks in the painting from brush strokes by using their different hue and 

saturation regions [Giak98], and astronomical image enhancement [Cava99].

The preceding section described the physical phenomenon of light and its human 

perception. As the RGB to HSI image processing algorithm is be implemented in hardware, a 

digitised version of the three primary colours is used. Therefore, in the remainder of this 

thesis the parameters R, G, B are used specifically to indicate digitised inputs of red, green 

and blue. Furthermore, for the implementation of the RGB to HSI algorithm in hardware, the 

following specifications have been selected. Firstly, the quantisation of each input signal is 

eight bits. This results in 24 bit RGB images, which is the standard for high quality image
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reproduction. It is used in image recording formats such as BMP, PPM and Sun Raster 

Format. However, as HSI representation o f images plays an important role in special effect 

creation for film, it was decided to implement both the conversion o f images and the real-time 

conversion of high resolution video into HSI space. There are many resolution standards in 

today's computer applications, and the 1024 by 1024 pixels resolution was chosen as it is 

more than three times higher than that of VHS video. At this resolution, the proposed IC must 

be capable of converting full motion video in real-time. Full motion video is commonly 

defined as 25 fi-ames per second. To calculate the processing time for each pixel o f a frame, 

the number o f pixels in a fi-ame has to be multiplied by the number o f fi-ames per second. This 

results in (25 * 1024 * 1024 =) 26214400 pixels per second or 26.22Mpixels per second. To 

ensure that this constraint is met, the throughput rate was set to 33Mpixels per second. The 

input and output resolutions are identical. Therefore, the quantisation of eight bits for R, G 

and B is transformed into eight bits for H, S and I respectively. The following sections 

introduce the algorithms used to convert the RGB input into hue, saturation and intensity.

1.1 Render’s Algorithm for Faster Computation of Hue

In order to implement the RGB to HSI transformation, Kender’s algorithm for faster 

computation of hue was chosen [Kender]. Kender’s algorithm is shown in Equation 1 below. 

For easier reference, the different cases o f Render's algorithm are numbered separately.

if  ((R > B) and (G > B)) (1.1)

+ arctan
' S x ( G- R) ^  

— B + — By

else if  (G > R) (1.2)

hue -  K + arctan
'  V 3 x ( ^ ~  G ) "
\ B  — R + G — Ry

else if  (B > G) (1.3)

Sy.n h arctan
3

" Vs X (i; -  fl)  ̂
yR ~ G B — Gy
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else if(R > B ) (1.4)

hue = 0

else (1-5)

‘achromatic’

The first three parts of Render’s algorithm (1.1), (1.2) and (1.3) define the angle of the hue 

vector of a pixel pointing to the spectral colour. First, the algorithm determines which of the 

primary colours in a given pixel is the one with the lowest intensity. The amount of white 

contained in a colour is equal to the smallest input value. This information is not required to 

calculate the colour angle, because the white information is contained in the saturation of the 

colour. Now, the area in which the resulting vector will be located is determined. The 

remaining two colours are then used to compute the exact angle of the colour. On the hue 

circle, the colour red is defined twice. Firstly, as 0° and than secondly as 360°. In order to 

account for the second red point the condition (R>B) must be included (1.4). If the value of 

hue is 360° the resulting vector is set to 0° in order to ensure that each point on the hue circle 

is only defined once. The last part of the algorithm (1.5) is used to describe all points which 

are not represented by a colour. This is true for achromatic values. An achromatic pixel is 

defined as a point, where all three primary colours have the same strength. Therefore this 

point is not included on the perimeter of the circle but as origin of the hue circle.

1.2 Computation of the Saturation

From (2) the magnitude of the vector pointing to the hue value is then determined leading to a 

value for saturation.

3 X
saturation = 1  ---------------------- (2')

R + G + B  ^ ’

The aim of this calculation is to filter out the white content of the input triplet. As previously 

described, the smallest magnitude of the primary colours determines the amount of white 

contained in a given pixel. In order to normalise the hue circle, three times this smallest value 

is divided by the sum of the input vectors and the result is subtracted from one. This implies

that if all three colour inputs have the same input value the length of the pointer is zero, i.e. a
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pure achromatic value is applied. If at least one input carries an input value of zero, the 

saturation is one and therefore a pure spectral colour is applied to the input.

Equation (2) has a singularity at R = G = B = 0. This occurs when the input pixel is black. 

At this point the saturation is not defined. This singularity can cause problems during 

implementation. However, as will be shown in this thesis, this singularity is not a 

disadvantage in terms of low-power design and can actually be used to save additional power.

13 Computation of the Intensity

The intensity of a colour is defined as the average value of the three input signals.

R + G + B
intensity = -------------  (3)

The intensity is generally perceived as the brightness o f a pixel. The stronger the average o f 

the input signals the more intense is the perception o f the resulting colour. Therefore, the 

intensity is calculated by summing up the three inputs and dividing it by three.

1.4 Summary

In order to perform the RGB to HSI conversion using Render's algorithm for faster 

computation of hue, a number o f important mathematical operations are required. These 

operations include addition, subtraction, multiplication and division with and without fixed 

constants as well as trigonometric calculations. All o f these operations have to be 

implemented as a design description. This algorithm is therefore an ideal vehicle to show a 

variety o f low-power implementation techniques. Additionally, the simplicity of this 

algorithm implies an initial direct-form implementation. However, as will be shown in the 

remainder o f this thesis, there are ample opportunities for the implementation o f different 

low-power strategies within this simple algorithm.

1.5 Thesis Overview

The remainder of this thesis is concerned with development o f a low-power image processing 

algorithm. Firstly, a general overview o f the different sources o f power consumption is 

provided in Chapter 2. This overview indicates the relative importance of each power
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dissipation source. Chapter 3 focuses on the reduction of the dynamic component of power 

consumption. Several power reduction techniques are evaluated. The utilisation of these 

techniques requires a high-level power estimation tool, previously unavailable. Therefore, 

Chapter 4 describes the development of PowerCount, a high-level power estimation tool. A 

low-power implementation of Render’s algorithm is discussed in Chapter 5. Chapter 6 then 

presents the implementation of the saturation and hue components of the HSI algorithm, 

while the features of the RGB to HSI design are evaluated in Chapter 7.



Power Dissipation 9

2 Power Dissipation

In the last decade, the reduction of power consumption in IC’s has become a primary design 

goal. This chapter first presents a general overview of the sources o f power consumption in 

IC’s and then the effects of supply voltage reduction on power consumption and timing are 

explored. The results of this exploration are then used to present design techniques for the 

minimisation of overall power consumption.

2.1 General Equation

Power dissipation in a CMOS circuit is caused by three sources. The dynamic power

consumption, the power consumption caused by short-circuit currents and the power

consumption due to leakage currents. The equation to calculate the overall power

consumption is;

p  ~ P + P  + _P f4^
total dynamic short-circuit leakage  ^  ^

In this equation Pdynamic represents the switching component of the total power consumption. 

This occurs each time a power consuming transition is performed. The P , . . term
^ o r  short-circuit

represents the short circuit path which arises when both NMOS and PMOS transistors are 

switched on and a path is connected directly between supply and ground. The losses

are due to substrate injections and subthreshold effects [Chan92], To take a closer look at the 

three components, equation (4) will be investigated more closely.

2.1.1 Dynamic Power Consumption

There are two different methods available to quantify the dynamic power dissipation. The 

first measures the power transformed into heat. The second represents the power taken out of 

the supply. In this work, following standard practice the second method was chosen [Chan92] 

[Chan95b]. The switching or dynamic power consumption occurs because a capacitive load is 

charged by the supply voltage. The ideal CMOS device only uses switching energy when 

changing the output value fi-om LOW to HIGH. This is illustrated with the most simple 

element found in digital design, the inverter.
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outoutout

'intfiL

GNDGND

Figure 2.1: The Sources of the Node Capacitance

As seen in Figure 2.1 the total capacitive load Cl is the sum of the output or drain-substrate 

capacitances Cds, the input or gate-source capacitance Cgs and the capacitance o f the 

interconnection Qnter- The term node capacitance Cnode is used synonymously with the load 

capacitance Q . To compute the power consumed during an average switching event, the 

energy taken out o f the supply over a particular time must be computed. Only for a LOW to 

HIGH (or 0 to Vdd) transition is a current drawn from the supply. The instantaneous power 

demand is given.

P (t)= -^  = isupply{t)-V,, (5)

In (5), isuppiy(t) is the current taken from the power supply with a constant voltage level o f the

supply voltage Vdd- This current can also be expressed as a function o f the capacitance which

is charged by assuming all isuppiy(t) is used to charge Cl -

= (6)

The energy taken out of the supply can therefore be written as:

T T

-̂ (0,1) = {t)dt (7)
0 0

If equation (6) is substituted into equation (5), the energy taken from the power supply can 

then be expressed as:

(8)
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Thus, it is clear that the energy taken from the supply is Cl times Vdd • This result is 

independent of the output waveform. The energy stored in the capacitance may also be 

calculated.

T T Vdd 2

0 0 0

The conclusion to be drawn from this equation is that only half o f the energy taken from the 

supply is stored by the capacitance. Therefore, the other half is dissipated as heat by the drain 

source resistance o f the PMOS transistor. On each HIGH to LOW change at the input the 

output changes from LOW to HIGH. The capacitance o f the node is then charged to the value 

of the supply voltage (it is assumed that the swing voltage is equal to the supply voltage). If  

the output changes from HIGH to LOW the energy stored in the capacitive load is dissipated 

in the NMOS transistor. Therefore, no power is consumed during this transition.

Equation (8) can be used to derive the general equation for the dynamic power 

consumption in CMOS VLSI systems. This is done by multiplying the energy consumed in a 

system by the clock frequency

^dynamic ^a c tiv i^ d d  f e l k

In this equation CacUve is represented by

m

^active  node k (11)
k=l

and is the sum of the active node capacitance o f a system with m nodes. The active node 

capacitance is the physical node capacitance C„ode multiplied by the number o f node switches 

from LOW to HIGH per cycle ri(oj).

The energy per transition is often used as a quantifier when comparing the power 

consumption of different implementations o f the same design. This has the advantage that the 

operating frequency is removed from the equation which makes comparison o f blocks easier 

to perform.

p
Energy per transition = — -  C (12) ̂  ̂ ^ a c t iv e ' dd ■'

J c lk
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Because of the physical connection of Cl (and Cacuve) to the ground rail no energy is 

stored or transmitted. All energy is transformed into heat. A different approach is presented in 

[Athas94] where adiabatic-switching is used to recycle the switching energy during the HIGH 

to LOW transition. However, such circuits require special components from the power supply 

to individual single gate.

Often software tools are unable to determine the active capacitance as presented in (11). 

These tools evaluate the average dynamic power consumption by means of the average node 

capacitance Caverage [Nema99]. Caverage is the total physical capacitance o f a design divided by 

the number of nodes. If the average capacitance is used to determine the dynamic power 

consumption the active capacitance is called total capacitance Ctotai- Equation (13) is used to 

determine the total capacitance.

In (13), the activity factor, nk, is the switching probability at the node for random input data. 

The number of nodes is represented by m. Ctotai is usually estimated within a large margin of 

error because it assumes that the physical capacitance of each node is constant within the 

design. The main reason why this value is used is due to the ease of computation and the fact 

that even the power consumption of large circuits can be estimated within a short time 

[Nema99].

2.1.2 Short-Circuit Power Consumption

The second term of (4) represents the power consumption caused by a short-circuit current 

isc, which flows when both transistors are switched on. Equation (14) describes the short- 

circuit power dissipation.

Ideally CMOS devices would have an infinitely small rise and fall time between the HIGH 

and LOW values. Therefore, they should not dissipate any short-circuit power. Real devices 

need time to charge and discharge the load capacitance. During the time the value of the input 

voltage lies between the upper threshold voltage (Vdd-Vip) and lower threshold voltage (V tn), 

both transistors are switched on. A path between the supply and ground is formed and a

m

average (13)
k=l

short-circuit (14)
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current flows directly from the supply to the ground. This behaviour is illustrated in Figure 

2.2. Therefore, the longer the rise and fall times of the input signal, the larger the short-circuit 

current. Additionally, it should be noted that during this time the capacitive load is neither 

significantly charged nor discharged, which leads to an increase in the normal delay for 

charging and discharging of the node capacitance.

When the input and output signals have equal rise and fall times the short-circuit power 

consumption is typically between 1% to 2% of the total power consumption [Blair94]. hi 

order to achieve equal input and output rise and fall times, the RC product o f the input and 

output node capacitance must be equal. Achieving this can lead to problems if  large loads 

such as peripheral equipment or variable loads are to be driven. To compensate for that a 

string of inverters can be used to optimise these delays, as demonstrated by Veendrick 

[Veen84]. Unfortunately the balancing of the load has to be done manually. Therefore, it is 

not possible to optimise the loads of all nodes of VLSI circuits, hi [NoseOO] Nose and Sakurai 

show that typically around 10% of the total power consumption can be attributed to short- 

circuit power. Furthermore, Nose and Sakurai argue that this figure will not increase in future, 

smaller technologies if the ration of the threshold voltage over the supply voltage is kept 

constant.

OUT

dd
dd

^r

d dTN

t ime

Figure 2.2: Short Circuit Current

2.1.3 Leakage Power Consumption

The computation of the last term of (4), the leakage power, is shown in (15).
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p
leakage T Vleakage dd (15)

Iieakage represents the current caused by reverse bias currents through parasitic diode structures. 

The value Iieakage is fixed for a given technology and is directly proportional to the area o f the 

circuit. For a \.2\im  technology, a value between IpA and 5pA per is typical [Burd96]. 

The designer cannot influence this value directly. However, the leakage current is highly 

temperature sensitive. For this reason it may be possible to limit the leakage current thus 

optimising the dynamic power dissipation by minimising heat dissipation.

2.1.4 The Complete Equation for the Total Power Consumption 

Finally, the complete equation for the total power consumption is given by

As shown in the previous sections it is not possible to influence the short-circuit power 

consumption and consequently the leakage power dissipation at the higher level of the design 

cycle other than by choosing the proper technology. Therefore the following chapters will 

focus on mitigating the dynamic power consumption. This is a reasonable approach since the 

dynamic power consumption is typically more than 90% of the total power consumption 

[Veen84] [NoseOO].

2.2 Reducing the Supply Voltage

The most obvious and most common way to reduce the power consumption is to reduce the 

supply voltage. The supply voltage is present in all terms of the total power consumption 

equation (4). In the switching power expression the Vm  term is squared if  the swing voltage is 

set to the supply voltage. Therefore, any reduction o f Vdd would cause a major reduction in 

the total power consumption. The most important factor in reducing the power consumption 

of a circuit to a minimum is to reduce the supply voltage as much as possible. This conclusion 

is supported in most o f the referenced literature such as [Chan92], [Liu93], [Malh94], 

[Wang98], [Sanc99] or [ShiuGO].

^a c H v e^ d d f + h c ^ d d  +  ^lakageK (16)
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2.2.1 Delay and Voltage

Figure 2.3 (adapted from [Chan95b]) shows that when the supply voltage is reduced, the 

normalised delay increases. In IC design a distinction is made between local delay, which is 

the delay of signal propagation between the transistors on the same chip and the global delay 

which is the delay between transistors from one chip to another chip. The global delay is only 

important when the chip specification includes a timing relationship between the chip and 

other components in the system, hi this thesis the term delay is used for the local delay.

25

i  20

V ddA /olt

Figure 2.3: Dependence of Delay and Voltage

For most applications a minimal throughput of data is specified and this therefore defines a 

minimum limit for the supply voltage. The simple first order equation for delay is shown in 

(17) [Chan92].

This equation is suitable for technologies above 1.0|j,m. For smaller sizes, the saturation of 

the carrier velocity under higher electric fields, which is not represented in the equation 

above, becomes significant. The delay becomes increasingly voltage independent as the 

implementation technology becomes smaller. Therefore, little advantage can be gained by 

simply reducing the voltage. For a 0.3|j,m process the critical voltage was found to be 2.43V, 

at which no further power reductions can be achieved by reducing the supply voltage 

[Chan92]. If the voltage is lower than this limit the incremental delay is determined and 

limited by interconnection delays. The equation above may differ from measured values of 

delay by a factor of up to 20 when channel lengths are below 0.5|^m [Liu93]. Unfortunately
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the second order equation required to determine delay for these small processes becomes 

more complex than (17), because now the active length and width of the gates and also other 

dimensional factors have to be included. For a detailed overview refer to [Liu93].

For cells above 1.0|am a reduction in power by 60% can be achieved with a supply voltage 

of 3.3V compared to the 5V standard. It is the reason why this supply voltage became a new 

industry standard. But this new standard also raises problems. Firstly, the I/O interfaces will 

still have to operate with the 5V standard, while the thinner gate oxide of the chips designed 

for 3.3V can be damaged at 5V. To avoid this problem, interface chips are designed which 

can operate with two voltages. The 3.3V supply is used for the fxmctional circuitry and the 5V 

supply for the I/O ports. This makes design simulation very difficult [Brust93]. Another 

difficulty is that the reduced speed has to be compensated using architectural techniques such 

as parallelism and pipelining. This means that these new designs are more complex than 

traditional designs [Chan92] [Blair94] [Liu93]. Further reductions m aybe achieved by setting 

the supply voltage to around 1.5V which is the optimal voltage for most common uses as 

presented by Chandrakasan [Chan94] and Bellaouar et al. [Bell98]. It also seems that this 

voltage may set a standard supply voltage for RISC chips [Naka94].

2.2.2 Threshold

The threshold voltages (Vt) present a different problem due to the reduction of the supply 

voltage. For a given process the threshold voltage is defined and therefore sets another limit 

on supply voltage reduction. To provide a sufficient margin so that an input signal is accepted 

as HIGH or LOW, there must be a difference between supply voltage and the upper threshold 

voltage. The exact value is disputed in the literature. In [Blair94] half the supply voltage is 

suggested as a good rule of thumb while in [Stork95] and [Chan94b], the square root of the 

supply voltage is offered as a good value for the threshold voltage. The lower limit for the 

threshold voltage itself should be in the area of 0.3 V to provide a good compromise between 

switching power and leakage power as shown in [Chan94b].

A different problem caused by the subthreshold region is the current which flows when 

the input signal is in this region. The signal forces both transistors to open which leads to the 

short-circuit current as presented in Section 2.1.2. To avoid this current, the rise time of the 

input and output signals should be equal and as fast as possible. Also the region between the
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threshold voltages should be as small as possible to decrease the time when both transistors 

are on.

To optimise the power delay product a supply voltage of three times the threshold voltage 

was found to give reasonable results [Shim93]. This allows a good noise margin o f Vr for 

both HIGH and LOW levels. Further reduced levels may increase the short-circuit current and 

therefore the short-circuit power consumption due to unstable states.

An interesting fact is that it is possible to reduce the supply voltage under the sum of the 

threshold voltages of the NMOS and PMOS transistors. Chandrakasan [Chan94b] presented a 

low-power chipset that works at I.IV, where the threshold voltage for the NMOS device is 

0.7V and that of the PMOS device is -0.9V. While using such a low supply voltage it is 

assumed that only one transistor at a time conducts and therefore it is impossible for short- 

circuit currents to occur. However, this has the drawback of increased propagation delay.

2.2.3 Voltage Scaling

Most systems are designed for maximum throughput of data or for peak performance which 

occurs infrequently in normal usage [Good98] [DancOO]. Therefore, most computations are 

finished before the time deadline set by the clock frequency and the internal propagation 

delay. In such applications the propagation delay can be slowed down by adjusting the supply 

vohage in such a way that the output data meets the timing restrictions. This is called supply 

voltage scaling or just-in-time processing, and can effectively reduce the power consumption. 

After each cycle the critical path is scanned and a voltage is computed at which the operation 

still meets the time constraints [Good98] [Wei99] [DancOO]. For example if a computation is 

allowed to take 20ns but needs only 10ns for the actual data to be processed, the voltage can 

be reduced from 5V down to 2.9V, the value of supply at which the delay doubles (Figure 

2.4). Voltage scaling ensures that the circuit is always running at the lowest possible supply 

voltage. Equation (18) expresses the power saving with this approach for the actual voltage, 

Vactuai, in relation to the maximal supply voltage, Vdd-

 ̂ actual) actual (18)
d d )  \  ' d d  ^
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Figure 2.4: Power Consumption and Voltage

The drawbacks of this approach include the additional control logic required by the circuit 

[ShiuOO] and the provision of a supply voltage which can be quickly and dynamically 

calibrated. A further problem is the environment of the chip. Most applications need a fixed 

input level, therefore the output buffer of the chip must provide an almost constant output 

[Sanc99]. This can only be achieved by using adjustable dc to dc converters (DC/DC 

amplifiers) and additional logic. These amplifiers add additional loss to the power 

consumption caused by converting the signal level. Therefore, while voltage scaling may be 

the best way to reduce the total power consumption it is also most difficult to implement, hi 

the next section a compromise between low supply voltage and ease of implementation for a 

given environment is presented.

2.2.4 Different Voltages on a Single Chip

As shown in the previous section the standard supply voltage can be scaled down without 

losing performance. However, this voltage scaling approach is difficult to implement because 

it requires additional logic blocks to overcome subsequent problems such as reduced 

throughput. Furthermore, a varying voltage might introduce problems if  the chip must interact 

with external applications. The scaling logic can be avoided by using different voltages on a 

single chip. Usually two vohages are used. One voltage is used to supply the core and the 

other to power the I/O pads. The lower core vohage should provide a good compromise 

between low supply voltages and easy to implement design structures. On the other hand the 

higher voltage at the I/O pad is to ensure that the chip is able to communicate correctly with 

the peripheral environment [Wang98] [Sanc99], The two supply voltages can be generated on 

the chip by using dc/dc converter [Best98] [Jou98]. The advantage of these dc/dc amplifiers is
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that they only need to be calibrated once as both voltages are known. Therefore, the additional 

logic required for continuous voltage scaling can be omitted.

23 Critical Path Reducing Transformations

The optimisation of the throughput is vital when attempting to reduce the supply voltage to a 

minimum. As the timing of a circuit is defined by the critical path it only makes sense to 

redesign this path. However, in VLSI systems it is often difficult and uneconomical to reduce 

the critical path by restructuring the logic cells. Therefore, the most common approach is to 

restructure the functional block, which contains the critical path. This is done using a number 

of different approaches.

2.3.1 Parallelism of Structures

A simple approach to retain throughput when reducing the clock frequency is to parallelise 

processes. This is easy to implement but more than doubles the size of the design. Also, 

special design tools must be used to keep the resulting increase in capacitance to a minimum. 

Otherwise the capacitance of the larger layout may completely cancel out the improvement 

due to supply voltage reduction [Mehr97]. Therefore, parallelism of structures is only 

possible when no or little area restrictions are given. Even when there are no area restrictions 

the higher chip size will increase the production costs and therefore parallelism may not be 

suitable for some applications.

Mux Mux

delay  t^

delay t<j

delay t^

Figure 2.5: Principle of Parallelism
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Figure 2.5 illustrates the idea of parallelism. It is assumed that a functional block has a delay 

time td. There is no possibility of decreasing the throughput of the device as the block is 

already running at a frequency which cannot be reduced. With such a block it is impossible to 

reduce the supply voltage because of the propagation delay dependence on the voltage. Using 

duplicate blocks to implement the parallel configuration, the data must now be input to them 

via a multiplexer. The first piece of data is read into the first block and the second piece of 

data into the second block. Therefore, the frequency of each block can be reduced by a factor 

of two, without losing throughput. At the output of the blocks the output data is 

demultiplexed and the original data rate is reconstructed. Both blocks are now running at half 

of the original block frequency, therefore the supply voltage can be reduced to a level where 

the delay doubles [Lyon93]. For an original supply voltage of 5V this happens at 

approximately 3V as Figure 2.3 illustrates. This approach also has drawbacks. Decreasing 

voltages must be traded off against the larger chip dimensions [Fren98].

2.3.2 Pipelining

Quite often designs are not optimised for peak performance. A simple way to maximise the 

throughput of such a design is by using pipelining techniques. Here pipelining latches are 

used between functional blocks in a way that the longest delay between two latches is smaller 

than the critical delay [Gonz96] [Good98]. This is illustrated in Figure 2.6.

Latch

Latch Latch Latch

Latch

delay td

delay td

delay td

Figure 2.6: Principle of Pipelining

This example shows a circuit which contains two larger functional blocks (FI and F2) and 

two latches, one at the input and one at the output of the circuit. With a traditional 

implementation, both functional blocks are connected in series and the data must run
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completely through the circuit before the next piece of data is read into the first block. The 

time the data needs to run through the circuit is td. The second circuit uses the pipelining 

technique. An additional latch is connected between the functional blocks. When the first 

functional block has finished the calculation, the data is stored in the latch between the 

functional blocks and is read into the next block. Now the first functional block is free to 

perform the next computation. With this technique the throughput of the circuit is doubled. If 

the throughput is kept constant the circuit can work at half the frequency of the traditional 

implementation. Similar to parallehsm the voltage can be reduced by a factor of two, which 

will result in power savings of approximately 60% when compared to the 5V supply voltage 

standard [Fren98], This technique has the advantage that it requires only a small amount of 

additional space, when compared to the parallelism technique. It therefore suits applications 

which are restricted by size. The physical capacitance of the design is also kept nearly 

constant. The only drawback of this approach is the additional control logic required to 

control the shifting between the functional blocks and the additional consumption of the 

pipeline latches.

2.3.3 Pipelining and Parallelism

As shown in the two previous sections parallelism and pipelining of designs can result in 

major time savings. If there are no restrictions on area then both techniques used together 

mean that a circuit can be operated at an even lower clock frequency. This is done by 

pipelining the critical path first. Then the designer must check to see if this path is still the 

critical path of the design. It would make no sense to speed up any path other than the critical 

one, because it is only the critical path that restricts the maximum clock frequency. If it is still 

the critical path then this path should be reduced. If not the new critical path should be 

identified and its delay minimised. However, if the idea of combining both pipelining and 

parallelism of structures is used to provide the maximum throughput, it will also combine the 

drawbacks of both techniques such as the additional control logic and doubling of area 

[Fren98]. Table 2.1 (taken from [Fren98]) shows the area, power and scaled voltage of a 

simple structure in comparison to that of pipelined parallel and parallel-pipelined structure.
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Architecture Voltage / V Area
(normalised)

Power
(normahsed)

Simple 5.0 1.0 1.00
Pipelined 2.9 1.3 0.39
Parallel 2.9 3.4 0.36
Pipelined and parallel 2.0 3.7 0.20

Table 2.1: Effects of Architecture-Based Voltage Scaling

2.3.4 Resource Sharing

In low throughput applications, time multiplexed architectures are often used to minimise the 

area. However, where module sharing occurs, the resultant throughput is typically increased. 

If both busses and functional blocks are shared within the modules, then the higher 

throughput (and therefore the higher switching activity) makes any reduction in supply 

voltage hard to achieve because of the high clock frequency required to drive such devices. 

Therefore resource sharing can be seen as serialisation of a design which increases the power 

consumption [Lyon93].

2.4 Reducing the Voltage Swing

Although the most obvious and effective way to reduce the total power consumption is to 

minimise the supply voltage, further power savings may be achieved by lowering the swing 

voltage [Yama96], In order to investigate the effect of the swing voltage (10) can be written 

as

^dynamic ^ a c tiv ^ d d ^ s w in g  J"elk (^^)

Usually the swing voltage is approximately equal to the supply voltage, but if  the swing

voltage is volts smaller than the supply voltage, the equation may be rewritten as follows.

^dynamic ~  ^ a c tiv e ^ d d  f e l k ^ d d  ~ ^ x )  (20)

The energy consumed by a single transaction is given by.

^dynamic ^ a c tiv e ^d d  ^J^dd ) (21))
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Now it is clear that the energy is proportional to the capacitive load and that the energy saved 

is F C . . Therefore, this approach only makes sense i f  the load is very large and the supply

voltage cannot be reduced any further. This implementation has also several drawbacks. 

Firstly the noise margin decreases by V^. If  the supply voltage is near the sum o f the threshold

voltages, then the noise margin may be effectively reduced to zero. Secondly, even for a 

HIGH level signal the output does not rise to the upper rail and this may cause the next stage 

not to turn off completely. This would resuU in a high short-circuit current and large static 

power consumption. Because of the reduced noise margin special gates are then needed to 

restore the input signals. These gates require additional devices and lead to extra parasitic 

capacitance [ZhanOO].

Due to the problems stated above voltage swing reduction is generally only useful when 

driving large loads and when using cell libraries containing cells to restore the noise margin. 

Therefore, voltage swing reduction should only be used if the supply voltage is already at the 

minimum value.

2.5 Summary and Conclusions

This Chapter commenced by defining all the sources o f power dissipation encountered by an 

IC designer. These include, in order o f increasing significance, leakage, short-circuit and 

dynamic power dissipation. These components of the total power consumption were then 

individually discussed. This discussion demonstrated that the most effective way o f reducing 

the overall power consumption can be achieved through a reduction in the supply voltage, as 

the supply voltage is present in all components o f the power consumption.

Where supply voltage reduction is concerned, meaningful results can be achieved by the 

application o f voltage scaling and the use of multiple supply voltages on a single chip. 

Lowering the power dissipation using these techniques results in an increase in the circuit 

delay. This delay may be compensated for by the use of architectural transformations. The 

principle underlying these techniques is based on the reduction o f the critical path by the use 

o f pipelining and parallelism. While these techniques are very effective, their application is 

limited to full custom circuit design. However, as the design activity described in this thesis is 

targeted to a semicustom design, the scope for voltage scaling is very limited, hi the case of 

the technology library used, the power supply tolerance is +0.5V. The consequence of this
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limitation is that all design efforts must be solely focused on the one remaining component of 

power consumption, namely the dynamic power dissipation.
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3 Dynamic Power Consumption

The previous chapter has shown the limitations of supply voltage reduction as a means of 

minimising power consumption. In order to achieve significant results, the design focus must 

be shifted from the circuit technology to a behavioural view of the design. The dynamic 

power consumption captures the power performance of a design. As dynamic power 

consumption consumes more than 90% of the total power consumption, reduction of this 

component is the most effective method of minimising the total power consumption of a 

design. As shown in Section 2.1.1, dynamic power consumption is caused by charging the 

node capacitance. Therefore, minimisation of the switching activity and the consequent 

minimisation of the active capacitance, is the most effective way of lowering the total power 

consumption.

This chapter presents a comprehensive compendium of techniques described in literature. 

Each technique is described and evaluated for its effectiveness in reducing dynamic power 

consumption.

3.1 Adding Additional Logic

There are many possibilities for reducing the switching activity by adding additional logic. 

One approach is to switch off or power-down unused stages so that transactions are only 

executed when necessary. This is useful because in synchronous designs the logic between 

registers is always computing, depending on the present input, even when not performing 

useful operations. The simplest way to implement this idea is to split the clock signal into 

different domains and to switch a clock domain off if the functional block, to which it is 

connected, is not required [Good98]. Such a technique is called a gated clock implementation. 

This also implies that the load of the clock signal changes which makes the clock generator 

hard to design. The reason for this is that as the length of the path changes, both capacitive 

load and the delay time changes. The latter may cause the circuit not to run at the maximum 

frequency because the clock tree is unbalanced.

A simple way to switch off components with a gated clock logic is by using additional 

enable logic [BeniOO], These circuits require additional overall control logic and control 

signal wires, which add switching activity and capacitance to the circuit. A different approach
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is to add not only an enable but also operation ready signals to the functional stages. These 

signals are then used to control the enabling of the previous block and the next functional 

block with a simple gate only. These circuits are called self-timed circuits. Even if the 

individual blocks require more stages, no global control logic is required to control the 

maximal throughput. The control wires are kept much shorter due to the fact that only the 

neighbouring blocks need to be controlled. However, if the path has a high rate o f throughput 

all approaches using additional logic might increase the total power consumption, because the 

additional logic and capacitance might consume more power than the normal continuous 

computing path [Niel94].

One of the most vital computational operations is the addition of numbers. There are 

many different ways to implement adders, but if low-power is the primary goal of the 

implementation only a subset of approaches are useful. Most adders produce unnecessary 

operations and glitches (see Section 3.5 for reference).
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Figure 3.1: Ripple-Carry Adder

The simplest way to implement a large adder is the ripple-carry adder as shown in Figure 3.1. 

The adder in this example is a three bit adder which performs a(0:2) + b(0:2) = c(0:3). The 

output signal consists of a 4-bit signal so that the circuit is capable of generating a carry 

signal. If signals a and b are applied to the input ports all adders start to calculate the output 

simultaneously. If any adder produces a carry overflow this causes the next adder to start to 

calculate a new input value. If this new value also produces an overflow the next adder has to 

calculate a new output. This causes unnecessary calculations before the final result is 

computed. Without latches at the outputs of the adders, all transactions are transmitted 

directly into the following stage and so cause power consumption. The worst case activity is
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expressed in the equation below. In this equation n is the maximum number of bit 

calculations and k  is the number of full adders.

n -  Y^ xN  (22)
JC =  1

For a 8-bit adder implemented using eight 2-bit full adders the maximum number of 

calculation cycles would be 36. In other words such a 8-bit adder changes output state up to 

36 times per calculation, 35 of them being useless power consuming operations. To avoid 

such behaviour, a carry-look-ahead adder can be used. This calculates firstly the carry’s and 

then connects the correct values to each single input of all adders. For this reason only carry- 

look-ahead adders (or multi-level carry-look-ahead adders) should be used in low-power 

circuits. These circuits calculate the carry signals and then start with the adding process. This 

makes computation not only less power consuming but also faster, because the circuit need 

only do the calculation in two steps i.e. evaluate the carries and then compute the result.

3.2 Reducing the Number of Nodes

A different approach is to minimise the number of nodes. This technique assumes that the 

reduction of nodes will not only reduce the total capacitance but also reduce the overall 

switching. This method may actually produce more switching as presented in [Burd95]. In 

addition, this method does not address any of the factors influencing the dynamic power 

consumption. This is the reason why the reduction of nodes is not a valid method of reducing 

the active capacitance, as it assumes that the power and the number of nodes are directly 

related while neglecting all other factors.

33 Precomputation

Precomputation is already used in traditional designs in order to speed up processes 

[Mone95], An example of this is the precomputation of the carry as used in the carry look 

ahead adder architectures. The goal of precomputation in low-power applications is to reduce 

the overall active capacitance of a functional block by adding additional local control logic. 

Assuming a block has to perform the function FI then the goal o f precomputation is to extract 

a subset of functions F2 as shown in Figure 3.2.
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Figure 3.2: The Principle of Precomputation.

As F2 is a subset of the function FI, this allows efficient computation of the result if  a certain 

condition at the input of the functional block is met. The designer has to chose the function in 

such a way that the switched capacitance of F2 plus the dynamic capacitance of the additional 

logic is smaller than those of the original computation performed by F I . The designer also has 

to ensure that the overall active capacitance of the new block, which includes not only F2 but 

also additional local control logic, is smaller than that of the original design. An example 

should illustrate this. If the Block F2 plus the additional hardware has an active capacitance of 

8% in relation to block FI then the designer has to be sure that the condition which is checked 

by F2 occurs more frequently than 8% of the time. For more information on the effects of 

additional logic refer to section 3.1. It should be noted that precomputation can only be used 

in paths other than the critical one. This is because the additional functional block F2 adds to 

the delay of the block at the input of FI. However, if it is deemed to be necessary, it is 

possible to add an additional register to the input in order to overcome this problem.

3.4 Number Representation

As the total power consumption is highly dependent on the switching activity, in this section 

the effects caused by the representation of numbers are analysed. Most numbers are 

represented in two's-complement format. This makes arithmetic processes such as adding and 

subtraction very easy to execute. Positive values are expressed as a bit integer. Negative 

values are the positive value which is inverted and a one is added to the result of the inverted 

value. This means that all higher order bits, which carry no information, represent the sign of 

the number. If the most significant bits (MSBs) are 0 then the number is positive, otherwise it 

is negative. This is also the reason why the two's-complement is not recommended for low- 

power implementations as the following example illustrates.
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Assume that an input signal consists of eight bits. If the present state o f the signal is +1 

the bus is set to "0000 0001". Suppose the signal is set to -1. The bus now changes to "1111 

1110". This small example illustrates the problem. Each time the sign changes, all higher bits 

also perform a change, because the sign is duplicated in all of the bits which are not used to 

represent a number. Therefore, the two's-complement consumes a lot o f power without 

transmitting any real information. In the example above only two bits are necessary to 

transmit the information. This implementation unnecessarily consumes 60% of the dynamic 

power. The best solution for this problem is to split the signal into sign and magnitude. Now 

only the highest bit carries the sign information and all other bits are used to represent the 

unsigned number. If the example above is used again, a change from +1 to -1 only causes the 

highest bit to change from 0 to 1. This example represents best the possibility o f power 

savings because now only 12.5%> of the dynamic power is consumed, when compared to the 

previous example. However, as previous work has shown, the switching probability o f signals 

is highly dependent on the origin of the signal’s samples [Chan92]. In [Land94] and 

[Chan95d] it was shown that music, speech and video signals have a very similar bit level 

switching probability. They demonstrated that the most significant bits have a switching 

probability of approximately 0.5 and that of the least significant bits is considerably lower. 

Figure 3.3 (adapted from [Chan95d]) shows this behaviour for image data. In such a case the 

use of a sign magnitude representation will have positive effects on the power consumption. 

Hence, before deciding on which signal representation to use, the properties of the signal 

should be investigated.
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Figure 3.3: Switching Probability of Image Data

The choice of the number system will also cause different activities during computations. 

If during a computation the sign changes, the same rules apply as shown above. Therefore, it 

might be useful to compute the sign and magnitude in separate units of a fiinctional block
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instead of using two's-complement devices. This requires special devices which are more 

complex and larger than those used to compute two's-complement. The effect of the higher 

physical capacity is often smaller than the effect of the reduction in switching activity using 

sign magnitude representation in highly active paths.

3.5 Minimising Glitching Activity

Due to finite propagation delay through logic blocks (or critical races) the output o f a device 

can have different values during one clock cycle before settling to the correct value. This is 

called glitching or hazard. These glitches cause this stage and sometimes even other stages to 

change value and produce unnecessary transitions. These transitions consimie dynamic 

power. This is not necessarily a design error. Only if the design is intended for a low-power 

application do these glitches become of interest to the designer. Typically these glitches 

produce around 20% of the total power consumption, which might rise up to 70% of the total 

power in cases such as combinatorial adders [Naim94], Power consumption due to glitches is 

also called toggle power. Figure 3.4 shows a simple example to illustrate glitching activities.

Figure 3.4; Origin of Glitches

The example contains a two-input AND device. The first input is connected to an inverter. 

The input signal was set to LOW for both inputs and the output c was also set to the LOW 

level. The output x of the inverter was therefore at the HIGH level. If the input ports are 

changed to HIGH (at tl)  no output will change due to the finite propagation delays. The input 

b is now HIGH, as is the output x which is still at a HIGH level because of the propagation 

delay of the inverter. Hence the AND changes value at t2 to a HIGH value. After the inverter 

propagation delay time, the inverter will switch to a LOW output causing the AND to switch
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its output finally to LOW, after its propagation delay. This simple example shows that 

propagation delays are more critical in low-power applications. One way to avoid such 

behaviour is to balance all signal paths ensuring that all signals arrive at the same time 

[Gagh99], This also ensures that the circuit operates at a maximum frequency. A different 

example is the carry-look ahead adder already mentioned in section 3.1. Instead of using 

balanced paths this example uses additional logic to avoid glitches.

The easiest way to avoid glitches is to balance all paths equally. Figure 3.5 illustrates this 

by comparing a serial design to a tree structure. The serial implementation may enter three 

unstable states before settling to the correct value. As seen in this figure the tree structure not 

only has a reduced propagation delay, but is also totally balanced and does therefore not 

produce any glitches, assuming all gates have the same delay. This example shows the 

importance of the design structure. While the first example is produced with the statement 

following statement OUT = A+B+C+D, the tree adder is produced by the syntax OUT = 

(A+B) + (C+D). Therefore, it is important to keep the synthesised circuit in mind when 

writing abstract code.

A —

B —
OUT

OUT

D —

Figure 3.5: Serial and Tree Adder Structure

Finally, it should be noted that even if the tree adder is balanced, in practice there will be still 

glitching activity due to the fact that the gates themselves are not balanced. These glitches can 

only be avoided by using glitching free adder modules.

3.6 Additional Capacitance through the use of Latches to Reduce Glitching

The previous section focused on the avoidance of glitches in a design, but often it is not 

possible to balance all paths to reduce the glitching to a satisfactory level. Cost considerations 

often make it necessary to use modules which contain several copies of the same functional
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block. In such modules the glitching activity is normally "reduced" through the introduction 

of latches at the output o f the design. This, however, only ensures that these glitches do not 

propagate into the next stages o f the design, but does not prevent the occurrence o f them 

[Good98] [Laks99] [Xant99] [BeniOO]. This section focuses on the analysis o f  the additional 

capacitance brought into a design to reduce the glitching activity.

Figure 3.6: Glitching in Cascaded Functional Blocks 

The maximum active capacitance of a design can be described as

c „ .. (23)

In this equation k  is the number o f blocks, g  is the glitching activity at the input o f block and 

Csiock is the physical capacitance of the module. Often in VLSI designs small blocks are 

designed and cascaded in order to form larger blocks. This speeds up the design cycle but 

causes a ripple effect in the circuit. Figure 3.6 is an example of such a design. It is made up o f 

4 equal smaller design units. If the known values of this design are put into equation (23) it 

can be written as:

^m ax Block (24)

If this figure is compared to the minimum amount o f switching required in order to perform 

the computation, in this case 4CBlock, it can be seen that more than half o f the power 

consumed by this particular design is the result o f glitching. For this reason these designs are 

often pipelined. The same design can be split into two stages separated by a latch. Figure 3.7 

shows the overall structure.
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M a x .  s w i t c h i n

L a t c h

_ ! _ 0 o

Figure 3.7: Cascaded Structure using one Latch

The active capacitance of such a design can be expressed as

^ s ta g e \ ^sta g e2

m̂ax ~ ^ B lo c k  ^ L a tch  S  ^  ^ B lo c k  (25)
g = l  g = l

For a symmetrical design structure as shown in Figure 3.7, this equation can be rewritten as 

follows.

k

^ m a x  ~  S  •  C B lo c k  +  ^ L a tc h  (26)

If now the known values are put into the equation the maximum active capacitance is

^ m a x  ~  Block +  ^ L a tc h  (27)

If this is now compared with the result obtained from the unlatched design (24) it can be seen 

that the glitching is reduced by 40%. hi order to determine if  the active capacitance of the 

latched version has a lower capacitance, both implementations have to be compared. By 

subtracting the capacitance of the latched design from the active capacitance this value can be 

quantified.

C ~ C csaved  m ax-org /na / m ax—

By substituting the two variables with the equations derived for the two designs presented in 

this section (23) (25) the equation can be written as follows.
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C,saved Total-orginal ST otal-la tch  Block -c,Latch (29)

If the known values of the two designs are now put into the equation it is obvious that 

unwanted switching is reduced if

design library data book. Due to the modular concepts of VLSI designs, the active capacitance 

and glitching behaviour of the functional blocks is determined before the decision is made if a 

block is going to be latched. In fact, more often it is the case in low-power design that after 

testing a block, the decision is taken to latch a functional block due to a high active 

capacitance caused by a high glitching activity.

3.7 Reducing the Switching Activity by the use of Don’t Care Terms

The switching activity of Finite State Machines (FSMs) and Look Up Tables (LUTs) can be 

significantly reduced by the use of ‘'don't terms. All terms which do not affect the global 

function of a node should be replaced by a 'don't care’ term since it will guarantee a change 

in state only if it is essential and therefore produce the lowest possible switching rate and 

power consumption. The same approach is taken in [Kapa99] to disable a datapath if  a ‘don’t 

care ’ condition is detected.

3.8 Ordering of Operations

If signals of different bit-width are used it is sometimes possible to arrange function blocks in 

order to reduce operations, device sizes, bus sizes and switching activity. A small example 

presenting two approaches should illustrate this in Figure 3.8. Three signals (signal a of 8- 

bits, signal b of 6-bits and signal c of 4-bits) are multiplied using two two-input multipliers 

connected in series. If the signal a is multiplied with the signal b and the result is fed into the 

next multiplier and multiplied with signal c, then the bus between the first and second 

multiplier is 14-bits wide. In the other case signal c and b are multiplied first and the result is 

then multiplied with signal a. The bus between the first and the second multiplier is only 10- 

bits wide (four bits of c plus six bits of b).

(30)

Normally the designer can look up the values for the active capacitance of latches in the
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Figure 3.8: Ordering of Operations

Even if the output width in both cases is 18-bits, the second case is preferable. Firstly, it 

should be noted that both examples are equal in area. Also the capacitive load seen by the 

previous and following stages is equal, but internally the bus-width in the second example is 

smaller and therefore the total capacitive load driven by the first stage is smaller. What is 

most important is that with the smaller bus-size, the switching activity and therefore the 

active capacitance between both multipliers is reduced and hence this implementation 

consumes less power. Moreover, ordering of operations cannot only help to reduce the load of 

busses but can also help to prevent critical races as already explained in Section 3.5.

3.9 Multiplexed Buses

In most designs global buses are used to transmit various items of information between 

different I/O ports and functional units by using multiplexed buses. The signals are only on 

the bus for a short period before the multiplexer switches to the next connection. Normally 

different signals contain completely different information bits such as value or sign. The 

number of bits needed for the signal might also vary. Therefore, it is very possible that almost 

the complete information of the bus changes with each switching to another signal. Even if  

those buses require less area and overall capacitive load, normally fixed local buses (point-to- 

point buses) provide maximally the same active capacitive load to the driving source as the 

global bus, because of the reduced switching activity [Mehr97]. If local buses are used it is 

the usual case that most buses are smaller than one global bus and therefore the active 

capacitive load of the complete circuit is reduced.
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Figure 3.9: Multiplexed vs. Local Buses

For slowly varying signals the switching activity of the local bus is also dramatically reduced 

when compared to the global one. Even for other signals it is also possible that an 

urmiultiplexed signal will produce less activity when compared to a multiplexed bus. For 

these reasons, buses in low-power implementations should never be multiplexed and the 

functional blocks and I/O ports should be as near as possible to the corresponding block in 

order to keep the buslength as short as possible to minimise the capacitive load of the buses. 

Figure 3.9 illustrates this. The figure on the right has eight smaller buses with a smaller active 

capacitance than the global one shown on the right of this figure. It has approximately the 

same physical capacitance. If only one bus is active the average active capacitance is only 1/8 

of the active capacitance of the global bus. On the other hand if all buses are active at the 

same time the throughput is 8 times higher and can therefore compensate using lower supply 

voltages.

To implement short point-to-point buses is even more important as processes get smaller 

and the integration rises. For example, for a O.lj^m VLSI design, buses can consume up to 

50% of the total power consumption [Naka94]. Therefore, Nakagome et al. suggest in 

[Naka94] to use special drivers which are able to reduce the voltage swing on buses in order 

to lower the power consumption effectively.

3.10 Locality of Reference

The basic idea behind this approach is to use signals locally at the point where they are 

generated instead of letting them travel over long buses [Mehr97], This reduces the physical 

capacitance, and the active capacitance if multiplexed busses are not used. As shown in 

Figure 3.9 such an approach increases the throughput if  signals are processed at the point 

where they occur and are able to travel over a direct connection. This method also decreases
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the delay time since the RC product of long metal interconnections especially on sub-micron 

processes is a major source of delay.

3.11 Reduction of the Wordlength

To keep the wordlength of signals as short as possible is another important aspect when 

designing a low-power circuit [Ramp99]. A small wordlength ensures that the width of buses 

as well as that of the functional blocks can be kept to a minimum size. This keeps the 

physical capacitance of a design low. Therefore, the designer should always try to keep the 

signal width small and check if errors such as introduced by truncation instead of rounding 

are acceptable. Often it is also possible to reduce the wordlength by the use o f precomputation 

techniques.

3.12 Codmg of Signals

As discussed in Section 3.4 the level of switching activity is highly dependent on the signal 

representation. For computational blocks usually signal codes are chosen to allow an efficient 

computation. Good examples of these codes are the unsigned and the two’s complement 

representations. However, if high-capacitance buses are to be driven then power reductions 

might be achieved by changing the signal representation before transmission into one that 

generates a lower switching activity [Yama96] [Ramp99b]. This strategy requires additional 

hardware to code and decode the signal which can sometimes increase the power 

consumption of the circuit by a factor that is greater than the power saved by coding the 

signal. Therefore, a balanced must be struck between the power savings on the bus due to the 

reduced signal switching activity and increase in power consumption due to the extra 

hardware.

3.13 Logic Minimising

Traditionally gate libraries use only a small set of gates to implement a given logic function. 

Therefore, a function is not implemented using an optimal solution, but using one which is 

achievable with the gates of the target library. This causes the inclusion of unnecessary stages 

leading to unnecessary switching activity and additional silicon area. As seen in the above
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approaclies for reduction of power consumption, the area is used in most approaches as a 

variable, which can be traded off against power and should therefore be used very carefiilly.

A different approach is presented in [Akita94], Here it is shown that a larger combination 

of devices can have a lower switching probability and might therefore consume less power. 

This is only true if the extra physical capacitance of the larger circuit is balanced against the 

reduced switching activity. However, new low-power cell libraries are able to reduce the 

power consumption by approximately 25% compared to traditional libraries [Chan95b]. 

These libraries contain simpler logic gates and all devices are optimised for power 

consumption, in a way that traditional libraries have optimised their cells for speed or area.

3.14 Minimising the Number of Operations

Multiplication with fixed coefficients is very common in digital signal processing (DSP) 

applications and is also used widely in other areas. Traditionally each multiplication is done 

by one multiplier, but in low-power design a different approach can reduce the switching 

activity. When using add and shift multipliers it is possible to split them and share subterms. 

This reduces the number of stages and the switching activity required for a multiplication 

[Chan95c] [NguyOO]. A simple example should illustrate this:

A = s i g * \ Q \ \  5  = * 0111 (31)

The same signal {sig) is multiplied with two different values in two different terms. The term

sig* 20 + sig * 2l is represented in both terms. Instead of using two full multipliers this term

is calculated only once. The result is then added with sig * 2^ for term A. To evaluate term B

the result is added with sig *2^. Even this simple example demonstrates that two adders (and 

the switching activity of both) can be saved without causing a higher throughput of the 
device.

3.15 Optimisation of Constant Operation

The extensive use of Hardware Description Languages (HDLs) leads to the use of 

multipurpose functions or design units and intellectual property (IP) blocks of previous 

projects [Mart99]. By using optimised multiplier structures rather than multi-purpose 

multipliers the number of operations, the delay through the block or the area, and therefore
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the active capacitance, can be effectively reduced [Chan95a]. One example would be DSP 

applications such as filters, where multiplying with fixed coefficients is often required. These 

coefficients are normally known before the actual design process begins. Here the use of for- 

the-task optimised structures can yield significant advantages as the following example 

illustrates. It compares tests performed on two different divider structures for the intensity 

path of the RGB-HSI converter. The divider is a 10-bit by three divider the standard version 

is a multi-purpose divider block, while for the optimised version the inputs in the source file 

were defined to be a constant three before synthesis.

Standard Optimised Reduction / [%]

Max. Delay / [ns] 32.24 15.4 55

Number of Nets 318 50 84

Area / [|im] 124018 22496 82

Cactive ! [ p F ] 9.3 2.6 72

Table 3.1; Comparison of Two Divider Structures

Table 3.1 shows that it is possible to reduce the overall power consumption by more than 

70% if the frequency of the input data is kept constant [Schw97]. Power savings of more than 

90% are achievable if the throughput is set to 16ns. However, these savings have to be 

balanced against the disadvantage of a longer development cycle.

3.16 Minimising the Capacitive Load

Even if this minimisation of the capacitive load is not as effective as the minimisation of the 

switching activity, it is possible to reduce the capacitive load in order to decrease the dynamic 

power consumption. For large technologies the delay on the wires C J  is not significant

compared to the transistor delays. But if  the sizes of the connections shrink with smaller 

technologies the resistance of the wires increases and hence the R . C, product increases. In
wire L ^

submicron processes this behaviour can lead to higher communication delays than transistor 

delay times [Blair94], Therefore, long connections such as global buses or global control 

blocks should be avoided. Instead of this, local buses and local control functions should be 

implemented to reduce communication delays and lower connection capacitances. Functional 

blocks having a high computational rate should be positioned together in order to keep buses 

as small as possible. Blocks having a smaller computational rate will then be grouped around
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the other blocks to reduce the overall active capacity. This can only be done by using special 

design tools which are able to analyse the activity of different stages. These tools allow the 

user to define these blocks and so group more active areas closer together to lower the 

capacitance caused by interconnection wires. Traditional place and route tools try to optimise 

the silicon size and try to keep all connections close together in order to fulfil timing 

constraints.

3.17 Low-Power Libraries

Cell libraries are available which are designed for low-power implementations [Fren98]. 

These low-power libraries use various approaches to minimise the power consumption, for 

example, allowing a choice between optimal cells and even blocks, e.g. a carry-look-ahead 

adder instead of a ripple-carry adder. These libraries also contain more cells to implement the 

logic using the optimal method avoiding glitching or critical races. Also, the dimensions of 

the cells are kept as low as possible to reduce the capacitive loads. Furthermore, those 

libraries allow voltage reduction so the design can be operated at the optimal supply voltage. 

Some libraries provide also devices which have all the necessary ports to build a self timed 

circuit without the use of global control logic.

3.18 Summary and Conclusions

This chapter has presented various methods of reducing the dynamic power consumption. All 

the methods described have focused on the reduction of the active capacitance. The methods 

can be divided into two main groups. The first group of methods considered was the 

reduction in physical capacitance, for example the consideration of points of locality. These 

methods focus on a system level view of the synthesised circuit and include designer 

knowledge about the routing of the design. Larger bus structures are traded-off for reduced 

interconnect capacitances and smaller driving gates.

The second group of methods is based on a reduction in power consuming transitions. 

This group can be further divided into two subgroups. The first subgroup is based on the 

reduction of non-computational switching while the second subgroup targets a reduction in 

the overall switching activity. The first subgroup also includes techniques to reduce the 

glitching of the design. In this thesis, balancing of the signal paths will play a major role in 

the investigation of the RGB to HSI algorithm.
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The second subgroup, which will be used in the implementation of the image conversion 

algorithm, implements a highly pipelined structure. This avoids the propagation of glitches. 

This has also the advantage of increasing the throughput of the design to a degree at which 

the specifications can be fulfilled. Another task will be to reduce the overall switching of the 

circuit. The choice of number representation will be the first vital design decision to be taken.

As shown in this chapter, the methods of reducing the active capacitance are many fold 

and often mutually exclusive. However, as a general rule the first design decision to be taken 

is the selection of the number representation in the system. After this, the selection of power 

reduction techniques becomes a design dependent issue. For example, the method of reducing 

the wordlength through truncation will only have a limited application because this also 

reduces the dynamic range of the signal. However, it was successfully implemented in the 

RGB to HSI converter and led to power savings of more than 10% in the intensity path. The 

multiplicity of techniques available is the main reason why the expertise of the designer is the 

main asset when targeting low-power designs. As a result of this, the designer requires 

accurate and fast feedback concerning the effects of his design decisions on the power 

performance. Therefore, the next section will describe the development of such a power 

estimation tool to compute the power consumption of a design at the highest possible level.
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4 PowerCount: A High Level Power Estimation Tool

The investigation presented in the previous two chapters has shown the need for power 

estimation at the earliest possible stages of the design cycle. To achieve this, a power 

estimation tool, PowerCount, was developed. This chapter first presents the fundamental 

concept behind PowerCount and then explains the necessity for the stringent specifications 

and the reasoning behind the design decisions made. Finally, the operation of the software is 

detailed and the performance of PowerCount is validated.

Traditionally, high accuracy in power consumption measurements is guaranteed by 

simulating designs at the layout level. This is usually done by means of SPICE [Spice] 

simulations. These simulations are based on equation (5). They calculate the power 

consumption by monitoring the current. While these simulations are accurate, they are slow 

and can only analyse the design in the final stages. When designing circuits at higher levels, 

accuracy is not the main concern to industry, where time to market is the most important 

factor. A further problem is the early bottleneck detection, where it is important to find the 

‘hot spots’ in a design to focus the design efforts, hi addition, the possibility o f rapidly 

comparing different versions of a design is of great interest to industry. For all of the above 

reasons, such a high level power estimation tool is essential to the successful completion of 

the work described in this thesis. Here the comparison of different implementations will need 

to be made to verify the different implementation approaches presented.
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Figure 4.1: Hierarchy of Traditional Power Estimation.

4.1 Current Power Estimation Tools

Approaches to determining the power consumption at the higher levels, such as those taken 

by Powermill [Pmil98] or IRSIM [L-sim], estimate the power at the register transfer level 

(RTL) by means of a specially created netlist. While these tools are much quicker and provide 

an accuracy of 90% and greater, they have the drawback that a special netlist must be 

generated from a routing tool. They also depend on special design libraries and therefore a 

particular vendor. Figure 4.1 shows the traditional approach taken to calculate the power 

consumption of ICs. A totally different approach is taken by Explore. Explore is a 

behavioural level power estimation tool. This tool estimates the power by means of a flow 

graph description of the algorithm [Mehr94]. The best possible implementation is then taken 

from a set of reference data and with this information the power consumption is calculated. 

This method also has some drawbacks. The designer has to develop and write a special flow 

graph description of the algorithm. At this phase, the implementation parameters are normally 

unknown (except perhaps the technology). Therefore, the system must rely on a set of 

reference information about the algorithm. If no reference data is available, then the power 

analysis is not possible.

In the late 1990s various commercial power estimation tools emerged. These include 

MultiSim [MultOO] which has a mixed SPICEA^HDL simulator therefore requiring SPICE 

models of all components to be simulated. The synthesis tool o f MultiSim is limited to FPGA 

implementations and it only supplies models for these devices. Another tool Power-Cut 

[PcutOO], has been designed to speed up SPICE simulations, performing a SPICE netlist
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component reduction by summarising gates. Mach TA [MachOO] of Mentor Graphics applies 

this concept of SPICE netlist reduction to achieve a speed up in simulation time of up to 

1000. With Mach TA, the designer only needs to supply the tool with the original SPICE 

netlist to perform the simulation. A modification of this approach is taken by the Star-MBT 

[SmbtOO] cell characterisation tool, where SPICE netlists, SPICE process models, and simple 

cell pin descriptions are used to create a database. This database can then be used with 

software such as Star-Sim [SsimOO] to simulate designs that are two to three orders of 

magnitude faster than SPICE simulations. The most significant drawback of all the tools 

described here is that they require low-level design information to perform a power analysis. 

Thus, testing is restricted to the later stages of the design cycle.

Power Tool [PtooOO] and VeriPower [VpowOO] are both high-level Verilog simulators. 

The main difference between these tools is that VeriPower has its own library characterisation 

tool which allows the user to extract the power information from its existing design library, 

while Power Tool requires already characterised libraries. However, neither o f these tools 

account for the interconnect, unless the user is able to provide them with it. Others include 

PeakWatcher [PwatOO], a tool to quickly find the ‘hot spots’ of a design so that the design 

effort can be more efficiently focused towards the power bottleneck of a circuit. IBM’s 

PowerCalc [PcalOO] essentially uses the same concept as PowerCount. It uses the routing and 

timing information of either Cadence Verilog-XL [VeriOO] or Model Technologies 

ModelSim/VHDL [MsimOO] to obtain an estimate of the dynamic power. The node switching 

activity is collected during the timing simulation and is then used to calculate the dynamic 

power consumption.

Only two high-level power estimation tools currently exist which automatically generate 

an estimate of the interconnect. These are Watt Watcher [WwatOO] and PrimePower 

[PpowOO]. Watt Watcher is a high-level power estimation tool capable of measuring the 

power consumption of VHDL and Verilog netlists. It uses native algorithms which estimate 

the capacitance of the interconnect to achieve estimates within an accuracy of 80%. 

PrimePower is power estimation tool released by Synopsys and it relies on characterised 

library information to perform power estimation. This library characterisation can be 

performed using PowerArc [ParcOO]. PrimePower uses additional circuit information such as 

the interconnect and timing information to perform a high-level power estimation of the 

average and peak power of a design.
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4.2 Power Estimation Technology

Several techniques have been developed to simplify power estimate [Burd94], [Land94], 

[Tsui95]. All of these papers are based on the same two ideas. Firstly, instead o f using the 

actual value of the physical node capacitance, the average physical capacitance Cphy-avg is 

used. Cphy-avg is the total physical capacitance of a circuit divided by the number o f  nodes. The 

second idea is to replace the node switching activity factor ri(oj) with the switching probability 

factor pt o f the node. This factor reflects the probability that a power consuming event occurs. 

The probability switching factor is calculated for a uniformly distributed white noise (UWN) 

input signal. It is precalculated for each cell and stored together with other library 

information. After the circuit is compiled, a special netlist is generated and the probabilities 

are propagated through the design. The average capacitance and average power consumption 

are then calculated. Equation (32) shows the method used to calculate the average dynamic 

capacitance.

This method is very fast because the amount of input data required for simulation is small but 

this method also has its disadvantages. Equation (32) assumes that each node, regardless o f its 

load or output capacitance, has the same node capacitance. This is not true in real designs. 

Therefore, a path with a high switching activity but low node capacitance or vice versa, will 

increase the error of the result. Furthermore, it is highly unlikely that the input signal at each 

node is of a random nature. Internally, due to the connections between the different blocks as 

well as the distribution of the signal, the switching activity will be correlated with the input 

signal and will not be random. These methods do not take this factor into account. Therefore, 

to compensate, techniques which use the probability factor in conjunction with the real node 

capacitance have been introduced.

Other techniques first simulate the input probability of a module and then overlay this 

information with the data obtained from a UWN simulation [Burd94]. This method has the 

disadvantage that a design must be first described at a software level. A simulation with

C,average
nodes

(32)

This value is then used to compute the average dynamic power consumption.

P - C  faverage average d d J caverage average d d J  elk (33)
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actual input data is then performed in order to obtain the actual input probabilities at each 

block. With these probabilities, the input vectors for the overlaying of the probabilities at the 

RTL are generated before the design can be simulated in small blocks. While the power 

simulation is fast, the preparation takes a long time. Furthermore, different tools are required 

for the various levels.

A different method, the Dual Bit Type model, accounts for the input correlation and was 

proposed by Landman et .al. [Land94]. This model rehes on a special netlist as well as a 

particular library and a look-up table to account for the random and correlated parts of the 

active capacitance. Another drawback is that this model requires calibration for each type of 

design.

All of these methods rely on special design or technology libraries which include the 

switching probability for each cell. Many estimation methods also use a zero delay model. 

These models do not take delay times into account and neglect glitches and hazards. These 

glitches depend mainly on the implementation of the algorithm and can only be accounted for 

by simulating with real input data and design information. Finally, it should be noted that 

these methods also only work for combinational logic. When estimating the power 

consumption of sequential logic the state probabilities have to be taken into account. 

Different methods are described in [Tsui95]. To overcome these problems, a new power 

estimation tool, called PowerCount, was designed.

The next section will show the limitations of using library reference information and 

therefore argue for a power estimation tool which takes the interconnect into account. Then a 

brief overview of the high-level design process is given to provide the background required to 

understand the positioning of such a tool within the design process. At this stage the idea of 

PowerCount is introduced before the methods of generating an estimate for the active 

capacitance are introduced. Finally, the operation of PowerCount is shown and evaluated.

43 Estimation of the Dynamic Power Consumption using the Library Reference 
Book

This section shows the importance of including all possible design information into a power 

estimation. The results of this example are then used to show the factors which have to be 

taken into account to accurately estimate the power consumption of ICs. For this purpose, a 

Ibit full adder is used as an example to illustrate how the power consumption is calculated
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and the effects of neglecting the influence of the interconnect are shown. Figure 4.2 shows the 

structure of the 1-bit full adder to be investigated. The reason why a small design like the 1- 

bit fiill adder is used is that here it is still possible to manually verify the results of this 

investigation. The theoretical physical node capacitances, which are required to calculate the 

active capacitance, are taken from the Library Databook [Es2] of the implementation 

technology. In this case the ES2 0.7)o.m standard CMOS library was used.

0.05

0.046

CARRYJN
N21

Figure 4.2; Internal Structure of an 1-Bit Full Adder

Table 4.1 contains the physical node capacitances (column 2) as given in the Synopsys netlist 

report after synthesis, and the physical node capacitance (column 3) o f each node, as stated in 

the Library Databook [Es2], The true active capacitance (column 6) is calculated using a 

timing simulation with 600 input vectors and the real node capacitance of column 2 .
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synopsys 
node cap.(pF)

library 
node cap. (pF)

deviation
true/theor.

library 
act. Cap (pF!

synopsys 
act. Cap (pF]

switching
probability

N24 0.14 0.095 32.14% 0.023 0.035 0.247
N23 0.14 0.094 32.86% 0.049 0.074 0.525
N22 0.14 0.092 34.29% 0.024 0.036 0.258
N21 0.09 0.058 35.56% 0.020 0.030 0.338
SUM 0.03 Wire 100.00% 0.000 0.014 0.483
CARRY OUl 0.03 Wire 100.00% 0.000 0.010 0.340
CARRY IN 0.13 0.058 55.38% 0.015 0.033 0.250
B 0.12 0.076 36.67% 0.020 0.031 0.257
A 0.14 0.086 38.57% 0.023 0.037 0.265
act. Cap 0.173 | 0.300

Error 42.30%

Table 4.1: Power Estimation using a Data Book

As seen in Table 4.1, the error when estimating the power consumption using a data book for 

a small design, such as the Ibit full adder, with a small number of nodes, is 42% lower. The 

reason for this is that the capacitances of the interconnect cannot be included in a data book. 

Synopsys however, estimates the interconnect and provides the user with an estimate of the 

physical node capacitance including this figure for the interconnect. This estimation is also 

used for the timing simulation as rise and fall times depend on it.

The capacitances for the output signals SUM and CARRY_OUT cannot be taken fi'om the 

data book because these nodes do not have a load. The switching probability (column 7), is 

simulated using UWN input vectors and is used to calculate the active node capacitance using 

the information provided by Synopsys (column 6) and the Library Databook (column 5) 

respectively. Even in such a small design, such as the Ibit full adder, containing no busses or 

other long connections, the error is already above 40%. With increasing design complexity 

the number of interconnections rises and therefore the relative error will be even larger if  only 

the databook information is to be used. Furthermore, it should be noted that these calculations 

include the real node activity factors. Techniques using just the probability factors would 

have an even worse result and could not be used in designs with correlated inputs. Therefore, 

it has to be concluded that the only way to obtain an good estimate of the active capacitance 

and therefore achieve accurate power estimation is to use the physical node capacitances, 

including the interconnect, in conjunction with the node activity factor as computed for a 

particular input signal.
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4.4 The Synopsys System Simulator

Before the operation of PowerCount is explained, the normal design cycle for high-level 

VLSI development using the Synopsys Design Environment [Synop] will be presented. 

Figure 4.3 shows the design cycle for generating a routable netlist which can be used to 

perform real timing simulations.

VHDL Source 
Code

Syntax Check

Library 
InformationSimulation

Timing information

Synttiesis

VHDL Netlist

Figure 4.3: Synopsys Simulation Flow

Firstly the abstract source code is written in VHDL. After the syntax is verified, the correct 

logic operation of the design is tested using the VHDL System Simulator (VSS). Then the 

design is fed with the optimisation constraints into the Design Compiler (DC). If the design 

constraints are met the circuit is written out as a VHDL netlist. An additional file, containing 

timing information for simulation purposes is also generated. The VHDL netlist is fed back 

into the syntax verification. This is called back-annotation. Then the netlist is used in 

conjunction with the timing information by the VSS to monitor the real timing behaviour of 

the circuit. These simulations include rise and fall times as well as glitches and hazards.

4.5 PowerCount

This Section describes the basic concept behind the power estimation tool called 

PowerCount. The main feature of PowerCount is that it operates as an add-on tool to 

Synopsys. It uses the normal timing simulation with only one additional file. Figure 4.4 shows 

the interaction between PowerCount and Synopsys.
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Name of:

Designfile
TB Config.
Control File
Node Report

Control Node
Report

SYNOPSYS DESIGN COMPILER

VHDL Timing
Netlist Information

SYNOPSYS
Library

Information
Pow erC ount

Temporary Files
Ouput of
Timing Simularion

Temporary Files

Active Switching Active
Capacitance Activity of Capacitance
of each each node & Statistics
node about the

result

Figure 4.4: PowerCount in the Synopsys Environment

The basic idea behind PowerCount is the computation of the active capacitance as presented 

in (11). For this purpose, the tool uses nearly the same procedure as used for real timing 

simulations as explained in the previous section. The only difference is that instead of 

checking for the proper timing of a design during back-annotation, it automatically monitors 

the switching activity of each node. This principle is shown in Figure 4.5. PowerCount uses 

as an input a set of /„ iterations. Each iteration uses a user defined number of input vectors, v„. 

Then the VSS is used to calculate the number of power consuming transitions, n, for each of z 

nodes. The number of power consuming events at each node is then multiplied by the 

physical capacitance of this node, Cest, as estimated by Synopsys DC. Then the sum of all 

active node capacitances for this iteration is calculated to provide the total active capacitance 

of the design, Cacuve- Finally, the average active capacitance is calculated by averaging the 

active capacitances of all iterations. Therefore, the tool calculates the active capacitance with 

the highest possible accuracy at this level. It uses the Synopsys estimated values o f both the 

physical node capacitance as well as the real switching activity of each node by means of real 

input data. The accuracy only depends on the accuracy of the information of the Synopsys DC
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and the closeness of the representation of the input vectors to an actual input signal. Each 

iteration is initialised using a number of input vectors to guarantee a simulation in a defined 

state.

'active(1)

'active(z)'active(z)

'active'active

HDL Description of the Design

Figure 4.5: General Method of Generating an Estimate Using PowerCount

As previously indicated, there is one additional file required when compared to the timing 

simulation procedure. This additional file contains the node information. This file is 

generated after the circuit is optimised by means of the Synopsys report -netlist command. 

Tests have shown that such a node file with the information of more than 3000 nodes is 

generated in under 10s on a Sun Microsystems SPARC5 workstation with 128MBytes of 

RAM. Therefore, this does not significantly slow down the design process. The greatest 

advantage of PowerCount is that the designer does not need to spend time in preparing a 

special design netlist. Furthermore, it is not necessary to leam to use another tool, because 

PowerCount exclusively uses the VS S control language to control the power simulation. All 

simulation vectors are fed into the system via the normal VHDL testbench, similar to the 

logic and timing simulations. Therefore, it is possible to use the same test vectors as used for 

the timing simulations. This has the advantage that the simulation data has to be prepared 

only once and can be used for all high-level simulations.

PowerCount stores all information in ASCII text files. This ensures that the program runs 

even on small workstations without large memory resources. Furthermore, ASCII files can be 

easy ported between software applications on all platforms and can be visually inspected 

using any standard text viewer. A user-assignable directory for the temporary files makes it 

possible to store the information locally or on a remote hard disk. PowerCount supplies the
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VSS with a 64 bit binary random number as a possible seed for further use within the VHDL 

testbench.

4.6 Generating the Estimate

To calculate the power consumption of an IC efficiently it is essential to provide the estimate 

within a short time. To provide a result within a reasonable time, a procedure for evaluating 

the quality of the estimated active capacitance is required. PowerCount uses Monte Carlo 

simulations to control the estimation. The idea underlying the Monte Carlo simulation used is 

shown in Figure 4.6. Monte Carlo simulations provide an approximate solution by using a 

sampling technique. The advantages of using Monte Carlo simulations are their 

controllability and their ability to compute an estimate with a small number of input vectors.

S t a  rt

n o
= n

y e s

n o Q u a  li ty 
m e t

y e s

End

C a l e u  l a t e  m e a n

Figure 4.6: Monte Carlo Simulation
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For this particular problem of estimating the active capacitance, Monte Carlo simulation is 

used to compute the average active capacitance using a set of iterations. The samples used to 

calculate the active node capacitance and the active capacitance are provided by the VS S. As 

illustrated in Figure 4.5, these samples are taken by iterations with a limited set of input

estimate is evaluated using a stopping criterion [Papu90]. If the deviation of the estimated 

active capacitance is within a specified limit, the stopping criterion is met and the simulation 

terminates. If the stopping criterion is not met, additional iterations are performed until it is. 

Three different methods of defining a stopping criterion are discussed in the remainder of this 
section.

4.6.1 Method One

The first feature used to create a stopping criteria is the standard deviation. The following 

equation is used to determine the standard deviation [Sieg96].

To determine the quality of the result ct must be related to . The calculation of the 

percentage error is performed as follows.

vectors instead of taking the samples in one large set. After six iterations the quality of the

C factive }

iterations
(34)

(7
• 100%est (35)C,activee

The stopping criterion derived by the standard deviation is noted as

(36)

The stopping criterion noted in (36) is met as soon as the estimated error, e „ „  is  either sr 

than or equal to the maximum error the estimate can have, as defined by the user.
error, is either smaller

4.6.2 Method Two

The next stopping criterion discussed is derived from the convergence criteria (CC) for a 

normal distributed population. As shown in [SpieSS], the sequence of jointly distributed
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random variables xi,x2,...,x„ is said to converge almost certainly or converge with probability 

one if

lim„^„x„(5) = ^(j) (37)

In this equation the theoretical actual value // is assumed to be the mean x which is calculated 

from an infinite amount o f samples.

A |ii

AH2

A|i3

-  mean=f(Di)

-  m ean=f(n2)

-  mean=f(n3)

A^i

Figure 4.7: Different Means Relying on Number o f Iterations

As seen in Figure 4.7, Aju decreases with an increasing number o f iterations, assuming ris > ri2 

> til. The larger the number of n, the narrower the confidence level [Schw98]. Assuming 

is almost equal to //, (35) can be rewritten as

/ /± A / /  = x (38)

The absolute deviation Aju can be calculated by multiplying the inaccuracy factor e h y  ^  and 

is denoted as

/2±s-ii  = x (39)

When allowing a small deviation it can be assumed that the theoretical value ^  is calculated 

with one more sample than the mean after a specified amount o f iterations. The actual 

value jj, and the mean x „ are then given as
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To formulate the stopping criterion for the Monte Carlo Simulations using the CC, the 

relative error s i  can be defined as

1 « - i  1 "

■ 100% (42)

; = J

To define a stopping criterion derived by the convergence criterion for distribution, 8 i has to 

be compared to the maximum error as defined by the user.

4.6.3 Method Three

The main problem computing a mean with a small number of samples is the possible spread 

of the samples. The student’s t-distribution is suitable for providing estimates accounting for 

the sample spread. In this case, tables containing the results of long and extensive 

computations for critical values are used to calculate the upper and lower limits of a 

convergence interval for a particular sample size. For each sample size n  the critical value, T a ,  

can be found for a specified confidence level.

A
cp(x)

d f <1

df  >1

Figure 4.8: Bell Shapes for the Student’s t Distributions

As seen in Figure 4.8, the bell shapes are related to different degrees of freedom (df). The df 

are the number of samples minus one (df = n - l ) .  The lower the degrees of fi-eedom, the 

broader the spread of the bell shape will be. On the other hand for df = oo the student’s t- 

distribution is equal to the gaussian distribution. The student’s t-distribution can be used to
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define a stopping criterion for the Monte Carlo simulations. The maximal accepted deviation, 

T„ from the mean in (41) is substituted by s o  Therefore, (38) can be rewritten as

X = ju ± £ ^  (43)

Equation (42) represents either the absolute minimum or maximum values for fj.. The 

maximal deviation sc  is related to the computed mean. In this case s c  is defined as

\  11 (44)

The mean is located outside the confidence margins as long as s c  is bigger than the right-hand 

term in (43). Equation (43) is then rewritten as

X -  jU < T  •a (45)

These absolute values have to be rewritten as relative values. Therefore, both terms are 

divided by jU.

X - j J .

/J-
(46)

£rei has to be defined as an acceptable relative error before starting the simulation. The 

stopping criterion noted in (46) is met as soon as Srei is either smaller or equal to the term o f 

the right hand side of (46).

4.6.4 Analysing the Stopping Criteria for Suitability in Power Estimation

To compute each of the three stopping criteria a different set o f variables is required. The 

following table gives an overview of the required variables.

Method Three Method One Method Two
X X

\i-

a a
Ta - -

Table 4.2; Required Values to compute the Stopping Criteria
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As seen in Table 4.2, Method Three requires the most data to calculate the stopping criterion. 

It requires x , /u, c  and Ta to define a stopping criterion. The values for a wide range o f 

confidence levels and degrees of freedom have to be stored. Then for the evaluation o f the 

estimate this table must be read. Such a file operation requires extra processing time. 

However, as will be shown in the next section, the other two methods provide similar results, 

using less time consuming methods. The stopping criterion derived by Method One needs 

three values x, fj. and cr. The most time-consuming computation o f all variables is the 

calculation o f cr. As shown in (36), cr takes the deviation o f each sample into account. Since // 

cannot be provided a priori, it is necessary to store each single sample x\ in order to subtract it 

fi*om fu. Not only is the run time required to calculate cr intensive, but the values o f Xi have to 

be stored in temporary files because of RAM limitations. Such temporary files have to be 

accessed each time a file is written to or read from. This must be repeated several times. 

Finally, all those temporary files have to be opened to recover the required values, all o f 

which takes time. Furthermore, the number of these files increases with the number o f  nodes 

and can therefore be quite large if complex systems with thousands o f nodes are to be 

simulated.

Method Two requires only x and /u. Here, it is not necessary to store each single sample 

o f Xj. Both values are simply calculated by adding the individual estimates. Bearing in mind 

that X is estimated with one iteration less then /u, only two variables are needed to store these 

values. Therefore, the run time will be faster than using one o f the other stopping criteria 

because no disk access is performed. It should be noted that all the above statements assume 

that the estimate will be provided after an equal number o f iterations regardless o f the applied 

stopping criteria.

4.7 Evaluation of the Stopping Criteria

The objective of developing PowerCount is to provide a fast power estimation tool for high- 

level circuit testing. However, the speed o f PowerCount does not only depend on its 

environment, such as computer performance or design complexity. Different stopping criteria, 

used in the Monte Carlo simulations, also influence the speed by determining the number o f 

iterations. To prove which stopping criterion is the most efficient for implementation, four 

designs are investigated for power and time consumption. Thus the time required to reach the 

desired accuracy for the mean to converge is measured. The simulations vary in their sum of
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input vectors and their stopping criteria. The stopping criteria investigated are the Student’s t- 

distribution, the Standard deviation and the Convergence criterion for distribution, as 

described in the previous section. However, although the Student’s t-distribution was 

considered as a possible stopping criterion, it was not included in this investigation because 

of its obvious limitations. The Student’s t-distribution is only applicable for simulations with 

a small number of iterations (section 4.6.3). The design complexity, the sum of input vectors 

and also the desired convergence influence such a sum of iterations. Hence the number of 

iterations cannot be pre-determined as would be required by Method Three. The investigated 

designs are

• 1 Bit Adder

• Divider by 3

• 4 Bit 64 Stage Shifter using Multiplexer

• RGB2HSI Converter

To test PowerCount four designs are to be simulated with the following parameters

• Time base: nano seconds

• Scaling factor: 0.01

• Stopping accuracy: 1%

• hicreasing sum of input vectors: 10, 50,100, 1000

• Each iteration was initialised using 50 input vectors to guarantee a simulation in a
defined state.

• Either Method One or Method Two

The time base is the basic time unit used by the VS S while the scaling factor determines how 

often per time base unit the design is checked for changes, hi this case the VSS investigates 

the design all 0.01 time base units or every lOps.

Before these four designs are thoroughly investigated the factor distinguishing the 

different designs is going to get discussed. The distinct characteristics of these designs are 

their complexities. A contributing factor to the complexity is the number of nodes. This is 

illustrated using a set of different adder circuits which vary in not only bitwidth and number 

of inputs but also in basic architecture.
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Figure 4.9: Simulation Times of Adder Structures

hi Figure 4.9 the simulation times of over thirty different adder structures are plotted. This 

figure shows how the simulation time rises with an increasing number of nodes. Although, it 

is not possible to determine the simulation time by only taking the number of nodes into 

account, it is safe to generally assume that, the greater the number of nodes, the more 

complex the design, implying that the simulation is more time intensive. It might be expected 

that the graph would be monotonically increasing in relation to the number of nodes but it is 

clear that this is not the case and is due to the different level switching activity of the various 

designs. This means that although a particular design may have more nodes than another, if 

the level of switching activity is the same in two designs then the simulation time will be 

similar and thus the graph shape is not monotonically increasing.

Figure 4.10 shows the convergence of the 1-bit full adder which was illustrated in Section 

4.1. hi this figure it can be seen that after approximately 50 input vectors the estimate is 

permanently within ±5% of that of the value after 1000 input vectors. Therefore, it was 

decided to use 100 input vectors as the default value to compute the active capacitance of one 

iteration.
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Figure 4.10: Convergence of the Simulation

Figure 4.11 shows the distribution of the active capacitance for 1000 iterations of the 1-bit 

full adder using 100 input vectors per iteration. As can be seen irom this figure the active 

capacitances of the iterations are gaussian distributed.
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Figure 4.11: Distribution of the Active Capacitance of the Full Adder

4.7.1 Small Designs

The first simulated designs are small designs with a small number of nodes (<70). These 

designs are a 1-bit Adder and constant divider which divides an 8-bit input by three. Both 

designs are simulated with 10, 50, 100 and 1000 input vectors on a SUN SparcS computer. To
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obtain reference values of the active capacitance, the designs were simulated using one 

iteration with 100000 input vectors on an Origin 2000 supercomputer^ having 64 nodes.
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Figure 4.12: Deviations Simulating Small Designs

In Figure 4.12 the deviation of the estimate of the active capacitance in relation to the 

benchmark value is shown over the sum of input vectors applied. As can be seen from this 

graph Method One as well as Method Two have similar deviations. Furthermore, it can be 

seen that the deviation drops initially. For simulations with more than 50 input vectors per 

iteration the result remains approximately constant and with less than 1.5% more than 

expectable. Also, Method Two provides a slightly better estimate. However, in order to get 

simulation it is not enough to focus solely on the deviation of the result. It is also necessary to 

consider the simulation time to achieve an efficient estimate.

adder IVfelhod Two10000

adder l\M xxl CheE 1000

- A -  dvider IVfethod Two
100

divider IVfethod One

100 1000

input vectors

Figure 4.13: Simulation Time for Small Designs

As seen in Figure 4.13, the simulation time using Method Two is always shorter than that of 

Method One. When simulating designs with a small number of input vectors, >10 and <100,

' The high-performance computer was kindly provided by CINECA, Bologna, Italy.
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the simulation time as a function of the number of input vectors, has here a minimum. To 

analyse this the number of iterations required has to be analysed.

400

300

200

100

100 1000
input vectors

Figure 4.14: Iterations to get an Estimate using the Method One Stopping Criterion

The reason for the higher simulation times for small numbers of input vectors for the standard 

deviation is shown in Figure 4.14. The greater the number of input vectors, the lower the 

number of iterations required for the Adder design to converge to a mean. It is less time 

intensive to increase the number of input vectors. Thus as the number o f input vectors 

increases the simulation becomes faster. However, the simulation is several times faster using 

Method Two. For example, the simulation time simulating the Adder structure with 50 input 

vectors and Method Two is 14 times faster. However, as seen in Figure 4.13 for more than 

100 input vectors the time required starts to increase again due to the larger amount of input 

vectors to be simulated. Therefore, it can be concluded that for small designs the optimal 

input vector size is between 100 and 50 to achieve a fast result.

4.7.2 Large Designs

The next simulated designs are larger circuits with at least 700 nodes. The designs are a 4 bit 

64 stage shifter using multiplexers (Mux) and a Converter. The multiplexer is simulated with 

10, 50, 100 and 1000 input vectors. The Converter, which is an image processor, is simulated 

With 10, 50 and 100 vectors on a SUN Sparc5 Workstation. It was not simulated with higher 

amounts of input vectors as the results of such time consuming simulations were irrelevant 

having analysed the simulation results using up to 100 input vectors. The reference values for 

the active capacitance of the two designs were obtained through a long simulation with 

100,000 input vectors for the Multiplexer and 10,000 for the Converter on an Origin 2000 

Supercomputer.
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Figure 4.15; Error Deviation Simulating Large Designs

In Figure 4.15, the deviations from the mean over the sum of input vectors are plotted. The 

graphs represent the deviations from the reference values. The deviations from the mean, 

computed with Method Two, are already smaller by simulating with 10 input vectors than 

those obtained using the standard deviation. In these designs the accuracy, which is the 

reciprocal of the deviation, increases by increasing the sum of input vectors. Also for large 

designs it can be seen that the deviation drops significantly for more than 50 input vectors. In 

order to evaluate the stopping criteria, the simulation times are investigated once again.
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Figure 4,16: Simulation Time for Large Designs

As seen in Figure 4.16, the simulation time for the standard deviation decreases by increasing 

the number of input vectors from 10 to 50. By increasing the sum of input vectors from 50 to 

100, the function course remains nearly constant before rising again for higher input vector 

sizes. This behaviour is as already described for small designs related to the number of 

iterations required to meet the stopping criterion. The simulation time using Method Two 

rises approximately linearly, with the amount of input vectors. The graph for the simulation 

time of large designs is similar to the graph for small designs (Figure 4.13). In general, the
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fe simulation times, when simulating such large devices with Method Two used as stopping
I  . . ^  .»  cnterion, are smaller than when simulating with Method One as stoppmg criterion.

^  4.7.3 Analysis of the Simulation Results

I  The objective of PowerCount is to estimate the power consumption within a reasonable time. 

I The user can influence the speed of PowerCount by choosing the number o f input vectors and 

I the desired accuracy of convergence. The more complex the design, the more time-intensive 

I  the simulation. However, in all the designs investigated, it can be seen that adequate 

r estimation time and accuracy are achieved by simulating the system with 50 input vectors and 

using Method Two as a stopping criterion. Method Two also always requires the least number 

of iterations to compute the average active capacitance. The stopping criterion derived from 

Method Two always achieves a faster result than simulation using Method One. The reasons 

for this have been discussed in section 4.7.
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Figure 4.17: Comparison of Running Times of the hivestigated Stopping Criteria

Figure 4.17 compares the time of convergence of the two stopping criterion investigated. As 

has been shown both archive similar results. However, Method Two is always faster, hi 

Figure 4.17 the Method One is set as the reference value to show the time advantage of 

Method Two in percent. Simulating a rather small design, such as the 1-bit adder with 

Method Two is 93% faster than simulating with the Method One as stopping criterion. Also, 

the Divider structure, simulated with Method Two, yields a result that is almost 70% faster 

than simulating with the other stopping criterion. The SH_MUX54 simulated with Method 

Two as stopping criterion requires 45% less simulation time than Method One. Finally the 

Converter which can be assumed to be a complex design, (> 1000 nodes), also needs 33% 

less simulation time when simulated with Method Two.
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Simulations of complex designs such as SH_MUX54 or the Converter converge after the 

minimum amount of iterations to estimate the active capacitance. Thus, the run time of the 

tool is now the only factor that determines the simulation time. As seen in equations (18) and 

(19), it is necessary to store every single computed value when simulating with Method One 

as the stopping criterion. This requires temporary files for every single node. Every single 

calculated value for each iteration has to be saved in a separate temporary file, hi the worst 

case, all the temporary files have to be examined several times in order to compute the 

stopping criterion. Finally, all the temporary files are deleted.

Calculating the stopping criterion using Method Two has an additional advantage. 

Bearing in mind (52), the mean value x and the actual value // are computed by accumulating 

the values and dividing their sum by the number of iterations; it is not necessary to generate 

additional temporary files. The value for the actual value ju  and the x  mean can be easily 

stored in two variables. This method therefore requires much less computation and storage 

performance. Therefore, it is also less time intensive. Method Two is chosen as a stopping 

criterion for Monte Carlo simulations because of its obvious advantages:

• The most accurate results are achieved although less iterations are required

• The least requirements for computation and storage performance

• The fastest stopping criterion to achieve a result in a reasonable time

• The fastest algorithm to implement

4.8 Spice Simulations

To validate the operational correctness of PowerCount, layouts of three designs were 

generated and the power consumption was determined using Spice simulations. To generate 

the layouts, the VHDL netlists of three designs were converted into Verilog netlists using X- 

HDL [XhdlOO]. The Microwind [MicrOO] layout tool was then used to generate the physical 

layout of the design and to verify the correct operation. Figure 4.18 shows the layout of the 1- 

bit full adder using the ES2 0.7|im technology adapted throughout this thesis.
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Figure 4.18: Layout of the 1-Bit Full Adder

Having laid out the circuit, a SPICE netlist was generated to perform a power analysis. Figure 

4.19 shows the current simulation of the 1-bit full adder with 1000 random input vectors 

which were applied at a frequency of 30MHz and a supply voltage of 5V. As can be seen, the 

graph converges to a value of approximately 41 )o,A after 10|j,s.
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Figure 4.19: Current Simulation of the 1-Bit Full Adder
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Table 4.3 presents the simulation results of three different designs obtained using SPICE 

simulations using 1000 random input vectors and compares it to the estimates generated by 

PowerCount. The designs simulated include the one bit full,adder used to demonstrate 

PowerCount throughout this chapter, the Approximation version and the Look-up Table used 

to compute the arctan as presented in Section 5.4.

Design SPICE 
Power Consumption

PowerCount 
Power Consumption

Error

1-Bit Full Adder 0.188mW 0.22 ImW +18%
Approximate Arctan 1.53mW 1.49mW -2.6%
Look-up Table 3.45mW 2.87mW -17%

Table 4.3: Comparison of SPICE Simulations with PowerCount

It can be seen in Table 4.3 that the errors of the designs tested indicate that the estimate is 

within 20% of that of obtained from SPICE simulations. Thus, these simulations show that 

PowerCount gives sufficient results for the design work undertaken in this thesis.

4.9 Theory of Operation

This section shows the general cycle of a power estimation using PowerCount. Figure 4.20I
illustrates the operation of the program. After starting, PowerCount checks for a valid licence. 

'I’he licences are node locked, but can be stored in a single file. This enables the use o f a 

jingle fileserver. If no valid licence is available the program terminates and prompts the user 

to contact the VLSI research group. Next a set of LTNIX system commands is created. These 

(Commands are used to start Synopsys or to generate temporary folders. Then the netlist is 

Scanned for the nodenames of the design. These nodenames are then stored in a linked list and 

iutomatically inserted into the controlfile. The controlfile is used to control the simulation of 

the design using the VSS. It is not possible to hand over a random seed into the VSS, 

fcerefore a seed of 128 bits is generated and included into the controlfile for further use in the 

VHDL testbench. This ends the initialisation process.
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Figure 4.20; Flowchart of PowerCount

Next VSS is started and a file with all events at all nodes to be monitored is generated. This 

file is called the eventfile. At the end of the simulation, the eventfile is analysed and the 

number o f transitions at each node is stored. Then, the next simulation is started and the event 

file is analysed again. This is repeated six times. After the sixth time PowerCount calculates 

the average active capacitance according to (11). Furthermore, jj. is calculated and the 

Convergence criteria is used to determine the confidence of the result. If the convergence
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constraint is met the simulation terminates. If not, the simulation continues on for one further 

iteration. After this iteration the convergence constraint is checked again. The simulation 

continues until the constraint is met or an upper limit of iterations is reached. Then the results 

of the simulations are printed. These results include a short summary with the most important 

values such as the active capacitance, the accuracy of convergence, the number of iterations 

and the time required to achieve the resuh. In addition to this short summary, a detailed 

analysis of the number of transitions at each node, as well as the physical node capacitance 

and the active node capacitance, is plotted. This enables the designer to perform a detailed 

bottleneck analysis of a design. After the results are plotted, all temporary files and directories 

are deleted and the program terminates.

4.10 Summary and Conclusions

The requirement for fast feedback to the designer has resulted in the development of 

PowerCount, a novel power estimation tool. Evaluation of existing power estimation tools 

has indicated limitations with regard availability of technologies and early verification of 

design decisions. PowerCount overcomes these limitations by incorporating not only the 

technology library information, but also the additional design information provided by the 

high-level design environment. This extra design data comprises the interconnect of the nodes 

as well as the switching activity at those nodes. Extensive usage of PowerCount has proven 

its usefulness in a variety of low-power design projects.

PowerCount has advantages over traditional power estimation tools by providing fast 

feedback to the designer. PowerCount operates as an add-on tool to the Synopsys Design 

Environment, which is the system of choice of the majority of ASIC designers. This has 

benefits for the designer because design files, previously generated for timing simulation, are 

reused by PowerCount without modification.

PowerCount operates at the VHDL netlist level. Working as an add-on tool to Synopsys it 

does not require any special libraries. It can be easily controlled via a command line interface, 

making use of standard default values of parameters such as the number of input vectors. 

PowerCount is not limited by design size. PowerCount uses the native Synopsys control 

language. Therefore, the designer does not need to leam another language to control the 

power estimation. Furthermore, PowerCount uses the same library information as used by 

Synopsys for synthesis and timing simulations. For this reason, whenever the technology
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library changes, PowerCount will automatically use these new libraries. Therefore, it is easy 

for the designer to become accustomed with this new tool in a familiar environment.

PowerCount has been tested extensively and no bugs are known. It has been developed so 

as to be error tolerant towards such errors as the absence of a netlist and access denial to the 

Synopsys Simulator (i.e. if all licenses are in use). However, if  an error occurs which 

PowerCount cannot overcome, a file is created containing error information. Using this file, 

the user can quickly determine the source of error.

The basic concept of PowerCount is based on the use of the node capacitances which 

include an estimate of the interconnect capacitance. Furthermore, PowerCount computes the 

switching activity factor for each node. To generate a fast estimate, Monte Carlo simulation 

has been incorporated into PowerCount. The advantage of Monte Carlo simulation is that it 

provides a fast result with a definable confidence interval.

Extensive benchmarking has been carried out. This has enabled the incorporation of 

default values for the desired confidence interval, the number of input vectors and the number 

of iterations. These values have been verified by the use of PowerCount in several design 

projects, hi conclusion, PowerCount has demonstrated its usefiilness to the designer, by 

providing fast power estimation at an early stage of the design cycle.

Having described the background to power consumption and the development of a novel 

power estimation tool, the remainder of this thesis focuses on the implementation of an image 

processing algorithm. For this purpose, the RGB to HSI algorithm is decomposed into two 

functional units. The next Chapter describes the implementation of Render’s algorithm for 

faster computation of hue, while Chapter 6 deals with the implementation of the saturation 

and intensity path.
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5 The Hue Algorithm

The objective of this thesis is the application of low-power design techniques at the 

algorithmic level of a design. For this purpose, Render’s algorithm of faster computation of 

hue was chosen [Kender], This algorithm provides a number of rigorous design challenges 

such as the implementation of trigonometric functions, multiplication by fixed coefficients 

and fast divisions.

This Chapter deals with the implementation of Render’s Algorithm, which is the most 

complex part of the RGB to HSI conversion. To provide a more detailed, functional analysis 

the algorithm is decomposed into a number of blocks. Low-power implementations for each 

block are proposed and evaluated. Render’s algorithm (1) is shown once again, to provide a 

basis for comparison of the implementations discussed in this Chapter.

if((R > B )an d  (G>B)) (1.1)

+ arctan
" V3 x ( G - i ? ) '  
^ G - B  + R - B ,

else if  (G > R) ( 1.2)

hue = K + arctan
' S ^ { B - G ) ^  
^ B - R  + G - R ,

else i f ( B> G) (1.3)

5X TT

3
+ arctan

else if  (R > B) (1.4)

hue = 0

else (1.5)

achromatic’
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Firstly, the partitioning of the hue algorithm is explained. Figure 5.1 presents the breakdown 

of the hue algorithm into functional blocks. These blocks contain parts of the algorithm which 

can be implemented separately with little or no effect on the power consumption of the other 

blocks in the overall structure. In the following sections, each block is described and various 

implementations are compared. The first block performs the comparisons necessary to 

determine which of the five cases of Render’s algorithm is true. The second stage calculates 

the divisor and dividend required to compute the argument of the arctan. The third stage 

performs the division. The fourth module computes the arctan and the final stage adds the 

coefficient to the result of the arctan. An additional stage for delaying control information is 

also included in the bock diagram.

Sign/Control

Shift
stage

Red sort X divider

Green Y
divisorBlue Z

X+Y-2Z

divide ARCTAN add
coef

Hue

Figure 5.1: The Breakdown of the Hue Algorithm into Components 

5.1 Comparing the Input Vectors

The first module of the hue algorithm performs the task of detecting which part of Render's 

algorithm for the faster computation of hue is true. Figure 5.2 shows the block diagram of this 

module. The control signal is not included in this figure as it varies depending on the 

implementation.

Red — ^

Green — ^

Blue

o3=max(R,G,

Sort
o1 — ^  output a

^ o2 — ^ —  output b
o3 — ^ —  output b

c o1=min(R,G,B)
o2=nnid(R,G,B)

Figure 5.2: The Block Diagram of the Comparison Module
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5.1.1 The Sorting Algoritiini

As shown in section 3.4, it is most desirable to implement designs using unsigned arithmetic. 

The key to the implementation of an unsigned version of Kender's algorithm is the 

understanding of the argument of the arctan function. The arctan function appears in the first 

three parts, (1.1), (1.2) and (1.3), of the hue algorithm and can generally be written as follows:

arctan
V

V 3 x ( Z - 7 ) '
X - Z + Y - Z

(47)

In this equation Z represents the smallest of the three input signals. Therefore, it can be seen 

that the argument of the arctan function only becomes negative if  the term (X-Y) becomes 

negative. Since the arctan function is an odd function, the behaviour of the function can also 

be described as:

arctan(x) = -arctanf-x) (48)

trherefore, the sign can be excluded from the subtraction of X  and Y and stored until the 

arctan function is computed. It is then used as the sign of the result of the computation o f the 

Irctan. In traditional designs, the determination of the sign is achieved by the use of a sign- 

inagnitude subtractor (Figure 5.3). As can be seen from this discussion, the operation (X-Y) 

j)lays a vital part in the design decision of how to implement the sorting algorithm. Therefore, 

|;he dividend of the argument of the arctan will be included in this section.
i
I The first implementation of this stage uses a sign magnitude adder. These adders are 

traditionally built using a comparator which is connected to the input of an adder. This, 

fiowever, has the disadvantage that all the input bit signals have to be compared in order to 

jdetermine the larger number. Then the smaller number is subtracted from the larger one. 

jTherefore, a different approach is presented in this section.

The first two inputs, R and G, are subtracted using a two's complement subtractor. Now 

|only the MSB has to be checked. If it is 0 the difference is positive and no further 

computation is required. If the MSB is 1 the resuh is negative. Now it is inverted and a ONE 

IS added to give the positive equivalent. This procedure has the advantage that only one bit 

has to be checked. Furthermore, only for half of the output range is an additional computation 

•s required. Figure 5.3 shows the principle approach to this implementation.
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Red sort V sm sign
Green w subtractor

X-Y
Blue z

Z

Figure 5.3: The Traditional Implementation Performing the Sign Detection

A different method is shown in Figure 5.4. Here two comparison stages sort the three input 

words according to their magnitude and then subtract the second largest signal from the 

largest one.

__________________sign

Red sort 1 V sort 2 X subtractor

Green w Y
Blue z

  I Z

Figure 5.4: Extracting the Sign using the Comparators

This has the advantage that an ordinary unsigned subtractor can be used instead of a larger 

and more complex sign magnitude subtractor. A further advantage is that the sign is extracted 

at the earliest possible stage and therefore it is possible to reduce the signal bus size by one 

bit. This results in a smaller subtractor in the next stage. As the traditional approach requires a 

smaller comparator and the second proposed method requires a smaller subtraction stage, 

both implementations were considered. The results of both circuits are shown in Table 5.1.

Area Timing Active Capacitance

Sorting 0.391mm^ 16ns 12.4pF

S-M Subtractor 0.404 mm^ 16ns 13.3pF

Table 5.1: Key Features of the Comparison Module

As seen in Table 5.1 the Sorting algorithm is the preferable implementation as the active 

Capacitance is 7.3% smaller than that of the sign magnitude subtractor.

If one of the last two cases of Render's algorithm is true, then the value of hue needs not 

to be computed because it is already determined. Therefore, only the control bus may change
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value. In this case, stages which are not required in the saturation and intensity algorithms are 

disabled. This ensures that only a minimum number of transactions are performed.

5.1.2 The Encoder Block

The second part of the Sort block is the encoder block. The function of this block is to 

determine which of the 5 cases of Render’s algorithm is to be applied to the data. The output 

of this block is then send to the control bus. The order in which the 5 different cases are 

examined is based on the probabilities of occurrence associated with them. The calculation of 

these probabilities is founded on the following reasoning: Knowing that each of the three 

input signals R,G,B has 256 possible values and assuming that every input value has the same 

probability [Schw99], then the probability that a particular input value appears is

P fix e d  input value = 1/256 = 0.391 % (49)

An achromatic value appears if all three input values are equal to each other. There are 256

different possibilities leading to the achromatic case.

Pease 5 PAchromatic 256 * Pfixed input value *  Pfixed input value *  Pfixed input value ~ 0.00153 % (50)

The probability of any of the 4 remaining Kender-cases is therefore

P c a s e  1 to 4  ~  P c a s e  0 ; 1/3 *71; 7t; 5/3*71 ~  1 "  P A c h r o m a t ic  ~  99.99 % (51)

For the cases 1 to 4 the following rules are valid

Condition Kender case

Green > Red and Blue > Red 2

Blue > Green and Red > Green 3

Red > Blue and Green > Blue 1 or 4

Table 5.2; Conditions for Kendercases 1 to 4 

The three conditions in the next equation have the same probabilities:

P case2 =  Pcase 3 =  P c a se  1 +  P case4  = Pease 1 to4 / 3 = 33.3 % (52)
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If the third condition (Red > Blue and Green > Blue) is true, Kender-case 4 only appears if the 

value of green is equal to the value of blue.

P c r e e n  = B lue = P k e d  =  B lue = P R e d  =  G reen = 256 * P f ix e d  in p u t v a lu e  * P f ix e d  in p u t v a lu e  = 0.391 % (53)

P R e d  #  B lue =  1 '  PRed =  B lue =  99.6 % (54)

PRed >B lue = (PRed *■ B lue / 2) = 49.8 % (55)

P c a s e 4  =  P R e d  >B lue *  Poreen =  B lue =  0.195 % (56)

Pcase 1 ~ Pcase 1 Pcase 4 ~ Pcase 4  “  33.1 % (57)

In Table 5.3, the probabilities of the individual Kender cases are shown;

Kender case Probability

1 «33.1 %

2 « 33.3 %

3 «33.3%

4 « 0.195 %

5 « 0.0015 %

Table 5.3: Probabilities of the Kender-cases

As seen in Table 5.3, the probabilities for the first three cases are approximately equal to each 

Other. The last two cases have a significantly lower probability. This leads to the conclusion 

that the Kender-cases should be investigated directly in the order of appearance in (1). 

Furthermore, analysis has shown that the transmission of a positive sign has the same 

probability as the case that a negative sign is transmitted [Schw99].

5.2 Computing the Argument of the Arctan

This block computes the dividend and divisor of the argument of the arctan. Because o f this, 

the block is split into two sections. The first section computes the dividend of the argument of 

the arctan according to equation (58) and the second deals with the computing of the divisor 

equation (59) o f the argument of the arctan. The computing of the dividend is closely linked 

to the implementation of the comparator structure. Because of this, the discussion of this topic
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has been included in the previous section. However, due to implementation concerns, the 

actual implementation was placed in the same stage as the computation of the divider of the 

arctan. Therefore, this is included in the block diagram (Figure 5.5) of this module without 

further discussion, and this section focuses on the implementation o f the divisor of the 

argument of the arctan. Figure 5.5 shows the block diagram of this module.

A rg u m en t

input a - 4 ^ a
o1 ou tp u t 1

input b 8/ b o 2 9/ OUtDUt 2/

input 0 c o 1 = a -b
o 2 = a -c + a -c

Figure 5.5: The Block Diagram for Computation the Argument o f the Arctan

The divisor of the argument of the arctan requires, if implemented directly as described in 

equation (47), three modules, namely one adder and two subtractors.

divisor. arctan=(X-Z)+(Y-Z) (5 8)

Such an equation can be implemented using a tree structure. This can be achieved by first 

computing the two sub-terms (X-Z) and (Y-Z). Then the addition of the two sub-terms is

performed. This structure is balanced and has therefore a low glitching activity. However, the

divisor can also be expressed in a general form as follows

divisor.arctan=X+Y-2Z (59)

This equation can be implemented with only two combinatorial modules. The multiplication 

by two is a simple shift operation and does not require any logic elements. Table 5.5 presents 

the key measures of both implementations of the computation of the divider of the argument 

of the arctan.

Area/mm^ Number of 
Nets

Timing/ns Active
Capacitance/pF

Tree Implementation 0.13 106 13.64 1.75

Small Implementation 0.098 85 13.41 4.68

Table 5.4: Key Features of the Computation of the Divisor for the Arctan
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Usually, larger structures have higher power consumption than smaller designs. However, as 

seen in Table 5.4, structures such as adders or subtractors do have a large glitching activity. 

As already described previously in Chapter 3 the glitching activity can be reduced by 

balancing all paths of a module. The tree structure used is such a fully balanced design. This 

is the reason why in this case the larger design has a lower active capacitance. Therefore, for 

the hue implementation the tree structure is going to be used, despite the fact that it is 32% 

larger than the smaller implementation based on equation (59).

53 The Divider Structure

The next module in the hue path is a divider. This divider computes the argument o f the 

arctan. Figure 5.6 shows the block diagram of the divider module indicating the input and 

output ports.

D iv id er

divisor — ^— a
0 V niitpiit

dividend— ^ — b

o = a /b

Figure 5.6: The Block Diagram of the Divider Module

As seen in (1), the divisor contains a multiplication by V3 . A discussion of this factor will 

Hot be included in this section as this is a scaling factor for the arctan function. Therefore, this 

multiplication will be considered in detail in the next section, which describes the 

implementation of the arctan function. Before the actual implementation of the divider is 

described, the general background of a binary divider will be explained.

When dividing binary numbers, the same principle applies as when dividing decimal 

numbers. First the dividend is compared with the divisor. If the dividend is smaller than the 

divisor, the MSB is zero. Then the dividend is shifted by one bit to the left and the 

Comparison is performed again to compute the (MSB-1). If the divisor is larger than the 

dividend, the dividend is subtracted from the divisor and the corresponding output bit is set to 

one. Then the resulting value is shifted. Therefore, each divider stage has to contain a 

comparator as well as a subtractor. Due to this highly repetitive procedure, dividers are often 

implemented in a loop procedure in order to minimise the area. However, as outlined
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previously, the design has specification requirements, regarding the pixel throughput, of 

30Mpixels per second. This necessitates the use of a combinational structure. Furthermore, 

such structures have the disadvantage that they compute the result each time even if the input 

does not change. In order to avoid these power consuming transitions these dividers require 

additional logic to detect equal input signals and so disable the block.

If the input range of the arctan given by (47) is investigated, it can be shown that to fulfil 

the condition that Z is either the smallest value of the three variables or jointly the smallest

value with Y, then the value of the argument prior to multiplication by Vs must be less than 

or equal to one, i.e.

X - Y
if  ^  1

X  + Y — 1Z
then X - Y < X  + Y - 2 Z  (60)
rearanging gives Z <Y

By introducing a detector into the device it is possible to use an intelligent divider 

structure. Such a divider can disable all following stages of the divider if  a one is detected at 

the input. Taking this into account, the structure of the next stage connected to the divider can 

also make use of this by checking first if the input is one. This can be done by an iterative 

investigation from the most significant bit down to the least significant bit. One o f the 

consequences of such a design is the implementation of a pipeline stage after the first 

computation block. This increases the area and overall capacitance. However, a reduced 

glitching in the remaining stages reduces the power consumption of the additional logic. In 

Table 5.5, the best standard implementation is compared with three “intelligent” designs. 

These three designs take into account that the maximum input value is one. The only 

difference between them is the method of detection of a one. In design 1, a comparison is 

performed to determine whether or not the divisor is larger or equal to the dividend, in order 

to detect a one. During normal operation the divisor can be only as large as the dividend. 

Therefore, this comparison is purely a safety measure. Design 2 uses a comparison to detect 

whether or not the dividend is smaller than the divisor. This gives the same safety as design 1 

but can be synthesised using less logic. The last design implemented (design 3) uses a 

comparison to determine if  the divisor is equal to the dividend. This is also a simple 

Operation, requiring approximately the same amount of logic as the smaller comparison. 

However, such an implementation does not have the safety margins the two previous designs
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had. But under normal operation conditions this will not result in any problems, as shown 

during simulations.

Area/mm^ Number of 
Nets

Timing/ns Active
Capacitance/pF

Best Standard 0.431 289 13.10 32.09

Intelligent Design 1 0.852 483 12.55 31.84

InteUigent Design 2 0.425 276 18.80 31.85

Intelligent Design 3 0.422 276 10.63 29.78

Table 5.5: Key Features of an Intelligent Divider Module

As seen in Table 5.5, the difference between all implementations with respect to the power 

consumption is small. However, the area and timing comparison shows that design 3 has the 

best overall performance as well as the lowest power consumption. Therefore, this design is 

used in the overall implementation.

5.4 The Arctan

The arctan function is an odd function. This also halves the range of the arctan function which 

has to be calculated. A problem encountered in computing the arctan function is the 

representation of the factor V3 which is present in all arctan terms of the hue algorithm. Since 

it is not possible to represent this value with an accuracy of 100%, an implementation would 

either contain a significant error or would be unreasonably large. Large busses not only have 

the drawback of higher switching but also lead to longer interconnection lengths and larger 

functional units. This is because the subsequent units have to compute more bits. For these 

teasons alternative implementations of the arctan function were investigated. This section 

describes four different possibilities for implementing the mathematical function arctan in 

VLSI. Figure 5.7 shows the block diagram of the module for computing the arctan.
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outputArctan

Figure 5.7: Block diagram of the Arctan

Before presenting the implementation of the arctan function, the numerical relationship 

between the input argument code and the output function code is established. The input 

argument of all versions has a bitwidth of 7 bits, where the most significant bit corresponds to 

a decimal value of 1. The six least significant bits represent the digits after the decimal point. 

As has been shown in the previous section, the maximum input into this stage is one. 

Therefore, each changing bit-position within the six least significant bits corresponds to a 

difference of the input value of J_ = 0.015625. For example, a binary input value of 1000111

corresponds to 1.109375 decimal. The output of the block has a bitwidth of 6 bits. The output 

function range is limited to 60° because of the three equivalent sections describing the hue 

space, as shown in Figure 5.8.

Green Yellow
60°120°

84d

Cyan 180°
360°Grey

21 Od

300°
MagentaBlue

Figure 5.8; The Hue Circle

In Figure 5.8 various colours and their corresponding angles are shown on the outer perimeter 

Of the hue circle. Mside the circle the decimal values for an output range of 8-bits are shown.
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As can be seen an angle of 60° or l.;j- corresponds to a decimal value of 42. This results in a
3

resolution of hue of 1.43 degrees ( ^ )  for every step. An example illustrates this idea. The
42

binary number 100011 is 35 decimal, which would result in an angle o f 50° (= 35-1.4286 ). 

With 6 output bits, it is possible to get a resolution of 64 (= 2®), but the output cannot exceed 

74°, because of the restriction of the input definition. Therefore, the highest output value is 52

1.4286

5.4.1 The CORDIC Algorithm

The COrdinate Rotation Digital Computer (CORDIC) algorithm is traditionally used for 

implementing trigonometric functions in hardware. Voider first introduced the CORDIC 

Algorithm in 1959 [Vold59]. This algorithm uses only shift steps and addition operations to 

calculate most mathematical functions such as multiplication, division, addition, subtraction 

and trigonometric operations. The basic idea of CORDIC is to take a vector, given by (x,y) or 

(x,z), and drive it towards zero using a series of additions and subtractions steps. The steps 

required to drive the vector to zero correspond to the result of a mathematical function. 

Voider’s CORDIC algorithm uses three variables (x, y, z) and is based upon the equations 

(61).

y>i+\ ~yn  (61)
«̂+i + i/„arctan2“"

fci all implementations of (61), the values for arctan 2'" are precomputed and stored where n is 

the index of the iteration (0,1, 2, 3,.... N). Thus, this set of equations is repeatedly executed N 

times until the result converges to the required accuracy. The term is chosen to drive either 

y or z closer towards zero and can assume a value of either +1 or -1. The CORDIC algorithm 

Can operate in two modes depending on the mathematical function required. These are known 

as the vectoring mode (VM) and the rotation mode (RM). For «^co this leads to the results 

summarised in Figure 5,9. As can be seen in this figure the arctan function is part of the VM 

and therefore only this mode will be discussed in the remainder of this section.
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Figure 5.9: The Rotation and the Vectoring Mode of the CORDIC Algorithm

In the VM, the co-ordinate components of a vector (x,z) are fed into the CORDIC algorithm 

and the magnitude and angular argument of the original vector are computed. The value of d„ 

in (61) is then chosen to drive y  toward zero. If y„ is greater than zero, then d„=+l and 

conversely, i f  yi„ is less than zero, the value of dn will be -1. If >> is zero, the result will be 

applied directly to the output. To calculate the arctan(y), the input variables have to be set to 

Xin = I, Zi„= 0 and yi„ will then become the argument of the arctan. By way of an example, 

taking =1.6, the computation of arctan(1.6) is illustrated in Figure 5.10. For clarity only the 

first three iteration steps are included in the diagram, however the whole computation is 

shown on the right hand side of the figure, and convergence to an accuracy of better than one 

degree is achieved after 8 iterations, producing the desired result of 58°.

Start

Herat. Computation Result 
________ X______ y z accuracy
Start: 1 1.60 0
#1 2.6 0.60 oLO ±45°
#2 2.9 -0.70 71.6° ±26.56'
#3 3.07 0.025 57.5° +14.04'
#4 3.08 -0.359 64.6° ± 7.13'
#5 3.10 -0.167 61.1° ± 3.58'
# 6 3.10 -0.070 59.3° ± 1.79'
#7 3.10 -0.021 58.4° ± 0.90'
#8 3.10 0.003 57.9° ± 0.45'
#9 3.10 0.001 58.0° ± 0.22

Figure 5.10: Computation of the Arctan using the CORDIC Technique

It is necessary that the angular increments of the vector rotation are computed in a decreasing 

order, e.g. for a range of ± n l l ,  the magnitude of the first rotation step is ±Tt/4. Therefore, the 

value of is driven closer to zero with each rotation step.

Figure 5.11 shows a flowchart of the VM. In the first step the shifted values of x and y  are 

stored in b and c. Then, an angle is either added or subtracted fi'om the input depending on the
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previous value of;;. This is repeated until 7  =  0. The result is  then applied to the output. 

Because the CORDIC algorithm is designed to perform a variety o f  mathematical functions, it 

is used in most pocket calculators and mathematical co-processors. However, as w ill be 

shown, individual functions can be performed more efficiently using alternative 

implementations.

i n p u t

y =  i n p u t

X ~  X ^  c

y  =  y  - b  

2 =  z +  a rc ta n  2 " ”

o u t p u t

no

X =z X — C

y  =  y  +  b  

z  — z  — a rc ta n  2

Figure 5.11; Flowchart for the Vectoring Mode

The arctan implementation using the CORDIC algorithm computes the arctan o f  an input with 

7 bits and presents the result with 6 bits at the output. This version is clock-controlled and 

handles the input vector as a positive number (there is no sign bit). The input is normalised as 

the argument o f  the division o f the variables is multiplied with V3 . This means that the 

Output then shows the result o f the arctan(V3 The maximum input value is

1111111, which corresponds to 1.984375. This restricts the output to a value o f  74° (= arctan 

(V3 1.984375)). However, as the highest input value is one the maximum output value is 60°.

The design consists o f 10 combinatorial stages and 11 pipeline stages. The input value 

will be applied to the first latch. With every positive clock event, the flip-flop transmits its
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input value to the follow ing stage. This ensures that there w ill be no new input value during 

the calculation process. The block diagram o f the complete design is shown in  Figure 5.12.

LATCH LATCHCaLC LATCHSHIFT CALC S H in

_ .1̂ ,.

Figure 5.12: The Structure o f the CORDIC Version

The follow ing figures show the block diagrams o f the modules perform ing the sh ift operation 

and the calculations. Figure 5.13 shows the module performing the calculations.

X =  X +  c

z = z + angley >= 0?
X =  X -  0

angle z = z - angle

Figure 5.13; The Calculation Stage

The shifted values o f ;c and y  w ill be used by the calculation stage as b and c. The number o f 

shifted bits w ill be defined by the apphed value o f n as shown in Figure 5.14.

12.
b = X 2'" 12/ K12. /

y /
c = y ■ 2'"4./

Figure 5.14: The Shift Stage

In stage 0, the input range o f 7 bits w ill be sign-extended to 12 bits. The most significant b it 

represents the sign, the next b it is used as an overflow, 7 bits for the input and 3 bits as the 

least significant bits. The sign b it allows it to calculate positive and negative results. W ith 2 

llits  in stage 9 it is possible to get a value o f b which is not equal to 0, when the x  value is 

Sjhifted by 9 b it to the right.
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The binary code for the x  value in stage 0 is chosen to be 000100100111 because of the 

final equation for z from the CORDIC Algorithm, which will be explained in the following 

paragraph.

The final expression for of z is

z = arctan(—) (62)
X

Because of the normalised input, y  is divided by x  in the hue algorithm. In this CORDIC

Version, the input will be multiplied internally with a factor of Vs . The new equation 

becomes

/3 •z = arctan (----- — ), (63)
a :

1 ■ I • Vwhere —  is a constant, as the input to the arctan module is already the result o f —. 

Therefore, the value of x is 1.

■ z = arctan {^J3 ■ y )  (64)

To implement this constant, the factor will be represented by 0.57735 (= - ^ ) .  This number
V3

Will be described with 10 bits. The value of one bit step is 0.000977 (2'^°). By dividing the 

lonstant value by the step value, the decimal code will be the result 591. The number 591 

jepresented in binary code is 000100100111.

In stage 0 it is not necessary to implement a shift operation because here the values of b 

:^nd c are equal to the value of x and y. However, there must be a process in stage 0 which 

.^^creases the input value received from the first latch to achieve the internal bitwidth. This is 

■performed by adding 2 bits before and 3 bits after the binary code for the value of y. Every 

ge contains the binary code for the fixed angle, which will be applied to the calculation 

#tage. This fixed angle will be added or subtracted to the previous value of z. Also, the stages 

;»ontain the factor which decides how many times the x and y  value will be shifted in the shift 

®tage. The results of the shift stage are returned as b and c. The last latch has only to process 

he value of z, which is 12 bits wide. The use of 12 bits is necessary, because of the inclusion 

f 10 stages. In this lookup table, the fixed angle for stage 0 needs 10 bits plus 2 bits for the



The Hue Algorithm 87

sign. It also uses a bit that ensures that no overflow occurs. Bits 9 down to 4 will be 

transferred to the output with the next positive clock event.

As described in this section, the bitwidth of x, y  and z  as well as the number of stages 

have been chosen so that the simulation has a result corresponding to the next possible value. 

This value has a smaller deviation. Also in this configuration the order o f output numbers will 

decrease monotonically without using a higher number than used before, when the input will 

be counted down from 1111111 down to 0. The result of this implementation is calculated 

after 10 clock cycles.

As previously described, the values of the angles used for the calculation of z  must be 

precalculated and stored. For these precomputed values, decimal 42 corresponds to an angle 

of 60°. The internal bitwidth of z is 12 bits as described previously. Therefore, the binary 

code for an angle of 60° can be defined by 42 2  ̂ (4 extra bits), which is 672 decimal. By 

dividing 60° by 672, the result is a step value of 0.089286°. The code for the fixed angle will 

be calculated by dividing the fixed angle by the calculated bit value. After this, the decimal 

result is transferred into binary code. The table of the fixed angles used in the different stages 

is shown in Table 5.6.

Fixed angle Binary code Stage number

Arctan 2® 45 000111111000 0

Arctan 2“' 26.565 000100101010 1

Arctan 2'^ 14.036 000010011101 2

Arctan 2'^ 7.125 000001010000 3

Arctan 2'^ 3.576 000000100111 4

Arctan 2'^ 1.7899 000000010100 5

Arctan 2'^ 0.8952 000000001010 6

Arctan 2'^ 0.4476 000000000101 7

Arctan 2'* 0.2238 000000000011 8

Table 5.6: Table of the Fixed Angles for the CORDIC Version
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5.4.2 The Lookup Table

The second proposed technique to implement the arctan function is the use of a Look-Up 

Table (LUT). LUT’s are simple Read Only Memory (ROM) storing devices. They contain 

only one set of data, in this case one number for each input address. These numbers represent 

the result of the process and the result has to be calculated for each possible input value 

before implementing the LUT. LUT's are very fast compared to an algorithmic 

implementation, as all possible output values are already calculated. Traditionally, LUT's are 

used in high-speed applications where other implementations would be too slow. But they 

will also prove to be very well suited for use in low-power applications because no dynamic 

power is consumed after the address bits are applied.

Unfortunately LUT's also have disadvantages. For most applications they are larger than 

the normal algorithmic implementation due to the fact that all possible output values have to 

be stored. A simple example should illustrate this. A simple 8 by 8 bit multiplier requires 

65536 address spaces, each containing 16 bits and this would result in a memory of more than 

1.5 Mbits. For this reason LUT's can only be used for applications with a small number of 

addresses and a limited width of the output data. This excludes most computations.

Normal memory devices consume large amounts of power due to precharging. Therefore, 

special circuits as presented in [Athas94] can be used in order to reduce the power up to 75%, 

depending on the minimal allowable swing voltage at the bitlines.

Because today's digital RGB standard uses a quantisation of the input signal into 8 

unsigned bits for each colour, the hue output is chosen to also have 8 valid bits which results 

in a possible output range of 0 to 255. Due to Render's algorithm for the computation of hue, 

one number has to be reserved for indicating an achromatic pixel. This leaves a possible 

range of 254 for describing the hue space. The algorithm splits the output range into three 

separate units, each of the same range (Figure 1.1). Therefore, the output range is split into 

three parts, each containing 84 values. This gives a total of 252 plus two values for the 

singularities if  hue is 360° or achromatic. Because it is not possible to use two values, the 

dynamic range of hue is reduced by 0.68%.

To determine the necessary number of addresses and output bits for the LUT, Render's 

algorithm has to be investigated once again. The first three sorting terms of the hue algorithm, 

(1-1)(1.2)(1.3), ensure that the hue space is unique for all three cases and that each of the 

ranges spread from -60° to +60° are added to a coefficient depending of the case chosen. This
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results in an integer range of 84 values when transferred to the digital hue space. Because the 

arctan is an odd function the number of values can be reduced by a factor of two since only 

the positive (or negative) values have to be stored. Therefore, 42 values require an address 

bus of 6 bits. The unused values could be replaced by don't care terms, which would result in 

a smaller circuit. It is also possible to use these values to provide sufficient accuracy and also 

to implement the necessary rounding by storing the previously rounded result for each 

address.

In (63) the maximum value of the argument of the function is Vs . Since the factor V3 was 

only needed to fulfil the requirements of the computation of the arctan function, it can now be 

replaced by the maximum number of addresses contained in the LUT. This replacement by an 

integer number guarantees not only the smallest possible bus, but also a minimum amount of 

switching activity on the bus without an additional error. The input bitwidth is 7 bits wide, 

and the output will be represented with 6 bits. The precalculated output value has been chosen 

so that the input value appeared to be multiplied with S  ■

output = max .output ■ arctan S { x - y )
X  + Y - 2 Z

(65)

^.4.3 The Modified Lookup Table

This design is based on the same idea as the LUT described in the previous section. The only 

difference is that the first 22 output values are not precalculated and stored. The values of the 

input for this range will be assigned directly to the output for input values from 0000000 to 

OOlOl 10. This is possible because of equation (66).

arctan(;c)«x ;x<0.5 (66)

With 7 bits at the input and 6 bits at the output, the difference in the resolution is 1.5957. This 

tvill be balanced with the factor Vs (1.732) at the input. Therefore, the direct assigimient fi-om 

tie  input to the output is valid. For example, an input value of 0011011 corresponds to a 

talue of 0.1719 decimal. Multiplied with the factor Vs, the value becomes 0.2977. This 

fesults in an angle of 16.58° for the arctan of 0.2977. With the definition of the output (60° 

Corresponds to 42 decimal) the output value is 12 decimal. This corresponds to the binary

^ode 1100 (j_6-58 -42y  implementation technique has the advantage over the first LUT
60°
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that the number of stored values can be reduced by a factor of 37%. This was achieved by 

introducing a comparator into the circuit. Therefore, the additional capacitance of the 

comparator has to be balanced against the smaller memory device.

5.4.4 Approximating the Arctan

The approximating of the arctan is another possibility for implementing the arctan into VLSI. 

The idea is to divide the input range into different parts and describe these sections separately 

with simple functions. In this case it was possible to split the arctan into four parts and 

describe them using linear approximations. The input values range from 0 to 1.98438 using a 

quantisation of 0.015625. The output is defined so that 60° corresponds to a decimal value 

42. The Approximate Version is divided into four sections as shown in Figure 5.15.

Figure 5.15 The four Sections of the Approximate Version 

Part I based on the fact that for small input values the equation

arctan (x)«x (67)

is valid. In this case the result appears at the output, because of the balance between the factor 

^3 and the condition that 60° corresponds to 42 decimal. Therefore, the same binary code 

appears at the output with factor 1.596 depending on the different resolutions at the input and 

output.

Parts II to rV are based on simple linear equations. All equations use a constant factor, 

which is a multiple of 2'". This factor is multiplied by the input value and a constant is added. 

Therefore, it is easy to implement this equation in hardware by using shift options and one 

addition. The equations for the different sections of the algorithm are shown below and are
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I  only optimised for this particular input range and the function arctan ( S » x )  with the 

^  additional condition that the result appears in the form that was described previously.

I. 0 ; 0.39063 arctan (Vs x) = X (68)

n. 0.40625 : 0.84375 arctan (V3-x) = 2 - 'x  + 0.31 (69)

III. 0.84938 : 1.25 arctan (Vs-x) = 2'^ X + 0.65 (70)

IV. 1.26563 -:1.984375 arctan (V3-x) = X + 0.9 (71)

This particular approximation was optimised for the implementation into hardware for low- 

I power applications. As can be seen, the last 3 parts follow the same idea that the input signal 

I is multiplied by a factor 2‘". This operation can be performed using only shift operations, 

I which consume little power. Then the result is added to a constant. Therefore, only one 

I  comparator and one adder are needed to perform the computation. Figure 5.16 shows the 

characteristic o f the approximate version in comparison with the original function arctan, 

including the effects o f the finite word length.

Figure 5.16: Characteristic o f the Approximate Version and the Arctan

•̂4.5 Features of the Different Implementation of the Arctan

Table 5.7 shows the characteristics o f the different solutions, representing the most important 

properties o f each implementation.
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Version Number 
of nodes

Timing/ns Active
Capacitance/pF

Total area/ 
mm^

CORDIC 1010 9 70.1 2.69

Lookup Table 140 2 3.82 0.187

Modified LUT 90 2 2.95 0.126

Approximate 69 2 1.99 0.100

Table 5.7: Characteristics of the Different Implementations

Another important point in a comparison of the four implementations is the error deviation. 

Firstly the absolute error is presented. Then the errors are presented in degrees. This makes a 

comparison of the different functions and their quality easier to perform.

Absolute Deviations

The Lookup Table is the version which has an optimised error deviation. Every single 

precalculated output value has been chosen to have the least deviation. The accuracy is 

presented in absolute values in Figure 5.17. Here it can be seen that at no point a deviation of 

more than 0.8 degree occurs.

deviation 
In degrees

2

1 ,5  -

1 H

0 .5  •
o o »  „  o  0^ 0^ o

0 °  o  =o

■0.5 • 

■1 -

D ‘' o '  ° 0 °  O q ' o ' 

^ 0  0 °  ° o o ° °  ° ° °

input value

-1 .5  n 

-2  -

Figure 5.17; Absolute Deviation of the LUT

Next the modified LUT is presented in Figure 5.18. Here the only difference to the LUT in 

Figure 5.17 is that for small input values the input is directly connected to the output. This 

results in a slightly higher deviation for the lower input range. However, the maximum 

deviation is still within 0.8 degrees.
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Input value
0 3

Figure 5.18: Absolute Deviation of the Modified LUT

Figure 5.19 shows that the maximum deviation of the CORDIC algorithm is 1.2 degrees. 

Therefore, the CORDIC algorithm is not as accurate as the LUT.

In degrees

0.5

o 1c6•0.5

Figure 5.19: Absolute Deviation of the CORDIC Algorithm

I As seen in Figure 5.20 the maximum error of the Approximation Algorithm is 2 degrees. This 

■ is at least 0.8 degrees higher than for every other implementation. Therefore, this algorithm 

I was investigated using real image data. The results in Chapter 7 confirmed that such an error 

does not give a visible error.

I In degi

0.5

input valuef,5

Figure 5.20; Absolute Deviation of the Approximation Algorithm

The results presented show that the look up tables have the smallest error deviation. This was 

also expected as in this case the results of the axctan are stored m the best possible manner. 

Therefore, the LUT can be seen as the benchmark for the other implementations. To enable a 

better comparison, the errors are presented in the next section as percentages.
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Percentage Error

The four implementations of the arctan are again presented. However, now the percentage 

error compared to the theoretical value is given. Figure 5.21 shows the error deviation of the 

LUT in degree. Here it can be seen that the error does not exceed +4% and -8 /o respectively. 

Because the LUT uses the most accurate information these values can be seen as the standard 

against which the other designs may be measured.

Figure 5.21; Error Deviation of the LUT

In comparison to the Lookup Table, the Modified LUT version has just 6 values, which 

deviate from the theoretical possible values of an implementation with the given output 

ranges. This is due to the direct assignment for small input values. There errors however 

increase the positive error range to nearly 6%.

in percent

Input value

Figure 5.22: Error Deviation of the Modified LUT

The CORDIC algorithm achieves a good result in comparison to the LUT, which has the least 

error deviation. As seen in Figure 5.23, most of the output values have at most a deviation of 

i2%. Furthermore, the error may be further reduced by using more intemal bits.
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Figure 5.23: Error Deviation of the CORDIC Algorithm

Figure 5.24 shows the behaviour of the approximation algorithm. The largest deviation of the
i
a  output value, when compared to the theoretical values, occurs at the transition of the different 

^  equations. The highest errors occur at the transition points of the equations.

Figure 5.24: Error Deviation of the Approximation Algorithm

, If the error deviation of the Approximation algorithm is compared with the error deviation of 

the modified LUT, it can be seen that the maximum deviation of 8% is also never exceeded.

■ Because this looks like a large error the algorithms were investigated using images. It has 

; been shovm, however, that these errors are not visible in a transformed image.

Next, the power consumption of the different implementations of the arctan function is 

: compared. Figure 5.25 shows the power consumption for the four different solutions at 

lOMHz.
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Figure 5.25: The Power Consumption of the Arctan Implementations

hi comparison to the Lookup Table, the Modified Lookup Table and the Approximate 

Version, the CORDIC Version requires approximately 25 times more power. The Lookup 

Table needs 5.5%, the Modified Lookup Table needs 4.3% and the Approximate Version only 

2.8% of the power required by the design using the CORDIC algorithm. Therefore, in this 

case the CORDIC Version is ruled out for implementation. The Modified Lookup Table 

, requires 78.5% of the power which is necessary for the normal Lookup Table. The reason for 

; this is that the first 23 of the 128 input values (from 0000000 to 0010110) will be assigned 

directly to the output. Theoretically, with the Modified Lookup Table a saving of 18% is 

possible. However, the Synopsys Design Compiler optimised this modified version in such a 

way that there is a saving of 21.5%. The Approximate Version needs only 66.3%> of the power 

i of the implementation of the Lookup Table and therefore, this version is the optimum with 

i respect to power consumption.

Area is in many designs also a constraint as it determines the fabrication cost. Figure 5.26 

shows the required area in mm^ for the four implemented versions of the arctan.
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CO RDIC Algorithm

0.187
Lookup T able

0.126Lookup Table modified

A pproxim ate Version

0.5 2.5

Required Area / mm^

Figure 5.26: The Required Area

I The area requirements behave very similarly to the requirements of the power consumption. 

I Usually, the more area required the more power is consumed. The CORDIC Version requires 

I approximately 25 times more area than the other three versions. The Lookup Table needs 7%,
'i

' the Modified Lookup Table needs 4.7% and the Approximate Version needs only 3.7%, when 

; compared to the power required of the CORDIC implementation. The version which uses the 

f CORDIC Algorithm is a very large design compared with the other three solutions. Thus, it is 

: not practical to implement it into a microchip. The Modified Lookup Table needs less area 

than the normal Lookup Table does. Similarly to the power consumption, the best result with 

' respect to the required area will be produced by the Approximate Version. This version needs 

53.5% of the area required by the Lookup Table and 79.4% of the area required by the 

; Modified Lookup Table.

The time which a design needs to compute the arctan is shown in Figure 5.27. All designs 

achieve the timing constraint of 33ns. The CORDIC algorithm requires the longest 

computation time of 9ns. This was exactly as anticipated because of the large calculation 

process of this algorithm in comparison to the other implementations. The Approximation 

algorithm, the Lookup Table and the Modified Lookup Table require approximately 80% less 

time to calculate the arctan than the CORDIC Algorithm.
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Timing / n s  5
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Algorithm
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V e r s io n

Lool<up T a b le  
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Figure 5.27: The Timing Behaviour

Therefore, the highest operating frequency for the Lookup Table, the Approximate Version 

and the Modified Lookup Table is a frequency of lOOMHz. It should also be mentioned that 

the CORDIC algorithm requires nine clock cycles to compute the result in 9ns, because of the 

pipeline stages which were implemented. These pipeline stages will add an additional 

overhead to the design in the form of more pipeline stages in other parts o f the HSI algorithm.

This Section has described different methods of implementing the arctan function. These 

functions were investigated with respect to their main features. Under the given conditions 

the Approximation Version is the most attractive solution. It has the least power consumption 

and requires the smallest area. With respect to the timing behaviour, there is no difference in 

both Lookup Table Versions. The accuracy of all versions does not exceed 8% deviation from 

the theoretical value for each possible input value and in terms of bit deviation not more than 

3 bits. Therefore even the Approximate Version does not contribute a significant error to the 

result.

The Approximate Version compared 
to the CORDIC Algorithm

Power Consumption 25 times less power

Required Area 25 times less area

Timing Behaviour 80% less time for the calculation

Table 5.8: Comparison between the Approximation Version and the CORDIC Algorithm
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The CORDIC Algorithm has, as shown in Table 5.8, the lowest performance parameters. 

Therefore, it was shown that the investigation and optimisation of traditional implementations 

can result in significantly improved implementations. However, for different specification,

' especially a higher requirement in accuracy, the CORDIC Version will give better results with 

the drawback of a further increased area. For higher accuracy, more input bits and output bits 

are required. For this, the expenditure for the Lookup Table will increase quadratic. Also the 

, Approximate Version will become more complicated, due to the fact that more intervals are 

needed. With the CORDIC Algorithm however, the expenditure will increase linearly. There 

is only one additional computing-step for each extra bit at the input. Thus, the increase in 

required area is small and at a certain point, the CORDIC Version will be better than the other 

three versions.

5.5 Adding the CoefiBcient

The last module in the hue line has two main purposes. The first is the decoding of the control 

signal and the second is the adding of the coefficient as defined in (1.1) to (1.5). Therefore, 

the block diagram uses two input signals as shown in Figure 5.28. The 8-bit hue signal is 

available at the output of the block.

add c o e f

control - a
0

arctan(x)- b

Figure 5.28: The Block Diagram of the Last Hue Stage

The task of the decoder block is to extract the information about the Kender case as well as 

the sign of the argument of the arctan which is provided by the previous stage. Two different 

decoders were implemented. The first is a 3-bit decoder, which uses the smallest bit size 

possible. Here all three inputs have to be monitored to compute the result. The second version 

is a 7 bit, active one bus. Here only one bit changes value each time the input changes. As 

seen in Table 5.9, the difference in power consumption between the 3 bit and the 7-bit version
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Block Max. time delay 

ns

Area

mm^

Nodes

n

Power Consumption 

mW

PRES 3-bit 4.05 0.0552 45 1.37

PRES 7-bit 7.81 0.0677 58 1.46

Table 5.9: Feature of the Decoder Block

At first this result might seem to be surprising as the 7-bit version requires a decoding of 

more than double the amount of bits compared to the 3-bit version. However, as only one bit 

changes in the 7-bit version, an iterative algorithm can be used to compute the control signal 

corresponding to the input value. This is done by introducing don't care statements into the 

high-level code. In terms of delay and area requirements the 3-bit version is superior to the 7- 

bit decoder. The area consumption is, at 0.055mm^, 18% smaller than the 7-bit decoder and at 

4.05ns, is 48% faster. The poorer timing performance of the 7-bit decoder cannot be seen as a 

real disadvantage because the timing constrains of 33ns are easily met by both 

implementations. Furthermore, the small difference in area does not make one or the other 

version superior. At this stage a detailed analysis is not possible as the power consumption of 

the control line is not yet included in the discussion.

The adder block of the last hue stage is responsible for adding the corresponding 

coefficient to the argument of the arctan according to the Kender case as selected by stage 

one. If one of the last two cases of Render’s algorithm (1.4) or (1.5) is true the output signal is 

known and the value is applied directly to the output. Therefore, the different values of the 

coefficients have to be stored. The sign information is computed separately. Therefore the 

adders suggested by Render’s algorithm have to be replaced by adder-subtractor modules. 

Table 5.10 shows the performance parameters of the complete CAL block. Version CAL3 

uses the 7-bit decoder while CAL4 uses the 3-bit decoder block.

Block Max. time delay Area Nodes Power Consumption

ns mm^ N mW

CAL 3 17.59 0.0910 73 1.98

CAL 4 12.84 0.0786 60 1.59

Table 5.10; Results of CAL-block
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When analysing the features of the CAL block it is obvious that, with respect to the area 

requirements as well as power consumption, the features o f the decoder used in this block are 

important. However, the adder structure has the strongest influence in this case. Therefore, 

the version using the 3-bit decoder is preferable to the 7-bit state changing optimised version, 

if only this stage is investigated. However, as the control line is directly connected to the 

decoder, the implementation of the control line is discussed in the next Section.

5.6 Control Line

As already described in section 5.1, a control signal is needed to tell the last stage which o f 

the five cases o f Render’s algorithm is true. To reduce the power consumption caused by 

glitching and to meet the timing constraints of 33ns, the hue algorithm was implemented 

using a highly pipelined structure. Depending on the implementation o f the hue algorithm, up 

to 14 pipeline stages were used. This resulted in the need to delay the control signal by a 

corresponding number of cycles. For the further investigations a delay o f 7 cycles was used. 

This is because it is the best number of cycles for the implementation o f the hue branch in 

respect o f the power consumption. Figure 5.29 shows the block diagram of the control line.

L 1 1 ? 1.3 L4 L5 L6 L7
Latch -> Latch -► Latch -► Latch Latch ► Latch -► Latch

SORT-
block

X

Y

Z

CAL-bus

Remaining Hue-branch 
Causing delay of 7 dock 

pulses

arctan-
 H
value

CAL-
block

Figure 5.29: Structure of the CAL-bus

hi addition to the number of cycles, the coding style of the signal to be transmitted is o f direct 

relevance to the power consumed. Therefore, the control bus has been investigated for bus 

widths o f  3, 4 and 7 bits.

5.6.1 Implementation of the Control-Bus

Firstly the 3 bit-implementation of the control bus will be explained. This bus uses the 

smallest possible bus width to encode the eight possible combinations. Table 5.11 shows the
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coding of the 3-bit bus. Here the coding has the advantage of a small bus width with the 

disadvantage of a higher switching activity than larger buses.

Kender-case Sign of the 2"‘* summand CAL-bus

Achromatic Do not care 111

0 Do not care 110

5/3 *Tc + 001

5/3*71 - 000

n + 010

n - 100

n/3 + 101

n/3 - Oil

Table 5.11; Coding of the 3-bit CAL-bus 

In Table 5.12, below the coding of the 4-bit version of the control bus is shown.

Kender-case Sign of the 2"  ̂
summand

Output of Kender-Bus

Achromatic Do not care QUO

0 Do not care 0101

5/3*71 + 0000

5/3*71 - 0001

71 + 0100

n - 0010

n/3 + 0011

n/3 - 1000

Table 5.12: Coding of the 4-bit CAL-bus

In the 7-bit implementation, every Kender case is represented with a ‘ 1’ in the binary code. 

This coding style has the advantage that only one bit changes from LOW to HIGH if a change 

in the Kender case appears. Therefore, with each change in the signal exactly one power 

consuming transaction occurs. This implementation has the disadvantage of being the largest
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silicon structure as well as containing a higher amount of devices to be implemented. In Table 

5.13 the coding of the 7-bit bus is shown.

Kender-case Sign of the 2"'̂  summand Output Kender-Bus

Achromatic Do not care 1000000

0 Do not care 0100000

5/3*71 ^ + 0001000

5/3*71 - 0010000

n + 0000000

n - 0000001

n/3 + 0000010

nl3 - 0000100

Table 5.13: Coding of the 7-bit CAL-bus

In the following table, the results of the different implementations of the control bus are 

shown. In the table, the number of nodes, time delay, area and power consumption of the 

different implementations of the CAL-bus are shown.

Implementation of CAL-bus Nodes Time delay 

ns

Area

mm^

Power Consumption 

mW

3 bit 25 2.02 0.0544 1.04

4 bit 33 2.02 0.0716 1.30

7 bit 57 2.02 0.1231 1.93

Table 5.14; Resuhs of the CAL-bus Structures 

A plot of the results for area is presented in the following diagram.
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I  0.10

£ 0.04

Bus width

Figure 5.30: Area of the CAL-bus in mm^

The area requirements for the control bus depend only on the bus width. W ith a higher bus 

width the area is increased significantly. Furthermore, the diagram shows that the 

implementation with registers needs over 20% less area than the other two variants.

Power Consumption

“  1.0 
a>
o 0.5

3 bit 4 bit 7 bit
Bus width

Figure 5.31: Power Consumption of the CAL-bus

The analysis o f Figure 5.31 shows that the power consumption depends on the bus width. 

With a higher bus width the power consumption increases appreciably. The implementations 

with 4 bits need about 20% more power than implementations with 3 bits. The 

implementations with 7 bits have about 70% higher power consumption than those with 3 

bits. Furthermore, the diagram shows that the implementations with registers have over 45% 

less power consumption than the other two variants. These results are in contrast to the 

theory, where the 7-bit version should have a smaller active capacitance than the 3-bit 

version, due to the reduced switching activity. Therefore, the individual components o f the 

p o w er consumption are investigated separately in the following table, hi this table the power 

consumption of the whole bus is spilt into the two main components. The first component is
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the power consumption o f the switching activity for the clock signal. The second component 

shows the power consumption of the bus without the clock signal.

Implementation of Power consumption in mW

CAL-bus Whole design Clock signal Design without the 
clock signal

3 bit 1.04 0.81 0.23

4 bit 1.30 1.02 0.28

7 bit 1.93 1.68 0.25

Table 5.15: Components of the Power Consumption of the CAL Bus

The power which is used by the switching activity of the clock signal depends on the bus 

width. Table 5.15 shows that the saving in power in the implementation with registers is due 

to the reduction o f the share of the power consumption of the clock signal.

The implementation of the bus with registers instead of flip-flops, both o f which are 

defined in the technology library, is the best solution in relation to area and power 

consumption. With respect to the number of nodes there is almost no difference. In the time 

delay, there is only an insignificant difference o f 0.35ns to the disadvantage o f the variant 

with registers. Therefore, the implementation of the bus with registers has significantly better 

design characteristics. The disadvantage of the register variant is that it is more time costly to 

implement than the variant using the if-inquiry to generate flip-flops. This is because the 

designer has to connect the registers manually. The solution with the if-inquiry is more 

elegant than the solution with D-flip-flops. Using the if-inquiry Synopsis converts the VHDL- 

code automatically into a design consisting of connected D-flip-flops. The advantage o f the 

register variant in relation to power consumption is that the latches need less power for the 

switching activity of clock signals. The reason for this is that for the same number o f bits 

Synopsis needs less standard cells.

5.6.2 Physical Structure of the Delay Line

I^elay lines are usually realised using shift registers. Shift registers are simple latches, which 

rotate the input information each cycle by one bit. They are mainly used in order to preserve
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information for a fixed number of cycles. Shift registers are easy to construct using D-type 

latches. Figure 5.32 shows such a simple shift register.

Input
D Q D Q

clk clk

Clk

D Q

clk

D Q

clk

O utput

Figure 5.32 Four Stage Shift Register.

In the figure above the data lines of the D-latches are connected in series and a parallel clock 

signal is applied to the clock input of each stage. This causes the next stage to change each 

time if  a new signal and a clock event is applied to the input. The worst case situation would 

be an alternating input signal. Therefore, the active capacitance o f such registers is

m

^ s h i f t  reg^
k = \

h  this equation 7  is equal to the number of clock cycles during which the circuit is operating, 

m is the number of bits in the shift register and n(oj) is the number o f LOW to HIGH 

transitions per clock cycle. For a uniform white noise input signal this equation can be 

rewritten as:

Cshift = T x m x  0.25x (73)

In this equation it is assumed that the active capacitance of each node o f each stage is equal to 

the same node capacitance of the corresponding node in the other stages. This is reasonaole as 

this design can be synthesised as a uniform structure. It should be also noted that the LOW to 

h ig h  switching probability for uniform white noise is 0.25. As can be seen in (73) the shift 

register consumes power in each of the stages. However, as the signal is only needed in the 

last stage after T  cycles, this means that each signal consumes unnecessary power in T-l  

stages. Therefore, a different approach was investigated.

Here, instead of using a serial implementation for the stages, the input data is 

demultiplexed before it is stored in latches. This has the advantage that the data is preserved 

in one cell rather than r o ta t e d  through all registers, which causes switching each time the data
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is transferred to the next cell. The trade-off of this design is the increased amount of control 

logic necessary to realise the read and write control of the overall circuit, hi circuits where a 

fixed pattern regulates the read and write mechanism, this control logic is realised with a 

simple counter. Therefore, it will be shown that for long shift registers or large bit sizes to be 

shifted the parallel approach is the one to be preferred when implementing low-power 

structures. Figure 5.33 shows the general design of such a circuit.

Control

Demux Muxelk

elk

OutputInput

elk

elk

Clk

Figure 5.33: Four Stage Shift Register using Multiplexer - Demultiplexer.

The active capacitance of such a circuit can be generally written as follows:

m

C s m  =  Z  ̂ { O ^ f r e g i k )  +  +  «(o,l)Q «m ^ ('̂ 4)
k=\

Since only one register per clock cycle can change stage the equation can be rewritten as:

reg{k) ^ {o S f^ m u x  demux ("̂ )̂
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In order to compare both approaches for implementing shift registers the number of power 

consuming events is once again substituted by the probability for a power consuming event to 

occur for a UWN input stimulus.

= 0.25(q  ̂+ (76)

As seen this equation has a constant active capacitance. It is therefore independent of the 

length o f the shift register. It will only have one latch switching at a time. However, there is 

an additional capacitance due to the multiplexer and demultiplexer. Furthermore, the size of 

these multiplexer and demultiplexer increases with the number o f stages. However, only one 

stage per cycle is active, which results in a constant switching activity inside these modules. 

But larger stages have a larger interconnect. Therefore, a slight increase in the active 

capacitance has to be expected which is not reflected in this equation. In order to compare the 

two implementations the equations (73) and (76) are set equal.

r  X m X 0.25 K C ,, = r  X 0.25(c„, + C .„  + ) (77)

Equation (77) can now be written as;

(m - 1) X (78)

Now it is easily seen that if  the physical capacitance of the multiplexer and demultiplexer is 

lower than the total capacitance of the number of stages minus one, for the traditional shift 

register, the proposed approach will save active capacitance and will have a reduced power 

consumption.

Before comparing both general approaches different implementations o f the multiplexer 

and demultiplexer are investigated with respect to power consumption, in order to decide on 

the most favourable im plem entation. Firstly, different demultiplexer implementations are 

investigated. The first design used a library demultiplexer supplied with the software library. 

The second idea was to use a custom demultiplexer using AND gates. The third design 

proposed is a gated clock implementation. Here only the clock o f the reading stage is enabled 

via a simple AND gate. The results are shown in Table 5.16.
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Implementation Library Demux Custom Demux Gated Clock

Active Capacitance 180pF 140pF 46,5pF

Table 5.16: Comparison Between the Different Demultiplexer Implementation

As can be easily seen in the comparison of the different demultiplexer ideas the clock enable 

proved to be by far the most efficient implementation. Therefore, all further designs were 

implemented using this design. Figure 5.34 shows the principle o f this method.

elk

elk

elk
Contro

Clk

Input

Figure 5.34: Implementation of the Demultiplexer

Here simple AND gates are used to drive the clock input of the latches. The main advantage 

of this method is the reduced physical capacitance of the inputs of an AND gate in 

comparison with a latch. The other input of the AND (control) is used to activate the AND 

gate enabling the latch. With such a design it is important to have no glitching activity in 

either the clock and the control signal. Otherwise the AND gates might be active at the wrong 

time and a new input will be applied to a latch, which should have been disabled. In the case 

of this design, this is true. If glitching is to be expected, then additional logic for removing the 

short pulses must be included in the design.

In order to validate equation (76), three traditional shift registers as discussed in the 

introduction to this chapter were implemented. The three designs were 4 bit, 8 bit and 16 bit 

'^'ide shift registers. The shift length of these shift registers was varied from 4 to 128 stages.
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When the active capacitance is plotted over the number o f shift stages (Figure 5.35) the result 

is linear. This behaviour was expected, because of equation (76).

The shift register using a demultiplexer and multiplexer was implemented in the same 

way and the results of the simulations were plotted together with the results of the shift 

register in Figure 5.35. As can be seen for these designs, the active capacitance is slightly 

higher for small designs than the traditional approach. This was expected due to the 

additional capacitance provided by the multiplexer and demultiplexer. But after 8 stages the 

proposed method reduces the active capacitance significantly. For even larger 

implementations the advantage becomes even larger.

— Shi ft4
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—i* r-S h if t1 6  
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— iVlux16
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Figure 5.35: Active Capacitance of Different Shift Register Implementation.

The superior power consumption of the multiplexer method however comes at the cost of 

increased logic as shown in Figure 5.36. In this figure it can be seen that even for small 

designs like the 4-bit 4 stage shifter the area increases by 74% for the multiplexed 

implementation. For a 16-bit 8 stage shift register the increase in area rises to more than 

100%. Therefore, the high power savings of the multiplexed version have always to be 

balanced against the higher area requirements.

O 3000
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Figure 5.36: Area Requirements of the Different Shift Registers 

5.7 Summary and Conclusions

This Chapter has presented a low-power implementation of Render's Algorithm for the fast 

calculation o f hue. The algorithm was chosen because of the extensive design challenges 

contained within it. These challenges, including trigonometric functions, multiplication by 

fixed coefficients and fast divisions, were addressed individually. A number o f solutions were 

proposed and evaluated. To enable such a detailed investigation, the algorithm was divided 

into six functional blocks. Each block was implemented independently o f the other blocks.

The first and most critical aspect of the implementation was the exclusion o f the sign at 

the earliest possible stage. This then enabled an unsigned implementation, which consumes 

less power when compared to a signed implementation. Furthermore, this exclusion o f the 

sign made it possible to restrict the computation of the arctan to positive input values only. 

This exclusion o f the sign was possible by implementing a two stage comparison o f the input 

signals. Theses two stages were implemented according to the probabilities o f the inputs.

To compute the arguments of the arctan, a stage containing adders and dividers was 

implemented. It was shown that a larger tree implementation had a power advantage o f a 

factor o f three over a smaller, unbalanced implementation. The next computational stage 

required a division of the results of the previous stages. Four alternative divider designs were 

suggested. While all designs had a similar power consumption, the timing and area 

performance varied considerably. Therefore, it was possible to show that there was one
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implementation which had the lowest area requirements while having a similar power 

consumption and timing performance to the other designs.

For the computation of the arctan, the traditional implementation of the CORDIC 

algorithm was investigated. A novel approximation technique was developed, which was 

optimised for implementation into hardware. It was possible to reduce the computation of the 

arctan through the use of an approximation technique. This approximation uses only one 

addition to a constant factor and only one shift operation. The use of this algorithm has 

resulted in a reduction in the power consumption by a factor of 25. Furthermore, the area 

requirements were reduced by a similar factor. In addition, LUT’s were investigated. They 

also showed a reduced power consumption of approximately 25. However, the approximation 

algorithm was at least 20% better than the LUT’s with respect to all parameters.

The delay stages were also investigated with regard to different coding styles. It was 

found that theoretically superior approaches such as the "one-hot" coding had a higher active 

capacitance when compared to theoretically inferior codes. A detailed analysis of the designs 

showed that this was due to the fact that in those designs, the clock was the dominant factor 

in power consumption. However, the coding must be evaluated together with an analysis of 

the control subsystem. In this subsystem, the control signal had to be delayed by seven cycles. 

This is usually achieved using a shift register. However, through the use of multiplexers, it 

was possible to reduce switching significantly. This lead to a reduced active capacitance. The 

next Chapter will present the implementation of the saturation and intensity paths of the 

design.
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6 The Saturation and Intensity Algorithm

The previous chapter has presented a low-power implementation o f the hue component of the 

RGB to HSI algorithm. This chapter will focus on a joint investigation o f  the remaining two 

components of the HSI algorithm. This combination o f saturation and intensity has 

advantages over an implementation of the individual components.

This chapter first presents the basic design decisions and evaluates them. Four 

implementations o f the combined saturation and intensity paths are presented and are 

evaluated for area, speed and power consumption. Finally, possibilities for improving the 

accuracy of the intensity algorithm, without compromising the power consumption, are 

presented.

6.1 Implementation Considerations of the Saturation and Intensity Algorithm

The sum of the three input values Red, Green and Blue is used in both algorithms (2) and (3). 

Therefore, this term must be calculated only once.

The divisor o f the argument of the arctan function can be written as follows:

Divisor = X+Y-2Z (79)

In this equation, the smallest of the three input values (R, G, B) is represented by Z. This 

value has been already extracted in the very first stage of the implementation o f the hue 

algorithm. Therefore, it is now possible to use the term in equation (1) and add 3Z  to it. This 

has the advantage that only one term must be added. It also gives a reduction in the number o f 

pipeline stages. Due to the sorting algorithm used, the smallest value Z is already available at 

the input of the saturation algorithm. This operation is shown in (80).

R+G+B = X+Y-2Z+3Z (80)

This operation would normally require three adders. However, operation with fixed numbers 

can often be simplified. In this case the multiplication by three can be split into (Z+2Z) as 

shown in (81).

R+G+B =X+Y-2Z+(Z+2Z) (81)
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As demonstrated in (82), the constants in this equation can be expressed as powers of two.

R+G+B = X+Y-2Z+(2^Z+2^ Z) (82)

Because of (82) only one adder is required to perform the addition of 3Z. The necessary 

multiplication by one and two are simple shift operations, which do not require any logic 

elements. Therefore, it is possible to reduce the number of adders required for the addition of 

R, G, B from 5 to 4. This has the advantage that a balanced tree adder structure can be used 

instead of an unbalanced adder design.

As described in Chapter 1, the saturation is the magnitude of the pointer to the pure 

spectral colour. If all three input signals have the same magnitude the resulting colour is 

achromatic. Therefore, the saturation is not defined and the computation of this path is 

disabled using a gated clock approach. To calculate an 8-bit output value of the saturation 

equation (2) is investigated. The maximum magnitude of the saturation as defined in (2) is 

one. Therefore, for an 8-bit implementation (2) has to be multiplied by 255.

25 5x3xm in( i ? ,G ,5 )
Saturation = 2 5 5 ------------   (83)Y.R,g,b

Such an implementation would require an 8-bit multiplier to realise this equation. However, if 

the numerator is multiplied by 256 the multiplier can be replaced by a shift operation in the 

divider. This would not require additional logic and power. Because the multiplication by 

three is not performed yet the maximum output of the saturation can be only close to one. 

Therefore, a possible overflow is prevented. After describing general approaches to 

implement the saturation and intensity part of the circuit, four different implementation 

possibilities will be presented.

6.2 Direct Implementation

The first implementation of the saturation algorithm uses a direct implementation of the 

saturation and intensity algorithm as illustrated in Figure 6.1.
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Figure 6.1: The Direct hnplementation o f the Saturation/Intensity Algorithm 

The equations required to solve the saturation and intensity are shown in (84).

„ . , 3 X min(i?,G ,5)
Saturation = 1--------„ ------------

Y.R,g ,b
(84)

^ R , G , B  
Intensity = -------^-----

In this implementation, the term ER,G,B can be used in both the saturation and intensity 

parts. The second advantage is the constant division by 3. Such a divider can be implemented 

using an optimised structure. Various designs have been suggested in the past. In the 

following sections six approaches are presented. The notation below is used to describe the 

algorithms analysed:

Expression Quotient Divisor Dividend Remainder Quotient
bits

Number 
o/p bits

Number 
i/p bits

Notation Q D A R q m I

Table 6.1; Notations for Describing the Analysed Algorithms

Figure 6.2 shows the block diagram for the implementation of the divider by 3. This design 

uses an input bitwidth of 10 bit for the dividend A and an output bitwidth of 8 bit for the 

quotient Q.
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O utput

D ivision by

Figure 6.2; Block Diagram of the Division by 3 

6.2.1 A Constant-Division Algorithm by Petry and Srrnivasan

In this section a constant-division algorithm is analysed which was published in [Petry93], 

[Petry94] by Petry and Srinivasan. Therefore, it is referred in the remainder in this report as 

Petry. It is an iterative algorithm, which has been developed for divisions by numbers of the 

form 2”+l and 2”-l. It represents these terms as 2"-h, where h is either +1 or -1. The 

computation of the quotient can be generally expressed as follows:

m

e  = (85)
i = l

As illustrated in Figure 6.3, it is possible to describe (85) as an array of grouped dividend bits. 

The equation must be rewritten to simplify the implementation. Shifts and additions can now 

be used to solve the quotient Q, where Q consists of quotient bits q, and the remainder R.

+ h'

+ h ’̂ -

+ A'"'* *  •
^ m - 2  ^ m - 3  ^ r a - 4  Qo • ^

Figure 6.3: Iterative Division by 2"+l and 2"-l

According to the formulas described in [Petry93], the partial quotient Qt and the partial 

remainder Ri can be expressed as follows

*
*
*

n - 2 a m - 3

^ m - \  ^ m - 2

ar.

a.
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= q o ) +  •••4 ;̂
/= i  ^

= * f >=0,1,2,
(86)

Here, A: is a number of «-bit digits and / is the bitwidth. For such successive iterations the 

partial remainder is used as input and the algorithm stops w^hen the partial remainder R 

consists o f a single bit group or digit.

Equations (86) have been analysed and optimised for carrying out the division by 3. It can 

be seen from (85) that the use of h=l is preferable when performing this division in order to 

avoid an alternating series. The latter has a larger power consumption than a non-altemating 

one. Moreover, the dividend A is independent of m and the equation can be simplified to

the bitwidth of the dividend A. Furthermore, the input bitwidth is 10. Therefore, m has to be 

set to 10. Hence, m is now independent of the bitwidth and the equation can be expressed as 

follows

This constant division algorithm as presented in [Petry93] contains a higher accuracy than 

required. For an accuracy of one bit only 4 terms instead o f 10 are required. The smallest term 

is now equal to 2'1 For this reason the maximum deviation can be written as:

m

(87)

Now the divisor 3 is equal to the form 2" -1 . Therefore, n is equal to 2 and m depends only on

10

(88)

Maximum deviation = —— = 1 bit
2'

As described above, a deviation of 1 bit occurs while the quotient ranges from 0 to 255. Now 

it is possible to reduce the number of terms required for the division by 3, from 10 to 4. The
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niain reasons for a term reduction will be explained in the following section. The optimised 
formula can be generalised as:

4

Q = A'^2-^‘ =A*(2~^ +2-'' + 2 “" + 2 '" ) (89)
/ = i

In the equation above it can be seen that the division by 3 is reducible to a multiplication by a 

value which is a close approximation of 1/3. To explain this an example is given. In this 

example the dividend ̂ 4 is equal to 168 and m is equal to 4 and then the following holds:

^  =  168,0 = 0010101000  ̂ = ( 2 ’ + 2 ^ + 2 ^)

Q = ( 2 ’ + 2 '  + 2 ' ) * ( 2 ~ '  + 2 - "  + 2 ‘ " + 2 ‘ ' )

Q  =  2^ +  2 “ +  2^ +  2 '  +  2°  +  2 ”' +  2 ' "  +

Q  = 1 1 0 1 1 1 , 1 1 0 0 1 2  
e  = 55,78125,0 «  56,0 

Figure 6.4: Example for a Constant Division by 3

As illustrated in Figure 6.5, only shifts and additions are used. For this reason the algorithm is 

very simple to implement.

, * (9:0)Input —  '  ^ 6-bit
shifting

(15:0 ) (9 :0 )

( 11 :2 ) ,

(13:4 )  ̂

( 15:6) ,

10-bit Adder
(15:0 )

8-bit
trun­

cating

(15 :8 )
^  Output

Figure 6.5: Implementation of the Optimised Algorithm

As shown in Figure 6.4, the quotient contains several digits after the decimal point. If 

truncated the quotient will be 55 instead of 56. Therefore, it is necessary to investigate the 

accuracy. Figure 6.6 shows the accuracy of the optimised constant-division by Petry and 

Srinivasan in comparison to general division by 3.
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Figure 6.6: The Accuracy of the Petry Algorithm

It can be seen that the deviation using Petry has a maximum deviation o f-1  bit in comparison 

to the theoretical division by 3. Because of this small deviation of 1 bit, it is possible to use 

the optimised algorithm for the implementation of the RGB to HSI algorithm.
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Figure 6.7: The Error Deviation of Petry 

6.2.2 The Lookup Tables

To satisfy the requirements of the division by 3, it is not necessary to use reprogrammable 

integrated circuits. As previously explained for the arctan function, a LUT can be used to 

store the result for all possible input values. In the following example the value of the output 

for an input value divided by 3, is illustrated.
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I6810 56io

Figure 6 .8 : Direct Assignment for Each hiput Value

In the following, binary values are converted into the decimal system and expressed in the 

form I6 8 1 0 . As shown in Figure 6 .8 , an input value o f 0010101000 corresponds to a value o f  

168 decimal. The input value will be assigned to the output value o f  00111000 (56io) which is 

a division by 3. Additionally, the accuracy was investigated. It can be seen in Figure 6.9 that 

positive and negative errors occur in the output value. The ordinary division graph lies 

between these errors and represents the right non-truncated calculation. The deviation o f  the 

LUT ranges from 1/3 to -1/3 as shown in Figure 6.10. The maximum error o f  the output 

values will have an absolute error o f 1/3.
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0
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Figure 6.9: The Accuracy o f the LUT
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Figure 6.10: The Error Deviation of the LUT

6.2.3 An RNS based Division Architecture for Constant Divisors

This section presents the Residue Number System (RNS) based divider algorithm as 

published in [Albe97], The architecture of the RNS either can be used for constant divisors of 

the form 2"+l or 2"-l. The dividend A can be written as follows:

A -- (90)

It can be seen in (91) that the dividend is a positive Â -bit number where the number of bits 

m=N/n. Furthermore, the dividend A can be written as a number of m digits where each digit 

Ai consists of n bits. Therefore, it may be necessary to append zero bits to the most significant 

bits of A in order to present N=nm as follows:

A = A ,_ ,A ,.,....A ,A , = A,_,2"'-"+ ....+ A,2^- + A ,V  + ^ 2 ”

Taking A=DQ+R and replacing the value of ̂  in (92) the equation can be written as;

A A,2° + A^2" + 4 2 "̂+■■■■+
D ~  2 " - l

(91)

(92)

Since 2^" = 2" * 2" and 2" = (2" -1) +1, (93) can be simplified by using 2" -1 as shown in (94);

m - \  m -]
( =  0

m  -  1

D  2" - 1  ,
(93)

i = 2 1 = 3
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The components of the remainder R and the quotient Q can be written as follows:

m-1

w-1 m ~ \

2 = S-4, + S-̂ .2''+X̂ ,2̂ "+....+̂ ,,,2
i=l i=2

1 - 4 ,
R = J ^ -----

2 "  - 1  

m -1
(m -2 )n

(94)

(95)
(=3

If the divisor D is expressed as 2"+l and the same method is used to simplify (94) then the 

following equations hold:

m -1 m -1

------------
2 "  - 1  

m -1

e=E(-ir'A- {m -2 )n

(96)

(97)
/=1 i = 2 1=3

A careful analysis reveals that it is useful to focus on the form 2"-l for the divisor to avoid 

alternating series. Therefore, it is only necessary to solve the quotient Q as shown in section 

6.2. The following example describes division by 3 using an input value of I 6 8 1 0 . Therefore, 

the divisor Z)=5 can be expressed as:

3 = 2 " - l = ^ «  = 2 (98)

As shown in section 6.2.1, it is desirable to implement the division using a non-altemating 

structure. It is possible to use the RNS based algorithm for the decimal system computation 

but this algorithm is based on the binary system computation.

16810 — ►
A4 A3 A2 A i Ao ----- ^ N - 1 0  b it

0 0 1 0 1 0 1 0 0 0

Figure 6.11: Splitting of the Dividend A

Firstly, the input value must be analysed and split into different bits as illustrated in Figure 

6 .11. This analysis is necessary for pre-calculating m which can be written as;
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m = — = 5 (99)
n

Next, (95) must be modified as follows:

2  = (100)
1=1 1=2 1=3 1=4

It can be seen in (100) that it is not necessary to compute the digit A q. Only the digits A\-A^ 

are involved in the computation. They are calculated as follows:

A, = l * 2 ' + 0 * 2 ° = 2 

4  = l * 2 ' + 0 * 2 ° = 2 

4  = l * 2 ' + 0 * 2 “ = 2  

4  = 0 * 2' + 0 * 2° =  0 

Figure 6.12 Computation o f the Digits A 1-A4

A defined shift and addition of the digits yi 1-^4 is computed as:

Q = ( 2  + 2 + 2  + 0) * 2 °  + (2 + 2 + 0) * 2 '  + (2 + 0) * 2 +  (0 ) *2® = 5 4  10 (101)

The result o f a division by 3 with an established bit deviation of 2 can be written as:

2  = 54,0 = ^ 0 0 1 1 0 1 IO2 ( 102)

As seen in Figure 6.13, the division by 3 is also reducible to a combination o f shifts and 

adders. The input bitwidth of 10 bit is split into digits of 2 bits.



The Saturation and Intensity Algorithm 124

(3:2) (4:0)

(4:0)

(5:4) (4:0)

(7:6) (4:0)

(4:0)

(4:0)(9:8)

(10:0) ( 10:0)

(10:0)(10:0)

(11:0)

(7:0)

6-bit
sNft

3-bit
shift

3-bit
shift

2-bit
shift

3-bit
shift

0-bit
shift

3-bit
shift

3-bit taincation

11-ttt Adder

5-bit Adder

5-bit Adder

Output

Figure 6.13: Implementation of the RNS based Algorithm 

Figure 6.14 shows the deviation between ordinary division by 3 and the RNS-based 

algorithm.
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Figure 6.14: The Accuracy of the RNS algorithm

It can be seen in Figure 6.14 and Figure 6.15 that the deviation of the RNS-based algorithm is 

different on each step of the computation. For this reason it is also necessary to focus on all 

computed values. The presented structure contains a maximum deviation of 4 bits. Therefore, 

this algorithm is not useful when performing the division by 3 and can thus not be used to 

calculate the expected result.

0 10 20 30  40  50  60
0.0
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Figure 6.15: The Error Deviation of RNS 

6.2.4 A Fast Constant Division Routine by Shuo-Yen Robert Li

In this section another constant-division routine will be shown which was presented in [Li85]. 

By using Euler's function and Fermat's Little theorem this division algorithm can be 

generalised as a multiplication with the reciprocal number of the divisor D. Equation (103) 

shows that the multiplication is an approximation to \/D.
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^  = Binary{QMp2-bn.^)^{^ + 2 "̂  ) (103)
(=0

It can be seen that (103) contains a multiphcation by Binary{0.0b\b2...bn-\) followed by 

multiplication by factors of the form 1+2'"’. First, an odd constant divisor D  has to be found 

which will be used in the algorithm. Furthermore, n has to be defined as the next smaller 

integer value after D. In this way, the first mathematical term can be expressed as follows:

Binary{0.0bJj2-"^n-\) ~ ^  ̂ (104)

As shown in (104), it is necessary to determine the bitwidth of the binary expression on the 

right-hand side of the equation depending on D and n. The form 1+2'”’ can be expressed as an 

approximation of a infinite product series as shown in (104). A small example illustrates the 

use of the division routine. In the following routine the divisor D is equal to 3 and the 

dividend A is equal to 168. First n must be defined. In this case n is equal to 2. According to 

(104), b\ = I2 and the approximated product of the infinite series can be expressed as follows:

A *
Q = — = A* Binary(O.Ob,) * H  ^

^  (105)
0  = = 168*2'" * (1 + )(l + 2'^‘ ‘̂ )(l + )= 55.9991

Using (105) it is not necessary to solve all products of the infinite series. As described in 

section 6.2.1 the implementation of the algorithm by Petry and Srinivasan also uses an 

approximation for the divisor B. The only difference is the expression for 1/D. In the case of 

the constant division routine by Li a multiphcation by Binary{Q.0b\b2...bn-\) followed by 

multiplication by factors of the form 1+2'"  ̂is used to express this term. On the other hand the 

constant division algorithm by Petry and Srinivasan is expressed as a weighted sum of the 

value 1/3.

Figure 6.16 shows the accuracy of the fast constant-division by Shuo-Yen Robert Li in 

comparison to general division by 3.
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Figure 6.16: The Accuracy of the Li Algorithm

From a comparison of Figure 6.6 and Figure 6.16 it can be seen that the constant-division has 

the same accuracy and deviation as the algorithm of Petry and Srinivasan as described in 

section 6.2.1.
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Figure 6.17: The Error Deviation of the Li Algorithm 

6.2.5 The Standard Binaiy Divider

In the following section another way to perform the binary division will be described. Binary 

division is basically a procedure to determine how many times the divisor D divides the 

dividend A resulting in the quotient Q. At each step in the process, the divisor D either 

divides into a group of bits or it does not. Therefore, the quotient either is a 1 or a 0. 

Moreover, the divisor divides a group of bits when the divisor has a value less than or equal 

to the value of those bits. The example in Figure 6.18 shows the procedure for binary
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division. Since the divisor D  is equal to 3io=ll2 and the dividend A is equal to 

168io= 101010002, the following holds:

I 6 8 1 0

1 0 1

- 1 1

1 0 0

- 1 1 1

0 1 1

1 1

56io

H
Figure 6,18: Example of a Standard Division by 3

The standard binary divider (SBD) has been analysed and optimised with respect to constant 

division by 3. Figure 6.19 shows the implementation o f the SBD.
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A,  D,  m.  R E G ,  Q

Figure 6.19: The Implementation o f the SBD

It can be seen that there is the additional signal REG for solving the quotient Q. First there 

will be a query. If REG is smaller or equal to the dividend a subtraction will be carried out 

and the bit of the quotient will be assigned the value ‘1’. Otherwise the quotient bit will be 

assigned a value of ‘O’. The cycle runs as long as the bitwidth m is smaller than 10. After the 

process the quotient will be available at the output. It should be noted that the serial structure
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suggested in Figure 6.19 is implemented as a parallel structure in high-speed applications, 

such as the design described here.

There are two possibilities for implementing the SBD. The ordinary binary division can 

be implemented into hardware. Using the Synopsys Design Environment a ‘division by three’ 

optimised binary divider can be generated. Therefore, two different results will be shown for 

the division procedure. Finally, the accuracy of the SBD and SBD (optimised) is illustrated in 

the Figure 6.20.
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Figure 6.20: The Accuracy of the SBD and SBD (optimised)

As shown in Figure 6.20 the SBD and the SBD (optimised) have exact the same accuracy as 

truncated division by 3. The computed negative deviations are 0, -1/3 and -2/3 and are shown 

in Figure 6.21.
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Figure 6.21: The Error Deviation of the SBD and SBD (optimised)
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6.2.6 F eatures of the Divider Algorithms

Table 6.2 shows the characteristics of the different solutions, which were obtained by the 

Synopsys Design Environment and represent the most important features of each solution.

Version Active 

Capacitance / pF

Number of 

nets

Power 

Consumption / 

mW

Max. 

Delay / ns

Total area/ 

(im̂

Petry 1.95 63 1.63 21.43 93.10

LUT 7.91 548 6.59 13.03 727.99

RNS 1.94 50 1.62 16.36 68.25

Li 1.95 63 1.63 21.43 93.10

SBD 36.64 235 30.53 64.50 307.08

SBD (opt.) 2.68 48 2.23 22.79 56.88

Table 6.2: Characteristics of the Constant Divider Structures

For a clearer perspective, the results of the table above are presented graphically. Figure 6.22 

shows the power consumption for the different algorithms.

30.53

30

25 -

Power 
Consumption / 

mW

20 -

6.591 0 -

2.231.63 1.62 1.63

SBD
(opt.)

LUT SBDRNSPetry

Figure 6.22: Power Consumption of the Constant Divider Structures
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hi comparison to the algorithm by Petry and Srinivasan, the RNS based algorithm and the fast 

constant division routine by Shuo-Yen Robert Li, the SBD requires approximately 95% more 

power. The SBD needs the most power at 30.53mW. Moreover, the SBD (optimised) needs 

only 7% of the power of the SBD. The LUT requires 6.59mW, which is 21% of the power of 

the SBD. Therefore, the SBD and the LUT are not useful for implementation because of the 
larger power consumption.

The timing behaviour of the different algorithms is shown in Figure 6.23. To perform the 

division by three it is necessary to compute the quotient Q in 30ns. As illustrated in 

Figure 6.23 the SBD cannot be used to perform this division, because of a time of 64.5ns. The 

reason for this is that 10 comparator stages are included in this design. All other 

implementations can be used to compute the result in time. Using a simple structure and no 

computation process the Lookup Table has the fastest timing behaviour with 13.03ns. The 

algorithm by Petry and Srinivasan and the fast constant division routine by Li need the same 

time because of the same implementation structure with adders. The RNS based algorithm 

requires approximately 25% and the SBD (optimised) needs 35% of the time of the slowest 

structure, the SBD.

64.5701

60

4 0 -

Timing / ns
22.7921.4321.43

16.3613.03

SBD
(opt.)

LUT RNS SBDPetry

Figure 6.23: Timing Behaviour of the Constant Divider Algorithm

Figure 6.24 shows the required area in |^m  ̂of the implemented solutions. It can be seen that 

the Lookup Table requires the most area because all possible output values have to be stored. 

For this reason this solution does not represent a useful to implementation. As illustrated in
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Figure 6.24, the SBD needs 42.2% of the area o f the LUT which requires an area o f 

approximately 728|j,m^. The algorithm by Petry and Srinivasan and the fast constant division 

routine by Shuo-Yen Robert Li need the same area because they use the same 

implementation. Both structures require an area o f 12.8% of the area o f the Lookup Table. 

Using the RNS-based algorithm it is possible to perform the division by three with an area of 

9.4%  o f the LUT. The best solution in respect to area is the SBD (optimised) which only 

needs 7.8% of the area of the LUT.

727.998001
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Required Area /
307.08400 -

300 -

56.8868.25  93.1093.10200

100 -

SBD SBD
(opt.)

RNSLUTPetry

Figure 6.24: The Area Requirements

This Section has presented a detailed analysis o f the implementation of the divider by three, 

as required in the intensity part of the algorithm. The analysis consists of six designs. It has 

been shown that algorithms which are optimised for division by constants gave the best 

results. In terms of power consumption, the results were quite similar. If area and speed are 

also taken into consideration, the RNS based implementation appears preferable. However, as 

has been shown, this algorithm is less accurate than the other implementations presented. 

Therefore, it was decided to use the algorithm proposed by Petry in the intensity part o f the 

algorithm.
The LUT is, as expected, the fastest and largest implementation. However, as the 

implementation o f Petry meets the timing requirements with smaller area and power 

consumption the LUT was not taken into consideration. This section also showed the 

advantages o f using optimised designs, as opposed to standard modules. Standard modules
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are frequently used in industry to shorten the design cycle. However, as was shown in this 

section, the use of optimised designs resulted in an improvement in area, speed and power of 
at least three.

63 Second Implementation of the Saturation/Intensify Algorithm

The second implementation of the saturation/intensity algorithm is based on use of the 

intensity output in the saturation algorithm (107).

Y r , g ,b
Intensity = -

Saturation = 1 -

3
(106)

min(i?,G,5)
Intensity

The obvious advantage is the simplification of the multiplication. In this case, multiplication 

by three in the saturation was not necessary. This multiplication can be performed by the use 

of only one adder. On the other hand this implementation also has its disadvantages. Such an 

implementation would increase the maximum path length by one stage. This results in three 

additional pipeline stages each containing an 8-bit latch. This new structure is shown in 

Figure 6.25 whereby the additional blocks are emphasised. Therefore, the reduced power 

consumption in the saturation part of the RGB to HSI algorithm has to be balanced with the 

overall increase in the other paths.
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Figure 6.25: Modified RGB to HSI Algorithm 

6.4 Third Implementation of the Saturation/Intensity Algorithm

As shown in Section 6.3, the amount of logic required is not necessarily reflected by the 

equation. Therefore a third approach was implemented and its features were investigated.

Intensity = ------ -̂-----

Y r , g , b
^  (107)

3 x m m( R ,G ,B )
Saturation = 1 -  ■

J^R,g ,b

In this approach, the term three divided by the sum of the input values is calculated as 

required in the saturation algorithm. This term is then inverted to form the intensity. As seen 

in Figure 6.26, such an implementation will add no additional stages to the overall design 

even if  the equation is more complex than (107).
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Figure 6.26: Third Implementation of the Saturation/Intensity Algorithm

However, this implementation poses a problem if all three input signals are zero, hi this case 

the term divided by the sum of Red, Green and Blue performs a division by zero. Therefore, a 

detection of this case is required to overcome this problem.

6.5 Fourth Implementation

Another way to implement the saturation and intensity algorithm is illustrated in Figure 6.27.
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Figure 6.27: Fourth hnplementation of the Saturation/Litensity Algorithm 

This implementation of the saturation and intensity algorithm uses the following formulae:
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Y r , g ,b

( 108)

Saturation = 1 -  min(i?, G, B) x  -----
Intensity

In this approach the intensity will be solved firstly using an optimised divider structure. Then 

the intensity will be reused in the saturation part. That implies an inversion and a 

multiplication by the minimum value of R, G or B. The only difference in comparison to the 

second implementation, is the multiplication instead of a division.

6.6 Improving the Accuracy of the Intensify Algorithm

The Intensity Algorithm as presented does not contain any rounding function. This causes a 

maximum error of -0.5 when compared to the theoretical value, which can be described as 

shown in the following equation.

max. error Intensity = I n t e n s i t y -  0.5 (109)

In order to improve the intensity algorithm, the implementation of a rounding function is 

investigated.

Intensity -  Rnd R + G + B
(110)

One way to implement this function is to add 0.5 to the function and truncate the result as 

shown in the next equation.

Intensity = Abs
R + G + B --------------+ 0.5 (111)

This equation can only be used if the accuracy of the division includes several digits after the 

decimal point. This implies that the division algorithm has to be expanded by several stages 

in order to provide the additional digits. Those additional stages consume additional power 

proportional to the amount of the extra stages.
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Instead of adding the 0.5 to the result of the division, the rounding factor can also be 

transferred to the addition of the divisor. This has several advantages. Firstly, the result of the 

division is already rounded and the natural truncation of the result therefore already includes 

the rounding without any additional stages. Secondly, the summing of the three input signals 

is originally unsymmetrical. This means that no balanced adder structure can be applied in 

order avoid glitching. By adding a fourth figure, a balanced adder can be used and glitching 

can be avoided. Unfortunately this method also has its disadvantages. Mainly, the addition of 

1.5 expands the divisor by one additional bit. This bit increases the size of the divider and 

therefore the power consumption.

6.6.1 Modifying the Divider Structure

Therefore, a different approach is presented. All divider structures must be initialised. This is 

done by loading all stages, not used for storing the divisor, with 0. These O's represent the 

digits after the decimal point, histead of loading these digits with 0 these registers are now 

loaded with ones. Now the equation can be written as follows, hi this equation i represents the 

number of registers loaded with 1.

By writing the rounding term independent of the division the effect of this operation becomes 

clear. This is done in (115).

Intensity = Abs R + G + B + 1.5 
3

(112)

Intensity = Abs (113)

Intensity -  Abs (114)

Since the divisor term (R+G+B) is already present on a bus an additional adder could not be 

used in order to avoid glitching through balancing of paths. The maximum value of the 

rounding term is now 1/3. Therefore the equation can be written as.
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Intensity « Abs R G + B „ „ --------------+ 0.3 (115)

Using this equation the maximum error of the intensity algorithm compared to (110) is now:

Max. err. Intensity = I n t e n s i t y -  0.2 (116)

Even if there is still a maximum error of -0.2, when this value is compared with the original 

error o f -0.5 a considerable improvement has been made. Again it should be stressed that this 

improvement has been achieved without any additional logic or switching. In other words the 

method improves the result without causing additional power consumption.

6.6.2 Replacing the LSB by ONE

Instead of modifying the divider it is also possible to drop the LSB of the sum of Red, Green 

and Blue and replace it by a constant ONE at the input of the divider. This can 

mathematically be expressed as:

I f  (R+G+B) even (117)

R + G B + \
Intensity =-----------------

else

R + G + B 
Intensity = -------------

As seen, this computation satisfies the accuracy requirements of the intensity algorithm only 

for even numbers. Odd numbers are still the absolute value of the result. Nevertheless, this 

improves the accuracy of the output by 33% without any additional logic. Furthermore, it is 

possible to reduce the number of bits to be transmitted and stored in pipelining stages by one 

bit down to 7 bits. Due to the quadratic impact on power consumption in pipelining stages 

this results in a reduction in power consumption of 20% in the pipelining stages alone. 

Further reduction in power consumption is possible through the declaration of the LSB to be 

ONE. This enables the designer to optimise the divider structure and results in a less logic.
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6.7 Results of the Saturation-Intensity Path

Table 6.3 shows the characteristics of the different solutions which were obtained by the 

Synopsys Design Environment and represents the most important features of each 

implementation.

Version Active 

Capacitance / pF

Number of 

nets

Power 

Consumption / mW

Max. 

Delay / ns

Total area / 

(im̂

Direct 73.18 516 60.98 119.01 1021.74

Second 76.24 452 63.53 126.63 889.47

Third 323.27 1613 269.36 342.79 3960.34

Fourth 118.44 1064 98.69 209.22 2426.29

Table 6.3: Characteristics of the Saturation-hitensity Implementations 

6.7.1 The Power Consumption

Figure 6.28 shows the power consumption for the different versions implemented.
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Figure 6.28: The Power Consumption of the SI Algorithms

As illustrated in Figure 6.28, the third implementation requires 269.36mW, which is the most 

power intensive. The reason for this high power consumption are the large divider stages
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required. The direct and the second implementations need approximately 23% of the power of 

the third implementation. The fourth implementation uses one additional divider when 

compared to the first two designs. Therefore, this implementation requires 36% of the power 

of the third implementation.

6.7.2 Timing Behaviour

In these particular saturation and intensity modules the same factors contributing to the power 

consumption also influence the timing and in fact also the area o f the circuit. Therefore, these 

factors are not mentioned again in this section. As illustrated in Figure 6.29, the third 

implementation needs 342.79ns, which is the most time to solve the saturation and intensity. 

The direct implementation only requires 34.7% and the second solution needs approximately 

37% of the time of the third implementation. The fourth implementation requires 209.22ns, 

which is 61% of the third implementation.
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Figure 6.29: The Timing Behaviour
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6.7.3 Required Area
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Figure 6.30: The Required Area of the SI Algorithm

Figure 6.30 shows the required area in |o,m̂  of the solutions implemented. It can be seen that 

the third implementation requires the most area. For this reason this solution is not useful for 

implementation into hardware. As illustrated in Figure 6.30, the second implementation needs 

22.5% of the area of the third implementation, which requires an area of approximately 

3960|j.m^. Using the direct implementation only an area of 25.8% of the area of the third 

implementation is necessary. The fourth implementation requires an area of approximately 

2426|̂ m .̂

6.8 Summary and Conclusions

This Chapter has presented four alternative implementations of the saturation and intensity 

path of the RGB to HSI converter. Here, it has been shown that the direct implementation 

yields the best results with respect to power consumption and timing behaviour. Using non­

optimised constant divider structures, the third implementation requires the most power, time 

and area. For this reason this approach is not useful for implementation. The direct 

implementation needs approximately 23% of the power and 35% of the time of the third 

implementation. The direct implementation requires an area of 26% of the third 

implementation. The rewriting of the equations of the saturation and intensity algorithm did
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not yield a reduction of the power consumption, speed and area o f the second, third and fourth 
implementations.

Using either the constant divider algorithm by Petry and Srinivasan, the RNS based 

algorithm or the fast constant division routine by Li, it is possible to reduce the power 

consumption by a factor of approximately 19. With respect to the error deviation, the RNS 

based algorithm is not suitable for implementation due to its maximum deviation of 4 bits. 

All alternative algorithms investigated, with the exception of the SBD, can be used to 

compute the result in time. The LUT has the fastest structure, but it requires the most area. In 

addition, the constant divider algorithm by Petry and Srinivasan and the fast constant division 

routine by Li are the best overall solutions. When power consumption is not the primary 

issue, the other structures are suitable for implementation.

To enable a detailed power analysis of the RGB to HSI algorithm, it was necessary to 

decompose the algorithm into two functional blocks, each of which was investigated 

thoroughly. To optimise these functional blocks, they were further subdivided into basic 

computational elements. These elements were in turn investigated for power consumption, in 

addition to area, speed and where appropriate, accuracy. This work resulted in a subset of 

low-power components, which were used as the building blocks for the RGB to HSI 

converter. The next Chapter presents a comprehensive overview of the electronic and image 

features of the system, including results obtained by processing real image data.
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7 Performance of the RGB to HSI Converter

The previous chapters have developed the implementation of the individual blocks of a low- 

power RGB to HSI converter. This chapter will now present the overall performance of the 

design. This presentation consists of two sections. The first section describes the hardware 

specification of the low-power converter, including a detailed power breakdown of each 

image component, hi addition, the design is compared to a direct implementation with no 

low-power features.

The second section investigates the image performance of the design using real image 

data. This investigation consists of two stages. Firstly, a graphical analysis o f images 

produced by the RGB to HSI converter is performed. This analysis comprises the visual 

investigation of both the converted image and the individual HSI components. Secondly, a 

statistical analysis of the distribution of individual bit errors is undertaken. Finally, these 

results are then used to suggest design modifications to satisfy alternate specifications.

7.1 Circuit Performance

This section will present the features of the implementation of the image processing 

algorithm. Table 7.1 summarises the features of the algorithm as presented throughout the 

previous chapters.

Features of the RGB to t ISI Converter

Technology ES2 07)u,m (industrial)
Supply Voltage 5V (±0.5V)
Input Signals Red, Green, Blue 

8-bit unsigned 
Clock

Output Signals Hue, Saturation, Intensity 
8-bit unsigned

Throughput 33Mpixels / cycle
Operating Frequency 33MHz

Area 4.19mm^
Number of Pipeline Stages 5
Output Signal Deviation Between -2 and +1 bit 

(-0.78% to 0.39%)
Active Capacitance 187.9pF
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Maximum Settling Time 18ns
Maximum Throughput 50Mpixels / cycle
Maximum Operating Frequency 50MHz
Average Dynamic Power Consumption 140mW ((%30MHz)

Table 7.1: Features of the RGB to HSI Converter

As can be seen from the table, the throughput can be improved by a factor o f up to 1.6 better 

than the minimum specification for this project of 1200 by 1200 pixels at 25 frames per 

second, as set out in Section 1, Chapter 1. Thus, with this design it is possible to convert 

images with a resolution of up to 1600 by 1200 pixels at 25 frames per second. However, a 

drawback is that the power consumption at this higher throughput will be 39% greater, i.e. 

226mW, in comparison to that for the 1200 by 1200 pixel resolution. Therefore, for the 

lowest possible power dissipation the design should be always be run at the minimum 

allowable operating speed.

It is worth noticing that if the sum of all the active capacitances of the individual blocks 

hsted through the thesis is calculated the result will be 121.5pF. From Table 7.1 it can be seen 

that the active capacitance of the overall circuit is 187pF. This is a difference of +35%> and 

can be explained by the additional physical capacitance of the block interconnect. This 

however does not change any of the statements of the individual blocks made in the previous 

chapters, it merely increases the overall capacitance of the final circuit. Figure 7.1 shows the 

detailed breakdown of the individual components of the active capacitance. In this figure it 

can be seen that, with the optimised constant divider, the intensity has the lowest power 

consumption. If the intensity and hue subsystems are investigated further, it can be seen that 

the large divider structures present in both paths have the highest proportion of active 

capacitance, followed directly by the comparator in the hue path. To minimise the power 

consumption of these blocks, particular interest should be paid to the layout of these stages.
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Figure 7.1: Breakdown of the Active Capacitance of the RGB to HSI Converter 

7.1.1 Comparison with a Direct Implementation

The RGB to HSI algorithm was implemented in two different ways. In addition to the low- 

power implementation which was described in previous chapters, a second implementation 

was also designed. This second design was described using native VHDL operations to 

implement the various functions. Furthermore, the circuit was synthesised using design 

constraints to meet only the timing requirements. Therefore, this circuit was not designed to 

meet any low-power constraints. The second implementation is referred to as the direct 

implementation of the RGB to HSI algorithm. The results of this direct implementation are 

shown in Table 7.2.

Features of the RGB to HSI Converter

(Direct Implementation)
' ■ : ' . ■ •■ ■ ■: ' . ' ■ . . . . . . . . . . . .

Area 3.7mm
Number of Pipeline Stages 4
Output Signal Deviation Between -1 and +1 bit 

(0.39%)
Active Capacitance 298.9pF
Maximum Settling Time 36ns
Maximum Throughput 27.7Mpixels / cycle
Maximum Operating Frequency 27.7MHz
Average Dynamic Power Consumption 202mW (@30MHz)

Table 7.2: Features of a Direct Implementation of the RGB to HSI Converter

As can be seen from a comparison of Table 7.1 and Table 7.2, the power consumption of 

the direct implementation is 37% higher than that of the optimised implementation. 

Additionally, the maximum throughput, and therefore the maximum computational image 

resolution, was increased in the low-power version by a factor of 1.8. This increased
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perfomiance is due to the balancing of the paths. In the low-power implementation, paths 

which did not meet the timing requirements were shortened and hence the overall delay was 

decreased. In a voltage scalable circuit, this could be used for even further power reductions. 

In this case it would be possible to reduce the voltage down to approximately 3.5V in a full 

custom design which would result in a reduction in power by half.

The number of pipeline stages of the power optimised design was increased by one to 

four. This had the effect of balancing the paths and reducing the glitching in the divider 

structures. This caused a rise in latency by one clock cycle. However, if  the latency of the 

power optimised design of 90ns is compared to that of the direct implementation, it can be 

seen that the additional pipeline stage did in fact reduce the latency by 54ns.

The only feature of the low-power implementation which has not improved is the area. 

However, this was a result which was anticipated. As has been shown in the introduction of 

this thesis, the factor most often traded-off for a reduced power consumption is the area. The 

increase of 13% is very reasonable if it is compared to the reduced power consumption of 

37% and increased performance of nearly 93%.

While this direct implementation of the circuit does not perform as well as the optimised 

design, it has the advantage of a much faster design development cycle. Therefore, if  fast time 

to market is of the uppermost importance to the designer, not all power saving features should 

be implemented. Thus, the use of gated clocks and the replacement of trigonometric functions 

by the approximation algorithm is one method of effectively reducing the power consumption 

in a time efficient manner.

7.1.2 Comparison with a DSP

The RGB to HSI transformation can also be implemented on a DSP chip such as the TI 

TMS320C6211. This chip has a maximum performance of around IGOPS [TI98] and a 

power consumption of I.IW [Cast99], To implement Render’s algorithm, a minimum of 19 

operations are required. Also, if an RGB signal with a resolution of 1024 by 1024 pixels is to 

be transformed at a frame rate of 25, this results in 78,643,200bytes/second. Therefore, 

implementation of the transformation of this RGB signal using Render’s algorithm would 

result in 489MOPS which is half of the available processing power of the TMS320C6211. On 

the TMS320 however, the operation would consume I.IW  which is 7.9 times that of the 

proposed image conversion circuit. Furthermore, the maximum resolution of the RGB to HSI
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converter is SOMwords/second which corresponds to a resolution of 1920 by 1080 pixel at 25 

frames per second and a power consumption of 226mW. The same resolution would require 

2.84GOPS on a TSM320C6211. Therefore, to perform such an operation three boards are 

required, giving a total power consumption of 3.3W which is nearly 15 times that of the RGB 

to HSI circuit presented in this thesis.

7.2 Image Quality Performance

Having discussed the circuit features of the RGB to HSI converter circuit, the implemented 

algorithm will now be investigated with respect to its image converting properties. For this 

purpose, a C program was written which simulates the behaviour of the hardware. The 

accuracy of the hardware implementation is compared to a numerical implementation of the 

algorithm which calculates HSI using double precision. This program was required because 

of the large amounts of image data to be compared. Such a simulation would require days in a 

VHDL simulator for a single picture.

On the next pages two pictures are used to illustrate the functionality of the algorithm. 

These pictures have a size of 600 by 600 pixels and a resolution of 24 bits. Both the original 

images have been taken from [Uses]. To compare the images the original picture and the 

converted image are shown in Figure 7.2 and Figure 7.3. Due to the fact that there is no 

visible difference between these images two further pictures are included into the analysis. 

Firstly, a subtraction picture is shown. This is the subtraction of the new picture from the 

original. In order to show positive as well as negative deviations, the default background of 

these pictures is set to 50% grey. Here the first patterns appear. These however only show that 

there is a deviation between the original and the transformed image. To provide a better 

method of analysis, a colour map of the individual components of hue, saturation and 

intensity was also included for the different pictures. Here the variation of individual bits 

from the expected value is shown using different colours. The values of this colour map are 

shown in Table 7.3.

Errors <-5 -5 -3 -2 -1 0 1 2 3 5 ^ >5

Colour

■ H M M ■ ■ ■ ■ ■ ■ ™ — —

Purple
dark
blue

Light
blue

dark
green

Light
green white Yellow

Light
orange

dark
orange Brown red

Table 7.3: Colour Map Index for the Analysis of the HSI Algorithm
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The colour map index is used for an analysis of the images for hue, saturation and intensity 

separately to make the errors more visible. It can now be seen that the deviations are in fact 

very small. Furthermore, it appears that most of the pixels in all the colour maps have a 

deviation from the theoretical value. The colour map for the intensity part shows the largest 

inaccuracies. Here it appears that nearly all pixels are inaccurate.
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Figure 7.2: The Original Baboon Image

Figure 7.3: The Transformed Baboon Image
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Analysis of the Images Pepper and Baboon

original picture peppers picture after processing subtraction picture

colour map for H colour map for S colour map for I

picture after processing subtraction pictureOriginal picture baboon

f:

iW .'V ':

colour map for H colour map for S colour map for I

Figure 7.4: Comparison o f Different Pictures
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As seen in Figure 7.4, the algorithm is operating correctly as there is no visible difference 

between the original and the transformed picture. However, because of the limited colour 

spectrum of today's printers and monitors, this is not a conclusive result. Therefore, again the 

pictures are analysed for errors in the hue, intensity and saturation using a colour map. These 

colour maps suggest that the errors are limited between -2 bits and 2 bit. This was also 

expected from the theoretical implementation as presented in this thesis. These pictures 

however contain 360000 pixels, so that individual errors may not be visible. For this reason, a 

statistical analysis of these pictures was undertaken. Here the errors o f hue, saturation and 

intensity are presented according their appearance. The results are shown in Table 7.4.

deviation n bit <-2 -2 -1 0 1 2 >2
pepper Hue 0 5 31 32 25 8 0 %

Sat 0 0 0 50 50 0 0 %
Int 0 5 88 7 0 0 0 %

100

Coo
0 )a
c

0>
X‘o.

<-2 -2 -1 0 1 2 >2

H a lg o 2

d e v ia t io n  in bit

deviation in bit <-2 -2 -1 0 1 2 >2

baboon Hue 0 3 35 26 31 4 0 %

Sat 0 0 0 50 50 0 0 %

Int 0 6 87 7 0 0 0 %

100

a>Q.
C

0>
X
'5.

<-2 -2 -1 0 1 2 >2

H a lg o 2

d e v ia t io n  in bit

Table 7.4: Graphical Analysis of the Errors of the Algorithm

As shown in Table 7.4, the errors are limited to -2 bits and 2 bit. This is in agreement with the 

results obtained from the colour maps and is also supported by the theory. Further
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investigations using a wide range of pictures has been carried out. The result of a simulation 

of 242 images, taken from [tcdOO], containing more than 84.6M pixels is shown in Figure 7.5.

70000000 1

60000000

50000000

— Hue 

■ — Saturation 

Intensity

40000000

30000000

20000000

10000000

deviation  in bit

Figure 7.5: Analysis of the Errors of the Algorithm

From Figure 7.5 it can be seen that the errors are similarly distributed to the errors contained 

in the two pictures presented in this section. Furthermore, this investigation has shown that 

the error margins of -2 bits and +2 bit are never crossed. This results in terms of the dynamic 

range of the pictures in a maximum percentage error of -0.78% to +0.78%. Another 

interesting result of this investigation is that all pictures investigated have a deviation of 

minus one for approximately 80% of the pixels in the intensity. It would therefore be possible 

to add one to the result in order to lower this deviation to 20% of the pixels. This however 

would add an 8-bit adder to the design without improving the visual perception of the images. 

Therefore, the design was implemented as presented in Section 6.6. To improve the results of 

hue and saturation more sophisticated approaches would be required. In the case of the hue 

algorithm the accuracy of the arctan function would need to be increased to one bit after the 

decimal point. This would result in greater logic in the arctan stage as well as the following 

stages, and would furthermore require an additional rounding stage. To improve the 

saturation, the division of this path would need to be more accurate and therefore larger and 

more power consuming. However, the accuracy achieved is more than sufficient for human 

inspection and has no noticeable loss in image quality. Therefore, the algorithm presented is 

implemented as described because of the advantages in power consumption and 

computational throughput.
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8 Conclusions

This chapter summarises the results of this work. It is broken down into three sections. The 

first section describes the specific conclusions that can be directly taken fi'om the work, while 

the second section takes these findings and describes their broader relevance within the field 

of low-power VLSI design. The last section then proposes ideas on how to develop this 

research and extend it for future projects.

8.1 Specific Conclusions

The aim of this thesis was to investigate system level approaches for the low-power 

implementation of computationally intensive algorithms. The traditional method for low 

power IC design is directed towards reducing the supply voltage. However, this approach was 

not applicable to the project goal as the design had to be mapped into an ASIC library and for 

ASICs voltage scaling is only possible within a very limited range. The next significant 

quantity influencing the power consumption is the active capacitance of the design. 

Therefore, it was intended here to focus on applying techniques to reduce this quantity. For 

this purpose, a particular implementation of Render's algorithm for faster computation of hue 

was chosen to explore the potential usefulness of a variety of methods for reducing the power 

consumption at the initial stages of the VLSI design cycle. This algorithm was chosen purely 

as a vehicle for the investigation and it is acknowledged that algorithmic decisions also 

impact on the low power design issue.

The initial investigation showed the need for a novel CAD tool capable of estimating the 

power consumption at the earliest possible design stage. Available tools had the disadvantage 

that they had not been fully incorporated into the standard design cycle or that they tested the 

design at a late stage in the circuit development. Therefore, a power estimation tool, 

PowerCount, was developed to rapidly measure the active capacitance of a design from a 

VHDL netlist. This tool offers the advantage of being fully incorporated into the Synopsys 

design cycle, as well as using the most accurate available information at that stage. 

Furthermore, PowerCount uses real timing simulations without making any generalisation 

when computing the real node activity factor. A Monte Carlo approach guarantees fast and 

rehable results while using only small sets of input vectors. With this tool it is possible to
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simulate large designs within a matter of hours and to make reasonable estimates of the power 
consumption.

Following the development of this tool, the specific case o f the implementation of 

Render's RGB to HSI algorithm in the form of a low power circuit was then considered. The 

aim was to examine this implementation on a block-by-block basis in order to identify 

potential avenues along which power savings could be made. To enable such a detailed 

analysis, the design was split into the three paths, studying the computation of hue, saturation 

and intensity as individual operations. These paths were again subdivided into smaller blocks, 

each containing their own set of implementation problems. These smallest blocks were 

investigated separately to find ways of reducing their power consumption.

In the hue path, the main task was to implement the alternating function of the arctan 

using unsigned arithmetic. This was achieved through the use of sign detection in the first 

stage of the design, resulting in reduced logic for the remaining stages. A second task was the 

implementation of the arctan function itself The standard implementation for all 

trigonometric functions is the CORDIC algorithm. However, when the CORDIC algorithm 

was compared with three alternative algorithms, it was found to require 25 times more power 

than the most efficient altemative. Furthermore, by using any of the alternatives other design 

features such as the maximum computational time and the area could be significantly 

reduced. Therefore, it appears that the primary strength of the CORDIC algorithm is in the 

area of mathematical multiprocessors rather than single function implementations. Following 

this task, the investigation was turned towards the control pipeline which was shown to have 

a significant power inefficiency. Firstly, different coding styles were applied to the block. 

However, the result was unsatisfactory as theoretically superior codes produced a higher 

power consumption than standard approaches. Detailed analysis showed that the greater 

power consumption of these reduced-power codes was in fact caused by a larger clock 

network. Therefore, an altemative to the traditional shift register implementation was 

developed. Here it was possible to demonstrate that, in general, for small designs, such as that 

o f the control bus, power savings of up to 30% could be achieved and for larger shift registers 

this figure can increase even further.

The first design decision for the saturation path was to reuse terms already computed in 

the hue path. This resulted in reduced logic and less pipeline stages in the saturation path. 

Moreover, it was then possible to use balanced structures to compute a proportion of the 

mathematical operations. Four different implementations of the saturation block were



Conclusions 156

considered and all implementations demonstrated their own particular advantages. However, 

the direct implementation of the saturation showed the best overall power performance. This 

marked the difference between the software-optimised and hardware-optimised algorithms as 

while a direct implementation appeared to be mathematically more complex, the block 

diagram showed that it had the smallest number of functional blocks.

The last path to be implemented was the intensity algorithm. As in the case of the 

saturation algorithm, it was possible to reuse terms previously calculated. Therefore, only one 

division by three had to be implemented. To build such a constant divider various 

mathematical algorithms were selected from the literature as, to date, there have been no 

efforts undertaken to compare their power consumption. It was recognised that several of 

these divider algorithms could be implemented with both alternating and non-altemating 

signs but, as shown, alternating implementations consumed more power. Therefore, the 

investigation was restricted to the non-altemating versions. From the simulations, the 

algorithm proposed by Petry was shown to give the best power to area-speed performance and 

it was therefore decided to use this algorithm in the implementation. Lastly, the accuracy of 

the intensity was also investigated. It was found to be possible to replace the least significant 

bit by a constant ONE at the input of the intensity path. This resulted in smaller logic and 

reduced power consumption while actually improving the accuracy by 33%.

Finally, the performance of the implemented design was investigated using digital images. 

Despite the fact that the potential sources of the error were known, it was desired to 

demonstrate that this algorithm produced images that were perceptually indistinguishable 

from the original. This was done empirically and it was found that the maximum errors of 

between -2 bits and +2 bits did not appear to have any influence on the perceptual quality of 

the images.

In summary then, a comparison of the approach presented in this thesis and a direct 

implementation of the RGB to HSI algorithm showed that a significant power saving of 37% 

could be made. Also, the computational throughput of the circuit was improved by a factor of 

1.8. This was because in the low-power version of the implementation a path balancing 

approach was used which resulted in a maximum path length of 18ns. The only drawback of 

this low-power implementation is the increase in required area by 13%. This is due to the 

more complex logic needed as well as the additional pipeline stages used to balance the path 

length. A theoretical comparison to an implementation of the algorithm on a TI 

TMS320C6211 DSP board showed that the low power implementation is approximately eight



Conclusions 157

times more power efficient at 26Mwords/second and nearly 15 times more efficient at 
5 OMwords/second.

8.2 General Conclusions

One can identify several key stages in the design process depending on the particular point of 

view. For instance, considering a problem-solving exercise, e.g. the design of an automated, 

visual, fruit defect detection system, there will be several stages o f thought. One possible 

solution then could consist of the following stages:

{1} A high-level algorithm development e.g. the design of signal processing techniques to 

analyse the colour data to detect defects.

{2}Optimisation of each part of the high-level process e.g. assuming HSI space is 

required -  how to generate the RGB to HSI conversion?

{3} Choice of implementation vehicle e.g. a C program on a PC with an analog to digital 

(A/D) card, or a C program on DSP with an A/D card, or an implementation on an IC.

{4} Once implementation vehicle choices are made, it is possible then to carry out further 

optimisation with respect to other design criteria such as speed or data rate.

In relation to the implementation of the RGB to HSI conversion algorithm, this thesis was 

concerned with the design choices around low power criteria once the decision was taken to 

use an IC as the implementation vehicle. It was clear at the outset that decisions belonging to 

stages {1} and {2} must effect low power criteria in IC design. For example, if one found that 

the use of luminance (Y) only was sufficient to solve the problem as described by {1}, then 

clearly the design of a Y processing chip will have a lower power consumption than a HSI 

processing chip. However, it was not the purpose of this work to examine the impact of such 

high level decisions on low power design. Specifically, in order to reveal low power design 

issues a simple task but with a demanding data rate was chosen.

The methodology utilised in this work for investigating the RGB to HSI conversion 

consisted of three main stages. Firstly, the functionality as defined by the system specification 

was examined for power-reduction potential. The second stage gave consideration to the 

selection of the most suitable number system with which to implement the circuit. Lastly, the
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third stage analysed how best to divide the algorithm into sub-blocks and then determine 

which of the standard techniques for sub-block implementation would produce the optimum 

low-power performance. Regarding power estimation, a novel tool was presented in the thesis 

that offered the distinct advantage of being fully incorporated into the Synopsys design cycle.

The methodology was validated in the final results and therefore confirmed the use of this 

staged procedure in a VLSI design environment. It appears that it is more profitable, in term 

of power savings, to work from the generalities of the design towards the particulars of the 

implementation. This is also important to realise when a constraint such as the time to market 

impinges on the project. In this situation, the designer must be conscious o f their time 

management and therefore should focus their efforts on the power bottlenecks o f the system 

caused by power consumption. Working directly on the algorithm specification, significant 

power savings can be made without having to study the details o f the circuit design. This 

means that at this high level fast, feedback about the power consumption is required. 

Therefore, it is advantageous if the power estimation tool is incorporated into the design 

environment. This sort of requirement was anticipated when developing PowerCount and it is 

justified by the recent appearance on the market of similar tools which can be incorporated 

into the design environment.

83 Future Work

Two possible roads for future work may be considered. The first would be to use the whole 

RGB to HSI algorithm and to optimise it at the lower levels of VLSI design. It would be 

important then to investigate the physical implementation of individual structures. Due to the 

large number of basic structures used by the algorithm, this could be a time-consuming task if 

a fully optimised design is to be produced. A second possible direction would be to examine 

the applicability of the power reduction techniques presented in this work to other areas of 

VLSI design in particular adaptive filter design. An investigation of a mixture of 

computationally intensive structures and medium-to-low performance designs would give a 

good overview of the suitability of these techniques in various application domains. At the 

high end of the design scale, particular interest should be paid to the possibility o f the direct 

application of the techniques suggested in this thesis to computationally intensive structures. 

With such structures, low power designs are an essential aid to overcome heat dissipation 

problems and also help to enable the development of portable real-time computing 

equipment. At the lower end of the performance scale, an investigation into the use of the
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proposed techniques could focus on determining the optimum balance between the silicon 

area and the power consumption. The particular relevance of such research for industry would 

lie in the fact that lower power consumption allows the use of cheaper packaging because of 

reduced heat dissipation, while a larger die area increases the fabrication costs.
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Appendix A: Using PowerCount

This appendix shows the simulation of a 1-bit adder to show the performance and features of 

PowerCount as well as to illustrate the user-friendliness of its interface. It is not intended to 

be a tutorial for PowerCount. All options of the power estimation environment can be found 

in the PowerCount Manual [Ccma99]. The design used as an example is the 1-bit adder, 

which was introduced in section 4.3. The design is simulated with the following 

specifications in order to estimate the active capacitance:

Design name FULLADDER

Number of input vectors 100
Desired accuracy 1%
Time base ns
Scaling factor 0.01
Name of the file containing the results Results add 1%

Table A .l: Parameter for the Simulation

Power Count uses a simple command line interface to control the simulation. This enables the 

designer to run the tool in the background or over slow networks. The simulation is started 

with:

pcount -d FULL_ADDER -iv 100 -acc 0.01 -rf Resultsadd_l% -sf 0.01 -tb ns

The design FULL_ADDER is simulated with 100 input vectors per iteration. This is done 

until X is within a maximum deviation of 1% from or until 30 iterations are performed. The 

reason for the upper limit is to shorten the simulation if an unrealistic accuracy target is set. 

The results of the simulation and the simulation parameter are printed into the file 

ResultsaddJ%o and onto the screen. The file Resultsadd_l%o provides a brief overview of 

the most important features of the simulation. The output of this file is shown below:

sum input_vec:100 runs:6 acc: 0.999 act_cap:0.282 totaltime: 55 s

The results of the simulation are as follows:

Number of input vectors: 100 

Number of iterations: 6
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Deviation ;c from 0.01%

Simulation time: 55s

Estimated active capacitance: 0.285pF

The energy which is required by the circuit is calculated by multiplying the active capacitance 

for a single vector by the supply voltage squared.

E=0.285pF (5V)^ = 7.125pJ

To enable a detailed analysis a file sim.tra is created.
Figure A. 1 shows this file for the Full Adder.

N24 0 .14 23 .33 3.27
N23 0.14 48.67 6.81
N22 0 .14 25 .17 3.52
N21 0 . 09 33 .50 3 . 01
SUM 0.03 49.33 1.48
CARRY_OUT 0 . 03 34 . 00 1.02
CARRY_IN 0 .13 23 . 67 3 . 08
B 0 .12 24 .17 2 . 90
A 0.14 24.50 3 .43

total active capacitance 0.2 85 pF

Accuracy : 99.85%

Initialisation vector(s) : 1 
Input vector(s) : 100 
Desired accuracy: 0.01 
... O K !

Figure A .l: A Sample Output File

Using this file it is possible to analyse the design in order to perform a bottleneck analysis. 

The file gives the designer detailed information about the node and its physical capacitances 

(second column). Furthermore, the average number of transitions occurred at each node 

during the iterations (located in the third column) are used to calculate the active node 

capacitance (fourth column). With this information the designer is able to find 'hot' areas of 

the design and direct the design efforts accordingly. The file is a simple ANSI file having tab- 

stops as separators. Therefore, it can be easily imported into spreadsheet programs or other 

simulation environments such as Matlab. This is particularly useful for further analysis or, as 

done in this thesis, for graphic representation of the results of power estimations.


