
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Algorithmic Level Low-Power VLSI Design Applied

to RGB to HSI Conversion

Andreas Schwarzbacher

Thesis submitted for the degree of Ph.D.

November 2001

Department of Electronic and Electrical Engineering

University of Dublin

h'eland

I, Andreas Schwarzbacher, declare that this thesis is entirely my own work, except where

otherwise accredited, and that it has not been submitted for a Degree to any other University

or Institution.

I further agree that the Library may lend or copy this thesis upon request:

Acknowledgements

Firstly, I wish to express my gratitude to my supervisor, Dr. Brian Foley, for his support and

help throughout this thesis. His advice and guidance was invaluable on many occasions.

I would also like to thank all the staff and Postgrads of the Electronic Engineering

Department who have helped me on the way. Special thanks go to Paul Comiskey and Joe

Timoney for both technical and spiritual advice all throughout the years.

Furthermore, I want to acknowledge the support of my friends both inside and outside the

department Elena Ranguelova, Devendra Kumar, Cecilia Chan and Lorcan Mac Manus.

Additionally I would like to thank the School of Electronics and Telecommunications

Engineering at Dublin Institute of Technology for granting me access to their research

facilities, especially Chris Cowely and Chris Bruce.

Finally, I wish to thank my parents for the support they have given me over all the years.

Furthermore, I would like to acknowledge the funding received through the IRCARUS2

(DG-XII) initiative for the development of PowerCount.

Abstract

The growing demand for portable applications such as cellular phones, portable digital

assistants (PDAs) and notebooks has resulted in a requirement for integrated circuits (ICs)

which consume less power while delivering the same performance as non-portable

appliances, hi addition, the low-power implementation of non-portable circuits has several

advantages, notably a marketing advantage in terms of energy efficiency and reduced

manufacturing costs because of cheaper packaging.

The focus of this thesis is the application of high-level low-power VLSI design methods

to a hardware implementation of Render's algorithm which converts a camera signal of red,

green and blue into a human perception-based code of hue, saturation and intensity. The aim

was to consider the circuit implementation of the algorithm on a block-by-block basis in order

to identify in each block potential avenues along which power savings can be made, and to

produce a power-efficient high-level circuit design targeted to an Application Specific

hitegrated Circuit (ASIC). The most commonly used approach for power reduction in VLSI

circuits is to minimise the supply voltage. However, with ASICs voltage scaling is only

applicable within a very limited range. Therefore, this thesis concentrates on the minimisation

of the power consumption by reducing the active capacitance of the circuit. This required a

high-level power estimation tool capable of assessing the power consumption at the earliest

possible design stage, and therefore led to the development a tool that can rapidly measure the

active capacitance of a design from a VHDL netlist.

Following the completion of the high-level low-power design, simulation of the

implementation was done using a range of real image data. The results from these tests

demonstrated that the design introduced no degradation in perceptual quality. Furthermore,

the final design showed significant power reduction when compared to a direct ASIC

implementation or to a version programmed on a Digital Signal Processing Integrated Circuit

(DSP IC).

Table of Contents

A CK N O W LED G EM EN TS.. «

A B S T R A C T ... iii

TABLE O F C O N T E N T S ...

L IST O F F IG U R E S .. vii

L IS T O F T A B L E S .. ix

1 IN T R O D U C T IO N ..1

1.1 K ender’s Algorithm for Faster Computation of Hu e .. 5
1.2 Computation of the Saturation .. 6
1.3 Computation of the Intensity ...7
1.4 Su m m a r y ... 7
1.5 T hesis Ov er v iew .. 7

2 P O W E R D IS S IP A T IO N ... 9

2.1 General Eq u a tio n .. 9
2.1.1 Dynamic Power Consumption.. 9
2.1.2 Short-Circuit Power Consumption.. 12
2.1.3 Leakage Power Consumption..13
2.1.4 The Complete Equation for the Total Power Consumption...14

2.2 Reducing the Supply V o lta g e ...14
2.2.1 Delay and V oltage.. 15
2.2.2 Threshold..16
2.2.3 Voltage Scaling..17
2.2.4 Different Voltages on a Single C hip.. 18

2.3 Critical Path Reducing Transform ations... 19
2.3.1 Parallelism o f Structures...19
2.3.2 Pipelining... 20
2.3.3 Pipelining and Parallelism...21
2.3.4 Resource Sharing..22

2.4 Reducing the Voltage Sw ing ...22
2.5 Summary and Conclusio ns ..23

3 DYNA M IC P O W E R C O N S U M P T IO N ..25

3.1 Adding Additional Lo g ic ...25
3.2 R educing the N um ber of N o d e s ..27
3.3 P recom putation .. 27
3.4 N um ber Representation...28
3.5 M inimising Glitching Activ ity ...30
3.6 A dditional Capacitance through the use of Latches to Redu ce G litching... 31
3.7 Reducing the Switching A ctivity b y the use of D on 't Care T e r m s ...34
3.8 Ordering OF Operations...34
3.9 M ultiplexed Bu s e s .. 35
3.10 Locality of Re fer e n c e ...36
3.11 Reduction of the W ordlength ..37
3.12 Coding OF Signals..37
3.13 Logic M inimising..37
3.14 M inimising the N umber of Operations... 38
3.15 O ptimisation of Constant Operation ... 38

V

3.16 M inimising THE Capacitive Load .. 39
3.17 Low-Pow er Libraries.. 40
3.18 Summary and Co nclusio ns ..40

4 PO W ER C O U N T: A ff lG H L EV EL P O W E R ESTIM A TIO N T O O L ...42

4.1 Current Pow er E stimation To o ls ..43
4.2 Pow er Estimation T echnology ...45
4.3 Estimation of the Dynamic Power Consumption using the L ibrary Referen ce B o o k46
4.4 Th e Synopsys System Sim ulator ..49
4.5 Pow erCount .. 49
4.6 Generating the E stim ate ... 52

4.6.1 Method O n e..53
4.6.2 Method T w o .. 53
4.6.3 Method T h ree .. 55
4.6.4 Analysing the Stopping Criteria for Suitability in Power Estimation... 56

4.7 Evaluation of the Stopping Criteria ...57
4.7.1 Small D esigns...60
4.7.2 Large D esigns.. 62
4.7.3 Analysis o f the Simulation Results...64

4.8 Spice Simulations...65
4.9 Theory o f Operation.. 67
4.10 Summary and Co n clusio ns ...69

5 TH E H U E A L G O R IT H M .. 71

5.1 Comparing the Input V ectors.. 72
5.1.1 The Sorting A lgorithm .. 73
5.1.2 The Encoder Block... 75

5.2 Computing the A rgument OF THE A rctan ...76
5.3 The D ivider Structure .. 78
5.4 T he Arctan ... 80

5.4.1 The CORDIC Algorithm.. 82
5.4.2 The Lookup T able... 88
5.4.3 The Modified Lookup Table..89
5.4.4 Approximating the Arctan.. 90
5.4.5 Features o f the Different Implementation o f the A rctan...91

5.5 A dding THE Coefficient...99
5.6 ControlL in e .. 101

5.6.1 Implementation o f the Control-Bus.. 101
5.6.2 Physical Structure of the Delay L in e .. 105

5.7 S ummary and Conclusions.. 111

6 TH E SATURATION AND INTENSITY A L G O R IT H M ..113

6.1 Implementation Considerations of the Saturation and Intensity A lgo rith m113
6.2 D irect Implementation..114

6.2.1 A Constant-Division Algorithm by Petry and Srinivasan..116
6.2.2 The Lookup Tables..119
6.2.3 An RNS based Division Architecture for Constant D ivisors... 121
6.2.4 A Fast Constant Division Routine by Shuo-Yen Robert L i.. 125
6.2.5 The Standard Binary Divider..127
6.2.6 Features o f the Divider A lgorithm s...131

6.3 Second Implementation of the Saturation/Intensity Algo rithm ..134
6.4 T hird Implementation of the Saturation/Intensity A lgo rithm ...135
6.5 F ourth Im plem entation ...136
6.6 Improving the A ccuracy of the Intensity Algorithm ...137

6.6.1 Modifying the Divider Structure..138
6.6.2 Replacing the LSB by O N E..139

6.7 R esults of the Saturation-Intensity Path ... 140
6.7.1 The Power Consumption... 140
6.7.2 Timing Behaviour... 141

vi

6.7.3 Required Area... 142
6.8 Su m m a r y a n d Co n c l u s io n s ...142

7 PERFORMANCE OF THE RGB TO HSI CONVERTER...144

7.1 C ircuit P e r f o r m a n c e ...144
7.1.1 Comparison with a Direct Implementation..146
7.1.2 Comparison with a DSP...147

7.2 Im a g e Qu a l it y Pe r f o r m a n c e .. 148

8 CONCLUSIONS..154

8 .1 S p e c if ic C o n c lu s io n s .. 154
8.2 G e n e r a l Co n c l u s io n s ..157
8.3 F u t u r e W o r k ..158

REFERENCES.. 160

AUTHORS PUBLICATIONS..170

APPENDIX A: USING POWERCOUNT..172

List of Figures

F igure 1.1: T h e H u e , Satura tion , In ten sity M o d el of H um a n P er c ept io n o f C o l o u r ..3
F igure 2.1: T h e So u rc es o f th e N o d e Ca pa c ita n c e ...10
F igure 2.2: Sh o r t CiRCurr Cu r r e n t .. 13
F igure 2.3: D epe n d e n c e o f D elay a n d V olta g e ... 15
F igure 2.4: P o w e r C on su m ptio n a n d V o l t a g e ..18
F igure 2.5: P rinciple o f P a r a ll elism ... 19
F igure 2.6: P rinciple of P p e l in in g ...20
F igure 3.1: R ipple-Ca r r y A d d e r .. 26
F igure 3.2: T h e P rinciple of P reco m pu ta tio n ..28
F igu re 3.3: Sw itch in g P ro ba bility o f Im a g e D a t a ...29
F igu re 3.4: O rigin o f G litch es ...30
F igu re 3.5: Seria l a n d Tr e e A d d e r S tr u ctu re ..31
FIGURE3.6: G litch in g IN Ca sc a d ed F un ctio nal B l o c k s ... 32
F igu re 3.7: C a sc a d ed Str u c t u r e usin g on e L a t c h ... 33
F igure 3.8: O rd er in g o f O p e r a t io n s ... 35
FIGURE3.9: M u ltiplex ed v s . Lo c a l B u s e s ... 36
F igu re 4.1: H ier a r c h y o f TRADmoNAL P o w e r E stim atio n .. 43
F igure 4.2: In t e r n a l Str u c t u r e o f a n 1-B it F u l l A d d e r .. 47
F igure 4.3: Sy n o psy s Sim u la tio n F l o w ... 49
F igure 4.4: P ow erC o u n t in th e Sy n o psy s En v ir o n m e n t ... 50
F igu re 4.5: G en er a l M eth o d o f G en era tin g a n E stim ate U sing P ow erCo u n t ..51
F igu re 4.6: M o n te C a r lo Sim u l a t io n ... 52
F igu re 4.7: D ifferent M ea n s R ely in g o n N u m b e r of Iter a tio n s ..54
F ig u re 4.8: B ell Sha pes fo r th e St u d en t’s t D ist r ib u t io n s ... 55
F igu re 4.9: S im ulation T im es o f A d d e r St r u c t u r e s .. 59
F igu re 4.10: C on v erg en ce o f th e Sim u l a t io n ...60
F igure 4.11: D istribution o f th e A c t iv e Ca pa cita n c e of th e Fu l l A d d e r ...60
F igu re 4.12: D eviations S im ulating Sm a ll D e s ig n s ..61
F igu re 4.13: S im ulation T im e fo r Sm a l l D esig n s ... 61
F igu re 4.14: Iterations to get a n E stim ate usin g th e M eth o d O n e Sto ppin g C r it e r io n .. 62
F igu re 4.15: E r r o r D eviation Sim ulating La r g e D e s ig n s ... 63
F igure 4.16: S im ulation T im e fo r La r g e D esig n s ..63
F igu re 4.17: C o m pa riso n of R un ning T im es of th e Inv estig ated Sto pping C r it e r ia ... 64
F ig u r e 4.18: L a y o u t o f th e 1-B it F u ll A d d e r .. 66
F ig u re 4.19: C u r r en t Sim ulation o f th e 1-B it F ull A d d e r ... 66
F igure 4.20: F lo w c h a rt of P o w erC o u n t ..68
F igu re 5.1: T h e B rea k d o w n o f th e H u e A lgorithm into C o m p o n e n t s ...72
F igu re 5.2: T h e B lo c k D iagram o f th e Co m pa riso n M o d u l e .. 72
F igure 5.3: T h e T ra dition al Im plem en ta tio n P er fo r m in g th e Sig n D e t e c t io n ... 74
F ig u re 5.4: E xtracting the Sign using the Co m pa r a to r s ... 74
F igure 5.5: T he B lo ck D iagram fo r Co m pu ta tio n the A r g u m e n t of th e A r c t a n ...77
F igure 5.6: T he B lo ck D iagram of th e D ivider M o d u l e ... 78
F igure 5.7: B lo ck diagram o f th e A r c t a n ...81
F igure 5.8: T h e H u e C ir c l e ..81
F igu re 5.9: T h e R otation a n d th e V ectorin g M o d e of th e C O R D IC A l g o r it h m .. 83
F igure 5.10: C om putation o f th e A rc ta n u sin g th e C O R D IC T e c h n iq u e ... 83
F igu re 5.11: F lo w cha rt fo r th e V ectoring M o d e ..84
F igu re 5.12: T he Str u c t u r e of th e CORD IC V e r s io n .. 85
FIGURE5.13: T he Ca lculation St a g e ... 85
F igure 5.14: T he Shift Sta g e .. 85
F igu re 5.15 T h e fo u r Sectio ns o f th e A ppr o x im a te V e r s io n ...90
F igu re 5.16: C haracteristic of t h e A pprox im a te V ersio n a n d th e A r c t a n ...91
F igu re 5.17: A bso lu te D eviation o f the L U T ..92

vm

F ig u r e 5.18: A b s o l u t e D e v ia t io n o f t h e M o d if ie d L U T ... 93
F ig u r e 5.19: A b s o l u t e D e v ia t io n o f t h e C O R D IC A l g o r it h m ...93
F ig u r e 5.20: A b s o l u t e D e v ia t io n o f t h e Ap p r o x im a t io n A l g o r it h m .. 93
F ig u r e 5.21: E r r o r D e v ia t io n o f t h e L U T .. 94
F ig u r e 5.22: E r r o r D e v ia t io n o f t h e M o d ified L U T ..94
F ig u r e 5 .23: E r r o r D e v ia t io n o f t h e C O R D IC A l g o r it h m ... 95
F ig u r e 5.24: E r r o r D e v ia t io n o f t h e A p p r o x im a t io n A l g o r it h m ...95
F ig u r e 5 .25: T h e P o w e r C o n s u m p t io n o f t h e A r c t a n Im p l e m e n t a t io n s ..96
F ig u r e 5 .26: T h e R e q u ir e d A r e a .. 97
F ig u r e 5 .27: T h e TiM mG B e h a v io u r ..98
F ig u r e 5 .28 : T h e B l o c k D ia g r a m o f t h e La s t H u e S t a g e ... 99
F ig u r e 5 .29 : St r u c t u r e o f t h e C A L -b u s .. 101
F ig u r e 5 .30: A r e a o f t h e C A L -b u s in m m ^..104
F ig u r e 5 .31 : P o w e r C o n s u m p t io n o f t h e C A L -b u s .. 104
F ig u r e 5 .3 2 F o u r S t a g e S h ift R e g is t e r .. 106
F ig u r e 5 .33 : F o u r S t a g e S h ift R e g is t e r u sin g M u l t ip l e x e r - D e m u l t ip l e x e r ..107
F ig u r e 5.34 : I m p l e m e n t a t io n o f t h e D e m u l t ip l e x e r ... 109
F ig u r e 5 .35 : A c t iv e C a p a c it a n c e o f D if f e r e n t S h ift R e g is t e r I m p l e m e n t a t io n .. 110
F ig u r e 5 .36: A r e a R e q u ir e m e n t s o f t h e D if f e r e n t S h ift R e g is t e r s ..I l l
F ig u r e 6 .1: T h e D i r e c t I m p le m e n ta t i o n o f t h e S a t u r a t i o n / I n t e n s i t y A l g o r i t h m ..115
F ig u r e 6 .2: B l o c k D ia g r a m o f t h e D iv isio n b y 3 ...116
F ig u r e 6 .3: I t e r a t iv e D iv isio n b y 2^^+l a n d 2 '^-1 ... 116
F ig u r e 6 .4: E x a m p l e f o r a C o n s t a n t D iv isio n b y 3 ..118
F ig u r e 6 .5: Im p l e m e n t a t io n o f t h e O p t im ise d A l g o r it h m ... 118
F ig u r e 6 .6 : T h e A c c u r a c y o f t h e P e t r y A l g o r i t h m ..119
F ig u r e 6.7: T h e E r r o r D e v ia t io n o f P e t r y ...119
F ig u r e 6 .8 : D i r e c t A s s ig n m e n t f o r E a c h I n p u t V a l u e ... 120
F ig u r e 6.9: T h e A c c u r a c y o f t h e L U T ... 120
F ig u r e 6.10: T h e E r r o r D e v ia t io n o f t h e L U T ...121
F ig u r e 6 .11: Sp u t t in g o f t h e D iv id e n d A .. 122
F ig u r e 6 .12 C o m p u ta t io n o f t h e D ig i ts A 1-A 4 ... 123
F ig u r e 6 .13: Im p l e m e n t a t io n o f t h e R N S b a s e d A l g o r it h m ...124
F ig u r e 6 .14: T h e A c c u r a c y o f t h e R N S a l g o r it h m ... 125
F ig u r e 6 .15: T h e E r r o r D ev ia t io n o f R N S ..125
F ig u r e 6 .16: T h e A c c u r a c y o f t h e L i A l g o r it h m ...127
F ig u r e 6 .17: T h e E r r o r D ev l\ t io n o f t h e L i A l g o r it h m .. 127
F ig u r e 6 .18: E x a m p l e o f a St a n d a r d D iv isio n b y 3 ... 128
F ig u r e 6 .19: T h e Im p l e m e n t a t io n o f t h e S B D .. 129
F ig u r e 6 .20: T h e A c c u r a c y o f t h e S B D a n d S B D (o pt im is e d) ..130
F ig u r e 6 .21: T h e E r r o r D ev ia tio n o f t h e S B D a n d SB D (o p t im is e d) ...130
F ig u r e 6 .22: P o w e r C o n s u m p t io n o f t h e C o n s t a n t D iv id e r St r u c t u r e s ... 131
F ig u r e 6 .23: T im in g B e h a v io u r o f t h e C o n s t a n t D iv id e r A l g o r it h m ...132
F ig u r e 6 .24: T h e A r e a R e q u ir e m e n t s ..133
F ig u r e 6 .25: M o d ifie d R G B t o H S I A l g o r it h m ...135
F ig u r e 6 .26: T h ir d Im p l e m e n t a t io n o f t h e Sa t u r a t io n /In t e n s it y A l g o r it h m .. 136
F ig u r e 6.27: F o u r t h Im p l e m e n t a t io n o f th e S a t u r a t io n /In t e n s it y A l g o r it h m .. 136
F ig u r e 6.28: T h e P o w e r C o n s u m p t io n o f t h e S I A l g o r it h m s ..140
F igufie 6 .29: T h e T im in g B e h a v io u r ... 141
F ig u r e 6 .30: T h e R e q u ir e d A r e a o f t h e SI A l g o r it h m .. 142
F ig u r e 7.1: B r e a k d o w n o f t h e A c t iv e C a p a c it a n c e o f t h e R G B t o H S I C o n v e r t e r ..146
F ig u r e 7.2: T h e O r ig in a l B a b o o n Im a g e ..150
F ig u r e 7 .3: T h e T r a n s f o r m e d B a b o o n I m a g e .. 150
F ig u r e 7 .4: C o m p a r is o n o f D if f e r e n t P ic t u r e s .. 151
F ig u r e 7 .5: A n a l y sis o f t h e E r r o r s o f t h e A l g o r it h m ..153
F ig u r e A . 1: A Sa m p l e O u t p u t F il e ...173

ix

List of Tables

Table 2.1: Effects o f A rc h itec tu r e-B ased V oltag e Sc a lin g ...22
Table 3.1: C om pa riso n o f T w o D iv id er St r u c t u r e s .. 39
Table 4.1: P o w e r E stim ation usin g a D ata B o o k ..48
Table 4.2: R eq u ir ed V alues to c o m pu te th e Sto pping C riterl^..56
Table 4.3: C o m pa riso n o f SPICE Sim ulations w ith Po w erCo u n t ... 67
Ta b le 5.1: K e y F ea tu r es of th e C om pa riso n M o d u l e ... 74
Ta b le 5.2: C onditions f o r K en d er ca ses 1 to 4 ..75
T a b le 5.3: P r o b a b iu ties of t h e K en d e r -c a s e s ..76
T a b le 5.4: K e y F ea tu r es of th e C om pu ta tio n o f th e D ivisor fo r the A r c t a n .. 77
Table 5.5: K e y F ea tures o f a n Intelligen t D ivider M o d u l e ..80
Ta b le 5.6: T a b le o f th e F k e d Ang les fo r th e CO RD IC V e r sio n ..87
Ta b le 5.7: Cha ra cteristics o f th e D ifferent Im plem en ta t io n s .. 92
T a ble 5.8: Com pa riso n b e tw een th e Approxim ation V ersion a n d the CORD IC A lg o r it h m 98
TABLE5.9: F ea tu r e o f THE D ec o d e r B l o c k .. 100
T a b le 5.10: R esults o f CA L-b l o c k ..100
T a b l e 5.11: C o d ing o f THE 3-bit C A L-b u s .. 102
T a b l e 5.12: C o d ing o f th e 4-Brr C A L-b u s .. 102
TABLE5.13: C od ing OF THE 7-bit C A L-b u s .. 103
T able 5.14: R esults o f th e C A L-bu s St r u c t u r e s ...103
T a b l e 5.15: C om po n en ts o f th e P o w e r Con su m ptio n of th e CA L B u s .. 105
T a b l e 5.16: C om pa riso n B etw ee n t h e D iffer en t D em u ltiplex er Im pl e m e n t a t io n ... 109
T a b le 6.1: N otations fo r D esc r ib in g th e A n a ly sed A lg o r ith m s ...115
Ta b l e 6.2: Ch a ra cteristics o f t h e C o n sta n t D iv id er St r u c t u r e s ...131
Ta b le 6.3: Ch a ra cteristics o f t h e Sa tu ra tio n -Inten sity Im p l e m e n t a t io n s .. 140
Ta b le 7.1: Features o f th e RG B to H SI Co n v e r t e r ..145
Ta b le 7.2: F eatures o f a D irec t Im plem en ta tio n o f the RG B to H SI Co n v e r t e r .. 146
Ta b le 7.3: Colou r M ap In d e x fo r th e A nalysis o f the H SI A l g o r it h m ... 148
Ta ble 7.4: Gra phica l A nalysis of th e E rrors o f the A l g o r ith m .. 152
Ta ble A. 1: P a r a m eter fo r th e Sim u la tio n ...172

Introduction 1

1 Introduction

The development of electronics has been fuelled by the invention of the transistor by Bardeen

and Shockley over 50 years ago [Rior97], The initial technical hurdles faced by these pioneers

included the development of suitable semiconductor materials and the fabrication of reliable

devices. These challenges were quickly solved and were superseded by the demand for circuit

integration. This lead to the introduction of the first commercial integrated circuit (IC) in the

early 1960s. In 1965 G. E. Moore observed that most integrated circuits had approximately

doubled in complexity each year since 1959 [Moor65], Consequently he formulated Moore’s

Law, which predicts a doubling of the complexity of ICs every 18 months. The validity of this

observation has been demonstrated by the constant increase in integration density over the

last three decades. This has lead to the presence of ICs in virtually all consumer appliances.

At the same time, computers capable of performing millions of operations per second are

already in most households. These computers are based on ICs which themselves contain

millions of transistors and operate at frequencies of up to IGHz, The growth in usage of

computing systems has resulted in a demand for portable systems with comparable

performance to their non-portable counterparts. However, the inclusion of portability in high

performance systems has presented a new challenge. The battery operation time is limited by

the power consumption of the system. Also in non-portable systems, reliability and

fabrication costs are adversely affected by the power consumption. Therefore, power

consumption has now become the third design challenge, in addition to speed and integration

complexity. Much research effort continues to be expended in the development of techniques

aimed at reducing power consumption at all levels of circuit design. This thesis addresses the

challenges of low power design by investigating the implementation of an image processing

system. For this purpose, Kender’s algorithm for the faster computation of hue [Render] was

chosen as the vehicle to demonstrate the applicability of high-level low power design

methods.

Humans process a variety of information, which can be divided into general categories

such as speech, images and other data. To provide a human interface, electronic systems have

to process data in forms which reflect the human sensory systems of sight and sound. Audio

data has a low information content and can therefore be easily processed with current

Introduction 2

technology. Video however, has a much higher information content. This places much higher

requirements on image processing systems. The most obvious one is the high computational

throughput data required. However, when such systems are implemented in integrated form,

the area and power consumption become limiting factors in the performance of the system.

With the high integration density of current semiconductor technology the area constraint is

of lesser importance. The combined effect of high throughput and increased system

integration can cause excessive levels of power density resulting in reduced reliability,

overheating and premature system failure. To address these issues, the designer is faced with

the task of including the power consumption of such systems as a primary design objective.

To achieve this, the design community must introduce new methods aimed at reducing the

power consumption. This is also the objective of this thesis. To make this work generally

applicable, the more computationally demanding problem of video processing was selected as

a suitable vehicle for the investigation into low power design, hi this way, the results obtained

in this thesis may be directly transferred to other, less computationally intensive applications.

The model used to study these power characteristics is introduced in the following section.

Video and image signals are usually recorded using the three primary colours of light, red,

green and blue (R, G, B). Signal representation in red, green and blue is useful for image

recording and image visualisation using a monitor as this is the natural format of all images.

However, the RGB representation of images has disadvantages when the image signal

requires manual modification. This is because human perception of images is not based on

the three primary colours, but rather on the physical perception of three different quantities.

These quantities are hue, saturation and intensity. Hue is the pure spectral colour of a pixel (a

pixel is the smallest segment of a picture). The saturation is the purity of a colour and

indicates how much ‘white’ a colour contains. The intensity of a colour simply describes its

brightness.

Introduction 3

White

Intensity

YellowGreen

Saturation

n (Cyan Red ■'Grey

MagentaBlue Hue

Black

Figure 1.1: The Hue, Saturation, Intensity Model of Human Perception of Colour

Figure 1.1 shows the geometric representation of this hue, saturation and intensity (HSI)

model. In this model, hue is represented by an angle on the outer circle. The three primary

colours are distributed evenly over 360°. Red is assigned an angle of 0°, while green has an

angle of 120° and blue has an angle of 240°. All other colours are found between these points.

The achromatic axis, which is also called the grey scale, is found in the centre of the hue

circle. This is because all shades of grey are an even mixture of all three primary colours.

The saturation of a colour is defined as the purity of a colour and therefore shows the

amount of white contained in that pure spectral colour. To represent hue and saturation, a

vector pointing to the pure spectral colour is used, where the magnitude of this vector

indicates the saturation. A vector pointing to the perimeter of the circle represents a pure

spectral colour. For example, an input signal of R=B and G=0 will result in a pointer to 315°

Introduction 4

(Magenta). Because the magnitude of G is zero, there is no white contained in the

representation of magenta and therefore the length of the vector is one. A vector with a small

magnitude indicates the closeness of the pixel to be represented to the achromatic scale.

The intensity perception of a colour is represented in the HSI model by a second pointer,

orthogonal to the hue-saturation vector. Because all colours fade either into pure white or

black when the intensity is increased, or decreased, these points are the tips of two triangles

with a base equal the magnitude of the saturation.

The RGB to HSI transformation is widely used in the field of automatic pattern

recognition. The HSI representation allows the extraction of pure colour information from

images taken under various lighting conditions as it is independent of the ‘brightness’ of an

object. Examples of this include the computer assisted detection of cancer [HamaOO] or the

automatic detection of facial features, such as automatic lip segmentation [Liev99] [Sobo98].

The same principle can be applied to quality control of fruits, where the HSI space is

investigated for areas which should not be present in a ideal fruit such as dents or insect

stings on the surface of vegetables [CalvOO]. Furthermore, after removing the lighting

information it is possible to detect hand signals given by a human supervisor by automatically

detecting skin areas using hue. Examples for such systems are described in [Wu99] and

[Beck98]. Also, in the generation of colour representations for maize crop analysis it is

possible to examine the images of maize in more detail using the HSI model than RGB

[Ahma96]. The transformation into HSI is also used in the extraction of depth information in

stereo colour images. Here, it is possible to extract regions of low and high intensity or low

saturation which can then be treated like achromatic regions by the block matching

algorithms [Kosc96]. Other applications for the HSI model are in the automatic restoration of

paintings, separating cracks in the painting from brush strokes by using their different hue and

saturation regions [Giak98], and astronomical image enhancement [Cava99].

The preceding section described the physical phenomenon of light and its human

perception. As the RGB to HSI image processing algorithm is be implemented in hardware, a

digitised version of the three primary colours is used. Therefore, in the remainder of this

thesis the parameters R, G, B are used specifically to indicate digitised inputs of red, green

and blue. Furthermore, for the implementation of the RGB to HSI algorithm in hardware, the

following specifications have been selected. Firstly, the quantisation of each input signal is

eight bits. This results in 24 bit RGB images, which is the standard for high quality image

Introduction 5

reproduction. It is used in image recording formats such as BMP, PPM and Sun Raster

Format. However, as HSI representation o f images plays an important role in special effect

creation for film, it was decided to implement both the conversion o f images and the real-time

conversion of high resolution video into HSI space. There are many resolution standards in

today's computer applications, and the 1024 by 1024 pixels resolution was chosen as it is

more than three times higher than that of VHS video. At this resolution, the proposed IC must

be capable of converting full motion video in real-time. Full motion video is commonly

defined as 25 fi-ames per second. To calculate the processing time for each pixel o f a frame,

the number o f pixels in a fi-ame has to be multiplied by the number o f fi-ames per second. This

results in (25 * 1024 * 1024 =) 26214400 pixels per second or 26.22Mpixels per second. To

ensure that this constraint is met, the throughput rate was set to 33Mpixels per second. The

input and output resolutions are identical. Therefore, the quantisation of eight bits for R, G

and B is transformed into eight bits for H, S and I respectively. The following sections

introduce the algorithms used to convert the RGB input into hue, saturation and intensity.

1.1 Render’s Algorithm for Faster Computation of Hue

In order to implement the RGB to HSI transformation, Kender’s algorithm for faster

computation of hue was chosen [Kender]. Kender’s algorithm is shown in Equation 1 below.

For easier reference, the different cases o f Render's algorithm are numbered separately.

if ((R > B) and (G > B)) (1.1)

+ arctan
' S x (G- R) ^

— B + — By

else if (G > R) (1.2)

hue - K + arctan
' V 3 x (^ ~ G) "
\ B — R + G — Ry

else if (B > G) (1.3)

Sy.n h arctan
3

" Vs X (i; - fl) ̂
yR ~ G B — Gy

Introduction 6

else if(R > B) (1.4)

hue = 0

else (1-5)

‘achromatic’

The first three parts of Render’s algorithm (1.1), (1.2) and (1.3) define the angle of the hue

vector of a pixel pointing to the spectral colour. First, the algorithm determines which of the

primary colours in a given pixel is the one with the lowest intensity. The amount of white

contained in a colour is equal to the smallest input value. This information is not required to

calculate the colour angle, because the white information is contained in the saturation of the

colour. Now, the area in which the resulting vector will be located is determined. The

remaining two colours are then used to compute the exact angle of the colour. On the hue

circle, the colour red is defined twice. Firstly, as 0° and than secondly as 360°. In order to

account for the second red point the condition (R>B) must be included (1.4). If the value of

hue is 360° the resulting vector is set to 0° in order to ensure that each point on the hue circle

is only defined once. The last part of the algorithm (1.5) is used to describe all points which

are not represented by a colour. This is true for achromatic values. An achromatic pixel is

defined as a point, where all three primary colours have the same strength. Therefore this

point is not included on the perimeter of the circle but as origin of the hue circle.

1.2 Computation of the Saturation

From (2) the magnitude of the vector pointing to the hue value is then determined leading to a

value for saturation.

3 X
saturation = 1 ---------------------- (2')

R + G + B ^ ’

The aim of this calculation is to filter out the white content of the input triplet. As previously

described, the smallest magnitude of the primary colours determines the amount of white

contained in a given pixel. In order to normalise the hue circle, three times this smallest value

is divided by the sum of the input vectors and the result is subtracted from one. This implies

that if all three colour inputs have the same input value the length of the pointer is zero, i.e. a

Introduction 7

pure achromatic value is applied. If at least one input carries an input value of zero, the

saturation is one and therefore a pure spectral colour is applied to the input.

Equation (2) has a singularity at R = G = B = 0. This occurs when the input pixel is black.

At this point the saturation is not defined. This singularity can cause problems during

implementation. However, as will be shown in this thesis, this singularity is not a

disadvantage in terms of low-power design and can actually be used to save additional power.

13 Computation of the Intensity

The intensity of a colour is defined as the average value of the three input signals.

R + G + B
intensity = ------------- (3)

The intensity is generally perceived as the brightness o f a pixel. The stronger the average o f

the input signals the more intense is the perception o f the resulting colour. Therefore, the

intensity is calculated by summing up the three inputs and dividing it by three.

1.4 Summary

In order to perform the RGB to HSI conversion using Render's algorithm for faster

computation of hue, a number o f important mathematical operations are required. These

operations include addition, subtraction, multiplication and division with and without fixed

constants as well as trigonometric calculations. All o f these operations have to be

implemented as a design description. This algorithm is therefore an ideal vehicle to show a

variety o f low-power implementation techniques. Additionally, the simplicity of this

algorithm implies an initial direct-form implementation. However, as will be shown in the

remainder o f this thesis, there are ample opportunities for the implementation o f different

low-power strategies within this simple algorithm.

1.5 Thesis Overview

The remainder of this thesis is concerned with development o f a low-power image processing

algorithm. Firstly, a general overview o f the different sources o f power consumption is

provided in Chapter 2. This overview indicates the relative importance of each power

Introduction 8

dissipation source. Chapter 3 focuses on the reduction of the dynamic component of power

consumption. Several power reduction techniques are evaluated. The utilisation of these

techniques requires a high-level power estimation tool, previously unavailable. Therefore,

Chapter 4 describes the development of PowerCount, a high-level power estimation tool. A

low-power implementation of Render’s algorithm is discussed in Chapter 5. Chapter 6 then

presents the implementation of the saturation and hue components of the HSI algorithm,

while the features of the RGB to HSI design are evaluated in Chapter 7.

Power Dissipation 9

2 Power Dissipation

In the last decade, the reduction of power consumption in IC’s has become a primary design

goal. This chapter first presents a general overview of the sources o f power consumption in

IC’s and then the effects of supply voltage reduction on power consumption and timing are

explored. The results of this exploration are then used to present design techniques for the

minimisation of overall power consumption.

2.1 General Equation

Power dissipation in a CMOS circuit is caused by three sources. The dynamic power

consumption, the power consumption caused by short-circuit currents and the power

consumption due to leakage currents. The equation to calculate the overall power

consumption is;

p ~ P + P + _P f4^
total dynamic short-circuit leakage ^ ^

In this equation Pdynamic represents the switching component of the total power consumption.

This occurs each time a power consuming transition is performed. The P , . . term
^ o r short-circuit

represents the short circuit path which arises when both NMOS and PMOS transistors are

switched on and a path is connected directly between supply and ground. The losses

are due to substrate injections and subthreshold effects [Chan92], To take a closer look at the

three components, equation (4) will be investigated more closely.

2.1.1 Dynamic Power Consumption

There are two different methods available to quantify the dynamic power dissipation. The

first measures the power transformed into heat. The second represents the power taken out of

the supply. In this work, following standard practice the second method was chosen [Chan92]

[Chan95b]. The switching or dynamic power consumption occurs because a capacitive load is

charged by the supply voltage. The ideal CMOS device only uses switching energy when

changing the output value fi-om LOW to HIGH. This is illustrated with the most simple

element found in digital design, the inverter.

Power Dissipation 10

outoutout

'intfiL

GNDGND

Figure 2.1: The Sources of the Node Capacitance

As seen in Figure 2.1 the total capacitive load Cl is the sum of the output or drain-substrate

capacitances Cds, the input or gate-source capacitance Cgs and the capacitance o f the

interconnection Qnter- The term node capacitance Cnode is used synonymously with the load

capacitance Q . To compute the power consumed during an average switching event, the

energy taken out o f the supply over a particular time must be computed. Only for a LOW to

HIGH (or 0 to Vdd) transition is a current drawn from the supply. The instantaneous power

demand is given.

P (t)= -^ = isupply{t)-V,, (5)

In (5), isuppiy(t) is the current taken from the power supply with a constant voltage level o f the

supply voltage Vdd- This current can also be expressed as a function o f the capacitance which

is charged by assuming all isuppiy(t) is used to charge Cl -

= (6)

The energy taken out of the supply can therefore be written as:

T T

-̂ (0,1) = {t)dt (7)
0 0

If equation (6) is substituted into equation (5), the energy taken from the power supply can

then be expressed as:

(8)

Power Dissipation 11

Thus, it is clear that the energy taken from the supply is Cl times Vdd • This result is

independent of the output waveform. The energy stored in the capacitance may also be

calculated.

T T Vdd 2

0 0 0

The conclusion to be drawn from this equation is that only half o f the energy taken from the

supply is stored by the capacitance. Therefore, the other half is dissipated as heat by the drain

source resistance o f the PMOS transistor. On each HIGH to LOW change at the input the

output changes from LOW to HIGH. The capacitance o f the node is then charged to the value

of the supply voltage (it is assumed that the swing voltage is equal to the supply voltage). If

the output changes from HIGH to LOW the energy stored in the capacitive load is dissipated

in the NMOS transistor. Therefore, no power is consumed during this transition.

Equation (8) can be used to derive the general equation for the dynamic power

consumption in CMOS VLSI systems. This is done by multiplying the energy consumed in a

system by the clock frequency

^dynamic ^a c tiv i^ d d f e l k

In this equation CacUve is represented by

m

^active node k (11)
k=l

and is the sum of the active node capacitance o f a system with m nodes. The active node

capacitance is the physical node capacitance C„ode multiplied by the number o f node switches

from LOW to HIGH per cycle ri(oj).

The energy per transition is often used as a quantifier when comparing the power

consumption of different implementations o f the same design. This has the advantage that the

operating frequency is removed from the equation which makes comparison o f blocks easier

to perform.

p
Energy per transition = — - C (12) ̂ ̂ ^ a c t iv e ' dd ■'

J c lk

Power Dissipation 12

Because of the physical connection of Cl (and Cacuve) to the ground rail no energy is

stored or transmitted. All energy is transformed into heat. A different approach is presented in

[Athas94] where adiabatic-switching is used to recycle the switching energy during the HIGH

to LOW transition. However, such circuits require special components from the power supply

to individual single gate.

Often software tools are unable to determine the active capacitance as presented in (11).

These tools evaluate the average dynamic power consumption by means of the average node

capacitance Caverage [Nema99]. Caverage is the total physical capacitance o f a design divided by

the number of nodes. If the average capacitance is used to determine the dynamic power

consumption the active capacitance is called total capacitance Ctotai- Equation (13) is used to

determine the total capacitance.

In (13), the activity factor, nk, is the switching probability at the node for random input data.

The number of nodes is represented by m. Ctotai is usually estimated within a large margin of

error because it assumes that the physical capacitance of each node is constant within the

design. The main reason why this value is used is due to the ease of computation and the fact

that even the power consumption of large circuits can be estimated within a short time

[Nema99].

2.1.2 Short-Circuit Power Consumption

The second term of (4) represents the power consumption caused by a short-circuit current

isc, which flows when both transistors are switched on. Equation (14) describes the short-

circuit power dissipation.

Ideally CMOS devices would have an infinitely small rise and fall time between the HIGH

and LOW values. Therefore, they should not dissipate any short-circuit power. Real devices

need time to charge and discharge the load capacitance. During the time the value of the input

voltage lies between the upper threshold voltage (Vdd-Vip) and lower threshold voltage (V tn),

both transistors are switched on. A path between the supply and ground is formed and a

m

average (13)
k=l

short-circuit (14)

Power Dissipation 13

current flows directly from the supply to the ground. This behaviour is illustrated in Figure

2.2. Therefore, the longer the rise and fall times of the input signal, the larger the short-circuit

current. Additionally, it should be noted that during this time the capacitive load is neither

significantly charged nor discharged, which leads to an increase in the normal delay for

charging and discharging of the node capacitance.

When the input and output signals have equal rise and fall times the short-circuit power

consumption is typically between 1% to 2% of the total power consumption [Blair94]. hi

order to achieve equal input and output rise and fall times, the RC product o f the input and

output node capacitance must be equal. Achieving this can lead to problems if large loads

such as peripheral equipment or variable loads are to be driven. To compensate for that a

string of inverters can be used to optimise these delays, as demonstrated by Veendrick

[Veen84]. Unfortunately the balancing of the load has to be done manually. Therefore, it is

not possible to optimise the loads of all nodes of VLSI circuits, hi [NoseOO] Nose and Sakurai

show that typically around 10% of the total power consumption can be attributed to short-

circuit power. Furthermore, Nose and Sakurai argue that this figure will not increase in future,

smaller technologies if the ration of the threshold voltage over the supply voltage is kept

constant.

OUT

dd
dd

^r

d dTN

t ime

Figure 2.2: Short Circuit Current

2.1.3 Leakage Power Consumption

The computation of the last term of (4), the leakage power, is shown in (15).

Power Dissipation 14

p
leakage T Vleakage dd (15)

Iieakage represents the current caused by reverse bias currents through parasitic diode structures.

The value Iieakage is fixed for a given technology and is directly proportional to the area o f the

circuit. For a \.2\im technology, a value between IpA and 5pA per is typical [Burd96].

The designer cannot influence this value directly. However, the leakage current is highly

temperature sensitive. For this reason it may be possible to limit the leakage current thus

optimising the dynamic power dissipation by minimising heat dissipation.

2.1.4 The Complete Equation for the Total Power Consumption

Finally, the complete equation for the total power consumption is given by

As shown in the previous sections it is not possible to influence the short-circuit power

consumption and consequently the leakage power dissipation at the higher level of the design

cycle other than by choosing the proper technology. Therefore the following chapters will

focus on mitigating the dynamic power consumption. This is a reasonable approach since the

dynamic power consumption is typically more than 90% of the total power consumption

[Veen84] [NoseOO].

2.2 Reducing the Supply Voltage

The most obvious and most common way to reduce the power consumption is to reduce the

supply voltage. The supply voltage is present in all terms of the total power consumption

equation (4). In the switching power expression the Vm term is squared if the swing voltage is

set to the supply voltage. Therefore, any reduction o f Vdd would cause a major reduction in

the total power consumption. The most important factor in reducing the power consumption

of a circuit to a minimum is to reduce the supply voltage as much as possible. This conclusion

is supported in most o f the referenced literature such as [Chan92], [Liu93], [Malh94],

[Wang98], [Sanc99] or [ShiuGO].

^a c H v e^ d d f + h c ^ d d + ^lakageK (16)

Power Dissipation 15

2.2.1 Delay and Voltage

Figure 2.3 (adapted from [Chan95b]) shows that when the supply voltage is reduced, the

normalised delay increases. In IC design a distinction is made between local delay, which is

the delay of signal propagation between the transistors on the same chip and the global delay

which is the delay between transistors from one chip to another chip. The global delay is only

important when the chip specification includes a timing relationship between the chip and

other components in the system, hi this thesis the term delay is used for the local delay.

25

i 20

V ddA /olt

Figure 2.3: Dependence of Delay and Voltage

For most applications a minimal throughput of data is specified and this therefore defines a

minimum limit for the supply voltage. The simple first order equation for delay is shown in

(17) [Chan92].

This equation is suitable for technologies above 1.0|j,m. For smaller sizes, the saturation of

the carrier velocity under higher electric fields, which is not represented in the equation

above, becomes significant. The delay becomes increasingly voltage independent as the

implementation technology becomes smaller. Therefore, little advantage can be gained by

simply reducing the voltage. For a 0.3|j,m process the critical voltage was found to be 2.43V,

at which no further power reductions can be achieved by reducing the supply voltage

[Chan92]. If the voltage is lower than this limit the incremental delay is determined and

limited by interconnection delays. The equation above may differ from measured values of

delay by a factor of up to 20 when channel lengths are below 0.5|^m [Liu93]. Unfortunately

Power Dissipation 16

the second order equation required to determine delay for these small processes becomes

more complex than (17), because now the active length and width of the gates and also other

dimensional factors have to be included. For a detailed overview refer to [Liu93].

For cells above 1.0|am a reduction in power by 60% can be achieved with a supply voltage

of 3.3V compared to the 5V standard. It is the reason why this supply voltage became a new

industry standard. But this new standard also raises problems. Firstly, the I/O interfaces will

still have to operate with the 5V standard, while the thinner gate oxide of the chips designed

for 3.3V can be damaged at 5V. To avoid this problem, interface chips are designed which

can operate with two voltages. The 3.3V supply is used for the fxmctional circuitry and the 5V

supply for the I/O ports. This makes design simulation very difficult [Brust93]. Another

difficulty is that the reduced speed has to be compensated using architectural techniques such

as parallelism and pipelining. This means that these new designs are more complex than

traditional designs [Chan92] [Blair94] [Liu93]. Further reductions m aybe achieved by setting

the supply voltage to around 1.5V which is the optimal voltage for most common uses as

presented by Chandrakasan [Chan94] and Bellaouar et al. [Bell98]. It also seems that this

voltage may set a standard supply voltage for RISC chips [Naka94].

2.2.2 Threshold

The threshold voltages (Vt) present a different problem due to the reduction of the supply

voltage. For a given process the threshold voltage is defined and therefore sets another limit

on supply voltage reduction. To provide a sufficient margin so that an input signal is accepted

as HIGH or LOW, there must be a difference between supply voltage and the upper threshold

voltage. The exact value is disputed in the literature. In [Blair94] half the supply voltage is

suggested as a good rule of thumb while in [Stork95] and [Chan94b], the square root of the

supply voltage is offered as a good value for the threshold voltage. The lower limit for the

threshold voltage itself should be in the area of 0.3 V to provide a good compromise between

switching power and leakage power as shown in [Chan94b].

A different problem caused by the subthreshold region is the current which flows when

the input signal is in this region. The signal forces both transistors to open which leads to the

short-circuit current as presented in Section 2.1.2. To avoid this current, the rise time of the

input and output signals should be equal and as fast as possible. Also the region between the

Power Dissipation 17

threshold voltages should be as small as possible to decrease the time when both transistors

are on.

To optimise the power delay product a supply voltage of three times the threshold voltage

was found to give reasonable results [Shim93]. This allows a good noise margin o f Vr for

both HIGH and LOW levels. Further reduced levels may increase the short-circuit current and

therefore the short-circuit power consumption due to unstable states.

An interesting fact is that it is possible to reduce the supply voltage under the sum of the

threshold voltages of the NMOS and PMOS transistors. Chandrakasan [Chan94b] presented a

low-power chipset that works at I.IV, where the threshold voltage for the NMOS device is

0.7V and that of the PMOS device is -0.9V. While using such a low supply voltage it is

assumed that only one transistor at a time conducts and therefore it is impossible for short-

circuit currents to occur. However, this has the drawback of increased propagation delay.

2.2.3 Voltage Scaling

Most systems are designed for maximum throughput of data or for peak performance which

occurs infrequently in normal usage [Good98] [DancOO]. Therefore, most computations are

finished before the time deadline set by the clock frequency and the internal propagation

delay. In such applications the propagation delay can be slowed down by adjusting the supply

vohage in such a way that the output data meets the timing restrictions. This is called supply

voltage scaling or just-in-time processing, and can effectively reduce the power consumption.

After each cycle the critical path is scanned and a voltage is computed at which the operation

still meets the time constraints [Good98] [Wei99] [DancOO]. For example if a computation is

allowed to take 20ns but needs only 10ns for the actual data to be processed, the voltage can

be reduced from 5V down to 2.9V, the value of supply at which the delay doubles (Figure

2.4). Voltage scaling ensures that the circuit is always running at the lowest possible supply

voltage. Equation (18) expresses the power saving with this approach for the actual voltage,

Vactuai, in relation to the maximal supply voltage, Vdd-

 ̂ actual) actual (18)
d d) \ ' d d ^

Power Dissipation 18

0.8

0.6
<D
(/>
^ 0.4

0.2

VddA/actual

Figure 2.4: Power Consumption and Voltage

The drawbacks of this approach include the additional control logic required by the circuit

[ShiuOO] and the provision of a supply voltage which can be quickly and dynamically

calibrated. A further problem is the environment of the chip. Most applications need a fixed

input level, therefore the output buffer of the chip must provide an almost constant output

[Sanc99]. This can only be achieved by using adjustable dc to dc converters (DC/DC

amplifiers) and additional logic. These amplifiers add additional loss to the power

consumption caused by converting the signal level. Therefore, while voltage scaling may be

the best way to reduce the total power consumption it is also most difficult to implement, hi

the next section a compromise between low supply voltage and ease of implementation for a

given environment is presented.

2.2.4 Different Voltages on a Single Chip

As shown in the previous section the standard supply voltage can be scaled down without

losing performance. However, this voltage scaling approach is difficult to implement because

it requires additional logic blocks to overcome subsequent problems such as reduced

throughput. Furthermore, a varying voltage might introduce problems if the chip must interact

with external applications. The scaling logic can be avoided by using different voltages on a

single chip. Usually two vohages are used. One voltage is used to supply the core and the

other to power the I/O pads. The lower core vohage should provide a good compromise

between low supply voltages and easy to implement design structures. On the other hand the

higher voltage at the I/O pad is to ensure that the chip is able to communicate correctly with

the peripheral environment [Wang98] [Sanc99], The two supply voltages can be generated on

the chip by using dc/dc converter [Best98] [Jou98]. The advantage of these dc/dc amplifiers is

Power Dissipation 19

that they only need to be calibrated once as both voltages are known. Therefore, the additional

logic required for continuous voltage scaling can be omitted.

23 Critical Path Reducing Transformations

The optimisation of the throughput is vital when attempting to reduce the supply voltage to a

minimum. As the timing of a circuit is defined by the critical path it only makes sense to

redesign this path. However, in VLSI systems it is often difficult and uneconomical to reduce

the critical path by restructuring the logic cells. Therefore, the most common approach is to

restructure the functional block, which contains the critical path. This is done using a number

of different approaches.

2.3.1 Parallelism of Structures

A simple approach to retain throughput when reducing the clock frequency is to parallelise

processes. This is easy to implement but more than doubles the size of the design. Also,

special design tools must be used to keep the resulting increase in capacitance to a minimum.

Otherwise the capacitance of the larger layout may completely cancel out the improvement

due to supply voltage reduction [Mehr97]. Therefore, parallelism of structures is only

possible when no or little area restrictions are given. Even when there are no area restrictions

the higher chip size will increase the production costs and therefore parallelism may not be

suitable for some applications.

Mux Mux

delay t^

delay t<j

delay t^

Figure 2.5: Principle of Parallelism

Power Dissipation 20

Figure 2.5 illustrates the idea of parallelism. It is assumed that a functional block has a delay

time td. There is no possibility of decreasing the throughput of the device as the block is

already running at a frequency which cannot be reduced. With such a block it is impossible to

reduce the supply voltage because of the propagation delay dependence on the voltage. Using

duplicate blocks to implement the parallel configuration, the data must now be input to them

via a multiplexer. The first piece of data is read into the first block and the second piece of

data into the second block. Therefore, the frequency of each block can be reduced by a factor

of two, without losing throughput. At the output of the blocks the output data is

demultiplexed and the original data rate is reconstructed. Both blocks are now running at half

of the original block frequency, therefore the supply voltage can be reduced to a level where

the delay doubles [Lyon93]. For an original supply voltage of 5V this happens at

approximately 3V as Figure 2.3 illustrates. This approach also has drawbacks. Decreasing

voltages must be traded off against the larger chip dimensions [Fren98].

2.3.2 Pipelining

Quite often designs are not optimised for peak performance. A simple way to maximise the

throughput of such a design is by using pipelining techniques. Here pipelining latches are

used between functional blocks in a way that the longest delay between two latches is smaller

than the critical delay [Gonz96] [Good98]. This is illustrated in Figure 2.6.

Latch

Latch Latch Latch

Latch

delay td

delay td

delay td

Figure 2.6: Principle of Pipelining

This example shows a circuit which contains two larger functional blocks (FI and F2) and

two latches, one at the input and one at the output of the circuit. With a traditional

implementation, both functional blocks are connected in series and the data must run

Power Dissipation 21

completely through the circuit before the next piece of data is read into the first block. The

time the data needs to run through the circuit is td. The second circuit uses the pipelining

technique. An additional latch is connected between the functional blocks. When the first

functional block has finished the calculation, the data is stored in the latch between the

functional blocks and is read into the next block. Now the first functional block is free to

perform the next computation. With this technique the throughput of the circuit is doubled. If

the throughput is kept constant the circuit can work at half the frequency of the traditional

implementation. Similar to parallehsm the voltage can be reduced by a factor of two, which

will result in power savings of approximately 60% when compared to the 5V supply voltage

standard [Fren98], This technique has the advantage that it requires only a small amount of

additional space, when compared to the parallelism technique. It therefore suits applications

which are restricted by size. The physical capacitance of the design is also kept nearly

constant. The only drawback of this approach is the additional control logic required to

control the shifting between the functional blocks and the additional consumption of the

pipeline latches.

2.3.3 Pipelining and Parallelism

As shown in the two previous sections parallelism and pipelining of designs can result in

major time savings. If there are no restrictions on area then both techniques used together

mean that a circuit can be operated at an even lower clock frequency. This is done by

pipelining the critical path first. Then the designer must check to see if this path is still the

critical path of the design. It would make no sense to speed up any path other than the critical

one, because it is only the critical path that restricts the maximum clock frequency. If it is still

the critical path then this path should be reduced. If not the new critical path should be

identified and its delay minimised. However, if the idea of combining both pipelining and

parallelism of structures is used to provide the maximum throughput, it will also combine the

drawbacks of both techniques such as the additional control logic and doubling of area

[Fren98]. Table 2.1 (taken from [Fren98]) shows the area, power and scaled voltage of a

simple structure in comparison to that of pipelined parallel and parallel-pipelined structure.

Power Dissipation 22

Architecture Voltage / V Area
(normalised)

Power
(normahsed)

Simple 5.0 1.0 1.00
Pipelined 2.9 1.3 0.39
Parallel 2.9 3.4 0.36
Pipelined and parallel 2.0 3.7 0.20

Table 2.1: Effects of Architecture-Based Voltage Scaling

2.3.4 Resource Sharing

In low throughput applications, time multiplexed architectures are often used to minimise the

area. However, where module sharing occurs, the resultant throughput is typically increased.

If both busses and functional blocks are shared within the modules, then the higher

throughput (and therefore the higher switching activity) makes any reduction in supply

voltage hard to achieve because of the high clock frequency required to drive such devices.

Therefore resource sharing can be seen as serialisation of a design which increases the power

consumption [Lyon93].

2.4 Reducing the Voltage Swing

Although the most obvious and effective way to reduce the total power consumption is to

minimise the supply voltage, further power savings may be achieved by lowering the swing

voltage [Yama96], In order to investigate the effect of the swing voltage (10) can be written

as

^dynamic ^ a c tiv ^ d d ^ s w in g J"elk (^^)

Usually the swing voltage is approximately equal to the supply voltage, but if the swing

voltage is volts smaller than the supply voltage, the equation may be rewritten as follows.

^dynamic ~ ^ a c tiv e ^ d d f e l k ^ d d ~ ^ x) (20)

The energy consumed by a single transaction is given by.

^dynamic ^ a c tiv e ^d d ^J^dd) (21))

Power Dissipation 23

Now it is clear that the energy is proportional to the capacitive load and that the energy saved

is F C . . Therefore, this approach only makes sense i f the load is very large and the supply

voltage cannot be reduced any further. This implementation has also several drawbacks.

Firstly the noise margin decreases by V^. If the supply voltage is near the sum o f the threshold

voltages, then the noise margin may be effectively reduced to zero. Secondly, even for a

HIGH level signal the output does not rise to the upper rail and this may cause the next stage

not to turn off completely. This would resuU in a high short-circuit current and large static

power consumption. Because of the reduced noise margin special gates are then needed to

restore the input signals. These gates require additional devices and lead to extra parasitic

capacitance [ZhanOO].

Due to the problems stated above voltage swing reduction is generally only useful when

driving large loads and when using cell libraries containing cells to restore the noise margin.

Therefore, voltage swing reduction should only be used if the supply voltage is already at the

minimum value.

2.5 Summary and Conclusions

This Chapter commenced by defining all the sources o f power dissipation encountered by an

IC designer. These include, in order o f increasing significance, leakage, short-circuit and

dynamic power dissipation. These components of the total power consumption were then

individually discussed. This discussion demonstrated that the most effective way o f reducing

the overall power consumption can be achieved through a reduction in the supply voltage, as

the supply voltage is present in all components o f the power consumption.

Where supply voltage reduction is concerned, meaningful results can be achieved by the

application o f voltage scaling and the use of multiple supply voltages on a single chip.

Lowering the power dissipation using these techniques results in an increase in the circuit

delay. This delay may be compensated for by the use of architectural transformations. The

principle underlying these techniques is based on the reduction o f the critical path by the use

o f pipelining and parallelism. While these techniques are very effective, their application is

limited to full custom circuit design. However, as the design activity described in this thesis is

targeted to a semicustom design, the scope for voltage scaling is very limited, hi the case of

the technology library used, the power supply tolerance is +0.5V. The consequence of this

Power Dissipation 24

limitation is that all design efforts must be solely focused on the one remaining component of

power consumption, namely the dynamic power dissipation.

Dynamic Power Consumption 25

3 Dynamic Power Consumption

The previous chapter has shown the limitations of supply voltage reduction as a means of

minimising power consumption. In order to achieve significant results, the design focus must

be shifted from the circuit technology to a behavioural view of the design. The dynamic

power consumption captures the power performance of a design. As dynamic power

consumption consumes more than 90% of the total power consumption, reduction of this

component is the most effective method of minimising the total power consumption of a

design. As shown in Section 2.1.1, dynamic power consumption is caused by charging the

node capacitance. Therefore, minimisation of the switching activity and the consequent

minimisation of the active capacitance, is the most effective way of lowering the total power

consumption.

This chapter presents a comprehensive compendium of techniques described in literature.

Each technique is described and evaluated for its effectiveness in reducing dynamic power

consumption.

3.1 Adding Additional Logic

There are many possibilities for reducing the switching activity by adding additional logic.

One approach is to switch off or power-down unused stages so that transactions are only

executed when necessary. This is useful because in synchronous designs the logic between

registers is always computing, depending on the present input, even when not performing

useful operations. The simplest way to implement this idea is to split the clock signal into

different domains and to switch a clock domain off if the functional block, to which it is

connected, is not required [Good98]. Such a technique is called a gated clock implementation.

This also implies that the load of the clock signal changes which makes the clock generator

hard to design. The reason for this is that as the length of the path changes, both capacitive

load and the delay time changes. The latter may cause the circuit not to run at the maximum

frequency because the clock tree is unbalanced.

A simple way to switch off components with a gated clock logic is by using additional

enable logic [BeniOO], These circuits require additional overall control logic and control

signal wires, which add switching activity and capacitance to the circuit. A different approach

Dynamic Power Consumption 26

is to add not only an enable but also operation ready signals to the functional stages. These

signals are then used to control the enabling of the previous block and the next functional

block with a simple gate only. These circuits are called self-timed circuits. Even if the

individual blocks require more stages, no global control logic is required to control the

maximal throughput. The control wires are kept much shorter due to the fact that only the

neighbouring blocks need to be controlled. However, if the path has a high rate o f throughput

all approaches using additional logic might increase the total power consumption, because the

additional logic and capacitance might consume more power than the normal continuous

computing path [Niel94].

One of the most vital computational operations is the addition of numbers. There are

many different ways to implement adders, but if low-power is the primary goal of the

implementation only a subset of approaches are useful. Most adders produce unnecessary

operations and glitches (see Section 3.5 for reference).

00

00
FA

CO
C6

ce

oo

Figure 3.1: Ripple-Carry Adder

The simplest way to implement a large adder is the ripple-carry adder as shown in Figure 3.1.

The adder in this example is a three bit adder which performs a(0:2) + b(0:2) = c(0:3). The

output signal consists of a 4-bit signal so that the circuit is capable of generating a carry

signal. If signals a and b are applied to the input ports all adders start to calculate the output

simultaneously. If any adder produces a carry overflow this causes the next adder to start to

calculate a new input value. If this new value also produces an overflow the next adder has to

calculate a new output. This causes unnecessary calculations before the final result is

computed. Without latches at the outputs of the adders, all transactions are transmitted

directly into the following stage and so cause power consumption. The worst case activity is

Dynamic Power Consumption 27

expressed in the equation below. In this equation n is the maximum number of bit

calculations and k is the number of full adders.

n - Y^ xN (22)
JC = 1

For a 8-bit adder implemented using eight 2-bit full adders the maximum number of

calculation cycles would be 36. In other words such a 8-bit adder changes output state up to

36 times per calculation, 35 of them being useless power consuming operations. To avoid

such behaviour, a carry-look-ahead adder can be used. This calculates firstly the carry’s and

then connects the correct values to each single input of all adders. For this reason only carry-

look-ahead adders (or multi-level carry-look-ahead adders) should be used in low-power

circuits. These circuits calculate the carry signals and then start with the adding process. This

makes computation not only less power consuming but also faster, because the circuit need

only do the calculation in two steps i.e. evaluate the carries and then compute the result.

3.2 Reducing the Number of Nodes

A different approach is to minimise the number of nodes. This technique assumes that the

reduction of nodes will not only reduce the total capacitance but also reduce the overall

switching. This method may actually produce more switching as presented in [Burd95]. In

addition, this method does not address any of the factors influencing the dynamic power

consumption. This is the reason why the reduction of nodes is not a valid method of reducing

the active capacitance, as it assumes that the power and the number of nodes are directly

related while neglecting all other factors.

33 Precomputation

Precomputation is already used in traditional designs in order to speed up processes

[Mone95], An example of this is the precomputation of the carry as used in the carry look

ahead adder architectures. The goal of precomputation in low-power applications is to reduce

the overall active capacitance of a functional block by adding additional local control logic.

Assuming a block has to perform the function FI then the goal o f precomputation is to extract

a subset of functions F2 as shown in Figure 3.2.

Dynamic Power Consumption 28

EN
R?

EN

R1 SEL

A2

F2
Control

OUT

Figure 3.2: The Principle of Precomputation.

As F2 is a subset of the function FI, this allows efficient computation of the result if a certain

condition at the input of the functional block is met. The designer has to chose the function in

such a way that the switched capacitance of F2 plus the dynamic capacitance of the additional

logic is smaller than those of the original computation performed by F I . The designer also has

to ensure that the overall active capacitance of the new block, which includes not only F2 but

also additional local control logic, is smaller than that of the original design. An example

should illustrate this. If the Block F2 plus the additional hardware has an active capacitance of

8% in relation to block FI then the designer has to be sure that the condition which is checked

by F2 occurs more frequently than 8% of the time. For more information on the effects of

additional logic refer to section 3.1. It should be noted that precomputation can only be used

in paths other than the critical one. This is because the additional functional block F2 adds to

the delay of the block at the input of FI. However, if it is deemed to be necessary, it is

possible to add an additional register to the input in order to overcome this problem.

3.4 Number Representation

As the total power consumption is highly dependent on the switching activity, in this section

the effects caused by the representation of numbers are analysed. Most numbers are

represented in two's-complement format. This makes arithmetic processes such as adding and

subtraction very easy to execute. Positive values are expressed as a bit integer. Negative

values are the positive value which is inverted and a one is added to the result of the inverted

value. This means that all higher order bits, which carry no information, represent the sign of

the number. If the most significant bits (MSBs) are 0 then the number is positive, otherwise it

is negative. This is also the reason why the two's-complement is not recommended for low-

power implementations as the following example illustrates.

Dynamic Power Consumption 29

Assume that an input signal consists of eight bits. If the present state o f the signal is +1

the bus is set to "0000 0001". Suppose the signal is set to -1. The bus now changes to "1111

1110". This small example illustrates the problem. Each time the sign changes, all higher bits

also perform a change, because the sign is duplicated in all of the bits which are not used to

represent a number. Therefore, the two's-complement consumes a lot o f power without

transmitting any real information. In the example above only two bits are necessary to

transmit the information. This implementation unnecessarily consumes 60% of the dynamic

power. The best solution for this problem is to split the signal into sign and magnitude. Now

only the highest bit carries the sign information and all other bits are used to represent the

unsigned number. If the example above is used again, a change from +1 to -1 only causes the

highest bit to change from 0 to 1. This example represents best the possibility o f power

savings because now only 12.5%> of the dynamic power is consumed, when compared to the

previous example. However, as previous work has shown, the switching probability o f signals

is highly dependent on the origin of the signal’s samples [Chan92]. In [Land94] and

[Chan95d] it was shown that music, speech and video signals have a very similar bit level

switching probability. They demonstrated that the most significant bits have a switching

probability of approximately 0.5 and that of the least significant bits is considerably lower.

Figure 3.3 (adapted from [Chan95d]) shows this behaviour for image data. In such a case the

use of a sign magnitude representation will have positive effects on the power consumption.

Hence, before deciding on which signal representation to use, the properties of the signal

should be investigated.

0.8 -
n
g 0.6 -
Q.

g’ 0.4 -
0.2

MSB LSB
Bit

Figure 3.3: Switching Probability of Image Data

The choice of the number system will also cause different activities during computations.

If during a computation the sign changes, the same rules apply as shown above. Therefore, it

might be useful to compute the sign and magnitude in separate units of a fiinctional block

Dynamic Power Consumption 30

instead of using two's-complement devices. This requires special devices which are more

complex and larger than those used to compute two's-complement. The effect of the higher

physical capacity is often smaller than the effect of the reduction in switching activity using

sign magnitude representation in highly active paths.

3.5 Minimising Glitching Activity

Due to finite propagation delay through logic blocks (or critical races) the output o f a device

can have different values during one clock cycle before settling to the correct value. This is

called glitching or hazard. These glitches cause this stage and sometimes even other stages to

change value and produce unnecessary transitions. These transitions consimie dynamic

power. This is not necessarily a design error. Only if the design is intended for a low-power

application do these glitches become of interest to the designer. Typically these glitches

produce around 20% of the total power consumption, which might rise up to 70% of the total

power in cases such as combinatorial adders [Naim94], Power consumption due to glitches is

also called toggle power. Figure 3.4 shows a simple example to illustrate glitching activities.

Figure 3.4; Origin of Glitches

The example contains a two-input AND device. The first input is connected to an inverter.

The input signal was set to LOW for both inputs and the output c was also set to the LOW

level. The output x of the inverter was therefore at the HIGH level. If the input ports are

changed to HIGH (at tl) no output will change due to the finite propagation delays. The input

b is now HIGH, as is the output x which is still at a HIGH level because of the propagation

delay of the inverter. Hence the AND changes value at t2 to a HIGH value. After the inverter

propagation delay time, the inverter will switch to a LOW output causing the AND to switch

Dynamic Power Consumption 31

its output finally to LOW, after its propagation delay. This simple example shows that

propagation delays are more critical in low-power applications. One way to avoid such

behaviour is to balance all signal paths ensuring that all signals arrive at the same time

[Gagh99], This also ensures that the circuit operates at a maximum frequency. A different

example is the carry-look ahead adder already mentioned in section 3.1. Instead of using

balanced paths this example uses additional logic to avoid glitches.

The easiest way to avoid glitches is to balance all paths equally. Figure 3.5 illustrates this

by comparing a serial design to a tree structure. The serial implementation may enter three

unstable states before settling to the correct value. As seen in this figure the tree structure not

only has a reduced propagation delay, but is also totally balanced and does therefore not

produce any glitches, assuming all gates have the same delay. This example shows the

importance of the design structure. While the first example is produced with the statement

following statement OUT = A+B+C+D, the tree adder is produced by the syntax OUT =

(A+B) + (C+D). Therefore, it is important to keep the synthesised circuit in mind when

writing abstract code.

A —

B —
OUT

OUT

D —

Figure 3.5: Serial and Tree Adder Structure

Finally, it should be noted that even if the tree adder is balanced, in practice there will be still

glitching activity due to the fact that the gates themselves are not balanced. These glitches can

only be avoided by using glitching free adder modules.

3.6 Additional Capacitance through the use of Latches to Reduce Glitching

The previous section focused on the avoidance of glitches in a design, but often it is not

possible to balance all paths to reduce the glitching to a satisfactory level. Cost considerations

often make it necessary to use modules which contain several copies of the same functional

Dynamic Power Consumption 32

block. In such modules the glitching activity is normally "reduced" through the introduction

of latches at the output o f the design. This, however, only ensures that these glitches do not

propagate into the next stages o f the design, but does not prevent the occurrence o f them

[Good98] [Laks99] [Xant99] [BeniOO]. This section focuses on the analysis o f the additional

capacitance brought into a design to reduce the glitching activity.

Figure 3.6: Glitching in Cascaded Functional Blocks

The maximum active capacitance of a design can be described as

c „ .. (23)

In this equation k is the number o f blocks, g is the glitching activity at the input o f block and

Csiock is the physical capacitance of the module. Often in VLSI designs small blocks are

designed and cascaded in order to form larger blocks. This speeds up the design cycle but

causes a ripple effect in the circuit. Figure 3.6 is an example of such a design. It is made up o f

4 equal smaller design units. If the known values of this design are put into equation (23) it

can be written as:

^m ax Block (24)

If this figure is compared to the minimum amount o f switching required in order to perform

the computation, in this case 4CBlock, it can be seen that more than half o f the power

consumed by this particular design is the result o f glitching. For this reason these designs are

often pipelined. The same design can be split into two stages separated by a latch. Figure 3.7

shows the overall structure.

Dynamic Power Consumption 33

M a x . s w i t c h i n

L a t c h

_ ! _ 0 o

Figure 3.7: Cascaded Structure using one Latch

The active capacitance of such a design can be expressed as

^ s ta g e \ ^sta g e2

m̂ax ~ ^ B lo c k ^ L a tch S ^ ^ B lo c k (25)
g = l g = l

For a symmetrical design structure as shown in Figure 3.7, this equation can be rewritten as

follows.

k

^ m a x ~ S • C B lo c k + ^ L a tc h (26)

If now the known values are put into the equation the maximum active capacitance is

^ m a x ~ Block + ^ L a tc h (27)

If this is now compared with the result obtained from the unlatched design (24) it can be seen

that the glitching is reduced by 40%. hi order to determine if the active capacitance of the

latched version has a lower capacitance, both implementations have to be compared. By

subtracting the capacitance of the latched design from the active capacitance this value can be

quantified.

C ~ C csaved m ax-org /na / m ax—

By substituting the two variables with the equations derived for the two designs presented in

this section (23) (25) the equation can be written as follows.

Dynamic Power Consumption 34

C,saved Total-orginal ST otal-la tch Block -c,Latch (29)

If the known values of the two designs are now put into the equation it is obvious that

unwanted switching is reduced if

design library data book. Due to the modular concepts of VLSI designs, the active capacitance

and glitching behaviour of the functional blocks is determined before the decision is made if a

block is going to be latched. In fact, more often it is the case in low-power design that after

testing a block, the decision is taken to latch a functional block due to a high active

capacitance caused by a high glitching activity.

3.7 Reducing the Switching Activity by the use of Don’t Care Terms

The switching activity of Finite State Machines (FSMs) and Look Up Tables (LUTs) can be

significantly reduced by the use of ‘'don't terms. All terms which do not affect the global

function of a node should be replaced by a 'don't care’ term since it will guarantee a change

in state only if it is essential and therefore produce the lowest possible switching rate and

power consumption. The same approach is taken in [Kapa99] to disable a datapath if a ‘don’t

care ’ condition is detected.

3.8 Ordering of Operations

If signals of different bit-width are used it is sometimes possible to arrange function blocks in

order to reduce operations, device sizes, bus sizes and switching activity. A small example

presenting two approaches should illustrate this in Figure 3.8. Three signals (signal a of 8-

bits, signal b of 6-bits and signal c of 4-bits) are multiplied using two two-input multipliers

connected in series. If the signal a is multiplied with the signal b and the result is fed into the

next multiplier and multiplied with signal c, then the bus between the first and second

multiplier is 14-bits wide. In the other case signal c and b are multiplied first and the result is

then multiplied with signal a. The bus between the first and the second multiplier is only 10-

bits wide (four bits of c plus six bits of b).

(30)

Normally the designer can look up the values for the active capacitance of latches in the

Dynamic Power Consumption 35

o/p

F
B 6/ F 10

O /P
C ^

Figure 3.8: Ordering of Operations

Even if the output width in both cases is 18-bits, the second case is preferable. Firstly, it

should be noted that both examples are equal in area. Also the capacitive load seen by the

previous and following stages is equal, but internally the bus-width in the second example is

smaller and therefore the total capacitive load driven by the first stage is smaller. What is

most important is that with the smaller bus-size, the switching activity and therefore the

active capacitance between both multipliers is reduced and hence this implementation

consumes less power. Moreover, ordering of operations cannot only help to reduce the load of

busses but can also help to prevent critical races as already explained in Section 3.5.

3.9 Multiplexed Buses

In most designs global buses are used to transmit various items of information between

different I/O ports and functional units by using multiplexed buses. The signals are only on

the bus for a short period before the multiplexer switches to the next connection. Normally

different signals contain completely different information bits such as value or sign. The

number of bits needed for the signal might also vary. Therefore, it is very possible that almost

the complete information of the bus changes with each switching to another signal. Even if

those buses require less area and overall capacitive load, normally fixed local buses (point-to-

point buses) provide maximally the same active capacitive load to the driving source as the

global bus, because of the reduced switching activity [Mehr97]. If local buses are used it is

the usual case that most buses are smaller than one global bus and therefore the active

capacitive load of the complete circuit is reduced.

Dynamic Power Consumption 36

Figure 3.9: Multiplexed vs. Local Buses

For slowly varying signals the switching activity of the local bus is also dramatically reduced

when compared to the global one. Even for other signals it is also possible that an

urmiultiplexed signal will produce less activity when compared to a multiplexed bus. For

these reasons, buses in low-power implementations should never be multiplexed and the

functional blocks and I/O ports should be as near as possible to the corresponding block in

order to keep the buslength as short as possible to minimise the capacitive load of the buses.

Figure 3.9 illustrates this. The figure on the right has eight smaller buses with a smaller active

capacitance than the global one shown on the right of this figure. It has approximately the

same physical capacitance. If only one bus is active the average active capacitance is only 1/8

of the active capacitance of the global bus. On the other hand if all buses are active at the

same time the throughput is 8 times higher and can therefore compensate using lower supply

voltages.

To implement short point-to-point buses is even more important as processes get smaller

and the integration rises. For example, for a O.lj^m VLSI design, buses can consume up to

50% of the total power consumption [Naka94]. Therefore, Nakagome et al. suggest in

[Naka94] to use special drivers which are able to reduce the voltage swing on buses in order

to lower the power consumption effectively.

3.10 Locality of Reference

The basic idea behind this approach is to use signals locally at the point where they are

generated instead of letting them travel over long buses [Mehr97], This reduces the physical

capacitance, and the active capacitance if multiplexed busses are not used. As shown in

Figure 3.9 such an approach increases the throughput if signals are processed at the point

where they occur and are able to travel over a direct connection. This method also decreases

Dynamic Power Consumption 37

the delay time since the RC product of long metal interconnections especially on sub-micron

processes is a major source of delay.

3.11 Reduction of the Wordlength

To keep the wordlength of signals as short as possible is another important aspect when

designing a low-power circuit [Ramp99]. A small wordlength ensures that the width of buses

as well as that of the functional blocks can be kept to a minimum size. This keeps the

physical capacitance of a design low. Therefore, the designer should always try to keep the

signal width small and check if errors such as introduced by truncation instead of rounding

are acceptable. Often it is also possible to reduce the wordlength by the use o f precomputation

techniques.

3.12 Codmg of Signals

As discussed in Section 3.4 the level of switching activity is highly dependent on the signal

representation. For computational blocks usually signal codes are chosen to allow an efficient

computation. Good examples of these codes are the unsigned and the two’s complement

representations. However, if high-capacitance buses are to be driven then power reductions

might be achieved by changing the signal representation before transmission into one that

generates a lower switching activity [Yama96] [Ramp99b]. This strategy requires additional

hardware to code and decode the signal which can sometimes increase the power

consumption of the circuit by a factor that is greater than the power saved by coding the

signal. Therefore, a balanced must be struck between the power savings on the bus due to the

reduced signal switching activity and increase in power consumption due to the extra

hardware.

3.13 Logic Minimising

Traditionally gate libraries use only a small set of gates to implement a given logic function.

Therefore, a function is not implemented using an optimal solution, but using one which is

achievable with the gates of the target library. This causes the inclusion of unnecessary stages

leading to unnecessary switching activity and additional silicon area. As seen in the above

Dynamic Power Consumption 38

approaclies for reduction of power consumption, the area is used in most approaches as a

variable, which can be traded off against power and should therefore be used very carefiilly.

A different approach is presented in [Akita94], Here it is shown that a larger combination

of devices can have a lower switching probability and might therefore consume less power.

This is only true if the extra physical capacitance of the larger circuit is balanced against the

reduced switching activity. However, new low-power cell libraries are able to reduce the

power consumption by approximately 25% compared to traditional libraries [Chan95b].

These libraries contain simpler logic gates and all devices are optimised for power

consumption, in a way that traditional libraries have optimised their cells for speed or area.

3.14 Minimising the Number of Operations

Multiplication with fixed coefficients is very common in digital signal processing (DSP)

applications and is also used widely in other areas. Traditionally each multiplication is done

by one multiplier, but in low-power design a different approach can reduce the switching

activity. When using add and shift multipliers it is possible to split them and share subterms.

This reduces the number of stages and the switching activity required for a multiplication

[Chan95c] [NguyOO]. A simple example should illustrate this:

A = s i g * \ Q \ \ 5 = * 0111 (31)

The same signal {sig) is multiplied with two different values in two different terms. The term

sig* 20 + sig * 2l is represented in both terms. Instead of using two full multipliers this term

is calculated only once. The result is then added with sig * 2^ for term A. To evaluate term B

the result is added with sig *2^. Even this simple example demonstrates that two adders (and

the switching activity of both) can be saved without causing a higher throughput of the
device.

3.15 Optimisation of Constant Operation

The extensive use of Hardware Description Languages (HDLs) leads to the use of

multipurpose functions or design units and intellectual property (IP) blocks of previous

projects [Mart99]. By using optimised multiplier structures rather than multi-purpose

multipliers the number of operations, the delay through the block or the area, and therefore

Dynamic Power Consumption 39

the active capacitance, can be effectively reduced [Chan95a]. One example would be DSP

applications such as filters, where multiplying with fixed coefficients is often required. These

coefficients are normally known before the actual design process begins. Here the use of for-

the-task optimised structures can yield significant advantages as the following example

illustrates. It compares tests performed on two different divider structures for the intensity

path of the RGB-HSI converter. The divider is a 10-bit by three divider the standard version

is a multi-purpose divider block, while for the optimised version the inputs in the source file

were defined to be a constant three before synthesis.

Standard Optimised Reduction / [%]

Max. Delay / [ns] 32.24 15.4 55

Number of Nets 318 50 84

Area / [|im] 124018 22496 82

Cactive ! [p F] 9.3 2.6 72

Table 3.1; Comparison of Two Divider Structures

Table 3.1 shows that it is possible to reduce the overall power consumption by more than

70% if the frequency of the input data is kept constant [Schw97]. Power savings of more than

90% are achievable if the throughput is set to 16ns. However, these savings have to be

balanced against the disadvantage of a longer development cycle.

3.16 Minimising the Capacitive Load

Even if this minimisation of the capacitive load is not as effective as the minimisation of the

switching activity, it is possible to reduce the capacitive load in order to decrease the dynamic

power consumption. For large technologies the delay on the wires C J is not significant

compared to the transistor delays. But if the sizes of the connections shrink with smaller

technologies the resistance of the wires increases and hence the R . C, product increases. In
wire L ^

submicron processes this behaviour can lead to higher communication delays than transistor

delay times [Blair94], Therefore, long connections such as global buses or global control

blocks should be avoided. Instead of this, local buses and local control functions should be

implemented to reduce communication delays and lower connection capacitances. Functional

blocks having a high computational rate should be positioned together in order to keep buses

as small as possible. Blocks having a smaller computational rate will then be grouped around

Dynamic Power Consumption 40

the other blocks to reduce the overall active capacity. This can only be done by using special

design tools which are able to analyse the activity of different stages. These tools allow the

user to define these blocks and so group more active areas closer together to lower the

capacitance caused by interconnection wires. Traditional place and route tools try to optimise

the silicon size and try to keep all connections close together in order to fulfil timing

constraints.

3.17 Low-Power Libraries

Cell libraries are available which are designed for low-power implementations [Fren98].

These low-power libraries use various approaches to minimise the power consumption, for

example, allowing a choice between optimal cells and even blocks, e.g. a carry-look-ahead

adder instead of a ripple-carry adder. These libraries also contain more cells to implement the

logic using the optimal method avoiding glitching or critical races. Also, the dimensions of

the cells are kept as low as possible to reduce the capacitive loads. Furthermore, those

libraries allow voltage reduction so the design can be operated at the optimal supply voltage.

Some libraries provide also devices which have all the necessary ports to build a self timed

circuit without the use of global control logic.

3.18 Summary and Conclusions

This chapter has presented various methods of reducing the dynamic power consumption. All

the methods described have focused on the reduction of the active capacitance. The methods

can be divided into two main groups. The first group of methods considered was the

reduction in physical capacitance, for example the consideration of points of locality. These

methods focus on a system level view of the synthesised circuit and include designer

knowledge about the routing of the design. Larger bus structures are traded-off for reduced

interconnect capacitances and smaller driving gates.

The second group of methods is based on a reduction in power consuming transitions.

This group can be further divided into two subgroups. The first subgroup is based on the

reduction of non-computational switching while the second subgroup targets a reduction in

the overall switching activity. The first subgroup also includes techniques to reduce the

glitching of the design. In this thesis, balancing of the signal paths will play a major role in

the investigation of the RGB to HSI algorithm.

Dynamic Power Consumption 41

The second subgroup, which will be used in the implementation of the image conversion

algorithm, implements a highly pipelined structure. This avoids the propagation of glitches.

This has also the advantage of increasing the throughput of the design to a degree at which

the specifications can be fulfilled. Another task will be to reduce the overall switching of the

circuit. The choice of number representation will be the first vital design decision to be taken.

As shown in this chapter, the methods of reducing the active capacitance are many fold

and often mutually exclusive. However, as a general rule the first design decision to be taken

is the selection of the number representation in the system. After this, the selection of power

reduction techniques becomes a design dependent issue. For example, the method of reducing

the wordlength through truncation will only have a limited application because this also

reduces the dynamic range of the signal. However, it was successfully implemented in the

RGB to HSI converter and led to power savings of more than 10% in the intensity path. The

multiplicity of techniques available is the main reason why the expertise of the designer is the

main asset when targeting low-power designs. As a result of this, the designer requires

accurate and fast feedback concerning the effects of his design decisions on the power

performance. Therefore, the next section will describe the development of such a power

estimation tool to compute the power consumption of a design at the highest possible level.

PowerCount: A High Level Power Estimation Tool 42

4 PowerCount: A High Level Power Estimation Tool

The investigation presented in the previous two chapters has shown the need for power

estimation at the earliest possible stages of the design cycle. To achieve this, a power

estimation tool, PowerCount, was developed. This chapter first presents the fundamental

concept behind PowerCount and then explains the necessity for the stringent specifications

and the reasoning behind the design decisions made. Finally, the operation of the software is

detailed and the performance of PowerCount is validated.

Traditionally, high accuracy in power consumption measurements is guaranteed by

simulating designs at the layout level. This is usually done by means of SPICE [Spice]

simulations. These simulations are based on equation (5). They calculate the power

consumption by monitoring the current. While these simulations are accurate, they are slow

and can only analyse the design in the final stages. When designing circuits at higher levels,

accuracy is not the main concern to industry, where time to market is the most important

factor. A further problem is the early bottleneck detection, where it is important to find the

‘hot spots’ in a design to focus the design efforts, hi addition, the possibility o f rapidly

comparing different versions of a design is of great interest to industry. For all of the above

reasons, such a high level power estimation tool is essential to the successful completion of

the work described in this thesis. Here the comparison of different implementations will need

to be made to verify the different implementation approaches presented.

PowerCount: A High Level Power Estimation Tool 43

S Y N O P S Y S

S p e c i a l
L ibrary

N o rm al
Library

Trad i t ion a l P o w e r
E s t im a t io n T oo l

G a t e & Root
Tool

S PIC E

Figure 4.1: Hierarchy of Traditional Power Estimation.

4.1 Current Power Estimation Tools

Approaches to determining the power consumption at the higher levels, such as those taken

by Powermill [Pmil98] or IRSIM [L-sim], estimate the power at the register transfer level

(RTL) by means of a specially created netlist. While these tools are much quicker and provide

an accuracy of 90% and greater, they have the drawback that a special netlist must be

generated from a routing tool. They also depend on special design libraries and therefore a

particular vendor. Figure 4.1 shows the traditional approach taken to calculate the power

consumption of ICs. A totally different approach is taken by Explore. Explore is a

behavioural level power estimation tool. This tool estimates the power by means of a flow

graph description of the algorithm [Mehr94]. The best possible implementation is then taken

from a set of reference data and with this information the power consumption is calculated.

This method also has some drawbacks. The designer has to develop and write a special flow

graph description of the algorithm. At this phase, the implementation parameters are normally

unknown (except perhaps the technology). Therefore, the system must rely on a set of

reference information about the algorithm. If no reference data is available, then the power

analysis is not possible.

In the late 1990s various commercial power estimation tools emerged. These include

MultiSim [MultOO] which has a mixed SPICEA^HDL simulator therefore requiring SPICE

models of all components to be simulated. The synthesis tool o f MultiSim is limited to FPGA

implementations and it only supplies models for these devices. Another tool Power-Cut

[PcutOO], has been designed to speed up SPICE simulations, performing a SPICE netlist

PowerCount: A High Level Power Estimation Tool 44

component reduction by summarising gates. Mach TA [MachOO] of Mentor Graphics applies

this concept of SPICE netlist reduction to achieve a speed up in simulation time of up to

1000. With Mach TA, the designer only needs to supply the tool with the original SPICE

netlist to perform the simulation. A modification of this approach is taken by the Star-MBT

[SmbtOO] cell characterisation tool, where SPICE netlists, SPICE process models, and simple

cell pin descriptions are used to create a database. This database can then be used with

software such as Star-Sim [SsimOO] to simulate designs that are two to three orders of

magnitude faster than SPICE simulations. The most significant drawback of all the tools

described here is that they require low-level design information to perform a power analysis.

Thus, testing is restricted to the later stages of the design cycle.

Power Tool [PtooOO] and VeriPower [VpowOO] are both high-level Verilog simulators.

The main difference between these tools is that VeriPower has its own library characterisation

tool which allows the user to extract the power information from its existing design library,

while Power Tool requires already characterised libraries. However, neither o f these tools

account for the interconnect, unless the user is able to provide them with it. Others include

PeakWatcher [PwatOO], a tool to quickly find the ‘hot spots’ of a design so that the design

effort can be more efficiently focused towards the power bottleneck of a circuit. IBM’s

PowerCalc [PcalOO] essentially uses the same concept as PowerCount. It uses the routing and

timing information of either Cadence Verilog-XL [VeriOO] or Model Technologies

ModelSim/VHDL [MsimOO] to obtain an estimate of the dynamic power. The node switching

activity is collected during the timing simulation and is then used to calculate the dynamic

power consumption.

Only two high-level power estimation tools currently exist which automatically generate

an estimate of the interconnect. These are Watt Watcher [WwatOO] and PrimePower

[PpowOO]. Watt Watcher is a high-level power estimation tool capable of measuring the

power consumption of VHDL and Verilog netlists. It uses native algorithms which estimate

the capacitance of the interconnect to achieve estimates within an accuracy of 80%.

PrimePower is power estimation tool released by Synopsys and it relies on characterised

library information to perform power estimation. This library characterisation can be

performed using PowerArc [ParcOO]. PrimePower uses additional circuit information such as

the interconnect and timing information to perform a high-level power estimation of the

average and peak power of a design.

PowerCount; A High Level Power Estimation Tool 45

4.2 Power Estimation Technology

Several techniques have been developed to simplify power estimate [Burd94], [Land94],

[Tsui95]. All of these papers are based on the same two ideas. Firstly, instead o f using the

actual value of the physical node capacitance, the average physical capacitance Cphy-avg is

used. Cphy-avg is the total physical capacitance of a circuit divided by the number o f nodes. The

second idea is to replace the node switching activity factor ri(oj) with the switching probability

factor pt o f the node. This factor reflects the probability that a power consuming event occurs.

The probability switching factor is calculated for a uniformly distributed white noise (UWN)

input signal. It is precalculated for each cell and stored together with other library

information. After the circuit is compiled, a special netlist is generated and the probabilities

are propagated through the design. The average capacitance and average power consumption

are then calculated. Equation (32) shows the method used to calculate the average dynamic

capacitance.

This method is very fast because the amount of input data required for simulation is small but

this method also has its disadvantages. Equation (32) assumes that each node, regardless o f its

load or output capacitance, has the same node capacitance. This is not true in real designs.

Therefore, a path with a high switching activity but low node capacitance or vice versa, will

increase the error of the result. Furthermore, it is highly unlikely that the input signal at each

node is of a random nature. Internally, due to the connections between the different blocks as

well as the distribution of the signal, the switching activity will be correlated with the input

signal and will not be random. These methods do not take this factor into account. Therefore,

to compensate, techniques which use the probability factor in conjunction with the real node

capacitance have been introduced.

Other techniques first simulate the input probability of a module and then overlay this

information with the data obtained from a UWN simulation [Burd94]. This method has the

disadvantage that a design must be first described at a software level. A simulation with

C,average
nodes

(32)

This value is then used to compute the average dynamic power consumption.

P - C faverage average d d J caverage average d d J elk (33)

PowerCount: A High Level Power Estimation Tool 46

actual input data is then performed in order to obtain the actual input probabilities at each

block. With these probabilities, the input vectors for the overlaying of the probabilities at the

RTL are generated before the design can be simulated in small blocks. While the power

simulation is fast, the preparation takes a long time. Furthermore, different tools are required

for the various levels.

A different method, the Dual Bit Type model, accounts for the input correlation and was

proposed by Landman et .al. [Land94]. This model rehes on a special netlist as well as a

particular library and a look-up table to account for the random and correlated parts of the

active capacitance. Another drawback is that this model requires calibration for each type of

design.

All of these methods rely on special design or technology libraries which include the

switching probability for each cell. Many estimation methods also use a zero delay model.

These models do not take delay times into account and neglect glitches and hazards. These

glitches depend mainly on the implementation of the algorithm and can only be accounted for

by simulating with real input data and design information. Finally, it should be noted that

these methods also only work for combinational logic. When estimating the power

consumption of sequential logic the state probabilities have to be taken into account.

Different methods are described in [Tsui95]. To overcome these problems, a new power

estimation tool, called PowerCount, was designed.

The next section will show the limitations of using library reference information and

therefore argue for a power estimation tool which takes the interconnect into account. Then a

brief overview of the high-level design process is given to provide the background required to

understand the positioning of such a tool within the design process. At this stage the idea of

PowerCount is introduced before the methods of generating an estimate for the active

capacitance are introduced. Finally, the operation of PowerCount is shown and evaluated.

43 Estimation of the Dynamic Power Consumption using the Library Reference
Book

This section shows the importance of including all possible design information into a power

estimation. The results of this example are then used to show the factors which have to be

taken into account to accurately estimate the power consumption of ICs. For this purpose, a

Ibit full adder is used as an example to illustrate how the power consumption is calculated

PowerCount: A High Level Power Estimation Tool 47

and the effects of neglecting the influence of the interconnect are shown. Figure 4.2 shows the

structure of the 1-bit full adder to be investigated. The reason why a small design like the 1-

bit fiill adder is used is that here it is still possible to manually verify the results of this

investigation. The theoretical physical node capacitances, which are required to calculate the

active capacitance, are taken from the Library Databook [Es2] of the implementation

technology. In this case the ES2 0.7)o.m standard CMOS library was used.

0.05

0.046

CARRYJN
N21

Figure 4.2; Internal Structure of an 1-Bit Full Adder

Table 4.1 contains the physical node capacitances (column 2) as given in the Synopsys netlist

report after synthesis, and the physical node capacitance (column 3) o f each node, as stated in

the Library Databook [Es2], The true active capacitance (column 6) is calculated using a

timing simulation with 600 input vectors and the real node capacitance of column 2 .

PowerCount: A High Level Power Estimation Tool 48

synopsys
node cap.(pF)

library
node cap. (pF)

deviation
true/theor.

library
act. Cap (pF!

synopsys
act. Cap (pF]

switching
probability

N24 0.14 0.095 32.14% 0.023 0.035 0.247
N23 0.14 0.094 32.86% 0.049 0.074 0.525
N22 0.14 0.092 34.29% 0.024 0.036 0.258
N21 0.09 0.058 35.56% 0.020 0.030 0.338
SUM 0.03 Wire 100.00% 0.000 0.014 0.483
CARRY OUl 0.03 Wire 100.00% 0.000 0.010 0.340
CARRY IN 0.13 0.058 55.38% 0.015 0.033 0.250
B 0.12 0.076 36.67% 0.020 0.031 0.257
A 0.14 0.086 38.57% 0.023 0.037 0.265
act. Cap 0.173 | 0.300

Error 42.30%

Table 4.1: Power Estimation using a Data Book

As seen in Table 4.1, the error when estimating the power consumption using a data book for

a small design, such as the Ibit full adder, with a small number of nodes, is 42% lower. The

reason for this is that the capacitances of the interconnect cannot be included in a data book.

Synopsys however, estimates the interconnect and provides the user with an estimate of the

physical node capacitance including this figure for the interconnect. This estimation is also

used for the timing simulation as rise and fall times depend on it.

The capacitances for the output signals SUM and CARRY_OUT cannot be taken fi'om the

data book because these nodes do not have a load. The switching probability (column 7), is

simulated using UWN input vectors and is used to calculate the active node capacitance using

the information provided by Synopsys (column 6) and the Library Databook (column 5)

respectively. Even in such a small design, such as the Ibit full adder, containing no busses or

other long connections, the error is already above 40%. With increasing design complexity

the number of interconnections rises and therefore the relative error will be even larger if only

the databook information is to be used. Furthermore, it should be noted that these calculations

include the real node activity factors. Techniques using just the probability factors would

have an even worse result and could not be used in designs with correlated inputs. Therefore,

it has to be concluded that the only way to obtain an good estimate of the active capacitance

and therefore achieve accurate power estimation is to use the physical node capacitances,

including the interconnect, in conjunction with the node activity factor as computed for a

particular input signal.

PowerCount: A High Level Power Estimation Tool 49

4.4 The Synopsys System Simulator

Before the operation of PowerCount is explained, the normal design cycle for high-level

VLSI development using the Synopsys Design Environment [Synop] will be presented.

Figure 4.3 shows the design cycle for generating a routable netlist which can be used to

perform real timing simulations.

VHDL Source
Code

Syntax Check

Library
InformationSimulation

Timing information

Synttiesis

VHDL Netlist

Figure 4.3: Synopsys Simulation Flow

Firstly the abstract source code is written in VHDL. After the syntax is verified, the correct

logic operation of the design is tested using the VHDL System Simulator (VSS). Then the

design is fed with the optimisation constraints into the Design Compiler (DC). If the design

constraints are met the circuit is written out as a VHDL netlist. An additional file, containing

timing information for simulation purposes is also generated. The VHDL netlist is fed back

into the syntax verification. This is called back-annotation. Then the netlist is used in

conjunction with the timing information by the VSS to monitor the real timing behaviour of

the circuit. These simulations include rise and fall times as well as glitches and hazards.

4.5 PowerCount

This Section describes the basic concept behind the power estimation tool called

PowerCount. The main feature of PowerCount is that it operates as an add-on tool to

Synopsys. It uses the normal timing simulation with only one additional file. Figure 4.4 shows

the interaction between PowerCount and Synopsys.

PowerCount: A High Level Power Estimation Tool 50

Name of:

Designfile
TB Config.
Control File
Node Report

Control Node
Report

SYNOPSYS DESIGN COMPILER

VHDL Timing
Netlist Information

SYNOPSYS
Library

Information
Pow erC ount

Temporary Files
Ouput of
Timing Simularion

Temporary Files

Active Switching Active
Capacitance Activity of Capacitance
of each each node & Statistics
node about the

result

Figure 4.4: PowerCount in the Synopsys Environment

The basic idea behind PowerCount is the computation of the active capacitance as presented

in (11). For this purpose, the tool uses nearly the same procedure as used for real timing

simulations as explained in the previous section. The only difference is that instead of

checking for the proper timing of a design during back-annotation, it automatically monitors

the switching activity of each node. This principle is shown in Figure 4.5. PowerCount uses

as an input a set of /„ iterations. Each iteration uses a user defined number of input vectors, v„.

Then the VSS is used to calculate the number of power consuming transitions, n, for each of z

nodes. The number of power consuming events at each node is then multiplied by the

physical capacitance of this node, Cest, as estimated by Synopsys DC. Then the sum of all

active node capacitances for this iteration is calculated to provide the total active capacitance

of the design, Cacuve- Finally, the average active capacitance is calculated by averaging the

active capacitances of all iterations. Therefore, the tool calculates the active capacitance with

the highest possible accuracy at this level. It uses the Synopsys estimated values o f both the

physical node capacitance as well as the real switching activity of each node by means of real

input data. The accuracy only depends on the accuracy of the information of the Synopsys DC

PowerCount: A High Level Power Estimation Tool

and the closeness of the representation of the input vectors to an actual input signal. Each

iteration is initialised using a number of input vectors to guarantee a simulation in a defined

state.

'active(1)

'active(z)'active(z)

'active'active

HDL Description of the Design

Figure 4.5: General Method of Generating an Estimate Using PowerCount

As previously indicated, there is one additional file required when compared to the timing

simulation procedure. This additional file contains the node information. This file is

generated after the circuit is optimised by means of the Synopsys report -netlist command.

Tests have shown that such a node file with the information of more than 3000 nodes is

generated in under 10s on a Sun Microsystems SPARC5 workstation with 128MBytes of

RAM. Therefore, this does not significantly slow down the design process. The greatest

advantage of PowerCount is that the designer does not need to spend time in preparing a

special design netlist. Furthermore, it is not necessary to leam to use another tool, because

PowerCount exclusively uses the VS S control language to control the power simulation. All

simulation vectors are fed into the system via the normal VHDL testbench, similar to the

logic and timing simulations. Therefore, it is possible to use the same test vectors as used for

the timing simulations. This has the advantage that the simulation data has to be prepared

only once and can be used for all high-level simulations.

PowerCount stores all information in ASCII text files. This ensures that the program runs

even on small workstations without large memory resources. Furthermore, ASCII files can be

easy ported between software applications on all platforms and can be visually inspected

using any standard text viewer. A user-assignable directory for the temporary files makes it

possible to store the information locally or on a remote hard disk. PowerCount supplies the

PowerCount: A High Level Power Estimation Tool 52

VSS with a 64 bit binary random number as a possible seed for further use within the VHDL

testbench.

4.6 Generating the Estimate

To calculate the power consumption of an IC efficiently it is essential to provide the estimate

within a short time. To provide a result within a reasonable time, a procedure for evaluating

the quality of the estimated active capacitance is required. PowerCount uses Monte Carlo

simulations to control the estimation. The idea underlying the Monte Carlo simulation used is

shown in Figure 4.6. Monte Carlo simulations provide an approximate solution by using a

sampling technique. The advantages of using Monte Carlo simulations are their

controllability and their ability to compute an estimate with a small number of input vectors.

S t a rt

n o
= n

y e s

n o Q u a li ty
m e t

y e s

End

C a l e u l a t e m e a n

Figure 4.6: Monte Carlo Simulation

PowerCount: A High Level Power Estimation Tool 53

For this particular problem of estimating the active capacitance, Monte Carlo simulation is

used to compute the average active capacitance using a set of iterations. The samples used to

calculate the active node capacitance and the active capacitance are provided by the VS S. As

illustrated in Figure 4.5, these samples are taken by iterations with a limited set of input

estimate is evaluated using a stopping criterion [Papu90]. If the deviation of the estimated

active capacitance is within a specified limit, the stopping criterion is met and the simulation

terminates. If the stopping criterion is not met, additional iterations are performed until it is.

Three different methods of defining a stopping criterion are discussed in the remainder of this
section.

4.6.1 Method One

The first feature used to create a stopping criteria is the standard deviation. The following

equation is used to determine the standard deviation [Sieg96].

To determine the quality of the result ct must be related to . The calculation of the

percentage error is performed as follows.

vectors instead of taking the samples in one large set. After six iterations the quality of the

C factive }

iterations
(34)

(7
• 100%est (35)C,activee

The stopping criterion derived by the standard deviation is noted as

(36)

The stopping criterion noted in (36) is met as soon as the estimated error, e „ „ is either sr

than or equal to the maximum error the estimate can have, as defined by the user.
error, is either smaller

4.6.2 Method Two

The next stopping criterion discussed is derived from the convergence criteria (CC) for a

normal distributed population. As shown in [SpieSS], the sequence of jointly distributed

PowerCount: A High Level Power Estimation Tool 54

random variables xi,x2,...,x„ is said to converge almost certainly or converge with probability

one if

lim„^„x„(5) = ^(j) (37)

In this equation the theoretical actual value // is assumed to be the mean x which is calculated

from an infinite amount o f samples.

A |ii

AH2

A|i3

- mean=f(Di)

- m ean=f(n2)

- mean=f(n3)

A^i

Figure 4.7: Different Means Relying on Number o f Iterations

As seen in Figure 4.7, Aju decreases with an increasing number o f iterations, assuming ris > ri2

> til. The larger the number of n, the narrower the confidence level [Schw98]. Assuming

is almost equal to //, (35) can be rewritten as

/ /± A / / = x (38)

The absolute deviation Aju can be calculated by multiplying the inaccuracy factor e h y ^ and

is denoted as

/2±s-ii = x (39)

When allowing a small deviation it can be assumed that the theoretical value ^ is calculated

with one more sample than the mean after a specified amount o f iterations. The actual

value jj, and the mean x „ are then given as

PowerCount: A High Level Power Estimation Tool 55

To formulate the stopping criterion for the Monte Carlo Simulations using the CC, the

relative error s i can be defined as

1 « - i 1 "

■ 100% (42)

; = J

To define a stopping criterion derived by the convergence criterion for distribution, 8 i has to

be compared to the maximum error as defined by the user.

4.6.3 Method Three

The main problem computing a mean with a small number of samples is the possible spread

of the samples. The student’s t-distribution is suitable for providing estimates accounting for

the sample spread. In this case, tables containing the results of long and extensive

computations for critical values are used to calculate the upper and lower limits of a

convergence interval for a particular sample size. For each sample size n the critical value, T a ,

can be found for a specified confidence level.

A
cp(x)

d f <1

df >1

Figure 4.8: Bell Shapes for the Student’s t Distributions

As seen in Figure 4.8, the bell shapes are related to different degrees of freedom (df). The df

are the number of samples minus one (df = n - l) . The lower the degrees of fi-eedom, the

broader the spread of the bell shape will be. On the other hand for df = oo the student’s t-

distribution is equal to the gaussian distribution. The student’s t-distribution can be used to

PowerCount; A High Level Povi^er Estimation Tool 56

define a stopping criterion for the Monte Carlo simulations. The maximal accepted deviation,

T„ from the mean in (41) is substituted by s o Therefore, (38) can be rewritten as

X = ju ± £ ^ (43)

Equation (42) represents either the absolute minimum or maximum values for fj.. The

maximal deviation sc is related to the computed mean. In this case s c is defined as

\ 11 (44)

The mean is located outside the confidence margins as long as s c is bigger than the right-hand

term in (43). Equation (43) is then rewritten as

X - jU < T •a (45)

These absolute values have to be rewritten as relative values. Therefore, both terms are

divided by jU.

X - j J .

/J-
(46)

£rei has to be defined as an acceptable relative error before starting the simulation. The

stopping criterion noted in (46) is met as soon as Srei is either smaller or equal to the term o f

the right hand side of (46).

4.6.4 Analysing the Stopping Criteria for Suitability in Power Estimation

To compute each of the three stopping criteria a different set o f variables is required. The

following table gives an overview of the required variables.

Method Three Method One Method Two
X X

\i-

a a
Ta - -

Table 4.2; Required Values to compute the Stopping Criteria

PowerCount: A High Level Power Estimation Tool 57

As seen in Table 4.2, Method Three requires the most data to calculate the stopping criterion.

It requires x , /u, c and Ta to define a stopping criterion. The values for a wide range o f

confidence levels and degrees of freedom have to be stored. Then for the evaluation o f the

estimate this table must be read. Such a file operation requires extra processing time.

However, as will be shown in the next section, the other two methods provide similar results,

using less time consuming methods. The stopping criterion derived by Method One needs

three values x, fj. and cr. The most time-consuming computation o f all variables is the

calculation o f cr. As shown in (36), cr takes the deviation o f each sample into account. Since //

cannot be provided a priori, it is necessary to store each single sample x\ in order to subtract it

fi*om fu. Not only is the run time required to calculate cr intensive, but the values o f Xi have to

be stored in temporary files because of RAM limitations. Such temporary files have to be

accessed each time a file is written to or read from. This must be repeated several times.

Finally, all those temporary files have to be opened to recover the required values, all o f

which takes time. Furthermore, the number of these files increases with the number o f nodes

and can therefore be quite large if complex systems with thousands o f nodes are to be

simulated.

Method Two requires only x and /u. Here, it is not necessary to store each single sample

o f Xj. Both values are simply calculated by adding the individual estimates. Bearing in mind

that X is estimated with one iteration less then /u, only two variables are needed to store these

values. Therefore, the run time will be faster than using one o f the other stopping criteria

because no disk access is performed. It should be noted that all the above statements assume

that the estimate will be provided after an equal number o f iterations regardless o f the applied

stopping criteria.

4.7 Evaluation of the Stopping Criteria

The objective of developing PowerCount is to provide a fast power estimation tool for high-

level circuit testing. However, the speed o f PowerCount does not only depend on its

environment, such as computer performance or design complexity. Different stopping criteria,

used in the Monte Carlo simulations, also influence the speed by determining the number o f

iterations. To prove which stopping criterion is the most efficient for implementation, four

designs are investigated for power and time consumption. Thus the time required to reach the

desired accuracy for the mean to converge is measured. The simulations vary in their sum of

PowerCount; A High Level Power Estimation Tool 58

input vectors and their stopping criteria. The stopping criteria investigated are the Student’s t-

distribution, the Standard deviation and the Convergence criterion for distribution, as

described in the previous section. However, although the Student’s t-distribution was

considered as a possible stopping criterion, it was not included in this investigation because

of its obvious limitations. The Student’s t-distribution is only applicable for simulations with

a small number of iterations (section 4.6.3). The design complexity, the sum of input vectors

and also the desired convergence influence such a sum of iterations. Hence the number of

iterations cannot be pre-determined as would be required by Method Three. The investigated

designs are

• 1 Bit Adder

• Divider by 3

• 4 Bit 64 Stage Shifter using Multiplexer

• RGB2HSI Converter

To test PowerCount four designs are to be simulated with the following parameters

• Time base: nano seconds

• Scaling factor: 0.01

• Stopping accuracy: 1%

• hicreasing sum of input vectors: 10, 50,100, 1000

• Each iteration was initialised using 50 input vectors to guarantee a simulation in a
defined state.

• Either Method One or Method Two

The time base is the basic time unit used by the VS S while the scaling factor determines how

often per time base unit the design is checked for changes, hi this case the VSS investigates

the design all 0.01 time base units or every lOps.

Before these four designs are thoroughly investigated the factor distinguishing the

different designs is going to get discussed. The distinct characteristics of these designs are

their complexities. A contributing factor to the complexity is the number of nodes. This is

illustrated using a set of different adder circuits which vary in not only bitwidth and number

of inputs but also in basic architecture.

PowerCount: A High Level Power Estimation Tool 59

(A

0) 10000 1
E

1000 ♦

100 — ♦ ----------*
♦ ♦ ♦ ♦

10

number of nodes

Figure 4.9: Simulation Times of Adder Structures

hi Figure 4.9 the simulation times of over thirty different adder structures are plotted. This

figure shows how the simulation time rises with an increasing number of nodes. Although, it

is not possible to determine the simulation time by only taking the number of nodes into

account, it is safe to generally assume that, the greater the number of nodes, the more

complex the design, implying that the simulation is more time intensive. It might be expected

that the graph would be monotonically increasing in relation to the number of nodes but it is

clear that this is not the case and is due to the different level switching activity of the various

designs. This means that although a particular design may have more nodes than another, if

the level of switching activity is the same in two designs then the simulation time will be

similar and thus the graph shape is not monotonically increasing.

Figure 4.10 shows the convergence of the 1-bit full adder which was illustrated in Section

4.1. hi this figure it can be seen that after approximately 50 input vectors the estimate is

permanently within ±5% of that of the value after 1000 input vectors. Therefore, it was

decided to use 100 input vectors as the default value to compute the active capacitance of one

iteration.

PowerCount: A High Level Power Estimation Tool 60

0,4

^ 0.35
u .
Q .

a 0.25

0.15

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951

Input Vector Number

Figure 4.10: Convergence of the Simulation

Figure 4.11 shows the distribution of the active capacitance for 1000 iterations of the 1-bit

full adder using 100 input vectors per iteration. As can be seen irom this figure the active

capacitances of the iterations are gaussian distributed.

<D

E=3

180

160

140

120
100 +

80

60

40

20
0 ■4...

CO CD

r^
CN

o
03
CNJ

CO

CO
00
CM

o
CO
00
CNJ

t^
00oo
CM

O)
CM

Tl-
CJ)
CM

CDCO
CM

CD

c6
CD
CM

CO

oj
O
CO

mo
CO

00

o
CO

C)

CO

CDL_o

Active Capacitance / fF

Figure 4.11: Distribution of the Active Capacitance of the Full Adder

4.7.1 Small Designs

The first simulated designs are small designs with a small number of nodes (<70). These

designs are a 1-bit Adder and constant divider which divides an 8-bit input by three. Both

designs are simulated with 10, 50, 100 and 1000 input vectors on a SUN SparcS computer. To

PowerCount: A High Level Power Estimation Tool 61

obtain reference values of the active capacitance, the designs were simulated using one

iteration with 100000 input vectors on an Origin 2000 supercomputer^ having 64 nodes.

10 SO 1000100
input vedcnslterdcn

a±fer IVfelhodTvw

-»-a±ferl\M TD clO B

- 4 ~ dNicb" l\M xrl Tvvo

d\^cfer l \M tr l C>e

Figure 4.12: Deviations Simulating Small Designs

In Figure 4.12 the deviation of the estimate of the active capacitance in relation to the

benchmark value is shown over the sum of input vectors applied. As can be seen from this

graph Method One as well as Method Two have similar deviations. Furthermore, it can be

seen that the deviation drops initially. For simulations with more than 50 input vectors per

iteration the result remains approximately constant and with less than 1.5% more than

expectable. Also, Method Two provides a slightly better estimate. However, in order to get

simulation it is not enough to focus solely on the deviation of the result. It is also necessary to

consider the simulation time to achieve an efficient estimate.

adder IVfelhod Two10000

adder l\M xxl CheE 1000

- A - dvider IVfethod Two
100

divider IVfethod One

100 1000

input vectors

Figure 4.13: Simulation Time for Small Designs

As seen in Figure 4.13, the simulation time using Method Two is always shorter than that of

Method One. When simulating designs with a small number of input vectors, >10 and <100,

' The high-performance computer was kindly provided by CINECA, Bologna, Italy.

PowerCount: A High Level Power Estimation Tool 62

the simulation time as a function of the number of input vectors, has here a minimum. To

analyse this the number of iterations required has to be analysed.

400

300

200

100

100 1000
input vectors

Figure 4.14: Iterations to get an Estimate using the Method One Stopping Criterion

The reason for the higher simulation times for small numbers of input vectors for the standard

deviation is shown in Figure 4.14. The greater the number of input vectors, the lower the

number of iterations required for the Adder design to converge to a mean. It is less time

intensive to increase the number of input vectors. Thus as the number o f input vectors

increases the simulation becomes faster. However, the simulation is several times faster using

Method Two. For example, the simulation time simulating the Adder structure with 50 input

vectors and Method Two is 14 times faster. However, as seen in Figure 4.13 for more than

100 input vectors the time required starts to increase again due to the larger amount of input

vectors to be simulated. Therefore, it can be concluded that for small designs the optimal

input vector size is between 100 and 50 to achieve a fast result.

4.7.2 Large Designs

The next simulated designs are larger circuits with at least 700 nodes. The designs are a 4 bit

64 stage shifter using multiplexers (Mux) and a Converter. The multiplexer is simulated with

10, 50, 100 and 1000 input vectors. The Converter, which is an image processor, is simulated

With 10, 50 and 100 vectors on a SUN Sparc5 Workstation. It was not simulated with higher

amounts of input vectors as the results of such time consuming simulations were irrelevant

having analysed the simulation results using up to 100 input vectors. The reference values for

the active capacitance of the two designs were obtained through a long simulation with

100,000 input vectors for the Multiplexer and 10,000 for the Converter on an Origin 2000

Supercomputer.

PowerCount: A High Level Power Estimation Tool 63

0 3.0%

1 2.5%
■D 2.0%

1.5%
1.0%

0.5%
0 ,0%

muxer Method Two

muxer Method One

-A— converter Method
Two
converter Method
One

1000100

input vectors

Figure 4.15; Error Deviation Simulating Large Designs

In Figure 4.15, the deviations from the mean over the sum of input vectors are plotted. The

graphs represent the deviations from the reference values. The deviations from the mean,

computed with Method Two, are already smaller by simulating with 10 input vectors than

those obtained using the standard deviation. In these designs the accuracy, which is the

reciprocal of the deviation, increases by increasing the sum of input vectors. Also for large

designs it can be seen that the deviation drops significantly for more than 50 input vectors. In

order to evaluate the stopping criteria, the simulation times are investigated once again.

100000 muxer Method Two

10000 muxer Method One

1000
•At- RGB2HSI Method Two

100 4
^ RGB2HSI Method One100 1000

input vectors

Figure 4,16: Simulation Time for Large Designs

As seen in Figure 4.16, the simulation time for the standard deviation decreases by increasing

the number of input vectors from 10 to 50. By increasing the sum of input vectors from 50 to

100, the function course remains nearly constant before rising again for higher input vector

sizes. This behaviour is as already described for small designs related to the number of

iterations required to meet the stopping criterion. The simulation time using Method Two

rises approximately linearly, with the amount of input vectors. The graph for the simulation

time of large designs is similar to the graph for small designs (Figure 4.13). In general, the

PowerCount: A High Level Power Estimation Tool 64

fe simulation times, when simulating such large devices with Method Two used as stopping
I . . ^ .» cnterion, are smaller than when simulating with Method One as stoppmg criterion.

^ 4.7.3 Analysis of the Simulation Results

I The objective of PowerCount is to estimate the power consumption within a reasonable time.

I The user can influence the speed of PowerCount by choosing the number o f input vectors and

I the desired accuracy of convergence. The more complex the design, the more time-intensive

I the simulation. However, in all the designs investigated, it can be seen that adequate

r estimation time and accuracy are achieved by simulating the system with 50 input vectors and

using Method Two as a stopping criterion. Method Two also always requires the least number

of iterations to compute the average active capacitance. The stopping criterion derived from

Method Two always achieves a faster result than simulation using Method One. The reasons

for this have been discussed in section 4.7.

100%
786 1119 4 2 104 t i m e r s)

244 610 8131
r — Y

I Method One

□ Method Two

1 Bit Adder DIVIDER by 3 SH_MUX54 RGB2HSI

Figure 4.17: Comparison of Running Times of the hivestigated Stopping Criteria

Figure 4.17 compares the time of convergence of the two stopping criterion investigated. As

has been shown both archive similar results. However, Method Two is always faster, hi

Figure 4.17 the Method One is set as the reference value to show the time advantage of

Method Two in percent. Simulating a rather small design, such as the 1-bit adder with

Method Two is 93% faster than simulating with the Method One as stopping criterion. Also,

the Divider structure, simulated with Method Two, yields a result that is almost 70% faster

than simulating with the other stopping criterion. The SH_MUX54 simulated with Method

Two as stopping criterion requires 45% less simulation time than Method One. Finally the

Converter which can be assumed to be a complex design, (> 1000 nodes), also needs 33%

less simulation time when simulated with Method Two.

PowerCount: A High Level Power Estimation Tool 65

Simulations of complex designs such as SH_MUX54 or the Converter converge after the

minimum amount of iterations to estimate the active capacitance. Thus, the run time of the

tool is now the only factor that determines the simulation time. As seen in equations (18) and

(19), it is necessary to store every single computed value when simulating with Method One

as the stopping criterion. This requires temporary files for every single node. Every single

calculated value for each iteration has to be saved in a separate temporary file, hi the worst

case, all the temporary files have to be examined several times in order to compute the

stopping criterion. Finally, all the temporary files are deleted.

Calculating the stopping criterion using Method Two has an additional advantage.

Bearing in mind (52), the mean value x and the actual value // are computed by accumulating

the values and dividing their sum by the number of iterations; it is not necessary to generate

additional temporary files. The value for the actual value ju and the x mean can be easily

stored in two variables. This method therefore requires much less computation and storage

performance. Therefore, it is also less time intensive. Method Two is chosen as a stopping

criterion for Monte Carlo simulations because of its obvious advantages:

• The most accurate results are achieved although less iterations are required

• The least requirements for computation and storage performance

• The fastest stopping criterion to achieve a result in a reasonable time

• The fastest algorithm to implement

4.8 Spice Simulations

To validate the operational correctness of PowerCount, layouts of three designs were

generated and the power consumption was determined using Spice simulations. To generate

the layouts, the VHDL netlists of three designs were converted into Verilog netlists using X-

HDL [XhdlOO]. The Microwind [MicrOO] layout tool was then used to generate the physical

layout of the design and to verify the correct operation. Figure 4.18 shows the layout of the 1-

bit full adder using the ES2 0.7|im technology adapted throughout this thesis.

PowerCount: A High Level Power Estimation Tool 66

Figure 4.18: Layout of the 1-Bit Full Adder

Having laid out the circuit, a SPICE netlist was generated to perform a power analysis. Figure

4.19 shows the current simulation of the 1-bit full adder with 1000 random input vectors

which were applied at a frequency of 30MHz and a supply voltage of 5V. As can be seen, the

graph converges to a value of approximately 41)o,A after 10|j,s.

2Sus10us iSusSus

Tine

Figure 4.19: Current Simulation of the 1-Bit Full Adder

PowerCount: A High Level Power Estimation Tool 67

Table 4.3 presents the simulation results of three different designs obtained using SPICE

simulations using 1000 random input vectors and compares it to the estimates generated by

PowerCount. The designs simulated include the one bit full,adder used to demonstrate

PowerCount throughout this chapter, the Approximation version and the Look-up Table used

to compute the arctan as presented in Section 5.4.

Design SPICE
Power Consumption

PowerCount
Power Consumption

Error

1-Bit Full Adder 0.188mW 0.22 ImW +18%
Approximate Arctan 1.53mW 1.49mW -2.6%
Look-up Table 3.45mW 2.87mW -17%

Table 4.3: Comparison of SPICE Simulations with PowerCount

It can be seen in Table 4.3 that the errors of the designs tested indicate that the estimate is

within 20% of that of obtained from SPICE simulations. Thus, these simulations show that

PowerCount gives sufficient results for the design work undertaken in this thesis.

4.9 Theory of Operation

This section shows the general cycle of a power estimation using PowerCount. Figure 4.20I
illustrates the operation of the program. After starting, PowerCount checks for a valid licence.

'I’he licences are node locked, but can be stored in a single file. This enables the use o f a

jingle fileserver. If no valid licence is available the program terminates and prompts the user

to contact the VLSI research group. Next a set of LTNIX system commands is created. These

(Commands are used to start Synopsys or to generate temporary folders. Then the netlist is

Scanned for the nodenames of the design. These nodenames are then stored in a linked list and

iutomatically inserted into the controlfile. The controlfile is used to control the simulation of

the design using the VSS. It is not possible to hand over a random seed into the VSS,

fcerefore a seed of 128 bits is generated and included into the controlfile for further use in the

VHDL testbench. This ends the initialisation process.

PowerCount: A High Level Power Estimation Tool 68

Start

r
Check license

1r

yes
r

C reate system command
strinas

►
r

Scan netlist for
node nam es

r

Create Control File

r
Create Linked List

no / X EC

r

:>F

yes

r____
Create Random

Input Vectors

©

Start Synopsys

r
C heck Eventfile for
T ransitions & Save

it in Linked List

1

no

r

5F

yes

Iterations
>=6

yes
r

C alculate x , / j

1 ’

Accuracy e
reached ?

Plot R esults in File

r
Delete (Eventflles & /SIM)

End

Figure 4.20; Flowchart of PowerCount

Next VSS is started and a file with all events at all nodes to be monitored is generated. This

file is called the eventfile. At the end of the simulation, the eventfile is analysed and the

number o f transitions at each node is stored. Then, the next simulation is started and the event

file is analysed again. This is repeated six times. After the sixth time PowerCount calculates

the average active capacitance according to (11). Furthermore, jj. is calculated and the

Convergence criteria is used to determine the confidence of the result. If the convergence

PowerCount: A High Level Power Estimation Tool 69

constraint is met the simulation terminates. If not, the simulation continues on for one further

iteration. After this iteration the convergence constraint is checked again. The simulation

continues until the constraint is met or an upper limit of iterations is reached. Then the results

of the simulations are printed. These results include a short summary with the most important

values such as the active capacitance, the accuracy of convergence, the number of iterations

and the time required to achieve the resuh. In addition to this short summary, a detailed

analysis of the number of transitions at each node, as well as the physical node capacitance

and the active node capacitance, is plotted. This enables the designer to perform a detailed

bottleneck analysis of a design. After the results are plotted, all temporary files and directories

are deleted and the program terminates.

4.10 Summary and Conclusions

The requirement for fast feedback to the designer has resulted in the development of

PowerCount, a novel power estimation tool. Evaluation of existing power estimation tools

has indicated limitations with regard availability of technologies and early verification of

design decisions. PowerCount overcomes these limitations by incorporating not only the

technology library information, but also the additional design information provided by the

high-level design environment. This extra design data comprises the interconnect of the nodes

as well as the switching activity at those nodes. Extensive usage of PowerCount has proven

its usefulness in a variety of low-power design projects.

PowerCount has advantages over traditional power estimation tools by providing fast

feedback to the designer. PowerCount operates as an add-on tool to the Synopsys Design

Environment, which is the system of choice of the majority of ASIC designers. This has

benefits for the designer because design files, previously generated for timing simulation, are

reused by PowerCount without modification.

PowerCount operates at the VHDL netlist level. Working as an add-on tool to Synopsys it

does not require any special libraries. It can be easily controlled via a command line interface,

making use of standard default values of parameters such as the number of input vectors.

PowerCount is not limited by design size. PowerCount uses the native Synopsys control

language. Therefore, the designer does not need to leam another language to control the

power estimation. Furthermore, PowerCount uses the same library information as used by

Synopsys for synthesis and timing simulations. For this reason, whenever the technology

PowerCount: A High Level Power Estimation Tool 70

library changes, PowerCount will automatically use these new libraries. Therefore, it is easy

for the designer to become accustomed with this new tool in a familiar environment.

PowerCount has been tested extensively and no bugs are known. It has been developed so

as to be error tolerant towards such errors as the absence of a netlist and access denial to the

Synopsys Simulator (i.e. if all licenses are in use). However, if an error occurs which

PowerCount cannot overcome, a file is created containing error information. Using this file,

the user can quickly determine the source of error.

The basic concept of PowerCount is based on the use of the node capacitances which

include an estimate of the interconnect capacitance. Furthermore, PowerCount computes the

switching activity factor for each node. To generate a fast estimate, Monte Carlo simulation

has been incorporated into PowerCount. The advantage of Monte Carlo simulation is that it

provides a fast result with a definable confidence interval.

Extensive benchmarking has been carried out. This has enabled the incorporation of

default values for the desired confidence interval, the number of input vectors and the number

of iterations. These values have been verified by the use of PowerCount in several design

projects, hi conclusion, PowerCount has demonstrated its usefiilness to the designer, by

providing fast power estimation at an early stage of the design cycle.

Having described the background to power consumption and the development of a novel

power estimation tool, the remainder of this thesis focuses on the implementation of an image

processing algorithm. For this purpose, the RGB to HSI algorithm is decomposed into two

functional units. The next Chapter describes the implementation of Render’s algorithm for

faster computation of hue, while Chapter 6 deals with the implementation of the saturation

and intensity path.

The Hue Algorithm 71

5 The Hue Algorithm

The objective of this thesis is the application of low-power design techniques at the

algorithmic level of a design. For this purpose, Render’s algorithm of faster computation of

hue was chosen [Kender], This algorithm provides a number of rigorous design challenges

such as the implementation of trigonometric functions, multiplication by fixed coefficients

and fast divisions.

This Chapter deals with the implementation of Render’s Algorithm, which is the most

complex part of the RGB to HSI conversion. To provide a more detailed, functional analysis

the algorithm is decomposed into a number of blocks. Low-power implementations for each

block are proposed and evaluated. Render’s algorithm (1) is shown once again, to provide a

basis for comparison of the implementations discussed in this Chapter.

if((R > B)an d (G>B)) (1.1)

+ arctan
" V3 x (G - i ?) '
^ G - B + R - B ,

else if (G > R) (1.2)

hue = K + arctan
' S ^ { B - G) ^
^ B - R + G - R ,

else i f (B> G) (1.3)

5X TT

3
+ arctan

else if (R > B) (1.4)

hue = 0

else (1.5)

achromatic’

The Hue Algorithm 72

Firstly, the partitioning of the hue algorithm is explained. Figure 5.1 presents the breakdown

of the hue algorithm into functional blocks. These blocks contain parts of the algorithm which

can be implemented separately with little or no effect on the power consumption of the other

blocks in the overall structure. In the following sections, each block is described and various

implementations are compared. The first block performs the comparisons necessary to

determine which of the five cases of Render’s algorithm is true. The second stage calculates

the divisor and dividend required to compute the argument of the arctan. The third stage

performs the division. The fourth module computes the arctan and the final stage adds the

coefficient to the result of the arctan. An additional stage for delaying control information is

also included in the bock diagram.

Sign/Control

Shift
stage

Red sort X divider

Green Y
divisorBlue Z

X+Y-2Z

divide ARCTAN add
coef

Hue

Figure 5.1: The Breakdown of the Hue Algorithm into Components

5.1 Comparing the Input Vectors

The first module of the hue algorithm performs the task of detecting which part of Render's

algorithm for the faster computation of hue is true. Figure 5.2 shows the block diagram of this

module. The control signal is not included in this figure as it varies depending on the

implementation.

Red — ^

Green — ^

Blue

o3=max(R,G,

Sort
o1 — ^ output a

^ o2 — ^ — output b
o3 — ^ — output b

c o1=min(R,G,B)
o2=nnid(R,G,B)

Figure 5.2: The Block Diagram of the Comparison Module

The Hue Algorithm 73

5.1.1 The Sorting Algoritiini

As shown in section 3.4, it is most desirable to implement designs using unsigned arithmetic.

The key to the implementation of an unsigned version of Kender's algorithm is the

understanding of the argument of the arctan function. The arctan function appears in the first

three parts, (1.1), (1.2) and (1.3), of the hue algorithm and can generally be written as follows:

arctan
V

V 3 x (Z - 7) '
X - Z + Y - Z

(47)

In this equation Z represents the smallest of the three input signals. Therefore, it can be seen

that the argument of the arctan function only becomes negative if the term (X-Y) becomes

negative. Since the arctan function is an odd function, the behaviour of the function can also

be described as:

arctan(x) = -arctanf-x) (48)

trherefore, the sign can be excluded from the subtraction of X and Y and stored until the

arctan function is computed. It is then used as the sign of the result of the computation o f the

Irctan. In traditional designs, the determination of the sign is achieved by the use of a sign-

inagnitude subtractor (Figure 5.3). As can be seen from this discussion, the operation (X-Y)

j)lays a vital part in the design decision of how to implement the sorting algorithm. Therefore,

|;he dividend of the argument of the arctan will be included in this section.
i
I The first implementation of this stage uses a sign magnitude adder. These adders are

traditionally built using a comparator which is connected to the input of an adder. This,

fiowever, has the disadvantage that all the input bit signals have to be compared in order to

jdetermine the larger number. Then the smaller number is subtracted from the larger one.

jTherefore, a different approach is presented in this section.

The first two inputs, R and G, are subtracted using a two's complement subtractor. Now

|only the MSB has to be checked. If it is 0 the difference is positive and no further

computation is required. If the MSB is 1 the resuh is negative. Now it is inverted and a ONE

IS added to give the positive equivalent. This procedure has the advantage that only one bit

has to be checked. Furthermore, only for half of the output range is an additional computation

•s required. Figure 5.3 shows the principle approach to this implementation.

The Hue Algorithm 74

Red sort V sm sign
Green w subtractor

X-Y
Blue z

Z

Figure 5.3: The Traditional Implementation Performing the Sign Detection

A different method is shown in Figure 5.4. Here two comparison stages sort the three input

words according to their magnitude and then subtract the second largest signal from the

largest one.

__________________sign

Red sort 1 V sort 2 X subtractor

Green w Y
Blue z

 I Z

Figure 5.4: Extracting the Sign using the Comparators

This has the advantage that an ordinary unsigned subtractor can be used instead of a larger

and more complex sign magnitude subtractor. A further advantage is that the sign is extracted

at the earliest possible stage and therefore it is possible to reduce the signal bus size by one

bit. This results in a smaller subtractor in the next stage. As the traditional approach requires a

smaller comparator and the second proposed method requires a smaller subtraction stage,

both implementations were considered. The results of both circuits are shown in Table 5.1.

Area Timing Active Capacitance

Sorting 0.391mm^ 16ns 12.4pF

S-M Subtractor 0.404 mm^ 16ns 13.3pF

Table 5.1: Key Features of the Comparison Module

As seen in Table 5.1 the Sorting algorithm is the preferable implementation as the active

Capacitance is 7.3% smaller than that of the sign magnitude subtractor.

If one of the last two cases of Render's algorithm is true, then the value of hue needs not

to be computed because it is already determined. Therefore, only the control bus may change

The Hue Algorithm 75

value. In this case, stages which are not required in the saturation and intensity algorithms are

disabled. This ensures that only a minimum number of transactions are performed.

5.1.2 The Encoder Block

The second part of the Sort block is the encoder block. The function of this block is to

determine which of the 5 cases of Render’s algorithm is to be applied to the data. The output

of this block is then send to the control bus. The order in which the 5 different cases are

examined is based on the probabilities of occurrence associated with them. The calculation of

these probabilities is founded on the following reasoning: Knowing that each of the three

input signals R,G,B has 256 possible values and assuming that every input value has the same

probability [Schw99], then the probability that a particular input value appears is

P fix e d input value = 1/256 = 0.391 % (49)

An achromatic value appears if all three input values are equal to each other. There are 256

different possibilities leading to the achromatic case.

Pease 5 PAchromatic 256 * Pfixed input value * Pfixed input value * Pfixed input value ~ 0.00153 % (50)

The probability of any of the 4 remaining Kender-cases is therefore

P c a s e 1 to 4 ~ P c a s e 0 ; 1/3 *71; 7t; 5/3*71 ~ 1 " P A c h r o m a t ic ~ 99.99 % (51)

For the cases 1 to 4 the following rules are valid

Condition Kender case

Green > Red and Blue > Red 2

Blue > Green and Red > Green 3

Red > Blue and Green > Blue 1 or 4

Table 5.2; Conditions for Kendercases 1 to 4

The three conditions in the next equation have the same probabilities:

P case2 = Pcase 3 = P c a se 1 + P case4 = Pease 1 to4 / 3 = 33.3 % (52)

The Hue Algorithm 76

If the third condition (Red > Blue and Green > Blue) is true, Kender-case 4 only appears if the

value of green is equal to the value of blue.

P c r e e n = B lue = P k e d = B lue = P R e d = G reen = 256 * P f ix e d in p u t v a lu e * P f ix e d in p u t v a lu e = 0.391 % (53)

P R e d # B lue = 1 ' PRed = B lue = 99.6 % (54)

PRed >B lue = (PRed *■ B lue / 2) = 49.8 % (55)

P c a s e 4 = P R e d >B lue * Poreen = B lue = 0.195 % (56)

Pcase 1 ~ Pcase 1 Pcase 4 ~ Pcase 4 “ 33.1 % (57)

In Table 5.3, the probabilities of the individual Kender cases are shown;

Kender case Probability

1 «33.1 %

2 « 33.3 %

3 «33.3%

4 « 0.195 %

5 « 0.0015 %

Table 5.3: Probabilities of the Kender-cases

As seen in Table 5.3, the probabilities for the first three cases are approximately equal to each

Other. The last two cases have a significantly lower probability. This leads to the conclusion

that the Kender-cases should be investigated directly in the order of appearance in (1).

Furthermore, analysis has shown that the transmission of a positive sign has the same

probability as the case that a negative sign is transmitted [Schw99].

5.2 Computing the Argument of the Arctan

This block computes the dividend and divisor of the argument of the arctan. Because o f this,

the block is split into two sections. The first section computes the dividend of the argument of

the arctan according to equation (58) and the second deals with the computing of the divisor

equation (59) o f the argument of the arctan. The computing of the dividend is closely linked

to the implementation of the comparator structure. Because of this, the discussion of this topic

The Hue Algorithm 77

has been included in the previous section. However, due to implementation concerns, the

actual implementation was placed in the same stage as the computation of the divider of the

arctan. Therefore, this is included in the block diagram (Figure 5.5) of this module without

further discussion, and this section focuses on the implementation o f the divisor of the

argument of the arctan. Figure 5.5 shows the block diagram of this module.

A rg u m en t

input a - 4 ^ a
o1 ou tp u t 1

input b 8/ b o 2 9/ OUtDUt 2/

input 0 c o 1 = a -b
o 2 = a -c + a -c

Figure 5.5: The Block Diagram for Computation the Argument o f the Arctan

The divisor of the argument of the arctan requires, if implemented directly as described in

equation (47), three modules, namely one adder and two subtractors.

divisor. arctan=(X-Z)+(Y-Z) (5 8)

Such an equation can be implemented using a tree structure. This can be achieved by first

computing the two sub-terms (X-Z) and (Y-Z). Then the addition of the two sub-terms is

performed. This structure is balanced and has therefore a low glitching activity. However, the

divisor can also be expressed in a general form as follows

divisor.arctan=X+Y-2Z (59)

This equation can be implemented with only two combinatorial modules. The multiplication

by two is a simple shift operation and does not require any logic elements. Table 5.5 presents

the key measures of both implementations of the computation of the divider of the argument

of the arctan.

Area/mm^ Number of
Nets

Timing/ns Active
Capacitance/pF

Tree Implementation 0.13 106 13.64 1.75

Small Implementation 0.098 85 13.41 4.68

Table 5.4: Key Features of the Computation of the Divisor for the Arctan

The Hue Algorithm 78

Usually, larger structures have higher power consumption than smaller designs. However, as

seen in Table 5.4, structures such as adders or subtractors do have a large glitching activity.

As already described previously in Chapter 3 the glitching activity can be reduced by

balancing all paths of a module. The tree structure used is such a fully balanced design. This

is the reason why in this case the larger design has a lower active capacitance. Therefore, for

the hue implementation the tree structure is going to be used, despite the fact that it is 32%

larger than the smaller implementation based on equation (59).

53 The Divider Structure

The next module in the hue path is a divider. This divider computes the argument o f the

arctan. Figure 5.6 shows the block diagram of the divider module indicating the input and

output ports.

D iv id er

divisor — ^— a
0 V niitpiit

dividend— ^ — b

o = a /b

Figure 5.6: The Block Diagram of the Divider Module

As seen in (1), the divisor contains a multiplication by V3 . A discussion of this factor will

Hot be included in this section as this is a scaling factor for the arctan function. Therefore, this

multiplication will be considered in detail in the next section, which describes the

implementation of the arctan function. Before the actual implementation of the divider is

described, the general background of a binary divider will be explained.

When dividing binary numbers, the same principle applies as when dividing decimal

numbers. First the dividend is compared with the divisor. If the dividend is smaller than the

divisor, the MSB is zero. Then the dividend is shifted by one bit to the left and the

Comparison is performed again to compute the (MSB-1). If the divisor is larger than the

dividend, the dividend is subtracted from the divisor and the corresponding output bit is set to

one. Then the resulting value is shifted. Therefore, each divider stage has to contain a

comparator as well as a subtractor. Due to this highly repetitive procedure, dividers are often

implemented in a loop procedure in order to minimise the area. However, as outlined

The Hue Algorithm 79

previously, the design has specification requirements, regarding the pixel throughput, of

30Mpixels per second. This necessitates the use of a combinational structure. Furthermore,

such structures have the disadvantage that they compute the result each time even if the input

does not change. In order to avoid these power consuming transitions these dividers require

additional logic to detect equal input signals and so disable the block.

If the input range of the arctan given by (47) is investigated, it can be shown that to fulfil

the condition that Z is either the smallest value of the three variables or jointly the smallest

value with Y, then the value of the argument prior to multiplication by Vs must be less than

or equal to one, i.e.

X - Y
if ^ 1

X + Y — 1Z
then X - Y < X + Y - 2 Z (60)
rearanging gives Z <Y

By introducing a detector into the device it is possible to use an intelligent divider

structure. Such a divider can disable all following stages of the divider if a one is detected at

the input. Taking this into account, the structure of the next stage connected to the divider can

also make use of this by checking first if the input is one. This can be done by an iterative

investigation from the most significant bit down to the least significant bit. One o f the

consequences of such a design is the implementation of a pipeline stage after the first

computation block. This increases the area and overall capacitance. However, a reduced

glitching in the remaining stages reduces the power consumption of the additional logic. In

Table 5.5, the best standard implementation is compared with three “intelligent” designs.

These three designs take into account that the maximum input value is one. The only

difference between them is the method of detection of a one. In design 1, a comparison is

performed to determine whether or not the divisor is larger or equal to the dividend, in order

to detect a one. During normal operation the divisor can be only as large as the dividend.

Therefore, this comparison is purely a safety measure. Design 2 uses a comparison to detect

whether or not the dividend is smaller than the divisor. This gives the same safety as design 1

but can be synthesised using less logic. The last design implemented (design 3) uses a

comparison to determine if the divisor is equal to the dividend. This is also a simple

Operation, requiring approximately the same amount of logic as the smaller comparison.

However, such an implementation does not have the safety margins the two previous designs

The Hue Algorithm 80

had. But under normal operation conditions this will not result in any problems, as shown

during simulations.

Area/mm^ Number of
Nets

Timing/ns Active
Capacitance/pF

Best Standard 0.431 289 13.10 32.09

Intelligent Design 1 0.852 483 12.55 31.84

InteUigent Design 2 0.425 276 18.80 31.85

Intelligent Design 3 0.422 276 10.63 29.78

Table 5.5: Key Features of an Intelligent Divider Module

As seen in Table 5.5, the difference between all implementations with respect to the power

consumption is small. However, the area and timing comparison shows that design 3 has the

best overall performance as well as the lowest power consumption. Therefore, this design is

used in the overall implementation.

5.4 The Arctan

The arctan function is an odd function. This also halves the range of the arctan function which

has to be calculated. A problem encountered in computing the arctan function is the

representation of the factor V3 which is present in all arctan terms of the hue algorithm. Since

it is not possible to represent this value with an accuracy of 100%, an implementation would

either contain a significant error or would be unreasonably large. Large busses not only have

the drawback of higher switching but also lead to longer interconnection lengths and larger

functional units. This is because the subsequent units have to compute more bits. For these

teasons alternative implementations of the arctan function were investigated. This section

describes four different possibilities for implementing the mathematical function arctan in

VLSI. Figure 5.7 shows the block diagram of the module for computing the arctan.

The Hue Algorithm 81

outputArctan

Figure 5.7: Block diagram of the Arctan

Before presenting the implementation of the arctan function, the numerical relationship

between the input argument code and the output function code is established. The input

argument of all versions has a bitwidth of 7 bits, where the most significant bit corresponds to

a decimal value of 1. The six least significant bits represent the digits after the decimal point.

As has been shown in the previous section, the maximum input into this stage is one.

Therefore, each changing bit-position within the six least significant bits corresponds to a

difference of the input value of J_ = 0.015625. For example, a binary input value of 1000111

corresponds to 1.109375 decimal. The output of the block has a bitwidth of 6 bits. The output

function range is limited to 60° because of the three equivalent sections describing the hue

space, as shown in Figure 5.8.

Green Yellow
60°120°

84d

Cyan 180°
360°Grey

21 Od

300°
MagentaBlue

Figure 5.8; The Hue Circle

In Figure 5.8 various colours and their corresponding angles are shown on the outer perimeter

Of the hue circle. Mside the circle the decimal values for an output range of 8-bits are shown.

The Hue Algorithm 82

As can be seen an angle of 60° or l.;j- corresponds to a decimal value of 42. This results in a
3

resolution of hue of 1.43 degrees (^) for every step. An example illustrates this idea. The
42

binary number 100011 is 35 decimal, which would result in an angle o f 50° (= 35-1.4286).

With 6 output bits, it is possible to get a resolution of 64 (= 2®), but the output cannot exceed

74°, because of the restriction of the input definition. Therefore, the highest output value is 52

1.4286

5.4.1 The CORDIC Algorithm

The COrdinate Rotation Digital Computer (CORDIC) algorithm is traditionally used for

implementing trigonometric functions in hardware. Voider first introduced the CORDIC

Algorithm in 1959 [Vold59]. This algorithm uses only shift steps and addition operations to

calculate most mathematical functions such as multiplication, division, addition, subtraction

and trigonometric operations. The basic idea of CORDIC is to take a vector, given by (x,y) or

(x,z), and drive it towards zero using a series of additions and subtractions steps. The steps

required to drive the vector to zero correspond to the result of a mathematical function.

Voider’s CORDIC algorithm uses three variables (x, y, z) and is based upon the equations

(61).

y>i+\ ~yn (61)
«̂+i + i/„arctan2“"

fci all implementations of (61), the values for arctan 2'" are precomputed and stored where n is

the index of the iteration (0,1, 2, 3,.... N). Thus, this set of equations is repeatedly executed N

times until the result converges to the required accuracy. The term is chosen to drive either

y or z closer towards zero and can assume a value of either +1 or -1. The CORDIC algorithm

Can operate in two modes depending on the mathematical function required. These are known

as the vectoring mode (VM) and the rotation mode (RM). For «^co this leads to the results

summarised in Figure 5,9. As can be seen in this figure the arctan function is part of the VM

and therefore only this mode will be discussed in the remainder of this section.

The Hue Algorithm 83

Rotation Mode
Xin k[Xin C O S (Z in) - Zm sin{zm)]

c
o

Yin R k[yin COS{Z|„) - Xin s in (Z in)]
D
I

C 0

Vectoring Mode

K-i/x^+y^

0

y,
z - a r c t a n —

Xn ^
c
o

Yin ^ R
D
I
C

Figure 5.9: The Rotation and the Vectoring Mode of the CORDIC Algorithm

In the VM, the co-ordinate components of a vector (x,z) are fed into the CORDIC algorithm

and the magnitude and angular argument of the original vector are computed. The value of d„

in (61) is then chosen to drive y toward zero. If y„ is greater than zero, then d„=+l and

conversely, i f yi„ is less than zero, the value of dn will be -1. If >> is zero, the result will be

applied directly to the output. To calculate the arctan(y), the input variables have to be set to

Xin = I, Zi„= 0 and yi„ will then become the argument of the arctan. By way of an example,

taking =1.6, the computation of arctan(1.6) is illustrated in Figure 5.10. For clarity only the

first three iteration steps are included in the diagram, however the whole computation is

shown on the right hand side of the figure, and convergence to an accuracy of better than one

degree is achieved after 8 iterations, producing the desired result of 58°.

Start

Herat. Computation Result
________ X______ y z accuracy
Start: 1 1.60 0
#1 2.6 0.60 oLO ±45°
#2 2.9 -0.70 71.6° ±26.56'
#3 3.07 0.025 57.5° +14.04'
#4 3.08 -0.359 64.6° ± 7.13'
#5 3.10 -0.167 61.1° ± 3.58'
6 3.10 -0.070 59.3° ± 1.79'
#7 3.10 -0.021 58.4° ± 0.90'
#8 3.10 0.003 57.9° ± 0.45'
#9 3.10 0.001 58.0° ± 0.22

Figure 5.10: Computation of the Arctan using the CORDIC Technique

It is necessary that the angular increments of the vector rotation are computed in a decreasing

order, e.g. for a range of ± n l l , the magnitude of the first rotation step is ±Tt/4. Therefore, the

value of is driven closer to zero with each rotation step.

Figure 5.11 shows a flowchart of the VM. In the first step the shifted values of x and y are

stored in b and c. Then, an angle is either added or subtracted fi'om the input depending on the

The Hue Algorithm 84

previous value of;;. This is repeated until 7 = 0. The result is then applied to the output.

Because the CORDIC algorithm is designed to perform a variety o f mathematical functions, it

is used in most pocket calculators and mathematical co-processors. However, as w ill be

shown, individual functions can be performed more efficiently using alternative

implementations.

i n p u t

y = i n p u t

X ~ X ^ c

y = y - b

2 = z + a rc ta n 2 " ”

o u t p u t

no

X =z X — C

y = y + b

z — z — a rc ta n 2

Figure 5.11; Flowchart for the Vectoring Mode

The arctan implementation using the CORDIC algorithm computes the arctan o f an input with

7 bits and presents the result with 6 bits at the output. This version is clock-controlled and

handles the input vector as a positive number (there is no sign bit). The input is normalised as

the argument o f the division o f the variables is multiplied with V3 . This means that the

Output then shows the result o f the arctan(V3 The maximum input value is

1111111, which corresponds to 1.984375. This restricts the output to a value o f 74° (= arctan

(V3 1.984375)). However, as the highest input value is one the maximum output value is 60°.

The design consists o f 10 combinatorial stages and 11 pipeline stages. The input value

will be applied to the first latch. With every positive clock event, the flip-flop transmits its

The Hue Algorithm 85

input value to the follow ing stage. This ensures that there w ill be no new input value during

the calculation process. The block diagram o f the complete design is shown in Figure 5.12.

LATCH LATCHCaLC LATCHSHIFT CALC S H in

_ .1̂ ,.

Figure 5.12: The Structure o f the CORDIC Version

The follow ing figures show the block diagrams o f the modules perform ing the sh ift operation

and the calculations. Figure 5.13 shows the module performing the calculations.

X = X + c

z = z + angley >= 0?
X = X - 0

angle z = z - angle

Figure 5.13; The Calculation Stage

The shifted values o f ;c and y w ill be used by the calculation stage as b and c. The number o f

shifted bits w ill be defined by the apphed value o f n as shown in Figure 5.14.

12.
b = X 2'" 12/ K12. /

y /
c = y ■ 2'"4./

Figure 5.14: The Shift Stage

In stage 0, the input range o f 7 bits w ill be sign-extended to 12 bits. The most significant b it

represents the sign, the next b it is used as an overflow, 7 bits for the input and 3 bits as the

least significant bits. The sign b it allows it to calculate positive and negative results. W ith 2

llits in stage 9 it is possible to get a value o f b which is not equal to 0, when the x value is

Sjhifted by 9 b it to the right.

The Hue Algorithm 86

The binary code for the x value in stage 0 is chosen to be 000100100111 because of the

final equation for z from the CORDIC Algorithm, which will be explained in the following

paragraph.

The final expression for of z is

z = arctan(—) (62)
X

Because of the normalised input, y is divided by x in the hue algorithm. In this CORDIC

Version, the input will be multiplied internally with a factor of Vs . The new equation

becomes

/3 •z = arctan (----- —), (63)
a :

1 ■ I • Vwhere — is a constant, as the input to the arctan module is already the result o f —.

Therefore, the value of x is 1.

■ z = arctan {^J3 ■ y) (64)

To implement this constant, the factor will be represented by 0.57735 (= - ^) . This number
V3

Will be described with 10 bits. The value of one bit step is 0.000977 (2'^°). By dividing the

lonstant value by the step value, the decimal code will be the result 591. The number 591

jepresented in binary code is 000100100111.

In stage 0 it is not necessary to implement a shift operation because here the values of b

:^nd c are equal to the value of x and y. However, there must be a process in stage 0 which

.^^creases the input value received from the first latch to achieve the internal bitwidth. This is

■performed by adding 2 bits before and 3 bits after the binary code for the value of y. Every

ge contains the binary code for the fixed angle, which will be applied to the calculation

#tage. This fixed angle will be added or subtracted to the previous value of z. Also, the stages

;»ontain the factor which decides how many times the x and y value will be shifted in the shift

®tage. The results of the shift stage are returned as b and c. The last latch has only to process

he value of z, which is 12 bits wide. The use of 12 bits is necessary, because of the inclusion

f 10 stages. In this lookup table, the fixed angle for stage 0 needs 10 bits plus 2 bits for the

The Hue Algorithm 87

sign. It also uses a bit that ensures that no overflow occurs. Bits 9 down to 4 will be

transferred to the output with the next positive clock event.

As described in this section, the bitwidth of x, y and z as well as the number of stages

have been chosen so that the simulation has a result corresponding to the next possible value.

This value has a smaller deviation. Also in this configuration the order o f output numbers will

decrease monotonically without using a higher number than used before, when the input will

be counted down from 1111111 down to 0. The result of this implementation is calculated

after 10 clock cycles.

As previously described, the values of the angles used for the calculation of z must be

precalculated and stored. For these precomputed values, decimal 42 corresponds to an angle

of 60°. The internal bitwidth of z is 12 bits as described previously. Therefore, the binary

code for an angle of 60° can be defined by 42 2 ̂ (4 extra bits), which is 672 decimal. By

dividing 60° by 672, the result is a step value of 0.089286°. The code for the fixed angle will

be calculated by dividing the fixed angle by the calculated bit value. After this, the decimal

result is transferred into binary code. The table of the fixed angles used in the different stages

is shown in Table 5.6.

Fixed angle Binary code Stage number

Arctan 2® 45 000111111000 0

Arctan 2“' 26.565 000100101010 1

Arctan 2'^ 14.036 000010011101 2

Arctan 2'^ 7.125 000001010000 3

Arctan 2'^ 3.576 000000100111 4

Arctan 2'^ 1.7899 000000010100 5

Arctan 2'^ 0.8952 000000001010 6

Arctan 2'^ 0.4476 000000000101 7

Arctan 2'* 0.2238 000000000011 8

Table 5.6: Table of the Fixed Angles for the CORDIC Version

The Hiie Algorithm 88

5.4.2 The Lookup Table

The second proposed technique to implement the arctan function is the use of a Look-Up

Table (LUT). LUT’s are simple Read Only Memory (ROM) storing devices. They contain

only one set of data, in this case one number for each input address. These numbers represent

the result of the process and the result has to be calculated for each possible input value

before implementing the LUT. LUT's are very fast compared to an algorithmic

implementation, as all possible output values are already calculated. Traditionally, LUT's are

used in high-speed applications where other implementations would be too slow. But they

will also prove to be very well suited for use in low-power applications because no dynamic

power is consumed after the address bits are applied.

Unfortunately LUT's also have disadvantages. For most applications they are larger than

the normal algorithmic implementation due to the fact that all possible output values have to

be stored. A simple example should illustrate this. A simple 8 by 8 bit multiplier requires

65536 address spaces, each containing 16 bits and this would result in a memory of more than

1.5 Mbits. For this reason LUT's can only be used for applications with a small number of

addresses and a limited width of the output data. This excludes most computations.

Normal memory devices consume large amounts of power due to precharging. Therefore,

special circuits as presented in [Athas94] can be used in order to reduce the power up to 75%,

depending on the minimal allowable swing voltage at the bitlines.

Because today's digital RGB standard uses a quantisation of the input signal into 8

unsigned bits for each colour, the hue output is chosen to also have 8 valid bits which results

in a possible output range of 0 to 255. Due to Render's algorithm for the computation of hue,

one number has to be reserved for indicating an achromatic pixel. This leaves a possible

range of 254 for describing the hue space. The algorithm splits the output range into three

separate units, each of the same range (Figure 1.1). Therefore, the output range is split into

three parts, each containing 84 values. This gives a total of 252 plus two values for the

singularities if hue is 360° or achromatic. Because it is not possible to use two values, the

dynamic range of hue is reduced by 0.68%.

To determine the necessary number of addresses and output bits for the LUT, Render's

algorithm has to be investigated once again. The first three sorting terms of the hue algorithm,

(1-1)(1.2)(1.3), ensure that the hue space is unique for all three cases and that each of the

ranges spread from -60° to +60° are added to a coefficient depending of the case chosen. This

The Hue Algorithm 89

results in an integer range of 84 values when transferred to the digital hue space. Because the

arctan is an odd function the number of values can be reduced by a factor of two since only

the positive (or negative) values have to be stored. Therefore, 42 values require an address

bus of 6 bits. The unused values could be replaced by don't care terms, which would result in

a smaller circuit. It is also possible to use these values to provide sufficient accuracy and also

to implement the necessary rounding by storing the previously rounded result for each

address.

In (63) the maximum value of the argument of the function is Vs . Since the factor V3 was

only needed to fulfil the requirements of the computation of the arctan function, it can now be

replaced by the maximum number of addresses contained in the LUT. This replacement by an

integer number guarantees not only the smallest possible bus, but also a minimum amount of

switching activity on the bus without an additional error. The input bitwidth is 7 bits wide,

and the output will be represented with 6 bits. The precalculated output value has been chosen

so that the input value appeared to be multiplied with S ■

output = max .output ■ arctan S { x - y)
X + Y - 2 Z

(65)

^.4.3 The Modified Lookup Table

This design is based on the same idea as the LUT described in the previous section. The only

difference is that the first 22 output values are not precalculated and stored. The values of the

input for this range will be assigned directly to the output for input values from 0000000 to

OOlOl 10. This is possible because of equation (66).

arctan(;c)«x ;x<0.5 (66)

With 7 bits at the input and 6 bits at the output, the difference in the resolution is 1.5957. This

tvill be balanced with the factor Vs (1.732) at the input. Therefore, the direct assigimient fi-om

tie input to the output is valid. For example, an input value of 0011011 corresponds to a

talue of 0.1719 decimal. Multiplied with the factor Vs, the value becomes 0.2977. This

fesults in an angle of 16.58° for the arctan of 0.2977. With the definition of the output (60°

Corresponds to 42 decimal) the output value is 12 decimal. This corresponds to the binary

^ode 1100 (j_6-58 -42y implementation technique has the advantage over the first LUT
60°

The Hue Algorithm 90

that the number of stored values can be reduced by a factor of 37%. This was achieved by

introducing a comparator into the circuit. Therefore, the additional capacitance of the

comparator has to be balanced against the smaller memory device.

5.4.4 Approximating the Arctan

The approximating of the arctan is another possibility for implementing the arctan into VLSI.

The idea is to divide the input range into different parts and describe these sections separately

with simple functions. In this case it was possible to split the arctan into four parts and

describe them using linear approximations. The input values range from 0 to 1.98438 using a

quantisation of 0.015625. The output is defined so that 60° corresponds to a decimal value

42. The Approximate Version is divided into four sections as shown in Figure 5.15.

Figure 5.15 The four Sections of the Approximate Version

Part I based on the fact that for small input values the equation

arctan (x)«x (67)

is valid. In this case the result appears at the output, because of the balance between the factor

^3 and the condition that 60° corresponds to 42 decimal. Therefore, the same binary code

appears at the output with factor 1.596 depending on the different resolutions at the input and

output.

Parts II to rV are based on simple linear equations. All equations use a constant factor,

which is a multiple of 2'". This factor is multiplied by the input value and a constant is added.

Therefore, it is easy to implement this equation in hardware by using shift options and one

addition. The equations for the different sections of the algorithm are shown below and are

I The Hue Algorithm 91

I only optimised for this particular input range and the function arctan (S » x) with the

^ additional condition that the result appears in the form that was described previously.

I. 0 ; 0.39063 arctan (Vs x) = X (68)

n. 0.40625 : 0.84375 arctan (V3-x) = 2 - 'x + 0.31 (69)

III. 0.84938 : 1.25 arctan (Vs-x) = 2'^ X + 0.65 (70)

IV. 1.26563 -:1.984375 arctan (V3-x) = X + 0.9 (71)

This particular approximation was optimised for the implementation into hardware for low-

I power applications. As can be seen, the last 3 parts follow the same idea that the input signal

I is multiplied by a factor 2‘". This operation can be performed using only shift operations,

I which consume little power. Then the result is added to a constant. Therefore, only one

I comparator and one adder are needed to perform the computation. Figure 5.16 shows the

characteristic o f the approximate version in comparison with the original function arctan,

including the effects o f the finite word length.

Figure 5.16: Characteristic o f the Approximate Version and the Arctan

•̂4.5 Features of the Different Implementation of the Arctan

Table 5.7 shows the characteristics o f the different solutions, representing the most important

properties o f each implementation.

The Hue Algorithm 92

Version Number
of nodes

Timing/ns Active
Capacitance/pF

Total area/
mm^

CORDIC 1010 9 70.1 2.69

Lookup Table 140 2 3.82 0.187

Modified LUT 90 2 2.95 0.126

Approximate 69 2 1.99 0.100

Table 5.7: Characteristics of the Different Implementations

Another important point in a comparison of the four implementations is the error deviation.

Firstly the absolute error is presented. Then the errors are presented in degrees. This makes a

comparison of the different functions and their quality easier to perform.

Absolute Deviations

The Lookup Table is the version which has an optimised error deviation. Every single

precalculated output value has been chosen to have the least deviation. The accuracy is

presented in absolute values in Figure 5.17. Here it can be seen that at no point a deviation of

more than 0.8 degree occurs.

deviation
In degrees

2

1 ,5 -

1 H

0 .5 •
o o » „ o 0^ 0^ o

0 ° o =o

■0.5 •

■1 -

D ‘' o ' ° 0 ° O q ' o '

^ 0 0 ° ° o o ° ° ° ° °

input value

-1 .5 n

-2 -

Figure 5.17; Absolute Deviation of the LUT

Next the modified LUT is presented in Figure 5.18. Here the only difference to the LUT in

Figure 5.17 is that for small input values the input is directly connected to the output. This

results in a slightly higher deviation for the lower input range. However, the maximum

deviation is still within 0.8 degrees.

The Hue Algorithm 93

Input value
0 3

Figure 5.18: Absolute Deviation of the Modified LUT

Figure 5.19 shows that the maximum deviation of the CORDIC algorithm is 1.2 degrees.

Therefore, the CORDIC algorithm is not as accurate as the LUT.

In degrees

0.5

o 1c6•0.5

Figure 5.19: Absolute Deviation of the CORDIC Algorithm

I As seen in Figure 5.20 the maximum error of the Approximation Algorithm is 2 degrees. This

■ is at least 0.8 degrees higher than for every other implementation. Therefore, this algorithm

I was investigated using real image data. The results in Chapter 7 confirmed that such an error

does not give a visible error.

I In degi

0.5

input valuef,5

Figure 5.20; Absolute Deviation of the Approximation Algorithm

The results presented show that the look up tables have the smallest error deviation. This was

also expected as in this case the results of the axctan are stored m the best possible manner.

Therefore, the LUT can be seen as the benchmark for the other implementations. To enable a

better comparison, the errors are presented in the next section as percentages.

The Hue Algorithm 94

Percentage Error

The four implementations of the arctan are again presented. However, now the percentage

error compared to the theoretical value is given. Figure 5.21 shows the error deviation of the

LUT in degree. Here it can be seen that the error does not exceed +4% and -8 /o respectively.

Because the LUT uses the most accurate information these values can be seen as the standard

against which the other designs may be measured.

Figure 5.21; Error Deviation of the LUT

In comparison to the Lookup Table, the Modified LUT version has just 6 values, which

deviate from the theoretical possible values of an implementation with the given output

ranges. This is due to the direct assignment for small input values. There errors however

increase the positive error range to nearly 6%.

in percent

Input value

Figure 5.22: Error Deviation of the Modified LUT

The CORDIC algorithm achieves a good result in comparison to the LUT, which has the least

error deviation. As seen in Figure 5.23, most of the output values have at most a deviation of

i2%. Furthermore, the error may be further reduced by using more intemal bits.

The Hue Algorithm 95

Figure 5.23: Error Deviation of the CORDIC Algorithm

Figure 5.24 shows the behaviour of the approximation algorithm. The largest deviation of the
i
a output value, when compared to the theoretical values, occurs at the transition of the different

^ equations. The highest errors occur at the transition points of the equations.

Figure 5.24: Error Deviation of the Approximation Algorithm

, If the error deviation of the Approximation algorithm is compared with the error deviation of

the modified LUT, it can be seen that the maximum deviation of 8% is also never exceeded.

■ Because this looks like a large error the algorithms were investigated using images. It has

; been shovm, however, that these errors are not visible in a transformed image.

Next, the power consumption of the different implementations of the arctan function is

: compared. Figure 5.25 shows the power consumption for the four different solutions at

lOMHz.

The Hue Algorithm 96

17530
18000

16000

14000

12000

Pow er C onsum ption / ioooo

CORDIC Algorithm Lookup Table Lookup Table
modified

Approximate
Version

Figure 5.25: The Power Consumption of the Arctan Implementations

hi comparison to the Lookup Table, the Modified Lookup Table and the Approximate

Version, the CORDIC Version requires approximately 25 times more power. The Lookup

Table needs 5.5%, the Modified Lookup Table needs 4.3% and the Approximate Version only

2.8% of the power required by the design using the CORDIC algorithm. Therefore, in this

case the CORDIC Version is ruled out for implementation. The Modified Lookup Table

, requires 78.5% of the power which is necessary for the normal Lookup Table. The reason for

; this is that the first 23 of the 128 input values (from 0000000 to 0010110) will be assigned

directly to the output. Theoretically, with the Modified Lookup Table a saving of 18% is

possible. However, the Synopsys Design Compiler optimised this modified version in such a

way that there is a saving of 21.5%. The Approximate Version needs only 66.3%> of the power

i of the implementation of the Lookup Table and therefore, this version is the optimum with

i respect to power consumption.

Area is in many designs also a constraint as it determines the fabrication cost. Figure 5.26

shows the required area in mm^ for the four implemented versions of the arctan.

The Hue Algorithm 97

CO RDIC Algorithm

0.187
Lookup T able

0.126Lookup Table modified

A pproxim ate Version

0.5 2.5

Required Area / mm^

Figure 5.26: The Required Area

I The area requirements behave very similarly to the requirements of the power consumption.

I Usually, the more area required the more power is consumed. The CORDIC Version requires

I approximately 25 times more area than the other three versions. The Lookup Table needs 7%,
'i

' the Modified Lookup Table needs 4.7% and the Approximate Version needs only 3.7%, when

; compared to the power required of the CORDIC implementation. The version which uses the

f CORDIC Algorithm is a very large design compared with the other three solutions. Thus, it is

: not practical to implement it into a microchip. The Modified Lookup Table needs less area

than the normal Lookup Table does. Similarly to the power consumption, the best result with

' respect to the required area will be produced by the Approximate Version. This version needs

53.5% of the area required by the Lookup Table and 79.4% of the area required by the

; Modified Lookup Table.

The time which a design needs to compute the arctan is shown in Figure 5.27. All designs

achieve the timing constraint of 33ns. The CORDIC algorithm requires the longest

computation time of 9ns. This was exactly as anticipated because of the large calculation

process of this algorithm in comparison to the other implementations. The Approximation

algorithm, the Lookup Table and the Modified Lookup Table require approximately 80% less

time to calculate the arctan than the CORDIC Algorithm.

The Hue Algorithm 98

Timing / n s 5

CO R D IC
Algorithm

Lookup T a b le A p p r o x im a te
V e r s io n

Lool<up T a b le
m od if ied

Figure 5.27: The Timing Behaviour

Therefore, the highest operating frequency for the Lookup Table, the Approximate Version

and the Modified Lookup Table is a frequency of lOOMHz. It should also be mentioned that

the CORDIC algorithm requires nine clock cycles to compute the result in 9ns, because of the

pipeline stages which were implemented. These pipeline stages will add an additional

overhead to the design in the form of more pipeline stages in other parts o f the HSI algorithm.

This Section has described different methods of implementing the arctan function. These

functions were investigated with respect to their main features. Under the given conditions

the Approximation Version is the most attractive solution. It has the least power consumption

and requires the smallest area. With respect to the timing behaviour, there is no difference in

both Lookup Table Versions. The accuracy of all versions does not exceed 8% deviation from

the theoretical value for each possible input value and in terms of bit deviation not more than

3 bits. Therefore even the Approximate Version does not contribute a significant error to the

result.

The Approximate Version compared
to the CORDIC Algorithm

Power Consumption 25 times less power

Required Area 25 times less area

Timing Behaviour 80% less time for the calculation

Table 5.8: Comparison between the Approximation Version and the CORDIC Algorithm

The Hue Algorithm 99

The CORDIC Algorithm has, as shown in Table 5.8, the lowest performance parameters.

Therefore, it was shown that the investigation and optimisation of traditional implementations

can result in significantly improved implementations. However, for different specification,

' especially a higher requirement in accuracy, the CORDIC Version will give better results with

the drawback of a further increased area. For higher accuracy, more input bits and output bits

are required. For this, the expenditure for the Lookup Table will increase quadratic. Also the

, Approximate Version will become more complicated, due to the fact that more intervals are

needed. With the CORDIC Algorithm however, the expenditure will increase linearly. There

is only one additional computing-step for each extra bit at the input. Thus, the increase in

required area is small and at a certain point, the CORDIC Version will be better than the other

three versions.

5.5 Adding the CoefiBcient

The last module in the hue line has two main purposes. The first is the decoding of the control

signal and the second is the adding of the coefficient as defined in (1.1) to (1.5). Therefore,

the block diagram uses two input signals as shown in Figure 5.28. The 8-bit hue signal is

available at the output of the block.

add c o e f

control - a
0

arctan(x)- b

Figure 5.28: The Block Diagram of the Last Hue Stage

The task of the decoder block is to extract the information about the Kender case as well as

the sign of the argument of the arctan which is provided by the previous stage. Two different

decoders were implemented. The first is a 3-bit decoder, which uses the smallest bit size

possible. Here all three inputs have to be monitored to compute the result. The second version

is a 7 bit, active one bus. Here only one bit changes value each time the input changes. As

seen in Table 5.9, the difference in power consumption between the 3 bit and the 7-bit version

The Hue Algorithm 100

Block Max. time delay

ns

Area

mm^

Nodes

n

Power Consumption

mW

PRES 3-bit 4.05 0.0552 45 1.37

PRES 7-bit 7.81 0.0677 58 1.46

Table 5.9: Feature of the Decoder Block

At first this result might seem to be surprising as the 7-bit version requires a decoding of

more than double the amount of bits compared to the 3-bit version. However, as only one bit

changes in the 7-bit version, an iterative algorithm can be used to compute the control signal

corresponding to the input value. This is done by introducing don't care statements into the

high-level code. In terms of delay and area requirements the 3-bit version is superior to the 7-

bit decoder. The area consumption is, at 0.055mm^, 18% smaller than the 7-bit decoder and at

4.05ns, is 48% faster. The poorer timing performance of the 7-bit decoder cannot be seen as a

real disadvantage because the timing constrains of 33ns are easily met by both

implementations. Furthermore, the small difference in area does not make one or the other

version superior. At this stage a detailed analysis is not possible as the power consumption of

the control line is not yet included in the discussion.

The adder block of the last hue stage is responsible for adding the corresponding

coefficient to the argument of the arctan according to the Kender case as selected by stage

one. If one of the last two cases of Render’s algorithm (1.4) or (1.5) is true the output signal is

known and the value is applied directly to the output. Therefore, the different values of the

coefficients have to be stored. The sign information is computed separately. Therefore the

adders suggested by Render’s algorithm have to be replaced by adder-subtractor modules.

Table 5.10 shows the performance parameters of the complete CAL block. Version CAL3

uses the 7-bit decoder while CAL4 uses the 3-bit decoder block.

Block Max. time delay Area Nodes Power Consumption

ns mm^ N mW

CAL 3 17.59 0.0910 73 1.98

CAL 4 12.84 0.0786 60 1.59

Table 5.10; Results of CAL-block

The Hue Algorithm 101

When analysing the features of the CAL block it is obvious that, with respect to the area

requirements as well as power consumption, the features o f the decoder used in this block are

important. However, the adder structure has the strongest influence in this case. Therefore,

the version using the 3-bit decoder is preferable to the 7-bit state changing optimised version,

if only this stage is investigated. However, as the control line is directly connected to the

decoder, the implementation of the control line is discussed in the next Section.

5.6 Control Line

As already described in section 5.1, a control signal is needed to tell the last stage which o f

the five cases o f Render’s algorithm is true. To reduce the power consumption caused by

glitching and to meet the timing constraints of 33ns, the hue algorithm was implemented

using a highly pipelined structure. Depending on the implementation o f the hue algorithm, up

to 14 pipeline stages were used. This resulted in the need to delay the control signal by a

corresponding number of cycles. For the further investigations a delay o f 7 cycles was used.

This is because it is the best number of cycles for the implementation o f the hue branch in

respect o f the power consumption. Figure 5.29 shows the block diagram of the control line.

L 1 1 ? 1.3 L4 L5 L6 L7
Latch -> Latch -► Latch -► Latch Latch ► Latch -► Latch

SORT-
block

X

Y

Z

CAL-bus

Remaining Hue-branch
Causing delay of 7 dock

pulses

arctan-
 H
value

CAL-
block

Figure 5.29: Structure of the CAL-bus

hi addition to the number of cycles, the coding style of the signal to be transmitted is o f direct

relevance to the power consumed. Therefore, the control bus has been investigated for bus

widths o f 3, 4 and 7 bits.

5.6.1 Implementation of the Control-Bus

Firstly the 3 bit-implementation of the control bus will be explained. This bus uses the

smallest possible bus width to encode the eight possible combinations. Table 5.11 shows the

The Hue Algorithm 102

coding of the 3-bit bus. Here the coding has the advantage of a small bus width with the

disadvantage of a higher switching activity than larger buses.

Kender-case Sign of the 2"‘* summand CAL-bus

Achromatic Do not care 111

0 Do not care 110

5/3 *Tc + 001

5/3*71 - 000

n + 010

n - 100

n/3 + 101

n/3 - Oil

Table 5.11; Coding of the 3-bit CAL-bus

In Table 5.12, below the coding of the 4-bit version of the control bus is shown.

Kender-case Sign of the 2" ̂
summand

Output of Kender-Bus

Achromatic Do not care QUO

0 Do not care 0101

5/3*71 + 0000

5/3*71 - 0001

71 + 0100

n - 0010

n/3 + 0011

n/3 - 1000

Table 5.12: Coding of the 4-bit CAL-bus

In the 7-bit implementation, every Kender case is represented with a ‘ 1’ in the binary code.

This coding style has the advantage that only one bit changes from LOW to HIGH if a change

in the Kender case appears. Therefore, with each change in the signal exactly one power

consuming transaction occurs. This implementation has the disadvantage of being the largest

The Hue Algorithm 103

silicon structure as well as containing a higher amount of devices to be implemented. In Table

5.13 the coding of the 7-bit bus is shown.

Kender-case Sign of the 2"'̂ summand Output Kender-Bus

Achromatic Do not care 1000000

0 Do not care 0100000

5/3*71 ^ + 0001000

5/3*71 - 0010000

n + 0000000

n - 0000001

n/3 + 0000010

nl3 - 0000100

Table 5.13: Coding of the 7-bit CAL-bus

In the following table, the results of the different implementations of the control bus are

shown. In the table, the number of nodes, time delay, area and power consumption of the

different implementations of the CAL-bus are shown.

Implementation of CAL-bus Nodes Time delay

ns

Area

mm^

Power Consumption

mW

3 bit 25 2.02 0.0544 1.04

4 bit 33 2.02 0.0716 1.30

7 bit 57 2.02 0.1231 1.93

Table 5.14; Resuhs of the CAL-bus Structures

A plot of the results for area is presented in the following diagram.

The Hue Algorithm 104

I 0.10

£ 0.04

Bus width

Figure 5.30: Area of the CAL-bus in mm^

The area requirements for the control bus depend only on the bus width. W ith a higher bus

width the area is increased significantly. Furthermore, the diagram shows that the

implementation with registers needs over 20% less area than the other two variants.

Power Consumption

“ 1.0
a>
o 0.5

3 bit 4 bit 7 bit
Bus width

Figure 5.31: Power Consumption of the CAL-bus

The analysis o f Figure 5.31 shows that the power consumption depends on the bus width.

With a higher bus width the power consumption increases appreciably. The implementations

with 4 bits need about 20% more power than implementations with 3 bits. The

implementations with 7 bits have about 70% higher power consumption than those with 3

bits. Furthermore, the diagram shows that the implementations with registers have over 45%

less power consumption than the other two variants. These results are in contrast to the

theory, where the 7-bit version should have a smaller active capacitance than the 3-bit

version, due to the reduced switching activity. Therefore, the individual components o f the

p o w er consumption are investigated separately in the following table, hi this table the power

consumption of the whole bus is spilt into the two main components. The first component is

The Hue Algorithm 105

the power consumption o f the switching activity for the clock signal. The second component

shows the power consumption of the bus without the clock signal.

Implementation of Power consumption in mW

CAL-bus Whole design Clock signal Design without the
clock signal

3 bit 1.04 0.81 0.23

4 bit 1.30 1.02 0.28

7 bit 1.93 1.68 0.25

Table 5.15: Components of the Power Consumption of the CAL Bus

The power which is used by the switching activity of the clock signal depends on the bus

width. Table 5.15 shows that the saving in power in the implementation with registers is due

to the reduction o f the share of the power consumption of the clock signal.

The implementation of the bus with registers instead of flip-flops, both o f which are

defined in the technology library, is the best solution in relation to area and power

consumption. With respect to the number of nodes there is almost no difference. In the time

delay, there is only an insignificant difference o f 0.35ns to the disadvantage o f the variant

with registers. Therefore, the implementation of the bus with registers has significantly better

design characteristics. The disadvantage of the register variant is that it is more time costly to

implement than the variant using the if-inquiry to generate flip-flops. This is because the

designer has to connect the registers manually. The solution with the if-inquiry is more

elegant than the solution with D-flip-flops. Using the if-inquiry Synopsis converts the VHDL-

code automatically into a design consisting of connected D-flip-flops. The advantage o f the

register variant in relation to power consumption is that the latches need less power for the

switching activity of clock signals. The reason for this is that for the same number o f bits

Synopsis needs less standard cells.

5.6.2 Physical Structure of the Delay Line

I^elay lines are usually realised using shift registers. Shift registers are simple latches, which

rotate the input information each cycle by one bit. They are mainly used in order to preserve

The Hue Algorithm 106

information for a fixed number of cycles. Shift registers are easy to construct using D-type

latches. Figure 5.32 shows such a simple shift register.

Input
D Q D Q

clk clk

Clk

D Q

clk

D Q

clk

O utput

Figure 5.32 Four Stage Shift Register.

In the figure above the data lines of the D-latches are connected in series and a parallel clock

signal is applied to the clock input of each stage. This causes the next stage to change each

time if a new signal and a clock event is applied to the input. The worst case situation would

be an alternating input signal. Therefore, the active capacitance o f such registers is

m

^ s h i f t reg^
k = \

h this equation 7 is equal to the number of clock cycles during which the circuit is operating,

m is the number of bits in the shift register and n(oj) is the number o f LOW to HIGH

transitions per clock cycle. For a uniform white noise input signal this equation can be

rewritten as:

Cshift = T x m x 0.25x (73)

In this equation it is assumed that the active capacitance of each node o f each stage is equal to

the same node capacitance of the corresponding node in the other stages. This is reasonaole as

this design can be synthesised as a uniform structure. It should be also noted that the LOW to

h ig h switching probability for uniform white noise is 0.25. As can be seen in (73) the shift

register consumes power in each of the stages. However, as the signal is only needed in the

last stage after T cycles, this means that each signal consumes unnecessary power in T-l

stages. Therefore, a different approach was investigated.

Here, instead of using a serial implementation for the stages, the input data is

demultiplexed before it is stored in latches. This has the advantage that the data is preserved

in one cell rather than r o ta t e d through all registers, which causes switching each time the data

The Hue Algorithm 107

is transferred to the next cell. The trade-off of this design is the increased amount of control

logic necessary to realise the read and write control of the overall circuit, hi circuits where a

fixed pattern regulates the read and write mechanism, this control logic is realised with a

simple counter. Therefore, it will be shown that for long shift registers or large bit sizes to be

shifted the parallel approach is the one to be preferred when implementing low-power

structures. Figure 5.33 shows the general design of such a circuit.

Control

Demux Muxelk

elk

OutputInput

elk

elk

Clk

Figure 5.33: Four Stage Shift Register using Multiplexer - Demultiplexer.

The active capacitance of such a circuit can be generally written as follows:

m

C s m = Z ̂ { O ^ f r e g i k) + + «(o,l)Q «m ^ ('̂ 4)
k=\

Since only one register per clock cycle can change stage the equation can be rewritten as:

reg{k) ^ {o S f^ m u x demux ("̂)̂

The Hue Algorithm 108

In order to compare both approaches for implementing shift registers the number of power

consuming events is once again substituted by the probability for a power consuming event to

occur for a UWN input stimulus.

= 0.25(q ̂+ (76)

As seen this equation has a constant active capacitance. It is therefore independent of the

length o f the shift register. It will only have one latch switching at a time. However, there is

an additional capacitance due to the multiplexer and demultiplexer. Furthermore, the size of

these multiplexer and demultiplexer increases with the number o f stages. However, only one

stage per cycle is active, which results in a constant switching activity inside these modules.

But larger stages have a larger interconnect. Therefore, a slight increase in the active

capacitance has to be expected which is not reflected in this equation. In order to compare the

two implementations the equations (73) and (76) are set equal.

r X m X 0.25 K C ,, = r X 0.25(c„, + C .„ +) (77)

Equation (77) can now be written as;

(m - 1) X (78)

Now it is easily seen that if the physical capacitance of the multiplexer and demultiplexer is

lower than the total capacitance of the number of stages minus one, for the traditional shift

register, the proposed approach will save active capacitance and will have a reduced power

consumption.

Before comparing both general approaches different implementations o f the multiplexer

and demultiplexer are investigated with respect to power consumption, in order to decide on

the most favourable im plem entation. Firstly, different demultiplexer implementations are

investigated. The first design used a library demultiplexer supplied with the software library.

The second idea was to use a custom demultiplexer using AND gates. The third design

proposed is a gated clock implementation. Here only the clock o f the reading stage is enabled

via a simple AND gate. The results are shown in Table 5.16.

The Hue Algorithm 109

Implementation Library Demux Custom Demux Gated Clock

Active Capacitance 180pF 140pF 46,5pF

Table 5.16: Comparison Between the Different Demultiplexer Implementation

As can be easily seen in the comparison of the different demultiplexer ideas the clock enable

proved to be by far the most efficient implementation. Therefore, all further designs were

implemented using this design. Figure 5.34 shows the principle o f this method.

elk

elk

elk
Contro

Clk

Input

Figure 5.34: Implementation of the Demultiplexer

Here simple AND gates are used to drive the clock input of the latches. The main advantage

of this method is the reduced physical capacitance of the inputs of an AND gate in

comparison with a latch. The other input of the AND (control) is used to activate the AND

gate enabling the latch. With such a design it is important to have no glitching activity in

either the clock and the control signal. Otherwise the AND gates might be active at the wrong

time and a new input will be applied to a latch, which should have been disabled. In the case

of this design, this is true. If glitching is to be expected, then additional logic for removing the

short pulses must be included in the design.

In order to validate equation (76), three traditional shift registers as discussed in the

introduction to this chapter were implemented. The three designs were 4 bit, 8 bit and 16 bit

'^'ide shift registers. The shift length of these shift registers was varied from 4 to 128 stages.

The Hue Algorithm 110

When the active capacitance is plotted over the number o f shift stages (Figure 5.35) the result

is linear. This behaviour was expected, because of equation (76).

The shift register using a demultiplexer and multiplexer was implemented in the same

way and the results of the simulations were plotted together with the results of the shift

register in Figure 5.35. As can be seen for these designs, the active capacitance is slightly

higher for small designs than the traditional approach. This was expected due to the

additional capacitance provided by the multiplexer and demultiplexer. But after 8 stages the

proposed method reduces the active capacitance significantly. For even larger

implementations the advantage becomes even larger.

— Shi ft4

—■ — shifts
—i* r-S h if t1 6

—X — IVIux4

-^ IV Iu x S
— iVlux16

U f ' . ' f . I— - 1. >■. 1 . '

0 20 40 60 Dgigy 80 100 120

Figure 5.35: Active Capacitance of Different Shift Register Implementation.

The superior power consumption of the multiplexer method however comes at the cost of

increased logic as shown in Figure 5.36. In this figure it can be seen that even for small

designs like the 4-bit 4 stage shifter the area increases by 74% for the multiplexed

implementation. For a 16-bit 8 stage shift register the increase in area rises to more than

100%. Therefore, the high power savings of the multiplexed version have always to be

balanced against the higher area requirements.

O 3000

The Hue Algorithm 111

area / unf

800

700

600

500

400

300

200

100

0

-S h ift 4

- m - sh ifts

Shift 16

-M ux 4

-M ux 8

— • —- Mux 16

16 32 64 "128 number of stages

Figure 5.36: Area Requirements of the Different Shift Registers

5.7 Summary and Conclusions

This Chapter has presented a low-power implementation of Render's Algorithm for the fast

calculation o f hue. The algorithm was chosen because of the extensive design challenges

contained within it. These challenges, including trigonometric functions, multiplication by

fixed coefficients and fast divisions, were addressed individually. A number o f solutions were

proposed and evaluated. To enable such a detailed investigation, the algorithm was divided

into six functional blocks. Each block was implemented independently o f the other blocks.

The first and most critical aspect of the implementation was the exclusion o f the sign at

the earliest possible stage. This then enabled an unsigned implementation, which consumes

less power when compared to a signed implementation. Furthermore, this exclusion o f the

sign made it possible to restrict the computation of the arctan to positive input values only.

This exclusion o f the sign was possible by implementing a two stage comparison o f the input

signals. Theses two stages were implemented according to the probabilities o f the inputs.

To compute the arguments of the arctan, a stage containing adders and dividers was

implemented. It was shown that a larger tree implementation had a power advantage o f a

factor o f three over a smaller, unbalanced implementation. The next computational stage

required a division of the results of the previous stages. Four alternative divider designs were

suggested. While all designs had a similar power consumption, the timing and area

performance varied considerably. Therefore, it was possible to show that there was one

The Hue Algorithm 112

implementation which had the lowest area requirements while having a similar power

consumption and timing performance to the other designs.

For the computation of the arctan, the traditional implementation of the CORDIC

algorithm was investigated. A novel approximation technique was developed, which was

optimised for implementation into hardware. It was possible to reduce the computation of the

arctan through the use of an approximation technique. This approximation uses only one

addition to a constant factor and only one shift operation. The use of this algorithm has

resulted in a reduction in the power consumption by a factor of 25. Furthermore, the area

requirements were reduced by a similar factor. In addition, LUT’s were investigated. They

also showed a reduced power consumption of approximately 25. However, the approximation

algorithm was at least 20% better than the LUT’s with respect to all parameters.

The delay stages were also investigated with regard to different coding styles. It was

found that theoretically superior approaches such as the "one-hot" coding had a higher active

capacitance when compared to theoretically inferior codes. A detailed analysis of the designs

showed that this was due to the fact that in those designs, the clock was the dominant factor

in power consumption. However, the coding must be evaluated together with an analysis of

the control subsystem. In this subsystem, the control signal had to be delayed by seven cycles.

This is usually achieved using a shift register. However, through the use of multiplexers, it

was possible to reduce switching significantly. This lead to a reduced active capacitance. The

next Chapter will present the implementation of the saturation and intensity paths of the

design.

The Saturation and Intensity Algorithm 113

6 The Saturation and Intensity Algorithm

The previous chapter has presented a low-power implementation o f the hue component of the

RGB to HSI algorithm. This chapter will focus on a joint investigation o f the remaining two

components of the HSI algorithm. This combination o f saturation and intensity has

advantages over an implementation of the individual components.

This chapter first presents the basic design decisions and evaluates them. Four

implementations o f the combined saturation and intensity paths are presented and are

evaluated for area, speed and power consumption. Finally, possibilities for improving the

accuracy of the intensity algorithm, without compromising the power consumption, are

presented.

6.1 Implementation Considerations of the Saturation and Intensity Algorithm

The sum of the three input values Red, Green and Blue is used in both algorithms (2) and (3).

Therefore, this term must be calculated only once.

The divisor o f the argument of the arctan function can be written as follows:

Divisor = X+Y-2Z (79)

In this equation, the smallest of the three input values (R, G, B) is represented by Z. This

value has been already extracted in the very first stage of the implementation o f the hue

algorithm. Therefore, it is now possible to use the term in equation (1) and add 3Z to it. This

has the advantage that only one term must be added. It also gives a reduction in the number o f

pipeline stages. Due to the sorting algorithm used, the smallest value Z is already available at

the input of the saturation algorithm. This operation is shown in (80).

R+G+B = X+Y-2Z+3Z (80)

This operation would normally require three adders. However, operation with fixed numbers

can often be simplified. In this case the multiplication by three can be split into (Z+2Z) as

shown in (81).

R+G+B =X+Y-2Z+(Z+2Z) (81)

The Saturation and hitensity Algorithm 114

As demonstrated in (82), the constants in this equation can be expressed as powers of two.

R+G+B = X+Y-2Z+(2^Z+2^ Z) (82)

Because of (82) only one adder is required to perform the addition of 3Z. The necessary

multiplication by one and two are simple shift operations, which do not require any logic

elements. Therefore, it is possible to reduce the number of adders required for the addition of

R, G, B from 5 to 4. This has the advantage that a balanced tree adder structure can be used

instead of an unbalanced adder design.

As described in Chapter 1, the saturation is the magnitude of the pointer to the pure

spectral colour. If all three input signals have the same magnitude the resulting colour is

achromatic. Therefore, the saturation is not defined and the computation of this path is

disabled using a gated clock approach. To calculate an 8-bit output value of the saturation

equation (2) is investigated. The maximum magnitude of the saturation as defined in (2) is

one. Therefore, for an 8-bit implementation (2) has to be multiplied by 255.

25 5x3xm in(i ? ,G ,5)
Saturation = 2 5 5 ------------ (83)Y.R,g,b

Such an implementation would require an 8-bit multiplier to realise this equation. However, if

the numerator is multiplied by 256 the multiplier can be replaced by a shift operation in the

divider. This would not require additional logic and power. Because the multiplication by

three is not performed yet the maximum output of the saturation can be only close to one.

Therefore, a possible overflow is prevented. After describing general approaches to

implement the saturation and intensity part of the circuit, four different implementation

possibilities will be presented.

6.2 Direct Implementation

The first implementation of the saturation algorithm uses a direct implementation of the

saturation and intensity algorithm as illustrated in Figure 6.1.

The Saturation and Intensity Algorithm 115

(9:0) (9:0)
(7:0) (7:0)

SATU

CLOCK

(7:0)(9:0)
INTE(8:0)X Y_2Z

(8 :0)

ADD_Z

Z+Z+Z

U\TCH_1 ADD_XYZ

(X+Y-2Z)
+3Z

LATCH_2 SATU_
DLREM1

Z ZJ
(X+Y+Z)

(X+V+Z)/3

PETRY

Figure 6.1: The Direct hnplementation o f the Saturation/Intensity Algorithm

The equations required to solve the saturation and intensity are shown in (84).

„ . , 3 X min(i?,G ,5)
Saturation = 1--------„ ------------

Y.R,g ,b
(84)

^ R , G , B
Intensity = -------^-----

In this implementation, the term ER,G,B can be used in both the saturation and intensity

parts. The second advantage is the constant division by 3. Such a divider can be implemented

using an optimised structure. Various designs have been suggested in the past. In the

following sections six approaches are presented. The notation below is used to describe the

algorithms analysed:

Expression Quotient Divisor Dividend Remainder Quotient
bits

Number
o/p bits

Number
i/p bits

Notation Q D A R q m I

Table 6.1; Notations for Describing the Analysed Algorithms

Figure 6.2 shows the block diagram for the implementation of the divider by 3. This design

uses an input bitwidth of 10 bit for the dividend A and an output bitwidth of 8 bit for the

quotient Q.

The Saturation and Intensity Algorithm 116

O utput

D ivision by

Figure 6.2; Block Diagram of the Division by 3

6.2.1 A Constant-Division Algorithm by Petry and Srrnivasan

In this section a constant-division algorithm is analysed which was published in [Petry93],

[Petry94] by Petry and Srinivasan. Therefore, it is referred in the remainder in this report as

Petry. It is an iterative algorithm, which has been developed for divisions by numbers of the

form 2”+l and 2”-l. It represents these terms as 2"-h, where h is either +1 or -1. The

computation of the quotient can be generally expressed as follows:

m

e = (85)
i = l

As illustrated in Figure 6.3, it is possible to describe (85) as an array of grouped dividend bits.

The equation must be rewritten to simplify the implementation. Shifts and additions can now

be used to solve the quotient Q, where Q consists of quotient bits q, and the remainder R.

+ h'

+ h ’̂ -

+ A'"'* * •
^ m - 2 ^ m - 3 ^ r a - 4 Qo • ^

Figure 6.3: Iterative Division by 2"+l and 2"-l

According to the formulas described in [Petry93], the partial quotient Qt and the partial

remainder Ri can be expressed as follows

*
*
*

n - 2 a m - 3

^ m - \ ^ m - 2

ar.

a.

The Saturation and Intensity Algorithm 117

= q o) + •••4 ;̂
/= i ^

= * f >=0,1,2,
(86)

Here, A: is a number of «-bit digits and / is the bitwidth. For such successive iterations the

partial remainder is used as input and the algorithm stops w^hen the partial remainder R

consists o f a single bit group or digit.

Equations (86) have been analysed and optimised for carrying out the division by 3. It can

be seen from (85) that the use of h=l is preferable when performing this division in order to

avoid an alternating series. The latter has a larger power consumption than a non-altemating

one. Moreover, the dividend A is independent of m and the equation can be simplified to

the bitwidth of the dividend A. Furthermore, the input bitwidth is 10. Therefore, m has to be

set to 10. Hence, m is now independent of the bitwidth and the equation can be expressed as

follows

This constant division algorithm as presented in [Petry93] contains a higher accuracy than

required. For an accuracy of one bit only 4 terms instead o f 10 are required. The smallest term

is now equal to 2'1 For this reason the maximum deviation can be written as:

m

(87)

Now the divisor 3 is equal to the form 2" -1 . Therefore, n is equal to 2 and m depends only on

10

(88)

Maximum deviation = —— = 1 bit
2'

As described above, a deviation of 1 bit occurs while the quotient ranges from 0 to 255. Now

it is possible to reduce the number of terms required for the division by 3, from 10 to 4. The

The Saturation and hitensity Algorithm 118

niain reasons for a term reduction will be explained in the following section. The optimised
formula can be generalised as:

4

Q = A'^2-^‘ =A*(2~^ +2-'' + 2 “" + 2 '") (89)
/ = i

In the equation above it can be seen that the division by 3 is reducible to a multiplication by a

value which is a close approximation of 1/3. To explain this an example is given. In this

example the dividend ̂ 4 is equal to 168 and m is equal to 4 and then the following holds:

^ = 168,0 = 0010101000 ̂ = (2 ’ + 2 ^ + 2 ^)

Q = (2 ’ + 2 ' + 2 ') * (2 ~ ' + 2 - " + 2 ‘ " + 2 ‘ ')

Q = 2^ + 2 “ + 2^ + 2 ' + 2° + 2 ”' + 2 ' " +

Q = 1 1 0 1 1 1 , 1 1 0 0 1 2
e = 55,78125,0 « 56,0

Figure 6.4: Example for a Constant Division by 3

As illustrated in Figure 6.5, only shifts and additions are used. For this reason the algorithm is

very simple to implement.

, * (9:0)Input — ' ^ 6-bit
shifting

(15:0) (9 :0)

(11 :2) ,

(13:4) ̂

(15:6) ,

10-bit Adder
(15:0)

8-bit
trun­

cating

(15 :8)
^ Output

Figure 6.5: Implementation of the Optimised Algorithm

As shown in Figure 6.4, the quotient contains several digits after the decimal point. If

truncated the quotient will be 55 instead of 56. Therefore, it is necessary to investigate the

accuracy. Figure 6.6 shows the accuracy of the optimised constant-division by Petry and

Srinivasan in comparison to general division by 3.

The Saturation and Intensity Algorithm 119

o
c
CD

O
3o

0 5 10 15 20 25 30

Dividend A

Figure 6.6: The Accuracy of the Petry Algorithm

It can be seen that the deviation using Petry has a maximum deviation o f-1 bit in comparison

to the theoretical division by 3. Because of this small deviation of 1 bit, it is possible to use

the optimised algorithm for the implementation of the RGB to HSI algorithm.

0,0
- 0.1
- 0,2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9

Dividend A

Figure 6.7: The Error Deviation of Petry

6.2.2 The Lookup Tables

To satisfy the requirements of the division by 3, it is not necessary to use reprogrammable

integrated circuits. As previously explained for the arctan function, a LUT can be used to

store the result for all possible input values. In the following example the value of the output

for an input value divided by 3, is illustrated.

The Saturation and Intensity Algorithm 120

Input stream Output stream
LSB __________________ MSB LSB

2® 2® a2® 2® 2‘‘'i 2̂ 2̂ 2° a2® 2® 2'' ■i 2̂ 7}2°

0 0 1 0 1 0 1 0 0 0 -►
Direct

assignment -► 0 0 1 1 1 0 0 0 j

I6810 56io

Figure 6 .8 : Direct Assignment for Each hiput Value

In the following, binary values are converted into the decimal system and expressed in the

form I6 8 1 0 . As shown in Figure 6 .8 , an input value o f 0010101000 corresponds to a value o f

168 decimal. The input value will be assigned to the output value o f 00111000 (56io) which is

a division by 3. Additionally, the accuracy was investigated. It can be seen in Figure 6.9 that

positive and negative errors occur in the output value. The ordinary division graph lies

between these errors and represents the right non-truncated calculation. The deviation o f the

LUT ranges from 1/3 to -1/3 as shown in Figure 6.10. The maximum error o f the output

values will have an absolute error o f 1/3.

10

8

6

4

2

0
20 3010 15 2550

D iv id en d A

—♦— A / 3

—■— LUT (opt.)

Figure 6.9: The Accuracy o f the LUT

The Saturation and Intensity Algorithm 121

10 20 30 40 50 60
0.4 -
0.3

■ B O "'
.5 0.0 <

^ -0.1 i
-0.2 V
-0.3
-0.4 -L-

D ividend A

Figure 6.10: The Error Deviation of the LUT

6.2.3 An RNS based Division Architecture for Constant Divisors

This section presents the Residue Number System (RNS) based divider algorithm as

published in [Albe97], The architecture of the RNS either can be used for constant divisors of

the form 2"+l or 2"-l. The dividend A can be written as follows:

A -- (90)

It can be seen in (91) that the dividend is a positive Â -bit number where the number of bits

m=N/n. Furthermore, the dividend A can be written as a number of m digits where each digit

Ai consists of n bits. Therefore, it may be necessary to append zero bits to the most significant

bits of A in order to present N=nm as follows:

A = A ,_ ,A ,.,....A ,A , = A,_,2"'-"++ A,2^- + A ,V + ^ 2 ”

Taking A=DQ+R and replacing the value of ̂ in (92) the equation can be written as;

A A,2° + A^2" + 4 2 "̂+■■■■+
D ~ 2 " - l

(91)

(92)

Since 2^" = 2" * 2" and 2" = (2" -1) +1, (93) can be simplified by using 2" -1 as shown in (94);

m - \ m -]
(= 0

m - 1

D 2" - 1 ,
(93)

i = 2 1 = 3

The Saturation and hitensity Algorithm 122

The components of the remainder R and the quotient Q can be written as follows:

m-1

w-1 m ~ \

2 = S-4, + S-̂ .2''+X̂ ,2̂ "+....+̂ ,,,2
i=l i=2

1 - 4 ,
R = J ^ -----

2 " - 1

m -1
(m -2)n

(94)

(95)
(=3

If the divisor D is expressed as 2"+l and the same method is used to simplify (94) then the

following equations hold:

m -1 m -1

2 " - 1

m -1

e=E(-ir'A- {m -2)n

(96)

(97)
/=1 i = 2 1=3

A careful analysis reveals that it is useful to focus on the form 2"-l for the divisor to avoid

alternating series. Therefore, it is only necessary to solve the quotient Q as shown in section

6.2. The following example describes division by 3 using an input value of I 6 8 1 0 . Therefore,

the divisor Z)=5 can be expressed as:

3 = 2 " - l = ^ « = 2 (98)

As shown in section 6.2.1, it is desirable to implement the division using a non-altemating

structure. It is possible to use the RNS based algorithm for the decimal system computation

but this algorithm is based on the binary system computation.

16810 — ►
A4 A3 A2 A i Ao ----- ^ N - 1 0 b it

0 0 1 0 1 0 1 0 0 0

Figure 6.11: Splitting of the Dividend A

Firstly, the input value must be analysed and split into different bits as illustrated in Figure

6 .11. This analysis is necessary for pre-calculating m which can be written as;

The Saturation and Intensity Algorithm 123

m = — = 5 (99)
n

Next, (95) must be modified as follows:

2 = (100)
1=1 1=2 1=3 1=4

It can be seen in (100) that it is not necessary to compute the digit A q. Only the digits A\-A^

are involved in the computation. They are calculated as follows:

A, = l * 2 ' + 0 * 2 ° = 2

4 = l * 2 ' + 0 * 2 ° = 2

4 = l * 2 ' + 0 * 2 “ = 2

4 = 0 * 2' + 0 * 2° = 0

Figure 6.12 Computation o f the Digits A 1-A4

A defined shift and addition of the digits yi 1-^4 is computed as:

Q = (2 + 2 + 2 + 0) * 2 ° + (2 + 2 + 0) * 2 ' + (2 + 0) * 2 + (0) *2® = 5 4 10 (101)

The result o f a division by 3 with an established bit deviation of 2 can be written as:

2 = 54,0 = ^ 0 0 1 1 0 1 IO2 (102)

As seen in Figure 6.13, the division by 3 is also reducible to a combination o f shifts and

adders. The input bitwidth of 10 bit is split into digits of 2 bits.

The Saturation and Intensity Algorithm 124

(3:2) (4:0)

(4:0)

(5:4) (4:0)

(7:6) (4:0)

(4:0)

(4:0)(9:8)

(10:0) (10:0)

(10:0)(10:0)

(11:0)

(7:0)

6-bit
sNft

3-bit
shift

3-bit
shift

2-bit
shift

3-bit
shift

0-bit
shift

3-bit
shift

3-bit taincation

11-ttt Adder

5-bit Adder

5-bit Adder

Output

Figure 6.13: Implementation of the RNS based Algorithm

Figure 6.14 shows the deviation between ordinary division by 3 and the RNS-based

algorithm.

The Saturation and hitensity Algorithm 125

10
9
8
7
6
5
4
3
2
1
0

■ ■

■ ■

0 5 10 15 20 3025

Dividend D

Figure 6.14: The Accuracy of the RNS algorithm

It can be seen in Figure 6.14 and Figure 6.15 that the deviation of the RNS-based algorithm is

different on each step of the computation. For this reason it is also necessary to focus on all

computed values. The presented structure contains a maximum deviation of 4 bits. Therefore,

this algorithm is not useful when performing the division by 3 and can thus not be used to

calculate the expected result.

0 10 20 30 40 50 60
0.0

- 0.5

c
o
CD

■ >
(U
Q

- 1.5

- 2.0

- 2.5

- 3.0

D ividend A

Figure 6.15: The Error Deviation of RNS

6.2.4 A Fast Constant Division Routine by Shuo-Yen Robert Li

In this section another constant-division routine will be shown which was presented in [Li85].

By using Euler's function and Fermat's Little theorem this division algorithm can be

generalised as a multiplication with the reciprocal number of the divisor D. Equation (103)

shows that the multiplication is an approximation to \/D.

The Saturation and Intensity Algorithm 126

^ = Binary{QMp2-bn.^)^{^ + 2 "̂) (103)
(=0

It can be seen that (103) contains a multiphcation by Binary{0.0b\b2...bn-\) followed by

multiplication by factors of the form 1+2'"’. First, an odd constant divisor D has to be found

which will be used in the algorithm. Furthermore, n has to be defined as the next smaller

integer value after D. In this way, the first mathematical term can be expressed as follows:

Binary{0.0bJj2-"^n-\) ~ ^ ̂ (104)

As shown in (104), it is necessary to determine the bitwidth of the binary expression on the

right-hand side of the equation depending on D and n. The form 1+2'”’ can be expressed as an

approximation of a infinite product series as shown in (104). A small example illustrates the

use of the division routine. In the following routine the divisor D is equal to 3 and the

dividend A is equal to 168. First n must be defined. In this case n is equal to 2. According to

(104), b\ = I2 and the approximated product of the infinite series can be expressed as follows:

A *
Q = — = A* Binary(O.Ob,) * H ^

^ (105)
0 = = 168*2'" * (1 +)(l + 2'^‘ ‘̂)(l +)= 55.9991

Using (105) it is not necessary to solve all products of the infinite series. As described in

section 6.2.1 the implementation of the algorithm by Petry and Srinivasan also uses an

approximation for the divisor B. The only difference is the expression for 1/D. In the case of

the constant division routine by Li a multiphcation by Binary{Q.0b\b2...bn-\) followed by

multiplication by factors of the form 1+2'" ̂is used to express this term. On the other hand the

constant division algorithm by Petry and Srinivasan is expressed as a weighted sum of the

value 1/3.

Figure 6.16 shows the accuracy of the fast constant-division by Shuo-Yen Robert Li in

comparison to general division by 3.

The Saturation and hitensity Algorithm 127

9 --------------

a
•4—»co
o
o

0 5 10 15 20 25 30

Dividend D

Figure 6.16: The Accuracy of the Li Algorithm

From a comparison of Figure 6.6 and Figure 6.16 it can be seen that the constant-division has

the same accuracy and deviation as the algorithm of Petry and Srinivasan as described in

section 6.2.1.

0 10 20 30 40 50 60
0.0 < ►

- 0.1 4
- 0.2 4
- 0.3 - <

- 0.4 - -

- 0.5
- 0.6
- 0.7 - -

- 0.8
- 0.9 -

- 1.0

Cg

>
0)
Q

Dividend A

Figure 6.17: The Error Deviation of the Li Algorithm

6.2.5 The Standard Binaiy Divider

In the following section another way to perform the binary division will be described. Binary

division is basically a procedure to determine how many times the divisor D divides the

dividend A resulting in the quotient Q. At each step in the process, the divisor D either

divides into a group of bits or it does not. Therefore, the quotient either is a 1 or a 0.

Moreover, the divisor divides a group of bits when the divisor has a value less than or equal

to the value of those bits. The example in Figure 6.18 shows the procedure for binary

The Saturation and Intensity Algorithm 128

division. Since the divisor D is equal to 3io=ll2 and the dividend A is equal to

168io= 101010002, the following holds:

I 6 8 1 0

1 0 1

- 1 1

1 0 0

- 1 1 1

0 1 1

1 1

56io

H
Figure 6,18: Example of a Standard Division by 3

The standard binary divider (SBD) has been analysed and optimised with respect to constant

division by 3. Figure 6.19 shows the implementation o f the SBD.

The Saturation and Intensity Algorithm 129

no
R E G > = A ?

y e s

no
nn = 10

y e s

End

S t a r t

Q(7-m)='0’

Plot
Q(7 d ow n to 0)

REG = R E G - ‘0 ’&A
Q (7 - m) = ‘1’

A, D, m. R E G , Q

Figure 6.19: The Implementation o f the SBD

It can be seen that there is the additional signal REG for solving the quotient Q. First there

will be a query. If REG is smaller or equal to the dividend a subtraction will be carried out

and the bit of the quotient will be assigned the value ‘1’. Otherwise the quotient bit will be

assigned a value of ‘O’. The cycle runs as long as the bitwidth m is smaller than 10. After the

process the quotient will be available at the output. It should be noted that the serial structure

The Saturation and hitensity Algorithm 130

suggested in Figure 6.19 is implemented as a parallel structure in high-speed applications,

such as the design described here.

There are two possibilities for implementing the SBD. The ordinary binary division can

be implemented into hardware. Using the Synopsys Design Environment a ‘division by three’

optimised binary divider can be generated. Therefore, two different results will be shown for

the division procedure. Finally, the accuracy of the SBD and SBD (optimised) is illustrated in

the Figure 6.20.

10

8

6

4

2

0
302010

D iv id e n d D

■ ♦ — Binary Division
- » - - A / 3

Figure 6.20: The Accuracy of the SBD and SBD (optimised)

As shown in Figure 6.20 the SBD and the SBD (optimised) have exact the same accuracy as

truncated division by 3. The computed negative deviations are 0, -1/3 and -2/3 and are shown

in Figure 6.21.

10 20 30 40 50 60

- 0.1

-4—'
CO

■ >
Q)
Q -0.5

- 0.6

-0.7

D iv id e n d A

Figure 6.21: The Error Deviation of the SBD and SBD (optimised)

The Saturation and Intensity Algorithm 131

6.2.6 F eatures of the Divider Algorithms

Table 6.2 shows the characteristics of the different solutions, which were obtained by the

Synopsys Design Environment and represent the most important features of each solution.

Version Active

Capacitance / pF

Number of

nets

Power

Consumption /

mW

Max.

Delay / ns

Total area/

(im̂

Petry 1.95 63 1.63 21.43 93.10

LUT 7.91 548 6.59 13.03 727.99

RNS 1.94 50 1.62 16.36 68.25

Li 1.95 63 1.63 21.43 93.10

SBD 36.64 235 30.53 64.50 307.08

SBD (opt.) 2.68 48 2.23 22.79 56.88

Table 6.2: Characteristics of the Constant Divider Structures

For a clearer perspective, the results of the table above are presented graphically. Figure 6.22

shows the power consumption for the different algorithms.

30.53

30

25 -

Power
Consumption /

mW

20 -

6.591 0 -

2.231.63 1.62 1.63

SBD
(opt.)

LUT SBDRNSPetry

Figure 6.22: Power Consumption of the Constant Divider Structures

The Saturation and Intensity Algorithm 132

hi comparison to the algorithm by Petry and Srinivasan, the RNS based algorithm and the fast

constant division routine by Shuo-Yen Robert Li, the SBD requires approximately 95% more

power. The SBD needs the most power at 30.53mW. Moreover, the SBD (optimised) needs

only 7% of the power of the SBD. The LUT requires 6.59mW, which is 21% of the power of

the SBD. Therefore, the SBD and the LUT are not useful for implementation because of the
larger power consumption.

The timing behaviour of the different algorithms is shown in Figure 6.23. To perform the

division by three it is necessary to compute the quotient Q in 30ns. As illustrated in

Figure 6.23 the SBD cannot be used to perform this division, because of a time of 64.5ns. The

reason for this is that 10 comparator stages are included in this design. All other

implementations can be used to compute the result in time. Using a simple structure and no

computation process the Lookup Table has the fastest timing behaviour with 13.03ns. The

algorithm by Petry and Srinivasan and the fast constant division routine by Li need the same

time because of the same implementation structure with adders. The RNS based algorithm

requires approximately 25% and the SBD (optimised) needs 35% of the time of the slowest

structure, the SBD.

64.5701

60

4 0 -

Timing / ns
22.7921.4321.43

16.3613.03

SBD
(opt.)

LUT RNS SBDPetry

Figure 6.23: Timing Behaviour of the Constant Divider Algorithm

Figure 6.24 shows the required area in |^m ̂of the implemented solutions. It can be seen that

the Lookup Table requires the most area because all possible output values have to be stored.

For this reason this solution does not represent a useful to implementation. As illustrated in

The Saturation and Intensity Algorithm 133

Figure 6.24, the SBD needs 42.2% of the area o f the LUT which requires an area o f

approximately 728|j,m^. The algorithm by Petry and Srinivasan and the fast constant division

routine by Shuo-Yen Robert Li need the same area because they use the same

implementation. Both structures require an area o f 12.8% of the area o f the Lookup Table.

Using the RNS-based algorithm it is possible to perform the division by three with an area of

9.4% o f the LUT. The best solution in respect to area is the SBD (optimised) which only

needs 7.8% of the area of the LUT.

727.998001

700

600 -

Required Area /
307.08400 -

300 -

56.8868.25 93.1093.10200

100 -

SBD SBD
(opt.)

RNSLUTPetry

Figure 6.24: The Area Requirements

This Section has presented a detailed analysis o f the implementation of the divider by three,

as required in the intensity part of the algorithm. The analysis consists of six designs. It has

been shown that algorithms which are optimised for division by constants gave the best

results. In terms of power consumption, the results were quite similar. If area and speed are

also taken into consideration, the RNS based implementation appears preferable. However, as

has been shown, this algorithm is less accurate than the other implementations presented.

Therefore, it was decided to use the algorithm proposed by Petry in the intensity part o f the

algorithm.
The LUT is, as expected, the fastest and largest implementation. However, as the

implementation o f Petry meets the timing requirements with smaller area and power

consumption the LUT was not taken into consideration. This section also showed the

advantages o f using optimised designs, as opposed to standard modules. Standard modules

The Saturation and Intensity Algorithm 134

are frequently used in industry to shorten the design cycle. However, as was shown in this

section, the use of optimised designs resulted in an improvement in area, speed and power of
at least three.

63 Second Implementation of the Saturation/Intensify Algorithm

The second implementation of the saturation/intensity algorithm is based on use of the

intensity output in the saturation algorithm (107).

Y r , g ,b
Intensity = -

Saturation = 1 -

3
(106)

min(i?,G,5)
Intensity

The obvious advantage is the simplification of the multiplication. In this case, multiplication

by three in the saturation was not necessary. This multiplication can be performed by the use

of only one adder. On the other hand this implementation also has its disadvantages. Such an

implementation would increase the maximum path length by one stage. This results in three

additional pipeline stages each containing an 8-bit latch. This new structure is shown in

Figure 6.25 whereby the additional blocks are emphasised. Therefore, the reduced power

consumption in the saturation part of the RGB to HSI algorithm has to be balanced with the

overall increase in the other paths.

The Saturation and Intensity Algorithm 135

(7:0)(9:0)
(7:0)(7:0) (9:0)

SATU

CLOCK

(7:0)(9:0)
INTE(8 :0)

X_Y_2Z

(8 :0)

ADD_Z

Z+Z+Z

LATCH_2

LATCH_1 ADD_XYZ

(X+Y-2Z)
+3Z

LATCH_3 SATU_
DLREM1

Z/INTE

(X+Y+Z)/3

RETRY

Figure 6.25: Modified RGB to HSI Algorithm

6.4 Third Implementation of the Saturation/Intensity Algorithm

As shown in Section 6.3, the amount of logic required is not necessarily reflected by the

equation. Therefore a third approach was implemented and its features were investigated.

Intensity = ------ -̂-----

Y r , g , b
^ (107)

3 x m m(R ,G ,B)
Saturation = 1 - ■

J^R,g ,b

In this approach, the term three divided by the sum of the input values is calculated as

required in the saturation algorithm. This term is then inverted to form the intensity. As seen

in Figure 6.26, such an implementation will add no additional stages to the overall design

even if the equation is more complex than (107).

The Saturation and hitensity Algorithm 136

{ao) (7:0)
(7:0) (7:0)(9:0)

aOCK

(17:0) (7:0)(9:0)
(8:0)

X_Y_2Z

(8:0)

ADO_XYZ

(X+Y-2Z)
+3Z

LATCH_3ACO_Z

Z+Z+2

LATCH_2

LATCHJ

3/(X+Y+Z)

REM7

3Z/
P(+Y+Z)

SATU
s u b s '

2Z J
(X+Y+Z)

SM_
MUL1

FEMB

INVER­
SION

Figure 6.26: Third Implementation of the Saturation/Intensity Algorithm

However, this implementation poses a problem if all three input signals are zero, hi this case

the term divided by the sum of Red, Green and Blue performs a division by zero. Therefore, a

detection of this case is required to overcome this problem.

6.5 Fourth Implementation

Another way to implement the saturation and intensity algorithm is illustrated in Figure 6.27.

(9:0)
(7:0)(9:0) (7:0)

(17:0)

aocK

(9:0) (7:0)(9:0)
(8:0)

X_Y 2Z

(8:0)

LATCHJADD_Z

Z+Z+Z

LATCH_3 SAIV
SUBS

LATCHJ ADD_XYZ

(X+Y-2Z)
+3Z

3Z/
(X+Y+Z)

REM7

INVER­
SION

TRUN­
CATION

Figure 6.27: Fourth hnplementation of the Saturation/Litensity Algorithm

This implementation of the saturation and intensity algorithm uses the following formulae:

The Saturation and Intensity Algorithm 137

Y r , g ,b

(108)

Saturation = 1 - min(i?, G, B) x -----
Intensity

In this approach the intensity will be solved firstly using an optimised divider structure. Then

the intensity will be reused in the saturation part. That implies an inversion and a

multiplication by the minimum value of R, G or B. The only difference in comparison to the

second implementation, is the multiplication instead of a division.

6.6 Improving the Accuracy of the Intensify Algorithm

The Intensity Algorithm as presented does not contain any rounding function. This causes a

maximum error of -0.5 when compared to the theoretical value, which can be described as

shown in the following equation.

max. error Intensity = I n t e n s i t y - 0.5 (109)

In order to improve the intensity algorithm, the implementation of a rounding function is

investigated.

Intensity - Rnd R + G + B
(110)

One way to implement this function is to add 0.5 to the function and truncate the result as

shown in the next equation.

Intensity = Abs
R + G + B --------------+ 0.5 (111)

This equation can only be used if the accuracy of the division includes several digits after the

decimal point. This implies that the division algorithm has to be expanded by several stages

in order to provide the additional digits. Those additional stages consume additional power

proportional to the amount of the extra stages.

The Saturation and hitensity Algorithm 138

Instead of adding the 0.5 to the result of the division, the rounding factor can also be

transferred to the addition of the divisor. This has several advantages. Firstly, the result of the

division is already rounded and the natural truncation of the result therefore already includes

the rounding without any additional stages. Secondly, the summing of the three input signals

is originally unsymmetrical. This means that no balanced adder structure can be applied in

order avoid glitching. By adding a fourth figure, a balanced adder can be used and glitching

can be avoided. Unfortunately this method also has its disadvantages. Mainly, the addition of

1.5 expands the divisor by one additional bit. This bit increases the size of the divider and

therefore the power consumption.

6.6.1 Modifying the Divider Structure

Therefore, a different approach is presented. All divider structures must be initialised. This is

done by loading all stages, not used for storing the divisor, with 0. These O's represent the

digits after the decimal point, histead of loading these digits with 0 these registers are now

loaded with ones. Now the equation can be written as follows, hi this equation i represents the

number of registers loaded with 1.

By writing the rounding term independent of the division the effect of this operation becomes

clear. This is done in (115).

Intensity = Abs R + G + B + 1.5
3

(112)

Intensity = Abs (113)

Intensity - Abs (114)

Since the divisor term (R+G+B) is already present on a bus an additional adder could not be

used in order to avoid glitching through balancing of paths. The maximum value of the

rounding term is now 1/3. Therefore the equation can be written as.

The Saturation and hitensity Algorithm 139

Intensity « Abs R G + B „ „ --------------+ 0.3 (115)

Using this equation the maximum error of the intensity algorithm compared to (110) is now:

Max. err. Intensity = I n t e n s i t y - 0.2 (116)

Even if there is still a maximum error of -0.2, when this value is compared with the original

error o f -0.5 a considerable improvement has been made. Again it should be stressed that this

improvement has been achieved without any additional logic or switching. In other words the

method improves the result without causing additional power consumption.

6.6.2 Replacing the LSB by ONE

Instead of modifying the divider it is also possible to drop the LSB of the sum of Red, Green

and Blue and replace it by a constant ONE at the input of the divider. This can

mathematically be expressed as:

I f (R+G+B) even (117)

R + G B + \
Intensity =-----------------

else

R + G + B
Intensity = -------------

As seen, this computation satisfies the accuracy requirements of the intensity algorithm only

for even numbers. Odd numbers are still the absolute value of the result. Nevertheless, this

improves the accuracy of the output by 33% without any additional logic. Furthermore, it is

possible to reduce the number of bits to be transmitted and stored in pipelining stages by one

bit down to 7 bits. Due to the quadratic impact on power consumption in pipelining stages

this results in a reduction in power consumption of 20% in the pipelining stages alone.

Further reduction in power consumption is possible through the declaration of the LSB to be

ONE. This enables the designer to optimise the divider structure and results in a less logic.

The Saturation and Intensity Algorithm 140

6.7 Results of the Saturation-Intensity Path

Table 6.3 shows the characteristics of the different solutions which were obtained by the

Synopsys Design Environment and represents the most important features of each

implementation.

Version Active

Capacitance / pF

Number of

nets

Power

Consumption / mW

Max.

Delay / ns

Total area /

(im̂

Direct 73.18 516 60.98 119.01 1021.74

Second 76.24 452 63.53 126.63 889.47

Third 323.27 1613 269.36 342.79 3960.34

Fourth 118.44 1064 98.69 209.22 2426.29

Table 6.3: Characteristics of the Saturation-hitensity Implementations

6.7.1 The Power Consumption

Figure 6.28 shows the power consumption for the different versions implemented.

269.36

200
Power

Consumption / 150-
mW

100'

98.69

60.98 63.53

FOURTHSTRAIGHT SECOND THIRD

Figure 6.28: The Power Consumption of the SI Algorithms

As illustrated in Figure 6.28, the third implementation requires 269.36mW, which is the most

power intensive. The reason for this high power consumption are the large divider stages

The Saturation and Intensity Algorithm 141

required. The direct and the second implementations need approximately 23% of the power of

the third implementation. The fourth implementation uses one additional divider when

compared to the first two designs. Therefore, this implementation requires 36% of the power

of the third implementation.

6.7.2 Timing Behaviour

In these particular saturation and intensity modules the same factors contributing to the power

consumption also influence the timing and in fact also the area o f the circuit. Therefore, these

factors are not mentioned again in this section. As illustrated in Figure 6.29, the third

implementation needs 342.79ns, which is the most time to solve the saturation and intensity.

The direct implementation only requires 34.7% and the second solution needs approximately

37% of the time of the third implementation. The fourth implementation requires 209.22ns,

which is 61% of the third implementation.

342.79

3501

300 -

209.22
250

200 -

126.63Timing / ns 119.01
150 -

100 -

50 -

FOURTHTHIRDSECONDSTRAIGHT

Figure 6.29: The Timing Behaviour

The Saturation and Intensity Algorithm

6.7.3 Required Area

142

3960.34

4000

3500
2426.29

2500 -

Required Area
2000 -

1021.74 889.471500 -

1000 -

500 -

STRAIGHT SECOND THIRD FOURTH

Figure 6.30: The Required Area of the SI Algorithm

Figure 6.30 shows the required area in |o,m̂ of the solutions implemented. It can be seen that

the third implementation requires the most area. For this reason this solution is not useful for

implementation into hardware. As illustrated in Figure 6.30, the second implementation needs

22.5% of the area of the third implementation, which requires an area of approximately

3960|j.m^. Using the direct implementation only an area of 25.8% of the area of the third

implementation is necessary. The fourth implementation requires an area of approximately

2426|̂ m .̂

6.8 Summary and Conclusions

This Chapter has presented four alternative implementations of the saturation and intensity

path of the RGB to HSI converter. Here, it has been shown that the direct implementation

yields the best results with respect to power consumption and timing behaviour. Using non­

optimised constant divider structures, the third implementation requires the most power, time

and area. For this reason this approach is not useful for implementation. The direct

implementation needs approximately 23% of the power and 35% of the time of the third

implementation. The direct implementation requires an area of 26% of the third

implementation. The rewriting of the equations of the saturation and intensity algorithm did

The Saturation and Intensity Algorithm 143

not yield a reduction of the power consumption, speed and area o f the second, third and fourth
implementations.

Using either the constant divider algorithm by Petry and Srinivasan, the RNS based

algorithm or the fast constant division routine by Li, it is possible to reduce the power

consumption by a factor of approximately 19. With respect to the error deviation, the RNS

based algorithm is not suitable for implementation due to its maximum deviation of 4 bits.

All alternative algorithms investigated, with the exception of the SBD, can be used to

compute the result in time. The LUT has the fastest structure, but it requires the most area. In

addition, the constant divider algorithm by Petry and Srinivasan and the fast constant division

routine by Li are the best overall solutions. When power consumption is not the primary

issue, the other structures are suitable for implementation.

To enable a detailed power analysis of the RGB to HSI algorithm, it was necessary to

decompose the algorithm into two functional blocks, each of which was investigated

thoroughly. To optimise these functional blocks, they were further subdivided into basic

computational elements. These elements were in turn investigated for power consumption, in

addition to area, speed and where appropriate, accuracy. This work resulted in a subset of

low-power components, which were used as the building blocks for the RGB to HSI

converter. The next Chapter presents a comprehensive overview of the electronic and image

features of the system, including results obtained by processing real image data.

Performance of the RGB to HSI Converter 144

7 Performance of the RGB to HSI Converter

The previous chapters have developed the implementation of the individual blocks of a low-

power RGB to HSI converter. This chapter will now present the overall performance of the

design. This presentation consists of two sections. The first section describes the hardware

specification of the low-power converter, including a detailed power breakdown of each

image component, hi addition, the design is compared to a direct implementation with no

low-power features.

The second section investigates the image performance of the design using real image

data. This investigation consists of two stages. Firstly, a graphical analysis o f images

produced by the RGB to HSI converter is performed. This analysis comprises the visual

investigation of both the converted image and the individual HSI components. Secondly, a

statistical analysis of the distribution of individual bit errors is undertaken. Finally, these

results are then used to suggest design modifications to satisfy alternate specifications.

7.1 Circuit Performance

This section will present the features of the implementation of the image processing

algorithm. Table 7.1 summarises the features of the algorithm as presented throughout the

previous chapters.

Features of the RGB to t ISI Converter

Technology ES2 07)u,m (industrial)
Supply Voltage 5V (±0.5V)
Input Signals Red, Green, Blue

8-bit unsigned
Clock

Output Signals Hue, Saturation, Intensity
8-bit unsigned

Throughput 33Mpixels / cycle
Operating Frequency 33MHz

Area 4.19mm^
Number of Pipeline Stages 5
Output Signal Deviation Between -2 and +1 bit

(-0.78% to 0.39%)
Active Capacitance 187.9pF

Performance of the RGB to HSI Converter 145

Maximum Settling Time 18ns
Maximum Throughput 50Mpixels / cycle
Maximum Operating Frequency 50MHz
Average Dynamic Power Consumption 140mW ((%30MHz)

Table 7.1: Features of the RGB to HSI Converter

As can be seen from the table, the throughput can be improved by a factor o f up to 1.6 better

than the minimum specification for this project of 1200 by 1200 pixels at 25 frames per

second, as set out in Section 1, Chapter 1. Thus, with this design it is possible to convert

images with a resolution of up to 1600 by 1200 pixels at 25 frames per second. However, a

drawback is that the power consumption at this higher throughput will be 39% greater, i.e.

226mW, in comparison to that for the 1200 by 1200 pixel resolution. Therefore, for the

lowest possible power dissipation the design should be always be run at the minimum

allowable operating speed.

It is worth noticing that if the sum of all the active capacitances of the individual blocks

hsted through the thesis is calculated the result will be 121.5pF. From Table 7.1 it can be seen

that the active capacitance of the overall circuit is 187pF. This is a difference of +35%> and

can be explained by the additional physical capacitance of the block interconnect. This

however does not change any of the statements of the individual blocks made in the previous

chapters, it merely increases the overall capacitance of the final circuit. Figure 7.1 shows the

detailed breakdown of the individual components of the active capacitance. In this figure it

can be seen that, with the optimised constant divider, the intensity has the lowest power

consumption. If the intensity and hue subsystems are investigated further, it can be seen that

the large divider structures present in both paths have the highest proportion of active

capacitance, followed directly by the comparator in the hue path. To minimise the power

consumption of these blocks, particular interest should be paid to the layout of these stages.

Performance of the RGB to HSI Converter 146

Hue
26%

□ Hue
■ Intensity

■ Saturation

□ Interconnect

Interconnect
35%

Intensity
4%

Saturation
35%

Figure 7.1: Breakdown of the Active Capacitance of the RGB to HSI Converter

7.1.1 Comparison with a Direct Implementation

The RGB to HSI algorithm was implemented in two different ways. In addition to the low-

power implementation which was described in previous chapters, a second implementation

was also designed. This second design was described using native VHDL operations to

implement the various functions. Furthermore, the circuit was synthesised using design

constraints to meet only the timing requirements. Therefore, this circuit was not designed to

meet any low-power constraints. The second implementation is referred to as the direct

implementation of the RGB to HSI algorithm. The results of this direct implementation are

shown in Table 7.2.

Features of the RGB to HSI Converter

(Direct Implementation)
' ■ : ' . ■ •■ ■ ■: ' . ' ■

Area 3.7mm
Number of Pipeline Stages 4
Output Signal Deviation Between -1 and +1 bit

(0.39%)
Active Capacitance 298.9pF
Maximum Settling Time 36ns
Maximum Throughput 27.7Mpixels / cycle
Maximum Operating Frequency 27.7MHz
Average Dynamic Power Consumption 202mW (@30MHz)

Table 7.2: Features of a Direct Implementation of the RGB to HSI Converter

As can be seen from a comparison of Table 7.1 and Table 7.2, the power consumption of

the direct implementation is 37% higher than that of the optimised implementation.

Additionally, the maximum throughput, and therefore the maximum computational image

resolution, was increased in the low-power version by a factor of 1.8. This increased

Perfomiance of the RGB to HSI Converter 147

perfomiance is due to the balancing of the paths. In the low-power implementation, paths

which did not meet the timing requirements were shortened and hence the overall delay was

decreased. In a voltage scalable circuit, this could be used for even further power reductions.

In this case it would be possible to reduce the voltage down to approximately 3.5V in a full

custom design which would result in a reduction in power by half.

The number of pipeline stages of the power optimised design was increased by one to

four. This had the effect of balancing the paths and reducing the glitching in the divider

structures. This caused a rise in latency by one clock cycle. However, if the latency of the

power optimised design of 90ns is compared to that of the direct implementation, it can be

seen that the additional pipeline stage did in fact reduce the latency by 54ns.

The only feature of the low-power implementation which has not improved is the area.

However, this was a result which was anticipated. As has been shown in the introduction of

this thesis, the factor most often traded-off for a reduced power consumption is the area. The

increase of 13% is very reasonable if it is compared to the reduced power consumption of

37% and increased performance of nearly 93%.

While this direct implementation of the circuit does not perform as well as the optimised

design, it has the advantage of a much faster design development cycle. Therefore, if fast time

to market is of the uppermost importance to the designer, not all power saving features should

be implemented. Thus, the use of gated clocks and the replacement of trigonometric functions

by the approximation algorithm is one method of effectively reducing the power consumption

in a time efficient manner.

7.1.2 Comparison with a DSP

The RGB to HSI transformation can also be implemented on a DSP chip such as the TI

TMS320C6211. This chip has a maximum performance of around IGOPS [TI98] and a

power consumption of I.IW [Cast99], To implement Render’s algorithm, a minimum of 19

operations are required. Also, if an RGB signal with a resolution of 1024 by 1024 pixels is to

be transformed at a frame rate of 25, this results in 78,643,200bytes/second. Therefore,

implementation of the transformation of this RGB signal using Render’s algorithm would

result in 489MOPS which is half of the available processing power of the TMS320C6211. On

the TMS320 however, the operation would consume I.IW which is 7.9 times that of the

proposed image conversion circuit. Furthermore, the maximum resolution of the RGB to HSI

Performance of the RGB to HSI Converter 148

converter is SOMwords/second which corresponds to a resolution of 1920 by 1080 pixel at 25

frames per second and a power consumption of 226mW. The same resolution would require

2.84GOPS on a TSM320C6211. Therefore, to perform such an operation three boards are

required, giving a total power consumption of 3.3W which is nearly 15 times that of the RGB

to HSI circuit presented in this thesis.

7.2 Image Quality Performance

Having discussed the circuit features of the RGB to HSI converter circuit, the implemented

algorithm will now be investigated with respect to its image converting properties. For this

purpose, a C program was written which simulates the behaviour of the hardware. The

accuracy of the hardware implementation is compared to a numerical implementation of the

algorithm which calculates HSI using double precision. This program was required because

of the large amounts of image data to be compared. Such a simulation would require days in a

VHDL simulator for a single picture.

On the next pages two pictures are used to illustrate the functionality of the algorithm.

These pictures have a size of 600 by 600 pixels and a resolution of 24 bits. Both the original

images have been taken from [Uses]. To compare the images the original picture and the

converted image are shown in Figure 7.2 and Figure 7.3. Due to the fact that there is no

visible difference between these images two further pictures are included into the analysis.

Firstly, a subtraction picture is shown. This is the subtraction of the new picture from the

original. In order to show positive as well as negative deviations, the default background of

these pictures is set to 50% grey. Here the first patterns appear. These however only show that

there is a deviation between the original and the transformed image. To provide a better

method of analysis, a colour map of the individual components of hue, saturation and

intensity was also included for the different pictures. Here the variation of individual bits

from the expected value is shown using different colours. The values of this colour map are

shown in Table 7.3.

Errors <-5 -5 -3 -2 -1 0 1 2 3 5 ^ >5

Colour

■ H M M ■ ■ ■ ■ ■ ■ ™ — —

Purple
dark
blue

Light
blue

dark
green

Light
green white Yellow

Light
orange

dark
orange Brown red

Table 7.3: Colour Map Index for the Analysis of the HSI Algorithm

Perfomance of the RGB to HSI Converter 149

The colour map index is used for an analysis of the images for hue, saturation and intensity

separately to make the errors more visible. It can now be seen that the deviations are in fact

very small. Furthermore, it appears that most of the pixels in all the colour maps have a

deviation from the theoretical value. The colour map for the intensity part shows the largest

inaccuracies. Here it appears that nearly all pixels are inaccurate.

Performance of the RGB to HSI Converter 150

Figure 7.2: The Original Baboon Image

Figure 7.3: The Transformed Baboon Image

Perfonnance of the RGB to HSI Converter 151

Analysis of the Images Pepper and Baboon

original picture peppers picture after processing subtraction picture

colour map for H colour map for S colour map for I

picture after processing subtraction pictureOriginal picture baboon

f:

iW .'V ':

colour map for H colour map for S colour map for I

Figure 7.4: Comparison o f Different Pictures

Performance of the RGB to HSI Converter 152

As seen in Figure 7.4, the algorithm is operating correctly as there is no visible difference

between the original and the transformed picture. However, because of the limited colour

spectrum of today's printers and monitors, this is not a conclusive result. Therefore, again the

pictures are analysed for errors in the hue, intensity and saturation using a colour map. These

colour maps suggest that the errors are limited between -2 bits and 2 bit. This was also

expected from the theoretical implementation as presented in this thesis. These pictures

however contain 360000 pixels, so that individual errors may not be visible. For this reason, a

statistical analysis of these pictures was undertaken. Here the errors o f hue, saturation and

intensity are presented according their appearance. The results are shown in Table 7.4.

deviation n bit <-2 -2 -1 0 1 2 >2
pepper Hue 0 5 31 32 25 8 0 %

Sat 0 0 0 50 50 0 0 %
Int 0 5 88 7 0 0 0 %

100

Coo
0)a
c

0>
X‘o.

<-2 -2 -1 0 1 2 >2

H a lg o 2

d e v ia t io n in bit

deviation in bit <-2 -2 -1 0 1 2 >2

baboon Hue 0 3 35 26 31 4 0 %

Sat 0 0 0 50 50 0 0 %

Int 0 6 87 7 0 0 0 %

100

a>Q.
C

0>
X
'5.

<-2 -2 -1 0 1 2 >2

H a lg o 2

d e v ia t io n in bit

Table 7.4: Graphical Analysis of the Errors of the Algorithm

As shown in Table 7.4, the errors are limited to -2 bits and 2 bit. This is in agreement with the

results obtained from the colour maps and is also supported by the theory. Further

Performance of the RGB to HSI Converter 153

investigations using a wide range of pictures has been carried out. The result of a simulation

of 242 images, taken from [tcdOO], containing more than 84.6M pixels is shown in Figure 7.5.

70000000 1

60000000

50000000

— Hue

■ — Saturation

Intensity

40000000

30000000

20000000

10000000

deviation in bit

Figure 7.5: Analysis of the Errors of the Algorithm

From Figure 7.5 it can be seen that the errors are similarly distributed to the errors contained

in the two pictures presented in this section. Furthermore, this investigation has shown that

the error margins of -2 bits and +2 bit are never crossed. This results in terms of the dynamic

range of the pictures in a maximum percentage error of -0.78% to +0.78%. Another

interesting result of this investigation is that all pictures investigated have a deviation of

minus one for approximately 80% of the pixels in the intensity. It would therefore be possible

to add one to the result in order to lower this deviation to 20% of the pixels. This however

would add an 8-bit adder to the design without improving the visual perception of the images.

Therefore, the design was implemented as presented in Section 6.6. To improve the results of

hue and saturation more sophisticated approaches would be required. In the case of the hue

algorithm the accuracy of the arctan function would need to be increased to one bit after the

decimal point. This would result in greater logic in the arctan stage as well as the following

stages, and would furthermore require an additional rounding stage. To improve the

saturation, the division of this path would need to be more accurate and therefore larger and

more power consuming. However, the accuracy achieved is more than sufficient for human

inspection and has no noticeable loss in image quality. Therefore, the algorithm presented is

implemented as described because of the advantages in power consumption and

computational throughput.

Conclusions 154

8 Conclusions

This chapter summarises the results of this work. It is broken down into three sections. The

first section describes the specific conclusions that can be directly taken fi'om the work, while

the second section takes these findings and describes their broader relevance within the field

of low-power VLSI design. The last section then proposes ideas on how to develop this

research and extend it for future projects.

8.1 Specific Conclusions

The aim of this thesis was to investigate system level approaches for the low-power

implementation of computationally intensive algorithms. The traditional method for low

power IC design is directed towards reducing the supply voltage. However, this approach was

not applicable to the project goal as the design had to be mapped into an ASIC library and for

ASICs voltage scaling is only possible within a very limited range. The next significant

quantity influencing the power consumption is the active capacitance of the design.

Therefore, it was intended here to focus on applying techniques to reduce this quantity. For

this purpose, a particular implementation of Render's algorithm for faster computation of hue

was chosen to explore the potential usefulness of a variety of methods for reducing the power

consumption at the initial stages of the VLSI design cycle. This algorithm was chosen purely

as a vehicle for the investigation and it is acknowledged that algorithmic decisions also

impact on the low power design issue.

The initial investigation showed the need for a novel CAD tool capable of estimating the

power consumption at the earliest possible design stage. Available tools had the disadvantage

that they had not been fully incorporated into the standard design cycle or that they tested the

design at a late stage in the circuit development. Therefore, a power estimation tool,

PowerCount, was developed to rapidly measure the active capacitance of a design from a

VHDL netlist. This tool offers the advantage of being fully incorporated into the Synopsys

design cycle, as well as using the most accurate available information at that stage.

Furthermore, PowerCount uses real timing simulations without making any generalisation

when computing the real node activity factor. A Monte Carlo approach guarantees fast and

rehable results while using only small sets of input vectors. With this tool it is possible to

Conclusions 155

simulate large designs within a matter of hours and to make reasonable estimates of the power
consumption.

Following the development of this tool, the specific case o f the implementation of

Render's RGB to HSI algorithm in the form of a low power circuit was then considered. The

aim was to examine this implementation on a block-by-block basis in order to identify

potential avenues along which power savings could be made. To enable such a detailed

analysis, the design was split into the three paths, studying the computation of hue, saturation

and intensity as individual operations. These paths were again subdivided into smaller blocks,

each containing their own set of implementation problems. These smallest blocks were

investigated separately to find ways of reducing their power consumption.

In the hue path, the main task was to implement the alternating function of the arctan

using unsigned arithmetic. This was achieved through the use of sign detection in the first

stage of the design, resulting in reduced logic for the remaining stages. A second task was the

implementation of the arctan function itself The standard implementation for all

trigonometric functions is the CORDIC algorithm. However, when the CORDIC algorithm

was compared with three alternative algorithms, it was found to require 25 times more power

than the most efficient altemative. Furthermore, by using any of the alternatives other design

features such as the maximum computational time and the area could be significantly

reduced. Therefore, it appears that the primary strength of the CORDIC algorithm is in the

area of mathematical multiprocessors rather than single function implementations. Following

this task, the investigation was turned towards the control pipeline which was shown to have

a significant power inefficiency. Firstly, different coding styles were applied to the block.

However, the result was unsatisfactory as theoretically superior codes produced a higher

power consumption than standard approaches. Detailed analysis showed that the greater

power consumption of these reduced-power codes was in fact caused by a larger clock

network. Therefore, an altemative to the traditional shift register implementation was

developed. Here it was possible to demonstrate that, in general, for small designs, such as that

o f the control bus, power savings of up to 30% could be achieved and for larger shift registers

this figure can increase even further.

The first design decision for the saturation path was to reuse terms already computed in

the hue path. This resulted in reduced logic and less pipeline stages in the saturation path.

Moreover, it was then possible to use balanced structures to compute a proportion of the

mathematical operations. Four different implementations of the saturation block were

Conclusions 156

considered and all implementations demonstrated their own particular advantages. However,

the direct implementation of the saturation showed the best overall power performance. This

marked the difference between the software-optimised and hardware-optimised algorithms as

while a direct implementation appeared to be mathematically more complex, the block

diagram showed that it had the smallest number of functional blocks.

The last path to be implemented was the intensity algorithm. As in the case of the

saturation algorithm, it was possible to reuse terms previously calculated. Therefore, only one

division by three had to be implemented. To build such a constant divider various

mathematical algorithms were selected from the literature as, to date, there have been no

efforts undertaken to compare their power consumption. It was recognised that several of

these divider algorithms could be implemented with both alternating and non-altemating

signs but, as shown, alternating implementations consumed more power. Therefore, the

investigation was restricted to the non-altemating versions. From the simulations, the

algorithm proposed by Petry was shown to give the best power to area-speed performance and

it was therefore decided to use this algorithm in the implementation. Lastly, the accuracy of

the intensity was also investigated. It was found to be possible to replace the least significant

bit by a constant ONE at the input of the intensity path. This resulted in smaller logic and

reduced power consumption while actually improving the accuracy by 33%.

Finally, the performance of the implemented design was investigated using digital images.

Despite the fact that the potential sources of the error were known, it was desired to

demonstrate that this algorithm produced images that were perceptually indistinguishable

from the original. This was done empirically and it was found that the maximum errors of

between -2 bits and +2 bits did not appear to have any influence on the perceptual quality of

the images.

In summary then, a comparison of the approach presented in this thesis and a direct

implementation of the RGB to HSI algorithm showed that a significant power saving of 37%

could be made. Also, the computational throughput of the circuit was improved by a factor of

1.8. This was because in the low-power version of the implementation a path balancing

approach was used which resulted in a maximum path length of 18ns. The only drawback of

this low-power implementation is the increase in required area by 13%. This is due to the

more complex logic needed as well as the additional pipeline stages used to balance the path

length. A theoretical comparison to an implementation of the algorithm on a TI

TMS320C6211 DSP board showed that the low power implementation is approximately eight

Conclusions 157

times more power efficient at 26Mwords/second and nearly 15 times more efficient at
5 OMwords/second.

8.2 General Conclusions

One can identify several key stages in the design process depending on the particular point of

view. For instance, considering a problem-solving exercise, e.g. the design of an automated,

visual, fruit defect detection system, there will be several stages o f thought. One possible

solution then could consist of the following stages:

{1} A high-level algorithm development e.g. the design of signal processing techniques to

analyse the colour data to detect defects.

{2}Optimisation of each part of the high-level process e.g. assuming HSI space is

required - how to generate the RGB to HSI conversion?

{3} Choice of implementation vehicle e.g. a C program on a PC with an analog to digital

(A/D) card, or a C program on DSP with an A/D card, or an implementation on an IC.

{4} Once implementation vehicle choices are made, it is possible then to carry out further

optimisation with respect to other design criteria such as speed or data rate.

In relation to the implementation of the RGB to HSI conversion algorithm, this thesis was

concerned with the design choices around low power criteria once the decision was taken to

use an IC as the implementation vehicle. It was clear at the outset that decisions belonging to

stages {1} and {2} must effect low power criteria in IC design. For example, if one found that

the use of luminance (Y) only was sufficient to solve the problem as described by {1}, then

clearly the design of a Y processing chip will have a lower power consumption than a HSI

processing chip. However, it was not the purpose of this work to examine the impact of such

high level decisions on low power design. Specifically, in order to reveal low power design

issues a simple task but with a demanding data rate was chosen.

The methodology utilised in this work for investigating the RGB to HSI conversion

consisted of three main stages. Firstly, the functionality as defined by the system specification

was examined for power-reduction potential. The second stage gave consideration to the

selection of the most suitable number system with which to implement the circuit. Lastly, the

Conclusions 158

third stage analysed how best to divide the algorithm into sub-blocks and then determine

which of the standard techniques for sub-block implementation would produce the optimum

low-power performance. Regarding power estimation, a novel tool was presented in the thesis

that offered the distinct advantage of being fully incorporated into the Synopsys design cycle.

The methodology was validated in the final results and therefore confirmed the use of this

staged procedure in a VLSI design environment. It appears that it is more profitable, in term

of power savings, to work from the generalities of the design towards the particulars of the

implementation. This is also important to realise when a constraint such as the time to market

impinges on the project. In this situation, the designer must be conscious o f their time

management and therefore should focus their efforts on the power bottlenecks o f the system

caused by power consumption. Working directly on the algorithm specification, significant

power savings can be made without having to study the details o f the circuit design. This

means that at this high level fast, feedback about the power consumption is required.

Therefore, it is advantageous if the power estimation tool is incorporated into the design

environment. This sort of requirement was anticipated when developing PowerCount and it is

justified by the recent appearance on the market of similar tools which can be incorporated

into the design environment.

83 Future Work

Two possible roads for future work may be considered. The first would be to use the whole

RGB to HSI algorithm and to optimise it at the lower levels of VLSI design. It would be

important then to investigate the physical implementation of individual structures. Due to the

large number of basic structures used by the algorithm, this could be a time-consuming task if

a fully optimised design is to be produced. A second possible direction would be to examine

the applicability of the power reduction techniques presented in this work to other areas of

VLSI design in particular adaptive filter design. An investigation of a mixture of

computationally intensive structures and medium-to-low performance designs would give a

good overview of the suitability of these techniques in various application domains. At the

high end of the design scale, particular interest should be paid to the possibility o f the direct

application of the techniques suggested in this thesis to computationally intensive structures.

With such structures, low power designs are an essential aid to overcome heat dissipation

problems and also help to enable the development of portable real-time computing

equipment. At the lower end of the performance scale, an investigation into the use of the

Conclusions 159

proposed techniques could focus on determining the optimum balance between the silicon

area and the power consumption. The particular relevance of such research for industry would

lie in the fact that lower power consumption allows the use of cheaper packaging because of

reduced heat dissipation, while a larger die area increases the fabrication costs.

References 160

References

[Ahma96] I. S. Ahmad and J. F. Reid, “Evaluation of colour representations for maize

images,” Jour, o f Agricultural Engineering Research, Vol. 63, PT. 3, pp. 185-

195,1996.

[Akita94] J. Akita and K. Asada, “A method for reducing power consumption of CMOS

logic based on signal transition probability,” EDAC-ETC Euro-ASIC'94, pp.

420-424, February 1994.

[Albe97] B. Al-Besher, A.Bouridane and A. S. Ashur, “An RNS-based division

architecture for constant divisors of the form 2"+l and 2”- l ,” Irish Signals &

Systems Conference, June 1997.

[Athas94] W. C. Athas and L. Svensson, “Low-power digital systems based on adiabatic-

switching principles,” IEEE Transactions on VLSI Systems, Vol. 2, No. 4,

December 1994.

[Beck98] M. Becker, E. Kefalea, E. Mael, M. Pagel, J. Triesch, J.C. Vorbrueggen, S.

Zadel, and C. v.d.Malsburg, "GripSee: A Robot for Visually-Guided

Grasping," Proceedings o f ICANN International Conference on Artificial

Neural Networks, Swoevde, Sweden, Sept. 1998.

[Bell98] A. Bellaouar, A. Fridi, M. I. Elmasry and K. Itoh, “Supply voltage scaling for

temperature insensitive CMOS circuit operation,” IEEE Transactions on

Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 45, No.3,

pp. 415-417, March 1998.

[BeniOO] L. Benini, G. DeMicheh, A. Macii, E. Macii, M. Poncino and R. Scarsi,

“Glitch power minimization by selective gate freezing,” IEEE Transactions on

VLSI Systems, Vol. 8, No. 3, pp. 287-298, June 2000.

References 161

[Best98]

[Blair94]

[Brust93]

[Burd94]

[Burd95]

[Burd96]

[CalvOO]

[Cast99]

[Cava99]

[Ccma99]

[Chan92]

G. W. den Besten and B. Nauta, “Embendded 5V-to-3.3V voltage regulator for

supplying digital IC’s in 3.3V CMOS technology,” IEEE Journal o f Solid-

State Circuits, Vol.33, No. 7, pp. 956-962, July 1998.

G. M. Blair, “Designing low-power digital CMOS,” Electronics and

Communication Engineering Journal, October 1994.

L. Brust and M.S. Tsay, “Mixing signals and voltages on chip,” IEEE

Spectrum, Avigusi 1993.

T. Burd and B. Peters, “A power analysis of a microprocessor; a study of the

MIPS R3000 architecture,” May 1994.

http://infopad.eecs.berkeley.edu/infopad-ftp/

T. D. Burd and R. W. Brodersen, “Energy efficient CMOS microprocessor

design,” Proc. o f the 28th Annual HICSS Conference, January 1995.

T. Burd, “Low-power CMOS libraries design methology,” MSc Thesis.

University o f California, Berkeley, 1996.

G. Calvini and G. Sandini, “Color segmentation for vegetables quality

control,” http://www.lira.dist.unige.it/Projects/Research/Stuff/vegetables.html

K. Castille, “TMS320C6000 Power Consumption Summary,” Application

Report, Texas Instruments, November 1999,

http://www.ti.com/sc/docs/psheets/abstract/apps/spra486b.htm

C. Cavadore, B. Gaillard, P. Martinole and S. Charbonnel, “Transformation

HSI vers RGB et RGB vers HSI,”

http://prism.astroccd.eom/aide/Trichro/4.html

DIT VLSI Research Group, CapCount Manual V.06/99, DIT VLSI Research

Group, Ireland, 1999.

A. Chandarakasan and S. Sheng, “Low-power CMOS digital design,” IEEE

Journal o f Solid State Circuits, Vol. 27, No. 4, April 1992.

References 162

[Chan94]

[Chan94b]

[Chan95a]

[Chan95b]

[Chan95c]

[DancOO]

[Es2]

[Fren98]

[Giak98]

[Gonz96]

[Good98]

A. Chandrakasan, M. Potkonjak, R. Mehra, et al., “Optimizing power using

transformations,” IEEE Transaction on CAD o f Integrated Circuits and

Systems, Vol. 14, No. 1, January 1994.

A. Chandrakaan, A. Burstein and R. Brodersen, “A low-power chipset for a

portable multimedia I/O terminal,” IEEE Journal o f Solid-State Circuits, Vol.

29, No. 12, December 1994.

A. Chandrakasan, M. Potkonjak, R. Mehra, et.al. “Optimizing power using

transformations,” Transactions on CAD, January 1995.

A. Chandrakasan and R. Brodersen, “Minimizing power consumption in

digital CMOS circuits,” Proceedings o f the IEEE, Vol. 83, No. 4, April 1995.

A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS Design,

Kluwer Academic Pubhshers, Third Printing (1998), 1995.

A. P. Dancy, R. Amirtharajah and A. P. Chandrakasan, “High-efficient

multiple-output DC-DC conversion for low-voltage systems,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 8, No. 3,

pp. 252-263, June 2000.

European Silicon Structures, ES2 ECPD07 Library Databook, 1996.

J. Frenkil, “A multi-level approach to low-power IC design,” IEEE Spectrum,

pp. 54-60, February 1998.

I. Giakoumis and I. Pitas, “Digital restoration of painting cracks,” IEEE Int.

Symposium on Circuits and Systems (ISCAS'98), Califomia, USA, Mayl998.

R. Gonzalez and M. Horowitz, “Energy dissipation in general purpose

microprocessors,” IEEE Journal o f Solid-State Circuits, Vol. 31, No.9, pp.

1277-1284, September 1996

J. Goodamn, A. P. Dancy and A. P. Chandrakasan, “An energy/security

scalable encryption processor using an embedded variable voltage DC/DC

References 163

[HamaOO]

[Irsim]

[Jou98]

[Kapa99]

[Kender]

[Kosc96]

[Laks99]

[Land94]

[Li85]

converter,” IEEE Journal o f Solid State Circuits, Vol. 33 No. 11, pp. 1799-

1809, November 1998.

G. Hamameh, A. Chodorowski, and Tomas Gustavsson, “Active contour

models: application to oral lesion detection in color images,” IEEE Conference

on Systems, Man, and Cybernetics, 2000.

IRSIM Reference Manual,

http://www.research.digital.com/wrl/projects/magic/magic.html

S.-J. Jou and T.-L. Chen, “On-chip voltage down converter for lov^-power

digital systems,” IEEE Transactions on Circuits and Systems-II: Analog and

Digital Signal Processing, Vol. 45, No. 5, pp. 617-625, May 1998.

H. Kapadia, L. Benini and G. DeMicheli, “Reducing Switching Activity on

datapath buses with control-signal gating,” IEEE Journal o f Solid-State

Circuits, Vol. 34, No. 3, pp. 405-414, March 1999.

J. Kender, “Saturation, hue and normalized color,” Carnegie-Mellon

University, Computer Science Dept., Pittsburgh PA. 1976.

A. Koschan, “Using perceptual attributes to obtain dense depth maps,” IEEE

Southwest Symposium on Image Analysis and Interpretation, San Antonio,

USA, pp. 155-159, April 1996.

G. Lakshminarayana, A. Raghunathan, N. K. Jha and S. Dey, “Power

management in high-level synthesis,” IEEE Transactions on VLSI Systems,

Vol. 7, No. 1, pp.7-14, March 1999.

P. Landman and J. Rabaey, “Black-Box capacitance models for architectural

power analysis,” Proc. o f 1994 International Workshop on Low-Power

Design, April 1994.

S.-Y. R. Li, “Fast constant division routines,” IEEE Transactions on

Computers, Vol. C-34, No. 9, September 1985.

References 164

[Liev99]

[Liu93]

[Lyon93]

[MachOO]

[Malh94]

[Mart99]

[Mata94]

[Mehr94]

[Mehr97]

[MicrOO]

[Mone95]

M. Lievin and F. Luthon, “Unsupervised lip Segmentation under natural

conditions,” IEEE Conf. on Acoustics, Speech and Signal Processing,

ICASSP'99, Phoenix, Arizona, vol. 6, pp. 3065-3068, March 1999.

D. Liu and C. Svensson, “Trading speed for low power by choice of supply

and threshold voltages,” IEEE Journal o f Solid State Circuits, Vol. 28, No. 1,

January 1993.

R.F. Lyon, “Cost, power, and parallelism in speech signal processing,” IEEE

Custom Integrated Circuits Conference, San Diego, USA, May 1993.

Mentor Graphics Corporation, Mach TA, http://www.mentorg.com/mach/

S. Malhi and P. Chatteqee, “Scaling on schedule for personal

communications,” IEEE Journal, March 1994.

B. Martin, “Electronic design automation: technology 1999 analysis and

forecast,” IEEE Spectrum, pp. 57-61, January 1999

A. Matsuzawa, “Low-voltage and low-power circuit design for mixed

analog/digital systems in portable equipment,” IEEE Journal o f Solid-State

Circuits, Vol. 29, No. 4, April 1994.

R. Mehra and J. Rabaey, “Behavioral level power estimation and exploration,”

Proc. First Inter. Workshop on Low Power Design, Napa Valley, CA, pp. 197-

202, April 1994.

R. M. Mehra, L. M. Guerra and J. M. Rabaey, “A partitioning scheme for

optimising interconnect power,” IEEE Journal o f Solid-State Circuits, Vol. 32,

No. 3, pp. 433-443, March 1997.

E. Sicard, Microwind2,

http://intrage.insa-tlse.fr/~etieime/Microwind/index.html

J. Moneiro, J. Rinderknecht, S. Devadas, et.al. “Optimisation of combinational

and sequential logic circuits for low power using precomputation,” 1995

References 165

[Moor65]

[MultOO]

[MsimOO]

[Naim94]

[Naka94]

[Nema99]

[NguyOO]

[Niel94]

[NoseOO]

[Papu90]

Chapel Hill Conference on Advanced Research in VLSI, Chapel Hill, North

Carolina, March 1995.

G.E. Moore, “Cramming more components onto integrated circuits”

Electronics, Vol. 38, No.8, pp. 114-117, April 1965.

Electronics Workbench, MultiSim, http.V/www.interactiv.com/

Model Technologies, ModelSinWHDL Simulator,

http://www.model.com/products/vhdl.asp

F. N. Najm, “A survey of power estimation techniques in VLSI circuits,” IEEE

Transactions on VLSI Systems, Vol. 2, No. 4, December 1994.

Y. Nakagome, K. Itoh, M. Isoda, K. Takeuchi and M. Aoki, “Sub-l-V swing

internal bus architecture for future low-power ULSI's,” IEEE Journal o f Solid-

State Circuits, Vol. 28, No. 4, April 1994.

M. Namani and F.N. Najm, “High-level area and power estimation for VLSI

circuits,” IEEE Transactions on Computer-Aided Design o f Integrated

Circuits and Systems, Vol. 18, No.6, pp.697-713, June 1999.

H. T. Nguyen and A. Chatteijee, “Number-splitting with shift-and-add

decomposition for power and hardware optimization in linear DSP synthesis,”

IEEE Transactions on VLSI Systems, Vol. 8, No. 4, pp. 419-424, August 2000.

L. S. Nielsen, C. Niessen and K. van Berkel, “Low-power operation using self­

timed circuits and adaptive scaling of the supply voltage,” IEEE Transactions

on VLSI Systems, Vol. 2, No. 4, December 1994.

K. Nose and T. Sakurai, “Analysis and future trend of short-circuit power,”

IEEE Transactions on Computer-Aided Design o f Integrated Circuits and

Systems, Vol. 19, No.9, pp. 1023-1030, September 2000.

L. Papular, Mathematik fiir Ingenieure 2, Viewegs Fachbiicher der Technik, 5.

Auflage, pp. 455-493, 1990.

References 166

[ParcOO]

[PcalOO]

[PcutOO]

[Petry93]

[Petry94]

[Pmil98]

[PpowOO]

[PtooOO]

[PwatOO]

[Ragh99]

[Ramp99]

Synopsys Inc., PowerArc,

http ://www. synopsys. com/products/etg/powerarc_wp. html

IBM Corp., ASIC Design Methodology: PowerCalc Tool Supplement,

http://www.chips.ibm.eom/products/asics/document/appnote/231500_0.pdf

Legend Design Technology Inc., Power-Cut, http://www.legenddesign.com/

F. E. Petry, P. Srinivasan, “Division techniques for integers o f the form 2"+l

and 2"-l,” Int. J. Electronics, Vol. 74, No. 5, pp 659-670, 1993.

P. Srinivasan, F.E. Petry, “Constant-division algorithms,” lEE Proc.-Comput.

Digit. Techn.,Yo\. 141, No. 6, November 1994.

Synopsys, PowerMillReference Manual, Synopsys, Inc., 1998.

Synopsys Inc., PrimePower,

http://www.synopsys.com/products/etg/primepower_wp.html

Veritools, Inc. Power Tool, http://www.veritools-web.com/

Sequence Design Inc., Peak Watcher,

http://www.senteinc.com/2_solutions/2b3_pwatcher.html

A. Raghunathan, S. Dey and N.K. Jha, “Register transfer level power

optimisation with emphasis on glitch analysis and reduction,” IEEE

Transactions on Computer-Aided Design o f Integrated Circuits and Systems,

Vol. 18, No.8, pp. 1114-1131, August 1999.

S. Ramprasad, N. R. Shanbhag and I. N. Hajj, “Decorrelating (DECOR)

transformations for low-power digital filters,” IEEE Transactions on Circuits

and Systems-II: Analog and Digital Signal Processing, Vol. 46, No. 6, pp.

776-787, June 1999.

[Ramp99b] S. Ramprasad, N. R. Shanbhag and I. N. Hajj, “Signal Coding for low power:

fundamentals limits and practical realizations,” IEEE Transactions on Circuits

References 167

[Rior97]

[Sanc99]

[Schw97]

[Schw98]

[Schw99]

[Shim93]

[ShiuOO]

[Sieg96]

and Systems-II: Analog and Digital Signal Processing, Vol. 46, No. 7, pp.

923-929, July 1999.

M. Riordan and L. Hoddeson, “Birth of an era,” Scientific America, Special

Issue - The Solid-Sate Century, 1997.

H. Sanchez, J. Siegel, C. Nicoletta, J.P. Nissen and J. Alvarez, “A versatile

3.3/”.5/1.8-V CMOS I/O driver built in a 0.2-^m, 3.5-nm tox, 1.8-V CMOS

technology,” IEEE Journal o f Solid State Circuits, Vol. 34, No. 11, pp. 1501-

1511, November 1999.

A. Schwarzbacher and B. Foley, “Low power CMOS design : a chip for RGB

to HSI conversion,” Trans. oflSSC 97, pp. 165-172, June 1997.

A.Th. Schwarzbacher, P.A. Comiskey and J.B. Foley, “Powercount: measuring

the power at the VHDL netlist level,” Electronic Devices and Systems

Conference, Bruno, Czech Republic, June 1998.

A. Schwarzbacher and S. Roth, Graphical and Statistical Investigation o f

Various Implementations o f the HSI Algorithm, Technical Report, Dublin

histitute of Technology, Dublin, Ireland, July 1999.

K. Shimohigashi and K. Seki, “Low-voltage ULSI design,” IEEE J. o f Solid-

State Circuits, No. 4, April 1993.

W.-T. Shiue and C. Chakrabarti, “Low-power scheduling with resources

operating at multiple voltages,” IEEE Transactions on Circuits and Systems-

II: Analog and Digital Signal Processing, Vol. 47, No. 6, pp 536-543, June

2000 .

A.F. Siegel, C.J.Morgan, Statistics and Data Analysis, John Wiley & Sons, 2"*̂

edition, 1996.

[SmbtOO] Avant! Corporation, Star-MBT,

http://www.avanticorp.eom/product/l,1172,25,OO.html

References 168

[Sobo98]

[Spice]

[SpieSS]

[SsimOO]

[Stork95]

[Synop]

[TcdOO]

[TI98]

[Tsui95]

[Uses]

[Veen84]

[VeriOO]

K. Sobottka and I. Pitas, “A novel method for automatic face segmentation,

facial feature extraction and tracking,” Signal Processing: Image

Communication, Vol. 12, No. 3, pp. 263-281, June, 1998.

Cadence, Cadence SPICE Reverence Manual, Cadence Design Systems,

Version 4.2, March 1992.

M.R. Spiegel, Schaum’s Outline o f Theory and Problems o f Statistics,

McGraw-Hill, 2"*̂ edition, 1988.

Avant! Corporation, Star-Sim

http://www.avanticorp.eom/product/l, 1172,29,00.html

J. Stork, “Technology leverage for ultra-low power information systems,”

Proceedings o f the IEEE, Vol. 83, No. 4, April 1995.

Synopsys, VHDL Compiler Reference Manual Version 5. (?, November 1992.

School of Mathematics, Trinity College Dublin, Online Image Archive,

http://www.maths.tcd.ie/pub/images/images.html

Texas Instruments, “How to Begin Development Today With the

TMS320C6211 DSP,” Application Report, Texas Instruments, September

1998, http://www.ti.com/sc/docs/psheets/abstract/apps/spra474.htm

C. Tsui, J. Monteiro, M. Pedram, et al. “Power estimation for sequential logic

c i x c m X s , ” IEEE Transactions on VLSI Systems, pp. 404-416, September 1995.

USC-SIPI Image Database, University of Southern California,

http://sipi.usc.edu/services/database/Database.html

H. Veendrick, “Short-circuit dissipation of static CMOS circuits and its impact

on the design of buffer circuits,” IEEE Journal o f Solid State Circuits, Vol. 19,

No. 4, August 1984.

Cadence Design Systems, Inc., Verilog-XL,

http://www.cadence.com/eda_solutions/flv_ver_vhdl_sim_13_index.html

References 169

[Vold59]

[VpowOO]

[Wang98]

[Wei99]

[Wu99]

[WwatOO]

[Xant99]

[XhdlOO]

[Yama96]

[ZhanOO]

J.E. Voider, “The CORDIC trigonometric computing technique,” IRE Trans.

Electron. Comput, Vol EC-8, no.3, September 1959.

Veritools, Inc. VeriPower, http://www.veritools-web.comy

C.C. Wang and J.C. Wu, “A 3.3-V/5V low power TTL-to-CMOS input

buffer,” IEEE Journal o f Solid State Circuits, Vol. 33, No. 4, pp. 598-603,

April 1998.

G.-Y. Wei and M. Horowitz, “A fully digital, energy-efficient, adaptive

power-supply regulator," IEEE Journal o f Solid State Circuits, Vol. 34, No. 4,

pp. 520-528, April 1999.

Y. Wu, Q. Liu, T.S. Huang Beckman, “Robust real-time human hand

localization by self-organizing color segmentation,” Proc. o f ICCV99

Workshop RATFG-RTS, Greece, Sep. 1999.

Sequence Design Inc., Watt Watcher,

http://www.senteinc.com/2_solutions/2bl_wwatcher.html

T. Xanthopoulos and A. P. Chandrakasan, “A lop-power IDCT marcocell for

MPEG-2 MP@ML exploiting data distribution properties for minimal

activity,” IEEE Journal o f Solid State Circuits, Vol. 34, No. 5, pp. 693-702,

May 1999.

X-Tek Corporation, X-HDL3, http://www.x-tekcorp.com/xhdl3.htm

T. Yamauchi, Y. Morooka and H. Ozaki, “A low power and high speed data

transfer scheme with asynchronous compressed pulse width modulation for

AS-memory,” IEEE Journal o f Solid State Circuits, Vol. 31, No. 4, pp. 523-

530, April 1996.

H. Zhang, V. George and J. M. Rabaey, “Low-Swing on-chip signaling

techniques: effectiveness and robustness,” IEEE Transactions on VLSI

Systems, Vol. 8, No. 3, pp. 264-272, June 2000.

Authors Publications 170

Authors Publications

[1] A.Th. Schwarzbacher and J.B. Foley, "Low-power design : an image processing chip for

RGB to HSI conversion," Irish Systems and Signals Conference, Derry, Ireland, pp. 165-

172, June 1997.

[2] A.Th. Schwarzbacher, P.A. Comiskey and J.B. Foley, "Powercount: measuring the power

at the VHDL netlist level," Electronic Devices and Systems Conference, Bruno, Czech

Republic, June 1998.

[3] P.A. Comiskey, A.Th. Schwarzbacher and J.B. Foley, "Power estimation in CMOS

circuits using genetically optimised input patterns," Electronic Systems and Devices

Conference, Bruno, Czech Republic, June 1998.

[4] A.Th. Schwarzbacher, P.A. Comiskey and J.B. Foley, "Reduction of the power

consumption at the algorithmic level of CMOS circuits," Electronic Systems and Devices

Conference, Bruno, Czech Repubhc, June 1998.

[5] A.Th. Schwarzbacher, P.A. Comiskey and J.B. Foley, "High level power estimation

powercount," Irish Systems and Signals Conference, Dublin, Ireland, pp. 101-108, June

1998.

[6] P.A. Comiskey, A.Th. Schwarzbacher and J.B. Foley, "Random binary vector generation

and analysis using genetic optimisation," Irish Systems and Signals Conference, Dublin,

Ireland, pp.519-525, June 1998.

[7] A.Th. Schwarzbacher, P.A. Comiskey and J.B. Foley, "Improving the power consumption

in image processing algorithms," UK Low Power Forum, Sheffield, Untied Kingdom, pp.

4.1-4.5, September 1998.

[8] P.A. Comiskey, A.Th. Schwarzbacher and J.B. Foley, "The effect o f input lattice structure

in image processing algorithm," UK Low Power Forum, Sheffield, Untied Kingdom, pp.

11.1-11.6, September 1998.

Authors Publications 171

[9] A.Th. Schwarzbacher, P.A. Comiskey, J. Neves Rodrigoues and J.B. Foley, "Design of

integrated circuits for the power domain," First International Postgraduate Research

Conference, Dublin, hreland, November 1998.

[10]A.Th. Schwarzbacher and P.A. Comiskey, "Classification of Uniform White Noise

Sources using the Spectral Test," Fling High - Magazine fo r Supercomputing, No. 15,

Spring 1999.

[11]A.Th. Schwarzbacher, A. Brasching, Th.H. Wahl and J.B. Foley, "Optimisation of

trigonometric functions for low power CMOS implementations," Irish Systems and

Signals Conference, Galway, Ireland, pp. 201-206, June 1999.

[12]A.Th. Schwarzbacher and P.A. Comiskey, "Power estimation at the higher levels of

integrated circuit design" Irish Scientist, p. 112, Year Book 1999.

[13]A.Th. Schwarzbacher, A. Brasching, Th.H. Wahl, and J.B. Foley, "Optimisation and

implementation of the arctan function for the power domain," Electronic Circuits and

Systems Conference, Bratislava, Slovakia, pp. 33-36, September 1999.

[14]A.Th. Schwarzbacher, "Optimisation of algorithms for fast power analysis in CMOS

circuits," Fling High - Magazine for Supercomputing, No.16-17, pp. 4-7, 1999.

[15]A.Th. Schwarzbacher, P.A. Comiskey, J.B. Foley, J. Rodrigoues and F. Klemenz, "Rapid

estimation of the active node capacitance of VLSI circuits," Programmable Devices and

Systems 2000, Ostrava, Czech Republic, February 2000.

[16] A.Th. Schwarzbacher, "Energy reduction of transformation of image and video data," to

appear in Proc. o f CINECA, Summer 2000.

[17]A.Th. Schwarzbacher, M. Brutscheck, O. Schwingel and J.B. Foley, "Constant divider

structures of the form 2""' for VLSI implementation," Irish Signals and Systems

Conference, Dublin, Ireland, June 2000.

[18]A.Th. Schwarzbacher and J.B. Foley, "Optimisation of real-time signal processing

algorithms for low-power CMOS implementations," Digital Signal Processing 2000,

Bournemouth, United Kingdom, July 2000.

Appendix A: Using PowerCount 172

Appendix A: Using PowerCount

This appendix shows the simulation of a 1-bit adder to show the performance and features of

PowerCount as well as to illustrate the user-friendliness of its interface. It is not intended to

be a tutorial for PowerCount. All options of the power estimation environment can be found

in the PowerCount Manual [Ccma99]. The design used as an example is the 1-bit adder,

which was introduced in section 4.3. The design is simulated with the following

specifications in order to estimate the active capacitance:

Design name FULLADDER

Number of input vectors 100
Desired accuracy 1%
Time base ns
Scaling factor 0.01
Name of the file containing the results Results add 1%

Table A .l: Parameter for the Simulation

Power Count uses a simple command line interface to control the simulation. This enables the

designer to run the tool in the background or over slow networks. The simulation is started

with:

pcount -d FULL_ADDER -iv 100 -acc 0.01 -rf Resultsadd_l% -sf 0.01 -tb ns

The design FULL_ADDER is simulated with 100 input vectors per iteration. This is done

until X is within a maximum deviation of 1% from or until 30 iterations are performed. The

reason for the upper limit is to shorten the simulation if an unrealistic accuracy target is set.

The results of the simulation and the simulation parameter are printed into the file

ResultsaddJ%o and onto the screen. The file Resultsadd_l%o provides a brief overview of

the most important features of the simulation. The output of this file is shown below:

sum input_vec:100 runs:6 acc: 0.999 act_cap:0.282 totaltime: 55 s

The results of the simulation are as follows:

Number of input vectors: 100

Number of iterations: 6

Appendix A: Using PowerCount 173

Deviation ;c from 0.01%

Simulation time: 55s

Estimated active capacitance: 0.285pF

The energy which is required by the circuit is calculated by multiplying the active capacitance

for a single vector by the supply voltage squared.

E=0.285pF (5V)^ = 7.125pJ

To enable a detailed analysis a file sim.tra is created.
Figure A. 1 shows this file for the Full Adder.

N24 0 .14 23 .33 3.27
N23 0.14 48.67 6.81
N22 0 .14 25 .17 3.52
N21 0 . 09 33 .50 3 . 01
SUM 0.03 49.33 1.48
CARRY_OUT 0 . 03 34 . 00 1.02
CARRY_IN 0 .13 23 . 67 3 . 08
B 0 .12 24 .17 2 . 90
A 0.14 24.50 3 .43

total active capacitance 0.2 85 pF

Accuracy : 99.85%

Initialisation vector(s) : 1
Input vector(s) : 100
Desired accuracy: 0.01
... O K !

Figure A .l: A Sample Output File

Using this file it is possible to analyse the design in order to perform a bottleneck analysis.

The file gives the designer detailed information about the node and its physical capacitances

(second column). Furthermore, the average number of transitions occurred at each node

during the iterations (located in the third column) are used to calculate the active node

capacitance (fourth column). With this information the designer is able to find 'hot' areas of

the design and direct the design efforts accordingly. The file is a simple ANSI file having tab-

stops as separators. Therefore, it can be easily imported into spreadsheet programs or other

simulation environments such as Matlab. This is particularly useful for further analysis or, as

done in this thesis, for graphic representation of the results of power estimations.

