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Summary

The chromosphere is the region of a star, above what is traditionally

defined as the stellar surface, from which photons freely escape. As

the definition implies, this region is characterised by complexity, non-

equilibrium, and specifying its structure is a vastly non-linear, non-

local problem. In this work we are concerned with the chromospheres

of late-type stars, objects of spectral type K to M, the thermodynamic

structure, extent, and heating mechanisms of whose chromospheres are

not well understood. We use a number of observational and computa-

tional methods in order to gain a detailed quantitative understanding

of these chromospheres.

We construct a model to compute the mm, thermal bremsstrahlung

flux from the chromospheres of late-type objects, based on a number

of simplifying assumptions concerning their thermodynamic structure.

We compare this model with archival and recent observations, and

find that the model is capable of reproducing the observed flux from

objects of spectral type K to mid-M in the frequency range 100 GHz –

350 GHz. We suggest that, while this model is quite simple, it provides

an accurate reflection the structure of the chromosphere of late-type

stars.

We also make use of the unique insights into stellar structure provided

by the eclipsing ζ Aurigae binaries. We present the “rediscovery” of

periodic Si I emission in these objects. We hypothesise that this effect

arises as a result of the UV radiation of the secondary object, which

photo-ionizes Si I in the chromosphere of the primary. Since this UV

radiation falls only on a portion of the visible hemisphere of the primary

at a given phase, the line is periodic, and as a locally formed line in



disk-averaged spectrum this is a novel and powerful diagnostic. While

we rule out this line being a result of simple reflection, we expect it to

have the same phase variation as broadband reflection. We construct a

geometric model of the system, and find that the computed reflection

curve matches the observed line periodicity very well.

As the primary of ζ Aurigae undergoes an eclipse it is possible to ef-

fectively resolve its chromosphere, which allows us to place direct con-

straints on its structure. However, despite the unique insights afforded

by the study of this system, no semi-empirical model has yet been con-

structed. Using archival observations of ζ Aurigae A we construct a

full one-component, semi-empirical model of its chromosphere. As this

binary system is detached its chromosphere is thought to be compara-

ble to that of single stars — λ Velorum being a specific example — and

we use the model constructed to comment on the structure of late-type

chromospheres generally.
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2. Harper, G. M., Ó Riain, N., Griffin, R.E.M., Bennett, P.D.

“Periodic Photoexcited Si I Emission in Composite-Spectrum Binaries”

in prep, 2015
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1
Introduction

We begin by outlining the motivation behind the study of the atmospheres of

cool stars. We then introduce the concepts at play in this study, taking time

to discuss the physical properties of cool stars, focusing on the interiors of these

objects and their evolution in time. We address the principal topic of study,

discussing the atmospheres of these cool star in detail. We introduce the emission

mechanisms and physical processes which will be the subject of the succeeding

chapters, deriving the radiative transfer equation, and highlighting those topics

which are the subject of debate in the literature. A brief overview of the field will

be presented, outlining the history of observation and modelling. As much of this

work is focused on the study of one unique class of object in particular (ζ Aurigae

binaries) we will devote some time to discussing these objects, contextualising their

study in this work. Finally we present an outline of the subsequent chapters of

this thesis and the questions addressed therein.
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1.1 Motivation

1.1 Motivation

The core problem to be addressed in the study of stellar physics is the specification

of the physical properties of a star — temperature, density, etc. — as a function

of depth, given the star’s age, mass, and chemical composition. Despite the fact

that the atmosphere of a star comprises ∼ 1/1010 of its total mass, the stellar

atmosphere is key in understanding the structure of the stellar interior. This

stems from the fact that only observational data upon which we can base our

study of stellar physics is the emergent stellar spectrum, and this spectrum can

only be understood through very close study of the stellar atmosphere.

All of the stellar radiation which we measure emerges from the stellar atmo-

sphere, the stellar atmosphere is all that we can “see”, and as such all that we can

measure directly. The interior of the star is opaque, effectively trapping photons,

and as such is inaccessible to direct observation. The atmosphere itself represents

the boundary between this dense stellar interior, and the tenuous stellar wind and

near vacuum of the interstellar medium. The study of the stellar atmosphere is

in effect the study of the interface between a material which is (almost) in perfect

thermodynamic equilibrium and (almost) empty space. As radiation does begin to

escape the interior it must pass through the atmosphere, transporting energy and

interacting with the constituent material. As a result of this interaction the emer-

gent radiation carries with it information regarding the physical properties of the

material through which it has passed. The emergent radiation encodes this infor-

mation, as it is integrated along the path of the radiation through the atmosphere.

In this work we examine the inverse problem of determining a self-consistent set of

physical properties, as a function of depth through the atmosphere, which, when

path-integrated along each ray, reproduce the emergent spectrum.

The problem is vastly complicated by its non-linear, non-local nature. It is

non-linear due to the fact that as the radiation field interacts with matter, the

matter alters the state of the radiation field, coupling the state of the material and

the state of the radiation. The non-locality arises due to the fact that the state

of the matter at one point is dependent on the local radiation field, which in turn

depends on the radiation field (and hence the state of the matter) at essentially
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1.2 Evolution of Late-type Stars

all other points in the atmosphere. This is because the mean free path of photons

is typically much larger than the gradients of the physical properties.

By carefully untangling this complex problem it is possible to gain unique in-

sight into the interior structure of stars. For example, high-dispersion spectroscopy

provides diagnostic information on the structure of the atmosphere, but these ob-

servations can only be exploited if care is taken in treating the above problems. An

accurate quantitative understanding of the atmosphere of the star provides us with

the boundary conditions of the stellar interior and the chemical composition of the

object — which taken synoptically informs our understanding of the abundances

of the chemical elements in the Universe as a function of time and location. De-

spite comprising a small fraction of the star’s mass the atmosphere greatly shapes

its evolution through the stellar wind, and in order to know the future evolution

of an object we must study the structure of its atmosphere. Of great relevance to

this work is the fact that, in the case of late-type objects (giants and supergiants),

the radius is not well known due to their large, extended envelopes, and this fun-

damental parameter can only be determined through careful determination of the

overall atmospheric structure.

1.2 Evolution of Late-type Stars

Stars of spectral classification K through mid-M are usually known as late-type

stars, due to erroneous historical ideas about stellar evolution. This classification

is based on the emission and absorption lines observed in the stellar spectrum,

and arranged, by Annie Jump Cannon, in order of decreasing effective tempera-

ture (Hoffleit, 1943). Between O and M the effective temperature varies by a factor

of ∼ 15. Around 1910 Hertzsprung and Russell independently produced diagrams

plotting this classification of stars by colour (effective temperature) against mag-

nitude (luminosity), producing what is known as the HR diagram. A HR diagram

can be seen in Fig. 1.1 (Zeilik et al., 1992). In this work we will concern ourselves

primarily with post–main sequence objects, K- to mid-M type evolved stars, red

giants and supergiants, and as such we focus in particular on their evolution.

The HR diagram neatly summarises the evolutionary life-cycle of a star. As a

proto-stellar cloud condenses under the force of gravity the pressure at the core
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1.2 Evolution of Late-type Stars

Figure 1.1: The Hertzsprung-Russell diagram with the stellar evolutionary tracks
annotated for objects of various initial masses. This figure contains both the obser-
vational and theoretical HR diagrams. The observational diagram has axes of color
and magnitude, which are directly observable, and the theoretical form has axes of
effective temperature and luminosity, which require a model to determine. Image
Credit: Australia Telescope National Facility.

begins the fusion of hydrogen to helium. Stars with masses below ∼ 1.5M� con-

vert hydrogen to helium by what is known as the proton-proton (p-p I) chain, at

higher masses the so-called CNO cycle is dominant in the core (Salaris & Cassisi,

2005). The energy released in this reaction balances gravity and arrests the star’s

contraction. For most of the star’s lifetime the conversion of H to He is the dom-

inant energy production process, and stars undergoing this process are known as

main sequence stars. The time a star spends on the main sequence is governed
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1.2 Evolution of Late-type Stars

Figure 1.2: The internal structure of red giant (left) and asymptotic giant branch
stars (right), showing the different shells of internal burning. Image Credit: Australia
Telescope National Facility.

by its mass, heavier stars burning their fuel quickly and spending less time on the

main sequence. Once a star has exhausted the supply of hydrogen at its core it

begins its evolution off the Main Sequence (see annotated evolutionary tracks in

Fig. 1.1).

When hydrogen burning has been extinguished in the core the star begins to

contract.1 This raises the temperature and ignites further hydrogen burning in

the less processed shells surrounding the core. This is known as the Sub-Giant

Branch, the period of time after H burning has halted, but before the He burning

has yet begun. At this point the atmosphere expands, as it absorbs the excess

energy from the heating of the core (Öpik, 1938). This increases the luminosity

and decreases the surface temperature; moving the star off the main sequence, up

and to the right on the HR diagram. This process occurs quickly, causing the

so-called Hertzsprung Gap, and moving the star to the next phase of evolution.

The Red Giant Branch occurs next, the phase of the star’s life during which the

core continues to contract, increasing the luminosity and moving the star further

1In practice it is very difficult to determine a H burning from a He burning star, though
Bedding et al. (2011) presented such a result by astroseismological methods.
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1.3 Structure of Late-Type Stars

up the HR diagram. Convection begins to move the ash left from the H burning,

and this process, known as the first dredge-up, mixes heavier elements into the

star’s outer envelope. In stars of sufficient mass (& 0.5M�), at the tip of the Red

Giant Branch, the core contracts and the pressure increases until helium burning

becomes possible by the triple-alpha process (Iben, 1967). The core then begins

to expand again, and the star ceases its rise up the Red Giant Branch, moving to

the Red Giant Clump.

The Red Giant Clump is the phase of evolution wherein there is core He burn-

ing and shell H burning. This process will continue until there is no further He

remaining in the core and, mirroring the previous phase of evolution, the core will

contract causing shell He burning to begin. This leaves two shells, one burning

hydrogen and one burning helium, around an inert carbon and oxygen core.

The next phase of the star’s life is the ascent of the Asymptotic Giant Branch,

which runs almost parallel to the Red Giant Branch on the HR diagram. Stars of

M∗ & 8M� will begin burning C and O in their cores. This leaves a core burning

C-O inside shells of He and H burning. At this point a second dredge-up may

occur. The internal structure of red giant and asymptotic giant branch stars can

be seen in Fig. 1.2.

This process of shell burning of heavier and heavier elements will continue

up to Fe for stars of sufficient mass. The outer atmosphere of the star will be

shed, leaving the core behind. For objects of mass below the Chandrasekhar limit

M∗ < 1.39M� (Chandrasekhar, 1931; Mazzali et al., 2007) the core will be sup-

ported against further gravitational contraction by electron degeneracy pressure

as the outer atmosphere is shed. This is known as a white dwarf. For objects of

M∗ > 1.39M�, electron degeneracy is unable to support the core, resulting in a

supernova. The remnants of the supernova will form a neutron star, supported

from further collapse by neutron degeneracy pressure, or a black hole if M∗ & 3M�

(Chamel et al., 2013).

1.3 Structure of Late-Type Stars

At their core objects undergoing p-p (I) chain interactions, due to the weak temper-

ature dependence of the reaction (“only” T 7), have a shallow temperature gradient,
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1.3 Structure of Late-Type Stars

and as such radiation is the most efficient energy transport mechanism. This region

is referred to as the radiative zone. Above this there is a region where hydrogen

becomes ionised, increasing the opacity and reducing the efficiency of radiative

transport, in this region convection is the dominant energy transport mechanism.

In red giants the entire outer envelope is convective (Schrijver & Zwaan, 2000).

This is not true of CNO objects (M∗ & 1.5M�), where the temperature depen-

dence of the reaction is much steeper (T 20), and hence convection dominates in the

core and the outer envelope is in radiative equilibrium (Salaris & Cassisi, 2005).

In this interior region the material is in thermodynamic equilibrium (the amount

of energy absorbed at a point is exactly balanced by the amount emitted) and all

photons are trapped, undergoing a number of absorptions and re-emissions, being

systematically lowered in energy as they travel outward. Due to their being re-

peatedly absorbed and re-emitted the photons are in their equilibrium distribution,

the Planck distribution for a given frequency, resulting in the emitted black-body

spectrum. The photosphere is defined as the region where the optical depth of

the atmosphere, τ , drops below 2/3,1 which is to say where the material becomes

transparent to photons and radiation can begin to escape. As a result of this loss

of energy the material is no longer in thermodynamic equilibrium. Above this

region lies the chromosphere.

In the solar case the chromosphere is a complex region of shocks, magnetic

fields, and convection, as can be seen in Fig. 1.3. Despite this complexity, the

solar chromosphere can be modelled quite successfully as a 1-dimensional, time-

independent structure. The first such model was compiled by Vernazza et al.

(1976), known as the VAL model, and this can be seen in Fig. 1.4. This model

well reproduces the formation of the absorption and emission features of the solar

spectrum. There are a number of important features to be noted in this model;

first, the temperature minimum at the base of the chromosphere/top of the pho-

tosphere, followed the temperature gradient inversion in the chromosphere, and

second, the extent of the chromosphere, ∼ 0.004R�.

These two features form the basis of all of the work undertaken in this the-

sis, giving rise to the questions; whether the chromosphere of a star a smoothly-

1To an extent this value of 2/3 is arbitrary, arising from the Eddington Approximation,
however it does match well with observation.
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1.3 Structure of Late-Type Stars

Figure 1.3: The complexity of the solar atmosphere from the photosphere and
above. Image Credit: Wedemeyer-Böhm et al. (2009)

varying, homogeneous, time-independent structure with a temperature inversion,

and if so what is its extent? In this thesis we will study many objects making use

of a host of diagnostics as we attempt to address these questions in general for

late-type stars.

On the question of the temperature inversion, it does appear that all stars

possess a region heated above the prediction of radiative equilibrium (Linsky,

1980). This is thought to be due to the deposition of mechanical or magnetic

energy into the plasma, however in chromospheres which are entirely in radiative

equilibrium temperature inversions are still possible1. We will address the question

of the temperature structure in detail in all of the succeeding chapters of this work.

As to the question of atmospheric extent, in the photosphere and above the

structure of the material is often simplified and modelled as being in hydrostatic

1This is known as the Cayrel effect, however it is important to note that this effect is not
possible in the solar atmosphere. (Cayrel, 1964; Jordan, 1969; Mihalas, 1978)
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1.3 Structure of Late-Type Stars

Figure 1.4: A simple, 1-dimensional, time-independent model of the solar pho-
tosphere/chromosphere, annotated with the formation heights of various spectral
lines. Image Credit: Vernazza et al. (1976)

equilibrium, which is to say the gas pressure balances the gravitational force,

∇P = −ρg∗ (1.1)

where P is the pressure, ρ is the mass density, and g∗ is the surface gravity.

Combining this equation with the ideal gas law, and assuming the material to be

isothermal, we can derive the following relation,

ρ(r) = ρ0e
−r/H (1.2)

where ρ0 is the mass density at r = 0. H is the isothermal scale height,

H =
kBT

µg∗
(1.3)

where kB is the Boltzmann constant, T is the temperature, µ is the mean molecular
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1.3 Structure of Late-Type Stars

mass, and g∗ is the surface gravity,

g∗ =
GM

R2
(1.4)

Taking a red giant and the Sun to be of comparable mass, but with Rrg ≈ 10R�

g� = 100gRG (1.5)

⇒ 100H� = HRG (1.6)

Further, the scale height as a fraction of R linearly increases in R:

H

R
=

kBT

µGM
R (1.7)

This simple derivation demonstrates that red giants have more extended chro-

mospheres than the Sun, both in fractional and absolute terms. Due to the tenuous

nature of their chromospheres it is not trivial to measure, or even to accurately

define, the extents of these objects, and this will again be a matter much discussed

in this work.

In general, late-type stars can be divided into two group: “solar”-type coronal

stars, and non-coronal stars, separated by what is often called the Linsky-Haisch

line (Linsky & Haisch, 1979). In the solar case there is, above the chromosphere,

a transition region (Fig. 1.4) where the temperature rises sharply leading to a

very tenuous region where T ∼ 106 K, known as the corona. Stars later than

approximately K2 do not appear to contain material at coronal temperatures, do

not appear to be X-ray emitters (a sign of stellar magnetic activity), and appear to

have slow winds not driven by the Parker-type mechanism which operates on the

Sun. There are stars which show evidence of coronae and also the types of mass-

loss rates associated with more massive winds, known as hybrid stars (Hartmann

& MacGregor, 1980). The atmospheric properties of each class of object will be

discussed in the course of this work.
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1.4 Stellar Observation & Theory

We will now briefly outline the observational and theoretical history of modern,

quantitative stellar astrophysics. The observational history discussed below will

be expanded in Chapter 3 with detailed reference to the instruments specific to

this work, and the mathematical/theoretical aspects will be rigorously discussed

and derived in Chapter 2.

As mentioned above, the study of stellar atmospheres is reliant on careful ob-

servation of their spectra. One traditional method of observation has been optical

spectroscopy using powerful ground-based telescopes. Over the history of the field

— such as the work of spectral classification, the construction of the Henry Draper

(HD) Catalogue, indeed some of the data contained in this thesis — observa-

tions were performed using large refracting telescopes (the 40” at Yerkes being the

largest at the turn of the century), diffraction gratings, and photographic plates.

These observations provided the radial velocities, proper motions, parallaxes, and

effective temperatures of many objects. However, these early observations were

limited by a number of factors such as the faintness of the objects which they

could observe, the non-linear response of photographic film to incident radiation,

and the limited spectral window which can pass through the Earth’s atmosphere.

From the 1950’s onward these limitations were overcome. Photomultipliers al-

lowed very sensitive observations, and with the advent of CCDs, their high quan-

tum efficiency and linear response enabling absolute calibration, high signal-to-

noise observations, on a physical flux scale, of faint objects became possible. With

this technology, and other advancements such as adaptive optics to account for

seeing, ground-based optical spectroscopy has begun to approach the diffraction

limit. Furthermore, satellite technology has allowed observers access to parts of

the spectrum blocked by the atmosphere. The launch of the International Ultra-

violet Observatory (IUE) in 1978 revolutionised the field of stellar astrophysics by

enabling observation of the UV part of the spectrum. While not the first such satel-

lite (the Orbiting Astronomical Observatory missions being the first in 1966/68)

the technological capabilities of IUE, coupled with the unprecedented duration

of the mission, led to a wealth of new science. The launch of the Hubble Space

Telescope (HST) in 1990, with the capability to observe at very high resolution in
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the near-infrared, visible, and ultraviolet regions of the spectrum, continued this

advance and again provided a new vista in stellar astrophysics.

At radio wavelengths the detection of individual main-sequence/late-type stars

has been possible for some decades using the “old” Karl G. Jansky Very Large

Array (VLA) (White, 2000). For many objects detection would not be possible

if their emission was solely black-body (thermal emission), and hence is evidence

of magnetic (non-thermal) emission. However, very recently observations of ther-

mal emission from solar-type stars have been made at radio wavelengths (Villadsen

et al., 2014). At these wavelengths the massive winds and molecule-rich circumstel-

lar environments of nearby red giants have been detected, and these observations

have proved powerful diagnostics for examining these winds (O’Gorman et al.,

2013). As we move to shorter wavelengths (from metre-wave to mm-wave) obser-

vations of thermal chromospheric emission from nearby red giants have become

possible, and the power of this diagnostic is the subject of one chapter of this

thesis.

Radio observations, and latterly infrared and visible observations, making use

of very long baseline interferometry have made it possible to begin imaging distant

objects. Using instruments at the Center for High Angular Resolution Astronomy

(CHARA) and the Very Large Telescope Interferometer (VLTI), which can perform

spectro-interferometric measurements (interferometric measurements made across

spectral lines) astronomers can directly constrain the extent of the line-forming

regions in red giants. This work has provided compelling insights into the question

of chromospheric extent and will be given some attention in later chapters.

In order to make best use of these observations a detailed and rigorous theory of

radiative transfer is required. This theory began with Schuster (1905), who devised

the phenomenological transfer equation. This work, expanded by Chandrasekhar,

Milne, Menzel, Sobolev, Eddington, and many others, put the theoretical under-

pinnings of radiative transfer on solid footing. Among the most interesting early

results of their investigations were the determination of solar limb-darkening from

the grey opacity (and hence radiative equilibrium), and the identification of hy-

drogen as the most abundant chemical element in the solar atmosphere.

The early advances in the field rested largely on two assumptions, that the

atmosphere is in Local Thermodynamic Equilibrium (LTE), and that the opac-
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ity is independent of frequency (the grey approximation), and these simplifica-

tions make many problems analytically solvable. However the work of Jefferies &

Thomas (1959) on Non–Local Thermodynamic Equilibrium (NLTE) line-formation

demonstrated the limitations of this approach. The advent of modern computing

resources in the 1960’s revolutionised the study of stellar atmospheres by enabling

detailed NLTE modelling. One particularly important advancement was the al-

gorithm presented by Feautrier (1964) to compute fluxes, which has formed the

basis of many algorithms since, and will be discussed in the succeeding chapters of

this work. In the 1980’s a class of techniques known as the Lambda Iteration (LI

— and latterly the Accelerated Lambda Iteration and the Multi-level Accelerated

Lambda Iteration) were introduced. These are strongly convergent iterative meth-

ods which allow the efficient calculation of spectra with thousands of frequency

points.

With these codes, and with the multi-wavelength observations and spectra,

it became possible to determine the thermodynamic properties of a stellar atmo-

sphere as a function of depth, and many of these models have been produced in

the past few decades for main-sequence and late-type stars. From an initial chro-

mospheric model, and using an appropriate atomic model, a synthetic spectrum

can be computed. Comparing this synthetic spectrum with observation allows us

to update our chromospheric model1. By this procedure it is possible to arrive

at a specification of the physical properties of the star’s atmosphere which can

reproduce the observed spectrum. In this work we will construct such models, and

discuss their physical validity and the insights they present.

1.5 Radiative Transfer

In the course of this work we will examine a number of emission processes, however

the mathematics which underpins all radiation transport is based on the equation

of radiative transfer. Hence we will begin by deriving this equation, introducing

some of the basic notation and concepts which will be expanded in Chapter 2.

1A number of complexities have been glossed over here: is the model atmosphere 1-D, 1.5-D,
or 3-D? is it static or does it contain large-scale flows? These matters and others are discussed
in detail in later chapters.
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1.5 Radiative Transfer

Figure 1.5: Specific intensity passing through a volume of material, dV = dSds

There are a number of ways in which the equation may be derived, we will look

at the equation from the same phenomenological standpoint as Schuster (1905),

however the equation could equally be derived by recasting the Boltzmann equation

for photons.

To characterise the radiation transport we introduce the concept of specific in-

tensity. Specific intensity provides a complete description of unpolarised radiation,

it is the distribution function for photons. We define specific intensity as:

I =
dE

dS cos θdωdt
(1.8)

or energy passing through a normal surface, per solid angle, per unit time. In

general we will look only at the specific intensity in a frequency increment, and

denote this (and other monochromatic quantities) by a subscript ν, e.g. Iν . From

the specific intensity we can also define another quantity, the flux, which is the

net flow of energy per unit time, per frequency, per unit area

Fν =

∮
Iν cos θdω (1.9)

Note that we have integrated over solid angle. The flux is the total power

incident on a unit surface area, whereas the intensity is the energy contribution
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1.5 Radiative Transfer

arriving from a unit solid angle

Because the specific intensity is defined per unit solid angle, and because pho-

tons do not decay, it is clear that intensity is a spatially invariant quantity; it is

not radially diluted and only changes in the presence of sinks or sources. These

sinks and sources are extinction and emissivity. Across an increment, ds, see Fig.

1.5, the change in intensity will be equal to the the energy emitted in that vol-

ume minus energy removed. The number of photons emitted in an increment, the

emissivity, is denoted by ην , and the number of photons removed is χν .
1

Hence we can write, where we will denote the incoming ray at the coordinates

(q, t) and the outgoing ray with the coordinates (q + ∆q, t+ ∆t)

[Iν(q+∆q, t+∆t)−Iν(q, t)]dS cos θdωdt = [ην−χνIν(q, t)]dS cos θdsdωdt (1.10)

This equation can be written in differential form as

∂Iν
∂s

= ην − χνIν (1.11)

Traditionally this equation is written as a differential equation over optical

depth. The optical depth is the extinction integrated over the path of the photon,

τν = −
∫ q+∆q

q

χνds (1.12)

Optical depth can be interpreted as the number of photon mean-free-paths

between two points. By convention the observer is at 0, leading to the negative

sign. Defining one further quantity the source function, Sν , as the ratio of the

emissivity to the extinction

Sν =
ην
χν

(1.13)

1These quantities are both somewhat more subtle than is mentioned here. The emissivity and
extinction may not be isotropic, adding an angle term to the equation. Further the extinction
is itself comprised of two terms, the number of photons absorbed, and the number scattered out
of the direction of the observer. These complexities will be discussed at a later point, where
relevant.
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1.6 ζ Aurigae Binaries

we can write the transfer equation as follows

∂Iν
∂τν

= Iν − Sν (1.14)

This is the standard form of the equation of radiative transfer (though in this

derivation we have made no reference to angle-dependence or the geometry of the

medium, these matters will be tackled in due course), and it introduces a number

of important concepts.

It is more physically intuitive to write the transfer equation as a differential

equation over optical depth, as this is the quantity which photons actually en-

counter, to an object moving at the speed of light spatial distance is somewhat

meaningless — in fact this distinction is one reason why chromospheric extents

are so difficult to ascertain.

The introduction of the source function also serves to make the equation more

physical than mathematical. While it would appear that ην and χν provide a

complete description of the radiation added to and taken from a beam this is

not the case for line transitions, where the occupation numbers of the individual

quantum levels determine these coefficients, and these occupation numbers are in

turn determined by the radiation field, reflecting the non-linearity of the prob-

lem. The source function on the other hand, is proportional to the number of

photons emitted per unit optical depth. Hence these two quantities make physical

interpretation of the transfer equation more straightforward.

This derivation and these concepts will be returned to in the subsequent chap-

ter, but with this historical and mathematical background we will now turn to

discussion of the relevance of binary stars to this work.

1.6 ζ Aurigae Binaries

Of the 200,000 stars in the Henry Draper catalogue compiled at Harvard, one, ζ Au-

rigae, displayed a unique set of properties, and is of great importance to our study.

In the 19th century the object was classified as a “composite-spectrum binary”,

as it contained lines seen in the spectra of both hot and cool objects (Maury &

Pickering, 1897). At Dominion Astrophysical Observatory (DAO) Harper (1924)
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1.6 ζ Aurigae Binaries

observed this object and, only measuring the spectrum of the cool star, deter-

mined that the hot star must be in eclipse. Later observations by Beer (1934)

and Guthnick (1934) showed the variation of the spectrum during the orbit, most

prominently the formation of narrow absorption features. This was interpreted by

Menzel (1936)1 as due to the hot star shining through thicker layers of the cool

star atmosphere as it is eclipsed by the cool star — a chromospheric eclipse. This

was likened by Menzel to “a planet setting in a smoky atmosphere, disappearing

as it reaches the horizon” (Griffin & Ake, 2015).

Along with ζ Aurigae two other systems displaying this type of eclipse, now col-

lectively referred to as ζ Aurigae binaries, were discovered, 31 & 32 Cyg (McLaugh-

lin, 1950a,b). Other objects have been added to this list subsequently, such as VV

Cep, τ Per, and 22 Vul. Despite their relative rarity, objects of this type have

offered unique and compelling insights, unavailable through the study of other

stars. As well the masses of the objects being available (due to their binarity),

the chromospheric eclipse effectively allows us to resolve the chromospheres of the

giants in these systems, and this provides the best available constraints on the

physical parameters of stellar atmospheres.

In this respect the eponymous ζ Aurigae system is particularly useful. The

object comprises a cool supergiant, ζ Aurgiae A (K4Ib), and a hot B-star, ζ

Aurgiae A (B5V). These objects are coeval, however ζ Aurgiae A, being more

massive, has evolved off the main sequence ahead of its counterpart. Schroder et al.

(1997) attempted to model the evolution of the system and found ζ Aurgiae A may

have debuted on the main-sequence as ∼ B3 object, however some ambiguity arose

due to the uncertainty in the mass ratio of the system.

The value of the system in providing insights into stellar atmospheres arises

from it being long observed, and having systemic parameters which are well-suited

to atmospheric study. In ζ Aurigae the B-star is comparable in size to the scale

height in the K-star chromosphere (H ∼ 1R�, RB = 5R�), and at ingress and

egress the B-star moves by approximately its own diameter each day, meaning that

nightly observing gives almost continuous coverage of the atmosphere with good

resolution.

1It is interesting to note that Menzel concludes this paper with a brief mention of the Si
emission line at λ3906 Å, the re-discovery of which is the topic of one chapter of this thesis.
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1.7 Thesis Overview

Beginning in the 1950’s with optical observations of Wilson & Abt (1954) and

Wright (1959) the inner chromospheres of these objects were studied, measuring

temperatures, turbulent velocities, and ionization balances as a function of height.

These observations pointed to an atmosphere which is anisotropic, or “clumpy”,

but (McKellar & Petrie, 1952) presented a lower-bound model which may underlie

the inhomogeneity. With the advent of IUE, and hence access to the intrinsically

stronger UV lines, the structure of the outer atmosphere could be also probed (see

the series “A study of UV spectra of ζ Aur/VV Cep systems” (Hempe, 1982)).

These observations yield information which allows us to determine parameters

with greatly superior accuracy than is the case for single stars, and the interest in

these objects is premised on the fact that the constraints derived from their study

are equally applicable to single stars. The ζ Aurigae binaries are detached objects,

which is to say that they do not interact by mass transfer, hence the evolution

of the primary should be unaffected by the secondary, a contention supported by

Schroder et al. (1997). Furthermore the observed spectrum of ζ Aurigae A appears

to be entirely analogous to the spectra of other objects of the same spectral type.

Over the course of this work we aim to keep in mind this connection, and to discuss

our results in the context of the atmospheres of single stars.

1.7 Thesis Overview

We have now introduced many of the basic concepts that will be discussed in

this thesis. In Chapter 2 we will derive the relevant equations and provide a

detailed description of the theory and underlying assumptions of the work under-

taken. This chapter will focus on discussion of the mathematics and computational

methods behind radiative transfer, while also discussing the physics of binary sys-

tems. Chapter 3 will contain a discussion of the instruments specific to this work,

giving a detailed description of their capabilities. We will focus particularly on

the Hubble Space Telescope, the Combined Array for Research in Millimetre-wave

Astronomy, and the Center for High Angular Resolution Astronomy.

In Chapter 4 we will present a simple model to compute an object’s thermal,

chromospheric mm-radio flux. This model is based on a number of simplifying

assumptions relating to the thermal structure and the extent of the chromosphere.
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1.7 Thesis Overview

This model is then compared with archival radio observations of stellar fluxes, as

well as solar radio observations. Finally the model is compared with high signal-

to-noise data collected by Eamon O’Gorman.1 Predictions are made for future

observations, and our model is confronted with the data as a test of the validity

of our assumptions.

In Chapter 5 we present the “re-discovery” of the phenomenon of periodic Si

emission in ζ Aurigae binaries. This emission is seen in a small number of lines of

neutral Si, and varies during the orbit of the star. A qualitative explanation of the

emission mechanism is provided. A detailed geometrical model of the ζ Aurigae

system is then undertaken and used to predict the expected phase variation of

reflection. This prediction is compared with the observed Si emission and found

to be in very good agreement. The possible uses of this novel, and potentially

powerful, diagnostic are discussed.

Chapter 6 builds on the work of the previous chapter, and we present a model

constructed for the chromosphere of the primary of ζ Aurigae. Despite the unique

insights afforded by the study of ζ Aurigae no full, semi-empirical chromospheric

model has been attempted for this object, and in this chapter we will discuss

the development of such a model. This model is developed with its relation to

single stars in mind, and the findings of this chapter are discussed in this context.

The model is also used to add somewhat more detail to our consideration of the

line-formation at play in the emission discussed in the previous chapter.

Finally, Chapter 7 will summarise the work undertaken in this thesis, drawing

together the various strands of the research to comment generally on the struc-

tures and extents of chromosphere. We will also discuss some future research and

observations which could build upon and complement this work.

1Onsala Space Observatory, Chalmers University of Technology
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2
Background & Theory

In this chapter we provide the background equations and theory relevant to un-

derstanding the research presented in later sections. We discuss the emission and

absorption mechanisms at play in stellar atmospheres. We begin with thermal and

non-thermal free-free emission, and the resultant radio spectrum. We then discuss

the formation of spectral lines in stellar atmospheres, with particular emphasis

on line-profiles and spectral density diagnostics. We discuss the approximate and

algorithmic solutions of the transfer equation and the equations of statistical equi-

librium. We devote some time to describing the Featurier method in some detail,

as we will return to it at a later stage, and we discuss the mathematics under-

lying the computational methods used to compute synthetic spectra. We discuss

the algorithms used to obtain solutions for the orbits of binary systems and the

calculation of synthetic light-curves.
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2.1 Absorption and Emission Mechanisms

2.1 Absorption and Emission Mechanisms

We will begin with a discussion of the radiation absorption and emission mech-

anisms at different wavelengths of the stellar spectrum. We can think of these

processes as falling broadly into two categories: those involving continuous or dis-

crete energy spectra. In the former category is what is known as free-free emission,

and in the later bound-bound and bound-free emission. We will discuss both in

turn.

2.1.1 Free-free absorption & emission

Free-free emission arises from the acceleration of a charged particle, most com-

monly an electron, and hence is referred to as bremsstrahlung, braking radiation.

This acceleration may be due to the electron’s interaction with matter, or its

deflection by an electric or magnetic field.

It is possible that coherent radiation may be produced by resonance with

wave-modes in the plasma; mechanisms known as plasma oscillation, and electron-

cyclotron emission. Plasma oscillations, also known as Langmuir waves, are caused

by the displacement of electrons in a plasma, which are then subject to a restoring

Coulomb force. From the equation of simple harmonic motion the frequency of

the oscillation, and hence the emission, can be shown to be (in the “cold” case):

νp =

√
nee2

πme

≈ 9000
√
ne [Hz] (2.1)

where ne is the electron density, e is the electron charge, and me is the elec-

tron mass. For a typical chromospheric electron density, ne ∼ 109 cm−3, we get

νp = 280 MHz. Electron-cyclotron emission arises from electrons spiralling around

magnetic field lines, and has a frequency, often known as the gyro-frequency, of

νgyro =
eB

2πme

= 2.8B [MHz] (2.2)

where B is the magnetic field density measured in Gauss. For field strengths typical

of cool stars (Sennhauser & Berdyugina, 2011), we would expect νgyro ∼ 50 MHz.
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2.1 Absorption and Emission Mechanisms

Figure 2.1: Emission produced by the deflection of an electron by Coulomb inter-
action with a nucleus.

Non-equilibrium electron distributions may produce similar emission by three-wave

interaction bringing about plasma emission (Robinson, 1993).

Of greater relevance to this work is non-coherent, thermal free-free emission.

This emission occurs a a result of the deflection of electrons by ions, as can be seen

in Fig. 2.1. In the relatively rarefied environment of stellar atmospheres small-

anlge deflections, with high impact parameters, dominate the emission, and as a

result can be computed without recourse to quantum mechanics. The emission,

εff (dEdtdν), is (see Rybicki & Lightman (1979) and Hubeny & Mihalas (2014)):

εff =
32π2e6

3
√

3c3m2
e

√
2me

πkB
Z2neniT

−1/2e−hν/kBTgff [erg/cm3/s/Hz] (2.3)

Where Z is the ion charge, and gff is the free-free Gaunt factor, a quantum

mechanical correction factor. This is a function of temperature and frequency, and

is tabulated in Karzas & Latter (1961). In the notation of the transfer equation

derived in Chapter 1, the traditional notation for astrophysics, ηff = εff/4π.

Since free-free absorption, χff , and emission are collisional processes they oc-

cur at LTE rates, and hence are related by Kirchoff’s law1 to the LTE intensity,

1The energy absorbed is balanced by that emitted at all frequencies
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2.1 Absorption and Emission Mechanisms

Planck’s Law, Bν :

Bν =
ηff
χff

=
2hν3

c2

1

ehν/kBT − 1
(2.4)

χff =

√
32πe6

3
√

3ch
√
kBm3

e

Z2nenigff√
Tν3

(1− e−hν/kBT ) (2.5)

With these values defined we can now use the equation of radiative transfer

∂Iν
∂s

= ην − χνIν (2.6)

In thermodynamic equilibrium, which is a valid approximation for free-free

emission in an optically thick slab, the intensity is constant, hence

Iν =
ηff
χff

= Sν = Bν (2.7)

Free-free emission falls-off exponentially at high frequencies, hence we are only

interested in low frequency, radio wavelengths. As a result we can use the Rayleigh-

Jeans law in place of Planck’s Law

Bν =
2ν2kBT

c2
(2.8)

In radio astronomy the temperature which produces a given intensity is referred

to as the brightness temperature, TBr, and we will frequently use this as a direct

proxy for intensity1.

We can now solve the transfer equation in this relatively simple case.

∂Iν
∂τν

= Iν − Sν (2.9)

This equation has the solution

Iν(0) = Iν(z)e−τν +

0∫
τ(z)

Sνe
−τνdτ (2.10)

1There is no requirement that TBr be reflective of the thermodynamic temperature of an ob-
ject. In the case of non-thermal emission TBr is still often used, despite there being no physically
meaningful sense in which the brightness has a related temperature.
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2.2 Bound-bound Absorption and Emission

which has the physical interpretation of the first term being radiation shining

through the medium, and the second being the radiation produced in the medium

(this is for a single ray, passing through a semi-infinite slab). In the thermal

equilibrium case, where the ηff and χff are constant through the medium, and

writing in terms of brightness temperature rather than intensity,

Tb = Te(1− e−τν ) (2.11)

where Te is the electron temperature throughout the medium. In the case that the

medium is optically thick TBr = Te, and in the case that the medium is optically

thin TBr = τνTe.

From this we can define a spectral index,

α =
d log10(Fν)

d log10(ν)
(2.12)

which is the slope of the flux-frequency power-law. For instance, in the optically

thick case the flux will clearly follow the frequency dependence of the Rayleigh-

Jeans law, hence α = 2. In the optically thin case, given no background illumina-

tion, the flux will follow the frequency dependence of the Gaunt factor, α ≈ −0.1.

By measuring the flux at multiple frequencies it is possible to compute the spec-

tral index, which has the power to differentiate between optically thin and thick

emitting regions, and hence to help diagnose the properties of the medium.

In Chapter 3 of this work we will present a simple radio flux model, designed to

predict the thermal, free-free emission from stellar chromospheres. In this chapter

the concepts introduced here will be expanded upon and used practically in an

attempt to determine the temperature structure of the chromosphere.

2.2 Bound-bound Absorption and Emission

In this section we will discuss bound-bound emission and absorption, and the

formation and shape of spectral lines. As an introduction to this discussion we

will begin with a description of the quantum structure of atoms.
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2.2 Bound-bound Absorption and Emission

2.2.1 Atomic Structure

Electrons form an organized structure when bound by the attractive potential of

an atomic nucleus. The bound electron is described by 4 numbers, arising from

the solutions of the Schrödinger wave equation (Pradhan & Nahar, 2011). These

being quantum mechanical properties they can only hold discrete, quantised values,

and the Pauli Exclusion Principle states that no two electrons can have the same

quantum numbers. These four numbers are:

• Principal quantum number (n), describes the energy level, or shell (as in-

creasing n corresponds to increasing distance from the nucleus), of the elec-

tron. A value n corresponds to the nth eigenvalue of the Hamiltonian, i.e.

the energy. In a hydrogenic system:

∆E = R∞Z
2

(
1

n2
1

− 1

n2
2

)
(2.13)

where ∆E is the energy difference between states n1 and n2, and R∞ is

Rydberg’s constant. The statistical weight for the level, degeneracy, n, is

given by 2n2.

• Azimuthal quantum number (l), gives the quantised orbital angular momen-

tum

L2 = ~l(l + 1) (2.14)

where L is the total angular momentum, and ~ is the reduced Planck con-

stant. l varies from 0 to n − 1. This number describes the shape of the

atomic orbital, and they are labelled with the letters, s, p, d, f...

• Magnetic quantum number (ml), is thought of as the orientation of the sub-

shell’s shape, the projection of the angular momentum in given direction. It

varies from −l to l in integer steps. Hence there are 2l+ 1 available orienta-

tions to a subshell. The magnetic quantum number determines the shift of

an atomic orbital when in the presence of an external magnetic field.

• Spin quantum number (ms), is the final quantum number, proposed by Pauli,

and is related to the spin of the electron, an intrinsic property like mass or
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2.2 Bound-bound Absorption and Emission

charge. ms will vary from −s to s, where s is the electron spin, 1/2, hence

ms = (−1/2, 1/2).

From these quantum numbers we define auxiliary values. The parity of a level

π = (−1)Σili =


even if + 1

odd if − 1

(2.15)

which describes the behaviour of the wavefunction under reflection. Typically odd

parity is denoted with a superscript ’o’, and even a superscript ’e’.

In atoms of Z < 40 (all atoms of astrophysical interest to this work), electron

spins interact among themselves and combine to form a total spin S. We can also

compute the total spin,

S = |
∑
i

si| (2.16)

s = ±1/2 for each electron, hence a closed shell has S = 0, and S will be an

integer for an even number of electrons, or half integer for an odd number. The

multiplicity here, 2S + 1, gives rise to multiplets, e.g. singlets (S = 0), doublets

(S = 1/2), etc.

Finally we compute the total angular momentum. The interaction between

the quantum numbers L and S is called Russell-Saunders coupling or LS coupling,

where L and S couple to give J

J = L+ S (2.17)

For electrons s = 1/2, and hence J , being a vector sum, will have value J =

l ± 1/2 for a single outer shell electron. This has the effect of splitting into spin-

aligned and spin-antialigned states that would otherwise be degenerate, known as

fine-structure levels. In addition to fine-structure, hyperfine-structure levels also

emerge, as a result of the relative spin orientation of the nucleus and the electron,

causing a magnetic interaction. In the 1s state of hydrogen, in the higher energy

state, the proton and electron are spin-aligned, and hence their magnetic moments

are antialigned. A spin flip transition may occur, where the spins spontaneously

align, this emits a photon with a wavelength of 21.1 cm. This transition has a very
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low probability, but owing to the abundance of neutral hydrogen the line is easily

observed in the interstellar medium (Ewen & Purcell, 1951).

From these atomic numbers we can construct the electronic configuration, as

written in spectroscopic notation. For instance carbon, consisting of 6 electrons,

has a ground state configuration of 1s22s22p2 denoting 2 electrons in 1s shell, and

two electrons in each of the two subshells of the second shell.

In general the outer most electron is the one with which we will be concerned,

and so we look at the term notation which is used to describe it. This term

notation is of the form,

n2S+1LπJ (2.18)

Taking an outer electron configuration in C II, which we will encounter later,

as an example: 2s22p 2Po
1/2. This corresponds to two electrons in the n = 2; l = 0

orbital, with one in the n = 2; l = 1 orbital. This orbital has a total spin of

S = 1/2 (as there is one electron), a total orbital angular momentum of L = 1,

an odd parity, and a total angular momentum of J = 1/2 (the electron spin is

s = −1/2). This is hence a doublet (S = 1/2), as it is also possible for the

electron to have spin s = 1/2, and the term be 2s22p 2Po
3/2.

Now that we have introduced the notation used to designate the bound states

of an atom/electron system, we will now discuss transitions between these states.

2.2.2 Transitions

As electrons transition from higher to lower energy bound states they emit pho-

tons, carrying away the energy excess. This process gives rise to emission at

discrete frequencies corresponding to the energy separation of the bound states,

the spectral line emission spectrum unique to each atomic system. There are a set

of selection rules which determine the probability of a transition occurring, these

rules arising from the overlap of the wavefunctions of the initial and final states.

The transition moment integral is zero, the transition is forbidden, if the transition

moment function is odd, and this can be determined from examining the quantum

numbers of the states. The rules for LS coupling are (Kramida et al., 2015);

1. Change in parity.
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2. ∆J = 0, ±1; except 0↔ 0

3. ∆
∑ |l ± s| = 0, ±1; except 0↔ 0 ∧∆J = 0

4. ∆l = ±1.

5. ∆S = 0

6. ∆L = 0, ±1

Transition which satisfy these conditions are said to be allowed, and those

which do not are “forbidden”. These selection rules apply for electric dipole tran-

sitions, but may be violated for electric quadrupole and magnetic dipole transitions

(confusingly referred to as both intersystem and intercombination lines depend-

ing on the author), in which case the transition will occur, but with far lower

(∼ 10−5) probability than an allowed transition. Semi-forbidden transitions are

electric dipole transitions for which the selection rule that the spin does not change

is violated (rule 5 above). In this work forbidden transitions are denoted by double

square brackets (i.e. [O III]), and semi-forbidden by a single square bracket (i.e.

O II]).

In two papers Einstein (1916a,b) (Hubeny & Mihalas, 2014) demonstrated that

three different transition processes occur in bound atomic systems, and provided

a probability coefficient for each — now known as the Einstein coefficients.

Consider two bound states, i and j, with Ei < Ej, and statistical weights gi and

gj (this is the number of energetically degenerate states, for hydrogen g = 2J +

1). There are three possible radiative processes which these states can undergo;

spontaneous decay from the higher energy level to the lower, photo-excitation from

the lower to the higher, and stimulated decay from the higher to the lower.

Taking these in turn, the spontaneous decay rate is

dnj
dt

= −njAji (2.19)

where Aji is the probability of decay (s−1) and nj is the population of the level.

The rate of photo-excitation is given by

dni
dt

= niBijIν (2.20)
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where Bij is the rate of photon absorption (erg−1/cm−3/s2) which is the probability

of absorption per unit time per unit spectral energy density of the radiation field

(here ν = (Ej − Ei)/h).

Finally, the rate of stimulated emission (negative absorption), can be written

as
dnj
dt

= njBjiIν (2.21)

where Bij is the induced emission probability (erg−1/cm−3/s2). A photon with

the same energy as the transition can affect the quantum mechanical state of the

electron in the upper state, causing the emission of an identical photon (since

photons are integer spin bosons and not bound by the Pauli Exclusion Principle.)

The Principle of Detailed Balance demands that these three rates balance one

another,

niBijIν = nj(Aji +BjiIν) (2.22)

Iν =
Aji/Bji

(niBij/njBji)− 1
(2.23)

Setting Iν to its equilibrium value, the Planck function, and using Maxwell-

Boltzmann statistics for the level populations, we get

Bij =
gj
gi
Bji (2.24)

Aji =
2hν3

c2
Bji (2.25)

Though we have derived these ratios based on arguments stemming from sta-

tistical mechanics of a photon gas in thermodynamic equilibrium, it can be shown

(and in Hubeny & Mihalas (2014) a rigorous derivation is provided), that the Ein-

stein coefficients rely solely on the quantum mechanical properties of the initial

and final states, and hence these ratios hold in all cases.

If we were to model this emission as being due to a classical oscillator (assuming

an electron bound by a potential, driven by an oscillating electric field) there would

be a single cross-section for all transitions, σclassical = πe2/mc. In reality, as we

have seen, the absorption probability, Bij, is related to the quantum mechanical

properties of the bound state. It is convenient to write the cross-section in terms
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of a classical oscillator strength, called the f-value

σij =
πe2

mc
fij =

hνij
4π

Bij (2.26)

The oscillator strength is a useful quantity as it will be approximately unity

for strong (allowed) transitions, and far smaller for weaker ones.1

We must also compute the rate of transitions due to collisions with electrons.

To compute the collisional excitation rates, a commonly used method is that of

van Regemorter (1962), which expresses the collisional cross-section (integrated

over a Maxwellian velocity distribution) for a dipole-permitted transition in terms

of the oscillator strength,

qij(T ) = C0T
1/214.5fij

(
EH
Eij

)2

u0e
−u0Γ(u0) (2.27)

where

Γ(u0) = max[ḡ, 0.276eu0E1(u0)] (2.28)

Where C0 = πa2
0(8kb/mπ)1/2, EH is the ionization energy of hydrogen, Eij is the

energy of the level, u0 = Eij/kbT , ḡ is the effective Gaunt coefficient, and E1 is

the first exponential integral.

From this we can compute the collisional excitation, and hence the de-excitation

rates from detailed balance:2

Cij = neqij(T ) (2.29)

Cji =

(
ni
nj

)LTE

neqij(T ) (2.30)

2.2.2.1 Line Profiles

In our discussion to this point we have glossed over the fact that atomic line

transitions are not infinitely sharp δ-functions, but are in fact spread out in en-

ergy (wavelength). By studying shape of spectral lines, the line profile, we can

determine the properties of the medium in which the lines formed.

1An emission oscillator strength, fji, can be written as fji = fij(gi/gj)
2This amounts to saying that the collision strengths are symmetric.
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2.2 Bound-bound Absorption and Emission

The shape of a line profile is determined by two factors: the atomic param-

eters of the transition and the macroscopic conditions under which the line was

formed. Spontaneous de-excitation limits the lifetime of an excited state and there-

fore causes an uncertainty in the energy of a photon emitted from a transition,

according to the Heisenberg Uncertainty Principle, ∆E∆t ≥ ~/2. This is called

natural broadening. A single atom’s profile is also broadened by collisions. For a

high density plasma, radiative timescales can be much greater than the interval

between atomic collisions, and hence perturbations may initiate a transition. The

decreased lifetime of the state causes an increased uncertainty in photon energy,

broadening the emission line. These effects lead to a Lorentzian profile.

φlorentz(ν) =
Aji/2π

(ν − ν0)2 + (Aji/2)2
(2.31)

Here ν is the independent variable and ν0 is the centre of the profile. This formu-

lation contains a number of assumptions. It is only accurate in the case that the

only transition from j is to i, when stimulated emission is ignored, and when the

i level has an infinite lifetime. The first assumption can be addressed by replacing

Aji with the sum of all A’s out of the level, the second by adding the stimulated

emission term to the A’s (though stimulated emission will be negligible in our

work, for the most part). The final assumption, of an infinite lifetime for level i,

will be addressed later in this section.

Next consider the profile from an ensemble of atoms. These atoms will have a

range of velocities given by the Maxwell-Boltzmann Distribution, and this distri-

bution of velocities will broaden the line due to the Doppler effect. This will lead

to a Gaussian profile, as the probability that an atom has a velocity in the range

(v, v + dv) is

W (v)dv =
e−(v/v0)2

√
π

dv

v0

(2.32)

where v0 = (2kBT/m)1/2. Hence the observed line profile will be the Lorentzian

profile intrinsic to each atom, convolved with the Doppler shifted profile of all of

the atoms:

φ(ν) =

∞∫
0

φL[ν(1− v/c)]W (v)dv (2.33)
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2.2 Bound-bound Absorption and Emission

Figure 2.2: The convolution of a Gaussian and a Lorentzian, giving the Voigt
profile. We can see that the core is primarily Gaussian, with the extended wings
due to the Lorentzian Image Credit: (Schreier, 2009).

From this we can determine the profile to be

φ(ν) =

√
πe2

mcvD

fijH(a, x) (2.34)

H(a, x) =
a

π

∫ ∞
−∞

e−y
2

(x− y)2 + a2
dy (2.35)

Here we have defined a number of new variables, vD = v0ν0/c (the Doppler

velocity), a = Aji/4πvD, x = (ν − ν0)/vD, y = v/vD. H(a, x) is the convolution of

a Gaussian and a Lorentzian profile, known as a Voigt profile (Fig. 2.2.)

To this point we have made the assumption that when a photon excites a

transition from one state to another, and when another photon is emitted by the

de-excitation, this photon is redistributed randomly across the line profile; that

is to say the scattering is completely incoherent, there is no correlation between

the incoming photon and the outgoing photon. This is known as Complete Re-

distribution (CRD), and is a valid assumption for the majority of spectral lines.
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2.2 Bound-bound Absorption and Emission

This assumption is invalid, however, for strong resonance transitions in low den-

sity plasma, where there is no requirement that the emission and absorption line

profiles have the same shape.

Following Hummer (1962), there are four standard atom-frame redistribution

functions1, and I will discuss them in turn.

In this discussion we will make use of the frequency redistribution function,

p(ν, ν ′), which gives the probability that a photon absorbed in the the frequency

increment (ν, ν + ∆ν) is scattered into the range (ν ′, ν ′ + ∆ν ′). We will also use

the angle scattering function g(n, n′), which gives the probability that a photon

coming from the solid angle dω around the direction n is scattered into the solid

angle dω′ around the direction n′ (g(n, n′) = 1 for isotropic emission). Hence

the probability that a photon (ν, n) is absorbed and redistributed to (ν ′, n′) is

φ(ν)p(ν, ν ′)g(n, n′)dνdν ′(dω/4π)(dω′/4π).

Qualitatively, the four2 redistribution functions are

• Case I: Perfectly sharp upper and lower levels, where φ(ν) and p(ν, ν ′) are

both δ-functions. In this case there can be no redistribution in the atom

frame, and so the only redistribution seen will be from the Doppler effect.

• Case II: Describes a perfectly sharp lower state and an upper state broadened

by the uncertainty relation (a Lorentzian profile), but without redistribution;

the scattered photon is emitted at the same frequency at which it is absorbed,

p(ν, ν ′) = δ(ν − ν ′). This function applies in the case of low density plasma,

such as the hydrogen of the interstellar medium.

• Case III: Describes the case of a sharp lower level and a broadened upper

state, in a medium where collisions are frequent enough that photons are

redistributed completely, with no correlation to their absorption frequency.

In this case p(ν, ν ′) = φ(ν ′)dν ′, which is to say that the probability has the

1These redistribution functions must be convolved with a Maxwell-Boltzmann distribution
to take account of Doppler shifting, yielding the lab-frame redistribution function.

2Owing to an inconsistency in the fourth redistribution function an incorrect form was
adopted in the literature, and after some confusion, a corrected form was introduced and called
Case V. Since we will not be particularly concerned with Case IV/V in this work we will not
discuss this any further than to draw attention to it.
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2.2 Bound-bound Absorption and Emission

same shape as the emission line profile and is independent of the incoming

photon frequency. From this we can recover the well-known result, that the

probability of absorbing a photon at ν and emitting it at ν ′ is simply the

product of the emission and absorption line profiles; φ(ν)φ(ν ′).

• Case IV: In this case both the upper and lower level are broadened, and this

leads to the most complex redistribution function (Heitler, 1954; Weisskopf,

1933). In simple terms this redistribution function provides two peaks; one

due to absorptions at line-centre to some part of the upper level followed by

de-excitation back to the centre of the lower level (hence ν = ν ′), the other

due peak being at line-centre, due to the high probability of de-excitation to

line-centre.

Cases II and III are the cases which are of greatest astrophysical interest, as it

was shown by Zanstra (1941) and Omont et al. (1972), that from these (physically,

if not mathematically) uncomplicated components it is possible to construct the

redistribution function as it applies to a line under Partial Redistribution (PRD).

PRD allows that, for broad transitions, different mechanisms dominate the

emission profile at different frequencies. In other words, the probability distribu-

tion of photon emission is a function of absorption frequency. In the core of a

spectral line formed in a stellar atmosphere Doppler redistribution is dominant, as

it is in CRD. In the inner wings we observe essentially coherent scattering, as this

part of the line emerges from high in the atmosphere where low densities ensure

that the radiative damping factor exceeds collisional damping. In the outer line

wings, formed deep in the atmosphere, collisional redistribution dominates. In the

solar case, the Ly-α, Mg II h & k, and Ca II H & K lines all display PRD effects

(Hubený, 1981, 1985). For instance, the assumption of PRD is required to explain

the observed centre-to-limb variation of the Ca II K line (Shine et al., 1975).

For the most part we will be interested in lines whose upper levels have been

broadened by both natural broadening and collisions, as described by Cases II &

III, 1 with damping widths (probability of leaving the state radiatively or collision-

1You will note that this does assume a sharp lower level. Most lines requiring PRD treatment
are resonance transitions to the ground state, which having an effectively infinite lifetime, will
be sharp, so our assumption is apt.
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2.2 Bound-bound Absorption and Emission

ally) Aji and Cji. We would expect a fraction, γ, of the atoms to decay radiatively,

and hence emit coherently in the atom frame, and hence 1− γ to suffer collisions

and be redistributed, where

γ =
Aji + Cji

Aji + Cji +QE

(2.36)

where QE is the rate of elastic collisions, i.e. transitions to another sub-level of

the upper level.

Hence the redistribution function will be

R(ν, ν ′) = γRII(ν, ν
′) + (1− γ)RIII(ν, ν

′) (2.37)

R(ν, ν ′) ≈ γRII(ν, ν
′) + (1− γ)φ(ν)φ(ν ′) (2.38)

where the second formulation assumes that CRD in the atom frame causes CRD

in the observer’s frame.

In the frame of the observer the explicit redistribution functions are

RII(x, n;x′, n′) =
g(n, n′)

π sin θ
e−

1
4

(x′−x)2 csc2(θ/2)H(a sec(θ/2), 1/2(x′ + x) sec(θ/2))

(2.39)

RIII(x, n;x′, n′) =

g(n, n′)

π
a csc θ

∫ ∞
−∞

e−u
2
H(a csc θ, x′ csc θ − u cot θ)

(x− u)2 + a2
du (2.40)

where a = γ/vD, cos θ = n · n′, and u = (m/2kBT )1/2v. RIII , despite representing

coherent scattering in the atom frame, can not be decomposed into simple functions

in the lab frame, and hence must be computed by numerical integration.

Finally we will examine the process of Cross Redistribution (known as XRD).

Take for instance a three-level atom with a metastable state between the ground-

state and the upper level. In this configuration there is a probability that an

electron will be excited from the ground-state to the broadened upper level, before

de-exciting to the metastable level. A schematic of one possible form of XRD can

be seen in Fig. 2.3. This is also known as resonance Raman scattering, and it

creates a correlation between the absorbed photon and the photon emitted in the
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Lower level

Incoming Photon

Upper Level

Metastable state

Outgoing 
   Photon

Figure 2.3: The energy level schematic of a type of XRD interaction, showing
excitation to a broadened upper level followed by de-excitation to a metastable
level.

subordinate line. The associated redistribution function was provided by Milkey

et al. (1975).

R(ν, ν ′) = γRX(ν, ν ′) + (1− γ)RIII(ν, ν
′) (2.41)

where, as distinct to the previous case, ν and ν ′ belong to different lines.

RX(ν, ν ′) =
π−3/2

vDv′D

∫ ∞
umin

eu
2

(
tan−1

(
ymax
β

)
− tan−1

(
ymax
β

))
du (2.42)

where

ymin = max(ν − vDu, ν − v′Du) (2.43)

ymax = min(ν + vDu, ν + v′Du) (2.44)

umin =
|ν − ν ′|
vD + v′D

(2.45)

The variables marked with a prime are associated with the outgoing photon, and

hence the subordinate level.

As a result of energy conservation, the wavelength of the emitted photon will
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2.2 Bound-bound Absorption and Emission

be related to that of the incident photon by the relationship:

∆λi
λi

=
λi
λo

∆λo
λo

(2.46)

where ∆λi is the variation in the incident radiation corresponding to a variation

in the outgoing radiation of ∆λo (Lee et al., 2003).

2.2.3 Bound-Free Transitions

Finally, we discuss transitions where the electron receives sufficient energy to lift

it from the potential well of the atom to the continuum of free states. This can

happen by the absorption of a photon of sufficient energy, or by collision with a

free electron.

The cross-section for photon absorption was computed by extension of the dis-

crete principal quantum number system to continuous, imaginary quantum num-

bers which accounted for the free states. Menzel & Pekeris (1935) provided an

expression for the bound-free cross-section

σbf (n, ν) =
64π2Z4e10me

3
√

3ch6

gbf (n, ν)

n5ν3
(2.47)

where gbf (n, ν) is the bound-free Gaunt factor, as tabulated in Karzas & Latter

(1961). The inverse process is electron-ion recombination, wherein a free electron

is captured by an ion, emitting a photon. As before we can relate the cross-sections

of these inverse processes by the principle of detailed balance

σbf
gj
p2
e

= σrc
gs
p2
hν

(2.48)

where gj is the statistical weight of the state being photoionised, and gs is the

statistical weight of the recombined state, phν is the photon momentum (phν =

(I+ε)/c where I is the ionization energy, and ε is the excess), and pe = mv =
√

2mε

is the electron momentum. Hence

σrc = σbf
gj
gs

(I + ε)2

2mc2ε
(2.49)
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This is known as the Milne relation.1 From these cross-sections the total bound-

free rates can be determined, however, this involves integrating over all atomic

states, in practice this is instead done by the R-matrix method. Seaton (1959)

provided an analytic method for performing this calculation for hydrogenic atoms,

and his result will be discussed in the closing sections of this thesis.

For collisions it is possible to compute the rate of ionizing collisions by another

expression provided by Seaton (Bates, 1962; Hubeny & Mihalas, 2014)

qik = 1.55× 1013T−1/2ḡiσik(ν0)

(
e−u0

u0

)
(2.50)

where σbf (ν0) is the threshold photoionization cross-section, and ḡi is the Gaunt

factor for an ion of given charge which of order 0.1 for Z = 1, and 0.2 for Z = 2.

2.3 Rate Equations

Now that we have defined the transitions into and out of bound atomic states we

can construct a set of rate equations which govern these transitions. The total

probability of a transition from one level to another is given by,

Pij = Rij + Cij (2.51)

where Rij is the total rate due to radiative processes, and Cij the total rate due

to collisional processes. Rij can be written as follows

Rij = Bij

∫ ∞
0

φ(ν)Jνdν Ei < Ej (2.52)

Rji = Aji +Bji

∫ ∞
0

φ(ν)Jνdν Ej < Ei (2.53)

Rik =
4π

hν

∫ ∞
ν0

σbfJνdν i→ k (contiuum) (2.54)

where Jν is the mean intensity

Jν =
1

4π

∮
Iνdω (2.55)

1Interestingly Milne’s results on bound-free transitions are quantum mechanically correct,
despite being developed before quantum theory.
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In general
∂ni
∂t

+∇ · (niv) =
∑
j 6=i

njPji − ni
∑
j 6=i

Pij (2.56)

which states that the time-variance of the population (Term 1, RHS) plus the

spatial gradient due to velocity (Term 2, RHS), must be balanced by the rate out

of each level (Term 1, LHS) minus the rate into each level (Term 2, LHS). For the

problems tackled in this work, which are time-independent and static, the equation

simplifies to ∑
j 6=i

njPji − ni
∑
j 6=i

Pij = 0 (2.57)

which is the equation of detailed balance, stating that the rates into and out of the

levels must balance in aggregate. For N possible transitions we will have N − 1

linearly independent equations, as the information in the last equation will have

been accounted for in the equations for previous levels. Hence we replace one of

the equations with the expression for the total number density of the atom

ntot =
N∑
j=1

nj (2.58)

These equations can be, and usually are, written in matrix form

A · n = b (2.59)

where A is the rate matrix, n is the vector of the level populations, and b is the

vector solution. Explicitly

−ΣjP0j P10 P20 . . . PN0

P01 −ΣjP1j P21 . . . PN1

...
...

...
...

...

1 1 1 . . . 1





n0

n1

...

nN


=



0

0

...

ntot


Using this rate equation notation we will examine one case in detail, that of a

density sensitive diagnostic.
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Figure 2.4: Transitions in a three and four level atomic systems. Image adapted
from Mariska (1992)

2.3.1 Density Sensitive Transitions

Of great importance to this work is the use of density-sensitive transitions. These

transitions provide powerful insights, as they allow us to directly diagnose the

properties of the line-forming region by careful attention to the ratios of lines

formed from common upper and lower levels. Furthermore these diagnostics do

not require any assumptions regarding the properties of the atmosphere, being

solely dependent on the measured flux and the atomic structure of the system.

These density-sensitive lines arise in three (and more) level systems, wherein

there are both allowed, and intercombination or forbidden transitions (electric

dipole, and electric quadrupole or magnetic dipole transitions). In these systems,
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the levels are populated collisionally, with the allowed transition depopulating one

level by radiative decay (the coronal approximation), and the other being depop-

ulated by radiative transition (with far lower probability, due to being forbidden)

and collisions. Hence the ratio of these lines will be dependent on the density,

through the collisional rates.

In the simplest three level case, we can construct the following rate equations

for levels 2 and 3:

n2A21 = n1neC12 + n3(A32 + neC32) (2.60)

n3(A31+A32 + neC31 + neC32) = n1neC13 (2.61)

where this assumes that level 2 is collisionally populated by level 1 (as well as being

populated from level 3), and radiatively decays to level 1. Level 3 depopulates to

all levels, but is only populated by collisions from the level 1. The ratio of these

populations is
n3

n2

=
C13A21

C12(A31 + neC31)
(2.62)

The flux from these (optically thin) lines will be Fν ∝ hνjinjAji, and hence the

line ratios from the two spontaneous transitions will be

R31/21 =
n3A31

n2A21

(2.63)

→ R31/21 =
C13A31

C12(A31 + neC31)
(2.64)

If neC31 << A31 the ratio reduces to C13/C12, however this ratio is inversely

proportional ne for sufficiently large densities.

In the slightly more complex four level case we can construct similar statistical

equilibrium equations, however for compactness of notation we will use the rate

matrix to express this:
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

−neΣjC1j A21 + neC21 A31 A41

−neC13 −neC23 A32 + A31 0

−neC14 neC24 0 A42 + A41

1 1 1 1





n0

n1

n3

n4


=



0

0

0

ntot


The benefit of this notation is that the coupling of the levels can be seen clearly,

simply by examining the structure of the matrix. Levels 3 and 4 are collisionally

populated by, and radiatively depopulated to, levels 1 and 2 (a simple extension

of the previous case). As we can see from the zeros, these levels are not coupled

to one another.

The line ratio of the two radiative transitions to the lower doublet is

R42/31 =
n4A42

n3A31

(2.65)

Which, by the same analysis as above, becomes

R42/31 =
A42

A4tot
(C14 + (n2/n1)C24)

A31

A3tot
(C13 + (n2/n1)C23)

(2.66)

n2

n1

=
ΣjC1j − A31

A3tot
C13 − A42

A4tot
C14

A21/ne + C21 + C23
A31

A3tot
+ A41

A4tot
C24

(2.67)

where Ajtot is the total radiative rate out of level j. Again, this ratio is density

sensitive

In this work we will primarily be concerned with the density sensitivity of lines

in the (Boron I–like) multiplet 2s22p2 2P — 2s22p2 4P, which has been frequently

used as a diagnostic of the solar atmosphere (N III and O IV (Feldman & Doschek,

1979; Flower & Nussbaumer, 1975)). Specifically, we will make use of the C II]

2325Å quintet lines (Stencel et al., 1981). Despite being comprised of 5 levels, the

density-sensitive ratios which emerge can be written using the expressions we have

derived here. Owing to the forbidden transition in the system, one of the ratios

(R3) effectively emerges from a four level sub-system, and hence is described by

the equation above. The others (R1 and R2) can be written using a very similar
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expression, requiring one extra term, derived by exactly the same method as above,

R1 =
n5A52

n3A31

(2.68)

n5

n3

=
C15 + C25

n2

n1

A52

A3tot

C13 + C23
n2

n1

(2.69)

n2

n1

=
A12/ne + C12 + C13

A32

A3tot
+ A42

A4tot
C14

ΣjC2j − A32

A3tot
C23 − A43

A4tot
C24

(2.70)

In Chapter 6 we will discuss this system in detail, and make use of this diagnos-

tic to determine the thermodynamic properties of the chromosphere of ζ Aurigae

A.

2.4 Solving the Transfer Problem

Now that we have discussed bound states and the equations of statistical equi-

librium we will return to the transfer equation and describe how a self-consistent

solution to this combined system of equations can be found. Beginning with the

transfer equation as derived, we proceed to split the emissivity and the absorptivity

into two components each

χν = χabs
ν + χscat

ν (2.71)

ην = ηemis
ν + χscat

ν (2.72)

The absorptivity has two components, absorption and scattering, the emissivity

is split into two terms, the emission and the scattering. Using these expressions

for the source function

Sν =
ηemis
ν + χscat

ν

χabs
ν + χscat

ν

(2.73)

Here we will define a new concept, the photon destruction probability

εν =
χabs
ν

χabs
ν + χscat

ν

(2.74)

This is the probability that a photon which is absorbed not be re-emitted, and so
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is converted to thermal energy. From this we get

Sν = εν
ηemis
ν

χabs
ν

+ (1− εν)
ηscat
ν

χscat
ν

(2.75)

For isotropic scattering ηscat
ν /χscat

ν = Jν . If the emission is thermal then

ηemis
ν /χabs

ν = Bν(T ). Hence we can write the transfer equation as

∂Iν
∂τν

= ενBν(T ) + (1− ε)Jν − Iν (2.76)

Now we introduce the Lambda Operator1 (Cannon, 1973)

Jν = Λ[Sν ] (2.77)

Λ[Sν ] =
1

2

∫ ∞
0

SνE1|t− τ |dt (2.78)

where E1 is the first exponential integral. From this operator we construct the

Lambda Iteration,

Sn+1
ν = ενBν(T ) + (1− εν)Λ[Snν ] (2.79)

This is the simplest form of the Lambda Iteration, where we successively apply

the operation until we reach convergence of the source function. This iterative

process of back-substitution of the previous iterate is referred to as a first-order,

relaxation method, and this method will converge extremely slowly. Each iteration

corresponds to the photons moving by one mean free path in the medium, and,

in a medium of high optical depth and low photon destruction probability (high

thermalization length) many iterations are required. This method can be vastly

improved upon by what is known as the Accelerated Lambda Iteration (ALI). In

order to see how this method can be employed we will recast the Lambda Iteration

as a matrix operation, dropping the subscripts for notational convenience,

Sn+1 = εB + (1− ε)ΛSn (2.80)

where Λ is a matrix whose elements determine the coupling between each point

(i.e. a function of optical depth). This equation is identical to the previous integral

1This is the angle-integrated Lambda Operator
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formalism, and again will converge very slowly in the (standard) case that ε <<

1, where a photon may undergo a long chain of consecutive scatterings and a

correspondingly large number of iterations are required. We can solve directly for

S

S = [1− (1− ε)Λ]−1εB (2.81)

however performing this operation requires inverting the Λ matrix, which is im-

practical.

At this point we introduce a method known as operator splitting. This method

has a long mathematical history and was introduced into the field of radiative

transfer in a very important paper by Olson et al. (1986), often referred to as

OAB.

Λ = (Λ−Λ∗) + Λ∗ (2.82)

where Λ∗ is an approximate Lambda operator with an easily computable inverse.

Hence we arrive at

Sn+1 = [1− (1− ε)Λ∗]−1[εB + (1− ε)(Λ−Λ∗)Sn] (2.83)

where, as we can see, the only inverse to be computed is the (computationally

inexpensive) inverse of the approximate operator.

We can cast this equation in a somewhat different form by the introduction

of a new source function, obtained from the old source function (known as the

Formal Solution source function)

SFS = εB + (1− ε)ΛSn (2.84)

This definition provides a new way to write the iteration scheme, and hence a

new insight into its structure,

δSn = Sn+1 − Sn = [1− (1− ε)Λ∗]−1[SFS − Sn] (2.85)

We can see from this equation that the factor which determines the iterative

change is the difference between the old source function and the source function

determined from the formal solution, and the iteration is accelerated by the [1 −
(1− ε)Λ∗]−1 factor. We note at this point that there is nothing significant about
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applying this operation to the source function, a similar scheme could be a applied

to the mean intensity.

Despite the fact that we are using an approximate operator it is clear from

Eqn. 2.83 that a converged solution will be exact. If we set Λ∗ = 0 then we will

recover the original Lambda Iteration, and Λ∗ = Λ will provide the exact solution,

at the expense of the costly matrix inversion.

The selection of an approximate operator, Λ∗, is a difficult matter. Our re-

quirements are that the operator have an easily computed inverse, and be an

approximation of the full operator. There are a number of possible choices for the

approximate operator, however OAB, in their foundational analysis, presented a

set of strict mathematical criteria which determine the suitability of an approxi-

mation (based on the convergence speed-up attained, rather than the physics of

the problem). The most common choice of approximate operator is

Λ∗ = diag(Λ) (2.86)

This is often referred to as the local operator, as its application will provide the

radiation field at a point as a result of the source function at that point, ignoring

the contribution of the rest of the medium. Using this approximate operator we

remove the self-coupling term from the iteration (we are only “iterating” photons

on a scale appropriate to the medium). This makes the equations local and hence

makes the solution far easier to determine (the equations remain non-linear, this is

a fact of the physics of the problem). The diagonal operator can often be evaluated

analytically, for instance using the two-stream approximation in a 1-D slab, in the

case that ∆τ >> 1,

diag(Λ) ≈ 1− 2

∆τ 2
(2.87)

Sn+1 =

(
ε+

2

∆τ 2

)−1

[εB + (1− ε)(Λ−Λ∗)Sn] (2.88)

which equates to a speed-up in convergence of 1/(ε+2/∆τ 2) (Hamann, 1985). More

complex approximate operators may be employed with a tridiagonal matrix being

commonly used (Olson & Kunasz, 1987a). This operator introduces a degree of

“non-localness” into the equations, by coupling each point to its neighbours. This
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operator is useful for radiative equilibrium cases, as it natively supports radiation

diffusion.

The iterative scheme outlined above is known as the Jacobi Method, and the

generalised algorithmic process has the following form (Hamann, 1985),

• For a general linear system we begin with:

Ax = b (2.89)

• We break our matrix into three components, the diagonal D, the upper

triangle −U , and the lower −L (note the sign convention)

A = −L+D − U (2.90)

• From this we obtain the iteration scheme (here D is known as the precondi-

tioner)

Dxn+1 = b+ (L+ U)xn (2.91)

which can be rewritten as

δxn+1 = D−1(b+ (L+ U)xn)− xn (2.92)

• This process is repeated until δxn+1/xn is below some threshold value.

This method is very efficient as it requires no matrix inversions.

In order to improve the convergence of this method it is altered to employ a

convergent Newton-Raphson scheme. The technique of Complete Linearisation,

introduced by Auer & Mihalas (1969), is effectively a multi-dimensional Newton-

Raphson scheme. This method has been superseded by the ALI, however this

Newton-Raphson (or the Quasi-Newton) formalism remains important to these

implementations, as is the idea of approximating (linearising) the equations in

order to quickly generate an inaccurate solution, followed by successive iteration

to reduce the error.

In Complete Linearisation, the Newton-Raphson method enters the iteration

through the rate equations (Peraiah, 2001). The iteration proceeds as follows: the
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Lambda Operator provides the mean radiation field from the source function, and

from the mean radiation field, through the rate equations, we can compute the

populations. From these populations a new set of populations can be determined.

Hence, very loosely, we have

Jk = Λ[Sk] (2.93)

nk = Pij(J
k)−1b (2.94)

nk+1 = nk − Pij(J
k)

∂Pij(Jk)/∂nk
(2.95)

The application of the Newton-Raphson method provides the the subsequent

iterate of the populations from which we can construct a new source function.

This loop is repeated until the populations converge. However in multi-level ALI

implementations the repeated inversion of the Jacobian required to perform this

calculation may be costly, as well as being difficult to implement, and there are a

number of techniques which avoid this.

Another important development is the careful preconditioning of the rate equa-

tions to ensure numerical accuracy and linearity. Photons in the wings of a spectral

line will encounter a lower optical depth, and will travel a greater distance between

extinctions than line core photons. As such these wing photons play a greater role

in the non-locality of the transfer problem, and removing the core photons im-

proves the numerical stability of the solution schemes at little cost. Hence we

precondition the rate equations, employing the “core-saturation” method outlined

in Rybicki (1972); Rybicki & Hummer (1991), which, as well as ensuring linear-

ity, removes the effect of passive scatterings from the high optical depth line-core.

This process of preconditioning is essentially equivalent to linearisation. This was

demonstrated by Socas-Navarro & Trujillo Bueno (1997), who showed that pre-

conditioning effectively takes into account the linear response of the radiation field

to perturbations in the source function (Hubeny & Lanz, 2003).

In this thesis we will make use of two implementations, MULTI (Scharmer &

Carlsson, 1985), and RH (Uitenbroek, 2001), both of which are based on the ideas

we have discussed to this point. In the case of MULTI the iterations begin with

an estimate for the populations, nk and the radiation field Jk which determines
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Pij, ∑
j 6=i

nkjP
k
ji − nki

∑
j 6=i

P k
ij = −Ek (2.96)

where Ek is the error at this iteration. We require a new set populations and rates,

of the form

nk+1 = nk + δnk (2.97)

P k+1
ij = P k

ij + δP k
ij (2.98)

such that the error term goes to zero. Substituting this equation into the sta-

tistical equilibrium equation (linearising the equation by neglecting all cross-term

perturbations) we get∑
j 6=i

nkj δP
k
ji + δnki

∑
j 6=i

P k
ij −

∑
j 6=i

δnkiP
k
ij −

∑
j 6=i

nki δP
k
ij = −Ek (2.99)

In order to determine the appropriate change to the populations we must de-

termine δP k
ij in terms of δnki . Since δCij = 0 (the rate equations only couple to the

radiation through the radiative rates) we determine the perturbation in the rate

equation from the perturbation in the mean radiation field

δP k
ij = BijδJ

k (2.100)

To complete this set of equations δJk can be determined from the populations.

In MULTI this calculation is carried out by the Scharmer Operator, which is a

form of the Lambda Operator which returns the outgoing intensity,

I+
ν = Λ†ν [Sν ] = eτν

∫ ∞
τν

Sν(tν)e
−tνdtν (2.101)

This equation is then solved using single point quadrature (Scharmer, 1981).

Since these equations will not result exactly in En going to zero, due to the

linearisation, iteration is required.

In the case of RH, based on the method outlined in Rybicki & Hummer (1991),

the equations are preconditioned, resulting in a linear expression for the popula-

tions. RH also makes use of a different operator, the Ψ operator, which is defined
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as follows

Jν = Ψν [ην ] (2.102)

which is to say the Ψ operator differs from the Λ operator by a factor of 1/χ. This

operator has the benefit of being linear in the populations, where the Λ operator

is not. Notwithstanding these differences in the operator and the preconditioning,

the RH implementation (Uitenbroek, 2001) reaches a solution by effectively the

same method as was outlined in the case of MULTI.

2.5 Computation of Fluxes

Now that we have discussed some of the methods by which the coupled transfer

and statistical equilibrium problem may be solved we will discuss how flux may

be computed. We will discuss two methods in particular which are employed later

this work: the escape probability method, and the Feautrier method.

2.5.1 Escape Probability

Escape probability is a method of computing the emergent flux from a medium,

based on the probability that emitted photon will escape the medium in a single

flight (Hubeny, 2001). The escape probability of a photon is given by

pν = e−τν (2.103)

where τν is the monochromatic optical depth from the point of emission to the

boundary of the medium. If we consider a plane-parallel, semi-infinite slab, the

optical depth of a ray may be specified by its direction cosine, µ (see Fig. 2.5). In

this geometry the escape probability of an outgoing ray is

pν = e−τν(z)/µ (2.104)

where τν(z) is the monochromatic optical depth along the central axis to depth

z (a detailed review can be found in Rybicki (1984)). Averaging over all angles,
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cos(θ)µ = 

z

Figure 2.5: The ray geometry in the semi-infinte, 1-D slab.

and presuming that “escape” is only possible in the outward direction,

pν(z) =
1

2

∫ 1

0

e−τν(z)/µdµ (2.105)

This integral can be rewritten as

pν(z) =
1

2

∫ ∞
1

e−τν(z)x

x2
dx (2.106)

where x = 1/µ. This is the second exponential integral,

pν =
1

2
E2(τν(z)) (2.107)

This is often referred to as the one-sided escape probability, as it only takes

account of photons which escape though one side of the medium. Consider emis-

sion from a spectral line with emission and absorption profile φ(ν) (CRD). The

monochromatic optical depth is given by τφ(ν), and, as such, we can write the

total escape probability for the line as:

pν =
1

2

∫ ∞
0

E2(τφ(ν))φ(ν)dν (2.108)

This integral arises often in radiative transfer calculations. It is known as the kernel

function (K2), after Avrett & Hummer (1965), and Hummer (1981) provides an

algorithm for its evaluation.

The escape probability method has many uses in astrophysics. It is used in
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the photoionization code CLOUDY (van Hoof et al., 2000), and it is often used in

conjunction with the net radiative bracket to simplify the solution of the transfer

problem (Irons, 1978). In this thesis we make use of this method to compute line

fluxes. This is achieved by constructing the rate matrix and using it to determine

the populations, and from these populations computing the emergent flux using

Fν ∝ njAjipν (2.109)

This approximation of the full transfer problem will provide a good estimate

of the flux in the case that we are dealing with optically thin lines.

2.5.2 Feautrier Method

In discussing the Lambda Iteration method we described the method used to

compute the source function, now we will discuss the calculation of the emergent

intensity, given that the source function has been specified. This can be achieved

by the Featurier Method (Feautrier, 1964). The Feautrier Method has many uses

in radiative transfer problems, and a number of modified algorithms have been

presented (Rybicki, 1971; Rybicki & Hummer, 1991). These algorithms enable

Feautrier-type schemes to be used to (very efficiently) compute the diagonal of the

inverse Lambda Operator, or in the construction of large model atmospheres (see

the temperature correction discussion in Mihalas (1978)). In this thesis we will

use the Feautrier Method to compute a formal solution to the transfer equation; to

determine the monochromatic intensity given a known source function (computed

by the methods outlined in the previous sections).

We begin with the transfer equation in plane-parallel geometry,

µ
∂Iν
∂τν

= Iν − Sν (2.110)

This equation can be rewritten as two equations, one taking account of intensity

travelling in the “positive”, outward direction, the other in the “negative”, inward
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direction.

µ
∂I+

ν

∂τν
= I+

ν − Sν (2.111)

−µ∂I
−
ν

∂τν
= I−ν − Sν (2.112)

This is known as the Schuster two-stream approximation (Schuster, 1905). Intro-

ducing two new variables we can rewrite the differential equations (where the dash

represents the derivative with respect to τν),

u =
1

2
(I+
ν + I−ν ), v =

1

2
(I+
ν − I−ν ) (2.113)

µv′ = u− S (2.114)

µu′ = v (2.115)

From these we can write a single second-order differential equation for u

µ2u′′ = u− S (2.116)

Given that the source function is specified, we can solve this equation for a

given optical depth grid (all quantities being monochromatic) τi, i = 1, . . . , n.

We can express this discretised differential as

u′′i = − 2

∆τi−1(∆τi−1 + ∆τi)
ui−1 +

2

∆τi∆τi−1

ui −
2

∆τi(∆τi−1 + ∆τi)
ui+1 (2.117)

for 1 < i < n − 1, where ∆τi = τi+1 − τi. We can equally discretise the angles,

usually choosing angles based on Gauss-Legendre quadrature, however for nota-

tional convenience we will remove the angle terms here; this does not alter the

resultant equations, it simply requires that we solve the same set of equations for

each angle.

As this is a second-order differential equation we require two boundary condi-

53



2.5 Computation of Fluxes

tions

I−1 = r1I
+
1 + f1 (2.118)

I+
n = rnI

−
n + fn (2.119)

where the first equation specifies the upper boundary condition as the incident

intensity on the upper boundary (f1) plus the fraction of outward travelling in-

tensity which is reflected (r1), and the second equation is analogous for the lower

boundary.

We can express these boundary conditions in terms of u as

u′1 =
(1− r1)u1 − f1

1 + r1

(2.120)

u′n =
(1− rn)un − fn

1 + rn
(2.121)

In order to implement the boundary conditions, following Auer (1967), we will

Taylor expand at both boundaries, beginning with the upper boundary

u2 = u1 + u′1∆τ1 +
1

2
u′′1∆τ 2

1 (2.122)

Substituting in for u′1 and u′′1

u2 = u1

(
1 +

∆τ1(1− r1)

1 + r1

+
1

2
∆τ 2

1

)
−∆τ1

f1

1 + r1

− 1

2
S1∆τ 2

1 (2.123)

Equally

un−1 = un + u′n∆τn−1 +
1

2
u′′n−1∆τ 2

n−1 (2.124)

un−1 = un

(
1− ∆τn−1(1− rn)

1 + rn
+

1

2
∆τ 2

n−1

)
−∆τn−1

fn
1 + rn

− 1

2
Sn∆τ 2

n−1 (2.125)

From this we can see that we have a set of n equations, which is usually written

in the following form

−Aiui−1 +Biui − Ciui+1 = Yi (2.126)
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where the boundary values are

A1 = 0 An =
2

∆τn−1

(2.127)

B1 = 1 +
2(1− r1)

∆τ1(1 + r1)
+

2

∆τ 2
1

Bn = 1 +
2(1− rn)

∆τn−1(1 + rn)
+

2

∆τ 2
n−1

(2.128)

C1 =
2

∆τ 2
1

Cn = 0 (2.129)

Y1 = S1 +
2f1

∆τ1(1 + r1)
Yn = Sn +

2fn
∆τn−1(1 + rn)

(2.130)

and for 1 < i < n− 1

Ai =
2

∆τi−1(∆τi−1 + ∆τi)
(2.131)

Bi =
2

∆τi∆τi−1

(2.132)

Ci =
2

∆τi(∆τi−1 + ∆τi)
(2.133)

Yi = Si (2.134)

This can be re-arranged to form a tridiagonal matrix,

T · u = Y (2.135)

whose elements are Ai, Bi, and Ci, where u is the vector of the intensities, and Y is

the solution vector. The parallels between this operation and the Lambda Iteration

are clear, as u is effectively J , Y = S at all points other than the boundaries, and

T−1 is related to the Lambda Operator. This similarity is used by Rybicki &

Hummer (1991) as a core part of their iteration, it is used to compute the formal

solution while simultaneously delivering the diagonal elements of the approximate

Lambda Operator. To determine u we invert T

u = T−1Y (2.136)

again turning to Rybicki & Hummer (1991) who provide a highly efficient algorithm

for computing this inverse (O(mn), where m is the band width, compared with
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O(n2) (Press et al., 1992))

In our case, exploiting the 1-d nature of the problem, the computation could

be carried out by a forward elimination–backward substitution scheme. Beginning

with the outer boundary condition we can express u1 in terms u2, allowing us

to express u2 in terms of u3. Proceeding in this manner we finally reach the

lower boundary condition, which delivers un. Back substitutions then produces

un → un−1 → . . . u2 → u1. Finally we obtain the emergent intensity

I+ = u1 +
(1− r1)u1 − f1

1 + r1

(2.137)

2.6 Modelling Binary Stars

In this thesis we will be concerned with the modelling of the ζ Aurigae binary

system. The modelling of this system requires two elements, the modelling of the

system orbit, and the computation of a synthetic light curve. In order to make

these calculations it is necessary that we have information on the system geometry,

and the radiative properties of the component stars. In making these models

we will make use of the Physics Of Eclipsing Binaries (PHOEBE) suite of code

(Degroote et al., 2013; Prša & Zwitter, 2005), which is an updated implementation

of the older (and commonly used standard) Wilson-Devinney (WD) code (Wilson

& Devinney, 1971). We will begin by discussing the modelling of the binary orbit

based on observational constraints, and then discuss the modelling of the individual

components.

2.6.1 System Geometry

One of the most accurate, and most commonly used, models for binary stars is

the Roche model (Kallrath & Milone, 2009). This model is based on a number of

simple assumptions, namely that both the stars behave as point masses surrounded

by massless envelopes, there is no differential rotation, and the stars do not have

appreciable radial pulsations (this is to ensure that the shape of star is, at any

time, defined solely by the instantaneous gravitational force). The Roche model

attempts to explain the morphology and interaction of the stars from this tidal
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Figure 2.6: Roche potential lobes and morphology of a detached binary system.
From a set of examples provided by Bradstreet (1993), from Kallrath & Milone
(2009)

force. An expression for this potential was initially derived by Kopal (1959), and

generalised by Wilson (1979) to apply to elliptic orbits.

We obtain an expression for the potential which can be solved iteratively for

all points, with the equipotential surfaces determining the morphology of the star.

This is most commonly computed by calculating the potential at the stellar pole,

and using this as the value on equipotential surface.

Both objects will have a tear-drop shape with the apex pointing towards the

other star, an equipotential shape known as the Roche Lobe. The filling of this

Roche Lobe determines the morphological classification the system. In the case

that the Roche Lobe reaches the first Lagrange point, L1 mass transfer will occur

(symbiotic binaries). In the case of ζ Aurigae both stars are bound within separate

equipotential surfaces, and their evolution is more-or-less independent from one

another, a configuration known as a detached binary system, see Fig 2.6.

This distortion of the stellar surface gives rise to a orbital modulation of the

flux, as we see a larger surface cross-section at quarter-phases. This effect is

known as ellipsoidal variation, and has the effect of introducing a fluctuation in

the light curve from the binary system, even in non-eclipsing systems (though

clearly systems viewed pole-on would not display this effect).
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With the Roche model determining the shape of the objects in the system,

the dynamical orbit of the system is the classic Kepler two-body problem. In the

case of doubly-lined spectroscopic binaries (i.e. ζ Aurigae) our most important

observable is the radial velocity curves of the two objects, which is the velocity

component along the line-of-sight for both objects obtained from measurements of

line Doppler shifts. From this radial velocity curve we define the semi-amplitude

of the radial velocity for each object,

Ki =
2π

T

ai sin i√
1− e2

(2.138)

where T is the period, e is the eccentricity, i is the inclination of the orbit, and ai

is the semi-major axis of the orbit of i. The semi-amplitude of the radial velocity

is half of the amplitude of the measured radial velocity curve for a given object.

Since the distance of the objects from the barycentre will, at each instant, be in

direct ratio to their masses, we can determine the mass ratio as

M1

M2

=
a2

a1

=
K2

K1

(2.139)

Using Kepler’s third law we can determine the sum of the masses,

T 2 =
4π2

G(M1 +M2)
a3 (2.140)

where a = a1 +a2. Substituting in the expression for the semi-major axis, in terms

of the semi-amplitude of the radial velocity we obtain

M1 +M2 =
T (1− e2)3/2

2πG sin3 i
(K1 +K2)3 (2.141)

Now that we have determined the sum and the ratio of the masses we can

compute the individual masses of the components. This approach is only possible

if the inclination is known, and this is difficult to ascertain, however for eclipsing

object close attention to the light-curve can determine the inclination. Of course

if the objects are eclipsing the inclination must be almost π/2 with respect to the

plane-of-sky. The best determined stellar masses come from this type of binary

analysis, as this method is not dependent on the (often not well known) distance
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Figure 2.7: In this diagram the orbital plane is coloured yellow, and intersects a
reference plane which is grey, with the orbital elements annotated. Image Credit:
Wikimedia

to the system.

In order to study the orbits in detail we must define a number of important

parameters, the six Keplerian orbital elements in the reduced mass frame. These

can be seen graphically in Fig. 2.7.

The two which determine the shape of the orbit, and which were important in

calculating the masses, are

• The semi-major axis a, the length of the longest diameter of the ellipse

divided by two (a = a1 + a2).

• The eccentricity is defined as e = 1−(rp/a) where rp is the minimum distance

between the objects, the point of periastron.

The two which determine the orientation of the orbit (with respect to the

observer) are
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• Inclination, i, the offset of the orbit from the reference plane.

• The longitude of the ascending node, Ω, is the angle between where the

orbit passes upward through the reference plane and a reference direction.

In general the reference plane is the plane-of-sky and so, as can be seen in

our diagram, rotations about the axis connecting the barycentre and the

reference direction do not have any physical significance, hence Ω can be

arbitrarily fixed.

The final elements are

• The argument of periapsis, ω, is the angle measured from the ascending node

to the point of periastron.1

• The true anomaly, ν, which introduces a time varying property (ignoring

apsidal motion), is the angle between the point of periastron, the focus of

the orbit, and the position of the orbiting object at any given time (see Fig.

2.8).

In order to compute ν we must define two auxiliary anomalies, the mean

anomaly, M , and the eccentric anomaly, E. The mean anomaly is not in fact

an angle, it simply varies linearly over the orbit from 0 to 2π

M(t) = 2π((t− t0) mod T ) (2.142)

where t0 is some reference time, usually periastron or mid-eclipse.

The eccentric anomaly is the angle between the major axis and a line connecting

the centre of the orbit, to the point where a line perpendicular to the major axis,

passing through the object, intersects a circle inscribing the orbit (Fig. 2.8). The

eccentric anomaly is related to the mean anomaly by

M = E − e sinE (2.143)

1This value may change, a phenomenon known as apsidal motion, as a result of tidal inter-
action, perturbations, the stellar quadrupole, or general relativistic effects (famously so in the
case of Mercury)
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Figure 2.8: The eccentric anomaly, E, is the angle between major axis and a line
connecting the centre of the orbit, to the point where a line perpendicular to the
major axis, passing through the object, intersects a circle inscribing the orbit. The
true anomaly is the angle between the point of periastron, the focus, and the orbiting
object.

This equation, being transcendental, must be solved by numerical methods,

and WD uses the iterative method of Padé approximants

xi+1 = xi + ∆xi, ∆xi = − f(x)f ′(x)

f ′(x)2 − 1
2
f ′(x)f ′′(x)

(2.144)

∆Ei =
(Ei − e sinEi −M)(1− e cosEi)

(1− e cosEi)2 − 1
2
(Ei − e sinEi −M)e sinEi

(2.145)

Once we have solved for E, ν can be computed by

tan
ν

2
=

√
1 + e

1− e tan
E

2
(2.146)

With the true anomaly computed we can now specify the coordinates of the

object as it orbits, given the instantaneous separation of the objects

D =
a(1− e)

1 + e cos ν
(2.147)

We have now fully specified the relative positions of the objects as a function

of time.
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Figure 2.9: Synthetic spectra from Kurucz. We can see that the spectra differ
from a simple blackbody spectrum, especially at the Balmer jump. Image credit:
http: // kurucz. harvard. edu/

2.6.2 Radiative Properties

In order to compute synthetic light curves for binary systems we must have some

knowledge of the radiative properties of the components. In PHOEBE these cal-

culations are performed in general, the radiative properties of the objects are

computed in an aspect (observer) independent fashion, and from this the flux in

a given direction, at a given time, is computed.

In order to compute the flux, PHOEBE makes use of the model atmospheres

developed by Kurucz (1970). These atmospheric models are commonly used, and

provide a good estimate of the emergent intensity from a stellar atmosphere (see

Fig. 2.9). In close binary systems the assumptions upon which these models rest

may be broken, however for a detached system like ζ Aurigae the models should

provide reliable results (Siviero et al., 2004).

In order to obtain accurate light curves we must take account of the distribution

of flux across the stellar disk. This distribution is not uniform, and is altered

by an effect known as limb-darkening. Limb-darkening occurs as a result of the

fact that we see to the same optical depth at all points on the disk of a star

(τ = 2/3), but this does not correspond to the same physical depth, and hence
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2.6 Modelling Binary Stars

temperature/brightness. As such there is a fall off in intensity as we move from

disk centre to limb.

Another important effect which must be accounted for is gravity darkening.

Gravity darkening arises from the fact that the intensity distribution depends on

the energy transfer mechanism in a stellar envelope. The work of von Zeipel (1924)

showed that the flux distribution over the surface is proportional to the effective

gravity,

Fλ = −16σT 3

3κ̄ρ

dT

dΨ
gβ (2.148)

where σ is the Stefan-Boltzmann constant, T is the local temperature, κ̄ is the

Rosseland mean opacity, ρ is the density of the gas, Ψ is the gravitational potential,

and β is the gravity darkening coefficient. von Zeipel (1924) demonstrated that

for a radiative envelope β = 1, and later work by Lucy (1967) derived β = 0.32 for

convective envelopes. This expression can be rewritten for local temperature as

T 4(θ, φ) = T 4
pole

(
g(θ, φ)

gpole

)β
(2.149)

where θ and φ are polar coordinates on the stellar surface.

These radiative properties are phase dependent only as a result of the tidal

deformation of the objects, in a circular orbit the face of one star would always

appear the same to the other. In PHOEBE these radiative effects are accounted

for by the following expression

Lnorm =

∫
2π

I(θ)

I(0)
dθ

∫
2π

∫
2π

T 4(θ, φ)dθdφ (2.150)

where Lnorm is normalised luminosity. This normalised luminosity is then used to

scale the Kurucz luminosities. These radiative properties are discussed further in

the specific instances where they are used in the work.

Finally, in systems where the separation of the objects is . 5 times greater than

the radii of the components (i.e. ζ Aurigae) we must take account of the mutual

irradiation of the components by one another. This irradiation serves to increase

the temperature, and hence the luminosity of the objects, and is usually referred

to (somewhat misleadingly) as reflection. This effect was first derived explicitly

by Wilson (1990). In order to take account of this effect we must compute the
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2.6 Modelling Binary Stars

irradiation of each part of one object due to the second (integrating over the

surfaces visible one from another). We define the total reflective excess for each

object as

R1 = 1 + A1
F2→1

F1

R2 = 1 + A2
F1→2

F2

(2.151)

where A is the albedo of the star, F is its flux, and Fi→j is the flux from i falling

on j,

Fi→j = Ri

∫
S

Fj cosφdσj (2.152)

where we are integrating over the visible surface of the star, S, Fj is the flux

emerging from a surface element dσj, and φ is the angle between the surface

element and i. Since both stars irradiate one another these equations are solved

iteratively until the values for R have converged. A lengthy discussion of the

reflection can be found in Chapter 5.

Now that we have described much of the underlying theory and mathematics

which will be used in this thesis we will proceed with discussing the instrumentation

we have used.
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Instrumentation

In this chapter we describe the instruments used to make the observations upon

which this thesis is based. We briefly discuss the theory underlying the instru-

ments, their technical construction, and the reduction of their raw output to

produce science data. We will begin by discussing discussing ground-based spec-

troscopy, produced at the Dominion Astrophysical Observatory and other sites,

which have been integral in our study of ζ Aurigae. We also describe the Hubble

Space Telescope, focusing on the particular instrument we have used, and outlining

the reduction pipelines. This work also relies on observations at radio wavelengths,

made using CARMA and APEX, and we will describe these telescopes in detail,

again providing a description of how the calibrated radio fluxes are produced. In

this discussion we also describe the theory and methods underlying the interfer-

ometric observations used in this thesis, including observations made at optical,

infrared, and radio wavelengths.
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3.1 Spectrometers

In this work we have made use of a number of observational methods in order to

study the structure of late-type chromospheres, observations at many wavelengths,

encompassing spectrometers — both analogue and digital — radio bolometers,

and interferometers. In this chapter we will describe these methods, beginning by

discussing spectra, before moving on to radio observations, and finally providing

a discussion of optical spectro-interferometers.

3.1 Spectrometers

The results of this work rely heavily on optical spectroscopic observations. We have

made use of archival ground-based observations, using the Dominion Astrophysical

Observatory (DAO) and other sites, as well as the Hubble Space Telescope (HST).

We will discuss each in turn.

3.1.1 Ground-based Observations

In this work we have made use of data collected at a number of ground-based opti-

cal telescopes, and as such we will provide a description of how these instruments

function in general. In a ground-based spectrometer, light is collected by the main

telescope before being sent into the spectrograph, and the amount of light col-

lected by the telescope — hence the spatial resolution and faintness detectable —

is dependent on the size of the primary mirror. The main ground-based telescope

we have used is the Plaskett telescope at DAO (Plaskett, 1927), which was planned

to be, but never was, the largest telescope in the world. This telescope has a 78”

primary mirror with a spectrograph mounted at the Cassegrain focus. We have

also made use of data collected at the James Lick Telescope (Holden, 2008), a

38” refracting telescope (the largest refracting telescope in the world up to 1897)

outside San Jose, California. Finally, we also made use of data collected at Calar

Alto Observatory (Elsässer, 1981; Graser & Hopp, 1991), Granada, using the 87”

telescope. Most data was collected by R.E.M. Griffin, or in some cases taken from

the DAO archive. All observations were reduced, and data provided, by R.E.M.

Griffin. An observation log is provided in Chapter 5.

Light from the main telescope, once collected at the primary mirror, is sent

into the spectrograph, which is placed at the focus of the instrument. In Fig. 3.1
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Figure 3.1: Diagram of a spectrograph with a reflecting diffraction grating.

we see a general schematic of a spectrograph. Light enters through a slit, and a

collimating mirror transforms the incident beam into parallel rays. At this point,

the rays are directed onto a diffractor. A diffraction grating is an optical element

with narrow, closely spaced lines at approximately the wavelength of the light, and

the grating may transmit the light (a transmission grating), or reflect the light (a

reflection grating — as seen in Fig 3.1). An echelle grating may also be used,

which is a variant of the diffraction grating with a relatively low groove density,

but a groove shape which is optimized for use at a high incidence angle. Echelle

gratings are highly blazed, and hence the light is dispersed into high orders, with

some overlap. A prism is then required to split the overlapping orders.

Once the light has been split into its spectral components it is focussed onto

the detector. Historically, and for some of the observations used in this thesis,

the detector was comprised of photographic emulsion (in our case Kodak IIa-

0). This photographic exposure has the disadvantage of reacting non-linearly to
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incident radiation, making it difficult to calibrate spectra to an absolute flux scale.

However the emulsion has the advantage of being physically robust, once the image

is chemically fixed, and it is well stored, it will remain unchanged for decades.

Hence the archival DAO data used in this thesis, some of which was collected by

K.O. Wright in his early observations of ζ Aurigae in the 1950’s, has not declined in

quality. These data have been digitized by R.E.M. Griffin as part of a long running

campaign, and made available for our use. In the modern era photographic plates

have been replaced with Charge-Coupled Devices (CCDs). CCDs react linearly to

incident radiation, and have a very high quantum efficiency (∼95%), allowing high

signal-to-noise observations on an absolute flux scale. The CCD is comprised of a

photo-reactive layer of silicon divided into columns by insulating boundaries called

channel stops, and rows by strips of aluminium, creating the individual pixels. The

(p-doped, MOS) silicon layer is biased above the threshold for inversion and hence

incoming photons will free electrons as a result of the photoelectric effect. This

charge is held in place by the potential well created by positively charged electrodes

(the electrode positioning is what defines the position of the pixels). The pixels are

then read out row by row, with each pixel passing its charge to its neighbour, and

the final pixel in each row of the device passing its charge to a charge amplifier.

The resultant voltages are then stored as a digital image.

Traditionally in ground-based spectroscopy line-profiles were very difficult to

measure accurately as a result of the limitations of photographic plates, seeing,

and the faintness of the object (requiring that the spectrograph’s slit be open

fully) reducing the spectral resolution. In order to overcome these limitations and

perform accurate quantitative spectroscopy astronomers measured the Emission

Equivalent Width (EEW) of spectral lines, and the EEW will be the subject of

our study. It is computed from the observed spectrum as

W =

∫ λmax

λmin

1− Fcont

Fλ
dλ (3.1)

where Fλ is the measured flux, and Fcont is the local continuum flux. The EEW is

the width of a feature (hence it has units of wavelength) whose total intensity is

zero, and whose total flux deficit is equal to that of the line. This value is unaffected

by the spectral resolution of the instrument as flux in a given wavelength band is
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Figure 3.2: Diagram of the Hubble Space Telescope. This diagram is post-
installation of the STIS instrument, which took the place of GHRS. Image Credit:
NASA.

conserved. The EEW is often used in conjunction with curve-of-growth analysis,

and this has been a fruitful area in the study of ζ Aurigae binaries. In particular,

the analysis of Wilson (1957) of EEW’s measured at DAO.

3.1.2 Hubble Space Telescope

The HST is a space telescope mission by NASA launched into low Earth orbit,

at a height of ∼550 km, on the 25th of April 1990, capable of observing at near-

ultraviolet, visible, and near-infrared wavelengths. The telescope consists of a 2.4 m

primary telescope, and at launch there were five scientific instruments; the Wide

Field and Planetary Camera (WF/PC), the Faint Object Spectrograph (FOS), the

High Speed Photometer (HSP), the Faint Object Camera (FOC) and the Goddard

High-Resolution Spectrograph (GHRS). A diagram of the telescope may be seen
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Figure 3.3: A schematic diagram of the GHRS. Image Credit: Brandt et al. (1994).

in Fig. 3.2.

The observations in this work make use of the GHRS (Brandt et al., 1994),

and as such we will focus our discussion on this instrument. The GHRS was

one of the 4 original axial instruments aboard the HST. Owing to an error in

the construction of the primary mirror of the HST a spherical aberration was

introduced, and in December 1993 HSP was removed in order to fit the Corrective

Optics Space Telescope Axial Replacement (COSTAR). With COSTAR in place

the spherical aberration which affected the GHRS, the FOC, and the FOS, was

corrected allowing these instruments to be used at their highest resolution.

The GHRS1 is an ultra-violet spectrometer, making observations from 1150 Å–

3200 Å. A schematic diagram of the instrument can be seen in Fig 3.3. Light enters

the instrument through one of two apertures, labelled LSA and SSA. The LSA has a

2′′.0 aperture and is used for faint targets. The SSA has a 0′′.25 aperture and is used

when the highest spectral resolution is required. Once the light has entered the in-

1Much of this discussion is based upon, and much more detail can be found in, the GHRS
Handbook (Soderblom & et al., 1995).
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strument a collimator directs it to the rotating carousel which holds the dispersers.

By rotating the required element into position spectra can be taken in one of seven

modes. Five of these modes are gratings, designated G140L (1100 Å–1900 Å),

G140M (1100 Å–1900 Å), G160M (1150 Å–2300 Å), G200M (1600 Å–2300 Å), and

G270M (2000 Å–3300 Å). In this naming convention “G” indicates a grating, the

number indicates the blaze wavelength (in nm), and the “L” or “M” suffix de-

notes a “low” or “medium” resolution. The “L” gratings provide a resolution of

R = λ/∆λ = 2, 000, and the “M” grating R = 20, 000 − 35, 000. There are two

echelle modes also available, Ech-A, and Ech-B, whereby light from the single

echelle grating is directed onto one of the two detectors, D1 and D2. These echelle

modes provide the highest resolution, R = 90, 000− 120, 000. The dispersed light

then travels to the camera mirror in the case of the gratings, or the cross-dispersers

in the case of the echelles (these are required as the orders coming from the echelle

overlap unless separated by the cross-dispersers). Finally, the light is sent to the

photocathode of one of the two detectors.

The GHRS makes use of two Digicon detectors, differing only in the wave-

lengths to which they are sensitive, D1 being sensitive to 1100 Å–1700 Å (CsI pho-

tocathode), and D2 being sensitive to 1700 Å–3200 Å (CsTe photocathode). The

photoelectrons produced by the photocathodes are accelerated to 22 keV and fo-

cussed by a 105 G magnetic field onto one of the 500 science diodes. This produces

approximately a 5,600 electron pulse per photoelectron. These pulses are read into

buffer memory by each diodes dedicated counter. The diodes have slight response

irregularities, which are corrected for by deflecting the spectrum across the diodes

in the dispersion direction and adding these spectra, hence averaging out the effect

of the diode irregularities. In addition GHRS spectra taken with the SSA, as ours

are, are intrinsically undersampled. By substepping, or “dithering”, the electron

image in the dispersion direction by 1/2 or 1/4 diode critically sampled spectra

are obtained (Gilliland et al., 1992).1 The background noise in the diodes comes

to ∼0.01 counts/diode/s, with most of this arising from Cerenkov radiation due to

cosmic rays.

All of the HST data used in this work was reduced and provided by K. Car-

penter (Proposal ID: 6069), however we will provide a brief description of the

1As such 1/4 diode is often referred to as a pixel.
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standard reduction pipeline which was used to construct from the raw detector

counts usable science products. The calibration is carried out using the standard

CALHRS pipeline developed GHRS Investigation Definition Team (Soderblom &

et al., 1995). This pipeline consists of a number of steps,

• Diode non-linearities and non-uniformities are removed by consulting com-

piled tables for the values associated with each of the 500 diodes.

• Photocathode irregularities arise due to the granulation of the photocathode

material, and these are accounted for by determining where on the photo-

cathode each photoelectron measured at the diode arose, and then applying

the tabulated photocathode response coefficient for each point.

• Vignetting (reduction of brightness at the edge compared to the centre) is

corrected across the photocathode.

• Absolute wavelengths are determined for each diode by solving the dispersion

equation relating photocathode sample position to wavelength (the appro-

priate dispersion equation being chosen for the grating in use). A velocity

correction is performed to convert the wavelengths into the heliocentric rest

frame.1 For wavelengths above 2000 Å the wavelength is converted to air

wavelengths.

• The background counts are subtracted from the spectrum.

• In the case of the echelles, we must divide the flux value by the normalized

echelle efficiency to remove the effect of echelle ripple.

• Finally, the absolute flux is calculated by dividing the flux by the tabulated

(pre-calibrated) absolute flux coefficients.

The final, calibrated fluxes are accurate to ±5− 10% (Carpenter et al., 1999).

In this work we are concerned with comparing observed and computed spectra,

and as such it is necessary to quantify the relationship between the spectrum

1Interestingly the Doppler shift caused by the orbital motion of the satellite is compensated
for during the data-acquisition process.
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Table 3.1: Bandpass and wavelength pixel correspondence for each of the optical
elements of the GHRS.

Optical Element Range (Å) Å per diode
G140L 1100-1900 0.572-0.573
G140M 1100-1900 0.056-0.052
G160M 1150-2300 0.072-0.066
G200M 1600-2300 0.081-0.075
G270M 2000-3300 0.096-0.087
Echelle A 1100-1700 0.011-0.018
Echelle B 1700-3200 0.017-0.034

emitted by an object, and the broadened spectrum observed by the GHRS. This

is known as the Line Spread Function (LSF). The LSF for the GHRS gratings

describe the instrumental broadening applied to a delta-function spectral feature

by that grating. The SSA, which was used in this work, has a Gaussian LSF

with a FWHM of ∼3.7 pixels, and this is independent of grating and wavelength

(Gilliland et al., 1992). Table 3.1 contains the wavelength to diode correspondence

for each optical element of the GHRS.

In 1997 the GHRS was decommissioned and removed from the HST, replaced

by the Space Telescope Imaging Spectrograph.

3.2 Interferometry

In this thesis we have made use of interferometric observations at both radio and

optical wavelengths. In this section we will provide a background to the underlying

theory of interferometry, and describe the CHARA optical interferometric array,

ahead of a more detailed description of our radio interferometric observations in

the next section.

3.2.1 Principles of an Interferometer

An astronomical interferometer is an array of two or more telescopes whose light

is combined to provide angular resolution equivalent to a single, larger telescope.

An N -element interferometer can be treated as N(N − 1)/2 two-element interfer-

ometers, and as such we will begin by examining this simple case.
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Figure 3.4: Diagram of Young’s double slit experiment. On the left-hand side
of each image we see the source, and on the right-hand side we see the resultant
interference pattern. Note that as the source size and slit separation is varied the
interference pattern is modulated. Image Credit: From Jackson (2008), adapted by
E. O’Gorman.

The two element interferometer is precisely analogous to the Young’s double

slit experiment. The double slit experiment can be seen in Fig. 3.4. This figure

demonstrates a number of key ideas in interferometry. We begin with a point source

the light from which passes through the two slits, and we obtain an interference

pattern on our detector. This pattern emerges as a result of the different path

lengths travelled by the light from each slit in reaching the detector. This causes a

phase shift in the wave trains, and hence constructive or destructive interference.

This interference is referred to as the fringe pattern in interferometry. We also

note that as the source becomes more extended (which we treat as a series of

point sources), that the fringe pattern becomes less clear, to the point that we do

not see any interference. In the final case we see that reducing the separation of

the slits allows us to see the fringe pattern from the more extended source. From
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Figure 3.5: Diagram of a two element interferometer. Light enters the two tele-
scopes, labelled 1 & 2, and is combined, resulting in the interference pattern shown.
Image Credit: National Radio Astronomy Observatory.

this we see the spatial resolution to which the fringe pattern is sensitive is inversely

related to the separation of the slits,

θR =
λ

s
[radians] (3.2)

where θR is angular resolution, the minimum angular separation which can be

resolved, and s is the separation of the slits.

In Fig. 3.5 we see a diagram of a two-element interferometer, separated by
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a baseline, b. In this configuration the two telescopes are analogous to the slits,

and the light from each is combined. In the case that the source is not directly

above the telescopes path length of the light to each will be different (by a factor

of b cos θ), causing a fringe pattern (shown in the diagram), as in the double slit

experiment. As such, the output of an interferometric instrument is not a direct

measure of the magnitude of the incident brightness, but rather a series of fringes

of light and dark, corresponding to the interference of the wave trains. This is the

principal observable in interferometry, the ratio of maximum to minimum intensity

of the fringes, known as the interferometric visibility:

V =
Imax − Imin

Imax + Imin

(3.3)

At this point it is convenient to establish a coordinate system for our interfer-

ometer. Traditionally the ground coordinates, the positions of the telescopes, are

denoted by the coordinates (u, v, w), where u is oriented East, and v North, and w

is the relative height. These coordinates are in units of the observing wavelengths,

such that

B =
b cos θ

λ
=
√
u2 + v2 + w2 (3.4)

In the plane-of-sky the coordinates (l,m) are used to describe the brightness

distribution, I(l,m), where these are angular coordinates (as we will see they are

the Fourier counterparts of (u,w)). In this coordinate system the visibility can be

written as

V (u, v, w) =

∫ ∞
−∞

∫ ∞
−∞

I(l,m)e−2πi(ul+vm+w(
√

1−l2−m2)) dldm√
1− l2 −m2

(3.5)

In the case that the field-of-view, i.e. |l| and |m|, is small, and the telescopes are

co-planar, i.e. w = 0, this equation becomes

V (u, v) =

∫ ∞
−∞

∫ ∞
−∞

I(l,m)e−2πi(ul+vm)dldm (3.6)

This is known as the van Cittert–Zernike theorem (van Cittert, 1934; Zernike,

1938), and it states that the visibility measured by an interferometer is the Fourier

transform of the brightness distribution on the sky. In our work we will mostly be

interested in circularly symmetric objects, and it is useful to recast this equation
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in polar coordinates, where θ is the angle coordinate on the sky, φ is the angle

coordinate on the ground (both with respect to a common reference direction)

and,

r =
√
l2 +m2 (3.7)

q =
√
u2 + v2 (3.8)

After some manipulation this gives us (remembering that the source is symmetric

in φ, and using µ = cos θ as in the previous chapter)

V (q) =
1

A

∫ 1

0

I(µ)J0(2πqR∗
√

1− µ2)µdµ (3.9)

where J0 is a zeroth order Bessel function. Equations of this type are known

as Hankel transforms. Here A is simply a normalising factor, it is the integral

evaluated where the J0(x) = 1.

We note that we measure a single visibility for each pair of telescopes, deter-

mined by their (u, v) coordinates (other than u = v = 0, which returns the flux).

In order to reconstruct the brightness distribution by the inverse Fourier trans-

form, we must measure a large number of visibilities. This can be achieved by

having a large array of telescopes (recall N telescopes gives N(N − 1)/2 unique

baselines/pairs), by having an array which can be reconfigured, or by using the

rotation of the Earth to alter the projected baseline. This sampling of the (u, v)

plane is known as aperture synthesis.

3.2.2 Interferometry with CHARA

The Center for High Angular Resolution Astronomy (CHARA, McAlister et al.

(2005)) is an optical/near-infrared interferometeric array located on Mt. Wilson,

California. The array consists of six 1 m telescopes, arranged in Y-shaped configu-

ration (quite common for interferometers, as it provides good (u, v)-plane coverage

under rotation while avoiding redundancy), with (6×5/2 =) 15 possible baselines.

The baselines range from 34 m to 331 m giving a maximum resolution of 1.4 mas

at K-Band, and 0.3 mas at V-Band.
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CHARA is equipped with three near-infrared instruments (CLASSIC, FLOUR,

and MIRC) and two visible, PAVO and the instrument we will be most concerned

with in this work, the Visible Spectrograph and Polarimeter (VEGA (Mourard

et al., 2009)). VEGA provides spectral resolution up to R = 30, 000 in the wave-

length band 450 nm–850 nm, corresponding to 60 km/s–10 km/s. With this spec-

trograph it becomes possible to measure the interferometeric visibility as a function

of a wavelength across a spectral line, hence providing a direct measure of the ex-

tent of the line-forming region. We will make use of this diagnostic later in this

work.

3.3 Radio Observations

In this work we make use of radio observations taken at using CARMA and APEX.

We will describe these instruments in detail in this section, as well as providing

details of our observations. All observations in this work were made, reduced, and

provided by O’Gorman (2014) (CARMA Proposal Code: c1038, APEX Proposal

Code: 094.F-9324).

3.3.1 CARMA

The Combined Array for Millimetre-wave Astronomy (CARMA, Bock (2006)) is a

radio interferometer combining the Berkeley-Illinois-Maryland Association array,

Caltech’s Owens Valley Radio Observatory, and the Sunyaev-Zel’dovich Array . It

is a heterogeneous array of antennae, comprised of nine 6.1 m diameter antennae,

six 10.4 m diameter antennae, and the eight additional 3.5 m diameter SZA anten-

nae. The total collecting area of the 15 primary antennae is 772 m2, equivalent to

a single dish of radius 32 m.

The array observes in two bands, both of which are used in this work, 85 GHz–

115 GHz (3 mm), and 215 GHz–270 GHz (1 mm). CARMA is a heterodyne instru-

ment, meaning that the signal which enters the antennae (which is very weak and

boosted by a cooled Low-Noise Amplifier), is mixed with a signal from a local

oscillator creating a new signal, called the Intermediate Frequency. In interferom-

etry great care must be taken to ensure that the local signals added to the input
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Table 3.2: Details of the CARMA observations collected for use in this work.

Name Date λ (mm) Time on Source (min)
α Tau 21.10.2012 3 60

10.11.2012 1 55
α Boo 19.10.2012 3 70

30.10.2012 1 96
β And 23.10.2012 3 75

7.11.2012 1 95
α Cet 15.10.2012 3 240

6.11.2012 1 130
µ Cet 19.10.2012 3 120
g Her 6.11.2012 3 85

of each antenna be phase locked. This Intermediate Frequency signal is what is

mixed and recorded.

The CARMA array is reconfigurable, with 5 possible configurations providing

baselines from 8 m to 2 km. In this work we have made use of the D configuration,

which is the second most compact, with a maximum baseline of 148 m and a

minimum baseline of 10 m. Table 3.2 summarises the observations collected for

use in this work. The majority of these observations used planets (Mars, Neptune,

and Jupiter) as flux calibrators, providing robust flux calibration.

Images of theses objects were computed from the interferometeric observations,

using the CASA data reduction software package (McMullin et al., 2007), and the

point-spread function was deconvolved using the CLEAN algorithm (Högbom,

1974). The flux densities were then computed by fitting a 2D Gaussian to the

resultant image. These data are discussed in detail in the subsequent chapter.

3.3.2 APEX

In this thesis we have also made use of the Atacama Pathfinder Experiment

(APEX, Güsten et al. (2006)). APEX is a radio telescope located at the Llano de

Chajnantor Observatory in the Atacama desert, Chile. The telescope is comprised

of a single 12.6 m dish with a surface r.m.s. of 17µm. As the name suggests, the

APEX telescope is a prototype for the Atacama Large Millimeter/submillimeter

Array (ALMA, Wootten & Thompson (2009)). It is also a pathfinder for the
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Table 3.3: Details of the APEX observations collected for use in this work. All
observations were made at 345 GHz.

Name Date Time on Source (min)
α Tau 16.08.2014 60
α Boo 11.10.2014 30
β Gru 16.08.2014 45
γ Cru 16.08.2014 60

Herschel Space Observatory and the Stratospheric Observatory for Infrared As-

tronomy (SOFIA) as, owing to the favourable atmospheric transmission at the

5100 m altitude site, it observes a band which has to date been poorly studied.

ALMA itself consists of 25 APEX-type antennae. APEX was inaugurated in 2005,

whereas ALMA began full operation in 2013.

APEX operates at mm and sub-mm wavelengths, from 0.3 mm–1.5 mm, with its

primary instrument being the Large APEX Bolometer Camera (LABOCA, Siringo

et al. (2009)). In this thesis our observations were made at 345 GHz (869µm),

with a 50% transmission spectral window of 313 GHz – 372 GHz. The LABOCA

instrument is a composite bolometer, comprised of 295 individual superconducting

substrates, cooled to ∼285 mK. The bolometer is designed in to operate in an

interesting fashion; where most instruments attempt to eliminate sky noise by

switching quickly from the source to a blank sky area close to it — known as

chopping — at a frequency higher than the variability scale of the sky noise,

APEX (and LABOCA) operates differently. As the bolometer is in fact an array

of individual elements, it is possible to have some of the array measure the flux of

the source, while the other elements measure the blank sky as the telescope scans

over the source. The atmospheric contribution (as well as the instrumental noise)

will be strongly correlated in all elements and hence analysis of this correlation will

make it possible to extract the signals of astronomical interest and greatly reduce

the noise. As a result high signal-to-noise observations are possible without the

need for chopping.

A summary of the observations collected for use in this work can be seen

in Table 3.3. These observations were again reduced using the CASA software

package, and provided by E. O’Gorman
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Now that we have provided the mathematical and observational background

to the research undertaken in this work we will proceed to describe the research

methods and results.
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4
Thermal Continuum Millimetre Emission

from non-dusty K and M Giants

In this chapter we discuss the thermal free-free millimetre fluxes expected from

the chromospheres of non-dusty K to M giants. In order to compute these fluxes a

simple, semi-analytic model is presented. This model, based on our knowledge of

the thermodynamic properties of the chromospheres of these objects, along with

some simplifying assumptions, is compared with archival flux densities of a large

number of late-type stars. By extension of this simple model better agreement

can be reached with the existing data. This model is in good agreement with

high signal-to-noise observations made with APEX and CARMA, and provided

by (O’Gorman, 2014). The extended model can also be used to predict the dis-

tribution of intensity across the disk of the object, providing a prediction to be

compared with future high resolution interferometric observations. The original

radio model is outlined in Harper et al. (2013).
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4.1 Introduction

Essentially all cool stars possess an atmosphere comprised of material heated above

the prediction of radiative equilibrium, the chromosphere. Convective motions

beneath the photospheres of these objects agitate the plasma, leading to the ex-

citation of acoustic waves as well as large and small scale magnetic fields. These

mechanisms induce the non-radiative heating of the upper photosphere and chro-

mosphere. The roles of acoustic and magnetic waves in heating the chromosphere

is the subject of considerable debate (Ayres, 2002; Kalkofen et al., 1999; Vecchio

et al., 2009). One line of argument is that the basal heating of the chromosphere

arises from the deposition of purely acoustic shock energy generated in the sub-

photospheric convection zone (Ulmschneider, 1991), while the absence of spectro-

scopic signatures of shocks in the chromospheres of inactive red giants (Judge &

Carpenter, 1998b) (particularly C II) suggests a magnetic origin. On the Sun both

mechanisms are seen to operate: small-scale transient shock heating in the so-called

“K grains” and more steady magnetic heating in the large-scale supergranulation

network (Schrijver & Zwaan, 2000).

The structures of chromospheres heated by these two mechanisms are likely

to be quite different. The acoustic wave picture mechanism would lead to a 3-

D network of shocks that is highly time variable. At a given position the gas

temperature would fluctuate as it is shocked, with the mean temperature being cool

(Wedemeyer-Böhm et al., 2007). Time-independent 1-D semi-empirical models for

the Sun that represent regions of different activity are well established (Fontenla

et al. 1990; Vernazza et al. 1976, 1981). Similar models have been constructed for

a few cool stars including active and inactive (non-coronal) red giants. These semi-

empirical models are designed to reproduce the time-averaged, disk-integrated UV

and optical line fluxes. A characteristic of these models is that they require a

temperature inversion in the low chromosphere, Tmin ' 0.75Teff (Ayres et al.,

1976), gradual temperature rise from the top of the photosphere to the upper

chromosphere, and then a very steep rise through the transition region in the case

of coronal objects (Harper, 1992; Kelch et al., 1978; Luttermoser et al., 1994a;

McMurry, 1999).
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One might expect that time-dependent acoustic shock models, which do not fea-

ture this gradual increase in temperature with height, would not be capable of re-

producing the UV and optical line fluxes observed, however this is not the case. In

the UV, hν/kT � 1, and the collisionally excited source function (SUV
ν ∝ e−hν/kT )

is very sensitive to temperature. As a result, the hot, shocked plasma can domi-

nate the temporally and spatially averaged emission from the atmosphere. Thus

it is possible for both acoustic shock and semi-empirical models to produce the

same UV fluxes even though the temperature structures are profoundly different

(Carlsson & Stein, 1995). However, at mm-radio wavelengths, where the source

function depends linearly on the temperature, differences between intermittently

shocked and time-independent atmospheres will become apparent. This diagnostic

should give a more appropriate estimate of the mean radial electron temperature,

which controls the ionization balance. At these mm wavelengths the disk averaged

emission will be less affected by the local shock peaks, and can hence be used to

differentiate between these two methods of heating.

With this in mind we construct a simple semi-analytic model, based on the

time-independent 1-D chromospheric models, and use it to compute the expected

radio flux density. This chapter will begin by outlining the simplest iteration of this

model, discussing the assumptions made and the calibration undertaken (Harper

et al., 2013), then explore the extensions made to this model. We will compare the

predictions of this model with previous published of mm-flux densities, and with

high S/N mm-flux densities obtained with the Atacama Pathfinder Experiment

(APEX) and the Combined Array for Research in Millimetre-wave Astronomy

(CARMA).

4.2 Initial Model

4.2.1 Semi-Empirical Constraints on Stellar Chromospheres

In order to construct our semi-analytic model we must calculate the mm-radio

optical depth, τν (∝ nenionds), and to do this we turn to previous studies of red

giant chromospheres in order to determine some of the atmospheric parameters
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upon which the optical depth depends – the electron density, the temperature,

and the path length.

Beginning with the electron density, ne, we note a feature of many time-

independent chromospheric models, that the electron density is, to within a fac-

tor of ∼2, constant throughout the chromosphere (Ayres, 1979; Harper, 1992).

At the temperature minimum, the electron density (∼10−4nH) is dominated by

(photo)ionized low ionization potential metals; but as the temperature increases

through the chromosphere hydrogen gradually becomes more ionized until the top

of the chromosphere (∼104 K). The ionization of hydrogen in the chromosphere is

a two-step process, hydrogen is first collisionally excited to the n = 2 state, before

being photoionized by the Balmer continuum. At the top of the chromosphere

hydrogen is predominantly ionized, hence ne∼nH. This provides us with a useful

simplification which we will use in our model.

To compute the value of ne in the chromosphere we turn to Ayres (1979).

Ayres (1979) developed a scaling law for the mass column density at the onset of

the chromospheric temperature rise (above Tmin) which can be rephrased in terms

of the chromospheric electron density, ne, where atmospheric heating is sufficient

to overcome H− cooling, namely

ne ∼ A
1/2
Fe F1/2g1/2

∗ T
5/2
eff (4.1)

where AFe represents the abundance of low first ionization potential elements rel-

ative to solar, F is the excess “activity” of a particular star relative to the general

Teff scaling. In Ayres (1979), F = 1 was taken to represent levels appropriate

to inactive stars or the Quiet Sun, and F = 10 for solar plage regions or (fast

rotating) stars showing enhanced activity.

To determine the relative enhancement for a given object we consider the ratio

of a star’s measured Mg II h & k flux to the basal-flux, i.e., a basal-flux star

has F = 1. For this work we use the V–K-based expression for the basal-flux

(erg cm2 s−1) from Pérez Mart́ınez et al. (2011),

logFbasal = 6.78 log Teff − 19.74 (4.2)

which has a very similar Teff-dependence to Linsky & Ayres (1978). We have
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chosen specifically their V–K form of the basal-flux, it being more temperature

sensitive for cool stars. From the work of Pérez Mart́ınez et al. (2011) we collect

IUE Mg II h & k flux for 177 cool G, K and M giants and supergiants, which we

will later use to calibrate the model. However, we make one important remark

on these fluxes. In order to compute the surface Mg II h & k flux, which we then

use along with Fbasal to determine the F, Pérez Mart́ınez et al. (2011) apply the

expression of Oranje et al. (1982), as corrected by Cox (2000)

log

(
F∗
FC

)
= 0.35 + 4 log(Teff) + 0.4(V +BC) (4.3)

where V is the V-band magnitude and BC is a bolometric correction,

V −K =
1

1− 0.283BC
(4.4)

BC = −6.75 log Teff

9500
(4.5)

So BC is determined from the V–K value, using the above equation, and with

that BC the effective temperature is then determined. However Pérez Mart́ınez

et al. (2011) apply a general reddening correction to their V–K colour of 1 mag/kpc

for all objects. This correction only removes systematic errors, and if we assume

a representative differential reddening parameter of E(V −K) = 0.2 mag for an

individual object, this would correspond to a change of ∼10% in the ratio F∗/FC.

This introduces a source of uncertainty in the model.

4.2.2 Scale Height & Chromospheric Extent

It is clearly important in the determination of the mm-flux that we know the

angular size of the radio source, particularly its ratio, G, to the photospheric

angular diameter, i.e., φmm = Gφ∗. As the we observe at lower frequency the

optical depth increases, meaning that the we are seeing higher layers of the stellar

atmosphere, and hence the object appears more extended.

The ratio of pressure scale-height, Hpres, to stellar radius, R∗, is

Hpres

R∗
∼ TeffR∗

M∗
, (4.6)
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so red giants with their much larger radii, but near solar masses, have both intrin-

sically and relatively thicker chromospheres than the Sun. As a result we should

expect the giants to have more extended atmospheres. Eclipse observations of ζ

Aurigae (discussed in great detail in the succeeding chapters) indicate that the

pressure scale height is determined by both thermal and non-thermal components.

Hpres =
v2 + 2kbT

2〈µ〉mHg∗
(4.7)

where v is a turbulent velocity, 〈µ〉 is the chromospheric mean molecular mass

in hydrogen masses, mH, and g∗ is the surface gravity. We adopt 〈µ〉 = 1.2

corresponding to a partially ionized hydrogen (ne ' 0.1nH) and surface helium

abundance of nHe = 0.1nH.

The semi-empirical one-component model of α Tau (K5 III) (McMurry, 1999)

predicts a 250 GHz (1.2 mm) radial optical depth of unity at R ' 1.03R∗. The

apparent angular diameter of α Boo predicted from a semi-empirical model of

(Drake, 1985) is φmm ' 1.06φ∗, and for g Her (M6 III) φmm ' 1.08φ∗ (Luttermoser

et al., 1994a). Although there is a trend of increasing fractional chromospheric

extension with later spectral type, in later objects the lower Teff , and thus lower

chromospheric heating, should lead to a lower ne and reduced mm-optical thick-

ness. In light of these competing factors we adopt a typical extension of 1.08φ∗

(i.e., G = 1.08). This assumption, used in the initial published model, will be

addressed and refined in later sections as the model is altered.

4.2.3 Millimetre Optical Depth

When hydrogen is partially ionized, free-free (thermal bremsstrahlung) opacity

dominates at mm wavelengths. At low temperatures (T < 6000 K), ionization

of hydrogen is a two stage process: excitation to the n = 2 level by electron

collisions or scattered Lyα photons followed by photoionization by the optically

thin photospheric Balmer continuum. At higher temperatures, direct collisional

ionization becomes important. For the warm chromospheric material in question,

in the Rayleigh-Jeans limit, the absorptivity corrected for stimulated emission is
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given by Rybicki & Lightman (1979)

κν =
0.01772 nenionZ

2
ion

T 1.5
e ν2

gff cm−1 (4.8)

where Zion is the charge of the ions, ne and nion are the number densities of the

electrons and ions, respectively, and gff is the free-free Gaunt factor. At mm and

sub-mm wavelength the Gaunt factor is

gsub−mm
ff = 24.10T+0.26

e ν−0.17, (4.9)

as derived using the Gaunt factors from Hummer (1988).

We assume that the majority of abundant species are either neutral or single

ionized so that Zion = 1 and ne = nion. This leads to an expression for the mm

absorptivity

κν =
0.427n2

e

T 1.24
e ν2.17

cm−1 (4.10)

The optical depth of a given increment, ∆L, is ∆τν = κν∆L.

The assumption that the electron density is approximately constant, as the

ionization ne/nH goes from 10−4 → 1, implies that the hydrogen density has

declined by four orders of magnitude and therefore the physical thickness of the

layer ∆L ' 9 density scale-heights (e−9 ≈ 10−4). To the level of approximation

here we set Hρ ' Hpres.

For the radial optical depth of the 9Hρ chromosphere we have

∆τν '
0.427 n2

e

T 1.24
e ν2.17

· 9 · 2kbTe

〈µ〉mHg∗
' 6.4 n2

e

T 0.24
e ν2.17

kb
mHg∗

(4.11)

Note that the optical depth is now only a weak function of temperature. The

calculation of this optical depth will again be addressed in later sections as the

model is altered.

4.2.4 Linear Source Function Method

The key simplification in our semi-analytic model is in the use of the Linear Source

Function Method in the calculation of the emergent flux. At radio wavelengths,
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in the Rayleigh-Jeans limit, the source function varies linearly with temperature:

Sν =
2ν2kbT

c2
(4.12)

We assume that the temperature increases linearly as a function of radial height

through the atmosphere, ∆L, meaning that Sν ∝ ∆L. As we observed in the

preceding section, τν ∝ n2
e∆L. As n2

e is approximately constant throughout this

region of the atmosphere, we are left with τν ∝ ∆L. This means that Sν is a

linear function of τν . In the case that the source function varies linearly in optical

depth the integration of the formal solution of the radiative transfer equation can

be done analytically by what is known as the short characteristics method.

In our case, the flux, at a given frequency, is linearly proportional to the bright-

ness temperature, TBr, and this is what we will determine from the Linear Source

Function Method. TBr is a weighted sum of three temperature parameters, the

temperature at the base of the atmosphere, TLow, the temperature above this, TInt,

and the temperature at the top of the chromosphere (where the mm optical depth

is << 1), TTop:

TBr(µ) = αTLow + γTInt + βTTop (4.13)

and the weighting coefficients are (Olson & Kunasz, 1987b):

α = e−∆τ (4.14)

β = 1− (1− α) /∆τ (4.15)

γ = 1− α− β. (4.16)

From Wiedemann et al. (1994) we adopt TLow ' 0.6Teff and TInt = 4500 K.

The value of TLow is adopted in keeping with observations, in the Sun and in later

objects, of CO fundamental bands at 4.6µm, a CO-mosphere (Ayres, 2002). These

observations point to the existence of cool molecular material, with temperatures

below Tmin, and with filling factors close to unity. This cool material will be opaque

at mm wavelengths, so this provides the lowest layer of our model atmosphere. We

take TTop = 10000 K where hydrogen has become 50% ionized (McMurry, 1999)

and any further increase in temperature now leads to a rapid decline in ne and
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Table 4.1: Adopted properties of α Tau.

Quantity Value Unit Reference
Spectral Type K5 III
φ∗ 21.1± 0.2 mas Mozurkewich et al. (2003)
Teff 3871± 48 K Mozurkewich et al. (2003)
[Fe/H] −0.15± 0.20 McWilliam (1990)
FMg II(h+ k) 6.50× 104 erg cm−2s−1 Pérez Mart́ınez et al. (2011)
FMg II/Fbasal 1.69 Pérez Mart́ınez et al. (2011)

hence also κν , creating a transparent boundary above TTop.

The stellar flux density can be computed from the integral of TBr (µ). We

use the plane-parallel approximation in the initial model, and using single-point

Gaussian quadrature we can write the brightness temperature as:

〈TBr〉 = 2

1∫
0

TBr (µ)µ dµ (4.17)

〈TBr〉 = 2
n∑
i=1

TBr (µi)µiwi (4.18)

where n = 1, µ1 = 1/2, and w1 = 1.

4.2.5 α Tau Calibration

Next the optical depth expression, Eqn. 4.11, was calibrated. α Tau was used for

this calibration, since it is a well studied object with well determined parameters,

in order to reduce some of the inherent uncertainties. Using the stellar parameters

tabulated in Table 4.1, along with the value of ne estimated by Robinson et al.

(1998) from HST observations of the C II] 2325 Å multiplet, ne = 109 cm−3, we

compute an optical depth at 250 GHz of τν = 0.05. Defining a fictitious star

with α Tau’s parameters but with solar metallicity, and FMg II/Fbasal = 1, we get

τν = 0.04. This gives us a scalable optical depth, which we note has no explicit

gravity dependence:

∆τν (µ) = 0.04
AFe

AFe�

FMg II

Fbasal

(
Teff

3871 K

)5.54 ( ν

250 GHz

)−2.17

. (4.19)
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Figure 4.1: Observed minus computed brightness temperatures at 250 GHz. The
dotted lines represent ±0.33Teff . Data from the catalogue of Altenhoff et al. (1994).

Combining these elements we can compute the brightness temperature at 250

GHz of a collection of objects observed by Altenhoff et al. (1994). The results of

this calculation can be seen in Fig. 4.1. As we can see the model is generally in

good agreement with the data, however there is a scatter of ∼1000 K, and there

appears to be a general trend of overestimation. We will refer to this simple model,

published in Harper et al. (2013), as Model 1 (M1), and in the coming sections we

will discuss additions to this model to improve the flux estimates computed and

we will discuss the errors in detail.
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4.3 Extensions to the Model

4.3.1 Spherical Geometry

The first alteration made to the model was the adoption of a spherical geometry.

Our previous simplification of plane-parallel geometry is only valid in the case

that the emitting region is small in extent compared to the radius of the star,

an assumption clearly at odds with our adopted extension factor, G = 1.08. We

cannot use the same methods to compute the optical depth in spherical geometry.

This is due to the fact that in general a radiative transfer problem in spherical

geometry is not fully characterised without knowledge of the physical extent of

the emitting region. It is possible to compute the optical depth of a single scale

height, using the expression for optical depth in Section 1.2.3

τHp
ν ' kbAFT 4.4

eff

T 0.24
e ν2.17〈µ〉mH

(4.20)

here Te is the temperature at a given point in the atmosphere, which, due to

it being a very weak power, we will approximate as being ∼8 (70000.24 = 8.3).

Though we can determine the optical depth of a single scale height, and we can set

the chromospheric thickness to 9Hp as before, we cannot determine the extension

without knowing the physical extent of a scale height. As a result we must compute

the scale height directly from Eqn 4.7, using surface gravity, which will be required

as an input to this model.

In spherical geometry, we must take account of two kinds of rays; what we

will call “disk rays”, rays which contain a photospheric component, and “grazing

rays”, which do not. This can be seen in in Fig. 4.2. If we define θc = R/R∗+9Hp,

then disk rays are defined as 0 < θ < θc, and the grazing rays θc < θ < π/2. We

must compute the length of the path through the atmosphere, x, for each ray.

Beginning with the simpler case of the grazing rays, the length x is:

x =
√

(R∗ + 9Hp)2 − sin2 θ(R∗ + 9Hp)2 (4.21)

In the case of disk rays this expression is:

x =
√

(R∗ + 9Hp)2 − sin2 θ(R∗ + 9Hp)2 −
√
R2
∗ − sin2 θ(R∗ + 9Hp)2 (4.22)
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Figure 4.2: Rays in spherical geometry. Note the disk rays, which contain a
photospheric component, and “grazing rays”, which do not.

So we can now determine the optical depth along each ray to be:

τν = τHp
ν

(
x

Hp

)
(4.23)

We use the same linear source function method to compute the brightness

temperature, with the addition that the temperature profile of the grazing rays

is adapted. The grazing rays will not have the same temperature components as

the disk rays, and this is accounted for by having TLow and TInt increase linearly

for the grazing ray as the impact parameter of the ray approaches R∗ + 9Hp. By

using spherical geometry we can compute the extension of the star as a function of

wavelength . We define the extent of the star by the impact parameter for which

the optical depth of a grazing ray drops below 1. This spherical version of the

model will be referred to as Model 2 (M2).

4.3.2 Exponential Layer

The model was further adapted by the addition of a layer of exponentially increas-

ing electron density at the base of the atmosphere. This can be seen in Fig. 4.3. In

this model we have, between the photosphere and the region of constant ne from
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Figure 4.3: Geometry of the atmosphere, featuring the photosphere, with radius
R, a layer of exponentially increasing electron density, and the layer of constant
electron density.

the previous model, a region 3Hp thick where the electron density increases ex-

ponentially. This exponential layer was included in order to mitigate the effect of

the unphysically sharp interface between the photosphere and the chromosphere

in M2. In M2 the situation can arise where the 9Hp is optically thin for every

grazing ray, and hence we set the radius to the photoshperic radius. By including

this 3Hp exponential layer we ensure that there is always a computed, rather than

imposed, radius. We also alter the boundary condition, in that we do not strictly

enforce the CO-mosphere as a boundary condition on the brightness temperature.

We have the temperature gradient decrease linearly from 8000 K to TLow before

increasing, again linearly, to 10000 K at the top of the atmosphere as before. As

such, though there is a layer where Te = TLow(= 0.6Teff), there is no layer where

TBr = TLow.

In this geometry we have three types of ray; rays with a photoshperic compo-

nent, rays without a photospheric component which pass through both layers, and

rays which only pass through the constant ne layer, much like the grazing rays in
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M2. In the first case xlin and xexp, the path lengths in the linear and exponential

layers respectively, are:

xexp =
√

(R∗ + 3Hp)2 − sin2 θ(R∗ + 12Hp)2 −
√
R2
∗ − sin2 θ(R∗ + 12Hp)2 (4.24)

xlin =
√

(R∗ + 12Hp)2 − sin2 θ(R∗ + 12Hp)2 −
√

(R∗ + 3Hp)2 − sin2 θ(R∗ + 12Hp)2

(4.25)

in the second

xexp =
√

(R∗ + 3Hp)2 − sin2 θ(R∗ + 12Hp)2 (4.26)

xlin =
√

(R∗ + 12Hp)2 − sin2 θ(R∗ + 12Hp)2 − xexp (4.27)

in the third case

x =
√

(R∗ + 12Hp)2 − sin2 θ(R∗ + 12Hp)2 −
√
R2
∗ − sin2 θ(R∗ + 12Hp)2 (4.28)

In order to determine the optical depth of the exponential layer we turn to

Menzel (1936). In this work Menzel provided a method to calculate the optical

depth of a ray travelling tangentially through a spherical atmosphere with an expo-

nentially decreasing density. There are a number of typographical and other errors

in the derivation in the literature, and hence the correct derivation is provided here

explicitly. A diagram of the ray geometry can be seen below. In an atmosphere

of this type the electron density at some height h above the photosphere can be

written as:

ne = n0ee
−h/Hρ (4.29)

We have the relation:

s2 = (R + h)2 − (R + h0)2 (4.30)

h =
√
s2 + (R + h)2 −R (4.31)

Following Menzel’s notation we define a = 1/Hρ. The optical depth along our ray,
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Figure 4.4: Ray passing through the exponential layer.

s, is given by:

τν =
0.427

T 1.24ν2.17

∫ s

0

n2
eds (4.32)

by substitution this integral can be rewritten as:∫ s

0

n2
eds = 2n2

0e

∫ ∞
0

e
2aR−2a(r+h0)[1+ s

r+h0

2]1/2
ds (4.33)

To evaluate this integral we set

x = s/(R + h0) (4.34)

dx = ds/(R + h0) (4.35)
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and Taylor expand the
√

1 + x2 term in the exponent we get:

= 2(R + h0)n2
0ee
−2ah0

∫ ∞
0

e
−a(r+h0)x2

(
1− 1

4
x2+ 1

8
x4− 5

64
x6+...

)
dx (4.36)

This expression is only valid in the limit that |x| < 1, though we are integrating

over the limits [0,∞]. However∫ ∞
0

e−Cx
2

dx ≈
∫ 1

0

e−Cx
2

dx (4.37)

in the case that C >> 1. In our integral C = (R+h0)/Hρ, the radius of the object

in scale heights, clearly >> 1. As a result we can recast our integral over the

domain [0, 1]. We will also take only the first term of our expansion. Since this

expansion falls away slowly (as x→ 1 the expansion goes to 0.8, so no term will be

in error by more than 20%, most will be in error by <5%) and since our function

is heavily weighted to values of x << 1 this approximation will not have a large

effect on our result. The approximation gives

= 2(R + h0)n2
0ee
−2ah0

∫ 1

0

e−a(r+h0)x2dx (4.38)

which is a Gaussian integral, and hence we get∫ ∞
0

n2
eds = 2n2

0ee
−2ah0

√
π(R + h0)

a
(4.39)

Finally we get an expression for the optical depth

τν =
0.427

T 1.24ν2.17
n2

0ee
−2ah0

√
π(R + h0)

a
(4.40)

With this optical depth we now solve for TBr by the same linear method, breaking

the exponential layer into in increments over which ne is assumed constant. Again

we take care to alter the temperature profile for the grazing rays according to their

impact parameter. This model is referred to as M3.
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4.4 Calibration and Results

Now that we have outlined the models we will calibrate them using solar obser-

vations. This is done in an attempt to reduce the inherent scatter in the model,

due to the assumptions made and any unknown biases in the data used. Once the

models have been calibrated we will compare them to previous observations.

4.4.1 Solar Brightness Temperature

M2 and M3 are calibrated using two parameters to alter the optical depth, a1 and

a2:

τHp
ν = a1

(
kbAFT a2eff

T 0.24
e ν2.17〈µ〉mH

)
(4.41)

a1 allows us to scale the optical depth of a scale height, in effect changing the

thickness of the atmosphere, and a2 allows us to scale the temperature dependence.

The a2 parameter arises from the fact that the relationship of Ayres (1979), Eqn.

4.1, is an empirical scaling relation, derived from observations of the Mg II h &

k lines, not an analytic one, and has a scatter of T
(5/2)±1
eff . Our calibration is

performed within these bounds.

Both models are calibrated using the solar data collected in Loukitcheva et al.

(2004). This paper provides Quiet Sun brightness temperatures for λ = 0.13 −
20.3 mm. A fit of the model to these data can be seen in Fig. 4.5. We use these

data to fit the a1 and a2 parameters. Our model is expected to be valid for solar-

type stars, since the chromospheric temperature profile is expected to match that

of the model. However at lower frequencies where the corona becomes opaque, we

would expect to see this hot magnetized plasma.

Gyroresonant opacity in regions of enhanced magnetic field can result in coronal

material becoming optically thick, meaning that the coronal material, TBr∼106 K,

will be apparent on the stellar disk. Given the field strength (B, in G) it is possible

to compute the gyromagnetic frequency, with emission occurring at harmonics of

this frequency:

ν = (2.8 MHz)nB (4.42)

where n is the harmonic number (Dulk, 1985). From this we see that a field

strength of 3 kG, a reasonable value for an active region (Schrijver & Zwaan,
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Figure 4.5: A best fit of the M2 model to the solar brightness temperatures of
Loukitcheva et al. (2004). We see at low frequencies the model fails to reproduce
the observations. Best fit values: a1 = 1.7 and a2 = 4.55, Initial parameters: a1 = 1
and a2 = 4.4)

2000), would be sufficient to cause gyroresonant emission at 50 GHz from the

lower harmonics (n = 3 − 5)(Villadsen et al., 2014). It is useful to bear in mind

that this emission may well be present in the higher frequency observations we

will later examine. At 100 GHz we would see emission from n = 5 arising from

a field of 7000 G. While this is quite a high field strength, the coronal plasma

has a brightness temperature two orders of magnitude above the thermal free-free

chromospheric emission, and as a result only a small part of the disk would need

to be active for it to have a large effect on the measured flux density.

The model cannot reproduce the coronal brightness temperature, and hence

will not be valid for stars to the left of the Linsky-Haisch dividing line with high

levels of activity and strong magnetic fields, or active regions on the Sun. We see

in Fig. 4.5 that at low frequency the model does not well fit the data; this may be
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Table 4.2: The χ2 and total scatter of the three models for the objects in Table
4.3.

Model χ2 χ2/n Scatter

M1 82.91 3.77 20006
M2 55.93 2.54 22424
M3 69.29 3.14 19787

due to the effect of the coronal material. This fit provides values of a1 = 1.7 and

a2 = 4.55 (with initial parameters of a1 = 1 and a2 = 4.4), which we will adopt

for both M2 and M3 going forward.

4.4.2 Stellar Fluxes

The M2 and M3 models were then compared with the flux densities collected

by Altenhoff et al. (1994). The catalogue of Wendker (1998) was examined for

additional objects, however the only suitable observations were made at 50 GHz.

The model was found to be unable to reproduce these low frequency observations,

perhaps due to the component of gyroresonant emission, described in the preceding

section, which may be present at this frequency. This provides a useful indication

of the range over which this model is valid. The stellar parameters used in these

calculations are presented in Table 4.3. The scatter in the computed flux densities

for both models can be seen in Fig. 4.6. The models were computed using the

same calibration parameters, a1 = 1.7 and a2 = 4.55, and both were found to have

best-fit values in the region a1 = 1.6− 2 and a2 = 4.45− 4.55.

In Table 4.2 we present the errors in M1, M2, and M3. We present the χ2,

given by

χ2 =
n∑
0

(
Tobs − Tmodel

Terr

)2

(4.43)

the average χ2, χ2/n, and we also present the scatter

Scatter =
n∑
0

(|Tobs − Tmodel|) (4.44)
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Figure 4.6: Top: Brightness Temperature scatter for the M2 model. Bottom:
Brightness Temperature scatter for the M3 model. The dotted lines in both plots
represent ±0.33Teff
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Note that M1 has the largest χ2, and while the χ2 of M2 is lowest, M3 has the

lowest total scatter. In both models, though most particularly in M2, the objects

ι Aurigae and γ Aquilae are in error by ∼50%. There is no clear reason why these

two objects should be so greatly underestimated, given that other objects of similar

spectral type and effective temperature are well matched, and the error may be

attributable to errors in the parameters of these objects. R Lyr is also a clear

outlier. The overestimate in the flux density of R Lyr can perhaps be accounted

for by its late spectral type. R Lyr is an M5 III object, and there is evidence

that the chromospheres of objects of this type are modified by stellar pulsations,

which may fundamentally alter their structures (Eaton et al., 1990). Objects of

this spectral type are also expected to be highly variable. This provides us with a

constraint on the domain of validity of the model. These objects notwithstanding

all other objects fall within ±30%. This scatter appears to be inherent in the

model, resulting from the simplifications made and the errors in the measured

parameters – the surface gravity being a particularly large source of error. With

the models calibrated and benchmarked, we will now proceed to compare their

predictions with high S/N observations made using APEX and CARMA, as well

as providing predictions for future observations.
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Table 4.3: Stellar parameters and 250 GHz flux densities of objects used to test M2 and M3. The flux densities are from
Altenhoff et al. (1994), Teff , Fe/H, & log(g) come from the PASTEL catalogue (bar the marked exceptions)(Soubiran
et al., 2010), parallaxes are from van Leeuwen (2007), φ from Mozurkewich et al. (2003) (bar the marked exceptions),
and F from Pérez Mart́ınez et al. (2011)

Name HD No. Teff (K) φ (mas) Parallax (mas) Fe/H log(g) F Flux (mJy) Flux Error (mJy)

β And 6860 3800 13.75 16.52 -0.04 1.5 2.45 25.0 4
α Cet 18884 3675 13.24 13.09 -0.5 0.5 1.73 15.0 3
ρ Per 19058 3500 16.55 10.6 -0.15 0.8 1.7 28.0 3
α Tau 29139 3733 21.1 48.94 -0.1 1.2 1.96 51.0 6
ι Aur 31398 3950 7.5 6.61 -0.18 1.15 1.93 13.0 3
η Gem 42995 3600 11.79 8.48 0.04 1.5 1.81 20.0 5
µ Gem 44478 3450 15.12 14.08 -0.09 1.00 1.75 31.0 6
ε Gem 48329 4150 3.38a 3.86 0.20 0.8 1.3 10.0 2
σ CMa 52877 3981 6.94b 2.91 0.16 1.0 2.7 9.0 2
α Lyn 80493 3880 7.54 16.06 -0.26 1.51 1.9 6.0 1
α Hya 81797 4120 9.73 18.09 0.12 1.77 1.52 9.0 2
µ UMa 89758 3700 8.54 14.16 0.00 1.35 2.68 7.0 2
α UMa 95689 4660 6.74 26.54 -0.20 2.46 1.0 6.0 2
α Boo 124897 4200 21.37 88.83 -0.32 1.5 2.7 78.0 8
β UMi 131873 4030 10.3 24.91 -0.29 1.83 1.89 16.0 4
δ2 Lyr 175588 3637 11.53 4.43 -0.15 0.00 1.9 13.0 4
R Lyr 175865 3174 18.02 10.94 -0.15 0.543c 1.5 14.0 4
α Vul 183439 4750 4.072b 10.97 -0.38 1.4 1.18 14.0 2
γ Aql 186791 4210 7.27 8.26 -0.29 1.63 1.81 13.0 2
β Peg 217906 3600 17.98 16.64 -0.11 1.2 1.6 23.0 5
σ Lib 133216 3634 11.00 11.31 0.00 0.9 2.0 12.1 2
γ Dra 6705 4013 9.86 21.14 -0.08 1.55 1.2 10.1 4
a− value computed from isochrones using PARAM 1. (http://stev.oapd.inaf.it/cgi-bin/param_1.3) (da
Silva et al., 2006)
b− value from Lafrasse et al. (2010)
c− value computed using radius and an assumed mass of 4M�
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4.5 Predictions of the Model

4.5.1 Recent Observations

Table 4.4: Top: Stellar parameters of objects recently observed with CARMA, and
APEX. The parameters are collected from various sources, as annotated. Bottom:
The observed flux densities.

Name HD No. Teff (K) φ (mas) Parallax (mas) Fe/H log(g) F

α Taua 29139 3733 21.1 48.94 -0.1 1.2 1.96
α Booa 124897 4630 21.37 88.83 -0.32 1.5 2.7
β Anda 6860 3800 13.75 16.52 -0.04 1.5 2.45
µ Gem a 44478 3450 15.12 14.08 -0.09 1.00 1.75
α Ceta 18884 3675 13.24 13.09 -0.5 0.5 1.73
β Gru 214952 3500b 27.80b 18.43c 0.0d 0.4d 1.0d

γ Cru 108903 3626b 26.37b 36.83c 0.0e 2.0e 1.4f

g Her 148783 3250g 18.4h 9.21c -0.01g 0.20g 1.0h

a− Parameters as in Table 4.3 b− Engelke et al. (2006) c− van Leeuwen (2007)
d− Judge (1986) e− Carpenter & Wahlgren (1990) f− Pérez Mart́ınez et al.

(2011) g− Soubiran et al. (2010) h− Luttermoser et al. (1994b)

Name CARMA CARMA APEX
1 mm Flux (mJy) 3 mm Flux (mJy) 345 GHz Flux (mJy)

α Tau 47.6 ± 2.2 13.89 ± 0.32 112.91 ± 12.36
α Boo 51.1 ± 1.8 21.48 ± 0.75 138.97 ± 23.37
β And 14.8 ± 1.2 6.94 ± 0.29 ...
µ Gem ... 5.66 ± 0.36 ...
α Cet 15.3 ± 1.1 5.15 ± 0.19 ...
β Gru ... ... 163.59 ± 9.08
γ Cru ... ... 132.68 ± 15.87
g Her ... 5.66 ± 0.36 ...

Recently observations were made using CARMA and APEX of 8 K and M

giants. The CARMA observations were made at two frequencies, 100 GHz and

225 GHz, and the APEX observations were made at 345 GHz. These data were

reduced and provided by O’Gorman (2014). The data and the stellar parameters

of the targets are tabulated in Table 4.4. The errors included in this table are
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Figure 4.7: M2 model compared with high S/N CARMA and APEX observations.
We see that the model again provides a good fit, with most objects falling within
±30% at all frequencies.

1-σ errors and do not include the 10% systematic uncertainty, however all analysis

presented hereafter is based on the data with 1-σ errors and the 10% systematic

uncertainty due to calibration summed. These data were compared with the M2

model (which we recall had the lowest χ2), and the results of that calculation

can be seen in Fig. 4.7. g Her is a clear outlier in this sample, and this may be

accounted for by its spectral type (M6 III), for much the same reasons as R Lyr in

the previous sample, noting that Luttermoser et al. (1994a) could not construct a

time-independent, semi-empirical model for this object.

We see that the model is relatively consistent and reproduces these brightness

temperatures quite well, though with the same inherent scatter. It is important

to bear in mind that the model may be reaching the limits of its validity for

the higher frequency APEX observations (central wavelength = 869µm (Lapkin

et al., 2008)). This is another constraint on the model, as we enter the sub-mm/µm
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Table 4.5: Spectral indices from the CARMA observations, and computed from
M2.

Name α1mm−3mm αmodel

α Tau 1.52 ± 0.33 1.37
α Boo 1.07 ± 0.34 1.60
β And 0.93 ± 0.31 1.47
µ Gem ... 1.27
α Cet 1.34 ± 0.39 1.28
β Gru ... 1.18
γ Cru ... 1.32
g Her ... 1.22

wavelength regime our assumptions may not remain valid. This may be due to

bound-free emission/opacity, which are not accounted for in our model, becoming

important considerations in the sub-mm regime (Chluba & Sunyaev, 2006). There

may be a contribution from dust emission, however the majority of these objects

are thought be relatively dust-free (Sutmann & Cuntz (1995),O’Gorman et al.

(2013)), and any dust emission would be expected to peak at somewhat shorter

wavelengths (peaking closer to 100µm (Draine, 2011)).

4.5.2 Spectral Indices

The spectral index is the power law exponent which relates the flux density and the

frequency; Fν ∝ να. For an isothermal, non-extended, optically thick atmosphere

α will follow the Rayleigh-Jeans tail of the Planck function, α = 2, and in the

case of an optically thin plasma α will have the same frequency dependence as the

Gaunt factor, α = −0.17. In a plasma with temperature and density gradients, α

will be intermediate between these two values. In reality it is possible to have a

value for α which lies outside of this range as a result of the fact that stellar radius

varies as a function of frequency. It is due to precisely the effect of seeing a larger,

hotter stellar surface at lower frequencies that results in α not simply equalling

2 for the optically thick emission which comprises much of our sample (Kundu,

1965; Newell & Hjellming, 1982).

Spectral indices were computed for CARMA observations and are tabulated in
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Figure 4.8: Spectral indices, computed at 225GHz and 100GHz, for a range of
Teff and log(g). We see that at high temperature and low gravity the spectral index
index matches the optically thin limit, and as log(g) increases the optically thick
case is recovered.

Table 4.5, where:

α =
log10(F225/F100)

log10(225× 109/100× 109)
(4.45)

The computed values appear to match quite well with observation, indicating

that the material probed at different frequencies may have the same temperature

variation as our model.

Analytically, we can determine the expected spectral index for given power-

law varying temperature and electron density, ne ∝ r−p and T ∝ r−n (Seaquist &

Taylor (1987),O’Gorman et al. (2013)):

α =
6.2− 4p+ 3.45n

1− 2p+ 1.35n
(4.46)

This relationship was derived for the case of a spherical extended atmosphere. In

107



4.6 Summary and Conclusions

our case, where ne is assumed to be constant, p = 0, and T is assumed to be linear

in height, n = −1. This gives α = 1.17, which is generally in agreement with the

values measured and computed.

In Fig. 4.8 the values of α returned for a range of Teff and log(g) are plotted.

We can see that our model predicts that for low gravity objects of intermediate

temperature α will match the optically thin limit, and as log(g) increases α reflects

the optically thick case. It is interesting to note that this seems to be most strongly

a function of log(g), allowing us to differentiate an object of high gravity from one

of low gravity solely by reference to their mm spectral index.

4.6 Summary and Conclusions

In this chapter we presented a simple, semi-empirical model to compute the ther-

mal mm-fluxes from K and M giants. This model was informed by previous semi-

empirical atmospheric models of the chromospheres of red giants, coupled with a

number of simplifying assumptions. The key assumption is that the source func-

tion is linearly proportional to the optical depth, which arises from the fact that

the electron density is approximately constant in the chromospheres of these ob-

jects. This allows us to solve the radiative transfer equation analytically, and write

the observed brightness temperature as a weighted sum of the temperature com-

ponents of the chromosphere. From these assumptions a spherically symmetric,

layered atmospheric model was constructed.

With this model in hand, we made a comparison with the 250 GHz observations

of Altenhoff et al. (1994). We found the model to be consistent with these data, and

we were able to determine the range over which the model appears to be valid. We

note that the model overestimates the flux density of later (mid M) type objects,

with R Lyr and g Her being clear examples. This is thought to be as a result of

the very different chromospheric structure of these objects. We also note that the

validity of the model is in question in the case of lower frequency observations. The

model was found to be unable to reproduce the flux density of objects observed at

50 GHz (Wendker, 1998). This may be due to the coronal gyroresonant emission at

these wavelengths. The model, which we recall is valid in the case of the quiet Sun

(and was calibrated using observations of the quiet Sun), also fails to reproduce the
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recent observations of Villadsen et al. (2014), the first observations of “thermal”

emission from solar-type stars. These observations were made using the JVLA,

at 34.5 GHz. In the case of τ Cet, a flux density of 25.3µJy was observed, in

comparison with 17µJy computed by our model, a discrepancy which could be

explained by the presence of coronal emission from active regions. At higher

frequency, the model appears to be able to reproduce the 345 GHz observations of

APEX, with the caveat that as we move to higher frequencies the presence of other

emission mechanisms in the sub-mm/far-infrared which are not accounted for in

the model, and may lead to inaccuracy. With this considered, the model is found

to be valid for objects of type K to mid-M, in the frequency range ∼100 GHz–

350 GHz, as seen from its comparison to the Altenhoff et al. (1994) catalogue, and

to the more recent high S/N observations from CARMA and APEX. The model

also predicts accurate values for the spectral indices of these objects indicating

that the temperature structure probed at different wavelengths may match the

linear increase in our model.

Most important to note is that the semi-analytic model presented here is based

on time-independent 1-D chromospheric models, and includes all of their inherent

assumptions. These models, despite their clear limitations, provide the best avail-

able description of chromospheric plasma, and accurately reproduce the optical

and UV line emission observed. The capacity of our simple model to predict the

observed flux densities at mm-wavelengths, despite the source function’s depen-

dence on temperature being very different in this regime, leads us to believe that

the time-independent 1-D chromospheric models provide an accurate reflection of

the physical properties of the plasma of the chromosphere. Future observations

with ALMA, which will allow imaging of some nearby giants, will be the next

test of this model, allowing examination of the disk distribution of flux density

(limb-brightening and darkening), and placing constraints on the extension of the

emitting regions at these wavelengths.
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5
Geometric Modelling of the ζ Aurigae

System

In this chapter we discuss modelling the geometry of the eclipsing binary system ζ

Aurigae, the construction of an orbital model of the system, and the computation

of a synthetic light-curve. This model is constructed to examine periodic emission

of neutral silicon observed in the spectra of composite-spectrum binaries. We

propose that these features form in the lower chromosphere of the primary due

to the irradiation of the secondary. Since this flux illuminates only part of the

primary’s visible hemisphere at a given phase these lines in effect provide us with

spatial information on these otherwise unresolved objects. This unique diagnostic

is sensitive to the orbital elements of the system, as well as providing information on

stellar properties, for example, the rotational velocity, the local (as opposed to disk-

averaged) turbulence. A geometric model of the system yields good agreement with

the observed line variation; however a comprehensive radiative transfer calculation

is necessary to provide quantitative measures of the emission. The geometric model

discussed in this chapter is outlined in O’Riain et al. (2015) and Harper et al. (2015)

(in prep).

110



5.1 Introduction

5.1 Introduction

ζ Aurigae (K4Ib + B5V) is the eponymous system of a class of detached eclipsing

binary systems, which consist of a K supergiant and a hot B-dwarf. Other systems

of this type include 31 Cygni, 32 Cygni, and VV Cephei. Non-interacting binaries

of this kind provide an opportunity to measure the geometric and atmospheric

properties of their individual component stars in considerably more detail than is

possible for single stars. Close to its eclipse by the giant the hot secondary acts

as a light probe behind the extended chromosphere of the primary and causes the

formation of phase-dependent chromospheric absorption lines. When those lines

are isolated from the photospheric spectrum of the giant and measured, their vari-

ations can provide quantitative information regarding the temperature and density

structure of the chromosphere along the lines-of-sight. Furthermore, the informa-

tion gleaned from the study of these objects, due to the binaries being detached,

provides the best constraints on the semi-empirical models of the chromospheres

of single stars.

The composite nature of the spectrum of ζ Aurigae, the fact that the spectrum

exhibits lines from both a cool and a hot component, has been known since the

19th century (Maury & Pickering, 1897). The observations of Harper (1924) at

the Dominion Astrophysical Observatory provided a comprehensive set of radial

velocity measurements for the K-star. The orbital elements of the system are

also long studied and well determined, with Wood (1951) measuring a period of

972.162 days, and Wright (1970) deriving masses and dimensions for the system.

Their values agree well with modern measurement — for instance the period as

measured by Bennett et al. (1996) is 972.183 days. As a well-studied system with

well-determined parameters the study of ζ Aurigae provides useful insight into

single stars. Studying the effects of the secondary on the primary provides an

invaluable laboratory to examine the atmospheres of late-type stars, and these

observations provide useful context for the single star λ Velorum (K4.5 Ib-II), as

the primary is a spectral proxy for this object. This parallel will be important

in the succeeding chapter as we discuss in greater detail the chromosphere of the

K-star.
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5.1.1 Spectroscopic Observations

Figure 5.1: Si I in emission in composite-binary systems. The upper panel shows
the spectra of three composite-spectrum binaries, with the Ca II K line (λ3933.7Å)
nearly central. Emission appears at λ3905Å in the three systems observed at the
phases indicated (see Table 5.1). The lower panel shows the emission line at λ4102Å.
It can be seen redward of the core of H-δ, and due to this cannot be measured
accurately. It is therefore less useful for quantitative measurements, but its presence
is valuable in confirming the identity of the source of the emission. Figure from
Harper et al. (2015) (REMG).

Due to the diagnostic importance of ζ Aurigae eclipse observations, and with

eclipses which are observable throughout the night occurring once every 8 years,
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campaigns tend to be clustered around these dates. The eclipse of 1987 was ob-

served in ingress by R. & R. Griffin (Griffin et al., 1990) at high-resolution (2.2

Å/mm) at the Calar Alto Observatory. The same observers, using the same equip-

ment, obtained a spectrum the following year, with the secondary in front of the

primary, and discovered (or rather, re-discovered) a strong emission line at λ3905Å.

By subtracting the eclipse spectrum of the primary (Griffin & Griffin, 1986) an-

other emission line was found at λ4102Å. These two lines were identified as being

Si I λ3905.521Å and Si I λ4102.935Å.1 The line at λ3905Å arises from a transi-

tion from the (singlet) 1P1 upper level of Si I to 1S0, whereas the λ4102Å line is

from the (triplet) 3P1 upper level to the same lower level; and hence is an in-

trinsically weaker intercombination line. These same emission features were noted

by R.E.M. Griffin in the ζ Aurigae system 32 Cyg (K4Ib-II + B4V) and 31 Cyg

(K4Iab+B4IV-V). They were also noted in the system HR 2030 (K0IIb + B8.5V;

(Griffin & Griffin, 2000)), a non-eclipsing binary system.

The original discovery of these features can be attributed to Christie & Wilson

(1935), who remarked — in a footnote added in press — on a line noted by W.S.

Adams in a plate taken of ζ Aurigae on 16th February 1935 (phase 0.09). They

mention that the line is seen to “widen and increase in intensity” but detect no

other emission features. They attribute the emission line to the irradiation of the

primary by the secondary, an interpretation with which our analysis agrees.

In Figure 5.1 we see the spectra of ζ Aurigae, 32 Cyg, and HR 2030, and the

emission features at λ3905Å and λ4102Å. Our efforts will focus on the λ3905Å

line, as the λ4102Å line, being blended with the core of H-δ (λ4102.86Å), is more

difficult to use for quantitative measurement. In ζ Aurigae the emission is some-

times strong enough to be seen by eye on the composite spectrum, as was the case

when Adams first noticed it. In the other two systems the emission is less strong

even at maximum, as can be seen in the figure. The spectra displayed are created

by subtraction of the primary. When an eclipse spectrum of the K supergiant is

subtracted from the composite spectrum, the spectrum of the hot star is revealed,

together with any other features that were recorded in the composite spectrum

but not seen in total-eclipse.

1These are both air wavelengths, the vacuum wavelengths are λ3906.629Å and λ4104.094Å.
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Figure 5.2: Line profiles of the Si I λ3905Å obtained at several different phases, φ,
where φ is the fractional orbit elapsed from periastron, which occurs shortly after
second contact of the secondary’s eclipse. They are offset vertically for clarity. The
phase dependency of the line can be clearly seen.

The database of observations of the λ3905Å region used in this analysis, pro-

vided by R.E.M. Griffin, includes several high-dispersion spectra each of ζ Aur

and 32 Cyg, and HR 2030. Four different instruments were involved in these

observations: the Mount Wilson 100′′ telescope and coudé spectrograph (used

photographically), the Calar Alto 2.2 m telescope and coudé spectrograph (f/12

and f/3 systems, both used in photographic mode), the Lick 120′′ CAT telescope

and Hamilton coudé echelle spectrograph + CCD, and the Dominion Astrophysi-

cal Observatory 1.2 m telescope, coudé spectrograph, 96′′ camera + CCD. There is

sufficient observational material on ζ Aur to conduct an analysis of the Si I emission

in considerable detail, and this system will be the subject of our efforts. Selected
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spectra of ζ Aur are listed in Table 5.1. In total we have 71 spectra, between them

covering some 18 cycles of the 972-day orbit of the system, demonstrating that

this feature appears over multiple orbits.

In Figure 5.2 we see the line profiles of the λ3905Å line at a series of phases.

We can clearly see the phase variation of the feature in this figure. In assessing

the line profiles we see that:

1. The flux of the Si emission is phase dependent, being visible from the Earth

when the face of the supergiant is illuminated by the B star.

2. The width of the emission profile (Doppler width ∼ 15 km/s) implies that

the lines are formed deep in the atmosphere of the K supergiant, probably

near the temperature minimum. The Doppler widths are above those given

by Gray (2008) for the photosphere of an object of this type, <10 km/s, and

below the chromospheric values measured by Schroeder et al. (1990),Eaton

(1993), & Wilson & Abt (1954) ∼ 20−25 km/s. The wind lines are typically

∼ 50 km/s and lines formed in the photosphere of the B-star are broadened

rotationally, since vsin i ≈ 200 km/s for ζ Aur B. Neutral silicon is readily

photoionized by the UV continuum of the hot companion shortward of the

ground state ionization edge at λ1521 Å. Therefore, the presence of Si I in

the K supergiant must necessarily be restricted to depths below which this

ionizing radiation cannot penetrate: the upper photosphere.

These facts suggest that the emission in Si I λ3905 Å and λ4102 Å originates in

the atmosphere of the K supergiant when it is irradiated by the ultraviolet flux of

its hot companion, and our analysis is based on this assumption. We propose that

the UV radiation of the B-star photoionizes Si I, which, following recombination

and a radiative cascade, emits a photon in the singlet and triplet system lines.

Since only a fraction of the face of the K-star is illuminated at a given phase this

line will be formed in a localized area, or “hot spot”.

The observed spectra of ζ Aurigae will form the focus and motivation of this

chapter. In order to examine the phase variation of the emission a geometric

model of the binary system was produced, and the reflection effect was simulated.

We will begin by discussing the modelling of the orbit, and the calculation of a
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synthetic light-curve for this system. We will then discuss the phase variation of

the emission, and compare this with the reflection predicted by our model.
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Table 5.1: Log of observations of the emission-line region near λ3905Å in ζ Aur.

Data source and ID UT Date Detector Recip. Disp. Phase Estimated
(Å/mm) EEW (mÅ)∗

MW Ce 10341 1956 Mar. 18 Kodak IIa-O 10 .011 51 10 21
DAO 19986 1998 Oct. 23 CCD 2.2 .015 49 11 16
MW Ce 12246+12247 1958 Nov. 26+27 Kodak IIa-O 10 .022 83 12 23
MW Ce 10424 1956 Apr. 21 Kodak IIa-O 10 .046 82 10 21
MW Ce 12400+12406 1959 Jan. 17+18 Kodak IIa-O 10 .076 192 11 18.5
MW Ce 12452 1959 Feb. 22 Kodak IIa-O 10 .112 180 12 22
Lick 9011 1991 Feb. 12 CCD : .126 101
CA S4539 1991 Mar 3 Kodak IIa-O 8.8 .145 178 12 21
CA L3980 1988 Sept. 27 Kodak IIa-O 2.2 .233 130 7 14
CA S3985 1988 Sept. 28 Kodal IIa-O 8.8 .233 132 10 15
DAO 9952+10032 1999 Aug. 26+27 CCD 2.2 .332 71 11 16
DAO 10609 1999 Sept. 7 CCD 2.2 .344 62 11 16
DAO 10943+10944 1999 Sept. 13 CCD 2.2 .350 44 4 14
DAO 13783+13989 1999 Oct. 15+18 CCD 2.2 .384 52 5 17
MW Ce 9396 1954 Sept. 15 Kodak IIa-O 4.5 .445 48 10 21
MW Ce 9491 1954 Oct. 15 Kodak IIa-O 4.5 .476 36: 8 15
MW Ce 24156 1984 Mar. 23 Kodak IIa-O 10 .536 34 11 26
CA L4038 1989 Sept. 16 Kodak IIa-O 2.2 .596 34 11 23
MW Ce 10039 1955 Sept. 5 Kodak IIa-O 4.5 .810 9: 4 :
MW Ce 12176+12180 1958 Oct. 17+18 Kodak IIa-O 10 .982 0
MW Ce 10305 1956 Feb. 20 Kodak IIa-O 10 .983 0

∗EEW is the equivalent emission width.
Note: This log does not include the large numbers of spectra of both systems observed photographically and with
a CCD during phases very close to total eclipse. No emission in the Si line was ever detected in any of those
observations.
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5.2 Geometric Model & Light Curve

5.2.1 Stellar Parameters & Orbital Elements
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Figure 5.3: The orbits of the ζ Aurigae system. We see the objects at periastron,
φ = 0. In the top down plot the inferior conjunction (secondary is eclipsed as viewed
from Earth) and superior conjunction (primary is eclipsed as viewed from Earth)
are marked. The objects are plotted to scale.

Initially a geometric model of the system was constructed in order to model

the orbits of the stars. The model was constructed using the Physics Of Eclipsing

Binaries1 (PHOEBE) suite of code. This is an extension of the widely used Wilson-

Devinney code (Wilson & Devinney, 1971). Written in Python, PHOEBE 2.0

builds upon the WD code and provides additional functionality for modelling the

light-curves of binary systems (Prša & Zwitter (2005), Degroote et al. (2013)).

The model constructed is based on the orbital parameters listed in Table 5.2.

The orbital solution produced can be seen in Figure 5.3. The orbital elements used

to compute this solution are those of Griffin (2005). The elements tabulated, those

of Bennett et al. (1996) and Eaton et al. (2008), were used to compute light-curve

1http://www.phoebe-project.org/
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Table 5.2: Orbital Elements and Stellar Parameters of ζ Aur.

Bennett et al. (1996) Griffin (2005) Eaton et al. (2008)

Period (days) 972.183a 972.164 ± 0.041 972.162
Eccentricity 0.37 ± 0.2 0.393 ± 0.0023 0.3973 ± 0.0007
Systemic Velocity (km/s) 12.21 ± 0.07a 12.11 ± 0.04 10.81 ± 0.01
Longitude of Periastron, 328.5a 327.5 ± 0.4 328.9 ± 0.13

ω (degrees)
Passage of Periastron 41,373.6 ± 1.8a 47,204.8 ± 0.9 53,039.9 ± 0.1

(+JD 2,400,000)
Inclination, i (degrees) 87.3 ± 1.0 ... ...
Semimajor Axis (m) 6.32 ± 0.07 ×1011 ... ...
Mass (M�)

ζ Aur A 5.8 ± 0.2
ζ Aur B 4.8 ± 0.2

Radius (R�)
ζ Aur A 147 ± 3
ζ Aur B 4.5 ± 0.3

Teff (K)
ζ Aur A 3,960 ± 100
ζ Aur B 15,200 ± 200

a These values appear in Bennett et al. (1996) but are credited to a private
communication from R.F. Griffin (1995).

solutions which were found to differ from those computed from the elements of

Griffin (2005) by <0.1%.

The stellar parameters adopted are also presented in Table 5.2, those of Ben-

nett et al. (1996). In this work the K-star radius is measured by the Mark III

optical interferometer at Mt. Wilson. This same instrument is used to measure

the dimensions of the orbit. With these dimensions the total mass of the system

is computed from Kepler’s third law, and the component masses are determined

using the mass ratio, as derived from radial velocity measurements. The radius

of the B-star is found by fitting a stellar flux model to the flux-calibrated GHRS

data. The Teff of the B-star is then determined by fitting the GHRS spectroscopic
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Figure 5.4: Left: Fractional change in the K-star equatorial radius, Req, and
the polar radius, Rpole, as a function of phase over 1.5 periods. Right: Req/Rpole,
demonstrating that even far from periastron the K-star is slightly oblate, with Req =
1.008Rpole. Note that in the figure on the left both curves are normalised to unity,
and in the figure on the right the curve presented is Req/Rpole at each phase.

data (Hubeny & Lanz, 1995), using the radius to determine g∗. The K-star’s Teff is

determined using the measured radius, and the integrated IRAS flux (measured at

12, 25, and 60µm) and RIJK magnitudes used to compute the bolometric flux at

Earth. This provides a mutually consistent set of stellar parameters. These values

are in good agreement with those previously published. The Teff of the K-star

agrees very well with the survey of McWilliam (1990), who derived a tempera-

ture of 3,920 K. Further the measured K-star radius agrees with the value of di

Benedetto & Ferluga (1990), who measured the radius to be 154± 13R� using the

I2T optical interferometer. It is important for the analysis to follow, in this and

subsequent chapters, that these parameters be reliably known so this agreement

is reassuring.

The power of the PHOEBE model is its capacity to take account of the el-

lipsoidal variation, or tidal distortion, of the K-star. Though this is a detached

binary system, around perisastron the gravity of the B-star appreciably distorts

the K-star, making it more oblate. This effect greatly influences the light-curve,

and is of great importance in accurately modelling the phase dependency of reflec-

tion. In Figure 5.4, we see the fractional change of the equatorial radius along the

line connecting the centres of the stars, Req, and the polar radius, Rpole. We see
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that around periastron Req increases as the K-star is drawn towards the B-star,

and a commensurate decrease in Rpole. We also note that even far from periastron

the K-star is not a perfect sphere, but is slightly oblate, with Req = 1.008Rpole.

This figure can be compared with a simple distortion calculation:

Req

Rpole

∝ Feq

Fpole

(5.1)

Fpole =
GM∗
R2
∗

(5.2)

Feq =
GM∗
R2
∗
− v2

R∗
(5.3)

Here we relate the ratio of the equatorial to polar radius with the forces in those

directions. The force in the polar direction is simply the gravitational force, and

the force in the equatorial direction is the gravitational force minus the centrifugal

force. This equates to a ratio of Req = 1.006Rpole, which is quite close to the value

provided by the ellipsoidal variation calculation.

The PHOEBE orbital model presented is in good agreement with observations

of this system. In Figure 5.5 we see the agreement between the computed radial

velocity of ζ Aurigae A and the values measured by Eaton et al. (2008). The

model also predicts the phase of mid-eclipse to very good agreement with previous

studies, a value of φ = 0.92938, in comparison with the value of φ = 0.9294 given

by Griffin (2005).

5.2.2 Synchronicity

In Hut (1981) the concept of pseudo-synchronicity is introduced. A binary sys-

tem with a circular orbit will tend to an equilibrium where the rotational period

matches the orbital period, Prot = Porb. This is known as tidal locking or a syn-

chronous orbit. In an eccentric system equilibrium is reached where the rotational

period is less than the orbital period, and their ratio is determined solely by the

eccentricity. This was observed by Hall (1986), and earlier by Boyd et al. (1983)

in λ Andromeda, and by Shen et al. (1985) in α Aurigae. Hut (1981) provides the
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Figure 5.5: Radial velocity curve of the primary of ζ Aurigae. The data presented
are those of Eaton et al. (2008).

following expression:

Ωps

np
=

1 + 15
2
e2 + 45

8
e4 + 15

6
e6

(1 + 3e2 + 3
8
e4)(1 + e)2

(5.4)

where Ωps is the rotational angular velocity of pseudo-synchronization, np is the

orbital angular velocity at periastron, and e is the eccentricity. np can be written

in terms of the mean orbital angular velocity n,

np =
1− e2

(1− e2)3/2
n (5.5)

In the case of ζ Aurigae np = 2.53n = 1.89 × 10−7 rad/s. This means that

Ωps = 0.803np → vrot = 15.5 km/s. This corresponds to Prot ≈ Porb/2.
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Hut (1981) also provides a time scale for pseudo-synchronization:

tps =
1

3(α− 3)
T ∗ (5.6)

T ∗ = (kq(1 + q))−1

(
ao
R∗

)8

T (5.7)

α =
1

rg

(
q

1 + q

)(
ao
R∗

)2

(5.8)

where k is the apsidal motion constant (here assumed to be of order 0.1; Chan-

drasekhar (1933),Brooker & Olle (1955),Lecar et al. (1976)), q is the mass ratio,

ao is the semimajor axis, R∗ is the radius of the primary, T is the period, and rg

is the radius of gyration, given by I = M∗R
2
∗r

2
g where I is the moment of inertia.

With these equations we can estimate the order of magnitude of the time scale for

pseudo-synchronization to be 106 yrs. Given the age of this system, 8 × 107 yrs

(Bennett et al., 1996), we might expect pseudo-synchronicity. However, the pa-

rameters used to compute this time scale are not constant over the life of the binary

system (R∗ being a clear example), and so this time scale may be misleading.

The rotational velocity computed from the pseudo-synchronous model is very

large, larger than the value of 8.5±0.14 km/s found by Griffin (2005) by measuring

the velocity shift of spectral lines formed in the chromosphere with respect to

the photosphere in the rest-frame of the K-star, and the values of ∼ 9 km/s

found by Gray & Toner (1987) for Ib supergiants. De Medeiros et al. (2002)

find a value of v sin i = 6.9 ± 1 km/s for ζ Aurigae A, comparable to the value

of v sin i = 5.6 ± 2 km/s for λ Velorum (de Medeiros & Mayor, 1999). Eaton

et al. (2008) argues that a rotational velocity this large would lead to measurably

broader, shallower lines (Eaton, 1995), however his observations, with R ∼ 30, 000,

may not have sufficient resolving power to definitively measure this effect. Hence,

a rotational velocity of v sin i = 6.9± 2 km/s is not ruled out by his observations.

We conclude that the system is not rotating pseudo-synchronously, and adopt

a synchronicity parameter of 0.5; setting Prot = Porb/2. It has been found that the

synchronicity parameter assumed does not have a large effect on the light-curve.
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5.2.3 Limb-Darkening & Gravity Darkening

To compute a synthetic light-curve for this system intensities from Kurucz model

atmospheres1 were used (Kurucz, 1970), based on the stellar parameters given in

Table 5.2. A linear limb-darkening law was applied to the intensities (Milne, 1921);

Iµ = Iµ=0[1− u(1− µ)] (5.9)

where u is the limb-darkening coefficient, and Iµ=0 is the intensity of the central

ray. In the case of the K-star a value of u = 0.85 was used, and for the B-star

u = 0.3. These values are the limb-darkening coefficients of Claret (2000) for the

Johnson V-band, taken from observations of field objects.

In addition to limb-darkening, the model must also take account of gravity

darkening. von Zeipel (1924) demonstrates that the distribution of intensity across

the disk of a star is proportional to the local effective gravity, geff, and provides us

with the expression

Fλ = −16σT 3

3κ̄ρ

dT

dΨ
gβ (5.10)

where σ is the Stefan-Boltzmann constant, T is the local temperature, κ̄ is the

Rosseland mean opacity, ρ is the density of the gas, Ψ is the gravitational potential,

and β is the gravity darkening coefficient (Kippenhahn, 1977).

For non-spherical, oblate objects the difference in gravity between the equator

and the poles results in the poles having a higher surface gravity and hence bright-

ness. In fast-rotating objects, such as Be-stars, this can be measured by optical

interferometry (van Belle et al., 2006). The temperature distribution follows a

power-law, determined by the gravity darkening coefficient:

T 4
eff = T 4

pole

(
g

gpole

)β
(5.11)

For radiative stars, where Teff > 8, 000K, β = 1.00 (von Zeipel (1924),Espinosa

Lara & Rieutord (2012)). For cooler, convective stars Teff < 5, 000K, β = 0.32,

as first proposed by Lucy (1967), observed in binary systems by Rafert & Twigg

(1980), and simulated by Alencar & Vaz (1997). These values were assumed for

1http://kurucz.harvard.edu/grids.html
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the B-star and the K-star respectively. As one would expect the gravity darkening

parameters have a large effect on the synthetic light curve, and the values selected

do indeed provide the best fit to the data.

5.2.4 Light Curve

Using these parameters a PHOEBE model and synthetic light curve was computed

for the Johnson V-band. This light curve is shown, superimposed on the orbit, in

Figure 5.6. We see that the V-band flux decreases when the hot B-star is eclipsed

by the K-star (φ = 0.95), as we would expect. We also see, at periastron (φ = 0.0),

a hint of the tidal distortion discussed in Section 5.2.1. This synthetic V-band light

curve is compared with the photometric data of Eaton et al. (2008) in Figure 5.6.

The light curve computed is in good agreement with observation. With this

model in hand we will now examine the phase dependence of the reflection effect

in order compare it with the periodic Si I emission observed.

5.3 Reflection Effect

We examined the possibility that the phase dependence of the Si I emission may

be due to reflection, but the inadequacy of this explanation can be demonstrated

by recourse to the geometry of the system. Following Eddington (1926) we can

calculate the magnitude of the reflection effect. Given two stars, their centres

separated by a, as shown in Figure 5.7 below, we examine the light falling on, and

then re-emitted by, the annulus shown. We assume that all of the light that falls

on the annulus will be reflected (re-emitted).

If we take L1 as the total luminosity of the star on the left, then the amount

of light shining on the annulus is:

Lin = L1

∫ 2π

0
sinψdψdµ (5.12)

= 1
2
L1 sinψdψ (5.13)

Here we begin with the surface area element sinψdψdµ, where µ is the angle around

the annulus (out of the page), and integrate for the annular area. The result is
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Figure 5.6: Upper panel: The orbit of the ζ Aurigae system at various phases from
periastron, φ, with the Johnson V-Band light curve superimposed.Lower Panel: V-
Band light curve of the ζ Aurigae system. The PHOEBE synthetic light curve, in
black, is in good agreement with the photometric data of Eaton et al. (2008).

expressed as a fraction of the total solid angle of the star. By the same method we

can get the fraction of the reflecting star’s luminosity, L2, through the annulus:

Lemitted =
1

2
L2 sin θdθ (5.14)
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a

R

ϕ θ

Figure 5.7: Diagram of two stars, separated by a.

To keep the net luminosity through the annulus constant the total luminosity

from it must be Lemitted + Lin; Lin = Lreflected.

To find the luminosity seen by an observer at a great distance (distantly along

the line of centres) we multiply the luminosity by cos θ (to account for foreshorten-

ing) and integrate the annuli. The ratio of reflected radiation to emitted radiation

is:

1

2
L1

∫ ψ0

0

sinψ cos θdψ :
1

2
L2

∫ π/2

0

sin θ cos θdθ (5.15)

where sinψ0 = R/a. ψ0 is the maximum angles at which reflection will occur.

By taking the triangle defined by R, a, and ψ we see that there are two possible

values for θ. We want to find an expression for value which is less that π/2. To

do this we first apply to sine rule, then the cosine rule, and find the roots of the

resulting quadratic equation in cos θ. This gives us the following expression:

cos θ =
sin2 ψ + cosψ

√
cos2 ψ − cos2 ψ0

sinψ0

(5.16)

Subbing this expression for cos θ into Eqn. 5.15 and performing the integral the

ratio becomes:

Lreflected

Lemitted

=
2

3

L1

L2

(
sin2 ψ0 +

2 + cos3 ψ0 − 3 cosψ0

sinψ0

)
(5.17)

In the case that the star are separated by a large distance, ψ0 is small and the
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second term of the sum becomes small. In this case we are left with:

Lreflected

Lemitted

=
2

3

L1

L2

(
R

a

)2

(5.18)

For ζ Aur a ∼ 6RA, giving a flux increase of the order of 1%. The emission

in λ3905Å and λ4102Å, being far stronger than this, must therefore be due to a

line formation mechanism that channels the radiative energy effectively from the

broadband UV flux falling on the K-star into the specific lines observed. Though

the reflection argument is inadequate to explain the observed emission, the emis-

sion should, however, have the same phase variation as reflection; being dependent

only on the separation of the components and the amount of the visible K-star

hemisphere being illuminated.

5.3.1 Sobolev Reflection

In order to examine the phase variation of reflection we turn to Sobolev (1975,

p. 175). Figure 5.8 outlines the coordinate system that will be in use. α denotes

the phase angle, the angle at the reflector between the source and the observer. φ

and ω are the latitude as measured from intensity equator (the great circle passing

through the sub-source and sub-observer points), and the longitude measured from

the sub-observer point, respectively.

We also designate the angles cos−1 η, cos−1 ζ (which is to say η and ζ are ratios

of lengths, not angles), and ϕ. These angles can be seen in Figure 5.8 (b) & (c).

For a given point on the surface of the reflector the angles cos−1 η and cos−1 ζ

are the angle between the point, the origin, and the sub-observer point, and the

point, the origin, and the sub-stellar point, respectively. Taking a point and the

tangential normal plane ϕ is the angle between the projection on the plane of the

vectors to the source and the observer. This is shown in Figure 5.8 (c).

Applying the spherical law of cosines we get the following relations:

ζ = cosψ cos(α− ω) (5.19)

η = cosψ cosω (5.20)

The intensity passing through an area element on the surface, into a unit solid
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Figure 5.8: Diagrams outlining the coordinate system in use.

angle, will be Sarηζdσ. Here πS is the flux through an area at the surface of the

reflector oriented perpendicular to the source, ζ is the cosine of the angle between

the perpendicular and the reflector, η the cosine of the angle between the reflector

and the observer, ar is the reflection coefficient, and dσ is an area element on the

reflector’s surface into a unit solid angle (assuming the star is spherical this is

R2 cosψdψdω).

Combining these elements we get:

R2Sar cos(α− ω) cosω cos3 ψdψdω (5.21)
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Figure 5.9: Flux reflected from the K-star as a function of phase as predicted by
Eqn. 5.25.

In order to get the total flux in the direction of Earth we integrate this ex-

pression over ψ between −ψ0 and ψ0 (note that ψ0 has the same meaning as in

Section 1.3) and over ω between α − π/2 (the angle of the terminator) and π/2.

this yields:

F (α) = 2SR2ar

∫ π/2

α−π/2
cos(α− ω) cosωdω

∫ ψ0

0

cos3 ψdψ (5.22)

We assume that the reflection coefficient is constant with longitude and lati-

tude. S is the energy falling on an area element perpendicular to the source at a

point on the reflector. We could take a simple radial dilution of the B-star’s flux

(assuming, as Eddington does, that the B-star is a point source) and write this as:

S =
πFB
d2

(5.23)

here d is the distance from the B-star to the point on the surface of the K-star.

This can be written, using the same law of cosines as was used to derive relations

2 & 3, as:

d =
√
R2
K + d2 − 2dRK cosω cosψ (5.24)
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5.3 Reflection Effect

Table 5.3: Sensitivity of the phase variation of the reflection curve to various model
parameters.

Parameter Order of change
in phase variation of reflection

Orbital Parameters:
Bennett 1996 — Griffin 2005 ∼ 0.1%

K star Radius:
147R� (Bennett 1996)
160R� (Schroder 1990) ∼ 0.1%

Stellar Masses:
MB = 4.8± 0.2M�
MK = 5.8± 0.2M� (Bennett 1996) ∼ 0.1%

Synchronicity Parameter:
Prot = CPorb C = [0, 1] ∼ 1%

Limb Darkening: Does not alter the phase variation
Gravity Darkening Parameter: Does not alter the phase variation

This gives us the final relation:

F (α) = 2πR2
KFBar

∫ π/2

α−π/2

∫ ψ0

0

cos(α− ω) cosω cos3 ψ

R2
K + d2 − 2dRK cos(α− ω) cosψ

dψdω (5.25)

This expression gives the flux reflected from the K-star as a function of phase angle.

This is plotted in Figure 5.9. This reflection curve is only valid in the case of a

spherical star, and, as discussed in Section 1.2.2, this is not a valid assumption in

the case of the K-star. However, we can use the light curve computed by PHOEBE

to determine the phase variation of reflection while taking account of the ellipsoidal

variation of the K-star.

5.3.2 PHOEBE Reflection Curve

The PHOEBE model allows us to compute a reflection curve which takes account

of the oblateness of the K-star. This is done by computing one light curve, like the

one in Figure ??, which takes account of reflection, another which does not, and

subtracting one from the other. The reflection is Lambertian (directly proportional

to the cosine of the angle between the direction of the incident light and the surface

normal — isotropic reflectance). We see, in the upper images of Figure 5.10, the
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Figure 5.10: Top: Six images of the surface of the K-star and the reflected B-star
flux. The images show (from top left to bottom right) 0, 0.16, 0.33, 0.5, 0.66 and
0.83 phase from periastron, respectively. Bottom: The reflected V-band flux as a
function of phase, as calculated by PHOEBE. The black lines mark the phases shown
in the above images.

surface of the K-star, and the reflected B-star flux. In the lower plot of Figure

5.10, we see the phase variation of the reflected flux. In Table 5.3 we see the
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Figure 5.11: PHOEBE model output (red), the Sobolev spherical approximation
(black), and the observed Si I EEW (blue).

sensitivity of the phase variation of reflection curve to various model parameters.

We stress that the values given only refer to the phase variation of the curve, all

of the parameters listed have a large effect on the magnitude of the effect, and on

the light-curve itself, however they do not effect the shape of the reflection curve

in the same manner.

Figure 5.11 shows the PHOEBE model output, the Sobolev spherical approx-

imation, and the observed Si I EEW. We see that the PHOEBE model is a good

fit to the data, and a better fit than the spherical approximation. This is partic-

ularly clear in the rise phase. Where the Sobolev integral predicts a rise earlier

than we see in the data, this is not present in the PHOEBE model. Discrepancies

remain between the PHOEBE model and the data. The data appear to peak more

sharply than the model. This may be an effect of the data reduction, however.

The two highest points are from photographic plates exposed at Mount Wilson in

the 1950’s, and if the peaks of the spectrum were over-exposed, the tendency will

have been for the calibration to over-estimate their corresponding EEW (Griffin,
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Figure 5.12: Contours of equal gravitational potential for the ζ Aurigae system, a
slice through the plane of the orbit. The objects are plotted to scale.

private communication). The dip at ∼ 0.35 phase is not predicted. This dip ap-

pears across many orbits, and is present in the CCD data. We also note that there

appears to be a very small discrepancy between our radial velocity curve and the

data at the same phase. We posit that this may be due to excess material collected

at the Lagrange point 4 crossing our line of sight. In Fig 5.12 we see the contours

of equal potential for the system. We note that, as a result of the objects being of

similar mass, L4 and L5, the Lagrange points which lie along the path of the orbit,

are very large and extended. L4 will pass between the observer and the primary
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5.3 Reflection Effect

at φ = 0.45, which coincides with the dip in the Si I flux. We note that no excess

of material was found in the hydro-dynamical modelling of Harper et al. (2005),

however these models only examined the evolution of the circumstellar environ-

ment over two orbits, and given that Lagrange points are stable nulls rather than

attractors, this timescale may not have been sufficient to allow for the build up of

material.

Other than the discrepancies mentioned above the PHOEBE model provides a

good fit to the data.

5.3.3 Line Reflection

We can analyse the reflection effect in greater detail by examining the spectral

data. Maintaining our assumption that the Si I lines form on the portion of the

visible hemisphere of the K-star illuminated by the B-star, we can determine the

velocity of the portion of the K-star where the line is formed by measuring the

Doppler shift of the lines, and hence the rotational velocity of the star. In order to

construct a simple analytic model we return to our assumption of sphericity, and

compute the reflection of a Gaussian line as a function of phase.

We will use a Gaussian line-profile with a turbulent velocity, vt. Our line profile

can be written as

Iλ = e
−
(
λc−λ
λt

)2
(5.26)

where λc is the central wavelength of the line, and λt is the turbulent width of the

line, given by

λt = (1 + vt/c)λc − λc (5.27)

λt =
λcvt

c
(5.28)

This gives a line profile of

Iλ = e
−
(
c
vt

(
1− λ

λc

))2
(5.29)

Returning to the geometry of Section 1.3.1, for each longitude and latitude, ω
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Figure 5.13: Reflected line profiles at given phases for a rotational velocity of
vrot = 6 km/s. The dotted line represents line centre.

and ψ, we compute the component of velocity in the direction of the observer:

vproj = vrot sinω cosψ (5.30)

Then for each point we apply a Doppler shift and compute the intensity from the

Gaussian:

λm = (1 + vproj/c)λe (5.31)

Iλm = e
−
(
c
vt
− cλe

vtλc
+
λevproj
λcvt

)2
(5.32)

where λm is the measured wavelength, and λe is the emitted wavelength. This is
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Figure 5.14: Left:Reflected line profiles at given phases for a rotational velocity
of vrot = 6 km/s and a turbulent velocity of vturb = 10 km/s overplotted with
observation.

then used as a weighting factor for Eqn. 5.25.

Fλm(α) =

2πR2
KFBar

∫ π/2

α−π/2

∫ ψ0

0

cos(α− ω) cosω cos3 ψ

R2
K + d2 − 2dRK cos(α− ω) cosψ

e
−
(
c
vt
− cλe

vtλc
+
λevproj
λcvt

)2
dψdω

(5.33)
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This equation gives us the rotationally Doppler shifted line profile at each

phase. This is shown in Fig. 5.13. These line profiles were then fit to the spectral

data in order to find a best fit for the rotational velocity. The best fit to the

data can be seen in Fig. 5.14. This best fit provides values of vrot = 6 km/s and

vturb = 10 km/s. The lines are all fit with the same vturb, which may not be the

case. Since the lines form in a localized spot on the K-star at a given phase they

will have a local turbulent velocity, which will vary as the emission moves across

the disk. The value of vrot agrees well with the values discussed in Section 5.2.2,

however we must be aware of the low resolution and S/N of these data, making

the centroid difficult to track, particularly at the intrinsically weak later phases.

5.4 Conclusions

In this chapter we have examined the periodic emission of Si I observed in ζ Auri-

gae. We have proposed that the phase-modulated emission observed in the λ3905Å

and λ4102Å lines originates in in the deep chromosphere of the K-star, and is due to

the photoionization and recombination of Si I. This photoionization, being caused

by the UV radiation of the B-star, occurs only on the portion of the K-star which

is illuminated at any given phase, hence the phase modulation.

The emission cannot be due to simple reflection. As described in Section 5.3

this mechanism is inadequate to account for the strength of the lines, which must

be due to a mechanism which effectively channels the broadband UV radiation

falling on the atmosphere into these two lines. Despite not being sufficient to

explain the strength of the lines, the phase variation should be the same as in

the case of broadband reflection; only being dependent on the separation of the

two objects and the amount of the visible K-star hemisphere being illuminated.

To fully explore this a model of the system was produced, as detailed in Section

5.2. This model agrees well with the known orbital parameters of the system, the

radial velocity observations, and the synthetic light curve it predicts agrees well

with photometric observation.

With this model in hand the broadband (specifically V-band) reflection effect

could be computed, taking account of the distortion of the K-star caused by the

gravity of the B-star. This reflection curve is in very good agreement with the
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data, and is a better fit than a model which assumes a spherical K-star. There is

no appreciable shift between the model and the data as there would be if the “hot

spot” from which the emission originates lagged behind the substellar point, i.e.

if the Si I recombination timescale was of the order of days. There are a couple of

small discrepancies between the model and the data, the most obvious being the

dip seen in the data at φ ≈ 0.35 which is not predicted by the model. However for

the most part, the phase variation of the emission is explained solely by recourse to

the geometry of the system, without need to introduce elements of atomic physics

or radiative transfer.

Employing an adapted form of the analytic spherical reflection expression we

could predict the expected Doppler shift of a spectral line formed locally by the

B-star irradiation. This allowed us to compute a value for the rotational velocity

of the star which is in good agreement with the values in the literature.

In order to fully exploit this unique and powerful diagnostic higher resolution

spectra are required, with greater S/N. These data would allow us to examine in far

greater detail the phase variation, and could, particularly around the peak of the

emission, allow us the put constraints on the oblateness of the K-star. They would

allow us to measure the change in line width to greater accuracy, and examine

its variation as the location of the emission moves across the disk of the K-star.

Further they would allow us to more robustly compute the rotational velocity from

the shift in the line centroid. This is exceedingly difficult to do with the current

S/N. This line emission effectively provides spatial resolution on an otherwise

unresolved object, being a locally formed line in a disk-averaged spectrum, and

gives an opportunity for novel insights into the chromospheres of late-type stars.

With the geometric model providing an explanation for its phase variation we

are now free to move forward with modelling the chromosphere and examining

in detail the line formation mechanism in order to glean as much information as

possible from this unique diagnostic.
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6
Chromospheric Model of ζ Aurigae A

In this chapter we discuss the construction of a model chromosphere for the primary

of the ζ Aurigae system (ζ Aurigae A — K4Ib). This semi-empirical model is based

on the large archive of optical and ultraviolet observations of the system, and the

model is fit to Hubble Space Telescope observations of the C II] λ2325 Å quintet,

and Al II] λ2669 Å line. Despite the long history of observation of ζ Aurigae A a full

semi-empirical model of its chromosphere has not previously been attempted. The

model is constructed with its application to other objects in mind, particularly λ

Velorum, a single star and close spectral proxy, and the model is used to comment

on the structure and extent of giant chromospheres generally. The model is also

constructed with a view to more accurately characterise the periodic Si I emission

discussed in the previous chapter, and the effect of irradiation by the B-star on the

chromosphere of ζ Aurigae A. The model described in this chapter is the subject

a paper in prep, O’Riain & Harper (2015).

140
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6.1 Introduction

Studies of the eclipsing binary system ζ Aurigae provide a unique opportunity to

observe the properties of stellar chromospheres. During eclipse the secondary acts

as a light source shining through the K giant’s chromosphere, allowing the physical

properties — mass column density, excitation temperature, turbulent velocities —

of the chromosphere to be determined along the lines of sight. These values are

particularly useful as they should be representative of the chromospheric conditions

of single stars (Eaton, 1992, 1993; Schröder, 1988), and they provide the best

constraints on the properties of stellar chromospheres.

Owing to the value of the ζ Aurigae systems in determining the structure of

stellar atmospheres, they have been long studied. Study of these systems, ζ Au-

rigae, 31 & 32 Cyg, begins with the optical observations of the 1950’s by Wilson

& Abt (1954) and Wright (1959). Studies like these probed the inner chromo-

spheres of these objects, deriving temperatures, ionization balances, in the case

of ζ Aurigae pointed to inhomogeneity in the atmosphere. Since this early work

there has been evidence for inhomogeneity and asymmetry, as well as evidence for

an underlying constant atmosphere (McKellar & Petrie, 1952). Optical observa-

tions probed the chromosphere below a height of h∼0.5R∗, and in the 1970’s the

International Ultraviolet Explorer (IUE) provided observations of the UV part of

the spectrum, where the lines are intrinsically stronger, allowing a study of the

more extended envelope of ζ Aurigae; see the series of papers “A study of UV

spectra of ζ Aur/VV Cep systems” (Hempe, 1982). Despite the unique insight

that can be gleaned from the study of ζ Aurigae A, and the large archive of ob-

servation, no attempt has been made to construct a full semi-empirical model of

its chromosphere. Other ζ Aurigae systems have been modelled previously, with

full semi-empirical models for HR 6902 (G9IIb + B8V) and 22 Vul (G4I + B9V)

having been computed by Marshall (1996).

In this chapter we will discuss the construction of a spherical, one-component,

non-LTE, semi-empirical model chromosphere for ζ Aurigae A. The model con-

structed is based on empirically measured temperatures and mass column densi-

ties, and it is fit to HST observations of the C II] λ2325 Å quintet, and the Al II]
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Figure 6.1: The run of temperature with mass column density for interpolated
MARCS model photosphere, as compared with the models used to produce it.

λ2669 Å line. We will discuss the implications of the model for single stars, in par-

ticular λ Velorum, a close spectral proxy for ζ Aurigae, and an object for which

we have complementary data.

6.2 Construction of the Initial Model

6.2.1 MARCS Model Photosphere

The construction of our model atmosphere begins with the photosphere. The

photospheric model employed is interpolated from the grid of Model Atmospheres

in Radiative and Convective Scheme (MARCS) model photospheres (Gustafsson

et al., 1975, 2008). MARCS provides a grid of spherical, hydrostatic, LTE, one-

component model photospheres which specify the column density, temperature,

electron density, and opacities as a function of height. The models have parameters

2500 K < Teff < 8000 K; -1 < log(g) < 5 (for various masses and radii); -5 <
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[Fe/H] < 1; [α/Fe] = 0.0 and 0.4 and different choices of C and N abundances

(corresponding to chemically evolved giants, and R, S, & N stars); and 1 km/s <

vturb < 5 km/s.

From this grid a model photosphere was interpolated for the parameters of

ζ Aurigae A. This was done using the interpolation routine which is provided

by MARCS,1 which computes a model for a given set of parameters using a 3-

dimensional (Teff , log(g), [Fe/H] space) cubic spline interpolation. The parameters

of ζ Aurigae A were specified as, Teff = 3960 K, log(g) = 1.33 (Bennett et al.,

1996), Fe/H = -0.26 (McWilliam, 1990), and solar abundances — in the absence of

clear evidence that the object has undergone a dredge-up (Luck, 1977). The run of

temperature with mass column density, log(mcol), for the interpolated photosphere,

and the models used to produce it, can be seen in Fig. 6.1.

This model photosphere is used as the lower part of the model atmosphere

constructed, its domain of validity, the region where the plasma is in LTE, is

taken to be up to the temperature minimum (Tmin = 0.75Teff).

6.2.2 Empirical Mass Column Densities

Eaton (1993) makes use of archival IUE observations to measure the column densi-

ties, temperatures, and turbulent velocities along a number of lines of sight, from

the photosphere, h = 0, to a height of h ≈ 1R∗. This is done by fitting the

observed spectra, specifically the wings of Ly-α and various metals (e.g. Fe I/II,

Mg I/II, N I/II), with one set of parameters (log(mcol), T , vDoppler) per line-of-sight

(Eaton, 1988). These parameters will be used in the construction of our model

atmosphere, and will be discussed each in turn. We begin with the log(mcol).

Eaton (1993) computes log(mcol) along 14 lines of sight and we collect a further

4 values covering the inner chromosphere from Wilson & Abt (1954). These tan-

gential column densities are converted to radial column densities, and the densities

are fit by the following expression:

ρ(r) = ρ0e
−R∗/HeR

2
∗/Hρh (6.1)

1http://marcs.astro.uu.se/software.php
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where ρ is the mass density, R∗ is the stellar radius, Hρ is the isothermal density

scale height, and h is the radial height above the photosphere. This is simply

an atmosphere with a density decreasing exponentially with scale height, includ-

ing a term to account for the decrease in gravity as we move higher into the

atmosphere. Eaton (1993) provides best fit values to the data of Hρ = 8R∗, and

ρ0 = 2.3× 10−13 g/cm−3. With this expression we can determine the run of radial

column density to the photosphere, above the region wherein we use the column

density from the MARCS model. With the column density defined in this way,

we use Eqn. 6.1 to convert between mass column density and height. In general

observations will be compared by reference to their height above the photosphere,

as this can be defined based on the date of the observation without recourse to

the author’s own adopted parameters (radii, ephemerides, etc.), however radiative

transfer calculations are performed using mass column density as this allows us to

directly control the distribution of mass in the atmosphere.

6.2.3 Empirical Temperatures and Turbulent Velocities

We collect the empirically determined excitation temperatures from the work of

Eaton (1993), Wilson & Abt (1954), and Schroeder et al. (1990). In Fig. 6.2 we

see these values, plotted with respect to their height above the photosphere. The

upper scale denotes the corresponding log(mcol) (cgs) at each height. The scale

covers the range from the photosphere to h = 1R∗. We also plot the lower portion

of the wind temperature law given by Harper et al. (2005). We note in this plot the

extent of the atmosphere, these data pointing to a temperature ∼10000 K being

reached at h∼1R∗. The values from Eaton (1993) are determined by the method

discussed in the preceding section, the values in Harper et al. (2005) come from a

combination of HST and VLA observations (the data points plotted coming from

HST, the wind law being informed by both), the values from Wilson & Abt (1954)

and Schroeder et al. (1990) come from the ionization balance of Fe I and Ti II,

and the ratios of Fe II/Fe I and Mg II/Mg I respectively. In our initial model we

adopt the temperature-height relation in Harper et al. (2005) (provided by P.D.
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Figure 6.2: Top Left: Empirically measured temperatures as a function of height
and column density through the atmosphere. We note the extent of the atmosphere.
Top Right: Empirically determined turbulent velocities as a function of height. We
note the large errors on these data. Bottom: The temperature and vturb profiles
for the model atmosphere, constructed from the empirical data, and the MARCS
model.
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Bennett),

T (r) = 3085.4 + 5656.9

(
r

R∗

)0.9198

tanh

(
r/R∗ − 1

0.1413

)2

(6.2)

where r here is defined as photospheric radius plus the height above the pho-

tosphere, r = R∗ + h. We note that this relation does appear to overestimate

the temperature points, as plotted in Fig. 6.2, we will address this in succeeding

sections.

Turbulent velocities were also collected from the literature, and are plotted in

Fig. 6.2. These values are determined from the measured line-widths, and we note

that the errors on these measurements are quite large. We also note, however, the

clear trend of increasing turbulent velocity with height, as we might expect. These

values match those from the work of Baade et al. (1996) and references therein,

which gives vturb(r) = 20 − 15 km/s 1 < r/R∗ ≤ 2. The measured values also

chime well with the photospheric turbulent velocities, decreasing toward values we

might anticipate in the photosphere (Gray, 2008). Again we combine these values

with those of the MARCS model (5 km/s), giving us vturb(r).

Finally in Fig. 6.2 we see the temperature and turbulent velocity profiles used

in the initial model. The temperature model is constructed from the MARCS

model and the empirical temperature relation of Harper et al. (2005), the turbulent

velocity comes from a cubic spline interpolation over the data points provided,

again joined with the MARCS model at the temperature minimum. In the coming

sections we will discuss how this model was refined in order to better fit spectral

observations.

6.2.4 Electron Densities

There are a small number of empirically measured electron densities in the lit-

erature, specifically coming from the sources of the temperatures and turbulent

velocities. In order to construct a fully self-consistent model atmosphere we will

compute the electron density from the other empirical parameters, and compare

these with the measured values.

The method by which we will use to compute the electron densities is based

on that outlined by Vernazza et al. (1973). If we make the assumption of charge
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neutrality the electron density will be given by:

ne = np + nH

∑
ξ

Aξnξ (6.3)

where np is the proton number density, nH is the total hydrogen number density, Aξ

is the abundance of other constituent elements, and nξ is their degree of ionization.

We let

ψ(T ) =

(
h2

2πmkbT

)3/2

eEκ/kbT (6.4)

where Eκ is the ionization energy. For the first level of hydrogen, n1, we can write

n1 = nenpb1ψ(T ) (6.5)

Here b1 is the departure coefficient of the first level, as defined by Menzel (1937)

bi =
ni/n

∗
i

nκ/n∗κ
(6.6)

where nκ is the number density of ionized atoms, and the asterisk denotes the

population values as computed in LTE.

Hence we break up the total hydrogen number as

nH = n1

(
1 +

n∑
l=2

nl
n1

)
(6.7)

From which we construct the following quadratic equation in ne

dn2
e + ne − nenhZd− nH − nHZ = 0 (6.8)

where

Z =
∑
ξ

Aξnξ (6.9)

d = b1ψ(T )

(
1 +

n∑
l=2

nl
n1

)
(6.10)
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this quadratic equation has the root1

ne =

√
(1− ZdnH)2 + 4dnH + 4dZnH − (1− ZdnH)

2d
(6.11)

The ionization fraction of the elements is computed by

nξ =
1

1 + neψξ(T )
(6.12)

where

ψξ(T ) =

(
h2

2πmkbT

)3/2(
UI

2UII

)
ξ

eEξ/kbT (6.13)

where UI and UII are the partition functions of the first and second ionization

stages of the relevant element. The abundances of the elements are taken from

Asplund et al. (2006), partition functions from Irwin (1981), and ionization thresh-

old energies from NIST Kramida et al. (2015). We note here that due to Eqn 6.12

we have an equation for ne written in terms of ne. Hence we must solve the equa-

tion iteratively by substitution. In practice this converges in a small number of

iterations.

As part of this iterative process we solve the hydrogen ionization in detail, using

RH. This gives us the correct hydrogen departure coefficient b1. Hydrogen will be

the primary contributor to the electron density through much of the atmosphere,

with metals only contributing substantially at lower temperatures, and hence we

account only for hydrogen in detail.

The ionization of hydrogen in the chromosphere is a two-step process, excitation

to the n = 2 level by electron collisions or scattered Lyα photons followed by pho-

toionization by the photospheric Balmer continuum. In order to accurately treat

the hydrogen radiation field, since the Balmer and Lyman continua will control

the ionization fraction, we compute the hydrogen solution using the assumption of

Partial Redistribution (PRD — discussed at length in the introductory chapters)

for Ly-α, Ly-β, and H-α.

We turn to the empirically measured electron densities of Schroeder (1986);

Schroeder et al. (1990). These values are computed from the ionization balance of

1The root provided by Vernazza et al. (1973) is written in a slightly different form, but is
equivalent.
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Figure 6.3: Electron density as a function of height above the photosphere. We
see the electron density computed using the the assumptions of CRD and PRD,
compared with the empirically measured electron densities.

Fe II/Fe I. This is achieved by assuming that the ionization to Fe II is controlled

by the B-star radiation field, and this is balanced by recombination to Fe I, giving:

ne =
nFeI

nFeII

ΓB
α(T )

(6.14)

where ΓB is the photoionization rate due to the B-star and α(T ) is the recombi-

nation coefficient. The photoionization rate due to the B-star is given by:

ΓB =
W4π

hc

1576Å∫
0

FBλaλdλ (6.15)

where W is the dilution factor, and aλ is the photoionization cross-section, FB
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Table 6.1: Electron density as computed by Schroeder (1986); Schroeder et al.
(1990) and recomputed using updated atomic data.

Height (m) ne (cm−3) (Schroeder) ne (cm−3) (Recomputed)
2.3× 109 3.55× 109 1.22× 109

6.1× 109 1.31× 109 3.88× 108

8× 109 1.2× 108 2.45× 108

1.6× 1010 2.5× 108 4.35× 108

comes from Castelli et al. (1997). The atomic data relating to Fe have changed

considerably in the past 20 years – the key ratio here, ΓB/α(T ) has changed by

a factor of ∼2 – and as a result we recompute the electron density based on

the updated atomic data of Bautista (1997). The values of electron density can

be seen in Table 6.1. The values are computed given a temperature of 5000 K

which, as well as being of similar magnitude as the measured temperatures at

these heights, is also the minimum of α(T ) and hence provides an upper limit on

the electron density. As we can see the values have changed by a factor of ∼2− 3,

and this has the effect of decreasing the upper limit on the electron density in

this region by an order of magnitude. Eaton (1993) provides a number of electron

densities derived from the Fe ionization balance, which our calculation also revise

down by a factor of 50% from ∼109 cm−3, though this has less of an effect on the

electron densities presented by Eaton (1993) as they are averaged between the

ionization balance of number of elements. We will discuss the relation between

these empirically measured values and our computed values in the discussion of

the final atmospheric model.

In Fig. 6.3 we see contrast the results using Complete Redistribution (CRD),

and PRD, along with the small number of empirically measured electron densities.

We see that both the PRD and the CRD case agree well in the lower chromo-

sphere (where the plasma is well approximated by the assumption of LTE), before

diverging in the middle chromosphere, and finally converging again at the top

of the chromosphere, as ne → nH for both cases. It is difficult to make general

qualitative statements about the differences between the CRD and PRD electron

densities, as one would expect as we change the atmospheric parameters the dif-

ferences between the two computed values change, however it does appear to be
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the case that electron density is generally lower for the CRD case. We note that

there appears to be disagreement between the electron densities as analytically

computed, and those values presented in the literature. We will discuss the details

of this disagreement when we present the final model.

To summarise the method used to compute ne:

1. We begin by computing the total hydrogen number density from the mass

column density and the abundance.

2. Then, using the temperature profile, the LTE hydrogen balance is computed,

including the proton number.

3. We compute ne from this nH using Eqn 6.11, and proceed to compute the

NLTE hydrogen solution using RH.

4. From this hydrogen solution we compute a new electron density, nnewe , again

using Eqn 6.11, which we then use to compute a new hydrogen solution.

5. We continue this process until (nnewe − nolde )/nolde < 10−4 for every point in

the atmosphere.

Now we have the mass column density, temperature profile, turbulent velocity,

and electron density, we have specified the required thermodynamic parameters

of the atmosphere. Next we must address the microphysics, and construct the

relevant atomic models.

6.3 Atomic Models

In the coming sections we will be examining HST spectra of ζ Aurigae, with an

emphasis on optically thin lines, which allow us to probe the structure of the

atmosphere. In particular we will be looking at the C II] λ2325 Å quintet, and the

Al II] λ2669 Å line, and as such we will need to construct models of these atoms. In

this section we will begin by discussing the H model used in the electron densities

calculation, followed by the Al model, and the C model. These models are provided

in the Appendix.
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Figure 6.4: Grotrian Diagram of the H model constructed. This model consists
of 5 H I levels and one H II ionization level. The transition series (Lyman, Balmer,
etc.) are colour coded.

6.3.1 Hydrogen Model

In the case of the H it is possible to use a number of hydrogenic simplifications

to construct a model atom. The H model used is a 6 level atom, based on that

used in the Vernazza et al. (1973) series of papers, and can be seen in the Grotrian

diagram in Fig. 6.4. The energy levels in this Grotrian were computed from the

Rydberg Equation

En = −13.6

(
1− 1

n2

)
eV (6.16)

where n is the principal quantum number. We compute the oscillator strengths,

the collisional excitation, and the collisional ionization rates by the method of

Johnson (1972), as follows.
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6.3 Atomic Models

The oscillator strength of a transition from j to i is given by

fij =
32

3
√

3π

ni
n3
j

x−3g(n, x) (6.17)

x = 1−
(
ni
nj

)2

(6.18)

g(n, x) = g0(n) + g1(n)x−1 + g2(n)x−2 (6.19)

Here x is the ratio of the transition energy to the ionization energy (Ek), and g(n, x)

is the Gaunt factor, approximated as the given polynomial, with the coefficients

tabulated in Johnson (1972).

The collisional excitation cross-section is provided by the expression

qij =
2n2

x
U−1
ij (1− e−rijUij)

(
Aij

(
ln(Uij +

1

2Uij

)
+

+Bij − Aij ln

(
2n2

x

)(
1− 1

Uij

))
πa2

0 (6.20)

where Uij = Ek/Eij, a0 is the Bohr radius, Aij and Bij are polynomial approxi-

mations to the integrals introduced by Bethe (1930), and rij is a fitting parameter

such that

rij = rix (6.21)

r1 = 0.45 n = 1 (6.22)

rn = 1.94n−1.57 n ≥ 2 (6.23)

The collisional ionization cross-section is given by a similar expression

qik =
2n2

Ui
(1− e−riUi)

(
Ai ln(Ui) + (Bi − Ai ln(2n2))

(
1− 1

Ui

)2)
πa2

0 (6.24)

Finally we compute the photoionization cross sections by the expression of

Menzel & Pekeris (1935) (see also Hubeny & Mihalas (2014, p. 188))

αik(n, ν) =
64π4Z4e10me

3
√

3ch6

gbf (n, ν)

n5ν3
(6.25)
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where Z = 1, e is the electron charge, me is the electron mass, and gbf (n, ν) is the

bound-free Gaunt factor tabulated in Karzas & Latter (1961).

6.3.2 Aluminium Model

In Fig.6.5 we see the Grotrian Diagram of the Al model atom constructed. The

model, based on the model atoms presented in Harper (1992) and Vernazza et al.

(1976), consists of 12 levels and 7 radiative transitions, over the first two ioniza-

tion states – Al I & Al II – and a continuum Al III level. The full atomic model is

published in the Appendix. In Fig. 6.5 we see the levels and the radiative tran-

sitions of the atom constructed. The Al II] λ2669 Å line, for which we have HST

observations, is marked.

The energies of the levels were collected from the NIST Atomic Database

(Kramida et al., 2015). The data for the radiative transitions – the log(gf) values,

the radiative damping constants, the Stark damping constants – were collected

from Kurucz & Bell (1995)1.

The photoionization cross-sections are collected from TOPBASE2 (Cunto &

Mendoza, 1992). TOPBASE ignores fine structure levels, providing the total pho-

toionization cross-section of a “super-level” summed over the fine-structure levels,

as a function of frequency, σT(ν).

From this we want to determine the cross-section of each of the N fine-structure

levels such that the total photoionization rate (s−1) is preserved. Hubeny & Mi-

halas (2014, p. 680) provide the expression used to sum the photoionization cross-

sections of levels:

σT(ν) =

∑
i giwiσi(ν)e−Ei/kbT∑

i giwie
−Ei/kbT

(6.26)

where gi is the statistical weight of a given level, wi is the occupation probability

and σi is the photoionization cross-section. Here we will make the assumption that

wi = 1 (wi accounts for the effect of neighbouring particles on the ionization energy,

which we will here assume, as it is in the classical treatment, to be negligible), and

that the energies of the levels is approximately equal E = Ei (since we are dealing

1http://kurucz.harvard.edu/
2http://cdsweb.u-strasbg.fr/topbase/topbase.html
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Figure 6.5: Grotrian Diagram of the Al I-III model constructed. The Al II] λ2669 Å
line, for which we have HST spectra, is marked.

with fine-structure this is a reasonable assumption). This gives us:

σT(ν) =

∑
i giσi(ν)∑

i gi
(6.27)

We aim to preserve the photoionization rate

nT

∫ ∞
0

σT(ν)Jνdν =
∑
i

∫ ∞
0

niσi(ν)Jνdν (6.28)

where

nT =
∑
i

ni (6.29)

A solution which will preserve the rate is clearly obtained by setting each of

the photoionization cross-sections to the total, σi = σT, however it is important
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to note that this may not be reflective of the true rate out of each level.

Finally we compute the collisional cross-section. To compute the collisional ex-

citation cross-sections, a commonly used method is that of van Regemorter (1962),

which expresses the collisional excitation cross-section for a dipole-permitted tran-

sition in terms of the oscillator strength, fij

qij(T ) = C0T
1/214.5fij(EH/Eij)

2u0e
−u0Γ(u0) (6.30)

where

Γ(u0) = max[ḡ, 0.276eu0E1(u0)] (6.31)

where C0 = πa2
0(8kb/mπ)1/2, EH is the ionization energy of hydrogen, Eij is the

energy of the level, u0 = Eij/kbT , ḡ is the effective Gaunt coefficient, and E1 is

the first exponential integral.

For collisional ionizations we use the formula provided by Seaton (Hubeny &

Mihalas, 2014)

qik = 1.55× 1013T−1/2ḡiσik(ν0)
e−u0

u0

(6.32)

where σik(ν0) is the threshold photoionization cross-section, and ḡi is the Gaunt

factor for an ion of given charge – of order 0.1 for Z = 1, and 0.2 for Z = 2.

6.3.3 Carbon Model

In Fig. 6.6 we see the Grotrian diagram of the C model atom constructed. This

model comprises 3 C I levels, which are not radiatively linked, 8 C II levels, whose

transitions we see in the Grotrian diagram, and a continuum C III level. In the

Grotrian diagram we have plotted in red the λ2325 Å quintet transitions, which

are then plotted in more detail in the schematic Grotrian in the right hand panel

of Fig. 6.6. The flux ratios of the quintet transitions are density-sensitive, they

provide a direct measure of the electron density in the line-forming region, and

hence are very powerful chromospheric diagnostics (Stencel et al., 1981). The
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Figure 6.6: Left: Grotrian diagram of the radiative transitions in the C II-III
model constructed. The quintet transitions are marked in red. Right: A schematic
Grotrian diagram of the CII electron density sensitive quintet transitions.

density sensitive flux ratios are

R1 =
F (2326.11Å)

F (2328.83Å)
(6.33)

R2 =
F (2326.11Å)

F (2327.64Å)
(6.34)

R3 =
F (2325.40Å)

F (2327.64Å)
(6.35)

These ratios are sensitive to electron densities in the range ne ∼ 106 − 1010 cm−3.

This system also gives rise to the ratios:

R4 =
F (2326.11Å)

F (2324.21Å)
(6.36)

R5 =
F (2328.83Å)

F (2325.40Å)
(6.37)

(6.38)

which sensitive to the oscillator strengths of the lines, and also the optical depth.

Due to their diagnostic importance, care was taken to select accurate atomic
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Table 6.2: Atomic data for the electron density sensitive C II] quintet.

Level Energy (cm−1) g
2s22p 2P1/2 90832.1 2
2s22p 2P3/2 90895.62 4
2s2p2 4P1/2 133835.5 2
2s2p2 4P3/2 133857.5 4
2s2p2 4P5/2 133885.8 6

Transition 2J - 2J’ λ (Å) Aij (s−1)
2s22p 2P - 2s2p2 4P 1 - 1 2325.4 52

1 - 3 2324.21 1.711
3 - 1 2328.83 61.07
3 - 3 2327.64 8.606
3 - 5 2326.11 34.45

data for the model, particularly the collision rates. We collect the energies of the

levels, the oscillator strengths, and the collision strengths from Tayal (2008). These

values have the advantage of being self-consistently computed, with all of the values

coming from the same R-matrix wave function calculation, and so we avoid any

conflict that may arise from selecting values from different sources with different

unknown biases. As with the previous model the radiative parameters (with the

exception of the oscillator strengths) are taken from Kurucz & Bell (1995), and

the photoionization cross-sections from TOPBASE (Cunto & Mendoza, 1992).

In order to quantify the sensitivity of the flux ratios to the atomic data the

mean escape probability method was used to compute the flux ratios (Judge,

1990; Osterbrock, 1962). The formalism used is the frequency- and angle-averaged

one-sided mean escape probability which is described in the introduction. While

this approximation is inadequate to model the full, non-local radiative transfer

problem, it can provide useful qualitative insight into the dependency of the fluxes

on the atomic parameters. In Fig. 6.7 we can see the result of the calculation,

holding the temperature constant at 6500 K and the hydrogen column density

(
∫
nHdz) at 1023 cm−2, and varying the electron density. The sensitivity to electron

density is clear.
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Figure 6.7: Line ratios as a function of electron density for a fixed column density
(1023cm−2) and temperature (6500 K). The ratios for the atomic data used in our
model can be seen in red, and are contrasted with atomic parameters used in the
analysis Judge & Carpenter (1998a).

The calculation is performed using the atomic parameters of our model, as

collected from Tayal (2008). These results are compared results for the atomic

parameters collected from Fang et al. (1993) and Lennon et al. (1985) (A values),

and Blum & Pradhan (1992) (collision strengths). These values are used by Judge

& Carpenter (1998a), who made use of this diagnostic to determine the electron

density of a number of evolved stars – γ Dra, α Tau, γ Cru, µ Gem, g Her, λ Vel,

and α Ori.

The accuracy of our calculation can be checked against the analytically cal-

culable ratios in the high and low (electron) density limits. In the high density

limit the relative level populations are given by Boltzmann statistics and hence
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the ratios are determined solely by the A values.

ni
nj

=
gi
gj
e−Eij/kT (6.39)

Fν ∝ niAijνij (6.40)

Rij/kj =
niAijνij
nkAkjνkj

(6.41)

In the low density limit we can ignore collisional de-excitation, so the level

populations are determined by collisional excitation, and radiative decay. We

begin with the populations of the lower doublet relative to the total (in this brief

derivation we will label the levels 1 – 5 in increasing energy)

n1

ntot

= g1
e−E/kT

U
(6.42)

and similarly for n2, where U is the partition function. Hence the populations of

the upper triplet relative to the total (noting that level 5 can only decay to 2, a

transition to 1 is spin-forbidden) will be given by

n3

ntot

=
n1/ntotC13 + n2/ntotC23

A32 + A31

(6.43)

n4

ntot

=
n1/ntotC14 + n2/ntotC24

A42 + A41

(6.44)

n5

ntot

=
n1/ntotC15 + n2/ntotC25

A52

(6.45)

where Cij is the collisional rate is

Cij =

(
8.63× 10−6

gi
√
T

)
γije

−Eij/kT (6.46)

where γij is the collision strength. From these populations we can then determine

the flux ratios as before. In Table. 6.3 we tabulate the high and low density limit

line ratios. As we can see these values are in reasonable agreement with the results

of our mean escape probability calculation.

Comparing the results of this calculation for the two sets of atomic parameters

used we see that they show the same trends, but there is a clear offset between
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Table 6.3: Analytic and computed (by the mean escape probability method) values
for the flux ratios in the high and low density limits, from the values of Tayal (2008).

Low Density High Density
Ratio Computed Analytic Computed Analytic
R1 5.67 5.65 1.49 1.68
R2 1.85 1.82 4.53 5.00
R3 0.29 0.27 2.65 3.03

them. This is most evident for R1, the ratio which we will examine most extensively

in our subsequent analysis. For R1 we see our atomic model predicts a consistently

lower ne than the model used by Judge & Carpenter (1998a), by a factor of ∼3 in

the region with which we are most concerned. It is important to keep in mind the

sensitivity of the estimated electron density to the atomic parameters as we make

use of this diagnostic.

6.4 Spectral Observations

6.4.1 HST Data

HST observations of ζ Aurigae were made using the Goddard High Resolution

Spectrograph (Brandt et al., 1994) at 8 epochs between April 1993 and December

1996. In this work we will use data obtained on the 16th October 1995 (Proposal

ID: 6069), which we will refer to as Epoch 8, maintaining the convention of previous

publications (Bennett et al., 1996; Harper et al., 2005). These epochs can be seen

overlaid on the orbit in Fig. 6.8. This observation is made very close to mid-eclipse,

when the B-star is behind the K-star, giving the best opportunity to measure the

undiluted K-star spectrum. As mentioned in previous sections, we will focus in

particular on two sets of observations: those of C II] λ2325 Å quintet, and Al II]

λ2669 Å line. These observations were made using the ECH-B grating (2323 Å-

2335 Å & 2663 Å-2675 Å) providing a resolution of R = 85, 000. These spectra are

plotted in Fig. 6.9.

The spectra have been converted to stellar surface flux using an angular diam-

eter of φ = 5.66 mas (Bennett et al., 1996; di Benedetto & Ferluga, 1990). They
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Figure 6.8: Orbit of ζ Aurigae with the HST GHRS observation epochs annotated.
Image adapted from Harper et al. (2005).

have also been converted to the stellar rest frame using a systemic velocity of

10.8 km/s (Eaton et al., 2008) (this is the value annotated on the figure), as well

as an additional 6.5 km/s to account for the stellar orbital motion at the phase of

observation. This value was determined from the radial velocity curve presented

in the preceding chapter. Note that these spectra have been converted to vacuum

wavelength (it is common for spectra above 2000 Å to be given in air wavelength)

using the following relation (Morton, 1991):

λvac = λair

(
1 + 2.73× 10−4 +

131.4182

λ2
air

+
2.76249× 108

λ4
air

)
(6.47)

We note the very bright features which dominate both spectra, these are wind-

scattering features (the bright line at 2328 Å, for instance, is an Fe II line). These

lines arise due to the influence of the B-star, which, despite being in eclipse, will

contribute to the UV spectrum due to the scattering of photons in the wind. These
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Figure 6.9: HST GHRS ζ Aurigae Epoch 8 spectra. Top: Spectrum covering the
region of the C II] λ2325 Å quintet with the lines annotated. Bottom: Spectrum
of the Al II] λ2669 Å region, again annotated. Note that both spectra have been
converted to stellar surface flux using the angular diameter given, φ. Further note
the very bright wind scattering features which dominate the spectra.
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wind scattering features stand out more clearly when we plot the spectrum of λ

Velorum.

HST GHRS spectra of λ Velorum were obtained on September 3rd 1994 (Car-

penter et al., 1999). These spectra cover the same spectral regions as those of ζ

Aurigae, however they were collected at a lower spectral resolution (R ≈ 25000),

using the G200M and G270M gratings. Nevertheless these spectra provide an im-

portant counterpoint to our study of ζ Aurigae. As previously discussed λ Velorum

is a single star and a close spectral proxy for ζ Aurigae, hence a careful examina-

tion of the chromosphere of one object may provide insight into the structure of

the other. In Fig. 6.10 the spectra of both objects are plotted. The spectra of λ

Velorum were scaled in the same way as those of ζ Aurigae, using a radial velocity

of 18.4 km/s. (Wilson, 1953), and an angular diameter of 11.7 mas1. In this figure,

with the spectra of λ Velorum for comparison, we can more clearly see the effect

of the wind scattering lines on the spectrum of ζ Aurigae. The spectrum of λ

Velorum is provided here primarily for illustrative purposes, demonstrating the

similarity between the objects and allowing us to more clearly identify the lines in

question.

In order to more accurately quantify the line ratios in ζ Aurigae we attempt

to remove the wind-scattering lines from the spectrum. An analysis was per-

formed by Bennett (2015) (private communication) in order to quantify the effect

of wind-scattering in the spectrum. This was achieved by fitting a power-law to the

relationship between the ratio of emission to continuum flux, and the line optical

depth for a number of species,

Fscattered ∝ (NS)α (6.48)

where N is the number of atoms in the lower level of the scattering line, and S

is a measure of the line transition strength. This fit provides α = 0.37. From

the fit scattered light spectra were produced for the C II] quintet and Al II] 2669Å

regions, these can be seen in Fig. 6.11. Examining these figures we can clearly see

1This value is taken from Lafrasse et al. (2010) and is slightly larger than the older value of
11.1±0.8 mas used in Carpenter et al. (2014). Their value was taken from Blackwell & Shallis
(1977), and may be modestly in error due to a lack of an accurate model atmosphere for their
analysis
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Figure 6.10: HST GHRS ζ Aurigae Epoch 8 spectra with the spectra of λ Velorum
over plotted. We can see how closely the surface fluxes of these objects match, and
we also note the wind scattering features in the spectra of ζ Aurigae which are
clearly absent in those of λ Velorum.
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Figure 6.11: Scattered light spectra, as computed by Bennett (2015), for the
regions of the C II] quintet and Al II] 2669Å.

the prominent wind scattering Fe II lines which dominate our ζ Aurigae spectra.

In order to remove the wind-scattering component from the C II] quintet region we

select 5 of the brightest lines from the Bennett (2015) spectrum — Fe II 2322.4 Å,
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Figure 6.12: Gaussian fits to five of the most prominent wind-scattered lines, and
four of the lines of the C II] 2325Å quintet. The observed spectrum can be seen in
black, the Gaussian fits to the contaminants in green, and the C II] lines in blue.
The sum is plotted in red. The region of the 2328Å feature marked in red is removed
from the fit. In the lower panel the percentage error in the spectrum is plotted. Note
that the region excised from our fit is flagged with NaN values in the error array.

Fe II 2323.04 Å, Ni II/Co II 2327.16 Å, Fe II 2328.11 Å, Co II 2329.82 Å. We fit these

lines and the C II] lines with Gaussians, the fit can be seen in Fig. 6.12. In this fit

the FWHM of the wind-scattering lines is fixed to 0.14 Å (measured from the lines)

and the FWHM of the C II lines is fixed to 0.1 Å. This leaves ten free parameters

in the fit, the relative intensities of the nine lines, and any systematic offset in the

line-centres (this effect is found to be negligibly small). The peak of the feature

at 2328.11 Å is removed from the fit, this is coloured red in Fig. 6.12. We note, as

can be seen in the lower panel of Fig. 6.12, that this region is flagged in the error

array associated with this observation. This region corresponds to an interstellar
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Figure 6.13: Gaussian fits to the lines of the C II] quintet in the spectrum of λ
Velorum. The observed spectrum can be seen in black, and the Gaussian fits in
red. The continuum is fitted, and offset from zero by 1 × 103 ergs/cm2/s/Å. The
lower panel shows the percentage error in the observed fluxes. As with the fit to ζ
Aurigae’s spectrum (Fig. 6.12) the region around the interstellar absorption line,
Fe II 2328.112Å is removed from the fit. This region removed is shown in red.

absorption line, Fe II 2328.112Å.1 As a result we removed this region from the fit

in order to better match the width of the feature.

With Gaussians fit to the C II] quintet lines we can then quantify the flux

ratios. In the ζ Aurigae spectrum we only fit four lines, as the line at 2327.64 Å is

removed in the deblending. In the λ Velorum spectrum we fit all five lines of the

quintet, any systematic offset in the line-centres (which is found to be negligible),

and the level of the continuum. The λ Velorum fit can be seen in Fig. 6.13. We

use these Gaussians to compute the flux ratios, for both spectra the ratios are

tabulated in Table. 6.4. In Fig. 6.14 we have plotted the density sensitive ratios

1This was corroborated by another absorption line of Fe II at 2333.5156Å.
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Figure 6.14: The density-sensitive C II] ratios, as computed from the Gaussian
fits to the specta, plotted on the line ratios as a function of electron density (for a
fixed column density (1023cm−2) and temperature (6500 K)). The points with arrows
denote upper limits. The line ratios are computed using the mean-escape probability
method using the data of Tayal (2008), see Fig. 6.7

on the isothermal curves, computed by the mean-escape probability method (see

Fig. 6.7). We see that in for both objects these ratios match well, and we note that

the density-sensitive lines predicts similar electron densities for both λ Velorum

and ζ Aurigae. Neither R4 nor R5 is density-sensitive, they are sensitive to the

optical depth. We note that these ratios also match one another.

Another important remark about these spectra is the asymmetry in the Al II]

2669Å feature in ζ Aurigae. This can be seen more clearly in Fig. 6.16. In this

figure we see the line on a velocity scale with the red-ward and blue-ward fluxes

plotted, and we can see the obvious excess in flux shortward of line centre. This

may be due to a large scale outward flow in the line-forming region, perhaps the

acceleration of the stellar wind. We see the excess most prominently at velocities

of ∼40 km/s. However the wind velocity relation given by Baade et al. (1996), in

the acceleration region r < 2R∗,
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Table 6.4: The electron densities predicted from the measured HST GHRS C II]
line ratios. We note that this diagnostic predicts similar electron densities for both
λ Velorum and ζ Aurigae. Neither R4 nor R5 is density-sensitive, they are sensitive
to the optical depth. We note that these ratios also match one another.

Ratio ζ Aurigae ne (cm−3) λ Velorum ne (cm−3)
R1 2.54 ± 0.24 5+1.5

−1 × 108 2.7 ± 0.1 4+0.6
−0.5 × 108

R2 > 3 > 1× 108 3.8 ±0.24 3.5+2.3
−1.2 × 108

R3 > 0.8 > 1.8× 108 1.4 ±0.029 6.3+0.01
−0.7 × 108

R4 12.7± 0.85 — 12.3±2.3 —
R5 1.5± 0.13 — 1.1 ±0.04 —

v(r) = v∞

(
1− R∗

r

)β
(6.49)

where v∞=70 km/s and β = 3.5, gives v < 7km/s. The wind acceleration argu-

ment is also weakened by the fact that the C II] 2326.11Å line displays a similar

asymmetry, however it is reversed, with a prominent red-ward excess, indicating

a down-flow. The C II] 2326.11Å line asymmetry is a perhaps a more complex

matter than the case of Al II] 2669Å. The observations of α Tau made by Judge

(1994) showed red-shifted emission which was interpreted as a down-flow of dense

material, and a later set of HST observations made by Judge & Carpenter (1998b)

showed this red-shift to be ubiquitous among the objects studied. This could be

evidence of anisotropy in the chromosphere. This unusual effect was propagated

through to the measurement of electron densities by this diagnostic (Judge, 1994).

By measuring the density sensitive ratios across the line profiles higher electron

densities were found in down-flowing material, which may be evidence of “physi-

cally separate packets of emitting gas on the star with different electron densities”

– a multi-component atmosphere. This idea of “clumping” in the chromosphere is

also invoked by Eaton (2008), again as an attempt to reconcile observation with

the inferred electron densities. This is discussed in more detail later in this chapter

and in the final chapter.

In our case it may be that the asymmetry in the lines can be attributed to the

scattered flux of the B-star. Returning to the scattered light spectra of Bennett

(2015) (Fig. 6.11), we see that there appear to be wind-scattering lines which
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Figure 6.15: Asymmetry in the ζ Aurigae Al 2669Å line profile. Here we see the
line plotted, on a velocity scale with the red-ward and blue-ward fluxes plotted
(coloured accordingly). We see a clear excess on the blue side of the line (shorter
wavelength, higher frequency, than line center). Both are fitted with Gaussians to
quantify the asymmetry. The contiuum value and the FWHM of the Gaussians are
annotated. The fits are limited to ±40 km/s as outside of this range contaminant
lines may begin to have an effect.

match with the asymmetries in our profiles. There is a Cr II line at λ2669.5Å

which may explain the blue-ward asymmetry in our Al II] 2669Å profile, and a

number of Fe II and Cr II lines red-ward of the C II] 2326.11Å line which may

explain its asymmetry.

6.4.2 Synthetic Spectra

We use these HST spectra to improve our atmospheric model. Beginning with the

initial model atmosphere outlined in Section 1.2, and the atomic model described
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Figure 6.16: Flowchart describing the Markov Chain process by which the atmo-
sphere is adapted to better fit the HST spectra.

in Section 1.3, synthetic spectra were computed using RH. Comparing these calcu-

lations to the observations they were found to overestimate the flux of both spectra

by an order of magnitude. Hence it was necessary to alter the model atmosphere

in order to better fit the HST observations. To do this a simple Markov Chain

algorithm was constructed. The algorithm is described in the flowchart in Fig.

6.16, it operates as follows:

1. We begin with the initial model atmosphere outlined in Section 1.2, and use
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RH compute synthetic spectra for C & Al. These fluxes are compared to the

HST fluxes and a χ2 value is calculated.

2. A new temperature grid is then randomly generated from the input grid. The

grid is only altered above the temperature minimum (since our diagnostics

provide us no information below Tmin it is fixed from the MARCS model),

and is done in such a way as to be smooth, preserve monotonicity, and such

that the temperature at the top of the atmosphere does not exceed 15000 K.

3. For this new temperature grid, T ∗, we then compute a self-consistent electron

density and NLTE hydrogen populations by the iterative method outlined in

Section 6.2.4.

4. Using this new model we compute new synthetic spectra for C & Al using

RH, and a new χ2 value, χ2∗.

5. If χ2∗ < χ2 then the new model atmosphere is used as the initial model for

the next iteration, if not we retain the old model. We return to step 2, and

the loop begins again.

This loop is continued until the model is sufficiently close to the data. In prac-

tice, given our initial model, < 100 iterations are required to find an atmosphere

which well fits the data, corresponding to < 1 hr of computing time on 4 Intel

Xeon (2.4 GHz) cores. This method has the benefit of allowing us to vary the

input parameters and quickly search the solution space for models which well fit

the observations.

We must also take care to broaden the synthetic spectra according to the

instrumental effects present in the HST data, and the line broadening which arises

due to the rotation of the objects. The rotational broadening is computed by

a similar method to that described in the case of line reflection in the previous

chapter; the only difference being that we do not assume a Gaussian line profile,

but rather use the computed line-profile from RH. We use a rotational velocity of

vrot = 6.9 km/s for ζ Aurigae A, as discussed in the preceding chapter. To account

for the instrumental broadening we apply the line spread function of Ech-B. The

effect of HST line broadening is discussed in detail in the Instrumentation chapter.
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Figure 6.17: The optical depth due to interstellar dust as a function of wavelength.
We can prominently see the well-known 2175Å feature (Stecher & Donn, 1965).

We must also take account of interstellar reddening. This is achieved by the

method outlined by Cardelli et al. (1988, 1989). This method allows us to compute

the coefficients a(λ) and b(λ), which are in turn used to compute

Aλ
AV

= a(λ) +
b(λ)

RV

(6.50)

where Aλ is the extinction at a given wavelength, AV is the extinction in the

V-band, and RV is equal to

RV =
AV

E(B − V )
(6.51)

We set RV = 3.1 (Cardelli et al., 1988), and E(B − V ) = 0.2 mag (Schlegel

et al., 1998). Finally we can determine the optical depth by

Aλ = 2.5 log10(e)τλ (6.52)
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Figure 6.18: Synthetic spectra from the best fit ζ Aurigae atmosphere plotted
with the HST GHRS ζ Aurigae Epoch 8 spectra and the HST spectra of λ Velorum.
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In Fig. 6.17 we see the optical depth as a function of frequency. As we are

working with narrow wavelength regions the interstellar material introduces very

little reddening or asymmetry, and solely acts to reduce the flux.

The synthetic spectra resulting from the best fit model atmosphere can be seen

in Fig. 6.18. As we can see the model atmosphere provides a good for both the

C II] quintet and the Al II] emission line. We will discuss this model in detail in

the next section.

6.4.3 Contribution Function

In Fig. 6.19 we show the radial contribution function, as a function of height, for

the C II] quintet and the Al II] 2669Å line. The contribution function is a measure

of the contribution to the emission from a given height in the atmosphere, given

by

Cν(r) = Sν(r)e
−τν (6.53)

where Cν(r) is the contribution function as a function of radius, Sν(r) is the source

function at a given radial height, and τ is the optical depth at a given height. This

is the integrand of intensity. We construct the optical depth from the background

and line opacities

τν =

∫ r

0

(χl + χb)ds (6.54)

and the source function is given by

Sν =
ηb + ηl + Jνεν

χb + χl
(6.55)

where ηb and ηl are the background and line emissivities, respectively, Jν is the

mean intensity, and εν is the scattering cross-section. These values are extracted

from the model, for the final, converged solution of the radiation field.

We can see from these contribution functions that the lines form at similar

radial heights, at the lower end of our model atmosphere, at a height of h ≈ 50R�

(∼0.3R∗). It is important to consider the broad region over which the C II] quintet

lines form. As a result of their forming across this region, which encompasses

material of different temperatures and electron densities, the ratios of these lines

176



6.4 Spectral Observations

Figure 6.19: Top: Contribution function of the C II] quintet. Bottom: Contribu-
tion function of the Al II] line. We note that both of these features appear to form
at similar heights in the atmosphere.

will not provide a density representative of a single point in the chromosphere, but

rather a weighted average of the electron density across the line forming region.
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Figure 6.20: Left: H-α and Ca II K profiles of λ Velorum taken from the atlas of
Zarro & Rodgers (1983). The H-α is on top, and in the thinner line style, the Ca II
below. Right: The computed H-α and Ca II K profiles, using the same line styles.

6.4.4 λ Velorum Ca K & H-α Profiles

To conclude our analysis of spectra, we will briefly discuss the H-α and Ca II K

profiles of λ Velorum. Observations of these profiles were made by Zarro & Rodgers

(1983) as part of an atlas of 85 objects. In Fig. 6.20 we see their observations, as

well as the computed profiles. In both of these figures the H-α profile is normalised

to its continuum, and then offset by 0.4 (i.e. the continuum is set to 1.4). The

Ca II K of Zarro & Rodgers (1983) is normalised to the continuum flux at λ =

3939.682Å. Since this normalising factor is not provided we simply normalise ours

to the peak of the K2v feature. These profiles were computed using the same

H atom as used in the ne calculation, and a Ca atomic model provided by Han

Uitenbroek (Uitenbroek, 1990, 2014). Both sets of calculations were performed

using the assumption of PRD, which is vital in providing accurate line widths.

The profiles are again rotationally broadened, and the instrumental broadening
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is accounted for by convolution with a Gaussian with FWHM = 13.5 km/s, as

it is by Zarro & Rodgers (1983). These profiles allows us to make some simple,

qualitative comparisons to the data. The H-α profile appears to reproduce the

contrast between continuum and line core. The contrast between K3 and K2r

in the Ca II K profile does not appear to be reproduced well, however given the

clear asymmetry in the profile (which as before, given the absence of flows in our

atmosphere, cannot be reproduced), and in the absence of a true flux scale it is

difficult to comment on this inaccuracy. In both cases the line widths appear to

be consistent with observation.1

6.5 Chromospheric Model

6.5.1 Best-fit Chromospheric Model

By the method outlined above a chromospheric model was constructed which fits

well with the HST observations. The temperature structure of this atmospheric

model, plotted as a function of height2 and mass column density, can be seen

in Fig. 6.21. In this figure we see, plotted in blue, the empirical temperature

relation of Harper et al. (2005), which was used as the initial input temperature

of the model. As we see, this temperature relation lies above the empirical data

points for heights above h ≈ 30R� (∼0.2R∗). It was found that the synthetic

spectra computed using this temperature grid overestimated the line flux by over

an order of magnitude. We can see that in order to bring the synthetic spectra

into agreement with observation it was necessary to reduce the temperature of the

atmosphere, and we see that the best fit temperature grid in fact falls below the

temperature points higher in the atmosphere, in particular those of Eaton (1993).

While examining these data we must remember that the temperatures measured

by Eaton (1993) are excitation temperatures, Texc, while the values that we use

in our calculation are electron temperatures, Te. These values are likely to be

equal, given that many of the lines analysed by Eaton (1993) are metastable and

1In the case of the Ca II K profile the line width is measured between the violet and red
edges of the emission components (Wilson & Vainu Bappu, 1957).

2We note here that the upper photosphere is defined, in our radiative transfer model, as the
height where the optical depth at 5000Å drops below unity, τ5000 = 1
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Figure 6.21: The run of temperature with height, and mass column density, for
the best fit model atmosphere. The model is plotted in black, with the empirical
data points plotted as annotated, and the empirical wind law – which was used as
the initial temperature – is plotted in blue.

would be expected to be collisionally excited and hence in thermal equilibrium

with the electrons (Jordan & Avrett, 1973; Judge et al., 1992; Thomas, 1957).

However this assumption breaks down in the higher chromosphere, where, as the

optical depth and, vitally, the electron density decrease, the radiation of the B-star

will cause the excitation temperature to exceed the electron temperature (Eaton,

2008). This may explain why, as we move higher in the chromosphere, our electron

temperature is below the measured excitation temperature.

It was also necessary to reduce the turbulent velocities higher in the atmosphere

in order to reproduce the observed line widths. We see, in Fig. 6.22, the run of

turbulent velocity with height which fits the line widths observed. The initial
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Figure 6.22: The run of turbulent velocity with height for the best fit model
atmosphere. Note that it was necessary to reduce the turbulent velocity in the
line-forming region (h∼10− 40R�) to reproduce the observed line widths.

turbulent velocities adopted, which attributed equal weight to the observed points

of Eaton (1993) and Wilson & Abt (1954), overestimated the line widths, and as a

result it was necessary to reduce the values in the line-forming region (∼10−40R�)

to better fit the observations. This brings the turbulent velocities into closer

agreement with those of Wilson & Abt (1954).

Finally in Fig. 6.23 we see the temperature grid plotted along with the electron

density computed from it. We also show the empirically measured temperatures

(black) and electron densities, (red — these values are the same as those plotted

in preceding sections, please refer to those plots for annotation.)

The greatest source of disagreement between our model and the data is in the

electron density measurements in the mid-chromosphere. At a height of ∼100R�

Eaton (1993) measures an electron density of 9×109 cm−3 and 2×109 cm−3, where

our model predicts an electron density in the region of 107 cm−3. We must bear

in mind however that the values measured by Eaton (1993) were based on the

ionization balance of only two elements at these heights, the ratios of C I/C II and

N I/N II (at other heights 5 elements are use to determine the electron density).
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Figure 6.23: The best fit temperature grid, with the resultant electron densities,
plotted against height. the empirically measured temperatures, black, and electron
densities, red. The values plotted are the same as those used in preceding sections,
where the plots are fully annotated.

These values also appear to be too large to fully agree with the measured temper-

ature and hydrogen densities at this height (particularly the higher point), given

the determined temperature is 10000 K we should expect that H be fully ionised

and be the main contributor to the electron density. However at this height Eaton

(1993) predicts a H density of order 108 cm−3, insufficient to provide an electron

density of 9× 109 cm−3 predicted by the C I/C II ratio1.

Interestingly, the detection by IUE of the wings of Ly-α high in the chromo-

sphere, as well as the similarity of the mass column densities derived from H with

those derived from Fe II (these points are also true of 31 Cyg, as observed in the

1It is observed by Eaton (2008) that the electron densities determined from photoionization
are “rather crude and may be systematically wrong”.
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doctoral thesis of K.P. Marshall (1995)) point to H being neutral through the

chromosphere. This is in direct contradiction to the standard assumption of semi-

empirical models, an assumption made in the first chapter of this work, that as we

move higher in the chromosphere the ionisation of H compensates for the declining

density, resulting in the electron density remaining roughly constant throughout

the chromosphere. This point is examined by Eaton (2008), who seeks to explain

this discrepancy between the electron densities computed from the ionisation bal-

ance and the neutrality of H by invoking clumping in the chromosphere. This

clumping is also invoked to explain the abundance of more highly ionised species

in the chromosphere. There may well be a degree of clumping present in the

chromospheres of these objects, though the complications introduced though the

inclusion of such clumped material fall outside the domain of most semi-empirical

models attempted, including this work. The question raised by this clumping ar-

gument, whether the chromosphere is a time-independent, homogeneous structure

covering the face of the star, is at the core of the work presented in this the-

sis. While these matters are of great relevance to all the work undertaken in this

thesis and will later be addressed in detail in the context of all the evidence pre-

sented, based on the analysis of this chapter we believe it is possible to construct

a one-component, time-independent model chromosphere which is consistent with

observations of ζ Aurigae. We conclude that, while there is evidence of clumping

in the chromosphere (particularly in the electron densities), it is possible to recon-

cile most of the observations of this object with the existence of the homogeneous

chromosphere presented in this work.

This atmospheric model is provided in the Appendix.

6.5.2 Chromospheric Extent

One important point on this chromospheric model is its extent, the model outlined

here extend to a height of h ≈ 1R∗ (∼150R�) above the stellar surface. This extent

is in keeping with the IUE data presented by Eaton (1993) which, owing to the

chromospheric eclipse, measure column densities far above the photosphere. This is

also in keeping with observations of the chromospheric extent of other supergiants

(Eaton, 1988; Harper et al., 2001; Lim et al., 1998). It further agrees with the
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extent predicted by Carpenter et al. (1985) for λ Velorum. There is, however, some

debate on the subject of chromospheric extent of late-type stars. For instance, in

the case of the McMurry (1999) model of α Tau (K5III), a chromospheric extent

of R ≈ 1.2R∗ is predicted. This matter is further complicated by the findings of

Ohnaka (2013), whose VLTI spectro-interferometric observations of α Tau points

to a layer of CO, a MOLsphere, at approximately 2R∗. These findings have since

been reproduced for a number of other objects.

A recent study by Berio et al. (2011) made spectro-interferometric observations

of the Ca II infra-red triplet lines (849 nm, 854 nm & 866 nm) for a sample of coronal

and non-coronal giants. Berio et al. (2011) found that all of the objects studied

showed chromospheric extents of ∼1.4R∗ regardless of spectral type, in direct

contradiction of the findings of Carpenter et al. (1985) who predict R ≈ 2R∗ for

non-coronal giants, and R ≈ 1.001R∗ for coronal giants. In particular the results

of Berio et al. (2011) are in opposition to the semi-empirical model chromosphere

of β Ceti constructed by Eriksson et al. (1983). Berio et al. (2011) measure a

chromospheric extent of ∼ 1.16 − 1.47R∗ for this object, in comparison with the

extent, R ≈ 1.02R∗, of the semi-empirical model of Eriksson et al. (1983).

A collaborative visit was spent at the Observatoire de la Côte d’Azur, funded

by an award from the Fizeau Optical Interferometry Initiative, to work with P.

Berio and other members of the group based at OCA. To examine their results in

more detail synthetic spectra were computed for the Ca II infra-red triplet using

MULTI (Carlsson, 1986). These calculations were performed using the model

chromosphere of Eriksson et al. (1983), and a model Ca atom provided by with the

MULTI distribution. There are a number of subtle complications in this radiative

transfer problem which must be addressed. Of principle importance is treating the

Ca II H & K transitions in PRD, as described in Section 1.4.4. Another key matter

is the ionisation of Ca II to Ca III by Ly-α & β (Rowe, 1992). This will have the

effect of depleting the number of Ca II ions. Finally we must take account of Cross

Re-Distribution (XRD - the theory of which is described in the introduction), as

both the Ca II H & K lines and the Ca II infrared triplet share a common upper

level. MULTI allows us to solve the radiative transfer problem including these

subtle effects, at the expense of requiring that the geometry be plane-parallel.
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Figure 6.24: Limb darkening curve for β Ceti, computed using MULTI, for the
plane-parallel and the spherical case. Note that in the plane-parallel case we see
increasing intensity as we move to the limb.

This limitation is important, as in this case we are particularly interested in

the rays which emerge from the extended atmosphere (what we called limb rays

in the Chapter 4). To overcome this limitation, albeit approximately, we take

the emissivities and absorptivities as computed by MULTI, and using a Feautrier

solver compute the emergent intensity from a spherical atmosphere with those

properties. The results of this calculation can be seen in Fig. 6.24. As we can see

there is a great difference between the limb-darkening curves computed for these

different geometries, and recall that this function, Iν(µ), is what determines the

observed visibility.

Computing Iν(µ) across the Ca II infrared triplet lines, it was found that it

was not possible to reproduce the observed visibility using the atmospheric model

of Eriksson et al. (1983). This leads us to the conclusion that an atmosphere

of a very different nature than has previously been assumed may be required for

coronal giants such as β Ceti, perhaps with an extent closer to that found in the

case of ζ Aurigae A.
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6.6 Conclusions

In this chapter we have seen the construction of a semi-empirical, spherical, time-

independent model of the chromosphere of ζ Aurigae A. The construction of this

model is motivated by the unique importance of the ζ Aurigae system as a labora-

tory for studying the chromospheres of late-type stars. Due to the eclipsing nature

of the binary system it provides extraordinary diagnostic insights into determining

the thermodynamic properties of stellar chromospheres. Despite this importance

no full model of the system has previously been attempted.

In the construction of this model we collected archival data from many sources,

providing a large number of mass column densities, temperatures, and turbulent

velocities as a function of height through the stellar atmosphere. An interpolated

MARCS model photosphere provides the lower boundary of the atmosphere. These

values were then used to compute the electron density throughout the atmosphere,

specifying a complete thermodynamic model.

This model was then compared with high spectral resolution HST observations

of this object. These observations cover the C II] λ2325 Å density sensitive quintet,

as well as the optically thin Al II] λ2669 Å line. In order to compute synthetic

spectra for comparison with these observations it was necessary to construct model

atoms of C, Al, and H. The spectra computed using our initial model atmosphere

and these model atoms was found to overestimate the observed line flux by over

an order of magnitude.

In order to bring the computed flux into closer agreement with observation a

Markov chain algorithm was employed to quickly adapt the model atmosphere.

Using this algorithm it was possible to construct a model atmosphere whose spec-

tra well matched observation. It was found that in order to match the UV line

observations the atmosphere must be cooler than the initial model. We also find

some discrepancy between he computed and observed electron densities. While it

is possible that the observed electron densities are systematically in error (far more

so than the temperatures or column densities), this may be evidence of clumping

in the chromosphere, or perhaps large scale inhomogeneity. The final model pre-

sented is in good agreement with many of the observations of this object, and we

suggest that while there surely is a degree of inhomogeneity in the chromosphere
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it is of second-order importance, and that much of the evidence can be reconciled

with the chromosphere being a single, homogeneous structure of the type outlined

in this chapter.

The model atmosphere we have constructed can also be used to comment on

single stars. λ Velorum is a close spectral proxy for ζ Aurigae A, and using our

model atmosphere we have computed spectra which compare well with observa-

tions of the Ca II H and H-α lines from λ Velorum. Furthermor the chromospheric

heating of λ Velorum is known to be similar to that of ζ Aurigae A (Eaton, 1992).

We suggest that the chromospheric structure of these objects may be very similar.

We find that the chromosphere is quite extended, h ≈ 1R∗, which agrees well

with estimates of Carpenter et al. (1985), however it is somewhat larger than the

estimates of Judge (1986) and McMurry (1999) for similar objects. Importantly

our results are also in opposition to those of Cuntz (1990) (h ≈ 0.05R∗) for chromo-

spheres of time-dependent, acoustically shocked plasma. As a further counterpoint

to our study we examine briefly the recent observations of coronal giants which

point to their being more extended (perhaps by a factor of ∼5) than previously

thought. We find in the case of β Ceti that the atmospheric model constructed

for this object by Eriksson et al. (1983) which well reproduces the UV/optical

line spectrum cannot reproduce the spectro-interferometric visibility measured for

these lines. This may be due to the atmosphere having a very different structure

than was assumed, and perhaps being considerably extended.
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7
Conclusions & Future Work

In this final chapter we summarise the work presented in this thesis. We begin by

describing the methods and results of each chapter, and outlining the conclusions

of each. We discuss how the work of this thesis can be expanded and built upon,

both through future observations and further modelling. We then discuss the

results of the thesis in aggregate, drawing together the work of each chapter. The

principal motivation of this work rests on questions regarding the thermodynamic

structure and geometric extents of late-type stellar chromospheres. We discuss the

results of the chapters as they comment generally on these thematic questions and

form coherent conclusions from the evidence presented.
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7.1 Radio Model

In Chapter 4 a simple model for computing the thermal bremsstrahlung, mm-

radio flux from the chromospheres of late-type stars was presented. The model

described has been published in Harper et al. (2013). This model makes use of a

number of simplifying assumptions, and is based on previously constructed semi-

empirical model atmospheres. In addition to the implicit assumptions of these

semi-empirical models, which we address shortly, the primary assumptions of the

model are;

• The temperature is approximately linear in radial height throughout the

chromospheres of both coronal and non-coronal stars, as it rises from the

temperature minimum to 10,000K.

• Due to increasing ionization of hydrogen counteracting the declining density,

the electron density remains approximately constant in this region.

• The geometric extent of this region, which is region from which the mm-flux

arises, is approximately 9Hρ. This corresponds to a height of . 0.2R∗

These simplifications provide the key to our model. By making these simplifi-

cations we state that Sν ∝ τν , and in this case the equation of radiative transfer

can be solved analytically. We solve the equation of radiative transfer, using the

assumption of a spherical atmosphere, and compare the resultant flux with pub-

lished 250 GHz flux densities (Altenhoff et al., 1994). We see that our model

compares favourably with these observations, reproducing the observed values to

within ±30%. We also compare our model with high signal-to-noise observations

taken by E. O’Gorman for this work using CARMA and APEX. Again our model

compares well with these values, accurately predicting their fluxes and spectral

indices.

From comparison with these samples we can determine the range of validity of

our model. We find that the model is most accurate for objects of spectral type

K to mid-M, in the frequency range ∼ 100− 350 GHz. At lower frequencies, as we

enter the µm/IR region of the spectrum the model begins to break down, perhaps

as a result of other emission mechanisms (other than thermal bremsstrahlung)
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beginning to become important. At higher frequencies the model again becomes

inaccurate, as non-thermal emission from magnetically active regions begins to

effect the flux. This is particularly true for stars of an earlier spectral type or

coronal giants, hence our caveat that the model is most robust in predicting the

flux from K type objects. We find that our model is capable of reproducing the

mm-flux from quiet regions on the Sun, and is in fact calibrated using these values,

however it is found to underestimate the observed flux from τ Ceti, a solar-type

star whose thermal mm-flux was recently measured. This may be as a result of

active regions on τ Ceti enhancing the flux. We also find that for objects of later

spectral type than mid-M the model is incapable of providing accurate predictions,

as the chromospheres of these objects may be of a very different structure, being

modified by stellar pulsations. Within its region of validity however, the model

is capable of accurately reproducing the observed flux. In addition the model

provides a good estimate of the spectral indices of these objects, which is in effect

a measure of the temperature as a function of optical depth.

The model also allows us to make predictions regarding the distribution of flux

across the stellar disk, which could be compared with results from the current gen-

eration of interferometers. The angular resolution of a two-element interferometer

is:

θ = 1.22

(
λ

B

)
4.84× 10−9 [mas] (7.1)

where θ is the angular resolution, λ is the wavelength of the observation, and B

is the baseline. In the case of CARMA, observing at 225 GHz with a baseline of

1883 m, an angular resolution of 140 mas can be achieved, insufficient to image the

disks of the objects discussed in this chapter. In the case of ALMA, observing

at the same wavelength, with a baseline of 16 km an angular resolution of 17 mas

is possible, sufficient to begin to probe the flux density distribution and chromo-

spheric extents of these objects. The JVLA can offer similar resolutions, however

it is limited to frequencies lower than 50 GHz and as established, the validity of the

model at theses frequencies is uncertain. However, despite the model being unable

to reproduce the flux at these wavelengths, perhaps due to coronal emission, the

geometric extents predicted may be reliable.
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Figure 7.1: Top Panels: The computed normalised brightness temperature distri-
bution of α Tau (left) and α Boo (right) at 250 GHz. The photospheric radius is
denoted by a dotted line. Middle Panels: Limb-darkening curves computed which
were used to produce the images. Lower Panels: Visibility curves for both objects,
showing the uniform disk visibility (black), and the visibility given the computed
limb-darkening curve (red).
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Two promising candidates for interferometric imaging are α Boo and α Tau.

α Boo is the closest and brightest non-coronal red giant, and with an angular

diameter of φ = 21.37 mas is the best example of a red giant whose atmosphere

can be studied in detail with ALMA. α Tau, despite being almost twice as far

away as α Boo, has a comparable angular diameter, φ = 21.1 mas, and is another

candidate for interferometric imaging. In Fig. 7.1 images are presented of both

objects. These computed model images display the brightness temperature, which

can be readily converted to flux, at 250 GHz for both objects. The middle panels

of this figure display the computed limb-darkening curves used to produce the

images. We can readily see limb-brightening in both cases, more particularly in

the case of α Tau. This is due to the limb rays passing through material with a

different, hotter temperature profile than radial or on disk rays. We can also see

the extension of the atmosphere above the photospheric radius, 11% in the case of

α Tau, and 8% in the case of α Boo.

The lower panels show the visibility curves for the two objects, where the

visibility is given by

V =
1

A

1∫
0

Iν(µ)J0(2πφq)µdµ (7.2)

where Iν(µ) is the monochromatic limb-darkening curve, φ is the radius in radians,

J0 is the zeroth-order Bessel function, q is the baseline in units of the observing

wavelength, and A is a normalising factor, the value of the integral evaluated at

J0(2πφq) = 1. The theory underlying this is discussed in detail in the introductory

chapters. We can readily see from these curves how, using ALMA, an atmosphere

of the structure and extent outlined in our models can be differentiated from

an atmosphere which does not feature a chromospheric temperature rise, and as

a result has a more uniform brightness temperature. Observations of this type

would allows us to test the validity of our model, and place direct constraints on

the temperature and distribution of plasma in stellar chromospheres.
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7.2 Periodic Si I Emission

In Chapter 5 of this thesis we examined the phenomenon of periodic Si I emission

from ζ Aurigae binaries. Emission was observed by R.E.M. Griffin in two lines of

Si I, λ3905Å and λ4102Å, in the spectrum of ζ Aurigae. This emission was seen to

vary periodically throughout the orbit of the system, being at its strongest when

the B-star is between the K-star and the observer, and at its weakest when the

B-star is eclipsed. The phase modulated emission was also seen in other binary

systems, 31 Cyg, 32 Cyg, and HR 2030. We propose that this emission arises

from the lower chromosphere of the K-star, and is due to the UV flux of the B-

star photoionising Si I, which then undergoes recombination, and after radiative

cascade, emission in one of the two observed lines. As the portion of the K-star

visible hemisphere illuminated by the B-star radiation varies as a function of phase

the Si I emission is periodic.

We determine the strength of this emission can not be explained by simple

reflection, however we expected that it will have the same phase variation as

broadband reflection. In order to examine the reflection effect we constructed

a model of the ζ Aurigae system using PHOEBE. PHOEBE models both the or-

bit geometry, taking account of the morphology of the component stars, and the

radiative properties, allowing us to produce a synthetic V-band light curve. The

model constructed compares very well with observations of this system. We use

this model to compute the phase variation of the broadband reflection effect, and

compare this to the phase variation of the EEW of the Si I λ3905Å line. Our model

was found to match the observation very well, indicating that our line-formation

hypothesis is accurate, and that the line’s periodicity can be well explained by the

system geometry, without appeal to the effects of more complex radiative transfer

or atomic physics.

We make use of the novel diagnostic properties of this spectral line to compute

the rotational velocity of the K-star. As this line is formed on only a portion of the

K-star’s surface at a given phase it effectively provides us with spatial resolution

on this otherwise unresolved object. By studying the Doppler shift of the line,

as the “hot spot” where it forms moves across the stellar surface, we computed a

rotational velocity for the K-star which agrees well with the values in the literature.
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Figure 7.2: Spectra of ζ Aurigae, collected by O. Hashimoto using the Gunma
Astronomical Observatory Echelle Spectrograph. Wavelengths are given in air.

In order to make best use of this unique and powerful diagnostic high spec-

tral resolution observations are required. In April 2015 (phase, φ = 0.197) spec-

tra were collected by O. Hashimoto using the Gunma Astronomical Observatory

Echelle Spectrograph (GAOES). These spectra can be seen in Fig. 7.2. These

spectra were collected at very high resolution, R = 100, 000, with a number of

other spectra collected at R = 70, 000. They were collected as part of an ongoing

programme to study the formation of this emission feature in the spectrum of ζ

Aurigae. By making observations such as these as a function of phase we can

greatly improve our understanding of this object. At high resolution, this diagnos-

tic can be used to place constraints on the oblateness of the K-star, determine the
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local turbulent velocity across the disk of the star, and establish whether or not

pseudo-synchronization and rotational alignment have occurred in this system. By

carefully studying the line-formation mechanism these observations can be further

used to glean unique insights into the thermodynamic structure of the K-star’s

chromosphere.

7.3 Chromospheric Model of ζ Aurigae A

In Chapter 6 of this thesis the construction of a one-component, spherical, semi-

empirical model atmosphere for the primary of the ζ Aurigae system was described.

This model was based on archival eclipse observations of this object, which provide

us with mass column densities, temperatures, and turbulent velocities as a func-

tion of height above the photosphere. In addition to these empirical quantities

a MARCS model photosphere was interpolated to provide the lower boundary.

Using these atmospheric parameters, values of electron density throughout the

atmosphere were computed, hence specifying all of the required thermodynamic

properties.

This model chromosphere was compared with high spectral resolution HST

observations of ζ Aurigae. These observations cover the C II] λ2325Å density

sensitive quintet, and the Al II] λ2669Å line. In order to compute synthetic spectra

for comparison with these observations it was necessary to construct model atoms

of C, Al, and H. The spectra computed using our initial model atmosphere and

these model atoms was found to overestimate the observed line flux by over an

order of magnitude. The model atmosphere was altered to bring it into better

agreement with observation, and this was achieved through a simple Markov chain

algorithm.

In order to fit the spectral observations it was necessary to lower the temper-

ature in the mid-chromosphere. The final model was found to be in good agree-

ment with previous observations of ζ Aurigae, though there appears to be some

discrepancy between our computed electron densities and those determined from

the ionization balance. This may be due to systematic errors in the measured elec-

tron densities, or perhaps evidence of clumping in the atmosphere. There is some

evidence of inhomogeneity in the atmosphere of ζ Aurigae, however we suggest
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Figure 7.3: Si I Grotrian diagram. The lines are colour-coded according to log(gf),
thicker, darker lines have a higher value. The λ3905Å and λ3905Å transitions of
interest are highlighted in blue.

that this inhomogeneity is of second-order importance, as most of the observa-

tions can be reconciled with a homogeneous, time-independent atmosphere of the

type presented in this work.

To expand on this work we aim to use this model atmosphere to examine the

formation of the periodic Si I emission described in Chapter 5. While the geometric

model presented in that chapter does accurately describe the phase periodicity of

the EEW, we have no model to describe the line formation process. In order to

gain a quantitative understanding of this effect we construct a Si I model atom. A

Grotrian diagram of this model atom can be seen in Fig. 7.3. This model atom

has 600 levels and approximately 2000 transitions. The energies of the levels were
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Figure 7.4: Ratio of the emergent flux in the Si I λ3905Å and λ3905Å lines for an
illuminated and un-illuminated boundary.

collected from the NIST Atomic Database (Kramida et al., 2015), and data for the

radiative transitions — the log(gf) values, the radiative damping constants, the

Stark damping constants — were collected from Kurucz & Bell (1995)1. An atomic

model of this size is required in order to accurately account for recombination to the

upper levels. Using the method of Seaton (1959) for computing the recombination

cross-section of hydrogenic atoms as an approximation, we found a Si I model with

20 levels underestimates the recombination by ∼ 25% at 5000 K when compared

with the values of Verner et al. (1996). Once the recombination has taken place

the electron will cascade through the levels before finally emitting a photon in one

of the two observed lines.

1http://kurucz.harvard.edu/
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In order to quantify this effect an alteration was made to the RH code, allowing

us to make use of an illuminated boundary condition for the atmosphere. This is

done using the Feautrier boundary condition formalism described in Chapter 2.

In this case we used a plane-parallel version of the atmospheric model developed

in Chapter 6, as the problem of illumination, and calculation using the very large

Si atomic model, is far simpler in this geometry. Since the Si I line-formation

problem only concerns a small “hot spot” on the stellar surface the full spherical

atmosphere is not required, and the plane-parallel atmosphere should provide an

accurate approximation. The flux of the B-star was taken from a Kurucz model

atmosphere (Castelli et al., 1997). The emergent flux in the Si I λ3905Å and

λ4102Å lines was computed using a plane-parallel form of the ζ Aurigae model

atmosphere, for both an illuminated and un-illuminated boundary. The ratios of

these emergent fluxes can be seen in Fig. 7.4. This work is at an early stage, and

we have yet to undertake a detailed quantitative analysis of the line formation,

however it is encouraging to note that the width of the λ3905Å line matches well

with observation, as does the ratio of the two lines with respect one another.

7.4 Concluding Remarks

In this thesis the thermodynamic structures and geometric extents of late-type

stellar chromospheres have been addressed using two complementary approaches.

While Chapter 5 is a case study of a novel phenomenon observed in a specific class

of object, Chapters 4 and 6 are strongly thematically linked, and by taking their

results in aggregate we can attempt to make some general statements about the

chromospheres of late-type objects.

We begin by examining the assumptions and results of our radio model. This

model assumes that the chromosphere, or more specifically the thermal mm flux

emitting region, is described by an approximately constant electron density, a

linear increase of temperature in radial height, and a geometric extent on the order

of 10% of the stellar radius. Furthermore it assumes that the chromosphere is a

single structure which covers the entire face of the star. We find that a model based

on these assumptions can reproduce the thermal mm flux, and the spectral index,

and we suggest that the underlying assumptions reflect the physical properties
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of chromosphere. This is compounded by the fact that the model breaks down

for objects which are thought to have chromospheres of a different structure, i.e.

g Her (Luttermoser et al. (1994a) could not construct a time-independent, semi-

empirical model for this object). The fact that models of this kind can reproduce

the observed flux at mm wavelengths is interesting, and is in direct opposition to

the results from time-dependent, inhomogeneous shock models. We contend that

while granulation as a result of convection will introduce a time-varying dimension

to the atmosphere, it will tend introduce quite small variability, as the number of

granules scales as (assuming that the granule size is ∼ 10Hρ (Chiavassa et al.,

2009; Freytag et al., 2002))

Ngran = 4× 106

(
R�
R∗

)2(
Teff,�
Teff,∗

)2(
M∗
M�

)2

(7.3)

which implies ∼ 104 granules on the visible disk. If the brightness of these granules

is uncorrelated this corresponds to a fractional variability in the flux of 1/
√

104 =

1%. Variability above this level may be attributable to larger scale (magnetic)

structure, though quite close monitoring may be required to observe this effect.

In the absence of such variability we restate the validity of our time-independent,

homogeneous atmospheric model.

Contrasting the radio model with our model of ζ Aurigae based on UV/optical

observations we see that there is some common ground. The empirical data of this

object, taken on the whole, lead us to a number of conclusions,

• The density decreases with radial height.

• The excitation temperature and turbulent velocity increase with height.

• Hydrogen appears to be predominantly neutral.

• Electron densities appear to be higher than would be possible given an

isotropic distribution of material.

• The extent of the chromosphere is, h ∼ 1R∗.

The first two points here agree well with the findings of our radio model, the

final three however give us pause, as they appear to be in opposition to our previous
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assumptions and perhaps point to a larger, and perhaps more complex atmosphere

than is assumed in our radio model.

Extreme inhomogeneity, such as an inverted density gradient, which would

cause the splitting of spectral lines is absent in ζ Aurigae (though some evidence

of line splitting is found by Schroeder (1983) in 32 Cyg), with the exception of

occasional splitting of the K line high in the chromosphere, observed by R.E.M.

Griffin (Griffin & Ake, 2015). The inhomogeneity seen in the electron densities

in the chromosphere could be attributable to material confined along magnetic

flux tubes, as in the Sun, and this may be the cause of the K line splitting, how-

ever the infrequent observation of this splitting points to this clumping not being

particularly prevalent. Clumping which is not magnetic in nature was examined

by Eaton (2008), who created a semi-empirical model for the chromosphere and

wind of 31 Cyg based on the proposition that the force which led to clumping

was also responsible for extending the chromosphere and driving the wind. Using

this model however he derived modest clumping factors, which were in fact revised

down by Harper (2010) in order to match the cm-radio emission from the wind of

ζ Aurigae.

In the case of global inhomogeneity, where the large-scale structure of the

chromosphere is asymmetric, we do note the long-standing observation (Baade

et al., 1996; Wilson & Abt, 1954; Wright, 1959) that the chromosphere appears

different at ingress and egress, though McKellar & Petrie (1952) determined that a

single “minimum” model could be constructed which underlies the inhomogeneity.

To some extent the difference at egress and ingress may be attributable to the

relative distance to the B-star (which is closer at egress), and its distortion of the

K-star chromosphere.1 In general it is assumed that the chromospheres and winds

from supergiants are a single structure, and Baade et al. (1996) presented evidence

of anisotropy/asphericity in the wind of ζ Aurigae A, perhaps indicating that the

wind and chromosphere may consist of isolated structures anchored to different

parts of the photosphere. This is contradicted by observations of H-α which imply

1That said we must point out that the Strömgren sphere of the B-star is quite small, so
outside of this gravitational distortion the total/electron densities of the K-star should, on the
whole, be unaffected by the B-star.
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that the the chromosphere must cover the face of the star quite uniformly (Eaton,

1995; Griffin & Ake, 2015).

Though the evidence for large- and small-scale inhomogeneity is itself patchy,

the atmosphere is clearly not static and isotropic. However we believe that on

balance the model for ζ Aurigae A presented in this work, despite its relative

simplicity, can account for much of the observation of this object, crucially the

line spectra, and is an accurate reflection of the physical conditions in the chro-

mosphere. We also believe that owing to the similarity of this object to others, λ

Velorum in particular, much of what we have concluded can be generalised.

The extent of our model of ζ Aurigae A is comparable to the extents of other

supergiants (Eaton, 1988; Harper et al., 2001; Lim et al., 1998) and specifically

agrees with the extent predicted by Carpenter et al. (1985) for λ Velorum. This

is in disagreement with the expectation for time-dependent, acoustically shocked

chromospheres, which are modelled as being significantly more compact (Cuntz,

1990). We briefly examine the extents of coronal giants and find some evidence

that the traditional models of these objects, which determine them to be quite

compact also, may be inaccurate as they cannot reproduce the profiles of spectral

lines and their interferometric visibilities. This is a fruitful avenue of study, and the

direct constraints placed on line-forming regions by spectro-interferometry appears

to lead us toward reconsidering the current models of geometric extent.

As this relates to our radio model, it is possible to compute the apparent

extent of our chromospheric model when observed at mm wavelengths. At these

wavelengths, owing to the low electron density in the high chromosphere, the

apparent radius is ∼ 0.15R∗, which is in keeping with the computed extents from

our radio model. Below this height the chromosphere loosely satisfies the condition

that the electron density remain approximately constant to within an order of

magnitude, though the upper temperature is somewhat lower than is assumed in

our model.

To conclude, in this thesis we presented two models of late-type stellar chro-

mospheres, both assuming time-independence, homogeneity, as well as comparable

geometric extents and temperature/density profiles. We find that these models re-

produce well the emission from these objects at multiple wavelengths. At the mm-

radio wavelengths our model is capable of reproducing the thermal emission from
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7.4 Concluding Remarks

the chromosphere of these objects in a general sense. In the UV/optical a specific

model of ζ Aurigae A is presented which matches closely observations of this ob-

ject, and is used to comment generally on late-type chromospheres. Despite their

simplicity these models are found to agree with observations of late-type stars,

and we contend that to a good approximation they reflect the thermodynamic

properties of these objects.

Using the diagnostic methods discussed in this work great insights can be

gleaned into the structures of stellar atmospheres. With modern observational

methods it is now possible to determine the basic parameters of late-type stars

to a higher degree of accuracy than ever before. With knowledge of parameters

such as effective temperature, distance, and photospheric radius, we can begin

to answer questions of chromospheric structure for objects other than the Sun

for the first time. Through interferometric observation at multiple wavelengths,

novel diagnostics such as the periodic Si I lines presented in this work, and careful

attention to the unique vantage provided by ζ Aurigae binaries, as well as a host of

other recent advances, we can begin to effectively spatially resolve distant objects,

and disentangle the complex problem of understanding their atmospheres.
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A
Atomic Models

Here we provide the atomic models developed in the course of this work, as for-

matted for RH.

A.1 H atom

H

# Nlevel Nline Ncont Nfixed
6 10 5 0

# E[cm^-1] g label[20] stage levelNo
# ’|----|----|----|----’

0.000 2.00 ’H I 1S 2SE ’ 0 0
82258.211 8.00 ’H I 2P 2PO ’ 0 1
97491.219 18.00 ’H I 3D 2DE ’ 0 2

102822.766 32.00 ’H I 4F 2FO ’ 0 3
105290.508 50.00 ’H I 5G 2GE ’ 0 4
109677.617 1.00 ’H II continuum ’ 1 5

# j i f type Nlambda symmetr qcore qwing vdWapprx vdWaals radiative Stark
#
# Lyman series H He

1 0 4.162E-01 PRD 100 SYMM 15.0 600.0 UNSOLD 1.000 0.000 1.000 0.000 4.70E+08 1.0E+00
2 0 7.910E-02 PRD 50 SYMM 10.0 250.0 UNSOLD 1.000 0.000 1.000 0.000 9.98E+07 1.0E+00
3 0 2.899E-02 VOIGT 20 SYMM 3.0 100.0 UNSOLD 1.000 0.000 1.000 0.000 3.02E+07 1.0E+00
4 0 1.394E-02 VOIGT 20 SYMM 3.0 100.0 UNSOLD 1.000 0.000 1.000 0.000 1.15E+07 1.0E+00

# Balmer series
2 1 6.407E-01 PRD 70 SYMM 1.0 250.0 UNSOLD 1.000 0.000 1.000 0.000 9.98E+07 1.0E+00
3 1 1.193E-01 VOIGT 40 SYMM 3.0 250.0 UNSOLD 1.000 0.000 1.000 0.000 3.02E+07 1.0E+00
4 1 4.467E-02 VOIGT 40 SYMM 3.0 250.0 UNSOLD 1.000 0.000 1.000 0.000 1.15E+07 1.0E+00

# Paschen series
3 2 8.420E-01 VOIGT 20 SYMM 2.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 3.02E+07 1.0E+00
4 2 1.506E-01 VOIGT 20 SYMM 2.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 1.15E+07 1.0E+00

# Brackett series
4 3 1.036E+00 VOIGT 20 SYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 1.15E+07 1.0E+00

# Photoionization Cross Sectionss

# j i alpha [m^-2] Nlambda Wavel. Dep. lamb_min [nm]
#

# H I 1S 2SE
5 0 6.152E-22 20 HYDROGENIC 22.794

# H I 2P 2PO
5 1 1.379E-21 20 HYDROGENIC 91.176

# H I 3D 2DE
5 2 2.149E-21 20 HYDROGENIC 205.147

# H I 4F 2FO
5 3 2.923E-21 20 HYDROGENIC 364.705

# H I 5G 2GE
5 4 3.699E-21 20 HYDROGENIC 569.852

# Fixed Transitions

# j i Strength Trad Option

# Collisional rate coefficients

TEMP 6 3000.0 5000.0 7000.0 10000.0 20000.0 30000.0

CE 1 0 9.750e-16 6.098e-16 4.535e-16 3.365e-16 2.008e-16 1.560e-16 (Johnson)
CE 2 0 1.437e-16 9.069e-17 6.798e-17 5.097e-17 3.118e-17 2.461e-17 (Johnson)
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A.2 Al atom

CE 3 0 4.744e-17 3.001e-17 2.255e-17 1.696e-17 1.044e-17 8.281e-18 (Johnson)
CE 4 0 2.154e-17 1.364e-17 1.026e-17 7.723e-18 4.772e-18 3.791e-18 (Johnson)
CE 2 1 1.127e-14 8.077e-15 6.716e-15 5.691e-15 4.419e-15 3.890e-15 (Johnson)
CE 3 1 1.360e-15 1.011e-15 8.617e-16 7.482e-16 6.068e-16 5.484e-16 (Johnson)
CE 4 1 4.040e-16 3.041e-16 2.612e-16 2.287e-16 1.887e-16 1.726e-16 (Johnson)
CE 3 2 3.114e-14 2.629e-14 2.434e-14 2.290e-14 2.068e-14 1.917e-14 (Johnson)
CE 4 2 3.119e-15 2.700e-15 2.527e-15 2.400e-15 2.229e-15 2.130e-15 (Johnson)
CE 4 3 7.728e-14 7.317e-14 7.199e-14 7.109e-14 6.752e-14 6.310e-14 (Johnson)

# Collisional rate coefficients

TEMP 6 3000.0 5000.0 7000.0 10000.0 20000.0 30000.0

CI 0 5 2.635e-17 2.864e-17 3.076e-17 3.365e-17 4.138e-17 4.703e-17 (Johnson)
CI 1 5 5.340e-16 6.596e-16 7.546e-16 8.583e-16 1.025e-15 1.069e-15 (Johnson)
CI 2 5 2.215e-15 2.792e-15 3.169e-15 3.518e-15 3.884e-15 3.828e-15 (Johnson)
CI 3 5 6.182e-15 7.576e-15 8.370e-15 8.992e-15 9.252e-15 8.752e-15 (Johnson)
CI 4 5 1.342e-14 1.588e-14 1.710e-14 1.786e-14 1.743e-14 1.601e-14 (Johnson)

#
END

A.2 Al atom

AL

# Nlevel Nline Ncont Nfixed
13 9 11 0

# Energy levels from NIST

# E[cm^-1] g label[20] stage levelNo
# ’|----|----|----|----’

0.000 2.00 ’AL I 3S2 3P 2PO 1/2’ 0 0
121.061 4.00 ’AL I 3S2 3P 2PO 3/2’ 0 1

25347.756 2.00 ’AL I 3S2 4S 2SE ’ 0 2
29066.960 12.00 ’AL I 3S 3P2 4PE ’ 0 3
32435.453 10.00 ’AL I 3S2 3D 2DE ’ 0 4
32949.807 6.00 ’AL I 3S2 4P 2PO ’ 0 5
37689.407 2.00 ’AL I 3S 5S 2SE ’ 0 6

48278.480 1.00 ’AL II 3S2 1SE ’ 1 7
85651.510 1.00 ’AL II 3S 3P 3PO ’ 1 8
85732.400 3.00 ’AL II 3S 3P 3PO ’ 1 9
85856.300 5.00 ’AL II 3S 3P 3PO ’ 1 10

108130.482 3.00 ’AL II 3S 3P 1PO ’ 1 11
200141.281 2.00 ’AL III Ground Term ’ 2 12

# j i f type Nlambda symmetr qcore qwing vdWapprx vdWaals radiative Stark
#

2 0 1.160e-01 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 1.82e+08 0.0e+00
3 0 1.160e-01 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 1.82e+08 0.0e+00
4 0 1.670e-01 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 1.14e+08 0.0e+00
4 1 1.670e-02 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 1.14e+08 0.0e+00
5 2 4.130e-01 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 1.34e+08 0.0e+00
6 0 1.500e-02 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 5.75e+07 0.0e+00
6 1 1.510e-02 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 5.75e+07 0.0e+00

9 7 1.051e-05 VOIGT 60 ASYMM 0.3 60.0 UNSOLD 1.000 0.000 1.000 0.000 6.45e+03 0.0e+00
11 7 1.770e+00 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 1.000 0.000 1.000 0.000 1.73e+09 0.0e+00

# Photoionization rates

# j i alpha [m^-2] Nlambda Wavel. Dep. lamb_min [nm]

# AL I 3S2 4S 2SE
7 1 9.408e-24 50 EXPLICIT 13.832144

212.70817 2.03000e-21
208.64947 2.03000e-21
204.59078 2.03000e-21
200.53208 1.59267e-21
196.47339 1.59267e-21
192.41469 4.22000e-21
188.35600 1.43700e-21
184.29731 1.43700e-21
180.23861 9.12333e-22
176.17992 9.12333e-22
172.12122 9.12333e-22
168.06253 9.12333e-22
164.00383 5.99333e-22
159.94514 5.99333e-22
155.88645 5.99333e-22
151.82775 2.52667e-22
147.76906 2.52667e-22
143.71036 3.10967e-23
139.65167 6.31333e-22
135.59297 3.49667e-22
131.53428 2.24967e-22
127.47559 3.15267e-22
123.41689 2.97133e-22
119.35820 7.07000e-23
115.29950 2.01200e-22
111.24081 1.96067e-22
107.18211 8.61667e-23
103.12342 9.38333e-23
99.064725 6.31667e-23
95.006030 4.26333e-23
90.947336 4.47333e-23
86.888642 2.85900e-23
82.829947 3.30633e-23
78.771253 1.89333e-23
74.712559 1.32767e-23
70.653864 1.09400e-23
66.595170 1.34000e-23
62.536476 1.10900e-23
58.477781 9.26333e-24
54.419087 7.28667e-24
50.360393 6.08667e-24
46.301698 4.51000e-24
42.243004 3.54667e-24
38.184310 2.62733e-24
34.125615 1.83300e-24
30.066921 1.27900e-24
26.008227 8.40333e-25
21.949532 4.89667e-25
17.890838 2.68733e-25
13.832144 1.23200e-25

# AL I 3S2 4S 2SE
7 2 9.408e-24 50 EXPLICIT 13.832144

212.70817 4.06000e-21
208.64947 4.06000e-21
204.59078 4.06000e-21
200.53208 3.18533e-21
196.47339 3.18533e-21
192.41469 8.44000e-21
188.35600 2.87400e-21
184.29731 2.87400e-21
180.23861 1.82467e-21
176.17992 1.82467e-21
172.12122 1.82467e-21
168.06253 1.82467e-21
164.00383 1.19867e-21
159.94514 1.19867e-21
155.88645 1.19867e-21
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A.2 Al atom

151.82775 5.05333e-22
147.76906 5.05333e-22
143.71036 6.21933e-23
139.65167 1.26267e-21
135.59297 6.99333e-22
131.53428 4.49933e-22
127.47559 6.30533e-22
123.41689 5.94267e-22
119.35820 1.41400e-22
115.29950 4.02400e-22
111.24081 3.92133e-22
107.18211 1.72333e-22
103.12342 1.87667e-22
99.064725 1.26333e-22
95.006030 8.52667e-23
90.947336 8.94667e-23
86.888642 5.71800e-23
82.829947 6.61267e-23
78.771253 3.78667e-23
74.712559 2.65533e-23
70.653864 2.18800e-23
66.595170 2.68000e-23
62.536476 2.21800e-23
58.477781 1.85267e-23
54.419087 1.45733e-23
50.360393 1.21733e-23
46.301698 9.02000e-24
42.243004 7.09333e-24
38.184310 5.25467e-24
34.125615 3.66600e-24
30.066921 2.55800e-24
26.008227 1.68067e-24
21.949532 9.79333e-25
17.890838 5.37467e-25
13.832144 2.46400e-25

# AL I 3S 3P2 4PE
7 3 3.664e-21 50 EXPLICIT 16.488886

453.70773 1.76900e-23
444.78489 1.37800e-23
435.86206 1.05000e-23
426.93923 4.75900e-24
418.01639 2.87600e-24
409.09356 1.52800e-24
400.17073 6.40300e-25
391.24789 5.85200e-29
382.32506 1.46700e-25
373.40223 1.17700e-24
364.47939 2.99200e-24
355.55656 5.42200e-24
346.63373 9.97900e-24
337.71089 9.97900e-24
328.78806 1.74900e-23
319.86522 2.67000e-23
310.94239 2.67000e-23
302.01956 3.82400e-23
293.09672 5.36700e-23
284.17389 9.38200e-23
275.25106 1.54200e-22
266.32822 5.86000e-22
257.40539 1.33200e-22
248.48256 2.78000e-25
239.55972 1.98300e-23
230.63689 4.50100e-23
221.71406 7.14400e-23
212.79122 1.88400e-22
203.86839 1.59400e-22
194.94556 8.89400e-23
186.02272 2.32800e-22
177.09989 3.48300e-22
168.17706 2.04400e-20
159.25422 1.46900e-21
150.33139 2.23500e-22
141.40855 1.45000e-22
132.48572 3.20500e-23
123.56289 2.44400e-23
114.64005 4.43100e-24
105.71722 3.56300e-22
96.794387 1.06500e-23
87.871554 2.13700e-23
78.948720 1.31400e-23
70.025887 7.97100e-24
61.103053 5.23700e-24
52.180220 3.44100e-24
43.257386 1.88900e-24
34.334553 9.76100e-25
25.411719 3.96900e-25
16.488886 1.06000e-25

# AL I 3S2 3D 2DE
7 4 2.703e-21 50 EXPLICIT 15.164350

176.47842 3.66400e-21
173.18630 3.66400e-21
169.89417 3.66400e-21
166.60205 3.66400e-21
163.30993 3.66400e-21
160.01780 1.99300e-21
156.72568 1.99300e-21
153.43355 1.99300e-21
150.14143 1.99300e-21
146.84931 1.99300e-21
143.55718 1.99300e-21
140.26506 1.45800e-21
136.97293 1.45800e-21
133.68081 1.45800e-21
130.38869 1.11000e-21
127.09656 1.11000e-21
123.80444 1.11000e-21
120.51231 8.55200e-22
117.22019 8.55200e-22
113.92807 6.13800e-22
110.63594 6.79500e-22
107.34382 4.96800e-22
104.05170 4.96800e-22
100.75957 2.39400e-22
97.467447 2.70700e-22
94.175323 1.14100e-22
90.883200 1.94300e-22
87.591076 1.51700e-22
84.298952 1.26100e-22
81.006828 9.89200e-23
77.714704 1.01900e-22
74.422580 6.69400e-23
71.130456 6.69400e-23
67.838332 5.93700e-23
64.546208 4.95900e-23
61.254084 4.39800e-23
57.961960 3.67400e-23
54.669836 3.06900e-23
51.377713 2.56300e-23
48.085589 2.14100e-23
44.793465 1.68400e-23
41.501341 1.32500e-23
38.209217 1.04200e-23
34.917093 8.19700e-24
31.624969 6.07300e-24
28.332845 4.23700e-24
25.040721 2.95600e-24
21.748597 1.94200e-24
18.456473 1.20200e-24
15.164350 6.59500e-25

# AL I 3S2 4P 2PO
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7 5 1.810e-21 50 EXPLICIT 16.853651
670.80263 3.02900e-21
657.45673 3.02900e-21
644.11083 3.02900e-21
630.76493 3.02900e-21
617.41904 2.17500e-21
604.07314 2.17500e-21
590.72724 2.17500e-21
577.38134 2.17500e-21
564.03545 2.17500e-21
550.68955 2.17500e-21
537.34365 1.53900e-21
523.99775 1.53900e-21
510.65186 1.53900e-21
497.30596 1.53900e-21
483.96006 1.53900e-21
470.61416 1.53900e-21
457.26827 1.10900e-21
443.92237 1.10900e-21
430.57647 1.10900e-21
417.23057 1.10900e-21
403.88468 8.34000e-22
390.53878 8.34000e-22
377.19288 8.34000e-22
363.84698 7.00700e-22
350.50109 7.07500e-22
337.15519 8.71600e-22
323.80929 2.40700e-21
310.46339 5.72500e-22
297.11750 4.12900e-22
283.77160 3.44000e-22
270.42570 3.44000e-22
257.07980 3.19100e-22
243.73391 2.78100e-22
230.38801 2.59500e-22
217.04211 1.61400e-21
203.69622 2.00700e-22
190.35032 2.84400e-21
177.00442 8.71700e-21
163.65852 1.36800e-20
150.31263 7.95500e-22
136.96673 5.80400e-22
123.62083 2.98700e-22
110.27493 3.26300e-22
96.929036 1.69200e-22
83.583138 5.87500e-23
70.237241 3.82300e-23
56.891343 2.09800e-23
43.545446 9.05800e-24
30.199548 3.07600e-24
16.853651 5.39900e-25

# AL I 3S2 5S 2SE
7 6 1.139e-22 50 EXPLICIT 18.680428

687.84779 1.75400e-21
674.19131 1.75400e-21
660.53483 1.75400e-21
646.87836 1.86900e-21
633.22188 1.86900e-21
619.56540 1.86900e-21
605.90893 1.86900e-21
592.25245 1.86900e-21
578.59597 1.74400e-21
564.93950 1.74400e-21
551.28302 1.74400e-21
537.62654 1.74400e-21
523.97007 1.65200e-21
510.31359 1.49700e-21
496.65711 1.61900e-21
483.00064 1.61900e-21
469.34416 1.61900e-21
455.68768 1.61900e-21
442.03121 9.73900e-22
428.37473 9.73900e-22
414.71825 9.73900e-22
401.06178 9.73900e-22
387.40530 9.73900e-22
373.74882 6.49400e-22
360.09235 6.49400e-22
346.43587 6.49400e-22
332.77939 6.49400e-22
319.12291 4.31600e-22
305.46644 4.31600e-22
291.80996 2.25600e-22
278.15348 2.25600e-22
264.49701 4.03400e-23
250.84053 1.90200e-22
237.18405 1.70700e-22
223.52758 7.81400e-23
209.87110 5.26100e-23
196.21462 2.32200e-23
182.55815 2.99900e-22
168.90167 8.76100e-21
155.24519 9.90900e-22
141.58872 1.68400e-22
127.93224 9.04700e-23
114.27576 7.20300e-23
100.61929 6.15900e-22
86.962811 1.37300e-23
73.306334 5.93700e-24
59.649858 3.25800e-24
45.993381 1.49400e-24
32.336904 5.07200e-25
18.680428 1.00400e-25

# AL II 3S2 1SE
12 7 3.448e-24 50 EXPLICIT 4.2902021

67.710074 9.25400e-23
66.415791 2.24000e-23
65.121508 2.87200e-25
63.827225 2.49000e-24
62.532942 1.09700e-23
61.238659 1.87100e-23
59.944376 1.87100e-23
58.650093 2.70200e-23
57.355810 5.91600e-23
56.061526 1.54500e-23
54.767243 2.97300e-23
53.472960 3.45200e-25
52.178677 3.73300e-23
50.884394 2.45400e-24
49.590111 2.39800e-23
48.295828 3.10000e-23
47.001545 3.43800e-23
45.707262 3.43800e-23
44.412978 3.19300e-23
43.118695 3.79300e-23
41.824412 3.30500e-23
40.530129 3.43100e-23
39.235846 3.22400e-23
37.941563 3.76600e-23
36.647280 3.15800e-23
35.352997 3.30400e-23
34.058714 3.26600e-23
32.764431 3.24600e-23
31.470147 3.16600e-23
30.175864 3.16600e-23
28.881581 3.16600e-23
27.587298 2.92900e-23
26.293015 2.92900e-23
24.998732 2.92900e-23
23.704449 2.49800e-23
22.410166 2.49800e-23
21.115883 2.48300e-23
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19.821599 2.48300e-23
18.527316 2.22600e-23
17.233033 1.84000e-23
15.938750 1.44800e-23
14.644467 1.07200e-23
13.350184 8.43600e-24
12.055901 6.25000e-24
10.761618 4.36000e-24
9.4673346 3.04200e-24
8.1730515 1.88200e-24
6.8787684 1.16500e-24
5.5844852 6.02000e-25
4.2902021 2.76000e-25

# AL II 3S 3P 3PO
12 8 6.671e-23 50 EXPLICIT 3.4334352

90.611994 9.30000e-24
88.832839 9.30000e-24
87.053685 5.27444e-24
85.274531 5.27444e-24
83.495377 4.36000e-24
81.716222 8.97000e-24
79.937068 6.09111e-24
78.157914 5.09444e-24
76.378760 4.01556e-24
74.599605 4.01556e-24
72.820451 3.25000e-24
71.041297 3.31000e-24
69.262143 3.11111e-24
67.482988 2.89333e-24
65.703834 2.81333e-24
63.924680 4.15889e-24
62.145526 2.81111e-24
60.366371 4.19222e-24
58.587217 3.48333e-24
56.808063 3.80000e-24
55.028909 3.80000e-24
53.249754 4.42667e-24
51.470600 4.42667e-24
49.691446 4.22667e-24
47.912292 4.26667e-24
46.133137 4.66333e-24
44.353983 4.47444e-24
42.574829 4.78556e-24
40.795674 4.66667e-24
39.016520 4.59111e-24
37.237366 4.52667e-24
35.458212 4.58333e-24
33.679057 4.58333e-24
31.899903 4.58333e-24
30.120749 4.58333e-24
28.341595 4.58333e-24
26.562440 2.85111e-24
24.783286 2.85111e-24
23.004132 2.85111e-24
21.224978 2.85111e-24
19.445823 2.85111e-24
17.666669 2.85111e-24
15.887515 2.64444e-24
14.108361 1.96889e-24
12.329206 1.29333e-24
10.550052 8.00333e-25
8.7708980 4.66333e-25
6.9917437 2.41000e-25
5.2125895 9.80000e-26
3.4334352 2.78000e-26

# AL II 3S 3P 3PO
12 9 6.671e-23 50 EXPLICIT 3.4334352

90.611994 2.79000e-23
88.832839 2.79000e-23
87.053685 1.58233e-23
85.274531 1.58233e-23
83.495377 1.30800e-23
81.716222 2.69100e-23
79.937068 1.82733e-23
78.157914 1.52833e-23
76.378760 1.20467e-23
74.599605 1.20467e-23
72.820451 9.75000e-24
71.041297 9.93000e-24
69.262143 9.33333e-24
67.482988 8.68000e-24
65.703834 8.44000e-24
63.924680 1.24767e-23
62.145526 8.43333e-24
60.366371 1.25767e-23
58.587217 1.04500e-23
56.808063 1.14000e-23
55.028909 1.14000e-23
53.249754 1.32800e-23
51.470600 1.32800e-23
49.691446 1.26800e-23
47.912292 1.28000e-23
46.133137 1.39900e-23
44.353983 1.34233e-23
42.574829 1.43567e-23
40.795674 1.40000e-23
39.016520 1.37733e-23
37.237366 1.35800e-23
35.458212 1.37500e-23
33.679057 1.37500e-23
31.899903 1.37500e-23
30.120749 1.37500e-23
28.341595 1.37500e-23
26.562440 8.55333e-24
24.783286 8.55333e-24
23.004132 8.55333e-24
21.224978 8.55333e-24
19.445823 8.55333e-24
17.666669 8.55333e-24
15.887515 7.93333e-24
14.108361 5.90667e-24
12.329206 3.88000e-24
10.550052 2.40100e-24
8.7708980 1.39900e-24
6.9917437 7.23000e-25
5.2125895 2.94000e-25
3.4334352 8.34000e-26

# AL II 3S 3P 3PO
12 10 6.671e-23 50 EXPLICIT 3.4334352

90.611994 4.65000e-23
88.832839 4.65000e-23
87.053685 2.63722e-23
85.274531 2.63722e-23
83.495377 2.18000e-23
81.716222 4.48500e-23
79.937068 3.04556e-23
78.157914 2.54722e-23
76.378760 2.00778e-23
74.599605 2.00778e-23
72.820451 1.62500e-23
71.041297 1.65500e-23
69.262143 1.55556e-23
67.482988 1.44667e-23
65.703834 1.40667e-23
63.924680 2.07944e-23
62.145526 1.40556e-23
60.366371 2.09611e-23
58.587217 1.74167e-23
56.808063 1.90000e-23
55.028909 1.90000e-23
53.249754 2.21333e-23
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51.470600 2.21333e-23
49.691446 2.11333e-23
47.912292 2.13333e-23
46.133137 2.33167e-23
44.353983 2.23722e-23
42.574829 2.39278e-23
40.795674 2.33333e-23
39.016520 2.29556e-23
37.237366 2.26333e-23
35.458212 2.29167e-23
33.679057 2.29167e-23
31.899903 2.29167e-23
30.120749 2.29167e-23
28.341595 2.29167e-23
26.562440 1.42556e-23
24.783286 1.42556e-23
23.004132 1.42556e-23
21.224978 1.42556e-23
19.445823 1.42556e-23
17.666669 1.42556e-23
15.887515 1.32222e-23
14.108361 9.84445e-24
12.329206 6.46667e-24
10.550052 4.00167e-24
8.7708980 2.33167e-24
6.9917437 1.20500e-24
5.2125895 4.90000e-25
3.4334352 1.39000e-25

# AL II 3S 3P 1PO
12 11 2.583e-22 50 EXPLICIT 3.7803974

115.27886 4.45000e-22
113.00338 4.45000e-22
110.72790 2.80700e-22
108.45242 2.80700e-22
106.17694 1.17400e-22
103.90146 1.17400e-22
101.62598 4.33200e-23
99.350505 2.69000e-23
97.075026 1.47800e-22
94.799548 1.71200e-22
92.524069 1.20800e-22
90.248590 1.20800e-22
87.973111 8.41000e-23
85.697632 4.55100e-23
83.422154 2.10900e-23
81.146675 4.53700e-23
78.871196 2.99600e-23
76.595717 2.49700e-23
74.320239 1.93500e-23
72.044760 1.75200e-23
69.769281 4.81900e-23
67.493802 5.89500e-23
65.218324 2.73300e-23
62.942845 2.34100e-23
60.667366 1.84200e-23
58.391887 3.07900e-23
56.116409 2.08900e-23
53.840930 5.17000e-23
51.565451 2.06800e-23
49.289972 3.30500e-23
47.014494 3.07600e-23
44.739015 3.36600e-23
42.463536 3.41500e-23
40.188057 3.43100e-23
37.912579 3.53000e-23
35.637100 3.53000e-23
33.361621 3.53000e-23
31.086142 3.05200e-23
28.810664 3.05200e-23
26.535185 3.05200e-23
24.259706 3.05200e-23
21.984227 2.71800e-23
19.708749 2.43000e-23
17.433270 2.19000e-23
15.157791 1.83400e-23
12.882312 1.13500e-23
10.606834 6.61400e-24
8.3313549 3.21900e-24
6.0558762 1.23300e-24
3.7803974 2.92100e-25

# Collisional rate coefficients
TEMP 13 1000.0 3000.0 5000.0 7000.0 10000.0 20000.0 40000.0 70000.0 126491.0 224936.0 400000.0 711312.0 1264910.0

CE 1 0 4.051E-12 2.850E-12 2.420E-12 2.173E-12 1.939E-12 1.553E-12 1.244E-12 1.040E-12 8.608E-13 7.160E-13 5.955E-13 4.953E-13 4.120E-13 (van Regemorter)
CE 2 0 2.346E-14 7.913E-15 4.804E-15 3.472E-15 2.472E-15 1.303E-15 7.104E-16 4.479E-16 2.820E-16 1.828E-16 1.194E-16 7.798E-17 5.064E-17 (Seaton IP)
CE 3 0 1.869E-14 6.297E-15 3.820E-15 2.758E-15 1.962E-15 1.031E-15 5.607E-16 3.533E-16 2.227E-16 1.450E-16 9.530E-17 6.270E-17 4.103E-17 (Seaton IP)
CE 4 0 2.234E-14 7.523E-15 4.560E-15 3.291E-15 2.339E-15 1.226E-15 6.654E-16 4.189E-16 2.644E-16 1.727E-16 1.141E-16 7.552E-17 4.974E-17 (Seaton IP)
CE 5 0 3.289E-16 2.314E-16 1.965E-16 1.764E-16 1.574E-16 1.261E-16 1.010E-16 8.445E-17 6.988E-17 5.812E-17 4.835E-17 4.021E-17 3.345E-17 (van Regemorter)
CE 6 0 1.546E-15 5.203E-16 3.152E-16 2.273E-16 1.613E-16 8.433E-17 4.561E-17 2.867E-17 1.811E-17 1.188E-17 7.908E-18 5.282E-18 3.512E-18 (Seaton IP)
CE 2 1 5.151E-16 3.624E-16 3.078E-16 2.763E-16 2.465E-16 1.975E-16 1.582E-16 1.323E-16 1.095E-16 9.104E-17 7.572E-17 6.298E-17 5.239E-17 (van Regemorter)
CE 3 1 4.088E-16 2.877E-16 2.443E-16 2.193E-16 1.957E-16 1.568E-16 1.256E-16 1.050E-16 8.687E-17 7.226E-17 6.010E-17 4.999E-17 4.158E-17 (van Regemorter)
CE 4 1 2.241E-15 7.548E-16 4.576E-16 3.302E-16 2.347E-16 1.231E-16 6.679E-17 4.206E-17 2.655E-17 1.734E-17 1.146E-17 7.587E-18 4.997E-18 (Seaton IP)
CE 5 1 3.309E-16 2.328E-16 1.977E-16 1.775E-16 1.584E-16 1.269E-16 1.016E-16 8.497E-17 7.031E-17 5.849E-17 4.865E-17 4.046E-17 3.365E-17 (van Regemorter)
CE 6 1 1.560E-15 5.251E-16 3.180E-16 2.293E-16 1.628E-16 8.512E-17 4.604E-17 2.895E-17 1.830E-17 1.200E-17 7.989E-18 5.337E-18 3.549E-18 (Seaton IP)
CE 3 2 1.284E-14 9.036E-15 7.673E-15 6.890E-15 6.147E-15 4.924E-15 3.945E-15 3.298E-15 2.729E-15 2.270E-15 1.888E-15 1.570E-15 1.306E-15 (van Regemorter)
CE 4 2 4.347E-15 3.058E-15 2.597E-15 2.332E-15 2.080E-15 1.667E-15 1.335E-15 1.116E-15 9.236E-16 7.683E-16 6.390E-16 5.315E-16 4.421E-16 (van Regemorter)
CE 5 2 1.293E-13 4.872E-14 3.251E-14 2.548E-14 2.010E-14 1.326E-14 8.768E-15 6.137E-15 4.126E-15 2.812E-15 1.854E-15 1.197E-15 7.639E-16 (Seaton IP)
CE 6 2 1.712E-15 1.205E-15 1.023E-15 9.185E-16 8.194E-16 6.564E-16 5.258E-16 4.396E-16 3.638E-16 3.026E-16 2.517E-16 2.093E-16 1.741E-16 (van Regemorter)
CE 4 3 1.517E-14 1.067E-14 9.063E-15 8.137E-15 7.260E-15 5.816E-15 4.659E-15 3.895E-15 3.223E-15 2.681E-15 2.230E-15 1.855E-15 1.543E-15 (van Regemorter)
CE 5 3 1.195E-14 8.405E-15 7.138E-15 6.409E-15 5.718E-15 4.580E-15 3.669E-15 3.068E-15 2.539E-15 2.111E-15 1.756E-15 1.461E-15 1.215E-15 (van Regemorter)
CE 6 3 3.127E-15 2.200E-15 1.868E-15 1.678E-15 1.497E-15 1.199E-15 9.605E-16 8.030E-16 6.645E-16 5.527E-16 4.597E-16 3.824E-16 3.180E-16 (van Regemorter)
CE 5 4 3.565E-13 2.509E-13 2.130E-13 1.913E-13 1.706E-13 1.367E-13 1.095E-13 9.155E-14 7.576E-14 6.301E-14 5.241E-14 4.359E-14 3.626E-14 (van Regemorter)
CE 6 4 7.188E-15 5.057E-15 4.295E-15 3.856E-15 3.440E-15 2.756E-15 2.208E-15 1.846E-15 1.527E-15 1.270E-15 1.057E-15 8.789E-16 7.310E-16 (van Regemorter)
CE 6 5 8.546E-15 6.013E-15 5.106E-15 4.585E-15 4.090E-15 3.277E-15 2.625E-15 2.195E-15 1.816E-15 1.510E-15 1.256E-15 1.045E-15 8.692E-16 (van Regemorter)
OMEGA 8 7 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 8.535E-01 (van Regemorter)
OMEGA 9 7 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 8.950E-05 (van Regemorter)
OMEGA 10 7 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 8.488E-01 (van Regemorter)
OMEGA 11 7 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 9.433E+00 (van Regemorter)
OMEGA 9 8 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 3.943E+02 (van Regemorter)
OMEGA 10 8 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 1.558E+02 (van Regemorter)
OMEGA 11 8 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 1.419E+00 (van Regemorter)
OMEGA 10 9 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 7.723E+02 (van Regemorter)
OMEGA 11 9 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 4.272E+00 (van Regemorter)
OMEGA 11 10 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 7.160E+00 (van Regemorter)
CI 7 1 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18 2.105E-18
CI 7 2 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18 4.420E-18
CI 7 3 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15 2.055E-15
CI 7 4 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15 1.838E-15
CI 7 5 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15 1.272E-15
CI 7 6 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16 1.159E-16
CI 12 7 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19 4.892E-19
CI 12 8 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17 1.255E-17
CI 12 9 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17 1.256E-17

END
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A.3 C atom

C
# Nlevel Nline Ncont Nfixed

12 11 6 0
# Energy levels

# E[cm^-1] g label[20] stage levelNo
# ’|----|----|----|----’

29.578 9.00 ’C I 2S2 2P2 3PE ’ 0 0
10192.635 5.00 ’C I 2S2 2P2 1DE ’ 0 1
21648.018 1.00 ’C I 2S2 2P2 1SE ’ 0 2
90832.100 2.00 ’C II 2S2 2P 2PO 1/2 ’ 1 3
90895.620 4.00 ’C II 2S2 2P 2PO 3/2 ’ 1 4

133835.500 2.00 ’C II 2S 2P2 4PE 1/2 ’ 1 5
133857.500 4.00 ’C II 2S 2P2 4PE 3/2 ’ 1 6
133885.800 6.00 ’C II 2S 2P2 4PE 5/2 ’ 1 7
165762.300 6.00 ’C II 2S 2P2 2DE 5/2 ’ 1 8
165764.820 4.00 ’C II 2S 2P2 2DE 3/2 ’ 1 9
236381.470 4.00 ’C II 2S2 3D 2DE 3/2 ’ 1 10
287492.726 1.00 ’C III 2S2 1SE 0 3’ 2 11

# j i f type Nlambda symmetr qcore qwing vdWapprx vdWaals radiative Stark
# H He

4 3 1.707E-09 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 0.000 0.000 0.000 0.000 6.87E-06 0.00E+00
5 3 4.270E-08 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 0.000 0.000 0.000 0.000 2.31E+02 0.00E+00
6 3 2.810E-09 VOIGT 30 ASYMM 1.0 10.0 UNSOLD 0.000 0.000 0.000 0.000 1.04E+01 0.00E+00
9 3 1.287E-01 VOIGT 30 ASYMM 1.0 10.0 UNSOLD 0.000 0.000 0.000 0.000 7.71E+08 0.00E+00

10 3 3.170E-01 VOIGT 30 ASYMM 1.0 10.0 UNSOLD 0.000 0.000 0.000 0.000 7.17E+09 0.00E+00
5 4 2.510E-08 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 0.000 0.000 0.000 0.000 2.31E+02 0.00E+00
6 4 7.080E-09 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 0.000 0.000 0.000 0.000 1.04E+01 0.00E+00
7 4 4.240E-08 VOIGT 30 ASYMM 1.0 30.0 UNSOLD 0.000 0.000 0.000 0.000 4.32E+01 0.00E+00
9 4 1.281E-02 VOIGT 30 ASYMM 1.0 10.0 UNSOLD 0.000 0.000 0.000 0.000 7.71E+08 0.00E+00
8 4 1.159E-01 VOIGT 30 ASYMM 1.0 10.0 UNSOLD 0.000 0.000 0.000 0.000 2.89E+08 0.00E+00

10 4 3.187E-02 VOIGT 30 ASYMM 2.0 10.0 UNSOLD 0.000 0.000 0.000 0.000 7.17E+09 0.00E+00
# Photoionization Cross Sectionss
# j i alpha [m^-2] Nlambda Wavel. Dep. lamb_min [nm]
#
# C I 2S2 2P2 3PE 4’

3 0 0.000E+00 17 EXPLICIT 49.000
110.000 1.720E-21
101.300 1.670E-21
91.100 1.630E-21
88.100 1.690E-21
86.900 1.820E-21
86.000 1.190E-21
84.200 1.390E-21
81.400 1.480E-21
80.400 1.750E-21
79.800 1.340E-21
78.000 1.650E-21
77.700 1.320E-21
75.300 1.480E-21
70.100 1.260E-21
65.100 1.080E-21
59.700 9.630E-22
49.000 7.050E-22

# C I 2S2 2P2 1DE 2’
3 1 0.000E+00 19 EXPLICIT 50.600
123.890 1.050E-21
122.000 1.020E-21
121.500 1.020E-21
121.000 1.020E-21
117.100 9.660E-22
113.900 1.080E-21
107.000 2.500E-21
104.400 4.500E-21
100.000 3.500E-21
93.000 2.260E-21
91.100 5.180E-21
89.500 6.910E-21
89.300 3.300E-21
82.800 1.550E-21
75.900 1.090E-21
70.100 1.070E-21
65.100 9.660E-22
57.000 7.660E-22
50.600 6.400E-22

# C I 2S2 2P2 1SE 0’
3 2 0.000E+00 13 EXPLICIT 57.000
144.320 1.430E-21
130.200 1.270E-21
122.000 1.040E-21
121.000 1.040E-21
113.900 8.440E-22
104.000 3.570E-22
101.300 3.020E-21
99.700 1.390E-20
95.900 3.950E-21
91.100 2.160E-21
82.800 1.430E-21
70.100 1.020E-21
57.000 7.580E-22

# C I 2S2 2P2 3PE 4’
4 0 0.000E+00 17 EXPLICIT 49.000
110.000 1.720E-21
101.300 1.670E-21
91.100 1.630E-21
88.100 1.690E-21
86.900 1.820E-21
86.000 1.190E-21
84.200 1.390E-21
81.400 1.480E-21
80.400 1.750E-21
79.800 1.340E-21
78.000 1.650E-21
77.700 1.320E-21
75.300 1.480E-21
70.100 1.260E-21
65.100 1.080E-21
59.700 9.630E-22
49.000 7.050E-22

# C I 2S2 2P2 1DE 2’
4 1 0.000E+00 19 EXPLICIT 50.600
123.890 1.050E-21
122.000 1.020E-21
121.500 1.020E-21
121.000 1.020E-21
117.100 9.660E-22
113.900 1.080E-21
107.000 2.500E-21
104.400 4.500E-21
100.000 3.500E-21
93.000 2.260E-21
91.100 5.180E-21
89.500 6.910E-21
89.300 3.300E-21
82.800 1.550E-21
75.900 1.090E-21
70.100 1.070E-21
65.100 9.660E-22
57.000 7.660E-22
50.600 6.400E-22

# C I 2S2 2P2 1SE 0’
4 2 0.000E+00 13 EXPLICIT 57.000
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A.3 C atom

144.320 1.430E-21
130.200 1.270E-21
122.000 1.040E-21
121.000 1.040E-21
113.900 8.440E-22
104.000 3.570E-22
101.300 3.020E-21
99.700 1.390E-20
95.900 3.950E-21
91.100 2.160E-21
82.800 1.430E-21
70.100 1.020E-21
57.000 7.580E-22

# Collisional data
TEMP 17 1995.3 3548.1 6309.6 11220.2 19952.6 35481.4 63095.8 112202.0 199526.0 354814.0 630958.0 1122020.0 1995260.0 3548140.0
OMEGA 1 0 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
OMEGA 2 1 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
OMEGA 2 0 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
OMEGA 4 3 1.640E+00 1.770E+00 1.980E+00 2.190E+00 2.270E+00 2.270E+00 2.230E+00 2.200E+00 2.170E+00 2.160E+00 2.150E+00 2.150E+00 2.140E+00 2.140E+00
OMEGA 5 3 2.529E-01 2.596E-01 2.601E-01 2.613E-01 2.620E-01 2.559E-01 2.376E-01 2.118E-01 1.849E-01 2.220E-01 2.210E-01 2.200E-01 2.190E-01 2.190E-01
OMEGA 6 3 3.919E-01 3.935E-01 3.912E-01 3.924E-01 3.940E-01 3.843E-01 3.574E-01 3.161E-01 2.748E-01 3.410E-01 3.390E-01 3.390E-01 3.380E-01 3.380E-01
OMEGA 7 3 2.400E-01 2.320E-01 2.280E-01 2.380E-01 2.450E-01 2.420E-01 2.370E-01 2.330E-01 2.300E-01 2.290E-01 2.280E-01 2.270E-01 2.270E-01 2.270E-01
OMEGA 9 3 1.290E+00 1.310E+00 1.340E+00 1.410E+00 1.530E+00 1.660E+00 1.810E+00 2.010E+00 2.300E+00 2.720E+00 3.260E+00 3.900E+00 4.630E+00 5.410E+00
OMEGA 8 3 5.140E-01 5.130E-01 5.260E-01 5.480E-01 5.600E-01 5.530E-01 5.360E-01 5.200E-01 5.100E-01 5.030E-01 4.990E-01 4.970E-01 4.960E-01 4.950E-01
OMEGA 5 4 1.579E-01 1.689E-01 1.758E-01 1.822E-01 1.879E-01 1.862E-01 1.727E-01 1.531E-01 1.319E-01 1.670E-01 1.660E-01 1.650E-01 1.640E-01 1.640E-01
OMEGA 6 4 4.617E-01 4.823E-01 4.932E-01 5.030E-01 5.129E-01 5.035E-01 4.700E-01 4.145E-01 3.588E-01 4.530E-01 4.510E-01 4.500E-01 4.490E-01 4.490E-01
OMEGA 7 4 1.136E+00 1.127E+00 1.111E+00 1.112E+00 1.114E+00 1.084E+00 1.007E+00 8.909E-01 7.736E-01 9.720E-01 9.680E-01 9.660E-01 9.640E-01 9.640E-01
OMEGA 9 4 8.750E-01 8.840E-01 9.010E-01 9.360E-01 9.790E-01 9.940E-01 9.670E-01 9.310E-01 9.200E-01 9.540E-01 1.030E+00 1.140E+00 1.280E+00 1.430E+00
OMEGA 8 4 2.730E+00 2.770E+00 2.840E+00 2.980E+00 3.190E+00 3.430E+00 3.690E+00 4.020E+00 4.510E+00 5.230E+00 6.170E+00 7.320E+00 8.620E+00 1.000E+01
OMEGA 6 5 6.100E-01 6.220E-01 7.010E-01 8.660E-01 1.050E+00 1.200E+00 1.300E+00 1.360E+00 1.390E+00 1.410E+00 1.420E+00 1.430E+00 1.430E+00 1.440E+00
OMEGA 7 5 6.710E-01 6.940E-01 7.650E-01 8.800E-01 9.650E-01 9.970E-01 1.000E+00 9.940E-01 9.890E-01 9.850E-01 9.820E-01 9.810E-01 9.800E-01 9.800E-01
OMEGA 9 5 4.280E-01 4.380E-01 4.530E-01 4.760E-01 5.040E-01 5.260E-01 5.400E-01 5.480E-01 5.530E-01 5.560E-01 5.580E-01 5.590E-01 5.590E-01 5.600E-01
OMEGA 8 5 2.380E-01 2.470E-01 2.600E-01 2.770E-01 2.970E-01 3.130E-01 3.230E-01 3.290E-01 3.330E-01 3.350E-01 3.360E-01 3.370E-01 3.380E-01 3.380E-01
OMEGA 7 6 1.520E+00 1.560E+00 1.740E+00 2.060E+00 2.370E+00 2.580E+00 2.690E+00 2.750E+00 2.780E+00 2.800E+00 2.810E+00 2.820E+00 2.820E+00 2.830E+00
OMEGA 9 6 6.610E-01 6.790E-01 7.040E-01 7.430E-01 7.890E-01 8.240E-01 8.450E-01 8.580E-01 8.650E-01 8.700E-01 8.720E-01 8.740E-01 8.750E-01 8.750E-01
OMEGA 8 6 6.690E-01 6.910E-01 7.210E-01 7.650E-01 8.150E-01 8.550E-01 8.810E-01 8.970E-01 9.070E-01 9.120E-01 9.160E-01 9.170E-01 9.190E-01 9.190E-01
OMEGA 9 7 5.080E-01 5.270E-01 5.540E-01 5.900E-01 6.310E-01 6.640E-01 6.860E-01 7.000E-01 7.080E-01 7.130E-01 7.160E-01 7.170E-01 7.180E-01 7.190E-01
OMEGA 8 7 1.490E+00 1.530E+00 1.590E+00 1.670E+00 1.770E+00 1.850E+00 1.910E+00 1.940E+00 1.960E+00 1.970E+00 1.980E+00 1.980E+00 1.990E+00 1.990E+00
CI 1 3 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16 1.320E-16
CI 2 3 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16 1.790E-16

CI 3 11 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17
CI 4 11 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17
CI 5 11 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17
CI 6 11 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17
CI 7 11 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17
CI 8 11 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17
CI 9 11 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17
CI 10 11 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17 1.000E-17

END
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B
Atmospheric Model

Here we provide the atmospheric models developed in the course of this work, as
formatted for RH.

ZETA_AUR
Mass Scale
*
* lg g [cm s^-2] Radius [km]

1.33 1.022e8
*
* Ndep Ncore Ninter

63 8 0
*
*lg column Mass Temperature Ne V(no v-field) Vturb
-5.47596E+00 8.3169E+03 2.18646E+06 0.0000000 2.2500E+01
-4.99033E+00 8.0605E+03 3.34179E+06 0.0000000 2.1776E+01
-4.50471E+00 7.5314E+03 7.14857E+06 0.0000000 2.1175E+01
-4.01908E+00 7.0556E+03 6.45903E+06 0.0000000 2.0697E+01
-3.53346E+00 6.5688E+03 1.66903E+07 0.0000000 2.0342E+01
-3.04783E+00 6.1920E+03 5.31015E+07 0.0000000 2.0110E+01
-2.56220E+00 5.7151E+03 1.78146E+08 0.0000000 2.0000E+01
-2.18110E+00 5.3249E+03 4.66758E+08 0.0000000 2.0000E+01
-1.56273E+00 5.0103E+03 1.82788E+09 0.0000000 2.0500E+01
-1.34243E+00 4.6795E+03 2.70919E+09 0.0000000 2.0000E+01
-1.21302E+00 4.3421E+03 3.69200E+09 0.0000000 1.7000E+01
-1.17426E+00 4.1150E+03 4.07477E+09 0.0000000 1.6556E+01
-1.15816E+00 3.8396E+03 4.24612E+09 0.0000000 1.6374E+01
-1.13515E+00 3.6200E+03 4.49933E+09 0.0000000 1.6116E+01
-1.07558E+00 3.4643E+03 5.19206E+09 0.0000000 1.5463E+01
-8.75079E-01 3.3203E+03 8.09428E+09 0.0000000 1.3410E+01
-6.64063E-01 3.2042E+03 1.48501E+10 0.0000000 1.1491E+01
-4.15972E-01 3.1448E+03 4.49847E+10 0.0000000 5.0000E+00
-1.67881E-01 3.1013E+03 1.50474E+11 0.0000000 5.0000E+00
8.02095E-02 3.0722E+03 5.06123E+11 0.0000000 5.0000E+00
3.28300E-01 3.0566E+03 1.66908E+12 0.0000000 5.0000E+00
5.76391E-01 3.0556E+03 5.05295E+12 0.0000000 5.0000E+00
8.24482E-01 3.0630E+03 1.23400E+13 0.0000000 5.0000E+00
9.02006E-01 3.0755E+03 1.60005E+13 0.0000000 5.0000E+00
9.77661E-01 3.0933E+03 1.99560E+13 0.0000000 5.0000E+00
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1.05157E+00 3.1150E+03 2.41065E+13 0.0000000 5.0000E+00
1.12388E+00 3.1397E+03 2.80591E+13 0.0000000 5.0000E+00
1.19475E+00 3.1666E+03 3.26036E+13 0.0000000 5.0000E+00
1.26435E+00 3.1950E+03 3.78573E+13 0.0000000 5.0000E+00
1.33282E+00 3.2246E+03 4.39442E+13 0.0000000 5.0000E+00
1.40029E+00 3.2553E+03 5.08707E+13 0.0000000 5.0000E+00
1.46684E+00 3.2874E+03 5.88898E+13 0.0000000 5.0000E+00
1.53251E+00 3.3211E+03 6.82013E+13 0.0000000 5.0000E+00
1.59727E+00 3.3572E+03 7.90396E+13 0.0000000 5.0000E+00
1.66100E+00 3.3962E+03 9.19261E+13 0.0000000 5.0000E+00
1.72353E+00 3.4391E+03 1.07261E+14 0.0000000 5.0000E+00
1.78462E+00 3.4866E+03 1.25646E+14 0.0000000 5.0000E+00
1.84397E+00 3.5399E+03 1.46858E+14 0.0000000 5.0000E+00
1.90128E+00 3.6000E+03 1.73022E+14 0.0000000 5.0000E+00
1.95631E+00 3.6680E+03 2.02286E+14 0.0000000 5.0000E+00
2.00887E+00 3.7452E+03 2.35828E+14 0.0000000 5.0000E+00
2.05901E+00 3.8329E+03 2.74326E+14 0.0000000 5.0000E+00
2.10699E+00 3.9326E+03 3.13128E+14 0.0000000 5.0000E+00
2.15334E+00 4.0460E+03 3.53073E+14 0.0000000 5.0000E+00
2.19888E+00 4.1750E+03 3.96673E+14 0.0000000 5.0000E+00
2.24477E+00 4.3217E+03 4.37932E+14 0.0000000 5.0000E+00
2.29223E+00 4.4882E+03 4.83849E+14 0.0000000 5.0000E+00
2.34225E+00 4.6766E+03 5.38836E+14 0.0000000 5.0000E+00
2.39474E+00 4.8882E+03 6.04222E+14 0.0000000 5.0000E+00
2.44687E+00 5.1231E+03 6.74465E+14 0.0000000 5.0000E+00
2.49294E+00 5.3797E+03 7.19679E+14 0.0000000 5.0000E+00
2.52827E+00 5.6542E+03 7.30922E+14 0.0000000 5.0000E+00
2.55254E+00 5.9405E+03 7.15925E+14 0.0000000 5.0000E+00
2.56828E+00 6.2308E+03 7.08392E+14 0.0000000 5.0000E+00
2.57825E+00 6.5165E+03 6.52621E+14 0.0000000 5.0000E+00
2.58492E+00 6.7898E+03 7.02588E+14 0.0000000 5.0000E+00
2.59053E+00 7.0443E+03 8.07886E+14 0.0000000 5.0000E+00
2.59585E+00 7.2770E+03 8.99456E+14 0.0000000 5.0000E+00
2.60113E+00 7.4864E+03 1.01901E+15 0.0000000 5.0000E+00
2.60659E+00 7.6777E+03 1.13498E+15 0.0000000 5.0000E+00
2.61238E+00 7.8479E+03 1.24359E+15 0.0000000 5.0000E+00
2.61860E+00 8.0257E+03 1.39414E+15 0.0000000 5.0000E+00
2.62544E+00 8.1530E+03 1.55013E+15 0.0000000 5.0000E+00

* HYDROGEN POPULATIONS
* NH(1) NH(2) NH(3) NH(4) NH(5) NP

2.85304E+06 2.59313E-04 7.65127E-09 1.81208E-09 1.56683E-09 1.51051E+05
4.46855E+06 1.14557E-03 2.58375E-08 3.77614E-09 3.38976E-09 2.21654E+05
9.91626E+06 4.08894E-03 1.05265E-07 1.57775E-08 1.43918E-08 4.47248E+05
3.01213E+07 1.70403E-02 4.91639E-07 4.07129E-08 2.55709E-08 1.20522E+05
1.00361E+08 1.01992E-01 3.76523E-06 2.92169E-07 1.78502E-07 2.20130E+05
3.47278E+08 7.37277E-01 3.91103E-05 2.73115E-06 1.60785E-06 5.97705E+05
1.20292E+09 6.20077E+00 7.07870E-04 3.56668E-05 1.87208E-05 1.86921E+06
3.16967E+09 3.27946E+01 9.49798E-03 3.82765E-04 1.62800E-04 4.83148E+06
1.50596E+10 1.67481E+02 1.75523E-01 8.16340E-03 2.77371E-03 9.92606E+06
2.59977E+10 6.69241E+01 9.56696E-02 5.34857E-03 1.71428E-03 2.84664E+06
3.65019E+10 1.55315E+01 2.38933E-02 1.43994E-03 4.54036E-04 4.88609E+05
4.04424E+10 2.26764E+00 3.50423E-03 2.13026E-04 6.71899E-05 4.78261E+04
4.21552E+10 6.26833E-01 9.69069E-04 5.90738E-05 1.86690E-05 1.17833E+04
4.46726E+10 7.84605E-02 1.21331E-04 7.42578E-06 2.35628E-06 1.38833E+03
5.15509E+10 8.42350E-03 1.30327E-05 8.06567E-07 2.58679E-07 1.30606E+02
8.03666E+10 1.27372E-03 1.97419E-06 1.28088E-07 4.25869E-08 1.24357E+01
1.47444E+11 1.83944E-04 2.85694E-07 1.97203E-08 6.85068E-09 1.00374E+00
4.46644E+11 1.09775E-04 1.71144E-07 1.27257E-08 4.64669E-09 2.14043E-01
1.49403E+12 1.03794E-04 1.62186E-07 1.29147E-08 4.97633E-09 6.64421E-02
5.02520E+12 2.03040E-04 3.18296E-07 2.77470E-08 1.14816E-08 4.46970E-02
1.65719E+13 6.26509E-04 9.88106E-07 1.00747E-07 4.61427E-08 5.36090E-02
5.01698E+13 1.88663E-03 2.99242E-06 3.62360E-07 1.75726E-07 6.15171E-02
1.22521E+14 4.60104E-03 7.28870E-06 9.77014E-07 4.72419E-07 5.36984E-02
1.58866E+14 8.67479E-03 1.47075E-05 2.05474E-06 1.00343E-06 8.47753E-02
1.98139E+14 1.56012E-02 2.83004E-05 4.09875E-06 2.02174E-06 1.34281E-01
2.39348E+14 2.71232E-02 5.26259E-05 7.86241E-06 3.91868E-06 2.16013E-01
2.78594E+14 4.50189E-02 9.32721E-05 1.43154E-05 7.20932E-06 3.51260E-01
3.23715E+14 7.40188E-02 1.63529E-04 2.57166E-05 1.30851E-05 5.65970E-01
3.75878E+14 1.20423E-01 2.83198E-04 4.55548E-05 2.34139E-05 8.99751E-01
4.36314E+14 1.94916E-01 4.87473E-04 8.01430E-05 4.16024E-05 1.42126E+00
5.05086E+14 3.13118E-01 8.32050E-04 1.39741E-04 7.32591E-05 2.23535E+00
5.84706E+14 5.03408E-01 1.42166E-03 2.43895E-04 1.29128E-04 3.52545E+00
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6.77157E+14 8.14543E-01 2.44733E-03 4.29073E-04 2.29457E-04 5.62010E+00
7.84769E+14 1.33325E+00 4.27015E-03 7.65613E-04 4.13681E-04 9.12721E+00
9.12717E+14 2.23262E+00 7.65030E-03 1.40442E-03 7.67218E-04 1.52744E+01
1.06497E+15 3.84656E+00 1.41665E-02 2.66719E-03 1.47411E-03 2.65893E+01
1.24752E+15 6.88970E+00 2.74496E-02 5.31230E-03 2.97379E-03 4.88582E+01
1.45812E+15 1.28504E+01 5.58271E-02 1.11361E-02 6.32197E-03 9.61063E+01
1.71791E+15 2.53041E+01 1.20904E-01 2.49338E-02 1.43750E-02 2.02201E+02
2.00846E+15 5.23416E+01 2.77957E-01 5.94825E-02 3.48843E-02 4.64351E+02
2.34149E+15 1.14227E+02 6.81247E-01 1.51832E-01 9.07355E-02 1.15681E+03
2.72373E+15 2.64434E+02 1.79150E+00 4.17496E-01 2.54706E-01 3.13842E+03
3.10899E+15 6.37315E+02 4.95871E+00 1.21298E+00 7.56750E-01 9.25261E+03
3.50559E+15 1.61119E+03 1.45578E+01 3.75219E+00 2.39842E+00 2.95310E+04
3.93849E+15 4.29700E+03 4.55661E+01 1.24216E+01 8.14827E+00 1.01371E+05
4.34815E+15 1.19305E+04 1.50073E+02 4.34296E+01 2.92882E+01 3.75148E+05
4.80404E+15 3.50736E+04 5.28853E+02 1.63069E+02 1.13250E+02 1.49275E+06
5.34999E+15 1.09926E+05 2.00771E+03 6.62017E+02 4.74253E+02 6.39418E+06
5.99920E+15 3.66127E+05 8.18016E+03 2.89451E+03 2.14240E+03 2.94518E+07
6.69659E+15 1.27207E+06 3.50757E+04 1.33599E+04 1.02301E+04 1.44754E+08
7.14532E+15 4.38587E+06 1.50259E+05 6.17465E+04 4.89789E+04 7.49997E+08
7.25590E+15 1.47860E+07 6.32618E+05 2.81007E+05 2.31062E+05 4.04251E+09
7.10119E+15 4.88603E+07 2.61896E+06 1.25876E+06 1.07357E+06 2.23584E+10
6.99414E+15 1.62962E+08 1.09431E+07 5.69373E+06 5.03703E+06 1.24213E+11
6.27964E+15 4.71533E+08 3.93411E+07 2.20764E+07 2.02269E+07 6.33501E+11
6.35340E+15 1.11341E+09 1.08689E+08 6.44370E+07 6.05613E+07 1.98387E+12
6.73034E+15 2.09823E+09 2.27871E+08 1.40198E+08 1.34086E+08 4.15368E+12
6.75687E+15 3.29149E+09 3.88230E+08 2.45954E+08 2.38361E+08 7.08566E+12
6.89455E+15 4.80745E+09 6.06000E+08 3.92916E+08 3.84905E+08 1.06631E+13
6.88747E+15 6.49521E+09 8.65892E+08 5.72516E+08 5.65947E+08 1.47498E+13
6.72392E+15 8.29583E+09 1.16204E+09 7.81964E+08 7.79254E+08 1.93304E+13
6.78860E+15 1.07004E+10 1.56931E+09 1.07243E+09 1.07661E+09 2.47751E+13
6.78235E+15 1.34609E+10 2.06009E+09 1.42909E+09 1.44461E+09 3.10011E+13
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Mazzali, P.A., Röpke, F.K., Benetti, S. & Hillebrandt, W. (2007). A Common Explo-
sion Mechanism for Type Ia Supernovae. Science, 315, 825–. (Cited on page 6.)

McAlister, H.A., ten Brummelaar, T.A., Gies, D.R., Huang, W., Bagnuolo, W.G.,
Jr., Shure, M.A., Sturmann, J., Sturmann, L., Turner, N.H., Taylor, S.F.,
Berger, D.H., Baines, E.K., Grundstrom, E., Ogden, C., Ridgway, S.T. & van
Belle, G. (2005). First Results from the CHARA Array. I. An Interferometric and Spectro-
scopic Study of the Fast Rotator α Leonis (Regulus). Astrophysical Journal , 628, 439–452.
(Cited on page 77.)

McKellar, A. & Petrie, R.M. (1952). Intensity and radial-velocity measurements on the
spectrum of Zeta Aurigae at recent eclipses. Monthly Notices of the Royal Astronomical
Society , 112, 641. (Cited on pages 18, 141 and 200.)

224



REFERENCES

McLaughlin, D.B. (1950a). 32 Cygni as an eclipsing binary. Astrophysical Journal , 111, 449.
(Cited on page 17.)

McLaughlin, D.B. (1950b). Atmospheric Eclipse Effects in the Spectrum of 31 Cygni. Publi-
cations of the Astronomical Society of the Pacific, 62, 13. (Cited on page 17.)

McMullin, J.P., Waters, B., Schiebel, D., Young, W. & Golap, K. (2007). CASA
Architecture and Applications. In R.A. Shaw, F. Hill & D.J. Bell, eds., Astronomical Data
Analysis Software and Systems XVI , vol. 376 of Astronomical Society of the Pacific Conference
Series, 127. (Cited on page 79.)

McMurry, A.D. (1999). The outer atmosphere of Tau - I. A new chromospheric model. MN-
RAS , 302, 37–47. (Cited on pages 83, 87, 89, 184 and 187.)

McWilliam, A. (1990). High-resolution spectroscopic survey of 671 GK giants. I - Stellar
atmosphere parameters and abundances. Astrophysical Journal Supplemental Series, 74,
1075–1128. (Cited on pages 90, 120 and 143.)

Menzel, D.H. (1936). The Structure of the Atmosphere of ζ Aurigae. Harvard College Obser-
vatory Circular , 417, 1–9. (Cited on pages 17 and 95.)

Menzel, D.H. (1937). Physical Processes in Gaseous Nebulae. I. Astrophysical Journal , 85,
330. (Cited on page 147.)

Menzel, D.H. & Pekeris, C.L. (1935). Absorption coefficients and hydrogen line intensities.
Monthly Notices of the Royal Astronomical Society , 96, 77. (Cited on pages 37 and 153.)

Mihalas, D. (1978). Stellar atmospheres /2nd edition/ . (Cited on pages 8 and 52.)

Milkey, R.W., Shine, R.A. & Mihalas, D. (1975). Resonance line transfer with partial
redistribution. IV - A generalized formulation for lines with common upper states. V - The
solar CA II lines. Astrophysical Journal , 199, 718–733. (Cited on page 36.)

Milne, E.A. (1921). Radiative equilibrium in the outer layers of a star. Monthly Notices of the
Royal Astronomical Society , 81, 361–375. (Cited on page 124.)

Morton, D.C. (1991). Atomic data for resonance absorption lines. I - Wavelengths longward
of the Lyman limit. Astrophysical Journal Supplemental Series, 77, 119–202. (Cited on
page 162.)

Mourard, D., Clausse, J.M., Marcotto, A., Perraut, K., Tallon-Bosc, I., Bério,
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