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Previously we reported on the stable (i.e.
spheres in a long cylindrical channel.

minimal enthalpy) structures of soft monodisperse
Here, we present further simulations, which significantly

extend the original phase diagram up to D/d = 2.714 (ratio of cylinder and sphere diameters),
where the nature of densest sphere packing changes. However, macroscopic systems of this kind
are not confined to the ideal equilibrium states of this diagram. Consequently, we explore some of
the structural transitions to be expected as experimental conditions are varied; these are in general
hysteretic. We represent these transitions in a stability diagram for a representative case. lllustrative

videos are included in the Supplemental Material.

I. INTRODUCTION

There is an increasing interest in the field of columnar
structures, two examples of which are shown in Fig.1.
These range from packings of bubbles [1-7] and colloidal
particles [3—11] in cylinders at the macroscopic level,
to molecules or particles in nanotubes [12-14], polymer
coated nanoparticles in cylinders [15], as well as similar
packings on cylinders [16]. Another stimulating discovery
is that of tubular crystals [17], which have been found in
simulations: these are made up of interlocking columnar
structures [9, 18-24]. All of the above work is informed
by extensive computational studies of cylindrical dense
packings and optimal packings for soft spheres and atoms
interacting with pair potentials.

A recent development offers a new experimental
method for the fabrication of cylindrical packings of poly-
mer beads by the use of a lathe to induce a centripetal
force [25].

We have recently presented an analysis of equilibrium
structures of soft spheres as a function of pressure P and
the diameter ratio D/d of a cylinder (D) and the soft
spheres of equal size (d) that are packed within it [1].
These simulation results were for structures which were
found to have the lowest enthalpy. It was recognised that
these might be of limited value for macroscopic experi-
ments. Accordingly we have now undertaken an explo-
ration of metastability and hysteresis. That is, we ask the
question: Given a certain structure, locally stable, and
some (experimental) protocol for the continuous varia-
tion of P and/or D/d, what sequence of transitions is to
be expected?

It is practically impossible to develop a fully compre-
hensive answer to this question, given the richness of
possibilities presented in Sec. III. Indeed, this does not
exhaust the possible list of structures which might con-
ceivably arise in the present investigation. Here we give a
description of the methodology used to investigate tran-
sitions between columnar structures.

Before presenting these new results in Sec.IV we will
introduce the model (Sec.II) and present a now greatly

expanded phase diagram in Sec.III.
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FIG. 1: Two examples of columnar crystals, generated by
packing hard spheres of diameter d into a cylinder of diame-
ter D. The structure shown on the left is the uniform pack-
ing (4,3, 1) in phyllotactic notation (see Ref.[19]), with every
sphere having a coordination number z = 6. The structure
on the right is the related line-slip structure (4,3,1). The
gaps indicated in the second structure correspond to a loss of
contacts when compared to the first structure.



II. MODEL AND METHOD

As described previously [1], the model that we adopt
consists of spheres of diameter d, whose overlap d;; leads
to an increase in energy E;”; according to

1
S 2
Ef = 5ko?;. (1)

Here the overlap between two spheres ¢ and j is defined
as 0;; = |i; — 7| —d, where 7; = (r;,0;,2;) and 7; =
(Tj,ej,zj) are the centres of two contacting spheres in
cylindrical polar coordinates. A harmonic energy term
EP = ik((D/2 — r;) — d/2)? accounts for the overlap
between the ith sphere and the cylindrical boundary. The
spring constant k determines the softness of the spheres.

This is a generic model offering a qualitative and semi-
quantitative understanding of a variety of physical sys-
tems.

We conduct simulations using a unit cell of length L
(volume V = (D /2)?L), containing N spheres. On both
ends of the unit cell we impose twisted periodic boundary
conditions to represent a periodic columnar structure of
soft spheres. The periodic boundaries are implemented
by placing image spheres above and below the unit cell,
where each sphere of the unit cell is moved in z-direction
by L (and —L) and twisted by an angle « (and —«, re-
spectively) in the xy-plane (for more details see Ref.[19]).

Stable structures are found by minimising the enthalpy
H = E + PV for a system of N soft spheres in the unit
cell, where E = ES 4 EP is the internal energy due to
overlaps as described before (see Ref.[l]) and P is the
pressure. During the minimisation, the free parameters
are the sphere centres {7;}, the twist angle «, and the
length of the unit cell L, while the pressure P is kept
constant. Thus, all simulations are performed at constant
pressure and variable volume.

Two different types of minimisation routine are used
to minimise the enthalpy H({r;},«, L). The stochastic
basin-hopping algorithm [26] performs a general search
for the global minimum and the BFGS method [27] is
used for a conjugate gradient algorithm to search for the
nearest local minimum of enthalpy.

Enthalpy and pressure have to be rescaled accordingly
to obtain non-dimensional quantities. We use the dimen-
sionless enthalpy h = H/(kd?) and dimensionless pres-
sure p = P/(k/d), where k is the spring constant and d
is the sphere diameter.

In the limit p — 0 we make contact with previous
results for densest packings of hard spheres [19].

III. THE PHASE DIAGRAM

All the structures that we found can be classified ei-
ther as being uniform structures (previously called sym-
metric in hard sphere packings), or line-slip structures,
see Fig. 1.

In Fig.2 we have greatly extended the range of the
previously published phase diagram to 1.5 < D/d < 2.7
(Fig.2 of Ref.[1] was only 2.00 < D/d < 2.22). The upper
limit marks the point at which the character of the op-
timal structures changes radically; beyond this point the
structures contain inner spheres which are not in contact
with the cylindrical wall [19].

The pressure range is limited to p < 0.02, beyond
which line-slip structures are absent. At large pressures
the model may be regarded as unrealistic. For a system
of bubbles, which was the initial context for this work,
one encounters the “dry limit”, as p increases. At this
point all liquid in a foam has been removed.

The same procedure as before was used to obtain the
phase diagram: The simulations were run with N =
3,4,5 spheres in the unit cell, and for a given value of
pressure and diameter ratio the structure with the low-
est enthalpy was selected for the phase diagram.

Above the diameter ratio of 2.0, we find 24 distinct
structures. There are 10 uniform packings and the re-
maining 14 structures are their corresponding line slips.
Below D/d = 2.0 we observe the bamboo structure, the
zigzag packing, the (2,1,1) uniform arrangement, and
the twisted zigzag structure [i.e., the (2,1, 1) line slip].

The transitions between different structures can be
classified as follows. In continuous phase transitions
(marked with dashed lines in Fig. 2) a structure trans-
forms smoothly into another by gaining or losing a con-
tact. This can be observed in supplemental video SO
[28], which shows an overview over all structures at a
low pressure, together with the corresponding rolled-out
contact network and the structure’s position in the phase
diagram. Both the enthalpy and its first derivative are
continuous functions of D/d. This type of transition is
found between a uniform structure and a line slip. The
zigzag to (2,1,1) transition is also continuous. Discon-
tinuous transitions (solid lines in Fig. 2) are transitions
where one structure changes abruptly into another, as
can also be seen in video SO [28].

IV. METASTABILITY AND HYSTERESIS

Whereas the computation of a phase diagram entailed
a search for the global minimum, involving an algorithm
that allowed radical changes of structure to be explored,
here we pursue a more limited objective. Given a stable
structure, possibly metastable, how does it change when
the pressure p and diameter ratio D/d are continuously
varied, if it is to remain in the local minimum of en-
thalpy?

We do this by computing trajectories in the (p, D/d)
plane, and recording boundaries where the structure
changes to one of a different character. With a suffi-
cient number of trajectories, a stability diagram is built
up, i.e. a map of the location of structural transitions.

With the procedure that we adopt (the conjugate gra-
dient method), structures of high symmetry, such as the
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FIG. 2: Phase diagram for soft sphere packings in cylinders in the range 1.5 < D/d < 2.7 and dimensionless pressures p < 0.02.
The resolution in the diameter ratio of tube to sphere diameter is AD/d = 0.0025 and in the pressure Ap = 0.0004. Besides
the zigzag, the (2,1,1) uniform structure, and the twisted zigzag, there are 10 uniform (blue shaded) and 14 related line-slip
structures (green and brown). Small regions that contain the (2,1,1) and the (3,2,1) line slips, which were found for hard
spheres, are not visible in this phase diagram due to the finite resolution. Discontinuous transitions are indicated by solid black
lines, while continuous transitions are indicated by black dashed lines. The diamond symbols at p = 0 correspond to the hard
sphere uniform close-packed structures [19]. The range of the previous results published in Ref.[1] is indicated by the orange
arrow above the diagram.

(4,2,2), can get stuck on an saddle point, where the en-
thalpy is not minimal, but its gradient is zero. This can
be avoided by applying a small random perturbation to
the structure, which displaces it from the saddle point,
followed by a local minimisation.

The simulation procedure was carried out for a unit cell
with N = 12 spheres. This choice is commensurable with
structures that contain N = 1,2, 3 or 4 spheres in the unit
cell, and as such includes all of the known structures from
the previously identified hard-sphere packings (see Table
1 in Ref.[19] for structures and the number of spheres in
the unit cell). An exception to this are packings which
contain N = 5 spheres; however in the hard sphere case
these occur only for high values of D/d and as such are
out of the range of the present simulations.

In the following example we consider transitions be-
tween the (3,2,1) and (4,2,2) uniform structures and
the associated (3,2, 1) line slip. We begin by plotting the
changes in enthalpy that occur for a structure when p is
held fixed and D/d is allowed to vary steadily. We show
that at a low pressures it is possible to start with any one
of these structures and continuously transform one struc-
ture into another: that is, a change in D/d can transform
a uniform structure into a line-slip arrangement by the
loss or formation of a contact. This is accompanied by
a smooth variation in the enthalpy, or at most a change
in slope for the derivative of the enthalpy when a new
contact is formed. However, at higher pressures these
transitions are no longer reversible and show evidence
of hysteresis, such discontinuous transformations are ac-



companied by a discontinuity in enthalpy. From such
results we eventually obtain a stability diagram (as de-
scribed below in Sec.IV B) operational for any trajectory
taken in terms of D/d and p.

In order to appreciate the significance of the enthalpy
curves, the reader may wish to refer forward to the rele-
vant stability diagram, Fig.6 as well as the phase diagram
Fig.2 and the Supplemental Material [28].

A. Enthalpy curves

An example of a computed enthalpy curve is shown
in Fig. 3. It shows the change in enthalpy as D/d is
increased and pressure is held constant at p = 0.007.
At such a low pressure a change in D/d allows the
(3,2, 1) uniform structure to transition continuously into
the (3,2,1) line-slip arrangement (by the loss of a con-
tact), and then continuously into the (4,2,2) uniform
structure (by the formation of a new contact), both re-
versibly. The values of D/d where the changes in the
nature of the structure occur are indicated by dashed ver-
tical lines in Fig. 3. The smooth change in the enthalpy
over the course of these transitions demonstrates that the
process is continuous and reversible. The smooth change
in structure, together with its rolled-out contact network
and its position in the stability diagram, Fig 6(b), which
we will explain in more detail in Sec.IVB, can be observed
in video S1 [28].
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FIG. 3: Variation in enthalpy h as a function of D/d for
pressure p = 0.007. The change in D/d allows the packing to
continuously (and reversibly) transform between the (3,2, 1)
uniform structure, the (3,2, 1) line slip and the (4,2,2) uni-
form structure. The values of D/d at which the nature of the
structure changes are indicated by the dashed vertical lines.
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FIG. 4: Variation in enthalpy h as a function of D/d for
pressure p = 0.020. Changing D/d leads to a reversible and
continuous transformation between the (3,2, 1) uniform struc-
ture and the (3,2, 1) line slip for both the forward (increasing
D/d, blue crosses) and reverse (red circles) trajectories, indi-
cated by the vertical dashed line. In contrast, the transition
from the (3,2,1) line-slip structure to (4,2,2) uniform ar-
rangement (thin blue line) is discontinuous and occurs at a
lower value of D/d on the reverse trajectory (thick red line).

At the higher pressure of p = 0.02 the nature of the
transitions between these structures is different, as il-
lustrated in Fig. 4. As before, and shown by the blue
crosses, starting with the (3,2,1) uniform structure, a
steady increase in D/d leads to a smooth change in the
enthalpy leading to the (3, 2, 1) line slip at a value of D/d,
as indicated by the vertical blue dashed line. However
increasing D/d further leads eventually to a discontinu-
ous transition whereby the structure transforms suddenly
into the (4, 2, 2) uniform arrangement, as indicated by the
continuous vertical blue line. At this point in D/d the
enthalpy shows a sudden drop. Video S2 [28] shows the
varying structures along this trajectory and the sudden
transformation into the (4, 2, 2) uniform arrangement.

When the diameter ratio is decreased again (red cir-
cles), the transition from the (4,2,2) uniform structure
to the (3,2,1) line slip is again discontinuous (thick red
vertical line). However, the transition to the (3, 2,1) line-
slip structure occurs at a lower value of D/d on the re-
verse trajectory as compared to the forward trajectory
and thus exemplifies the structural hysteresis present in
these packings above a critical pressure.

At even greater pressures the line-slip structure disap-
pears completely from the reverse trajectory, as shown in
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FIG. 5: Variation in enthalpy h as a function of D/d while
holding pressure at a constant value of p = 0.026. The for-
ward trajectory is as before: an increase in D/d leads to a
discontinuous transformation from the (3,2, 1) uniform struc-
ture to the (3,2, 1) line-slip (thin blue line), a further increase
in D/d results in a discontinuous transition to the (4,2,2)
uniform structure (thin blue line). The reverse trajectory
is remarkable in that the intervening line-slip is eliminated.
Instead the transition from the (4,2, 2) uniform structure to
the (3,2, 1) uniform structure is via a discontinuous transition
(thick red line). The inset shows a zoom on the discontinuous
transitions.

Fig. 5 for p = 0.026. Now, in the forward trajectory a dis-
continuous transition (vertical thin blue line) transforms
the (3,2,1) uniform packing into the (3,2,1) line slip
and then to the (4,2,2) uniform structure by a further
discontinuous transition. On the reverse trajectory the
(4,2,2) uniform structure jumps straight to the (3,2, 1)
uniform structure by a discontinuous transition (vertical
thick red line) - without the presence of the intervening
line slip. Increasing the pressure yet higher (p < 0.028)
eliminates the line slip also on the forward trajectory so
that transformations between the (3,2, 1) uniform struc-
ture and the (4,2, 2) uniform structure are accompanied
only by discontinuous transitions, and the line slips are
completely eliminated. We display again the structures
and rolled-out contact networks along these trajectories
in videos S3 and S4 [28].

B. Stability diagrams

The stability diagram represents the boundaries at
which transitions take place between a particular set of

structures (starting with one of the structures listed in
it). Other metastable structures must exist in the same
region, but are not represented. As mentioned earlier,
the stability diagram is not to be confused with the phase
diagram in Fig 2.

Figure 6(a) is the stability diagram representing transi-
tions between the (3,2, 1) and (4, 2, 2) uniform structures
and the associated line slip (3,2,1). It was obtained from
the calculations of enthalpy curves of the kind described
in Sec.IVB. Figure 6(b) is a schematic guide to the in-
terpretation of this stability diagram, which is correct
in representing the topological features of the stability
diagram but does not preserve the geometrical features.
Here U is to be identified with the (3,2, 1) uniform pack-
ing, Us is to be identified with the (4,2, 2) uniform pack-
ing and LS with the (3,2, 1) line slip.

Continuous transitions (reversible) between structures
are marked by dashed lines while discontinuous transi-
tions (irreversible) are represented by solid lines. Blue ar-
rows indicate the directions for which such boundaries en-
tail a transition. We also mark the nature of the bound-
ary and the structures encountered on either side of the
boundary.

The reversible boundaries are to be identified with
parts of the phase boundaries of the equilibrium phase
diagram, Fig. 2.

As displayed in Fig. 6, there are four qualitatively
different pressure regimes, corresponding to the exam-
ples described above. These are p < ps (see Fig. 3),
p3 < p < pa2 (see Fig. 4), pa < p < p; (see Fig. 5) and
p1 < p. For the last regime, i.e. above p;1, the metastable
phase of the (3,2,1) line slip has completely vanished.
Here the enthalpy curves show discontinuities at the blue
crosses for increasing D/d and at the red crosses for de-
creasing D/d. Videos S1-S4 [28] illustrate the change
in structure for all four different pressure regimes when
varying D/d at constant pressure. At the discontinuous
transitions the corresponding videos reveal the sudden
change in structure.

To illustrate the useful application of the schematic
diagram Fig. 6(b) we describe the case p3 < p < po
in detail by choosing p = 0.020, which corresponds to
the enthalpy curves shown in Fig. 4. The other cases
can be interpreted similarly by comparing Fig.6(a) with
Fig.6(b).

Starting from the (3,2, 1) uniform packing at p = 0.020
increasing D/d leads to a boundary [shown by the blue
crosses in Fig. 6(a)] which marks the continuous transi-
tion to the (3,2, 1) line slip. In Fig. 6(b) this is marked
by the dashed line indicating the continuous transition
U, < LS.

Increasing D/d further a second boundary (blue
crosses) is encountered, making a discontinuous transi-
tion to the (4,2,2) uniform structure. This boundary is
shown in the schematic diagram by the solid line and is
labeled LS — U,. The arrow indicates that this is en-
countered only upon increasing D/d, transforming the
line slip LS into the uniform structure Us by a discon-
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FIG. 6: (a) The stability diagram for transitions between (3,2, 1), (4,2,2) and the associated line slip (3,2,1). The computed
transition points are indicated by blue crosses (increasing D/d) and red circles (decreasing D/d) according to the direction

taken. This is indicated by arrows in the accompanying schematic diagram, (b).

Here the two uniform arrangements are

labeled Uy and U, and the intermediate line-slip arrangement is labeled LS. This diagram represents the topology of (a), but
does not preserve geometrical features. Continuous transitions are marked by dashed lines, and discontinuous transitions are
represented by solid lines.

tinuous transition.

Upon decreasing D/d the (4,2,2) uniform structure
undergoes a discontinuous transition at the boundary
indicated by red dots in Fig 6(a) into the (3,2,1) line
slip. This boundary is marked by the solid line in the
schematic diagram accompanied by the label LS + Us.

A further decrease of D/d results in a continuous tran-
sition into the uniform (3,2,1) structure, at the bound-
ary marked by red dots in Fig 6(a) and dashed line in
Fig 6(b). We have thus returned to the starting point of
this particular excursion through the stability diagram.

V. CONCLUSION

We have not attempted an exhaustive description of
metastability and hysteresis in this system, as this seems
impractical. Simulations in other regions of the phase di-
agram have resulted in further stability diagrams, most
of which are qualitatively similar to Fig. 6, as might be
expected from the repetitive pattern of the phase dia-
gram , Fig. 2. Thus, Fig. 6(b), given the coordinates
of about six points, where the lines meet can serve as a
guide to any such case. A few others are different; all of
these will be published in due course.

It is perhaps surprising that all of the simulations re-
sulted only in the appearance of structures that are to

be found in the equilibrium phase diagram, albeit over
different ranges of p and D/d. This may be rationalised
at or close to the hard sphere limit, but might not have
been anticipated at higher pressures. It would appear
that the procedure adopted here allowed the appearance
of radically new structures, but none were found. More
extended simulations may yet turn up surprises.

It may be interesting to extend this analysis to higher
values of D/d, for which Fu et al. [22] have computed a
list of equilibrium structures that are of a different char-
acter, as we noted at the outset. This is likely to be quite
demanding, and should perhaps be guided by preliminary
experimental investigations of that regime.

The results should provide insight for new experiments
in which it is more convenient to vary p for fixed D/d,
rather than the reverse. For example, ordered columnar
bubble structures are readily formed by simple proce-
dures [1], and there is a natural variation of p within the
column in this experiment, due to gravity. Such a system
may be used to identify structures and transitions be-
tween them, for comparison with what is presented here.
Diagrams such as Fig 6(b) may then serve as a guide to
the practical fabrication of structures of soft spheres in
tubes, for which the equilibrium phase diagram by itself,
may be misleading.
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