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Abstract

The thesis is a collection of various studies which contribute to human-machine

multimodal systems in different ways by measuring cognition. Some of the studies

address basic system capabilities such as the identification of who is talking and

to whom in multiparty and multimodal dialogue systems, while other studies fo-

cus on aspects, which can be relevant in systems for training presentation styles

(attitudes recognition, user engagement etc.). The focus of the thesis is on the use

of technologies (speech analysis, biometry and computer vision) to make machines

able to understand the human social signals and behaviour cues which can help

in automating the process of public speaking training. This thesis presents novel

systems and empirical studies that contribute towards the development of a multi-

modal multi-party spoken dialogue system which can be used for training humans

for public speaking. The thesis is structured in two main parts: The first part of

thesis deals with automatic recognition of speaking abilities in four different kinds

of public speaking situations: students’ presentations, formal talks (TED talks),

informal talks (video blogs) and simulated political debates. The second part of

the thesis tackles some of the challenges encountered when using a multimodal

multi-party dialogue system for training of these different types of public speaking

situations. The first public speaking situation is students’ presentations where the
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proposed novel system can predict the level of ‘self confidence and body language’

of a student during a presentation. The second public speaking situation is formal

talks (TED talks), where the proposed system can predict the level of engagement

of on-line viewers and extract engaging and non-engaging parts of a talk which

can be used either as a feedback to the presenter or as a help in building talk sum-

marization or talk search tools. The third public speaking situation is informal

talks (video blogs), where the proposed system can predict the presenter’s atti-

tude. This can help a user to train his/her attitude for video blogging. The fourth

public speaking situation is simulated debates which were specifically collected.

In these debates, subjects are arguing on a proposed smoking ban. The method

proposed in this thesis can be helpful to train public speaking abilities. However

using automatic methods as a part of a multimodal multiparty dialogue system,

which is designed to train users for public speaking, poses many challenges. That

is why, the second part of thesis focuses on some of those challenges. The first

challenge is about the active speaker detection (who is speaking among a set of

person), so that a multiparty multimodal dialogue system can manage multiple

people. The second challenge is about the cognitive states detection (while in-

teracting with a machine using Automatic Speech Recognition (ASR)) which can

help a machine to switch between different ASR models to improve performance

of ASR and sense the users’ experience. The third challenge is about the detection

of system directed speech which can help a machine in detecting if a user speaks

to machine or not. This thesis summarizes the proposed methods and their evalu-

ation. These methods can help in developing a spoken dialogue system for public

speaking training with some human like characteristics.
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Chapter 1

Introduction

This thesis is a collection of various studies which contribute to human-machine

multimodal systems in different ways. Some of the studies address basic system

capabilities such as the identification of who is talking and to whom in multiparty

and multimodal dialogue systems, while other studies focus on aspects, which can

be relevant in systems for training presentation styles (attitudes recognition, user

engagement etc.) The objective of the research presented in this thesis is to propose

models and methods which could help machines in giving the social intelligence

abilities that can be used in a multimodal multiparty spoken dialogue systems

which are designed for training humans for public speaking. The proposed models

and methods are designed using technologies like speech analysis, computer vision

and biometry.

Previous studies suggest that the use of multimodal information is helpful for

machines to understand the social signals and behaviours of humans (Vinciarelli,

Pantic, & Bourlard, 2009; Pentland, 2007). However, fewer efforts have been

given to the use of multimodal information for proposing models and methods
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that can be helpful for machines in training humans for teaching and instructional

advice. Applications of teaching and instructional advice systems are training stu-

dents/users to deliver oral presentations and training call centre agents to talk

according to their audience (teachers, ‘on-line viewers’ and customers). The so-

cial skills of a presenter/instructor have some special characteristics, such as good

body language (standing straight, gestures etc) and voice tone that can result in

a positive feedback from the audience (Lucas, 2008). To predict the audience’s re-

action to the presentations using machines, it is required to model the information

(e.g. social signals and behaviour cues) that lead to a positive/negative judgement

by an audience. However, providing instructional advice using a machine (mul-

timodal spoken dialogue system) with verbal and non-verbal interactive elements

presents many challenges. One such challenge is system component failure (e.g.

Automatic Speech Recognition (ASR)), which may result in a kind of behaviour

that is not as common as in human-human interaction (e.g. self-speaking and

frustration). Here the social signals and behaviours cues of human can also help in

identifying situations that require certain strategies to be deployed (e.g. switching

between different ASR models that are designed for behaviour cues, and handling

the self-speaking talks). Compared to human-human interaction, less research has

been conducted in analysing and modelling the human social signals and behaviour

cues in a human-machine interaction that can give the machines an ability or in-

telligence to take possible actions for improving the spoken interaction. The task

(public speaking skills training through machines) stated above requires some form

of intelligence for machines and to highlight that some literature is consulted, and

it is found that the definitions of intelligence are diverse and some of them are as

follows:
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1. According to Oxford dictionary, intelligence is “the ability to acquire and

apply knowledge and skills” 1.

2. “ the aggregate or global capacity of the individual to act purposefully, to think

rationally, and to deal effectively with his environment” (Wechsler, 1958, p.7)

In the literature, it is also argued that there are different measures and forms

of intelligence . Some of them are as follow:

1. Intelligent Quotient (IQ): it is the ratio between mental age and chronological

age multiplied by 100. The ratio (mental age/ chronological age) is suggested

by William Stern (Stern, 1921) and Later Lewis Terman multiplied it by 100

to introduce the IQ. Later David Wechsler introduces Deviation Intelligent

Quotient (IQ) which is the deviation of IQ from one’s age peers.

2. Experiential intelligence is the ability of someone to use past experience in

solving a novel problem (Sternberg, 1990).

3. “Emotional Intelligence is the ability to identify and manage your own emo-

tions and the emotions of others. It is generally said to include three skills:

emotional awareness; the ability to harness emotions and apply them to tasks

like thinking and problem solving; and the ability to manage emotions, which

includes regulating your own emotions and cheering up or calming down other

people.” 2

4. “Social Intelligence encompasses our abilities to interpret others’ behaviour

in terms of mental states (thoughts, intentions, desires and beliefs), to in-

teract both in complex social groups and in close relationships, to empathize

1https://en.oxforddictionaries.com/definition/intelligence – last verified July 2017
2https://www.psychologytoday.com/basics/emotional-intelligence – last verified July 2017
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with others’ state of mind, and to predict how other feel, think and behave”

(Baron-Cohen et al., 1999, p.1).

According to these distinctions social intelligence has its own definition and

measures that are different from the other measures of intelligence. To highlight

the measure and importance of social intelligence, some literature is explored as

described below.

1.1 Social Intelligence

Social signal can be used to express, interpret and recognise the human’s intentions.

Vinciarelli et al. state that someone’s ability to recognise, express and manage

social signals and behaviour cues in a communication (dialogue, conversation or

presentation, etc.) is core of the Social Intelligence (SI) (Vinciarelli et al., 2009).

Social signals and behaviours are also manifested in the non-verbal behaviour cues

(e.g. body posture, gestures, facial expressions and prosody). SI is independent

of general intelligence and has a vital importance for a person to communicate

effectively in his daily life (Vinciarelli et al., 2009). Vinciarelli et al. highlighted two

main component of SI, one is behaviour/social cue (physical appearance, gesture

and posture, face and eye behaviour, vocal behaviour, Space and Environment)

and the other is social behaviour/signal (emotions, personality, status, dominance,

rapport etc). However, a social signal/behaviour may produced using the multiple

behaviour cues (Vinciarelli et al., 2009).
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1.1.1 Why Do Humans Need Social Intelligence?

Humans need Social Intelligence (SI) to effectively deal with each other. SI is

required in many job positions, like leaders, teachers, instructor, crisis managers,

call centre agents etc.

Goleman and Boyatzis highlighted the importance of social intelligence and

define seven metrics to measure the SI of managers and leaders that are:

1. Empathy

2. Attunement

3. Organizational Awareness

4. Influence

5. Developing others

6. Inspiration

7. Teamwork (Goleman & Boyatzis, 2008).

However, the metrics of social intelligence depend on the situations. For ex-

ample in public speaking situation, a presenters will be evaluated on a subset of

the metrics for managers and leaders. It is due to the reason that a manager or

leader should be a good public speaker but not all public speakers are managers or

leaders. For example, teachers may evaluate a student’s public speaking abilities

based on a metrics defined in Section 2.1.1 and 3.2.1.
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1.1.2 Why Do Machines Need Social Intelligence?

For the past few decades, researchers in the field of signal processing and artificial

intelligence have been investigating how to build machines with social intelligence.

These researchers are trying to achieve this objective by understanding social as-

pects of human-human interactions in multiple settings so that they can use these

interactions as a model for human-machine interaction (Hjalmarsson, 2010; Ed-

lund, Gustafson, Heldner, & Hjalmarsson, 2008). Currently, many machines are

using human-human interaction as a model to make human-machine interaction

more natural to some extent (Al Moubayed, Beskow, Skantze, & Granström, 2012).

However, it is not yet possible to build a machine that can understand and interact

with humans as other humans do. Many dialogue systems can help users in filling

out a form (book tickets, buy goods, etc.), but these systems do not require social

intelligence in the context of public speaking (e.g. recognising self-confidence using

prosody and gestures) to function. Moreover, instruction based spoken dialogue

systems can function without the ability of understanding human social cues and

behaviour, particularly non-verbal aspects of social cues and behaviours (gestures,

voice quality, facial expressions, etc.), where they are just following the verbal

instructions given by a user such as booking a ticket (Zue et al., 1994). However

an instruction based dialogue system can also get benefit from non-verbal cues

like gestures. Where the gestures (e.g. yes or no head gestures ) can improve

the interaction with an instruction based spoken dialogue system for users. The

inference drawn by instruction based spoken dialogue system and dialogue system

for public speaking training can be different. In summary, the SI is present in

both systems but a public speaking training system should have an ability to draw
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more complex inference (e.g. self-confidence of a presenter through gestures) than

an instructional spoken dialogue system (e.g. simple yes or no head gestures).

Recently, efforts have been given to training machines for complex tasks like

acting as an instructor (Hashimoto, Kato, & Kobayashi, 2011) or receptionist

(Hashimoto, Hiramatsu, Tsuji, & Kobayashi, 2007). For these kinds of tasks,

machines need more social intelligence than instruction based spoken dialogue

systems, as they, need to teach the humans using multimodal cues (eye gaze, ges-

tures, human-like face and body, etc.) and to evaluate the social behaviour and

signals of users in the context of public speaking. For example, a machine which

is designed to train students for delivering presentations is not able to provide

feedback to the users about their appropriate use of ‘body gestures and posture’,

and ‘speech and facial expressions’ without some form of social intelligence ability

(Helvert, Rosmalen, Börner, Petukhova, & Alexandersson, 2015). However, using

machines for instructional advice and training purposes is still an area under re-

search, and there is no general agreement as to how systems can use the users and

instructor social behaviour as a model. For this purpose, the system should be

able to understand a user’s behaviour in the context of the instructional advice

(goals and objectives).

1.1.3 Research Issues

To be able to study the use of multimodal information for social intelligence in

the context of public speaking, a wide range of scenarios of interactions (detailed

and motivated in Section 1.1.4) are considered. The social cues and technologies

associated with each research issue are depicted in Table 1.1. The specific research
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Table 1.1: Social cues and technologies associated with each research issue.

Research Issue Technology Social Cue Type

Active Speaker Detection Computer Vision Face Gestures
On-Talk Detection Biometry, Speech Analysis Prosody

Attitude Recognition Computer Vision, speech Analysis Prosody, Body Gestures
User Engagement Detection Speech Analysis, Computer Vision Prosody, Body Gestures
Cognitive State Detection Biometry, Speech Analysis Prosody

Presentation Quality Speech Analysis, Computer Vision Prosody, Hand Gestures

issues are as follows:

1. Presentation Quality Detection: What are the low and high-level multimodal

features that contribute towards the successful delivery of a student’s presen-

tation, and how can machines automatically detect the level of a student’s

presentation skills (e.g. use of adequate voice level, body gestures and self-

confidence) using multimodal information? Success in this research improves

the social intelligence of machines by processing prosody and gestural infor-

mation of humans and making explicit parameters that may be incorporated

into algorithmic models.

2. User Engagement Detection: Which low and high-level multimodal features

contribute to engagement of on-line users for formal talks (TED talks). How

can machines automatically detect whether a public talk is engaging or not

for on-line audience using multimodal information? Success in this research

improves the social intelligence of machines by processing prosody and face

information of humans and enhancing computational models accordingly. It

can also provide a feedback to users by detecting which parts of the talk are

engaging and which are not. It can also help building a recommender, talk

search and talk summarization tool for potential viewers.
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3. Attitude Recognition: How can machines automatically detect attitudes

(states that may permeate strong emotions (Zanna & Rempel, 1988)) of

video bloggers (informal talks) using audio-visual information? Success in

this research can improve the social intelligence of machines by processing

prosody and gestural information of humans. It could help someone to train

his/her attitudes for video blogging.

4. System Directed Speech Detection: How can machines automatically detect

the system directed speech (On-Talk: user is speaking to the machine) using

acoustic and physiological signals? Success in this research can improve the

social intelligence of machine by processing prosody information of humans

and presumably enabling the machine to identify the addressee of the speech

as being itself or not.

5. Cognitive State Detection: How can machines automatically detect the cog-

nitive states using acoustic and physiological signals? Success in this research

can improve the social intelligence of machine by processing prosody infor-

mation of humans for identifying situations that require certain interaction

strategies to be deployed (e.g. switching between different automatic speech

recognition models which are designed for different cognitive states) and

sensing of users’ experience.

6. Active Speaker Detection for Attunement: How can the visual prosody (head

and lip movements) help a machine to detect an active speaker (who is

speaking to machine out of a set of persons) in a human-machine multiparty

dialogue? This research issue improves the social intelligence of machine by

processing face (lip and head movements) information of humans.
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The above stated research issues help in developing a multimodal multiparty

spoken dialogue system for public speaking training which can evaluate one’s pre-

sentation from different perspective (teachers, on-line viewers etc.), helps users in

training their non-verbal behaviours (attitudes, spoken expressions, etc.), able to

manage multiple users at a time and improve the spoken interaction.

1.1.4 Scenarios

Developing a multimodal spoken dialogue system for public speaking training re-

quires many components like automatic speech recognition, speech synthesis, dia-

logue manager, a human like body or avatar, prosodic analysis, face detection,

voice activity detection, speaker recognition, recognising someone presentation

skills etc. However research issues of the thesis focus on two main parts, first

one is recognising someone’s public speaking abilities using social signals, and the

second part focuses on proposing methods and computational models of cognitive

processing components (e.g. active speaker detection) which could help a public

speaking training system (multimodal spoken dialogue system) to interact with

humans. The data used to investigate these research issues comes from experi-

ments conducted on both human-human and human-machine communication as

described below.

Public Speaking

There are different scenarios of human-human communication including a casual

talk with a friend or stranger, getting information from a receptionist, speaking on

the phone with a customer care representative and public speaking (presentations,
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talks, debates). However, this study mainly focuses on the three different kinds of

public speaking situations where there is no live verbal interactive element, but in

two situations a live non-verbal interactive element of an audience is present. It

helps in training machines to recognise public speaking abilities in three different

kinds of public speaking situations as described below.

1. Students presentations (Classroom settings): In this scenario, a student is

presenting in front of an audience, and at the end of the presentation each

student is graded by a tutor. This scenario is related to the research issue of

“Presentation Quality Detection”.

2. TED Talks: These talks are more professional than students’ presentations.

The subjects prepare and practise before presenting in front of an audience.

Later, the talks are edited and made available for the on-line community

for feedback. This scenario is related to the research issue of “Engagement

Detection”.

3. Informal talks (Video Blogs): These kinds of talks are informal and delivered

in front of a camera/computer without having a live audience feedback. The

subjects can have a possibility to improve and gauge their presentations

before making them available to the on-line community for feedback. This

scenario is related to the research issue of “Attitude Detection”.

The motivation (detailed in chapter 3) behind using these scenarios is to pro-

pose models and methods which can help machines in evaluating public speaking

abilities of humans in class room, formal and informal settings.
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Cognitive Processing Components

This study focuses on two human-machine scenarios that have a live interactive el-

ement (both verbal and non-verbal) between the participants of interaction. These

scenarios help in proposing models and methods which can be used as cognitive

processing components in public speaking training systems for improving machine

interaction abilities. The scenarios are as follows:

1. Human-machine multi-party dialogue, where subjects are conversing with a

machine (simulated using video conference software). This scenario is related

to the research issue of “active speaker detection”. It could help a public

speaking training system to manage multiple users at a time.

2. Interlingual map-task mediated by an automatic speech-to-speech transla-

tion system, where participants are solving an interlingual map task using

speech-to-speech machine translation system. It is a simulation of call centre

settings (a public speaking situation) where the call centre agent (informa-

tion giver in map task who has the complete map) has the full information

and the customer has incomplete information (information receiver in map

task who has the incomplete map). This scenario is related to the research

issue of “Cognitive State and System Directed Speech Detection”. Cogni-

tive states detection could help a public speaking training training system to

switch between different ASR models which are trained for different cognitive

states to improve the performance of ASR and to sense the user experience.

System directed speech detection could help a public public speaking training

system, whether the user is speaking to the system or not.
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The motivation (detailed in chapter 4) behind using these scenarios is to pro-

pose models and methods which can improve machines interaction abilities.

1.2 Contribution of The Thesis

The work conducted in answering the above-mentioned research questions has

resulted in many novel methods and findings. A brief description of author’s

contribution is described below.

1. Presentation Quality Assessment: This study validated hypotheses that

relate self-confidence and use of body language during presentation to prosodic

and gestural features, and propose a novel system for automatic inference of

presentation quality using audio and video descriptors. The proposed sys-

tem is able to predict the students’ self confidence and use of body language

during a presentation. The system and evaluation results are described in

Section 3.2. The data collection and annotation is not the author’s contri-

bution but the proposed methods and their evaluation as follow:

(a) Validation of multiple hypothesis detailed in Section 3.2.2.

(b) Automatic presentation quality detection system using audio and visual

information detailed in Section 3.2.3.

2. User Engagement Detection within TED Talks: This study explores

how multimodal characteristics of a video, such as prosodic, visual and par-

alinguistic features, can help create novel models for user engagement detec-

tion of TED talks. It proposes novel models to predict the user’s (on-line

viewers) engagement using high-level visual features (camera angles), the
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audiences laughter and applause, and the presenter’s speech expressions fea-

tures which are extracted directly from video recordings, demonstrating the

potential of this method in identifying engaging TED talks and automatic

identification of engaging video segments within TED talks. The system

and evaluation results are described in Section 3.3. The author contribution

here is system designing for user engagement detection, experimentation and

evaluation. The collection of dataset and extraction of high level features is

not the author’s contribution but the proposed methods and their evaluation

as follow:

(a) Validation of multiple hypothesis detailed in Section 3.3.

(b) Automatic user engagement detection system using audio and visual

information detailed in Section 3.3.

3. Attitude Recognition of Video Bloggers: In the scope of this study the

attitude represents affects. This study uses the acoustic and visual features

(body movements that are captured by low-level visual descriptors) to pro-

pose novel models which can predict the six different attitudes (amusement,

enthusiasm, friendliness, frustration, impatience and neutral) annotated in

the speech of 10 video bloggers. The automatic detection of attitude can be

helpful in a scenario where a machine has to automatically provide feedback

to bloggers about their performance in terms of the extent to which they

manage to engage the audience by displaying certain attitudes. The system

and evaluation results are described in Section 3.4. The data collection and

annotation is not the author’s contribution but the proposed methods and

their evaluation as follow:
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(a) Validation of multiple hypothesis detailed in Section 3.4.

(b) Automatic attitude detection system using audio and visual information

detailed in Section 3.4.

4. Political Debates: Data Collection and Synchronisation This study

describes the data collection system and methods. The data collection sce-

nario consists of debates where two students are exchanging views and argu-

ments on a social issue, such as a proposed ban on smoking in public areas,

and delivering their presentations in front of an audience. Approximately 3

hours of data have been recorded to date, and all recorded streams have been

precisely synchronised and pre-processed for statistical learning. The data

consists of audio, video and 3-dimensional skeletal movement information of

the participants. The data collection system and methods are described in

Section 3.5 The data collection is the author contribution.

5. System Directed Speech Detection: This study proposes novel mod-

els to automatically detect On-Talk (system directed speech) and Off-Talk

(speaking to oneself and speaking to another person) using acoustic and phys-

iological signals. This study also focuses on proposing novel models which

have a low response time for detection using Electroencephalography (EEG).

The EEG based models can help in a system as there are many less intrusive

wireless EEG headsets available in the market e.g. EPOC3 . The system and

evaluation results are described in Section 4.2. The data collection methods

and system are not the author contribution but the proposed methods and

their evaluation as follow.

3https://www.emotiv.com/epoc/ – Last verified July 2018
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(a) Validation of multiple hypothesis detailed in Section 4.2.

(b) Automatic attitude detection system using audio and physiological in-

formation detailed in Section 4.2.

6. Cognitive States Detection: This study proposes novel models for auto-

matic detection of cognitive states (i.e. temporary psychological states which

are annotated using facial expressions) by using features of the two physio-

logical signals, features of the speech signal, and combinations of speech and

physiological features (heart rate and skin conductance). In the scope of this

study, the cognitive states represents affects. The system and evaluation re-

sults are described in Section 4.3. The data collection methods, system and

annotation are not the author contribution but the proposed methods and

their evaluation as follow.

(a) Automatic cognitive state detection system using audio and physiolog-

ical information detailed in Section 4.3.

7. Active Speaker Detection: This study proposes a novel active speaker

detection system using visual prosody information (i.e. head and lip move-

ments) for human-machine multiparty dialogue that could help a robot in

generating multimodal output (e.g. moving his head or gaze) towards the

speaker. This study also focuses on proposing novel models which have a

low response time for detection. The system and evaluation results are de-

scribed in section 4.4. The data collection and its annotation is not the thesis

contribution but the proposed methods and their evaluation.

(a) Validation of multiple hypothesis detailed in Section 4.4.
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(b) Automatic active speaker detection system using audio and visual in-

formation detailed in Section 4.4.

The contribution of the thesis is towards developing multimodal multiparty spo-

ken dialogue systems for public speaking training. The presentation quality, user

engagement and attitude detection systems help a machine (multimodal multi-

party spoken dialogue system for public speaking training) in detecting humans

non-verbal presentation skills like (attitude, self-confidence, body language and

engagement). Without them it is not possible for machines to recognise someone’s

presentation skills which are manifested in the social cues (e.g. prosody). The

system directed speech detection system helps a machine in improving the spoken

interaction with humans. Without the system directed speech detection, a machine

is not able to detect either the user is speaking to machine or not which may results

in processing of spoken utterances that are not directed towards the machine. The

cognitive state detection system helps a machine in improving automatic speaker

recognition performance. Without the cognitive state detection system, a machine

(multimodal multiparty spoken dialogue system for public speaking training) is

not able to switch between different ASR models, which are designed for different

cognitive states which may results in poor performance of ASR as cognitive states

effects the ASR performance, and not able to sense the user experience. The ac-

tive speaker detection system helps a machine in detecting who is speaking to the

machine. Without the active speaker detection system, a machine (multimodal

multiparty spoken dialogue system for public speaking training) can not manage

multiple users.
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1.3 Organization of The Thesis

Chapter 1 provides an overall introduction, thesis focus, research aim, research

issues and contribution of the thesis.

Chapter 2 focuses on the theoretical background and literature review of re-

search issue described in Chapter 1.

Chapter 3 describes the systems which are able to recognise someone’s presen-

tation skills. This chapter focuses on recognising students’ ‘self-confidence and

body language’ during a presentation, on-line viewer engagement detection within

TED talks and recognising attitudes of video bloggers. The dataset used and col-

lected is also the part of this chapter and it also describes the empirical studies,

the evaluation of proposed systems and conclusion along with signal processing

and machine learning methods.

Chapter 4 describes the systems which could help a machine (multimodal multi-

party spoken dialogue system) designed for public speaking training. This chapter

focuses on active speaker detection, system directed speech detection and cognitive

states detection. The description of datasets used are also the part of this chapter

and it also describes the empirical studies, the evaluation of propose systems and

conclusion along with signal processing and machine learning methods.

Chapter 5 describes the conclusion and future work of the thesis.
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1.4 Conclusion

This chapter describes the different measures of intelligence particularly social

intelligence. It also describes the research issues, scenarios, contribution and or-

ganisation of thesis. The thesis mainly focuses on two parts. The first one is to

automatically recognise public speaking abilities in different situations and second

part deals with the challenges which a multimodal multiparty spoken dialogue sys-

tem may face for training someone for public speaking. The political debates data

collection and synchronisation is the contribution of the thesis. The rest of the

datasets are not the contribution of the thesis but the proposed models and meth-

ods. The most of the machine learning models are evaluated using the F-Score

(harmonic mean) of each class or the A-weighted F-Score (average harmonic mean

of all classes) and the rest of the machine learning models are evaluated using the

accuracy. In the scope of this thesis, the attitude and cognitive states represents

affects.
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Chapter 2

Theoretical Background and

Literature Review

This chapter covers theoretical background and literature of research issues of the

thesis. It is divided into two main sections for clarity of presentation. Section

2.1 focuses on automatic recognition of public speaking abilities and provides a

review of literature on public speaking abilities, methods used for automatically

predicting the oral presentations skills and attitudes. Section 2.2 focuses on the

some of the challenges which a multimodal multiparty spoken dialogue system

encounters while interacting with users during a public speaking training session.

It also provides a literature review on On-Talk & Off-Talk, active speaker and

cognitive states detection.
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2.1 Public Speaking Metrics and Systems

This section describes the different pubic speaking situations and the metrics that

contribute towards the successful delivery of public speeches. This section also

provides a background and literature review on three different public speaking

situations as follow:

1. Student presentations which are graded by teachers.

2. TED Talks (formal talks) which are viewed by on-line viewers.

3. Video Blogs (informal talks) which are viewed by on-line viewers.

2.1.1 Student Presentations

Prosody is believed to be of fundamental importance in contributing to the suc-

cess of a public speech. Several manuals on public speaking advise the presenter

to speak with a lively voice, where by lively voice is meant a voice that varies

in intonation, rhythm and loudness (Lamerton, 2001; Grandstaff, 2004). Liveli-

ness has also been associated with enthusiasm (Sinclair, 1995). Previous studies

have formulated and tested the hypothesis that the higher the variability (or stan-

dard deviation) of fundamental frequency (F0), the more a spoken utterance is

perceived as lively (Traunmüller & Eriksson, 1995; Hincks, 2005). However F0 de-

viation alone might not always be an optimal feature discriminating lively speech

from monotonic speech (typical of depressive states) (Stassen et al., 1993). An-

other aspect that seems to contribute to the success of public speech is speaking

rate. This has shown to be more strongly correlated than pitch variation with

perceptions of liveliness (Traunmüller & Eriksson, 1995) and has been considered,
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together with voice level and intensity, as an indicator of self confidence. Fast rate

of speech, lower voice level and high speech intensity are listed among the char-

acteristics of self confident voices in several studies (Grandstaff, 2004; Lamerton,

2001). Other characteristics believed to contribute to the success of a presenta-

tion include the speaker’s ability to establish contact with their listeners (e.g. eye

contact) and be aware of their body language. Specific postures that supposedly

denote self confidence, such as standing straight with feet aligned under the shoul-

ders, are recommended by public speaking guides. Other postures that denote the

lack of self confidence, such as fidgeting, crossing the legs, gesturing widely with-

out purpose are considered inappropriate (DeCoske & White, 2010). Automatic

detection of someone’s presentation abilities is a challenging task. Few studies

have been conducted in this field. In one study on automatic detection of self

confidence (Krajewski, Batliner, & Kessel, 2010), the authors compared multiple

classifiers using a set of prosodic and spectral features, on a very limited dataset

consisting of fourteen females speakers giving regular lectures ranked by 5 experts

judging self confidence. The classifiers are able to detect two classes (low self con-

fidence and high self confidence) with a maximum accuracy of 87.7% and 75.2%

for speaker-dependent and speaker-independent settings respectively. There are

other studies conducted on the MLA dataset (Ochoa, Worsley, Chiluiza, & Luz,

2014a).

Luzardo et al. (Luzardo, Guamán, Chiluiza, Castells, & Ochoa, 2014) employ

features extracted from presentation slides to predict overall presentation qual-

ity (2-class problem), obtaining up to 65% accuracy. When audio features are

used, pitch and filled-pause related features improve accuracy to 69%. Chen et

al. (L. Chen, Leong, Feng, & Lee, 2014) propose a different approach, performing
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a clustering of presentation ratings to derive two principal components (roughly

corresponding to delivery skills and slide quality) which they use as the target

functions of a regression task. Finally, Echeverria et al. (Echeverŕıa, Avendaño,

Chiluiza, Vásquez, & Ochoa, 2014) employed machine learning models to classify

presentations according to performance (good vs. poor), achieving accuracy scores

of 68% and 63%.

2.1.2 TED Talks

There is an enormous amount of audio-visual content (videos) also available on-line

in the form of talks and presentations. The prospective users of the content face

difficulties in finding the right content for them. Take YouTube as an example:

over a billion hours of video content are watched daily1. Because of the amount

of video content available, it is becoming increasingly difficult for users to find

desired content. A recent study reports that an average American would spend

more than a year over a lifetime looking for something to watch on TV2. One

criterion for filtering content is how engaging a video is. Hence, a model to detect

user perceptions of engaging verses non-engaging talks would be beneficial for any

number of applications, including video recommendation and video searching.

The set of videos available to viewers is very diverse, and each kind of video

engages users differently or to put it differently, users watch different types of videos

for various reasons, i.e. engagement with content is context dependent (Attfield,

Piwowarski, & Kazai, 2011). This section focuses on one video genre which is

1https://www.engadget.com/2017/02/27/youtube-one-billion-hours-watched-daily/ – – last
verified: March 2017

2http://gizmodo.com/is-it-a-bad-thing-that-we-spend-1-3-years-of-our-lives-1788632578 – –
last verified: May 2017
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video presentations such as TED talks. To distinguish between engaging versus

non-engaging TED talks, it is necessary to define the meaning of user engagement

within the context of TED talks and how to quantify it. In the literature, the

quality of user (human) experience with a system is called user engagement (Albers

& Mazur, 2014; O’Brien & Toms, 2008) and a six-factor based matrix is proposed

by OBrien et al. (O’Brien & Toms, 2013) for user engagement. In terms of video

content, researchers have described user engagement with video content in a variety

of ways, e.g. duration for which a user watches a video (Dobrian et al., 2013;

Guo, Kim, & Rubin, 2014) and subjective evaluation of user engagement through

questionnaires (Benini, Migliorati, & Leonardi, 2010; Haesen et al., 2011). It can

be seen that there is not much agreement in measuring engagement due to its

highly context dependent nature. For this study, an elaborate feedback system

(described in detail in Section 3.3.1) is used to define the engagement.

Wernicke conducted statistical analysis on TED talks and proposed a metric

for creating an optimal TED talk based on user ratings (TED, 2010). A major

difference between his study and the current work is that the TED user ratings

on which the former study is based were considerably simpler i.e. viewers could

simply ‘like’ or ‘dislike’ a particular TED talk. Recommender system development

for viewers based on their viewing/listening preferences and commenting patterns

has attracted considerable interest. For example, Tan, Bu, Qin, Chen, and Cai

use heterogeneous data from different sources to create a recommender system

based on user video preferences (Tan et al., 2014). Brezeale and Cook use movie

subtitles and low-level visual descriptors to cluster the data (videos), and then

use Hidden Markov Model (HMM) to learn the sequence of clusters to predict

the users’ preferences (Brezeale & Cook, 2009). Anwar, Salama, and Abdelhalim
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proposed to file videos into different categories using the caption text and visual

features (Anwar et al., 2013).

A significant amount of research is currently being conducted within the field

of video summarization based on user engagement. In video summarization, im-

portance is mostly attributed to visual features (Benini et al., 2010; F. Chen, De

Vleeschouwer, & Cavallaro, 2014). However, multimodal features are also receiving

considerable attention due to the added value they bring in terms of identifying

engaging chunks. An example of comprehensive multimodal feature extraction is

the work of Evangelopoulos et al. who take advantage of all three visual, audio

and linguistic modalities to create video summaries (Evangelopoulos et al., 2013).

Other interesting examples of multimodal feature extraction are work of Dong and

Li (Dong & Li, 2008) and Haesen et al. (Haesen et al., 2011). Extracting all these

multimodal features and indexing them would make videos more searchable and

would also help correlate videos with user feedback , and thereby user engagement.

In terms of assessing the quality of a presentation, there have been many studies

which focus on the analysis of speech utterances and body gestures (Haider, Cer-

rato, Campbell, & Luz, 2016; Curtis, Jones, & Campbell, 2016). The Multimodal

Learning Analytics (MLA) dataset contains student presentations graded by teach-

ers in terms of body language, self-confidence, loudness level, eye contact and slides

content (Ochoa, Worsley, Chiluiza, & Luz, 2014b). While presentation rating in

the educational context is a well-researched area, the factors affecting presentation

ratings by ordinary viewers and listener have hardly been investigated.
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2.1.3 Video Blogs

A vlog is a form of unidirectional communication where the vlogger (video blog-

ger) does not receive feedback from the viewers in real time, but the viewer can

provide their feedback later in the form of textual comments. Vloggers can also

improve their presentation quality and message before uploading it for the audi-

ence. In previous studies conducted on video blogs, it was found that the non-

verbal behaviour influences the level of attention gained by a video (Biel, Aran, &

Gatica-Perez, 2011). So, an automatic detection of non-verbal behaviour for video

bloggers could be useful for video bloggers in gauging their behaviour by pro-

viding them with feedback. Usually, the non-verbal behaviour is modelled using

the prosody and visual features in terms of facial movements. However, gestures

are also a form of non-verbal behaviour, in particular, hand gestures (McNeill,

2008) which correlate with the semantic concept and rhythm of speech (McNeill,

1992). In the field of affective computing, different methodologies are proposed

to detect the affective and emotional states in different contexts ranging from

human-human to human-machine communication (Liu et al., 2014; Akira, Haider,

Cerrato, Campbell, & Luz, 2015; Vogel & Mamani Sanchez, 2012). This study

investigates attitude detection in video blogs (vlogs).

The analysis of vlogs has not been explored extensively in the literature. In

one study, the facial expression, acoustic and the multimodal information is used

to predict the personality traits in vlog using regression analysis (Biel, Teijeiro-

Mosquera, & Gatica-Perez, 2012). In another study, a perceptual and acoustic

analysis is performed for 12 different attitudes expressed by Portuguese speakers.

The results show that the audio-visual information provides a better perception of
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attitude than any of the single modality (De Moraes, Rilliard, de Oliveira Mota,

& Shochi, 2010). An analysis of speaking time, pitch energy, voice rate, speech

turn along with head motions, looking time and proximity to camera (Biel &

Gatica-Perez, 2011) in terms of Pearson’s correlation (between non-verbal cues

and the median number of log views) shows that the audio-visual cues are signifi-

cantly correlated with the median number of log views. In another study, Allwood

and Henrichsen propose an automatic attitude detection system for multimodal

dialogue using acoustic features (Allwood & Henrichsen, 2013).

In a study conducted on a subset of the data used in this thesis, the N. A. Mad-

zlan, Huang, and Campbell (N. A. Madzlan et al., 2015) analysed the acoustic and

high-level visual features to train a classifier to detect the attitude automatically.

The authors propose a three-class problem grouping the attitudes in the following

three classes: positive, negative and neutral attitudes. They defined friendliness

attitude as neutral. ‘Amusement and Enthusiasm’ as positive attitudes, and ‘Frus-

tration and Impatience’ as negative attitudes. The results show that the acoustic

features (63.63%) provide better results than the visual features (50.6%), but the

authors do not perform the fusion of features (N. A. Madzlan et al., 2015). In one

study, N. A. Madzlan, Han, Bonin, and Campbell analyse the prosodic features of

vlogger and found that the prosodic features (pitch, voice quality and intensity)

are correlated with a vlogger attitude (N. Madzlan, Han, Bonin, & Campbell,

2014). The vloggers’ audio-visual features are analysed for the attitude recogni-

tion (N. A. Madzlan et al., 2014). There is no study conducted on the multimodal

(audio-visual) attitude recognition system proposed for vloggers.
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2.2 Cognitive Processing Components for Inter-

active systems

The social cues (prosody, head and lip movements ) can be used for the purpose

of improving machine interaction ability with humans. Social cues can also be

used to detect the emotions, engagement and improve the understanding of verbal

aspect of communication. This section focuses on three kind of improvements as

follow:

1. Detection of active speaker in a human-machine multiparty dialogue. This

ability can help a machines in managing a dialogue with multiple humans.

2. On-Talk & Off-Talk Detection: Either a subject speaking to a system or not.

This ability allows a machine to not process the speech utterance which are

not directed to the machine, hence allowing the machine to keep silent if the

speech utterance is not directed to it.

3. Detection of cognitive states in a human-machine interaction. This ability

can help a machine to switch between different machine learning models of

ASR which are trained for different cognitive states, and can also help a

machine in sensing user experience with the system.

2.2.1 Active Speaker Detection

Dialogue has two main components, one is verbal, and other is non-verbal. In

order for a machine to be able to manage these two components when engaged

in a dialogue with several humans it needs to be able to detect which speaker
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holds the floor. If the machine is to be seen as a believable participant in the

communication, it should seem to turn its visual attention towards the current

active speaker, and achieve realistic production and attunement to gaze, lip and

head movements.

An active speaker detection system can be used in a robot to aid the generation

of the multimodal output (moving its head or gaze towards the speaker) partic-

ularly in situated interactions (Han, Gilmartin, & Campbell, 2013; Christian &

Avery, 1998; Breazeal, 2003; Cech et al., 2013; Sansen et al., 2016). In Human-

Human interaction, it is observed that the listener turns their gaze towards the

speakers around 30–80% of the time (Kendon, 1967). From the social robotics per-

spective, it is useful to detect the active speaker as soon as possible to enable the

robot to gaze/head towards the speaker to show that it is attending to the speaker.

In particular, it is useful if one may anticipate who the next active speaker will

be, in order to speed this process.

Multiple studies explore the use of visual information and its fusion with acous-

tic information to increase the performance of voice/speaker detection. Takeuchi,

Hashiba, Tamura, and Hayamizu extract the low-level visual descriptors (optical

flow vectors) from the mouth region for speech activity detection (Takeuchi et al.,

2009). Viola, Jones, and Snow use the appearance and motion cues of humans

(Viola et al., 2005) for speaker detection, with a dataset collected in a distributed

meeting setting using smart rooms (Zhang et al., 2008). Some studies use the

audio and visual features to detect the speaker in videos and human-machine in-

teraction (Chakravarty, Mirzaei, Tuytelaars, et al., 2015; Pavlović, Garg, Rehg, &

Huang, 2000; Cutler & Davis, 2000; Cech et al., 2013).

The facial dynamics of a person can be used to detect the voice, and can also
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be helpful in predicting an active speaker from a set of subjects facing a robot.

In previous studies, lip movements are considered an important signal which can

increase the speech intelligibility (Sumby & Pollack, 1954; McGurk & MacDonald,

1976; Bernstein, Tucker, & Demorest, 2000). While head movements have been less

explored in this kind of task, perception studies have found that head movements

are correlated with prosody and improve the speech intelligibility (Munhall, Jones,

Callan, Kuratate, & Vatikiotis-Bateson, 2004), as well as reveal prosodic structure

(Graf, Cosatto, Strom, & Huang, 2002). Ishii, Kumano, and Otsuka use manually

annotated mouth opening transition patterns after the subject stops speaking to

predict the next speaker in a meeting (Ishii et al., 2016). Cech et al. report on an

active speaker detection system for a humanoid robot that uses audio and visual

information of four microphones and two cameras (Cech et al., 2013). Other studies

propose models to detect speakers in videos (Chakravarty et al., 2015; Pavlović et

al., 2000; Cutler & Davis, 2000), where the objective is not to generate a real-time

multimodal output (gaze and head) of a robot.

2.2.2 System Directed Speech Detection

It has been observed that when people interact with computer systems, not only

do they talk to the computer system but they also tend to talk to themselves and

naturally to other people if present (Oppermann, Schiel, Steininger, & Beringer,

2001; Batliner, Hacker, & Nöth, 2006; Hayakawa, Haider, Luz, Cerrato, & Camp-

bell, 2016a). Oppermann et al. coined this interaction, that is not addressed to the

computer system as “Off-Talk” and utterances that are directed to the computer

system, and therefore need to be understood by the system as “On-Talk”. Batliner
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et al. open their paper with an example from Shakespeare’s Hamlet, where Hamlet

seems change his speaking style when addressing his interlocutor to utterances

that are spoken, but not directed towards his interlocutor, show that this is not a

new phenomena, but part of human nature that Shakespeare expressed with his

characters.

The definition of Off-Talk, as provided by Oppermann et al. is every utterance

that is not directed to the system: e.g., (i) soliloquy/thinking aloud, (ii) swearing,

(iii) reading from displayed text aloud, (iv) conversation with other person(s)

present, (v) telephone conversation (e. g. with cellular phone) and (vi) extrinsic

speech (e. g. video player, TV set, etc.) (Oppermann et al., 2001, p. 1).

The objective of this research is not to redefine these concepts of On-Talk and

Off-Talk, but to propose a system which can automatically detect these two types

of talk.

Previous studies by Oppermann et al. report that the loudness difference be-

tween On-Talk and Off-Talk can be used as a significant indicator of Off-Talk

(Oppermann et al., 2001). However, a system that is trained using audio which

is recorded in a controlled acoustic environment (minimising the reverberation,

background noise and competing speech, etc.) may perform poorly in an uncon-

trolled acoustic environment . Another disadvantage of a system which is only

based on acoustic modality is that it needs a speaker recognition (Gerl & Herbig,

2008; Reynolds, 2002) module so that the system only process the user’s speech

utterances and not the subjects speaking behind or with the user. The visual in-

formation may also be helpful in an uncontrolled acoustic environment, but then

a subject needs to face a camera, and visual environment (e.g. lightning condi-

tionings) also affect the results. However, physiological information can help in
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uncontrolled acoustic and visual conditions. The user does not need to face a cam-

era and the system doesn’t need a speaker recognition system because the person

who is wearing the electronic device (wireless EEG cap or smart watch for heart

rate and skin conductance) is the user.

The electroencephalogram (EEG) signal and its different frequency bands have

been employed in some applications, such as seizure detection, emotion recognition,

and even speech recognition. Ocak analyses the frequency bands between 0–86.8

Hz using wavelet transform, and reports that the higher bands between 43.4–86.8

Hz provides the optimum accuracy for detection of epileptic seizures (Ocak, 2009).

Adeli, Ghosh-Dastidar, and Dadmehr use a wavelet chaos methodology to detect

seizure using EEGs and EEG sub-bands and analyse EEG signals between 0–60

Hz (Adeli et al., 2007). However, for both studies, the data is collected in very con-

trolled settings. Petrantonakis and Hadjileontiadis use the lower frequency bands

between 8–12 Hz and 13–30 Hz for emotion recognition (Petrantonakis & Had-

jileontiadis, 2010). The EEG signal has also been used for the speech recognition

of unspoken words (Porbadnigk, Wester, & Jan-p Calliess, 2009) where Porbadnigk

et al. recorded the 16 EEG signal channels with a 128 cap montage and recognised

five words with an average accuracy of 45.50%. The most prominent band of the

EEG signal lies in the lower frequencies (Alpha band for attentional demands and

Beta band for emotional and cognitive processes (Ray & Cole, 1985)).

The EEG signal is quite susceptible to artefacts caused by talk-related mus-

cle activity, including head movement and eye blinks. This problem is commonly

approached by recording signals on several different positions on the scalp, in-

structing the subjects to avoid moving and to keep calm during recordings, and

subsequently employing independent component analysis on the EEG data in or-
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der to remove the artefacts (Delorme & Makeig, 2004). However, in an interactive

setting, it is not possible to restrict subjects’ movements; they have to move their

heads, speak, display emotions, gesture and laugh. Therefore, removing all these

artefacts becomes even harder if any amount of naturalness in human-computer

interaction is to be preserved.

Muscle activity can introduce noise in EEG signals (e.g. peak frequency of

masseter muscles movements are in 50–60 Hz range, and frontalis muscles move-

ments are between 30–40 Hz), and the noise band limit is between 15–100 Hz

(D O’Donnell, Berkhout, & Adey, 1974). Kumar, Narayan, and Amell (Kumar

et al., 2003) also report a noise range for frontalis muscles between 20–30 Hz and

temporal muscles between 40–80 Hz. Posterior head muscle movements have a

higher peak frequency close to 100 Hz, but it depends on many factors (e.g. sex,

force and direction of contraction, etc.) (Kumar et al., 2003). Muscle activity may

introduce artefacts in EEG signal in a frequency range (≈20–300 Hz) where the

most artefacts are at the lower end (Criswell, 2010). However, the use of phys-

iological signals (including the EEG signal) for speech related task in noisy and

competing speech environment is well recognised. For example, an EEG-based

voice activity detection helps in recording/processing the speech utterances of the

system’s user only (Von Borstel, Esquivel, & Meyer, 2015). It is also found that the

right hemisphere of the brain is responsible for the speech prosodic characteristics

(Shapiro & Danly, 1985; Weintraub, Mesulam, & Kramer, 1981; Ross & Mesulam,

1979) and Heart Rate (HR) and Skin Conductance (SC) also help in predicting

the cognitive states (Hayakawa, Haider, Cerrato, Campbell, & Luz, 2015), emo-

tions (Matejka et al., 2013), and On-Talk and Off-Talk (Hayakawa, Haider, et al.,

2016a).
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Muscle artefact noise is the main reason why the EEG signal has not been used

for speech related applications. However, some studies addressed this problem

by analysing the EEG signal using overt and covert speech settings to minimise

muscle artefacts noise. The EEG signal for a speech related task is evaluated using

the covert speech production settings (van Turennout, Hagoort, & Brown, 1997;

Schmitt, Münte, & Kutas, 2000; Schmitt, Schiltz, Zaake, Kutas, & Münte, 2001;

Abdel Rahman, van Turennout, & Levelt, 2003) to minimise the muscle activities,

where the subject is thinking about a word instead of articulating the word. A

limitation of this methodology is that it can not be verified whether the subject

followed the task instruction or not. However, for overt speech (Duncan-Johnson

& Kopell, 1981; Liotti, Woldorff, Perez, & Mayberg, 2000), the EEG signal can be

analysed after a stimulus is presented to the subject until the start of articulation

to avoid the noise due to muscle activity related to speech articulation.

The Broca part of the human brain plays a role in speech production (Stone,

1991; Whitaker, 1970). The seminal research by Broca, Wernicke and others on

the relationship between neural activity and speech production, which highlighted

parts of the brain responsible for speech production has been supported by a num-

ber of studies (Blank, Scott, Murphy, Warburton, & Wise, 2002). It has been

observed that the speech signal is preceded by low variation in EEG Signal up to

one second before the articulation (McAdam & Whitaker, 1971). The cognitive

processes that lead to speech articulation (activate the speech production areas

in a brain) are of three main types (Bock, 1982; Dell, 1986; Garrett, 1975, 1988;

Kempen, 1977; Kempen & Hoenkamp, 1987; Levelt, 1989). 1. Conceptualization:

the content and pre linguistics representation of intended speech 2. Formulation:

retrieval of the best match between linguistic representation and conceptual struc-
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ture 3. Grammatical and Phonological encoding: Selection of lexical items and

intonation pattern (van Turennout et al., 1997)

Electro-physiological evidence of phonological encoding that leads to articula-

tion is found. M. Van Turennout et al analysed the EEG signal from the midline

frontal (Fz), central (Cz), and parietal (Pz) sites of the 10-20 system (for EEG

electrode placement (Jasper, 1958)) in a picture naming task (van Turennout et

al., 1997). Some studies highlighted the right hemisphere of brain for the con-

trol of speech prosody (Shapiro & Danly, 1985; Weintraub et al., 1981; Ross &

Mesulam, 1979). The above reviewed literature suggests that EEG information is

useful for modelling the characteristics of speech prior to articulation, and may

help distinguish on- and off-talk and anticipate prosodic differences in intonation

level, speech rate and lexical words.

2.2.3 Cognitive States Detection

Over the past 15 years, computer and speech scientists have explored various

methodologies to automate the process of emotion, affective and cognitive state

recognition. Past research has mostly focused on emotion recognition from one

single sensorial source, or modality: mainly the face (Pantic & Rothkrantz, 2003).

Given the fact that emotion, affective and cognitive states of a user can influence

the unfolding of the interaction with the system, increasing effort has been spent

to test methods for recognition and detection of different affective and cognitive

states in human-machine communication. Detecting the cognitive reactions of a

user could be a step forward in the process of designing proactive systems capable

of adapting to the user’s needs (Picard, 2000). While it is true that the face is
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the main display of a person’s affective and cognitive state, other sources such

as body movements and gestures have been shown to increase the recognition ac-

curacy (Hudlicka, 2003), (Balomenos, Raouzaiou, Karpouzis, Kollias, & Cowie,

2003), (Burgoon, Jensen, Meservy, Kruse, & Nunamaker, 2005), (Gunes & Pic-

cardi, 2005), (Kapoor & Picard, 2005), (Martin, Niewiadomski, Devillers, Buisine,

& Pelachaud, 2006) and achieve better results in the prediction of user’s affective

and cognitive reactions. Similarly, features of the speech signal itself have been

employed in inferring what has been loosely termed “emotion” or “affect” in the

literature (El Ayadi, Kamel, & Karray, 2011). While great progress has been made

in recent years on detecting such cognitive states from speech and other modalities

on a number of speech datasets, the data used have mostly come from acted speech

collected in non-interactive settings (El Ayadi et al., 2011). Studies involving the

dynamics of cognitive states in interactive systems, specially systems where the

interaction is mediated by automatic speech recognition (ASR) have been far less

common. In speech-to-speech machine translation (S2S MT), the limitations of

the technologies involved both ensure the elicitation of certain linguistic and cog-

nitive reactions (in response to ASR and MT errors) and require careful design to

address communication issues that might arise from those reactions (Schneider &

Luz, 2011; Lee & Narayanan, 2005). A cognitive state (i.e. temporary psycholog-

ical states) detection system for machine translation system can help in sensing

the user experience with the system.
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2.3 Conclusion

There are many spoken dialogue systems available but using them as an instructor

of delivering presentation require a considerable amount of research. An important

component of the system is to automatically recognize someone’s non-verbal pre-

sentation skills (like body language, attitude, engagement level and tone of voice

etc.) which are manifested in humans’ social signals and behavioural cues. So, to

overcome this problem for a spoken dialogue system, this thesis proposes models

and methods which can be used in combination with a spoken dialogue system

to monitor a user presentation’s performance (good voice tone or not) during a

presentation. The above-stated problem solution (recognizing someone’s public

speaking abilities) can help a spoken dialogue system to monitor humans but pro-

viding verbal feedback or simulating a practice session using computer (spoken

dialogue system) brings many challenges. That is why, the second part of the the-

sis focuses some of those challenges which are modelling human behaviour during

a session with a machine (simulated by a human with the help of technologies like

Automatic Speech Recognition (ASR), speech synthesis, etc.). It could help a ma-

chine in deploying certain repair strategies in case some of the machine components

(e.g., ASR) fail, and manage multiple users (trainees) at a time.
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Chapter 3

Recognising Public Speaking

Abilities

3.1 Introduction

This chapter describes the datasets, methodology, results and discussion of the

research issues which are related to public speaking. It also presents a system

which can automatically detect the level of self-confidence and body language of

a student using audio-visual information. A system is also proposed which can

automatically detect the user engagement of formal presentations and also able

to detect which segments of talk are engaging or not and provide them (talk

segments) as a feedback to users. An automatic attitudes detection system is also

the part of this chapter which can help a user to train his/her attitudes for informal

presentations (video blogs). At the end, methods and system are described which

are used to collect a dataset of political presentations (debates). The validation of

multiple hypothesis and systems’ evaluation are also the part of this chapter.
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3.2 Student Presentations

The use of multimodal information (prosody, visual, etc.) can help in automatic

detection of good and poor presentations. This automatic process, for instance, can

help teachers in distinguishing good and bad presenters without having to review

many hours of video-recorded presentations, thus freeing teachers to focus more

on the weak students. Moreover, it can also help a multimodal dialogue system

that is meant to serve as a tutor to train students for presentations. In the context

of this study, two presentation quality factors are considered, the first one is the

self-confidence, and the other is body language. This study focuses on prosodic

and gestural features that contribute to the positive judgement of students’ oral

presentations.The general hypothesis is that certain prosodic characteristics, such

as high pitch variation and perceived loudness, together with the production of

natural hand gestures, influence the audience’s perception of the speaker as a good

presenter. Being able to identify features that can give an indication of a good

presenter is useful for applications in the field of skills training, where automatic

feedback could be provided to trainees at the end of their presentation about the

extent to which they have been able to use their voices and gestures to keep the

audience engaged. For this reason, novel models are proposed based on prosodic

and visual features.

3.2.1 Dataset

A subset of the presentations contained in a corpus of the Multimodal Learning

Analytics (MLA) dataset (Ochoa et al., 2014a) is used as a dataset to run the

experiment: 416 oral presentations given by Spanish-speaking students presenting
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projects about entrepreneurship ideas, literature reviews, research designs, soft-

ware design, etc. The dataset contains speech, facial expressions and physical

movements in the video, skeletal data gathered from Kinect1 for each individual

and slides of presentations, making up a total of 19 hours of multimodal data.

In addition, individual ratings for each presentation, and group ratings related to

the quality of the slides used when doing each presentation are available. Each

presentation has a rating based on the following performance factors:

1. structure and connection of ideas,

2. presentation of relevant information with good pronunciation,

3. maintenance of adequate voice volume for the audience,

4. usage of language according to the audience,

5. grammar of the slides,

6. readability of the slides,

7. the impact of the visual design of slides,

8. posture and body language,

9. eye contact,

10. self-confidence and enthusiasm.

1https://developer.microsoft.com/en-us/windows/kinect – last verified Aug 2017
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3.2.2 Hypotheses

In the MLA dataset, each student is judged by the audience on a scale ranging

from four to one. In this analysis, it is assumed that a presentation factor (such as

self-confidence) is considered good if the rating assigned to it is >= 2.5; otherwise,

the presentation factor is considered poor. The number of students present in each

class (poor vs good) is depicted in Figure 3.1.
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Figure 3.1: Number of students present in each class (good vs poor)

Based on the assumptions and results found in the literature, the following null

hypotheses for the investigation of prosodic features are formulated (Lamerton,

2001; Grandstaff, 2004; Sinclair, 1995; Traunmüller & Eriksson, 1995; Hincks,

2005; Lamerton, 2001; Stassen et al., 1993):

1. Standard deviation (std) of F0 is an indication of liveliness and enthusiasm.

So a higher value is an indication of a lively and enthusiastic voice. So the

null hypothesis is the poor and good presenter have the same std of F0.
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2. The harmonic-to-noise ratio (HNR) may indicate abnormality in the voice,

so that speakers with the lack of self-confidence tend to exhibit high values

of HNR (Yumoto, Gould, & Baer, 1982). So the null hypothesis is the poor

and good presenter have the same value of HNR.

3. High values of perceived loudness reflect a loud voice, which is considered an

indication of a good presenter. So the null hypothesis is the poor and good

presenter have the same value of loudness.

4. A fast speech rate is an indication of a fluent speaker. So the null hypothesis

is the poor and good presenter have the same value of speech rate.

Regarding the last hypothesis, speech rate is usually measured in number of

words spoken per minute. The dataset do not contain the transcription that’s why

vocalisation to pause (i.e. voice to silence ratio) ratio is used as an alternative

measure to indicate the fluency of speech. Pauses and vocalisation lengths are

known to play a significant role in structuring both discourse and interactive speech

(Oliveira, 2002; Luz, 2012), so it is expected that this feature provides a reasonable

index of fluency in presentations.

For the analysis of visual features, the following hypothesis is formulated: pro-

duction of hand gestures in the upper part of a body is assumed to be an indication

of fluent gestures produced by good presenters. This hypothesis is based on the

observations of behaviour of the top ten speakers who obtained good ratings for

their body language and the top ten speakers who received poor ratings for their

body language. The two groups follow a clear trend: the good speakers produce

fluent arm and hand gestures concentrated in the upper part of the body. Their

gestures have the following main functions:
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1. provide discourse with continuity and coherence (McNeill, 1992),

2. mark stress and rhythm of utterances’

3. point at the slides’

4. describe something.

The speakers who received the lowest ratings for body gestures seem, in gen-

eral, to produce fewer gestures in the upper part of the body. They tend to keep

their arms down, parallel to their body, or keep their hands at the level of their

belly. When they produce gestures, they produce particular types of hand move-

ments which are not connected to the co-occurring discourse (semantically nor

structurally), as described by Ekman (Ekman & Friesen, 1981). These gestures

seem to be produced by the speaker to manage particular emotional states, such

as tension or anxiety. An attempt is made to find a measure that could detect the

position of the arm gestures in relation to the shoulder centre used as a reference by

analysing the skeletal data. The mean value of the Euclidean distance between the

hands and shoulder is selected as the basic measure. Despite its relative simplicity,

this measure provides a good indication of hand and arm movements concentrated

in the upper part of the body and thus can be used in testing the null hypothesis

which is the poor and good presenter have the same mean value of the Euclidean

distance between the hands and shoulder during a presentation.

3.2.3 Experimentation

The first step of experimentation is to analyse correlations among the different

categories of ratings in order to estimate how visual and prosodic features might
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contribute to the prediction of overall presentation quality.

Figure 3.2 depicts the correlations of all ratings (correlation matrix) as a cor-

rgram (Friendly, 2002), where blue indicates positive correlation and red indi-

cates negative correlation, with darker hues indicating stronger correlations. It

is observed that ratings that appear to be motivated by voice feature (e.g. self-

confidence and enthusiasm) are sometimes highly correlated to visually-motivated

ratings (e.g. body language and pose). This might imply that either visual or

voice features alone might suffice to distinguish some aspects of presentation qual-

ity. Alternatively, it is possible that combined feature sets might be more useful

overall.

In order to investigate these issues in more detail, in the following sections, it

is demonstrated that how the various prosodic and visual features vary according

to two broad performance categories (poor vs. good presentation), in line with the

hypotheses formulated in Section 3.2.2, and then describe a method for automatic

categorisation of presentation quality level based on a rich set of such features,

presenting its results on the MLA dataset.
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Figure 3.2: Correlation matrix for rating categories
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Feature Extraction

In total, 6376 audio features are used for the classification tasks: the complete

audio set of the ComParE challenge (Schuller et al., 2013a) (6,373 features) with

the addition of perceived loudness (sd and mean) and V/P (vocalisation to pause

ratio).

To extract the features related to the speakers’ hand movements the Euclidean

distance (ED) between wrist joint and shoulder centre joint (tracked by Kinect) in

each frame of the video (presentation of a student) is calculated. Finally, the mean,

standard deviation, maximum, minimum, median, maximum ratio and minimum

ratio of the ED, its first (velocity) and second (acceleration) order derivative for

each video/speaker are calculated. In total, 42 features are extracted for both

hands. The maximum ratio for a speaker is measured by counting the number of

frames which have higher ED compared to their preceding and following frames

and then averaged over the total number of frames in that video. Similarly, the

minimum ratio of a speaker is measured by counting the number of frames which

have lower ED compared to their preceding and following frames and then averaged

over the total number of frames in that video. The feature set is z-score normalise

and then scaled in the range of [0 1].

Hypothesis Testing

In order to validate the hypotheses formulated for prosodic and gestural features,

analysis of variance (ANOVA) test is performed on the values of several features

with respect to presentations rated as poor, as compared to presentations rated

as good. The results show that a statistically significant difference exists between
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the poor and good groups of speakers for the different measures considered: a

significant difference is shown between fundamental frequency standard deviation

values (p = 0:00) for good and poor presenters. The box plots in Figure 3.3 depict

the quartiles for the respective distributions of values. The higher the values of

the standard deviation, the higher the pitch variation of the student during the

presentation. This is in line with the results of previous studies (Traunmüller &

Eriksson, 1995; Hincks, 2005) that show that the higher the standard deviation

of fundamental frequency, the more a speech sample is perceived as lively. Since

this study assume that liveliness is associated with enthusiasm, this result is an

indication that speakers rated as good presenters are very likely to have lively

and enthusiastic voices. The log HNR (in Figure 3.3) has higher values for good

speakers (p = 0:0002) which might be due to the fact that the presenters per-

ceived as good speakers do not present obvious abnormalities in their voice quality

(e.g. roughness of sound (Sousa & Ferreira, 2008)). The results summarised in

Figure 3.3 show higher values of perceived loudness for speakers judged as good

ones (p = 0.009). This is because loudness plays an important role in expressing

self-confidence and enthusiasm and speaking loud is generally considered a char-

acteristic of good presenters, consistently with our hypothesis and the literature

on presentation quality.

As for the results of the vocalisation to pause ratio, a statistically significant

difference (p = 0.1148) between speakers judged as good versus poor is not ob-

served. This might depend on the fact that pauses can also be used for rhetorical

purposes and in our calculation of vocalisation to pause ratio (as explained in Sec-

tion 3.2.3) the filled pauses and hesitations are not taken into account since they

were not annotated in the audio files. As for visual gestures, our hypothesis is
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Figure 3.3: ANOVA Test Results.

that hand gesture produced in the upper part of the body are an important factor

that characterises a good presenter. To perform hand gestures in the upper part

of the body, speakers need to move their hands in that region for a relatively long

period. A good presenter can also move his/her hands in the lower body region

(to relax) or overhead (to point out the slides), but these gestures should not be

maintained for long periods of time. So, it is decided to choose the mean value

of ED as a measure of these gestures. The results show that the good presenters

have statistically significantly lower ED values (p = 0.036) as shown in Figure 3.3.

Although it is true that the visual features are, in some sense, ‘optimised’ (i.e.

designed by us rather than discovered automatically from data), they come not

only from simply watching the videos, but are also informed by the literature on

gestures and presentations (McNeill, 1992; Ekman & Friesen, 1981).
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Classification Method

To reduce the high dimensionality of features, the PCA (Principle Component

Analysis) is used on the feature set to reduce the number of dimensions (6376

audio features + 42 visual features to 416 principle components). From the statis-

tical significance (p) of the transformed feature set with the rating (poor or good),

a subset of the transformed features with p < 0.5 is selected. The classification

method was implemented in MATLAB 2 and employed discriminant analysis in

10-fold cross-validation experiments. The classification method works by assuming

that the feature sets of the classes to be discerned are drawn from different Gaus-

sian distributions and adopting a pseudo-linear discriminant analysis (i.e. using

the pseudo-inverse of the covariance matrix (Raudys & Duin, 1998)).

3.2.4 Results and Discussion

Prosodic and visual features are analysed to predict presentation quality. The

correlation test results (Figure 3.2) show that the presentation quality factors

under consideration are highly correlated with each other. Therefore, in principle,

it should be possible to detect the body language rating (‘Body’) with prosodic

features, and the self-confidence rating (‘Conf.’) with skeletal features.

The motivation for this automatic inference task is to be able to distinguish

those students who present really poorly (and therefore might need expert at-

tention and extra tutoring), from those who present really good and might be

selected as examples of how to present from the average presentations. The very

good speakers do not necessarily need extra attention from the tutor, while the

2https://uk.mathworks.com/products/matlab.html – last verified Aug 2017
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Table 3.1: 2-Class Experiment Results (F-Score of both class (Poor and Good))

Feature Rank Poor Good

Audio Conf. 92.64% 94.19 %

Audio Body 94.32% 94.61%

Visual Conf. 60.06% 73.35%

Visual Body 64.18% 66.51%

Fusion Conf. 94.02% 95.26%

Fusion Body 95.80% 96.02%

poor presenters might benefit from advice. Therefore, two experiments are con-

ducted. In the first (2-Class) experiment, there are 3 types of feature vectors, 2

types of ratings and 2 types of groups of speakers (poor and good). The results

are shown in Table 3.1. In the second experiment (3-Class), the same settings

are repeated, but the students are divided into three groups: poor (rating range

is 1 − 2), average (rating range is 2 − 3) and good (rating >= 3 ). The results

(harmonic mean) are shown in Table 3.2 and the number of students present in

each class is depicted in Figure 3.4.
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Figure 3.4: Number of students present in each class (poor, average and good)
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Table 3.2: 3-Class Experiment Results (F-Score of all three class (Poor, Average
and Good))

Feature Rank Poor Average Good

Audio Conf. 83.76% 84.54% 85.42%

Audio Body 84.32% 80.85% 84.24%

Visual Conf. 60.00% 18.46% 66.19%

Visual Body 62.35% 07.02% 56.98%

Fusion Conf. 82.49% 82.00% 83.07%

Fusion Body 84.62% 76.60% 81.03%

Our study uses an extended dataset including both male and female students, in

contrast to the limited dataset used in a similar study (Krajewski et al., 2010). Our

approach is tested in speaker-independent settings, and the student presentations

are ranked by an audience. It yields maximum F scores of 95.26% (good) and

94.02% (poor) in detecting self-confidence. Moreover, in the two-class problem,

the F-Score of prosodic features indicates that the prosodic features are not only

able to predict the rating of self-confidence and enthusiasm but also the rating

of body language and pose. This may be due to the impact of good posture

on speaking style. The visual features show the same behaviour, but with less

accuracy. However, the fusion of prosody and visual features does, in fact, improve

overall categorisation performance.

The promising results for three-class rating detection is also obtained, with

Fscores as high as 83.76% (poor) 84.54% (average) and 85.42% (good) in detection

of self-confidence and enthusiasm. In the three-class problem, the features show

the same behaviour as for the two-class problem, except for the fusion which causes

a slight decrease in performance. At the same time, they cause a slight increase in

poor (body language rating) class detection, while visual features alone are almost

unable to detect average class (07.02% and 18.46%). In the three-class problem,
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the features show the same behaviour as for the two-class problem, except that

feature fusion does not seem to improve performance in this case.

3.3 TED Talks

These days, several hours of new video content (in the form of talks) are uploaded

to the internet every second. It is simply impossible for anyone to see every piece of

video which could be engaging or even useful to them. Therefore, it is desirable to

automatically identify videos (TED talks) that might be regarded as engaging for

users, for a variety of applications such as recommendation services. This section

describes validation of hypotheses that relate user (on-line viewer) engagement of

TED Talks to prosodic, spoken expressions, high level visual and paralinguistic

features. A novel system is proposed for automatic inference of user engagement

and automatic identification of engaging video segments within TED talks.

3.3.1 TED Talks and User Feedback

“TED is a non-profit organization devoted to spreading ideas, usually in the form

of short, powerful talks (18 minutes or less)”. The TED website, instead of asking

users to simply give like or dislike feedback, asks viewers to describe the video in

terms of particular words. Among the 14 rating words provided to users, 9 words

are identified as being positive words, 4 as being negative, and 1 as neutral. A

user can choose up to 3 words to rate a video (Table 3.3).

By giving these choices to users, the TED website provides elaborate feedback

on a given video as depicted in Figure 3.5 and 3.6. This makes the problem more

interesting than a like or dislike based content detection. Instead of crisp binary
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feedback to learn from, this study uses a fuzzy description of what viewers thought

about a particular video. The rating system for user feedback thus provides a

more nuanced characterisation of user engagement with the video presentation.

Since the ratings consist of voluntarily information given by the users, in terms of

semantically positive and negative words, it provides good basis for analysis of the

relevant factors of engagement (O’Brien & Toms, 2013) for TED talks.

Figure 3.5: Ted.com rating criterion

3.3.2 Analysis of User Rating

The TED website reports what percentage of viewers rated the video as saying

“Inspiring” or “Longwinded” etc. But simply relying on ratings given to an indi-

vidual video is not a good idea because it may not give the whole story. As seen in

Table 3.3, ratings tend to be overwhelmingly positive. Both count and percentage,

positive criterion (e.g. beautiful) tend to score much higher than negative (e.g.
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Figure 3.6: Overall ratings of a TED video

unconvincing) or neutral (i.e. ok) ones. Even the highest scoring negative ratings

“Unconvincing” has average user count of 51 and percentage of users of 3.73%

which are less than the lowest scoring positive rating “Funny” with average user

count of 106 and average user percentage of 4.34%.

The 14 words rating (proposed by TED 3) describe a video in a more detail than

just like/dislike. However, if only the ratings (proposed by TED) of an individual

video are considered then it would seem like all the videos only positively engage

the viewers. There is no video to which a negative rating word got the highest

count by the viewers. So to deduct which video is found to be “Obnoxious” or

“Longwinded” by viewers, some kind of normalization is required.

In order to do that the following definitions for a video to be considered “Beau-

3www.ted.com – Last verified July 2017
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Table 3.3: Average number of user ratings per each rating criteria for 1340 Ted
videos across different topics.

Rating Avg. (Count ) Avg.(%)
Beautiful 120 6.67

Confusing 15 1.17
Courageous 122 6.08
Fascinating 234 12.64

Funny 106 4.73
Informative 246 15.24
Ingenious 134 7.64
Inspiring 384 18.16

Jaw-dropping 118 5.45
Longwinded 28 2.23
Obnoxious 23 1.62

OK 65 4.88
Persuasive 188 9.70

Unconvincing 51 3.73

tiful” or “Persuasive” etc is used. It must have a rating count more than average

rating count for that particular rating word. With this, TED talks were catego-

rized as “Beautiful and not Beautiful”, “Inspiring and not Inspiring”, “Persuasive

and not Persuasive” etc. giving two classes for classification for each of the 14 rat-

ing words. The details of user rating distribution (Yes, No) for videos is depicted

in Figure 3.7.

3.3.3 Correlation Between User Ratings

The first step is to perform the correlation between different types of user en-

gagement ratings to find the relationship between them. Figure 3.8 depicts the

correlations of all ratings (correlation matrix) as a corrgram, where blue and red in-

dicate positive and negative correlations respectively and the darker hues indicates

stronger correlations. This section explains the dataset along with normalization
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Figure 3.7: Number of videos present in each class (Yes/No).

and feature extraction approach.
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Figure 3.8: Correlation Matrix for User Engagement Ratings.

Features Extraction

For visual features, HAAR cascades (Lienhart, Kuranov, & Pisarevsky, 2003) is

used, from the OpenCV library (Bradski, 2000), to detect whether the speaker is on

the screen or not. For this study, it is calculated that for how many seconds there

was a close up shot of the speaker and when there was a distant shot and when the
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speaker was not on the screen. For non-visual features, number of laughters and

applauses and laughter-to-applause ratio within TED talks are considered. Since

TED talks come with subtitles, getting this information was a simple process and

was obtained with a python script. For all extracted features, it is also measured

whether for each video, the value of each feature was greater or less than the

average value for that feature. E.g if the number of close up face seconds for a

given video was greater than the average number of close up face seconds, the

value 1 to the feature is assigned “Above average close up shots” and 0 otherwise.

The same procedure is repeated for other features thereby doubling the number of

visual and paralinguistic features to 12 for the experimentation.

For prosodic features, the openSMILE (Eyben, Wöllmer, & Schuller, 2010)

tool kit is used. Prosodic features have been shown to correlate to structure

in dialogue interaction and evidence of participant status and engagement levels

(Campbell, 2008; Luz, 2012). It is hypothesized that these features might also

occur in monologues such as TED talks.

3.3.4 High Level Visual and Paralinguistic Features Eval-

uation

The following sections analyse how various camera views and paralinguistic fea-

tures contribute to the user engagement ratings by performing Analysis of Variance

(ANOVA) test.
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Figure 3.9: Close up Shots (ANOVA Results)

Close up Shots

The results depicted in Figure 3.9 show that some ratings are significantly influ-

enced by ‘Close up Shots’. Videos rated by users as courageous, inspiring and

long winded have high mean value of ‘Close up Shots’ but at the same time videos

which have less mean value of close up shot are perceived as fascinating, ingenious

and OK. For rest of the ratings, no significant difference exists.

Distance Shots

The results depicted in Figure 3.10 show that some ratings are significantly influ-

enced by the ‘Distance Shots. The videos rated by users as courageous, fascinating,

inspiring, jaw dropping, long windowed and persuasive have high mean value of

‘Distance Shots’ but at the same time videos which have less mean value of dis-

tance shot are perceived as confusing, ingenious, OK and unconvincing. For the

rest of ratings, no significant difference exists.
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Figure 3.10: Distance Shots (ANOVA Results)
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Figure 3.11: Person Not on Screen (ANOVA Results)
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Figure 3.12: Laughter by Ted Audience (ANOVA Results)

Person Not on Screen

The results depicted in Figure 3.11 show that some ratings are significantly influ-

enced by the person not being on screen. Videos rated by users as fascinating,

informative, jaw dropping and long winded have high mean value of ‘Person Not

on Screen’ but at the same time videos which have less mean value of ‘Person Not

on Screen’ are perceived as courageous, OK and unconvincing. For the rest of

ratings, no significant difference exists.

Laughter by Ted Audience

The results depicted in Figure 3.12 show that some ratings are significantly influ-

enced by laughter by the TED video audience. Videos rated by users as funny,

ingenious and jaw dropping have high number of laughter but at the same time

videos which have fewer laughter are perceived as confusing, OK, persuasive and

unconvincing. For the rest of ratings, no significant difference exists.
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Figure 3.13: Applauses by Ted Audience (ANOVA Results)

Applauses by Ted Audience

The results depicted in Figure 3.13 show that some ratings are significantly in-

fluenced by the applauses by Ted Audience. Videos rated by users as beautiful,

courageous, funny, ingenious, inspiring, and jaw dropping have high mean value

of applauses but at the same time videos which have less mean value of applauses

are perceived as confusing, informative, long winded, obnoxious, OK, persuasive

and unconvincing. For the rest of ratings there, no significant difference exists.

Liveliness of Speech

The results depicted in Figure 3.14 show that some ratings are significantly influ-

enced by the standard deviation of ‘Fo’ (fundamental frequecy) which is a measure

of liveliness of speech (Traunmüller & Eriksson, 1995; Hincks, 2005). The videos

rated by users as beautiful and funny have high mean value of Std Fo but at the

same time videos which have less mean value of Std Fo are perceived as confusing,

informative and persuasive. For the rest of ratings, no significant difference exists.
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Figure 3.14: f0 Std (ANOVA Results)

Discussion

In film making, ‘Close up Shots’ are used to focus the subjects’s emotional states

and ‘Distance Shots’ are used to focus the full body of a person with some sur-

rounding. In the TED talk settings, surrounding of a speakers are audience and

content (slides). So it can be said that a higher number of ‘Close up Shots’ indi-

cates more duration of emotional states. One of the purpose of distance shot is

to focus on a person body to convey the body language message to the audience.

So it can be said that a large number of ‘Distance Shots’ indicate the more use

of body language/content by the speaker. Moreover ’Person not on the screen’

is used to present content by the speaker. So it can be said that a higher value

indicates more content presentation through slides. The laughter and applause

are usually correlated with joy and appreciation respectively and this study has

found that these (laughter and applause) has an influence on the user engagement

rating.

In previous studies, it is stated that standard deviation of fundamental fre-

quency is highly correlated with liveliness of speech. So the effect of liveliness

of speech on these user engagement ratings are also analysed. The interesting
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point to note about ’beautiful’ rating is its strong correlation only with applause

and liveliness of speech features. However the funny rating is strongly correlated

with laughter, applause and liveliness of speech but the camera views have no

effects on the rating funny. ‘Person Not on Screen’ is the only camera view which

significantly differ for informative user engagement. It is assumed that a higher

count means more content presentation (informative) and the results (as depicted

in Figure 3.11 with p = 0.0033) are also in line with this assumption.

The results depicted in subsection 3.3.4 show that the feature under consider-

ation have a relationship with user engagement. Camera views are not based on

some random selection and strongly correlate with user engagement. But it is not

possible to increase engagement level by just increasing or decreasing the number

of camera views in a video. These views are depended on the speaker’s way of

speaking, if he /she shows emotions then a professional camera-operator/editor

may take his/her close up shot and if he/she uses body language and slides then a

camera-operator will focus through ‘Distance Shots’ and at the end if some content

is really important then a camera-operator/editor just show the slides. Believing

that the camera men/editors are highly professional, these views help in building

some feedback to the speaker e.g. they need to show more content, use of body

language and emotions etc. Moreover, these features can also be used to predict

the engagement level.

3.3.5 Spoken Expression Evaluation

The following section analyses how various spoken expressions contribute to the

user engagement ratings.
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Data Pre-Processing and Feature Extraction

Speech segmentation is performed on all the audio files of TED videos using the

Lium toolkit (Rouvier et al., 2013) with a minimum cluster size of 2 and the

maximum possible duration of a segment is 20 seconds. The duration of chunks is

between a few seconds to 20 seconds. As a result, dataset has 120,382 chunks of

audio from 1338 videos for experimentation (clustering).

Acoustic feature extraction is performed using openSMILE toolkit (Eyben et

al., 2010). The feature set is extracted using the openEAR configuration file. This

set is also used for emotion and speech expression recognition (Eyben, Wöllmer,

& Schuller, 2009) and consists of low-level descriptors as well as statistical func-

tionals applied to these descriptors. A correlation test is also performed between

duration of each audio chunk and its features, selecting those features which are

less correlated with chunk duration (R < 0.2). As a result, 387 features have left

for clustering. The feature set was further centred with mean value 0 and standard

deviation 1.

Statistical Analysis

First, SOM (Self Organised Map) is employed to cluster the speech segments into

10 clusters. The motivation behind using clusters size of 10 for SOM is to separate

the 6+1 universal spoken expressions (happiness, sadness, fear, surprise, disgust,

anger and neutral) and any other non-speech segments (music, applause, laughter).

Results of clustering are shown in 3.15a and 3.15b. Then the number of speech

segments in each cluster for every video are calculated and then divided it by the

total number of speech segments within a video. Later, to analyse the significance
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of speech expressions, Kruskal–Wallis test and null hypothesis are used in the

following manner:

H: The number of speech expressions in each group (e.g. beautiful and not

beautiful) has the same mean value.

-1 0 1 2 3 4 5

g g

1 2 3 4 5

6 7 8 9 10

(a) Distance between neighbouring clusters
1 0 1 2 3 4 5

11723 3064 4142 18319 1178

8127 27252 19696 21586 5294

(b) Sample hits

Figure 3.15: Left Figure (a) indicates the distance between clusters (darker colour
indicates more distance between clusters than lighter colours) and the right Figure
(b) indicates the number of speech segments present in each cluster

The Kruskal–Wallis test rejects the null hypothesis (p < 0.05) for many clusters

(speech segments). For example, speech segments in clusters number 1,2,4,5,7

and 8 have a significant difference in their mean values for beautiful-YES and

beautiful- NO. Speech segments from cluster number 1,4,5,7 and 8 have higher

mean for beautiful-YES than beautiful-NO. Hence, the speech segments in these

clusters (that also represents speech expression) are engaging. For example,the

cluster number 2 has higher mean for beautiful-No than beautiful-YES, hence, the

speech segments in this cluster are non-engaging. The details for all engagement

ratings are depicted in Table 3.4.

3.3.6 Engagement Detection

Based on the statistical analysis results, most of the spoken expressions, high

level visual and paralinguistic features are statistically different for engaging and
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Table 3.4: Statistical significant clusters for each rating.

Rating Cluster p < 0.05 YES NO
Beautiful 1, 2, 4, 5, 7, 8 1, 4, 5, 7, 8 2
Confusing 7, 8 nil 7,8
Courageous 3, 4, 6, 7, 8, 9 3, 4, 6, 7, 8 9
Fascinating 6, 7, 9 7, 9 6
Funny 3 , 4, 5, 6, 7, 9 4, 5, 7, 9 3, 6
Informative 1 4 5 7 8 4 1 5 7 8
Ingenious 2 3 4 6 9 2,9 3, 4, 6
Inspiring 3 4 6 7 8 3, 4, 6,7, 8 nil
Jaw-dropping 2, 3, 7, 8, 9 2, 3, 7, 8, 9 nil
Longwinded 3 7 3 7
Obnoxious 4 6 7 9 4 6 7 9
OK 2 3 7 8 9 nil 2 3 7 8 9
Persuasive 1 3 7 8 10 3 1 7 8 10
Unconvincing 2 4 5 7 9 nil 2 4 5 7 9

non-engaging speech segments. So, a novel approach is proposed to detect user

engagement with TED talks. The proposed approach is based on the hypothesis

that multimodal features can be extracted automatically from TED videos and be

correlated to user engagement criterion for a variety of applications. Segments of

TED talks are extracted using speech segmentation using Lium Toolkit (Rouvier

et al., 2013). Clustering was performed on the resulting dataset of segments. After

clustering the dataset, classification test using LDA and statistical analysis was

performed to identify the relationship between the clusters and user engagement.

In terms of contribution, this study proposes the following

• A classification model based on multimodal features to identify engagement

in TED talks.

• A method to identify segments within a talk that are more engaging than

others.

The proposed system architecture is depicted in the Figure 3.16, where the
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user (a presenter, potential viewer or a video summarization tool) obtains feedback

about a talk. The feedback is in the form of video segments (engaging and non-

engaging parts of talk) and the predicted label. As the audio-visual information

are correlated, visual information is also provided to user during a speech segment.

openSmile 

Feature Extraction

Self-Organised Maps

Clustering of Speech 

Expressions
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segments within a 

TED Talk
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speech segments 
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Figure 3.16: System Architecture.

Three experiments are performed using three different feature set for classifi-

cation as described below:

Experiment One: It uses the high-level visual and paralinguistic features

(camera angles, laughter, applause) extracted from video and subtitles.

Experiment Two: It uses the speech expressions features. However, features

set is increased by also considering the duration of speech segments in each cluster

along with the number of speech segments in each cluster. The speech expressions

features are extracted with different cluster sizes (10, 15, 20, 25, 30, 35, 40, 45, 50,

55, 60): this helped us find the best cluster size for engagement detection.

Experiment Three: The previous two experiments’ feature sets are fused.

Classification Methods

The classification is performed using Linear Discrimination Analysis (LDA) in 10-

fold cross-validation setting. This classifier is employed in MATLAB4 using the

4https://uk.mathworks.com/products/matlab.html – last verified Aug 2017
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statistics and machine learning toolbox. LDA works by assuming that the feature

sets of the classes to be discerned are drawn from different Gaussian distributions

and adopting a pseudo-linear discriminant analysis (i.e. using the pseudo-inverse

of the covariance matrix (Raudys & Duin, 1998)). There is no other classifier

is used for comparison as the objective is to demonstrate the proposed features

discrimination power not the classifier performance. The Deep neural network can

not be employed as the number of instances (1338) are not sufficient for training.

Results and Discussion

The duration and number of speech segments in each cluster are used as a feature

vector in detecting engagement, as defined earlier. The results are depicted in

Table 3.5. All engagement levels are detected using the proposed feature vector

above the blind guess baseline (50% A-weighted F-score (averaged harmonic mean

of both classes) for engagement detection problem). The results show that the

visual and paralinguistic features (Vis+Para) extracted from video and subtitles

provide better results than speech expressions (SE: clusters) features for 7 out of

14 user ratings. The fusion of speech expression and visual+para features (Fusion:

clusters) improve results for 11 out of 14 user ratings.

Haider, Salim, Luz, Conlan, and Campbell evaluated the relationship between

high-level features (camera angles, pitch, laughter and applause) and user ratings

(Haider et al., 2015). It only showed that high-level features are statistically

different for user ratings. This current study, however, not only analyses the

relationship between speech expressions and user rating but it also proposes a

system to detect the engagement with a novel combination of speech expressions

and high-level features. The proposed system also generates feedback for the
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Table 3.5: A-weighted F-score (averaged harmonic mean of both classes (Yes and
No)). Where Vis+Para means high-level visual and paralinguistic features, SE:
Clusters means Speech Expressions and the corresponding number of clusters and
Fusion: Clusters mean Fusion of Vis+Para and SE along with the corresponding
number of clusters.

Rating Vis+Para SE: clusters Fusion: clusters
Beautiful 55.28 60.58:15 61.70:30
Confusing 58.21 53.47:30 56.18:10
Courageous 60.33 58.08:20 61.25:10
Fascinating 52.65 54.02:55 58.04:45
Funny 70.96 61.61:35 71.85:10
Informative 59.08 61.24:40 64.09:40
Ingenious 57.42 56.67:30 57.35:55
Inspiring 54.85 53.05:55 56.13:60
Jaw-dropping 58.33 58.38:10 59.39:10
Longwinded 64.17 62.53:40 64.45:15
Obnoxious 48.87 52.14:45 54.25:45
OK 64.46 61.86:50 63.68:15
Persuasive 56.67 59.02:60 60.35:35
Unconvincing 56.4 56.86:20 58.11:10

presenter or viewers in the form of video segments. The clustered video segments

can potentially be used as training material for presenters to advise about using

certain speech expressions for a particular type of engagement with viewers. For

example in Table 3.4 it shows that clusters 3 and 7 have significant p-value with

‘Longwinded’. It may be used to guide a presenter to avoid speech expression of

cluster 3 and utilisation of speech expression in cluster 7 to make sure that their

presentations do not become ‘Longwinded’. Similarly, from a viewers perspective,

it is a recommender system that can predict the engaging talks using multi-modal

features. It can guide a potential viewer to avoid segments that have a higher

number of speech segments in that cluster. From the 3.15a, It is also observed

that the cluster 3 and 2 have a lesser distance between them than cluster number

3 and 7. Due to that lesser distance, the probability of sounding similar can be
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high for both clusters and the cluster number 2 instances may also be named as

engaging one. The clustering approach may also support in video summarization

and segmentation e.g. summarising all the Inspiring parts of a video etc.

3.4 Attitude Recognition of Video Bloggers

The video blogger’s attitudes have an influence on the viewers (e.g. level of atten-

tion gain on-line i.e. number of views). So an automatic attitude recognition sys-

tem can help potential video bloggers in providing feedback about their attitudes.

In this study, the acoustic and visual features (body movements that are captured

by low-level visual descriptors) are used to predict the attitudes annotated in the

speech of video bloggers. The automatic detection of attitude can be helpful in a

scenario where a machine has to automatically provide feedback to video bloggers

about their performance in terms of the extent to which they manage to engage

the audience by displaying certain attitudes. In this section, a novel automatic at-

titude recognition system is proposed using low level audio-visual descriptors that

is able to recognise the six attitudes (Amusement-A, Enthusiasm-E, Friendliness-

Fd, Frustration-Fr, Impatience-I and the added label for Neutral-N) using audio

and visual features. However, the classifiers and feature sets are also evaluated

for a three-class task: positive (Amusement-A, Enthusiasm- E, Friendliness-Fd),

negative(Frustration-Fr, Impatience-I) and neutral.

3.4.1 Experimentation

This section describes the dataset used for automatic detection of attitude along

with methodologies for acoustic and visual descriptor extraction and analysis of
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principle components for attitude recognition.

Data Set

The video-blog dataset used in this study is the same used in (N. A. Madzlan

et al., 2015) augmented with the annotation of hundred video segments with a

neutral label. In total, it contains the 613 audio-visual segments (for each subject

the number of segments is as follows: 34, 53, 54, 111, 46, 36, 93, 104, 34, 48)

from around 250 different videos that are annotated for six different attitudes

(Amusement-A, Enthusiasm-E, Friendliness-Fd, Frustration-Fr, Impatience-I and

Neutral-N) as depicted in Table 3.6. The data annotation was performed by two

annotators with an inter-coder agreement of 75% as reported in (N. A. Madzlan,

Reverdy, Bonin, Cerrato, & Campbell, 2016). The data comes from 10 different

native speakers of English. The duration of each video clips is around 1-3 seconds.

Table 3.6: Number of instances (video segments) for each attitude

Attitude Instances
Amusement 100
Enthusiasm 107
Friendliness 101
Frustration 103
Impatience 102

Neutral 100

Feature Extraction

This study analysis acoustic and visual descriptors for the recognition of attitudes.

Acoustic Features The openSMILE (Eyben, Weninger, Groß, & Schuller, 2013a)

tool kit is used to extract the acoustic features, this has been widely used for emo-
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tion recognition (Liu et al., 2014). The acoustic feature set contains the MFCC,

voice quality, fundamental frequency (F0), F0 envelope, LSP and intensity features

along with their first and second order derivatives. However, many statistical func-

tions are also applied to the features which resulted in-total of 950 feature for every

speech segment.

Visual Features For visual features, Dense Histogram of Gradients (DHOG),

Dense Histogram of Flows (DHOF) and Dense Motion Boundary Histograms

(DMBH) are extracted that have been used to capture the movements of subjects

for human action recognition in videos (Uijlings, Duta, Sangineto, & Sebe, 2015).

The purpose of using these features is to capture gesture movements, particularly

hand gestures as depicted in Figure 3.17.

Figure 3.17: An example of impatience attitude where the attitude is also reflected
in the hand gestures

The block size chosen for each descriptor (e.g. DHOG) is 6 by 6 pixel by 6

frames. For aggregating the descriptor response a single frame (out of 6 frames)

for HOG (frame 3), and 3 frames (frame 2, 4 and 6) for HOF and MBH is used.

The motivation behind this aggregation comes from a video classification task,

where the authors report the best aggregation size for a human action recognition
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problem (Uijlings et al., 2015). As a result, 144 descriptors are extracted for each

aggregated frame. Later, a Fisher vector representation of the visual descriptor

(Vedaldi & Fulkerson, 2008; Perronnin, Sánchez, & Mensink, 2010) is generated

using the two common clusters size 64 and 256 for Gaussian Mixture Model(GMM)

(Chatfield, Lempitsky, Vedaldi, & Zisserman, 2011). As a result, 18432 (cluster

size = 64 ) and 73728 (cluster size = 256 ) features are extracted for each visual

segment of attitude. The Fisher vectors are l2 normalised.

Feature Analysis

A high dimensionality of features are extracted so that it is not possible to evaluate

the significance of each feature. So the Principle Component Analysis (PCA) is

performed on the high dimensional data and then the ANOVA test is performed on

the first three components of the PCA and report the most significant component

p-values for both modalities (audio, visual). The visual feature set (l2 normalised

Fisher vector using GMM cluster size of 256) is analysed after applying PCA.

There are in total 6 different attitudes so in multiple comparison tests there are

15 possible combinations, and their p-values are reported in Table 3.7. In most

cases, acoustic features account for the only statistically significant differences.

However, for group E-I (comparison between Friendliness and Enthusiasm) the

visual modality differences are statistically significant, while audio differences are

not.
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Table 3.7: Multiple comparisons test results for six-class problem

Groups Audio (PC1) Audio (PCA2) Video (PCA2)
A-E 2.0701e-08 0.40376 0.99183

A-Fd 0.40677 0.99347 0.99999
A-Fs 0.98516 0.57615 1

A-I 0.98516 0.019799 0.038078
A-N 0.73227 0.96758 0.99725

E-Fd 7.0677e-06 0.14032 0.99769
E-Fs 2.0676e-08 0.0047534 0.98143

E-I 0.66379 0.78285 0.004536
E-N 2.0676e-08 0.073095 0.89597

Fd-Fs 0.10479 0.90017 0.99989
Fd-I 2.2372e-08 0.003089 0.028179

Fd-N 0.013747 0.99991 0.99158
Fs-I 2.0676e-08 2.0907e-05 0.049163

Fs-N 0.97814 0.96251 0.99921
I-N 2.0676e-08 0.0010494 0.13143

Classification

In this task, the ‘python Scikit-learn’ 5 is used for random forest classifier (Liaw &

Wiener, 2002; Breiman, 2002) model training and testing in 5-fold cross validation

settings. The classification is performed on 608 instances of attitude because for

some of the segments (5 out of 613) it is not possible to extract visual features.

As the number of instances is small compared to the number of features, random

forest learning is employed, which is robust in such situation as compared to other

methods (discriminant analysis, support vector machines and neural networks)

(Breiman, 2002). 2500 number of estimators for each feature set (e.g. DHOG)

are selected and for all visual features (DHOG, DHOF, DMBHx DMBHy) fusion

there are 10000 estimators, while there are 12500 estimators (number of trees in

the forest) for audio-visual fusion. The reason to choose a large number of trees

5http://scikit-learn.org/stable/ – last verified Aug 2017
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in the forest is the very high dimensionality of data (Breiman, 2002).

Video
Visual Descriptor 

Extraction

Dense HOG,HOF,MBH

Audio
Acoustic Feature 

Extraction using 

openSMILE

Fisher Vector

Generation

Classifier

(Random Forest) Predicted Labels

Figure 3.18: Attitude recognition process uses the feature fusion method

3.4.2 Results and Discussion

The results of the six-class problem are shown in Table 3.9 for each feature set

and the detailed confusion matrices are reported in Table 3.8. From the results,

it is observed that for the six-class problem all the features provide results above

blind guess (16.67%) and DHOF provides better results than other visual descrip-

tors, while the fusion of all the visual descriptors slightly increases the accuracy

(almost 2%). The acoustic feature set provides the best results with an accuracy

of 58.72% and the fusion of audio and visual features results in a small decrease

in accuracy (almost 2%). From the confusion matrix reported in Table 3.8, it is

observed that Amusement is difficult to detect as compared to other attitudes us-

ing the acoustic information, while Impatience is detected with low accuracy using

the visual information. The fusion of both modalities results in a general decrease

in accuracy but improves the accuracy of Impatience and Frustration. It is also

observed that Frustration and Amusement are often confused which means that

their audio-visual information appears similar to the classifier, hence the misclas-

sification of amusement as frustration (24 for audio, 28 using video and 30 with

fusion). Most of the Impatience instances (28 using audio and 38 using video) are
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classified as Enthusiasm using audio and visual information, but here the fusion

reduces this misclassification.

Table 3.8: Confusion Matrix for attitude Recognition. The visual analysis is per-
formed using cluster size of 256 for GMM for fisher vector generation

Audio Video Fusion

Table 3.9: Accuracy (%) of classifier for six-class problem (blind guess
( 16.67%))and three-class problem (blind guess is 33.33%)

6-Class Problem 3-Class Problem
Features majority Guess GMM 64 GMM 256 majority Guess GMM64 GMM256 Trees
DMBHx 16.67 25.00 28.29 49.84 51.15 53.29 2500
DMBHy 16.67 26.15 27.14 49.84 50.99 51.48 2500
DHOG 16.67 17.43 20.56 49.84 49.84 50.00 2500
DHOF 16.67 27.30 28.78 49.84 52.80 50.00 2500
Visual 16.67 25.02 30.59 49.84 50.66 51.64 10000
Audio 16.67 58.72 49.84 63.98 2500
Fusion 16.67 55.62 56.41 49.84 60.03 58.06 12500

Table 3.10: Number of instances (attitudes) along with classifier accuracy (six-
class problem) in percentage for each subject

Audio Video Fusion A E Fd Fs I N
S1 58.49 32.08 60.38 7 16 3 12 5 10
S2 60.38 33.96 71.70 1 8 2 13 19 10
S3 79.41 52.94 79.41 3 2 14 1 2 12
S4 61.47 33.03 55.05 26 25 10 25 14 9
S5 54.35 34.78 58.70 6 4 17 3 8 8
S6 40.00 14.29 37.14 4 2 10 6 3 10
S7 64.13 35.87 59.78 23 11 19 7 26 6
S8 46.15 26.92 44.23 21 22 12 27 9 13
S9 61.76 11.76 58.82 0 6 1 4 13 10

S10 66.67 22.92 50.00 10 11 8 5 2 12

The results of the three-class problem (depicted in Table 3.9 and Table 3.11)

shows that the acoustic feature set performs better than visual features, and the
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fusion causes a decrease in an overall accuracy. The visual features do not achieve

better results (although the blind guess is 33.33%, the majority guess is almost

50%) that can be due to the data imbalanced nature for three class problem,

because in the six-class problem the visual feature provides better results than

baseline (where the blind guess (16.67%) and majority guess is almost the same

due to the balanced nature of dataset). However, the audio features provide good

results well above blind and majority guesses. One of the main reason of mis-

classification might be that the inter-coder agreement between the two annotators

of the data set is 75% reported by N. A. Madzlan et al. (N. A. Madzlan et al.,

2015) and when a sub-corpus of the dataset is tested using the 20 subjects, the

inter-coder agreement becomes far less with a k-value of 0.27 using weighted Fleiss

Kappa (Fleiss, n.d.) as reported in (N. A. Madzlan et al., 2016). The results of the

three-class problem are also contradicted with a previous study (N. A. Madzlan et

al., 2015), one of the possible reason of this can be the introduction of the Neutral

label in this study instead of using the Friendliness as Neutral (N. A. Madzlan et

al., 2015). However, in the previous study, the imbalanced nature of the dataset

(majority guess is 40%) does not affect the results as much as in this case.

Table 3.11: Confusion Matrix for attitude Recognition (three-class problem). The
visual analysis is performed using cluster size of 64 for GMM for fisher vector
generation
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The visual descriptors’ poor performance in the three-class setting can be due

to the fact that the gestures are correlated with a specific type of attitude (like

Amusement and Frustration) instead of being related to the valence (positive and

negative) of the attitudes. Although the results of the acoustic features are promis-

ing in both type of classification problem, they are tested in a mixture model

setting where the training and test data may contain the same vlogger instances.

The performance of the classifier may be reduced in speaker independent training

settings and improved in speaker dependent settings. However, a detailed analysis

of the predicted labels of six class problem shows that the fusion is able to increase

accuracy for some subjects as depicted in Table 3.10. The dataset is balanced in

terms of the number of attitudes, but it is not balanced for each subject, and

that probably causes a decrease in accuracy for the fusion approach because the

classifier trained on less instances of a particulate attitude for a video blogger.

Moreover, the expression of attitudes is not in a natural interaction and probably

some subjects are better in expressing their attitudes using both modalities (good

actors) and some are not.

3.5 Political Debates: Data Collection and Syn-

chronisation

A political debates training system (multimodal dialogue system with abilities to

interact with humans in a natural way) could help humans in improving their pre-

sentation and negotiation skills through instructional advice. The development of

a debate training system requires audio-visual data for training. The development
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process is divided into different pilot studies. The goal of the initial pilot system

(pre-pilot system) is to primarily observe users and give feedback on their inter-

action, regardless of whether the interaction is successful. The system uses audio

and visual features and limits its interventions to inaction feedback (Helvert, Ros-

malen, Börner, Petukhova, & Alexandersson, 2015) in the form of a green or red

light, so as to minimise participant distraction during data collection. This limited

form of feedback is meant to reflect the system’s view on whether a participant is

interacting in a “successful” way or not based on its analysis of audio and visual

input features. Prosodic features, facial expressions and body gestures are used

by the system to make a judgement about the participant’s metacognitive skills.

A metacognitive skill is defined as the ability of a participant in an interaction

to understand, control and modify their own cognitive process. Such skills are

believed to be useful in real life learning and training processes, and in debating

skills in particular (Tumposky, 2004).

This study describes the data collection process of political debates, with par-

ticipants of drawn from the Hellenic youth parliament 6 student cohort.

3.5.1 Related Corpora

This section discusses the possibility of using other available corpora for the pur-

poses of the research outlined above, and their limitations.

IFA Dialogue Corpus

The IFA (Institute of Phonetic Sciences) dialogue corpus contains a collection of

face-to-face dialogue videos with annotated labels. Even though the language is

6http://www.efivoi.gr/ — Last verified July 2018
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Dutch the corpus gives examples of informal and friendly dialogue. This corpus

could be useful to model friendly behaviour which can be used especially for train-

ing humans as call centre agents after annotating the corpus for meta-cognitive

skills. There are in total 20 dialogue conversation videos, and each one lasts for

around 15 minutes. There is no topic restriction imposed on the participants of the

dialogue. The recording is performed with the two gen-locked JVC TK-C1480B

analogue video cameras. The overall duration of the corpus is around 5 hours. To

make the dialogue more useful and friendly, selection of participants is based on a

subset of the following factors:

• Good friends

• Relatives

• Long-time colleagues

The corpus can be used and distributed under the GNU General Public Licence

(an open source license) (van Son, Wesseling, Sanders, & van den Heuvel, 2008).

AMI Meeting Corpus

The AMI (Augmented Multi-party Interaction) meeting corpus (McCowan et al.,

2005) consists of 100 hours of recordings. The corpus is multimodal since it includes

several inputs: voice, video and writing. This corpus is annotated at different levels

(Dialogue Acts, Topic Segmentation, Individual Actions, Person Location, Focus

of Attention, AmiEmotion) and could be helpful to model the formal behaviour of

a person in an interactive communicative situation. The language of the corpus is

English and most of the participants are non native speakers. However, some of the
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recordings are performed in different rooms with different acoustic properties. The

AMI meeting corpus is released under a creative common attribution shareAlike

license.

MIMLA Data

The MLA-14 data contains students’ presentations (Ochoa, Worsley, Chiluiza,

& Luz, 2014c). In total there are 441 oral presentations delivered by Spanish

speaking students presenting projects about entrepreneurship ideas, literature re-

views, research designs, software design etc. Recordings were placed in regular

classroom settings and include multimodal data: speech, facial expressions and

physical movements in video, skeletal data gathered from Kinect 7 for each indi-

vidual, and presentations slides. In total, approximately 19 hours of multimodal

data is recorded. In addition individual ratings for each presentation is included

as well as a group grade related to the quality of the slides used when doing each

presentation. Each presentation has a rating based on the following performance

factors:

1. Structure and connection of ideas.

2. Presents relevant information with good pronunciation.

3. Maintains an adequate voice volume for the audience.

4. Language used in presentation according to audience.

5. Grammar of presentation slides.

6. Readability of presentation slides.

7https://developer.microsoft.com/en-us/windows/kinect – last verified Aug 2017
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7. Impact of the visual design of the presentation slides.

8. Posture and body language.

9. Eye contact.

10. Self confidence and enthusiasm.

Limitations

While the above described corpora provide useful resources in terms of training

and testing general models of dialogue interaction, none of them directly fits the

scenario of political debates. The first two corpora (IFA and AMI) are relevant

in terms of interactivity and multimodality, but lack the instructional element.

The MIMLA corpus is also situated in an educational context, contains rich mul-

timodal data, but lacks the dialogue and interactivity elements. These limitations

motivated the data collection activity described below.

3.5.2 Data Collection Process

Several studies indicate that a presenter should speak with lively voice and make

an eye contact with the audience. Moreover the presenter should stand straight,

avoid crossing his legs, and use his hands, body and face to do gestures at the

appropriate time (Stassen et al., 1993; Lamerton, 2001; Grandstaff, 2004; DeCoske

& White, 2010). However, the face pose information is also helpful in increasing

the speech recognition performance (Slaney, Stolcke, & Hakkani-Tür, 2014).

The political debates are also a form of public speaking situation which also

require public speaking skills which are reflected in speech and body gestures of a
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presenter. Hence, it is needed to gather the full skeleton/face data of participants

along with audio and video recordings to models the presentation’s skills. Since this

setting requires the use of several independent cameras (Kinect and conventional

video cameras), synchronisation issues need to be addressed. An example of such

issues is the dropping of frames by the Kinect sensors during recording, which

was addressed by duplicating some of the neighbouring frames. The motivation

behind adding conventional cameras for recording is to obtain high quality frames

for image analysis (emotion and effect recognition etc) in addition to Kinect’s

built-in skeleton tracking functionality.

This section describes the complete data collection process including recording

settings, environment, room and equipments specification. Around 2 hours of

audio-visual training material simulating the political debates is recorded. In total

This section 11 sessions have been recorded and each session lasts around 10-15

minutes.

Recording Settings

The recording takes place in controlled settings and it includes a quite room, no

windows behind participants and their faces are not in shadows. However, the

participants are allowed to face their opponent and audience but restricted to

remain in the field of view of Kinect during the debate. In a recording session,

there are two students standing in-front of an audience and debating on a social

issue (either smoking should be banned on public place or not). One student is in

favour of smoking on public places and the other student is against it. Any of them

can start the debate and after outlining their views (in 2-4 minutes), they listen

to their opponent’s intervention, taking turns as the debate proceeds. The overall
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duration of a session is typically 10 to 15 minutes. A schematic representation of

this recording set up along with recording hardware is shown in Figure 3.19.

Figure 3.19: Recording Settings

Wizard of Oz Software

A simple WOZ system prototype has been implemented in Python8 which consists

of two programs:

RedGreenUser.py the user’s interface, that is, a frame displaying two panels (a

red and a green one) which light up according to the feedback sent to the

participants by the wizard. The program starts as a server and listens for

feedback from up to 10 concurrent connections, which makes it possible for

multiple wizards to control the interface collaboratively.

RedGreenWOZ.py the wizard’s control panel, through which the wizard chooses

different categories of feedback to send to the participants’ screen.

8http://www.python.org/ – last verified Aug 2017
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Figure 3.20: Wizard (left) and participant (right) user interfaces.

Although the feedback is categorised, the participants only sees unspecified red

or green feedback on their screen. The wizard’s and participant’s user interfaces

are shown in Figure 3.20. The types of “red” (negative) feedback the wizard can

choose from are:

• a participant is speaking too fast,

• a participant is speaking too softly,

• a participant has inappropriately interrupted the other participant,

• a participant speaks too much,

• a participant averts gaze,

• other (a “catch all” category).

The types of “green” (positive) feedback the wizard can choose from are:

• a participant allows the other to provide feedback

• a participant does not interrupt the other’s speech,
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• a participant presents clear and concise arguments,

• a participant looks at the other while debating,

• other.

When any of these items is chosen by the wizard, RedGreenWOZ.py times-

tamps it and writes a log of this feedback to an XML file. In these trials two

such files are recorded per session, one containing the actual WOZ feedback (as

displayed on the participant’s screen) and an additional file generated by a “silent

wizard” who interacts with an instance of RedGreenWOZ which simply records

the feedback without actually presenting it to the participants. This file can be

useful, for instance, in assessing the level of agreement between the two wizards

through comparison of the feedback given by each of the participants on the time

line. For instance, a wizard might decide to give a “red” feedback when participant

A interrupts participant B, while the other wizard might decide to give “green”

feedback to participant B for allowing A to provide feedback.

The wizard log files will be synchronised with the other media streams gathered

during the sessions. See deliverable for further details on the processing and storage

of these data.

First sitting for Recording

In this sitting, three recording sessions (10-15 minutes each) have been recorded

using a real time feedback light (red or green) which is simulated by a wizard (as

described in section 3.5.2). Two Kinects sensors are used to track body skeleton

and facial landmarks and their details are saved in XML files. A video camera is
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also used to record the whole recording session besides Kinect sensors. A snapshot

of the recording set-up is shown in Figure 3.21.

Figure 3.21: A snapshot of recording settings of first sitting recordings using WOZ
software

Second Sitting for Recording

In this sitting, in total 10 sessions have been recorded. Three Kinect sensors (two

Kinect V1 and one Kinect V2) have been used to track the movements of skeletons

and facial features. To avoid the inaccuracies in tracking, the Kinects’ fields of

view should not overlap. However, in this case the proposed set-up have an overlap

which might affect the tracking performance of Kinect. Two Kinect V1 sensors,

each facing one participant as much as possible, is placed at a distance of 1.5-2

meters to the participants. Participants are facing each other and/or audience,

and markers will be placed on the floor (movement space: 50cm x 50cm). For

Kinect V1, the skeleton and face information are tracked and time stamped in real

time and saved in XML files. Beside that Kinect V2 is also used to record the

raw data using Kinect Studio 2.0 for off-line processing. The motivation behind
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Figure 3.22: A snapshot showing Synchronised video Streams and Kinects Tracking
of second sitting recordings (WOZ software is not used.)

using the Kinect V2 is that to create backup in case any Kinect V1 crashes or vice

versa. In future, Kinect V2 raw data can also be used to extract the new feature

(hand open or close etc.) The difference between previous sitting and this one is

the removal of feedback tool (described in Section 3.5.2), introduction of Kinect

V2 and placing marker on the floor instead of just telling the participants to be

remain in a range.

Data Synchronisation

Synchronisation of video and audio streams is performed using Final Cut pro X and

a snapshot of the synchronised session is shown in Figure 3.22. Moreover the details

of each synchronised stream (e.g. time offsets) are imported in FCPXML files. The

Kinect devices were started manually so these offset help us to synchronise the

data with the other streams. To accomplish this objective, the tracked XML files

are parsed using python and update their time stamps (by adding or subtracting

the offset). Automatic speaker diarization is performed using the LIUM toolkit
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Table 3.12: Speaker ID, their role (pro and against) and the location of speaker
(left or right)

Setting Session No. Speaker ID (Left) Role Speaker ID (Right) Role Duration
Pre Pilot 1 S5 pro S6 against 11:10
1st sitting 2 S6 against S4 pro 09:50

3 S4 against S5 pro 07:07
1 S0 pro S1 against 10:25
2 S2 pro S3 against 11:39
3 S0 pro S2 against 09:43
4 S4 pro S1 against 12:05
5 S5 pro S0 against 13:26

Pre Pilot 6 S3 pro S5 against 13:09
2nd sitting 7 S1 pro S4 against 13:11

8 S4 pro S0 against 19:39
9 S1 pro S3 against 16:31
10 S3 pro S4 against 11:49
11 S5 pro S0 against 13:18

(Rouvier et al., 2013) and speech chunks are extracted using speaker diarization

information.

Speaker Characteristics

The participants of debate were recruited by the HeP (Hellenic Parliament)9. The

speaker are young school students from two different schools and were aged between

17 to 20 year. They are non native speakers (Greek) of English, know each other,

have participated in HeP annual debating sessions and take part in data collection

activities as volunteers. There are in total 6 participants, three females (S2, S3

and S5) and 3 males and their role (smoking should be banned on public places

(smoking should be banned on public places (pro).) and the opposite (smoking

shouldn’t be banned on public places (against). ) and duration of each session is

depicted in Table 3.12.

9https://www.hellenicparliament.gr/en/
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3.6 Conclusion

This chapter mainly presents public speaking training systems for three different

kind of public speech and also describes a data collection activity of students’

debates which can be used to train a machine to provide instructional advice to

students for preparing them for debates. The conclusion of each study is described

below.

3.6.1 Students Presentations

This study presents a system for exploiting audio-visual features for public speak-

ing abilities detection and shedding light on how prosodic and visual features are

related to the delivery of a presentation. The proposed system and empirical find-

ings may be useful in the field of multimodal learning analytics which seeks to

analyse different aspects of public presentations in order to understand the learn-

ing process and provide feedback to the trainee presenter. These techniques have

been implemented as a component of a multimodal dialogue system intended to

monitor the presentation performance of a public speaker, for example the EU

METALOGUE project (Alexandersson et al., 2014). The results of this study are

published in international conference (Haider, Cerrato, Campbell, & Luz, 2016).

3.6.2 TED Talks

The high level visual, paralinguistic and spoken expression feature have a rela-

tionship with user engagement. Camera views are not based on some random

selection. But it is not possible to increase engagement level by just increasing or

decreasing the number of camera views in a video. These views are depended on
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the speaker’s way of speaking, if he/she displays emotions or do gestures then a

professional camera man/editor may take his/her close up shot and if he/she uses

body language and slides then a camera man will focus through ‘Distance Shots’

and at the end if some content is really important then a camera man/editor just

show the slides. Believing that the camera men/editors are highly professional,

these views may help in building some feedback to the speaker e.g. they need to

show more content (because their video has less number of ‘person not on screen’

camera shots), use of more body language (because their video has less number of

‘Distance Shots’ ) and facial expressions (because their video has less number of

‘close-up shots’). Moreover, these features can also predict the engagement level

of a talk. The proposed approach also demonstrates that characteristics of speech

can be used to detect the engagement level of a talk. It is also a step towards

generating feedback in the form of video chunks for presenters so that they will

know the parts of videos which are engaging or not. It is also possible to create

summary of a TED talk using the engaging parts of a talk. The results of this

study are published in international conferences (Salim, Haider, Conlan, Luz, &

Campbell, 2015; Haider et al., 2015; Haider, Salim, et al., 2017)

3.6.3 Attitude Recognition of Video Bloggers

This study have shown that acoustic and visual features can be used to detect the

set of attitudes labelled in a corpus of vloggers with good accuracy. While the fu-

sion of audio-visual descriptors does not improve accuracy in general, it improves

accuracy of Frustration and Impatience detection in the six-class problem. It is

also observed that the fusion causes an increase in accuracy for some subjects.
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Based on the results of the three-class and six-class problems, it is concluded that

the attitude recognition system can provide better results for balanced datasets

(sixclass problem). The results of this study are published in international work-

shop (Haider, Cerrato, Luz, & Campbell, 2016).

3.6.4 Political Debates: Data Collection and Synchronisa-

tion

The data recorded with the setup and according to the procedures described in this

study have been made available to the public using cloud server10. Approximately

3 hours of data have been recorded, and all recorded streams have been precisely

synchronised and pre-processed for statistical learning. The data consists of audio,

video and 3-dimensional skeletal movement information of the participants. The

novel collected data will facilitate the development of a dialogue system which

will exploit metacognitive reasoning in order to deliver feedback on the user’s

performance in debates and negotiations. This data collection activity is published

in international conference (Petukhova et al., 2018) and workshops (Haider, Luz,

& Campbell, 2017, 2016b).

10metalogue.scss.tcd.ie/owncloud/ – Last verified September 2017
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Chapter 4

Cognitive Processing Components

for Interactive Systems

4.1 Introduction

This chapter describes methods used to propose the systems which can improve the

interaction abilities of machines. It presents novel systems which can automatically

detect if someone speaks to machine or not using multi-sensor information. A

cognitive state detection system is also proposed which can help in sensing the

user experience with a machine translation system in the form of cognitive states

(amusement, frustration, surprise and neutral). In the end, an active speaker

detection system is proposed which can detect who is speaking. The validation of

hypothesis, systems’ evaluation and discussion are also the part of this chapter.
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4.2 Speaking to a Machine or Not?

This section describes the novel methods for detection of On-Talk (Speaking to a

machine) and Off-Talk (Speaking but not speaking to a machine).

4.2.1 Dataset

A data set was used which consists of recorded human dialogues mediated through

a speech-to-speech machine translation system (Hayakawa, Campbell, & Luz,

2014). The participants communicated remotely through the system to solve a

map task problem, where one participant (the instruction giver) has a complete

map and the other (the instruction follower) has a map with missing information

(Anderson et al., 1991). Three different types of talk were observed in this set-

ting: 1) on-talk, where the speaker directed speech to the ASR for transmission

to the other participant 2) self-speaking, where participants spoke to themselves

(e.g. venting frustration at system component failure) producing utterances not

intended for ASR or transmission, and 3) other-talk, where participants spoke

directly to other people than their remote task partner (e.g. a colleague that hap-

pened to be in the same room). Both self-speaking and other-talk are regarded

as off-talk in this study. The data used for the research described in this paper

includes precisely synchronised audio and EEG signals, from the Interlingual Map

Task (ILMT-s2s) corpus (Hayakawa, Luz, Cerrato, & Campbell, 2016).

The ILMT-s2s System In the recording setup of the system, two subjects

are communicating with each other from two different locations (rooms) using

the ILMT-s2s system. The ILMT-s2s machine translation system is developed
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Figure 4.1: Maps, with differences highlighted

using off-the-shelf technologies as depicted in Figure 4.2. The subjects use a push

to talk button to speak to the other person. However, they cannot hear each

other, and the speech synthesis technology provides the output of ASR and MT

to them as depicted in Figure 4.3 . Only one of the dialogue participants uses the

physiological recording equipment (Hayakawa, Luz, et al., 2016) in any particular

session. In total, there are 30 participants (15 English and 15 Purtogise speakers).

However, half of them are equipped with the biosignal recording equipment, and

the duration of dialogue is between 20 and 74 minutes. This study uses the datasets

of 13 subjects (who are equipped with bio signals equipment). The number of on-

off talks produced by all subjects along with the mean and standard deviation

values is depicted in Table 4.1.

Audio Recordings Two audio and five video streams are part of the ILMT-s2s

corpus. However, this study uses the audio recorded by the two video cameras not
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Figure 4.2: ILMT-s2s System used to collect the data
(Hayakawa, Luz, et al., 2016)

Figure 4.3: User Interface of the ILMT-s2s System
(Hayakawa, Luz, et al., 2016)
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Table 4.1: Dataset description along with number of subjects their on-off talk
instances with mean and standard deviation of duration (in seconds)

Subject Self Talk On Talk other Talk
Instances mean Std. Instances mean Std. Instances mean Std.

S1 25 0.65 0.26 33 0.87 0.88 0 - -
S2 55 0.77 0.70 100 2.1 7.8 4 0.81 0.54
S3 10 0.65 0.31 120 1.87 7.13 30 0.83 0.90
S4 5 0.74 0.24 98 1.65 7.83 0 - -
S5 46 0.73 0.53 92 2.2 8.12 32 0.84 0.74
S6 60 2.35 10.01 103 1.21 1.32 57 0.89 0.80
S7 40 0.77 0.81 73 2.27 9.08 6 0.79 0.25
S8 2 0.89 0.26 201 1.52 5.56 0 - -
S9 106 1.61 7.53 49 1.66 1.8 0 - -

S10 10 0.83 0.28 57 0.76 0.70 0 - -
S11 44 0.75 0.72 78 2.2 8.79 0 - -
S12 13 0.72 0.29 34 0.79 0.86 12 0.75 0.38
S13 6 0.84 0.31 89 1.63 8.20 1 0.93 0

by the push to talk microphone.

w/o biosignal monitor w/ biosignal monitor

Figure 4.4: Recording setup.

EEG Recording The Electroencephalography (EEG) is recorded using the Mind

Media B.V., NeXus-4. The EEG sensors are placed in the F4, C4, P4 (located at

right hemisphere of the brain that is responsible for the control of speech prosody

(Shapiro & Danly, 1985; Weintraub et al., 1981)) with a ground channel placed at

A1 of the 10–20 location system as depicted in Figure 4.5. The sampling frequen-

96



cies for the EEG is 1,024 Hz.
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EEG Ground channel sensor: A1

Figure 4.5: 10 – 20 system layout map

4.2.2 On-Off Talk Detection

This study has evaluated the discrimination power of different modalities (audio

and bio) and proposed novel system to predict the on-off talk.

For the following experiments, the start and end times of the On-Talk , Off-Talk

label annotation were used to segment the synchronised audio and biosignal files.

Two of the fifteen EEG recordings provided faulty readings and were excluded

from the dataset. This resulted in 1,127 On-Talk , 554 Off-Talk (422 Self and 132

Other) utterance locations being used for this experiment. For the detection of

On-Talk and Off-Talk audio and biosignals are extracted, and the potential use of

these features is explored to identify On-Talk and Off-Talk .

Exp. 1: A 2-Class experiment which distinguish the difference between On-Talk

and Off-Talk .

Exp. 2: A 3-Class experiment which distinguish the difference between On-Talk ,

Off-Talk Self and Off-Talk Other .

Feature Extraction

The following features were used for the classification task.
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Audio features: For the classification task, the INTERSPEECH 2013 Com-

putational Paralinguistic Challenge (ComParE) feature set (Schuller et al., 2013b)

is used. This contains energy, spectral, cepstral (MFCC) and voicing related low-

level descriptors, as well as other descriptors such as logarithmic harmonic-to-

noise ratio (HNR), spectral harmonicity, and psychoacoustic spectral sharpness.

To ignore the most irrelevant acoustic feature, K Means clustering algorithm is

employed. This divides the feature set into 9 clusters and of these only the cluster

with highest number of features is selected for classification. As a result, the total

number of acoustic features reduces from 6,373 to 6,356.

Biosignal features: For the biosignals (HR, SC and EEG), Shannon entropy,

mean, standard deviation, median, mode, maximum value, minimum value, max-

imum ratio, minimum ratio, energy and power are calculated. This feature set

is calculated for each biosignal and its first and second order derivative. In total

33 features for each biosignal are extracted. The EEG lower gamma (frequency

band) signals from sensor A and B (10 – 20 system: F4–C4 and C4–P4) are con-

sidered in this initial study to evaluate the EEG discrimination power which leads

to further studies reported in Section 4.2.3 and 4.2.4. The minimum ratio of an

observation is measured by counting the number of instances which have a lower

value compared to their preceding and following instance and then dividing it by

the total number of instances in that observation. Similarly, the maximum ratio

of an observation is measured by counting the number of instances which have a

higher value compared to their preceding and following instance and then dividing

it by the total number of instances in that observation.
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Classification Method

The classification method was implemented in MATLAB1 using Statistics and Ma-

chine Learning Toolbox and employed discriminant analysis in 10-fold cross vali-

dation experiments. The classification method works by assuming that the feature

sets of the classes to be discerned are drawn from different Gaussian distributions

and adopting a pseudo-linear discriminant analysis (i.e. using the pseudo-inverse

of the covariance matrix (Raudys & Duin, 1998)).

Result: Detection of On-Talk & Off-Talk

The following results were obtained. See Table 4.2 and Figure 4.6 for details.

Table 4.2: Discriminative Analysis Method Results – F-Score (%)

The results of experiment 1 show that the acoustic and biological measures signifi-

cantly contribute to the prediction of On-Talk and Off-Talk . The acoustic feature

set provides the optimum performance with a maximum F scores of 94.14% for

On-Talk and 87.55% for Off-Talk . Also, the SC feature set performs better than

other biological features, but a fusion of the bio feature sets causes an increase

1http://uk.mathworks.com/products/matlab/
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Figure 4.6: Discriminative Analysis Method Results

in prediction. However, a fusion of acoustic and bio features improves the perfor-

mance in two cases, but has almost no effect as compared to audio feature alone

when audio features are fused with all the bio features. From the results of exper-

iment 2, it can be seen that the 3-Class results for On-Talk are almost the same

as the 2-Class On-Talk results. Also results for Off-Talk Other are poor using bio

features alone (max. 13.33%) but significantly improve when combined with the

acoustic feature set (38.13%) — considering that the dataset is imbalanced, with

less instances for Off-Talk Other (7.85%) these results can be regarded as quite

good. The HR is found to have more prediction power as compared to EEG and

SC and the fusion of biosignals improves the prediction. A decrease in Off-Talk

Other results is observed when audio (36.64%) feature set is combined with EEG

(33.60%) and with HR and SC (34.63%) feature sets. This might be due to the

lower number of bio features since when they are fused all together (All Bio: HR,

SC, and EEG) with an increase in the number of bio features, the highest F-Score
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(38.13%) is obtained as expected.

Although the acoustic feature set performs best as compared to other signal

sets, it is believed that there is still room for improvement from the biosignals since

they currently use a limited number of features (only 33 features for each signal)

and may contain some noise components (head movements of subjects etc).

4.2.3 Improving Response Time of On-Talk & Off-Talk De-

tection System

This section describes the proposed novel models for automatic detection of on

and off-talk using prior to articulation EEG information which could decrease the

response time of an interactive speech driven system in accepting or rejecting a

speech utterance as depicted in Figure 4.7. This model employs electroencephalog-

raphy (EEG) features collected prior to articulation. The alternative models are

assessed that employ such features in isolation and in combination with prosodic

feature for on- and off-talk detection. The EEG signal is recorded from the right

hemisphere of the brain, which is the area responsible for the control of speech

prosody (Shapiro & Danly, 1985; Weintraub et al., 1981; Ross & Mesulam, 1979).

VAD

Speech segment (start time 

and end time) 

Feature 

fusion

Audio

Predicted 

Label

Feature 

extraction

Bio Signal
Feature 

extraction 

and buffering 

Start time On-Off Talk 

detection

Feature selection prior to 

articulation from the buffer 

Figure 4.7: The system architecture where the system processes the EEG features
prior to articulation as soon as it received 10 ms of audio.
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Feature Extraction and Classification method

EEG Power Spectrum Feature Extraction (EEG Frame): The feature extraction is

performed on the EEG signal two seconds before articulation. A frame rate of 250

ms is used for feature extraction. The first step is to take the Fourier transform of

the EEG signal frame and then calculate the power spectrum. Later a frequency

bin resolution of 5 Hz (from 0-40 Hz) is set that resulted in 8 frequency bins. The

frequencies above 40Hz are ignored in this study, in line with clinical standards. It

is noted that, while contrary to a common misconception the human skull does not

filter out higher frequencies (Gotman, 2010), neural activity at such frequencies

is harder to detect due attenuation caused by the skull’s resistivity (Oostendorp,

Delbeke, & Stegeman, 2000). In future work, It is intended to explore higher EEG

frequency bands. For the current study, however, the power in each frequency bin

bellow 40Hz, and the ratio and range of power between all eight frequency bins

were calculated, resulting in 64 features per frame for each EEG sensor.

Prosodic Features: The mean and standard deviation value of sound intensity,

loudness and fundamental frequency were extracted from the speech segments

using the openSMILE toolkit (Schuller et al., 2013b).

Classification Methods: This study uses the Scikit-learn2 implementation of

the random forest (RF) classifier (Liaw & Wiener, 2002; Breiman, 2002) for model

training and testing in a 10-fold cross validation setting. As the number of in-

stances is close to the number of features in some of the cases, random forest

(250 trees) learning is employed, which is robust in such situations as compared

to other methods (discriminant analysis, support vector machines and neural net-

2http://scikit-learn.org/stable/ – last verified: May 2017.
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Figure 4.8: Frame (250 ms) level feature Extraction on EEG Signal

works) (Breiman, 2002). K-nearest neighbour (with K=3) is also used for com-

parison. The results are assessed using the A-weighted F1-score statistic which is

the average of F1-score of both classes (on- and off-talk). The baseline is 50%.

Results and Discussion

The discrimination power of EEG signals two seconds prior to articulation with a

frame size of 0.25 seconds on 0–40Hz frequency bands is evaluated. In total, the

following three different experiments are conducted.

Experiment 1: This setting evaluates the discriminative power of eight frames

(250 ms) of EEG (2 seconds before articulation) for on-off talk classification using

the KNN and random forest classifiers. The EEG signal from both sensors is used

in this experiment. The prediction power of each sensor is evaluated individually

and in combination (feature fusion of Sensor A and Sensor B). The features of
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all frames are then fused for classification. The results are depicted in Table 4.3.

The best result (80.25%) is obtained using the frame level features of both EEG

sensors that are extracted from two second prior to articulation.

Table 4.3: 10-fold cross validation Results (A-Weighted F-Score %) for each frame
before articulation, and feature fusion of one second (4 frames) and two seconds
(8 frames) before articulation.

EEG Features Window (sec)
Sensor A (F4-C4) Sensor B (C4-P4) Fusion
KNN RF KNN RF KNN RF

EEG Frame 1 0.00-0.25 53.90 72.09 52.26 63.27 53.12 79.40
EEG Frame 2 0.25-0.50 54.33 73.00 55.68 64.92 53.94 79.08
EEG Frame 3 0.50-0.75 51.24 70.99 52.61 63.86 56.17 79.21
EEG Frame 4 0.75-1.00 54.88 72.20 51.99 62.08 56.45 78.70
EEG Frame 5 1.00-1.25 53.65 71.24 54.23 64.67 54.20 79.05
EEG Frame 6 1.25-1.50 55.38 71.86 52.99 64.57 55.49 79.38
EEG Frame 7 1.50-1.75 55.66 72.75 55.52 66.36 57.57 79.21
EEG Frame 8 1.75-2.00 55.98 71.66 54.65 64.75 56.22 78.08
EEG Frame 1S 0.00-1.00 57.52 73.75 52.96 64.01 55.75 79.50
EEG Frame 2S 1.00-2.00 51.80 72.65 53.84 66.82 56.21 79.46
EEG Frame (1S+2S) 0.00-2.00 54.12 74.04 52.79 64.93 54.97 80.25

Experiment 2: The prosodic features are used for the classification task, and

the results of the prosodic features are depicted in Table 4.4. The best result

(81.83%) is obtained using the fusion of prosodic features (mean and standard

deviation of loudness, intensity and fundamental frequency).

Experiment 3: The results of experiments 1 and 2 suggest that the EEG

signal of all eight frames and their combinations are able to predict the on- and off-

talks, well above the 50% baseline. It was also observed that the EEG signal fusion

from both sensors also improves accuracy. Therefore, the acoustic information are

fused with the EEG features of both sensors and two second before utterance, and

performed inference. The fusion of EEG and prosodic features improves results as

depicted in Table 4.4.

Discussion: The classification results show that EEG features prior to artic-
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Table 4.4: 10-fold cross validation Results (A-Weighted F-Score %) with a base-
line of 50%

Features KNN RF
Intensity 74.37 NaN
Loudness 75.89 75.24
Fundamental Frequency (fo) 67.49 68.63
Audio Fusion 68.29 81.83
Audio + EEG Frame 1 53.44 86.38
Audio + EEG Frame 2 54.87 86.72
Audio + EEG Frame 3 56.56 86.76
Audio + EEG Frame 4 56.48 86.39
Audio + EEG Frame (1S+2S) 54.93 85.95

Table 4.5: Confusion Matrix of the best results obtained from the three experi-
ments

Fusion Audio EEG
Off-Talk On- Talk Off-Talk On- Talk Off-Talk On- Talk

Off-Talk 407 146 378 175 391 162
On- Talk 40 1086 82 1044 126 1000

ulation can predict on- and off-talk as depicted in Table 4.3. EEG signal from

F4-C4 location (sensor A (74.04%)) provides better results than the C4-P4 loca-

tion (sensor B (66.82%)). The predictive accuracies of both EEG Sensors are also

compared using the mid-p-value McNemar test with a null hypothesis which is

sensor A and sensor B have equal accuracy for predicting the target (on- and off-

talk). The statistical test reject the null hypothesis (p = 0.01). The RF classi-

fier provide better results than KNN using EEG features and the both classifiers

predictive accuracies are also compared using the mid-p-value McNemar test with

a null hypothesis which is the KNN and RF classifiers both have equal accuracy

for predicting the target (on- and off- talk). The statistical test rejects the null

hypothesis (p = 3.2688e− 39).

The EEG signal of 2 seconds prior to articulation is investigated. The most
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discriminative time location in EEG signal for classification is frame 1 (0.000.25

seconds before utterance) and the fusion of 8 frames (2 second prior to articula-

tion) yields an increase in performance. However, the fusion of both sensor features

also improves the performance. The confusion matrix of the best results obtained

from the three experiments are shown in the Table 4.5. The mid-p-value McNe-

mar test is also conducted to compare the best results of the three experiments

with a null hypothesis which is the audio, EEG and fusion features have equal

accuracy for predicting the target (on- and off- talk). The test rejects the null hy-

pothesis for ‘EEG and fusion’ (pExp.1−Exp3 = 2.7336e− 12), and ‘audio and fusion’

(pExp2−Exp3 = 4.4818e− 07) but unable to reject the null hypothesis for ‘EEG and

audio’ (pExp2−Exp1 = 0.11).

The basic prosodic features are also evaluated for the classification task that

results in better results than EEG features, and the fusion of EEG and acoustic

features improves the accuracy. However, the EEG system has a quick response

time (RTEEG) as compared to the prosodic system (RTAudio) as depicted in

Figure 4.9.

Speech Segment Processing time

Prior to articulation information Processing time output

output

Start time End time

RTEEG

RTAudio

Improvement

Figure 4.9: The baseline of the response time (RTAudio) and the proposed system
response time (RTEEG)

To explore the mutual information of the best results of each experiment, the
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Venn diagram is used as shown in Figure 4.8. The blue circle represents the

labels (target), yellow circle represents the predicted labels using audio, green

circle represents the predicted labels using EEG and the red circle represents the

predicted labels using fusion of audio and EEG. From the Venn diagram, it is

observed that there are 1207 instances which are correctly recognised by all three

experiments (EEG, Audio and fusion of ‘EEG and Audio’). However there are

75 instances (70 are off-talk and 5 are on-talks) which have not been recognised.

Those instances belong to S1 (7 off-talk), S2 (2 on-talks), S3 (20 off-talk), S4 (1 on

talk), S5 (25 off-talk), S6 (3 off-talk and 2 on-talk), S8 (2 off-talk), S9 (1 off-talk),

S10 (6 off-talk) and S13 (6 off-talk). The fusion is able to recognise 11 instances

(7 on-talk and 4 off-talk) correctly which have not been recognised by EEG and

audio. Those instances belong to S4 (1 off-talk) , S5 (2 off-talk and 1 on-talk), S8

(1 off-talk and 2 on-talk), S10 (1 on-talk) and S11 (3 on-talk).

Figure 4.10: Venn Diagram showing the mutual information obtained from the
best results of the three experiments.

The right hemisphere is responsible for the control of speech prosody, the results
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obtained from the EEG signal may be due to the prosodic information process-

ing in the brain. The audio features (81.83%) provide almost the same results

as the EEG features (80.25%). This may be due to the fact that the intonation

pattern of produced speech is defined before articulation, as suggested by previ-

ous studies (Bock, 1982; Dell, 1986; Garrett, 1975, 1988; Kempen, 1977; Kempen

& Hoenkamp, 1987; Levelt, 1989). The loudness feature provides better results

(75.24%) than other prosodic features, highlighting the importance of speech vol-

ume variations in distinguishing between on- and off-talk. This is consistent with

the observation by Batliner et al. that users tend to interact with an ASR system

as they would with a person who has a hearing impairment (Batliner, Hacker, &

Nöth, 2009). Although the prosodic features provide slightly better results than

EEG, the prosodic models may perform less well in a noisy environment as the

data is collected in a controlled acoustic environment.

The failure of system components (e.g. ASR) may results in a kind of behaviour

that is not as common as in human-human communication, as discussed above.

Therefore, it might be assumed that a brain-computer interface (where there is

no overt speech) might experience the same situations (the brain signal reading

components fails) that results in a neural activity (off-thoughts) which should not

be processed by the system. While the proposed models may also work in a covert

speech situation (on- and off-thoughts), the brain has different activity patterns for

overt and covert speech (Christoffels, Formisano, & Schiller, 2007; Pei et al., 2011),

which may cause a decrease in accuracy of the proposed models for brain-computer

interfaces.
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4.2.4 On-Talk & Off-Talk Talk Detection using Wavelet

Analysis

In this section, wavelet analysis is performed on the EEG signal to demonstrate

the discrimination power of different EEG frequency bands. A novel automatic

On-Off Talk detection system is also proposed using the EEG Signal.

EEG Signal Decomposition

The EEG signal (S) is decomposed into 11 components using the Discrete Wavelet

Transform (DWT) using MATLAB,3 where S = d1 + d2 + d3 + ...+ d10 + a10 as

shown in Figure 4.11 and Figure 4.12. The DWT helps us in evaluating the dis-

crimination power of each component (d1, d2 etc) for On-Talk Off-Talk prediction.

A wavelet transform analysis of off-talk and on-talk samples is depicted in

4.12a and 4.12b, respectively, showing that the frequency band have different

amplitudes and variations for both types of talks.

Feature Extraction

The following features are used for the classification task.

Audio features: The openSMILE (Eyben et al., 2013a) is used to extract the

acoustic features that has been widely used for emotion recognition (Liu et al.,

2014). The acoustic feature set contains the MFCC, voice quality, fundamental

frequency (F0), F0 envelope, LSP and intensity features along with their first and

second order derivatives. However, many statistical functions are also applied to

the features which resulted in-total of 988 feature for every speech segment.

3https://uk.mathworks.com/products/matlab.html – last verified Aug 2017
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Figure 4.11: Structure of the tenth level wavelet decomposition of EEG.

110



d
1

-5
0
5

d
2

-5
0
5

d
3

-5
0
5

d
4

-5
0
5

d
5

-5
0
5

d
6

-5
0
5

d
7

-10
0

10

d
8

-5
0
5

d
9

-5
0
5

d1
0

-20
0

20

100 200 300 400 500 600 700 800 900 1000

a
1

0

890
900
910

 x[n]

E
E

G
 (

V
) 

 n
(a) EEG epoch during off talk

-10
0

10

-10
0

10

-10
0

10

-10
0

10

-5
0
5

-10
0

10

-5
0
5

-10
0

10

-10
0

10

-10
0

10

100 200 300 400 500 600 700 800 900 1000
1060
1080
1100

 x[n]

 n

E
E

G
 (

V
) 

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

d
9

d1
0

a
1
0

(b) EEG epoch during on talk

Figure 4.12: A Wavelet decomposition of EEG signal (S) into 11 components
(d1, d2, d3, ....., d10, a10) where S = d1d2 + d3 + .....+ d10 + a10
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Physiological features: For each annotated label the Shannon Entropy, mean,

std, mode, min, max, median, energy, power, minimum ratio and maximum ratio

along with their first and second order derivatives are extracted. As a result, 33

features for HR and SC are obtained. For the EEG signals, there are 66 features

for each component (e.g. d1, d2); 33 for sensor A and 33 for Sensor B. In total,

there are 726 features (EEG) for each annotated label.

Hypothesis Testing

This study’s working null hypothesis is as follows, Ho : The data (Shannon entropy

of EEG Signal) of On-Talk and Off-Talk comes from the same distribution. In

order to investigate this hypothesis, a Kruskal-Wallis test is performed, comparing

the Shannon entropy of both kinds of utterances. For this purpose, an average

of the Shannon entropy values from EEG sensor A (F4–C4 location) and B (P4–

C4 location) are used. The motivation to chose Shannon entropy for statistical

analysis is to demonstrate that the EEG signal recorded is not random during

On-Talk and Off-Talk utterance which is indicated by high negative values of

Shannon entropy and the difference between both groups is statistical significant

(p) as depicted in Table 4.6.

The test results show that a significant difference exists between the On-Talk

and Off-Talk utterances for all frequency bands. This may be due to the neural

activity for the lower frequency bands due to the sensitivity of these bands to

neural activity. However the higher frequency bands, that are more sensitive to

muscle artefacts than lower bands, are also statistical different for On-Talk and

Off-Talk .
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Table 4.6: Kruskal-Wallis Test Results using Shannon Entropy.

Component p Off (s) On (s) Off (m) On (m)
d1 (256–512 Hz) 0.00 23e5 71e5 −13e4 −95e4

d2 (128–256 Hz) 0.00 92e5 15e6 −45e4 −20e5

d3 (64–128 Hz) 0.00 34e6 43e5 −15e5 −68e4

d4 (32–64 Hz) 0.00 44e9 16e5 −18e8 −31e4

d5 (16–32 Hz) 0.00 21e9 64e4 −90e7 −13e4

d6 (8–16 Hz) 0.00 12e9 13e5 −54e7 −24e4

d7 (4–8 Hz) 0.00 16e8 27e5 −69e6 −51e4

d8 (2–4 Hz) 0.00 20e8 51e5 −89e6 −97e4

d9 (1–2 Hz) 0.00 20e8 90e5 −87e6 −17e5

d10 (0.5–1 Hz) 0.00 25e7 15e6 −13e6 −28e5

a10 (0–0.5 Hz) 0.00 47e11 29e12 −28e11 −81e11

Classification Methods

The results reported in section 4.2.4 suggest that the EEG values (Shannon en-

tropy) may serve as good predictors of Off-Talk events. Therefore, this study

investigated automatic detection of ‘On-Talk and Off-Talk utternaces’ using four

machine learning methods, namely Linear Discrimination Analysis (LDA), Near-

est Neighbour (KNN with K=15), Decision Trees (DT) and Random Forest (RF).

These classifiers are employed in MATLAB using the statistics and machine learn-

ing toolbox but the RF classifier is employed in python using scikit-learn library.4

LDA works by assuming that the feature sets of the classes to be discerned are

drawn from different Gaussian distributions and adopting a pseudo-linear discrim-

inant analysis (i.e. using the pseudo-inverse of the covariance matrix (Raudys &

Duin, 1998)). KNN and DT are non-parametric methods.

Results and Discussion

An experiment is conducted using, different EEG frequency bands, HR, SC and

prosodic features. The results are assessed using the A-weighted F -score statistic

4http://scikit-learn.org/stable/ – last verified Aug 2017
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(with the β parameter set to 1). In this setting, the A-weighted F -score is equiv-

alent to the A-weighted harmonic mean of the precision and recall scores and the

baseline is 50%.

The classification results of the 1,127 On-Talk and 554 Off-Talk utterances are

reported in Table 4.8. Of the four classification methods, the results indicate that

the Random Forest (RF) classifier provides the best results in all tested settings.

The highest frequency band (d1) achieved an A-weighted F -score of 72.19%, and

the second highest frequency band (d2) provides an A-weighted F -score of 68.77%.

The reason why results are better using high EEG frequency bands is probably that

these frequencies are reflecting speech related muscle artefacts in the recorded EEG

signal, as explained in Section 2.2.2. The EEG frequencies (> 15 Hz and < 40 Hz)

contains muscle artefacts and neural activities, and able to detect the On-Talk and

Off-Talk .

The lowest frequency band a10 produced the best results (74.80%) for the

classification task which may be due to the fact that the right hemisphere of

human brain is responsible for speech prosody and that prosodic information may

be encoded in lower bands of the EEG signal because the lower bands < 15 Hz

do not contain the muscle artefacts, as explained in section 2.2.2. The audio

features set provides the best classification results (91.36%), and the fusion of

audio and EEG features (d1) improves the performance slightly (92.08%). The

HR and SC provide an A-weighted F -score of 60.60% and 68.59% receptively and

their fusion improve results (69.47%). The fusion of skin conductance and EEG

does not improve results (79.08%). The information in the lower components

of EEG signals (a1, a2 and a3) is also evaluated, and observed that a3 (0–256

Hz) component provide the best result (79.47%), but the difference is very small
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(79.18%) compared to a3 (0–64Hz). A Venn digram is used to explore the mutual

information of the top three results which are obtained using d1, a10 and the

Audio signal as depicted in Figure 4.13, and the confusion matrix of this figure is

listed in Table 4.7.

d1 
(256 Hz – 512 Hz)

Gold 
Standard 
(Target)

170
(7.4%)

30
(1.3%)

38
(1.7%)

179
(7.8%)

41
(1.8%)

41
(1.8%)

15
(0.7%)

15
(0.7%)

30
(1.3%)

170
(7.4%)

38
(1.7%)

179
(7.8%)

138
(6.0%)

138
(6.0%)

1,070
(46.7%)

a10 (0 Hz – 0.5 Hz) Audio

Figure 4.13: Mutual Information: Venn diagram of the results

Table 4.7: Confusion Matrix of the top three best results, showing classification
of instances

a10 d1 Audio
Off-T. On-T. Off-T. On-T. Off-T. On-T.

Off-Talk 365 189 308 246 457 97
On-Talk 103 1,024 150 977 27 1,100

In Figure 4.13, the ‘blue circle (Target)’ represents the annotated labels, the

‘yellow circle’ represents the predicted labels by the features of a10 frequency

band using the RF classifier, the ‘green circle’ represents the predicted labels by

the acoustic features using the RF classifier, and finally the ‘red circle’ represents

the predicted labels by the features of a10 frequency band using the RF classifier.

From the Venn diagrams overlap, it is observed that there are 38 instances (8 On-

Talk and 30 Off-Talk) which have not been recognised by any of the feature sets.
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However there are 1,070 instances (875 On-Talk and 195 Off-Talk) which have

been detected by all three feature sets. The EEG features provide less accurate

results than audio features but are able to capture some information (41 (yellow

circle: a10), 30 (overlap of yellow: a10 and red circles: d1) and 15 (red circle: d1)

instances) which is not captured by the audio features as depicted in Figure 4.13.

A mid-p-value McNemar test is used to compare the results of a10, d1 and

Audio features with a null hypothesis which is that a10, d1 and Audio features

have equal accuracy for predicting the target (On-Talk – Off-Talk detection). The

test rejects the null hypothesis for ‘Audio and a10’ (pAudio−a10 = 1.67× 10−36), and

‘Audio and d1’ (pAudio−d1 = 9.44× 10−52) but fails to reject the null hypothesis for

‘a10 and d1’ (pa10−d1 = 0.08). High-frequency bands (> 40 Hz e.g., d1) provide good

results, and due to the muscle activity they capture, it confirm that the On-Talk

and Off-Talk utterances have a different muscle activity pattern. In addition, good

results are also obtained from the {a10 (0 Hz – 0.5 Hz)} band which has robustness

against muscle activities, which indicates that On-Talk and Off-Talk utterances

also have different neural activity patterns.

In a previous study, Hayakawa et al (Hayakawa, Haider, et al., 2016a) explored

the EEG Gamma band along with SC, HR and acoustic features for the detection

of On-Talk and Off-Talk and reported an A-weighted F -scores of 57.19% when

using only the EEG Gamma band. Our results of the wavelet analysis of the EEG

signals significantly improves the performance for On-Talk and Off-Talk detection

up to 74.80%. The acoustic features provide the best results for On-Talk and Off-

Talk detection in this study and in the results from Hayakawa et al (Hayakawa,

Haider, et al., 2016a). However, the results from Hayakawa et al (Hayakawa,

Haider, et al., 2016a) do not provide promising results using physiological signals
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alone and used more acoustic features (6,371 acoustic features) than those used in

the method (988 acoustic features) reported in this paper. In the previous study

Hayakawa et al (Hayakawa, Haider, et al., 2016a) only present an idea of detecting

On-Talk and Off-Talk using different modalities (e.g., EEG gamma band, audio)

instead of demonstrating and evaluating the results in detail, which this study

covers.

Table 4.8: 10-fold cross validation results (A-Weighted F -score%) for On-Talk,
Off-Talk detection. (Baseline is 50%)

Results LDA KNN DT RF
d1 (256–512 Hz) 67.53 65.64 65.92 72.01
d2 (128–256 Hz) 65.59 65.87 62.24 68.77
d3 (64–128 Hz) 65.24 64.11 61.41 67.70
d4 (32–64 Hz) 59.10 56.30 59.49 63.11
d5 (16–32 Hz) 55.11 55.63 59.01 61.51
d6 (8–16 Hz) 57.55 56.11 59.05 62.93
d7 (4–8 Hz) 58.64 54.33 55.40 60.54
d8 (2–4 Hz) 58.36 51.45 59.19 61.86
d9 (1–2 Hz) 55.46 52.28 55.78 62.67

d10 (0.5–1 Hz) 56.02 44.64 55.37 60.20
a10 (0–0.5 Hz) 56.32 64.03 70.76 74.80

Components fusion of S (0-512) 57.83 63.99 68.01 77.16
a1 (0–256 Hz) 67.42 69.29 72.08 79.47
a2 (0–128 Hz) 64.28 68.51 71.46 79.13
a3 (0–64 Hz) 65.55 68.72 71.08 79.18

Audio 82.73 67.91 84.14 91.36
Audio+d1 82.63 65.98 83.62 92.08

Audio +a1 87.45 68.56 85.23 92.06
Audio +a1 + d1 88.72 68.21 86.56 92.06

a1 + d1 66.62 68.26 72.37 79.72
HR 57.68 57.09 57.34 60.60
SC 65.01 59.51 64.90 68.59

HR + SC 65.02 59.15 64.92 69.45
a1 + d1+ SC 68.76 67.95 72.20 79.08

4.3 Cognitive States Detection

This section describes the methods to propose a novel cognitive states (i.e. tempo-

rary psychological states which are annotated using facial expressions) detection
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system for machine translation systems for sensing user experiences with the sys-

tem in terms of cognitive states. However the cognitive states occurs in a Speech-

to-Speech, Machine Translation mediated Map Task as described in Section 4.2.1

and the dataset is annotated for three cognitive states (amusement, surprise and

frustration using facial expressions) by two annotators with an inter-coder agree-

ment of above 60% which was calculated on one of the dialogues.

4.3.1 Features Extraction

In order to detect the cognitive states from the biosignal and the speech audio files,

this study computes a joint feature set for the single modalities (speech vs phys-

iological) for which a discriminative analysis pattern classifier is tested, and then

compare the results of the recognition rates for separate and integrated modalities.

The idea is to verify whether the information from the biosignal combined with

the prosodic analysis can improve the results of the detection.

Physiological Features Extraction

Two physiological signals are used in cognitive state recognition: The heart rate

(HR) from the BVP sensor and skin conductance measured from the SG/GSR

sensor. The feature set contains the median, mean, standard deviation, minimum,

maximum, minimum ratio, and maximum ratio of the data values. These features

are also calculated for the 1st and 2nd order derivatives of physiological signals.

This results in 21 features for SC and 21 for HR. However the HR signal, maximum

ratio and median of 1st and 2nd derivative have a zero value for most of the

observations. These zero values are removed from the physiological feature set
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resulting in a total of 18 features for HR. The minimum ratio of an observation is

measured by counting the number of instances which have a lower value compared

to their preceding and following instance and then dividing it by the total number

of instances in that observation. Similarly, the maximum ratio of an observation is

measured by counting the number of instances which have a higher value compared

to their preceding and following instance and then dividing it by the total number

of instances in that observation.

Prosodic Feature Extraction

OpenSMILE (Eyben, Weninger, Groß, & Schuller, 2013b) is used to extract a

prosodic feature-set from the high quality audio files that have been down sam-

pled to 48 kHz, 16 bit. The feature set employed is the 2013 ComParE challenge

(Schuller et al., 2013b) set. It comprises 6,373 features, including energy, spectral,

cepstral (MFCC) and voicing related low-level descriptors, as well as other descrip-

tors such as logarithmic harmonic-to-noise ratio (HNR), spectral harmonicity, and

psychoacoustic spectral sharpness.

Classification Method

Using the MATLAB statistical tool box, a 10-fold cross validation was performed

with the discriminant analysis (DA) method for the classification of this balanced

dataset. The method assumes that the feature-set of different classes follow differ-

ent Gaussian distributions and follows the pseudolinear discriminative type.
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4.3.2 Experimentation

The following 6 experiments are conducted to evaluate the performance of phys-

iological and/or prosodic features for cognitive states recognition on a balanced

dataset using different analysis windows as shown in Figure 4.14. Linear discrim-

ination analysis is used to classify the states in the below experiments. However,

the prosody analysis is performed on an utterance-by-utterance basis.

Exp. 1: The physiological feature vectors are calculated over the 372 anno-

tated labels of cognitive states.

Exp. 2: 124 observations of neutral state are introduced to the data of Exp.

1 in order to compare the physiological characteristics of neutral states with the

other three states.

Exp. 3: Our hypothesis is that the cognitive state starts developing after

the participant has read the displayed ASR result of the utterance spoken to

the ILMTs2s system. 249 observations of the biosignal are extracted starting

from when the ASR result is displayed on the screen and ending at the following

cognitive state label end-time. The physiological feature vectors over this duration

are calculated.

Exp. 4: Our hypothesis is that the cognitive state affect the participant’s

speech even after the labelled cognitive state has ended (that is when the cognitive

state is no longer observable). 390 utterances spoken to the ILMT-s2s system are

selected that occurred after the labelled cognitive state and calculated the prosodic

feature vectors for these utterances.

Exp. 5: It is investigated whether the cognitive state will affect the partici-

pant’s physiological characteristics even after the cognitive state is no longer ob-
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servable (after the labelled section has ended). The physiological feature vectors

are calculated for the 222 observations over an extended window starting when the

labelled section starts, but ending when the following speech utterance ends.

Exp. 6: The physiological features from the fifth experiment are combined

with the prosodic feature of the utterances that followed the cognitive state (on

the time-line) of the ILMT-s2s system.
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: Physiological data window used for Exp. 1, 2, 3, & 5.

: Speech utterance window used for Exp. 4.

For Exp. 6 a combination of the window of Exp. 4 & 5 is used.

Figure 4.14: Analysis window explanation.

4.3.3 Results and Discussions

Table 4.9 and Figure 4.15 show the recognition rates of the classification. The

average rates of classification for physiological data (combination of SC and HR)

in the 1st experiment is 61.29% and improves in the 2nd experiment to 70.77%.

However, in the 3rd experiment, the average percentages of classification accu-

racy using HR, SC and a combination of both physiological signals are reduced to

47.79%, 49.00% and 52.61% respectively, which contradicts our hypothesis. The
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Table 4.9: Classifier accuracies for each class & overall average.

A (%) F (%) S (%) N (%) Ave. (%)

70.97 52.42 40.32 - 54.57

62.90 59.68 61.29 61.29-

68.55 62.10 53.23 61.29-

71.77 56.45 46.77 68.75

62.10 55.65 35.48 70.16 55.85

68.55 64.52 50.00 100.00 70.77

62.65 40.96 39.76 - 47.79

54.22 49.40 43.37 - 49.00

60.24 51.81 45.78 - 52.61

56.15 43.85 50.77 - 50.26

70.27 51.38 45.95 - 55.86

SC

HR + SC

HRExp. 1:

SC

HR + SC

HRExp. 2:

SC

HR + SC

HRExp. 3:

Prosody + Bio

Exp. 6:

Features

75.68 67.57 60.81 - 68.02

100.00

ProsodyExp. 4:

HR + SCExp. 5:

decrease in accuracies compared to 1st experiment shows that the cognitive state

takes some time to develop instead of developing right after the ASR display. In

the 4th experiment, the preceding utterances were analysed to detect the cognitive

state that follows the utterance and the average result of classification was 50.26%.

It is observed that the cognitive states have an impact on the preceding utterances.

In the 5th experiment, the physiological data under the extended window provides

an average accuracy of 55.86% and finally, in the 6th experiment, it is observed

that the combination of physiological and prosodic features gives the optimum

accuracy of 68.02%. At the end, the results also show that physiological data, in

all cases except SC in the 1st experiment, provides better accuracy for amusement

(e.g. 70.97%) than frustration (e.g. 52.42%) or surprise (e.g. 40.32%). Contrary

to this, the prosodic data provides a better accuracy for surprise (50.77%) than
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Figure 4.15: The figure shows the classifier average accuracies.

frustration (43.85%). This proves that the prosodic and physiological character-

istics of amusement vary more than those of frustration and surprise. This also

indicates that the physiological characteristics of frustration (e.g. 62.10%) differ

more than the prosodic characteristics (43.85%).

The results here reported validate the hypothesis that the performance of bi-

modal cognitive state recognition gives better results compared to unimodal recog-

nition: the bimodal approach (combination of prosodic and physiological char-

acteristics provides 68.02% accuracy) gives an improvement of almost 7 percent

compared to the performance of the physiological signals (61.29%). The results of

physiological signals using neutral labels show that the characteristics of neutral
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labels are clearly separable from the three cognitive states, which resulted in good

classification of these labels. Moreover, these results also show that the HR of

neutral state is completely different from the three cognitive states. In addition it

is observed that HR has more correlation with amusement than SC, while, SC is

more correlated with frustration and surprise than HR. Using the “extended win-

dow” results in an increase of accuracy for amusement but a decrease in frustration

and surprise accuracies.

4.4 Active Speaker Detection

This section describes the methodology and experimentation to propose a novel ac-

tive speaker detection system using visual prosody information for human-machine

multi-party dialogue.

4.4.1 Dataset

An audio-visual dataset (Haider & Al Moubayed, 2012; Haider, Luz, & Campbell,

2016a) was collected as follow. Four participants (3 males and 1 female) converse

with the “machine”, but they are not allowed to speak with each other directly.

They are free to gesture, display emotions, etc. so long as this does not change

their location. The machine perspective is simulated by a fifth person (S0) in a

separate location, using video conferencing software, and his face is displayed on

the computer screen visible to the other four. The motivation for using full facial

information is to simulate a humanoid robot/avatar that can handle and generate

social signals and behaviours. The recording session consisted of two parts. In

part one, the subjects (in-front of the camera) ask questions from the machine
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(S0) one by one through video conferencing, and the machine (S0) answers them.

In the second part, the machine (S0) asks the questions from the other participants.

Some sample questions are as follow:

1. Where is the nearest train station?

2. How can I reach to the football ground?

3. Where can I find a place for lunch?

The fifth person (So) makes the interaction seem more natural, as full facial

information is present to the participants. All subjects make use of gestures,

body movements and display emotions. However, they are not allowed to change

their positions. The recording equipment and set-up are shown in Figure 4.16. A

high-definition JVC video camera was used for recording the session. It recorded

the video with a frame rate of 25 fps, and the duration of the video (dialogue)

is 21 minutes. The distance between speakers and machine interface (S0) was

approximately 2 meters. The segments of speech for all participants are annotated

using ELAN annotation software as shown in Figure 4.17 (Brugman, Russel, &

Nijmegen, 2004). Each speaker produced an average of approximately 70 speech

segments. Details of speech/non-speech frames are depicted in Table 4.10.

Table 4.10: Speech/non-speech frames and their data distribution.

Subject non-speech frame speech frame
S1 28442 (89.47%) 3355 (10.55%)
S2 29301 (92.49%) 2380 (7.51%)
S3 29697 (93.25%) 2148 (6.75%)
S4 28276 (98.29%) 492 (1.71%)

Total 115716 (93.25%) 8375 (6.75%)
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Figure 4.16: Recording setup.

4.4.2 Active Speaker Detection using Visual Prosody In-

formation

This section presents a novel system for active speaker detection using the head

and lip movements during speech articulation.

Feature Extraction

The FaceAPI SDK (Machines, 2009) is used for tracking of facial landmarks and

head coordinates for every speaker. FaceAPI is a commercially available software

(a product of Seeing Machines) capable of tracking head pose and lip location

as well as the location of jaw, eyebrows and eyes. Features used in this study

are the lips inner height, outer height and width (in meters) calculated by the

position (x, y and z in meters) of face landmark ID numbers 101, 104, 202, 206,
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Figure 4.17: Video annotation by ELAN (A snapshot showing the annotation in-
terface on the recorded video.)

200 and 204 as shown in Figure 4.19, and the head rotation along x, y and z-axis

(in radian) as shown in Figure 4.18. To calculate the feature set, average rates of

change of lip (inner height, outer height and width ) and head coordinates (x,y

and z coordinates) are calculated. Then, a window with a length of 25 frames (1

second) with 96% overlap (24 frames) is applied. After that, the standard deviation

and mean values for each window are calculated. The resulting dataset has four

features (2 for lip and 2 for head movements for each frame) for each speaker and

number of instances for speech and non-speech are reported in Table 4.10.

Statistical Analysis

From the ANOVA (Analysis of Variance) test results, it is found that head move-

ments groups means (speech/non-speech) are significantly different for speech

frames (p = 0.00), and lip movements exhibit the same behaviour (p = 0.00),

as shown in Table 4.11. Based on these results, in the following section a voice
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Figure 4.18: The face traking API coordinate frames (Machines, 2009)

Figure 4.19: The face tracking API lip tracking points (Machines, 2009)

activity detection (VAD) system is proposed, and then it is extended to a speaker

detection system.

Table 4.11: Statistical significance test (ANOVA test) results for head and lip
movements. The mean and standard deviation (Std.) values for NS (non-speech)
and S (speech) are also reported

Head (p = 4.4554e− 11) Lip (p = 3.2916e− 04)

NS (Head) S (Head) NS (Lip) S (Lip)
mean -1.5215e-05 2.4867e-04 4.3311e-07 -5.1023e-06

Std 0.0036 0.0029 1.3590e-04 1.4040e-04
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Classification Method

The classification is performed using four different methods namely Linear Dis-

crimination Analysis (LDA), Näıve Bayes (NB) classifier, Nearest Neighbour (KNN

with K=1) and Decision Trees (DT). These classifiers are employed in MATLAB5

using the statistics and machine learning toolbox. LDA works by assuming that

the feature sets of the classes to be discerned are drawn from different Gaussian

distributions and adopting a pseudo-linear discriminant analysis (i.e. using the

pseudo-inverse of the covariance matrix (Raudys & Duin, 1998)). The NB clas-

sifier also assumes a normal distribution for the feature set. KNN and DT are

non-parametric methods.

Results

The section reports results on active speaker and speech activity detection using

the head and lip movements as features. VAD is performed in three different model

training settings, namely: speaker dependent, speaker independent and hybrid and

the F-Score (harmonic mean) is reported to compare the results of different feature

sets and classifiers. In the case of LDA and NB classifiers, the F-Score for ‘speech

frames detection’ contains NaN (not a number) values which are due to the zero

value of precision or recall. So, it is found that the LDA and NB classifier performs

poorly (NaN (Not a Number) values of F-Score due to zero value of precision or

recall) in our case, and their results are not reported here. It can be due to the

fact that the data is highly imbalance.

5http://uk.mathworks.com/products/matlab/
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Speaker Dependent VAD

In this setting, a 5-fold cross validation is performed on the data of each subject

separately, and the results are reported in Table 4.12. The results show that the

1-NN provides the best F-Score for speech detection (68.40% for S3) and head

movements are better than lip movements.

Table 4.12: Speaker Dependent VAD Results (F-Score %) for Non-Speech(NS) and
Speech(S) using 1-Nearest Neighbour (1NN) and Decision Tree (DT) classifiers.
The 5-fold cross validation is performed on each subject data separately.

Subject Classifier
Lip Head Fusion

NS S NS S NS S

S1
1NN 90.10 16.61 91.82 30.96 95.60 62.40
DT 90.81 15.43 91.81 25.82 93.63 43.28

S2
1NN 93.15 19.53 94.23 28.25 97.30 67.22
DT 93.87 16.41 94.50 25.81 95.83 47.02

S3
1NN 94.30 20.88 94.67 25.41 97.75 68.40
DT 94.71 19.32 94.66 22.12 96.42 48.54

S4
1NN 98.46 9.35 98.91 33.30 99.36 63.70
DT 98.52 4.55 98.83 24.08 99.03 43.55

Hybrid VAD

In this setting, all the speech and non-speech data is concatenated and 5-fold cross

validation is performed. The results are reported in Table 4.13. 1-NN provides the

best F-Score for speech detection (83.90%) and head movements are better than

lip movements.

Table 4.13: Hybrid Method Results (F-Score %) for Non-Speech (NS) and Speech
(S) using 1-Nearest Neighbour (1NN) and Decision Tree (DT) classifiers.

Classifier
Lip Head Fusion

NS S NS S NS S
1NN 95.00 30.13 97.23 61.49 98.83 83.90
DT 95.36 31.97 97.30 61.66 97.18 60.25
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Speaker Independent VAD

In this setting, 4-fold cross validation (leave one subject out from training) is

performed, and the results of all four fold are reported in Table 4.14. The models

were trained on data from three participants, while testing was performed on data

from the fourth person, exclusively. The results show that the lip movements give

better F-score than head movements and fusion of them do not improve results.

Table 4.14: Speaker Independent VAD Results (F-Score %) for Non-Speech (NS)
and Speech (S) using 1-Nearest Neighbour (1NN) and Decision Tree (DT) classi-
fiers.

Test
Classifier

Lip Head Fusion
Subject NS S NS S NS S

S1
1NN 91.21 9.47 91.49 7.76 91.21 9.07
DT 91.86 8.73 92.06 7.27 91.62 8.90

S2
1NN 93.50 8.22 92.91 7.67 93.33 8.55
DT 94.21 7.51 93.58 8.03 93.52 8.85

S3
1NN 94.24 9.51 94.23 6.14 94.77 9.09
DT 94.60 7.36 94.76 5.39 94.48 9.07

S4
1NN 94.60 3.42 95.15 3.28 95.06 2.95
DT 95.65 3.63 95.60 2.73 95.25 3.92

Speaker Detection

For the speaker detection problem, those frames are selected that have both fea-

tures (both lip and head movement have been tracked by FaceAPI) for all par-

ticipants and ignore those frames where two subject speak simultaneously. As a

result, the data contains 21301 frames of silence and 2408, 1886, 1900, 411 frames

of speech for S1, S2, S3 and S4 respectively. The 5-fold cross validation results are

depicted in Table 4.15.
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Table 4.15: Speaker Detection Results (F-Score % of each class) for Lip and Head
movements using 1-Nearest Neighbour (1NN) and Decision Tree (DT) classifiers.

Feature Classifier Silence S1 S2 S3 S4

Lip
1NN 97.86 91.91 92.94 93.27 88.89
DT 89.89 57.37 59.98 60.24 55.43

Head
1NN 97.98 93.59 92.81 91.95 92.23
DT 93.70 75.28 75.89 77.29 66.03

Fusion
1NN 98.18 93.68 93.55 93.43 92.77
DT 94.23 76.92 76.96 76.52 73.54

Discussion

The results show that head movements provide better result than lip movements

in speaker dependent and hybrid VAD and fusion of both features improves the ac-

curacy as depicted in Table 4.12 and Table 4.13. However, in speaker independent

setting lip movements have better results than head movements but the difference

between them is quite small as depicted in Table 4.14. The poor F-scores obtained

for speech detection in speaker independent settings are mainly due to data imbal-

ance (as reported in Table 4.10), the small number of subjects in the training data

set, and the absence of speaker-specific features. However, in the other settings the

proposed approach performed quite well over blind guess (50%). The speaker de-

pendent setting provides less accurate results than hybrid settings. This indicates

a strong relationship between head and lip movements of different subjects. The

hybrid model provides the best results for speech detection (F-score = 83.90%).

This also suggests that this approach will scale well as more subjects’ data is used.

If the training data set contains lip and head movements of the several people

(say, 50 subjects) then the likelihood of finding a similar relationship among the

multiple speakers and the test subject is increased, possibly leading to better ac-

curacy. In the speaker detection problem (blind guess = 20%), head movements

also provide better results than lip movement. Fusion improves accuracy, but only
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slightly. As regards classification methods, LDA and NB classifier provides poor

results as compared to decision trees and nearest neighbour. The reasons for the

poor performance of LDA and NB are the highly imbalanced nature of the data

and the poor fit between the high-level features that are used in this study and the

underlying assumptions of these models. In (Wang & Schmid, 2013), the authors

use low-level visual descriptor to capture upper body movements including head

movements for active speaker detection, but they do not explicitly explore head

movements. Furthermore, the scenario of the dataset is more formal (students

and jury) than this study. In a previous study, lip movements are also considered

for detecting speaker and speech with some success. However, that study was

conducted on a balanced dataset (Haider & Al Moubayed, 2012).

4.4.3 Improving Response Time of Active Speaker Detec-

tion

In Human-Human interaction, it is observed that the listener turns their gaze

towards the speakers around 30-–80% of the time (Kendon, 1967). Hence, from

the social robotics perspective, it is useful to detect the active speaker as soon as

possible to enable the robot to turn gaze/head towards the speaker to show that

it is attending to the speaker. In particular, it is useful if one may anticipate who

the next active speaker will be, in order to accelerate this process.

This study continues the author’s past work (Haider & Al Moubayed, 2012;

Haider, Luz, & Campbell, 2016a) which demonstrated the use of lip and head

movements during speech articulation for active speaker detection but did not as-

sess the discriminative power of visual prosody data captured just before and/or
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after articulation. This study proposes methods for detection of active speakers

through use of visual prosody information one second before/after speech articu-

lation and also evaluate the visual prosody information of the first second of the

speech utterance. The system architecture is depicted in Figure 4.20. The system

processes visual information before articulation from the memory buffer as soon

as Voice Activity Detection (VAD) detects 10 ms of voice activity. The proposed

methods are a step towards decreasing the response time of a robot in generating

multimodal attention towards the user in situated interactions and experimen-

tal findings help in understanding the discrimination power of visual prosody for

those regions (one second before/after the articulation). To the author’s best

knowledge, it is the first automatic active speaker detection system with input

from one camera which uses the visual information particularly head movements

before articulation. Moreover, it is the first study which demonstrates the dis-

crimination power of visual prosody (one second before and after articulation) for

active speaker detection.

VAD

Speech segment (start time 

and end time) 

Audio

speaker ID
Video

Feature 

extraction 

and buffering 

Start time

Active 

Speaker 

Detection

Feature selection prior to 

articulation from the buffer 

Figure 4.20: The proposed system architecture for active speaker detection.
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Figure 4.21: Regions of interest for ‘Going to Speak’, Silence and Speech

Pearson Correlation Test

In line with evidence of low variation in electrical potential up to one second

before the speech articulation in the human brain (McAdam & Whitaker, 1971) It

is hypothesised that visual prosody also shows some characteristics (e.g. subject is

going to start moving his or her lips for articulation) that are manifest during the

one second before articulation. To validate this assumption, Pearson correlation

test is performed using a subset of the corpora. For the test, 20 speech segments

are considered for each subject and extracted features (mean value of the rate of

change in lip and head movements) from the regions shown in Figure 4.21. There

are 20 instances of Silence Region (SilR), Going To Speak Region (GTSR) and

Speech Region (SR) for each subject. SR is defined as the first second of a speech

utterance, and the GTSR is defined as a time window of one second before SR. The

SilR is defined as a time window of one second before GTSR. All these regions are

concatenated as depicted in Figure 4.21. The results of Pearson correlation test

along with the null hypothesis are described below. This test helps us in finding

the correlation between visual prosody of SR, GTSR and SilR.

Hφ1: There is no correlation between the visual prosody of SilR and SR data.
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The Pearson correlation failed to rejected this null hypothesis at the pGTSR-SilR <

0.05 significance level in all cases, as depicted in Table 4.16.

Hφ2: There is no correlation between the visual prosody of SR and GTSR

data.

For this hypothesis, the Pearson correlation test rejected the null hypothesis

(pGTSR-SR < 0.05) in 4 out of 6 cases as depicted in Table 4.16. Only for S1 head

and S2 lip data, the test was unable to reject the null hypothesis (pGTSR-SR > 0.05).

Hφ3: There is no correlation between the visual prosody of GTSR and SilR

data.

For Hφ3, the Pearson Correlation test rejected the null hypothesis (pGTSR-SilR <

0.05) in 2 out of 6 cases as depicted in Table 4.16. S3 lip and S1 head data showed

statistically significant correlation (pGTSR-SilR < 0.05).

Table 4.16: Pearson Correlation test results (statistical significance (p) and cor-
relation coefficient (r)) for Silence Region (SilR), Speech Region (SR) and Going
To Speak Region (GTSR).

Feature Subject
SilR-SR GTSR-SR GTSR-SilR

rSilR-SR pSilR-SR rGTSR-SR pGTSR-SR rGTSR-SilR pGTSR-SilR

Lip
S1 0.164 0.489 0.668 0.001 0.297 0.204
S2 0.065 0.786 -0.089 0.709 0.067 0.781
S3 0.211 0.372 0.626 0.003 0.627 0.003

Head
S1 0.078 0.743 0.238 0.313 0.687 0.001
S2 0.443 0.051 0.656 0.002 -0.151 0.525
S3 -0.070 0.769 0.791 0.000 0.116 0.625

From these correlation tests, it is concluded that: 1) the GTSR is highly cor-

related with the SR and this correlation is statistically significant (p < 0.05) in 4

out of 6 cases. It suggests that every speaker has some visually detectable means

(i.e. head and/or lip movements) of communicating their intention to speak; 2)

the GTSR is less correlated with the SilR than SR, and this correlation is statis-
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tically significant (p < 0.05) in 2 out of 6 cases; 3) the data shown no significant

correlation between SR and SilR.

Experimentation

Given that SR information seems better correlated with GTSR than SilR, feature

sets are created that reflected this fact, and trained models for an automatic active

speaker detection system using classification methods. We have performed three

experiments using three different feature sets for classification as described below:

Experiment One: In this experiment, The features are extracted one second

before articulation (GTSR, see Figure 4.21).

Experiment Two: In this experiment, The features are extracted one second

after articulation. (SR, see Figure 4.21).

Experiment Three: In this experiment, The features have been fused from

the previous two experiments.

Classification Methods

The classification is performed using four different methods, namely Linear Dis-

criminant Analysis (LDA), Näıve Bayes (NB), Nearest Neighbour (KNN with

K=1) and Decision Trees (DT). These classifiers are employed in MATLAB6 using

the statistics and machine learning toolbox in the 10-fold cross-validation setting.

LDA works by assuming that the feature sets of the classes to be discerned are

drawn from different Gaussian distributions and adopting a pseudo-linear discrim-

inant analysis (i.e. using the pseudo-inverse of the covariance matrix (Raudys &

Duin, 1998)). The NB model also assumes a kernel distribution for the feature

6http://uk.mathworks.com/products/matlab/ – Last verified June 2017
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set. KNN and DT are non-parametric, and non-linear classification methods.

Results and Discussion

The classification is performed on subset of the dataset, Where each subject has 21

instances. In this case, blind guess and majority guess are the same (33.33%), and

it is set as a baseline for the classification task. The results of experiment one are

shown in Table 4.17. It is observed that the lip movements (42.86%) provide better

results than the head (38.10%) and fusion of lip and head movements (47.62%)

improves the performance. The LDA classifier provides the best results. However,

the fusion of lip and head movements does not improve accuracy for NB and

KNN, and overall lip movements provide better results than head movements.

This probably reflect the fact that these models are more prone to being misled

by irrelevant features than LDA, as is well known of KNN, for instance.

Speech Segment Processing time

Prior to articulation information Processing time output

output

Start time End time

A

B

C

D

Figure 4.22: Highlighted the proposed system response time (A), baseline response
time (B), improvement in response time (C) and duration (couple of seconds) of
Speech segment (D). The output is the predicted label and processing time is the
time taken by a machine’s processor for classification purpose.

The results of experiment two are shown in Table 4.18. It is observed that the

lip movements (52.38%) provide better results than the head (46.03%) and fusion

of lip and head movements (49.21%) cause a slight increase in accuracy. The LDA
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Table 4.17: Accuracy (%) for experiment one (10-fold cross-validation): facial
features one second before articulation.

Feature Baseline KNN DT NB LDA

Head 33.33 31.75 28.57 25.40 38.10
Lip 33.33 36.51 38.1 30.16 42.86

Fusion 33.33 28.57 41.27 30.16 47.62

classifier provides the best results. The fusion of lip and head movements do not

improve accuracy.

Table 4.18: Accuracy (%) for experiment two (10-fold cross-validation): features
one second after articulation.

Feature Baseline KNN DT NB LDA

Head 33.33 39.68 46.03 42.86 44.44
Lip 33.33 42.86 44.44 42.86 52.38

Fusion 33.33 36.51 46.03 42.86 49.21

The results of experiment three are depicted in Table 4.19. It is observed that

the lip movements provide better results than head movements using LDA, DT

and KNN classifiers. The fusion of lip and head movements improves accuracy for

LDA.

Table 4.19: Accuracy (%) experiment Three (10-fold cross-validation): fused fea-
tures.

Feature Baseline KNN DT NB LDA

Head 33.33 30.16 41.27 37.10 39.68
Lip 33.33 33.33 50.79 36.51 52.38

Fusion 33.33 30.16 42.86 33.87 55.56

From the above three experiments results, it is observed that the visual prosody

one second before articulation provide good results for active speaker detection.

This can be due to the fact that the subjects start moving their lips before artic-

ulation of speech.

139



We use a Venn diagram to visualise the range of classification overlaps of the

best performing classifier (LDA) for each experiment. In Figure 4.23, the red circle

(Target) represents the annotated labels, the yellow circle (Exp.2) represents the

predicted labels by the lip movements in experiment two, the blue circle (Exp.1)

represents the predicted labels by the fusion of head and lip movement in exper-

iment one, and finally the green circle (Exp.3) represents the predicted labels by

the fusion of head and lip movements in experiment three. It is observed that the

yellow and green circles have the highest overlap (38 out of 63), and that both

these circles have an overlap of 35 samples with the red circle (Target). It is also

observed that there are 12 instances (4 of S1, 6 of S2 and 2 of S3) which have

no overlap with any circle. There are 16 instances (2 of S1, 7 of S2 and 7 of

S3) which have been detected by all the three experiments as depicted in Figure

4.23. We also compare the predictive accuracies of our three best results using the

mid-p-value McNemar test (testcholdout7) with a null hypothesis that predicted

labels of Exp.1, Exp.2 and Exp.3 have equal accuracy for predicting the target.

The statistical test was unable to reject the null hypothesis (pExp.1-Exp.2 = 0.58,

pExp.1-Exp.3 = 0.29 and pExp.2-Exp.3 = 0.66 ) and shows that although GTSR pro-

vides less accurate results than SR and fusion of both regions but the difference is

not statistically significant. Hence demonstrating that the GTSR and SR regions

have similar characteristics for active speaker detection. In previous studies, the

speech/non-speech frames were distinguish and the active speaker is classified with

good accuracy using visual prosody information during speech articulation. How-

ever, the proposed methods were not developed for a quick response time, and the

main objective was to evaluate the lip and head movements as discriminative fea-

7https://uk.mathworks.com/help/stats/testcholdout.html (Aug 2017)
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tures for active speaker detection in human-machine multi-party setting (Haider

& Al Moubayed, 2012; Haider, Luz, & Campbell, 2016a).

Most studies (Chakravarty, Zegers, Tuytelaars, & Van hamme, 2016; Chakravarty

et al., 2015) to date process the full speech segment acoustic and visual information

(‘D’ region as depicted in Figure 4.22) and then assign each utterance a speaker

label that added a latency and decrease the response time of a machine that may

results in turning the gaze and head of a robot to the active speaker in its view

after the subject finished speaking (‘B’ region as depicted in Figure 4.22). In a

previous study, The head and lip movements of the ‘D’ region were evaluated for

speaker detection and observed an average of 71.29% accuracy using lip move-

ments on the same dataset used in this study (Haider & Al Moubayed, 2012).

While the accuracy for the ‘D’ region is better than GTSR and SR regions for

speaker detection, the former will generate a multi-modal output for a robot only

after processing the full speech segment with a duration of some seconds (depend-

ing on the speech segment length, which is typically couple of second to around

20 seconds, plus processing time). The latter will generate the output after 0-1

second (plus processing time) of speech articulation. The current and previous

study (Haider & Al Moubayed, 2012) both require an input from audio-VAD. The

strength of the current study is its focus on quick response time (‘A’ region as

depicted in Figure 4.22 ) which can increase the naturalness of a machine in a

human-machine multi-party interaction. In another study (Haider, Luz, & Camp-

bell, 2016a), a visual active speaker detection system is proposed at frame level

which do not need an input from audio-VAD to operate and detect the speaker at

video segment level. This involved processing of consecutive 25 frames (1 second

of video segment) with an overlap of 24 frames with neighbouring video segment,
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hence detecting who is speaking in each video frame, instead of speech segment

level (detected by audio-VAD) using lip and head movements with GTSR treated

as SilR (Haider, Luz, & Campbell, 2016a). While we observed high accuracy

(> 90%) in classifying video segments of active speaker, that study did not ex-

plicitly demonstrate the discrimination power of speech frames (video segments)

one second before/after articulation, which this study covers. Based on the ex-

perimental findings (GTSR is more correlated with SR than SilR), we recommend

that GTSR should be treated as SR instead of SilR for the development of visual

active speaker detection systems for noisy environments.

Figure 4.23: Venn Diagram of the best results of three experiments and annotated
labels (Target).
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4.5 Conclusion

This chapter mainly presents cognitive processing components for public speaking

training system which can help a machine to interact and manage multiple trainees.

Without these components, a multimodal spoken dialogue system is not able to

manage multiple trainees at a time. It is also unable to handle spoken utterances

which are directed towards it and unable to deploy certain repair strategies (e.g.,

switching between ASR models) if humans’ are facing trouble in interacting with

a machine due to systems components failure. The conclusion of each study is

described below.

4.5.1 On-Talk & Off-Talk Detection

EEG features are able to predict the ‘on- and off-talk’ maximum accuracy of

80.25%. For on-/off-talk detection, prosodic information provides slightly better

accuracy (81.83%) than EEG (80.25%) and fusion of prosodic and EEG infor-

mation results in an improvement in performance (86.76%). However, prosodic

features extracted from the whole utterance add latency because the system needs

to wait until the utterance is finished, while EEG features (prior to articulation)

do not have this problem. Moreover, a system based on prosodic features will

typically perform poorly in noisy settings. In future work, it is planned to investi-

gate higher frequency bands, as well as detection of on-talk using the EEG signal

from the mid-line and left hemisphere of the brain to encode the phonological and

motor area activation information.

The results of this study also indicate that the EEG frequency bands contribute

significantly towards the detection of On-Talk and Off-Talk utterances, and sta-
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tistical significance tests suggest that EEG features (during speech articulation)

are statistically different for these two types of utterances. The higher frequen-

cies contain significant information which could be further explored for emotion

recognition. It is also found that the muscle activity (talk related muscles arte-

facts) may influence the results positively. A possible direction for future work is

to explore facial movements during On-Talk and Off-Talk to further corroborate

these assumptions (muscle activities). It is also worth exploring, how different un-

controlled acoustic environments affects the prediction power of a classifier (that

is trained using data of controlled environment) for On-Talk and Off-Talk detec-

tion. Some of the results of this study are published in international conference

(Hayakawa, Haider, Luz, Cerrato, & Campbell, 2016b; Haider, Akira, Luz, Carl,

& Campbell, 2018).

4.5.2 Cognitive State Detection

The results of study indicate that (a) the association between the cognitive state

and the biosignals does not seem to persist until the next sentence is uttered, as

suggested by the poor state detection performance in time windows that include

following utterance, and (b) that features of the speech signal can be used to com-

plement biosignals in detecting cognitive states in time windows that include the

following utterance. Extending the window to the end of the utterance following

the cognitive state yields poor detection on biosignals alone, but improves con-

siderably if features of the speech signal are added, thus showing the potential

usefulness of speech features as a biosignal. The results of this study are published

in international conference (Akira et al., 2015)

144



4.5.3 Active Speaker Detection

The results show that head and lip movements (during speech articulation) are

significantly correlated with one’s speech and can be used in detecting speech and

speaker. The results also show that the ‘going to speak’ region (one second before

speech articulation) contains a significant amount of information about who holds

the floor in a dialogue. The visual prosody features extracted from this region

provide less accurate results than the ‘speech’ region (one second after articulation)

for the classification task but the difference is not statistically significant. The

fusion of features from both regions improves performance for linear discrimination

analysis and decision tree. Possible future work is to evaluate the low-level visual

descriptors (e.g. histogram of the gradient) extracted from ‘going to speak’ and

‘speech’ region for active speaker detection and its fusion with the audio features.

Another possible future work is to detect the ‘going to speak region’ by using visual

information only instead of relying on 10 ms of speech utterance. The results of

this study are published in international conference (Haider, Luz, & Campbell,

2016a) (Haider, Luz, Vogel, & Campbell, 2018)
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Chapter 5

Conclusion and Future Work

This thesis presents multiple novel models and systems which can help in develop-

ing a multimodal multiparty spoken dialogue system for public speaking training.

This thesis proposes novel models and systems which are mainly focused on two

parts. The first part deals with the public speaking abilities and the social signal

and behaviour cues that represent the public speaking abilities. In the context

of this thesis, prosody, face, and body gestures information are used to make in-

ference about a presentation. However, the thesis does not focus on the actual

verbal content spoken because the objective of this thesis is to provide models

and systems for the training of non-verbal aspects of public speaking. The first

part of thesis considers four different types of public speaking situations (TED

talks, students’ presentation, video blogs and political debates in parliament) and

provides novel models in recognizing some public speaking abilities in those con-

texts. However, there are many public speaking situations (e.g., journalist speech,

teachers lectures, politician speech to public and job interviews) where automatic

systems are needed for training humans which can be the future work of the the-
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sis. The student’s debates dataset is collected but is not used to train machines to

recognize the political debates skills. One of the possible future work is to use the

debates dataset to train models for debates training skills. The second part of the

thesis focuses on three different types of challenges (on-off talk, active speaker de-

tection, and cognitive state detection) which a multiparty spoken dialogue system

may face while training humans for public speaking. It could help a machine in

deploying certain repair strategies in case some of the machine components (e.g.,

ASR failure, self-speaking) fail, sense user experience and manage multiple users

(trainees) at a time. However, there are many other humans’ behaviours (like the

use of body gestures while interacting with machines) which can be the possible

future work of the thesis.
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